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AbstracC The paper introduces a novel connectionist 
approach to neural network modelling that integrates 
dynamic gene networks within neurons with a neural network 
model. Interaction of genes in neurons affects the dynamics of 
the whole neural network. Through tuning the gene 
interaction network and the initial gendprotein expression 
values, different states of the neural network operation can be 
achieved. A generic computational neurogenetic model is 
introduced that implements this approach. It is illustrated by 
means of a simple neurogenetic model of a spiking neural 
network (SNN). Functioning of the SNN can he evaluated for 
instance by the field potentials, thus making it possible to 
attempt modelling the role of genes in dilferent brain states 
such as epilepsy, schizophrenia, and other states, where EEG 
data is available to test the model predictions. 

I. INTRODUCTION 

The genes, encoded in the DNA, that are transcribed into 
RNA, and then translated into proteins in each cell, contain 
important information related to the brain activity. A 
specific gene from the genome relates to the activity of a 
neuronal cell in terms of a specific function. But the 
functioning of the brain is much more complex than that. 
The interaction between the genes is what defines the 
functioning of a neuron. Even in the presence of a mutated 
gene in the genome that is known to cause a brain disease, 
the neurons can still function normally provided a certain 
pattern of interaction between the genes is maintained [I]. 
On the other hand, if there is no mutated gene in the 
genome, certain abnormalities in the brain functioning can 
be observed as defined by a certain state of the interaction 
between the genes 121. The above cited and many other 
observations point to the significance of modelling a 
neuron and a neuronal ensemble at the gene level in order 
to predict the state of the ensemble. The process of 
modelling the gene interaction for the purpose of brain 
understanding is a significant challenge to scientists. 
In [3] methods for evolving connectionist systems are 
presented where the neural network structure and 
functionality evolve over time from incoming data, 
depending on the values of single “gene” parameters. In 
141 neural networks are related not to single genes but to 

gene networks (GN). In [5] a gene interaction network is 
used in a neural development model of Drosophila. 

This paper further develops the evolving connectionist 
system theory. Some main principles of computational 
neurogenetic modelling are presented in [6, 71. Here we 
introduce a generic computational neurogenetic model that 
is illustrated by means of a simple neurogenetic model of a 
spiking neural network. Results of preliminary simulations 
are presented. 

11. GENE NETWORKS IN REAL CELLS (NEURONS) 

In a single cell, the DNA, RNA and protein molecules 
interact continuously during the process of the RNA 
transcription from DNA (genotype), and the subsequent 
RNA to protein (phenotype) translation (8, 91. A single 
gene interacts with many other genes in this process, 
inhibiting, directly or indirectly, the expression of some of 
them, and promoting others at the same time. This 
interaction can be represented as a gene regulatory network 
(GRN). GRN dynamically evolve and change their 
structure based on DNA and environmental information. 
Modelling GRN is an extremely difficult task that requires 
a large amount of data and sophisticated information 
methods. A large amount of data on gene interactions for 
specific genomes, as well as on partial models, is available 
from public domain databases such as NCBI, KEGG. 
Stanford Microarray Database, and many more. Collecting 
both static and time course gene expression data from up to 
30,000 genes is now a common practice in many 
biological, medical and pharmaceutical laboratories in the 
world through the introduction of microamay technologies 
(see for example http://www.ebi.ac.ukmicroarray). 

In the gene network (GN), the activation of each gene is 
a complex function of the activation of other genes in the 
cell. The GN actually used in our simulations is illustrated 
in figure I. Activations of all gene nodes in a GN at a time 
moment represent the gene state of the GN. Depending on 
the initial state of a GN the time development of the GN 
may follow a different trajectory in the state space as it is 
illustrated in figure 2. 
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a represents that when a the gene GN, is wy upregulated E ( - I ,  1) (see (i.e., figure g,(f)>O) I). more We assume protein 
defined by this gene will be produced in the neuron, and 

gn - 87 86 - gS vice versa, i.e. when the gene is downregulated (i.e.. 
g,(t)<O) less protein coded by this gene will be produced. 

Neuronal functions (neuron's parameters) P = (PI, 
p2,.,.,pm) from a neural network model are "Iated 
panicular proteins, so that each parameter Pi is a function 
of the expression of several (or in partial case - one) genes. 
For simplicity in our model we will assume that one 
parameter Pi depends only on one gene such that: 

.._ ..._ -.. ~ . . ~  .. _.- \ /  
\ 

Fig. 1. Optimised gene network (GH) of genes from Table 1. Solid 
(dashed) line means the interactibn strength >D (<o), respective~y. only 
connections with 0.6 E I w,, 12 0.25 art- illusuated. all other connections 
are weaker. 

P,(t +&) = Pj(o)g;  ( I  t Af) (2) ---- 
where g;(f+dt)e [0, m) is a relative change in the protein 
concentration against its initial concentration at time 0, 
based on the change in its gene expression level. It is 
calculated as 

T 

chosen (for example: in one of them some gene(r) may be mutated; or 
different conditions may apply - e.g. treatment or no treatment of a 
disease). 

The brain consists of many interrelated neural 
networks (NN). Each of them is a tremendously complex 
adaptive information system characterised by learning, 
generalisation and development. Every neuron contains the 
whole genome of the organism and therefore its functions 
are defined by both the environment it learns from and by 
the GN that is activated in this neuron. Adaptation of the 
GN now takes place along with the adaptation process of 
the NN that makes the modelling of real NNs complex. 

A generic computational neurogenetic model that has a 
GN within a NN is presented in the next section. 

111. A GENERIC COMPUTATIONAL NEUROGENETIC (CNG) 
MODEL 

In general, we consider two sets of essential genes - a 
set G,. that defines generic neuronal functions (e.g., 
general cell life functions) and a set G,,, that defines 
specific neuronal functions (e.g. receptors, ion channels, 
etc.). The two sets form together a set C=( G,, G2 ,..., G"). 
We do not know the absolute values of gene expression 
levels therefore we work with the relative changes in their 
expression. A change in expression level of each gene 
gj(t+Af)e(-,  m) is a function of the changes in gene 
expression levels of the rest of the genes in G(t). As the 
first simple model, we will assume this function to be a 
linear function, i.e.: 

is determined by equation ( I ) .  

- I O  .5 0 5 I O  
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Fig. 3. An example of a nonlinear function 10 obtain relative changes in 
parameters values (equation (3)) according 10 the cumem changes in gene 
expression levels g(1). 

This generic CNG model can be run step by step over time 
in the following way: 

Define the initial changes in expression values of 
the genes in the neuron, g( t  = 0). and the matrix 
W of the GN if that is possible. Set the initial 
values of SNN parameters, P(t = 0). 

2 )  Update the GN and define the next state of the 
gene vector g(t+At) using equation ( I ) .  

3) Derive the values of the parameters P from the 
gene state g(r+Ar) using equation (2) .  

4) Evaluate the spiking activity of neuron(s) (taking 
into account all external inputs to the neural 
network). 

5) Go to step 2. 

1) 
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We are making several simplifying assumptions: 
I .  

2. 

3. 

4. 

Each neuron has the same GN - in terms of same 
genes and same network matrix W. 
Each GN starts from the same initial value of the 
gene expressions. 
Each individual GN is synchronized with others, 
i.e. At is equal for all genes and for all GNs. 
There is no feedback from neuronal activity to 
gene expression level. 

Later in our research, these simplifying assumptions can be 
relaxed. 

A. Determination of the GN transition matrix W 

The biggest challenge of our approach and the key to the 
predictions of our model is the construction of the GN 
transition matrix W, which determines the dynamics of GN 
and consequently the dynamics of the NN. There are 
several ways to obtain W: 
( I )  Ideally, the values of gene interaction coefficients wv 
are obtained from real measurements through reverse 
engineering performed on the microarray data [IO]. At 
present, there are very limited experimental data available 
for the brain. 
( 2 )  The values of W elements are iteratively optimised 
from initial random values, for instance with the use of 
genetic algorithms, to obtain the desired behaviour of the 
NN. The desired behaviour of the NN can simulate certain 
brain states like epilepsy, schizophrenic hypofrontality, 
learning and memory disorders (after incorporation of 
synaptic learning [ I  I]), etc. This behaviour would be used 
a5 a “fitness criterion” in the genetic algorithm to stop the 
search process for an optimal interaction matrix W. 
(3) The matrix W is constructed heuristically based on 
some assumptions and insights into what result we want to 
obtain and why. For instance, we can use the theory of 
discrete dynamic systems to obtain a dynamic system with 
the fixed point attractor(s), limit cycle attractors or strange 
attractors [12]. 
(4) The matrix W is constructed from known facts and 
literature on gene-protein interaction. 
(5) The matrix W is constructed with the use of a mix of 
the above methods. 

B. 
behaviour 

Model defined GN corresponding to the desired N N  

The above generic model allows us to investigate and 
discover relationships between different GNs and NN 
states. A procedure to obtain this relationship can read 
I .  For an initial GN state, generate a GN matrix W, 
2. For the matrix W run the NN model over a period of 

time T and record the activation of the neurons in the 
NN; 

3. 

4. 

5 .  

6. 

Evaluate characteristics of the NN behaviour (e.g. total 
activation, spectral characteristics, etc); 
Compare the NN characteristics lo the characteristics 
of the desired NN state (e.g. epilepsy); 
Repeat steps ( I )  to (4) until a desired GN and NN 
model behaviour is obtained; 
Analyse the GN and the NN parameters for significant 
gene patteme that cause the NN model behaviour. 

The generic model above is illustrated in the next sections 
on a simple CNG model of a spiking neural network (SNN) 
with an optimised GN. 

IV. A CNG MODEL OF A SPIKING NEURAL NETWORK 
(SNN) - MODEL DESCRIPTION 

We design a small network of spiking neurons, N = 120. 
Inside of each neuron a small gene network (GN) affects 
the values of neuron parameters in a dynamic fashion 
(figure 4). Each neuron parameter is in reality linked to a 
particular protein (receptor, ion channel, enzyme, etc.) the 
concentration of which is determined by the expression 
level of the corresponding gene(s). 

Fig. 4. Neurons of the model neural network have a gene network 
operating within Ulem thal affecb the values of their parameten in a 
dynamic fashion. 

Our neuron spiking model is derived from the spike 
response model (SRM) [13]. The total somatic 
postsynaptic potential (PSP) of a neuron i is u;(t). When 
ui(t) reaches the firing threshold @(t), neuron i fires, i.e. 
emits a spike (see figure 5). The moment of O,(t) crossing 
defines the firing time ti of an output spike. The value of 
u,(t) is the weighted sum of all synaptic PSPs, 
~ ~ ( t - t ,  -A;), such that: 

u,(r)= C C ~ ~ c ~ ~ ( t - t ~ - $ )  (4) 
* V , S F ,  

The weight of synaptic connection from neuron j to neuron 
i is denoted by .Iw It takes positive (negative) values for 
excitatory (inhibitory) connections, respectively. 4 is an 
axonal delay between neurons i and j ,  which linearly 
increases with Euclidean distance between neurons. The 
positive kernel expressing an individual postsynaptic 
potential (PSP) evoked on neuron i when a presynaptic 
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neuron j from the pool 
exponential form, i.e. 

fires at time 5 has a double 

SNN PARAMETER 

where ~ ~ e ~ ~ ~ s e  are time constants of the fall and rise of an 
individual PSP, respectively, A is the PSPs amplitude, and 
synapse denotes one of the following: fast-excitation, 
fast-inhibition, slow-excitation, and slow-inhibition. 
These types of PSPs are based on neurobiological data 
.[141. Immediately after firing the output spike at t i ,  
neuron's tiring threshold z9(t) increases k-times and then 
retums to its resting value & in an exponential fashion: 

( r  - r i )  = k x iu, ex - + (6) p( :::;I 
where is the time constant of the threshold decay. In 
such a way, absolute and relative refractory periods are 
modelled. External inputs from the input layer are added to 
the right hand side of (4) at each time step. Each external 
input has its own weight j;s-j"wr and E, Inn.ma, -~-n  ( r ) ,  i.e. ' 

We employed a random input with the average tiring 
frequency of 15 Hz. 

( , )  = tyv",  cfnn.u~~~ollon ( 1 )  (7) 

VALUE 

Fig. 5 .  Spiking neuron model. When the state variable ulr) of a spiking 
neuron reaches the firing threshold LX:) at time 1,. the neuron fires an 
output spike. Cumnt tiring threshold rises after each output spike and 
decays back to the initial value. 
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Fig. 6. SNN architecture. Filled circles denote inhibitory n e w "  

Figure 6 illustrates the architecture of our spiking neural 
network (SNN). Spiking neurons within the network can bc 
either .excitatory or inhibitory. There can be as many as 
about IC-20% of inhibitory neurons positioned randomly 
on the rectangular grid of N neurons. Lateral connections 
between neumns have weights that decrease in value with 
distance fmm neuron i according to a Gaussian formula 
while the connections between neurons themselves can be 
established at random. There are one-to-many feed-forward 
connections from the input layer decreasing in strength 
according to the Gaussian distribution. Table I and I1 
contain the values of neuron's and SNN parameters, 
respectively, that were used in our preliminary simulations. 

TABLE I 
N E ~ o N ' s  P A E A M ~ % S  

TABLE II 
SSNP*RAmI(S 

Table I also contains relations between neural parameters 
and hypothetical genes in our GN. For instance, amplitudes 
of PSPs would be related to the concentration of receptor- 
gated ion channels in the postsynaptic membrane. The time 
constants of PSPs would be related to the properties of 
individual receptor-gated ion channels. Concentrations and 
properties of proteins are determined by coding genes. 

W e  keep record of spiking activities of all neurons 
individually and in total, as well as the record of the field 
potential that is in the brain proportional to EEG [151. 
Activity changes will be related to the evolution of gene 
expression in neurons. For demonstration of the behaviour 
of our model we use the average of all instantaneous 
membrane potentials, thus obtaining the network field 
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potential @(I)= (UN) Z u,{t). For its analysis we use the 
fast Fourier method [16]. 

v. SOME PRELIMINARY EXFEIUMENTAL RESULTS 

Figure 7 illustrates the field potential of our SNN model 
and its spectral characteristics for an optimised GN matrix. 
W has been optimised to yield the spectral characteristics 
of as similar as possible to the spectral characteristics of 
normal state EEG [17]. We generated the coefficients of 
W, wv E (-I, I ) ,  such that the modulus of the maximal 
(complex) eigenvalue was equal to 1. That means the stable 
oscillatory behaviour in the Lyapunov sense of the 
corresponding linear gene dynamic system (see figure Sc). 
The initial values of parameters are listed in Tables I and 
11. Parameter changes were applied after each 1000 ms of 
SNN simulation according to the equation (2). 

Fig. 7. Time evolution of the field potential of the SNN with dynamic 
parameter values. (a) Field potential. (b) Spectral characterisation 
Sampling rate = ]WO Hz, MiniMax frequency = 0. I I 5 0  Hz. respectively 
The dominant frequency band is delta (0.1-3.5 Hr). Fig. 8. (a, b) Different initial values of parametee can lead to mfally 

different behaviour of SNN. (c) Corresponding relative changes in gene 
expression levels for a single optimised interaction matrix W, the same as 
in  figure 1. Zero means no change in the expression level. 
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Then we kept the same W optimised for the normal state 
EEG and experimented with different initial values of 
parameters Pj(0) in equation (2). Figure 8 illustrates the 
field potential Q of the SNN with initial conditions 
simulating the temporal lobe epilepsy (TLE) with tonic- 
clonic (TC) seizures [IS]. Namely, the slow inhibition was 

- 0 and the fast inhibition 
was enhanced by putting A'"'-'"~'"'"" - -10. In figure 8a,b 
we can see that the behaviour of the network has 
completely changed. Now, the neural dynamics leads to 
transient global synchronizations with frequency 
characteristics very similar to the EEG of TC seizures for 
which the dominant frequency is beta 2 (18-30 Hz) and the 
EEG amplitude rises to hundreds of pV [ 171. It is worth to 
mention that with the fixed values of parameters, it is not 
possible to obtain transitions from the normal state to the 
prolonged periods of global synchronizations and back as 
seen in figure Sa. It seems that the internal dynamics of 
genes linked to neural parameters is needed to account for 
observed transitions in neural network states. Analysis of 
which genes and which parameters are crucial for these 
state transitions can bring new insights into the 
etiopathogenesis and treatment of the disease. 

disabled by putting ~ s ! u w . r ~ d ~ ~ b ~ r ~ m ~  - 

Iv. DISCUSSION 

In real neural networks neurons' parameters that define 
the functioning of a neural network depend on genes and 
proteins in a complex way. Gene and protein expression 
values may also change due to intemal dynamics of the 
gene regulatory (interaction) network, initial conditions of 
the genes and extemal conditions. All this may affect 
gradually or quickly the functioning of the neural network 
as a whole. It is observed for example that different in i t ia l  
gene conditions can lead to the same outcome in terms of 
neuronal activity. On the other hand, in the diseased brain, 
either altered initial conditions, mutated genes and/or 
altered interactions within GN lead to abnormalities in 
network activity. Realistic models of gene networks within 
neural networks should account for these processes. 

In order to investigate these phenomena, we have set up 
a novel model of a SNN that is simple and biologically 
plausible. It uses principles from the simple spiking neuron 
models [13]. More detailed models of SNN include for 
instance detailed ion receptor and channel kinetics [14] 
and also multiple neuron compartments [191. It may prove 
necessary to include also subcortical areas in our CNG 
model [14]. Further investigation of our model will be 
performed along with more experiments on real data for 
model verification before the model is used to explain and 
predict epileptic, schizophrenic or other neural data. 
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