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Abstract

In this paper, we present a highly efficient approach to price variance swaps

with discrete sampling times. We have found a closed-form exact solution for

the partial differential equation (PDE) system based on the Heston (1993)

two-factor stochastic volatility model embedded in the framework proposed

by Little and Pant (2001). In comparison with all the previous approximation

models based on the assumption of continuous sampling time, the current re-

search of working out a closed-form exact solution for variance swaps with

discrete sampling times at least serves for two major purposes: (i) to verify

the degree of validity of using a continuous-sampling-time approximation for

variance swaps of relatively short sampling period; (ii) to demonstrate that

significant errors can result from still adopting such an assumption for a vari-

ance swap with small sampling frequencies or long tenor. Other key features

of our new solution approach include: (a) with the newly found analytic solu-

tion, all the hedging ratios of a variance swap can also be analytically derived;

(b) numerical values can be very efficiently computed from the newly found

analytic formula.
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1 Introduction

In today’s financial markets, trading volatility risk increasingly becomes important

to market practitioners ranging from individuals to financial institutes and pension

funds. As illustrated by Demeterfi et al. (1999), there are at least three reasons for

trading volatility. Firstly, one may want to take a long or short position simply due

to a personal directional view of the future volatility level. Secondly, speculators may

want to trade the spread between the realized volatility and the implied volatility.

These two reasons involve direct speculation on the future trend of stock or index

volatility. Thirdly, one may need to hedge against volatility risk of his portfolios.

This is the more important reason for trading volatility since bad estimation or

inefficient hedging of volatility risk may result in financial disasters, such as the

Asian financial crisis, the crash of Barings Bank and the collapse of Long Term

Capital Management (LTCM). In practice, derivative products related to volatility

and variance have been experiencing sharp increases in trading volume recently.

Jung (2006) showed that there was still growing interest in volatility products, such

as conditional and corridor variance swaps, among hedge funds and proprietary

desks.

Effectively providing volatility exposure, volatility and variance swaps are among

the most popular trading products. There is no cost to enter these contracts as they

are essentially forward contracts. The payoff at expiry for the long position of

a volatility or variance swap is equal to the realized volatility or variance over a

pre-specified period minus a pre-set delivery price of the contract multiplied by a

notional amount of the swap in dollars per annualized volatility point. Generally,

there are two types of volatility or variance swap products (see Dupire 2005). One

is historical volatility- or variance-based products, the payoff function of which is

the realized volatility or variance discretely sampled at some pre-specified sampling

points. Most products of this type are over-the-counter (OTC) contracts. There are

some listed products of this kind as well, such as futures on realized variance. NYSE

Euronext started to offer cleared-only, on-exchange solution for variance futures in
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2006, which are in essence “exchange-listed” version of OTC variance swaps. There

are variance futures traded in CBOE as well. The second type of volatility or

variance swaps is implied-volatility based products, such as VIX futures in CBOE.

Due to the square root relationship between volatility and variance, it turns out

to be easier to price and hedge variance swaps than volatility swaps. Also, due

to such a square root relationship between the two, the price of a volatility swap

should be closely correlated to that of a variance swap anyway. Therefore, we shall

primarily focus our attention on variance swaps in this paper. In particular, we shall

concentrate on the variance swaps based on discretely-sampled realized variance.

Since the sharp increase in the trading volume of variance swaps recently, it has

drawn considerable research interests to develop appropriate valuation approaches

for variance swaps. In the literature, there have been two types of valuation ap-

proaches, numerical methods and analytical methods.

Of all the analytical methods, there are two subcategories. The most influential

ones were proposed by Carr and Madan (1998) and Demeterfi et al. (1999). They

have shown how to theoretically replicate a variance swap by a portfolio of standard

options. Without requiring to specify the function of volatility process, their mod-

els and analytical formulae are indeed very attractive. However, as pointed out by

Carr and Corso (2001), the replication strategy has a drawback that the sampling

time of a variance swap is assumed to be continuous rather than discrete; such an

assumption implies that the results obtained from a continuous model can only be

viewed as an approximation for the actual cases in financial practice, in which all

contacts are written with the realized variance being evaluated on a set of discrete

sampling points. Another drawback is that this strategy also requires options with

a continuum of exercise prices, which is not actually available in marketplace. The

second kind of analytical methods is the stochastic volatility models. Grunbichler

and Longstaff (1996) first developed a pricing model for volatility futures based on

mean-reverting squared-root volatility process. Heston (2000) derived an analytical

solution for both variance and volatility swaps based on the GARCH volatility pro-

cess. Javaheri et al. (2004) also discussed the valuation and calibration for variance
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swaps based on the GARCH(1,1) stochastic volatility model. They used the flexible

PDE approach to determine the first two moments of the realized variance in the

context of continuous as well as discrete sampling, and then obtained a closed-form

approximate solution after the so-called convexity correction was made. Howison

et al. (2004) also considered the valuation of variance swaps and volatility swaps

under a variety of diffusion and jump-diffusion models. In their work, approximate

solutions of the PDE for pricing volatility-related products are derived. Swishchuk

(2004) used an alternative probabilistic approach to value variance and volatility

swaps under the Heston (1993) stochastic volatility model. More recently, Elliott

et al. (2007) proposed a model to evaluate variance swaps and volatility swaps under

a continuous-time Markov-modulated version of the stochastic volatility with regime

switching, with both probabilistic and PDE approaches being discussed. All these

stochastic volatility models, however, are based on the assumption that the realized

variance is approximated with a continuously-sampled one, which will result in a

systematic bias for the price of a variance swap. As will be shown later, while the

approximation methods provide fairly reasonable estimates for the value of variance

swaps with high sampling frequencies, they may lead to large relative errors for

variance swaps with small sampling frequencies or long tenors.

Various numerical methods, as an alternative to analytical methods, were also

intensively developed recently. A typical article in this category belongs to Little

and Pant (2001). In their article, it is shown how to price a variance swap using the

finite-difference method in an extended Black-Scholes framework, in which the local

volatility is assumed to be a known function of time and spot price of the underly-

ing asset. By exploring a dimension reduction technique, their numerical approach

achieves high efficiency and accuracy for discretely-sampled variance swaps. Wind-

cliff et al. (2006) also explored a numerical algorithm to evaluate discretely-sampled

volatility derivatives using numerical partial-integro differential equation approach.

Under this framework, they investigated a variety of modeling assumptions includ-

ing local volatility models, jump-diffusion models and models with transaction cost

being taken into consideration. Although these two numerical methods evaluate vari-
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ance swaps based on discretely-sampled realized variance and achieve high accuracy,

the major limitation is that their models do not incorporate stochastic volatilities

that are the most commonly used to model the dynamics of equity indices. To rem-

edy this drawback, Little and Pant (2001) and Windcliff et al. (2006) pointed out,

respectively, in the conclusions of their papers that for better pricing and hedging

general variance swaps one needs to adopt an appropriate model that incorporates

the stochastic volatility characteristics observed in financial markets.

Very recently, Brodie and Jain (2008) published a paper, in which they have

presented a closed-form solution for volatility as well as variance swaps with discrete

sampling. In that paper, they have examined the effects of jumps and stochastic

volatility on the price of volatility and variance swaps by comparing calculated

prices under various models such as the Black-Scholes model, the Heston stochastic

volatility model, the Merton (1973) jump diffusion model and the Bates (1996) and

Scott (1997) stochastic volatility and jump model. However, their solution approach

is primarily based on integrating the underlying stochastic processes directly and

such an approach cannot be adopted for the payoff function we focus on in this

paper.

In this paper, we price discretely-sampled variance swaps based on the Heston

(1993) two-factor stochastic volatility model embedded in the framework proposed

by Little and Pant (2001). In this way, the nature of stochastic volatility is included

in the model and most importantly, a closed-form exact solution is worked out, even

when the sampling times are discrete. Furthermore, it is shown that our solution

degenerates to continuous sampling model when sampling frequency approaches

infinity, as expected. Our explicit pricing formula for variance swaps presented here

should be valuable in both theoretical and practical senses. Theoretically, although

there are many existing models, as mentioned above, to price variance swaps, the

closed-form exact solution for discretely-sampled variance swaps with the realized

variance defined as the sum of the percentage increment of the underlying asset price

is presented for the first time in the stochastic volatility framework. Secondly, our

discrete model can be used to verify the validity of the corresponding continuous
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models for the specific payoff discussed here and thus would fill a gap that has

been in the field of variance swaps pricing. Thirdly, the Fourier inverse transform

in our model has been analytically worked out, which is a significant step forward

in the literature of Heston model. Practically, the final form of our solution is

simple enough in a closed form and thus can be easily used by market practitioners.

Furthermore, our explicit solution shows substantial advantage, in terms of both

accuracy and efficiency, over previous numerical or approximate approaches, and

thus it can satisfy the increasing demand of trading variance swaps in financial

markets.

This paper is organized into four sections. In Section 2, a detailed description of

variance swaps is first provided, followed by our analytical formula for the variance

swaps. In Section 3, some numerical examples are given, demonstrating the correct-

ness of our solution from various aspects. Comparison with continuous sampling

models and discussion for other properties of the variance swaps are also carried

out. In Section 4, a brief summary is provided.

2 Our Model

In this section, we use the Heston (1993) stochastic volatility model to describe

the dynamics of the underlying asset. To evaluate the discretely-sampled realized

variance swaps, we employ the dimension reduction technique proposed by Little

and Pant (2001) to analytically solve the associated PDE.

2.1 The Heston Model

It is a well-known fact by now that the Black and Scholes (1973) model may fail

to reflect certain features of the reality of financial markets due to some unrealis-

tic assumptions, such as the constant volatility assumption; numerous phenomena

such as smile effect (Wilmott 1998), skewness and kurtosis effects (Voit 2005) have

been observed and reported, suggesting necessary improvements of the Black-Scholes

model.
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In the hope of remedying some apparent drawback of the Black-Scholes model,

many models have been proposed to incorporate stochastic volatility, stochastic

volatility with jump, stochastic volatility and stochastic interest rate (c.f., Stein and

Stein 1991; Heston 1993; Scott 1997; Schöbel and Zhu 1999). In order to assess

the performance of these models, Bakshi et al. (1997) systematically analyzed the

performance of incorporating stochastic volatility, jump diffusion, and stochastic

interest rate, and concluded that the most important improvement over the Black-

Scholes model was achieved by introducing stochastic volatility into option pricing

models. Once this is done, introducing jumps and stochastic interest rate leads to

only marginal improvement in option pricing. For this reason, we shall focus on the

stochastic volatility model in this paper, leaving stochastic interest rate model and

jump diffusion model for further research. Among all the stochastic volatility models

in the literature, model proposed by Heston (1993) has received the most attention

since it can give a satisfactory description of the underlying asset dynamics (Daniel

et al. 2005; Silva et al. 2004). In the Heston (1993) model, the underlying asset St is

modeled by the following diffusion process with a stochastic instantaneous variance

vt.

(2.1)





dSt = µStdt +
√

vtStdBS
t

dvt = κ(θ − vt)dt + σV

√
vtdBV

t

where µ is the expected return of the underlying asset, θ is the long-term mean

of variance, κ is a mean-reverting speed parameter of the variance, σV is the so-

called volatility of volatility. The two Wiener processes dBS
t and dBV

t describe the

random noise in asset and variance respectively. They are assumed to be correlated

with a constant correlation coefficient ρ, that is (dBS
t , dBV

t ) = ρdt. The stochastic

volatility process is the familiar squared-root process. To ensure the variance is

always positive, it is required that 2κθ ≥ σ2 (see Cox et al. 1985; Heston 1993;

Zhang and Zhu 2006).

According to the existence theorem of equivalent martingale measure, we are
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able to change the real probability measure to a risk-neutral probability measure

and describe the processes as:

(2.2)





dSt = rStdt +
√

vtStdB̃S
t

dvt = κ∗(θ∗ − vt)dt + σV

√
vtdB̃V

t

where κ∗ = κ + λ and θ∗ = κθ
κ+λ

are the risk-neutral parameters, the new parameter

λ is the premium of volatility risk (Heston 1993). As illustrated in Heston’s paper,

applying Breeden (1979)’s consumption-based model yields a volatility risk premium

of the form λ(t, St, vt) = λv for the CIR square-root process. For the rest of this

paper, our analysis will be based on the risk-neutral probability measure. The

conditional expectation at time t is denoted by EQ
t = EQ[· | Ft], where Ft is the

filtration up to time t.

2.2 Variance Swaps

Variance swaps are forward contracts on the future realized variance of the returns

of the specified underlying asset. The long position of a variance swap pays a fixed

delivery price at expiry and receives the floating amounts of annualized realized

variance, whereas the short position is just the opposite. Thus it can be easily used

for investors to gain exposure to volatility risk.

Usually, the value of a variance swap at expiry can be written as VT = (σ2
R −

Kvar) × L, where the σ2
R is the annualized realized variance over the contract life

[0, T ], Kvar is the annualized delivery price for the variance swap, and L is the

notional amount of the swap in dollars per annualized volatility point squared. The

T is the life time of the contract.

At the beginning of a contract, it is clearly specified the details of how the real-

ized variance should be calculated. Important factors contributing to the calculation

of the realized variance include the underlying asset(or assets), the observation fre-

quency of the price of the underlying asset(s), the annualization factor, the contract

lifetime, the method of calculating the variance. A typical formula for the measure
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of realized variance is

(2.3) σ2
R =

AF

N

N∑
i=1

(
Sti − Sti−1

Sti−1

)2 × 1002

where Sti is the closing price of the underlying asset at the i -th observation time

ti, and there are altogether N observations. AF is the annualized factor converting

this expression to an annualized variance. If the sampling frequency is every trading

day, then AF = 252, assuming that there are 252 trading days in one year, if every

week then AF = 52, if every month then AF = 12 and so on. We assume equally-

spaced discrete observations in this paper so that the annualized factor is of a simple

expression AF = 1
∆t

= N
T

.

In the risk-neutral world, the value of a variance swap at time t is the expected

present value of the future payoff, Vt = EQ
t [e−r(T−t)(σ2

R −Kvar)L]. This should be

zero at the beginning of the contract since there is no cost to enter into a swap.

Therefore, the fair variance delivery price can be easily defined as Kvar = EQ
0 [σ2

R],

after setting the value of Vt = 0 initially. The variance swap valuation problem is

therefore reduced to calculating the expectation value of the future realized variance

in the risk-neutral world.

2.3 Our Approach to Price Variance Swaps

In this subsection, we discuss our approach to produce an analytical solution for the

fair delivery price of a variance swap. As we shall see later, the associated PDE is

analytically solved and an explicit closed-form solution is obtained. While we focus

on calculating the expected value of realized variance σ2
R defined in (2.3) in this

paper, our approach could be easily extended to handle other definitions of realized

variances.

As illustrated in (2.3), the expected value of realized variance in the risk neutral

world is defined as:

(2.4) EQ
0 [σ2

R] = EQ
0 [

1

N∆t

N∑
i=1

(
Sti − Sti−1

Sti−1

)2]× 1002 =
1002

N∆t

N∑
i=1

EQ
0 [(

Sti − Sti−1

Sti−1

)2]
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So the problem of pricing variance swap is reduced to calculating the N expectations

in the form of:

(2.5) EQ
0 [(

Sti − Sti−1

Sti−1

)2]

for some fixed equal time period ∆t and N different tenors ti = i∆t (i = 1, · · · , N).

In the rest of this section, we will focus our main attention on calculating the

expectation of this expression. As shall be shown later, we need to consider two

cases, i = 1 and i > 1, due to the difference in the calculation procedures. In the

process of calculating of this expectation, i, unless otherwise stated, is regarded as

a constant. And hence both ti and ti−1 are regarded as known constants.

Firstly we consider the case i > 1. In this case the time ti−1 > 0 and thus Sti−1
is

also an unknown at the current time t = 0. Therefore, the payoff function depends

on two unknown variables Sti−1
and Sti which are the underlying price in the future.

This two-dimensional payoff function makes the problem extremely difficult to deal

with. We will however show that the problem could be solved by firstly introducing a

new variable It and then decomposing the original problem into two one-dimensional

problems which could be relatively easier to be solved analytically. This technique

was firstly proposed by Little and Pant (2001).

Let us first introduce a new variable It

(2.6) It =

∫ t

0

δ(ti−1 − τ)Sτdτ

where the δ(·) is the Dirac delta function. Note that It = 0 for t < ti−1 and It = Sti−1

for t ≥ ti−1.

We now consider a contingent claim Ui = Ui(St, vt, It, t) whose payoff at expiry

ti is (
Sti

Iti
− 1)2. Following the general asset valuation theory by Garman (1977), or

the standard analysis of Asian options with stochastic volatility (Fouque et al. 2000;

Wilmott 1998), we obtain the PDE for Ui (Subscripts have been omitted in the PDE
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without ambiguity).

(2.7)

∂Ui

∂t
+

1

2
vS2∂U2

i

∂S2
+ ρσV vS

∂U2
i

∂S∂v
+

1

2
σ2

V v
∂U2

i

∂v2
+ rS

∂Ui

∂S

+[κ∗(θ∗ − v)]
∂Ui

∂v
− rUi + δ(ti−1 − t)

∂Ui

∂I
= 0

The terminal condition is

(2.8) Ui(S, v, I, ti) = (
S

I
− 1)2

Howison et al. (2004) also derived a similar PDE based on their model, however,

they didn’t solve the PDE directly.

The Feynman-Kac theorem (Karatzas et al. 1991) states that the solution of the

PDE system satisfies:

(2.9) EQ
0 [(

Sti

Iti

− 1)2] = ertiUi(S0, v0, I0, 0)

Thus it is sufficient to solve the PDE (2.7) with terminal condition (2.8) to obtain

the expectation (2.5) we require. To solve this PDE system, we need to utilize the

properties of variable It and the Dirac delta function in the equation.

The property of Dirac delta function indicates that any time away from ti−1 the

PDE (2.7) could be reduced as

(2.10)

∂Ui

∂t
+

1

2
vS2∂U2

i

∂S2
+ ρσV vS

∂U2
i

∂S∂v
+

1

2
σ2

V v
∂U2

i

∂v2
+ rS

∂Ui

∂S
+ [κ∗(θ∗ − v)]

∂Ui

∂v
− rUi = 0

This means that we have managed to get rid of variable It in the equation except at

the time ti−1. However, we cannot declare that we have succeeded in getting rid of

one spatial dimension due to the presence of It in the terminal condition (2.8). To

handle the It in the terminal condition, we turn to the so-called jump condition.

As mentioned previously, It = 0, t < ti−1 and It = Sti−1
, t ≥ ti−1. The variable

It therefore experiences a jump in value across time ti−1. The no-arbitrary pricing

theory however requires the claim’s value should remain continuous. This leads to
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an additional jump condition at time ti−1 (refer to Wilmott et al. 1993 for a further

discussion of jump conditions),

(2.11) lim
t↑ti−1

Ui(S, v, I, t) = lim
t↓ti−1

Ui(S, v, I, t)

From this viewpoint, we can equivalently solve the PDE (2.10) with terminal con-

dition (2.8) and jump condition (2.11) in order to obtain the expectation we are

interested in. Furthermore, inspired by the property of variable It, we consider di-

viding the time domain [0, ti] into two parts [0, ti−1] and [ti−1, ti] since during each

of the two time sub-domains, It could be regarded as constant. Hence, it is a clever

idea to solve the PDE system by two stages, the first stage in [ti−1, ti] and the sec-

ond stage in [0, ti−1]. During each of the two stages the PDE systems have one

dimension less than the original PDE system. The obtained solution of the first

stage will provide the terminal condition for PDE system in second stage through

the jump condition (2.11). We need to remark that this is one of the key features

of this paper. Little and Pant (2001) were the first to use the dimension reduction

approach which provides many computational benefits in their instantaneous local

volatility model. In this paper, the approach is applied to the stochastic volatility

model and provides us with a closed-form solution.

Now, the PDE system (2.7) could be equivalently expressed by two PDE systems

as

(2.12)



∂Ui

∂t
+

1

2
vS2∂U2

i

∂S2
+ ρσV vS

∂U2
i

∂S∂v
+

1

2
σ2

V v
∂U2

i

∂v2
+ rS

∂Ui

∂S
+ [κ∗(θ∗ − v)]

∂Ui

∂v
− rUi = 0

Ui(S, v, I, ti) = (
S

I
− 1)2 ti−1 ≤ t ≤ ti

and

(2.13)



∂Ui

∂t
+

1

2
vS2∂U2

i

∂S2
+ ρσV vS

∂U2
i

∂S∂v
+

1

2
σ2

V v
∂U2

i

∂v2
+ rS

∂Ui

∂S
+ [κ∗(θ∗ − v)]

∂Ui

∂v
− rUi = 0

lim
t↑ti−1

Ui(S, v, I, t) = lim
t↓ti−1

Ui(S, v, I, t) 0 ≤ t ≤ ti−1

Note that It is a fixed number It = Sti−1
in the domain ti−1 ≤ t ≤ ti and It = 0

12



in 0 ≤ t < ti−1. We firstly analytically solve the PDE system (2.12) using the

generalized Fourier transform method (see Lewis 2000; Poularikas 2000).

Proposition 2.1 If the underlying asset follows the dynamic process (2.2) and a

European-style derivative written on this underlying asset has a payoff function

U(S, v, T ) = H(S) at expiry T , then the solution of the associated PDE system

of the derivative value

(2.14)



∂U

∂t
+

1

2
vS2∂U2

∂S2
+ ρσV vS

∂U2

∂S∂v
+

1

2
σ2

V v
∂U2

∂v2
+ rS

∂U

∂S
+ [κ∗(θ∗ − v)]

∂U

∂v
− rU = 0

U(S, v, T ) = H(S)

can be expressed in closed form as:

(2.15) U(x, v, t) = F−1[eC(ω,T−t)+D(ω,T−t)vF [H(ex)]]

using generalized Fourier transform method (see Lewis 2000; Poularikas 2000),

where x = ln S, j =
√−1 and ω is the Fourier transform variable, and

(2.16)





C(ω, τ) = r(ωj − 1)τ +
κ∗θ∗

σ2
V

[(a + b)τ − 2 ln(
1− gebτ

1− g
)]

D(ω, τ) =
a + b

σ2
V

1− ebτ

1− gebτ

a = κ∗ − ρσV ωj, b =
√

a2 + σ2
V (ω2 + ωj), g =

a + b

a− b

The proof of this proposition is left in Appendix A.

It should be noted that Equation (2.15) has been deliberately left in a rather

general form. This is because the payoff function H(S) hasn’t been specified yet.

In this most general form, Proposition 1 is applicable to most derivatives whose

payoffs depend on spot price S of underlying asset in the framework of the Heston

stochastic volatility. The original result of Heston (1993) is actually a special case

covered by this proposition.

However, for some payoffs, the Fourier transform in Proposition 1 has to be

interpreted as the generalized Fourier transform, which is a useful tool for pricing

derivatives. For most popularly used financial derivatives, such as vanilla call op-
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tions with H(S) = max(S −K, 0), performing the generalized Fourier transform

is straightforward. The main difficulty with this approach, however, is associated

with the Fourier inverse transform needed to be performed, if one wishes to reduce

the computational time substantially. For our specific case, H(S) = (S
I
− 1)2, the

Fourier inverse transform could be explicitly worked out and hence the solution can

be written in a much simple and elegant form.

Based on the generalized Fourier transform, we can perform the transformation

as

(2.17) F [ejαt] = 2πδα(ω)

where j =
√−1, α is any complex number and δα(ω) is the generalized delta function

satisfying

(2.18)

∫ ∞

−∞
δα(t)Φ(t)dt = Φ(α)

In our specific case PDE (2.12), H(S) = (S
I
−1)2. By setting x = ln S and noting

I a constant, we perform the generalized Fourier transform to the payoff function

H(ex) with regards to x.

(2.19) F [(
ex

I
− 1)2] = 2π[

δ−2j(ω)

I2
− 2

δ−j(ω)

I
+ δ0(ω)]

Using the Proposition 1, the solution of PDE (2.12) is given by

(2.20)

Ui(S, v, I, t) = F−1[eC(ω,ti−t)+D(ω,ti−t)v2π[
δ−2j(ω)

I2
− 2

δ−j(ω)

I
+ δ0(ω)]]

=

∫ ∞

−∞
eC(ω,ti−t)+D(ω,ti−t)v[

δ−2j(ω)

I2
− 2

δ−j(ω)

I
+ δ0(ω)]exωjdω

= 1
I2 e

C(ω,ti−t)+D(ω,ti−t)v+xωj|ω=−2j − 2
I
eC(ω,ti−t)+D(ω,ti−t)v+xωj|ω=−j

+eC(ω,ti−t)+D(ω,ti−t)v+xωj|ω=0

= e2x

I2 e
eC(ti−t)+ eD(ti−t)v − 2ex

I
+ e−r(ti−t)

where x = ln S and ti−1 ≤ t ≤ ti, and C̃(τ) and D̃(τ) are equal to C(−2j, τ),
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D(−2j, τ) respectively, and have simple forms as

(2.21)





C̃(τ) = rτ +
κ∗θ∗

σ2
V

[(ã + b̃)τ − 2 ln(
1− g̃e

ebτ

1− g̃
)]

D̃(τ) =
ã + b̃

σ2
V

(
1− e

ebτ

1− g̃eebτ
)

ã = κ∗ − 2ρσV , b̃ =
√

ã2 − 2σ2
V , g̃ = (

ã

σV

)2 − 1 + (
ã

σV

)

√
(

ã

σV

)2 − 2

Now, we have succeeded in obtaining the solution for the PDE system (2.12),

which is the first stage in calculating EQ
0 [(

Sti − Sti−1

Sti−1

)2]. It should be remarked that

we have actually solved an option pricing problem based on the Heston stochastic

volatility model. The very reason that we have explicitly worked out the Fourier

inverse transform so that our final solution (2.20) of the first stage can be written

in such a simple and closed form, whereas the Fourier inverse transform could not

be worked out by Heston (1993), is because of the very special form of the payoff

function (2.8). One may argue that Heston’s solution for a simple European call is

still in closed form, because there is only an explicit integral left to be calculated, the

same as the calculation of the cumulative distribution function required in using the

Black-Scholes formula. But, a sharp difference between the two is that the integrand

of the latter is a well-defined and smooth real function whereas the integrand of the

former (i.e., Heston’s original solution as well as the solutions presented in many

other follow-up papers based on the Heston model, such as Bakshi et al. 1997; Bates

1996; Pan 2002), is a complex-value function, as a result of the Fourier inverse

transform not being analytically performed. The main disadvantage of a solution

being left in terms of complex-valued integrals is that the numerical calculation of

these integrals has to be handled very carefully as they are multi-valued complex

functions, which may cause some problems when one needs to decide which root is

the correct one to take. There have been examples reported in the literature (e.g.,

Kahl and Jackel 2005) for the wrong numerical integration that those complex-valued

integrand may result in. In comparison with those complicated integral calculations,

the advantage of our compact solution (2.20) is obvious. Although our success in
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analytically performing Fourier inverse transform under the Heston model may be

limited for a special form of payoff function, it made us to believe that there might

be other payoff functions, with which the Fourier inverse transform can be worked

out analytically as well. This belief has not been clearly articulated in the relevant

literature before; all the papers following Heston’s work stopped at the same point

where Heston did, i.e., did not bother to analytically perform the Fourier inverse

transform at all.

To finish off the calculation of EQ
0 [(

Sti − Sti−1

Sti−1

)2], we need to move to the second

stage, i.e. solving the PDE system (2.13), after the imposition of the jump condition

(2.11). As we shall show later, the simple form of solution (2.20) has paved an easy

way of obtaining an analytical solution in the second stage.

By noting the fact that limt↓ti−1
ln St = ln I due to the definition of I, we have,

(2.22) lim
t↓ti−1

Ui(S, v, I, t) = e
eC(∆t)+ eD(∆t)v + e−r∆t − 2

For the simplicity of notation, the right hand side of above equation is denoted as

f(v), i.e.,

(2.23) f(v) = e
eC(∆t)+ eD(∆t)v + e−r∆t − 2

which is now the terminal condition for the PDE system (2.13) in the period 0 ≤
t ≤ ti−1, according to the jump condition (2.11).

It should be noticed that the terminal condition (2.23) for the PDE system (2.13)

in the period 0 ≤ t ≤ ti−1 happens to contain one independent variable, v, only.

One can thus take the advantage of this fact and solve the problem neatly with the

following proposition.

Proposition 2.2 If the underlying asset follows the dynamic process (2.2), the

derivative written on some stochastic aggregated property of this underlying asset

with payoff function depending on the vT only, i.e., U(S, v, T ) = G(vT ) at expiry T

16



will satisfy the PDE

(2.24)



∂U

∂t
+

1

2
vS2∂U2

∂S2
+ ρσV vS

∂U2

∂S∂v
+

1

2
σ2

V v
∂U2

∂v2
+ rS

∂U

∂S
+ [κ∗(θ∗ − v)]

∂U

∂v
− rU = 0

U(S, v, T ) = G(v)

The solution of this PDE can be obtained analytically in the form of

(2.25) U(S, v, t) =

∫ +∞

0

e−r(T−t)G(vT )p(vT |vt)dvT

where

p(vT |vt) = ce−W−V (
V

W
)q/2Iq(2

√
WV )

(2.26)

c =
2κ∗

σ2
V (1− e−κ∗(T−t))

, W = cvte
−κ∗(T−t), V = cvT , q =

2κ∗θ∗

σ2
V

− 1

and Iq(·) is the modified Bessel function of the first kind of order q.

The proof of Proposition 2 is trivial, as it is actually implied by the Feynman-

Kac formula, which states that the solution of PDE (2.24) can be derived from

the conditional expectation of the payoff function under the risk-neutral probability

measure. Hence, the solution can be expressed in the form of

(2.27) U(S, v, t) = EQ
t [e−r(T−t)G(vT )]

where the associated two processes St and vt follow the stochastic processes in (2.2),

respectively. The expectation is actually not related to the process S since the

payoff function is independent of S. The process vt is the well-known CIR squared-

root process (Cox et al. 1985) and the distribution is the noncentral chi-square,

χ2(2V ; 2q + 2, 2W ), with 2q + 2 degrees of freedom and parameter of non-centrality

2W proportional to the current variance, vt. Once we realized that the needed

transition probability density function p(vT |vt) has been given in Cox et al. (1985),

as shown in Equation (2.26), the proof naturally follows.
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Using the Proposition 2, we can express the solution of PDE system (2.13) as

(2.28) Ui(S, v, I, t) =

∫ ∞

0

e−r(ti−1−t)f(vti−1
)p(vti−1

|vt)dvti−1

where f(v) and p(vti−1
|vt) are given in Equation (2.23) and Equation (2.26) respec-

tively, and 0 ≤ t < ti−1. This means for each i > 1 the expectation (2.5) has been

found by solving the PDE systems (2.12) and (2.13) in two stages,

(2.29)
EQ

0 [(
Sti − Sti−1

Sti−1

)2] = ertiUi(S0, v0, I0, 0)

=

∫ ∞

0

er∆tf(vti−1
)p(vti−1

|v0)dvti−1

As Zhang and Zhu (2006) commented in their paper, the integration in the above

equation usually cannot be explicitly carried out; we had initially decided to leave

our final solution in this integral form too. However, after a careful examination

of the properties of the integrand, we realized that the elegant form of f(v), which

is the solution of the first stage, could be explored again. Utilizing the character-

istic function of noncentral chi-squared distribution (Johnson et al. 1970), we have

successfully carried out the above integral analytically and obtain a fully closed-

form solution as our final solution for the price of a variance swap with the realized

variance defined by (2.3). This has made our solution in a remarkably simple form

as

EQ
0 [(

Sti − Sti−1

Sti−1

)2] = er∆tfi(v0)(2.30)

where

(2.31)

fi(v0) =

∫ ∞

0

f(vti−1
)p(vti−1

|v0)dvti−1

= e
eC(∆t)+

cie
−κ∗ti−1

ci− eD(∆t)
eD(∆t)v0

(
ci

ci − D̃(∆t)
)

2κ∗θ∗
σ2

V + e−r∆t − 2

and ci = 2κ∗

σ2
V (1−e−κ∗ti−1 )

. To a certain extent, it is even simpler than that of the

classic Black-Scholes formula, because the latter still involves the calculation of the
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cumulative distribution function, which is an integral of a smooth real-value function,

whereas there is no need to calculate any integral at all in our final solution! The

details of analytically carrying out the integration in Equation (2.31) are left in

Appendix B.

Utilizing (2.30), the summation in (2.4) can now be carried out all the way except

for the very first period with i = 1. We need to treat the case i = 1, separately,

simply because in this case we have ti−1 = 0 and Sti−1
= S0, which is the current

underlying asset price and is a known value, instead of an unknown value of Sti−1

for any other cases with i > 1. So the expectation that needs to be calculated in

this special case is reduced to

(2.32) EQ
0 [(

Sti

S0

− 1)2]

which can be easily derived by invoking Proposition 1 directly,

(2.33) EQ
0 [(

St1

S0

− 1)2] = er∆tf(v0)

Summarizing the calculation procedure discussed above, we finally obtain the

fair strike price for the variance swap as:

(2.34) Kvar = EQ
0 [σ2

R] =
er∆t

T
[f(v0) +

N∑
i=2

fi(v0)]× 1002

where N is a finite number denoting the total sampling times of the swap contract.

This formula is obtained by solving the associated PDEs in two stages. Since we

have managed to express the solution of the associated PDEs, in both stages, in

terms of simple and elementary functions, we are able to write the fair strike price

of a variance swap with discretely-sampled realized variance defined in its payoff in

a simple and closed form.

One may wonder why not use the Feynman-Kac formula to calculate the expec-

tation of the payoff function directly instead of painfully detouring around to solve

a PDE (2.12) in Stage 1 first and then using the Feynman-Kac formula in Stage 2.
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This is actually due to the dimensionality of the payoff function (
Sti−Sti−1

Sti−1
)2, that

involves two stochastic variables, Sti and Sti−1
. To use the Feynman-Kac formula for

this two dimensional payoff function, one needs to find the joint transition probabil-

ity function of the two stochastic variables, which is a very difficult task, and even

if it could be successfully found, there are still difficulties involved in the numerical

computation of the resulted two-dimensional integral. This is why we chose to use

this two-stage approach to reduce the dimensionality of solving the original problem

with the Feynman-Kac formula directly. The great benefit of using this analytic

formula for the price of a variance swap with the realized variance being defined in

(2.3) is illustrated in the next section through some examples.

3 Numerical Examples and Discussions

In this section, we show some numerical examples for illustration purposes. Although

theoretically there would be no need to discuss the accuracy of a closed-form ex-

act solution and present numerical results, some comparisons with the Monte Carlo

(MC) simulations may give readers a sense of verification for the newly found so-

lution. This is particularly so for some market practitioners who are very used to

MC simulations and would not trust analytical solutions that may contain algebraic

errors unless they have seen numerical evidence of such a comparison. In addition,

comparisons with the previous continuous sampling model will also help readers

understand the improvement in accuracy with our exact solution. Furthermore, we

shall discuss some essential properties of variance swaps as well, utilizing the newly

found analytical solution.

To achieve these purposes, we use the following parameters (unless otherwise

stated): v0 = 0.04, θ∗ = 0.022, κ∗ = 11.35, ρ = −0.64, σV = 0.618, r = 0.1, T = 1

in this section. This set of parameters for the square root process was also adopted

by Dragulescu and Yakovenko (2002). As for the MC simulations, we took asset

price S0 = 1 and the number of the paths N = 200, 000 for all the simulation results

presented here. All the numerical values of variance swaps presented in this section
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are quoted in variance points (the square of volatility points).

3.1 Monte Carlo Simulations

Our MC simulations are based on a simple simulation of the CIR variance pro-

cess, which is anything but straightforward. Glasserman (2003) proposed a method

to simulate the square-root process by sampling the transition density function.

Broadie and Kaya (2006) developed an approach for exact simulation of the Heston

dynamical process. Andreasen (2006) also suggested a method using log-normal

approximation for the transition density of the variance with matched first two mo-

ments. Higham and Mao (2005) proved that the Euler-Maruyama discretization is

an attractive approach, providing qualitatively correct approximations. Since our

aim is primarily to some obtain benchmark values for our solution Equation (2.34),

we will not focus our attention on the use of other variance reduction techniques

that could further enhance the computational efficiency. In our MC simulations, we

have employed the simple Euler-Maruyama discretization for the Heston model

(3.1)





St = St−1 + rSt−1∆t +
√
|vt−1|St−1

√
∆tW 1

t

vt = vt−1 + κ∗(θ∗ − vt−1)∆t + σ
√
|vt−1|

√
∆t(ρW 1

t +
√

1− ρ2W 2
t )

where W 1
t and W 2

t are two independent standard normal random variables. Shown

in Figure 3.1, as well as in Table 3.1, are three sets of data, for the strike price of vari-

ance swaps obtained with the numerical implementation of Equation (2.34), those

from MC simulations (3.1) and the numerical results obtained from the continuously-

sampled realized variance Equation (3.3). One can clearly observe that the results

from our exact solution perfectly match the results from the MC simulations. To

make sure that readers have some quantitative concept of how large the difference

between the results from our exact solution and those from the MC simulations, we

have also tabulated the relative difference of the two as a function of the number

of paths, using our exact solution as the reference in the calculation, in Table 3.2.

Clearly, when the number of paths reaches 200,000 in MC simulations, the relative
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Our discrete model (Weekly sampling)
Monte Carlo simulations
The continuous model (Swishchuk, 2004)

Figure 3.1: A comparison of fair strike values based on the discrete model, continuous
model and the MC simulations

Table 3.1: The numerical results of discrete model, continuous model and MC sim-
ulations

Sampling Frequency Discrete Model Continuous Model MC Simulations
Quarterly(N=4) 267.6 235.9 267.3
Monthly(N=12) 242.7 235.9 243.2

Fortnightly(N=26) 238.6 235.9 238.1
Weekly(N=52) 237.1 235.9 237.4
Daily(N=252) 236.1 235.9

difference of the two is less than 0.1% already. Such a relative difference is further

reduced when the number of paths is increased; demonstrating the convergence of

the MC simulations towards our exact solution. On the other hand, in terms of

computational time, the MC simulations take a much longer time than our ana-

lytical solution does. To illustrate it clearly, we compare the computational times

of implementing Equation (2.34) and the MC simulations with sampling frequency

for the realized variance equalling to 5 times per year. Table 3.2 shows the com-

putational times for different path numbers in the MC simulations. In contrast to

a formidable computational time of 2,184.239 seconds using the MC simulations

with 500,000 paths, implementing Equation (2.34) just consumed 0.011 seconds; a

roughly 200 thousands folds of reduction in computational time for one data point.
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Table 3.2: Relative errors and computational time of MC simulations

Path numbers of the MC Relative Error % Computational time(s)
10,000 0.233 5.126
100,000 0.191 89.549
200,000 0.074 360.268
500,000 0.012 2,184.239

The difference is even more significant when the sampling frequency is increased;

we had to abandon the calculation when the sampling frequency became daily as it

just simply took too long to finish off the calculation on our PC (as a result, one

cell in Table 3.1 is left empty). This is not surprising at all since time-consuming is

a well-known drawback of MC simulations.

3.2 The continuous model

In the literature, many researchers, such as Swishchuk (2004), Zhang and Zhu (2006),

have proposed continuous sampling models for variance swaps based on the Heston

model. In their papers, the realized variance (2.3) is approximated by

(3.2) σ2
R =

1

T

∫ T

0

vtdt× 1002

for the convenience of calculation. This is because Swishchuk (2004) has shown

that once the realized variance is defined in terms of an integral, the expectation

of this continuous integral can be easily obtained, utilizing the second stochastic

process defined in (2.2). The resulting fair delivery price for the variance swap is

thus written as

(3.3) EQ
0 [σ2

R] = [v0
1− e−κ∗T

κ∗T
+ θ∗(1− 1− e−κ∗T

κ∗T
)]× 1002

which can be interpreted as a weighted average of the spot variance v0 and the

long-term mean of variance θ∗. Indeed, this formula is very simple and can be easily

implemented in calculating the numerical value of EQ
0 [σ2

R]. For the convenience
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of referencing, this formula will be referred to as the Swishchuk formula hereafter,

although many others also derived this formula.

Due to the lack of exact solution, in the past, for pricing a variance swap with

discrete sampling, the Swishchuk formula was primarily used in pricing variance

swaps, based on the assumption that the sampling period, such as daily sampling,

is short enough so that the result obtained from the continuous model should be

close to that without the continuum assumption of the sampling period. However,

no one knew exactly how close the results were because there was no exact solution

as a pricing formula for the case of discrete sampling times. Nor did any one know

when the Swishchuk formula starts to yield large errors when the sampling time is

large enough. In other words, there is a validity issue for the Swishchuk formula,

since it is nevertheless an approximation in the trading practice where the sampling

time, no matter how small, is always discrete. Our newly-derived formula can now

be used not only as a pricing formula for any discrete sample period, but also as a

validation tool for checking the accuracy level that the Swishchuk formula yields as

a function of the sampling period.

In Figure 3.1, we illustrate the numerical results of the Swishchuk formula, Equa-

tion (3.3), which is obtained from the continuous approximation model. From this

figure, one can clearly see that the values of our discrete model asymptotically

approach the values of the continuous approximation model when the sampling fre-

quency increases; the realized variance defined in (3.2) appears to be the limit of

the realized variance defined in Equation (2.3) as ∆t → 0. Of course, one can theo-

retically prove that our solution (2.34) indeed approaches the Equation (3.3) when

the discrete sampling period approaches zero, i.e.,

(3.4) lim
∆t→0

er∆t

T
[f(v0) +

N∑
i=2

fi(v0)] = v0(
1− e−κ∗T

κ∗T
) + θ∗(1− 1− e−κ∗T

κ∗T
)

With the proof of this limit, which is left in Appendix C, our solution is once again

verified as the correct solution for the discrete sampling cases, taking the continuous

sampling case as a special case with the sampling period shrinking down to zero.
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Our discrete model (Weekly sampling)
The continuous model (Swishchuk, 2004)

Figure 3.2: Calculated fair strike values as a function of sampling frequency

On the other hand, we now can use our discrete model to check the validity

of the continuous model as an approximation. Shown in Figure 3.2 is a refined

plot of Figure 3.1, in order to compare the degree of approximation between daily

and weekly sampling. With the daily sampling, the relative difference between the

results of our discrete model and the continuous model is 0.101%, whereas it has

increased to 0.530% for weekly sampling. If the long-term mean variance is further

reduced to θ∗ = 0.01 from θ∗ = 0.022 while the other parameters are held the same,

the relative difference between the results of our discrete model for weekly sampling

and the continuous model becomes more than doubled to reach 1.226%. With a

relative difference of the order of one percent, adopting the continuous model as an

approximation to price variance swaps with weekly sampling is clearly not justifiable.

For example, when the error level reaches more than 0.5%, Little and Pant (2001)

has already concluded, within the Black-Scholes framework, that such an error is

“fairly large” so that adopting the continuous model might not be so justifiable any

more. Our current findings not only confirm Little and Pant (2001)’s conclusion,

but also show that, under the Heston model, the difference between the continuous

model and the discrete model will exponentially grow, when the sampling frequency

is reduced, as shown in Figure 3.1. Of course, contracts with sampling frequency
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Our discrete model (Weekly sampling)
The continuous model (Swishchuk, 2004)

Figure 3.3: Calculated fair strike values as a function of tenor

higher than weekly are very rare in practice. However, specially designed over-the-

counter (OTC) contacts of long tenor may still have sampling frequencies small

enough to not warrant the realized variance being calculated with the continuous

model.

The effect of contract lifetime has been demonstrated in Figure 3.3, in which the

calculated fair strike price is plotted as a function of the tenor of a swap contract.

Clearly, both models show that the fair strike price falls as tenor increases. However,

the difference between the two becomes larger and larger as tenor increases, further

demonstrating the need of using the correct formula presented in this paper for the

discrete sampling case, rather than using the continuous model as an approximation.

A couple of more points should be remarked before leaving this section. Firstly,

with the newly found analytic solution, all the hedging ratios of a variance swap can

also be analytically derived by taking partial derivatives against various parameters

in the model. With symbolic calculation packages, such Mathematica or Maple,

widely available to researchers and market practitioners, these partial derivatives

can be readily calculated and thus omitted here. However, to demonstrate how

sensitive the strike price is to the change of the key parameters in the model, we

performed some sensitivity tests for the example presented in this section. Shown in
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Table 3.3: The sensitivity of strike price of variance swap (daily sampling)

Name Value Sensitivity
κ∗ 11.35 -0.066%
θ∗ 0.022 0.85%
σV 0.618 -0.0015%
v0 0.04 0.15%

Table 3.3 are the results of the percentage change of the strike price when a model

parameter is given a 1% change from its base value used in the example presented in

this Section. Clearly, the strike price of a variance swap appears to be most sensible

to the long-term mean variance θ∗ for the case studied. On the other hand, the

spot variance v0 may also have significant influence in terms of the sensitivity of the

strike price. Secondly, due to the notational amount factor L and the size of the

contract traded per order, the 1% or 2% relative error may result in a considerable

amount of absolute loss if the formula based on the continuous approximation is

adopted. Combining these two points together, one may conclude that even with a

relatively high sampling frequency, such as daily sampling, the approximation based

on the continuous model could still lead to larger errors for a certain combination

of parameter values. Thereby, having a closed-form formula for the case of discrete

sampling would enable us to completely abandon the approximation formula based

on the continuous model; whether the sampling period is small or not, the compu-

tational time of adopting our newly-derived formula, Equation (2.34), is virtually

the same as that of adopting the traditional formula, Equation (3.3).

4 Conclusion

In this paper, we have applied the Heston stochastic volatility model to describe the

underlying asset price and its volatility, and obtained a closed-form exact solution

for discretely-sampled variance swaps with the realized variance defined as the sum

of the percentage increment of the underlying asset price. This can be viewed as a

substantial progress made in developing a more realistic pricing model for variance
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swaps. Through numerical examples, we have shown that the our discrete model

can improve the accuracy in pricing variance swaps. We have compared the results

produced from our new solution with those produced by the MC simulations for

the validation purposes and found that our results agree with those from the MC

simulations perfectly.

The significance of our work can be illustrated in two aspects. Theoretically, our

discrete model can be used to verify the validity of the corresponding continuous

models, and thus would fill a gap that has been in the field of variance swaps pricing.

Fourier inverse transform in our model has been analytically worked out, which is

a significant step forward in the literature of the Heston model. Practically, the

computational efficiency is enormously enhanced in terms of assisting practitioners

to price variance swaps, and thus it can be a very useful tool in trading practice

when there is obviously increasing demand of trading variance swaps in financial

markets.

Appendix A

We now present a brief proof of Proposition 1.

The PDE system is

(A.1)



∂U

∂t
+

1

2
vS2∂U2

∂S2
+ ρσV vS

∂U2

∂S∂v
+

1

2
σ2

V v
∂U2

∂v2
+ rS

∂U

∂S
+ [κ∗(θ∗ − v)]

∂U

∂v
− rU = 0

U(S, v, T ) = H(S)

Firstly, we do the transform by letting

(A.2)





τ = T − t

x = ln S

After the transformation, the PDE system is converted to

(A.3)



∂U

∂τ
=

1

2
v
∂U2

∂x2
+ ρσV v

∂U2

∂x∂v
+

1

2
σ2

V v
∂U2

∂v2
+ (r − 1

2
v)

∂U

∂x
+ [κ∗(θ∗ − v)]

∂U

∂v
− rU = 0

U(x, v, 0) = H(ex)
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Solution for this PDE system can be obtained through generalized Fourier transform

with respect to x. One can refer to Lewis (2000) and Poularikas (2000) for more

details about the generalized Fourier transform. Based on the generalized Fourier

transform, we can do the transformation

(A.4) F [ejαt] = 2πδα(ω)

where j =
√−1 and δα(ω) is the generalized delta function satisfying

(A.5)

∫ ∞

−∞
δα(t)Φ(t)dt = Φ(α)

with α being any complex number.

Applying the transform to the PDE with respect to the variable x, we obtain

the following problem for Ũ(ω, v, τ) = F [U(x, v, τ)]

(A.6)



∂Ũ

∂τ
=

1

2
σ2

V v
∂Ũ2

∂v2
+ [κ∗θ∗ + (ρσV ωj − κ∗)v]

∂Ũ

∂v
+ [(rωj − r)− 1

2
(ωj + ω2)v]Ũ

Ũ(ω, v, 0) = F [H(ex)]

Following Heston’s (1993) solution procedure, the solution of the above PDE system

can be assumed of the form:

(A.7) Ũ(ω, v, τ) = eC(ω,τ)+D(ω,τ)vŨ(ω, v, 0)

One can then substitute this function into the PDE to reduce it to two ordinary

differential equations,

(A.8)





dD

dτ
=

1

2
σ2

V D2 + (ρωσV j − κ∗)D − 1

2
(ω2 + ωj)

dC

dτ
= κ∗θ∗D + r(ωj − 1)

with the initial conditions

(A.9) C(ω, 0) = 0, D(ω, 0) = 0

29



The solutions of these equations can be easily found as

(A.10)





C(ω, τ) = r(ωj − 1)τ +
κ∗θ∗

σ2
V

[(a + b)τ − 2 ln(
1− gebτ

1− g
)]

D(ω, τ) =
a + b

σ2
V

1− ebτ

1− gebτ

where

(A.11) a = κ− ρσV ωj, b =
√

a2 + σ2
V (ω2 + ωj), g =

a + b

a− b

One should note that the Fourier transform variable ω appears as a parameter in

function C and D.

Therefore, the solution of the original PDE can be obtained after the inverse Fourier

transform in form as

(A.12)
U(x, v, τ) = F−1[Ũ(ω, v, τ)]

= F−1[eC(ω,T−t)+D(ω,T−t)vF [H(ex)]]

Appendix B

If setting stochastic variable χ2
t = 2cvt, then χ2

t is subject to noncentral chi-

squared distribution, χ2(2V ; 2q + 2, 2W ), with probability density function denoted

by pχ2
t
(x). We can easily verify that p(vT |vt) = 2cpχ2

T−t
(2cvT ). c, W , q and p(vT |vt)

are given in Equation (2.26) and Equation (2.23). Hence,

(B.1)

EQ
0 [(

Sti − Sti−1

Sti−1

)2] =

∫ ∞

0

er∆tf(vti−1
)p(vti−1

|v0)dvti−1

= er∆tEQ
0 [e

eC(∆t)+ eD(∆t)vti−1 + e−r∆t − 2]

= er∆t(e
eC(∆t)EQ

0 [e
eD(∆t)vti−1 ] + e−r∆t − 2)

= er∆t(e
eC(∆t)EQ

0 [e
eD(∆t)

2c
χ2

ti−1 ] + e−r∆t − 2)

= er∆t(e
eC(∆t)(1− 2Φ)−(q+1)e

2WΦ
1−2Φ |

Φ=
eD(∆t)

2c

+ e−r∆t − 2)

= er∆t(e
eC(∆t)+

W eD(∆t)

c− eD(∆t) (
c

c− D̃(∆t)
)

2κ∗θ∗
σ2

V + e−r∆t − 2)

It should be noted the parameters c, W are determined by the time ti−1 in Equation
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(2.26) with T = ti−1 and t = 0.

fi(v0) = e
eC(∆t)+

cie
−κ∗ti−1

ci− eD(∆t)
eD(∆t)v0

(
ci

ci − D̃(∆t)
)

2κ∗θ∗
σ2

V + e−r∆t − 2(B.2)

where ci = 2κ∗

σ2
V (1−e−κ∗ti−1 )

. Hence,

EQ
0 [(

Sti − Sti−1

Sti−1

)2] = er∆tfi(v0)(B.3)

Appendix C

Now, we prove Equation (3.4). Using l’Hôpital’s rule, one can easily verify that

(C.1) lim
∆t→0

C̃(∆t) = 0, lim
∆t→0

D̃(∆t) = 0

and

(C.2) lim
∆t→0

e
eC(∆t)+ eD(∆t)v0 + e−r∆t − 2 = 0

(C.3) lim
∆t→0

e
eC(∆t)+ eD(∆t)v0 + e−r∆t − 2

∆t
= v0

(C.4) lim
∆t→0

fi(v0)

∆t
= v0e

−κ∗(i−1)∆t + θ∗(1− e−κ∗(i−1)∆t)

Therefore,

(C.5)

lim
∆t→0

er∆t

T
[f(v0) +

N∑
i=2

fi(v0)] =
1

T
lim

∆t→0

N∑
i=2

∆t(v0 +
fi(v0)

∆t
)

=
1

T
lim

∆t→0

N∑
i=1

∆t[v0e
−κ∗(i−1)∆t + θ∗(1− e−κ∗(i−1)∆t)]

=
1

T

∫ T

0

[v0e
−κ∗t + θ∗(1− e−κ∗t)]dt

= v0
1− e−κ∗T

κ∗T
+ θ∗(1− 1− e−κ∗T

κ∗T
)
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