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Abstract 

Autonomous driving has become a very interesting research problem for the deep learning 

domain. While Intelligent Autonomous Vehicles (IAVs) have developed significantly 

over the last 10 years, there are still unresolved issues concerning how to transfer 

knowledge from one driving environment to another. In particular, there is hardly 

anything known about how to get IAVs trained for driving on one side of the road (e.g., 

left-hand side in New Zealand and Japan) to right-hand side (e.g., the USA and China). 

This research describes how a deep learning IAV lane-positioning model can predict the 

steering angle based on continuous left-hand drive images and velocity inputs for 50 

minutes of simulated driving (over 32,000 images) using convolutional neural networks 

(CNNs). We then examine freezing weights at different layers for successful transfer to 

right-hand simulated driving (10 minutes and over 7,000 images) and find that the best 

layers to freeze lie closest to the output layer. By visualizing the effects of weights at 

different levels, we report that the model shows signs of extracting increasingly relevant 

features at the higher levels that may help to explain how human drivers transfer 

knowledge about how to drive on one side of the road to the other. The overall contribution 

of this thesis is showing how a deep learning IAV model can adhere to lane-positioning 

by predicting the steering angle and can also transfer knowledge from left hand to right 

hand drive simulated driving.  

Keywords— Image Recognition, Deep Learning, Steering Angle Prediction, Self-

Driving Cars, Autonomous Vehicles, Convolutional Neural Networks, Deep Learning, 

Transfer Learning, Polder Blindness. 
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Chapter 1 

Introduction 

The purpose of this chapter is to introduce the 

background and motivation of this thesis. The research 

questions explored in this thesis are presented with a 

rationale and analysis. The goal of this thesis is covered 

next in which we link our research questions and 

methodology with current understanding. Here, we also 

outline the research contribution of the thesis. Lastly, 

the structure of this thesis is outlined.
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1.1 Background and Motivation 

The New Zealand road code, like most road codes or highway codes internationally, can be 

summed up in a few easy to remember points that drivers should perform on a regular basis. 

These include speed awareness, blind-spot check, mirror check, lane positioning, hazard 

detection, braking distance and road condition awareness. These highlight the level of complexity 

that a task such as driving involves, for machines and humans alike. Unfortunately, humans are 

not immune to distractions and this diversion of focus results in many accidents, some of which 

are fatal. The goal of IAVs is to not only lower the number of accidents but also show that 

machines are capable of learning a task as complex as driving. However, there are tasks that 

humans can currently do better than IAVs, such as transfer knowledge of how to drive on the 

left-hand side of the road to the right-hand side. To effectively create machine learning models 

capable of steering a vehicle, we must first understand how humans would navigate their 

environment. This will not only, in such a situation, help us in better decision-making during 

model creation and training, but also give us insight to design and develop our models.   

1.1.1   Human Behaviour 

 A human driver learning to drive follows a long training process, whether it be formal or 

informal training. There are steps that must be taken during each phase of driver training before 

they can become confident.  A hierarchical description, Figure 1, put forward by Keskinen, 1994, 

states four levels of driver behaviour (Keskinen, 1994). These levels show a progression of skills 

and how well each must be learnt before moving on. The initial skill listed is ‘Vehicle 

manoeuvring’, which includes, controlling speed, direction and positioning. The NZ road code 

also includes these points as they make-up the foundation for driving a vehicle. The ability to 

learn the foundations, or lower-levels, of driver behaviour may be dependent on the goals of the 

driver (Hatakka, Keskinen, Gregersen, Glad, & Hernetkoski, 2002). The highest levels on the 

hierarchy focus on the driver’s ‘Goals for life and skills for living’, which may directly impact 

on the lower levels. If a driver does not have much use for driving, they may not expand resources 
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for mastering vehicle manoeuvring. This may also have some impact of the decision-making of 

the human driver.  

 

Figure 1- Four levels of driver behaviour taken from Keskinen, 1994. 

 

 To identify the cause of crashes which involve a human driver, it is important to look at the 

decision-making process of humans. By identifying the factors that humans rely on to manoeuvre 

a vehicle, we can identify how a machine should perform this task as well. Research done by 

Evans, 1991, found that new drivers who display risky behaviour during driving are only doing 

so for developmental purposes. This may show that such drivers do not understand the associated 

risks of carrying out actions but do learn the impact (Evans, 1991). It was also found that, 

compared to experienced drivers, new drivers tend to move their eyes a lot and focus on features 

that do not provide value to the act of driving (Barjonet, 2001). As mentioned before, the learning 

itself is measured on the motivation of the user and their goals in life. When manoeuvring a 

vehicle, a human driver must, effectively identify various objects in their view and decide to steer 

the vehicle. These objects could include obstructions, road signs, layout or destination. In the 

driver behaviour hierarchy (Keskinen, 1994; Hatakka, Keskinen, Gregersen, Glad, & 

Hernetkoski, 2002), this is the third level. The ability to plan, navigate, set goals and provide 

context may ensure that a driver can accurately perform the act of manoeuvring a vehicle. Prior 

planning allows the driver to focus on the task at hand and attentively gather information about 

the environment, vehicle and the road. When it comes to gathering data around them, humans 

also tend to transmit their data to the other drivers on the road. Drivers do this to ensure they can 

predict other drivers and be predictable to allow for safe driving conditions. These levels of driver 

behaviour are general and specific to local conditions, such as whether to driver on the left-hand 

side or the right-hand side of the road.  
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 Similar to machine learning models, humans are constantly learning to make these skills 

better through learning a variety of situations and road layouts. In many cases humans need to be 

able to transfer skills learnt in one scenario to another. In these cases, knowledge retention is very 

important as this knowledge may help in learning other scenarios quicker. A human driver can 

learn their environment through sight, hearing, smell, or combination of these (Bucchi, Sangiorgi, 

& Vignali, 2012). The quality of learning also depends on the goals of the human as well as the 

need to observe and experiment. When a human driver changes their environment, such as from 

left-hand side to right-hand side, they will often explore the qualities, rules and conditions of 

driving. How they perform in a new environment is related to their performance in their own 

environment. When learning to drive, the human must practice and automise basic vehicle 

handling and manoeuvres (Hatakka, Keskinen, Gregersen, Glad, & Hernetkoski, 2002). 

Otherwise, the driver will become exhausted from the constant focus on the road and the 

environment. This may decrease the ability to predict and be predictable to other drivers on the 

road. An experienced driver in a new environment displays similar mannerisms as a new driver 

in the same environment. Due to the constant focus, sometimes on irrelevant features (Barjonet, 

2001), dealing with sudden emergencies while driving can become highly problematic. The more 

experienced driver will be able to adapt much quicker than a new driver.  

 Learning and practising a task, with proper future goals, will ensure that a human can get 

good at driving. Hatakka, 2002, has suggested that to become efficient in the task of driving, one 

must be able to automate basic manoeuvres (Hatakka, Keskinen, Gregersen, Glad, & 

Hernetkoski, 2002). The benefit of this is that the human driver does not need to continuously 

focus on the road and actively process information. This automation of task occurs in the later 

stages of learning when the human is an expert, and they know and understand the vehicle, 

environment and task very well. The expert must then go back to a novice and actively focus on 

the task if they enter unfamiliar territory (Michon, 1985). The expert, however, can leverage the 

previous knowledge and transfer their skills to become autonomous again, fairly quickly. 

Autonomy can also set in due to environmental features, such as polder blindness (SWOV, 2012). 

The term ‘polder blindness’ refers to the instance when the driver has reduced alertness on 
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straight roads, due to low traffic, wide flat landscape, or low visual obstructions (Koornstra, 1989; 

SWOV, 2012).. This can occur if the environment is of the above description and given the driver 

is an expert, they can transition into an automatic state. While in this state, the driver is not 

actively perceiving and processing information about their environment or their vehicle.  

 

 Based on the psychology of how humans initially learn to drive, we know that practice is 

crucial to this field. The motivation and goals of humans guide the strength of learning the 

foundation skills in driving. We can see that perception plays an important role in the task of 

driving as it is primarily how humans learn about their environment, among using other senses. 

Apart from that, experienced drivers focus on features on the road that are most probably related 

to controlling the vehicle effectively (Crundall & Underwood, 1998). Initially, novice drivers 

lack this focus and make many mistakes in an effort to learn and develop this crucial skill. We 

can understand that failing is important for the development of self. We can also understand that 

a machine learning model would work best when using a camera-based input to mimic 

perception, but also other inputs to supplement vision.  

1.1.2   Machine Learning Background 

  The area of image processing has shown significant growth over these past years with the 

development of faster hardware and sophisticated algorithms. In turn, the development of 

autonomous vehicles explored many areas such as computer vision, path finding or sensory input 

(LiDAR, RADAR). Since the inception of self-driving cars, Campbell et al., 2010 reports that 

they are now able to assess their environment, detect and classify objects and apply some path 

finding (Campbell, Egerstedt, How, & Murray, 2010). For a trained human, these tasks may seem 

trivial, but for a machine, performing these tasks requires lots of data and computing power. 

When humans start learning how to drive a vehicle, they use their previous knowledge, gained 

through experience, of what a road is, what road signs are or roles of the driver etc. They also are 

taught by experienced drivers, reading the road code and passing multiple tests. Emphasis is also 
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put on practice and drivers learn to drive in an isolated environment before taking to an open 

road. 

 New Zealand drivers are required to drive on the left side of the road, whereas some other 

countries require drivers to drive on the right side. This, along with countries having different 

road signs, road markings, and road codes means the driver must adjust in different geographies. 

Humans can transfer their learning from one geography to another without having to re-learn the 

task. For a more experienced driver this maybe easier than someone new to the task of driving in 

general. This can be attributed to experience and knowledge gained from learning previous, 

similar tasks.  

 Machines require lots of data to complete this task. Here, the type of input data is very 

important and must be carefully curated by the human to ensure the models learn enough to 

generalise. There do exist some assumptions regarding our data and the method of collection. 

We use a self-driving car simulator to collect simulated data through the use of an RGB camera 

sensor and a speed sensor. We also have a steering angle sensor to collect the steering angle 

associated with the other sensor inputs. We assume that the link between simulated inputs versus 

real-data is strong. In fact, there may be some scenarios that don’t exist in real world datasets 

which can be simulated to provide more information to our model. The data being captured by 

our sensors is also assumed to be representative of the current actions being done by the simulated 

vehicle. The sensor input is also collected from within the simulation. As we are using a well-

known open sourced simulator, we assume that the assets, sensors, and collection methods are 

proven to be stable.  

 This data can then be fed into a machine learning model to allow the model to train on the 

data. The goal of the training process is to ensure the model learns to predict a steering angle, or 

other autonomous driving related task. The task of predicting the steering angle, given an image, 

and sensor data as inputs, requires the model learning the ground truth steering angle. The ground 

truth is the actual steering angle as reported by our simulator. The model must learn the features 

present in the training data and then give an output steering angle. The processing of images can 
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be done with the use of deep neural networks, specifically convolution neural networks as they 

work best with image data. An image of the road contains many possible features, such as road 

markings, barriers or road signs, which may contribute to the learning and steering angle 

prediction process. On the other hand, many features may not contribute to our goal and therefore 

must be handled in an appropriate manner.  

 Apart from large amounts of data, deep learning requires sufficient computation power to 

process the data. The training process is the phase where the model is learning the hidden patterns 

within the training data and reducing its error rate. Depending on the size of the model, type of 

input data and the complexity of the model, this phase can take anywhere from a few hours to 

weeks. This phase can be sped up by adding more hardware which would incur extra costs. Apart 

from extra hardware, software development practices must be applied properly to ensure 

minimum overheads during the training and deployment phase. To speed up the training process, 

fewer data can also be given, which in turn may result in a less generalised model and a higher 

error rate. That said, we plan to investigate the effects of variable sampling rates on straight roads 

vs bending roads. This is due to the phenomenon known as polder blindness. We can quantify 

the variable sampling rate on straight roads by measuring the error of various rates versus equal 

sampling of straight roads and bends.  

 Currently deep learning models consume a lot of resources to train and maintain, especially 

given the unpredictable nature of humans. As autonomous vehicles are tested on populated, urban 

roads, there always seem to exist some event that the model has not been trained for. For each 

new task, new and relevant data must be collected, annotated, fed into the model which will then 

spend some time training on that specific task. Some methods, such as transfer learning, exist to 

reduce the cost of training a new model. Transfer learning helps by using knowledge from one 

task to perform another task. It can help in the deep learning pipeline by allowing the mode to 

learn faster or avoid collecting large amounts of annotated data.  

1.1.3   Motivation 
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 My motivation for this project is to identify an architecture that can predict steering angles, 

but also attempts to learn the same features that human drivers view as important. Despite 

increased knowledge of how human drivers learn to drive, no computational models exist 

concerning how human drivers, or IAVs, transfer knowledge from left-hand side to right-hand 

side driving. This will give us insight to the steps needed to solidify our current understanding of 

deep neural networks for autonomous vehicles. What also motivates me is the idea of glancing 

inside the black box for deep neural networks in an effort to understand the decision-making 

process. A human can simply be asked to provide a reason for their behaviour whereas a neural 

network makes this process challenging.  Interpreting deep learning models can have major 

benefits in the industry by removing a barrier of entry for black box models.  

 Apart from that, I aim to explore the benefits of the human driver going into a ‘passenger’ 

mode to let the brain ‘control’ the car with little active focus. This phenomenon may occur due 

to the human driver being confident in their abilities to drive a vehicle, especially learning the 

driving foundations (Hatakka, Keskinen, Gregersen, Glad, & Hernetkoski, 2002) enough to 

automise the basic manoeuvres. This would show that some trigger maybe present in the brain 

that when significant change occurs in the environment, give the control back to the driver. To 

do so, I attempt to uncover this through experimenting with different sampling rates and identify 

the benefits it may or may not have. The human brain may transition into this state to either 

conserve energy, or the human may already be tired. This would allow us to experimentally 

measure if a machine learning model is capable of such change. 

 As mentioned before, one of the levels in the driver behaviour hierarchy is the mastery of 

traffic situations and scenarios. This would allow the driver to attain confidence and composure 

when faced with an unknown scenario. The driver will be able to tap into their prior knowledge 

of similar events and will only need little adjustment when faced with a new challenge. This is 

of course based on the experience of the driver but is an import skill that the human brain 

possesses. Such as, driving on the left-hand side and transferring knowledge to the right-hand 

side. We can simulate this behaviour using transfer learning, discussed in depth later. The idea 
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behind this is that we can take some learning from a different task and perform another similarly 

related task with little practise.  

1.2 Thesis Objectives 

In this section, we shine light on the objective of this thesis, state our research goal and how we 

plan to achieve it. In this thesis we introduce experiment-based evidence for multi-input deep 

learning models for steering angle prediction. We also experiment with variable sampling rates 

to measure computational expense of our deep learning approach. Transfer Learning is also 

experimented with identifying the feasibility of using a left-hand driving model for right-hand 

driving applications. This will help training intelligent autonomous vehicle models in many 

different environments without having to start from scratch.  

To achieve our first goal, we research and develop a machine learning architecture that will 

be suitable for learning steering angles from multiple inputs. As autonomous driving is still in its 

infancy, this model will provide input into multi-input models and how they can be used for 

autonomous vehicles. To measure success of this step we will be tracking the error rate. We will 

also be looking to see how generalised this model is, as it will then be used in transfer learning 

on a right-hand side driving dataset.  This will be done by visualising trained filters and 

understand the learning.  

Secondly, we will apply programming logic to create a variable sampling rate for straight 

roads. We will experiment with various sampling rates and to measure the success of this step 

we will track the error rate and the model execution time. As error rate is more important in this 

case, there will be some leeway on this to allow model execution time more freedom to be 

significant. Meaning, if model execution time shows considerable change and the error remains 

relatively unchanged, we can measure the statistical significance of the change.  

Finally, we will use the final model developed in a transfer learning task. We will apply 

different adjustments to the model, such as freezing all or some layers, and adding extra layers. 

To measure the success of this task, we will track the error rate, and evaluate if the error rate is 
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lower or similar to the original. We will also evaluate if a lower or similar error rate can be 

achieved in fewer epochs than the original model.  

1.3 Research Questions 

Autonomous vehicles are seen as one of the greatest challenges for deep learning algorithms to 

accomplish. But, as mentioned before, they are very costly to train, and complexity increases as 

testing reveals cases for which the model has not been trained for. When moving from a simulated 

environment, real or virtual, to human populated environments, random noise such, as bad drivers 

or hidden objects is added. Ensuring that we keep a human focus in this thesis, we decide to 

tackle some research questions that we identified as the required foundation for driving by 

psychologists. These questions tackle the first and second level of the driver behaviour hierarchy 

and will provide great input to the research community as well.  

 The goal for this thesis is to experiment with end-to-end deep learning by creating a multi-

input model capable of predicting the steering angle on a left-hand drive dataset. Then that model 

will be transferred to a dataset of right-hand side driving to identify how learning is transferred. 

To reduce the computationally expense of the model, a variable sampling rate will be applied to 

simulate polder blindness on straight roads. Formally, the research questions presented in this 

thesis are:  

Research Question 1: Which architecture will best train a CNN that can predict steering angles 

from a given image? 

 To achieve our goal, we will apply supervised deep learning techniques with a CNN model. 

This model should be able to predict steering angles, within minimal error, and show evidence 

that it is extracting high quality features from the images to base its output on. This will be 

examined by extracting feature maps and filters trained by the model to identify which regions 

get activated and how crucial they are to the learning process, from a human’s perspective.   

Research Question 2: Does a variable sampling rate on straight roads have any effect on the 

model without compromising on the error? 
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 As a CNN takes images as input, video files must be sampled, in our case at 10 frames per 

second (fps), to produce a collection of images. We will then experiment with a variable sampling 

rate between straight roads and bending roads to see if the model changes the error rate. The 

sampling rate for bending roads will be at a constant 10 fps, only the straight road will be 

sampled.  

Research Question 3: Can the final model, trained on left-hand drive data, be transferred over 

to a right-hand side driving scenario? What error rate does this achieve? 

 For humans that travel to other countries, getting used to the different road conditions such 

as driving side, road markings, rules can be confusing initially. To succeed at driving, they 

leverage the skills they have learnt previously, from driving, to quickly adapt to the new 

environment. Can our model effectively learn to output reasonably accurate steering angles based 

on previous learning as well. This process of taking the skills learnt from one domain or task and 

transferring them to a new domain or task is known as transfer learning. It is possible that if our 

model successfully transfer knowledge, we may be able to shed some light on how experienced 

human drivers manage to cope with driving on the other side of the road.  

1.4 Structure of This Thesis 

This section details the structure of this thesis: 

 In Chapter 2, we carry-out a literature review of the field of machine learning, image 

recognition using deep learning methods, transfer learning and autonomous vehicles. 

Specifically, we identify initial self-driving vehicle models, and currently how image processing 

algorithms have been used in this field and the current understanding. Additionally, we explore 

the use of multi-input algorithms specific to the task of autonomous vehicles.  

 In Chapter 3, links to our research methodologies are highlighted in relation to our research 

questions. Here we state the process we take to achieve our goals whilst providing evidence for 

the steps chosen. We also look at the research scenario, data collection parameters, 

implementation of our experiments and how they will be evaluated.  
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 Chapter 4 discusses the results of our experiments and how they solve our research 

questions. Here we look at any biases or limitations that hindered the performance of our 

experiments.  

 In Chapter 5, we critically analyse our results and discuss their relation to each respective 

research question. We visualise and analyse the trained filters, feature maps and saliency maps 

to better understand the model. We aim to interpret the black box to understand if they match 

with the psychologist’s perspective on human driving. We also make clear if our research goal 

has been achieved, given the outcome. 

 In Chapter 6, we conclude our research and thesis and provide more input to each research 

question or the research goal. We also look at any future work that can be done to extend this 

research and gain insight into deep transfer learning for intelligent autonomous vehicles.  
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Chapter 2 

Literature Review 

The purpose of this chapter is to shed light on the 

origins of machine learning algorithms and how they 

have transformed to be used to develop autonomous 

vehicles. Initially, we look at traditional machine 

learning methods that have been used in image 

processing. We then look at how autonomous vehicles 

were conceptualised, and which methods were initially 

used. We then present current literature regarding 

state-of-the-art image processing methods and how 

multi-input autonomous vehicle algorithms are 

designed today. 
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2.1 Introduction 

In the recent years, image recognition has been seen as a very important part of the machine 

learning field to research. Image recognition involves giving a model some input images and 

ensure the model can recognise them accurately through various techniques. These techniques 

may not be machine learning based, such as edge detection, contour detection etc, but form a 

foundation for this field. The process to classify images follows a supervised learning approach, 

as this allows the human to set the ground truth value for the labels. The machine learning model 

scans the images to learn patterns for the object in question. Supervised learning is the process 

of training a classifier, some nonlinear function, using annotated data, where each input is 

labelled by one or multiple subject level experts. The nonlinear function takes as input some n-

dimensional array. The output of this nonlinear function is some value derived by computing the 

nonlinear function. As an example, to recognise a dog in an image, the image will get converted 

to an array of pixel values. The output of the network will be a value signifying a dog. The 

supervised learning method requires lots of time and money to produce a quality labelled dataset. 

Given this fact, supervised learning is still the most common technique used to train machine 

learning models.  

 Supervised learning has shown many great feats in various fields especially image 

recognition. On some benchmarks, image recognition models have exceeded human accuracy, 

such as 99.0% accuracy on the CIFAR-10 dataset (Huang, et al., 2018). With the development 

of sophisticated algorithms and faster processors, machine learning is now being implemented in 

many tasks, especially autonomous driving. Society of Automotive Engineers (SAE) 

International, in their 2014 report, put forward a 6 - level system of driving automation. These 

signify the level of driving automation based on who monitors the driving environment, how 

much assistance is provided by the user, and if the user needs to assist at all (SAE International, 

2014). These levels are determined by how much responsibility is given to either the driver or 

the autonomous system. If full responsibility falls on the autonomous system, then it would be 

classified as a level 5 autonomous vehicle and level 0 if full responsibility falls on the human, 

like traditional automobiles. Currently it is believed that the semi-autonomous vehicles produced 
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by organisations such as Tesla and Waymo fall under level 2 -3 of the above scale. Given our 

experimental results, we will also be able to classify our steering angle prediction model and 

transfer learning model into one of these levels. The metrics we will use to judge which category 

our model falls into is the mean square error and the output visualisations of our model. Our goal 

is to minimise the error to show our model is capable of predicting steering angle as accurately 

as possible. The visualisations will show us that the model is learning some features that a human 

also learns when they are driving. In the following sections we look at the psychology of driving 

from a human perspective, the past work done on self-driving cars, neural network 

implementations and finally deep learning implementations. We also go over the structure of 

neural networks, including layers, methods, metrics, activation functions etc.  

2.2 Psychology of Driving 

We initially looked at high level human driving behaviour and the method of learning. We found 

that the goals and motivation of a human learner influence how good of a driver they become in 

the future (Hatakka, Keskinen, Gregersen, Glad, & Hernetkoski, 2002). The more effort put on 

training the foundations of driving, the driver can become more confident in their skills and learn 

to automate common mannerisms. To understand how a driver behaves while driving, we need 

to look at how they learn and how they become an experienced driver. The process of driver 

learning can shed great insight on how self-driving vehicle models can be taught to perform 

similar to a human.   

 Perception is an important sense, and the driver behaviour has strong connections to 

perception (Bucchi, Sangiorgi, & Vignali, 2012). As a learner driver, one must focus on 

understanding which areas of the environment to focus on at what time. This ability is built from 

experience, but the strength of the ability is dependant of the motivations of the learner. Van der 

Molen, 1988, states that observing the physical environment has some influence from past 

experiences (Van der Molen & B"otticher, 1988). In many cases a learner driver has seen many 

people drive and know some high-level details of basic driving. These could be, staying in one’s 

own lane, being courteous and giving way especially to road hazards etc. Bucchi, 2012, also 
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argues that perception is not only about the ability to observe and learn from the environment 

through the eyes, but a combination of the other senses. Using a combination of these senses can 

allow the brain to make a more complex judgement about what to do in a given scenario. 

However, new drivers do lack the required experienced based decision-making as more 

experienced driver. Identifying which decision to make given the information of the road and 

vehicle environment can have consequences that could be fatal. To ensure a human makes the 

right decision they need to prioritise which features on the roads pose the most risk or provide 

the most information to make an informed decision. It was found that new drivers would be 

putting focus on either all features on the road or on the features that provided little to no input 

for decision making (Barjonet, 2001). On the other hand, more experienced drivers were 

focusing, in most cases, on the right parts in the environment. As newer drivers tend to make 

more mistakes, we know that this will help them learn and narrow down which features are 

important for decision-making. Now, if an experienced driver was moved into an environment 

where they have never driven before, it can be likely they will also focus on features not important 

to decision-making. This maybe because as it is a new environment, such as another country, 

they need some time to learn the differences and adapt. This process will be much more 

comprehensive and faster than a completely new driver, however.  

 The idea of newer drivers learning is thought to be focus on trial and error rather than a 

‘classroom’ based learning environment. The more mistakes drivers make early on, the more 

scenarios, environments, vehicles they are exposed to, the faster they can learn (Bucchi, 

Sangiorgi, & Vignali, 2012). The mistakes made serve to fulfil the development of driving needs 

rather than a sign of bad driving (Hatakka, Keskinen, Gregersen, Glad, & Hernetkoski, 2002).  

As time goes on and more practise is put into this task, there will be improvements. By using 

perception, the human driver will start to learn each time they practise. The human will start to 

learn the basic requirements of manoeuvring the vehicle and how to behave in various traffic 

situations. The human mind should also learn to automatically detect and rely on features, on the 

road, that provide the most input for future decisions. The mind will start learning not only the 

obvious features present, but also the subtle detail. This could include, distance of braking, the 
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feel and control of the vehicle etc. When a driver sits in a different vehicle, the first few times 

they may brake slight harder or slower due to them not knowing the optimal pressure to put. 

Apart from that, basic mannerisms should also be automated by the brain, in an effort to not 

actively process information. If the human driver does not learn enough to automate certain 

actions while driving, the brain will be doing a lot of active work, which will become tiring. This 

step maybe dependant on the future goals of the human. If one does not have a requirement for 

driving in their future, the lack of experience will not allow the brain to transition into an 

automated state. Another phenomenon is polder blindness, in which the driving will transition 

into passenger mode and not have an active focus on driving (SWOV, 2012). This will usually 

happen when the environment does not appear to be changing, i.e. open flat roads with no traffic 

and a long journey ahead. This could show that, apart from learning and mastering the basics of 

driving, your brain also starts to learn when active processing and focus is required.  

 The task of learning to drive, alongside how to act in different situations, how to control a 

car etc is quite dependant on memory. With this, the human knows what decision works best in 

each situation. Apart from that, memory allows humans to learn the actions of other drivers on 

the road. By trying to predict the actions of other drivers, the human learns to decrease their 

reaction time by being slightly prepared. This is helped by the fact that, for the sake of safety, the 

drivers want to be as predictable as possible with the use of signals, lights etc. The action of 

predicting other drivers comes once the human themselves have learnt the basics of driving a 

vehicle. This is because the driver can focus less on the minor driving tasks and more on the 

journey, goal and planning instead (Hatakka, Keskinen, Gregersen, Glad, & Hernetkoski, 2002). 

The prediction of other drivers is not only required for safety, but also for planning ahead. If a 

human driver sees a car pulling out of a driveway, they know from experience that they can either 

stop and give way or keep going, hoping the other driver would stop.  Once the driver has made 

their mind for the next step of the journey, predicting the steering angle should be an automated 

task. The driver does not have to actively think about how much to turn the steering wheel as the 

many hours of practise has given the brain enough knowledge. This also applies to the scenario 

when the driver transitions to a passenger mode and allows the brain to take care of basic tasks. 
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However, there are some instances where even experienced drivers will have certain issues 

driving actively. A sudden change, or ongoing change in the environment forces active focus, i.e. 

city driving or surprise hazard, or a change of environment with new markings or even opposite 

driving side. In the latter case, experienced drivers can adjust much more quickly due to their 

extensive memory and experience. However, in the case of focus and sudden hazard introduction, 

younger, newer drivers can adjust quicker than experienced drivers, due to their reaction time 

(Evans, 1991). This goes back to the finding of newer driving focusing on the right features in 

their field of view. Even though the reaction time is quicker, the decision made that follows the 

reaction may not be the best one for the given scenario.  

 In the larger picture of artificial intelligence, the psychology of how humans perform tasks 

is quite crucial. From the above studies conducted by psychologists, we know that perception is 

quite crucial to identifying features on the road. Other senses play an important role too, but they 

may be supplementing vision which the human driver largely relies on. Later, we will explore 

how purely vision based self-driving car models compare to multi-modal networks, which rely 

on a variety of other sensors. Perception is not just limited to identifying and understanding 

features on the road but also the vehicle and the capabilities and limitations in different 

environments. A human driver maybe confident in their vehicle for certain environments, but 

maybe have some trouble in someone else’s vehicle. This may show the need for a machine 

learning model that understands the limitations of their vehicles and adjusts as required. 

 When looking at how human drivers learn, we know that before they start driving, they have 

some experience looking at others driving and know the basic road rules. They then spend time 

learning in a simulated environment, i.e. a parking lot or a test course, from a trained, experienced 

human. This maybe because, directly training on active roads maybe too overwhelming with the 

number of variables to keep track of. Once they become confident enough, they move to an 

uncontrolled environment where they can make and learn from mistakes. They learn to identify 

features on the road that are crucial of decision-making and manoeuvring the vehicle. This is the 

behaviour we expect from our machine learning model initially. The deeper the model goes the 

more generalised features it will learn. From the model’s perspective, these features will be the 
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most important for predicting steering angles. A confident human driver can automate the 

regular, minor tasks that don’t require active focus. The brain can then adjust to focus on 

predicting and planning based on the field of view. The transfer of focus is also to reduce the 

active computation needed to keep focused on minor tasks. We expect that this skill maybe 

crucial for reducing the time and money it takes to train neural networks on large tasks.  

 Mastering various traffic situations is crucial for a human to be an excellent driver. By being 

exposed to and remembering from past experience how to behave in different situations will 

allow the driver to be much better at what they do. To a driver to be able to do this consistently 

and learn from previous unseen situations, requires them to have sufficient practise. The more 

practise they have the better they will be equipped with handling new, surprising, unseen 

scenarios. The same goes for machine learning models. Having a model that is trained in the 

USA, will be able to perform well in that environment. The limitation being that, if the vehicle 

was to be shipped into another environment, they may require training from the ground up. 

Instead, transfer learning can be used to identify if the model is generalised enough to be used in 

another task that belongs to a similar domain. Our goal should be to create a model which can 

learn to be generalised enough that if the driving orientation was changed, it can still output 

steering angles. Not only that, our model should also be able to learn from the new data quicker 

whilst maintaining or beating earlier error. This is one of the benefits of transfer learning but also 

because an experienced human driver in a new environment can adjust very quickly, as compared 

to a novice.  

2.3 Self-Driving Vehicles 

As mentioned earlier, currently self-driving vehicles rely heavily on deep learning algorithms, 

which, in all fairness, have shown outstanding results.  To get to this point, earlier self-driving 

did not have any automatic feature extractors or extremely efficient hardware to develop. They 

used traditional algorithms, image processing, and human annotated features to ensure the model 

is fed accurate data.  
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 In the case of Thorpe et al., 1987, the task of creating a method for road following involved 

explicitly designing every part of their model. This includes creating the edge detection filters, 

categorising pixels as road, grass etc (Thorpe, Hebert, Kanade, & Shafer, 1988). Apart from the 

extensive pre-processing and training process, due to limitations, the model could not be tested 

over a certain speed. They would also have to ensure that their test data fell under certain specific 

parameters before being fed to the model, for best results. Given the number of obstacles on the 

road, and that maybe encountered later, this whole process must be repeated.  

  The approach to solving the limited computational issue, during this time, is the use of 

parallel processing or using sub-models or sub-systems to delegate and carry out tasks efficiently. 

The method of road following, however, still remain quite similar, by extracting boundaries from 

a given image. During training, the manual annotation is done for these regions. Apart from that, 

Kuan et al., 1988, apply the use of segmentation, where they segment road and non-road locations 

in an image. However, a ‘hard-coded’ colour transform is applied to the training images to show 

the difference between the different environments (Kuan, 1988). This is very limited as in many 

driving scenarios the road and surrounding environment could be quite similar, i.e. rural gravel, 

dust roads. This technique may cause issues, especially since the model was trained for a military 

vehicle which maybe travel off-road. To speed up the execution of their model, to handle faster 

speeds, they split the model into multiple sub-systems. The perception and detection work in 

parallel to the control system. This method is still not as efficient as an end-to-end deep learning 

model that is currently used.  

 Other image processing models made use of Kalman filters and perspective projection 

(Dickmanns & Zapp, 1987). Kalman filters are used when the source of data is either very noisy, 

has multiple sources or is prone to error. The filters provide an optimal estimation of the source, 

in this case road curvature from images, by combining multiple data-points. Their goal was to 

create a method of identifying road curvature by correlating contours from visual images. This 

would mean that they assumed the distribution of the testing data contained input features that 

correlated with the training data. Finding contours that were correlated with other features on the 

road is highly unlikely in non-urban environments. The other limitation to their model was the 
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fact they were limited to highway driving with well-maintained roads and visible lane markings. 

This would show that their method was not able to filter the noise that exists. However, their 

method was capable of processing inputs and making decisions at very high speeds, which was 

good for that time.  

 Some of the real push for autonomous vehicles came from the DARPA yearly challenges. 

DARPA, (Defense Advanced Research Projects Agency) a US military research agency, 

hosts these challenges for people to enter and create the best possible autonomous vehicle for a 

variety of test courses. The techniques used in these challenges range from traditional image 

processing to current deep learning based.  

 RASCAL, an autonomous vehicle created for this challenge, utilized a similar approach to 

Dickmans et al, 1987. They too used Kalman filters to pre-process the input data, but relied on a 

more hard-coded method, using waypoints, for road following. Multiple cameras were used to 

identify road boundaries, including any obstacles that may be present. Their model was a 

combination of cameras and sensors which formed a tight-knit workflow (Behringer, Kubinger, 

Herzner, & Fehlberg, 2005). However, there seems to be no weight against which type of input 

would work best for the task. Humans, in a sense, rely on perception as the major source, but are 

supplemented by other senses. Their approach could have weighted some input to be preferred 

over another.  

 Unlike complex approaches, simpler approaches may yield fruitful results too. Bebel et al., 

2004, create a model that simply avoided obstacles, and predicted the steering angle to the next 

waypoint, supplied by DARPA. Due to the time restricted put in the challenge, they decided to 

employ software development practises to ensure their vehicle finished on time. The idea was, to 

slowly and methodically avoid obstacles, as accurately as possible, and when no obstacles were 

present, to speed up (Bebel, Howard, & Patel, 2004). This approach may seem familiar to the 

polder blindness effect, where the human would be more focused during times of high-

environment activity, as less vigilant in low activity regions. Specifically, their model had two 

inputs, data from a laser to detect obstacles, and GPS location to navigate to waypoints. An 
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algorithm would determine the best path to proceed to the next waypoint. Their model is very 

small relative to others yet does the task of steering the vehicle. Interestingly, we have found no 

models yet that have been developed for transferring knowledge on how to drive on one side of 

the road to the other. This lack of transfer applies that every IAV must have a machine learning 

model constructed for left-hand side and right-hand side driving.  

2.4 Artificial Neural Networks 

The most basic unit of an artificial neural network is known as a Perceptron. It takes inspiration 

from the characteristics of the biological neuron cell. It was modelled in 1958 as an introduction 

to biological recognition, generalisation, recall and thinking (Rosenblatt, 1958). The perceptron’s 

role was to ‘learn’ from training examples and the produce decision rules based on those 

examples. This was known as the perceptron convergence theorem. In this theorem, the 

perceptron converges to the correct classification, if data or training examples are linearly 

separable, and the learning rate is sufficiently small. The learning rate is comparable to the step 

size when moving along the error gradient. The goal of adjusting the learning rate to find the 

global error minimum whilst avoiding local minima. If the step size is too small then convergence 

may take too long to occur and if it is too big, then it may overstep the global minimum (Fang, 

Luo, & Tang, 2005).  

 The architecture of the perceptron consists of n input parameters, where each input links 

with a weight value wi. Each corresponding weight and input are multiplied and the sum of all is 

added to a bias b and passed into a threshold function to get the output value. This can also be 

written as:  

𝑧 = 𝑏 + ∑𝑥𝑖𝑤𝑖

𝑛

𝑖=1

 (2.1) 

If the threshold function is a linear threshold function, the output can be written as 𝑦 =

𝑓(𝑧) where f(z) is the output of Eqn. (2.1). There now exist other threshold functions, 
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commonly known as activation functions. They have now become popular for their use 

within neural networks. More on this later in the sections.  

 The Perceptron consists of a single unit which in turn produces limited results, i.e. a single 

decision hyper-plane. This introduced the XOR problem where the perceptron was unable to 

learn the exclusive-OR (XOR) function. This problem is solved by adding hidden layers as it is 

not possible to solve this problem with a single perceptron. By adding hidden layers, more 

decision hyper-planes can be created, which allows us to solve any boolean function including 

the XOR problem. The trade-off must be made between the complication of the model versus the 

speed of convergence (Yanling, Bimin, & Zhanrong, 2002). The more hidden layers present in a 

model, the more computationally expensive the model. 

 Multilayer Perceptron (MLP), essentially a perceptron with hidden layers, has been used in 

the field of image recognition. Various fields such as object recognition, facial recognition, 

fingerprint recognition, have seen close to 100% accuracy when using MLPs. Unlike traditional 

machine learning algorithms, MLPs don’t make any assumptions about the statistical distribution 

of the data, and they adapt to different input data with ease. MLPs were also shown to be less 

computationally expensive than other deep learning approaches, whilst providing comparable 

results, due to the simplicity of the algorithm (Caleanu, 2000; Lyons, Budynek, & Akamatsu, 

1999; Mercimek, Gulez, & Mumcu, 2005). Object recognition is a task that involves a set of 

labelled training data within a certain number of classes. The goal of the applied algorithm is to 

take as input the image and output the class value. The more classes that are added, the higher 

the complexity, given the amount of overlap within those classes. This is dependent on the nature 

and similarity of those classes, as well as the distributions. If we take as example the ImageNet 

dataset, which contains 14 million images across 1000 classes, we can see that the image 

recognition problem gets quite complex. 

 The task of autonomous driving is also a very complex task as the number of possible 

scenarios, features to train, and computational upkeep is very high. Yet, in the early days of 

Artificial Neural Networks (ANN), autonomous driving was put to the test. ALVINN, a very 
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shallow 1-hidden layer ANN, was responsible for 45 directional outputs based on a single image 

input. Interestingly, their model learned to weight each input source independently of each other 

to identify which source, at a given time, held importance over the other. Some drawbacks of this 

model were the ability to learn conditions it has not been trained for. The lack of computational 

resources also reduced the ability of the model to train as it drives (Pomerleau, 1989). As 

compared to other road following models, ALVINN showed comparable performance, especially 

being one of the first ANNs to tackle this task. This was mainly due to the automatic feature 

classification of road boundaries done by the ANN. In other road following methods, roads, grass, 

gravel and other terrains would have to be classified by the pixel value individually before being 

combined. Other features, such as colours and textures would also follow similar classification 

techniques (Thorpe, Hebert, Kanade, & Shafer, 1988; Kuan, 1988). This increases the manpower 

behind such algorithms and as such does not scale appropriately.  

 The method of learning used by ALVINN is far from manual classification, as done by 

previous road following networks. ALVINN uses backpropagation to ensure that the network 

learns as much information from the input images, in a bid to keep the output error rate low. 

Backpropagation is the process of adjusting the neural network weights so that the output of 

network comes as close as possible to the ground truth values. More specifically, the adjustments 

are made to the weights at each hidden-layer (Werbos, 1990). The convergence speed of the 

backpropagation algorithm can be very slow due to the amount of computation that has to be 

carried out. However, there do exists some ways from which this process can be sped up. 

Selecting an appropriate learning rate will help to adjust the weights in a manner that will avoid 

local minima and converge faster.  

 As mentioned above, after the inputs are passed into the perceptron, the resulting output is 

then passed into an activation function. The activation function then produces an output which is 

used by the backpropagation algorithm to compare the difference and if needed, adjust the 

weights. There are multiple activation functions that can be used for different machine learning 

tasks. The sigmoid function was commonly used in the hidden layers of neural networks as it 

produces an output in range (0,1). Its popularity dropped when the saturation problem was 
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discovered where if the argument is either extremely positive or negative, it becomes insensitive 

to small changes. 

 In recent times, the activation function Rectified Linear Unit (ReLU) has grown in 

popularity. This is due to ReLU solving the vanishing gradient and exploding gradient problem. 

This problem is when the gradients of the hidden layers either become very small or very large 

and the weights do not change. The ReLU function can be defined as 𝑓(𝑥) = max{0, 𝑥}, where 

the output will be 0 if the x is less than 0, else it will be x. The benefits of ReLU is that they 

generalise well as they preserve information as it passes across multi-layer networks 

(Goodfellow, Bengio, & Courville, 2016; Nair & Hinton, 2010). ReLU is also computationally 

cheap, allowing a model to be as efficient as possible. Recently however, ReLU has been the 

subject of the dying ReLU or dying neuron problem, where neurons get stuck and die as there is 

no gradient flow backwards. Simply, any training data point that regularly falls into the “zero 

negative part” would not be reactivated during the remainder of the training process. This is a 

known drawback because ReLUs cannot learn using gradient based approaches where the 

activation is zero (Agarap, 2018; Lau & Lim, 2017). To solve this problem, alternatives such as 

Leaky ReLU and PReLU are explored. Leaky ReLU solves this problem by allowing for a user 

defined alpha value for turning any negative input to a non-zero gradient. The alpha value is a 

parameter which may need to be experimented with to find the best fit for the task at hand. 

PReLU, on the other hand, requires an alpha value as well, but this alpha value is treated as a 

learnable parameter by the network (He, Zhang, Ren, & Sun, 2015; Maas, Hannun, & Ng, 2013). 

Both Leaky ReLU and PReLU solve the “dying ReLU” problem, that too at negligible 

computation cost. They can be expressed as: 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = {
𝑥, 𝑖𝑓 𝑥 ≥ 0

0.01𝑥, 𝑖𝑓 𝑥 < 0
 (2.2) 

            𝑃𝑅𝑒𝐿𝑈(𝑦𝑖) =  {
𝑦𝑖 , 𝑖𝑓 𝑦𝑖 > 0

𝛼𝑖𝑦𝑖 , 𝑖𝑓 𝑦𝑖 ≤ 0    
 (2.3) 

From Eqn. (2.3), we can observe that if ai = 0 then it is a ReLU whereas if ai is small and fixed 

i.e. ai = 0.01, then it is a Leaky ReLU.  
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 Depending on the machine learning task at hand, computing the error of the model can be 

done is several ways. As our task is predicting the steering angle of an autonomous vehicle, a 

distance function that calculates the difference between the predicted value and actual value will 

work best. Mean Squared Error (MSE) is commonly used for tasks such as these. Another 

measure that is used is the Root Mean Squared Error (RMSE). This simply takes the square root 

of the MSE. These can also be expressed as: 

𝐿𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑌𝑖 − 𝑌�̂�

𝑖

)2 (2.4) 

𝐿𝑅𝑀𝑆𝐸 = √𝐿𝑀𝑆𝐸  (2.5) 

 Our goal is to ensure that the neural network is minimising the MSE in a way that ensures 

our model does not overfit and generalises appropriately on the validation dataset. The task of 

minimising the error is known as optimisation and in current neural networks gradient based 

optimisation techniques are common and fruitful. The method of finding the local or global 

minima in a search space by moving in small steps in the opposite direction of the gradient, is 

known as gradient descent. This method of gradient descent only updates the weights after 

computing the error of all samples in training. The step size in this algorithm is known as the 

learning rate, η, where η > 0. As mentioned earlier, the step size must be chosen carefully as too 

large or small off a step size may cause the model to never find the minima or take too long to 

converge. Formally, the gradient descent training rules can be written as:  

�⃗⃗�  ←  �⃗⃗� +  ∆�⃗⃗� , 𝑤ℎ𝑒𝑟𝑒 ∆�⃗⃗� =  −𝜂∇E(�⃗⃗� ) (2.6) 

There do exist some problems with gradient descent methods. Namely, the convergence speed 

maybe too long and the learning rate may not guarantee the global minimum as it may get ‘stuck’ 

in a local minimum. Stochastic Gradient Descent (SGD) helps to solve this problem. Opposed to 

gradient descent, SGD updates the weights after computing the error of each sample.  
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2.5 Deep Learning 

Deep learning is an extension of machine learning where any machine learning algorithm with 

more than 1 layer can be considered a deep learning algorithm. In the recent years deep learning 

has taken off in many applications such as image recognition, object detection, natural language 

processing etc. These fields have either achieved or surpassed human level performance.  

 As mentioned earlier, the solution to the XOR function was not possible with a single 

perceptron. Hence, once more layers were added, transforming it into a deep network, this 

function was solved. A deep learning approach does indeed require more computational 

resources as the number of calculations increases with each addition. Apart from that, deep 

learning networks work best with large amounts of data, especially in end-to-end approaches. 

This is because deep learning algorithms can filter through the noise and find hidden patterns in 

large amounts of data. Both these reasons can partially be attributed to the success of deep 

learning and its current celebrity like status. With the computation power increasing, especially 

through GPUs and FPGAs, and the scores of data being shared online every second, deep learning 

is being applied to any task within reach. In recent years, there have been many image datasets 

set up for the purposes of testing and benchmarking new deep learning architectures. The datasets 

include ImageNet, CIFAR-10, CIFAR-100, COCO etc., which have all been the testing ground 

for many great architectures.  

 Taking the ImageNet challenge as example, over the years many great algorithms have been 

introduced to us as they either achieved the highest accuracy or significantly decreased the 

number of parameters for the model. In 2012, AlexNet achieved a significantly low error rate, 

15.3%, as compared to the runner-up, 26.2%. Their model was trained on 1.2 million images 

across 1000 classes and consisted of 60 million parameters (Krizhevsky, Sutskever, & Hinton, 

2012). In 2014, this model was bested by the GoogLeNet which achieved an error of 6.67% on 

this dataset. Their model consisted of 4 million parameters, significantly lower than the AlexNet. 

Apart from the parameters, the architecture of this model was more complex too. (Szegedy, et 

al., 2015). However, in 2015, an error rate of 3.57% was achieved by the ResNet 152. The 152 
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in the name signifies the number of layers present in this model, as many variations of this model 

exist. The architecture of the ResNet152 model is quite sophisticated as they shift away from 

“plain networks” and use shortcut connections (He, Zhang, Ren, & Sun, 2016). A common 

network which achieved great results in the ImageNet challenge, is VGGNet. Although it did not 

win this challenge, it is used by many people due to its simplistic architecture which is based off 

the AlexNet. One of the biggest issues that surrounds this network is the high number of 

parameters, 138 million to be exact (Simonyan & Zisserman, 2014).  

2.5.1 Deep Learning for Self-Driving Vehicles 

Apart from image recognition challenges, there has been research undertaken with applying deep 

learning techniques to autonomous vehicles for road following and steering angle prediction. In 

2016, NVIDIA carried out research for an end-to-end learning system using an 8-layer network, 

5 convolution layers plus 3 fully connected layers. Their training dataset contains images sampled 

at a frequency of 10 frames per second from the video recorded on 3 cameras. They found that a 

higher sampling rate has images that a very closely related to each other. After their training 

process, they achieved an autonomy score of 98%. The autonomy metric measures the amount 

of time the vehicle was able to drive without being corrected by the human driver (Bojarski, et 

al., 2016). Their research showed the effectiveness of using Convolutional Neural Networks 

(CNNs) for a road following task, given just one input type, without the need for other pre-

processing tasks.  

 Research conducted by Chen et al., 2017, used a CNN to experiment with lane keeping for 

self-driving cars. As compared to Bojarski et al., 2016, their model was slightly smaller with 3 

convolution layers plus 1 fully connected layer. Their model does not include any sub-sampling 

layers as the output feature maps are already quite small. This is due to the image size being 320 

x 160 px and the first convolutional layer kernel and stride being 9x9 and 4x4 respectively. Given 

the small model size, and the low amount of training data, they were able to achieve a Mean 

Absolute Error (MAE) of 2.42 (Chen & Huang, 2017). Implemented in this research was the use 

of dropout layers to prevent overfitting, which could lead to a low MAE score. When using small 
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image sizes as inputs, dropout layers have proven helpful in such scenarios. This method goes to 

show that experimenting with different model sizes may yield positive results and could save 

time and money by decreasing computational resources.  

 Du et al., 2017, looked at using a method which incorporates both 3D convolution layers 

followed by Long Short-Term Memory (LSTM) recurrent layers. A 3D convolution layer is 

similar to a 2D convolutional layer with the addition of a third axis, depth. This allows the model 

to learn some temporal information in relation to the images. Following this was a Recurrent 

Neural Network (RNN) with LSTM layers. The goal of an RNN is to allow the model to learn 

the current image based on the previous images. Based on this nature, RNNs are commonly used 

with time-series data which has follows some sequence. The LSTM block allows information to 

flow through the RNN due to the gradient vanishing problem. They used the same dataset as 

Chen et al., 2017, and carried out some data augmentation techniques to further generalise the 

dataset. Augmentations include brightness augmentation, shadow augmentation, horizontal and 

vertical shifts and rotational augmentation. After training their model, they achieved a validation 

Root Mean Squared Error (RMSE) of 0.1139 (Du, Guo, & Simpson, 2017). This research shows 

the effect of using a recurrent approach for predicting steering angles. It may signify that previous 

driving actions may have some impact on the current or future driving actions. By adding 

augmentation techniques, they further generalise the model making it adaptable in more 

situations.  

 Chi et al., 2017, take a temporal approach to tacking the problem of steering angle prediction 

using deep networks. They use a combination of convolutional and LSTM recurrent units to map 

images directly to steering angles. Their approach was that the predicted steering angle is 

determined by the current and previous angle. They construct a feature extraction method using 

convolution layers and LSTM blocks so that the output features have some spatio-temporal 

information. This was a 4 layers CNN with a fully connected layer after each CNN block. A final 

LSTM block to learn the temporal cues from the output feature maps. The task of steering 

prediction was carried out by an RNN with a LSTM unit which takes as input a sequence of 

feature maps extracted from their feature extractor. Using this method, they achieved a RMSE of 
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0.0637 (Chi & Mu, 2017). Their dataset was relatively small, containing 6 hours of driving 

footage, mostly highway. It did, however, include a wide range of weathers, and times.  

 The research conducted above utilise single input models, i.e. their model only takes in an 

image and outputs a steering angle based on that image. Multi input models are based on the idea 

of multi-modal learning, meaning the model relates information from multiple sources. In the 

task of autonomous driving and steering angle prediction, multi-modal models have also been 

utilised. These can take in an image alongside another input such as speed sensor, LIDAR sensor 

etc. to provide more dimensionality and learnable inputs for the model.  

 In the case of Yang et al., 2018, a multi-modal approach was taken wherein their model took 

as input an image and speed. To handle the image-based input, they implemented 5 convolution 

layers with 2 fully connected layers. To handle the speed input, they implemented a recurrent 

LSTM block with a sequence length of 10 timestamps. This is then followed by 2 fully connected 

layers. The image output of the CNN block is used to predict steering angle and is also 

concatenated with the output of the LSTM block to predict speed output. In their case, the speed 

is not used to predict steering angle, they too only rely on images for steering angle. Their model 

achieved low MAE for both steering angle prediction as well as speed prediction (Yang, Zhang, 

Yu, Cai, & Luo, 2018). This research not only reinforces the use of images in steering angle 

prediction, but also how images can also aid in predicting speed.  

 Chowdhuri et al., 2019, took the approach of an imitation learning based multi-modal CNN 

model. Imitation learning is the process of learning, sequentially, from the actions of a human 

domain expert. The issue of covariate shift arises in imitation learning approaches where a trained 

model is presented a situation not yet trained for. To counter this, the researchers added 

correctional data through simulations, not using data augmentation like the others. Their model 

is a simple 2-layer CNN followed by 2 fully connected layers. Each of their convolution layers 

are followed by a subsampling layer, to reduce dimensionality, and a normalisation layer. Their 

model achieved a validation MSE of 8.16% (Chowdhuri, Pankaj, & Zipser, 2019). As their 



31 
 

dataset was based on a scaled representation of actual vehicles in different environments, a large 

network, as used by other researchers, may not be required.  

2.6 Convolutional Neural Network  

Past literature mentions the use of convolutional neural networks for their projects. Here we take 

a closer look at how they work, layers present and their impact on the network, in our research. 

In 1989, Convolutional Neural Networks (CNNs), were brought forward by LeCun et al., which 

applied the backpropagation algorithm on handwritten digits, specifically for zip code 

recognition. They found that if constraints from the task domain are integrated into the 

backpropagation network, the ability of neural networks to generalise will be enhanced greatly 

(LeCun, et al., 1898). Since the development of methods to extract local features and map them 

to higher-order features had been experimented with. They found that the location of the feature 

on the plain does not matter towards the classification. This is a property of CNNs known as 

location invariance. Instead, having some feature detectors which could identify certain features 

anywhere on the plain matters more for classification. However, using this method not all spatial 

information is lost, instead the higher-order feature maps store approximate features. Since our 

task of training a multi-input model end-to-end is heavily image processing based, CNNs are the 

go-to approach, as done by other researchers in this field.  

 In a CNN, apart from the layers discussed below, there is an Input layer and an Output layer. 

Depending on the type of CNN, the input layer can contain either a one-dimensional, two-

dimensional or three-dimensional array that represents an image. In our case, this will be a two-

dimensional image with 3 channels that represent Red, Green, Blue (RGB) pixel values. The 

output layer of a network contains the same number of nodes as the number of class labels. In 

our case, we have 1 output node as we have a task of predicting a steering angle. These nodes are 

fully connected to the previous nodes of the dense, fully-connected, network. It also includes an 

activation function that will output the required value within a certain range. In our case, we will 

require 1 node in out output layer with the tanh activation function to output a value between -1 

and +1.  
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2.6.1 Convolution Layer 

The convolutional layer is responsible for extracting features from inputs. This is done by training 

filters, or kernels, on a training dataset. Kernels are responsible for learning a set of weights that 

are activated when the kernel comes across a similar feature. As the kernels scan the whole image, 

they learn to filter over spatial information that is not relevant. The number of kernels is defined 

by the user and are a parameter that can be tuned. Consideration must be taken, when selecting 

the number of kernels, as too few may lead to some features not being learnt and too many may 

overfit on the noise within the training dataset. Apart from kernels, the user can define the stride, 

kernel size and padding. The stride parameter allows the user to set the step size of the kernel to 

scan the whole image. Kernels learn features by moving across the image and choosing a step 

size impacts the size of output feature map. If the step size is too large, some spatial information 

could be skipped over. The kernel size is a value m x n, which is responsible for the size of all 

the kernels in the specified layer. A kernel size of 3 x 3 would mean that there are 9 total trainable 

weights inside the filter. It contains a set of randomly initialised weights that map to the input. 

The size of the kernel should be chosen carefully as the larger size may not be generalised. In 

some past literature for steering angle prediction, initial kernel sizes were ranged from 3 to 11, 

whereas, in image recognition tasks kernel size is usually 3. The kernel size also has an impact 

on the output shape of the feature map. A larger kernel size will result in a smaller output feature 

map. Not only that, the larger the kernel the more complex feature it will learn. As such, the 

smaller the kernel size, the learnt features will be more generalised. Increasing the kernel size 

may also require an increase in the number of epochs to ensure the model is learning complex 

features. On the other hand, smaller sized kernels are prone to overfitting as initialising many 

kernels may mean the noise is being learnt. Padding can be used to deal with edge cases and keep 

the same output shape. There are multiple ways to pad such as zero-padding, wrapping etc. Each 

have some benefit, but it is usually left up to the experimentation process of domain knowledge.  

To calculate the output shape, we can use the formula in Eqn. (2.7). Here, W is the input shape, 

K is the kernel size, P is the padding, S is the stride.  An example convolution process can be 

seen in Figure 2.  
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𝑂𝑢𝑡𝑝𝑢𝑡𝑆ℎ𝑎𝑝𝑒 =
𝑊 − 𝐾 + 2𝑃

𝑆
+ 1 (2.7) 

 

 

Figure 2- The convolution process taken from (Prakash, 2018). 

 

2.6.2 Pooling Layer 

Once the output of the convolution layer is activated, through an activation function, it can be 

sent to a pooling layer. Pooling layers were commonly bundled with convolution layers, but it is 

possible to construct a network without these. The pooling function also has a kernel like 

window, with a user defined size, that slides across the input shape. Simply put, a pooling 

function computes an output for the inputs present in the kernel like window. The difference 

between the kernel of the convolution layer and pooling layer is that the weights in the pooling 

kernel remain fixed. Unlike the convolutional kernel where the weights are a trainable parameter. 

The stride parameter here can also be adjusted by the user. It serves the same function for defining 

how much step size the kernel window should take to scan the image. There are many types of 

pooling layers, such as max pooling, global average pooling, L2 normalisation etc. As the name 

states, the max pooling function computes the maximum value from the input window and adds 

it in the output feature map. Global average pooling computes the average of the rectangular 

window and adds it in the output feature map. L2 normalisation computes the root of the sum of 

the square of the values inside the rectangular window and replaces it in the output. The other 

benefit of pooling layers is to reduce dimensionality and making it easier to create larger 

networks. As there exist many pooling methods, Bourean et al., has provided some theoretical 
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input on which works best for visual recognition algorithms (Boureau, Ponce, & LeCun, 2010). 

They saw max pooling performed well theoretically and this could be used as a starting point for 

many projects. However, practically, applying and evaluating different methods may provide 

other results. An example of a max pooling function, with stride 2 and a 2 x 2 kernel, can be seen 

in Figure 3. As shown, max pooling will reduce the output feature space.  

 

Figure 3 - The sampling process using max pooling taken from (Ricco, 2017). 

 

2.6.3 Dense Layer 

Dense layers, also known as fully connected layers, are multi-layered ANNs that follow a CNN 

block, in the case of image recognition. The role of these layers is to transform the feature maps 

output by the CNN and perform classification or regression tasks. The convolution layers 

themselves only output put a feature map of all significant features inside the training dataset. 

The classification and regression tasks are dedicated for the fully-connected network. Dense 

layers consist of a number of neurons, defined by the user, which contain weights, a trainable 

parameter. During backpropagation, weights of this network are adjusted to find the best fit. 

When creating this network, the user must keep in mind the number of hidden layers and the 

number of neurons in each layer, as this may cause overfitting or underfitting. Apart from that, 

adding more layers or neurons in each layer increases the computational requirements for the 

network. Following each layer is an activation function which must also be chosen by the user. 

In our network, the responsibility of predicting the steering angle falls on this fully connected 

network, as the CNN is only responsible for extracting relevant features from the input images.   
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2.6.4 Dropout Layer 

Overfitting is a common issue in deep neural networks as they contain a high number of 

parameters. Dropout layers are a computationally inexpensive method of preventing overfitting, 

as compared to other regularisers such as weight decay. In terms of complexity, dropout offers a 

cost of O(n) per example during training. The way that dropout works is it creates sub-networks 

of all non-output units and constructing an ensemble of subsets of the original sub-network. Then 

the ensemble is trained, and the best subset is moved forward (Srivastava, Hinton, Krizhevsky, 

Sutskever, & Salakhutdinov, 2014). From this we can see that dropout is similar to a bagging 

approach, but not quite. Bagging is also an ensemble technique where multiple models are 

created, and the best model is selected. Bagging assumes that all models are independent whereas 

in dropout, the models are a subset of a sub-network, they have shared parameters. Also, in 

dropout, training all the possible combinations of sub-networks is impossible, for large neural 

networks, therefore, sub-networks are chosen at random and trained. The dropout rate is a 

tuneable hyperparameter, which specifies the probability of retaining a unit in the network. It is 

suggested that the dropout rate between 0.4 and 0.8 works best (Goodfellow, Bengio, & 

Courville, 2016; Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). 

 

2.7 Transfer Learning 

Traditional machine learning models work under the assumption that training, test and production 

data are from the same space. For instance, if a model is trained to classify an input image as 

either a cat or dog, it will assume all input images will either contain a cat or dog and classify 

appropriately. If the user wished to add some learning to classify a lion alongside the cat and dog 

model, the model would need to be trained from scratch. This causes problems for real-world 

scenarios where collecting labelled data for a certain task is difficult, i.e. healthcare data. In cases 

such as these transfer learning between domains can be leveraged (Pan & Yang, 2009).  

 Transfer learning is the process of using a model that has been taught a task and using it for 

another similar task. A benefit for using transfer learning can be to improve generalisation in the 
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transferred setting. Transfer learning may also help us arrive at a better solution faster, or it may 

provide a better solution than training a new model. The motivation behind transfer learning is 

the fact that humans can apply knowledge from one task to another regularly. This can be 

advantageous especially when there exists less labelled data for the target task. This is because, 

we can assume that the factors in task 1, maybe somewhat similar to the factors in task 2. As we 

begin to examine feature maps of the trained model, features near the input maybe too input 

specific. Features closer to the output are more generalised and maybe worth sharing those layers 

instead. This would mean that we are not training the target task from scratch, instead sharing 

features from a source task. This method of transfer learning can be known as Hierarchical 

Transfer, where solutions for simple tasks are combined to learn more complex tasks. More 

specifically, by only transferring general solutions, such as lines, curves, edges from a source 

task, we can learn objects in a target task (Torrey & Shavlik, 2010).  

 The similarity between source task and target task is very important. By ensuring that the 

source task and target task share some similar domain, we can make assumptions on the 

compatibility of shared features. This will also give us an idea on how successful transfer learning 

will be to our applied task.  In Figure 4 we can see how different tasks are placed in relation to 

each other based on how effectively they support neighbouring tasks (Zamir, et al., 2018). The 

more connected they are the more significant their role in transferring to other tasks.  

 

 

Figure 4- Task similarity tree taken from Zamir et al., 2018. 
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2.7.1 Transfer Learning for Self-Driving Cars 

Transfer learning has been used in the field of self-driving cars to predict the steering angles on 

scenarios such as highway driving. In this sense, knowledge was transferred from object 

detection models to steering angle prediction. This is explained more below on why this method 

should not be as effective as creating a machine learning model specific to steering angle 

prediction and transferring said model. Some of the common architectures used for this task is 

the ResNet models and its variants. This would simply involve the researcher pre-processing 

their image data and freezing the weights in the layers they seem fit. In the case of Maqueda et 

al., 2018, event-based inputs were used instead of raw RGB images. The event camera captures 

the stream of intensity changes at the time they occur. They apply this input to the ResNet18 and 

ResNet50 models, they attach a 256-dimensional and 1024-dimensional fully-connected layer, 

respectively, before the one-dimensional output. Both the ResNet models have been trained on 

the ImageNet dataset and thus contain features for RGB images. They found RGB features 

positively transfer to event-based features, which resulted in a low RMSE score. They also found 

that using the weights trained on the ImageNet dataset results in a lower loss as compared to 

random initialisations. The ResNet50 seemed to perform must better than the ResNet18 and 

achieving a RMSE score as low as 2.33 on the day-time driving event dataset (Maqueda, 

Loquercio, Gallego, Garc'ia, & Scaramuzza, 2018). As other studies used RGB images, this 

shows the value of using other format images as input images. Including different time of days, 

as they did, also helps with generalising the model, resulting in better performance.  

 Du et al., 2017, also used a ResNet50 model to identify if that is useable for a dataset of 

RGB images. This ResNet50 model contains pretrained weights from the ImageNet dataset as 

well. As a pre-processing step for the model, they froze the weights of the first 45 layers of the 

ResNet model whilst the remaining layers were allowed to train. Attached after the ResNet layers 

were 3 fully-connected layers and a final output layer. Using this method, they achieved a 

validation RMSE of 0.0775 (Du, Guo, & Simpson, 2017). They found that the ResNet50 model 

showed signs of over-fitting, which it is known for. Freezing the top 45 layers of the model also 

proved to be an effective method of producing results. This strategy was taken due to the inputs 
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being of similar domain, and thus would have some similar high-level features. The attached 

fully-connected network was much more complex than others, possibly due to them having more 

data during training time.  

 Eraqi et al., 2017, carried out a steering angle prediction task using RGB images as well and 

compared it with a simple CNN model trained end-to-end. The models used for transfer learning 

were the ResNet152 and InceptionV3, both trained on the ImageNet dataset. They found that the 

deeper models performed the best as the ResNet152 achieved a RMSE of 17.77 (Eraqi, Moustafa, 

& Honer, 2017). The weights for all layers were frozen and there were no extra layers attached 

before the output. This could explain the, relatively, high RMSE score along with the fact that 

the ResNet and Inception models have a different source domain. Not only that but the weights 

transferred were trained on the ImageNet dataset which also shares a different domain. Adding 

extra layers or freezing only some layers may have resulted in a lower RMSE.  

 Kim et al., 2017, looked at using transfer learning methods of ego lane estimation. Their 

view is that for self-driving cars to be truly intelligent in the task of driving, semantic 

segmentation is essential. Semantic segmentation is the process of segmenting objects in a scene 

based on their semantic and relational properties. They provide a method to utilise semantic 

information for ego lane estimation. For this task, a SegNet, which was trained on segmenting a 

driving scene into 12 classes (Badrinarayanan, Kendall, & Cipolla, 2017), was transferred to 

segmenting left and right ego lanes. These ego lanes would be useful for understanding if in the 

absence of lanes or partially visible lanes, a vehicle can still stay on the path. Their method gave 

good results when segmenting both left and right ego lanes (Kim & Park, 2017). Ensuring the 

model can detect lanes is an important aspect of end-to-end learning. When exploring the filters, 

the model should train some lane marking detection filters to base the output steering angle on. 

Initial studies showed through feature maps that outside areas of roads were activated and 

sometimes the lane markings. Without explicit segmentation, the CNN model should be learning 

these as, for us humans, they are an important part of steering.  
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2.8 Summary 

By examining the past and current literature, we can see the transition of the self-driving vehicles. 

What initially started as hard-coded rules for detecting roads, grass, curves etc. can now be done 

with state of the art CNNs. We also identified that some methods carry limitations which are 

impractical for the real world, i.e. model cannot work if vehicle is travelling faster than a limit. 

Currently deep neural networks have shown to improve performance and accuracy significantly. 

This is mainly due to the computational hardware available and the amount of data we currently 

possess. Although limitations of these networks are that they need new data if one wanted to use 

them for another purpose. For this task, transfer learning was found to provide some benefit.  

 Based on these limitations and gaps in current literature we generated some research 

questions which may provide input into this field. We identify is a model can be trained to predict 

the steering angle on simulated data. Then, can this model be transferred from a left-hand drive 

environment to a right-hand drive environment. Our research addresses the lack of work done on 

using simulated datasets for steering angle prediction, as well as the ability of self-driving cars 

to be shipped to a region they are not trained in. We now design a workflow which aims to best 

tackle these research questions.  
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Chapter 3 

Methodology 

In this chapter, we describe the tools used to 

create our environment and the workflow that our 

research follows. The steps taken for scenario creation, 

data collection, data aggregation is outlined as a data 

collection step. Data pre-processing, model selection 

and evaluation are also discussed and analysed. Also, 

discussed are the steps taken for creating, testing and 

evaluating experiments for all our research questions.    
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3.1 Environment Design 

For this task, Convolutional Neural Networks (CNNs), are proven to work best with image-based 

inputs. Since the introduction of the CNN by LeCun et al. they have been widely used in the field 

of pattern recognition in images (LeCun Y. a., 1998). As we will be focusing on multi-inputs, 

other data will be concatenated with the output of our CNN block and fed into a multi-layered 

Artificial Neural Network (ANN). To build our model we will be using the Python programming 

language, and deep learning frameworks like Keras and Tensorflow. Other frameworks such as 

OpenCV, Pandas, NumPy will be used for manipulating images, csv data and image vectors 

respectively.  

 Prior to the model building process, data collection is carried out within the parameters of 

our task. The major tools used were RoadRunner, a software to create 3-D road networks and 

CARLA, an open-source autonomous driving simulator. Using RoadRunner, we could perfectly 

create our driving scenario, including the minor details, such as type of road, road signs or lane 

markings. By loading this map into CARLA, we can programmatically, using Python, run our 

data collection simulations. CARLA gives us greater control in regard to driving conditions, 

vehicle selection, type of sensor, lighting etc. Using the combination of these tools our initial 

dataset can be made.  

 Our models will be trained on a GPU by configuring our Tensorflow backend as per 

NVIDIA guidelines. The GPU available for this research is the NVIDIA GTX 1060 6GB. The 

reason for using a GPU is due to the speed of vector calculations performed. On my hardware, 

the GPU is 60-100x faster than my CPU for image-based machine learning tasks. The step of 

data pre-processing is done using the CPU as it avoids excess costs, if scaled up to large scale 

projects. 

Our research follows a linear methodology, which can be seen in Figure 5. This 

methodology includes the process to answering all our research questions. The left-hand branch 

aims to achieve our goal of making a CNN for steering angle prediction. The dotted line for 

variable sampling aims to achieve our research question two. Finally, the right-hand branch aims 
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to achieve our goal of testing if a left-hand drive model can be transferred to right-hand drive 

data. To carry out our research and achieve our objective, we started off with identifying and 

creating a research environment of our autonomous driving vehicle. The environment includes a 

driving scenario, in our case a single left bend as a bending road is common in New Zealand.  

This is because testing our research questions on all scenarios that drivers face will be endless. 

To create the environment two tools were required, RoadRunner by VectorZero and CARLA by 

Dosovitskiy et al., 2017 (Dosovitskiy, Ros, Codevilla, Lopez, & Koltun, 2017).  

 

 

Figure 5- Flow of the research methodology which goes over all our research questions. Red 

annotation is the workflow of our research question 1, green annotation is for research question 

2, blue annotation is for research question 3.  

 

 RoadRunner is an advanced road network and environment generating software. It is useful 

for creating complex road networks that can be fit for any environment and many adjustable 

parameters. RoadRunner is a paid software but VectorZero offer a two week free-trail for 

academic licenses which we leveraged. They also offer an in-depth prop kit which includes many 

different road signs, markings etc., but that comes at a price. During this period, we created our 
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left bend scenario, with adjustments such as road marking type, driving direction, and type of 

road. Multiple versions of this network were created and exported in the appropriate format for 

CARLA. 

 

Figure 6- Figure showing the user interface of RoadRunner 

 

 CARLA is an open source autonomous driving simulator which works on top of Unreal 

Engine, developed by Epic Games. Unreal Engine is a graphics development engine which makes 

it possible to create and interact with CARLA and any custom maps that we need to load. CARLA 

is originally written in the programming language C++, but they provide wrappers for Python 

3.x for seamless programmatic communication. CARLA features many resources and assets for 

making a realistic driving environment, including road signs, sensors, vehicles, natural 

environments, weathers etc, which we can leverage free of cost. After loading the map in 

CARLA, we added some props such as houses, railings, road signs, etc., and chose a vehicle, 

Audi TT, that will best serve our purpose. We then attached an RGB sensor and a speed sensor 

on our vehicle, to capture the footage of the car and the speed at any given timestamp. We also 

provide the RGB sensor with the desired resolution and the frame rate which will be beneficial 

for the data collection step.   

3.2 Data Collection  

Data collection is, arguably, the most crucial step in ensuring we get reliable results as output. 

There exist many real-world driving datasets containing 100s of hours of driving footage 
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including steering angles, GPS data, speed and other sensors. Some limitations of these datasets 

are they, individually, possess imbalanced data, lack of corrected actions, weather scenarios etc. 

Although having a combination of these datasets solves this problem, but they introduce 

compatibility problems. For our purpose, a combination of the datasets would need to be used 

and because of that it makes sense to make use of a simulator which we can adjust as per our 

needs.  

 Based on this, we decided that our data collection step requires the use of CARLA. With 

CARLA we can manipulate the environment as we wish; removing the need for synthetic data 

augmentation. Initially, we collect two training and validation datasets for both left-hand side 

and right-hand side driving. As mentioned earlier, we implement an RGB sensor, a steering angle 

sensor and a speed sensor to our vehicle. To collect this data, we created multiple routes inside 

CARLA on the same map and initially had autopilot drive the routes. Most of the current real-

world driving datasets also have a lack of corrected driving, where the driver must correct the 

positioning of the car if it is out of line. This data is very important for ensuring our model learns 

those situations and be more generalised. To add some corrected driving data, a human also 

controlled the car using the keyboard. As the human was not used to the CARLA control 

environment, a lot of mistakes were made which were then corrected whilst being recorded. Now, 

there are some limitations with this approach. The human controlling the car knew this was a 

simulation and therefore was too relaxed when going through the process. This may have had 

some bias on the corrected data that we collected. Some limitation might be the fact the human 

is not scared of making mistakes in the simulation. This would present some probability of the 

reactions not being as urgent as if the human was actually present in the situation. Although in a 

real situation it is not guaranteed that the human wont freeze. As shown by Morton et al., 2013, 

driving simulators do have some impact on the user driving, if the user is under stress (Morton 

& White, 2013). This would reinforce our limitation of the corrected driving not being as 

effective as the user was not under stress apart from the fact, they did not know how to use the 

environment. However, the corrected driving added in our dataset is much more raw, cleaner and 

generalised than that collected through data augmentations. Apart from that, the time of day and 
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the weather was also changed to add some generalisation. We looked at using dawn, afternoon 

and dusk along with clear, cloudy and slight shower weathers.  

 

Figure 7- Image of the CARLA environment in Unreal Engine 4 

 

 A common problem that arises in real-world datasets is imbalance between straight roads 

and turns. Without correcting this imbalance, our data will be spread unevenly. This will cause 

the model to have a bias to always go straight. Literature solves this issue through augmenting 

images containing bends and creating synthetic data samples. In CARLA, we can create scenarios 

that will run multiple turning sessions to allow us to gather enough bend data. This allows us to 

skip any un-needed data augmentation and gives us greater flexibility on collecting more 

generalised data. 

 Once this process was finished, we had a total of approx. 52 minutes of left-hand side drive 

training and validation data and approx. 11 minutes of right-hand side drive training and 

validation data. Quantitatively, we had approximately 32,000 left-hand driving images and 7,000 

right-hand driving images. The images were kept in a separate directory of their own, the names 

of the images, associated steering angles and speed were kept in a CSV file. It is important to 

note that the data in our CSV file was ordered sequentially so that it can be useful for answering 

our second research question.  



47 
 

  

 During our literature review we found that the image size varied but was still generally 

small, approximately 300px * 200px. Due to this we decided to keep our image size at 300px * 

250px with 3 RGB channels, i.e. (300 x 250 x 3). RGB images were used as we believe colour 

is very useful for determining steering angles, especially for interpreting road signs, lane marking 

etc. The sampling rate was also put into question with 10 FPS being quite common. Anything 

greater than that would result in similar images and lower will show drastic changes between the 

previous and current frames.  

 

Figure 8 - Random subset of images from our training dataset. 

 

3.3 Model Design 

For this research, we design a Convolution Neural Network which takes inspiration from the 

networks used in current literature. Initially, we will look at their 3-layer and 5-layer networks to 

identify how they perform on simulated datasets. We also construct a 7-layer plus 3 fully-
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connected layers to compare the results. The goal using creating and testing these architectures 

is to identify which can produce the lowest MSE for steering angle prediction. 

 Apart from predicting steering angles given an image input, the model will also be training 

filters. Steering angle prediction falls under the umbrella of image processing. These filters will 

provide insight into the features being learnt by the model from the images. To create rich feature 

maps, we use 7 convolution layers in our model, with 4 alternating pooling layers. The pooling 

layers help with reducing the number of parameters and summarise redundant spatial features 

from the output feature maps. We keep the stride size for both the convolution layers and pooling 

layers at 1 as to not lost any spatial information. We make use of some padding to help ensure 

any edge case scenario does not get overlooked. A flattened vector is taken as input by an ANN 

consisting of 3 fully connected layers. A final output node uses the activation tanh to output the 

steering angle. To measure the success of our model, we aim to reduce the MSE as much as 

possible. 

 The model created above will then be transferred to tackle our third research question. Can 

a model, created for left-hand side driving, work with right-hand side driving? During transfer, 

we will experiment with freezing weights in specific layers. Evidence shows that freezing 

specific layers may output better results as compared to freezing all weights. The success of this 

research question will also be a low MSE.  

 All models in this thesis are written in Python 3.6 and created using Keras and Tensorflow. 

Keras is a high-level API that uses Tensorflow as its backend, allowing us to rapidly create 

models whilst giving us the flexibility to modify them deeply. Tensorflow also integrates well 

with CUDA allowing us to greatly speed up our computations.  
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Figure 9- The overall architecture of our CNN 
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 Following the overview of the structure of our algorithm, we present 7 convolution layers. 

The input to these layers is an array in the form of [B, H, W, C]. The B represents a value for the 

batch size to our layer. Both H and W represent the size of the input image, which in our case is 

300 x 250. The C here represents the number of channels in our images, which in our case is 3 

for all RGB layers. The convolutional operation is a linear operation which needs to be passed 

through a non-linear activation function. Initially, we introduced ReLU, LeakyReLU and 

PReLU, as these have been known to solve the vanishing gradient problem. ReLU introduces the 

“dying ReLU” problem, solved by the other ReLU variants. For our network LeakyReLU is used 

as it provided the most value. LeakyReLU also takes in an alpha value argument, which is also a 

trainable parameter.  

 For the sub-sampling step, we utilise max pooling. Max pooling takes in as input a kernel 

size h x w, and selects the highest, max, value from that kernel. The output is a reduced feature 

space with any non-important features discarded. Another common sub-sampling method is 

Global Average Pooling, which takes the average of all values in a kernel. Our literature shows 

that in the case of end-to-end autonomous driving problems, max pooling works best.   

 Following the convolutional layers, a network of 3 fully-connected layers is responsible for 

predicting the steering angle. It takes as input a flattened one-dimensional vector and finds 

relationships as a standard multilayer perceptron would. There is also a second input that gets 

added, which in our case is the speed. Adding this second input allows us to generalise the model 

and allow for more sensor-based inputs in the future. In each of these layers the number of 

neurons is adjustable, and we use the tanh activation after each layer. Finally, a final layer 

containing one neuron is connected which is responsible for the output steering angle. This layer 

also uses a ‘tanh’ activation functions as our steering angle is in the range of [-1, +1]. The 

predicted output of the model is compared to the actual steering angle using the MSE metric. The 

goal of the model is to achieve a low MSE. Our loss is measured using the MSE to reduce the 

loss per epoch.  
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Table 1- CNN layers, shape and parameters used. 

 Layer Shape Parameters 

1 Conv2D (Batch Size, 300, 250, 256) 256, 3, 3, 1 

2 LeakyReLU  0.33 

3 MaxPooling2D (Batch Size, 150, 125, 256) 2, 2 

4 Conv2D (Batch Size, 150, 125, 128) 128, 3, 3, 1 

5 LeakyReLU  0.33 

6 Conv2D (Batch Size, 150, 125, 64) 64, 3, 3, 1 

7 LeakyReLU  0.33 

8 MaxPooling2D (Batch Size, 75, 62, 64) 2, 2 

9 Conv2D (Batch Size, 73, 60, 32) 32, 3, 3, 1 

10 LeakyReLU  0.33 

11 Conv2D (Batch Size, 71, 58, 32) 32, 3, 3, 1 

12 LeakyReLU  0.33 

13 MaxPooling2D (Batch Size, 35, 29, 32) 2, 2 

14 Conv2D (Batch Size, 33, 27, 32) 32, 3, 3, 1 

15 LeakyReLU  0.33 

16 Conv2D (Batch Size, 31, 25, 32) 32, 3, 3, 1 

17 LeakyReLU  0.33 

18 MaxPooling2D (Batch Size, 15, 12, 32) 2, 2 

19 Flatten (Batch Size, 5760)   

20 InputLayer (Batch Size, 1)   

21 Concatenate (Batch Size, 5761)   

22 Dense (Batch Size, 1164) 1164, tanh 

23 Dropout   0.5 

24 Dense (Batch Size, 500) 500, tanh 

25 Dropout   0.5 

26 Dense (Batch Size, 200) 200, tanh 

27 Dropout   0.5 

28 Dense (Batch Size, 1) 1, tanh 

 

   

 Following the convolution layers, a network of 3 fully-connected layers is responsible for 

predicting the steering angle. It takes as input a flattened one-dimensional vector and finds 

relationships as a standard multilayer perceptron would. There is also a second input that gets 

added, which in our case is the speed. Adding this second input allows us to generalise the model 

and allow for more sensor-based inputs in the future. In each of these layers the number of 

neurons is adjustable, and we use the tanh activation after each layer. Finally, a final layer 

containing one neuron is connected which is responsible for the output steering angle. This layer 

also uses a ‘tanh’ activation functions as our steering angle is in the range of [-1, +1]. The 
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predicted output of the model is compared to the actual steering angle using the MSE metric. The 

goal of the model is to achieve a low MSE. Our loss is measured using the MSE to reduce the 

loss per epoch.  

 Between these dense layers, we add dropout layers to help prevent overfitting. We kept our 

dropout rate high, at 0.5 as evidence showed this to be within a good range (Goodfellow, Bengio, 

& Courville, 2016; Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). We 

chose to use dropout layers as our model would have a lot of parameters and using a dropout with 

a high value is common among literature. 

 Prior to the training process, we normalise the image data and the speed input, within a range 

of -1 and 1. This is because of our steering angle data is recorded within this range. Data 

normalisation is not always required but is essential when the scale of values is different between 

features. For example, our image pixel values are within a range [0, 255]. Whereas, our speed is 

stored as a value in meters per second. The goal of data normalisation is to rescale the features, 

so they fit on a common scale. There exist many methods of normalisation with Batch 

Normalisation being commonly used within literature (Ioffe & Szegedy, 2015). We employ a 

min-max scaling, which is a simple method for scaling features into a specified range, in our case 

[-1, 1]. This method of normalising is simply a linear transformation. It takes in an input x and 

returns a normalised value 𝑥′ . The method used can be seen in Eqn. (3.1).  

 

𝑥′ = 2 
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
− 1 (3.1) 

 

 

Once this model has been trained, we can save the trained weights for each layer to disk. This 

will allow us to load model for the purposes of transfer learning. From Table 1, we can the 

description, and parameters of all the layers in our final model. When it comes to transfer 

learning, usually all the layers until the last layer, layer 28, are frozen, and a custom output layer 

for the specific task is attached. Freezing layers is a practise in which evidence suggests that 

some layers maybe too domain, or task specific to be beneficial for transfer. If we take as example 
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Du et al., 2017, they froze the first 45 layers in their ResNet50 model as it yielded good results. 

They also tried multiple different combinations of layer freezing to arrive at their current 

conclusion.  

 We looked at experimenting with layer freezing, including freezing all layers and freezing 

a combination of the convolutional blocks. In our transfer learning model, freezing layers 9 and 

10 from Table 1, yielded the best MSE.  Freezing all the layers or freezing a combination of the 

middle layers resulted in a relatively large MSE. As our task was of predicting the steering angle, 

it was possible to use the output layer from the original model. The optimizer, Stochastic Gradient 

Decent (SGD), and the loss function, MSE, for this task also remained the same. Some tuning 

was done for SGD to find the appropriate learning rate and momentum. 

 To summarise, our methodology consists of initially training our own steering angle 

prediction model. This model will be trained on a left-hand drive dataset consisting of 

approximately 32,000 images, or 50 driving minutes. We validate our model on a subset of the 

training dataset. We also examine the trained weights of our model and visualise the features 

being learnt. After this, we experiment with freezing the weights from a combination of layers 

until we find the most combination, the middle layers. The optimal combination is found by 

training and validating the model on a right-hand drive dataset and reducing the MSE. We then 

explore and visualise the weights from the transferred model to identify the features it has learnt.  
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Chapter 4 

Results 

This chapter goes over our results achieved from 

experimenting with our neural network model. We 

critically analyse each research question, the model 

used, the process of training and the impact of 

parameters as a whole. We also critically analyse the 

limitations that may have affected our experiments.    
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4.1 Model Parameters 

To ensure our model achieves a good Mean Squared Error (MSE), we need to continuously 

optimise the hyperparameters. The goal of hyperparameter tuning is to find the balance between 

a low error metric and computational expense. The issue of overfitting and underfitting must also 

be taken into consideration. Our model is created in Python 3.6 using the Keras and Tensorflow 

deep learning libraries. These allow us to set and tune many hyperparameters with ease. In this 

section we show the parameters for each research question, prior to experimentation.  

• Research Question 1 

The parameters for a CNN model that can predict steering angles given an image are shown in 

Table 2. Our batch size is very low, value of 8, because of the limitations of the GPU used. We 

used a NVIDIA GTX 1060 with 6 GB memory. Given the size of our image, 300 x 250 x 3, the 

number of images being approximately 32,000 and the size of our model, 7 convolution layers 

with 3 fully-connected layers. This architecture resulted in a nearly 100% utilisation of GPU 

memory and computation capacity.  

 We also compared our model against a 3 and 5 convolution layer plus 3 fully-connected 

layer network. All parameters remained the same except batch size, which could be increased 

slightly. This is due to not knowing how large the model is in GPU memory even though our 

image data is relatively small. Due to the small batch size, all our architectures take approx. 3,900 

steps per epoch. This equates to approx. 9 minutes per epoch in our 7-layer architecture. We use 

a 90-10 split for training and validation. The learning task is to lower the MSE to an acceptably 

low level.  

• Research Question 2 

The goal of the second research question is to identify if a variable sampling rate has any effect 

on computational expense without compromising the MSE. To achieve this, we apply some 

programming logic to our data pre-processing step. Before loading the data into the model, we 

remove either 10%, 20% or 40% of straight road images after each last bend image in a sequence. 

Polder blindness (Koornstra, 1989; SWOV, 2012) is simulated this way because it takes some 
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time for the driver to transition into passenger mode. The variable sampling rate will be carried 

forward as part of the model if the results meets our expectations.  

 

Table 2- Table showing parameter values of our CNN model for Research Question 1 

Parameter Value Description 

Batch Size 8 Samples per gradient update. Default 32 

Epochs 40 Number of iterations. Default 1 

Learning Rate 0.0001 Step size per update. Default 0.01 

Momentum 0.0002 Accelerates SGD in the right direction. 

Default 0.0 

Optimizer SGD Stochastic gradient descent optimizer. 

Validation Split 0.1 Size of the validation dataset. Default 0.0 

 

 

• Research Question 3 

In the task of transfer learning, we will be using the model created and finalised in our first 

research question. In this process we transfer the trained model, including the weights, and input 

different data. Specifically, we use the right-hand side dataset, which is significantly smaller than 

our original data. Apart from a small dataset, faster convergence, i.e. fewer epochs, has been 

attributed to transfer learning approaches. The specific parameter values of this model can be 

seen in Table 1. In our literature we found that freezing layers was an effective method of gaining 

effective results. Another approach we took was to use a model and weights that share a similar 

domain, i.e. driving.  

 To measure the success of our model we will test to see if the MSE is either similar or lower 

than our original MSE. We will also check if a similar or lower MSE is reached in a smaller 

number of epochs.  

4.2 Mean Squared Error 

Given our above settings, we proceeded to train the model and record their MSE. It is important 

to note that we used the MSE as the loss function for the model itself. In this thesis, we look at 

answering 3 research questions: 
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• Which architecture will best train a CNN that can predict steering angles from a given 

image? 

• Does a variable sampling rate on straight roads have any effect on the computational 

requirements of the model without compromising on the error? 

• Can the final model, trained on left-hand side data, be transferred over to a right-hand 

side driving scenario? What error rate does this achieve? 

 After running our experiments and tuning with different parameters, we have left 3 models 

with various MSE. Instead of selecting the model with the lowest MSE, we must test if that result 

is statistically significant. To carry out significance testing we use t-tests, specifically paired t-

tests. A t-test is a type of significance test that is used to measure and compare the means of two 

sets of data. We use a paired t-test approach as our dataset remains the same through our 

experiments and thus the distribution is unchanged too. The paired t-test will let us compare 

which model performed the best, statistically, on our dataset. To conduct this test, we present our 

null and alternative hypothesis for the first research question. 

 In this case, our null hypothesis is that our results are consistent with random chance and 

changing the depth of our model had no significant effect on the MSE. Our alternative hypothesis 

is that using a 7-layer CNN is beneficial for this project as compared to a 3-layer or 5-layer CNN 

as it indeed does lower the MSE. The p-value threshold for rejecting the null hypothesis is set at 

α < 0.05. Given Table 3, we can see the means and standard deviation of all our architectures. 

Testing the 7-layer CNN against both the 3 and 5-layer CNNs yields a p-value below our 

threshold. Given the results, we can reject the null hypothesis. 

Table 3- Table showing the mean MSE, standard deviation and p-value of the 3/5-layer CNN as 

compared to the 7-layer CNN 

  3 Layer  7 Layer  5 Layer  7 Layer  

µ MSE 0.24792 0.17458 0.25434 0.17458 
σ 0.15532 0.11792 0.16172 0.11792 

α-value  0.00475  0.00166 
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 To ensure success on our first research question, our goal was to reduce the MSE as much 

as possible. The best MSE we achieved was 0.0278, which can be seen in Figure 11. Using this 

model, we will experiment with our next research questions. Please note the scale of both y-axes 

in each Figure 10 and Figure 11. 

 

Figure 10- Graph showing the MSE of all our architectures. Note scale of Y-axis 

 

Figure 11- Graph showing the MSE of our 7-layer CNN. Note scale of Y-axis 
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Our second research question looks at identifying if a variable sampling rate can reduce the 

computational expense of training our model whilst giving a reasonable error rate.  

 

Figure 12-Graph showing the MSE of all variable sampling rates. Note scale of Y-axis 

 

Figure 13- Graph showing MSE with a 0.1 variable sampling rate. Note scale of Y-axis 
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Given Figure 12 and Figure 13, we can see that a variable sampling rate of 0.1 resulted in 

the lowest MSE, 0.078. Please note the scale on both the y-axes in each figure. Apart from just 

the MSE we also put emphasis on the possible decrease of computational resources required 

when training this model. Without applying a variable sampling rate, the time per epoch fell at 

approx. 9 minutes. After applying either of the variable sampling rates, the time per epoch fell at 

approx. 8-9 minutes. There was no significant decrease in the model training time that could 

justify the significant increase in error rate.  

Our final research question looks at transferring a model trained on a left-hand side driving 

dataset to a right-hand side driving scenario. As mentioned earlier, our aim is to see if we can 

achieve a similar or lower MSE and faster convergence, i.e. fewer epochs. The approach we took 

was to only transfer weights from specific layers, in our case, layers 9 and 10 from Table 1.  

 Following this we were able to achieve an MSE of 0.00080, Figure 14. Not only that, we 

can also see that the model converged in a shorted amount of time as compared to our original 

model. When comparing freezing only the middle layers as compared to freezing the whole 

model, we achieved a significantly low result. Based on the graph, we can possibly keep training 

out model as it still follows a downward trend near the end. Although the graph shows some 

instability near the end, so we may need to perform some tuning to smooth it out.  

 Apart from experimenting with freezing combinations of layers, we looked at the learning 

rate and momentum. This is because as the model already contains trained weights, the learning 

rate does not need to be as sensitive and therefore requires less time to converge. From our 

experiments we found that there is no change to the parameters listed in Table 2, except for the 

number of epochs.  
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Figure 14- Graph showing MSE of transferring only mid-layer weights. Note scale of Y-axis 

 

4.3 Limitations of the Experiment 

After training the model for our driving scenario, the results show a successful outcome for our 

research questions one and three. We tried to remove as much bias during the data collection, 

pre-processing and training process, but there do exist some limitations in our model and process. 

Some of these limitations will be highlighted here and discussed, in detail, in the next section. 

As we looked at only one driving scenario, this model is limited to that specific scenario. 

The contents of our map are also limited to be similar to NZ roads, and US roads for the right-

hand side driving scenario. When looking at the data as a whole, we use simulated data, which 

may not be the best replication of a real dataset. The reason for not using a real dataset was due 

to the constraints and limitations of those datasets discussed earlier.  

 We conduct an end-to-end approach for learning and predicting steering angles. Our model, 

created initially, has 2 inputs, image, and speed. The image input is processed using a CNN to 

extract feature maps, whereas the speed is input directly to our fully-connected network. A 
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limitation of this method is that we don’t provide any speed information in the images, which 

could make it learn better and be more generalised.  

 We were also limited by the fact we were only using one RGB camera in our research. This 

approach is limited by our image input as being a 2D image and applying a 2D convolution 

process. Our images carry no depth information that may allow them to see how far a turn is, or 

how sharp it maybe. Having one camera also affects the field of view of the vehicle when it is 

turning, as the camera may not capture all the information. Adding multiple cameras may reduce 

this effect, but currently we may be losing some information regarding this. 

 When we tackle our second research question, simulating polder blindness in an effort to 

reduce computation expense, we present a hard-coded approach to the pre-process step. The 

benefit of this method is that it does not hold power when using during a city driving scenario. 

The downside of it is that during a highway scenario, scene changes, even on a straight road may 

be disregarded by the model. Using a machine learning approach to simulate polder blindness 

may yield better results whilst ensuring the model is generalised for driving scenarios. Based on 

our results, it may provide no beneficial input for an autonomous vehicle. However, this would 

be a challenge for a completely different problem which will be looked at in future workings. 

 Looking at our transfer learning approach, we used our own model for training purposes. 

The limitation of this follow the same limitations that exist when training our own model initially. 

Transfer learning itself assumes that’s there is some knowledge that maybe used from the source 

task for the target task. This maybe one of the reasons we have gotten good results on our target 

task, as both tasks are quite connected given Figure 4. On the contrary to this, our results could 

be better when collecting enough data for the target task and training a model from scratch. 
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Chapter 5 

Analysis and Discussions 

In this chapter, we present an analysis of our 

findings and how they affect our research questions. We 

critically analyse the model, parameters and layers to 

understand the performance deeply. We also look at 

how the results impact the research goal and the 

contributions made by this thesis. 
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5.1 Results and Discussion 

In the previous section, we show the results of our model when it is run against our dataset for 

each research question. We show the effects of a convolutional neural network on an end-to-end 

steering prediction task. We also highlight some limitations that may have caused shortfalls 

within our process. In this section, we critically analyse the results for each research question, 

the impact of those results and the impact of the limitations we identified earlier. We also show 

some output for why our model behaves as it does, and what the model maybe learning during 

the training process.  

 The first step in our research was identifying the type of sensor that will be used to collect 

our data. We chose to use the RGB for our research as it is commonly used for steering angle 

prediction. It also provides the model a way to view the road and environment in a manner that 

humans view it. The downsides of using a single RGB cameras approach is that there is no depth 

information present. Due to this, other approaches are taken such as LiDAR, stereo RGB cameras 

allowing the model to learn from depth information. The reason we use a single RGB camera is 

because their use has been proven to work across a range of image processing and self-driving 

vehicle tasks.  

 Data collection was very important as we had to ensure our data was as rich as possible. 

Using CARLA allows us to collect the type of data that would be beneficial for our research 

without the huge overheads associated with real-world datasets. This was one of our biggest 

issues with using real-world datasets as collectively, they covered a range of different scenes but 

individually, they were limited. The limitations included imbalanced data, lack of weathers, lack 

of road types and lack of corrected driving. The major shortfalls that mattered most for us were 

the imbalance of bend roads versus straight roads and the lack of corrected driving. This was one 

of the main reasons we decided to use a simulator-based approach. Reducing the gap between 

straight roads and bend roads as it ensures our model isn’t biased to a certain steering angle. If 

we have more of straight roads, where the steering angle is closer to 0 degrees, then the model 

will output closer to that to not get a low MSE. The reason for including corrected driving is so 



65 
 

that the model learns how to recover to unfavourable situations. Our method of including 

corrected data was having a user control the car and drive it on the track. It was done in this 

manner because the human has no experience with CARLA and controlling a car using a 

keyboard and was a learning curve for them as well.  

 CARLA provides us with the ability to manipulate the environment as we see fit and allow 

us to create scenarios which remove the need for data augmentation. Using CARLA, we were 

able to run scenarios in a manner which allowed us to extract even number of roads with bends 

and straight roads. During the data collection stage, we wanted to ensure that we don’t have any 

synthetic or augmented data. The reasoning for this was that augmented data may add some bias 

to the system. There is only so much augmentation one can do before the image becomes a 

liability for training. It is better to ensure the dataset is as raw as possible. This method of data 

collection and the possible issues in the data are relevant from both the left-hand drive dataset 

and the right-hand drive dataset.  

• Research Question 1 

 Once we collected our data, we looked at the structure of the model that will satisfy our first 

research question. Our final model consisted of 7 convolutional layers plus 3 fully-connected 

layers and achieved an MSE of 0.0278. Prior to this we experimented with 3-layer architectures 

and 5-layer architectures as well because these were commonly used in steering prediction tasks. 

We chose to experiment with these initially to set up a baseline and took inspiration mainly from 

Bojarski et al., 2016 (Bojarski, et al., 2016). Evident from our experiments, these architectures 

were giving a relatively higher MSE. In our view, this could be because the feature maps were 

not rich enough due to the fewer layers. As the CNN gets deeper, the filters start learning more 

higher-level features that maybe important for the task. A way to interpret which features are 

being learnt at which layer is to visualise the activation maps and trained filters. See section 5.2 

for more details regarding this.  

 Something we considered, which may have limited our experimental results, was the lack 

of speed information in our images. As we are passing a speed-based input, using 3D 
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convolutions would provide some spatial data for the model to ‘perceive’ speed. Another 

consideration was the amount of input data that we collected for our model. We collected approx. 

52 minutes of driving data for a single scenario. Other researchers used real-world datasets which 

contained up to 10s of hours of driving footage and covered multiple scenarios. For our use case, 

slightly under an hour is beneficial.  

 When looking at our result in Figure 11, we can see a very smooth curve declining in an 

even manner. There is a slight increase at the end which could indicate our current result is in a 

local or global minimum. Since the error plane is not known, we are unable to identify if this, 

0.0278 MSE, is the lowest MSE that can be achieve with our current model. The MSE going up 

can also signify that the model was not generalising enough and maybe be overfitting on the 

training data. Given the amount of training data provided for a single scenario, this could be the 

case. We also experimented with 50 and 60 epochs which only showed the curve kept increasing, 

in most cases, after an initial downward slope. When looking at our parameters, the learning rate 

and momentum are quite low. We found that literature consistently kept a learning rate quite 

small but there was a split between the momentum values. Through our experimentation we 

found that both the parameters performed well with the current values. To combat over-fitting, 

we made use of dropout layers after each of our dense layers. This was a proactive decision as 

our model contained a large number of parameters. Based on these factors and the low MSE 

achieved by the 7-layer architecture, we decided that it would be best for our needs.  

• Research Question 2 

 For the second research questions, we use the successful model from the previous research 

question. We apply multiple sampling rates, 0.1, 0.2 and 0.4, to our input data to measure their 

effect on the MSE and training time. Based on our experiments, we found that the variable 

sampling rate of 0.1 yielded an MSE of 0.078. We also didn’t see a significant change in the 

amount of time taken to train the model. Due to these reasons we decided that, given our 

experiments, simulating polder blindness does not have a positive effect on the task of steering 

angle prediction.  
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 During the data collection step, one of the shortfalls we identified was that there is an 

imbalance of bend road images as compared to straight road images. We took steps to overcome 

this issue so that our model is not biased towards a straight steering angle. Our method of 

simulating polder blindness involves sampling only some straight road images after bend road 

images. Effectively, this is reducing the number of straight road images being fed to the model. 

Unlike before, now our model has not been trained evenly on straight road images, causing bias 

for roads with bends, thus, non-zero steering angle. We are effectively giving the model an 

imbalanced dataset for training. A 0.1 sampling rate is less imbalanced than a 0.2 or 0.4 sampling 

rate and therefore it makes sense it is producing the lowest MSE from the three.  

 Looking at the graph, Figure 13, we can see that it is not as smooth as our initial graph, 

Figure 11. This signals that, during the learning process of the model, there were some 

irregularities which may have cause the MSE to drastically spike or lower in some places. 

Although we can observe an initial steep decline followed by a steady decline, we can see that 

there is no up spike at the end. We also found that if the number of epochs were increased, i.e. 

50 epochs, then the MSE still follows a downward trend. It could be possible that with a 0.1 

variable sampling rate we can reach a very low MSE, but this would either take many epochs, 

due to our learning rate, or a more complex model. This does not align with our current goals but 

can be looked at in further work. Given this outcome, the addition of a variable sampling rate 

does not yield good results and is not carried forward.  

• Research Question 3 

 Given the success of our 7-layer architecture, we decided to use it for the task of right-hand 

side driving. The goal of this task was to achieve a similar or lower MSE in a fewer number of 

epochs. Evident from our experiments and Figure 14, we achieve as MSE of 0.00080 in 20 

epochs. This was done through freezing only the weights from the middle convolutional layers 

and training the model.  

 When we experimented with freezing combinations of other layers, or freezing all the layers, 

the results were very different from the current. In fact, when we freeze all layers, we achieve an 
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MSE of 0.1130. This may be due to the fact that the model is using the same logic as left-hand 

driving on right-hand side. We know that as humans travel to other countries, we must adapt and 

be open to learning the act of driving in that environment. Therefore, as the fully frozen model 

is not updating its weights, it is not learning anything new. We can assume that as being the 

reason of such a high MSE. On the other hand, as we freeze the middle layers, we allow the 

model to learn from the new inputs, and tailor the outputs to its needs and reduce the MSE.  

 The reasoning for freezing only the middle layers is because the layers closer to the input 

maybe to domain input specific. As such, the layers closer to the output maybe too domain output 

specific. The earlier layers may not be extracting the relevant features to generate rich feature 

maps that are required for the model to be generalised for the target task. Whereas the later layers 

construct feature maps tailored to ensure domain specific high-level features and thus, a low MSE 

for left-hand side driving. The middle layers may hold the right amount of generalisation in their 

feature maps, which allow for them to be transferred successfully to a target task. We can observe 

some of the trained filters and feature maps, in section 5.2 to get an idea of what the model maybe 

learning and what features are being activated.  

 When looking at the specific parameters for training this model we initially thought that the 

learning rate need not be so sensitive, as per the original model. As the model as already learnt 

the weights, it makes sense that only fewer steps maybe required for it to converge. However, in 

our case, most layers still need to be trained hence, not a significant change in the learning rate 

was needed. If we instead freeze most or all layers, we may not need a sensitive learning rate.  

 Given the successful result of our transfer learning model, we can provide evidence for 

transfer learning between different orientations of driving possible. There is of course a need to 

conduct more testing on other scenarios, given that we only tested a single scenario. This will be 

presented in future work.  
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5.2 Model Visualisations 

To understand the model more deeply and identify what the filters of our model are learning or 

which regions in an image are activated, we can visualise the filters and feature maps. As 

mentioned earlier, during the training process, we specify how many filters, or kernels, each 

convolutional layer should have and the size of those kernels. The kernels are responsible for 

learning features throughout the image. In this section we go over and understand the visual 

outputs of the model including filter visualisations, feature maps and saliency maps.  

 Looking at our first convolutional block, layers 2 – 4 from Table 1, we can see that we have 

256 filters in that convolutional layer. We chose a relatively high number because as then input 

image is quite large and may contain a lot of rich spatial information.  

 From Figure 15, we can see some of the filters that the model has learnt. Knowing exactly 

what the features present in the filters relate to is difficult. We know that the initial layers in a 

model learn low level features, such as lines and edges.  Some filters, such as row 3 middle, and 

row 6 first, seem to learn some thick lines. In our training set, there are some thick structures 

present such as poles of road signs, railings, light poles, buildings etc. Row 5 middle, seems to 

be picking up a thin horizontal line along with row 3 first which seems to pick up a cross of some 

sort. Other filters, such as row 2 middle, row 4 middle and third, row 5 third, and row 6 middle 

and third seem to be activating awkward regions. Especially row 1 middle, seems to identify 

something that doesn’t seem connected. Some of those mention filers can be considered slight 

diagonals and maybe picking up on any diagonal lines in our image. As mentioned earlier we did 

apply some padding as well, and areas where only some regions in the filter are activated could 

be considered edge cases. Most of those filters, however, seem to identify lines and edges as 

expected from the image. 
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Figure 15- Filter maps from the first convolutional layer of our model. Areas of interest are 

shown as dark regions. 
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 In our transfer learning task, we transferred the weight of the middle convolutional layer. In 

the middle layers we should expect to see some more generalised features, such as hints of curves, 

diagonals etc. The number of filters in this layer is 32 as the feature maps from the previous 

layers are smaller and richer. Given that the kernel size is still 3 x 3, seeing high level features 

maybe a bit difficult. Given the perceived quality of the filters and activation maps, we may be 

able to justify the MSE achieved by our transfer learning task.  

 From Figure 16, we have filters that have more information than just straight lines and 

edges. The filters in row 2 third, and row 3 first, we can see clear and well-defined diagonal 

filters. These filters could be identifying the curves on the road signs, the edges of buildings etc. 

In some of those filters we can see a slight housing style curve too, i.e. row 3 middle and row 4 

last. These seem to identify the top of the road signs, or some small curves. Something that does 

look like the connection between the circular road sign and top of the pole, is the first 2 filters in 

the last row. The ‘T’ shape maybe referring to this connection between the pole and the 

signboard. Lane marking still seem to be present through the filters representing straight lines, 

thick or thin. Something to note is that even in this set of filters there seem to be filters that may 

signify edge cases. Although from our sample they appear to be much less than the first layer 

filter. Apart from the filters we can also look at feature maps, Figure 17, that are created as the 

output of the fourth convolutional layer.  
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Figure 16- Filter maps from the middle (4th) convolutional layer of our model. Areas of interest 

are shown as dark regions.  
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Figure 17- Feature maps from the middle (4th) convolutional layer. Areas of interest appear 

brighter as they achieve most activations.  
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Figure 18 - Filter maps from the final convolution layer of our model. Areas of interest are 

shown as dark regions. 

 

 From the visualisations of the 4th layer of our CNN, Figure 16, we can see that it is 

generalising on the inputs. The generalisation is on par with the MSE achieved in both our first 

and third research questions. This would show that freezing the middle layers during the transfer 

learning process did prove beneficial. From the visualisation, it is evident that it has learnt the 

important features that, according to humans, are required for steering angle prediction. 
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The final convolution layer is expected to have the richest filters as we expect the noise 

to have been removed. From Figure 18, we can see the output of some filters from our final layer. 

From the sample we have present, there appears to be significantly less noise, from a human 

perspective, that the previous visualisations. The noise in this sense is filters with random 

activates that don’t form any complex, or general, shape. Some interesting observations, filter at 

row 2 middle and row 4 first, appear to be quite similar. This could possibly show that some 

features maybe redundant as they are being learned multiple times. Apart from that we can start 

seeing some extremely complex shapes com into fruition. Row 1 first filter shows a corner, which 

is quite a general shape. We can see ‘Z’ shapes, curves etc. It may seem as though transferring 

these weights would have a much better effect on our transfer learning task. We have to remember 

that these filters are highly optimized for our left-hand driving task and out specific to that, which 

maybe be why they didn’t help during training and validation.  

 

 

Figure 19- Output Saliency Map (1). Areas of interest are shows as the only regions that are 

activated. The brighter the image, the higher the weight towards decision. Image from the left-

hand drive dataset. 
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 Apart from visualising filters, we can visualise the feature maps on convolutional layers as 

well. In Figure 17, we can see the output feature maps from the fourth convolutional layer. Each 

row consists of a different input image from our training dataset. We can see the different features 

extracted by the filters and how they impact the feature maps. Convolutional Neural Networks 

are known to be location invariant. Which means that, it does not matter where the feature is on 

the input images, a trained filter will be activated once it detects the feature in question. From 

our examples, we can see that the features are being generalised well.  

Saliency maps (Simonyan, Vedaldi, & Zisserman, 2013) also provide an alternative method 

for understanding the output of a CNN. These maps show the spatial activations in a given image, 

and let us, somewhat, understand the activations. Looking at the saliency map presented in Figure 

19, we can see that our model emphasises lane markings, and edges of the road. These two 

features should be considered quite important for this task. It seems that the model is also placing 

emphasis on building and tree edges and outlines. This maybe because, as the vehicle turns the 

bend, new structures appear. In our image we can also see that the road sign is activated. We 

knew from analysing the filters that maybe some road signs are being identified, and we can 

confirm that here. Although in this image the road sign is quite a distance away, we can still make 

out the ‘60’ on it. At approx. coordinates 120, 150, we can see a blue patch on the edge of the 

road which signals the start of the railings. In Figure 20, we have a collection of saliency maps 

to get a broader idea of the output.  
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Figure 20- Output Saliency Maps (2). Areas of interest are shown as the only regions that are 

activated. The brighter the regions, the higher the weight towards decision. Images from the 

left-hand drive dataset 

 

 Finally, we revisit the 6 – level self-driving vehicle system of classification. From our 

experiments, our model can predict steering angles with a low validation MSE which would put 

it as a level 2 autonomous system. This is because of the limited training the model has, and the 

fact that the error is still present in the model which may require a human to take over. Apart 

from that, from a human perspective, we can see from the various visualisations, the model is 

learning features that are critical for humans to steer the vehicle. It identifies road edges, railings, 

signs, building and curves. In our saliency maps, these features are activated which shows they 

lead to the output decision. However, in some cases it does focus on features that do not provide 

much input for predicting a steering angle, which may show that our model is still in infancy, 

like a new driver. It needs more training across more samples and be more generalised to the best 

results.  
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 We can examine the difference between the features learnt from the left-hand drive model 

with the right-hand drive model by looking at Figure 21. We can see that there is slightly more 

noise in the transferred model, as the model is learning not just the road marking but also the 

road itself. This is similar to Figure 20 as if there are no other features present on the road, i.e. 

buildings, trees, the model learns the road itself. In the case of the transferred model, if these 

features are present, it is still learning the middle of the road. However, the model still learns 

roads signs and focuses on other aspects of the environment, i.e. railings, buildings etc. The time 

of day also has an effect on the features being activated in the transferred model as the top two 

images in Figure 21 are during the evening, and the bottom two are during the afternoon. This 

could show that, as there are less features ‘visible’ during less sunlight, the model, like a human, 

is trying to absorb as much information from the environment as possible. Apart from that, this 

could shed some light into our understanding of how humans transfer features when they change 

from left-hand drive to right-hand drive.  

 

Figure 21 - Output Saliency Maps of Right-Hand drive data. Areas of interest are highlighted as 

activated regions. The brighter the regions, the higher the weigh towards their decision. 
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Chapter 6 

Conclusion and Future Work 

In this thesis, we overview our research goal and 

research questions. We present how the task of steering 

angle prediction is carried out and what our results 

mean. We also present some future work that can 

address our limitations and expand this research 

further to contribute to the task of steering angle 

prediction. 
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6.1 Conclusion 

Human error results in many fatal accidents each year, in many countries. Autonomous vehicles 

are seen as the way to avoid these tragedies. Given the complex nature of driving, which may 

seem easy for a human, building capable autonomous vehicles is currently a challenge. A 

machine learning model requires accurate and annotated training data to learn from. The training 

data must be generalised enough so that the model can learn how to perform in a wide variety of 

situations. Training the model for all situation will be a difficult and endless task. From there, an 

appropriate neural network model must be chosen or created which can learn sufficiently. In the 

task of image processing, convolutional neural networks have shown significant results over the 

past few years, mainly due to the advancements in computation hardware and dataset size and 

richness. Autonomous driving with cameras is primarily seen as a simulated or real-world image 

processing task, and as such CNNs are used to tackle this. This is because humans rely heavily 

on their perception to navigate a vehicle and therefore this sense would be the most beneficial. 

In the case that RGB cameras are not present, autonomous vehicles have been created to only use 

sensor inputs and perform quite well. This is mainly due to the fact that a vehicle must detect and 

recognise objects in its surroundings and make the best decision. Recognition of objects need not 

only be from RGB cameras, but can also be done with other forms of input, i.e. SONAR, RADAR 

etc. There are some challenges involved in image processing such as partial objects, unknown 

objects, imbalance of objects during training etc. This also overlaps with the task of ensuring that 

a rich and well annotated training dataset is present.  

 In this research, we used CNNs and image processing to understand how deep learning and 

transfer learning can be accomplished for a common driving scenario. We broke our research 

down further into three research questions. 1) Identifying which CNN architecture is best for 

learning and predicting steering angles based on image and speed inputs. 2) Identifying if a 

variable sampling rate has any effect on the computation expense of the model without sacrificing 

the error. Finally, 3) Can a model, trained on a left-hand driving dataset be transferred for 

predicting steering angles from right-hand driving data.  
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 We created a simulated environment using CARLA, and loaded our scenario, custom made 

using RoadRunner. We collected over 50 minutes of left-hand side driving data, across multiple 

weathers and time of days using an RGB camera. We then sampled it at 10 FPS to provide images 

and speed information. The image data was then input into our CNN architecture for 

experimentation. From our results, we identified that a 7-layer CNN architecture satisfies the first 

research question. This architecture achieved an MSE of 0.0278, which is significantly lower 

than other architectures. When visualising the trainable filters and feature maps, we can see that 

the model is capable of learning the required features. These features may include, road markings, 

road signs, railings, edges, etc. From a human perspective, these features are arguable very 

important for the task of driving.  

 Our second research question, unfortunately, did not yield fruitful results. We could not see 

any significant decrease in computational expense given the significant increase in our MSE, 

0.078. Experimenting for this question reintroduced the data imbalance problem we faced 

initially. This problem is considered to be one of the main reasons why the model did not perform 

as expected. Following this, our results indicate that simulating polder blindness, in our model, 

is not something that can be implemented. Although it is crucial to carry out more work on this 

topic in the future and address the limitations presented.  

 Our third research question is considered a success as we saw a lower MSE and faster 

convergence time. Specifically, we achieved an MSE of 0.00080 in 20 epochs on a right-hand 

drive dataset. Visualisations from the 4th layer of our first model can provide evidence on why 

both the models were compatible. The layers transferred from our initial model contained the 

generalised features from the training images. This maybe one of the reasons why the model 

learnt quicker as it did not have to train those layers. Apart from that, both the source task and 

the target task lie in the domain of autonomous driving. They are only slightly different but not 

enough to cause any issues with the learning process. Given our results, we can say that it is 

possible to use a model trained on a left-hand drive dataset with a right-hand drive dataset, for 

our scenario. The model will learn to generalise in significantly less time for our scenario.  
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 Given our results, we can confidently say that for our scenario deep learning and transfer 

learning can be used for the task of steering angle prediction. As mentioned earlier, there exist 

many limitations with this research that can be addressed in future work. Apart from that, there 

are a few avenues this research can go towards to explore newer areas in more detail.  

 

6.2 Future Work 

One of the initial limitations of our research is the fact that we have used a simulated environment 

for our data collection and experiments. Although there exist some publicly available simulated 

datasets, due to the constraints identified earlier, and the scope of our research, they were not 

used. As CARLA is quite easy to use and offers a wide range of tools to manipulate the 

environment as one see fit, it seems ideal for future experiments too. In the future, a more 

extensive scenario, including all urban, sub-urban and rural driving environments should be 

created. This will allow us to collect more data and create a generalised dataset that covers most 

scenarios. Another reason for sticking with a simulated environment is to add any edge cases to 

the training process of the model. Edge cases are extremely difficult to find in real-world datasets 

due to their potentially dangerous nature to collect. Simulated environments can be used to 

simulate them in many different scenarios. This can then be used to train our model to a larger 

steering prediction task and create a more generalised model. 

 Once trained, this model can then be transferred to a right-hand driving scenario which too 

includes a more generalised dataset. The right-hand side data will also include regional road 

signs, road markings etc. to ensure the most accurate results. We can confirm if a large network, 

created in this research, can handle a larger and more sophisticated dataset, or does it need to be 

adjusted in some significant way. A limitation of this approach maybe that a model trained on 

simulated data may not work as well on a real-world test case. Although this itself can be explored 

deeply as computer graphics are arriving at the point at which renders are very close to reality.  

 Another limitation of our approach is that we do not provide any speed information to our 

model. Our model takes in 2 inputs, images and speed, yet a 2D image may not contain enough 
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data to allow the model to learn speed from them. To address this, we could look at 3D 

convolutions, or possibly a recurrent approach. In a 3D convolutional approach, our model would 

take as input a 3D representation of our images. We could also batch n number of sequentially 

related images together and provide those as input too. This would give the model some 

information on ‘depth’ and thus speed over time. We could also use Recurrent Neural Networks 

(RNNs) as they perform well in a time-series based problem. RNNs can learn to predict an output 

based on previous inputs in a sequence. These can be used to also learn from a speed-based input 

as well. Paired with a feature extractor, i.e. a CNN, could provide some great results for steering 

angle prediction.  

 Apart from using just a speed input, apart from our image input, we can look at other sensor 

input types. There exist many sensors that can help us create a generalised model, i.e. LiDAR, 

event cameras, GPS etc. Looking at how the implementation of these can have positive effects 

on our MSE may be ideal. Some of these sensors have already been used by other researchers in 

our literature for the task of steering angle predict. But as humans rely on multiple senses, 

autonomous driving should be approached with the same idea.  

 As 2D image lack depth, or a method to measure depth, applying a stereo camera approach 

can be considered too. In this approach, multiple RGB cameras will be used, which can help us 

measure how far objects are from our vehicle. They can also allow us to get a broader field of 

view allowing more information as input. This can help the model learn various features, such as 

sharpness of bend, distance, etc. Some sensors can also be utilised, i.e. LiDAR, which specialises 

in depth sensing. The issue with such sensors is the real-world applications and the fact that they 

only serve the purpose of measuring depth. These inputs can then be fed into a CNN network as 

well for steering angle prediction.  

 In our variable sampling approach, in our attempt to simulate polder blindness, we 

hardcoded some rules. Of course, in such a process there is no learning involved, which we found 

to be quite limiting. To expand the scope, we can look at using a machine learning approach to 

simulate polder blindness. A model can be created which compares the current input to the 
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previous input for similarity. Siamese networks are capable of carrying out the task of comparing 

two images and showing the ‘distance’ between them. Based on a certain threshold and given the 

steering angle hasn’t changed from 0 degrees for some period, the image may or may not be fed 

into the model for processing. As mentioned earlier, this method was out of scope for our current 

research, but it provides a way to look at polder blindness in depth. Some limitations of this 

approach may be the cost associated with it. As now there will be 2 models created, for comparing 

images and for predicting steering angles, it could become inefficient. Although this can be 

solved by using better hardware or better software development practises.  

 Our transfer learning approach currently uses our model to test if a left-hand drive model 

can be used in a right-hand drive scenario. As mentioned before, our model is trained using 

simulated data. One could expand this study further by experimenting with transferring a model 

trained on simulated data, to a real-world scenario. This direction can open up avenues for 

understanding the limitations of training on simulated data. In terms of compatibility, these both 

have a similar domain, steering angle prediction, and a similar target task. This shows that, 

theoretically, it is possible for transfer learning to be successful as both tasks are close on the task 

similarity tree. If successful, simulated data can accomplish more than a real-world dataset. We 

can look at training the model for edge cases not found in real-world data. We can also manipulate 

the environment for many different scenarios to generalise the model further. 

 Our current limitation is that we only trained on one scenario. If research is done to create a 

model that has trained on more scenarios or learn navigating a general map through CARLA, it 

can also be transferred. Research into the sensor types and number of sensors will also benefit 

for transfer learning. We could also look at using established networks, such as ResNets, to work 

as feature extractors and attach our own steering angle predictor. This would be beneficial as 

these networks have proven to be excellent at image recognition on the ImageNet dataset and 

may work well here too. Although this does bring in the question of the similarity and 

compatibility between the source and target task.   
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