
HIGH-ORDER AND MOTIF-BASED

GRAPH EMBEDDING IN SERVICE

RECOMMENDATION

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Supervisor

Associate Prof. Jian Yu

Associate Prof. Quan Bai

December 2021

By

Thi Thuy Mo Nguyen

School of Engineering, Computer and Mathematical Sciences

Abstract

With the rapid increase of the number of diverse services and APIs on the Internet and the

Web, recommender systems have become an indispensable tool for service discovery and

selection. Existing probabilistic matrix factorization (PMF) recommender systems can

effectively exploit the latent features of the invocations with the same weight but not all

features are equally significant and predictive, and the useless features may bring noises

to the model. Currently, Deep Neural Networks (DNN) based collaborative filtering

is a popular method for service recommendation. However, many such approaches

treat each mashup-API invocation as separate instances and overlook the intrinsic

relationships among data. We have finished three major pieces of work as follows.

First, we propose the Attentional PMF Model (AMF), which leverages a neural

attentional network to learn the significance of latent features. We then inject the

attentional scores and the mashup-API context similarity, and API co-invocation into the

matrix factorization structure for training. Particularly, the we first apply an attentional

mechanism with the neural network to the PMF-based framework. Later on, we then

use the Doc2Vec technique to explore the latent features from document context of the

mashups and APIs’ description and do some statistical distribution fitting to draw out

the APIs co-invocation pattern. Such auxiliary information significantly regularize the

learning model for better prediction.

Second, inspired by the discovery that the autoencoder architecture can force the

hidden representation to capture information on the structure of networked data, we

2

propose a novel framework called Data Augmented High-order Graph Autoencoder

(DHGA) that learns the latent high-order connectivity signals in the mashup-API

invocation graph for service recommendation. Specifically, each mashup-API pair is

augmented with their higher-order neighbourhood data, and such data is input into

two sets of autoencoders, one set for the mashups and the other for the APIs. All the

autoencoders in one set shared parameters, so increasing the number of autoencoders

does not increase the model size.

Finally, we propose a Motif-based Graph Convolution Layers with self-attention

using attention motif-based neighbour mechanism to capture the high-order structure ,

and a Motif-based Graph Attention Collaborative Filtering model with MLP to generate

the recommendation prediction. Specifically, we analysis some most common used

sub-graphs or motifs in the mashup-API bipartite and apply the motif-based attentional

mechanism for each motif type and put them in a convolution neural layers. Then, a dot

product is used to calculate the invocation prediction value between a pair of mashup

and API.

In summary, we have explored three recommendation models for service composi-

tion including AMF, DHGA, and MGAT. All of them successfully explore the latent

features of mashups and APIs in different sides of the data to support for the Collab-

orative Filtering Neural Network recommendation model. While the AMF focus on

the context and co-invocation auxiliary information in a shallow framework, DHGA

and MGAT pay attention on the intrinsic relation of the data structure through using

high-order and motif-based connectivity with deep learning neural network layers.

All of the proposed models obtain superior performance on service recommendation

accuracy compared with existing defined baselines in the thesis.

3

Contents

Abstract 2

Attestation of Authorship 10

Publications 11

Acknowledgements 12

Dedication 13

1 Introduction 14
1.1 Concepts in service computing . 15
1.2 Service recommendation . 20
1.3 Recommender system based on graph embedding 22
1.4 Research questions . 24
1.5 Methodology and Research objective 25
1.6 Contributions . 25
1.7 Thesis Structures . 26

2 Literature Review 30
2.1 Fundamental concepts in service computing 31

2.1.1 Software-as-a-service . 31
2.1.2 Web service oriented architecture 32
2.1.3 Mashup . 33
2.1.4 Web service or Web API . 34
2.1.5 Discussion . 36

2.2 Context awareness variability . 37
2.2.1 Context based requirement . 37
2.2.2 Context awareness in service computing 39

2.3 Graph representation learning . 40
2.3.1 Generalized encoder-decoder architectures 41
2.3.2 Neighborhood autoencoder methods 42
2.3.3 Neighborhood aggregation and convolution encoders 43
2.3.4 Graph representation approaches 44
2.3.5 Higher-order connectivity with Network Motifs 45

4

2.4 Service recommendation systems . 46
2.4.1 Functionality-based Web service recommendation 47
2.4.2 Social network-based Web service recommendation 47
2.4.3 Collaborative Filtering RS . 48
2.4.4 Hybrid Service Recommendation 50

2.5 Summary . 50

3 Attentional Matrix Factorization with Context and Co-invocation for ser-
vice recommendation 52
3.1 Overview . 52
3.2 Preliminaries . 55

3.2.1 Related work . 55
3.2.2 Problem statement . 56

3.3 Proposed Approaches . 58
3.3.1 Overview . 58
3.3.2 Attentional PMF Model (AMF) 60
3.3.3 Mashup recommendation with integrated with document-context

awareness and implicit API relationship 64
3.4 Experiments . 69

3.4.1 Set up data . 70
3.4.2 Baselines . 71
3.4.3 Evaluation metric . 72
3.4.4 Hyperparameter settings . 74
3.4.5 Experimental results . 74

3.5 Conclusion . 85

4 Data Augmented High-order Graph Autoencoder in Service Recommend-
ation 87
4.1 Introduction . 87
4.2 Related works . 90

4.2.1 CF-based service recommender systems 90
4.2.2 Neural networks for learning mashup-API graphs 91
4.2.3 Data augmentation in Recommender system 91

4.3 High-order connectivity and data augmentation for Mashup-API Graph 92
4.3.1 Definitions . 93
4.3.2 Motivating Example . 95
4.3.3 Data augmentation in MAG . 97

4.4 The DHGA model . 100
4.4.1 Embedding layer with Autoencoders 101
4.4.2 High-order connectivity and data augmentation 101
4.4.3 Optimization . 102

4.5 Discussion . 105
4.6 Experiments . 107

4.6.1 Experimental settings . 107

5

4.6.2 Performance comparison (RQ1) 113
4.6.3 Study of DHGA (RQ2) . 116

4.7 Conclusion and future work . 123

5 Motif-based Graph Attentional Neural Network for Web service recom-
mendation 124
5.1 Introduction . 124
5.2 Related works . 126

5.2.1 Network motifs and high-order Graph Neural Networks 126
5.2.2 GNN and Motif-based Network in recommender systems . . . 127

5.3 The MGAT model for bipartite network 128
5.3.1 Motif definitions . 128
5.3.2 Motif-based Graph Convolution Layers with Self-attention . . 129
5.3.3 Motif-based Graph Attention Collaborative Filtering for service

recommendation (MGAT) . 132
5.4 Experimental results . 133

5.4.1 Datasets and baselines . 133
5.4.2 Settings . 134
5.4.3 Comparison results . 135
5.4.4 The influence of different types of motifs on the MGAT’s per-

formance . 137
5.5 Conclusion and future work . 138

6 Conclusion 140
6.1 Introduction . 140

6.1.1 Research contributions . 141
6.1.2 Limitations and future direction 144

References 146

6

List of Tables

1.1 Principle-Based Method of Systems Analysis 29

3.1 Comparison between six models. 72
3.2 Comparison of hyperparameters. 75
3.3 NDCG scores of baselines and proposed models. 76
3.4 Train-test settings for MAP calculation 78
3.5 MAP scores of baselines and proposed models. 79
3.6 Influence of θ on Implicit APIs relation. 83
3.7 Influence of θ on AMF+ performance. 84
3.8 Influence of regularization λS on model performance. 84

4.1 Notations used in the paper . 93
4.2 Datasets statistic . 108
4.3 Baseline comparison over different p on HR metric 113
4.4 Baseline comparison over different p on NDCG metric 114
4.5 Overall performance comparison on ProgrammableWeb 115
4.6 Overall performance comparison . 116
4.7 Test performance of different versions of DHGA 116
4.8 Test performance of different versions of HACF 121

5.1 Baseline comparison over different p on HR metric 136
5.2 Baseline comparison over different p on NDCG metric 136
5.3 HR results of variants of MGAT . 137
5.4 NDCG results of variants of MGAT . 138

7

List of Figures

1.1 Service Discovery Process . 19
1.2 Overview of composite service-oriented recommendation. 21

2.1 SOA . 33

3.1 Number of APIs in a Mashup . 57
3.2 Distribution of APIs and mashup . 58
3.3 The proposed framework for service recommendation. 59
3.4 The neural network architecture of AMF Model 60
3.5 The graphical model for AMF . 62
3.6 Co-invocation frequency of API pairs 66
3.7 Distribution fitting for frequency of API pairs 67
3.8 The graphical model for AMF with regularization. 68
3.9 NDCG@k Performance comparison . 75
3.10 MAP@k performance comparison. 80
3.11 NDCG@10 with different numbers of latent feature. 81
3.12 MAP@10 with different numbers of latent feature. 82
3.13 Influence of γ on NDCG@10 of the proposed model. 83
3.14 Influence of γ on MAP@10 of the proposed model. 83

4.1 An illustration of a user-item interaction graph and the orders of con-
nectivity . 96

4.2 Direct and high-order connectivity within observed mashup-API invoc-
ations . 97

4.3 Mashup and API autoencoder . 98
4.4 The DHGA(2z,k) model . 99
4.5 The DHGA− model for service recommender system 104
4.6 Discussion of different Autoencoder models 106
4.7 Accuracy scores of all models on train dataset in 100 epoches 111
4.8 Impact of different p on HR@10 metric 114
4.9 Impact of different p on NDCG@10 metric 115
4.10 Test performance of baselines and DHGA(2,2) on MAP 117
4.11 Test performance of baselines and DHGA(2,2) on NDCG 118
4.12 Performance of DHGA variants with different values of n and k 119
4.13 The influence of autoencoder hidden layers 120

8

4.14 Binary accuracy convergence of the training datasets 121
4.15 The variant of autoencoder hidden layers and MLP layers by MAP . . 122
4.16 The variant of autoencoder hidden layers and MLP layers by NDCG . 122

5.1 Types of motifs for Mashup-APi Graph 129
5.2 Motif-based attention mechanism . 132
5.3 HR results of baselines and MGAT123. 136
5.4 NDCG results of baselines and MGAT123. 137
5.5 HR results of MGAT variants . 138
5.6 NDCG results of MGAT variants. 139

9

Attestation of Authorship

I hereby declare that this submission is my own work and
that, to the best of my knowledge and belief, it contains no
material previously published or written by another person
nor material which to a substantial extent has been accepted
for the qualification of any other degree or diploma of a
university or other institution of higher learning.

Signature of candidate

10

Publications

Delete and replace the text in this list

Nguyen, M., Yu, J., Nguyen, T., Han, Y. (2021). Attentional matrix factorization
with context and co-invocation for service recommendation. Expert Systems with
Applications, 186, 115698.

Nguyen, M., Yu, J., Bai, Q., Yongchareon, S., Han, Y. (2020, February). Attentional
matrix factorization with document-context awareness and implicit api relationship
for service recommendation. In Proceedings of the Australasian Computer Science
Week Multiconference (pp. 1-10).

Nguyen, M., Yu, J., Nguyen, T., Yongchareon, S. (2021). High-order autoencoder with
data augmentation for collaborative filtering. Knowledge-Based Systems, 107773.

Nguyen, M., Yu, J., Nguyen, T., Han, Y. (2021). AMF: Attentional Matrix Factoriz-
ation with Context and Co-invocation for service recommendation [Source Code].
https://doi.org/10.24433/CO.3968216.v1

11

https://doi.org/10.24433/CO.3968216.v1

Acknowledgements

• I would like to express my thankful to my primary supervisor Associate Professor
Jian Yu, who has guided, encouraged, and motivated my research with excessive
enthusiasm over the last three years. It was an notable experience to have such a
enthusiastic supervisor. He has enabled me to reach this point of my PhD journey
with his constant instruction and tireless support.

• This work would not be possible without the support of AUT Scholarship who
provided me the entire Doctoral Fee during my PhD study.

• I am thankful to my secondary supervisor Associate Professor Quan Bai for the
always-available support. I am also thankful to my co-authors, Doctor Tung
Nguyen for his contribution in various portions of my research.

• I thank all my colleagues in WT 406 Research Lab and the Software Engineering
Research Lab, especially Khavee Agustus Botangen, Olayinka Adeleye, and Alan
Zhang for the friendship and snap chats.

• Finally, I thank my family for supporting me throughout my PhD journey. I am
especially grateful to my husband Duong Vu for being always there as a source
of inspiration, and to my parents, Tuyen and Thuong, for their incredible support
and sacrifice.

12

Dedication

I dedicate this thesis to my wonderful children An and Dan. You have made me stronger
and sharpener to achieve accomplishments on my way to PhD. I love both of you to the
moon and back.

13

Chapter 1

Introduction

Service computing and its popular application called Web services or Web API help

software engineers to enhanced the way of designing, developing and maintaining enter-

prise applications (Maamar, Hacid & Huhns, 2011). With service computing, software

development had a paradigm shift and it revolutionized the information system develop-

ment processes, which are transformed from component-based to service-based (W. Xu,

Cao, Hu, Wang & Li, 2013). Such service-based architecture reduces requirement of

time, cost and effort to create service-based systems and enhance re-usability (Q. He,

Yan, Jin & Yang, 2014). The key evolution of this improvement is the Web API, which

is identified as loosely-coupled, self-contained, self-describing, Web accessible, modu-

lar programming functions that can be published, discovered and invoked across the

Web (Rostami, Kheirkhah & Jalali, 2013; Papazoglou & Van Den Heuvel, 2007).

Specifically, Web APIs or API (in short) have been increasingly developed and

widely used for Web and mobile applications over the past years (Bouguettaya et

al., 2017; Sheng et al., 2014). For instance, programmers in different application

domains are able to integrate maps into their products in several coding lines with

Google Maps API. ProgrammableWeb.com has become the largest online Web API

registry with extensively-cited sources of data such as mashup and API descriptions

14

Chapter 1. Introduction 15

and invocations. However, the accelerated growth in the quantity of APIs has brought

difficulties for programmers to choose the right APIs from a large number of candidates.

Moreover, sparse API invocation data also brought challenges to API recommendation

systems (Kim, Park, Oh & Yu, 2017). Hence, it is highly demanded to develop better

recommendation techniques for programmers to pinpoint the proper APIs for mashup

development.

Such state-of-art software development technique applies the service-oriented com-

puting (SOC) archetype (Dustdar & Schreiner, 2005; Papazoglou & Van Den Heuvel,

2007; Bouguettaya, Sheng & Daniel, 2014; Lemos, Daniel & Benatallah, 2015) to

build the service-based software applications. The key idea of service computing is

recursively integrating current (atomic) APIs to make a value-added API, which is

called composite service or business process, to obtain a business objective that cannot

be done by a single API. Current service computing approaches are developed on the

conventional Web service techniques such as an enterprise system composed of Web

APIs in which each constituent Web API enclosed a entire business functionality.

1.1 Concepts in service computing

The basic concepts and issues surrounding the typical Web service composition or

mashup are described as below (Sheng et al., 2014):

• Orchestration and choreography: (Peltz, 2003) such concepts consider the control

of integration and coordination of Web services that make up a business process.

The orchestration uses a centralised prospect where there is a single API coordin-

ating the interaction among the involved services. WS-BPEL1 (Web Services

Business Process Execution Language) is a common standard for Web services

orchestration. The choreography uses the decentralised framework allows each

component Web API to demonstrate its interaction role more collaboratively.

Chapter 1. Introduction 16

WS-CDL2 (Web Services Choreography Description Language) is a standard

specification for Web services choreography.

• Static and dynamic composition: static (composed APIs are determined at design

time) and dynamic (composed APIs are determined at runtime) composition.

(Dustdar & Schreiner, 2005) considers the time when the Web APIs are integrated.

In a static composition, component APIs are selected and bound at design time.

This would be fine when business stakeholders and service functionalities or

composition requirements are fixed (Sheng et al., 2014). Reversely, dynamic

composition implements the selection and binding of component APIs at runtime.

This is convenient for a volatile operational environment with frequent runtime

changes in requirements or services, that requires an adaptable composite service.

• Manual and automatic composition: manual with user-driven and automatic with

no-user intervention composition determine the manner of aggregating services.

In the manual structure, an abstract composite process is created and manually

chosen and secured with Web services. WS-BPEL is used to designated manual

compositions. However, Web service composition includes a complex task and

takes lot of human capability. One of such limitations of this complexity is the

impresive increase in the quantity of available Web APIs across the Web and the

demand to design on the fly based on the current situation, and the heterogeneity

of Web services. The automatic composition generally targets for the invocation,

automated discover, composition, selection and interoperation of Web APIs. Auto-

matic API compositions make use of Artificial Intelligence (AI) planning (Rao &

Su, 2004), semantic Web (McIlraith, Son & Zeng, 2001), and dynamic workflow

(Casati & Shan, 2001) approaches. OWL-S4 is a standardisation example to

facilitate automatic service composition. It is a Web Ontology Language (OWL)-

based Web service ontology which determines a core set of constructs to describe

Chapter 1. Introduction 17

the properties and capabilities of Web APIs in clear, computer-based interpretive

form. The hybrid semi-automatic composition embellishes the manual method

with some automatic approaches. A conventional example is the model-driven

service composition (Gronmo, Skogan, Solheim & Oldevik, 2004), which auto-

matically build a service composition specification from the abstract composition

models that demonstrate the workflow, requirements, and component services.

The growth of technology (Perera, Zaslavsky, Christen & Georgakopoulos, 2013)

expands the scope of service to concepts like "everything as a service (Duan et al.,

2015), which connect daily activities, people, and devices to the internet. The internet

of things provide us a lot of smart applications such as smart-appliances, smart-TVs,

smartphones, robots, smart public displays, and traffic sensors. To be accessible from

the Internet or an ad-hoc network, such applications are connected through standard

protocols. Because every "thing" in the world could be encased and identified as a

service to distribute their usage, for instance, attaching heterogeneous physical objects

on the conventional Web APIs (Meyer, Ruppen & Magerkurth, 2013; Guinard, Trifa &

Wilde, 2010; S. N. Han & Crespi, 2017), a composition of diverse smart applications

and Web APIs can be executed to satisfy even the most complicated user objective (Ko,

Ko, Molina & Kwon, 2016).

Service composition is propulsive applications. Both hardware and software

resources attached components of software systems to become dynamically, inter-

operable, loosely coupled, standardized, and reusable. Service composition releases

into air the online, service-enable business, which create motivation for seamless deliv-

ery of APIs through the internet with lowest cost but high potential market. Similarly,

service composition launches channels for alliances, allows functionality outsources,

and supplies a one-stop shop for business clients. The enormous growth in the number

of Web APIs and the rising of IoT and cloud services (Miorandi, Sicari, De Pellegrini

Chapter 1. Introduction 18

& Chlamtac, 2012; Wei & Blake, 2010; Tsai, Sun & Balasooriya, 2010) has strongly

driven the service composition to become a promising development resolution for

contemporary software systems. For instance, a survey in 2008 explored 5,077 con-

ventional (WSDL-described) Web APIs (Al-Masri & Mahmoud, 2008), a survey in

2013 explored 6,686 cloud APIs (Noor, Sheng, Ngu & Dustdar, 2014) and, by the

April of 2019, the number of Web APIs exceeded 21,600 in one of the largest service

repository. An emerging service Web (Tselentis, Domingue & Galis, 2009) – "a web

that allows billions of parties to expose and consume billions of services", drives service

composition to be a potential efficient, on-demand up-to-date development methods. It

is because a component service can be carried out as soon as it is demanded.

Web service discovery is defined as the process of choosing right set of APIs which

promisingly fulfil particular user’s requirements. The key significance of this process

is to capture the API textual description that matches the API requester query from

central or a database record of service description. Following the discovery of set

of candidate APIs is the selection process, which chooses the most appropriate APIs

for the service consumer’s request for recommendation list. Figure 1.1 demonstrate

the key components of a Web API discovery process. Service consumer launches the

API discovery process by systematically specifying a API request in term of query to

identify appropriate candidate APIs in the Web API repository. If the chosen API is

already known earlier, the requester directly secures the API, otherwise, a service broker

(usually arranges the API registry where the APIs are published) might be engaged in

the invocation step. After discovering, securing, invoking, and executing, the consumer

uses the API request under a keyword-based description of service requirements which

might contain functional and non-functional capabilities of Web API. Service producers

issue the APIs’ functional descriptions on the advertisement via a service broker on the

repository. This process also includes a matching engines attached on the Web service

repository to secure the service request of consumers and update them with the available

Chapter 1. Introduction 19

Matching Engine
API

Registry

Service
Customer

Service
Provider

2a. Matches

4. Execute

Service
Broker

API
Request

API
Adcvertisement

3. Bind

Figure (1.1) Service Discovery Process

API advertisement records in the repository.

Chapter 1. Introduction 20

1.2 Service recommendation

Service discovery is an important prerequisite to apply service technologies. It uses

service discovery algorithms to search services from the service registry according to

the users’ functional and nonfunctional needs and constraints. Service recommendation

is a proactive service-discovery technique, which proactively recommends services to

users according to users’ preferences.

Service computing build blocks from APIs to create the low-cost and appropriate

software applications. The rapid development of cloud computing and SOC has in-

creased the quantity of Web APIs published on the internet. Specifically, there are over

16000 Web APIs have been published at Programmableweb before the first of January

2017. This number generally rises triple for three years. Big IT companies such as

Amazon and Microsoft have found many Web API marketplaces with lots of published

Web APIs. Because many of users often are not satisfied with a unique API, an API

composition or mashup is built from couples of such single APIs.

The rapid growth of web API brings both advantages and difficulties to SOC.

Service recommendation has been widely applied in academic environment and industry.

Currently, many proposed works have been presented to services recommendation

which use collaborative filtering-based framework (Adomavicius & Tuzhilin, 2005;

M.-H. Park, Hong & Cho, 2007; Roh, Oh & Han, 2003; L. Gao & Li, 2008; J. Zhong

& Li, 2010), context-aware approaches (Y. Xu, Yin, Deng, Xiong & Huang, 2016;

Finkelstein & Savigni, 2001), the graph-based approaches (T. N. Kipf & Welling,

2016a; X. Wang, He & Chua, 2020a), etc. In the area of service recommendation, the

process of determining and building a combination of available APIs to propose an

optimized mashup that satisfy the user’s interest given by previous service composition

is called composite service-oriented recommendation (CSOR).

Figure 1.2 demonstrates an overview concept of CSOR. Particularly, the composite

Chapter 1. Introduction 21

Start EndS1 S2 S3 S4

Start EndS1 S2 S3 S4

S12

S...

S1N

Composite Service Oriented Recommendation

Service
pool

S11

S41

S22

S...

S1N

S31

S21

S3N

S42

S4N

S...

S43

Figure (1.2) Overview of composite service-oriented recommendation.

service or mashup is built for several services or APIs which satisfy sub-functionalities

in the service pool. Obviously, the aim of CSRO is to compose some candidates APIs

which are similar or equal to the atomic services in the mashup for optimized composite

service recommendation.

Currently, matrix factorization based collaborative filtering models have been widely

employed in Web service recommendation (Jain, Liu & Yu, 2015; J. Liu, Tang, Zheng,

Liu & Lyu, 2015; Samanta & Liu, 2017; Tian, Wang, He, Sun & Tian, 2017; Zheng, Ma,

Lyu & King, 2012). However, the large number of Web APIs makes bring difficulties

to manually choose relevant APIs to satisfy complicated user demand. Therefore, it

is essential to select appropriate Web APIs that is suitable for user requirement. The

process of discovering relevant APIs is defined in Web API recommender system.

Recently, matrix factorization is popular framework applied in Collaborative Filtering

based models in Web API recommender system (Jain et al., 2015; J. Liu et al., 2015;

Samanta & Liu, 2017; Tian et al., 2017; Zheng et al., 2012), which can predict the list

Chapter 1. Introduction 22

of Web APIs for mashup construction by exploiting existing invocation data.

Nevertheless, matrix factorization learns the latent factors by a linear model and

is thus difficult to contain the intrinsic features of the mashups and APIs invocation

when the invocation matrix is highly sparse (X. He et al., 2017a). The statistical data

of the largest Web API repository ProgrammableWeb shows the extreme sparsity of

the invocation matrix at about 99.83%. Such extreme sparsity brings more intractable

issue to accurately learn the complicated mashup-API relations. Existing deep learning

approaches have been successfully applied in recommender systems (S. Zhang, Yao,

Sun & Tay, 2019) and show their powerful abilities to learn the complex representation.

They learn hidden structures from the invocation of mashups and APIs.

Existing work on Deep learning based collaborative filtering technologies are (S. Zhang

et al., 2019) (H. Guo, Tang, Ye, Li & He, 2017) (X. He et al., 2017a) (Paradarami,

Bastian & Wightman, 2017) (Xue, Dai, Zhang, Huang & Chen, 2017). Specific-

ally, (Xiong, Wang, Zhang & Ma, 2018) proposes a novel deep hybrid collaborative

filtering approach for service recommender system (DHSR) to capture the complex

invocation relation between mashups and services. However, these work stop at the

direct relation and hence ignore the intrinsic relation in the graph structure, which would

be potential to contain rich of useful information.

1.3 Recommender system based on graph embedding

By applying graph embedding on graph representations of services, we can learn the

embeddings of services and use them to calculate the similarly between pairs of mashup

and API. Later on, their probability of invocation can be obtained by their according

similarity.

A graph embedding-based recommendation have superior performance compared

with traditional recommender systems. Particularly, after allocating information into

Chapter 1. Introduction 23

graph representations, traditional recommender system learn the parameters by ana-

lyzing the graph topological features such as users’ co-interactions with frequent used

items (Sarwar, Karypis, Konstan & Riedl, 2001a) or global topological diffusion (Y.-

C. Zhang, Blattner & Yu, 2007; Y.-C. Zhang, Medo et al., 2007). Differently, the

graph embedding-based recommendation learn the embedding vectors and secure graph

topological features by embedding techniques (Goyal & Ferrara, 2018). To do the

analysis of graph topological features, some work utilize subgraphs (Zhao et al., 2021),

motifs (Lim & Lee, 2016; S. Zhang, Hu, Subramonian & Sun, 2020), and neighbor-

hood [68–70] to extract the features embedding [39] and perform the recommendation.

Recent works on graph embedding for recommendation (Sun et al., 2019; Y. Gao, Li,

Lin, Gao & Khan, 2020; Q. Guo et al., 2020) have demonstrated the success on such

area. However, such model has not been applied in service computing.

Chapter 1. Introduction 24

1.4 Research questions

Social Web service recommender system requires techniques and recommender models

which can capture the attributes of Web APIs and effectively predict the suitable list

of Web APIs for mashup developing. This thesis focuses on solving three primary

challenges, which influence the prediction performance of Web service recommender

systems for creating mashups.

1. How to take advantages of the document context awareness and co-invocation

in an Attentional PMF model for service recommendation. The question aims to

discover the methods to increase the prediction for mashup-API invocation prediction

from the information in the document context and historical co-invocation data. Some

detail concerns can be considered consisting of (1) What NLP techniques can be used

for learning the latent features from document context; (2) What is the attention mech-

anism used and how to attach it to the PMF model; (3) How can the co-invocation data

be built from the dataset?

2. How to work with the High-order connectivity and embed such information

to the service recommender system. The direct invocation is sparse and hence not

sufficient for a model to generate good prediction. High-order connectivity is considered

as potential source of data in which more relevant information can be extracted for

learning the service embedding features. Autoencoder is known as a good technique

to learn the hidden features in graph structure. How to apply autoencoder with high-

order connectivity is a significant question needed for the improvement of the service

recommendation.

3. How do the Motif-based structures in bipartite network contribute to the

service recommender system performance. Motifs or subgraphs present for pattern

relationship among mashups and Web APIs, which is believed to contain rich informa-

tion for a future invocation prediction. The question is how to discover such features

Chapter 1. Introduction 25

and apply it with a deep graph neural network. Particularly, (1) How to figure out

relevant types of motifs which can significantly contribute to the model performance?;

(2) How to exploit the graph structure from a deep neural network?; (3) How to weight

the motifs’ types in such model?; and (4) How much significance is the motifs based

features add to service recommendation?

1.5 Methodology and Research objective

We address the research questions in Section 1.4 and present in chapters of this thesis.

More specifically, Chapter 3 solves the RQ1, Chapter 4 deals with RQ2, and Chapter 5

demonstrate the proposal for RQ3. Following the instruction of engineering research

(Wieringa, 2005), we address the research questions in three steps including problem

analysis, solution analysis, and implementation analysis. In the problem analysis phase,

we explore and figures out problem’s details which have been clarified in the research

question. This step is implemented by investigating related works in the literature review

and setting of research objectives. After that, in the solution analysis step, we propose

solution to the defined problem. We performs the attributes investigation, solution

sensitivity analysis, and the evaluation of the ability of the proposal approaches for

the problem. Finally, in the implementation analysis step, we implement the proposed

approaches and do further experiments with case studies. Table 1.1 shows the flow of

principle-based method of systems analysis approach.

1.6 Contributions

This thesis intend to contribute towards the feature embeddings for the service recom-

mendation Collaborative Filtering framework introduced in Section 1.2. Addressing

each research question has created techniques that can fill the existing limitation of the

Chapter 1. Introduction 26

existing approaches. Specifically, the thesis has major contributions as below:

• An Attentional Matrix Factorization model with the document context awareness

and API co-invocation.

• A data augmentation technique with high-order connectivity in autoencoder

frameworks to explore the intrinsic relation of the bipartite network.

• A motif-based graph convolution self-attention in a CF-based framework to

attach the high order connectivity with variant patterns of motif-based neighbour

sub-graphs.

1.7 Thesis Structures

The remainder of the thesis is structured as follows:

• Chapter 2 demonstrates a comprehensive survey of the state of art. The first

section presents fundamental concepts in service computing including mashup

and Web service discussion. After that, existing work on context awareness and

graph representation learning are studied and reviewed, which would be used

as auxiliary information for service recommendation. Service recommendation

approaches such as functionality-based, social network-based, Collaborative

Filtering, and hybrid methods are investigated with the current studies in this

area. The limitation of mentioned work in this chapter is the motivation for the

research questions which are addressed in the following chapters.

• Chapter 3 is the first proposed approach using Attentional Matrix Factoriza-

tion with Context and Co-invocation for service recommendation. The chapter

presents some related works and studies the significance of document context

and the compatibility of Web APIs invoked by the same mashups. The chapter

Chapter 1. Introduction 27

also presents the latest baselines related to the approach’s techniques, which use

attention factors, context awareness, and co-invocation. Some evaluation metrics

are defined for the comparison. The chapter is based on the journal " Attentional

matrix factorization with context and co-invocation for service recommendation"

published in Mo Nguyen (2021) and the conference ASW2020. The code of

this work is published in CodeOcean. However, the proposed approach in this

chapter is limited in the first order interactions of the network and has not explore

the potential values of the high-order connectivity which will be investigated in

Chapter 4.

• Chapter 4 presents another approach for service recommendation using Data

Augmented High-order connectivity with the graph autoencoder technique. The

chapter reviews some recent work on CF-based methods and neural networks

for learning the feature embedding within the data augmentation framework.

Then, the chapter defines some definitions on high-order mashup-API invocation

graph, and the data augmentation framework. The proposed detail model is

demonstrated with the combination of autoencoder embedding layers and the

high-order relation framework. The model is evaluated by extensive experiments

with related baselines. The chapter is written based on the journal published in

Mo Nguyen, Jian Yu (2021). Even though the chapter demonstrates the success

of high-order connectivity and auto-encoder embedding technique, such approach

does not aware the power of subgraphs which are believed to contain lots of

valuable latent features for prediction model. We shed light on this challenge in

Chapter 5.

• Chapter 5 presents the proposed model for Web service recommendation using

Motif-based Graph Attentional Neural Network. The chapter introduce defini-

tions about the types of motifs in the bipartite graph. Later, the chapter presents

Chapter 1. Introduction 28

the framework of self-attention for convolution layer with motif-based graph,

and the integration of such method into the Collaborative Filtering based recom-

mender system. The chapter also reviews related papers using network motifs for

recommendation models.

• Chapter 6 concludes the thesis and demonstrates some challenges that figure out

future research directions.

Chapter 1. Introduction 29

Table (1.1) Principle-Based Method of Systems Analysis Method

Research
questions

Objectives

Research
question 1

Investigate the recommender systems approaches applied in
service recommendation

- Investigate the existing repositories of Web services

- Examine the impact of context (i.e., geographic location) on
both invocation behaviour and QoS of real-world services

- Develop a service recommendation model that considers the
context of both composition and potential component
service

- Evaluate the performance of the recommendation model over
a real-world service invocation data

Research
question 2

Use autoencoder in high-order connectivity to learn the embed-
ding of mashups and APIs.

- Study the autoencoder framework on existing approaches for
features embedding.

- Study the data augmentation technique in service recommend-
ation.

- Design an autoencoder architecture for bipartite network .

- Develop a data augmentation with high-order connectivity
Collaborative Filtering model for service recommendation.

- Evaluate the performance of the proposed model over a real
Web API dataset.

Research
question 3

Explore the graph structural data through Motif-based Graph
Convolution Attention framework to learn the embedding for a
MLP Collaborative Filtering recommender system.

- Examine the variants of motifs of sub-graph in the bipartite
network.

- Build a Motif-based Graph Convolution Self-attention layers
for embedding learning.

- Develop the Motif-based Graph Attention Collaborative
Filtering model.

- Evaluate the performance of the proposed model.

Chapter 2

Literature Review

This chapter presents all-inclusive review of concepts, algorithm, techniques, and

frameworks which create the fundamental of this thesis. The thesis is the combination

of service computing, context variability, graph embedding, and recommender system.

In the service computing, the chapter presents the general concepts, definitions, and

related frameworks in the four mentioned research streams, which provide the context

for later chapters of the thesis. In addition, the chapter also reviews the existing

works relating to the research questions defined in Chapter 1. Particularly, Section 2.1

introduces of mashup and API in service computing. Section 2.2 presents the context

awareness requirement and existing relevant work in service computing. Section 2.3

provides detail discussion about the graph representation learning in graph data structure.

Section 2.4 presents the current recommender system which have been implemented in

service computing.

30

Chapter 2. Literature Review 31

2.1 Fundamental concepts in service computing

2.1.1 Software-as-a-service

SOC develops the idea of providing software as-a-service to end-users. The concept

of central management and offering a standard application package occurred in the

1960s, when the goal was to address the increasing needs for IT software but lack

of person capacity (J.-N. Lee, Huynh, Kwok & Pi, 2003). Programming contract

is the most common form of outsource during that time. Since 1990, the internet

has exploded and the Application Service Provider (ASP) model built up software-

as-a-service. The ASP is a vendor or third party who owns a software application

offered to the clients or end-users. The application in the vendor’s system is deployed,

managed, and hosted by the vendor who is consider as a central provider. The clients

within the network use a subscription or rental basis to access the application remotely.

Generally, companies might outsource their information technology demands, while

the applications, the connected infrastructure, and the data of clients are operated and

maintained by the ASPs. However, the built-in drawbacks of the ASP model come from

applications with monolithic framework, and with extremely fragile, customer-specific,

and tightly-coupled components (Papazoglou, 2003). Some different acronyms and

related business models were built such as AIP (Application Infrastructure Provider),

IBS (Internet Business Service), BSP (Business Service Provider), and SSP (Solution

Service Provider). In 2000, the Software Information Industry Association created the

term SaaS (Software-as-a-Service) in order to consolidate the variant terminologies

used in software services. Big companies such as Salesforce.com, Oracle, and SAP

have attempted to launch the Saas model. At the same time, the SOC paradigm has

been changed the SaaS to a loosely-coupled interaction among Internet applications.

Chapter 2. Literature Review 32

2.1.2 Web service oriented architecture

Service-Oriented Architecture (SOA) (MacKenzie et al., 2006) (Papazoglou & Van

Den Heuvel, 2007) is the key implementing model of SOC to demonstrate and manage

distributed capabilities of software applications, resources, and infrastructure in a set

of loosely-coupled, standard-based, inter-operable, and location-transparent services.

Building multiple applications in variant techniques, protocols, and platforms allows

such application to communicate and interconnect, and become integration-ready ser-

vices (Papazoglou, 2003). For example, a programmer uses any device with any

operating system, any computing platform, or any programming language, to work

with a SOA service to build her own application. To implement functionalities of both

end-user applications and other services, SOA defines a logical method to provide the

service to authorize a cost-effective design, development, and management of software

systems (Papazoglou & Van Den Heuvel, 2007). It allows to explore and use up

the remote and distributed services over the network via services published interfaces.

Figure 2.1 demonstrates a typical SOA, which defines the roles of and interaction among

the three key partners: the Web Service provider, the Web API registry, and the service

customer. The interactions includes the publish, find, bind, and execute actions. The

requester and the provider are both software agents who represent for entities such as

people or organisations. The former requests an API while the latter provides a API. A

service provider hosts as API and publishes the description of API into the API registry

or repository. Then the service customer searches for an API description and bind it

with the service provider to invoke an API.

The function of a service broker is defined by the SOA service registry (Papazoglou

& Van Den Heuvel, 2007). Trusted software agents who motivate service providers to

abide by laws and regulations or industrial governance, are service brokers. A service

broker controls a groups of available service providers, whose additional information

Chapter 2. Literature Review 33

Matching Engine
API

Registry

Service
Customer

Service
Provider

2a. Matches

4. Execute

Service
Broker

API
Request

API
Adcvertisement

3. Bind

Figure (2.1) SOA

such as description, quality and service ratings can be added to the registry. However,

the elementary SOA might not deal with some overall concerns for example such

as service composition, service transaction, management, coordination, security, and

management, which can be applied to the service architecture’s components.

2.1.3 Mashup

A service is defined to have the working capability for another, or the offer to execute job

for another (MacKenzie et al., 2006). It is known as a non-material equivalent of a good.

Similar definition of SOA presented by (Sheng et al., 2014) is a "semantically well-

defined abstraction of a set of computational or physical activities involving a number of

resources, intended to fulfil a client need or a business requirement". Futhermore, a SOA

service is basically a software in which a complete business functionality is encapsulated

and can be invoked to satisfy a required functionality by another software system. In

SOA, any business function from basic requirement to complicated business processes

Chapter 2. Literature Review 34

are published as software resources and are packaged as services. Such services have

below characteristics (Papazoglou & Van Den Heuvel, 2007; Channabasavaiah, Holley

& Tuggle, 2003; Papazoglou, 2003).

• Self-contained – a service is well-defined, unique state, and context independ-

ent on other services. Similarly, a service in the client’s system is designed

irrespective of the type, the objective, and the usage circumstances.

• Platform-independent – a service is technology-neutral. It can be used without

regarding the technical platform of the customer. Therefore, all elements including

protocols, descriptions, and discovery mechanisms should follow the general

established standards.

• Loosely-coupled – a service might not know the deployment details of the cus-

tomers. Different customers can use for variant purposes. There are three main

aspects of loosecoupling (Pautasso, Zimmermann & Leymann, 2008), including:

(1) time/availability of the service consumers to collaborate with a service pro-

vider, (2) location aspect offers customers to explore the real location of service

providers at run time, and (3) evolution aspect is the ability to make adjustments

to a service without influencing its customers.

• Autonomous – a service is considered as a black box by exterior entities. For

example, a customer hardly predicts the expected invocation result of a service,

but it is needless to consider how the service executes its function.

2.1.4 Web service or Web API

The technologies and standards of Web service or Web API, have become a main

facilitator for the SOA. Web API has been the key technology to carrying out the

Chapter 2. Literature Review 35

conventional SOA objectives, for example sharing API, integrating just-in-time or on-

demand, and interoperating among modern and legacy software resources (Bouguettaya

et al., 2017; Sheng et al., 2014; Papazoglou & Van Den Heuvel, 2007). Standardisation

organizations such as the World Wide Web Consortium (W3C) and the Organisation for

the Advancement of Structured Information Standards (OASIS), have first implemented

Web services by using specification and standardisation to smooth the interoperations.

There have been various definitions in literature proposed for the term Web service from

general to details. In the work (Sheng et al., 2014; Manes, 2001), Web service is loosely

defined as “any unit of business, application, or system functionality accessible over the

Web”. This means that any applications containing a Uniform Resource Locator (URL)

is a Web service. Further definitions on more technical and detailed are the following:

• (1) The Dagstuhl SOC working group (Ludwig & Petrie, 2006): defines Web

serive as “a possibly remote procedure with an invocation that is described in a

standard (preferably XML-based) machine-readable syntax reachable via standard

Internet protocols with a description, including at a minimum the allowed input

and output messages, as well as a possible semantic annotation of the service

function and data meaning”.

• (2) W3C (World Wide Web Consortium) defines Web service as “a software

system identified by a Universal Resource Identifier (URI) designed to support

interoperable machine-to-machine interaction over a network. It has an interface

described in a machine-processable format (specifically WSDL). Other systems

interact with the Web service in a manner prescribed by its description using

SOAP messages, typically conveyed using HTTP with an XML serialisation in

conjunction with other Web-related standards”.

Both definitions use the standard Internet protocols and Web service technologies to

adjust towards the representation and integration of services. The conventional standard

Chapter 2. Literature Review 36

Web services interaction protocols and technologies consists of SOAP3 (Simple Object

Access Protocol) – an XML-based messaging protocol, REST (Representational State

Transfer) (Fielding, 2000) – an architectural style for large-scale distributed hypermedia

systems, OSGi4 (Open Services Gateway Initiative) – a specification to develop, deploy,

and manage services for Java, WSDL5 (Web Services Description Language) – an

XML-based specification for a Web service description, UDDI6 (Universal Description

Discovery and Integration) – a standard universal business registry for indexing Web

services, and ebXML7 (Electronic Business XML) – an initiative for a B2B XML

framework of Web-based business services.

2.1.5 Discussion

Service computing is a archetype of service-oriented consideration and demanded co-

operation, which obviously brings a new prospect for software engineering systems.

Applying Web APIs technology, programmers can enclose whatever into a service

or mashup. Web APIs are pervasive in nowadays livings and it makes conventional

available APIs in society and economy such as education, healthcare, entertainment, and

finance to be provided as online service. Such enhancements in online service techno-

logy bring the internet into a world wide workplace, which manages the individual and

social events, a platform of an entertainment, and a API business platform (Bouguettaya

et al., 2017). Normally, a single API might not satisfy with a request of functionality.

Therefore, recommending a list of suitable APIs can reach user’s goal better. Community

of both service computing and software engineering consider service composition and

service recommending as big challenges in such area (Sheng et al., 2014).

Chapter 2. Literature Review 37

2.2 Context awareness variability

2.2.1 Context based requirement

The auxiliary dynamic information of service-based systems such as changes related

with descriptions, bandwidth, available interfaces, locations, ambient conditions, het-

erogeneity of mashups, temporal and spatial conditions, and user activities, which are

assigned to the context awareness should must be considered in requirements specifica-

tion. Context is the reform of the environment which consists of anything that provides

surroundings for a system to operate (Finkelstein & Savigni, 2001). Different definitions

of context have delivered various interpretations. Differences might bring the lack of

consensus in the domains and such limitation has being considered by researchers. This

thesis emphasises on the definition of (Abowd et al., 1999), which defined "Context

is any information that can be used to characterise the situation of an entity. An entity

is a person, place, or object that is considered relevant to the interaction between a

user and an application, including the user and the application themselves". Instead,

(Henricksen, 2003) presents a service-oriented perspective for context: “The context of

a task is the set of circumstances surrounding it that are potentially of relevance to its

completion”. Henricksen differently contends that context is a vague concept which is

hard to identify. Therefore, Henricksen proposes two related concepts including context

models and context information, which are stated as: “A context model is a specification

of identified concrete subset of the context that is realistically attainable from sensors,

applications, and users and able to be exploited in the execution of the task”; and “A

context information is a set of data, gathered from sensors and users, that conforms to a

context model. This provides a snapshot that approximates the state, at a given point

and time, of the subset of the context encompassed by the model”.

Furthermore, there are different taxonomies of context in literature including both

Chapter 2. Literature Review 38

the general comprehensive classifications and the more detail ones. That demonstrates

how different researchers identiy the context. (Perera et al., 2013) introduces and

combines a few of such taxonomies, and advises to combine context taxonomies

together to build a more all-inclusive taxonomy. In this thesis, we define the "context"

as in (Krogstie, 2001), which contains the following types of context: information,

spatio-temporal, task, personal, environment, and social. Such above contexts are

appropriate for delighting, namely the flexibility and personalised tendencies of service-

based systems. Identifying contexts in the requirements is important for variability of

requirement. Mainly, context modelling focuses on representing context awareness in an

infrastructure-centred view. Such perspective defines that the complexity of engineering

context-aware applications can be mainly cut down simply by using an appropriate

infrastructure to gather and manage the context information (Henricksen & Indulska,

2004). However, it is significant to specify the usage of applications which influences

the variability in the requirement standard by grasping the context awareness.

Existing specialised RE methodologies integrating context-awareness have been

presented. (Kolos-Mazuryk, Poulisse & van Eck, 2005) find that traditional RE

methods have not explored the context-awareness, mobility, and personalisation, and

hence propose an RE approach for service-based systems, which uses the attributes

of Pervasive services. (Munoz, Valderas, Pelechano & Pastor, 2006) deal a similar

definition that pervasive services require appropriate approaches to bring out and identify

requirements. They leverage the ConcurTaskTree (CTT) method to form the functional

requirements of intensive systems, specifically the action required. Their requirements

framework forcefully hold the following elements: (1) physical environment’s attributes

such as a location model, (2) descriptions of actions such as a CTT model augmented

with the geographical position where the invocation occurred, prerequisite to complete

an action, interaction interface, and time-aware reliance), and (3) characterization of the

Chapter 2. Literature Review 39

system’s attitude. Such requirements model could be afterward connected to a domain-

specific language for the pervasive systems’ specification named Pervasive Modelling

Language (PervML) (Muñoz & Pelechano, 2006) in a technology-independent conduct.

2.2.2 Context awareness in service computing

How to discover and select appropriate component APIs have become the most long-

term challenge in service recommendation (Bouguettaya et al., 2017). The conventional

discovery process mainly relies on matching the mashup’s request to the description of

available APIs in the repository. In the recommendation list, APIs with the best QoS are

chosen. (Rong & Liu, 2010) shows that the success of such discovery process depends on

both mashup’s request and the matchmaking model, which can be classified into context-

aware, agent-based, semantic, syntactic, and recommender system (Sheng et al., 2014;

Rong & Liu, 2010; Afify, Moawad, Badr & Tolba, 2014). The conventional approach

using keyword-based similarity is syntactic matching. This method matches the real

words in the query with the description of APIs, which uses term analysis technique

for example the Term Frequency-Inverse Document Frequency (TF-IDF) (Salton &

Buckley, 1988). Semantic approach explores the intention of the queries and API’

descriptions and form the semantic description from the domain concepts’ ontology.

After that, the semantic descriptions are attached in the matchmaking. To define the

semantic descriptions, there are different standards such as OWLS (Martin et al., 2004),

WSDL-S (Akkiraju et al., 2005), WSML (De Bruijn, Lausen, Polleres & Fensel, 2006),

and DAML-S (Ankolekar et al., 2002). The context-aware approach studies the context

of the services. In (Rong & Liu, 2010), the explicit context is provided directly by the

users, and the implicit context is automatically or partly automatically drawn from the

matchmaking mechanism. The other methods execute the discovery and recommend

APIs’ list which satisfy the functional requirements, technical requirements, and fiscal

Chapter 2. Literature Review 40

need of users (L. Guo, Wang, Kang & Cao, 2015; Sim, 2011). For example, (Maximilien

& Singh, 2004) broadens the typical agent-based SOA framework to an agent-based

service model. In this work, using a QoS ontology and XML policy language in

matchmaking, the agent performs as a broker of service consumers and agencies such

as the augmented API repository. Inter-organisational systems use software agents

to do the functional integration and improve business intelligence, and decide the

collaborative (Shen, Hao, Wang, Li & Ghenniwa, 2007).

2.3 Graph representation learning

One of common used data structure is graph, which is applied widely in many fields

relating to computer science such as social media, biological protein-protein networks,

molecular graph architecture, and their recommender systems. Graphs grasp the relation

or edges among nodes. In (Angles & Gutierrez, 2008), graphs are defined as the

backbone of the countless systems that contain the accessible relational information

of all interactions. Furthermore, graph contributes a pivot role in modern machine

learning. There are many existing application in different fields using graph data

structure to learn the embedding features to forecast and make recommendation such as

forecasting people’ roles in collaborative network, providing recommendation in social

media, classifying the role of protein in the graph of biological relationship, and so

on. However, how to embed the graph structure into the model using machine learning

is still an undiscovered question. For instance, to predict the interactions in a social

network, the pairwise properties of pairs of nodes are encoded. Another example is the

classification work which attaches the global position information of the node such as

the local neighbour graph. However, it is difficult to have a clear method to transform

the high-dimensional, non-Euclidean values of the graph architecture into a latent

feature vector. Conventional machine learning models use the graph statistical summary

Chapter 2. Literature Review 41

such as clustering coefficients (Bhagat, Cormode & Muthukrishnan, 2011), kernel

functions (Vishwanathan, Schraudolph, Kondor & Borgwardt, 2010) to extract the

graph-based information, and embed the engineered features to calculate the neighbor’s

architecture (Liben-Nowell & Kleinberg, 2007). However, such engineered features are

not flexible, specifically they might not adjust for the training and designing process of

these features which causes high time-consuming and costly process.

Therefore, a number of approaches which learn the representation through encoding

the graph structural information has increased. Such approaches use a mapping which

embeds nodes, subgraph, or the whole graph into a lower dimensional vector space. The

objective is to optimize the mapping and reflect the original graph-based structure. After

that, they use the embeddings as the input for the later machine learning steps. The

main difference between the previous approaches and the representation learning is the

way of learning the graph-based embedding. While previous approaches consider it as

a reprocessing process which uses hand-engineered statistics to draw out the structural

information, the representation method conducts this problem as machine learning task

that applies a data-driven framework to encode the graph-based information.

2.3.1 Generalized encoder-decoder architectures

Such above embedding approaches that we have reviewed in previous section are

shallow models, which use an embedding lookup (Hamilton, Ying & Leskovec, 2017b).

The limitation of shallow models is that the singular embedding vector for each node is

trained independently. Therefore such models have some following disadvantages:

• 1. The parameters of the encoder are not shared among nodes, specifically

a simple embedding lookup is used as the encoder. While using the shared

parameters is a powerful regularization form, un-shared parameters framework

increase to O(∣V ∣) that is inefficient computation.

Chapter 2. Literature Review 42

• 2. It is also difficult to use shallow embedding to extract the node attributes

through the encoder especially on many large graphs which consist of attribute

information such as user profiles on social media network.

• 3. The shallow embedding approaches can only apply for the nodes in the train

set. They cannot obtain the embeddings for masked nodes if we do not execute

more iterations of optimization. Therefore, embeddings from such approaches are

consider as transductive (Hamilton, Ying & Leskovec, 2017a). This might bring

disadvantages to evolving graphs, massive graphs which cannot be completed

stored in places requiring new graph generalization after training phase such as

memory and domains.

Existing modern approaches have shed light on these problems. Such methods still

are in the encoder-decoder architecture but they apply more complex encoders under

deep neural networks, that significantly exploit more attributes on the structure-based

graph.

2.3.2 Neighborhood autoencoder methods

To address the above problems, remarkable approaches using deep neural network to

learn the embedding are Deep Neural Graph Representations (DNGR) (S. Cao, Lu &

Xu, 2016) and Structural Deep Network Embeddings (SDNE) (D. Wang, Cui & Zhu,

2016a). Particularly, these approaches use the deep neural network straight attach the

graph structure into the encoder framework through a famous deep learning technique

autoencoder (Hinton & Salakhutdinov, 2006) where the neighbour information of nodes

is compressed and attached in.

Different from previous methods, instead of a pairwise decoder, DNGR and SDNE

use a unary one. Accordingly, a neighbourhood vector si ∈ RV is assigned to each node

vi, which is the row of vi in the pairwise similarities matrix S. The si includes the

Chapter 2. Literature Review 43

similarity between vi and other nodes and it is calculated as a high-dimension embedding

vector of vi’s neighbour. The approaches DNGR and SDNE aim to learn the node

embedding by using si vectors which can be rebuilt later from such embeddings. DNGR

and SDNE use the autoencoder with si vectors to reconstruct from such embeddings.

The objective is to use a low dimension vector to compact the neighbour’s information

of the node. Both DNGR and SDNE have the autoencoder parts consisting of multiple

neural network layers in which each encoder layer diminishes it input dimension while

each decoder layer enlarges it dimension (Hinton & Salakhutdinov, 2006).

The difference between SDNE and DNGR is the similarity formulas used to con-

struct the neighborhood vectors si and the optimization function of the autoencoder.

Similar to DeepWalk and node2vec, DNGR calculate si by using the pointwise mutual

information of two nodes co-existing on random walks. While SDNE uses the adjacency

vector and using Laplacian eigenmaps to create the autoencoder objective (D. Wang

et al., 2016a). Such encoder depends on the input si which consists of the local graph

information so it allows SDNE and DNGR to integrate the structural features.

2.3.3 Neighborhood aggregation and convolution encoders

The purpose of existing approaches on node embedding is to address the main dis-

advantage of the shallow models and autoencoder methods by using the encoders

which exploit the node’s local neighborhood but not necessarily the whole graph. The

insight of such approaches is that they create embeddings for a node by attaching

the local neighborhood information. Different from the conventional methods, these

neighborhood aggregation models depend on the features or attributes of nodes to learn

the embeddings. For instance, a textual description in a social network or molecular

markers in a protein-protein interaction network might have some relationship with

each node. The neighborhood aggregation methods exploit such attribute information

Chapter 2. Literature Review 44

to build their embeddings. If there is no such attribute data, a simple statistical graph

is used instead such as node degrees (Hamilton et al., 2017a) and a one-hot indicator

vector as an attribute (T. Kipf & Welling, 2016) (Schlichtkrull et al., 2018). Such

type of approaches are convolutional because it uses the surrounding neighbor nodes

to calculate the node embedding which is equivalent to the receptive field of a center-

surround convolutional kernel in computer vision (T. N. Kipf & Welling, 2016b). The

neighborhood based approaches learn the node representation in an iterative or recursive

in the encoding phase. Firstly, the input node attributes are used to initialize the node

embeddings. After that, at each iteration, nodes are attached with their neighbours’

embedding by an aggregation function of a set of vectors. All nodes later are assigned

with new embeddings which are equal to their neighbourhood vectors integrated with

their previous embeddings in the latest iteration. In the final step, these embeddings

are fed into a dense neural network layer. When repeating this process, the information

reached from the graph is aggregated into the node embedding. However, the embed-

ding dimension remains constrained when the process repeats. Therefore, the encoder

encloses all neighborhood features into a vector with low dimension. After a certain

loops, the iteration is terminated and output the final embedding vectors as the node

representation.

2.3.4 Graph representation approaches

Early research (Chamberlain, Clough & Deisenroth, 2017) (Y. Li, Tarlow, Brockschmidt

& Zemel, 2015) that apply neural network approaches on the graph data began with

recursive frameworks which consider data as the directed acyclic graphs. Currently,

deep learning has been successfully used to exploit sequence data in recursive neural

network (RNN) (Chung & Graham, 1997; Perozzi, Kulkarni & Skiena, 2016) and

grid-shaped data in CNNs (Atwood & Towsley, 2016). Other new approaches in a more

Chapter 2. Literature Review 45

generic structural data such as NeuralFPS (S. Cao, Lu & Xu, 2015; Fortunato, 2010)

which present tailored framework to a particular problem domain and used as an end-to-

end differential deep model. Such approach produces the famous Weisfeiler-Lehman

algorithm applied in molecular graphs.

On the other hand, some other approaches (De Oliveira & Levkowitz, 2003) use

the spectral graph theory to define the graph convolution functions. Other approaches

using spectral methods to replace principled-yet expensive graph convolutions such

as (Bruna, Zaremba, Szlam & LeCun, 2013) which use Chebyshev polynomials to

estimate a smooth filter and GCNs (Donnat, Zitnik, Hallac & Leskovec, 2018) use

simple first-order filters to interpret the process. In (Donnat et al., 2018), Kipf and

Welling present different types of graph-based tasks (Donnat et al., 2018; Hamilton

et al., 2017a; Ou, Cui, Pei, Zhang & Zhu, 2016) and produce some variants such as

as (A. Ahmed, Shervashidze, Narayanamurthy, Josifovski & Smola, 2013; Murphy,

Weiss & Jordan, 2013). MCN (J. B. Lee et al., 2019) introduce a general version

of GCN (Donnat et al., 2018). Such approach firstly use a weighted motif-induced

adjacency matrix to enhance the neighbour features of nodes and then propose a novel

attention framework to support the neighbours selection for better feature integration.

2.3.5 Higher-order connectivity with Network Motifs

The fundamental building blocks of complex network are defined as network motifs

(Gilmer, Schoenholz, Riley, Vinyals & Dahl, 2017). Critical information about the

function and structure of complex systems can be investigated from such patterns. A

motif study (Hochreiter & Schmidhuber, 1997) in biological networks demonstrate that

the vigorous attribute of robustness to perturbations highly correlated to the occurrence

of particular motif patterns. Another work (Henderson et al., 2012) applying motifs

in temporal networks state that graphs from different domains have very different

Chapter 2. Literature Review 46

sub-graph structures which are considered as type of motifs.

A great number of existing research (Backstrom & Leskovec, 2011; Grover &

Leskovec, 2016; Hoff, Raftery & Handcock, 2002; Paranjape, Benson & Leskovec,

2017) show the success of applying higher-order structures in variant graph-based

machine learning models. DeepGL (Kearnes, McCloskey, Berndl, Pande & Riley,

2016) define motifs as a fundamental element to deeply learn the inductive relational

functions which represent for relational operators’ compositions in a base graph function

for example triangle counts. In (Hoff et al., 2002), a notion of higher-order network

embeddings is proposed, which show that attaching different motif-based matrix formu-

lations can improve the accuracy of embeddings learning. Another work (Paranjape

et al., 2017) propose a hierarchical motif convolution to the subgraph classification.

Recently, (Grover & Leskovec, 2016) has demonstrated that standard GNN architectures

and the 1-dimensional WL graph isomorphism heuristic have the same expressiveness.

Therefore, such approaches have some similar disadvantages. They propose a generaliz-

ation using higher-order structures to address the problem of graph classification.

2.4 Service recommendation systems

To address the challenges of selecting and discovering services, recommender system

has been a common technique. Conventional Web API discovery from basic repositories

are mainly used in early service recommender system and UDDI registries (Pastore,

2008) is a popular example. However, UDDI has been obsoleted because many large

technology companies stopped using it such as Google, IBM, and SAP. Another tech-

niques such as keywords-based and ontology-based query techniques are also used for

Web APIs dicovery. However, they are still limited for the rapid developed Web API

repositories (Broens, Pokraev, Van Sinderen, Koolwaaij & Costa, 2004; Yao, Sheng,

Ngu, Yu & Segev, 2014). Therefore, researchers continue to investigate better solutions

Chapter 2. Literature Review 47

for service recommender system.

2.4.1 Functionality-based Web service recommendation

Functionality-based Web service recommender systems user APIs’ description to match

request of users to recommend APIs. Some initial approaches use keyword-based API

profile to match normally undergo low retrieval performance. Hence, researchers have

used explicit semantics to enhance the matching service performance. Such models

enrich semantics of APIs’ descriptions by exploiting dictionaries and domain ontology,

and then apply logic-based reasoning to calculate the semantic similarity. However, the

disadvantages of defining ontology manually and annotating descriptions bring more

difficulties when applying for a large scale service data.

Therefore, other approaches attach machine learning and data mining technique to

functionality based service recommendation. For example, (Meng, Dou, Zhang & Chen,

2014) applied keywords to signify user preferences and recommended APIs correspond-

ing to their semantic compatibility what match with user preferences. (N. Zhang, Wang

& Ma, 2017) presents to draw out domain service objectives from context descriptions

to satisfy users’ intentional requirement. (Yao, Wang, Sheng, Ruan & Zhang, 2015)

propose an functional-based service recommendation using functional features and the

co-invocation of APIs.

2.4.2 Social network-based Web service recommendation

Using relationship of programmers in the social network to recommend a suitable

list of APIs is a another popular approach in service recommendation. Some of such

social network-based Web service recommender systems are (B. Cao, Liu, Tang, Zheng

& Wang, 2013; W. Chen, Paik & Hung, 2013; W. Xu et al., 2013; W. Gao, Chen,

Chapter 2. Literature Review 48

Wu & Bouguettaya, 2016; T. Liang, Chen, Wu, Dong & Bouguettaya, 2016). Par-

ticularly, (B. Cao et al., 2013) attach interest of users and their social relationship to

recommender system to program mashup. (W. Chen et al., 2013) combine different type

of user-item relations to create a social network to recommend service. (W. Xu et al.,

2013) build a global network of social service relying on complex networks and recom-

mend an approach of API discovery. (W. Gao et al., 2016) use the preference history of

users to propose a service recommender system, functionalities of services and mashups,

and mashup-API invocation relationship. (T. Liang et al., 2016) apply heterogeneous

information network to demonstrate heterogeneous objects of APIs, mashups, provider,

and tags. This approach also investigate the relations among such objects and design a

meta-path based Web service recommender system. The analytical comprehension and

multiple embedded factors which contribute to the mashup-API invocation information

and therefore such model achieve good recommendation performance.

2.4.3 Collaborative Filtering RS

Currently, Collaborative Filtering (CF) is a popular method for web service recom-

mender systems that utilize the implicit mashup-API invocation information. Existing

CF methods can be generally classified into memory-based (Herlocker, Konstan, Borch-

ers & Riedl, 2017; Sarwar et al., 2001a; Linden, Smith & York, 2003; Sarwar et al.,

2001a) and model-based (Bobadilla, Ortega, Hernando & Gutiérrez, 2013; Adomavicius

& Tuzhilin, 2005; M.-H. Park et al., 2007; Roh et al., 2003; L. Gao & Li, 2008; J. Zhong

& Li, 2010). The latter class in general has better prediction accuracy and PMF (Mnih

& Salakhutdinov, 2008) is one of the popular models. However, current PMF-based

models (P. He, Zhu, Zheng, Xu & Lyu, 2014; S. Li, Wen, Luo, Cheng & Xiong, 2017;

Lo, Yin, Deng, Li & Wu, 2012; Sandvig, Mobasher & Burke, 2008; H. Wu, Yue, Li,

Chapter 2. Literature Review 49

Zhang & Hsu, 2018a) are short of the ability to distinguish the importance of invoca-

tions or feature interactions, which leads to substandard prediction. In reality, different

historical invocations usually have different predictive values and not all latent features

contribute relevant information to predict future invocations (Bobadilla et al., 2013).

Hence, less relevant features should be assigned lower weights while more relevant

features be assigned higher weights. In this thesis, we call these weights attentional

scores. Furthermore, when the number of mashups and APIs grow, the sparsity of the

invocation data is also going up, which influences the accuracy of the model (Kim et al.,

2017). There is strong evidence that exploiting the auxiliary information can improve

the prediction performance. For example, auxiliary information such as descriptions,

reviews, and trustworthiness has been used in (Martinez-Cruz, Porcel, Bernabé-Moreno

& Herrera-Viedma, 2015; C. Park, Kim, Oh & Yu, 2016; Y. Zhong, Fan, Tan & Zhang,

2016). Therefore, integrating auxiliary information to the attentional model is promising

to model performance. The CF-based models leverage the historical data of similar

users or mashups to predict. Some works are a neighbourhood integrated matrix fac-

torization approach, a neighbour-based Region KNN model utilizing the same region

historical data (X. Chen, Liu, Huang & Sun, 2010), and a location-aware CF model

using location information for QoS prediction (J. Liu et al., 2015).

In addition, there are some other types of CF-based models in service recommenda-

tion such as a hybrid random walk model was used to calculate the similarity between

mashups (Hu, Peng, Hu & Yang, 2014), a reinforced CF model with mashup-intensive

and API-intensive which eliminates the interference of the mashup (Zou et al., 2018).

Other works use different types of auxiliary information of mashups and APIs to con-

struct a heterogeneous information network (HIN) and calculate the their similarity

scores for invocation prediction (Xie, Wang et al., 2019; T. Liang et al., 2016; Xie,

Chen, Lin, Zheng & Lin, 2019).

Chapter 2. Literature Review 50

To tackle the limitation of using a prediction model from single mashup-API in-

vocations, many other hybrid models exploit the context information and invocation

history in higher order. Specifically, the correlation scores between mashups and APIs

are calculated on the neighbour invocation under CF framework and then obtain the

prediction value by using the product function (Jain et al., 2015; Samanta & Liu, 2017).

Such approaches only use the linear and product operator which has limitation on

capturing the high-order and complex invocation between mashups and APIs.

2.4.4 Hybrid Service Recommendation

Inheriting from above mentioned methods, hybrid approaches incorporate different

factors such as history of mashup-API invocation and functionalities to service re-

commender systems. For instance, (Yao et al., 2015) combine CF and content based

recommendation to form a hybrid approach, which actively recommend Web APIs

matching the interest of users. (Jain et al., 2015) attached three factors consisting of

APIs’ functionalities, mashup-API history of existing mashups, and APIs’ popular-

ity’s into the service recommender systems. They apply matrix factorization based

collaborative filtering, probabilistic topic models, and Bayes’ theorem to predict the

list of APIs for mashup programming. Later on, (Samanta & Liu, 2017) further exploit

the Hierarchical Dirichlet Process (HDP) to explore functional relevant APIs relying

on their specifications. Then, this work applies the Probabilistic Matrix Factorization

(PMF) to predict APIs recommendation list according to invocation history and address

the cold start situation to create new mashups among their most adjacency neighbors.

2.5 Summary

This chapter reviews the fundamental concepts including frameworks, definitions, com-

ponents, methods, and technologies of mashup and Web API in service computing. The

Chapter 2. Literature Review 51

chapter also presents the requirement of context awareness and how it is applied as

a type of auxiliary information in existing service computing research. The chapter

also reviews the relevant work on graph representation learning which leverages the

autoencoder architectures with neighborhood aggregation and convolution layers. For

graph structure, higher order of connectivity is also explored with network motifs defin-

itions and concepts in recent works. Finally, the chapter investigates the most popular

recommender systems used in service computing consisting of functionality-base, social

network-based Web service recommender systems, collaborative filtering recommender

systems, and hybrid service recommender systems. Even though extensive existing

works on the graph-based collaborative filtering in service recommendation, there are

many limitations and challenges need to be addressed. All the sections of this chapter

have specifically focused on research to solve the challenges being identified in the

research questions of the thesis. Specifically, we explore the works in Section 2.2 and

figure out limitation for RQ1. The limitation in Section 2.3.1 and 2.3.2 is used for RQ2.

The Section 2.3.4 and 2.3.4 is motivated for RQ3. All challenges identified in Section

2.4 are used to all the three research questions.

Chapter 3

Attentional Matrix Factorization with

Context and Co-invocation for service

recommendation

3.1 Overview

APIs have been increasingly developed and widely used for Web and mobile applications

over the past years ((Bouguettaya et al., 2017; Sheng et al., 2014)). For instance,

programmers in different application domains are able to integrate maps into their

products in several coding lines with Google Maps API. ProgrammableWeb.com has

become the largest online Web API registry with extensively-cited sources of data such

as mashup and API descriptions and invocations. However, the accelerated growth in

the quantity of APIs has brought difficulties for programmers to choose the right APIs

from a large number of candidates. Moreover, sparse API invocation data also brought

challenges to API recommendation systems ((Kim et al., 2017)). Hence, it is highly

demanded to develop better recommendation techniques for programmers to pinpoint

the proper APIs for mashup development.

52

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 53

Currently, Collaborative Filtering (CF) is a popular method for web service recom-

mender systems that utilize the implicit mashup-API invocation information. Existing

CF methods can be generally classified into memory-based ((Herlocker et al., 2017; Sar-

war et al., 2001a; Linden et al., 2003; Sarwar et al., 2001a)) and model-based ((Bobadilla

et al., 2013; Adomavicius & Tuzhilin, 2005; M.-H. Park et al., 2007; Roh et al., 2003;

L. Gao & Li, 2008; J. Zhong & Li, 2010)). The latter class in general has better

prediction accuracy and PMF ((Mnih & Salakhutdinov, 2008)) is one of the popular

models. However, current PMF-based models ((P. He et al., 2014; S. Li et al., 2017;

Lo et al., 2012; Sandvig et al., 2008; H. Wu et al., 2018a)) are short of the ability

to distinguish the importance of invocations or feature interactions, which leads to

substandard prediction. In reality, different historical invocations usually have different

predictive values and not all latent features contribute relevant information to predict

future invocations ((Bobadilla et al., 2013)). Hence, less relevant features should be

assigned lower weights while more relevant features be assigned higher weights. In this

chapter, we call these weights attentional scores.

Furthermore, when the number of mashups and APIs grow, the sparsity of the

invocation data is also going up, which influences the accuracy of the model ((Kim et al.,

2017)). There is strong evidence that exploiting the auxiliary information can improve

the prediction performance. For example, auxiliary information such as descriptions,

reviews, and trustworthiness has been used in ((Martinez-Cruz et al., 2015; C. Park

et al., 2016; Y. Zhong et al., 2016)). Therefore, integrating auxiliary information to

the attentional model is promising to model performance. In this chapter, we call such

auxiliary information context.

In this thesis, we improve the conventional PMF model by considering the import-

ance of the binary mashup-API invocations through learning their latent features. We

propose an AMF model, which leverages the attentional mechanism in neural network

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 54

modelling to weight the latent features interaction of mashup-API invocations. Sub-

sequently, we define an attentional network to parametrize the attentional score and

learn them together with the AMF model. To mitigate the sparsity problem, we use

Doc2Vec technique (Le & Mikolov, 2014) to exploit the context of APIs and mashups.

We also explore the implicit relationships derived from the API co-invocation matrix,

in which any pair of APIs is reflected by the number of mashups they invoke together.

There is evidence showing that the co-invocation value of two APIs indicates their

compatibility in a specific mashup (Yao, Wang, Sheng, Benatallah & Huang, 2018).

The main contribution of this work includes:

• We enhance the traditional PMF by setting weights to the latent features of

mashups and APIs according to their influence levels, and propose a neural

network architecture for the AMF model.

• We propose a method to learn the context of mashups and API by using the

Doc2Vec technique. Such method can generate the context similarity between a

mashup-API pair and any two APIs pair.

• We implement a statistical analysis for API co-invocation data and learn the

distribution of co-invocation frequency for each pair of APIs.

• We conduct comprehensive experiments on ProgrammableWeb dataset with

different percentages masked training dataset, and the results show that out model

outperforms all the baseline models.

The rest of chapter is organized as follows. Section 3.2 discusses the related work on

recommender systems and presents the problem statement. Section 3.3 first gives an

overview of our proposed approach, which describes the framework of APIs recom-

mendation, and then defines the AMF model and the method of extracting relevant

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 55

information from both context and co-invocation. Section 3.4 presents the experimental

evaluation. Finally, Section 3.5 concludes the chapter.

3.2 Preliminaries

3.2.1 Related work

Web service recommendation research was initially focused on service discovery from

repositories such as UDDI ((Pastore, 2008)) using keyword and/or ontology based

approaches. However, such approaches can only achieve limited accuracy ((Broens et

al., 2004; Yao et al., 2014)).

In recent years, with the rapid development of machine learning research, collabor-

ative filtering is widely adopted in service recommendation. In general, CF methods can

be classified as memory-based or model-based. Both methods use the the mashup-API

interaction matrix. The difference is that the former directly uses the matrix as data

in the prediction while the latter extracts information from the data to build a model.

In terms of input data, explicit feedback such as QoS ratings is frequently used. For

example, ((Zheng, Ma, Lyu & King, 2010)) and ((Shao et al., 2007)) use similarity of

QoS ratings of mashups to recommend APIs. ((X. Chen et al., 2010)) augments the

memory-based CF approach by using the geographic-based QoS data. ((Tang, Zhang,

Liu & Chen, 2015)) uses mashups and APIs’ locations to calculate the neighborhood

for smoothing the data, then integrates mashup-based and API-based CF for recom-

mendation.

Matrix factorization (MF) ((Mnih & Salakhutdinov, 2008; Koren, 2010)) is one of

the most popular model-based CF methods. In general It leverages dot-product as a

linear interaction to obtain the latent features for both users and items (or mashups and

APIs in the context of Web service recommendation). Recently, Deep Neural Networks

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 56

(DNNs) are applied to MF To enhance its capacity. For instance, NeuMF ((X. He et

al., 2017b)) applies Multi-Layer Perceptron (MLP) on user-item interactions to extract

non-linear information; AFM ((Xiao et al., 2017)) leverages MLP as an attentional

mechanism to learn the weights of feature interactions; and HFM ((Tay et al., 2019))

adopts the holographic operator as an augmentation of the inner product. All the

above-mentioned approaches treat user-item interactions as isolated pairs instead a

connected graph ((X. Wang et al., 2020a)). To further leverage higher-order connectivity

among users and items, NGCF ((X. Wang, He, Wang, Feng & Chua, 2019)) and LR-

GCCF ((L. Chen, Wu, Hong, Zhang & Wang, 2020)) applies Graph Convolutional

Networks (GCN) ((T. N. Kipf & Welling, 2016a)) to learn and reason upon the full

user-item interaction graph.

There is also a trend to integrate other sources of information to CF to enhance pr

edition accuracy. For example, ((Yao et al., 2014)) consolidates CF and content-based

recommendation ((Yao et al., 2014)); ((Naïm, Aznag, Durand & Quafafou, 2016))

leverages pattern mining to present the maximal common context of APIs; ((Buqing,

Tang & Huang, 2014)) uses the content similarity between services to recommend

APIs; and ((Rahman, Liu & Cao, 2017)) integrates content and network-based service

clustering to give recommendation in an API shortlist.

All of the above-mentioned approaches have utilized the relationships between

items and APIs. Inspired from these works, our approach learn the relationship among

APIs from their invocation history and then attach to the proposed AMF model as a

regularization term to enhance recommendation performance.

3.2.2 Problem statement

In a Web API discovery platform like ProgrammableWeb, when a developer wants to

build a mashup application, the system generates a list of APIs that are supposed to be

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 57

Figure (3.1) Number of APIs in a Mashup

close to the mashup’s requirements. We assume that these requirements are descriptions

provided by the developer. For example, a food ordering and delivery mashup may be

required to provide functions such as restaurant and menu listing, secure payment and

customer feedback. Available APIs are abundant and diverse, while a mashup usually

only uses a few of them.

Figure 3.1 shows that with over 3500 available APIs, the average number of APIs

used in most of the mashups is just around five. Figure 3.2 shows the distributions of

APIs over mashups. Each red dot presents an invocation from a mashup to an API.

It can be seen that there are many APIs that have never been used by any mashup.

Therefore, finding and suggesting a set of most compatible APIs is the main benefit of

using recommendation systems.

Like traditional approaches ((Bobadilla et al., 2013)), we focus on the invocation

history of APIs and mashups to learn latent features and determine the similarity

between APIs and mashups from a matrix factorization model. However, we subtly

integrate the attentional score to invocation through the learning process and investigates

the context documents of APIs and mashups, which has not been considered by many

studies. Also, some APIs are more compatible with the same mashup, and some others

are less. Thus, we explore how to derive the implicit relationship of APIs and integrate

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 58

Figure (3.2) Distribution of APIs and mashup

it into our AMF model for better rating prediction.

3.3 Proposed Approaches

3.3.1 Overview

To address the above-mentioned challenge, this chapter proposes a novel framework of

APIs recommendation for mashups development. As demonstrated in Figure 3.3, the

framework presents the AMF model with Attentional Network and the two main auxili-

ary information parts including similarity measurement and APIs implicit relationship.

Regarding the similarity measurement part, when an active user wants to make a

new mashup, she would type in some descriptions about the mashup. The descriptions

from both new mashup and available APIs are fetched into a word embedding model

using Doc2vec technique ((Le & Mikolov, 2014)) to generate a document matrix. After

that, we use cosine similarity ?? to compute the similarity between the mashup and

each APIs, and also between two different APIS using their document matrices.

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 59

APIs/Mashups
(Textual descriptions,

Mashup invoke history)

AMF

Active

user

APIs

recommendation

list

APIs Co-invocation

Matrix

New Mashup

document

matrix

APIs

Document

matrix

Similarity

between new

Mashup and

APIs

Document-context awareness APIs implicit relationship

API pairs

implicit

relationship

Attentional Network

Figure (3.3) The proposed framework for service recommendation.

Regarding the APIs implicit relationship part, API invocation history provides

information about their participation in mashups. The implicit relationship of APIs is

learned from their prevalence of being in the same mashups.

In the next step, mashup-API similarity and APIs implicit relationship is integrated

into an AMF model as regularization terms. A list of APIs with highest recommendation

scores will then be recommended for the new mashup development.

The following subsections present further specific aspect of the framework beginning

from the general model AMF (Section 3.3.2 and extending to the regularization parts

including Document-context awareness and APIs implicit relationship (Section 3.3.3).

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 60

1 0 0 0 1 ……..

m1 m2 a2a1

Sparse Invocation Input

r11 (m1 a1) r12 (m1 a2) r21 (m2 a1) r22 (m2 a2)

Latent Feature Vectors

Embedding Layer

r11 r12 r21 r22

ij (mj ai)

Attentional

Network

11 12 21 22 Attention based Layer

Prediction Layer

Figure (3.4) The neural network architecture of AMF Model

3.3.2 Attentional PMF Model (AMF)

Supposed that there is an invocation record of na APIs and nm mashups, we denote the

invocation relationship between APIs and mashups by a matrix R ∈ Rna×nm . We use a

binary variable rij , which indicates an invocation pairing of API ai and mashup mj . If

API ai is invoked by mashup mj then rij is equal to 1, and 0 otherwise. We define r̂ij

as the probability that API ai will be invoked by mashup mj .

rij =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if mj invoke ai

0 otherwise

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

. (3.1)

Attentional network

Figure 3.4 demonstrates the neural network architecture of our proposed model. The

sparse invocation input is the input layer, and it is factorized into two matrices A∈ Rna×d

and matrixM ∈ Rnm×d which represent latent features of mashups and APIs respectively.

In the embedding layer, different from PMF which defines r̂ij as the dot product of two

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 61

latent feature vectors ai and mj as defined above, we add an attentional score to present

the importance of the interaction into the prediction of r̂ij as below:

r̂ij = αijai
Tmj (3.2)

Where αij is the attentional weight for the invocation between API ai and mashup

mj , which represents the importance of the dot product aiTmj to the predicted value.

To learn αij , we adopt the approach of Xiao et al. ((Xiao et al., 2017)) that constructs

an attentional network with a multi-layer perceptron (MLP). By doing so, our model

can estimate the attentional scores of these invocations. However, we define attentional

score as a scalar, and it is defined as below:

α′ij = hReLU(Wai
Tmj + b) (3.3)

αij =
ea

′
ij

∑
na
i=1∑

nm
j ea

′
ij

(3.4)

where W ∈ Rl×d, b ∈ Rl, h ∈ Rl are parameters of the model, and l is the number

of hidden layers of the attentional network. Following the previous work ((Xiao et

al., 2017)), we first obtain the attentional score by Equation 3.3 through a rectifier

activate function, then we normalize it by a softmax function as in Equation 3.4. We

simultaneously learn αij and compute the features of mashups and APIs by minimizing

an attentional sum of squared errors loss function of a PMF model in the following

section.

Probabilistic matrix factorization for AMF

Figure 3.5 illustrates the integration of an attentional network into PMF in the form

of a probabilistic graphical model ((Mnih & Kavukcuoglu, 2013)). There are na APIs

and nm mashups. The matrix R ∈ Rna×nm denotes the interaction between mashup-API

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 62

ai mj

rij
j= 1,…, nm

i= 1,…, na

a
2

m
2

2

ij

Figure (3.5) The graphical model for AMF

pairs and each interaction between ai and mj is rij . Attentional score between them

is αij . The conditional distribution of the mashup-API interaction data is defined as

below:

p(R∣A,M,α,σ2) =
na

∏
i=1

nm

∏
j=1

[N(rij ∣f(ai,mj, αij), σ
2)]

Iij (3.5)

, where N(µ,σ2) is the probability density function of the Gaussian distribution with

mean µ and variance σ. Iij is the interaction index, which is equal 1 if there are

invocation between API ai and mashup mj , 0 otherwise. The approximate preference

of mashup mj on API ai is presented by funtion f(ai,mj, αij). It is equivalent to the

mean of the Gaussian distribution and defined as f(ai,mj, αij) = aiTmj.αij , where we

calculate the inner product of ai and mj , weighted by the attentional score αij .

We obtain the 0-mean spherical Gaussian priors for mashup and API latent feature

matrices as p(A∣σ2
a) = ∏

na
i=1N(Ai∣0, σ2

aI), and p(M ∣σ2
m) = ∏

nm
j=1N(Mj ∣0, σ2

mI). Then,

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 63

the posterior distribution of Equation. 3.5 is demonstrated as below:

p(A,M ∣R,α,σ2, σ2
a, σ

2
m)

≈ p(R∣A,M,α,σ2, σ2
a, σ

2
m)p(A∣σ2

a)p(M ∣σ2
m)

=
na

∏
i=1

nm

∏
j=1

[N(rij ∣f(ai,mj, αij)σ
2)]Iij

×
na

∏
i=1

N(Ai∣0, σ
2
aI) ×

nm

∏
j=1

N(Mj ∣0, σ
2
mI)

(3.6)

We operate the logarithm of the Equation. 3.6 and obtain the log of posterior

distribution as below:

lnp(A,M ∣R,α,σ2, σ2
a, σ

2
m)

= −
1

2σ2

na

∑
i=1

nm

∑
j=1
Iij[rij − f(ai,mj, αij)]

2

−
1

2σ2
a

na

∑
i=1
AT

i Ai −
1

2σ2
m

nm

∑
i=1
MT

j Mj

−
1

2
[(

na

∑
i=1

nm

∑
j=1
Iij) lnσ2 + nad lnσ2

a + nmd lnσ2
m] +C

(3.7)

, where C is the independent constant. It is equivalent to minimize the sum of squared

errors objective function defined as follows:

min
A,M

L =
na

∑
i=1

nm

∑
j=1

1

2
Iij(rij − αijai

Tmj)
2 +

λa
2

∥A∥2F +
λm
2

∥M∥2F (3.8)

, where Iij equals 1 if API ai is invoked by mashup mj , and 0 otherwise. Regularization

parameters are λa and λm. ∣.∣F is the Frobenius norm.

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 64

3.3.3 Mashup recommendation with integrated with document-context

awareness and implicit API relationship

We leverage the advantage of the PMF model and make use of the auxiliary information

to reduce the model overfitting and enhance the prediction accuracy. Specifically, we

exploit the information of document-context and implicit API relationship for the AMF.

Generally, in recommender systems, both explicit and implicit reviews can be util-

ized to derive users’s preference over items. While the explicit reviews indicate the

occurrence of user-item interactions, the implicit reviews obliquely reflect users’ senti-

ment by paying attention to their previous historical interaction. In service recommender

systems, mashups are considered as users, APIs are corresponding to items, and ratings

are invocations. We interpret the service co-invocation as implicit API relationship and

incorporate it with document-context awareness to execute recommendation based on

such implicit co-invocations learned from the existing historical data.

Two regularizing terms are used corresponding to the document-context and the

implicit relationship for API recommendation. We detail the implementation of these

two terms in Section 3.3.3 and Section 3.3.3 respectively.

Document mining with Doc2vec word embedding technique

We implement document mining with the Doc2vec technique for the first regularization

term. To prepare the input for the word embedding model, we first collect the data

of APIs descriptions from service provider, such as ProgrammableWeb or RapidAPI.

The description may include name, category, tags, introduction, and historical mashups.

Next, we preprocess the data to extract stemming while keeping stop words as they

influence the context of the document.

In the next step, we generate document latent vector vD from the descriptions which

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 65

will be used in our recommendation system model. Namely,

D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∣ ∣ ∣ ∣

vD vw1 vw2 ... vwV

∣ ∣ ∣ ∣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.9)

In Equation 3.9, D is the document matrix and D ∈ RN×(V +1), V is the length of the

document, and N is the number of latent features according to embedding dimensions

for each word wv with v ∈ {1, .., V }. Context similarity between a new mashup mj and

API ai is denoted by sij and obtained by the distance between two vector vD(mj) and

vD(ai) by Euclidean norm as below:

sij =∣vD(mj), vD(ai)∣ (3.10)

, where sij ∈ Rna×nm . It is woth noting that the similarity sij is added to attach the

context information to the prediction as a regularization term as below:

λSsij
2

∣MAT ∣2F (3.11)

The sensitivity analysis of the proposed method to the setting of N will be discussed in

the experiment section.

Implicit APIs relationship mining

We use distribution fitting for co-invocation analysis to build the second term. The

recommended APIs have to be appropriate for the new mashup and also compatible

with other APIs within the mashup. Therefore, there must be some latent information

influencing the co-invocation of APIs, and such latent relationship cannot be directly

observed from APIs’ description. To solve this problem, ((Yao et al., 2018)) propose a

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 66

1 5350

2 750

3 350

4 200

5 150

6 100

7 60

8 50

9 40

10 40

11 40

12 40

13 40

14 40

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u

m
b

e
r

o
f

A
P

I
p

a
ir

s

Co-invocation frequency

Figure (3.6) Co-invocation frequency of API pairs

pre-trained model to learn this implicit correlation from textual profile and co-invocation

history, and add it to the main PMF as a regularization part. Then TF-IDF is used to de-

rive the context similarity of APIs, assuming the distribution is Poissonfor co-invocation

counts of each pair of APIs. In this work, we do not pre-train the model but implement

statistical analysis for the co-invocation counts and derive a suitable distribution. Such

fitting effectively represents the probability of APIs’ invocation by the same mashup.

Using Easyfit, we fit the distributions for this data. Figure 3.7 ((Rinne, 2008)) is the fit-

ting results showing that Weibull is the best-fit distribution with parameters λ = 0.59726

and k = 31.522. The Goodness of Fit shows how much distributions fit the data and

Weibull achieves the best among three different statistical tests including Kolmogorov

Smirnov, Anderson Darling, and Chi-Squared:

Pik =
k

λ
(
fik
λ

)k−1e(
−fik
λ
)k (3.12)

where fik is the co-invocation frequency of API ai and mashup mj . APIs which are

used to be invoked in the same mashup have much chance to be together in the future

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 67

Distribution

1 Weibull

2 Weibull (3P)

Distribution

Statistic Rank Statistic Rank Statistic Rank

1 Exponential 0.664 4 63.417 5 122.69 3

2 Exponential (2P) 0.66603 5 72.706 6 124.97 4

3 Gamma 0.70539 6 26.073 4 79.62 2

4 Gamma (3P) 0.34274 3 15.51 3

5 Weibull 0.17993 1 3.137 1 5.1328 1

6 Weibull (3P) 0.20017 2 9.7723 2

7 Erlang

8 Erlang (3P)

Goodness of Fit - Summary

Fitting Results

Parameters

N/A

N/A

No fit

No fit

Chi-Squared

Kolmogorov

Smirnov

Anderson

Darling

Figure (3.7) Distribution fitting for frequency of API pairs

because of their latent relevant features. I.e., if API ai has a co-invocation list of APIs

ak ∈K(i), then we can assume that ai’s latent vector should be closed to that of ak.

We fully demonstrate the implicit relationship between APIs by both context simil-

arity and prevalence of co-invocation by integrating these two elements into a single

measurement of Reik. Reik is the implicit relationship of API ai and ak and is defined

by weighted summation of context similarity and co-invocation prevalence as below:

Reik = θsik + (1 − θ)Pik (3.13)

, where θ is the weight for context similarity. Hence, we revise the original regularization

term as below:
γ

2

x

∑
i=1

∣(Ai −
∑k∈K(i)Reik ×Ak

∑k∈K(i)Reik
)∣F (3.14)

The implicit relationship allows the regularization term to treat APIs’ co-services

differently. If API ai is very similar to ak, say Reik = 0.99, then ak should contribute

more influences on features of ai. Reversely, if Reik = 0.01, then ak should influences

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 68

ai mj

rij
j= 1,…, nmi= 1,…, na

a
2 m

2

2

a1

a2

ak

si,2

si,k

si,1

sij, ij

Figure (3.8) The graphical model for AMF with regularization.

less.

Probabilistic matrix factorization of AMF+ model

We have defined the context and API co-invocation (refer Section 3.3.3 and Sec-

tion 3.3.3). We utilize both of them to enhance the AMF as a better model named

AMF+. Figure 3.8 illustrates the probabilistic graphical model of AMF+. Different

from AMF, to weight the interaction between mashup mj and API ai, we add both sij

and aij into their latent features inner product. This way allow us to inject the context

into the model. Therefore, the conditional distribution of interaction data for AMF+ is

demonstrated as:

p(R∣A,M, s,α, σ2) =
na

∏
i=1

nm

∏
j=1

[N(rij ∣f(ai,mj, sij, αij), σ
2)]

Iij (3.15)

We also attach the context and the co-invocation of neighbourhood APIs into

the regularization parts as defined in Section 3.3.3 and Section 3.3.3. Similar to

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 69

Section 3.3.2, we use Bayesian to reconstruct the posterior distribution of Equation 3.15

and transfer to the natural logarithm. Finally, maximizing the log of posterior is similar

to minimize a confidence weighted sum of squared errors loss function as in Equation

3.16.
min
A,M

L =
na

∑
i=1

nm

∑
j=1

1

2
Iij(rij − sijαijai

Tmj)
2

+
γ

2

na

∑
i=1

∣(Ai −
∑k∈K(i)Reik ×Ak

∑k∈K(i)Reik
)∣F

+
λSsij

2
∣MAT ∣2F +

λa
2

∣A∣F +
λm
2

∣M ∣F

(3.16)

The relationship functionReik allows the context and implicit relationship regularization

term treat APIs’ correlations differently. If APIs ai and ak are very compatible and very

similar, then Reik closes to 1. Reversely, if these two APIs are contextly different and

have never been simultaneously invoked in any mashup, Reik should be close to 0.

We use gradient descent in feature vectors Ai and Mj to obtain the local minimum

of the objective function given in Equation 3.16.

∂L

∂Aj

= −
na

∑
i=a
Iij(rij − sijαijai

Tmj)Mj + sijλSMATM

+ λaAi + γ(Ai −
∑k∈K(i)Reik ×Ak

∑k∈K(i)Reik
)

+ γ ∑
g∈K−(i)

(−Reig)(Ag −
∑k∈K(g)Regk×Ak
∑k∈K(g)Regk

)

∑k∈K(g)Regk

(3.17)

∂L

∂Mj

= −

y

∑
j=m

Iij(rij − sijαijai
Tmj)Ai + sijλSMATA + λmMj (3.18)

3.4 Experiments

This section presents the empirical performance of the proposed model in service

recommendation, specifically with ProgrammableWeb dataset. We run the experiments

on Anaconda environment with Python 3.7 on a PC with Intel i5-6500@3.2 GHz CPU,

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 70

16 GB RAM. Our objective is to answer the following research questions:

RQ1 How does the proposed model perform as compared with the state-of-the-art

baseline CF methods?

RQ2 How much do the context similarity (Doc2vec word embedding) and API co-

invocation prevalence influence the performance of the proposed model?

RQ3 How much impact are the hyperparameters including the number of context latent

features, similarity weight θ, regularization λS , and γ on the experiment results

of the proposed models and baselines as well?

3.4.1 Set up data

We use the dataset of ProgrammableWeb1 to demonstrate the effectiveness of the

proposed model. The dataset consists of textual descriptions of 17829 APIs and 6340

mash-ups, and their historical invocation. Because the dataset does not have the ratings

between mashups and APIs, we adopt their invocation data as the ratings. For example,

if mashup m1 invokes API a5, their invocation data is 1, and we use this value as

rating between this mashup- API pair. After that, we do reprocessing for the dataset

as follows: (1) We remove blank APIs and mashups, and obtain 5691 mashups and

1170 APIs; (2) We obtain the document vectors of all descriptions by pre-train model

Doc2Vec by using library Gensim Doc2Vec and calculate the description similarity

between descriptions by Cosine similarity. (3) We use Python to do programming to

define the co-invocation frequency between pairs of APIs. (4) We also calculate the

historical invocation between pairs of mashup-API; (5) We remove a certain portion of

the mashup-API interactions to create a training set, and the original data becomes the

test set.
1We download the database from https://dev.maxmind.com/in November 2018.

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 71

3.4.2 Baselines

We compare the proposed model with the following baselines.

1. SVD++: SVD based Matrix Factorization Model applies singular value decom-

position ((Koren, 2010)).

2. PMF: Probabilistic Matrix Factorization Model purely uses ratings for collaborat-

ive filtering ((Mnih & Salakhutdinov, 2008)).

3. LDA-MF: This model uses the LDA instead of Doc2Vec techniques to pre-train

the context similarity of services and mashup, then attaches them into PMF as a

regularization part ((Blei, Ng & Jordan, 2003)).

4. CI-MF: Matrix Factorization based model with API Co-invocation regularization,

which uses TF-IDF for text mining ((Yao et al., 2018)).

5. NeuMF: This is the vanilla matrix factorization method that represents users and

items as feature vectors and exploits their direct interactions by inner product and

binary logistic loss function ((X. He et al., 2017b)).

6. GeoCF: Geographic-aware collaborative filtering for service recommendation

which considers graphic location information from a mashup-API interaction to

derive the preference degree with better prediction ((Botangen, Yu, Sheng, Han

& Yongchareon, 2020)).

7. AMF: AMF model without regularization parts of context-based awareness and

API co-invocation relationships.

8. AMF+: AMF model with regularization parts of context-based awareness and

API co-invocation relationships.

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 72

Table (3.1) Comparison between six models.

Model Ratings Context pre-train words se-
quences

Attention API rela-
tionship

SVD++ Yes No No No No No
PMF Yes No No No No No
LDA-PMF Yes Yes Yes No No Yes
CI-MF Yes Yes Yes No No Yes
NeuMF Yes No Yes No No No
GeoCF Yes Yes Yes No No Yes
AMF Yes No No No Yes No
AMF+ Yes Yes Yes Yes Yes Yes

Table 3.1 shows the comparison between these baselines with six elements, including

ratings, context-awareness, pre-train word embedding, words sequence, attention, and

API relationship. It can be seen that the proposed model leverages all these elements to

obtain a better prediction. We consider our model without context-awareness named

AMF to observe how much context information and API implicit relationship influences

this prediction model. Existing models such as PMF, SVD++, NeuMF do not integrate

context information and API implicit relationship.

3.4.3 Evaluation metric

We test the performance of the above baseline models on the Programmable-Web

dataset. We take the original mashup-API matrix and mask a percentage of original

invocations where a mashup-API invocation has been taken place for use as a test set.

The test set will contain all of the original invocations, while the training set replaces

the specified percentage such as 20% of them with a zero in the original invocation

matrix.

To measure the performance of classification and recommendation ranking list, we

use the two common metrics including Normalized discounted cumulative gain (NDCG)

and average precision (MAP). Different from the prediction accuracy metrics which

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 73

measure the gap between the prediction value are to the actual ones (e.g., RMSE and

MAE), our chosen metrics first consider the degree of precision of recommended APIs

based on relevance, and then the capability to predict the precise order of recommenda-

tion list according to the degree of preferences.

Normalized Discounted Cumulative Gain (NDCG@k) : From the ranking of relev-

ant APIs in the recommendation list, we measure the effectiveness of recommendation

by the Discounted Cumulative Gain (DCG). The gain is accumulated from the top to

the bottom of recommendation list for each relevant API. We discount and penalize

the APIs which has lower rank. Namely, the DCG from rank 1 to k for the subset of a

recommendation list is defined as:

NDCG@k =
Na

∑
i=1

2ri − 1

log2(i + 1)
(3.19)

, where Na, Nm is the number of APIs and mashups in the recommendation list.

Mean average precision (MAP@k): Precision is the portion of recommend APIs those

are actually invoked by the mashup. Precision is also known as true positive accuracy,

that measures the probability that a recommended API is invoked by the mashup.

We denote P@k as a precision which is calculated from only a recommendation list

from rank 1 through K. Provided a mashup mj , the Average Precision AP@kmj
is the

precision of each relevant API, regarding its position in the ranked recommendation

list of k APIs: AP@kmj
=
∑ki=1 Pr(n)×I(n)

Na
, where Pr(n) is the precision at cutoff

n in the list, and I(n) is equal to 1 if the API at rank n is actually invoked, zero

otherwise. The AP metric identifies every relevant recommendation and give prize

frontal recommendation with the most probable correct APIs, such as the relevant APIs

at the top of the recommendation list. Hence, we call the arithmetic average of the

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 74

AP@k of all mashups as the Mean Average Precision :

MAP@k =
∑

Nm
i=1 AP@Km

∣Nm∣
(3.20)

3.4.4 Hyperparameter settings

We do the parameters tuning for all baselines models and then compare their perform-

ances with the proposed model.

For this work, we set the latent dimension d = 20. We tune hyperparameters for each

mentioned models and obtain the hyperparameters with their own best performance.

Namely, we tune the λa and λm with values in (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0).

The latent features in range [5, 10,..., 50]. Each models also need different numbers

of epoch to have the performance converging. For document-based models including

LDA-MF, GeoCF, AMF, and AMF+, we tune the numbers of context latent features N

from 5 to 100. Table 3.2 shows the best hyperparameters for each models.

3.4.5 Experimental results

We run the above baselines and our proposed models with the 10%, 20%, 30%, 40%,

and 50% masked training dataset. We also generate 5 subsets of the data for each

masked settings. The value of k is set to 1, 3, 5, and 10. Then, we use two metrics

NDCG and MAP to evaluate the baselines and our models. We also examine the

performance of the models by varying their hyperparameters and observe the settings in

which our models achieve the best scores.

Comparison with baselines performance

To assess the NDCG of the models, we create 5 settings of masked data 10%, 20%,

30%, 40%, 50%. Then, we randomly generate 5 different subsets from the dataset and

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 75

Table (3.2) Comparison of hyperparameters.

Model λa, λm Learning
rate

No. of latent fea-
tures

Converged
epoch

SVD++ 0.01 0.01 35 50
PMF 0.1 0.1 40 500
LDA-MF 0.005 0.005 20 100
CI-MF 0.001 0.001 35 400
NeuMF NA 0.001 20 100
GeoCF 0.001 0.001 20 500
AMF 0.1 0.0005 20 100
AMF+ 0.1 0.005 20 100

10 20 30 40 50
0.2

0.25

0.3

mask dataset [%]

N
D

C
G

@
1

AMF+ AMF GeoCF NeuMF
CI-MF LDA-MF PMF SVD++

10 20 30 40 50
0.25

0.3

0.35

mask dataset [%]

N
D

C
G

@
3

AMF+ AMF GeoCF NeuMF
CI-MF LDA-MF PMF SVD++

10 20 30 40 50
0.3

0.35

0.4

mask dataset [%]

N
D

C
G

@
5

AMF+ AMF GeoCF NeuMF
CI-MF LDA-MF PMF SVD++

10 20 30 40 50
0.3

0.35

0.4

mask dataset [%]

N
D

C
G

@
10

AMF+ AMF GeoCF NeuMF
CI-MF LDA-MF PMF SVD++

Figure (3.9) NDCG@k Performance comparison

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 76

Table (3.3) NDCG scores of baselines and proposed models.

NDCG@1

10% 20% 30% 40% 50%

SVD++ 0.2109 0.2238 0.2367 0.2498 0.2496
PMF 0.2185 0.2398 0.2515 0.2670 0.2900
LDA-MF 0.2305 0.2578 0.2665 0.2723 0.2909
CI-MF 0.2388 0.2646 0.2777 0.2759 0.2956
NeuMF 0.2405 0.2681 0.2705 0.2822 0.2979
GeoCF 0.2468 0.2784 0.2799 0.2879 0.2999
AMF 0.2497 0.2758 0.2829 0.2899 0.3000
AMF+ 0.2512 0.2802 0.2842 0.2907 0.3009

NDCG@3

10% 20% 30% 40% 50%

SVD++ 0.2525 0.2799 0.2899 0.3029 0.2990
PMF 0.2721 0.2890 0.3082 0.3124 0.3298
LDA-MF 0.2870 0.3078 0.3112 0.3234 0.3318
CI-MF 0.2911 0.3245 0.3134 0.3224 0.3317
NeuMF 0.2995 0.3231 0.3165 0.3249 0.3309
GeoCF 0.3003 0.3261 0.3254 0.3292 0.3357
AMF 0.3109 0.3289 0.3299 0.3303 0.3391
AMF+ 0.3211 0.3399 0.3323 0.3338 0.3398

NDCG@5

10% 20% 30% 40% 50%

SVD++ 0.3008 0.3124 0.3231 0.3351 0.3218
PMF 0.3192 0.3378 0.3443 0.3478 0.3508
LDA-MF 0.3222 0.3530 0.3538 0.3598 0.3539
CI-MF 0.3298 0.3552 0.3585 0.3599 0.3556
NeuMF 0.3301 0.3642 0.3631 0.3601 0.3558
GeoCF 0.3364 0.3862 0.3618 0.3603 0.3577
AMF 0.3378 0.3798 0.3756 0.3777 0.3790
AMF+ 0.3389 0.3803 0.3856 0.3807 0.3917

NDCG@10

10% 20% 30% 40% 50%

SVD++ 0.3217 0.3378 0.3468 0.3502 0.3528
PMF 0.3328 0.3615 0.3768 0.3886 0.3962
LDA-MF 0.3406 0.3699 0.3799 0.3891 0.3965
CI-MF 0.3376 0.3690 0.3833 0.3998 0.3981
NeuMF 0.3451 0.3700 0.3891 0.3951 0.3976
GeoCF 0.3613 0.3819 0.3977 0.3920 0.3989
AMF 0.3678 0.3891 0.3999 0.3990 0.3998
AMF+ 0.3721 0.4011 0.4032 0.4031 0.4036

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 77

split them into train-test with setting masked ratios. The result of NDCG comparison is

in Table 3.3 and Figure 3.9. It can be seen that both AMF and AMF+ obtain very good

NDCG compared with the baseline. It is noticed that NDCG does not decrease when

increasing the size of masked data for PMF-based models. Only SVD++ has a slight

decrease with above 40% data masked. It is reasonable because the larger masked data

means the more actual data in the test set. As NDCG looks for predictions those occur

in the actual data, the probability of true positives will grow when the number of actual

data goes up.

In addition, based on the NDCG plot in Figure 3.3, we can gather the models in

three groups based on how close their NDCG scores. Thus, SVD is the only in the first

group. PMF, LDA-MF, CI-MF, and NeuMF are in the second group. The last group

includes GeoCF, AMF, and AMF+. The third group has the best performance as they all

effectively inject the context information to the PMF structure both in the factorization

and regularization parts. The second group has smaller NDCG scores when only using

context information as regularization parts in the PMF structure. SVD++ does not

use any context data and has the smallest score. Is is also clear that all models except

SVD++ achieves closer NDCG scores with 50% masked data for all all settings.

For evaluation on MAP metric, we construct 4 groups of train-test data: ndt >

4, ndt > 3, ndt > 2, and ndt > 1, where ndt is the number of APIs in a mashup of the

dataset. Namely, for group ndt > 4, we consider only mashups which have more than

4 APIs in the dataset and randomly pick up 1 API invocation per mashup for test data

and obtain the settings: ntr > 3, nte = 1. Similarly, we pick up 2 APIs invocation per

mashup for test data for setting ntr > 2, nte = 2, and likewise for setting ntr > 1, nte = 3

and ntr > 0, nte = 4. Where ntr is the number of APIs in a mashup of the train data

and nte is the number of APIs in a mashup of the test data. Likewise for the remaining

groups. Table 3.4 summarizes the data arrangement for MAP calculation process. We

obtain the MAP@k with k = 1,3,5,7,10 for each test setting.

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 78

Table (3.4) Train-test settings for MAP calculation

Group Setting Invocations for
train

Invocations for
test

ndt > 4 ntr > 3, nte = 1 2115 345
ntr > 2, nte = 2 1770 690
ntr > 1, nte = 3 1425 1035
ntr > 0, nte = 4 1080 1380

ndt > 3 ntr > 2, nte = 1 2847 589
ntr > 1, nte = 2 2258 1178
ntr > 0, nte = 3 1669 1767

ndt > 2 ntr > 1, nte = 1 3801 1066
ntr > 0, nte = 2 2735 2132

ndt > 1 ntr > 0, nte = 1 5097 2362

The result details of MAP@k scores is shown in Table 3.5 of the four train-test

settings which we choose from each group in Table 3.4. Namely, the first part in

Table 3.5 is the setting ntr > 0, nte = 1 of group ndt > 1. The three remaining parts

are for settings (ntr > 0, nte = 2), (ntr > 1, nte = 2), and (ntr > 2, nte = 2) of group

ndt > 2, ndt > 3, and ndt > 4 respectively. Figure 3.10 shows the comparison of MAP@k

scores of baselines and our proposed models. For the first setting at the upper left of

Figure 3.10, the scores increase sharply and then slightly rise up with k > 3. Whereas,

the other three settings have different patterns. Namely, the MAP scores goes down

for k from 1 to 3, and goes up afterward. It is because we do not penalize wrong

recommendations by MAP when increasing more items in recommendation list.

Generally, our proposed AMF and AMF+ outperform all the baselines in all settings

in term of MAP in the top 10 recommendations. Namely, our models are better for

APIs recommendation.It proves that our models are more accurate in specifying and

ranking proper APIs for more effective recommendations.

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 79

Table (3.5) MAP scores of baselines and proposed models.

MAP@k: ntr > 0, nte = 1

k 1 3 5 7 10

SVD++ 0.1306 0.1847 0.1927 0.2101 0.2113
PMF 0.1112 0.1453 0.1704 0.1921 0.2001
LDA-MF 0.1487 0.1987 0.2107 0.2201 0.2293
CI-MF 0.1511 0.2065 0.2176 0.2209 0.2309
NeuMF 0.1621 0.2092 0.2178 0.2214 0.2312
GeoCF 0.1651 0.2085 0.2184 0.2221 0.2326
AMF 0.1812 0.2152 0.2198 0.2276 0.2336
AMF+ 0.1821 0.2199 0.2208 0.2289 0.2356

MAP@k: ntr > 0, nte = 2

k 1 3 5 7 10

SVD++ 0.1482 0.1471 0.1687 0.1712 0.1759
PMF 0.1306 0.1207 0.1607 0.1651 0.1751
LDA-MF 0.1926 0.1685 0.1833 0.1867 0.1876
CI-MF 0.2028 0.1705 0.1954 0.1960 0.1966
NeuMF 0.2111 0.1701 0.1962 0.1968 0.2101
GeoCF 0.2148 0.1729 0.1971 0.1990 0.2196
AMF 0.2186 0.1899 0.1992 0.2021 0.2211
AMF+ 0.2244 0.1998 0.2002 0.2153 0.2420

MAP@k: ntr > 1, nte = 2

k 1 3 5 7 10

SVD++ 0.1828 0.1522 0.1638 0.1707 0.1821
PMF 0.1316 0.1227 0.1624 0.1615 0.1732
LDA-MF 0.2088 0.1622 0.1721 0.1827 0.1962
CI-MF 0.2102 0.1794 0.1834 0.1987 0.2021
NeuMF 0.2129 0.1799 0.1908 0.2001 0.2112
GeoCF 0.2156 0.1832 0.1984 0.2043 0.2102
AMF 0.2182 0.1881 0.2001 0.2093 0.2199
AMF+ 0.2199 0.1999 0.2131 0.2203 0.2312

MAP@k: ntr > 2, nte = 2

k 1 3 5 7 10

SVD++ 0.199 0.1209 0.1241 0.1421 0.1512
PMF 0.1316 0.1087 0.1124 0.1315 0.1432
LDA-MF 0.2217 0.1177 0.1222 0.1598 0.1739
CI-MF 0.2342 0.1289 0.1322 0.1622 0.1892
NeuMF 0.2346 0.1381 0.1389 0.1720 0.1926
GeoCF 0.2463 0.1437 0.1583 0.1724 0.1902
AMF 0.2653 0.1688 0.1793 0.1898 0.1976
AMF+ 0.2799 0.1688 0.1967 0.1998 0.2211

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 80

1 3 5 7 10
0.1

0.15

0.2

0.25

k

M
A

P@
k

:n
tr
>

0,
n
te
=

1

1 3 5 7 10
0.1

0.15

0.2

0.25

k

M
A

P@
k

:n
tr
>

0,
n
te
=

2
|

1 3 5 7 10
0.1

0.15

0.2

0.25

k

M
A

P@
k

:n
tr
>

1,
n
te
=

2

1 3 5 7 10
0.1

0.15

0.2

0.25

k

M
A

P@
k

:n
tr
>

2,
n
te
=

2 AMF+ AMF GeoCF
NeuMF CI-MF LDA-MF

PMF SVD++

Figure (3.10) MAP@k performance comparison.

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 81

10 20 30 40 50 60 70 80 90 100

0.2

0.3

0.4

Number of latent features [N]

N
D

C
G

@
10

AMF+
AMF

Figure (3.11) NDCG@10 with different numbers of latent feature.

Hyperparameters sensitivity analysis

To verify the significance of document mining embedding and APIs co-invocation to

our model’s performance, we analyse these following hyperparameters including the

number of latent features, the context similarity weight θ, and context regularization λS

Influence of number of context latent features in Doc2vec embedding The num-

ber of context latent features (see Section 3.3.1) significantly influences the embedding

results and then impacts the PMF-based model, which use them as auxiliary information.

The larger N embeds more influence of context part into the model. The smaller N

means the model less involves the impact of this auxiliary data. information. We set

the value of N = 5,10,15, ...,100. We then calculate NDCG@10 with 20% masked

data and MAP@10 with setting (ntr > 2, nte = 2). As shown in Figure 3.11, the NDCG

scores of both AMF and AMF+ generally have the same pattern and AMF+ always

outperforms in all settings. Namely, they both rapidly rise up and peak at about 0.4 of

N = 20 setting. Then, they drop down gradually to about 0.1 as N increase from N = 20

to N = 60. Later on, the score of AMF plateau with N> 60 while this score also reaches

to a limitation from N > 75 for AMF+. The same pattern results for MAP score are

shown in Figure 3.12.

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 82

10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

Number of latent features [N]

M
A

P@
10

AMF
AMF+

Figure (3.12) MAP@10 with different numbers of latent feature.

This experiment results demonstrate three facts about context auxiliary data. First,

provided the range ofN values from which the NDCG and MAP scores getting steady or

rising up, we have a couple of options forN that can obtain the exceptional performance

(e.g, the value N = {15 − 40} for both metrics). Second, the performances enhance on

the both metrics as N increases, that harmonizes an insight that more latent features

would derive more related information. Reversely, less latent features (e.g., N < 15)

could reduce the ability of exploiting context data, and then leading to poor prediction

results. However, considering exaggerated number of latent features drives the models

to overfitting ((H. Wu, Yue, Li, Zhang & Hsu, 2018b)) and diminishes their performance.

As can be seen in Figure 3.11 and Figure 3.12, the performance is depreciating as N go

down beyond 60.

Influence of context similarity weight θ The weight θ (see Section 3.3.2 presents

for the importance of context similarity. We examine the influence of θ to the implicit

relationship of APIs pair and the results are shown in Table 3.6. At every k values, the

implicit relationship increases when we increase the importance of context similarity

sij . This is due to the stronger influence of context information over co-invocation.

In addition, we test the influence of θ on the model performance. At each value of θ,

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 83

0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

γ

N
D

C
G

@
10

AMF+

Figure (3.13) Influence of γ on NDCG@10 of the proposed model.

Table (3.6) Influence of θ on Implicit APIs relation.

N θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9

5 0.1996 0.2782 0.3789 0.4381 0.5110 0.5906 0.6692 0.7479 0.8271
10 0.2001 0.2817 0.3607 0.4392 0.5117 0.5928 0.6702 0.7501 0.8284
15 0.2026 0.2828 0.3612 0.4401 0.5152 0.5966 0.6742 0.7518 0.8294
20 0.2086 0.2862 0.3638 0.4414 0.5190 0.5965 0.6740 0.7512 0.8285
30 0.2081 0.2852 0.3631 0.4401 0.5180 0.5956 0.6737 0.7511 0.8284
40 0.2076 0.2837 0.3609 0.4389 0.5176 0.5945 0.6729 0.7501 0.8275
50 0.2062 0.2821 0.3600 0.4372 0.5169 0.5937 0.6717 0.7492 0.8264

0.2 0.4 0.6 0.8 1

0.2

0.3

γ

M
A

P@
10

AMF+

Figure (3.14) Influence of γ on MAP@10 of the proposed model.

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 84

Table (3.7) Influence of θ on AMF+ performance.

θ = 0.1 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9

N NDCG@10 MAP@10 NDCG@10 MAP@10 NDCG@10 MAP@10 NDCG@10 MAP@10 NDCG@10 MAP@10

5 0.2066 0.0951 0.3038 0.0579 0.2411 0.1252 0.3679 0.1216 0.3827 0.1044
10 0.3016 0.0961 0.3138 0.0739 0.3051 0.2222 0.3949 0.1616 0.3847 0.1544
15 0.3886 0.1701 0.3238 0.1599 0.3981 0.2302 0.3959 0.1966 0.3857 0.1784
20 0.3996 0.2301 0.4008 0.2389 0.4011 0.2312 0.4009 0.2286 0.3987 0.2224
30 0.3486 0.2271 0.3918 0.1859 0.3361 0.2282 0.3299 0.2206 0.3737 0.1684
40 0.3126 0.1851 0.2928 0.1579 0.2511 0.1452 0.3169 0.2156 0.3467 0.1574
50 0.2916 0.1641 0.2038 0.1339 0.1551 0.0862 0.2979 0.1836 0.2817 0.1474

Table (3.8) Influence of regularization λS on model performance.

λS = 0.01 λS = 0.05 λS = 0.1 λS = 0.5 λS = 1

N NDCG@10 MAP@10 NDCG@10 MAP@10 NDCG@10 MAP@10 NDCG@10 MAP@10 NDCG@10 MAP@10

5 0.2671 0.1858 0.2036 0.0509 0.2059 0.1622 0.1581 0.0859 0.2277 0.0564
10 0.2961 0.1782 0.2818 0.1811 0.2476 0.1219 0.2719 0.0636 0.2597 0.0804
15 0.3476 0.2001 0.3188 0.1859 0.3791 0.1606 0.3159 0.2062 0.3017 0.1524
20 0.3534 0.2102 0.3627 0.1928 0.4011 0.2312 0.3682 0.1928 0.3956 0.1878
30 0.3516 0.1791 0.3568 0.1539 0.3927 0.2222 0.3529 0.1826 0.3471 0.1814
40 0.2621 0.1141 0.2568 0.0999 0.2836 0.1882 0.3299 0.1796 0.3677 0.1034
50 0.2646 0.1011 0.1998 0.0189 0.2771 0.1462 0.3009 0.1166 0.3237 0.0684

we calculate NDCG@10 and MAP@10 at different number of context latent features

N = 5,10,15,20,50. Table 3.7 shows the average NDCG@10 and MAP@10 of the

settings for N . For NDCG@10, we use the train-set dataset with 20% mask of the

interactions. For MAP@10, we use ntr > 2 and nte = 1. The highest results are in

bold and most of them are at θ = 0.5 and θ = 0.7. We also see that the best scores

are observed at θ = 0.5 and N= 20. Hence we use θ = 0.5 as for default setting in the

experiment.

Influence of context latent features N and regularization λS We examine the

influence of context regularization part to the model performance by tuning the regu-

larization λS . We also test the influence of N to the model’s performance at different

regularization λS= 0.01, 0.05, 0.1, 0.5, 1. At each value of N= 5,10,15,20,30,40,50,

we calculate the NDCG@10 and MAP@10. For NDCG@10, we use the 20% mask

dataset and for MAP@10 we use ntr > 4 and nte = 1

.

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 85

Influence of co-invocation regularization γ We also test the influence of co-

invocation part to the model performance by tuning the co-invocation regularization

γ. We set the value of γ = {0.01,0.02, ...,0.09,0.1, ...,0.9,1}. For NDCG metric, we

implement the 20% masked data and the performance results of our models by varying

γ are plotted in Figure 3.13. Overall, the performance scores of AMF+ sharply rise up

from γ = 0.01 and peak at γ = 0.1. Later on, they steady decrease until γ = 0.6 and

continue to decline more rapidly until the end point of γ = 1. This quick downturn

means that the model is over-regularization and the performance is diminished. For

the MAP metric, we use, we use the setting (ntr > 2, nte = 2) and obtain the same

patterns. It rapidly increases at γ = 0.1 to γ = 0.2, then gradually decreases and plateaus

at γ = 0.7. As γ > 0.7, the performance quickly goes down due to over-regularization.

Generally, we observe that our proposed model AMF+ reaches the superior performance

in both metrics at γ = 0.1 and diminish as γ > 0.7. It is understandable that a suitable

value of γ would effectively integrate the regularization part into the model. However, a

larger value of γ would degrade the model because of over-regularization.

3.5 Conclusion

In this chapter, we have enhanced the PMF model by learning the importance of mashup-

API invocation through a MLP attentional network, which significantly improves the

recommendation performance. We also studied the influence of context information

and APIs’ co-invocation relationships on the prediction. We found that pre-training

document vectors by Doc2Vec to obtain the context similarity of services and conducting

statistic analysis for APIs’ co-invocation provide effective regularization to our AMF+

model. Our proposed models AMF and AMF+ obtains better results of NDCG and

MAP than the conventional PMF and also outperforms some state-of-the-art baselines.

Experimental results in various settings have validated the effectiveness of injecting the

Chapter 3. Attentional Matrix Factorization with Context and Co-invocation for
service recommendation 86

context data and API co-invocation history into the proposed models.

In the future, we plan to enhance our methods with deeper models such as graph

convolution neural network and auto-encoder architectures.

Chapter 4

Data Augmented High-order Graph

Autoencoder in Service

Recommendation

4.1 Introduction

The rapid development of service computing promotes the emergence of an abundance

of Web services and APIs (APIs in short) on the Internet. The blooming of diverse APIs

bring an expansive scope of choices for programmers to develop mashups, which are

lightweight web-based apps that integrate multiple APIs. To facilitate the developers

discover and select APIs effectively, recommender systems are currently a mainstream

approach to service over-choice. Collaborative filtering (CF) (Sarwar et al., 2001a) is

a popular technique that has been used to predict the preferred APIs for a mashup by

exploiting the similarity patterns among mashup-API invocation (X. Chen et al., 2010;

Hu et al., 2014; Xie, Wang et al., 2019; T. Liang et al., 2016; Xie, Chen et al., 2019).

Most of the existing CF-based models use Matrix Factorization (MF) (Mnih &

Salakhutdinov, 2008; Koren, 2008; X. He, Zhang, Kan & Chua, 2016) to represents

87

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 88

the latent features of a mashup or an API as a vector and then models a mashup-API

invocation as the inner product of their latent vectors (P. He et al., 2014; S. Li et al., 2017;

Lo et al., 2012; H. Wu et al., 2018a). Other hybrid methods leverage CF and natural

language processing (NLP) to add auxiliary information for the MF-based models, such

as (C. Li, Zhang, Huai & Sun, 2014; Xiong et al., 2018; Yao, Wang, Sheng, Benatallah

& Huang, 2021). Generally, these CF-based models produced good prediction for

service recommendation by using their historical invocations. However, the increasing

number of APIs with limited usage by mashups makes the invocation dataset more

sparse. It reduces the effectiveness of existing service CF methods, which only consider

the direct invocation between each pair of mashup and API. Such limitation is apparent

in ProgrammableWeb1 data.

With the prevalence of Deep Neural Networks (DNN), researchers introduced DNN

components to matrix factorization and achieved superior prediction performance than

traditional approaches. Most existing DNN-based service CF approachess (S. Liu &

Zheng, 2020; Z. Liu, Guo, Wang, Du & Pang, 2019; Xiong et al., 2018) only consider

the direct connections between mashups and APIs and do not consider the long-distance

relationships and treat the user-item interaction or mashup-API invocation pairs as

separate data instances (so called information isolated island in (X. Wang, He & Chua,

2020b)) and thus ignore the intrinsic relationships between invocations. In other words,

such approaches assume unobserved invocations likely to be negative and thus overlook

them from the observed or positive invocations. To overcome this limitation, recent

DNN-based CF approaches (Y. Ma, Geng & Wang, 2020; Yao et al., 2021; G. Chen

& Chen, 2015) augment the data by learning the high-order connectivity signals. For

example, MISR (Y. Ma et al., 2020) leverages the high-order invocation to address the

cold-start problem of service recommendation for new mashups.

Motivated by the discovery that the autoencoder architecture has the capability

1We download the database from https://dev.maxmind.com/in November 2020.

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 89

of forcing the hidden representation to capture information about the structure of the

data generating distribution (Goodfellow, Bengio & Courville, 2016), and the recent

developments in applying the autoencoder architecture to learn the non-linear graph

structure (D. Wang, Cui & Zhu, 2016b), we propose a Data Augmented High-order

Graph Autoencoder (DHGA) CF framework for service recommendation. Given the

Mashup-API Invocation Graph (MAG), DHGA utilises the data augmentation technique

to capture the direct and high-order connectivity, and injects such information to the

embeddings of mashups and APIs autoencoders in a general CF-based framework.

DHGA also integrates an MLP structure to contain the non-linear information between

mashup and API.

In summary, this paper has the following main contributions:

1. We have used the data augmentation to enlarge the training dataset with the

high-order connectivity, and proposed an autoencoder structure sharing the same

parameters for the set of mashups or APIs.

2. We have proposed the DHGA, a novel data augmentation high-order collaborative

filtering framework to integrate the intrinsic relation of the mashup-API graph by

the autoencoder architecture.

3. We have conducted empirical studies on Programmable dataset and the results

demonstrates the superior performance of DHGA over some state-of-the-art

frameworks. We have studied how different order of connectivity and neighbour-

hood sample size in each order affects the performance of the DHGA framework.

The remaining of this paper is organized as follows. Section 4.2 is the related work;

Section 4.3 defines the symbols and concepts used in this work and also discuss the

data augmentation for the mashup-API graph; Section 4.4 presents the DHGA model

in detail; Section 4.6 reports the experimental results and analysis; and Section 5.5

concludes the paper.

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 90

4.2 Related works

Existing works that are closely related to our work can be divided into three categories:

CF-based service recommender systems, neural networks for learning mashup-APU

graphs, and data augmentation in recommender systems.

4.2.1 CF-based service recommender systems

In recent years, the rapid development of machine learning research promotes collabor-

ative filtering approaches being widely used in service recommendation. The CF-based

models leverage the historical data of similar users or mashups to predict. For example,

Zheng et al. (Zheng et al., 2012) proposes a neighborhood-integrated approach for

recommending the personalized web service QoS. Some works are the neighbourhood

integrated matrix factorization approaches such as Chen et al. (X. Chen et al., 2010)

made use of the same region historical data to construct a neighbour-based Region

KNN model, and Liu et al. (J. Liu et al., 2015) uses location information to define a

location-aware CF model for QoS prediction.

In addition, there are some other types of CF-based models in service recommenda-

tion. For instance, Hu et al. (Hu et al., 2014) proposes a hybrid random walk model

to calculate the similarity between mashups. Zou et al. (Zou et al., 2018) present a

reinforced CF model with mashup-intensive and API-intensive which eliminates the

interference of the mashup. Other works such as (Xie, Wang et al., 2019; T. Liang et al.,

2016; Xie, Chen et al., 2019) use different types of auxiliary information of mashups

and APIs to construct a heterogeneous information network (HIN) and calculate the

their similarity scores for invocation prediction.

To tackle the limitation of using a prediction model from single mashup-API invoc-

ations, many other hybrid models exploit the context information and invocation history

in higher order. Specifically, Jain et al. (Jain et al., 2015) and Samanta et al. (Samanta

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 91

& Liu, 2017) use the probabilistic model based approaches to calculate the correlation

scores between mashups and APIs on the neighbour invocation under CF framework and

then obtain the prediction value by using the product function. Such approaches only

use the linear and product operator which has limitation on capturing the high-order

and complex invocation between mashups and APIs.

4.2.2 Neural networks for learning mashup-API graphs

Early neural network based approaches (S. Liu & Zheng, 2020; Z. Liu et al., 2019; Xiong

et al., 2018) has recently attracted more attention on service recommender systems.

Specifically, Xiong et al. (Xiong et al., 2018) integrates with the historical mashup-API

invocation and their content similarity in a DNN model. Chen et al. (L. Chen, Zheng,

Feng, Xie & Zheng, 2018) utilises mashups and API feature vectors for recommendation

process for a preference-based neural CF recommender system. Such approaches treat

the graph as a set of edges of mashup-API invocation and thus ignore the intrinsic high-

order connectivity in the graph. As to applying autoencoders, a recent method VAE-

CF (D. Liang, Krishnan, Hoffman & Jebara, 2018) extends variational autoencoders

for collaborative filtering (Kingma & Welling, 2013; Rezende, Mohamed & Wierstra,

2014), which consider the direct neighbourhood vector generated from a multinomial

distribution. VAE-CF is limited to capturing up to second-order connectivity signals.

Our work is inspired by the success of autoencoders in graph embedding (D. Wang

et al., 2016b). We tailor it for bipartite MAG and the problem of collaborative filtering.

We also extract higher-order connectivity signals where order is a hyperparameter.

4.2.3 Data augmentation in Recommender system

Data augmentation technique has been used in recommender systems. For example,

HOP-Rec (J.-H. Yang, Chen, Wang & Tsai, 2018) uses the high-order proximity to

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 92

expand the train data to learn the implicit relation for recommender systems. However,

such approach only considers the high-order relation between two types of nodes in

the bipartite graph. The popular Bayesian Personalized Ranking (BPR) loss (Rendle,

Freudenthaler, Gantner & Schmidt-Thieme, 2012) used in many recommender system

approaches implicitly use data augmentation by considering the unobserved data as the

negative. Data augmentation is also used in session-based recommendation such as

Tan et al. (Tan, Xu & Liu, 2016) uses sequence reprocessing and embedding dropout to

create more training sequences. A recent work MA-GNN (C. Ma et al., 2019) leverages

a shared memory network to capture the long term relationships among items and draw

out item pairs across all users. Another example in service recommendation Ma et

al. (Yin et al., 2021) enhances the training set by drawing additional virtual data from

the neighbouring relations with their different distances. Later on, the augmented data

consists of factual and virtual invocations and used as the training set. However, such

approach simply considers the negative invocations and the rich content of high-order

connectivity is still unexplored.

Different from existing approaches, this paper enlarges the training dataset by the

high-order neighbourhood data instances including the invocation and co-invocation

data, which are fed in the autoencoder frameworks for a CF-based recommender system.

4.3 High-order connectivity and data augmentation for

Mashup-API Graph

In this section, we first define some definitions used in this paper, and then propose the

data augmentation technique to enhance the training dataset .

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 93

Table (4.1) Notations used in the paper
Notation Definition
i,m mashup index, i,m ∈ {1, ..Nm}

j, n API index, j, n ∈ {1, ..,Na}

ui mashup i, representation vector of mashup i
vj API j, representation vector of API j
xi, xj one-hot encoded invocation vector of ui, vj
rij invocation between ui and vj , rij = {0,1}
si, sj similarity vector of ui, vj; si ∈ R1×Na , sj ∈ R1×Nm

eij edge between ui and vj , eij ∈ E (set of edges)
MAG Mashup API invocation Graph
MashupAE Mashup autoencoder
ApiAE API autoencoder
z number of orders explored in the model
k neighbours sample size within an order
d autoencoder middle layer embedding size
Wh,Wh′ weight parameters for MashupAE
Qh,Qh′ weight parameters for ApiAE
bh, b′h, dh, d

′
h layer biases for MashupAE and ApiAE

Ni,Nj direct neighbours of ui, vj
f(2z, k) total number of sampled high-order neighbours
ΘMLP set of parameters for MLP part
Θu, Θv high-order weights of mashup and API
NX size of the augmented training dataset
dl, dh layer max dimension of autoencoder and MLP
I number of iterations
Nr number of APIs in the recommendation list
rs negative instance sample rate
p top list ranking number used in evaluation metrics

4.3.1 Definitions

The definitions used for the proposed model DHGA are intepreted as below:

Mashup-API Invocation Graph (MAG) An MAG G = (U,V,E) is a bipartite

graph where U is the set of mashups, V is the set of APIs, and E = U × V with eij ∈ E

is an edge between U and V . Each edge eij is associated with a weight rij ≥ 0. For ui

and vj not linked by an edge, rij = 0.

First-order connectivity The first-order connectivity is the direct invocation between

mashup i and API j and the value is defined by sij . In this paper, we consider rij as the

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 94

invocation between mashup i and API j.

Second-order connectivity The second-order connectivity is defined on a pair of

mashups connected by the same API or a pair of APIs connected by the same mashup.

It represents the similarity of the pair’s neighbourhood architecture. Let eik and emk be

two edges with mashup ui and um connect to the same API vk, and let si be the vector

containing ui’s similarity with all the mashups vj(j = 1..∣V ∣) in the MAG, then ui and

um has second-order connectivity and the value is defined by the cosine similarity of

vectors si and sm. A similar definition applies to a pair of APIs.

High/(2z)th order connectivity We can generalize the above definition to (2z)th

order connectivity (z ≥ 1) between a pair of mashups or APIs: if ui can reach um in

2z hops on the MAG, or um is the (2z)th order neighbour of ui which is denoted as

um ∈ N
(2z)
i , then ui and um has (2z)th order connectivity and the value is defined by

the cosine similarity of si and sm. Similar definition applies to a pair of APIs.

k-neighbour sampling At all high-order levels, the mashup or API can have no,

one or more higher connections. In stead considering all connections, we only randomly

sample a number k connections which is called k-neighbour sampling in this article.

Mashup Autoencoder (MashupAE) and API Autoencoder (ApiAE) An autoen-

coder is a feedforward neural network consisting two parts: one encoder and one

decoder, with multiple non-linear functions. The encoder feeds the input invocation

matrix into the representation space while the decoder recovers the representations back

to the original network structure. Figure 4.3 shows the structure of MashupAE and

ApiAE. Mashups and APIs have their own autoencoders to cater for the bipartiteness of

the MAG. Thereafter, provided with input xi, the hidden representations for each layer

are defined as below:

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 95

For mashup:

ui
(1) = σ(W1xi + b1)

ui
(h) = σ(Whu

(h−1)
i + bh)

u′
(h)
i = σ(W ′

hu
(h−1)
i + b′h)

u′(1)a = σ(W ′
1x̂i + b

′
1)

For APIs:

vj
(1) = σ(Q1xj + d1)

vj
(h) = σ(Qhv

(h−1)
j + dh)

v′
(h)
j = σ(Q′

hv
(h−1)
j + d′h)

v′
(1)
j = σ(Q′

1x̂j + d
′
1)

4.3.2 Motivating Example

Figure 4.2 illustrates an example of the UIG with the Amazon-book dataset, which

contains various orders of connectivity. The target is to predict the rating between the

user ui and the book item vj . According to this example, ui read the fashion book vi(1,1)

and the cuisine book vi(1,2) so the user has the first-order connectivity with these items.

Because the users ui(2,1), ui(2,2) also read the book vi(1,1), so they has second-order

connectivity with ui. All the users read the same book vi(1,1) might have the same

interest on fashion, so they tend to read another fashion books in the futures. Hence,

their second-order connectivity represents for such latent features. Likewise, the ui has

forth-order connectivity with ui(4,1). Specifically, if the book vi(3,1) is a beauty book, the

user ui(2,1) might have some interest on beauty as the user ui(4,1) does. As the distance

between ui and ui(4,1) is larger than the distance between ui and ui(2,1), ui and ui(4,1)

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 96

ui

vi(1,2)vi(1,1)

ui(2,3)

vj

uj(1,1)

vj(2,1)
ui(2,1)

ui(2,2)

?

vi(3,1)

um(4,1)

Figure (4.1) An illustration of a user-item interaction graph and the orders of con-
nectivity

might share some similar features but not much as the pair ui and ui(2,1) do. In this case,

fashion and beauty are different but they are very close to each other. Hence, the user ui

who have read the fashion book will be probably interested in the beauty book and read

such books in the future. In this example, exploring the high-order connectivity of a

user by studying their high-order connected books with different similar topics can help

us to predict the recommendation list of books for the user.

Similarly, for the book item vj , it has first-order connectivity with uj(2,1) and second-

order connectivity with vj(2,1).

In general, both direct and high-order interaction contain useful information. The

high order connectivity generally contains implicit graph based relation among users

and items, and injecting such information into the recommender system potentially

improve the prediction for items recommendation list. In this work, we define the

problem of recommendation system as below:

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 97

Augmented data

u1

u2

u3

v1

v2

v3

v1 v2 v3

u1

u2

u3

1st 1st

1st 1st

1st

v1 v2 v3

u1

u2

u3

1st 1st 3rd

3rd 1st 1st

3rd 3rd 1st

v1 v2 v3

v1

v2

v3

‐ 2nd 4th

2nd ‐ 2nd

4th 2nd ‐

u1 u2 u3

u1

u2

u3

‐ 2nd 4th

2nd ‐ 2nd

4th 2nd ‐

a) b) c)

invocation matrix mashups co‐invocation
matrix

APIs co‐invocation
matrix

invocation matrixMAG

Figure (4.2) Direct and high-order connectivity within observed mashup-API invoca-
tions

Problem How to leverage the intrinsic relation in the UIG by augmenting the data

with high-order connectivity, and recommend the most appropriate list of items for each

user?

4.3.3 Data augmentation in MAG

Figure 4.2 illustrates an example of MAG with high-order connectivity and the invoca-

tion data used for recommender system. According to this figure, part (a) presents a

bipartite graph built from positive invocations; part (b) shows the matrix with direct

mashup-APU invocations (1st order connectivity) which is normally used as input

for CF-based recommender systems ; and part (c) is the augmented data including 3

matrices: one invocation matrix with 1st and 3rd order connectivity between mashup-

API pair.

Generally, we consider both direct invocation and the intrinsic relation by exploring

the high-order connectivity in the MAG, and embedding such relation into the augmen-

ted data. While the direct invocation data only considers the positive interactions, the

augmented data includes both positive invocations and potential invocations inferred

from the high-order connectivity between mashup-API pairs. Augmented data also

contains the co-invocation relationship between pairs of mashups or APIs as the even

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 98

Mashup Api

u

jji

i
-->u -->

() (j)

Figure (4.3) Mashup and API autoencoder

high-order connectivity. The number of instances in the augmented data are enhanced

according to the high-order parameter z and k-neighbour sampling. It is defined as

the process to randomly choose k neighbour mashups or APIs for each next order

connectivity. Hence, the total instances in an MAG is calculated by function f(2z, k)

with f(2z, k) = 1 + k + k2 + ... + kz.

The augmented data now contains richer information than the simply direct invoca-

tion sparse matrix. In other words, it additionally exploits the high-order mashup-API

invocations and co-invocation between pairs of mashups/APIs, which is believed to

hold intrinsic relations in the MAG. Therefore, using such augmented data for training

model would probably increase the performance for the service recommendation, and

in this paper, we define the problem of improving service recommendation as below:

Problem Given the MAG, how to uncover the intrinsic relation among data

instance by using augmented data with high-order connectivity, and recommend the

most appropriate of APIs for each mashup?

The following section will demonstrate the proposed DHGA and how it leverages

the augmented data to solve the defined problem.

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 99

MashupAE
(i)

ApiAE
(j)

MashupAE
(m(2,0))

MashupAE
(m(2z,0))

ApiAE
(n(2))

ApiAE
(n(2z))

MashupAE
(m(0,1))

MashupAE
(m(2,1))

MashupAE
(m(2z,1))

MashupAE
(m(0,k))

MashupAE
(m(2,k))

MashupAE
(m(2z,k))

ApiAE
(n(0,1))

ApiAE
(n(2,1))

ApiAE
(n(2z,1))

ApiAE
(n(0,k))

ApiAE
(n(2,k))

ApiAE
(n(2z,k))

... ...

parameters sharing parameters sharing

Figure (4.4) The DHGA(2z,k) model
.

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 100

4.4 The DHGA model

An illustration of the DHGA framework architecture is shown in Figure 4.4. The

framework has four main components: 1) the autoencoders of target mashup i and API

j; 2) the set of parameter-shared autoencoders MashupAEs for capturing high-order

connectivity of mashup i; 3) the set of parameter-shared autoencoders ApiAEs for

capturing high-order connectivity of API j; and 4) the concatenation and MLP for

invocation prediction.

Specifically, For each mashup-API invocation, DHGA considers the MashupAEs

of the mashup and its high-order mashup neighbours reachable from it to explore the

mashup-mashup connectivity. All the autoencoders MashupAEs share the same set

of parameters so that increasing the number of autoencoders does not increase the size

of the model. The same setting also applies to ApiAE. The reason that two separate

sets of autoencoders are used is to accommodate the bipartiteness of MAG: the initial

embedding of a mashup contains its invoked APIs only and that of an API contains

its invoked mashups only, which means they have different dimension and semantic

meaning.

In addition, inspired by the effectiveness of the neural network framework (X. He

et al., 2017c), we apply an MLP to capture the non-linear information in mashup-AP

invocation. However, in DHGA, to facilitate capturing the high-order connectivity

signals in the MAG, we first use the neighbourhood/invocation vector (a row or column

in the MAG) to initialize the embedding of a mashup or API. Then, we augment a

mashup-API invocation pair with their higher-order neighbour instances, and then

feed them to two sets of autoencoders, Mashup Autoencoder (MashupAE) and API

Autoencoder (ApiAE), to capture the graph structure information. MashupAE and

ApiAE are defined in Section 4.3 and Figure 4.3.

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 101

4.4.1 Embedding layer with Autoencoders

As discussed, a mashup i or an APIs j is represented using a latent vector/embedding

ui or vj (ui, vj ∈ Rd). In DHGA, d is the embedding size of the middle layer of

an autoencoder. In early approaches such as matrix factorization (MF) and NeuMF,

embeddings are only trained using the isolated invocation data instances. The recent

NGCF approach propagates the embeddings on the MAG before achieving the prediction

by the dot-product operation. DHGA learns the latent vectors by an autoencoder-based

graph embedding method that maps the data to a highly non-linear latent space to retain

the graph structure. Such autoencoder-based graph embedding has been demonstrated

to be effective in injecting non-linear information into the latent representation and and

also robust to sparse graph (D. Wang et al., 2016b).

While MF, NeuMF, and NGCF use one-hot encoded vectors as the input, DHGA

uses the invocation vectors, or rows/ columns of the invocation matrix, as the input for

the purpose of graph structure reconstruction. Therefore, xi = si and xj = sj .

4.4.2 High-order connectivity and data augmentation

With the representations developed by the first-order connectivity, we can then enhance

the model capability by first augmenting each mashup-API pair with their higher-order

neighbours and then feed the augmented data to a set of autoencoders. Specifically,

as shown in Figure 4.4, a (2i)th order (i = 1..z) neighbour of the mashup, which is

also a mashup, is sampled by randomly walking the paths in MAG and then feed to an

autoencoder dedicated to this order. Clearly, z is a hyperparameter that indicates how

deep, or how many orders, the model wants to explore, and we can also use another

hypterparameter k to indicate how many neighbours we want to sample within a certain

order. These two hyperparameters will be studied in the Experiments section. As to the

set of autoencoders MashupAE, it contains one autoencoder for the mashup and one

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 102

autoencoder for each (2i)th order (i = 1..z) neighbourhood of the mashup. The above

setting also applies to the API. It is worth noting that all autoencoders in MashupAE

or ApiAE share the same set of parameters to reflect that all the nodes in one set share

the same embedding space.

While NGCF stacks multiple embedding propagation layers to pass the message

through different hops of neighbours, DHGA aggregates the high-order embeddings by

a weighted average function Ω(um(2z) , ..., um(2) , ui∣Θ). Θ could be Θu or Θv, which is

the sequence of weights that reflects the importance of each order of connectivity. As the

relationship strength decays with the order/distance of connectivity, simple exponential

decay or the graph Laplacian norm

1/
√

∣Ni∣∣Nm(2z) ∣, where Ni denotes the direct neighbours of mashup i, can be used to

set Θ.

After that, DHGA use concatenation to aggregate the high-order embeddings of

mashup i with that of API j before loading into the MLP part as

Ω(um(2z) , ..., um(2) , ui∣Θu) ⊕Ω(vn(2z) , ..., vn(2) , vj ∣Θv).

Finally, The invocation of mashup i on API j is predicted as below:

r̂ij =MLP (ui, vj ∣ΘMLP) (4.1)

4.4.3 Optimization

To learn the DHGA model, there are two objectives. The first one is to minimize the

reconstruction error of the mashup and API invocation vectors. Therefore, we define

two loss functions as follows:

Loss function for MashupAE

Loss1 = ∑
i∈U

Xx̂i − xiX
2
2 (4.2)

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 103

Loss function for ApiAE

Loss2 = ∑
j∈V

Xx̂j − xjX
2
2 (4.3)

.

The second objective is to minimize the binary cross-entropy loss which has been

used frequently in recommender systems (X. He et al., 2017c). It examines the differ-

ence between the real and predicted mashup-API invocation. It assumes that the positive

invocations should be assigned higher prediction value than the negative invocations.

Hence, the third loss function is defined as:

Loss3 = − ∑
i∈U,j∈I

rij log r̂ij + (1 − rij) log (1 − r̂ij) (4.4)

This objective function is the binary cross-entropy or log loss which tackles recom-

mendation with implicit data as a binary classification problem. Similar to NeuMF,

NGCF randomly samples the negative invocations with uniform distribution under a con-

trolled ratio. For simplicity, we choose the ratio to be 1:1 for negative sampling, which

means that one negative invocation is sampled for one positive invocation. Although

different sample ratio and non-uniform sampling might lead to better performance, we

leave the study for future work.

The DHGA− model

The autoencoder-based embedding method for a homogeneous graph where all the

graph nodes belong to a single type (D. Wang et al., 2016b) uses Laplacian Eigenmaps

to preserve the first-order connectivity and uses autoencoders to reconstruct the neigh-

bourhood vectors of the two interacting nodes to capture the second-order connectivity.

To further study the effectiveness of the multiple-dimension connectivity in DHGA,

we propose another model DHGA− which uses the MashupAE and ApiAE for the

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 104

rij

ui vj
&̂"#

MashupAE
(i)

ApiAE
(j)

MashupAE
(m(2,0))

ApiAE
(n(2))

parameters sharing parameters sharing

Figure (4.5) The DHGA− model for service recommender system

second-order connectivity only with a dot product function to obtain the predicted

invocation. DHGA− does not consider the k-neighbour sampling. In addition, the

significant difference is that the DHGA− calculates the prediction value directly from

the autoencoder embeddings of the mashup ui and API vj while the DHGA learns it

from the autoencoder embeddings of ui, vj , and their high-order neighbours through an

MLP part.

As shown in Figure 4.5, we extend the autoencoder-based embedding and apply it

on the bipartite MAG for collaborative filtering. In such extension, the inner-product

based mashup-API matrix factorization is extended with two autoencoder frameworks:

one for mashup nodes and the other for API nodes. Clearly, such extension can capture

connectivity signals up to the second order.

Time complexity The time complexity of the proposed DHGA is O(NXdldhI),

where NX is the size of the augmented training dataset, dl is the maximum dimension

of the hidden layer of the autoencoders, dh is the maximum dimension of the hidden

layer of MLP, and I is the number of iterations. NX is related to NE , the number of

edges of the MAG, by NX = (rs + 1)fNE , where rs is the negative instance sample

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 105

rate and f is the number of the sampled high-order neighbours of the target mashup or

API. f is defined as: f(2z, k) = 1+ k + k2 + ...+ kz = O(kz), where 2z is the maximum

order of connectivity to reach and k is the number of neighbours to sample for each

order. Although NX turns out to be exponential to the order of connectivity, practically

speaking we found that DHGA could achieve high performance even with z = 1 and

k = 1 (c.f. Section 4.6).

4.5 Discussion

In this section, we compare existing autoencoder based approaches from the basic

autoencoder model to denoising autoencoder CDAE (Y. Wu, DuBois, Zheng & Ester,

2016), and variational autoencoder VAE-CF (D. Liang et al., 2018) with our proposed

high-order autoencoder based model. Figure 4.6 shows the structures of such autoen-

coder frameworks. The framework (a) is the orginal autoencoder to reconstruct the

input x into x̂. The denoising CDAE (b) adds the noise to the input x and simply uses

the data augmentation with a portion of the negative samples as the implicit data. Such

work only considers the directed relation and ignore the intrinsic graph structure. Our

approach does not only uses the negative instances but also explore the high-order inter-

actions with both negative and positive observes. This augmentation technique makes

our model more effective with larger and deeper data. CDAE uses three-layer neural

network to learn the embedding of users. Different form CDAE, our model applies the

autoencoder framework for the bipartite graph with two types of nodes including users

and items. In addition, such autoencoder frameworks combine together according to

the interaction graph structure. VAE-CF (c) generally uses an parametrized inference

model to learn the mean and variance and inject to the autoencoder part. Our proposed

high-order autoencoder does not only execute the autoencoder of a unique input but

also embed the autoencoder of the neighbour in high-order connectivity. For example

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 106

x

u

x

^

ᵩ

θ

x

u

x

^

ᵩ

θ

x

u

x

^

ᵩ

θ

x

u

x

^

ᵩ

θ

εε

x

u

x

^

ᵩ

x

u

x

^

ᵩ

µµ σσ

εε

x

u

x

xm1

um1

xm1

xmn

umn

xmn

^ ^

^

ᵩ

ᵩ
ᵩ

θ

θ

θ

(a) Autoencoder (c) Variational Autoencoder

(b) Denoising Autoencoder (c) High-order Autoencoder

θ θ

Figure (4.6) Discussion of different Autoencoder models

in Figure 4.6 (d), we consider the m neighbours of the user u from the second-order

um1 to the user umn. Such high-order information is injected to the intermediate hidden

representation and support for the main autoencoder of the user u.

The proposed model DHGA with high-order autoencoder can be applied to any

bipartite networks/graphs where two types of nodes connect to each other. There are

many networks in the real world are bipartite including the user-item graphs used in

this work, the Mashup-WebAPI networks in the service computing domain (Nguyen,

Yu, Nguyen & Han, 2021) and the bipartite ecological (Dormann, Gruber & Fründ,

2008) networks. While in this paper we applied our model on the recommendation task,

DHGA can also be applied in the general link prediction tasks and other prediction

tasks such as node classification.

The assumption of this work is that the graph structure, including both direct/first-

order connectivity and high-order connectivity brings more good hints than false positive

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 107

information. Such assumption first is validated by the experiments done in this work

which shows a superior performance than past works. On the other hand, the sparsity

of most real-world networks might also suggest that people tend to create links in a

network between highly relevant nodes while ignoring links between irrelevant nodes.

A recent work FAGCN (Bo, Wang, Shi & Shen, 2021) can utilize both the assortative

and disassortative connections of a graph. However, we leave this topic for future

exploration.

4.6 Experiments

We have performed experiments on ProgrammableWeb dataset to evaluate our proposed

model. Our objective is to answer the following research questions:

• RQ1: How does DHGA perform as compared with the state-of-the-art collaborat-

ive filtering methods?

• RQ2: How do order of connectivity, number of mashups or APIs sampled in each

order, and number of hidden layers of autoencoder affect the performance of

DHGA?

4.6.1 Experimental settings

Datasets We use the dataset of ProgrammableWeb to demonstrate the effectiveness of

the proposed model. The dataset consists of textual descriptions of 17829 APIs and

6340 mash-ups, and their historical invocation. Because the dataset does not have the

ratings between mashups and APIs, we adopt their invocation data as the ratings. For

example, if mashup m1 invokes API a5, their invocation data is 1, and we use this value

as invocation between this mashup- API pair. After that, we do reprocessing for the

dataset as follows. We remove blank APIs and mashups, and obtain 5691 mashups and

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 108

Dataset # Users # Items # Interactions Density

Movielens 1M 6,040 3,706 1,000,209 4.7%
ProgrammableWeb 6,910 1170 10,788 0.13%
Gowalla 29,858 40,981 1,027,370 0.08%
Goodreads-books 25,475 18,892 1,378,033 0.29%
Amazon-books 52,643 91,599 2,984,108 0.06%

Table (4.2) Datasets statistic

1170 APIs. Them we remove a certain portion of the mashup-API invocations to create

a training set, and the original data becomes the test set.

We further use Movielens 1M, Gowalla, Goodreads-book, and Amazon-book which

are widely used by many collaborative filtering models. For Movielens 1M, we use the

version of one million ratings in which each user has at least 20 ratings. This dataset

originally is an explicit data, we transform it to implicit interactions. As a results,

ratings are converted to 0 and 1 with 1 means that the user has rated the item and 0

means that the user has not rated the item. For Gowalla, users share their locations

when doing check-in. This dataset has over one million ratings. We use the 10-score

setting (R. He & McAuley, 2016) to assure the quality of dataset which means every

user or item has at least 10 interactions. For Goodreads-book, this dataset is from the

goodreads website with a focus on the genres of Children and Comics. In order to be

consistent with the implicit feedback setting, we keep those with ratings no less than

four (out of five) as positive feedback and treat all other ratings as missing entries on

all datasets. The Amazon-Book has about three million ratings and use the 10-score

setting for each user or item having at least 10 interactions.

Evaluation metrics To evaluate the performance of API recommendation, we

use binary accuracy, hit ratio (HR) (X. Wang et al., 2019), Normalized Discounted

Cumulative Gain (NDCG), and Mean Average Precision (MAP). According to the

common approaches (Tay et al., 2019; D. Wang et al., 2016b), we pick unused items for

each mashup in the train dataset. After that, we sort them ascending to their estimated

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 109

ratings. According to recent methods he2017, wang2019, we truncate the top-p ranked

for the recommendation list. Then HR is obtained from the top-p recommendation list

using the following equation:

HR@p =
Number of hits @p

Nr

(4.5)

Where Nr is the number of APIs in the recommendation list. From the ranking

of relevant APIs in the recommendation list, we measure the effectiveness of recom-

mendation by the Discounted Cumulative Gain (NDCG). The gain is accumulated from

the top to the bottom of recommendation list for each relevant API. Accordingly, this

metric discounts and penalizes the APIs which have lower rank. Namely, the NDCG

from rank 1 to p for the subset of a recommendation list is defined as:

NDCG@p =

p

∑
i=1

2ri − 1

log2(i + 1)
(4.6)

For the Mean Average Precision (MAP), we calculate as follows. Precision is the

portion of recommended items those are actually invoked by the user which is also

known as true positive accuracy. We use P@k as the precision that is calculated from

only a recommendation list from rank 1 through k. Given an user ui, the Average

Precision AP@ku is the precision of each relevant item, regarding its position in the

ranked recommendation list of k items: AP@k(ui) =

∑kn=1 Pr(n)×I(n)
k , where Pr(n) is the precision at cutoff n in the list, and I(n) is equal to

1 if the item at rank nth is actually invoked, zero otherwise. The AP metric identifies

every relevant recommendation and give prize frontal recommendation with the most

probable correct items, such as the relevant items at the top of the recommendation list.

Hence, we call the arithmetic average of the AP@k of all users as the Mean Average

Precision : MAP@k =
∑Nui=1 AP@kui

Nu
, where Nu is the number of users.

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 110

Training set-up All datasets are split into train set and test set with ratio 80% and

20% respectively. We use the train set to train the proposed DHGA model and evaluate

the binary accuracy, HR and NDCG on a test set. We do not use the validation set labels

for training. For the evaluation process, all the mashups in the test set have a list of

invoked APIs. For each mashup, all APIs in the test set are scored with their estimated

invocation value which is between 0 and 1. After that, we sort them ascendingly to their

estimated ratings. According to recent methods (X. He et al., 2017c; X. Wang et al.,

2019), we truncate the top-p ranked for the recommendation list, Then, we get the top p

highest score list which will be compared with the test set to see if the APIs are in the

test or not. Consequently, the number of APIs are in both top p list and test set is the

number of hits. For evaluation metrics, we use p=10 for our experiment.

We use Keras Tensorflow to implement DHGA and some of the baselines. The

embedding size is fixed to 32 for the baselines NeuMF, MFlogloss, NGCF, and VAE-CF.

We use grid search to tune the hyperparameters. Namely, the learning rate is tuned

in {0.0001, 0.0005, 0.001, 0.005, 0.01}, the coefficient of L2 normalization in {10−6,

10−4, 10−2, 101, 102 and the dropout ratio in {0.1, 0.2, 0.3, ..., 0.8}. We use Adadelta

optimizer with batch size 256. We use five layers with dimensions 128-64-32-64-128

for the autoencoder and three layers with the tower structure for the MLP. For the

hyperparameters of the baselines, the configuration of the best performed version as

reported are used. For example, NGCF-3 (X. Wang et al., 2019) is used as our baseline.

Furthermore, early stopping is applied and the results of training phase shows that the

performance of all versions of DHGA converges at around epoch 100. Specifically,

Figure 4.7 shows the score of Accuracy over the first 100 epoches when training the

ProgrammableWeb dataset of the baselines and DHGA.

Baselines We compare DHGA with the following baselines:

• MF (Mnih & Salakhutdinov, 2008): This is the vanilla matrix factorization

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 111

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Accuracy

MF NeuMF HOGA- HOGA(2,2) NGCF VAE-CF CI-MF MISRHOGA(2,2) HOGA−

Figure (4.7) Accuracy scores of all models on train dataset in 100 epoches

method that represents users and items as feature vectors and exploits their direct

invocations by inner product.

• NeuMF (X. He et al., 2017b): This is a neural collaborative filtering model that

uses multiple hidden layers above the element-wise and concatenation of mashup

and API embeddings to capture their nonlinear feature invocations.

• NGCF (X. Wang et al., 2019): This is a state-of-the-art GCN-based collaborative

filtering method that propagates embeddings on the MAG to exploit the high-order

connectivity signal of users and items.

• VAE-CF (D. Liang et al., 2018): This is a state-of-the-art method that applies

Variational Autoencoders on collaborative filtering for implicit data with multino-

mial likelihood and Bayesian inference to tune the parameters.

• CI-MF (Yao et al., 2021): Matrix Factorization based model with API Co-

invocation regularization, which uses TF-IDF for text mining.

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 112

• DHGA−: This is the model that extends SDNE for a bipartite graph to obtain the

embeddings of users and items and then uses dot product to make prediction for

their invocation.

• MISR (Y. Ma et al., 2020): This is a multiplex invocation-oriented service

recommendation model which leverages three types of invocations between

services and mashups and incorporates them into a DNN to present for their

explicit and implicit relationships.

Variants of DHGA We use (n, k) to distinguish DHGA variants with n denoting

the highest order of connectivity to reach and k the number of high-order neighbours to

sample in a specific order. For example as below:

• DHGA(1): 1st order connectivity including all the direct invocations/edges in the

MAG

• DHGA(2,1): 2nd order connectivity with one sampled mashup/API in the 2nd

order

• DHGA(2,2): 2nd order connectivity with two sampled mashup/API in the 2nd

order

• DHGA(4,1): 4th order connectivity with one sampled mashup/API in the 2nd

order

• DHGA(4,2): 4th order connectivity with two sampled mashup/API in the 2nd

order

• DHGA(4,2): 4th order connectivity with two sampled mashup/API in the 2nd

order

In this paper, we test the variants of DHGA with 2z = {0,2,4,6} and k = {1,2,3,4,5}

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 113

Table (4.3) Baseline comparison over different p on HR metric
p 1 2 3 4 5 6 7 8 9 10
MF 0.1312 0.3401 0.4801 0.5121 0.5143 0.5201 0.5201 0.5201 0.5201 0.5201
NeuMF 0.185 0.3811 0.5181 0.5534 0.5769 0.6001 0.6079 0.6079 0.6079 0.6079
NGCF 0.2091 0.4429 0.5883 0.6201 0.6245 0.6312 0.6312 0.6312 0.6312 0.6312
VAE 0.2891 0.4592 0.5923 0.6242 0.6392 0.6723 0.6933 0.6933 0.6933 0.6933
CI-MF 0.3023 0.4817 0.6003 0.6519 0.6703 0.6889 0.6991 0.6994 0.6994 0.6996
DHGA− 0.4521 0.6215 0.6509 0.6821 0.7121 0.72 0.7201 0.7212 0.7223 0.7225
MISR 0.4815 0.6494 0.6760 0.7023 0.7211 0.7286 0.7392 0.7392 0.7407 0.7441
DHGA(2,2) 0.4960 0.6645 0.7190 0.7367 0.7483 0.7547 0.7603 0.7604 0.7606 0.7616

4.6.2 Performance comparison (RQ1)

This paper uses the defined metrics Accuracy, HR, and NDCG to compare the perform-

ance of all baselines and DHGA variants.

Comparison results on ProgrammableWeb

Overall comparison Both DHGA(2,2) and DHGA(4,2) obtain the best performance

among the variants (C.f. Section 4.6.3) with the similar scores, we only choose

DHGA(2,2) to compare with the baselines. Table 4.6 shows the comparison result.

As we can see, DHGA(2,2) obtains the best results. The MISR leverages the high-order

invocation also achieves very good results which is only slightly less than DHGA(2,2).

All the autoencoder-based methods, including VAE-CF, DHGA− also achieves better

HR and NDCG than other methods, which may demonstrate the merits of applying au-

toencoders in collaborative filtering. Both DHGA(2,2) and VAE-CF capture connectivity

up to the second order. DHGA(2,2) is better performed than VAE-CF may because

VAE-CF only captures the 2nd order connectivity of APIs, while DHGA(2,2) considers

the connectivity of both mashups and APIs.

Top-p recommendation comparison We test the performance of top-p recom-

mendation lists of all models and use HR@10 and NDCG@10 as measurement metrics.

The values of p is in range [1, ..,10]. Table 5.1 and Table 5.2 respectively show the

HR@10 and NDCG@10 scores of all models with different top-p recommendation.

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 114

0.00000

0.10000

0.20000

0.30000

0.40000

0.50000

0.60000

0.70000

0.80000

1 2 3 4 5 6 7 8 9 10

HR

GACF(2,2) MISR SDNExCF CI-MF

VAE NGCF NeuMF MF

Figure (4.8) Impact of different p on HR@10 metric

Table (4.4) Baseline comparison over different p on NDCG metric
p 1 2 3 4 5 6 7 8 9 10
MF 0.1301 0.3078 0.337 0.3371 0.3367 0.3367 0.3367 0.3367 0.3367 0.3367
NeuMF 0.1521 0.3455 0.3827 0.4260 0.4459 0.4459 0.4459 0.4459 0.4459 0.4459
NGCF 0.1921 0.3521 0.3841 0.4393 0.4647 0.4678 0.4580 0.4603 0.4613 0.4647
VAE 0.2821 0.3921 0.4328 0.4528 0.4921 0.4921 0.4921 0.4921 0.4921 0.4921
CI-MF 0.2888 0.4526 0.4684 0.4773 0.4931 0.5067 0.4959 0.4983 0.4959 0.4938
DHGA− 0.4501 0.5071 0.5151 0.5317 0.5064 0.5132 0.5115 0.5150 0.5161 0.5196
MISR 0.4605 0.5209 0.5050 0.5343 0.5301 0.5351 0.5433 0.5569 0.5568 0.5583
DHGA(2,2) 0.4960 0.5626 0.5666 0.5627 0.5657 0.5711 0.5716 0.5718 0.5725 0.5726

As can be seen, DHGA(2,2) obtains consistent improvement over the other models all

values of p. It is also clear that the DHGA(2,2) achieves the converged results in smaller

p than other baselines. Specifically, there are two groups of models. The first group

including MF, NeuMF, NGCF, VAE, and CI-MF have smaller performance results at the

small values of p (p = 1,2,3). The remaining models DHGA−, MISR, and DHGA(2,2)

are in the second group and have much higher performance at the beginning. The

second group also achieve the converge value at earlier stage, namely at p = 4 for both

HR and NDCG metrics while the first group approximately cannot reach the highest

value until p = 6.

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 115

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

1 2 3 4 5 6 7 8 9 10

NDCG

GACF(2,2) MISR SDNExCF CI-MF

VAE NGCF NeuMF MF

Figure (4.9) Impact of different p on NDCG@10 metric

Table (4.5) Overall performance comparison on ProgrammableWeb
Model Accuracy HR@10 NDCG@10
MF 0.6395 0.5201 0.3367
NeuMF 0.6467 0.6079 0.4558
NGCF 0.6521 0.6312 0.4647
VAE-CF 0.6829 0.6933 0.4921
CI-CF 0.7012 0.6996 0.4938
DHGA− 0.7193 0.7225 0.5196
MISR 0.8021 0.7597 0.5683
DHGA+(2,2) 0.8319 0.7672 0.5726

Comparison results on Movielens 1M, Gowalla, Goodreads-book, and Amazon-

book

For such datasets, we use MAP and NDCG to compare the performance of all baselines.

Overall comparison Table 4.6 shows the comparison result. As DHGA(2,2) obtains

the best performance among the four versions, we use it to compare with the baselines.

In Figure 4.10 and Figure 4.11, all the autoencoder-based methods, including VAE-

CF, DHGA−, and DHGA achieve better MAP and NDCG than other methods, which

may demonstrate the merits of applying autoencoders in collaborative filtering. Both

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 116

Movielens 1M Goodreads-book Gowalla Amazon-book
Model MAP@10 NDCG@10 MAP@10 NDCG@10 MAP@10 NDCG@10 MAP@10 NDCG@10

NeuMF 0.4741 0.4349 0.5743 0.6199 0.5649 0.6017 0.5614 0.6071

MFlogloss 0.4654 0.4523 0.5699 0.6003 0.5593 0.6005 0.5509 0.6074

NGCF 0.5203 0.5966 0.5545 0.6102 0.5832 0.6271 0.5628 0.6111

VAE-CF 0.6002 0.6301 0.5855 0.6139 0.5887 0.6198 0.5783 0.6128

DHGA− 0.6012 0.6793 0.6019 0.6508 0.5743 0.6211 0.5643 0.6204

DHGA(2,2) 0.7522 0.7956 0.6209 0.6998 0.6125 0.6496 0.5872 0.6424

Table (4.6) Overall performance comparison

Movielens 1M Goodreads-books Gowalla Amazon-books
Model MAP@10 NDCG@10 MAP@10 NDCG@10 MAP@10 NDCG@10 MAP@10 NDCG@10

DHGA(0,1) 0.7207 0.7524 0.6222 0.6882 0.6075 0.6405 0.5854 0.6256

DHGA(2,1) 0.7445 0.7884 0.6270 0.6886 0.6100 0.6451 0.5870 0.6266

DHGA(2,2) 0.7522 0.7956 0.6209 0.6998 0.6125 0.6496 0.5872 0.6424

DHGA(4,1) 0.7011 0.7712 0.6306 0.6946 0.6167 0.6375 0.5802 0.6421

DHGA(4,2) 0.7001 0.7634 0.6301 0.6911 0.6131 0.6329 0.5809 0.6416

Table (4.7) Test performance of different versions of DHGA

DHGA(2,2) and VAE-CF capture connectivity up to the second order. DHGA(2,2) is

better performed than VAE-CF may because VAE-CF only captures the 2nd order

connectivity of users, while DHGA(2,2) considers the connectivity of both users and

items.

4.6.3 Study of DHGA (RQ2)

In this section, we evaluate the performance of DHGA at different high-order of

connectivity and number of k-neighbour sampling in each order.

To train the models, we use Keras Tensorflow with cross-entropy loss function and

binary accuracymetric 1. Then, we evaluate the models on the test dataset with metrics

Accuracy, HR, and NDCG. The next subsections present the results over different values

of 2z high-order, k-neighbour, and number of autoencoder hidden layers.

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 117

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Movielens 1M Goodreads-books Gowalla Amazon-books

MAP

NeuMF MF_logloss NGCF VAE-CF ACF GACF(2,2)

0.43

0.53

0.63

0.73

0.83

Movielens 1M Goodreads-books Gowalla Amazon-books

NDCG

NeuMF MF_logloss NGCF VAE-CF ACF GACF(2,2)

Figure (4.10) Test performance of baselines and DHGA(2,2) on MAP
.

Study results on ProgrammableWeb

Influence of high order and k-neighbour sampling. The high-order and k-neighbour

sampling significantly impact the graph autoencoder output and then influence the

DHGA model performance. We train a number of DHGA variants and observe the

prediction results on the test dataset of these models. We choose the variants with

2z = {0,2,4,6} and k = {1,2,3,4,5}. We train these models with train dataset in 100

epoches. After that, we test their performance on the test dataset with three evaluation

metrics including Accuracy, HR@10, and NDCG@10. The Figure 4.12 shows the

results of this study.

Specifically, for Accuracy metric, the scores of all models are from 0.72 to 0.82. So,

the difference between the best and the least is not much about 0.1. As we can see from

the 3B accuracy bar chart, the better score models are in the middle which has the value

of 2z = {2,4} and k = {2,3,4}. It is also remarkable that DHGA(2,2) and DHGA(4,3)

have the best scores and DHGA(6,5) has the smallest performance. Therefore, we can

1https://www.tensorflow.org/apidocs/python/tf/keras/metrics/BinaryAccuracy

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 118

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Movielens 1M Goodreads-books Gowalla Amazon-books

MAP

NeuMF MF_logloss NGCF VAE-CF ACF GACF(2,2)

0.43

0.53

0.63

0.73

0.83

Movielens 1M Goodreads-books Gowalla Amazon-books

NDCG

NeuMF MF_logloss NGCF VAE-CF ACF GACF(2,2)

Figure (4.11) Test performance of baselines and DHGA(2,2) on NDCG
.

learn that the performance of DHGA will increase when we increase the high-order and

neighbour sampling size at a certain value for example 2z = 4 and k = 3, and then it

starts to decrease when these parameters continue to increase. It may be due to the data

overfitting in the train dataset distorts the prediction results in the test dataset. These

results are similar to HR and NDCG bar charts.

Overall, the variant without high-order DHGA(1,k) has the least performance while

the higher order models achieve better scores. The 2th and 4th high-order achieve

the best performance and the 6th high-order is not as good as the 2th and 4th but it

outperforms the 1st high-order variants DHGA(1,k).

Study results on Movielens 1M, Gowalla, Goodreads-book, and Amazon-book

The key part of the proposed DHGA− is the high order connectivity with data augment-

ation part. So, we study how the related parameters 2z and k influence the performance

of the model. Specifically, we evaluate the performance of the five versions of DHGA−

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 119

2z

0 1 2 3 4 5 6
k

1
2

3
4

5

ac
cu

ra
cy

0.72
0.74
0.76
0.78
0.80
0.82

2z

0 1 2 3 4 5 6
k

1
2

3
4

5

HR

0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76

2z

0 1 2 3 4 5 6
k

1
2

3
4

5

 N
DC

G

0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57

Figure (4.12) Performance of DHGA variants with different values of n and k

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 120

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

1 2 3 4 5

Accuracy

0.71

0.72

0.73

0.74

0.75

0.76

0.77

1 2 3 4 5

HR

0.55

0.555

0.56

0.565

0.57

0.575

1 2 3 4 5

NDCG

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

1 2 3 4 5

Accuracy

0.71

0.72

0.73

0.74

0.75

0.76

0.77

1 2 3 4 5

HR

0.55

0.555

0.56

0.565

0.57

0.575

1 2 3 4 5

NDCG

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

1 2 3 4 5

Accuracy

0.71

0.72

0.73

0.74

0.75

0.76

0.77

1 2 3 4 5

HR

0.55

0.555

0.56

0.565

0.57

0.575

1 2 3 4 5

NDCG

Figure (4.13) The influence of autoencoder hidden layers

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 121

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

40 50 60 70 80 90 100

Movielens-1M

HACF(1) HACF(2,1) HACF(2,2) HACF(4,1)

0.72

0.725

0.73

0.735

0.74

0.745

40 50 60 70 80 90 100

Goodreads-books

HACF(2,1) HACF(1) HACF(2,2) HACF(4,1)

0.66

0.661

0.662

0.663

0.664

0.665

0.666

0.667

0.668

40 50 60 70 80 90 100

Gowalla

HACF(1) HACF(2,1) HACF(2,2) HACF(,1)

0.61

0.615

0.62

0.625

0.63

0.635

0.64

0.645

0.65

0.655

0.66

40 50 60 70 80 90 100

Amazon

HACF(1) HACF(2,1) HACF(2,2) HACF(,1)

Figure (4.14) Binary accuracy convergence of the training datasets
.

Movielens 1M Goodreads-books Gowalla Amazon-books
Model MAP@10 NDCG@10 MAP@10 NDCG@10 MAP@10 NDCG@10 MAP@10 NDCG@10

HACF(0,1) 0.7207 0.7524 0.6222 0.6882 0.6075 0.6405 0.5854 0.6256

HACF(2,1) 0.7445 0.7884 0.6270 0.6886 0.6100 0.6451 0.5870 0.6266

HACF(2,2) 0.7522 0.7956 0.6209 0.6998 0.6125 0.6496 0.5872 0.6424

HACF(4,1) 0.7011 0.7712 0.6306 0.6946 0.6167 0.6375 0.5802 0.6421

HACF(4,2) 0.7001 0.7634 0.6301 0.6911 0.6131 0.6329 0.5809 0.6416

Table (4.8) Test performance of different versions of HACF

on the test datasets. As we can see in Table 4.8, DHGA(0,1) has the lowest perform-

ance on both metrics. Then, DHGA(2,1) achieves better results and DHGA(2,2) has

the best MAP and NDCG on all datasets. However, the performance of DHGA− does

not improve when the order reaches four. Specifically, the results of DHGA(4,1) are

better than DHGA(0,1) and DHGA(2,1) but lower than DHGA(2,2). We can also see that

the performance of DHGA(4,2) is lower than DHGA(4,1), which could be caused by

overfitting.

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 122

0.6095 0.6099
0.6108

0.61

0.6125 0.6125
0.6115

0.6145

0.6166

0.604

0.606

0.608

0.61

0.612

0.614

0.616

0.618

MLP-1 MLP-2 MLP-3

MAP@10-GOWALLA

0.7027 0.7063

0.7195
0.7126

0.7194

0.7522

0.7129
0.7198

0.7481

0.67
0.68
0.69

0.7
0.71
0.72
0.73
0.74
0.75
0.76

MLP-1 MLP-2 MLP-3

MAP@10-MOVIELENS 1M

0.5836

0.5855 0.5859

0.584

0.5871 0.5872

0.5851

0.5888
0.5881

0.581
0.582
0.583
0.584
0.585
0.586
0.587
0.588
0.589

0.59

MLP-1 MLP-2 MLP-3

MAP@10- AMAZON-BOOKS

0.6105

0.6145
0.6165

0.6156
0.6174

0.6209

0.6164

0.6186
0.6195

0.604
0.606
0.608

0.61
0.612
0.614
0.616
0.618

0.62
0.622

MLP-1 MLP-2 MLP-3

MAP@10-GOODREADS-BOOKS

MLP-1 MLP-2 MLP-3

AUE-0 AUE-3 AUE-5

Figure (4.15) The variant of autoencoder hidden layers and MLP layers by MAP

0.6322 0.6335

0.6442

0.6331 0.6336

0.6496

0.6336 0.634

0.6456

0.62

0.625

0.63

0.635

0.64

0.645

0.65

0.655

MLP-1 MLP-2 MLP-3

NDCG@10-GOWALLA

0.7404 0.7456

0.7706

0.7448

0.7601

0.7956

0.742
0.7504

0.7936

0.7

0.72

0.74

0.76

0.78

0.8

MLP-1 MLP-2 MLP-3

NDCG@10-MOVIELENS 1M

0.6801

0.6846

0.6963

0.6819
0.6851

0.6998

0.6824
0.6854

0.699

0.67

0.675

0.68

0.685

0.69

0.695

0.7

0.705

MLP-1 MLP-2 MLP-3

NDCG@10-GOODREADS-BOOKS

0.6246
0.6271

0.6379

0.6248
0.628

0.6424

0.6256
0.6288

0.6395

0.615

0.62

0.625

0.63

0.635

0.64

0.645

MLP-1 MLP-2 MLP-3

NDCG- AMAZON-BOOKS

AUE-0 AUE-3 AUE-5

Figure (4.16) The variant of autoencoder hidden layers and MLP layers by NDCG

Chapter 4. Data Augmented High-order Graph Autoencoder in Service
Recommendation 123

Influence of autoencoder hidden layers. The number of layers in autoencoder is

the key hyperparameters. We further test the influence of autoencoder on the Program-

mableWeb dataset with the number of autoencoder hidden layers = {1,2,3,4,5} with

the variants of DHGA(2z,k) with 2z = {0,2,4,6} and k = {1,2,3,4,5}. Figure 4.13

shows the results of Accuracy, HR and NDCG in these different variants. In general,

increasing the layer of autoencoder gives better performance. However, there is no

improvement if the number of layers reaches to 4. It may be due to overfitting. These

results demonstrate the effectiveness of using graph autoencoder and deep learning for

collaborative filtering based recommender systems.

4.7 Conclusion and future work

In this paper, we investigated how the autoencoder architecture can be integrated into the

collaborative filtering framework to facilitate injecting high-order connectivity signals

into the embeddings for better mashup-API invocation prediction. We developed the

MAG with high-order connectivity and k-neighbour sampling definitions, and presented

the parameter-shared autoencoder structure for mashups and APIs embeddings. The

main proposed is a novel data augmented autoencoder framework DHGA with two

expansible sets of autoencoders, one for the mashuos and the other for the APIs. In

addition, we also design a lower level model DHGA− which only consider the second-

order and dot product tradition CF model, and use DHGA− as a baseline. Experimental

results demonstrate that DHGA outperforms some state-of-the-art neural collaborative

models including DHGA−, MISR, NGCF and VAE-CF.

In the future, we plan to further investigate the relationship between the level of

sparsity of the data and the high-order of connectivity of DHGA. We also plan to

investigate how to apply DHGA in heterogeneous collaborative filtering where graph

edges have different types.

Chapter 5

Motif-based Graph Attentional Neural

Network for Web service

recommendation

5.1 Introduction

As Web service is increasing nowadays, the demand of building suitable Web APIs

(or APIs) requires the service recommendation system to execute more accuracy. In

recent year, Deep Neural Network (DNN) based models have outperformed the other

traditional Collaborative Filtering (CF) based method (Sarwar, Karypis, Konstan &

Riedl, 2001b; H. Zhang et al., 2016; X. Chen et al., 2010; Hu et al., 2014; Xie, Wang et

al., 2019; T. Liang et al., 2016; Xie, Chen et al., 2019). Such DNN-based service CF

approaches only deal with the direct invocation between pairs of mashups and APIs and

do not look at the high-order structures. For example, a recent DNN-based approach

named Graph Convolutional Network (GCN) [20] uses a layer-wise propagation to

operate the spectral convolution with the first order connectivity of nodes. In another

work (X. Wang et al., 2020b), the mashup-API invocation pairs are treated as separate

124

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 125

data instances (so called information isolated island) and thus ignore the intrinsic

structure among invocations. To address this limitation, recent DNN-based CF models

such as (Y. Ma et al., 2020; Yao et al., 2021; G. Chen & Chen, 2015) exploit the

high-order relations to solve the cold-start problem of service recommendation for

new mashups. However, such approaches have not pay attention on the patterns of

sub-graphs in the bipartite network.

In this chapter, we introduce a general approach of graph convolution networks

which apply the attention motif-based adjacency matrices to secure the higher-order

connectivity in graphs. The proposed model is named Motif-based Graph Attention

Convolution (MGAT), which used an attention mechanism to attach the sub-graphs

or motifs embedding features into the model. Specifically, it uses a Motif-based self-

attention graph convolution network that contains intrinsic relation of the graph structure

to learn the embedding of mashups and APIs.

This chapter has the following main contributions:

1. We proposed a Motif-based graph convolution self-attention method to attach the

variant patterns of connectivity structure.

2. We proposed a Motif-based Graph Attention Collaborative Filtering for service

recommendation (MGAT) that aggregates the motif-based neighbour into the

learning progress for mashup-API recommendation.

3. We conducted extensive empirical studies on the Programmable dataset 1 and the

results demonstrates the superior performance of MGAT over some state-of-the-

art frameworks.

The remaining of this chapter is organized as follows. Section 5.2 presents the related

work; Section 5.3 describes the sub-graphs in MAG, definitions of motifs proposes our

data augmentation method, and presents the MGAT model; Section 5.4 demonstrates
1We downloaded the database from https://dev.maxmind.com/in November 2020.

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 126

the experiments running with comparison results and further analysis; and Section 5.5

concludes the chapter.

5.2 Related works

5.2.1 Network motifs and high-order Graph Neural Networks

The complex network’ structures are presented by graphs as fundamental building blocks

of networks, which are known as network motifs with high-order connectivity (Milo

et al., 2002). Existing work (Prill, Iglesias & Levchenko, 2005) explores the motifs

in biological networks demonstrating that the patterns of particular motifs correlating

to the perturbation’s robustness. Reversely, (Paranjape et al., 2017) considers motifs

in temporal networks and states that each type motif presents different organization

structures from different domains.

Existing work have studied the effectiveness of high-order connectivity with differ-

ent graph-based machine learning models (N. Ahmed et al., 2020; Morris et al., 2019;

Rossi, Ahmed & Koh, 2018; C. Yang, Liu, Zheng & Han, 2018). DeepGL (Rossi, Zhou

& Ahmed, 2018) learns the inductive relational functions using motifs. (Rossi, Ahmed

& Koh, 2018) studies the high-order network embeddings and approves that various

motif-based matrix formulas obtain better embeddings.

Another work (C. Yang et al., 2018) proposes a hierarchical motif convolution for

graph classification by identifying the task of sub-graphs. In addition, (C. Yang et al.,

2018) designs a graph convolution framework for heterogeneous networks by leveraging

the motif-based connectivity. Existing work (Morris et al., 2019) also demonstrates that

GCN-based models and the one-dimension Weisfeiler-Lehman Isomorphism heuristic

have similar above deficiency, so they propose a high-order framework for graph

classification.

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 127

5.2.2 GNN and Motif-based Network in recommender systems

Existing work using Graph Neural Network model (Belkin, Niyogi & Sindhwani, 2006)

to conform GNN to address the recommendation problem (Abu-El-Haija, Kapoor,

Perozzi & Lee, 2020; Bahdanau, Cho & Bengio, 2014; Henaff, Bruna & LeCun, 2015).

While GraphSAGE (Bahdanau et al., 2014) is an example of learning feature repres-

entations through sampling and aggregating strategies. PinSAGE (Henaff et al., 2015)

is built for Web-scale recommender systems, which uses a random walk mechanism

to learns node representations from chosen neighbor nodes and then integrating such

high-order representations with GCN framework. (Abu-El-Haija et al., 2020) use the re-

lationship of users and items to learn their representations. Instead of such random walk

based methods, some work (Feichtenhofer, Pinz & Zisserman, 2016; Frasconi, Gori &

Sperduti, 1998; X. Han, Liu & Sun, 2018) have used motif to capture the graph struc-

tural information. Particularly, a spectral motif convolution approach (Feichtenhofer et

al., 2016) is built for convolution filters. Motif-CNN (X. Han et al., 2018) identifies

several types of motifs to create the receptive fields for the target node, and then per-

form a motif-based spatial convolution operations to elicit the first interaction latent

features. Another work on graph node classification (Frasconi et al., 1998) presents a

motif-level self-attention model to learn the weight of different motifs using differenti-

ation. Luo (Luo, Liu, Peng, Ying & Zhang, 2020) firstly present a Motif-based Neural

Network applying for the Reciprocal Recommendation on Online Dating application.

The work defines seven kinds of motifs and using a random walk algorithm to sample

neighbour users to learn the their embedding features with skip-program mechanism.

The interaction of a male and a female will be predicted by a fully connected neural

network layers of a concatenation of their embedding feature vectors.

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 128

5.3 The MGAT model for bipartite network

In this section, we introduce some definition relating to motif, and present the proposed

motif-based architecture and recommendation model. We first defines the Self-attention

Motif-based Graph Convolution Layers which learn the embeddings by a Motif-based

attention mechanism. After that, such layer is attached with a Neural network Collabor-

ative Filtering based recommendation model.

5.3.1 Motif definitions

In general, Web API is a bipartite network MAG G = (U,V,E) where U denotes the set

of mashups, V denotes the set of APIs, and E = U × V with eij ∈ E is an edge between

U and V . If the API is invoked by the mashup then the edge eij exists and is assigned a

value rij ≥ 0, otherwise rij = 0.

Like social media, we assume that in Web Service network, connected mashups

may have similar preferences and therefore have similar latent features. As a result,

their embedding features would be close to each other. In the bipartite network, there

are only interactions between two different nodes from different types of nodes, which

are mashup and API in this thesis.

In the MAG, we defined a set of motifs Mt = {M1, ...,MT}, we build a set of T

different motif-induced adjacency matrices A = {A1, ...,AT} where At is defined as

(At)m,a, which is equal to the number of motifs of type Mt which contains both mashup

m and a. Different motifs of size two to four in the Figure 5.1 have different neighbour

sets. Hence, the weight or attention score of each motifs are varying in frequency

between mashup/API pairs.

As mentioned in Figure 3.2, most of mashups invoke an average number of three

APIs. Therefore, we believe that only a certain types of motifs can represent for the

whole dataset. We consider six common motifs which are plotted in Figure 5.1. We

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 129

Motif M1 Motif M2 Motif M3

Motif M4 Motif M5 Motif M6

Figure (5.1) Types of motifs for Mashup-APi Graph

denote such motifs as Mt = M1,M2, ...,M6. Given the subgraph with one mashup

and one API and their interaction, we obtain the first motif M1. Given the subgraph

with three entities, we obtain the motifs M2 and M3. The second motif M2 presents the

co-invocation of one mashup and two APIs. The motif M3 demonstrates two mashups

use the same API. For the subgraph with four entities, we have three motifs M4, M5, and

M6. M4 shows triples mashups use the same API. The motif M5 is the co-invocation of

three APIs and one mashup while the last motif M6 shows two APIs invoked by both

mashups.

5.3.2 Motif-based Graph Convolution Layers with Self-attention

Inspired by GAT, we implement the sole graph attentional layer for the whole MGAT

model. We use the features of a set U of mashups and a set V of APIs as the input layer

and denoted as Hm = {h⃗i}, i ∈ U and Ha = {h⃗j}, j ∈ V , where hi, hj ∈ RD. From the

input features’ vectors, the graph attentional layer generates a new latent features for

each mashup/API. We denote the set of output features’ vectors as H ′
m = {h⃗′i}, i ∈ U

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 130

and H ′
a = {h⃗′j}, j ∈ V , where h′i, h

′
j ∈ R

′
D. D is the dimension of embedding features.

We update the mashups and APIs embedding features by a linear transformation

weighted by shared parameter matrix W ∈ RD×D′ applied for all mashups and APIs.

Later, a self-attention framework a⃗ with shared attentional scores αm,t, αa,t with t ∈ T

used for mashups and APIs respectively, which represents for the motif-based neighbor

of every mashup and API. Different from GAT which explores the one-hop neighbors for

the attention score, we use the motif-based neighbours instead. As a result, the number

of attentional scores in MGAT depends on the number of motifs considered which are

believed to contain intrinsic information of the MAG. Particularly, the motif-based

attention values for mashup and API are formulated as below:

αm,i = softmax[(LeakyReLU(a⃗T [Wh⃗m ∥Wh⃗i])] (5.1)

αa,j = softmax[(LeakyReLU(a⃗T [Wh⃗a ∥Wh⃗j])] (5.2)

where T is the transpose function and ∥ is the concatenation operation. After

that, we use the normalized attention coefficients to combine the features of neighbour

mashups/ APIs by a linear activation. The result embedding vectors are the output

features for the corresponding nodes. Particularly, the embedding vector h′m and h′a are

formally defined as below equations.

h′m = ∑
i∈Nt(m)

αm,iWhi (5.3)

h′a = ∑
j∈Nt(a)

αa,jWhj (5.4)

where the motif-based neighbor lists of the mashup m and API a are denoted as Nt(m)

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 131

and Nt(a) respectively with t ∈ Mt. In the next step, different from GAT, which

applies the multi-head attention by using K independence attention mechanisms and

concatenate to execute the output representation, we obtain the embedding vector h⃗m,

h⃗a by adding the attention scores of their motif-based neighbours. The calculation of

such vectors are formulated in Equation 5.6 and Equation 5.5.

h′m =∥t∈Mt σ(∑
i∈Nt(m)

αt
m,iW

thi) (5.5)

h′a =∥t∈Mt σ(∑
j∈Nt(a)

αt
a,jW

thj) (5.6)

where αt
m,i are the normalized attentional scores calculated from attention mechan-

ism of the mashupm and its neighbors with motif typeMt and likewise for αt
a,j .W thi),W thj)

are the weight parameter matrices for the linear transformation according to the set

of mashups and APIs. The combination process of such graph self-attention layer is

demonstrated in Figure 5.2. This process is used for both mashup and API. For instance,

the Figure 5.2 shows the API ha and its motif-based neighbors h1, h2, h3, h4. Clearly,

ha and h1 are in the same motif M1 and motif M2. This motif-based relation is the

same to the pairs (ha, h4) while the pair (ha, h3) is only belong to motif M3. The

pair (ha, h2) has the strongest relation with three types of motifs M1,M2, and M3.

All the motif-based attention scores are calculated by the attention mechanism and

concatenated to generate the output h′a. As a result, the output sets of features H ′
m and

H ′
a are obtained from the motif-based self-attention layers and contain the high-order

graph relation, which can be used as auxiliary information for predictive model in the

next subsection.

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 132

αa,M2

Softmax

*

σ

+

Self-attentionW

ha

h1

h2

h3

h4

αa,M1

αa,M1

αa,M3

αa,M3

αa,M1

αa,M2

αa,M2

+ h’a

Figure (5.2) Motif-based attention mechanism

5.3.3 Motif-based Graph Attention Collaborative Filtering for ser-

vice recommendation (MGAT)

In this section, We aim to project the invocation between the pair of mashup m and

API a provided their latent representation h′m and h′a. The prediction value R will be

obtained by the dot product of h′m and h′a and learning through an MLP layers.

R = h′m ⊙ h′a (5.7)

The value ofR ∈ {0,1}, in which 1 indicates the existing invocation between the mashup

and API and 0 otherwise. We use the cross-entropy loss function to optimize the model.

Loss = − ∑
m∈U,a∈V

rma log r̂ma + (1 − rma) log (1 − r̂ma) (5.8)

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 133

5.4 Experimental results

Our model can be applied to any bipartite network and we use the ProgrammableWeb

dataset to evaluate our proposed model. Our objective is to answer the following

research questions:

• RQ1: How much does MGAT outperform the state-of-the-art graph-based CF

methods?

• RQ2: How do different types of motifs influence the performance of the proposed

model?

5.4.1 Datasets and baselines

Datasets In Web API application, we use the dataset of ProgrammableWeb which

can be presented as a bipartite network to evaluate the success of the proposed model.

The dataset consists of 17829 APIs and 6340 mash-ups, and their invocation data.

Specifically, if mashup m1 invokes API a5, their invocation data is 1, and we use this

value is denoted as the invocation of such mashup-API pair. Then, we process the

following steps for data reprocessing: (a) removing all blank APIs and mashups to

shortly obtain 5691 mashups and 1170 APIs; (b) removing a particular portion of the

mashup-API invocations to generate a train set, and use the original data as the test set.

Baselines We compare our proposed MGAT with some state-of-art approaches:

• AMF: an attentional Matrix factorization with document context and API co-

invocation.

• NGCF: a GCN-based collaborative filtering method that propagates embeddings

on the MAG to exploit the high-order connectivity signal of mashups and users.

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 134

• HACF: High-order Data Augmentation Collaborative Filtering method for service

recommendation.

• GAT-CF: a graph attention network based collaborative filtering model.

• MISR: a multiplex invocation-oriented service recommendation model which

leverages three types of invocations between services and mashups and incorpor-

ates them into a DNN to present for their explicit and implicit relationships.

5.4.2 Settings

Evaluation metrics We use hit ratio (HR) and Normalized Discounted Cumulative

Gain (NDCG) to evaluate the performance of API recommendation. We pick unused

APIs for each mashup in the train dataset. After that, we sort them ascending to their

estimated ratings and truncate the top-p ranked for the recommendation list. The HR is

calculated from the top-p recommendation list by using the equation:

HR@p =
Number of hits @p

Nr

(5.9)

Where we denoted Nr as the number of recommended APIs. We then measure the

effectiveness of recommendation by the Discounted Cumulative Gain (NDCG) by using

the ranking of relevant APIs in the prediction list. Specifically, the NDCG from rank 1

to p for the recommendation list is obtained by the below equation:

NDCG@p =

p

∑
i=1

2ri − 1

log2(i + 1)
(5.10)

Hyper-parameters All datasets are split into train set and test set with ratio 80%

and 20% respectively. We use the train set to train the proposed MGAT model and

evaluate the HR and NDCG on a test set. For the evaluation process, all the mashups

in the test set have a list of invoked APIs. For each mashup, all APIs in the test set

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 135

are scored with their estimated invocation value which is between 0 and 1. After that,

we sort them ascending to their estimated ratings. According to recent methods, we

truncate the top-p ranked for the recommendation list, Then, we get the top p highest

score list which will be compared with the test set to see if the APIs are in the test or

not. Consequently, the number of APIs are in both top p list and test set is the number

of hits. For evaluation metrics, we use p=10 for our experiment.

We implement MGAT based on Pytorch using Graph-tools to develop the model.

In order to ensure MGAT achieves the best performance, we use grid search to tune

the hyperparameters. As a result, the suitable values of hyperparameters obtained are

learning rate, convergence epoch, the hidden size , drop out which are set at 0.005, 1000,

8, 0.6 respectively.

5.4.3 Comparison results

For all the baselines and MGAT variants, we run the models until the values of loss

converge and obtain the best results of HR and NDCG. We calculate the HR and

NDCG at k from 2 to 10. Table 5.1 and Table 5.2 show the performance details of the

baselines and MGAT123 which version obtains the best result among MGAT variants

(see Subsection 5.4.4). Overall, the results demonstrate our proposed model MGAT123

completely obtains superior numbers against exising work including AMF, NGCF,

and MISR which do not consider the high-order connectivity of the MAG. For later

approaches such as HACF and GAT-CF which attach mashup-API high-order relation,

our MGAT does not completely outperform at all but generally it achieves the best HR

and NDCG in most of larger value of k, particularly with k from 5 to 10. The Figure 5.3

and Figure 5.4 provide better visualization for such comparison.

One interesting observation in these both figures is that there are two different groups:

the low performance group consists of AMF and NGCF and the high performance group

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 136

Table (5.1) Baseline comparison over different p on HR metric
p 2 3 4 5 6 7 8 9 10
AMF 0.4021 0.4152 0.4182 0.4262 0.4352 0.4521 0.4921 0.5201 0.5583
NGCF 0.4372 0.4552 0.5037 0.5537 0.6012 0.6252 0.6317 0.6677 0.6882
MISR 0.6494 0.6760 0.7023 0.7211 0.7286 0.7392 0.7392 0.7407 0.7441
HACF 0.6645 0.7190 0.7367 0.7483 0.7547 0.7603 0.7604 0.7606 0.7616
GAT-CF 0.5261 0.6176 0.6716 0.7271 0.7647 0.768 0.7761 0.7761 0.7761
MGAT123 0.5261 0.6275 0.6748 0.7271 0.7647 0.768 0.7745 0.7908 0.7908

Table (5.2) Baseline comparison over different p on NDCG metric
p 2 3 4 5 6 7 8 9 10
AMF 0.3321 0.3498 0.3694 0.3972 0.3999 0.4093 0.4109 0.4271 0.4306
NGCF 0.3521 0.3841 0.4393 0.4647 0.4678 0.4580 0.4603 0.4613 0.4647
MISR 0.5209 0.5050 0.5343 0.5301 0.5351 0.5433 0.5569 0.5568 0.5583
HACF 0.5626 0.5666 0.5627 0.5657 0.5711 0.5716 0.5718 0.5725 0.5726
GAT-CF 0.4857 0.529 0.5541 0.5714 0.5843 0.5833 0.5857 0.5834 0.5809
MGAT123 0.4857 0.5344 0.5559 0.5724 0.5852 0.5843 0.5861 0.5906 0.5889

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

HR

AMF NGCF MISR HACF GAT-CF MGAT123

Figure (5.3) HR results of baselines and MGAT123.

are the remaining models which all consider the high-order connectivity of mashup-API

relation. It is very clear that the performance gaps between groups are significantly large,

which demonstrates the benefit of attaching high-order information into to predictive

models. In the high performance group, MGAT123 achieves the best numbers, which

approves the significant role of motifs to enhance the accuracy of recommender systems.

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 137

0.33

0.38

0.43

0.48

0.53

0.58

0.63

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

NDCG

AMF NGCF MISR HACF GAT-CF MGAT123

Figure (5.4) NDCG results of baselines and MGAT123.

Table (5.3) HR results of variants of MGAT
Variant 2 3 4 5 6 7 8 9 10
GAT-CF 0.5261 0.6176 0.6716 0.7271 0.7647 0.768 0.7761 0.7761 0.7761
MGAT12 0.5261 0.6291 0.6716 0.7271 0.7647 0.768 0.7729 0.7859 0.7892
MGAT13 0.5261 0.6275 0.6748 0.7271 0.7647 0.768 0.7761 0.7761 0.7761
MGAT14 0.5261 0.6307 0.6716 0.7255 0.7647 0.768 0.7729 0.7892 0.7908
MGAT15 0.5261 0.6275 0.6748 0.7271 0.7647 0.768 0.7761 0.7761 0.7761
MGAT16 0.5261 0.6291 0.6748 0.7271 0.7647 0.768 0.7761 0.7794 0.781
MGAT1234 0.5261 0.6291 0.6716 0.7271 0.7647 0.768 0.7761 0.7892 0.7908
MGAT123456 0.5261 0.6209 0.6748 0.7271 0.7647 0.768 0.7761 0.7761 0.7761
MGAT123 0.5261 0.6275 0.6748 0.7271 0.7647 0.768 0.7745 0.7908 0.7908
MGAT145 0.5261 0.6258 0.6748 0.7288 0.7647 0.768 0.7761 0.7761 0.7761

5.4.4 The influence of different types of motifs on the MGAT’s per-

formance

Bringing the motif awareness to the MAG has demonstrated the improvement of

recommendation results. In this subsection, we study how each type of motif contribute

to the success of this innovation. Table 5.3 and Table 5.4 show the detail of HR

and NDCG scores when applying different types of motifs on the MGAT framework.

Generally, the numbers are quite similar at small value of k, they are more distinct when

k > 5.

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 138

Table (5.4) NDCG results of variants of MGAT
Variant 2 3 4 5 6 7 8 9 10
GAT-CF 0.4857 0.529 0.5541 0.5714 0.5843 0.5833 0.5857 0.5834 0.5809
MGAT12 0.4857 0.5352 0.5548 0.5722 0.5851 0.5841 0.5855 0.5889 0.5881
MGAT13 0.4857 0.5344 0.5561 0.5722 0.5851 0.5841 0.5865 0.5844 0.5821
MGAT14 0.4857 0.536 0.555 0.5718 0.5852 0.5843 0.5856 0.5901 0.5882
MGAT15 0.4857 0.5344 0.5561 0.5722 0.5851 0.5841 0.5865 0.5844 0.5821
MGAT16 0.4857 0.5352 0.556 0.5725 0.5853 0.5844 0.5868 0.5871 0.5852
MGAT1234 0.4857 0.5352 0.5546 0.5724 0.5852 0.5842 0.5866 0.5901 0.5885
MGAT123456 0.4857 0.5307 0.5555 0.5717 0.5846 0.5836 0.586 0.5839 0.5817
MGAT123 0.4857 0.5344 0.5559 0.5724 0.5852 0.5843 0.5861 0.5906 0.5889
MGAT145 0.4857 0.5335 0.5557 0.5727 0.5851 0.5841 0.5865 0.5843 0.5818

0.7761 0.7761 0.7761 0.7761 0.7761

0.781

0.7892
0.7908 0.7908 0.7908

0.765

0.77

0.775

0.78

0.785

0.79

0.795

HR

Figure (5.5) HR results of MGAT variants

5.5 Conclusion and future work

The chapter studies the subgraph or types of motifs in the mashup-API bipartite and the

influence of graph structure on the embedding feature of services. The proposed MGAT

uses the motif-based architecture and attaches it with the CF-based model through graph

neural convolution layers. The model also gives different attentional scores to types

of motifs, which are simultaneously learned during the model training. The results of

experiment shows the exceptional success of MGAT compared with other models.

Chapter 5. Motif-based Graph Attentional Neural Network for Web service
recommendation 139

0.5809
0.5821 0.5821 0.5817 0.5818

0.5852

0.5881 0.5882 0.5885 0.5889

0.576

0.578

0.58

0.582

0.584

0.586

0.588

0.59

NDCG

Figure (5.6) NDCG results of MGAT variants.

Chapter 6

Conclusion

6.1 Introduction

Web service has been increased quickly during last decade with a great number of APIs

published on the internet. Such APIs have been commonly applied to variants of Web

and mobile applications. This blooming growth brought difficulties to select proper

APIs for building the mashups. A great number of existing work have exploited variant

elements in mashup-API invocation data to predict the most suitable APIs including

direct invocation data and other auxiliary information such as context description,

location, tags, etc. However, the intrinsic relation in a graph structure has not been

consider in service recommendation. This thesis mainly focuses on the challenges

associated with service recommendation using auxiliary information and graph structure

with high-order neighbour features. It proposes the use of embedding techniques to

learn the latent features of mashups and APIs through autoencoder frameworks, which

effectively discover and attach the data intrinsic relation into the prediction models.

Particularly, the proposed models exploit the graph structural information through a

high-order connectivity autoencoders with multiple neural layers and a motif-based

convolution neural network. Such deep neural network models adequately investigate

140

Chapter 6. Conclusion 141

the latent features of the whole bipartite network.

Generally, the thesis has some contributions as followings. First, Chapter 3 of

the thesis proposes a model for leveraging the document context and co-invocation

historical data to regularize the attentional matrix factorization model. Second, Chapter

4 of the thesis proposed a data augmented high-order graph autoencoder to further

explore the intrinsic relation of the mashup-API bipartite network. Third, Chapter 5 of

the thesis proposes the motif-based graph attentional neural network for web service

recommendation. Chapter 6 concludes the thesis by summing up the contributions of

the thesis, the main experimental results and figure out some directions for future work.

Section 6.1 presents more details on the contributions of this thesis. Section 6.2 presents

the disadvantages and probable improvements of proposed frameworks. Section 6.3

summarizes an overview the directions for future work.

6.1.1 Research contributions

The thesis aim attention at the challenges related to existing Web service CF-based

recommender systems. Such challenges consist of (1) the primary dependence on a

very sparsity of the mashup-API invocation data and the rich information from service

document context and co-invocation historical data had not been effectively utilized in

existing recommender systems; (2) only using the direct mashup-API invocations limits

the recommender system to explore higher intrinsic relationship in a bipartite graph; (3)

the subgraphs or motif patterns of graph which potentially contain rich information of

high-order connectivity among mashups and APIs, which are not been explored and

leveraged. The three mentioned challenges are addressed by the research questions

defined as following: (1) How to enhance the prediction accuracy for service recom-

mendation models which reply only in a very sparse dataset?. This question is address

by applying an attentional mechanism matrix factorization framework regularized by

Chapter 6. Conclusion 142

document context and mashup-API co-invocation; (2) How to explore the intrinsic

relation among mashups and APIs in a bipartite graph? This question is solved by using

data augmented technique with high-order graph autoencoder frameworks to learn the

embedding features of services; (3) Will the motif awareness bring more benefit to

service recommender system? The question is addressed by applying a motif-based con-

volution network within a CF-based framework which integrated the most frequent used

motifs in the mashup-API graph. The detail contributions of the thesis are presented as

following.

Matrix Factorization based CF model with Attention mechanism, document con-

text, and API co-invocation.

Leveraging the auxiliary information in CF-based models have been successfully en-

hance the prediction accuracy for service recommender systems. The lack of distin-

guishing the different weights of invocations limits the performance of such models. In

reality, not all the latent features are important and some might be noise to the model.

In addition, the latent features are mostly learnt from direct invocation, which is very

sparse. Different works focus on variant types of auxiliary information beyond the

invocation such as location, description, etc. However, there is no research on the

co-invocation and document context of the mashups and APIs to apply for PMF-based

models.

Chapter 3 deals with above challenges and proposes an attentional matrix factor-

ization CF model which is regularizing by the document context and mashup-API

co-invocation. The model uses common techniques in Natural Language Processing

like Doc2Vec to learn the document embeddings for each description of mashup/API.

The chapter presents a comprehensive statistical analysis for the frequency of invoc-

ations to draw out the APIs co-invocation pattern, which contain rich information of

the compatibility of the services. Inheriting the success of attention mechanism, the

Chapter 6. Conclusion 143

proposed AMF model applies this framework integrated with document context and

co-invocation, which together make a strong service recommender system to produce a

very accuracy prediction compared with current baselines.

Augmenting data and high order connectivity graph embedding

The DNN has played a successful role in many existing matrix factorization models to

enhance the prediction accuracy for recommendation. However, most of such models

only focus on the direct interaction or the first order connectivity among mashups

and APIs. So the intrinsic relation which has potential contribution is not utilized.

Particularly, all the unobserved are treated as negative instances. Because such negative

data is very large compared with observed points so many useful information from it

are ignored.

Chapter 4 leverages the high-order connectivity and explores this element with the

autoencoder framework, which was successfully in learning the hidden representation

to draw out the information of data structure. The chapter proposes a data augmentation

technique to secure the first and high-order connectivity, which augments the sparse

dataset with more useful information under latent features. Such features are attached

to the services’ embedding for better prediction. The chapter presents the experimental

results on many datasets including ProgrammableWeb, Movielens, Gowalla, Goodreads-

books, and Amazon-books, which demonstrate the superior performance of DHGA

over other baselines.

Motif-based Graph Attentional Neural network

The use of high-order connectivity in DNN model has improved a lot the accuracy for

service recommendation as in Chapter 4. However, the improvement is never enough

for a better recommender system. Inspired by the success of subgraph or motif-based

techniques, the Chapter 5 explores further on the graph structure of the mashup-API

Chapter 6. Conclusion 144

bipartite to dig out more potential information of mashup-API relationship. Like AMF

and DHGA, the chapter uses the attention mechanism and presents a Motif-based Graph

Attention Convolution model. The chapter also defines some common used motifs and

run experiment on different types of motifs to figure out their different influences on the

recommendation results.

6.1.2 Limitations and future direction

Even though the proposed models effectively solve the research questions defined in

this thesis, there are still some limitations that might occur. This section lists such

limitations and some of the potential improvement for future work.

First, in spite of the superior performance the AMF model obtains, such model still

has some limitations. The incorporation of document context and co-invocation which

contain lot of rich information are only applied as the regularization parts in a shallow

PMF-based model while the main model still mostly relies on the direct invocation with

attentional scores. Building a deep model with such valuable information should be a

potential work to enhance the recommendation precision.

Second, the DHGA model is a deep model and has superior performance compared

with AMF. DHGA shows its success on exploiting and learning the intrinsic relation of

the mashup-API graph through the autoencoder frameworks. However, it is restricted

in a traditional neural network with a simple combination of separated autoencoder

parts. Such model has not utilized the graph structure in its main model. A graph

convolution neural network attached to DHGA could bring more useful graph structural

information for the model. In addition, DHGA assumes that first and high-order

connectivity bring more effective information than false positive instances. However, in

the sparsity network, there are more invocations among highly relevant services than

among irrelevant ones. Future research can focus on both assortative and disassortative

Chapter 6. Conclusion 145

services.

Finally, the MGAT is the most superior model among our proposed models in this

thesis. MGAT uses the latest motif-based model with graph neural convolution layers

in the CF-based framework. Such model considers only some common used motifs

in the graph and rely only on the invocation data. Future work can explore whether

more complex types of motifs and additional information can bring more achievements

for such model. Also, a random walk technique can be used to explore higher-order

connectivity in the graph convolution layers.

References

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M. & Steggles, P. (1999).
Towards a better understanding of context and context-awareness. In International
symposium on handheld and ubiquitous computing (pp. 304–307).

Abu-El-Haija, S., Kapoor, A., Perozzi, B. & Lee, J. (2020). N-gcn: Multi-scale graph
convolution for semi-supervised node classification. In uncertainty in artificial
intelligence (pp. 841–851).

Adomavicius, G. & Tuzhilin, A. (2005). Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE transac-
tions on knowledge and data engineering, 17(6), 734–749.

Afify, Y. M., Moawad, I. F., Badr, N. L. & Tolba, M. F. (2014). Cloud services discovery
and selection: survey and new semantic-based system. In Bio-inspiring cyber
security and cloud services: Trends and innovations (pp. 449–477). Springer.

Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V. & Smola, A. J. (2013).
Distributed large-scale natural graph factorization. In Proceedings of the 22nd
international conference on world wide web (pp. 37–48).

Ahmed, N., Rossi, R. A., Lee, J., Willke, T., Zhou, R., Kong, X. & Eldardiry, H. (2020).
Role-based graph embeddings. IEEE Transactions on Knowledge and Data
Engineering.

Akkiraju, R., Farrell, J., Miller, J. A., Nagarajan, M., Sheth, A. P. & Verma, K. (2005).
Web service semantics-wsdl-s.

Al-Masri, E. & Mahmoud, Q. H. (2008). Investigating web services on the world wide
web. In Proceedings of the 17th international conference on world wide web (pp.
795–804).

Angles, R. & Gutierrez, C. (2008). Survey of graph database models. ACM Computing
Surveys (CSUR), 40(1), 1–39.

Ankolekar, A., Burstein, M., Hobbs, J. R., Lassila, O., Martin, D., McDermott, D.,
. . . others (2002). Daml-s: Web service description for the semantic web. In
International semantic web conference (pp. 348–363).

Atwood, J. & Towsley, D. (2016). Diffusion-convolutional neural networks. In
Advances in neural information processing systems (pp. 1993–2001).

Backstrom, L. & Leskovec, J. (2011). Supervised random walks: predicting and recom-
mending links in social networks. In Proceedings of the fourth acm international
conference on web search and data mining (pp. 635–644).

Bahdanau, D., Cho, K. & Bengio, Y. (2014). Neural machine translation by jointly

146

References 147

learning to align and translate. arXiv preprint arXiv:1409.0473.
Belkin, M., Niyogi, P. & Sindhwani, V. (2006). Manifold regularization: A geometric

framework for learning from labeled and unlabeled examples. Journal of machine
learning research, 7(11).

Bhagat, S., Cormode, G. & Muthukrishnan, S. (2011). Node classification in social
networks. In Social network data analytics (pp. 115–148). Springer.

Blei, D. M., Ng, A. Y. & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan), 993–1022.

Bo, D., Wang, X., Shi, C. & Shen, H. (2021). Beyond low-frequency information in
graph convolutional networks. arXiv preprint arXiv:2101.00797.

Bobadilla, J., Ortega, F., Hernando, A. & Gutiérrez, A. (2013). Recommender systems
survey. Knowledge-based systems, 46, 109–132.

Botangen, K. A., Yu, J., Sheng, Q., Han, Y. & Yongchareon, S. (2020). Geographic-
aware collaborative filtering for web service recommendation. Expert Syst. Appl.,
151, 113347.

Bouguettaya, A., Sheng, Q. Z. & Daniel, F. (2014). Web services foundations. Springer.
Bouguettaya, A., Singh, M., Huhns, M., Sheng, Q. Z., Dong, H., Yu, Q., . . . others

(2017). A service computing manifesto: the next 10 years. Communications of
the ACM, 60(4), 64–72.

Broens, T., Pokraev, S., Van Sinderen, M., Koolwaaij, J. & Costa, P. D. (2004). Context-
aware, ontology-based service discovery. In European symposium on ambient
intelligence (pp. 72–83).

Bruna, J., Zaremba, W., Szlam, A. & LeCun, Y. (2013). Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203.

Buqing, C., Tang, M. & Huang, X. (2014). Cscf: A mashup service recommendation
approach based on content similarity and collaborative filtering. International
Journal of Grid & Distributed Computing, 7(2).

Cao, B., Liu, J., Tang, M., Zheng, Z. & Wang, G. (2013). Mashup service recommend-
ation based on user interest and social network. In 2013 ieee 20th international
conference on web services (pp. 99–106).

Cao, S., Lu, W. & Xu, Q. (2015). Grarep: Learning graph representations with
global structural information. In Proceedings of the 24th acm international on
conference on information and knowledge management (pp. 891–900).

Cao, S., Lu, W. & Xu, Q. (2016). Deep neural networks for learning graph rep-
resentations. In Proceedings of the aaai conference on artificial intelligence
(Vol. 30).

Casati, F. & Shan, M.-C. (2001). Dynamic and adaptive composition of e-services.
Information systems, 26(3), 143–163.

Chamberlain, B. P., Clough, J. & Deisenroth, M. P. (2017). Neural embeddings of
graphs in hyperbolic space. arXiv preprint arXiv:1705.10359.

Channabasavaiah, K., Holley, K. & Tuggle, E. (2003). Migrating to a service-oriented
architecture. IBM DeveloperWorks, 16, 727–728.

Chen, G. & Chen, L. (2015, 08). Augmenting service recommender systems by

References 148

incorporating contextual opinions from user reviews. User Modeling and User-
Adapted Interaction, 25. doi: 10.1007/s11257-015-9157-3

Chen, L., Wu, L., Hong, R., Zhang, K. & Wang, M. (2020). Revisiting graph based
collaborative filtering: A linear residual graph convolutional network approach.
arXiv preprint arXiv:2001.10167.

Chen, L., Zheng, A., Feng, Y., Xie, F. & Zheng, Z. (2018). Software service recom-
mendation base on collaborative filtering neural network model. In International
conference on service-oriented computing (pp. 388–403).

Chen, W., Paik, I. & Hung, P. C. (2013). Constructing a global social service network for
better quality of web service discovery. IEEE transactions on services computing,
8(2), 284–298.

Chen, X., Liu, X., Huang, Z. & Sun, H. (2010). Regionknn: A scalable hybrid
collaborative filtering algorithm for personalized web service recommendation.
In 2010 ieee international conference on web services (pp. 9–16).

Chung, F. R. & Graham, F. C. (1997). Spectral graph theory (No. 92). American
Mathematical Soc.

De Bruijn, J., Lausen, H., Polleres, A. & Fensel, D. (2006). The web service modeling
language wsml: An overview. In European semantic web conference (pp. 590–
604).

De Oliveira, M. F. & Levkowitz, H. (2003). From visual data exploration to visual data
mining: A survey. IEEE transactions on visualization and computer graphics,
9(3), 378–394.

Donnat, C., Zitnik, M., Hallac, D. & Leskovec, J. (2018). Learning structural node
embeddings via diffusion wavelets. In Proceedings of the 24th acm sigkdd
international conference on knowledge discovery & data mining (pp. 1320–
1329).

Dormann, C. F., Gruber, B. & Fründ, J. (2008). Introducing the bipartite package:
analysing ecological networks. interaction, 1(0.2413793).

Duan, Y., Fu, G., Zhou, N., Sun, X., Narendra, N. C. & Hu, B. (2015). Everything as a
service (xaas) on the cloud: origins, current and future trends. In 2015 ieee 8th
international conference on cloud computing (pp. 621–628).

Dustdar, S. & Schreiner, W. (2005). A survey on web services composition. Interna-
tional journal of web and grid services, 1(1), 1–30.

Feichtenhofer, C., Pinz, A. & Zisserman, A. (2016). Convolutional two-stream network
fusion for video action recognition. In Proceedings of the ieee conference on
computer vision and pattern recognition (pp. 1933–1941).

Finkelstein, A. & Savigni, A. (2001). A framework for requirements engineering for
context-aware services..

Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3-5),
75–174.

Frasconi, P., Gori, M. & Sperduti, A. (1998). A general framework for adaptive
processing of data structures. IEEE transactions on Neural Networks, 9(5),
768–786.

Gao, L. & Li, C. (2008). Hybrid personalized recommended model based on genetic

References 149

algorithm. In 2008 4th international conference on wireless communications,
networking and mobile computing (pp. 1–4).

Gao, W., Chen, L., Wu, J. & Bouguettaya, A. (2016). Joint modeling users, services,
mashups, and topics for service recommendation. In 2016 ieee international
conference on web services (icws) (pp. 260–267).

Gao, Y., Li, Y.-F., Lin, Y., Gao, H. & Khan, L. (2020). Deep learning on knowledge
graph for recommender system: A survey. arXiv preprint arXiv:2004.00387.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. (2017). Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212.

Goodfellow, I., Bengio, Y. & Courville, A. (2016). Machine learning basics. Deep
learning, 1, 98–164.

Goyal, P. & Ferrara, E. (2018). Graph embedding techniques, applications, and
performance: A survey. Knowledge-Based Systems, 151, 78–94.

Gronmo, R., Skogan, D., Solheim, I. & Oldevik, J. (2004). Model-driven web service
development. International Journal of web Services Research (IJWSR), 1(4),
1–13.

Grover, A. & Leskovec, J. (2016). node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining (pp. 855–864).

Guinard, D., Trifa, V. & Wilde, E. (2010). A resource oriented architecture for the web
of things. In 2010 internet of things (iot) (pp. 1–8).

Guo, H., Tang, R., Ye, Y., Li, Z. & He, X. (2017). Deepfm: a factorization-machine
based neural network for ctr prediction. arXiv preprint arXiv:1703.04247.

Guo, L., Wang, S., Kang, L. & Cao, Y. (2015). Agent-based manufacturing service dis-
covery method for cloud manufacturing. The International Journal of Advanced
Manufacturing Technology, 81(9), 2167–2181.

Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H. & He, Q. (2020). A survey on
knowledge graph-based recommender systems. IEEE Transactions on Knowledge
and Data Engineering.

Hamilton, W. L., Ying, R. & Leskovec, J. (2017a). Inductive representation learning
on large graphs. In Proceedings of the 31st international conference on neural
information processing systems (pp. 1025–1035).

Hamilton, W. L., Ying, R. & Leskovec, J. (2017b). Representation learning on graphs:
Methods and applications. arXiv preprint arXiv:1709.05584.

Han, S. N. & Crespi, N. (2017). Semantic service provisioning for smart objects:
Integrating iot applications into the web. Future Generation Computer Systems,
76, 180–197.

Han, X., Liu, Z. & Sun, M. (2018). Neural knowledge acquisition via mutual attention
between knowledge graph and text. In Thirty-second aaai conference on artificial
intelligence.

He, P., Zhu, J., Zheng, Z., Xu, J. & Lyu, M. R. (2014). Location-based hierarchical
matrix factorization for web service recommendation. In 2014 ieee international
conference on web services (pp. 297–304).

References 150

He, Q., Yan, J., Jin, H. & Yang, Y. (2014). Quality-aware service selection for service-
based systems based on iterative multi-attribute combinatorial auction. IEEE
Transactions on Software Engineering, 40(2), 192–215.

He, R. & McAuley, J. (2016). Vbpr: visual bayesian personalized ranking from implicit
feedback. In Thirtieth aaai conference on artificial intelligence.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X. & Chua, T.-S. (2017a). Neural collaborative
filtering. In Proceedings of the 26th international conference on world wide web
(pp. 173–182).

He, X., Liao, L., Zhang, H., Nie, L., Hu, X. & Chua, T.-S. (2017b). Neural collaborative
filtering. In Proceedings of the 26th international conference on world wide web
(pp. 173–182).

He, X., Liao, L., Zhang, H., Nie, L., Hu, X. & Chua, T.-S. (2017c). Neural collaborative
filtering. In Proceedings of the 26th international conference on world wide web
(pp. 173–182).

He, X., Zhang, H., Kan, M.-Y. & Chua, T.-S. (2016). Fast matrix factorization
for online recommendation with implicit feedback. In Proceedings of the 39th
international acm sigir conference on research and development in information re-
trieval (p. 549–558). New York, NY, USA: Association for Computing Machinery.
Retrieved from https://doi.org/10.1145/2911451.2911489 doi:
10.1145/2911451.2911489

Henaff, M., Bruna, J. & LeCun, Y. (2015). Deep convolutional networks on graph-
structured data. arXiv preprint arXiv:1506.05163.

Henderson, K., Gallagher, B., Eliassi-Rad, T., Tong, H., Basu, S., Akoglu, L., . . . Li, L.
(2012). Rolx: structural role extraction & mining in large graphs. In Proceedings
of the 18th acm sigkdd international conference on knowledge discovery and data
mining (pp. 1231–1239).

Henricksen, K. (2003). A framework for context-aware pervasive computing applica-
tions.

Henricksen, K. & Indulska, J. (2004). A software engineering framework for context-
aware pervasive computing. In Second ieee annual conference on pervasive
computing and communications, 2004. proceedings of the (pp. 77–86).

Herlocker, J. L., Konstan, J. A., Borchers, A. & Riedl, J. (2017). An algorithmic
framework for performing collaborative filtering. In Acm sigir forum (Vol. 51, pp.
227–234).

Hinton, G. E. & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. science, 313(5786), 504–507.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8), 1735–1780.

Hoff, P. D., Raftery, A. E. & Handcock, M. S. (2002). Latent space approaches to
social network analysis. Journal of the american Statistical association, 97(460),
1090–1098.

Hu, Y., Peng, Q., Hu, X. & Yang, R. (2014). Time aware and data sparsity tolerant
web service recommendation based on improved collaborative filtering. IEEE
Transactions on Services Computing, 8(5), 782–794.

https://doi.org/10.1145/2911451.2911489

References 151

Jain, A., Liu, X. & Yu, Q. (2015). Aggregating functionality, use history, and popularity
of apis to recommend mashup creation. In International conference on service-
oriented computing (pp. 188–202).

Kearnes, S., McCloskey, K., Berndl, M., Pande, V. & Riley, P. (2016). Molecular graph
convolutions: moving beyond fingerprints. Journal of computer-aided molecular
design, 30(8), 595–608.

Kim, D., Park, C., Oh, J. & Yu, H. (2017). Deep hybrid recommender systems via
exploiting document context and statistics of items. Information Sciences, 417,
72–87.

Kingma, D. P. & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Kipf, T. & Welling, M. (2016). Variational graph auto-encoders, 2016. In Bayesian
deep learning workshop (nips 2016), arxiv preprint (arxiv: 161107308).[google
scholar].

Kipf, T. N. & Welling, M. (2016a). Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907.

Kipf, T. N. & Welling, M. (2016b). Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907.

Ko, I.-Y., Ko, H.-G., Molina, A. J. & Kwon, J.-H. (2016). Soiot: Toward a user-centric
iot-based service framework. ACM Transactions on Internet Technology (TOIT),
16(2), 1–21.

Kolos-Mazuryk, L., Poulisse, G.-J. & van Eck, P. (2005). Requirements engineering
for pervasive services. In Oopsla-workshop on building software for pervasive
computing, san diego, usa.

Koren, Y. (2008). Factorization meets the neighborhood: A multifaceted collaborative
filtering model. In Proceedings of the 14th acm sigkdd international conference
on knowledge discovery and data mining (p. 426–434). New York, NY, USA:
Association for Computing Machinery. Retrieved from https://doi.org/
10.1145/1401890.1401944 doi: 10.1145/1401890.1401944

Koren, Y. (2010). Factor in the neighbors: Scalable and accurate collaborative filtering.
ACM Transactions on Knowledge Discovery from Data (TKDD), 4(1), 1.

Krogstie, J. (2001). Requirement engineering for mobile information systems. In
Proceedings of the seventh international workshop on requirements engineering:
Foundations for software quality (refsq’01) (p. 74).

Le, Q. & Mikolov, T. (2014). Distributed representations of sentences and documents.
In International conference on machine learning (pp. 1188–1196).

Lee, J. B., Rossi, R. A., Kong, X., Kim, S., Koh, E. & Rao, A. (2019). Graph
convolutional networks with motif-based attention. In Proceedings of the 28th
acm international conference on information and knowledge management (pp.
499–508).

Lee, J.-N., Huynh, M. Q., Kwok, R. C.-W. & Pi, S.-M. (2003). It outsourcing evolution—
past, present, and future. Communications of the ACM, 46(5), 84–89.

Lemos, A. L., Daniel, F. & Benatallah, B. (2015). Web service composition: a survey
of techniques and tools. ACM Computing Surveys (CSUR), 48(3), 1–41.

https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1145/1401890.1401944

References 152

Li, C., Zhang, R., Huai, J. & Sun, H. (2014). A novel approach for api recommendation
in mashup development. In 2014 ieee international conference on web services
(pp. 289–296).

Li, S., Wen, J., Luo, F., Cheng, T. & Xiong, Q. (2017). A location and reputation aware
matrix factorization approach for personalized quality of service prediction. In
2017 ieee international conference on web services (icws) (pp. 652–659).

Li, Y., Tarlow, D., Brockschmidt, M. & Zemel, R. (2015). Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493.

Liang, D., Krishnan, R. G., Hoffman, M. D. & Jebara, T. (2018). Variational autoen-
coders for collaborative filtering. In Proceedings of the 2018 world wide web
conference (p. 689–698). Republic and Canton of Geneva, CHE: International
World Wide Web Conferences Steering Committee. Retrieved from https://
doi.org/10.1145/3178876.3186150 doi: 10.1145/3178876.3186150

Liang, T., Chen, L., Wu, J., Dong, H. & Bouguettaya, A. (2016). Meta-path based
service recommendation in heterogeneous information networks. In International
conference on service-oriented computing (pp. 371–386).

Liben-Nowell, D. & Kleinberg, J. (2007). The link-prediction problem for social
networks. Journal of the American society for information science and technology,
58(7), 1019–1031.

Lim, S. & Lee, J.-G. (2016). Motif-based embedding for graph clustering. Journal of
Statistical Mechanics: Theory and Experiment, 2016(12), 123401.

Linden, G., Smith, B. & York, J. (2003). Amazon. com recommendations: Item-to-item
collaborative filtering. IEEE Internet computing, 7(1), 76–80.

Liu, J., Tang, M., Zheng, Z., Liu, X. & Lyu, S. (2015). Location-aware and personalized
collaborative filtering for web service recommendation. IEEE Transactions on
Services Computing, 9(5), 686–699.

Liu, S. & Zheng, Y. (2020). Long-tail session-based recommendation. In Fourteenth
acm conference on recommender systems (pp. 509–514).

Liu, Z., Guo, S., Wang, L., Du, B. & Pang, S. (2019). A multi-objective service
composition recommendation method for individualized customer: hybrid mpa-
gso-dnn model. Computers & Industrial Engineering, 128, 122–134.

Lo, W., Yin, J., Deng, S., Li, Y. & Wu, Z. (2012). An extended matrix factorization
approach for qos prediction in service selection. In 2012 ieee ninth international
conference on services computing (pp. 162–169).

Ludwig, H. & Petrie, C. (2006). 05462 session summary–" cross cutting concerns". In
Dagstuhl seminar proceedings.

Luo, L., Liu, K., Peng, D., Ying, Y. & Zhang, X. (2020). A motif-based graph
neural network to reciprocal recommendation for online dating. In International
conference on neural information processing (pp. 102–114).

Ma, C., Ma, L., Zhang, Y., Sun, J., Liu, X. & Coates, M. (2019). Memory aug-
mented graph neural networks for sequential recommendation. arXiv preprint
arXiv:1912.11730.

Ma, Y., Geng, X. & Wang, J. (2020). A deep neural network with multiplex interac-
tions for cold-start service recommendation. IEEE Transactions on Engineering

https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/3178876.3186150

References 153

Management, 68(1), 105–119.
Maamar, Z., Hacid, H. & Huhns, M. N. (2011). Why web services need social networks.

IEEE Internet Computing, 15(2), 90–94.
MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., Metz, R. & Hamilton, B. A.

(2006). Reference model for service oriented architecture 1.0. OASIS standard,
12(S 18).

Manes, A. T. (2001). Enabling open, interoperable, and smart web services—the
need for shared context. In Proc. w3c web services workshop, http://www. w3.
org/2001/03/wsws-popa/paper29.

Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D.,
. . . others (2004). Bringing semantics to web services: The owl-s approach. In
International workshop on semantic web services and web process composition
(pp. 26–42).

Martinez-Cruz, C., Porcel, C., Bernabé-Moreno, J. & Herrera-Viedma, E. (2015). A
model to represent users trust in recommender systems using ontologies and
fuzzy linguistic modeling. Information Sciences, 311, 102–118.

Maximilien, E. M. & Singh, M. P. (2004). A framework and ontology for dynamic web
services selection. IEEE Internet Computing, 8(5), 84–93.

McIlraith, S. A., Son, T. C. & Zeng, H. (2001). Semantic web services. IEEE intelligent
systems, 16(2), 46–53.

Meng, S., Dou, W., Zhang, X. & Chen, J. (2014). Kasr: a keyword-aware service recom-
mendation method on mapreduce for big data applications. IEEE Transactions
on Parallel and Distributed Systems, 25(12), 3221–3231.

Meyer, S., Ruppen, A. & Magerkurth, C. (2013). Internet of things-aware process
modeling: integrating iot devices as business process resources. In International
conference on advanced information systems engineering (pp. 84–98).

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. & Alon, U. (2002).
Network motifs: simple building blocks of complex networks. Science, 298(5594),
824–827.

Miorandi, D., Sicari, S., De Pellegrini, F. & Chlamtac, I. (2012). Internet of things:
Vision, applications and research challenges. Ad hoc networks, 10(7), 1497–1516.

Mnih, A. & Kavukcuoglu, K. (2013). Learning word embeddings efficiently with noise-
contrastive estimation. In Advances in neural information processing systems (pp.
2265–2273).

Mnih, A. & Salakhutdinov, R. R. (2008). Probabilistic matrix factorization. In Advances
in neural information processing systems (pp. 1257–1264).

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G. & Grohe,
M. (2019). Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the aaai conference on artificial intelligence (Vol. 33, pp.
4602–4609).

Muñoz, J. & Pelechano, V. (2006). Applying software factories to pervasive systems:
A platform specific framework. In Iceis (3) (pp. 337–342).

Munoz, J., Valderas, P., Pelechano, V. & Pastor, O. (2006). Requirements engineering
for pervasive systems. a transformational approach. In 14th ieee international

References 154

requirements engineering conference (re’06) (pp. 351–352).
Murphy, K., Weiss, Y. & Jordan, M. I. (2013). Loopy belief propagation for approximate

inference: An empirical study. arXiv preprint arXiv:1301.6725.
Naïm, H., Aznag, M., Durand, N. & Quafafou, M. (2016). Semantic pattern mining

based web service recommendation. In International conference on service-
oriented computing (pp. 417–432).

Nguyen, M., Yu, J., Nguyen, T. & Han, Y. (2021). Attentional matrix factorization
with context and co-invocation for service recommendation. Expert Systems with
Applications, 115698.

Noor, T. H., Sheng, Q. Z., Ngu, A. H. & Dustdar, S. (2014). Analysis of web-scale
cloud services. IEEE Internet Computing, 18(4), 55–61.

Ou, M., Cui, P., Pei, J., Zhang, Z. & Zhu, W. (2016). Asymmetric transitivity
preserving graph embedding. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining (pp. 1105–1114).

Papazoglou, M. P. (2003). Service-oriented computing: Concepts, characteristics
and directions. In Proceedings of the fourth international conference on web
information systems engineering, 2003. wise 2003. (pp. 3–12).

Papazoglou, M. P. & Van Den Heuvel, W.-J. (2007). Service oriented architectures:
approaches, technologies and research issues. The VLDB journal, 16(3), 389–
415.

Paradarami, T. K., Bastian, N. D. & Wightman, J. L. (2017). A hybrid recommender
system using artificial neural networks. Expert Systems with Applications, 83,
300–313.

Paranjape, A., Benson, A. R. & Leskovec, J. (2017). Motifs in temporal networks. In
Proceedings of the tenth acm international conference on web search and data
mining (pp. 601–610).

Park, C., Kim, D., Oh, J. & Yu, H. (2016). Improving top-k recommendation with
truster and trustee relationship in user trust network. Information Sciences, 374,
100–114.

Park, M.-H., Hong, J.-H. & Cho, S.-B. (2007). Location-based recommendation system
using bayesian user’s preference model in mobile devices. In International
conference on ubiquitous intelligence and computing (pp. 1130–1139).

Pastore, S. (2008). The service discovery methods issue: A web services uddi spe-
cification framework integrated in a grid environment. Journal of Network and
Computer Applications, 31(2), 93–107.

Pautasso, C., Zimmermann, O. & Leymann, F. (2008). Restful web services vs."
big"’web services: making the right architectural decision. In Proceedings of the
17th international conference on world wide web (pp. 805–814).

Peltz, C. (2003). Web services orchestration and choreography. Computer, 36(10),
46–52.

Perera, C., Zaslavsky, A., Christen, P. & Georgakopoulos, D. (2013). Context aware
computing for the internet of things: A survey. IEEE communications surveys &
tutorials, 16(1), 414–454.

Perozzi, B., Kulkarni, V. & Skiena, S. (2016). Walklets: Multiscale graph embeddings

References 155

for interpretable network classification. arXiv preprint arXiv:1605.02115, 043238–
23.

Prill, R. J., Iglesias, P. A. & Levchenko, A. (2005). Dynamic properties of network
motifs contribute to biological network organization. PLoS biology, 3(11), e343.

Rahman, M. M., Liu, X. & Cao, B. (2017). Web api recommendation for mashup
development using matrix factorization on integrated content and network-based
service clustering. In 2017 ieee international conference on services computing
(scc) (pp. 225–232).

Rao, J. & Su, X. (2004). A survey of automated web service composition methods. In
International workshop on semantic web services and web process composition
(pp. 43–54).

Rendle, S., Freudenthaler, C., Gantner, Z. & Schmidt-Thieme, L. (2012). Bpr: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618.

Rezende, D. J., Mohamed, S. & Wierstra, D. (2014). Stochastic backpropagation and ap-
proximate inference in deep generative models. arXiv preprint arXiv:1401.4082.

Rinne, H. (2008). The weibull distribution: a handbook. Chapman and Hall/CRC.
Roh, T. H., Oh, K. J. & Han, I. (2003). The collaborative filtering recommendation

based on som cluster-indexing cbr. Expert systems with applications, 25(3),
413–423.

Rong, W. & Liu, K. (2010). A survey of context aware web service discovery: From
user’s perspective. In 2010 fifth ieee international symposium on service oriented
system engineering (pp. 15–22).

Rossi, R. A., Ahmed, N. K. & Koh, E. (2018). Higher-order network representation
learning. In Companion proceedings of the the web conference 2018 (pp. 3–4).

Rossi, R. A., Zhou, R. & Ahmed, N. K. (2018). Deep inductive network representation
learning. In Companion proceedings of the the web conference 2018 (pp. 953–
960).

Rostami, N. H., Kheirkhah, E. & Jalali, M. (2013). Web services composition methods
and techniques: A review. International Journal of Computer Science, Engineer-
ing & Information Technology, 3(6), 10–5121.

Salton, G. & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval.
Information processing & management, 24(5), 513–523.

Samanta, P. & Liu, X. (2017). Recommending services for new mashups through
service factors and top-k neighbors. In 2017 ieee international conference on
web services (icws) (pp. 381–388).

Sandvig, J. J., Mobasher, B. & Burke, R. D. (2008). A survey of collaborative
recommendation and the robustness of model-based algorithms. IEEE Data Eng.
Bull., 31(2), 3–13.

Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. (2001a). Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th international
conference on world wide web (pp. 285–295).

Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. (2001b). Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th international
conference on world wide web (pp. 285–295).

References 156

Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I. & Welling, M.
(2018). Modeling relational data with graph convolutional networks. In European
semantic web conference (pp. 593–607).

Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B. & Mei, H. (2007). Personalized
qos prediction forweb services via collaborative filtering. In Ieee international
conference on web services (icws 2007) (pp. 439–446).

Shen, W., Hao, Q., Wang, S., Li, Y. & Ghenniwa, H. (2007). An agent-based service-
oriented integration architecture for collaborative intelligent manufacturing. Ro-
botics and Computer-Integrated Manufacturing, 23(3), 315–325.

Sheng, Q. Z., Qiao, X., Vasilakos, A. V., Szabo, C., Bourne, S. & Xu, X. (2014). Web
services composition: A decade’s overview. Information Sciences, 280, 218–238.

Sim, K. M. (2011). Agent-based cloud computing. IEEE transactions on services
computing, 5(4), 564–577.

Sun, Z., Guo, Q., Yang, J., Fang, H., Guo, G., Zhang, J. & Burke, R. (2019). Research
commentary on recommendations with side information: A survey and research
directions. Electronic Commerce Research and Applications, 37, 100879.

Tan, Y. K., Xu, X. & Liu, Y. (2016). Improved recurrent neural networks for session-
based recommendations. In Proceedings of the 1st workshop on deep learning
for recommender systems (pp. 17–22).

Tang, M., Zhang, T., Liu, J. & Chen, J. (2015). Cloud service qos prediction via
exploiting collaborative filtering and location-based data smoothing. Concurrency
and Computation: Practice and Experience, 27(18), 5826–5839.

Tay, Y., Zhang, S., Luu, A., Hui, S., Yao, L. & Vinh Tran, L. (2019, 07). Holographic
factorization machines for recommendation. Proceedings of the AAAI Conference
on Artificial Intelligence, 33, 5143-5150. doi: 10.1609/aaai.v33i01.33015143

Tian, G., Wang, J., He, K., Sun, C. & Tian, Y. (2017). Integrating implicit feedbacks for
time-aware web service recommendations. Information systems frontiers, 19(1),
75–89.

Tsai, W.-T., Sun, X. & Balasooriya, J. (2010). Service-oriented cloud computing
architecture. In 2010 seventh international conference on information technology:
new generations (pp. 684–689).

Tselentis, G., Domingue, J. & Galis, A. (2009). Towards the future internet: A european
research perspective. IOS press.

Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R. & Borgwardt, K. M. (2010).
Graph kernels. Journal of Machine Learning Research, 11, 1201–1242.

Wang, D., Cui, P. & Zhu, W. (2016a). Structural deep network embedding. In
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining (pp. 1225–1234).

Wang, D., Cui, P. & Zhu, W. (2016b). Structural deep network embedding. In
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining (pp. 1225–1234).

Wang, X., He, X. & Chua, T.-S. (2020a). Learning and reasoning on graph for
recommendation. In Proceedings of the 13th international conference on web
search and data mining (pp. 890–893).

References 157

Wang, X., He, X. & Chua, T.-S. (2020b). Learning and reasoning on graph for
recommendation. In Proceedings of the 13th international conference on web
search and data mining (pp. 890–893).

Wang, X., He, X., Wang, M., Feng, F. & Chua, T.-S. (2019). Neural graph collaborative
filtering. In Proceedings of the 42nd international acm sigir conference on
research and development in information retrieval (pp. 165–174).

Wei, Y. & Blake, M. B. (2010). Service-oriented computing and cloud computing:
Challenges and opportunities. IEEE Internet Computing, 14(6), 72–75.

Wu, H., Yue, K., Li, B., Zhang, B. & Hsu, C.-H. (2018a). Collaborative qos prediction
with context-sensitive matrix factorization. Future Generation Computer Systems,
82, 669–678.

Wu, H., Yue, K., Li, B., Zhang, B. & Hsu, C.-H. (2018b). Collaborative qos prediction
with context-sensitive matrix factorization. Future Generation Computer Systems,
82, 669–678.

Wu, Y., DuBois, C., Zheng, A. X. & Ester, M. (2016). Collaborative denoising
auto-encoders for top-n recommender systems. In Proceedings of the ninth acm
international conference on web search and data mining (pp. 153–162).

Xiao, J., Ye, H., He, X., Zhang, H., Wu, F. & Chua, T.-S. (2017). Attentional
factorization machines: Learning the weight of feature interactions via attention
networks. arXiv preprint arXiv:1708.04617.

Xie, F., Chen, L., Lin, D., Zheng, Z. & Lin, X. (2019). Personalized service recom-
mendation with mashup group preference in heterogeneous information network.
IEEE Access, 7, 16155–16167.

Xie, F., Wang, J., Xiong, R., Zhang, N., Ma, Y. & He, K. (2019). An integrated service
recommendation approach for service-based system development. Expert Systems
With Applications, 123, 178–194.

Xiong, R., Wang, J., Zhang, N. & Ma, Y. (2018). Deep hybrid collaborative filtering for
web service recommendation. Expert systems with Applications, 110, 191–205.

Xu, W., Cao, J., Hu, L., Wang, J. & Li, M. (2013). A social-aware service recommend-
ation approach for mashup creation. In 2013 ieee 20th international conference
on web services (pp. 107–114).

Xu, Y., Yin, J., Deng, S., Xiong, N. N. & Huang, J. (2016). Context-aware qos
prediction for web service recommendation and selection. Expert Systems with
Applications, 53, 75–86.

Xue, H.-J., Dai, X., Zhang, J., Huang, S. & Chen, J. (2017). Deep matrix factorization
models for recommender systems. In Ijcai (Vol. 17, pp. 3203–3209).

Yang, C., Liu, M., Zheng, V. W. & Han, J. (2018). Node, motif and subgraph:
Leveraging network functional blocks through structural convolution. In 2018
ieee/acm international conference on advances in social networks analysis and
mining (asonam) (pp. 47–52).

Yang, J.-H., Chen, C.-M., Wang, C.-J. & Tsai, M.-F. (2018). Hop-rec: high-order prox-
imity for implicit recommendation. In Proceedings of the 12th acm conference
on recommender systems (pp. 140–144).

Yao, L., Sheng, Q. Z., Ngu, A. H., Yu, J. & Segev, A. (2014). Unified collaborative

References 158

and content-based web service recommendation. IEEE Transactions on Services
Computing, 8(3), 453–466.

Yao, L., Wang, X., Sheng, Q. Z., Benatallah, B. & Huang, C. (2018). Mashup
recommendation by regularizing matrix factorization with api co-invocations.
IEEE Transactions on Services Computing.

Yao, L., Wang, X., Sheng, Q. Z., Benatallah, B. & Huang, C. (2021, apr). Mashup
recommendation by regularizing matrix factorization with api co-invocations.
IEEE Transactions on Services Computing, 14(02), 502-515. doi: 10.1109/
TSC.2018.2803171

Yao, L., Wang, X., Sheng, Q. Z., Ruan, W. & Zhang, W. (2015). Service recommend-
ation for mashup composition with implicit correlation regularization. In 2015
ieee international conference on web services (pp. 217–224).

Yin, Y., Xu, H., Liang, T., Chen, M., Gao, H. & Longo, A. (2021, March). Lever-
aging data augmentation for service qos prediction in cyber-physical systems.
ACM Trans. Internet Technol., 21(2). Retrieved from https://doi.org/
10.1145/3425795 doi: 10.1145/3425795

Zhang, H., Shen, F., Liu, W., He, X., Luan, H. & Chua, T.-S. (2016). Discrete collab-
orative filtering. In Proceedings of the 39th international acm sigir conference
on research and development in information retrieval (p. 325–334). New York,
NY, USA: Association for Computing Machinery. Retrieved from https://
doi.org/10.1145/2911451.2911502 doi: 10.1145/2911451.2911502

Zhang, N., Wang, J. & Ma, Y. (2017). Mining domain knowledge on service goals from
textual service descriptions. IEEE Transactions on Services Computing, 13(3),
488–502.

Zhang, S., Hu, Z., Subramonian, A. & Sun, Y. (2020). Motif-driven contrastive learning
of graph representations. arXiv preprint arXiv:2012.12533.

Zhang, S., Yao, L., Sun, A. & Tay, Y. (2019). Deep learning based recommender
system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1),
1–38.

Zhang, Y.-C., Blattner, M. & Yu, Y.-K. (2007). Heat conduction process on community
networks as a recommendation model. Physical review letters, 99(15), 154301.

Zhang, Y.-C., Medo, M., Ren, J., Zhou, T., Li, T. & Yang, F. (2007). Recommendation
model based on opinion diffusion. EPL (Europhysics Letters), 80(6), 68003.

Zhao, J., Wang, X., Shi, C., Hu, B., Song, G. & Ye, Y. (2021). Heterogeneous graph
structure learning for graph neural networks. In 35th aaai conference on artificial
intelligence (aaai).

Zheng, Z., Ma, H., Lyu, M. R. & King, I. (2010). Qos-aware web service recommenda-
tion by collaborative filtering. IEEE Transactions on services computing, 4(2),
140–152.

Zheng, Z., Ma, H., Lyu, M. R. & King, I. (2012). Collaborative web service qos
prediction via neighborhood integrated matrix factorization. IEEE Transactions
on Services Computing, 6(3), 289–299.

Zhong, J. & Li, X. (2010). Unified collaborative filtering model based on combination
of latent features. Expert Systems with Applications, 37(8), 5666–5672.

https://doi.org/10.1145/3425795
https://doi.org/10.1145/3425795
https://doi.org/10.1145/2911451.2911502
https://doi.org/10.1145/2911451.2911502

References 159

Zhong, Y., Fan, Y., Tan, W. & Zhang, J. (2016). Web service recommendation
with reconstructed profile from mashup descriptions. IEEE Transactions on
Automation Science and Engineering, 15(2), 468–478.

Zou, G., Jiang, M., Niu, S., Wu, H., Pang, S. & Gan, Y. (2018). Qos-aware web
service recommendation with reinforced collaborative filtering. In International
conference on service-oriented computing (pp. 430–445).

	Abstract
	Attestation of Authorship
	Publications
	Acknowledgements
	Dedication
	Introduction
	Concepts in service computing
	Service recommendation
	Recommender system based on graph embedding
	Research questions
	Methodology and Research objective
	Contributions
	Thesis Structures

	Literature Review
	Fundamental concepts in service computing
	Software-as-a-service
	Web service oriented architecture
	Mashup
	Web service or Web API
	Discussion

	Context awareness variability
	Context based requirement
	Context awareness in service computing

	Graph representation learning
	Generalized encoder-decoder architectures
	Neighborhood autoencoder methods
	Neighborhood aggregation and convolution encoders
	Graph representation approaches
	Higher-order connectivity with Network Motifs

	Service recommendation systems
	Functionality-based Web service recommendation
	Social network-based Web service recommendation
	Collaborative Filtering RS
	Hybrid Service Recommendation

	Summary

	Attentional Matrix Factorization with Context and Co-invocation for service recommendation
	Overview
	Preliminaries
	Related work
	Problem statement

	Proposed Approaches
	Overview
	Attentional PMF Model (AMF)
	Mashup recommendation with integrated with document-context awareness and implicit API relationship

	Experiments
	Set up data
	Baselines
	Evaluation metric
	Hyperparameter settings
	Experimental results

	Conclusion

	Data Augmented High-order Graph Autoencoder in Service Recommendation
	Introduction
	Related works
	CF-based service recommender systems
	Neural networks for learning mashup-API graphs
	Data augmentation in Recommender system

	High-order connectivity and data augmentation for Mashup-API Graph
	Definitions
	Motivating Example
	Data augmentation in MAG

	The DHGA model
	Embedding layer with Autoencoders
	High-order connectivity and data augmentation
	Optimization

	Discussion
	Experiments
	Experimental settings
	Performance comparison (RQ1)
	Study of DHGA (RQ2)

	Conclusion and future work

	Motif-based Graph Attentional Neural Network for Web service recommendation
	Introduction
	Related works
	Network motifs and high-order Graph Neural Networks
	GNN and Motif-based Network in recommender systems

	The MGAT model for bipartite network
	Motif definitions
	Motif-based Graph Convolution Layers with Self-attention
	Motif-based Graph Attention Collaborative Filtering for service recommendation (MGAT)

	Experimental results
	Datasets and baselines
	Settings
	Comparison results
	The influence of different types of motifs on the MGAT's performance

	Conclusion and future work

	Conclusion
	Introduction
	Research contributions
	Limitations and future direction

	References

