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Abstract— The paper introduces a novel connectionist
approach to neural network modelling that integrates
dynamic gene networks within neurons with a neural network
model. Interaction of genes in neurons affects the dynamics of
the whole neural network. Through tuning the gene
interaction network and the initial gene/protein expression
values, different states of the neural network operation can be
achieved. A generic computational neurogenetic model is
introduced that implements this approach. It is illustrated by
means of a simple neurogenetic model of a spiking neural
network (SNN). Functioning of the SNN can be evaluated for
instance by the field potentials, thus making it possible to
attempt modelling the role of genes in different brain states
such as epilepsy, schizophrenia, and other states, where EEG
data is available to test the model predictions.

1. INTRODUCTION

The genes, encoded in the DNA, that are transcribed into
RNA, and then translated into proteins in each cell, contain
important information related to the brain activity. A
specific gene from the genome relates to the activity of a
neuronal cell in terms of a specific function. But the
functioning of the brain is much more complex than that.
The interaction between the genes is what defines the
functioning of a neuron. Even in the presence of a mutated
gene in the genome that is known to cause a brain disease,
the neurons can still function normally provided a certain
pattern of interaction between the genes is maintained [1].
On the other hand, if therc is no mutated gene in the
genome, certain abnormalities in the brain functioning can
be observed as defined by a certain state of the interaction
between the genes [2]. The above cited and many other
observations point to the significance of modelling a
neuron and a neuronal ensemble at the gene level in order
to predict the state of the ensemble. The process of
modelling the gene interaction for the purpose of brain
understanding is a significant challenge to scientists.
In [3] methods for evolving connectionist systems are
presented where the neurai network structure and
functionality evolve over time from incoming data,
depending on the values of single “gene” parameters. In
{4] neural networks are related not to single genes but to
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gene networks (GN). In [5] a gene interaction network is
used in a neural development model of Drosophila.

This paper further develops the evolving connectionist
system theory. Some main principles of computational
neurogenetic modelling are presented in [6, 7]. Here we
introduce a generic computational neurogenetic modei that
is illustrated by means of a simple neurogenetic model of a
spiking neural network. Results of preliminary simulations
are presented.

II. GENE NETWORKS IN REAL CELLS (NELJRONS)

In a single cell, the DNA, RNA and protein molecules
interact continuously during the process of the RNA
transcription from DNA (genotype), and the subsequent
RNA to protein {phenotype) translation {8, 2]. A single
gene interacts with many other genes in this process,
inhibiting, directly or indirectly, the expression of some of
them, and promoting others at the same time. This
interaction can be represented as a gene regulatory network
(GRN). GRN dynamically evolve and change their
structure based on DNA and environmental information.
Modetling GRN is an extremely difficult task that requires
a large amount of data and sophisticated information
methods. A large amount of data on gene interactions for
specific genomes, as well as on partial models, is available
from public domain databases such as NCBI, KEGG,
Stanford Microarray Database, and many more. Collecting
both static and time course gene expression data from up to
30,000 genes is now a common practice in many
biological, medical and pharmaceutical laboratories in the
world through the introduction of microarray technologies
(see for example http://www.¢bi.ac.uk/microarray).

In the gene network (GN), the activation of each gene is
a complex function of the activation of other genes in the
cell. The GN actually used in our simulations is illustrated
in figure 1. Activations of all gene nodes in a GN at a time
moment represent the gene state of the GN. Depending on
the initial state of a GN the time development of the GN
may follow a different trajectory in the state space as it is
illustrated in figure 2.
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Fig. 1. Optimised gene network (GN) of genes from Table I. Solid
(dashed) line means the interactidon strength >0 (<0), respectively. Only
connections with 0.6 2]w,-J I2 025 are illustrated, all other connections
are weaker.

Fig.2. In a hypothetical state space two Irajectories represent the
consecuiive states of a GN when two different initial gene states were
chosen (for example: in one of them some gene(s) may be mutated; or
different conditions may apply - e.g. treaunent or no treatment of a
disease).

The brain consists of many interrelated neural
networks (NN). Each of them is a tremendously complex
adaptive information system characterised by learning,
generalisation and development. Every neuron contains the
whole genome of the organism and therefore its functions
are defined by both the environment it learns from and by
the GN that is activated in this neuron. Adaptation of the
GN now takes place along with the adaptation process of
the NN that makes the modelling of real NNs complex.

A generic computational neurogenetic model that has a
GN within a NN is presented in the next section.

III. A GENERIC COMPUTATIONAL NEUROGENETIC (CNG)
MODEL

In general, we consider two sets of essential genes — a
set Gy, that defines generic neuronal functions (e.g.,
general cell life functions) and a set Gy that defines
specific neuronal functions (e.g. receptors, ion channels,
etc.). The two sets form together a set G={ G}, G,,..., G,}.
We do not know the absolute values of gene expression
levels therefore we work with the relative changes in their
expression. A change in expression level of each gene
glt+die(—e=, o) is a function of the changes in gene
expression levels of the rest of the genes in G(t). As the
first simple model, we will assume this function to be a
linear function, i.e.;

g+ A=Y w8, () M

k=1
The square matrix of gene connection weights W
represents the GN, wy € (=1, 1) (see figure 1). We assume
that when a gene is upregulated (i.e., g{1)>0) more protein
defined by this gene will be produced in the neuron, and
vice versa, i.e. when the gene is downregulated (ie.,

g{(1y<0) less protein ceded by this gene will be produced.
Neuronal functions (neuron’s parameters) P = {Py,
Ps,....P,) from a neural network model are related to
particular proteins, so that each parameter P; is a function
of the expression of several (or in partial case ~ one) genes.
For simplicity in our model we will assume that one
parameter P; depends only on one gene such that:
P (t+A1)=P,(0)g’(r +Ar) (2)
where g’ (t+A)e[0, «) is a relative change in the protein
concentration against its initial concentration at time 0,
based on the change in its gene expression level. 1t is

calculated as

8,0 =s{g) (3)
where 5 is a squashing function (see e.g. figure 3) and g(#)
is determined by equation (1).
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Fig. 3. An example of a nonlinear function to obtain relative changes in
parameters values (equation (3)) according to the current changes in gene
expression levels g(t).

This generic CNG model can be run step by step over time
in the following way:

1) Define the initial changes in expression values of
the genes in the neuron, g(r = ), and the matrix
W of the GN if that is possible. Set the initial
values of SNN parameters, P(z = 0).

2) Update the GN and define the next state of the
gene vector g(#++Ar) using equation (1),

3) Derive the values of the parameters P from the
gene state g(++Ar) using equation (2).

4) Evaluate the spiking activity of neuron(s) (taking
into account all external inputs to the neural
network).

5) Gotostep 2.
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We are making several simplifying assumptions:
1. Each neuron has the same GN - in terms of same
genes and same network matrix W.
2. [Each GN starts from the same initial value of the
gene expressions.
3. Each individual GN is synchronized with others,
i.e. At is equal for all genes and for all GNs.
4. There is no feedback from neuronal activity to
gene expression level.
Later in our research, these simplifying assumptions can be
relaxed.

A. Determination of the GN transition matrix W

The biggest challenge of our approach and the key to the
predictions of our model is the construction of the GN
transition matrix W, which determines the dynamics of GN
and consequently the dynamics of the NN. There are
several ways to obtain W;

(1) Ideally, the values of gene interaction coefficients wy
are obtained from real measurements through reverse
engineering performed on the microarray data [10]. At
present, there are very limited experimental data available
for the brain.

(2) The values of W elements are iteratively optimised
from initial random values, for instance with the use of
genetic algorithms, to obtain the desired behaviour of the
NN. The desired behavicur of the NN can simulate certain
brain states like epilepsy, schizophrenic hypofrontality,
learning and memory disorders (after incorporation of
synaptic learning [11]}, etc. This behaviour would be used
as a “fitness criterion” in the genetic algorithm to stop the
search process for an optimal interaction matrix W.

(3) The matrix W is constructed heuristically based on
some assumptions and insights into what result we want to
obtain and why. For instance, we can use the theory of
discrete dynamic systems to obtain a dynamic system with
the fixed point attractor(s), limit cycle attractors or strange
attractors [12].

(4} The matrix W is construcied from known facts and
literature on gene-protein interaction.

(5) The matrix W is constructed with the use of a mix of
the above methods.

B. Model defined GN corresponding to the desired NN
behaviour

The above generic model allows us to investigate and
discover relationships between different GNs and NN
states. A procedure to obtain this relationship can read:

1. For an initial GN state, generate a GN matrix W;
2. For the matrix W run the NN model over a period of
time T and record the activation of the neurons in the

NN,

3. Evaluaie characteristics of the NN behaviour (e.g. total
activation, spectral characteristics, etc);

4, Compare the NN characteristics to the characteristics
of the desired NN state (e.g. epilepsy);

5. Repeat steps (1} to (4) until a desired GN and NN
model behaviour is obtained;

6. Analyse the GN and the NN parameters for significant
gene patterns that cause the NN model behaviour.

The generic model above is illustrated in the next sections
on a simple CNG model of a spiking neural network (SNN)
with an optimised GN.

IV. A CNG MODEL OF A SPIKING NEURAL NETWORK
(SNN) — MODEL DESCRIPTION

We design a small network of spiking neurons, N = 120,
Inside of each neuron a small gene network (GN) affects
the values of neuron parameters in a dynamic fashion
(figure 4). Each neuron parameter is in reality linked to a
particular protein {receptor, ion channel, enzyme, eic.) the
concentration of which is determined by the expression
level of the corresponding gene(s).

Fig. 4. Neurons of the model neural network have a gene network
operating within them that affects the values of their parameters in a
dynarnic fashion.

Our neuron spiking mode! is derived from the spike
response  model (SKM) [13]. The total somatic
postsynaptic potential (PSP} of a neuron i is uf{f). When
u;(f) reaches the firing threshold #(f), neuron i fires, ie.
emits a spike (see figure 5). The moment of (r) crossing
defines the firing time #; of an output spike. The value of
uff) is the weighted sum of all synaptic PSPs,
£,(t—t,— A7), such that:

GED) Zf'u‘gif'(t —t;— &)

Jelinef;

“

The weight of synaptic connection from neuron j to neuron
i is denoted by J. It takes positive (negative) values for
excitatory (inhibitory) connections, respectively. 47 is an
axonal delay between neurons i and j, which linearly
increases with Euclidean distance between neurons. The
positive kemel expressing an individual postsynaptic
potential (PSP) evoked on neuron i when a presynaptic
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neuron j from the pool [; fires at time ¢ has a double

exponential form, i.c.
I e (5)
T e

£ (5) = A"""""[ex;{w

where gy vise are time constants of the fall and rise of an
individual PSP, respectively, A is the PSP's amplitude, and
synapse denotes one of the following: fast_excitation,
fast_inhibition, slow_excitation, and slow_inhibition.
These types of PSPs are based on neurobiological data
{14].  Immediately after firing the output spike at 1,
neuron's firing threshold #(f) increases k-times and then
returns to its resting value ¢4 in an exponential fashion:

zz(t—ri)zkxdoexp(-';t‘]
7d¢mr

where T,;’my is the time constant of the threshold decay. In

such a way, absolute and relative refractory periods are

modelled. External inputs from the input layer are added to

the right hand side of (4) at each time step. Each external

input has its own weight je-iwe and gfar-ewiaion 1y €.
uien_inpw (I) =7 iexf_fnpur £ ifa.n_acnmion (I)

(6)

€))

We employed a random input with the average firing
frequency of 15 Hz.

gi (7 ~ &)
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Fig. 5. Spiking neuron model. When the state variable w{) of a spiking
neuron reaches the firing threshold #(7) at time s, the neuron fires an
output spike. Current firing threshold rises after each output spike and
decays back to the initial value. -
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Fig. 6. SNN architecture. Filled circles denote inhibitory neurons.

piking neural
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Figure 6 illustrates the architecture of our spiking neural
network {(SNN). Spiking neurons within the network can be
either excitatory or inhibitory. There can be as many as
about 10-20% of inhibitory neurons positioned randomly
on the rectangular grid of N neurons. Lateral connections
between neurons have weights that decrease in value with
distance from neuron i according to a Gaussian formula
while the connections between neurons themselves can be
established at random. There are one-to-many feed-forward
connections from the input layer decreasing in strength
according to the Gaussian distribution. Table 1 and 11
contain the values of neuron’s and SNN parameters,
respectively, that were used in our preliminary simulations.

TABLE |
NEURON'S PARAMETERS

GENE |[INEURON'S PARAMETER VALUE
Gl JAmplitude of fast excitation 4
G2  |Fast excitation rise / decay time constants (ms) 2/5
G3  lAmplitude of slow excitation 1
G4 |Slow excitation rise / decay time constants (ms)_| 20/50
G5 |Amplitude of fast inhibition |
G6  |Fast inhibition rise / decay time constants (ms) 5710

G7 _|Amptitude of slow inhibition 3

G8 |Slow inhibition rise / decay time constants (ms) | 507100

G9 _|Resting firing threshold 19.5
G10_|Decay time constant of the firing threshold (ms} 30

— _ |Number of times the threshold is increased & 2

TABLE II
SNN PARAMETERS

SNN PARAMETER VALUE
Number of neurons 120
Proportion of inhibitory neurons 02
Probability of external input fiber firing 0.015
Peak/sigma of external input weight 571
Peald/sigma of lateral excitatory weights 10/4
Peal/sigma of lateral inhibitory weights 40/6
Probability of connection 0.5

Table I also contains relations between neural parameters
and hypothetical genes in our GN. For instance, amplitudes
of PSPs would be related to the concentration of receptor-
gated ion channels in the postsynaptic membrane. The time
constants of PSPs would be related to the properties of
individua! receptor-gated ion channels. Concentrations and
properties of proteins are determined by coding genes.

We keep record of spiking activities of all neurons
individually and in total, as well as the record of the field
potential that is in the brain proportional to' EEG [t5].
Activity changes will be related to the evolution of gene
expression in neurons. For demonstration of the behaviour
of our model we use the average of all instantanecus
membrane potentials, thus obtaining the network field
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potential ®(t)= (1/N) I u{r). For its analysis we use the
fast Fourier method [16].

V. SOME PRELIMINARY EXPERIMENTAL RESULTS

Figure 7 illustrates the field potential of our SNN model
and its spectral characteristics for an optimised GN matrix.
W has been optimised to yield the spectral characteristics
of @ as similar as possible to the spectral characteristics of
normal state EEG [17]. We generated the coefficients of
W, w; € (-1, 1), such that the modulus of the maximal
{complex) eigenvalue was equal to 1. That means the stable
oscillatory behaviour in the Lyapunov sense of the
corresponding linear gene dynamic system (see figure 8c).
The initial values of parameters are listed in Tables I and
II. Parameter changes were applied after each 1000 ms of
SNN simulation according to the equation (2).
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Fig. 7. Time evolution of the field potential of the SNN with dynamic
parameter valves, (a) Field potential. (b) Spectral characterisation.
Sampling rate = 1000 Hz, Min/Max frequency = {.1/ 50 Hz, respectively.
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Fig. 8. (a, b) Different initial vatues of parameters can lead to totally
different behaviour of SNN. (c) Corresponding relative changes in gene
expression levels for a single optimised interaction matrix W, the same as
in figure 7. Zero means no change in the expression level.
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Then we kept the same W optimised for the normal state
EEG and experimented with different initial values of
parameters Pi(0) in equation (2). Figure 8 illustrates the
field potential © of the SNN with initial conditions
simulating the temporal lobe epilepsy (TLE) with tonic-
clonic (TC) seizures [18]. Namely, the slow inhibition was
disabled by putting A¥-"#ien — y and the fast inhibition
was enhanced by putting Af-iiitier 1. In figure 8a,b
we can see that the behaviour of the network has
completely changed. Now, the neural dynamics leads to
transient  global synchronizations with frequency
characteristics very similar to the EEG of TC seizures for
which the dominant frequency is beta 2 (18—30 Hz) and the
EEG amplitude rises to hundreds of 4V [17]. It is worth to
mention that with the fixed values of parameters, it is not
possible to obtain transitions from the normal state to the
prolonged periods of global synchronizations and back as
seen in figure 8a. It seems that the internal dynamics of
genes linked to neural parameters is needed to account for
observed transitions in neural network states. Analysis of
which genes and which parameters are crucial for these
state fransitions can bring new insights into the
etiopathogenesis and treatment of the disease.

IV. DISCUSSION

In real neural networks neurons’ parameters that define
the functioning of a neural network depend on genes and
proteins in a complex way. Gene and protein expression
values may also change due to intermal dynamics of the
gene regulatory (interaction) network, initial conditions of
the genes and external conditions. All this may affect
gradually or quickly the functioning of the neural network
as a whole. It is observed for example that different initial
gene conditions can lead to the same outcome in terms of
neuronal activity. On the other hand, in the diseased brain,
either altered initial conditions, mutated genes and/or
altered interactions within GN lead to abnormalities in
network activity. Realistic models of gene networks within
neural networks should account for these processes.

In order to investigate these phenomena, we have set up
a novel model of a SNN that is simple and biologically
plausible. It uses principles from the simple spiking neuron
models [13]. More detailed models of SNN include for
instance detailed ion receptor and channel kinetics [14]
and also multiple neuron compartments [19]. It may prove
necessary to include also subcortical areas in our CNG
mode! [14]. Further investigation of our model will be
performed along with more experiments on real data for
model verification before the model is used to explain and
predict epileptic, schizophrenic or other neural data,
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