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A B S T R AC T

This research uses Design Science to create a software artefact that employs recur-
rent neural networks in the form of Reservoir Computing models such as Liquid State
Machines and Echo State Networks to classify rare punctual activity in a sports con-
text. This research represents part of a broader plan to use wearable inertial and other
sensors to assist in classifying and coaching human movement.

The research is conducted in three main stages with progress reported via four con-
ference papers. The initial stage demonstrates that one form of Reservoir Computing,
Liquid State Machines, are capable of classifying “classes” based on synthetic spatio-
temporal data. The second stage demonstrates that both Liquid State Machines and
Echo State Networks are capable of classifying selected, realistic, punctual human
activity normally encountered within equestrian sport. This second stage uses data
captured from a wrist mounted inertial sensor used with realistic but scripted ac-
tivities in laboratory conditions. The third stage utilises data captured from twenty
equestrian sports-people undertaking unscripted riding activities in the real world and
demonstrates that rare, punctual activity can be successfully classified using an Echo
State Network. The real-world data used in the third stage is also captured from a
wrist mounted inertial sensor. The punctual activity classified during the third stage
of this research represents less than 0.005% of the data captured and so can be said
to be “rare”.

The main contribution of this research is to demonstrate that it is possible to build a
reliable classifier based on spatio-temporal data from punctual human activity using
recurrent neural networks in the form of Reservoir Computing models. Reservoir
Computing models have been successfully used as classifiers in other areas including
speech recognition but have not previously been used to classify human activity. This
research concludes that Reservoir Computing models represent a useful adjunct to
human activity classifiers but this research does not set out to “prove” that they are
necessarily the best or only way of classifying punctual human activities.

A secondary contribution of this research is to extend the differentiation of punc-
tual human activities from durative activities with a cyclic component such as run-
ning or rowing and to argue that most prior human activity classification research has
focussed on durative activities with much less research focus on short, non-cyclic,
punctual activities.

While the classifier artefact developed within this research is intended for use
within a sporting context it has other uses beyond this context.
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Chapter1
I N T RO D U C T I O N

The human body is continually generating a myriad of bio-signals. These
signals, when captured and streamed in real time and in real life, are
subject to infinite artifacts. In fact, one of the most important challenges
for wearable product developers is to conquer this daunting signal-to-
noise ratio for actual, ”real life” use cases. Marceau (2014)

The overall goal for this research is the construction of a Activity Classifica-
tion System (ACS) that successfully classifies the punctual activity Mounting within
Equestrian Sport using Reservoir Computing (RC) techniques, based on data from
wearable inertial sensors. In particular, the goal is to produce an RC classifier that
successfully and reliably classifies the activity of interest based on data captured from
riders participating in real, unscripted, riding sessions.

An ACS is a system that is designed to recognise a subset of human activity. In
general, the phrase is applied to a computer system of some sort. A common, topi-
cal example is the part of the computer code within the AndroidTM app, Google Fit
from Google Inc. that recognises when the person carrying the smart phone running
the app is walking, running, cycling or doing a number of other pre-defined human
activities.

Human activity recognition using on-body sensors presents a number of chal-
lenges (Avci, Bosch, Marin-Perianu, Marin-Perianu, & Havinga, 2010). In many
situations this includes a lack of knowledge of overall context such that while it may
be possible to distinguish a gesture such as pronating the wrist, it is difficult, without
some idea of overall context, to conclude reliably that the gesture is associated with,
for example, opening a door by twisting the door handle or turning a car key in a
vehicle ignition. One technique used by some researchers to resolve this dilemma
is to embed the sensor within some other item such as a car key, pen or baseball
bat (Verplaetse, 1996) that has a particular use that constrains the context.

Another technique, using a more generalised, wearable sensor, is to assume or
predicate (Lukowicz et al., 2004; J. Ward, Lukowicz, Troster, & Starner, 2006) a par-
ticular context or domain so that the choice of meaning of the gesture is constrained
by the predicated domain. This is the approach used in this work and in this case the
predicated domain is that of Equestrian sport. Sporting domains have some additional
benefits as a result of often being strongly defined by rules and traditions.

Another challenge in human activity recognition is the variability in both the spa-
cial and temporal aspects of a particular action both across subjects and even within

1
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a single subject who performs an activity (or action) more than once (J. A. Ward,
Lukowicz, & Troster, 2006). Some obvious examples of spatial variability includes
differences between left-handed and right-handed activities and differences in tech-
nique such as between the drive shot of a professional golfer and an amateur. Exam-
ples of obvious temporal differences include taking 75 seconds to mount your horse
because the horse is moving away from you or mounting in 7 seconds (or less) as the
horse is standing still.

1.1 D E FI N I T I O N S

It is the author’s contention that there are different classes of Human activity and that
these activities may be broadly distinguished into durative or punctual activities. The
author contends further that that at the very least those different classes respond to
different approaches when it comes to successfully classifying activities from each
class. These contentions are outlined in more detail in the following chapter.

There are potentially a number of different ways of classifying activities into dif-
ferent classes or types but the focus of this research happens to be a temporal one
and so it is useful for this research (and perhaps for other researchers) to define the
different activity classes in terms of their temporal component. With this in mind the
author offers the following definitions of three different activity classes, based on the
perceived temporal nature of the activity.

Durative - activities that contain recurrent or cyclic data or data appearing
to occur at intervals (e.g walking, running, standing still, rowing, cycling and
grooming a horse) and which occur over a longer time.

Punctual - short, specific activities that may not contain periodic data (e.g.
Pick up a cup, get on a horse, bowl a ball in cricket, hit a ball in baseball and a
backhand shot in tennis).

Complex or Meta - An activity that is composed of two or more Durative
and/or Punctual activities (e.g. Cooking, Riding). In some sense, this defini-
tion of complex activity can be seen as almost equivalent to Bobick’s (1997)
“Action”.

These definitions seem to be unique across the activity classification literature based
on inertial data and were first published by the author in Hunt, Parry, and Schliebs
(2014). However, the concept of temporal based classes for Human activity has been
in common usage within the video based activity classification literature and a defini-
tion very similar to our own is that of Niebles, Chen, and Fei-Fei (2010, p392–393).

Durative activities usually occur over a longer period of time and have some sort of
repeating rhythmic component. Some simple examples of durative activities include
running, walking, rowing, grooming a horse and cycling. Punctual activities tend
to be shorter and happen once rather than multiple times and so often do not have
a repeating rhythmic component to the signal. Some simple examples of punctual
activities include bowling a ball in cricket, hitting a ball in baseball, a backhand shot
in tennis and mounting a horse. Most of the activity recognition literature looks at
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durative activities. This work looks at punctual activities using current state-of-the-
art, machine learning, temporal pattern recognition techniques.

1.2 B I G P I C T U R E — A W E A R A B L E C OAC H

This research forms part of a bigger picture, that of creating a wearable coaching
system for horse riders. The author believes that activity classifiers are an integral
part of the proposed wearable coaching system and so that justifies and positions this
work.

The concept of a wearable coach is illustrated in Figure 1.1. The concept includes
wearable sensors (A), worn by riders as they train. The output from the sensors are
fed into a series of classifiers (B) that classify the rider’s current or emerging activity
and in parallel, into an analyser (C) that analyses the rider’s performance (or style)
of the current activity (from B). The Analyser compares the current sensor signals
against an ideal model for the current activity and passes this information on to the
Decision Support System (D) that includes predefined rule-sets (E) that establish
what feedback may be usefully sent back to the rider. The feedback system (F) then
provides the feedback to the rider using various on-body techniques (G) and the result
of the feedback is measured via the sensors (A).

Figure 1.1: Schliebs et al. (2013). Proposed concept of a wearable coach

It is not the author’s intention, within this thesis, to argue the pro’s and con’s of a
Wearable Coaching system nor to suggest that the concept of a Wearable Coaching
system presented here is the only possible concept or even the best concept. Such
arguments, if any, are left for another time and probably another discipline. Within
this work it is accepted that a Wearable Coaching system has some (unspecified) merit
and given this the conceptual design of such a system described in this document is
one possible design that may be workable.

Within this concept, then, item (B) includes a series of classifiers. The job of the
classifiers in this situation is to recognise what specific activity is being done by the
person using the wearable coach at any specific time. For example, did they just get
on their horse (a punctual activity) and are they currently trotting (a durative activity).
The author believes that different classifiers will specialise in classifying different
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classes of activities and will likely include both Durative and Punctual activity clas-
sifiers. Punctual activity classifiers are, it is contended, poorly researched and so the
goal of this research is to construct a Punctual classifier that is capable of classifying
punctual activities within a riding context, using data from on-body inertial sensors
worn by horse riders as they ride. The construction of such a Punctual classifier, it is
hoped, will demonstrate that these classifiers are feasible in this situation and so add
to knowledge in this area.

1.3 C O N T R I B U T I O N

This work provides two contributions to activity classification based on data from
wearable inertial and other sensors. Firstly, it brings across the differentiation be-
tween Punctual and Durative activities from video based activity classification and
following from this highlights the general lack of sensor-based activity classification
research that addresses punctual activities. It also shows that where sensor-based ac-
tivity classification has been attempted on punctual activities the classification tech-
niques used have primarily been carried across from sensor-based durative activity
classification. It shows that where sensor-based durative classification techniques
haven’t been carried across, the techniques chosen to classify punctual activities have
been simplistic, trigger based techniques. This, then, has opened up the question of
what other classification techniques are there available that might be suited to clas-
sify punctual activities. Classification based on RC machine learning techniques are
identified as a possible candidate technique for punctual activities when using sensor-
based data.

The second contribution has been to apply RC classification techniques to the suc-
cessful classification of one particular punctual activity taken from Equestrian sport.
RC classification techniques were initially applied to synthetic sensor data as a proof-
of-concept, then successfully applied to sensor data collected in a controlled labora-
tory environment using repeated, scripted activities and lastly, RC techniques were
successfully applied to a predefined set of data collected under real world, unscripted
conditions. The successful application of RC techniques demonstrates that for the
chosen punctual activity and within the pre-defined sensor data set, it was possible
to successfully use RC techniques in the way envisaged. Having demonstrated the
applicability of RC techniques for a single punctual activity the way is then left open
for future research to test if RC techniques are also more generally applicable to other
punctual activities and also to test if RC techniques provide some benefit over other
classification techniques more often used within sensor-based activity classification.

1.4 R E S E A R C H O B J E C T I V E S

The ultimate research objective is to build a working classifier (the artefact) that is
capable of differentiating an equestrian stirrup mount event from a base class of ev-
eryday, real world horse riding activity. Any instantiation of the classifier beyond
the initial proof of concept instance must use the data collected during Hunt (2009).
There is usually only a single stirrup mount event of 0.5 to 1.5 seconds duration per
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real world riding session of between 40 and 70 minutes duration within the data used
in this work and as such the signal associated with the stirrup mount event is rela-
tively rare within the overall real world riding session signal. The rarity can range
from 0.004% to 0.125% in the data used within this work. This large discrepancy
between the size of the base class and the event of interest means that the area under
a Receiver Operating Characteristic (ROC) curve based on the output of the classifier
would need to in the order of 0.99 or above in order to adequately differentiate the
event of interest.

The artefact will be progressively developed within three phases, described below.
During the earlier phases of development less stringent objective measures will be
used. These less stringent objective measures are described below, alongside the
description of the three development phases. The objectives form the performance
measures against which the artefacts developed during the research are measured (as
per Design Science).

The research objectives are described in terms of classification and are meant to be
inclusive of data pre-processing that will be required to enable more reliable classifi-
cation, especially when classifying across subjects and places in the real world.

1.4.1 Phase one research objective

A proof of concept classifier that is capable of classifying complex, synthetic spatio-
temporal data with two synthetic patterns (A and B). To be considered correctly clas-
sified, the classifier output is required to be above 1.2 for pattern A and below -1.2
for pattern B for at least 50% of the width of each pattern.

1.4.2 Phase two research objective

A classifier that is capable of classifying realistic, non-windowed, scripted punctual
activities with reasonably consistent activity completion times. Within this develop-
ment phase the data captured from the scripted, laboratory based activities from Hunt
(2009) will be used. The mounts and dismounts within this data have highly con-
sistent completion times. To be considered correctly classified, the classifier output
must be greater than 0.6 on at least one occasion during each event window.

1.4.3 Phase three research objective

A classifier that is capable of classifying real world, unscripted stirrup mounts with
activity completion times that may not be consistent. Within this development phase
the data captured from the unscripted, real world activities from Hunt (2009) will be
used. For the stirrup mounts to be considered correctly classified the area under the
ROC curve for the classifier output must be 0.99 or greater.
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1.5 R E S E A R C H Q U E S T I O N

Is it possible to construct a RC based classifier that is capable of classifying the ac-
tivities of interest when presented with real, unscripted, un-windowed data captured
from a wrist mounted inertial sensor?

This work will use the Design Science research methodology rather than an Ex-
perimental research methodology and so the research question will be answered by
building a software artefact that meets the research objectives. Consistent with the
Design Science methodology, the proposed software artefact will be built using an
iterative, incremental process. This process will have three main phases, a proof of
concept phase, a phase that classifies the highly regular activities captured from the
scripted, laboratory based sessions and a third phase that classifies the stirrup mount
activity captured during the unscripted, real world sessions from Hunt (2009). It is
the successful completion of this third phase that will ultimately answer the research
question. It is worth noting that it is not necessary to show that the resultant RC
driven artefact is better than any other technique for classifying this activity but that
it is sufficient if it meets the research objectives and it has sufficient novelty that it
adds to knowledge in this area. The three phases are described in slightly more detail
below.

1st Phase. Construct a RC based classifier that is capable of classifying synthetic,
complex, un-windowed spatio-temporal data that meets the research objectives
of 1.4.1 as a proof of concept.

2nd Phase. Construct a RC based classifier that is capable of classifying scripted,
punctual activities using realistic, un-windowed inertial data with reasonably
consistent activity completion times that meets the research objectives of 1.4.2.

3rd Phase. Construct a RC based classifier that is capable of classifying un-
scripted, punctual activities using real, un-windowed inertial data with pos-
sibly inconsistent activity completion times that meets the research objectives
of 1.4.3.

1.6 P U B L I S H E D PA P E R S

An iterative approach has been taken to creating the artefacts used within this re-
search. This is consistent with the Design Science methodological framework. As
part of this iterative process peer reviewed papers and articles have been published at
appropriate times. These papers featured either Liquid State Machine (LSM) or Echo
State Network (ESN) approaches to RC and are listed below:

Proof of concept — LSM with synthetic data The conference paper Continuous
classification of spatio-temporal data streams using liquid state machines, In Neural
Information Processing (pp. 626–633) Schliebs and Hunt (2012) reports on tests of
a ACS using RC techniques with synthetic spatio-temporal data and concludes that
LSM and therefore RC computing techniques are suitable engines for an ACS.

This paper was co-authored with Dr. Stefan Schliebs and as the first published
paper within this work served as a learning exercise in academic publishing for Hunt.
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Hunt’s contribution represents approximately 35% of the effort and includes the
(joint) overall plan for the paper; (own) drawing Figure 1; (joint) writing of the
results, conclusions and future directions; (own) proof reading; (own)grammatical
editing; (own) preparation of the conference slides and the (own) presentation of the
paper at the conference. Schliebs’s contribution represents approximately 65% of
the effort and includes the balance of the paper. This paper has been cited six times
including three non-author citations.

A realistic situation — Using LSM with scripted data The paper Towards a
Wearable Coach: Classifying Sports Activities with Reservoir Computing, In Engi-
neering Applications of Neural Networks (pp.233–242), Schliebs et al. (2013) demon-
strated that RC techniques are able to work with realistic inertial data from scripted
activities in a laboratory environment.

This paper was co-authored with Dr. S. Schliebs, Professor N. Kasabov and As-
sociate Professor D. Parry. As the second published paper within this work more
responsibility moved to Hunt while brining in small but helpful contributions from
two other senior researchers. Hunt’s contribution represents approximately 45% of
the effort and includes the (joint with Schliebs) overall plan for the paper; (own)
section 1, Introduction; (own) section 2, Wearable coach including Figure 1; (own)
subsection 3.1, Data including Figures 2 and 3; (joint with Schliebs) section 4, Re-
sults; (joint with Schliebs) section 5, Conclusions and Future Directions; (own) proof
reading and grammatical corrections; (own) final draft and (own) preparation of the
conference slides. Schliebs’s contribution represents approximately 50% of the ef-
fort including (joint with Hunt) overall plan; (own) Python code for LSM; (own)
section 3, Experimental set up and Figure 4; (joint with Hunt) section 4, Results;
(joint with Hunt) section 5, Conclusions and Future Directions. Kasabov’s contribu-
tion represents approximately 4% of the effort including some suggested edits and the
presentation of the paper at the conference. Parry’s contribution represents approx-
imately 1% of the effort including candidate supervision and organisational support.
This paper has one self-author citation.

Using ESN with scripted data & optimised parameters The paper Explor-
ing the applicability of Reservoir methods for Classifying Punctual Sports Activities
Using On-body Sensors, in: Proceedings of ACSC2014, Australasian Computer Sci-
ence Conference 2014 Hunt et al. (2014), demonstrates a switch from LSM to ESN
as the RC based classifier and a switch from grid based search techniques to Particle
Swarm Optimiser (PSO) search techniques for the ESN model meta-parameters.

This paper was co-authored with Dr. S. Schliebs and Associate Professor D. Parry.
As the third published paper within this work almost all responsibility moved to
Hunt. Hunt’s contribution represents approximately 98% of the effort and includes
the (own) overall plan for the paper; (own) all sections; (own) all figures; (own) proof
reading and grammatical editing; (own) preparation of slides and (own) conference
presentation. Schliebs’s contribution represents approximately 1% of the effort in-
cluding editorial comment. Parry’s contribution represents approximately 1% of the
effort including candidate supervision and organisational support. This paper has six
citations with five non-author citations and one self-author citation.
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Using ESN with real–world data & optimised parameters The paper Using
Echo State Networks to Classify Unscripted, Real-World Punctual Activity, in: En-
gineering Applications of Neural Networks, Springer, 2015, Hunt and Parry (2015),
represents a switch from laboratory based, scripted activities to real–world based, un-
scripted riding activities and using a PSO based technique to search for ESN model
meta-parameters.

This paper was co-authored with Associate Professor D. Parry. As the fourth pub-
lished paper within this work almost all responsibility for producing it belongs with
Hunt. Hunt’s contribution represents approximately 99% of the effort and includes
the (own) overall plan for the paper; (own) all sections; (own) all figures; (own) proof
reading and grammatical editing; (own) preparation of slides and (own) conference
presentation. Parry’s contribution represents approximately 1% of the effort includ-
ing candidate supervision and organisational support. This paper was not cited as of
March, 2017.

Explaining the role and importance of classification when developing wear-
able coaching devices The paper The Role Of Classification In The Development
Of Wearable Coaching Devices, in: Proceedings of MathSport2016, The 13th Aus-
tralasian Conference on Mathematics and Computers in Sport, Melbourne Hunt and
Parry (2016), presents arguments supporting the importance of classification when
developing wearable coaching devices.

This paper was co-authored with Associate Professor D. Parry. As the fifth pub-
lished paper within this work almost all responsibility for producing it belongs with
Hunt. Hunt’s contribution represents approximately 99% of the effort and includes
the (own) overall plan for the paper; (own) all sections; (own) all figures; (own) proof
reading and grammatical editing; (own) preparation of slides and (own) conference
presentation. Parry’s contribution represents approximately 1% of the effort includ-
ing candidate supervision and organisational support. This paper was not cited as of
March, 2017.

1.7 T H E S I S S T RU C T U R E

The structure of the thesis follows the research objectives and is outlined below.

Chapter 2 – Problem Background
This chapter describes the problem background. It starts by briefly reviewing the

wider area of wearable coaching devices to provide context for what follows. It
also reviews the domain of Equestrian sport and the concept of domain constrained
activity classification.and reviews current research in connected areas that are related
to the problem space.

Chapter 3 – Literature Review
This chapter reviews current developments in the area of activity classification,

especially activity classification based on wearable inertial (or other) sensors. In par-
ticular, this work differentiates between punctual and durative (cyclic) activities and
between punctual activities with regular temporal frames and those punctual activities
with irregular temporal frames.
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Next current research in durative activity classification based on wearable sensors
is reviewed. This is then followed by a review of current research in punctual activity
classification based on wearable sensors. There is also a brief review of wearable
versus off-body sensors for activity classification.

Chapter 4 – Methodology & Data
This chapter provides a description of the approach to Design Science used within

this research and the iterative development approach that was followed as part of
that methodology. This chapter also describes how the data used in this work was
validated and pre-processed. Including issues and characteristics of the data.

Chapters 5 and 6 – Design Cycles
The three phases of the design cycle are covered in these two chapters. This in-

cludes the early proof of concept work using LSM and synthetic data; the move from
a LSM to an ESN model; the second phase utilising an ESN and the laboratory situ-
ated activity data and finally the real world situated activity data using an ESN.

Chapter 7 – Discussion
A discussion of issues that were encountered during this research.

Chapter 8 – Conclusions and Future Work
The conclusions of the research and some ideas on future work that can extend the

ideas introduced within this research.

1.8 P R E S E N TAT I O N A N D T H E AU T H O R ’ S VO I C E

The diagrams presented within this document are generally sized so that they flow
within the text in a natural way. This means that sometimes the details within the
diagrams are hard to pick out for a reader not completely familiar with this research.
To assist these readers, the diagrams are also available as stand alone (electronic)
documents in a larger form. In addition, if this document is being read in PDF format
then it is possible with almost all figures to use the PDF reader’s capabilities to zoom
in on details with the diagrams. Some diagrams, however, are presented in a manner
that highlights their overall characteristics and so information may be obscured if the
reader tries to zoom in on all diagrams.

Throughout this work a number of key people including my supervisors have as-
sisted and have made contributions, especially at the beginning of the work. These
people have been acknowledged within the Acknowledgements Section, however,
my own attitude towards teams and teamwork is reflected via my ”voice”. In the
beginning of these writings and during the initial design cycle phase I sometimes use
the words we and our rather than I and my. I do this to personally acknowledge the
value that I place on the contributions made by others and to affirm my commitment
to teamwork. The use of we and our is uncommon within academic writing and so I
hope that the reader is prepared to bear with me in my use of these words. In the dis-
cussion and conclusion chapters when I am offering my own opinion I revert to using
the third person in my writing. Please understand and forgive the change. Regardless
of my language, all errors, omissions and inconsistencies are my own responsibility.
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1.9 S U M M A RY

This research is designed to construct a Recurrent Neural Network (RNN) model
that successfully classifies punctual human activity based on real–world activity data
collected from equestrian sports people. It is constrained to working reliably within
the domain of equestrian sport. It uses a design science methodology and sets out to
design, build, test, tune a working system using an iterative approach. As a conse-
quence of the structure of the RNN model that has inherent temporal “memory” the
data used is unwindowed inertial data captured via a commercial Inertial Measure-
ment Unit (IMU).

This research’s original contribution is to successfully apply RNN classification
techniques to a selected punctual human activity using simple features extracted from
spatio-temporal inertial data and to carry the distinction between Punctual and Du-
rative activities across to inertial data based activity classification from video data
based activity classification.



Chapter2
P RO B L E M BAC K G RO U N D

This chapter describes the problem background and highlights some of the literature
in connected areas that are related to the problem space.

2.1 I N T RO D U C T I O N

This chapter starts by briefly describing the Punctual activities of interest within this
work. This is followed by the description of the concept of a wearable coach and
some of the areas of research associated with this concept including Adaptive Sys-
tems, context as an aid to classification and in particular constrained contexts, how
successful classification can assist with inferring future activities and some additional
justifications for an ACS as a component of a possible wearable coaching system
based on on-body inertial sensors. This then leads to a quick look at on-body ver-
sus off-body activity sensing and the use of on-body inertial sensors for purposes
other than classification. This is then followed by a brief summary and introduces
the next chapter that reviews some current literature relating to inertial based activity
classification systems.

2.2 AC T I V I T Y D E FI N I T I O N S

For this work, the activity definitions are:

Mount – A stirrup mount from the time when a rider with one leg in the stirrup,
lifts the second leg off the ground or mounting block in order to mount until
the time when they are seated in the saddle.

Dismount – The time from when a rider leans forward (prior to dismounting)
until they are standing on the ground.

As with all activities, identifying the precise beginning and ending of a mount/dis-
mount is not trivial (Plötz, 2010) and so a definition of the activity with a recognisable
start and end is required.

These definition were developed by working backwards from the point where most
observers would agree that a rider is mounted (or dismounted) on a horse. For a
Mount this endpoint is the point when the rider first puts their weight into the saddle
or both stirrups. Working backwards from this, a point was found where there was

11
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reasonable consistency across riders. This point was the time when the rider lifts their
right leg off the ground for the last time, prior to mounting.

Mounting a horse via a stirrup mount can be a strenuous endeavour and for a
shorter rider or a taller horse, the rider may need to bounce a number of times before
they accumulate enough impulsion to lift their own weight and body up and over the
horse. By starting the definition after any bounces, it is possible to encapsulate that
part of the mounting sequence that is most consistent while also encompassing the
essence of the mount.

Similarly, with the Dismount the endpoint is when the rider is standing on the
ground after dismounting and working backwards from this point to when they lean
forward (in order to rebalance their weight in preparation for dismounting).

Neither of the definitions is inclusive of all possible classes of either mounting or
dismounting but the author considers them sufficient to cover a reasonable percentage
of the mounts and dismounts that are likely to be encountered in equestrian sport. As
far as the author is aware, there are no other generally accepted definitions for these
activities, for the purposes of activity classification.

A more detailed description of these activities is included below to assist any reader
that does not have a detailed knowledge of the horse riding domain.

2.2.1 Mounting

Mounting a horse using a stirrup mount technique often follows the following pro-
cess:

• Place (left) foot in stirrup (by definition, order may vary)

• Place (left) hand on saddle pommel (placement may vary, order may vary)

• Place (right) hand on saddle cantle (placement may vary, order may vary)

• Lift (right) leg off the ground (speed may vary, initial “hops” may be involved)

• Swing (right) leg over the cantle (in parallel with moving the right hand)

• Move (right) hand off cantle (in parallel with the right leg going across the
cantle)

• Sit into (put weight into) the saddle (may be delayed for some time)

• Place (right) foot into stirrup (optional)

Figure 2.1 shows a series of photographs of a rider following this typical sequence.
The definition of Mounting would have this rider starting their stirrup mount some-
where between images three and four (counting left to right, top to bottom) and end-
ing with image six.

Note that some aspects of Mounting and Dismounting are rigorously standard-
ised throughout European riding, internationally. Within European riding, the rider
always mounts and dismounts from the horse’s left side (as depicted in the above
images). The horse’s left side is also colloquially called the ”near side”, for this rea-
son. To mount or dismount from the opposite or ”off side” within European riding is
considered a ”fault” and would disqualify a rider competing in any of the European
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Figure 2.1: Example of a participant mounting a horse

riding disciplines. As a result, it is so rare that most horses trained for European
riding disciplines would be confused by a rider trying to mount or dismount from
the off side. Hunt (2009) provides background on why this tradition is so rigorously
encountered within European riding.

2.2.2 Dismounting

Dismounting a horse often follows one of the two following processes. For a stirrup
dismount:

• Remove (right) foot from stirrup (order may vary).

• Lean forward (order may vary).

• Place (left) hand on saddle pommel or the horse’s neck (placement may vary,
order may vary).

• Take the rider’s weight onto the (left) leg and stirrup, then lift the rider’s body
slightly.

• Lift (right) leg up and swing it over the saddle cantle (speed may vary).

• Move (right) hand and place it on the saddle cantle (optional, speed may vary).

• Lower the rider’s body while placing the (right) leg under the rider’s body until
the (right) leg touches the ground (speed may vary).

• Take the rider’s weight onto the (right) leg.

• Remove (left) foot from stirrup and stand upright.

• Remove hands from the horse and saddle (speed may vary).

For a drop dismount:

• Remove both feet from stirrups (order may vary).

• Lean forward further than for a stirrup dismount (order may vary).
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• Place (left) hand on saddle pommel or the horse’s neck (placement may vary,
order may vary).

• Take the rider’s weight onto the hip.

• Lift (right) leg up and swing it over the saddle cantle (speed may vary)

• Once the rider’s (right) leg is across the cantle, bring both legs together under
the rider’s body.

• Drop the rider’s body until both legs touch the ground, while ’sliding’ off the
saddle flap (speed may vary).

• Take the rider’s weight onto both legs (speed may vary).

• Bend at the knees to cushion the shock and then stand upright (speed may vary).

• Remove hands from the horse and saddle (speed may vary).

The author believes that mounts and dismounts can be categorised as Punctual
rather than Durative activities (Please see section 1.1 where Durative and Punctual
activities are distinguished). It is also possible that they could be categorised as meta-
activities, comprising a number of shorter Punctual activities and the definitions of
these activities supports this possibility (E.g. Mount - left foot in stirrup; left hand on
saddle pommel; right hand on saddle cantle; lift right leg off the ground and swing it
over the saddle; move right hand off saddle cantle as leg crosses the saddle; sit into
the saddle). However, in normal situations, these movements happen so quickly and
in such an integrated manner that most observers would consider them to be a single,
Punctual activity and in addition, at this stage of the work, there is no wish to address
meta-activities and so this choice is out of scope.

Based on the author’s earlier Masters work it is believed that for stirrup mounts,
at least, there is a short and common enough signature that a Punctual ACS will
successfully classify this activity. In addition, the author’s domain expertise leads him
to expect that dismounts are also a good candidate for classification via a Punctual
ACS because dismounts tend to be quick, consistent and relatively simple at their
core.

2.3 B I G P I C T U R E – A W E A R A B L E C OAC H

Section 1.2 and Figure 1.1 describe the concept of a Wearable Coach. A Punctual
activity classifier is one of several classifiers that are necessary within this system and
which, together, comprise one of the major components that make up the wearable
coaching system.

A brief review of the wider area of wearable coaching systems follows, to provide
context for the wider picture. The wider picture of the wearable coaching system is
important because, provided it is feasible, it suggests that any necessary components,
such as an activity classifier are important for delivering the wearable coaching sys-
tem. The author’s own concept of a wearable coach has several ACS as an integral
part of the overall system and so gives justification for doing this work.
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A number of authors have suggested wearable coaching systems of various forms.
A very early pioneering researcher, Verplaetse (1996) had the vision to suggested
that everyday objects would be developed that use inertial sensors to provide self-
knowledge of motion and that these objects would then use that knowledge to com-
municate useful information to the people/person using the object. Examples given
include a baseball bat with a built in inertial sensor that could tell a batter how well
he was hitting the ball. Although this is not a wearable system, it nevertheless en-
compasses very similar ideas and helped set the scene for following researchers.

One of the first mentions of an automated coach comes from Bacic (2004). While
this author did not at that stage suggest that this would be a wearable coach, never-
theless the proposed concept of an automated coach for tennis based on segmented
video data that is analysed for regions of interest using explicit rules encompasses
many of the same concepts.

Kawahara et al. (2005) comes closer to the concept of a wearable coach when they
proposed a Wearable Exercise Support system and called their activity classifier a
”Context Inference” system. While this ”E-Coaching” system is designed to provide
feedback, the feedback is envisaged as suggestions to rehydrate and suggestions for
further exercises rather than feedback designed to improve the athlete’s technique.

Several groups have reported on wearable systems designed to support a single,
pre-defined activity. Buttussi and Chittaro (2008) described a wearable system
(MOPET) for assessing the user’s ability to perform a single, pre-defined, model
exercise activity. As such, it neither requires a classifier (as it only applies to a single
activity) nor does it propose to provide feedback. Ghasemzadeh, Loseu, and Jafari
(2009) proposed a wearable coaching system for golf driver swings, but within this
system the authors manually classified activities and so this system, as described, is
incapable of providing real-time feedback on techniques. Similarly, Ahmadi, Row-
lands, and James (2009) proposed a wearable coach for the first serve in tennis and in
this case no classifier was required as only a single activity was considered and pre-
selected. Wixted, Portus, Spratford, and James (2011) described a wearable system
for detecting a throwing action in cricket where the authors manually classified and
segmented activities of interest.

Connaghan et al. (2011) proposed a wearable tennis coach that classifies tennis
strokes so that they could be counted by a coach and perhaps assessed off-line. This
concept is essentially an automated auditor and is similar to commercial wearable
systems such as Fitbit R© which count steps and energy expenditure.

Spelmezan, Schanowski, and Borchers (2009) reported on a wearable coaching
system for snowboarders and skiers, the authors described successful attempts to
classify turns as being front-side edge or back-side edge turns using force sensors
in the athlete’s boots. At the stage of reporting this work, the proposed system was
capable of classification but was not capable of analysing or providing feedback on
technique. In a similar vein, Bachlin, Forster, and Troster (2009); Bachlin and Troster
(2011) reported on a wearable swimming coach called ”SwimMaster”, that automati-
cally detected (classified) wall-push-off, wall-turn and wall-strike events but was not
at that stage capable of analysis or feedback.
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Baca (2012) described a more general Mobile Coach that is a combination of wear-
able sensors and a back-end server system where the wearable sensors collect infor-
mation that is communicated back to the remote server system. The authors do not
address real-time feedback to the athlete within this concept.

Hunt (2009) first, publicly, proposed a wearable riding coach. This concept was
described in more detail in Schliebs et al. (2013) and further refined in Hunt et al.
(2014).

From this collection of research it is concluded that a number of other researchers
have recognized that a Wearable Coaching system is feasible in one form or another
and has utility. This is taken as evidence to justify that the concept of a wearable
coach is feasible and possible within current technology. This, in turn, justifies this
work on activity classifiers.

2.3.1 The Conceptual Design of a Possible Wearable Coach

The concept for a Wearable Riding Coaching system is illustrated in Figure 1.1 on
page 3 within Section 1.2. In the concept of a wearable riding coach, the (human)
athlete wears sensors on various parts of their body (A) as they train. Those sensors
feed output in parallel to a series of Activity Classifiers (B) and Analysers (C). The
purpose of the classifiers is to classify the rider’s current activity and, perhaps, in
conjunction with the Decision Support system (D) to make a best guess at the next or
emerging activity. The author envisages multiple classifiers that may be focussed on
classifying different classes of activities.

The classifiers then pass the identification of the current activity and, perhaps, the
emerging activity onto an appropriate analyser (C) that can then analyse either the
rider’s performance (or style) on the current activity or on the emerging activity. The
Analyser compares the current sensor signals against an ideal model for the current
activity and passes this information on to the Decision Support System (D).

The Decision Support System would then use the outputs from the classifier(s),
Analyser(s) and some sort of Rule Set (E) to decide if any coaching feedback is
required and if so to prioritise the feedback so as to best achieve the coaching goals
for the current training session. A feedback scenario (F) would be selected and the
desired coaching feedback would be delivered to the athlete via on-body feedback
techniques (G) and the result of the feedback is measured via the sensors (A) the
analyser (C) and decision support system (D).

Based on this design concept, a series of ACS’s (component B in figure 1.1) are
required in order to construct the proposed wearable coaching system for horse riders.
For example, it is envisaged that ongoing activities with a rhythmic component to the
signal may be classified using a classifier(s) designed for Durative activities whereas
shorter activities without any particular rhythmic or repetitive component may be
classified based on classifier(s) that are specifically designed for Punctual activities.

In addition, it is thought that some complex activities that are composed of a se-
ries of smaller, sub-activities where the sub-activities could be Durative, Punctual or
mixed could be considered as meta-activities and perhaps classified using a Hidden
Markov Model (HMM) or similar technique designed for stateful classification. Such



2.3 B I G P I C T U R E – A W E A R A B L E C OAC H 17

meta-activities may be easier to classify by first classifying the sub-activities and then
stringing those sub-activities together in some way to form a syntax of sorts. This
would be especially useful when the sub-activities may be performed in differing
orders, where the sub-activities may vary or when some sub-activities are optional.

The author believes that mounts and dismounts are best categorised as Punctual
rather than Durative activities and that is the activity category that is used within this
work and so the classifier that will be developed will be designed solely for Punc-
tual activities. In addition, an attempt will be made to classify real world Punctual
activities without using additional, non-inertial sensor or other data.

2.3.2 Adaptive Systems and Ambient Intelligence

The proposed wearable coaching system is an adaptive one and so it is useful to
look a bit wider in the literature at other adaptive electronic systems to gain some
perspective. One such area that has closely related adaptive systems is the area of
Ambient Intelligence (AmI).

Aarts and Wichert (2009, pp. 1) define AmI as ”... electronic environments that
are sensitive and responsive to the presence of people”. AmI is a recent area of re-
search for Human-Computer interface issues and is part of Ubiquitous Computing
and Context Recognition. In this context, being sensitive to the presence of people
goes well beyond merely sensing that a person or even a particular person is present
but possibly also includes knowledge of what that person is doing. That is, a knowl-
edge of their activities at each moment. An ACS would then seem to be an important
element of any system that purports to adapt to what a human being is doing at a
particular time, thus reinforcing the importance of developing comprehensive ACS
systems. The history in this area goes even further back with some seminal work from
Weiser (1993) setting the scene with his ideas for adaptive computer systems. Pantic,
Pentland, Nijholt, and Huang (2007) extended Weiser’s work and they highlight the
importance of activity classification in their work.

2.3.3 Context as an aid to classification

A knowledge of context can also add a significant dimension, for example, it may
be generally insufficient for many purposes to simply know that a person is run-
ning (activity). But a knowledge of the wider context can add additional, important
information that drives the system to provide relevant advice. While not directly
concerned with activity classification, Abowd et al. (1999) reiterates the importance
of contextual information in effectively situating computer systems so that they are
more usable. Abowd et al. (1999) was particularly interested in wearable and ubiqui-
tous computing and so was concerned about designing these systems so as to enable
them to have some understanding of and be adaptive to human context.

More specifically, if a person is running to catch a bus (in this case knowledge
of where the person is, where the bus is, where the bus stop is, the person’s current
speed, the buses current speed and both their probably maximum speeds may enable
the system to provide advice on if the runner will reach the bus stop in time to catch
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the bus or not); or running for exercise (in this case knowledge of the distance the
person has already run, their probable energy usage since the start of the run, their
probable route for the rest of the run and their exercise goals may be used to give
advice on run tempo, cadence and remaining distance to run in order to achieve the
exercise goals).

A system may be able to infer context from a synthesis of the current activity
plus additional information. Considering the earlier example of the person who was
running, a system may be able to recognise that this is the approximate time that the
person usually goes to work; that today is a work day; and that the person is on their
normal route between their home and the usual bus stop that they use. From this the
system may infer the context that the person is running to the bus stop in order to
catch the next bus.

A helpful system could then (with a knowledge of bus routes and timetables) cal-
culate that the next due bus on that route has not yet reached the person’s usual bus
stop and pro actively encourage that person to continue running at their current pace
(or suggest a speed up or a slow down to a walk if there is no chance of getting to
the bus stop in time). Such a system would probably be very useful (at least for me).
However, systems similar to this such as Google’s Google Now often struggle to infer
the correct context in many except the most obvious situations.

Alternatively, the additional information could be supplied to the system in the
form of a static, domain constraint. Taking the second running situation as an exam-
ple, where the person is running for exercise, it would be simpler for the system to
infer that the person was running for exercise, even though they were currently on the
same route between their home and the bus stop if prior to the activity being detected,
the person had placed the system (such as their smart phone) into ’exercise’ mode.
Putting the system into ’exercise’ mode places a domain constraint on the system
and may assist with both the correct classification of the activity and the inference of
context.

Bachlin and Troster (2011) ”SwimMaster” system is such a domain constrained
system that could be used with a swimmer training for the medley to trigger a change
of model for swimming style when a ”wall-turn” event is detected. This useful sys-
tem would not be so useful outside of the competitive pool swimming domain. For
example, an ocean swimmer who trains in the ocean is unlikely to encounter (or even
need to know about) wall-turn events.

Unconstrained activity recognition presents a number of challenges including a
general lack of overall context in many situations that makes it difficult to distinguish
two similar movements (e.g. turning a door knob to open a door and turning a key to
start a vehicle). Most researchers have recognised that developing an unconstrained,
generalised activity classifier that is capable of classifying any or almost every human
activity is unachievable at this stage and so almost all classifiers that are reported on
are either explicitly domain constrained or are implicitly domain constrained. Do-
main constrained activity recognition, however, has been shown to be more achiev-
able and reliable Lukowicz et al. (2004); Stiefmeier, Ogris, Junker, Lukowicz, and
Troster (2006). Constraining the domain to a particular sport (such as equestrian
sport) is also potentially useful, particularly if the rules or traditions of that sport add
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further activity and style constraints. Some examples of Domain Constrained activ-
ity classification are shown in Table 2.1 and includes a complex example, Veltink,
Bussmann, de Vries, Martens, and Van Lummel (1996), where the explicit domain
is the seven activities listed and the implicit domain is constrained by the specific
equipment used (stairs and bicycle) and the scripted/situational constraints such as
their participants walking without interruption along a particular corridor; and an at-
tempt to develop a generalised system, Van Laerhoven and Cakmakci (2000), which
is ultimately constrained to those activities that can be distinguished by their system.

Research Domain Constraint Type
Veltink et al. (1996) Seven activities Explicit domain
Randell and Muller (2000) Seven activities Explicit domain
Van Laerhoven and Cak-
makci (2000)

Activities distinguished by
the system

Implicit domain

Bacic (2004) Tennis Explicit domain
Kawahara et al. (2005) Exercise Explicit domain
Buttussi and Chittaro (2008) A single predefined activity Implicit domain
Bachlin et al. (2009) Pool swimming Implicit domain
Ghasemzadeh et al. (2009) Golf driver swings Explicit domain
Spelmezan et al. (2009) Skiing and snowboarding Explicit domain

Table 2.1: Classification of Activity Classification Systems by Domain Constraint

At this stage of development, the author’s research interests lie within this area of
domain-constrained activity classification.

2.3.4 Inferring next activity

Conceptually, a domain constrained system with sufficient knowledge of its domain
and the ability to classify current activity might be able to infer the next probable
activity and provide coaching advice specifically for that activity, as it is being per-
formed. Thus correct activity classification may give insights into intention and in-
tended activity as well as simply identifying the current activity.

For example, a sport coaching system that has been placed into ’right-handed ten-
nis’ mode that then detects that a tennis player has raised their right arm over their
left shoulder may classify the current activity as ’preparing for a back hand shot’ and
so as the players right arm starts to move forward it may infer that the person is per-
forming a ’back-hand shot’ and be then able to assess and perhaps provide feedback
on the quality of that shot as the player is making the shot.

More general activity recognition then, such as the work on classifying Mounts
within horse riding, may provide contextual information that allows more detailed
activity recognition and may have predictive value with regard to future events.

Successfully classifying a mount activity enables a system to infer that the rider is
on the horse and possibly ready for coaching advice. While successfully classifying
a dismount activity provides strong inference that the rider is no longer interested in
riding coaching advice (as they are no longer riding).



2.4 DATA S E N S I N G L O C AT I O N S 20

2.3.5 Additional justifications for an ACS

Human activity recognition is an important prerequisite in many other areas of en-
deavour such as auditing, quality control and non-sports coaching within areas such
as medicine.

• auditing – Did the nurse unscrew the cap of the pill bottle? Did the patient do
their physiotherapy exercises when at home?

• manufacturing quality control – Did the car assembly worker fit the part using
the specified technique?

• medical coaching – Did the trainee surgeon use the scalpel with the recom-
mended pressure?

In all these examples and in many other situations knowledge of what activity a per-
son is currently doing (or has done) is important. For automated or computerised
systems an ability to automatically recognise human activities (as opposed to a hu-
man having to manually tell a computerised system what the activity is/was) provides
useful information and context and may be an essential element of usability or even
feasibility for the system as a whole.

2.3.6 Big Picture Summary

The conceptual model of a wearable riding coach requires a set of classifiers and
so provides justification for developing them but even outside of that particular con-
ceptual model, there seems to be recognition from other researchers for the need for
activity classifiers in general as demonstrated by other work in this area such as Baca
(2012); Bachlin and Troster (2011); Chuang, Wang, Yang, and Kao (2012); Con-
naghan et al. (2011); Harms, Amft, TrÃűster, and Roggen (2008); Kawahara et al.
(2005); Mitchell, Monaghan, and O’Connor (2013); Novatchkov and Baca (2012);
Qaisar et al. (2013); Spelmezan et al. (2009); Taylor, Abdulla, Helmer, Lee, and
Blanchonette (2011).

In fact (Baca, 2012, p. 2) states explicitly that ”One main basis of almost any
intelligent feedback system or adaptive system is the successful recognition or clas-
sification of patterns underlying the human motion just performed”.

Bobick (1997) defined three levels of motion understanding with increasing levels
of required knowledge and labelled them movement, activity and action. Thus placing
activity classification at the centre of understanding human action.

This is taken as evidence to support the contention that relevant classifiers are an
important component of the proposed wearable coaching system and this justifies
research in this area.

2.4 DATA S E N S I N G L O C AT I O N S

Existing activity, movement and gesture recognition systems have been based on
a number of different data sensing technologies and localisations such as off-body,
mixed on and off-body and on-body sensing systems.
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2.4.1 Off-body data sensing

Up until the mid 1990’s ACS were almost exclusively based on off-body sensing
technology and in particular multi-camera video based systems. This was partly be-
cause these off-body systems were quite accurate and partly because cheap, small,
accurate sensors that could be used on-body did not exist until then. However, some
of the drawbacks of off-body camera systems include that they can be very expensive
to acquire; often need to be set up in specialist studios or require very exact placement
of the cameras and only operate over relatively short distances.

Multi–camera video based systems generally require either a specialist studio where
light conditions can be closely controlled and where camera offsets can be measured
in minute detail or if they are outdoor systems then the cameras need to set up in fixed
positions so that their offsets can be precisely calculated. Often additional lighting is
required specifically for the cameras.

This means that people performing the activities either need to go to the studio
to perform them or the place where they normally perform their activities needs to
reworked so that it can accommodate the multiple cameras and lighting equipment.
This, in turn, means that it becomes much more difficult in those situations to cap-
ture real life activities that have not been influenced, often dramatically, by the data
capture equipment and/or environment.

The amount of pre-preparation means that it can be difficult in some circumstances
to capture spontaneous activities or time-consuming and expensive to capture rare
activity. The relatively short range of the camera systems of tens of metres means that
some activities that require large areas could never be captured in this manner. These
constraints hinder activities that take place across a widely dispersed geography such
as cross-country Horse Trials where the field of play can be square kilometres in size
or events such as road cycling that may cover hundreds of kilometres. Even with
large numbers of cameras, some movements can be occluded and so may be difficult
or impossible to capture. Lastly, these systems tend to be relatively expensive to
acquire, often costing tens of thousands of dollars to purchase.

These systems can be very accurate despite their drawbacks and were, until re-
cently, considered the Gold Standard and have been used successfully in a large
number of research projects. This mature technology can be very effective, espe-
cially when basing classification on human skeletal models. A small subset of ex-
amples of this research includes Barbic et al. (2004); Brand, Oliver, and Pentland
(1997); Campbell and Bobick (1995); Darell and Pentland (1996) and many others.
in 1997 Aggarwal and Cai published a review of over 38 projects in this area. Later,
Moeslund and Granum (2001) published another comprehensive survey of over 130
papers many of them not part of the earlier review.

Simpler, stereoscopic video systems such as that used in Microsoft’s Kinect are
also available. Such systems have been used in research such as Biswas and Basu
(2011); B. Ni, Wang, and Moulin (2013). While less mature and with usually less
range than the multi-camera systems, such systems are significantly cheaper to ac-
quire than the more expensive, multi-camera systems. These single camera sys-
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tems otherwise have similar characteristics, both beneficial and non-beneficial, as
the multi-camera systems.

2.4.2 Dual on and off-body data sensing

Some range-finding/triangulation type systems using broadcast/receive technologies
like RFID and RADAR have been used successfully in a limited number of published
research projects. Researchers have included Alemdar (2014); Asadzadeh, Kulik, and
Tanin (2012); Bannach, Lukowicz, and Amft (2008); Buettner, Prasad, Philipose, and
Wetherall (2009) with RFID and Y. Kim and Ling (2009) with RADAR.

These systems tend to be more recent and less popular, perhaps because they are
perceived to be more complex to configure or more difficult to miniaturise. While
these systems can overcome occlusion problems by having sensors mounted on a
participant’s body they suffer from some of the same pre-preparation and range issues
as the video based systems because they require either the transmitter or the receiver
to be located off-body in precisely known positions and within the effective range of
the sensing technology.

2.4.3 On-body data sensing

On-body sensors have the advantage of not suffering from the occlusion problems
faced by video based systems; not requiring extensive preparation or changes to the
environment where the activity takes place such as the multi-cameras and specialist
lighting of camera systems; of being able to be used in activities such as road cycling
and cross-country horse trials that cover extensive distances; are capable of capturing
real world activities and are becoming smaller, less obtrusive and are often much
cheaper than other systems.

Body-worn sensors are well suited to collecting data on activity patterns
over extended periods of time. In contrast to other approaches, such as
laboratory-based systems or video analysis, they can be used under con-
ditions of free living with minimal inconvenience to the user. S. J. Preece
et al. (2009, p. 2)

However, until quite recently on-body sensors were not considered as accurate
as the high–end multi-camera systems; could be bulky to wear and therefore raised
issues of affecting how participants moved in some cases and require their own power
source which can limit the length of activities monitored to minutes or hours.

A number of different technologies have been used for on-body sensing and some
of these include acoustic systems such as in Lester, Choudhury, Kern, Borriello, and
Hannaford (2005); J. Ward et al. (2006). Visible light systems such as in Lester
et al. (2005). Barometric pressure systems such as in Lester et al. (2005). Multi-
sensor combinations with fused inputs such as in Lester et al. (2005); Stiefmeier et al.
(2006) and inertial measurement systems using MEMS accelerometers, gyroscopes
and magnetometers.
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The concentration of ACS based on off-body camera systems really started to
change when the MEMS accelerometer began to appear. Walter (2007), in his ”The
History of the Accelerometer”, reports that the Automotive industry’s requirement for
a low-cost, highly reliable accelerometer to trigger Air Bags lead directly to the in-
troduction of the Analogue Device’s MEMS based ADXL50 accelerometer that was
introduced in 1991 and which went into high-volume manufacturing in 1993. The
ready availability of this small, low-cost, low-power, highly reliable sensor changed
the research environment and these sensors were soon picked up by researchers with
a need to have an on-body device to monitor human movement.

During the mid to late 1990’s research started to appear that was based on the
use of these inertial sensors. Early work based on on-body inertial sensors includes
Patterson et al. (1993), this seems to have been one of the earliest publications that
classified activities using accelerometers. These researchers used an Actigraph ac-
celerometer to differentiate daily activities such as walking, running, stair climbing,
knee bends, reading, typing, playing video games, and performing a mental arith-
metic task. Veltink et al. (1996), another early work, classified standing, sitting,
lying, walking, ascending stairs, descending stairs, cycling; separated activities into
a static (standing, sitting and lying) and dynamic class (walking, ascending and de-
scending stairs and cycling) with both high and low-pass filters, then classified cyclic
activities based on signal mean and standard deviation.

Verplaetse (1996), went further with their sensor and used an IMU using an IMU
consisting of an accelerometer, gyroscope and other sensors to sense motion, rather
than classifying activities. Foxlin, Harrington, and Pfeifer (1998), reported on a wire-
less motion tracking system for Virtual Reality (VR) using accelerometers and other
sensors. Other on-body inertial sensing included Bachmann et al. (1999), who re-
ported on orientation tracking for humans and robots using accelerometers and other
sensors; Foerster, Smeja, and Fahrenberg (1999), who detected human posture and
motion using accelerometers; Perng, Fisher, Hollar, and Pister (1999), who describe a
gesture sensing glove that used multiple accelerometers; Randell and Muller (2000),
who reported on a system that used a single accelerometer to detect ”walking, run-
ning, sitting, walking upstairs, downstairs and standing”, using RMS and integrated
values from the X and Y axis of the accelerometer as the only features. These re-
searchers segmented their data into windows 2 seconds wide and their classification
was person and clothing specific; Van Laerhoven and Cakmakci (2000), who de-
scribed a pair of pants with attached accelerometers and an associated system that
allows end users to ”teach” the pants which activities to highlight; J. Lee and Ha
(2001), who used multiple on-body accelerometers to capture human motion in real-
time and Mantyjarvi, Himberg, and Seppanen (2001), who used a 256 sample sliding
window to segment data from two accelerometers that were hip mounted in order
to classify ”walking in a corridor, walking down the stairs, walking up the stairs
and opening doors”. These researchers used a Wavelet transform to process the seg-
mented data and then used Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) to extract features from the processed data.

These early, pioneering studies were then followed by a flood of other work. To-
day, on-body inertial data sensing commonly sits alongside the highly accurate multi-
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camera based systems and the cheaper Kinect type camera systems as the most pop-
ular techniques of data collection for movement sensing and activity classification.
In some areas of research other sensing technologies are also used to supplement in-
ertial sensors and in some cases these alternate, non-inertial on-body sensors replace
the inertial sensors but the majority of on-body sensors used for activity classification
are now inertial ones.

The author has recognised the benefits of using these small, cheap, relatively low
powered devices in the same way as many other researchers have and the data used
in this research was all captured using an inertial sensor that included a MEMS ac-
celerometer, a gyroscope and a magnetometer.

2.5 A LT E R NAT E U S E S F O R I N E RT I A L DATA

Having established that on-body, inertial sensors are used by a number of researchers
to capture data, it is useful to look briefly at the broad range of uses that this data is
being used for. Three main threads are seen in the current research, these are motion
capture, gesture recognition and activity classification.

2.5.1 Movement Identification or Motion Capture

When used in this area, generally researchers use multiple sensors, often placed close
to body pivot points such as lower arm, wrist, just below shoulder, waist, head,
thigh and similar places. When used in this manner, researchers such as Bachmann
(2000); Brodie, Walmsley, and Page (2008); Brunetti, Moreno, Ruiz, Rocon, and
Pons (2006); J. Lee and Ha (2001); Mayagoitia, Nene, and Veltink (2002); Zhu and
Zhou (2004) have fused the inputs and used a kinematic model of the human body
to estimate posture and movement. Generally, when used in this manner researchers
utilise fused data from multiple, complementary inertial sensors (accelerometer, mag-
netometer & gyroscope) with continuous error correction, often using some form of
Kalman filter, or in some cases specialist continuous error correction filters such as
proposed by Madgwick (2010) to deal with noisy and skewed data from the sensors.

Other researchers such as Y. Kim and Ling (2009); H. Zhou and Hu (2005); H. Zhou,
Stone, Hu, and Harris (2008) (arms) and Lang, Kusej, Pinz, and Brasseur (2002)
(head) have concentrated on a sub-set of the body while using similar data fusion and
error correction techniques. Roetenberg, Slycke, and Veltink (2007) is an example
of other researchers who have slight variations on this theme and in their work they
use a novel sensor in conjunction with an accelerometer and gyroscope to aid in body
posture tracking.

In some ways, these uses are similar to the multi-camera based motion capture sys-
tems. Often these systems make use of a ”suit” with fixed pockets for the sensors so
that the sensors are placed in known positions with known orientations and the sen-
sors can be hard-wired back to a logging/processing device. A number of commercial
systems are now available that use this technology.

Yet other researchers such as Bernmark and Wiktorin (2002); Mizell and Cray
(2003) have reported on work that uses a single inertial sensor to estimate orientation
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and simple, non-kinematic movement. This work naturally leads into the next main
thread, that of gesture recognition. For a more in-depth review of other work in the
area of inertial motion capture and movement identification the author recommends
Welch and Foxlin (2002) or more recently H. Zhou and Hu (2008).

2.5.2 Gesture Recognition

Gesture recognition systems use inertial data to recognise short, simple system stan-
dardised and usually artificial movements. Often these gestures are then used to
control some other process, much like a mouse is used on a windowed desktop com-
puting system to control the desktop computer operating system and applications.
Often these projects use a Quantize, Model and Classify pipeline with HMMs pop-
ular as a Model. Researchers in this area have included Amft, Amstutz, Smailagic,
Siewiorek, and Troster (2009); A. Benbasat and Paradiso (2002); A. Y. Benbasat
(2000); Madgwick (2010); Mantyjarvi et al. (2001); Mantyjarvi, Kela, Korpipaa, and
Kallio (2004); Ramamoorthy, Vaswani, Chaudhury, and Banerjee (2003); Schlomer,
Poppinga, Henze, and Boll (2008); Westeyn, Brashear, Atrash, and Starner (2003).
Other researchers who have not used HMMs include Fels and Hinton (1993) who
used five neural networks, trained via back propagation to implement a hand-gesture
to speech system. H. Lee and Kim (1998) use a two stage process with a threshold
model as the first step to isolate gestures and then apply a HMM to classify these
isolates into standardised gestures. Some researchers have used additional sensors to
augment their gesture recognition systems. For example, Ogris, Stiefmeier, Junker,
Lukowicz, and Troster (2005) fuse ultrasound data with inertial sensor data to im-
prove their recognition rates.

A subset of gesture recognition research deals with the idea of motion primitives
that can be combined either to form more complex gestures or activities and are anal-
ogous to the idea of letters of an alphabet that make up words and concepts. These
motion primitives are a very similar idea to the “Movements” described in the next
section. As an example, Amft, Junker, and Troster (2005) describe their work recog-
nising arm gestures that are related to eating and drinking activity. Minnen, Starner,
Essa, and Isbell (2006) and Vahdatpour, Amini, and Sarrafzadeh (2009) take a dif-
ferent tack by attempting to discover sparse motifs (“sets of similar sub-sequences”)
within the sensor data using a three stage, bottom-up approach.

Another subset includes semi-natural gestures that are used to annotate or label
data. This includes Chambers, Venkatesh, and West (2004); Chambers, Venkatesh,
West, and Bui (2002); Roh, Christmas, Kittler, and Lee (2008) where cricket umpire
like gestures were used to annotate a video of a cricket game.

Yet other subsets include researchers who use static poses as gestures (Perng et al.,
1999), motion trajectories (Psarrou, Gong, & Walter, 2002), turning points of arm
movements (Zinnen & Schiele, 2008) and location, angle and trajectory (Yoon, Soh,
Bae, & Yang, 2001). T. Ni (2011) contains an extensive review of gesture recognition
systems and would be a good starting point if the reader requires a more in-depth
review of this area.
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2.6 S U M M A RY

This chapter defined the activities of interest and introduced any reader without a
background in horse riding to some commonly held ideas relating to Mounting and
Dismounting. Then the chapter introduced the bigger picture of a possible wearable
coach for horse riders based on data from on-body inertial sensors. Within the bigger
picture, the chapter looked at some ideas associated with Adaptive Systems, context
as an aid to classification and context constrained systems, how successful classifi-
cation can assist with the possible inference of next activities and some additional
ideas that intersect wearable coaching systems and activity classifiers. Then given
the interest in activity classification the chapter takes a quick look at off-body versus
on-body sensing and some associated uses for inertial data collected from on-body
sensors.

The following chapter will review the literature surrounding inertial based activity
classification systems to highlight possible gaps and to point to techniques that may
be appropriate to possibly filling those gaps.



Chapter3
L I T E R AT U R E R E V I E W

The goal of this literature review is to review relevant research literature to establish a
suitable technique and/or approach that can then be used to (iteratively) develop the
artefact of interest, an activity classifier that will successfully classify the Punctual
activity Mounting from within real world horse riding activities.

3.1 I N T RO D U C T I O N

Towards the end of the previous chapter two alternate uses of on-body captured iner-
tial data were discussed with brief reviews of current research in those areas. In this
chapter the third main use of on-body inertial data, Human activity classification, is
reviewed in some detail with the intent of highlighting gaps that are relevant to the
activities of interest.

Following on from this is a review of segmented versus unsegmented inertial sen-
sor data within ACS research, arguing that current ACS usually segment their input
data into ”windows” and classify Durative or cyclic activities while mostly ignoring
unsegmented input data and Punctual activities. It is also noted that those Punctual
activity classifiers that have been reported on, that utilise inertial data from on-body
sensors, have used segmented input data for classification.

RC techniques are briefly described along with an explanation of why they are a
useful tool for classifying un-windowed spatio-temporal data. Lastly the author con-
cludes that ACS research on Punctual activities using un-windowed data has novelty
and this is used to justify the proposal to construct a RC based, Punctual activity
classifier that processes unsegmented, unscripted real data from the domain of horse
riding.

This literature review is split into two parts. The first part consists of the literature
review that was done prior to the development of the classifier artefact for classi-
fying Mounts from continuous, unsegmented inertial data captured from real life,
unscripted riding sessions. This part of the literature review drove the iterative devel-
opment of this artefact and in that sense drove the research. This part of the literature
review starts below with section 3.2.

The iterative development of the classifier artefact took place over several years
and during that time inertial based activity classification research by other researchers
continued. The second part of the literature review then, at the end of the iterative
development process reviewed some of the relevant research literature that happened

27
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in parallel with the development from this research and this additional research litera-
ture is then contrasted with both the initial literature review and and with the insights
that developed out of the iterative development within this work. this second part of
the literature review starts with section 3.3 on page 58.

3.2 I N I T I A L L I T E R AT U R E R E V I E W

Activities are seen by researchers such as Bobick (1997) as sitting between Move-
ment and Action and could be loosely described as behaviour of a particular or pur-
poseful kind. In this context a Movement might be ”raising the right leg 15cm off the
ground”; an associated Activity might be a series of leg and body movements that
are called ”walking”; and an associated Action might be ”walking from home to the
bus stop”.

It is worth noting an alternate Activity associated with this series as being a series
of leg and body movements that could be called a ”step” and in this case it can be
seen that walking is often composed of a series of alternating steps. It is useful
to highlight the relationship between stepping and walking here as this leads into
subsequent sections which differentiates different classes of activity.

The next section reviews inertial based activity classification in a general sense
and discusses what may have been possible motivations for prior inertial based ac-
tivity classification as these motivations will have influenced what techniques other
researchers have used in this arena. Following on from this, the review highlights that
an associated research area, video data based activity classification, has distinguished
between Punctual and Durative activities whereas the inertial based researchers have
not acknowledged this differentiation. Subsequent sections of this review highlight
the lack of differentiation between these classes of activity type as a possible gap
in the inertial based research and suggest a possible technique that may be used on
inertial data based Punctual activities.

3.2.1 Motivation for Inertial Data Based Activity Classification

Much of the initial work using inertial sensors for activity classification including
work such as J. Bussmann, Veltink, Martens, and Stam (1994); Foerster et al. (1999);
Veltink et al. (1996) came from researchers with a health background who had an
interest in how active a person (patient) was overall. These researchers were inter-
ested in, for example, if that person walked for ten minutes today versus (perhaps)
five minutes yesterday.

These early researchers set out to classify (recognise) relatively common daily ac-
tivities such as walking, running, standing, lying down, ascending and descending
stairs and cycling. This set of activities are performed over an extended time and
they each have a repetitive cycle that consists of repeating some sub-activity. For
example, walking consists of repetitively taking alternate walk-steps; running con-
sists of repetitively taking alternate run-steps and so on. Even lying down can be
considered to be composed of repeating multiple short lie-periods.
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The motivation for these early health researchers was to create a tool that they
could use to measure how active a person was on a day to day basis so that the
data could be used for comparative purposes. As such they were most interested in
activities such as walking that generally occur over a time period of minutes or hours
versus activities that may only take one or more seconds to complete. As a result,
almost all of the activities that the early Health researchers were interested in were
Durative activities and so the techniques that they chose for their classifiers were
techniques suited for Durative activities.

The first appearance of a non-cyclic (Punctual) activity classifier using inertial data
from researchers with a health focus started to appear around 2003 when researchers
investigated classifiers for falls. Degen, Jaeckel, Rufer, and Wyss (2003) and Hwang,
Kang, Jang, and Kim (2004); Mathie, Celler, Lovell, and Coster (2004) reported on
work that used a threshold test to classify falls. In the case of Falls, researchers
were focussed on a single event and while they chose different, more appropriate
techniques for classifying falls than prior researchers had used for Durative activities
these Fall researchers failed to generalise the differences in timing length and the non-
repetitive nature of Falls and so an opportunity was missed to differentiate Punctual
from Durative activities.

Around the late nineties on–body, inertial data, activity classification research
started to appear from researchers with a computer science and/or algorithmic back-
ground, I call these the Behaviourists. This research thread includes such pioneers
as Foerster et al. (1999), Randell and Muller (2000), Van Laerhoven and Cakmakci
(2000), Mantyjarvi et al. (2001) and S. Lee and Mase (2002). These researchers
were motivated to improve on the work done by the earlier researchers and so these
works followed the same basic techniques introduced by the initial health focussed re-
searchers and concentrated on classifying cyclic “daily activities” type activity. This
new research built on, extended and refined the earlier work and a standardised set of
techniques started to emerge. This standardised set of techniques was well suited to
the Durative activities that these Behaviourist researchers worked with and it is best
expressed in a quote from S. J. Preece et al. (2009, p. 3):

Most approaches to activity classification, using body-worn sensors, in-
volve a multi-stage process. Firstly, the sensor signal is divided into a
number of small time segments, referred to as windows, each of which
is considered sequentially. For each window, one or more features are
derived to characterize the signal. These features are then used as in-
put to a classification algorithm which associates each window with an
activity.

This process of chopping the input signal up into discrete (usually overlapping)
windows is well suited to activities that extend over a reasonably long period of time
and in situations when the exact start and end point of each activity is not needed.
This is ideal for Durative activities but is often not ideal for very short, Punctual
activities where missing the start (or end) of an activity may result in missing it alto-
gether.

Not long after this, researchers with a sports background started to take an interest
in activity classification based on data from on-body inertial sensors. The motivation
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for some of these researchers was to record different training activities and to record
data associated with energy expenditure. One of the earliest works within this thread,
Heinz, Kunze, Gruber, Bannach, and Lukowicz (2003), looked at non-cyclic activities
(specific Kung-Fu moves) and had moderate success using the standardised set of
techniques with scripted, laboratory based activity from two subjects. One of the
side effects associated with scripted, laboratory based activity data recording is that
the data is often unnaturally consistent due to following the script and where multiple
attempts are made to record the same activity over a limited time period then the
repetition of the activities introduces a repetitive element to the data that is recorded
even when the activities are not inherently repetitive.

The issues around the unnaturally consistent data associated with scripted, labora-
tory based activity classification are now well recognised and has been reported by
a number of researchers in the field such as Foerster et al. (1999), Bao and Intille
(2004) and Ravi, Dandekar, Mysore, and Littman (2005) who reported high classifi-
cation accuracy (84%–95%) from scripted, laboratory based data versus much lower
accuracy (24%–66%) when using the same techniques with real world, unscripted
activities.

Sports focussed, on-body, inertial data based activity classification research has
been sparse since Heinz, Kunze, Gruber, et al. (2003) with Michahelles and Schiele in
2005 and Harding, Mackintosh, Hahn, and James in 2008 both reporting on work that
classified cyclic sports activities using the standardised set of techniques. Leaving
the author’s own work aside, the next reported work is Mitchell et al. (2013) where
the authors classify five cyclic (Durative) and two non-cyclic (Punctual) soccer and
field hockey activities using the standardised set of techniques. While Mitchell et al.
(2013) included both Durative and Punctual activities within their work they did not
differentiate between the two classes of activity and used the same technique for all
activities. Their reported results showed high classification accuracy for 4 of the 5
Durative activities and very low classification accuracy for the 2 Punctual activities.
The fifth Durative activity, dribbling a ball was difficult to differentiate from walking
and running, two of the other Durative activities. This reinforces a difference between
the two classes of activity but in this case the researchers did not pick up on the cause
of these differences.

From 2004 and onwards, on-body, inertial data based activity classification work
started to appear from researchers with what I categorise as an Auditing focus. The
motivation for these researchers was to record activities, often in a work situation, to
ensure that required activities were done. An example of this would be recording a
worker screwing in a particular screw to make sure that all screws were installed. In
the case of the 2004 work, (Lukowicz et al., 2004), the researchers were working on
workshop activity recognition that included both Durative and Punctual activities.

By this time the so called “standardised” way of cutting the input data up into dis-
crete windows was so ingrained that again, this work plus Stiefmeier et al. (2006)
[both Durative and Punctual bicycle repair activities] and Marin-Perianu, Lombriser,
Amft, Havinga, and Traster (2008) [both Durative and Punctual automotive assem-
bly activities] followed the established way of segmenting the signal into windows,
calculating features from those windows and then classifying the activities based on
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those calculated features. In all three of these works the Punctual activities were a
small minority of the total activities audited and so all researchers achieved moder-
ately good results using the standardised techniques. Where these researchers found
that their Punctual activities were not responding well they preferred to add additional
sensors (and therefore additional information) such as proximity sensors rather than
differentiating the Punctual activities and using a different classification technique
with those activities.

However, in Zappi et al. (2008) [both Punctual and Durative automotive assembly
activities, mostly Punctual], in some cases, the signal is not segmented and instead
each raw sensor sample is instead compared with two threshold values, (somewhat
reminiscent of the fall classification research from the health focussed researchers),
and converted into one of three values that are then input into a HMM for initial
classification. While the researchers do not state which of the various activities they
use the non-standardised, non-segmented data technique with, it is highly possible
that they use this technique to improve the classification of the Punctual activities
of interest because all but one of the ten activities of interest is a Punctual activity.
In any case, it is interesting to note the use of a set of techniques that does not fit
that which other researchers have considered a standard, even though, once again,
this has not been generalised into Durative and Punctual classes by the researchers
themselves and it is also interesting to note the use of the HMM for classification
acknowledges an understanding that for some activities, the temporal order of the
features used for classification are important. This acknowledgement of the useful-
ness of temporal order is generally not seen with other inertial data based activity
classification researchers, particularly those working with Durative activities.

Almost all of the on-body, inertial data based activity classification research can
be grouped into the four motivational threads discussed above, namely Audit fo-
cussed, Behaviour (computer science and/or algorithmic) focussed, health focussed
and Sports focussed. Some other minor threads do exist such as Military focussed
(Minnen, Westeyn, Ashbrook, Presti, & Starner, 2007) and Security focussed (Yin,
Yang, & Pan, 2008), but these minor threads do not or have not differed from the
Health and Behaviour focussed work and there is not enough of it to warrant detailed
analysis or reporting.

3.2.2 Differentiating Inertial Based Activity Classifiers

Earlier, in the Introductory chapter (see page 2) we offered definitions of Punctual
and Durative activities. We also noted that Niebles et al. (2010) offered a very similar
definition to our own but from the perspective of Human activity classification using
video data. This definition is also supported by Amer, Xie, Zhao, Todorovic, and
Zhu (2012), also from the video data based research community, who use “punctual”
to differentiate activities with no repeating elements from “repetitive” activities. See
Amer et al. (2012, p. 2 last para), Amer et al. (2012, p. 3 first para) and Amer et al.
(2012, p. 4 first para).

H. Zhang, Zhou, and Parker (2014) (also from the video data research commu-
nity) use “punctual” in the same manner as Amer et al. (2012), to differentiate non
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repeating from repetitive activities, see (H. Zhang et al., 2014, p. 2, Section 2, para
2). In addition, H. Zhang et al. (2014) point out that trying to distinguish activities
from continuous data, as opposed to data that has been preprocessed to highlight and
extract particular activity sequences is a difficult task as it is difficult to find the exact
point where one activity finishes and another activity starts. This issue is of particu-
lar significance for Punctual activities because their non-repetitive nature means that
they are usually quite short whereas most repetitive activities are much longer. It is
much easier to miss the shorter activities.

At the top of page 393 of Niebles et al., we note that the authors state that

Durative and Punctual activity classifiers require different classifica-
tion algorithms in order to take advantage of the different properties of
each type of activity and that as a result, classification algorithms de-
signed for one class of activity perform poorly on the other.

Our own review of the relevant literature shows that within the realm of inertial based
activity the lack of differentiation between Durative and Punctual activities (until
now) has muddied the discussion. Nevertheless, researchers within inertial based
activity classification have tended to use different algorithms and approaches for the
two classes of activity and where they have tried to use the same approach across
both then they have have been largely unsuccessful when classifying the activity class
that is not the primary focus of the algorithm used. Following, we differentiate and
discuss the inertial based activity classification with this focus.

3.2.3 Inertial Based Durative Activity Classification

The daily activities that were a focus of both the early Health orientated and Be-
havioural orientated researchers such as walking, running, standing, ascending stairs,
descending stairs and the like are Durative activities as they relate to continuing,
cyclic action. (Smith, 1999). The common classification approach is to use the Quan-
tize, Model and Classify pipeline e.g. (Bao & Intille, 2004) who used Fast Fourier
Transform (FFT), a predefined feature set and a Decision Tree for classification. Ac-
cording to S. J. Preece et al. (2009, pp. 3), in most cases the sensor signal is divided
into small time segments and these are considered sequentially (Quantise). Features
are calculated/derived from each segment so as to characterise the signal (Model),
and then the features are used as input into a classification algorithm (Classify).

S. Preece, Goulermas, Kenney, and Howard (2009, pp. 1) suggests that three main
techniques are used to derive features from the segmented sensor signal, these are
Direct features such as segmented signal mean, standard deviation, variance, Root
Mean Square, median, skew, kurtosis, 25% percentile, 75% percentile, Mean Abso-
lute Deviation and Zero Crossing Rate; Frequency features such as segmented signal
FFT, frequency domain entropy, spectral centroid, spectral spread, estimation of fre-
quency peak, estimation of power of the frequency peak and signal power in different
frequency bands; and Wavelet Analysis features calculated from various forms of
Discrete Wavelet Transform (DWT) decomposition.
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Looking at these activities through a temporal lens it can be seen that they all have
a start phase, a repetitive central portion and an end phase and looking at walking,
for example, it could be said that a person starts walking, then they are walking and
finally they will stop walking at some point.

However, those early researchers were by-and-large uninterested in the start and
end phases of Durative activities as they were interested in quantifying the general ex-
tent of an activity as opposed to finding the exact start or end of its instantiations and
so classifiers for those Durative activities responded well to the data being segmented
into fixed windows and then having statistical and frequency features extracted from
the sensor signals within these windows. For these researchers not identifying a cou-
ple of seconds of activity at the start and end were inconsequential compared with
correctly identifying the minutes or hours of activity between the start and end.

The author concurs that these techniques are indeed appropriate for Durative activ-
ities but to only consider techniques that work well for these cyclic activities where
temporal order has little relevance is, as Niebles et al. (2010) has stated, misses the
opportunity to use differing and potentially more appropriate techniques for Punctual
activities.

3.2.4 Inertial Based Punctual Activity Classification

Some activities, such as picking up a cup, opening a door and mounting a horse (as
examples), either only have a single stage or consist of non-repetitive stages and are
often very short. These Punctual activities do not contain a repetitive cycle and their
relatively short duration mean that correctly identifying the start and end phase can
be very important. In addition, many Punctual activities are of variable length e.g.
mounting a horse (using the original, extended definition of mounting) took an aver-
age 5.48 seconds with a standard deviation of 2.28 seconds (Hunt, 2009, pp. 153).
This temporal variability makes it difficult to isolate the start and end of a Punctual
activity when the input data is cut up into windowed segments as it becomes difficult
to segment the input data in a way that ensures that the start, middle and end stages
are consistently captured without risking the activity signal being overwhelmed by
non- activity data. In this area Junker, Lukowicz, and Troster (2004, pp. 1) states:

“With a scheme that partitions e.g. the signal into segments of predefined
length, it is very likely to miss the exact beginning and end of the relevant
movements which is critical particularly for activities of short duration”.

In addition, spectral type quantization techniques that are often successfully used
on cyclic Durative activities are unlikely to be successful with Punctual activities as,
by definition, Punctual activities are not cyclic in nature.

One activity that early health-focussed researchers were interested in that did not
fit the Durative activity mould was “Falls” and it is in this area that differing tech-
niques being used to classify this activity are first seen. Degen et al. (2003), Hwang
et al. (2004) and W. H. Wu et al. (2008) for example, segmented their sensor data and
then applied a simple threshold test to an average of each data segment to distinguish
falls from non-falls; T. Zhang, Wang, Xu, and Liu (2006) segment their data and
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then look for an “acute change” from the prior segment; Nyan, Tay, and Murugasu
(2008) on the other hand do not segment their data and instead calculate approximate
thigh and waist orientation and rotational velocity, they then distinguish a fall when
certain orientation and/or rotational velocity thresholds are exceeded. Doukas and
Maglogiannis (2008) combine an acoustic sensor (microphone) with an accelerome-
ter on the patient’s foot to detect falls, interestingly, they seem to use unsegmented
accelerometer data alongside sound peak frequency and amplitude data in their clas-
sification process but force a fixed, five second, post-classification segmentation win-
dow on the primary classification results to provide a secondary and more accurate
classification. They use a similar technique in their later, related work (Doukas &
Maglogiannis, 2011) but also add in off-body cameras and off-body microphones.

All these above works target “falls” as the primary activity to be classified, some
health related activity classification research includes falls alongside other more tra-
ditional activities. When falls are only one of a number of activities to be classified,
most researchers use traditional classification techniques.

Over time other researchers with different backgrounds and world views started
to become interested in sets of activities that included Punctual activities. Heinz,
Kunze, Gruber, et al. (2003) report on some early work within a sports context when
they classified a number of Punctual and Durative activities from the sport of Kung
Fu. Their approach was to use unsegmented raw gyroscope data from a single axis
from a neck mounted sensor to classify “turns”, while they used more traditional ap-
proaches for their Durative activities. While the authors of this work used a different
technique to classify the Punctual activity (turns) they did not define or distinguish
any fundamental difference between Punctual or Durative activities and simply called
them all “activities”. Nevertheless, their use of unsegmented data in this manner sup-
ports the contention that some activities (Punctual ones) are not best classified using
the standardised techniques developed for Durative activities with a cyclic nature.

The Auditor focussed researchers included Punctual activities within their activ-
ity sets from the beginning and work such as Lukowicz et al. (2004) where the au-
thors classify activities encountered within a woodwork workshop demonstrates this.
Similar audit focussed work has included Amft, Lombriser, Stiefmeier, and Troster
(2007); Junker, Amft, Lukowicz, and Troster (2008); Stiefmeier et al. (2006); J. Ward
et al. (2006). Again, the authors do not differentiate between Punctual and Durative
activities and use the same traditional techniques to classify all activities. As an
example, J. Ward et al. (2006) use segmented data, Mean and Crossing Count as fea-
tures but acknowledged the importance of the temporal aspects of the signal by using
a HMM as a classifier for all activities, both Punctual and Durative, during their audit
orientated study.

Other audit focussed work based on instrumented “smart houses” such as Logan,
Healey, Philipose, Tapia, and Intille (2007) used hundreds of sensors including a
small number of wearable sensors and set out to classify large numbers of activities
however, as reported, all except three activities took at least a minute to do (Logan et
al., 2007, pp. 10) and most of the described activities were Durative in nature. With
so few Punctual activities the authors followed a traditional approach of segmenting
the large number of sensor readings, calculating features from each segment and then
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classifying activities based on those features. However, the authors did recognise
that this was a less useful process when dealing with the shorter (more likely to be
Punctual) activities. Once again, this supports the contention that Punctual activities
may well be better served by techniques that cater for their shorter length, lack of a
cyclic pattern and in many cases the significance of the temporal order of the signal
features.

Other authors have kept the more traditional classification approaches developed
for Durative activities when classifying Punctual ones but recognising that classi-
fication rates for Punctual activities has been less reliable in these cases have then
turned to other techniques to try to improve reliability. In a number of cases the re-
searchers have added additional sensors in their quest for reliability. One series of
studies out of the Wearable Computing Lab at ETH in Switzerland based around mo-
tor vehicle assembly tasks that included Punctual activities, used off-body proximity
sensors, ultrasonic sensors and other off-body data to complement the inertial data
when they achieved reasonable reliability with Punctual activities. Specific research
examples from this series include Stiefmeier et al. (2006), where input data was man-
ually pre-segmented and supplemented with ultrasonic sensors; Zappi et al. (2007),
where input data was pre-segmented and acceleration features were extracted; Lom-
briser, Bharatula, Roggen, and Troster (2007), where input data was segmented using
a sliding window protocol and supplemented with sound data from a microphone and
ambient light data from a visible light sensor; Stiefmeier, Roggen, Ogris, Lukowicz,
and Troster (2008), where input data was pre-segmented into interesting areas and
supplemented with proximity sensors on the motor vehicle, force sensors on the par-
ticipant’s body and RFID tags on the tools. These researchers have recognised that
the standard techniques using standardised data was insufficient but in their cases
they have preferred to add additional information (from the extra sensors) rather than
trying different classification techniques. This is entirely acceptable but misses an
opportunity to widen the range of techniques available to inertial data activity classi-
fication researchers.

Koskimaki, Huikari, Siirtola, Laurinen, and Roning (2009) report on a similar
study to the ETH studies where data was recorded from a fixed position (a positional
domain constraint) that represented a particular ”post” in an assembly line. They
segmented their input data using sliding window, then extracted features from the
widowed data. Both series of assembly-line studies are similar in many ways to the
laboratory data captured using a wooden ”horse” in a fixed position for this research.

Another ETH study by Junker et al. (2008) looked at gestures (Punctual activi-
ties) from everyday life with some success and in this case the input data was pre-
segmented into sections likely to contain activities of interest using a sliding window
technique, they used data from multiple inertial sensors and then extracted features
from the segmented inertial data.

J. Ward et al. (2006) used an on-body non-inertial sensor to improve reliability
and still reported significantly less reliability for the Punctual activities (”Turn screw-
driver” and ”Pick up file from drawer”) compared with the Durative activities in their
study.
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Most of the Punctual classification studies used explicitly Constrained Domains
(such as specific assembly tasks for production line systems) or implicitly Con-
strained Domains such as a specific door when classifying opening a door, or light
switch when turning on a light (Junker et al., 2008) to reduce the search space and
simplify the task.

There has not been a prevalent understanding of differences between Punctual and
Durative activities within the published inertial based activity classification research.
Where researchers have focussed on an activity or activities that can be classified
as Punctual, such as falls, then the resultant classifiers are often non-traditional in
their techniques but where research has included a minority of Punctual activities
versus Durative activities then researchers have tended to classify all activities us-
ing the same technique and that technique has usually been a traditional one even
though some researchers have acknowledged that traditional techniques have been
less successful with shorter duration (often Punctual) activities.

One potential solution for finding short sequences of variable length is to divide the
search into two parts where the first part of the search uses any number of techniques
to find a “similar” signal sequence and then the second part of the search uses a dif-
ferent technique to search the area around the identified sequence for a more exact
match that more clearly identifies the start, middle and end sequences. For example,
Junker et al. (2008) uses this technique by utilising a similarity search at first and a
HMM as their secondary classification technique in their work classifying activities
within industrial assembly tasks. While this two staged technique works it has an ob-
vious drawback, especially when attempting to do time critical activity classification,
as the technique requires two passes over the same data.

Other techniques that researchers have used on unsegmented data to classify Punc-
tual activities have included threshold limits for falls as in Bourke, OBrien, and Lyons
(2007), Bourke, ODonovan, and OLaighin (2008) and Nyan et al. (2008) or using
multiple thresholds to codify the data and then classifying the codes (Zappi et al.,
2008). Minnen et al. (2006) use a much more sophisticated variation of codifying the
data but their technique does segment the data, although the technique calculates the
segment window size rather than using a fixed segment window. Minnen et al. (2006)
also use a two stage process where HMM are used to classify the activities during the
second step.

A very small minority of researchers have used unsegmented data to classify Du-
rative activities, J. B. J. Bussmann, Veltink, Koelma, Van Lummel, and Stam (1995)
used unsegmented data to differentiate static activities such as standing and lying
from dynamic activities such as walking and S. H. Lee, Park, Hong, Lee, and Kim
(2003) do something very similar.

3.2.5 Complex Activities

A third class of activities may be called Complex activities and are typically com-
posed of a series of Durative and/or Punctual activities. Complex activities include
activities such as eating, cooking, riding, fishing. In general, researchers have not at-
tempted to classify these complex activities and where they have such as in Logan et
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al. (2007), where the authors tried to classify “eating” as one of a number of everyday
activities within an instrumented home, they had only moderate success at best.

There has been limited work done that focussed on classifying complex activities,
perhaps in recognition of the difficulties in this area. Marin-Perianu et al. (2008) is
one reported work that has attempted complex activity classification but used data
from off-body sensors with Fuzzy Inference with state change as their classification
engine.

3.2.6 A Wider Inertial based Activity Classification Review

What has been missing from the inertial data based activity classification research
dialogue has been a clear differentiation between Durative and Punctual activities
and an acknowledgement that techniques that are successful in one area may not be
ideal in the other area.

This work provides a definition that distinguishes Punctual activities from Dura-
tive activities based on differences of the length of completion time for activities and,
perhaps more significantly, on differences in the rhythmic/cyclic nature of Durative
activities versus the non-rhythmic/non-cyclic nature of Punctual activities. In general
video data based activity classification researchers have been reasonably clear about
distinguishing Punctual and Durative activities (see Niebles et al. (2010), Amer et
al. (2012) and H. Zhang et al. (2014)) however researchers who do activity classifi-
cation based on inertial data have usually failed to differentiate Punctual, non-cyclic
human activities from Durative, cyclic activities and where they have differentiated
these different classes of activity their definitions have not been particularly clear or
consistent.

Some inertial data based activity classification researchers have called Punctual
activities non-periodic activities (Junker et al., 2004) or gestures (Chambers et al.,
2002)in order to differentiate them from (real) activities while others have used terms
such as short activities or very short activities to try to differentiate them from longer
activities(Ravi et al., 2005). Almost none of these attempts at differentiation have
been either well defined nor have they demonstrated any understanding of the differ-
ences in the rhythm or frequency of Punctual versus Durative activities and so while
this research is not the first publication to define and differentiate Punctual and Du-
rative activities, this work uses these prior definitions to highlight the general lack
of research into the area of inertial data based Punctual activity classification versus
inertial data based Durative activity classification.

To be clear, it is not being suggested that techniques that have been successfully
developed for classifying Durative activities are not applicable to Punctual activi-
ties and vice versa, but rather that by not recognising the differences between the
fundamental characteristics of Durative and Punctual activities may lead into using
techniques that are optimal for most cases of a particular class and fail to consider
alternate techniques that may be optimal for the alternate class of activities. This
seems to be particularly an issue when classifying Punctual activities as the follow-
ing analysis shows. In order to back up the contention that there are differences
between Durative and Punctual activities and the techniques used to classify them
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the author undertook a short review of publications related to inertial based, activity
classification research. This review is described in the following sections.

3.2.7 Initial Review methodology

The methodology included:

1. The use of widely cited reviews or key publications plus the author’s own
searches via Google Scholar to find publications

2. To include only inertial based activity classification publications

3. To exclude gesture recognition and motion tracking work

4. Where the same or very similar authors re-publish the work under differing
titles then only one, representative publication, has been included. However,
new work from research using the same data has been included where it is
deemed different enough. Of course, decisions to include or exclude work is
based on interpretations and is open to challenge

5. Where a publication is cited in more than one source then it is only included in
the review once

6. The author believes that while the list of reviewed work is not complete that it
is comprehensive enough to allow valid conclusions to be drawn

The list of surveyed publications includes 137 publications from 1995 to early
2014. The reviews and key publications that formed the core of works from which
citations are drawn are: Bao and Intille (2004); Baca, Dabnichki, Heller, and Korn-
feind (2009); Companjen (2009); S. J. Preece et al. (2009); Avci et al. (2010); Brush,
Krumm, and Scott (2010); Plötz (2010) and Lara and Labrador (2013). The indi-
vidual works are not referenced directly within this section but are all listed within
the references chapter. Works used within this review are noted with an asterisk in
the references chapter. Where specific characteristics of a particular publication are
commented on then that work is directly referenced in this section.

The works considered within this review are characterised by a number of different
attributes, these attributes are:

Author - The author(s) of the publication that was reviewed

Year - The year that the reviewed publication was published

Inertial - Confirmation that the publication had used inertial data during clas-
sification; note that this does not preclude the use of non-inertial
data in addition to the inertial data

Activities - A short description of the activities that were researched within the
publication; e.g. daily activities, bicycle repair activities, falls, of-
fice tasks, juggling, workshop activities, Kung Fu moves, exercises,
workshop activities, cycling, walking and transitions . . .

Placement – Where the sensor(s) were placed on the subjects bodies
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Segmentation – Was the inertial data segmented and features derived from the seg-
ments prior to classification versus using the unsegmented inertial
sensor data for direct classification. In some cases this was im-
plied where the authors of a work did not specifically say that their
data was segmented but where they used features calculated from
their data such as means, medians, standard deviations, minimums,
maximums, ranges and frequency transforms such as Fourier trans-
forms. Where the author decided that segmentation was implied, it
is noted as implied.

Domain – The (implied) primary domain or background for the researchers
who published the works; e.g. Health, Audit, Sports, Security or
Behaviour; this was often assumed from where the work was pub-
lished (medical versus computational versus sports conferences &
journals for example) or from the emphasis within the publication
(e.g. recording the total period of activities in order to estimate
metabolic effort implied a health view point)

Class – Durative, Punctual or both. This was derived from the author’s own
judgement.

Situation – Laboratory or Real World situation; note that the author interprets
“laboratory” in its widest sense. For example, a study done along
a university corridor and staircase is labelled as a laboratory as it
is a staged situation with constraints on choice of environment or
interactions

Scripted – A note of if the activities that subjects performed were scripted or
completely free-form. Note that where researchers reported that
their subjects were given a list of activities to perform but were
not told how to perform them then that was generally classified as
scripted activities especially when performed within a laboratory
environment. However, where subjects performed unprompted ac-
tivities within a realistic free-living, laboratory environment then
that was classified as unscripted, even though they were done within
an artificial “laboratory”.

Numbers – The number of participants who performed the activities during the
data capture part of each piece of research

In addition a note was kept of the source of each publication (where the citation was
found if a review was used) and a general notes field for any particularly noteworthy
point within the publication.

3.2.8 Activity Types

A plot of the frequency of various activity types encountered during the review is
shown in Figure 3.1 on page 40 and attention is drawn to this plot during this part of
the discussion.
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Within the activity type, the single largest common description was “Daily activi-
ties”, at 64.23% of all work. This description was somewhat ill-defined and seemed
to include and exclude activities at the author’s whim. However, this description gen-
erally included walking, running, standing, stair climbing (up and/or down) and often
other similar activities such as lying prone. On occasions it also included cycling. In
general the overall description “daily activities” was applied to all cases where either
the authors themselves used this description or the set of activities within the work
was substantially included within this description. Where the activities included only
one or two specific activities from within the “daily activity” group then the specific
activities themselves were noted.

Figure 3.1: Reviewed Activity Types

Interestingly, the next most common activity to be studied was “Falls”, a Punctual
activity with 14 of the 137 (10.21%) publications dealing with Falls. In all cases,
the researchers who set out to classify Falls were from the Health domain. Three of
the 14 Fall publications reported that the inertial data used for classification was not
segmented and so classification was attempted using inherent characteristics of the
raw inertial data, generally trigger levels associated with acceleration.

Other commonly researched activities are “Walking” with six publications and
those that the author classed as “Workshop activities”, also with six publications.
Some other, somewhat rarer, activity descriptions included snowboard air time, tremor,
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air writing, skiing turns, Bradykinesia (a slowness in execution of movements), delir-
ium motoric sub-types, military daily activities (a super set of daily activities), eating
activities and food preparation. Clearly, activity classification research has only at-
tempted to classify a very small number of the activities that would be expected to be
encounter in all areas of life.

As can be seen from Figure 3.1, the popularity of reported studies into Daily ac-
tivities has been there from the start and has generally increased over the middle of
the review period, peaking at around 2008 and then seems to drop off somewhat. The
author thinks that the rise reflects the increasing interest in inertial sensor based activ-
ity classification as classification techniques were developed and refined and that the
subsequent fall simply reflects that the material for the review comes primarily from
review publications prior to 2013 and so these studies necessarily look backwards
and therefore only include works prior to this. While the author’s own searches have
included the period between 2013 and early 2015 these searches will have been hin-
dered by the time it takes for newer work to be indexed within the various search
engines and so the recent drop off may well be less dramatic than shown.

3.2.9 Scripted versus Unscripted Activity Classification
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101 (73.72%) of the publications in this review used scripted activities when col-
lecting data. 13 (9.49%) used both scripted and unscripted activities, while only 17
(12.41%) used only unscripted activities while collecting data. Six publications did
not report if their activities were scripted or unscripted. From this the author con-
cludes that the majority of research within activity classification is done using data
that is much less representative of real world activities and so may not be easily trans-
latable from research into real life.

Figure 3.2 shows that early work included in this review had a clear preference
for data collected from scripted activities and that work based on scripted activities
has remained popular. However, from the mid 2000’s a number of researchers have
used data from unscripted activities and in 2011 almost half of the included works
are based on non-scripted activities. The author thinks that this reflects a general
understanding amongst activity classification researchers that unscripted activities
tend to transfer better to real life situations and, perhaps even more importantly, that
data from scripted activities may well contain signal artefacts that reflect the script
and as a result, these artefacts are then less likely to appear in real world data.

3.2.10 Laboratory Based versus Realistically Situated Classification
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Where the data collection is done also has an affect on the ability to successfully
translate results from research to real life situations. In general, data collected from
real world situations is much more likely to be directly translatable than data col-
lected from laboratory situations. Within this review, 91 (66.42%) of the publications
used data from laboratory situations. However, 20 (14.6%) publications reported on
research that collected data within a real or highly realistic situation and another 20
(14.6%) reported on work where the data was collected from both laboratory and re-
alistic situations. More recently, researchers have tended to prefer realistic situations
for their data collection. Six (4.38%) publications within this review did not state in
what sort of situation they collected their data.

While laboratory situated data collection has been popular and easier to do than
real world data capture, researchers such as (Foerster et al., 1999), (Parkka et al.,
2006) and (Lara & Labrador, 2013) have recognised that data captured from realistic
situations was more transferable to real life. The majority of the earlier work utilises
laboratory based data capture while real world data capture situations feature more
strongly since the mid 2000’s.

3.2.11 Segmented versus Unsegmented data features

A large majority of the reviewed publications (127 out of the 137, 92.7%) used seg-
mentation techniques to segment the data and then calculated derivative features from
the data segments that were then used to classify activities. This is illustrated in Fig-
ure 3.4.

Four of the publications did not state if they had segmented their data or not and
this could not be worked out from the reported material. Five publications reported
using solely unsegmented data and one publication reportedly used both segmented
and unsegmented data for classification, together representing six or a mere 4.38% of
the reviewed work. This clearly shows the preference for activity classification based
on features calculated from segmented data within the current research community.

Of the six works that did not segment their data, three (Bourke et al., 2007, 2008;
Nyan et al., 2008) reported using simplistic trigger levels of acceleration to classify
the Punctual activity, falls. S. H. Lee et al. (2003) reported using unsegmented data
to firstly distinguish between static and dynamic poses and then for static poses used
trigger levels on unsegmented data to further classify them into particular static poses.
Allen, Ambikairajah, Lovell, and Celler (2006) reported using unsegmented data to
classify three static Durative activities (sitting, standing and lying), four Punctual
activities (sit-to-stand, stand-to-sit, lie-to-stand and stand-to-lie) and one dynamic
Durative activity (walking). The researchers report that they first used a low pass
filter to separate approximate gravity components of acceleration from movement
components of acceleration and used a number of features (including the gravity and
movement values) derived from the unsegmented data to classify the static activi-
ties. They also report on using segmented data and derivative features to classify the
dynamic activities.

Of most interest to this work, Zappi et al. (2008) report on a technique that converts
unsegmented data into one of three values based on trigger levels and which then uses
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a series of HMM and a naive Bayes classifier to fuse the output from the HMM and
to then classify Punctual workshop activities. The author believes that the approach
of Zappi et al. (2008) has merit and in this work the author has started with the idea
of using unsegmented data rather than features derived from segments of that data in
this activity classification.

3.2.12 Durative versus Punctual Activities

Most of the research included in this review deals with Durative activities, 105 of the
137 publications (76.64%) deal only with Durative activities while 19 (13.87%) deal
with both Durative and at least one Punctual activity. Eight of the 19 publications that
deal with both Durative and Punctual activities have falls as their Punctual activity
of interest. 13 publications, (9.49%), deal only with Punctual activities and of these,
eight publications also have falls as their activity of interest.

While Figure 3.5 clearly demonstrates the research bias towards Durative activity
classification it does also highlight that some research is also being done into Punc-
tual activity classification and that this interest in Punctual activities has developed
recently.
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3.2.13 Segmentation of data for Durative and Punctual Activities

Looking across activity class and segmentation it can be seen that there are 104 pub-
lications that deal solely with Durative activities. Of these, 99 (94.29%) publications
report segmenting their data prior to classification; four (3.81%) do not state if they
segment their data or not and this can not be implied from the description of their
work. This leaves a mere two (1.90%) publications that use unsegmented data in
some form to help classify Durative activities.

S. H. Lee et al. (2003) describes a process where static poses are distinguished
from dynamic activities by “comparing the amplitude of extracted AC signal from
the measured data”. Unfortunately the authors do not describe how they calculate
the “AC” component of the signal and this process may involve segmentation of the
data. However, as this is unstated, it has been assumed for this analysis that their
“AC” component was calculated without segmentation. Once the “AC” component
has been subtracted from their data they then use simple amplitude triggers to dif-
ferentiate the various static poses that hey are interested in. Again, the authors are
not clear about how long their “DC” signal (original signal - AC signal) must be rela-
tively static for before they deem it static and so it is possible that they are segmenting
their data in some form in order to differentiate static from dynamic.
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Allen et al. (2006) state that their goal is to “improve the flexibility and generality
of the monitoring system, making it better able to detect and identify short-duration
movements and more adaptable to a specific person or device” and so while the work
that they describe in this publication is focussed on Durative activities they are also
interested in Punctual activities, particularly falls. Given this goal and their interest
in falls, it is perhaps significant or at least interesting that they choose to deviate from
the vast majority of Durative activity classification research by not segmenting their
data.

Allen et al. (2006) state that their use of time domain features was driven by their
desire to capture very short duration activities. The authors separated the accelerom-
eter signal into two parts, body acceleration and gravity acceleration, using a low
pass filter with an 0.25Hz cut off. All axis of both parts were then used as part of the
input into the classifier, without segmentation. However, the authors also included
segmented data as part of their final input. This included slope vectors calculated
from an 0.4 second window centred on the current sample.

From this it is concluded that researchers looking to classify Durative human ac-
tivities almost always choose to segment their input data and calculate features from
those segments prior to classification. Although Allen et al. (2006) have shown that
where the activity of interest has a very short temporal time span then using either the
raw inertial data or simple, unsegmented derivatives from it can provide a classifier
that is more responsive to and therefore better able to classify short activities.

Once Punctual activity classification, especially classifiers that classify activities
that are very short in duration are considered then this tendency to use unsegmented
data becomes slightly more popular. In this review 19 publications reported that they
set out to classify both Durative and at least one Punctual activity. Three of these
19 (15.79%) studies used unsegmented data and two (40.0%) of the five studies that
had falls as their Punctual activity of interest used unsegmented data. Another 13
publications from this review set out to solely classify Punctual activities. Of these,
one (7.69%), used unsegmented data as input into the chosen classifier. Looking
across all 32 publications that reported classifying Punctual activities, four (12.5%)
used unsegmented data and three (23.08%) of the 13 studies that set out to classify
falls used unsegmented data as input.

Most of the works from this review that utilise unsegmented data for classification
and all of the works that seek to use unsegmented data to classify falls use a simple
heuristic based on trigger levels as the basis of their classification. However, one
work, Zappi et al. (2008) uses a more sophisticated technique and is of interest. The
authors of this work have used two trigger levels to transform accelerometer readings
into one of three states. These three states are then input into discrete HMM so as to
make use of the temporal sequence of the time series data.

3.2.14 Review conclusions

This review is not complete, the number of works within this review that look at clas-
sifying Punctual activities is small and the number that use unsegmented data is even
smaller, however, there seems to be enough usage and logic to using unsegmented
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data for Punctual and especially short Punctual activities to suggest that the use of
unsegmented data as input for classification should at least be considered when at-
tempting to classify Punctual activities. None of the reviewed works has attempted
to classify human activity using a RNN as a tool that takes advantage of the spatio-
temporal nature of the data. This work would then appear to be novel in this regard.

3.2.15 Why is Activity Classification useful?

Section 2.3 outlines most of the reasons why ACS are useful, summarising that, a
knowledge of a persons current activity provides context to any computerised system
that may be dependent on that activity in some form. From a Human Computer Inter-
face (HCI) point of view as computer systems become more personal and particularly
when they are wearable systems then a knowledge of activity allows that system to be
“smarter” and possibly easier to use. Potentially allowing such a wearable system to
automatically adapt its behaviour to suit the current activity. This is consistent with
Weiser (1993) in his seminal work.

Activity knowledge is also useful in health monitoring and this is supported by the
earliest interest in inertial based ACS by health researcher pioneers. More recently,
with improvements in both hardware and software, industrial and commercial appli-
cations with an audit focus have gained currency, initially as a means of monitoring
compliance during automobile assembly. Alongside this has been a growing interest
by individuals in quantifying their own activities for fitness purposes as demonstrated
by an increasing number of wearable activity monitors such as those from Fitbit R©.
Lastly and importantly, a knowledge of activity is essential for computerised coach-
ing systems whether in sport or other areas.

3.2.16 Activity Classification is challenging

While Human activity classification is useful it is also a very challenging area of
research. S. J. Preece et al. (2009, p. 3), states:

The automated identification of activities using body-worn sensor data is
a challenging area of work. Apart from the obvious practical limitations
on the number, location and nature of sensors that people will tolerate,
there are several issues that directly impact the success of any given al-
gorithm.

Problems arise due to the variability in sensor characteristics for the same
activity across different subjects and for the same individual. Errors can
also arise due to variability in sensor signals caused by differences in
sensor positioning and from environmental factors such as sensor tem-
perature sensitivity. Any successful algorithm must overcome all these
factors.

From this it can be concluded that Activity Classification is both useful and chal-
lenging and therefore a suitable area of research for a thesis such as this but there is
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already a reasonably large body of work that addresses this area and this work ad-
dresses an area within Activity Classification that represents a gap in current knowl-
edge. From Section 3.2.6 it can be seen that within the field of activity classification
most researchers have chosen to work with Durative activities. Until recently, short,
Punctual activities have not been researched beyond the area of Falls.

In addition, what research that has been done on Punctual activities has either used
simplistic heuristic techniques in most research on Falls or has tried to use techniques
that were developed to classify Durative activities. Section 3.2.6 highlights two works
that had attempted sophisticated ways of classifying Punctual activities. This works
sits alongside those earlier works and adds to the knowledge in this area. One of the
reasons that the author thinks that there has been little prior work done to classify
Punctual activities is that Punctual activities are probably even harder to classify than
Durative activities.

3.2.17 Why is Punctual Activity Classification hard?

If it is accepted that human activity classification is a difficult and active area of
research then Punctual human activity classification is even more difficult and is a
largely avoided area or research for the following reasons.

Rarity

Many Punctual activities are very rare. For example, getting on a horse usually takes
3–5 seconds and often only happens once during a riding session that may last for
anything from [typically] 40 to 120 minutes. Looking at the extremes in this example
would have a classifier searching for an activity that is 0.027% of the total data.

There is general agreement that finding these (often rare) events in continuous data
is a challenge. By definition, Punctual activities are of short duration and so spectral
quantization techniques used successfully with segmented data and Durative activ-
ities are not reliable (J. A. Ward et al., 2006). In particular sliding window based
techniques can easily miss important data unless supplemented with additional con-
straints and additional data such as the studies from the successful Production Line
studies out of ETH’s Wearable Computing Lab in Switzerland and similar studies
elsewhere.

Finding these relatively rare sequences amongst all the irrelevant data can be dif-
ficult. ”. . . reliable recognition is still an open problem. The main difficulty lies in
the fact that large segments of (random) non-relevant activities often occur between
activities meaningful to the task” (J. Ward et al., 2006, p. 6).

This is reiterated by Junker et al., (2008, p. 2) when they state ”For example,
in between the actual (Punctual) activity a user might fetch tools, drink, chat with
another person or just scratch the head. As a consequence, the task at hand can
be described as activity spotting. It is widely recognised as a particularly complex
domain of activity recognition and is still an open problem”.

Junker et al. (2008, p. 1) also highlight that this area of Punctual activity classifi-
cation is difficult across both vision-based and inertial-based systems when they state
”One area where little progress has been made so far, is the spotting of sporadically
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occurring activities in a continuous data stream. This is known to be difficult, even
if complete trajectory information is available from a vision system. It is even more
difficult in a wearable sensor-based environment”.

Techniques that rely on training a model by minimising a cost function, such as
this work, are faced with issues of how to effectively minimise a function across a
very large base class that may involve 99–99.97% or more of all data points while
still distinguishing the very rare activities of interest. It is observed that Punctual
activities occurring in real–life situations are sometimes extremely rare and within
the real–life data used in this research, this is most assuredly the case. This rarity
clearly contrasts Punctual activities with Durative activities as by definition, Durative
activities are longer by nature and are therefore expected to be more common.

Recognising that rarity creates classification issues some researchers deal with
these issues by not attempting to classify Punctual activities. In other cases, re-
searchers deal with rarity by scripting Punctual activities in a laboratory or simulated
real–world environment so that they can control the amount of non-Punctual activ-
ity and thereby making the Punctual activities more common with their data. In yet
other cases, researchers manually pre-select data with Punctual activity within it and
exclude the remaining data to allow for effective classification.
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(a) Accelerometer output

Accelerometer and Magnetometer data are highly sensitive to orientation and Ac-
celerometer data is sensitive to the gravity vector (see Figures 3.6a, b & c). Gyro-
scope data is slightly sensitive to orientation and there is no gravity vector to compli-
cate things. Differences in inter-individual dimensions (e.g. participant height) and
technique acerbate orientation changes.

Figure 3.6(a) plots the output from an accelerometer in an experiment where a
repetition of ten capital A’s were written on a whiteboard at six different heights.
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(b) Magnetometer output
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(c) Gyroscope output

Figure 3.6: Air–writing A’s at six different heights
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On the figure the vertical black lines separate each set of repetitions. It is obvious
from this figure that the X and Y axes (red and green) change markedly as the height
at which each repetition of A’s is drawn changes but it can also be seen that even
the Z axis (blue) changes as the height change. As a result, raw accelerometer data
can be difficult to classify reliably without some means of correction for orientation
changes.

Figure 3.6(b), page 50, plots the output from a magnetometer for the same experi-
ment. Here it is equally obvious that all three axes change, in some cases markedly, as
the orientation of the writer’s hand changes with changes in height. Again, it would
be difficult to use the raw magnetometer data without some means of accounting for
the orientation changes.

Lastly, Figure 3.6(c), page 50, plots the output from a gyroscope for the same
experiment. In this figure there is no obvious stepped change in the three axes as the
writer’s hand changes in height and orientation but it is possible to see a marked drift
in one of the axes (red) and a slight drift in the other two (green and blue) over the
time of this experiment. This drift needs to be accounted for if gyroscope data is to
be used reliably for classification in close to raw format.

This sensitivity to orientation is one reason why motif type classification using
raw inertial data is seldom attempted. However, in the case of this work, the author
has previously noted from (Hunt, 2009) that the standardisation of of mounts and
dismounts across the equestrian disciplines results in an almost standard orientation
for the rider’s right hand during at least part of the mount and dismount activities.
This standardisation gives a reason to think that using close to raw data may lead to
successful classification for the mount and/or dismount activities.

3.2.18 Reservoir Computing techniques

RC techniques are a form of RNN. There are two main classes of RNN’s according
to Lukoševičius and Jaeger (2009). One rooted in statistical physics (these include
Hopfield networks, Boltzmann machines and Deep Belief networks) and the other,
which may be collectively called RC techniques, is rooted in non-linear dynamical
systems (these include LSM and ESN). This work is only interested in the properties
of RC systems.

While RC techniques have not previously been used as a classification engine for
activities they have been used very successfully in closely related, real-world spatio-
temporal problems areas such as isolated word recognition (Verstraeten, Schrauwen,
& Stroobandt, 2005), speech recognition (Jaeger, Lukosevicius, Popovici, & Siewert,
2007; Verstraeten, Schrauwen, & Stroobandt, 2006), financial forecasting (Ilies et al.,
2007), spoken phoneme recognition (Goodman & Ventura, 2006) and the prediction
of chaotic dynamics (Jaeger & Haas, 2004). In addition, Verstraeten, Schrauwen,
D’Haene, and Stroobandt (2007) put a strong case for RNN’s as powerful tools for
solving temporal machine learning tasks. Goodman and Ventura (2006) also ar-
gue effectively that RNN’s are an excellent tool for pattern recognition on multi-
dimensional time-series. RNNs incorporate a fading memory and so are able to in-
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clude recent time within their model, this enables these models to effectively classify
signals with a temporal aspect.

RC is a subset of RNNs that overcome the complex and tedious training issues
with slow convergence rates inherent in earlier RNNs by keeping the internal Input
and Reservoir neuronal connection weights static and only training the linear output
weights (Verstraeten et al., 2007). LSMs and ESNs are two of three generally recog-
nised RC techniques and are both used within this work. The third RC technique,
Backpropagation Decorrelation (BD), which was first introduced by Steil (2004) and
Schiller and Steil (2005) is not used within this research.

A RC system is composed of two main parts, the reservoir or liquid (a dynamical
system that is used to apply the non-linear temporal transformation) and a trainable,
memoryless readout function. The dynamical system is composed of a RNN and its
purpose is to transform (encode) the spatio-temporal input into a non-linear (high di-
mensional) spatial form (Jaeger, 2001; Lukoševičius & Jaeger, 2009; Maass, 2010;
Maass, Natschläger, & Markram, 2002). The memoryless readout snapshot then in-
cludes both current and past events simultaneously in a simple linear form. Figure 3.7
on page 53 provides an analogy of the reservoir used within RC systems and provides
a strong hint to the source of the “reservoir” name. In this simple two dimensional
snapshot photo an observer can see the current position, direction and recent path
of two boats, with the most recent paths being more easily discernible than the less
recent, which are starting to fade out. Other patterns are also discernible, possibly
additional paths of boats that are now out of frame. the interference patterns within
this snapshot demonstrate the “fading memory” effect of such a system as it shows
both the current situation and recent past.

Both forms of RC used within this research require a number of parameters to
be set that define the characteristics of the reservoir, including such characteristics
as size, neural model, synaptic model, spectral radius, leak rate and others. These
characteristics are a key component of the model’s ability to successfully classify the
model inputs. While some work, such as Jaeger (2005); Maass et al. (2002); Ver-
straeten et al. (2005), has been done on reasonable ranges for such parameters, there
is no simple, conclusive set of parameters that are recommended for the use of these
techniques. As a result, the successful use of these techniques requires some sort
of search across the possible parameter space looking for candidate sets of parame-
ters that work well with both the inputs and the classes that need to be successfully
classified. However, the search space and error landscape of the RC parameter set is
very complicated often with many local minima (Lukoševičius, 2012) and so searches
across the parameter space often require sophisticated search mechanisms in order to
reach good enough classification results.

LSMs were first introduced by Maass et al. (2002) and are somewhat more bi-
ologically inspired than ESNs and often use ”integrate-and-fire (artificial) neurons
and dynamically adapting synapses” (Fette & Eggert, 2005). A LSM has two major
components, a reservoir or “liquid” in the form of a Recurrent Spiking Neural Net-
work (RSNN) (Gerstner & Kistler, 2002) and a trainable readout function. A LSM
may have multiple, independent, task specific trainable readout functions and so is
capable of parallel computation in real-time (Maass et al., 2002). LSM are a some-
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Figure 3.7: Analogy of Reservoir Computing using a real reservoir
Copyright c© Zawodny (2007). Reprinted under license

what more biologically realistic form of RC model, especially when used with Leaky
Integrate-and-Fire (LIF) neurons and Short-Term Plasticity (STP) as described by
Markram, Wang, and Tsodyks (1998).

In a LSM model the liquid is stimulated by time-varying input signals passed
through input neurons, causing (neural) activity in the RSNN that is further prop-
agated through the network due to the network’s recurrent topology. As a result,
a snapshot of the (neural) activity in the reservoir contains information about the
current and past inputs to the system. The function of the liquid is to accumulate
the temporal and non-temporal information of all input signals into a single high-
dimensional intermediate state in order to enhance the separability between the LSM
inputs. The readout function is then trained to transform this intermediate state into
a desired system output.

ESNs, on the other hand were first introduced by Jaeger (2001) and utilise a ”dis-
crete time, non-linear, recurrent network” (Fette & Eggert, 2005) often composed of
sigmoidal artificial neurons.

ESN have been employed for a wide range of spatio-temporal real-world problems
such as speech recognition Jaeger et al. (2007); Verstraeten et al. (2006), financial
forecasting Ilies et al. (2007) and the prediction of chaotic dynamics Jaeger and Haas
(2004). However they have not previously been used to classify human activities
based on inertial sensor inputs.
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According to (Lukoševičius, 2012), the underlying technique for using an ESN
is as follows, where, essentially, the ESN is trained to map the inputs onto a tar-
get (class) signal: firstly generate a large, random reservoir then run the training
data through that reservoir and collect the reservoir activation states. Then compute
the linear readout weights from the reservoir using some form of linear regression
while minimising the error of the reservoir output versus the target training signal.
Lastly classify new instances by using the same reservoir and previously trained out-
put weights to compute a new output signal based on new inputs.

For this underlying technique to work consistently, the reservoir must not amplify
the input signal to such an extent that that the output signal becomes chaotic. Instead,
the reservoir must possess the echo state property (Lukoševičius, 2012). this property
ensures that the effect of the input signal will fade over time. This echo state property
is usually ensured by scaling the the previously randomised recurrent connection
weights to an appropriate level (spectral radius). It is also normal to scale the inputs
by some factor in order to change the degree of linearity or non-linearity of the tanh
function and to adjust the neuronal leaking rate to change the amount of memory
exhibited by the reservoir in order to get better classification results.

Somewhat more formally, the ESN is a neural network consisting of Nu input
neurons, Nx reservoir (hidden) neurons and Ny output neurons. The reservoir neu-
rons are either fully or sparsely interconnected with connection weights specified by a
weight matrix W ∈ RNx×Nx . Matrix W is initialized with random (uniform) weights
and then scaled by the spectral radius ρ(W) which is the largest eigen value of W.
Generally, all Nu input neurons are connected to all reservoir neurons via connection
weights defined by a separate input matrix Win ∈ RNx×Nu . The weights of the input
matrix are initialized as either -1 or 1 and then scaled by a scaling factor.

At time step t, the input u(t) is fed into a neural network. The output of all reser-
voir neurons in the network is computed:

x′(t) = f(Winu(t) + Wx(t− 1)) (3.1)
x(t) = (1− a)x(t− 1) + ax′(t), (3.2)

function f being a neuron activation function usually defined as the (element-wise)
hyperbolic tangent tanh(·), and factor a ∈ R being a leaking rate that controls the
contribution of the previous neural output to its current state.

ESN are an elegant and efficient solution for imposing a desired input-output be-
haviour onto the network. Input and output vectors at time step t are concatenated
and then linearly transformed into the final output of the network:

y(t) = fout (Wout[u(t)|x(t)]) (3.3)

where Wout ∈ RNy×(Nu+Nx) is a weight matrix connecting all reservoir and all input
neurons with Ny output neurons, ·|· represents the vertical concatenation of vectors
and fout is the activation function of the output neurons which is usually chosen as
the identity. The learning task is defined as an optimization problem in which the
difference between y(t) and ytarget(t)) is minimized. Arguably the most popular
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technique of computing matrix Wout is linear regression or its regularized extension
called ridge regression:

Wout = YtargetX
T (XXT + α2I)−1 (3.4)

where I ∈ RNx is the identity matrix and α ∈ R is a regularization factor that has to
be carefully tuned for optimal results. Matrix Ytarget ∈ RNy×T contains all vectors
ytarget concatenated into a matrix. We note that the connection weights W are not
modified by the learning rule and only the output weights Wout are updated during
training.

The role of the reservoir is the transformation of the input signal into a high-
dimensional intermediate feature space represented by the neural network output at
any time t. Although linear techniques are then used to transform the feature vec-
tor into a desired target output, the mapping of the input u(t) to output y(t) is of
non-linear nature.

By choosing a straightforward linear learning rule, the training process becomes
highly efficient. ESN allow the exploitation of the interesting characteristics of
RNN without the need of mathematically and computationally complex training al-
gorithms.

3.2.19 Advantages of Reservoir Computing Systems

The fading memory aspect of RC systems (as discussed in Section 3.2.18, starting on
page 51) is particularly useful when using RC techniques to classify Punctual activi-
ties, particularly Punctual activities that have a wide range of completion times such
as the activities of interest within this work, Mounting and Dismounting. When RC
classification techniques are paired with unsegmented input (sensor) data and where
the reservoirs are large enough, then the issue of how wide/narrow the input data win-
dow segments should be becomes mute. While a classifier that uses fixed input data
window widths must necessarily make a choice about how wide the window should
be and thereby risk choosing a width that is suboptimal for some Punctual activities
when they vary in completion time; a RC based classifier need only choose a reser-
voir large enough to encompass at least the longest possible completion time and in
many cases the reservoir will be several orders larger than the minimum needed for
other reasons. Of course, there are other techniques that can be used to overcome the
issue of matching input data window sizes to varying activity completion times and
so RC classification techniques are not unique in this area, however they do represent
a useful and novel approach to this problem.

RC systems project their input into a high dimensional space and then use a simple,
memoryless readout snapshot that includes both current and past events simultane-
ously. This snapshot effectively forms a hyperplane between classes. This means that
once the system is trained it can classify with very fast response times. This is very
useful in systems such as the proposed wearable coaching system because a faster
classification system enables the “coach” to respond faster to activity changes.
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Also, several different readout functions can each be trained to perform differ-
ent classification tasks on the same input and reservoir so that the reservoir need
only be calculated once. Each activity class has its own readout and output weights.
This allows the parallel classification of more than one activity. In Verstraeten et
al. (2007) the researchers concluded that their LSM for spoken digit classification
provided comparable performance to an optimised HMM on clean data and decayed
slower with additional noise levels. In addition, their LSM could extract additional
data from the same reservoir (speaker identification) whereas the HMM could not do
this without further computation. This ability to classify reliably in the presence of
noticeable noise is especially useful when used with inertial data which tends to be
particularly noisy.

In many ways, RC techniques are similar to other kernel-based machine learn-
ing techniques, most prominently the Support Vector Machines (SVMs) in that they
project their input into a high dimensional space and then generate intermediate fea-
ture vectors for classification but RC techniques are inherently temporal whereas
SVMs are not. By choosing a straightforward linear learning rule, the training pro-
cess becomes highly efficient. Maass et al. (2002) showed that a sufficiently large
LSM can approximate any time invariant filter with fading memory and that they are
ideal for real-time processing of time-variant inputs and real-time classification.

RC models have been shown to be effective at classifying spatio-temporal data in
a number of situations and have been shown to dramatically outperform other classi-
fication techniques in some instances (Lukoševičius & Jaeger, 2009). The RC model
architecture is biologically plausible, seemingly similar to observed characteristics of
some parts of mammalian brains, especially speech related centres (Lukoševičius &
Jaeger, 2009). RC models have been shown to be particularly effective in situations
where the input data is noisy (Lukoševičius & Jaeger, 2009), a fundamental charac-
teristic of inertial data collected from body mounted inertial sensors. As such they
represent what seems to be a plausible tool for classifying human activity based on
inertial sensor data.

Of the two RC techniques considered within this research, LSM are more similar
to the neuronal models observed within mammalian brains than ESN and are gener-
ally considered to be more powerful computational models. However, the increased
computational power over ESN comes at a cost of additional complexity and, perhaps
more importantly within an iterative research environment such as this, generally re-
quire much more computation resources when modelled on general purpose digital
computers.

3.2.20 Initial Literature Review Summary

This research looks at using machine learning techniques to classify Punctual ac-
tivities. The current literature does not, in general, cover this approach to activity
recognition with inertial sensors data very well except for some specific work on the
single punctual activity, Falls, and so this is seen as a valid gap to be investigated.

This work has replicated the concept of Punctual and Durative activities as major
sub-classes of activities from video based activity classification research and intro-
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duced that concept into inertial data based activity classification research where it has
not been present.

Punctual activities are seen to have important differences from Durative activi-
ties. In particular, Durative activities are cyclic whereas Punctual activities are non-
cyclic; Durative tend to be longer while Punctual tend to be shorter and in many
cases the temporal characteristics of Punctual activities are often key to their classi-
fication whereas for Durative activities often it is their frequency characteristics that
are the key to classification. These different characteristics mean that in many cases
when a single classifier is used for both types of activity then one type is often not
classified as accurately as the other. Other than when classifying falls, punctual ac-
tivities are less represented within inertial data based activity classification research
and specialised techniques designed specifically for non-fall punctual activities are
rare within the current literature.

The Punctual activities of interest within this work are mounting and, to a lesser
extent, dismounting a horse and are taken from the domain of equestrian sport. This
work defines these activities in enough detail to enable consistent classification. The
desire to classify Punctual activities and the choice of the particular activities of
mounting and dismounting reflect the wider goal of developing components for a
possible wearable coaching system that could be applied to equestrian sport and pos-
sibly to wider areas that require real-time coaching via wearable systems. Wearable
coaching systems are likely to be adaptive systems that use contextual information to
assist with adaptation as they are used. It is also likely that in order to provide real-
time feedback that wearable coaching systems would need some ability to predict
the likely next activity so that as the activity is being done it can be compared with
a “model” or good example of that activity so that possible feedback can be given
quickly enough to modify techniques as the activities are still being done.

Given the goal of Punctual activity recognition, a number of techniques could be
used to isolate and recognise the Punctual activities. Within this research, it is in-
tended to use RC techniques for Punctual activity recognition, this is a novel approach
and has not been previously reported on in the literature.

In addition, most other Punctual activity classification systems pre-process the data
either using a windowing technique (often with a fixed window size) or use some sort
of segmenting scheme to reduce the data volume. This makes it harder (but not
impossible) to classify the input data stream in real time. RC techniques do not need
to have the input data stream pre-processed in this manner. RC techniques utilise an
inherent ’window’ based on how long the wave interference pattern resonates but this
provides more flexibility than most fixed windowing techniques and is quite efficient.
This gives RC techniques a potential advantage and not segmenting the input data is
a somewhat novel approach.

Many Punctual activities are naturally of variable length. This temporal variability
complicates spectral type quantization techniques and possible motif based classifi-
cation techniques. Psarrou et al. (2002) state ”The temporal window of an activity
cannot be constrained. An activity therefore, needs to be recognised based on accu-
mulated information and non-linear temporal scaling”. As a result this work uses
close to raw inertial data and a technique that accumulates the data over time. While
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other machine learning techniques such as HMM are able to accumulate information
over time the recurrent classifier within RC techniques have desirable characteristics
that may be preferred for Punctual activity classification.

Sporting domains and in particular equestrian sport has strict “rules” and “pre-
ferred techniques” that reduce the search space for many activities within those do-
mains. This is an advantage when classifying activities in those domains and gives
some encouragement that this approach may ultimately be successful. Specifically,
this study looks at applying RC techniques to the classification of inertial data signals
from simple inertial sensors worn on people in real world situations within the do-
main of equestrian sport. If possible, the RC techniques will be used to automatically
classify mounting and/or dismounting from within equestrian sport. To the best of
the author’s knowledge no other reported works have sort to classify activities within
equestrian sport.

3.2.21 Implementing a Punctual Classifier

The proposed Punctual classifier is designed to operate on pre-recorded data, that is,
it is not designed to operate on-line. The overall system concept, on the other hand,
requires a classifier that operates on-line if real-time feedback is to be produced.
Transitioning the (hopefully) working classifier from this work into an on-line com-
ponent is outside the scope of this research although the assumption is that such
a transition is at least possible. Research such as Jaeger (2003); Jaeger and Haas
(2004); Soh and Demiris (2014); Venayagamoorthy (2007) demonstrates the use of
ESN for on-line and incremental learning and so there can be some confidence that
moving the proposed classifier to an on-line implementation is possible.

3.3 P O S T D E V E L O P M E N T L I T E R AT U R E R E V I E W

After the development phases were complete a second, shorter review was made of
the relevant inertial data based activity classification literature to see if any of the
points raised in the initial review need amending. That shorter review follows.

3.3.1 Post Development Review methodology

The methodology followed a similar process but in this case the author did not rely
on widely cited reviews to form the base of the literature that was looked at and
instead relied on a direct search of the substantial collection of research literature
compendiums available at the author’s university library, supplemented by a search
via Google Scholar. The author believes that while the list of reviewed work is not
absolutely complete that it is comprehensive enough to allow valid conclusions to be
drawn. A summary of the modified procedure appears below:

1. The use of the author’s own searches via directly accessible databases such as
IEEE, ACM and the other widely used academic literature compendiums plus
Google Scholar to find publications
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2. To exclude all the literature that has previously been reviewed, that is, this
review only covers work not previously considered

3. to cover the period from 2013 to early 2017, subject to the prior proviso

4. To include only inertial based activity classification publications

5. To exclude gesture recognition and motion tracking work

6. Where the same or very similar authors re-publish the work under differing
titles then only one, representative publication, has been included. However,
new work from research using the same data has been included where it is
deemed different enough. Of course, decisions to include or exclude work is
based on interpretations and is open to challenge

The list of reviewed publications includes 52 publications from 2013 to early 2017.
The initial review noted a drop off in research and in particular after 2013 and so this
review looks back to that period to see if, from this latest search, if that drop off
was real or not. The individual works are not necessarily referenced directly within
this section but are all listed within the references chapter. Works used within this
part of the review are noted with an asterisk in the references chapter. Where specific
characteristics of a particular publication are commented on then that work is directly
referenced in this section and is shown without an asterisk in the references chapter.

The works considered within this review are characterised by a number of different
attributes, these attributes are much the same as those considered during the initial
review but also contain three new attributes that were included either because of the
frequency with which they are now appearing (Smartphone and Neural Net classi-
fier) and another attribute, Frequency, that notes the frequency at which the data was
collected:

Author - The author(s) of the publication that was reviewed

Year - The year that the reviewed publication was published

Activities - A short description of the activities that were researched within the
publication

Segmentation – Was the inertial data segmented prior to classification

Domain – The (implied) primary domain or background for the researchers
who published the works

Class – Durative, Punctual or both. This was derived from the author’s own
judgement.

Situation – Laboratory or Real World situation; note that the author interprets
“laboratory” in its widest sense

Scripted – A note of if the activities that subjects performed were scripted or
completely free-form

Numbers – The number of participants who performed the activities during the
data capture part of each piece of research

Smartphone – (New) If a Smartphone was used to collect inertial data
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Frequency – (New) The frequency at which the inertial data was collected

Neural Net – (New) If a neural net was used as one of or the only classifier

In addition a general notes field was kept for any particularly noteworthy point
within the publication.

3.3.2 Activity Types

A plot of the frequency of various activity types encountered during the review is
shown in Figure 3.8 on page 60 and attention is drawn to this plot during this part of
the discussion.

In the initial review it was noted for Activity type that the single largest common
description was “Daily activities”, at 64.23% of all work reviewed. In this later re-
view this has increased to 75%. This is probably related to the research done by what
I have called the “Behaviourists”, who are attempting to improve some part of the
classification process using an experimental research technique. These researchers
base their work on existing, well known activity types and often use publicly avail-
able datasets to allow their work to be compared with other work. This theme will be
explored again when we consider the background domain of the researchers on the
following pages.
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Figure 3.8: Reviewed Activity Types

Notable new and novel activities encountered in this review include Hoettinger,
Mally, and Sabo (2016) who attempt to classify wave riding (surfing) and Li, Chen,
Chen, Huang, and Chu (2013) who attempt to classify human oral activities such as
eating and talking by embedding a sensor in a false tooth. Other interesting activities
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within the reviewed works include automobile assembly, (Vollmer, Gross, & Eggert,
2013) and sports activities, (Margarito, Helaoui, Bianchi, Sartor, & Bonomi, 2015).

Falls only appear in two of the publications encountered during this review, one,
(Y. Chen & Xue, 2015) used a currently popular neural network based classifier, Deep
Learning to classify the falls based on the raw sensor data and had reasonable success.
This overall process shows some similarity to the process that was followed in our
own work. In the other case involving falls, (Mandal, Happy, Behera, & Routray,
2014) the researchers followed a more traditional approach of segmenting their data,
calculating features from the segments but then placed the features into “bins” before
classifying them using a SVM. Unfortunately, this work used a script during data
capture that imposed an artificial five second pause before each fall and so while this
work had reasonable success in classifying the data used it is highly unlikely that the
same or a similar classifier would work as successfully in a real world situation where
five second pauses before a fall are uncommon.

This more up to date review confirms the authors earlier observation that only a
very small minority of all possible human activities are currently researched. This
review confirms the earlier caution that the apparent drop off in research in inertial
data based human activity classification that was noted in the earlier review was an
artefact of both the previous methodology that was used in the prior review and of the
slight delay in works being indexed after publication. There is no notable drop off in
research in this area.

3.3.3 Scripted versus Unscripted Activity Classification
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Figure 3.9: Contrasting scripted and non-scripted activities
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49 (92.4%) of the publications in this review used scripted activities when collect-
ing data. 2 (3.8%) used both scripted and unscripted activities, while only 1 (1.9%)
used only unscripted activities while collecting data. One publications did not re-
port if their activities were scripted or unscripted. This overwhelming bias towards
collecting human activity data from scripted situations reflects the large time com-
mitment needed to collect data in an unscripted natural environment and the personal
privacy issues associated with constantly monitoring individuals as noted by various
authors including Bowen, Hinze, and Cunningham (2015). This current overwhelm-
ing bias is shown pictorially in Figure 3.9, page 61. The one area of inertial data based
human activity classification that consistently uses unscripted data is that associated
with (instrumented) Smart Homes research such as the CASAS Project described
by (Cook, Augusto, & Jakkula, 2009). In general, however, most of the published
research that has come out of these environments has looked at classifying meta ac-
tivities such as “eating”, or “washing dishes” and as meta activity classification has
been excluded from our work, the publications that classify meta activities are not
considered within this review except where they obviously include simpler activities
or are notable for some other reason.

3.3.4 Laboratory Based versus Realistically Situated Classification
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Figure 3.10: Activity Data Collection Situations

Looking at the situation where data was captured we see a change back to labora-
tory based data capture sites versus real world situations with 47 publications (90.3%
of those reviewed) using data captured in a laboratory situation. Four publications
captured their data in a real world situation, of those, two situations had subjects fol-
low a proscribed script within their own home. One publication did not state where
their data was captured. It is suggested that the change back to an overwhelming
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majority of data being captured in laboratory environments is related to the majority
of the research being done by “Behaviourists” that are focussed on using experimen-
tal techniques to compare their changes to established inertial based human activity
classification processes against earlier work. This supports the comments in Sec-
tion 3.3.2.

3.3.5 Segmented versus Unsegmented data features

Once again a large majority of the reviewed publications (50 out of the 52, 96.1%)
used some sort of technique to segment the data and then calculated derivative fea-
tures from the data segments that were then used to classify activities. This is illus-
trated in Figure 3.11.
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Figure 3.11: Usage of Features from Segmented Data

Two publications reported using solely unsegmented data and one of these (Vollmer
et al., 2013) re-used the data collected during Zappi et al. (2008) where it was also
used unsegmented. There is a prior comment on this work in Section 3.2.11 on
page 43. The other publication that reported using unsegmented data for classifi-
cation was (Derawi & Bours, 2013) and in this case the authors reported that they
used a Dynamic Time Warp (DTW) process to classify activities. Again this clearly
demonstrates the bias towards activity classification based on features calculated from
segmented data within the current research community.

3.3.6 Durative versus Punctual Activities

Once again, within this time frame, 41 out of 52 (78.8%) of publications reported
that they classified Durative activities, 10 (19.2%) reported classifying both Durative
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and Punctual activities and only one publication (1.9%) reported classifying only
Punctual activities. The solitary publication that only classified Punctual activities
was Vollmer et al. (2013), the work that also used unsegmented data and which looked
at automobile assembly tasks from an audit perspective.

Of the ten publications that considered both Durative and Punctual activities, Noor,
Salcic, and Wang (2016) reported using an adaptive sliding window technique to
segment their data because they found that using a fixed window size for segmenta-
tion caused their classifier to misclassify their Punctual activities. This supports the
contention that Punctual activities often need special techniques because of the at-
tributes that differentiate them from Durative activities. One of the other publications
(Y. Chen & Xue, 2015) looked at falls as well as more common daily activities and
their research is notable for their use of raw, unsegmented data and a Deep Learn-
ing based classifier. This, again, has similarities to our own proposed approach and
strengthens it. Mandal et al. (2014) also considered falls as well as daily activities
but their work is not otherwise noteworthy.

Lubina and Rudzki (2015) reported that their classifier produced significantly re-
duced accuracy when classifying their Punctual activities, compared with their Dura-
tive activities, further supporting the contention that Punctual activities require spe-
cialised techniques in order to get higher accuracy levels. Gao, Bourke, and Nelson
(2014) mainly looked at the common (Durative) daily activity set but unlike most
other researchers they also looked at the transition between some of the Durative ac-
tivities such as sit–to–stand and these formed their Punctual activities. However this
work is spoiled by the manual pre separation of each set of activities into separate
files for classification and so their classifier only had to choose between a small sub-
set of known activities and did not need to “find” the Punctual activities from amongst
other data. Gupta and Dallas (2014) also considered transitions between daily activi-
ties as well as the daily activities themselves but they only worked with two subjects,
in a laboratory situation and following scripted activities and so they run the risk that
their classifier was using signal artefacts from the scripts during classification. Mo-
ufawad el Achkar et al. (2016) also looks at transitions such as sit–to–stand as well as
the usual daily activities and in their case they use threshold values to classify their
Punctual activities and features calculated from segmented sensor data for their Dura-
tive activities, again highlighting that other researchers have concluded that Punctual
activities need special consideration. Fida, Bernabucci, Bibbo, Conforto, and Schmid
(2015) found that with their mix of durative daily activities together with transitional
Punctual activities that they needed to shorten their segmentation window consid-
erably from the optimum for Durative activities in order to accurately classify their
Punctual activities.

Interestingly, Palumbo, Gallicchio, Pucci, and Micheli (2016) cites this authors
prior work in their research which looks at falls along with daily activities. Unfortu-
nately, they also manually separate out each class of activity into a separate file prior
to classification and so their classifier has a simpler task.

While Figure 3.12 clearly demonstrates the research bias towards Durative activity
classification it does also highlight that some research is also being done into Punctual
activity classification and that this interest in Punctual activities is ongoing.
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Figure 3.12: Reviewed Activity Classes

3.3.7 Other things of note from the post development review

A large number of recent publications (26 out of 52, 50%) have used Smart Phones to
collect their data for classification. In a number of cases the only really novel aspect
to this research has been the use of Smart Phones and in general they have repeated
early research done with stand alone sensors. However there are also some very
novel data capture sensors within this group such as Li et al. (2013), tooth sensor
and Moufawad el Achkar et al. (2016), shoe sensor. The data capture frequency
within the considered publications ranges from 5Hz (Abdallah, Gaber, Srinivasan, &
Krishnaswamy, 2015) to 400Hz (Wenlong & Sazonov, 2014) and so, clearly there
is little agreement amongst these researchers on what is an ideal frequency for data
capture. There seems to be an increasing interest in using neural network based
classifiers for inertial data based activity classification with 20 out of the 52 (one not
stated) using neural networks. However, we have not done a historical analysis of
this and so our comments are anecdotal only.

3.3.8 Post Development Review conclusions

This review, conducted after the development of the classifier artefact that has been
the focus of this work has confirmed and strengthened the initial literature review and
its conclusions. That is, that Punctual activities are recognised by other researchers
as being different from common Durative activities and the differences are significant
enough to require special techniques aimed at their differences in order to achieve sat-
isfactory classification rates for them. Although Punctual activities are recognised as
being different there has not been a clear nomenclature or definitions for them within
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inertial data based activity classification research. While there is some work that ad-
dresses Punctual activities these activities are poorly researched compared with Du-
rative activities. Where Punctual activities are researched then other researchers are
using some of the same techniques proposed within this work such as unsegmented
sensor data.



Chapter4
M E T H O D O L O G Y A N D A P P ROAC H

This chapter describes the usage of and reasons for choosing Design Science as the
methodology for this research. The sensor data used within this research was col-
lected during a prior, Masters project (Hunt, 2009) and so some aspects of data
capture are not covered in this chapter but are available from the earlier publication.

4.1 I N T RO D U C T I O N

The Background chapter (2) discussed the wider view of a Wearable Coaching Sys-
tem and how that view requires a Classifier system. Further, it was shown that a
Classifier system needs to address both Durative and Punctual activity classification.
The goal of this research was set to focus on a Punctual Activity Classification sys-
tem. As a result, the work described in this thesis is focused on creating a successful
Punctual Activity Classifier. More specifically, the overall goal of this research is to
construct an ACS that successfully classifies the punctual activity Mounting within
equestrian sport. With this in mind, the outcome of this research will be a, hope-
fully useful, software artefact. Following from the desire to produce a useful artefact,
the taxonomy outlined in Jarvinen (2000) was used to choose Design Science as the
appropriate methodology to produce this outcome.

This research consists of three phases. The first phase will be a proof–of–concept
phase where RC methods for punctual activity detection from inertial data will be
used with both synthetic data and then data from scripted activities. The second
phase will entail finding a reliable classifier for the data from the scripted activities
performed within the laboratory environment and the building of a reliable tool set
of RC code and model parameter optimisation processes that allow for reliable and
relatively simple model building. The third and last phase will entail using the tools
and knowledge gained from the first two phases to construct a classifier that works
reliably with real–world, unscripted activity data.

In general, this document follows Peffers, Tuunanen, Rothenberger, and Chatter-
jee (2007) suggestions for how to present research done using the Design Science
methodology and in particular the Demonstration and Evaluation parts of the presen-
tation that Peffers et al. (2007) discuss are included in chapter 5 and chapter 6. As
the majority of the evaluation is done within these chapters, the Discussion chapter
(chapter 7) for this thesis only covers a summary of the earlier work and a higher level
discussion. The Communication part mentioned by Peffers et al. (2007) is covered
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both by this document itself and by the various peer–reviewed publications that have
been published to date, based on this work.

4.2 R E A S O N S F O R C H O O S I N G D E S I G N S C I E N C E

The goal within this research is to build a useful artefact (a classifier for punctual
movements) that can potentially be used as part of a Wearable Coach concept. As
outlined in the introduction to this chapter, Jarvinen (2000) outlines a useful tax-
onomy and a process for following that taxonomy that, when followed, points to an
appropriate research methodology. Within Jarvinen (2000)’s taxonomy the suggested
appropriate research methodology when building an artefact is Design Science.

In addition, the author is familiar with Design Science as a research methodology
from his prior Masters work and in many ways, this research is a follow on from
that prior research that was also done using a Design Science methodology and so
it seems somewhat natural to continue using Design Science as the preferred overall
research methodology.

It is possible to argue that this work is a “theory testing approach” (Jarvinen, 2000,
p. 3) because as far as is known no one else has yet used RC methods to build a punc-
tual activity classifier. However, this seems overly pedantic and the review of the
relevant literature has shown that while punctual activity classifier research is some-
what ignored as compared to durative activity classifier research, it is, nevertheless,
an area of research that has been explored by prior researchers. This makes it hard to
argue that there is a “theory” that needs to be tested in this area.

Hevner, March, Park, and Ram (2004, p. 3) argue that almost all Information
Systems based research is conducted using one of only two research methodologies,
Behavioural Science or Design Science:

Two paradigms characterize much of the research in the Information
Systems discipline: behavioural science and design science. The be-
havioural science paradigm seeks to develop and verify theories that ex-
plain or predict human or organizational behaviour. The design-science
paradigm seeks to extend the boundaries of human and organizational
capabilities by creating new and innovative artifacts.

As the goal of this research is to create a new and innovative artefact then this work
is in good company by choosing Design Science as an appropriate research method-
ology. In addition the author’s prior experience with the Design Science methodology
is useful. In this case, other possible methodologies do not seem to be as appropriate.
Given these factors, Design Science is then the chosen research methodology for this
work.

4.3 D E S I G N S C I E N C E D E S C R I P T I O N

According to Peffers et al. (2007) there are six steps in the Design Science process
and while Peffers et al. list these six steps sequentially they are also very careful to
explain that researchers will often not simply move from one step to another in a
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linear way but often instead move in a non-linear and iterative fashion between the
steps in a manner that suits the particular research process. The six steps described
by Peffers et al. (2007) are:

1. Problem identification and motivation
During this step the research question is defined and justified.

2. Goal setting or objectives of the solution
This step outlines the goal(s) of the research and may either be measurable

goals such as X% improvement or they may be more qualitative such as A better
solution than Y.

3. Design and development
This is the process where the actual artefact is created.

4. Demonstration
This involves running (or using) the artefact.

5. Evaluation
This step evaluates how well the artefact met (or did not meet) the goals set

for it.

6. Communication
This step involves communicating the outcomes of the process to a relevant

audience.

As previously described, this research project takes a phased approach and so each
of the three phases goes through its own version of the process from step 2 through
6. The design, develop, demonstrate and evaluate cycles that were performed as
part of this research are described in Chapters 5 and 6. Sitting over the top of that
phased approach is the overall problem identification (Chapters 1 and 2) and the
communication of the whole project, represented by this document as a whole plus
the various papers that have been published since the research was started. To aid the
reader to understand how the six Design Science steps are expressed throughout this
document a set of tables 4.1, 4.2, 4.3 and 4.4 on pages 70, 71, 72 and 73 have been
provided as a map.

4.4 R E S E A R C H A P P ROAC H

Chapters 1 and 2 contain the detailed description of the overall research goal for this
project along with the justification for those goals, however, for clarity, the overall
research goal is summarised here along with the design objectives for each of the
three phases. In addition there is a description of the reason for choosing RC as the
classifier engine, a brief description of the three phases of development and testing
and a list of the design strategies that were followed during this research.

4.4.1 Motivation for tool selection

Section 3.2.19 on page 55 describes a number of potential advantages that a RC
classifier has over some alternative and more commonly used activity classifiers, par-
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Table 4.1: Mapping Design Science steps to this document–Phase 1
LSM Synthetic Data LSM Scripted Activities

Problem Identification and Motivation
Identification Pg. 95 Pg. 102
Motivation Pg. 95 Pg. 102

Definition of the objectives for a solution
Goal Pg. 95 Pg. 102
Measures Pg. 95 Pg. 102

Design and Development
Code See author See author

Demonstration
Description Pgs. 95–98 Pgs. 102–108

Evaluation
Results Pgs. 99–101 Pg. 108
Discussion Pg. 101 Pgs. 111–112

Communication
Long form Pgs. 95–101 Pgs. 102–112
Publications Schliebs and Hunt (2012) Schliebs et al. (2013)

ticularly when considering classifying Punctual activities within a wearable device
with strongly constrained resources. These potential advantages include:

• The fading memory effect of RC classifiers means that the input sensor data
need not be segmented into fixed window sizes and this means that there is
potentially more opportunity to successfully classify Punctual activities such
as Mounting which exhibit widely varying activity completion time envelopes.

• The fading memory effect may also be advantageous in separating true activi-
ties from potential false-positive activities with a “point” similarity in the signal
but with signal differences in the lead up to the activity.

• The ability to classify based on relatively unprocessed input means that there
is less need for compute resources during classification and this has benefits
when implemented on a resource restricted wearable device and potentially
speeds up the classification process.

• The ability to use unsegmented input means that the classifier can classify on
a sample by sample basis and so this reduces the lag time between waiting for
the next segment window to close and this potentially speeds up the classifica-
tion process. This potential speed up has positive implications when using the
classification to drive a coaching response in real-time.

• The resource usage profile of RC methods make them particularly suitable for
implementing in a resource constrained wearable device situation. RC classi-
fiers often require considerable resources to train and tune but once trained they
require considerably less resources to do the actual classification of new data.

• The RC engine’s ability to classify multiple activities from the same reservoir
has potential benefits in both reducing the storage requirement and enabling
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Table 4.2: Mapping Design Science steps to this document–Phase 2
Improve Performance (ESN & PSO) Improved Classes

Problem Identification and Motivation
Identification Pg. 113 Pg. 130
Motivation Pg. 113 Pg. 130

Definition of the objectives for a solution
Goal Pg. 113 Pg. 130
Measures Pg. 114 Pg. 130

Design and Development
Code See author See author

Demonstration
Description Pgs. 114–117 Pgs. 130–132

Evaluation
Results Pgs. 117–119 Pgs. 133–140
Discussion Pgs. 119–126 Pgs. 140–141

Communication
Long form Pgs. 113–126 Pgs. 130–141
Publications Hunt et al. (2014)

the parallelisation of the classification process. Both of these potential benefits
could be significant in a wearable device environment.

• Some researchers such as (Sheik et al., 2012) have been able to implement
similar RNN architectures directly in hardware and so this is also a potential
benefit in a wearable environment with constrained resources.

• RC classification engines have been used successfully in related fields with
signals with a significant temporal aspect such as isolated word recognition
(Verstraeten et al., 2005), speech recognition (Jaeger et al., 2007; Verstraeten
et al., 2006) and spoken phoneme recognition (Goodman & Ventura, 2006)
and so there is a good chance that this tool will also work with spatio-temporal
inertial data. In addition, (Verstraeten et al., 2007) argues strongly for RNN’s
as a powerful, general purpose, temporal machine learning tool.

• The use of RC classification engine for human activity classification is novel
and so this helps to fulfil the requirement to produce a novel and innovative
artefact as part of the Design Science methodology.

Having listed the author’s reasons for choosing this particular tool for use within
this research and given that the Design Science research goal is to produce a useful
artefact there is no particular reason to test the ability of a RC classification engine
to meet these benefits at this stage. The primary role of this research is to produce
a working artefact that meets the design requirements. Once this process has been
achieved then there is an opportunity in follow on research to test RC classification
techniques against other, more commonly used classification techniques to see if RC
techniques have a real benefit when classifying Punctual human activities within a
resource constrained wearable device environment.
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Table 4.3: Mapping Design Science steps–Real World Data, Part 1
Initial Offset Ensemble 1 Ensemble 1A
Problem Identification and Motivation

Identification Pg. 149 Pg. 160 Pg. 169 Pg. 180
Motivation Pg. 150 Pg. 160 Pg. 169 Pg. 180

Definition of the objectives for a solution
Goal Pg. 150 Pg. 160 Pg. 169 Pg. 180
Measures Pg. 150 Pg. 160 Pg. 170 Pg. 180

Design and Development
Code See author See author See author See author

Demonstration
Description Pgs. 150–154 Pgs. 160–163 Pgs. 170–173 Pgs. 180–182

Evaluation
Results Pgs. 154–159 Pgs. 163–168 Pgs. 173–178 Pgs. 182–187
Discussion Pg. 159 Pg. 168 Pg. 178 Pgs. 187–188

Communication
Long form Pgs. 149–159 Pgs. 160–168 Pgs. 169–178 Pgs. 180–188
Publications Hunt and Parry (2015)

4.4.2 Overall Goal

The overall design goal for this research is the construction of an ACS to classify
punctual activities of interest within Equestrian Sport and in particular, to construct
a working system using real or realistic data so that a RC based punctual ACS could
become a useful component of a “wearable coaching system” for equestrian sports-
people. The artefact produced as part of the design science process is the automatic
classifier. This could form part of a larger coaching system in the future.

4.4.3 Goal setting and research framework for each phase

The approach used to achieve the overall goal is to break the design, build and test
process down into three separate phases. This allows for different design measures
for each phase and as progress is made from phase to phase, this allows for some con-
fidence that progress is being made. The three phases of this research are a proof–of–
concept phase; a phase where a classifier is built using data from scripted, laboratory
based equestrian activities and the final phase where a classifier is built using real
world data from unscripted equestrian activities. Each phase has its own set of goals
and within each phase, the particular design goals for that phase are discussed, along
with any activity descriptions that are local to that phase. The goals form the high
level performance measures against which the artefacts developed during the research
are measured. The research objectives are described in terms of classification and are
inclusive of any data pre-processing required to enable more reliable classification,
especially when classifying across subjects and places in the real world. In addition,
the research framework used within each phase is also described within the descrip-
tion for that phase. The design goals for each phase are summarised here.
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Table 4.4: Mapping Design Science steps–Real World Data, Part 2
Under-sample Butterworth Accelerometer Lukosevicius

Problem Identification and Motivation
Identification Pg. 190 Pg. 199 Pg. 207 Pg. 224
Motivation Pg. 191 Pg. 199 Pg. 207 Pg. 224

Definition of the objectives for a solution
Goal Pg. 191 Pg. 199 Pg. 207 Pg. 224
Measures Pg. 191 Pg. 199 Pg. 208 Pg. 224

Design and Development
Code See author See author See author See author

Demonstration
Description Pgs. 191–192 Pgs. 200–201 Pgs. 208–209 Pgs. 224–226

Evaluation
Results Pgs. 192–197 Pgs. 201–205 Pgs. 209–221 Pgs. 226–231
Discussion Pg. 197 Pg. 205 Pgs. 221–222 Pg. 231

Communication
Long form Pgs. 190–197 Pgs. 199–205 Pgs. 206–222 Pgs. 224–231
Publications To be submitted

Phase 1: A proof of concept RC based classifier that is capable of classifying
complex spatio-temporal data.
This work culminated in the publication of Schliebs and Hunt (2012) then
Schliebs et al. (2013) and is described in Section 5.2. During this proof–of–
concept phase a LSM was used to classify the activities of interest.

Phase 2: A RC based classifier that is capable of classifying non-windowed,
scripted punctual activities with reasonably consistent temporal activity frames
across limited subjects.
During phase 2 a secondary objective was to build a Researcher’s Workbench
for RC punctual activity classifiers. This work is described in Section 5.4 and
was reported in Hunt et al. (2014). During this second phase the RC model was
changed from a LSM model to an ESN model for classifying activities for ease
of use and for performance improvements during the search of the parameter
space associated with each RC method.

Phase 3: A RC based classifier that is capable of classifying non-windowed,
real world, punctual activities with possibly divergent temporal activity frames
across multiple subjects in differing geographic locations and on different ses-
sion dates.
This work has its own chapter, namely Chapter 6 and the initial results were
reported in Hunt and Parry (2015). Another paper is envisaged that will report
the final results from this phase and, of course, this thesis also reports the full
results from this phase.
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4.4.4 Design Strategies

This work has been directed by a small set of Design Strategies, these strategies are:

• Favour simplicity - Given a choice between a simple method or a more com-
plex one then favour the simple one.

• Design for usability - When making design choices, prefer methods that will
make the software artefact easier to use.

• Be mindful of possible implementation issues - Keep in mind possible im-
plementation requirements without being absolutely constrained by them

• Treat the data as a black box - This work does not attempt to map the raw
data into real world orientation or movement coordinates, it is simply either
processed as it was received or simple features are calculated from it. Jaeger
and Haas( 2004) suggests that ESN’s are ideal for Black Box classifiers. Newer
sensors, such as YOST Labs (2015), are capable of outputting quaternions and
other such interpretations of the raw data and so using data from such sensors
may provide improved classification in future but in this work this has been
excluded so as to control the scope of the work (favour simplicity).

The signal to noise ratio is low for magnetometer data especially and for all
three sensors in general but the data available is the data available. A number
of months were spent investigating noise reduction techniques but a decision
was then made that this was unnecessary at this stage as newer sensors, such
as YOST Labs (2015), are being built so that they filter noise internally (within
the sensor) in many cases. An algorithm built to use the noisy data that is
available for this research should be transferable to data with less noise, albeit
with perhaps some changes.

• Tailor the approach to the known data characteristics - The Magnetometer
uses a real-world frame of reference and so data is dependent on where the
activity takes place and what direction the rider and horse are facing as the
activity occurs. As a result initial classification of the scripted, laboratory-
based activities (which all took place at the same position within the laboratory
using the same orientations) will include Magnetometer data so that its value
can be evaluated but final classification of the scripted activities and all real-
world activities will not use the Magnetometer data.

At the beginning of the design iteration process two datasets of scripted ac-
tivities will be used to gain a deeper understanding of some of the design el-
ements that underlie classifying this type of activity using this type of data.
The scripted data is a useful place to start because the activities of interest are
much more common within these datasets than they typically would be in a
real life dataset. In real life, a rider would typically mount and dismount only
once or twice during a training session, whereas in these datasets there are 17
and 40 mounts and dismounts. In addition, the regularity of action imposed
by the activity script ensures that there are or should be regular patterns in the
data that will hopefully lead to some early successes to help drive the design
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iteration process. Lastly, having two different datasets from two different par-
ticipants with differing heights, strength and mounting/dismounting style who
also have slightly different interpretations of the the script gives (hopefully)
enough differences that classification is non-trivial.

Once there start to be some successes, however, the data will be swapped to
the real-life data so that classification can move beyond the artificial patterns
within the data that come from the regular en-action of a scripted activity.

4.5 AC T I V I T I E S O F I N T E R E S T

Within this work, the punctual activities of interest that are the focus of the classi-
fier are mounting and dismounting a horse. These activities are defined in Chapter 2,
Section 2.2. These activities mark the boundaries of “riding” and so successful classi-
fication of these activities will be consistent with the Design for Usability strategy in
that successful classification of these activities will allow for the automatic detection
of the start and end of riding. Being able to automatically detect the start and end of
riding provides important context to a Wearable Coach and enables riding coaching
to (automatically) start and end with riding.

Thirdly, these activities are interesting and useful because they:

• are punctual activities

• they are complex enough to be interesting while (hopefully) not so complex
that classification is improbable

• there is some level of standardisation of technique across riders that comes
from strong traditions (mount and dismount from the horse’s left side) and
commonality of equipment and function (need to get on and off this horse that
is usually much taller than a rider’s hip using a stirrup and saddle while ensur-
ing that it stands reasonably still)

• there is noticeable temporal variation in the time taken to do these activities by
different riders in different real–world situations. As an example, in a sample
of 55 real life mounts, the mean time to mount was 5.48 seconds, with a stan-
dard variation of 2.28 seconds, a minimum of 1 second and a maximum of 10
seconds (Hunt, 2009, pp. 125).

• there are other variations in the real world situation as a result of different levels
of strength, athleticism, suppleness, skill, height and attitude of the rider and
height, level of training and personality of the horse.

Lastly, based on the prior Masters project and domain experience, it is thought that
there is a reasonable chance that a rider’s individual arm movements during these
activities are not totally unique within riding while the combined effect of the move-
ments as measured by the sensor leading up to and across the totality of these activ-
ities might be unique enough to successfully classify without being overwhelmed by
false positives.
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4.6 DATA

This section describes the data used in this research. A constraint placed on this
research by the author’s university was that no additional data was to be captured.
As a result this research uses a subset of the data collected as part of the author’s
Masters project, Hunt (2009). The author’s Masters project was essentially a data
capture exercise with some simple analysis of the data. The Master’s thesis, Hunt
(2009), is a good source for detailed descriptions of the data capture process and
equipment, curious readers are referred to that document for these details.

The data was captured under guidelines agreed in ethical approval reference num-
ber AUTEC 08/47 as approved by the Auckland University of Technology Ethics
Committee on 24th April 2008. All participants were asked to consent to the use of
the data captured from their participation sessions and all participants signed a re-
lease of copyright for the use of their images in video and still formats. The consent
and release form was presented in both English and Swedish. Copies of the ethics
forms can be found in Hunt (2009, p.191–210).

At the time of data capture no decision had been made on how the data would
be classified and so only very basic data preparation and analysis was done during
the Masters project. During this work the required data preparation was completely
redone, based on the chosen classification method. The raw data was carried over
from the author’s Masters project but no data preparation or data analysis was carried
over.

The collection of datasets used within this research consists of both scripted (labo-
ratory) and unscripted (real world) data. The scripted data includes two datasets col-
lected in a laboratory situation using a wooden horse and two different participants.
The real world (unscripted) data consists of 10 datasets collected from 7 different
participants across 9 data collection sessions. There are two files for three partic-
ipants and a single file for four participants. The laboratory collection of datasets
contains scripted mounts and dismounts plus moving between the two activities. The
real world collection of datasets cover a wide variety of unscripted equestrian related
activities including catching horses, grooming horses, tacking up, mounting, riding
(including standing, walking, trotting, cantering, jumping and turns), dismounting
and untacking horses.

All inertial data was captured by a single IMU sensor worn on participants right
wrist and was captured at 10Hz and the reasons for choosing this data rate are set
out on page 87 of Hunt (2009). Given that this research was constrained to using the
existing data from the Masters project, there was no option to capture data at a higher
frequency. However, Verplaetse (1996) demonstrated that the human hand and lower
forearm moves with a frequency of less than 12Hz and so the 10Hz frequency of data
capture is certainly in this ballpark. In addition, during early data preparation for the
development of this classification artefact we down sampled the data to 5Hz by taking
two streams of every second sample value and when these data streams were plotted
during horse mount sequences no real difference was noted between the 10Hz and
5Hz data. It is also worth noting that the purpose of this work is to capture and anal-
yse data for classification purposes rather than for some detailed technique or style
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analysis or to generate some sort of bio-mechanical model of movement and so the
lower data capture rate is consistent with this purpose, especially given Verplaetse’s
work and our own desire to develop a classification artefact that is capable of classi-
fying quickly. Unless there is additional information value, sampling at higher rates
simply imposes a much greater computational demand on the classifier.

As noted in Hunt’s Masters thesis a data capture rate of 25Hz would have closely
matched the video frame rate for the video camera and would have made synchro-
nising the inertial and video data much simpler and the additional data from a higher
sampling rate may hold additional data value. The potential trade-offs between a
higher data capture rate and possible added data value could be tested in some future
work.

4.6.1 Summary of Laboratory Data Capture Sessions

There are two sensor files from laboratory data capture sessions, 2008081301SF_LA
(LALab) and 2008082102SF_LB (LBLab). LALab was the first laboratory data cap-
ture session and some lessons were learned during this session that were then applied
for the second, LBLab, session. The start of the file contains a very long sequence
of no or little action as the IMU was recording data as the author set up the rest of
the equipment such as the tripod mounted camera and explained the session script
requirements to the participant. For the second laboratory data capture session the
equipment set up and explanation were done before turning on the IMU and so the
mounts and dismounts start almost immediately.

LA was a more cautious participant than LB and so she followed the session script
in a less exuberant manner than LB, who used a lot more energy during his session.
This contrast in exuberance led to LB doing a lot more mounts and dismounts than
LA (40 versus 17) and in conjunction with a different dismount technique meant that
LB abandoned the mounting block that was supplied to both participants after the
first dismount when his legs missed the mounting block on dismount and he almost
twisted his ankle. LA, on the other hand followed a more measured approach while
dismounting and always found the mounting block. This change by LB meant that
his first mount and dismount are different from his subsequent mounts and dismounts
as a result of stopping using the mounting block and the almost fall during the first
dismount. In addition to the difference of use and non-use of the mounting block,
LB’s dismount technique is different from LA’s and this shows up in the data. LB
dismounts by sliding off the saddle quickly with no feet in the stirrups while LA low-
ers herself with her left foot still in the stirrup until her right foot is on the mounting
block.

In addition, LB has a greater variance in mount and dismount times as the ses-
sion progresses with a couple of cautious mounts and dismounts followed by quicker
mounts and dismounts as he gained confidence, tapering off to slower mounts and
dismounts (further apart and harder to see, but, longer intervals for a mount and dis-
mount) as he grew tired from the effort of mounting and dismounting and then a
quick burst for the last two mounts and dismounts. LA’s mounts and dismounts, on
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the other hand, are more regular as she paced herself and stopped before she got too
tired.

4.6.2 Summary of Real World Data Capture Sessions

The real world data capture sessions that were used in this research are summarised
in the following table.

Date Venue Session Notes
0716 Tierp RA2 Pre-riding and mount
0719 Mariefred RB1 Short pre-riding but long walk at end after dismount
0812 Vallentuna RA2 Pre-riding data including brushing
0829 Bro RC2 Short pre-riding but long walk at end after dismount
0830 RD3 Pre and post-riding
0902 Bro RE1 Pre and post-riding

RC2 Short pre and post-riding
0912 Orebro RF1 Long pre and post-riding

RG2 Long pre-riding and no post-riding
0913 Orebro RF3 Long pre and post-riding

Table 4.5: Summary of used real world data

4.6.3 Synchronising the Data

The general process for synchronising the video and sensor data and then generating
class vectors for activities of interest is shown if Figure 4.1. The sensor data files need
to be synchronised with their associated video files so that activities can be identified
on the video and then marked in a class field that is added to the sensor file.

Each data capture session started with the participant being asked to perform a
synchronisation activity. In some cases, the participant was also asked to perform the
synchronisation activity at the end of the session. These cases allowed for a check
for drift between the sensor data and the video frame rate.

Synchronisation then consisted of viewing the video stream, frame by frame to
find a known point within the synchronisation activity (top-of-stroke for arm waves
and moment-of-impact for overhead claps). Then viewing a plot of the sensor data to
find the probable equivalent point, see Figure 4.2. The repetition of the activity made
it a lot simpler to find the probable point within the sensor data because the produced
pattern (as plotted) was unusual and repetitive. Having found the probable point of
synchronisation, (in this case the top of the Gyroscope Pitch axis) this was then tested
against some other easy to spot pattern such as an end of session synchronisation
activity or a significant period when the participant had their arm still for some reason
(see Figure 4.5).
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Figure 4.1: Process for Synchronising and Generating Class Vectors

Two screen-shots (Figure 4.3 and 4.4) illustrate this process. The first screen-shot
(Figure 4.3) of Vegas Movie Studio shows a (time) zoomed in view of the video file
for session 2008091202RG. The participant can be seen clapping her hands over her
head. Below the larger picture are five editor streams. The first shows, at this time
resolution, a frame by frame depiction of the video. The second stream, entitled voice
in the screen shot and coloured purple, shows the sound recorded with the video. The
clap sound can be clearly seen within this stream, immediately to the left of the cursor
(and associated white vertical line).

The next three streams below this are the Accelerometer and Gyroscope sensor
data synthesized into MS Windows .wav files and imported into the video editor. The
video and sound streams are then slid until they match the likely equivalent position
in the sensor streams. In this case the trailing edge of the frame with the clap sound
within it is matched with a peak from the Gyroscope Pitch axis. This can be seen
a bit more clearly when the time dimension is zoomed out a little at the same point
within the video, see figure 4.4.

In this case there is also a synchronisation sequence at the end of the video (Fig-
ure 4.8) and so this is used the same way to test both that the synchronisation point
at the start is valid and that there is no real drift between the video stream and the
sensor stream.

A simple spreadsheet is used to record the frame numbers of the synchronisation
points and the activities of interest from the video. Then the offset between the video
and sensor data is calculated using the synchronisation point at the start. The prob-
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able sensor data sample number for the synchronisation point at the end can then be
calculated, that general area is then plotted to ensure that there is a match.

Figure 4.2: Identifying the Start Synchronisation Point for 2008091202RG

Figure 4.3: Identifying the Synchronisation Point for 2008091202RG – Zoomed In
Once there is reasonable surety that the video and data are synchronised then the

mount and dismount ranges are calculated, plotted for a visual check (see Figure 4.6
and 4.7) and a class column is added to the sensor data file with this information
within it.
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Figure 4.4: Identifying the Synchronisation Point for 2008091202RG – Zoomed out

Figure 4.5: Significant Quiet and Movement Sequences for 2008082102LB

The two outputs of the synchronisation activity are a spreadsheet per session that
documents the point of synchronisation within both the sensor data and video files
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with the timing offset between the files and the updated sensor file with the class col-
umn populated within it. The offset is important as it allows the activity in the video
to be identified and that allows the equivalent data for that activity to be identified
within the sensor data.

Figure 4.6: Mount Segment from 2008091202RG

Figure 4.7: Dismount Segment from 2008091202RG
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Figure 4.8: Identifying the End Synchronisation Point for 2008091202RG

Description Video
Time

Video
Seconds

Data ID# Data
Seq#

Data
Seconds

Start 0:00:00:00 0.00 1,054 0 0.0
End 1:06:35:05 3995.20 48,539 47,486 4748.6

Sync Point 0:00:02:14 2.60 7,808 6,755 675.5
Offset from Video +7, 782 +6, 729 +672.9

Mount Start 0:11:55:16 715.64 14,938 13,885 1388.5
Mount End 0:11:59:18 719.72 14,979 13,926 1392.6

Mount Elapsed 4.08 4.1
Dismount Start 0:58:32:24 3512.96 42,911 41,858 4185.8
Dismount End 0:58:36:22 3516.88 42,950 41,897 4189.7

Dismount Elapsed 3.92 3.9

Table 4.6: Synchronisation for 20080717RA2

4.6.4 Data Issues & Characteristics of the Sensor

At this point it is useful to discuss the characteristics of the IMU sensor that was
used to capture the data and to review its components. Soon after purchasing the
SparkFunr 6 DoF V4 IMU it was discovered SparkFun Electronics Inc (2008b) that
the sensor has a design fault that causes the BlueToothr radio to interfere with the
Magnetometer. The Magnetometer signal as generated by this sensor module, con-
tains at least three non-random noise effects that are caused by the BlueToothr radio
outputting electromagnetic radio waves that are picked up by the Magnetometer.

The first effect is caused by the intermittent nature of the BlueToothr send and
receive protocol. Radio waves are sent and received in burst mode. This means



4.6 DATA 84

that the radio turns on and off at a very high frequency (2.4GHz), much higher by
a number of powers than the frequency at which the sensor was set to sample the
Magnetometer for human movement data (10Hz).

The second effect is caused by the nature of the power conservation and error cor-
rection protocols. Bluetoothr is a low-power, short-range radio standard and when
both the send and receive stations are close to each other (and not masked) then the
protocol reduces the amplitude of the signal so as to conserve power, while at greater
distances, when more errors are encountered the signal amplitude is increased to
reduce the error rate. This means that with the receiver in a fixed position on the
participant’s hip and with the transmitter on their wrist then as they move their arm
closer to or further away from their body then the radio signal amplitude decreases
and increases. This effect happens at the expected frequency of human movement.

Thirdly, the Bluetooth radio frequency is such that it is easily absorbed by water.
The human (and horse) body are primarily composed of water and so this means that
when the participant’s movement is such that when the wrist is partially or completely
occluded by a body part then again the signal amplitude is increased. The frequency
of this effect is generally less than the frequency of human movement.

In addition, the Magnetometer also picks up hard-iron magnetic interference from
ferrous metals close to the sensor and electromagnetic interference from other radio
sources in the immediate environment. During mounting a rider often places their
hand close to the stirrup (often iron) to steady it, just prior to mounting and there are
often other iron items such as buckles around the saddle and bridle. Often there are
other much larger ferrous objects around where horses are kept and ridden such as
iron gates and iron door supports. Mobile phones are becoming ubiquitous and they
produce radio waves in burst mode so that mobile phones that are reasonably close at
hand will also generate interference.

All of these sources of interference are picked up by the Magnetometer and are
seen as non-random noise at differing frequencies, including from a very high fre-
quency (bursty traffic), a frequency consistent with the sample rate (movement asso-
ciated effects) and a much lower frequency than the sample rate (occlusion effects).
While all of these interference sources are known issues with Magnetometers this
particular sensor module suffers interference much more than normal as a result of
its design (SparkFun Electronics Inc (2008b)).

Another design decision makes this even worse. The sensitivity of the Magne-
tometer in this device is permanently set so that the Earth’s magnetic field readings
only cover a small, central subsection of the possible data range. Looking at the 22
data files with right arm sensor usage it is possible to see (Table 4.7) that the standard
deviation for the individual magnetometer axis is quite low compared with the Gyro-
scope and very low compared with the Accelerometer. With the data values pushed
into this central region and with the presence of non-random noise the signal to noise
level is quite low.

Calculating the mean and standard deviation across all 12 files used in this research
and then for the example, sample area with still and large movement segments from
LBLab (shown in Table 4.7), it is possible to see that the Magnetometer axis show the
least gross variation overall and that for the example area (Table 4.8) the relatively
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still segments standard deviation is proportionally large compared to the large move-
ment segments standard deviation. From this it can be concluded that other authors
(SparkFun Electronics Inc (2008b)) are correct and that noise does tend to dominate
the Magnetometer signal.

Table 4.7: Mean and Standard Deviation for Raw Signal Data
Sensor Mean Std D
Magnetometer X 557.1 16.0
Magnetometer Y 514.5 18.0
Magnetometer Z 506.5 15.3
Accelerometer X 623.7 130.7
Accelerometer Y 455.7 119.2
Accelerometer Z 560.4 102.6
Gyroscope Pitch 471.0 36.6
Gyroscope Roll 465.0 72.5
Gyroscope Yaw 470.4 33.7

Table 4.8: Variance for a Sample Region with Still & Movement Data from LBLab.
Sensor Movement SD Still SD Overall SD
Magnetometer X 7.7 2.9 16.0
Magnetometer Y 14.4 3.0 18.0
Magnetometer Z 5.1 1.9 15.3
Accelerometer X 89.4 10.5 130.7
Accelerometer Y 101.3 4.4 119.2
Accelerometer Z 86.0 9.9 102.6
Gyroscope Pitch 47.7 0.6 36.6
Gyroscope Roll 57.9 1.0 72.5
Gyroscope Yaw 59.2 0.5 33.7

Figures 4.9, 4.11 and 4.13 show histograms of the raw sensor data for each sensor. In
addition, figures 4.10 4.12 and 4.14 show density functions for the same raw data.
This enables slightly easier visual comparisons.
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Figure 4.9: Histogram of Magnetometer Raw Values across All Files
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Figure 4.10: Magnetometer Density Function across All Files

The Magnetometer histograms and Density plot show graphically that the signal from
this sensor covers only a narrow, central’ish region of the possible signal range. Ide-
ally, when this data is transformed for input into the ESN model, the transformation
algorithm would use something like Xnorm = X−min(X)

max(X)−min(X)
to normalise the data

within the range of 0 to 1 so that the Magnetometer data is able to influence the ESN
model with similar weights to data from the other sensors. If, however, this same
transformation is used on the Magnetometer data then not only does this amplify the
data in the signal but it also amplifies the noise.

While some authors such as Jaeger (2005) suggest that adding noise to the inputs
into an ESN can improve the model’s ability to generalise, they are more specific and
suggest that the added noise should be both random and a relatively small proportion
of the signal. In the case of the Magnetometer data the noise is neither random nor
proportionally small.
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Figure 4.11: Histogram of Accelerometer Raw Values across All Files
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Figure 4.12: Accelerometer Density Function across All Files

The Accelerometer histograms and density plot are almost the opposite of the Mag-
netometer with a broad spread across the whole range and with some notable peaks
at zero, 1023 and at other points across the range. The general, multi-modal type dis-
tribution for the Accelerometer signals are generated by the mixture of acceleration
sensed from movement and acceleration sensed from Gravity.

It is important to keep this multi-modal tendency in mind when considering using
mean based transformations when the data is pre-processed as the means will be
skewed by the different peaks.
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Figure 4.13: Histogram of Gyroscope Raw Values across All Files
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Figure 4.14: Gyroscope Density Function across All Files

The Gyroscope histograms and density plot demonstrate that this sensors signal cov-
ers the full range with a central peak. This central peak lines up quite well across
all three axis. This data looks the cleanest of the three and as was seen earlier there
seems to be little noise pollution of this data.

The potential downside of this tendency to a strong central peak is that when this
data is Normalised and then transformed into a -1 to +1 range then much of the
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data will cluster around zero and Jaeger (2005) suggests that when using a sigmoid
function within the ESN that it may not be a good idea to have data that is strongly
clustered around zero as at that point a sigmoid function produces an almost linear
effect.

4.6.5 The Black Box approach and the Magnetometer Data

The Black Box approach to data within this research means that no attempt is made
to understand or take meaning out of the data but instead it is simply used as is, albeit
with some transformation to assist with comparability.

This represents a challenge when an attempt is made to use the Magnetometer
data as unprocessed Magnetometer data as it is location and orientation specific. For
example, If a person is facing North and then turns left prior to mounting their horse
then the raw magnetometer data is different from if they start off facing south and
then turn left prior to mounting.

Further, someone in Stockholm, Sweden facing North prior to turning left will
generate a different signal from someone in Auckland, New Zealand who starts by
facing North prior to turning left.

While there are algorithms that could be applied to the Magnetometer data to turn it
into something that enables a left turn to be recognised regardless of initial orientation
and regardless of location, this would break the Black Box approach.

This plus the issues of noise within the Magnetometer data from this sensor re-
sulted in a decision to exclude the Magnetometer data from all except the very initial
trials in this research.

4.6.6 Splitting the Data into Training and Testing Sets
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Process for Identifying and Splitting Sub-Files

Figure 4.15: Process for Splitting Lab Files

While it was not necessary to split any real world data files it was necessary to split the
laboratory files into separate sub-files because each laboratory file contains multiple
mounts and dismounts and there was a need to ensure that the mounts and dismounts
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in the test data were kept completely separate from the mounts and dismounts in the
training data. It is useful to have multiple files so as to keep tuning data separate from
training and test data whenever possible but there was also a need to have enough ex-
amples of an activity to successfully train the models. In addition, when combining
data from the two participants to test for more generalised activity classification (be-
yond successful classification of activities within a single participant) then it is also
useful to have similar numbers of example activities in the training set, although the
test set need not be so balanced. The general process of splitting the laboratory files
is described in Figure 4.15.

The earliest, tests using the Laboratory data within an ESN made use of a truncated
part of the file 2008081301LA. In this early work data was deliberately cut out of the
data at the beginning of the file that did not show mounts and dismounts and then the
remaining data was split in half without regard for where the split took place.

The thinking in these early stages was that the data at the start of this file was
somewhat irrelevant as it is not typical of any equestrian sports activity but is instead
related to the participant putting the sensor on their wrist and then standing around
relatively still as other items of equipment were set up.

Work with this subset file tended to show up false positives during the non-mount/
dismount period towards the end of the file when the participant was taking off the
sensor. On further thought it was decided to either include the whole file with the ex-
pectation that by including additional non-mount/dismount data during training there
would be a better chance of correctly classifying the trailing non-mount/dismount
data or else delete the trailing non-mount/dismount data.

It was decided that it was more logical to include both the leading and trailing data
rather than risking suggestions of deliberate manipulation of the data by taking out
selected data. Subsequently, it was decided to split the full LALab (with 17 mount/
dismount pairs) into two files, one containing 9 and the other 8 mount/dismount pairs.
This was useful for situations where a model was only trained and tested but once
separate optimisation tests were run to preselect a set of parameters for the ESN then
four files, rather than two were needed, so that it was possible to keep the training
and testing of the end model independent of the data that was used to tune the ESN
parameters.

In addition, it was also important to ensure that during training of the model for
two participant tests that there were similar numbers of training mounts from each
participant so that the data did not bias the training towards a particular participant.
This was found to be particularly important for the dismounts because each laboratory
participant used a slightly different method of dismounting that showed up in early
trials.

LBLab contains 40 mount/dismount pairs and so a natural split for this file was
into four sets of 10 mounts and dismounts. However, splitting LALab into four sim-
ilar sized files would yield three files of four and one file of five mounts/dismounts
and this number risked being overwhelmed by the more than twice as many LBLab
mounts and dismounts.

As a compromise between keeping the data independent and balancing the number
of mounts and dismounts from each participant it was decided to make two further
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splits in the LALab file. One to produce a 10 and 7 split and the other to produce
a 7 and 10 split. With two sets of LALab sub-files split at different points it was
possible to then use similar numbers of mount/dismount pairs during training (e.g.
first 10 during tuning training and last 10 during final trials) with some independence
between tuning and final trials at the expense of some re-use of data.

The reservoir of the ESN starts in an arbitrary state and initially the network state
is partly determined by the starting state Jaeger (2005). The reservoir needs time to
become determined by the input and so training should not start from the beginning of
the input. This means that some data is needed before encountering the first example
of the non-base class.

The two resultant sub-files are shown in figures 4.16 and 4.17. The long pre-
activity sequence can be seen in the first sub-file and the somewhat shorter post-
activity sequence when the participant was taking off the sensor can be seen in the
second sub-file.
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Figure 4.16: First LALab Raw data sub-file 1:7800
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Figure 4.17: Second LALab Raw data sub-file 7801:11117

With LBLab (40 mount/dismount pairs) a similar process was followed and a decision
was made to split this file into four files, each containing 10 mount/dismount pairs.
This split meant it was possible to have separate files for tuning (train and test –
using LBLab subsets) and then could concatenate one sub-file each from LALab
and LBLab to create training and test sets for classification that contained balanced
numbers of mounts and dismounts from each participant.



Chapter5
I N I T I A L D E S I G N C Y C L E

This chapter describes the initial work that was done to demonstrate that RC
techniques were a feasible technique for classifying unsegmented activity data and
then the subsequent work to expand the use and evaluation of RC techniques for
classifying unsegmented activity data captured from scripted activities within a
laboratory environment.

5.1 I N T RO D U C T I O N

The design cycle characteristic of Design Science research methods has been sep-
arated into three phases for this work. Each phase having its own set of goals and
measures of success. The first phase is a Proof-of-concept phase where the goal is to
demonstrate that the concept of a punctual activity classifier based on RC techniques
and using spatio-temporal data is feasible. The first step within phase 1 involves using
generated, synthetic spatio-temporal data as input into the classifier and this work cul-
minates in the publication of Schliebs and Hunt (2012). Once there is confidence that
RC techniques might have a useful application classifying synthetic spatio–temporal
data then the next step is to demonstrate this using more realistic data. This second
step culminates in the publication of Schliebs et al. (2013). Both of these steps are de-
scribed in Section 5.2. During this proof–of–concept phase a LSM is used to classify
the activities of interest.

The second phase involves exploring the data from scripted, laboratory based ac-
tivities and creating a tool-set and a Researcher’s Workbench for RC punctual activity
classifiers. This work is described in Section 5.4 and generated Hunt et al. (2014). At
the start of this second phase the RC classifier model is changed from a LSM model
to an ESN model for ease of use and for performance improvements during the search
of the parameter space associated with each RC technique.

The third phase involves using the Researcher Workbench and RC classifier tool-
set to create a RC based classifier that is capable of classifying real-life activities of
interest. This work has its own chapter, namely Chapter 6 and is separately reported
in Hunt and Parry (2015).

Within each phase, the particular design goals for that phase is discussed, along
with any activity descriptions that are local to that phase.

94
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5.2 P RO O F O F C O N C E P T ( S Y N T H E T I C DATA )

This phase explores the feasibility of using RC techniques to classify punctual ac-
tivity. The literature review in Chapter 2 demonstrated that RC techniques had not
previously been used to classify human activity. As a result of that, it was not clear
that RC techniques could be used to classify human activity. The initial problem,
was then, to demonstrate that RC techniques could, in fact, be used for this purpose.

The motivation for this part of the research was to provide a proof-of-concept in-
vestigation of the applicability of a form of RC as the core component of a punctual
activity classifier of un-windowed pseudo and realistic inertial data. Maass et al.
(2002) was chosen as the basis for the RC model within this phase. Stage one of this
phase, using synthetic data was reported in Schliebs and Hunt (2012), while stage
two, using realistic data was reported in Schliebs et al. (2013).

LSM technology has been shown to be effective as a classifier in other areas such as
continuous speech recognition (Schrauwen, D’Haene, Verstraeten, & Campenhout,
2008). Sensor data streams for continuous speech have some aspects in common with
inertial data streams (spatio-temporal, un-windowed continuous data stream, variable
length “tokens”, digitally encoded analogue data) and so this gave us enough confi-
dence to investigate this technology. In addition, the Technical Consultant, Dr Stefan
Schliebs, had access to LSM code written in Python and this provided a convenient
starting point.

The next sub-sections describes the design goals and measures, the LSM model,
a possible classifier framework, the synthetic data, how the data was generated, the
two encoding techniques chosen and reports the results along with a discussion.

5.2.1 Design Goal - LSM with Synthetic Data

The Design Goal for this part of this proof-of-concept phase was to create a LSM
RC model that is capable of successfully classifying synthetic, un-windowed, spatio-
temporal data sets into base, A & B classes.

5.2.2 Measure of Success - LSM with Synthetic Data

The measure of success was to consider a class as being correctly classified if the
model output was greater than 60% of the difference between the base class signal
and the expected class signal for at least 50% of the class width.

5.2.3 Model description - LSM

A LSM has two major components, a reservoir or “liquid” in the form of a RSNN
(Gerstner & Kistler, 2002) and a trainable readout function.

The liquid is stimulated by spatio-temporal input signals causing neural activity in
the Spiking Neural Network (SNN) that is further propagated through the network
due to its recurrent topology. As a result, a snapshot of the neural activity in the
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reservoir contains information about the current and past inputs to the system. The
function of the liquid is to accumulate the temporal and spatial information of all in-
put signals into a single high-dimensional intermediate state in order to enhance the
separability between network inputs. The readout function is then trained to trans-
form this intermediate state into a desired system output.

5.2.4 Reservoir Description - LSM

For the reservoir, we employ the LIF neuron which is arguably one of the best known
models for simulating SNN. This neural model is based on the idea of an electrical
circuit containing a capacitor with capacitance C and a resistor with a resistance R,
where both C and R are assumed to be constant. The dynamics of a neuron i are then
described by the following differential equations:

τm
∂Vi
∂t

= −Vi(t) +R Isyni (t) (5.1)

τs
∂Isyni

∂t
= −Isyni (t) (5.2)

The constant τm = RC is called the membrane time constant of the neuron. When-
ever the membrane potential Vi crosses a threshold ϑi from below, the neuron fires a
spike and its potential is reset to a reset potential Vr. We use an exponential synaptic
current Isyni for a neuron imodelled by Eq. 5.2 with τs being a synaptic time constant.

In a similar manner to Schliebs, Fiasché, and Kasabov (2012), we define a dynamic
firing threshold as a separate differential equation:

τϑ
∂ϑi

∂t
= θ − ϑi(t) (5.3)

where θ is the minimum firing threshold of the neuron and τϑ is the time constant
for the dynamic threshold. Whenever the neuron i emits a spike, its threshold ϑi is
increased by a constant ∆θi, i.e. ϑi ← ϑi + ∆θi. A dynamic synapse model based on
the STP proposed by Markram et al. (1998) is used to exchange information between
connected neurons.

We construct a reservoir having a Small-world inter-connectivity (SWI) pattern
as described in Maass et al. (2002). A recurrent SNN is generated by aligning 500
neurons in a three-dimensional grid of size 10× 10× 5. In this grid, two neurons A
and B are connected with a connection probability

P (A,B) = C × e
−d(A,B)

λ2 (5.4)

where d(A,B) denotes the Euclidean distance between two neurons and λ corre-
sponds to the density of connections which was set to λ = 3 in the simulations.
Parameter C depends on the type of the neurons. We discriminate into excitatory
(ex) and inhibitory (inh) neural types resulting in the following parameters for C:
Cex−ex = 0.3, Cex−inh = 0.2, Cinh−ex = 0.4 and Cinh−inh = 0.1. The network
contained 70% excitatory and 30% inhibitory neurons.
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5.2.5 LSM Framework

A possible framework for activity classification using LSM is illustrated in Figure 5.1.
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Figure 5.1: Possible framework to classify activities of interest

In the first step, the collected raw sensory time series data is pre-processed. Typical
data cleaning procedures would be normalization, feature selection and outlier detec-
tion. In cyclic activity classification Fourier or wavelet transformations may also be
considered as part of pre-processing. The synthetic data is generated in a state that
does not require pre-processing.

The cleaned signal is then encoded into an input compatible with the reservoir.
Numerous encoding algorithms have been proposed in literature and we consider
two common techniques as part of this initial research. The encoded input is then
fed into the reservoir where it results in a temporal change of neural activity in the
RSNN which is read out periodically. A machine learning algorithm then learns the
mapping from the extracted readouts to a desired class label.

Several design and configuration choices have to be made for each component
of the framework. The ellipses in Figure 5.1 show some possible options for these
decisions. Each framework component is explained in greater detail and some of the
design decisions for this design iteration are indicated in the following sections.

5.2.6 Synthetic Data Description and Preprocessing

We decided to generate a synthetic multi-sensor time series data set so that we would
have control over aspects such as the number of sensor signals, problem difficulty
and signal-to-noise ratio. Furthermore, this data set provides an ideal solution, since
the exact differentiation between signal and noise is known a priori, and it allows the
analysis of the proposed technique for a large variety of testing scenarios.

The constructed N synthetic time series are generated as a superposition of C sine
waves. Signal sn(t) is described as

sn(t) =
C∑
i=1

a(i)n sin(ω(i)
n t+ φ(i)

n ) (5.5)

where C ∈ N is the number of superimposed functions and the parameters a(i)n ∈ R,
ω
(i)
n ∈ R, φ(i)

n ∈ R represent the amplitudes, frequencies and phases of the individual
sine functions, respectively. For the study, we chose C = 5 superimposed sine waves
that were parametrized with a set of random amplitudes, frequencies and phases. The
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Figure 5.2: Synthetic data investigated as a proof of concept

N = 5 time series sn(t) were “pasted” into a uniformly distributed noise sequence at
various locations and a small Gaussian noise (σ = 0.01) was added to the resulting
signal. Finally, we normalized the signal to be between [0, 1]. Figure 5.2 depicts part
of the generated time series.

5.2.7 Synthetic Data Encoding

The time series data obtained from the sensors are presented to the reservoir in the
form of an ordered sequence of real-valued data vectors. In order to compute an input
compatible with the SNN, each real value of a data vector is transformed into a spike
train using a spike encoding technique. We explore two different encoding techniques
in this work, namely Ben’s Spike Algorithm (BSA) (Schrauwen & Van Campenhout,
2003) and a Population encoding technique.

BSA assumes the analogue signal to be a convolution of a spike train. The algo-
rithm attempts to estimate the corresponding spike train responsible for this convolu-
tion by reversing the convolution process. The technique has a threshold parameter
which we set to 0.955 and we use the discrete linear filter presented in de Garis,
Nawa, Hough, and Korkin (1999). More detailed explanations of this encoding along
with pseudo code can be found in Schrauwen and Van Campenhout (2003).

In contrast to BSA, the Population encoding uses more than one input neuron to
encode a single time series. The idea is to distribute a single input to multiple neurons,
each of them being sensitive to a different range of values. This implementation is
based on arrays of receptive fields with overlapping sensitivity profiles as described
in Bohte, Kok, and Poutré (2002); Schliebs, Defoin-Platel, and Kasabov (2009). The
reader is referred to the mentioned references for further details and examples of
this encoding algorithm. As a result of the encoding, input neurons emit spikes at
predefined times according to the presented data vectors.

5.2.8 Readout and Learning - LSM with Synthetic Data

In this part of the study, we use the typical analogue readout function in which every
spike is convolved by a kernel function that transforms the spike train of each neuron
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in the reservoir into a continuous analogue signal. We use an exponential kernel with
a time constant of τ = 50ms. The convolved spike trains are then sampled using a
time step of 10ms resulting in 500 time series – one for each neuron in the reservoir.
In these series, the data points at time t represent the readout for the presented input
sample. A very similar readout was used in many other studies, e.g. in Schrauwen et
al. (2008) for a speech recognition problem.

Readouts were labelled according to their readout time t. If the readout occurred
at the time when a sensor signal of interest (e.g. mounting/dismounting the horse)
was fed into the reservoir, then the corresponding readout is labelled as a class-A or
class-B sample. Consequently, a readout belongs to the base class, if it was obtained
during the presentation of a noise part of the input signal.

The final step of the LSM framework consists of a mapping from a readout sample
to a class label. The general approach is to employ a machine learning algorithm to
learn the correct mapping from the readout data. In fact, since the readout samples
are expected to be linearly separable with regard to their class label Maass et al.
(2002), a comparably simple learning technique can be applied for this task. From the
labelled readouts, we obtained a linear regression model mapping a reservoir readout
sample to the corresponding class label, i.e. either 0 (base class) or 2 (class A) or −2
(class B).

5.2.9 Results - LSM with Synthetic Data

Figure 5.3 shows the outputs obtained from each of the individual processing steps
of the LSM framework. Sub-figure A shows the input data, sub-figure B shows the
effect of the input on the BSA encoded input neurons, sub-figure C shows the effects
of the same input on the Population encoded input neurons, sub-figure D shows the
response from the output neurons when using BSA encoding, sub-figure E shows the
internal liquid state when using BSA encoding, sub-figure F shows the response from
the output neurons when using Population encoding, sub-figure G shows the internal
liquid state when using Population encoding and sub-figure H shows a raster plot of
the results of the weighted outputs of both the BSA encoded and Population encoded
data after linear regression plus the training signal.

A set of five synthetic time series was generated over a time window of 4200ms
which included ten occurrences of two alternating temporal patterns, cf. Figure 5.3A.
The encoded spike trains derived from the given time series are depicted in Fig-
ure 5.3B (BSA encoding) and 5.3C (Population encoding), respectively. The figures
show a raster plot of the neural activity of the input neurons over time. A point in
these plots indicates a spike fired by a particular neuron at a given time.

The obtained spike trains were then fed into a reservoir resulting in characteristic
response patterns for each encoding type, cf. Figure 5.3D and 5.3F. The small number
of input neurons employed by the BSA encoding results in a rather sparse reservoir
response. A repeating pattern of neural activity was observed, however, the relevance
for the detection of the patterns of interest was less obvious. The response of the
Population-encoded signal was denser and the impact of the non-noise signal on the
reservoir was obvious from the raster plot.
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Figure 5.3: Results of the continuous classification of the synthetic data. See text for detailed
explanation of the figure.

The reservoir was continuously read out every 10ms of the network simulation us-
ing the technique described in subsection 5.2.8 on page 98. Figures 5.3E and 5.3G
show the readouts over time for BSA and Population-encoded reservoir inputs, re-
spectively. The colour in these plots indicates the value of the readout obtained from
a certain neuron; the brighter the colour, the larger the readout value. The bright
horizontal lines in this plot indicate the reservoir neurons that are directly stimulated
from the encoded spike trains of the input neurons. The Population-encoded stimulus



5.2 P RO O F O F C O N C E P T ( S Y N T H E T I C DATA ) 101

causes a very characteristic readout pattern in which the non-noise signals are clearly
detectable.

The learning and classification step of the LSM framework is presented in the last
plot of Figure 5.3H. We used a linear regression model that was trained with the first
2500ms of readout data and then tested on the remaining 1700ms of the simulation. A
class-A (class-B) sample was considered as correctly classified, if the model output
was larger (smaller) than a threshold of 1.2 (−1.2) for at least 50% of the class width.
1.2 being 60% of the output range for each non-null class.

5.2.10 Discussion - LSM with Synthetic Data

As already suspected from the reservoir responses of Figure 5.3D, the readouts ob-
tained using BSA encoding of the input signal appear difficult to map to the correct
class label, contrast the dotted (red) curve in Figure 5.3G with the input data. While
the training data was learned well enough, the testing accuracy dropped to a random
classification (around 24.7%). We assume an unsuitable configuration of the reservoir
as the reason for this low performance.

On the other hand, the model responses for the readouts obtained using Popula-
tion encoding showed much more promising results, compare the solid (blue) curve
in Figure 5.3G with the input data. The model reported perfect classification on the
training data and a satisfying classification accuracy on the testing data (93.5%). Er-
rors usually occurred immediately after the onset of a signal when the reservoir had
not yet accumulated sufficient information about the pattern. Considering the short
training period, this result was very encouraging.

These results were promising enough to give confidence that a LSM utilising Pop-
ulation encoding may provide a suitable technique to detect spatio-temporal patterns
in serial data such as realistic inertial data.

5.2.11 How the design iterated

The next step involved testing this technique on realistic inertial data from the labo-
ratory data, rather than synthetic data.
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5.3 P RO O F O F C O N C E P T ( R E A L I S T I C DATA )

This design iteration employs a LSM to classify real(istic) inertial sensor data col-
lected from a single horse rider who was following a scripted set of actions in a
laboratory situation. While the data collected is real data, in the sense that it is the ac-
tual data collected from the sensor during the data capture session, it is called realistic
data rather than real data as the activities being monitored are scripted and conducted
within a controlled laboratory environment and so the activities are not real-world
activities. This work builds on the stage one work which used synthetic data. The
following sections describe the design goals and measures for this part of the work,
the realistic data, how the data was captured and pre-processed, the encoding tech-
nique chosen and reports the results with a discussion.

5.3.1 Design Goal - LSM with Realistic Inertial Data

The design goal for this iteration was to confirm the proof of concept applicability of
LSM for the chosen problem domain by demonstrating a working LSM classifier us-
ing realistic data captured from an inertial sensor that was worn during real, scripted
activities.

5.3.2 Measure of Success - LSM with Realistic Inertial Data

The measure of success was to consider a class as being correctly classified if the
model output was greater than 60% of the difference between the base class signal
and the expected class signal for at least 50% of the class width.

5.3.3 Framework Description - LSM with Realistic Inertial Data

This work employs the same general framework as previously described in subsec-
tion 5.2.5 and illustrated in Figure 5.1 on page 97. In addition, the LSM model and
Reservoir are as described in subsections 5.2.3 and 5.2.4 on pages 95 and 96.

The initiative recently proposed in Nordlie, Gewaltig, and Plesser (2009) that pro-
motes reproducible descriptions of neural network models and experiments is fol-
lowed when describing this work. The initiative suggests the use of specifically for-
matted tables explaining neural and synaptic models along with their parametrization.
The set-up outlined in Table 5.1 is used for this design iteration. Within the table the
following acronyms: LIF; SWI; and STP have been used.

A reservoir having a SWI pattern as described in Maass et al. (2002) is constructed.
A recurrent SNN is generated by aligning 500 neurons in a three-dimensional grid of
size 10× 10× 5. In this grid, two neurons A and B are connected with a connection
probability

P (A,B) = C × e
−d(A,B)

λ2 (5.6)
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Table 5.1: Description of LSM setup.

Model Summary

Neural model LIF with dynamic firing threshold Schliebs et al. (2012)
Synaptic model Exponential synaptic currents
Input Population encoded, normalized, real-valued data
Connectivity SWI between reservoir neurons

Neural Model

Type LIF neuron
Description Dynamics of membrane potential V (t):

• Spike times: t(f) : V (t(f)) = ϑ(t(f))

• Sub-threshold dynamics:

τm
dV

dt
= −V (t) +R Isyn(t)

τϑ
dϑ
dt

= θmin − ϑ(t)

• Reset and refractoriness ∀f : t ∈ (t(f), t(f) + τref):
ϑ(t) ← ϑ(t) + ∆θ

V (t) ← Vr
• Exact integration with temporal resolution dt

Parameters Membrane time constant τm = 30ms
Membrane resistance R = 1MΩ

Threshold: θmin = 0.5mV, ∆θ = 5mV, τϑ = 50ms
Refractory period τref = 1ms, reset potential Vr = 0mV
Time resolution dt = 0.1ms, simulation time T = 6500ms

Synaptic Model

Type Current synapses with exponential post-synaptic currents
Description Synapse modelled using STP Markram et al. (1998):

τs
dIsyn

dt
= −Isyn(t)

τD
dxi
dt

= 1− xi

τF
dui
dt

= Ui − ui

Pre-synaptic spike from neuron j to neuron i triggers:

Isyni ← Isyni + wji xi ui

ui ← ui + Ui(1− ui)
xi ← xi(1− ui)

Parameters Synaptic weight w ∈ R, uniformly initialized in [−50, 50]nA
Synaptic time constant τs = 5ms, Utilization U = 0.1,
Depression τD = 500ms, Facilitation τF = 200ms
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where d(A,B) denotes the Euclidean distance between two neurons and λ corre-
sponds to the density of connections which was set to λ = 3 in the simulations.
Parameter C depends on the type of the neurons, excitatory (ex) and inhibitory (inh)
neural types, resulting in the following parameters for C: Cex−ex = 0.3, Cex−inh =
0.2, Cinh−ex = 0.4 and Cinh−inh = 0.1. The network contained 70% excitatory and
30% inhibitory neurons that were chosen randomly.

5.3.4 Sensor Description

As described in Section 4.6, the SparkFun 6DoF inertial sensor contains a Freescale
MMA7260Q triple-axis accelerometer, two InvenSense IDG300 500o per second gy-
roscopes and both a Honeywell HMC1052L and a HMC1051Z magnetic sensor. The
sensor outputs readings from a 12 bit analogue to digital converter that gives a reading
range between 0 and 1023.

Sensor readings were sampled at 10Hz and broadcast via Bluetooth to an on-body
receiver for logging and later analysis. The accelerometer in this sensor has a settable
scale and for this session it was set to record ±2G’s.

5.3.5 Activity Definitions

The formal definitions for stirrup mount and dismount, as described in section 2.2
on page 11 are used within this design iteration. In addition, it was decided to add
a buffer of 10 samples (1 second at 10Hz) on either side of the start and end point
of each activity. This was done to encapsulate some small level of pre-mount and
post-mount activity. The reason for adding the buffer to the start was that the author
expected the LSM to take some time to ramp up and to correctly classify the activities,
based on experience with the synthetic data classification. By including the start
buffer, it was hoped that this would improve the correct classification of the activity
closer to its start point. The post-activity buffer was added in the expectation that this
might enhance the classification success by including a short phase of ’mounted’ data
which may have been consistent across riders.

5.3.6 Realistic Data Description and Preprocessing

The data is as described in Chapter 4.6 and is one of the two laboratory data-sets
(LALab) with data from a single participant who followed the given activity script
(including mounting and dismounting) 17 times. The SparkFun (SparkFun Electron-
ics Inc, 2008a) inertial sensor used is as described in Chapter 4.6.

Data collection was done as part of a Masters project (Hunt, 2009) and all data was
collected within a laboratory on the KTH Kista campus in Sweden. The session was
videoed so that activities could be manually classified by the research team.

The participant mounted and dismounted the wooden horse following a similar
technique to that previously illustrated in Figure 2.1 on page 13, except that mounting
and dismounting were simpler and safer (indoors) as the wooden horse was stable
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enough to not move during the data capture session. An example of the laboratory
mounts and dismounts is shown in Figures 5.13 and 5.14 on pages 128 and 129.

During this session the rider wore the sensor on the right wrist using a simple
stretchable Velcro bandage for attachment. The “horse” used during the laboratory
sessions was a built-for-purpose wooden framed horse of approximately 16 hands in
height (163cm at the “shoulder”), draped with a standard European riding saddle and
stirrups (see Figure 5.4). During this particular laboratory session the rider mounted
and dismounted 17 times.

Figure 5.4: A laboratory participant stands ready to start mounting the wooden horse.

The output from all three inertial sensors (magnetometer, accelerometer and gyro-
scope) were used for this part of the work. Figure 5.5 depicts part of the recorded
time series. The three upper panels show the 3-dimensional recordings from the mag-
netometer, accelerometer and gyroscope, respectively. The bottom panel shows the
activity undertaken during recording (mounting/dismounting). The figure shows two
mounts and two dismounts.

The participant was asked to mount and dismount as closely as possible to her
normal technique and apart from the requested pauses was not asked to keep to any
particular time schedule. The duration of each mount and dismount is, nevertheless,
reasonably consistent with a gradual shortening of duration as the participant gets
used to and more proficient at the script.

The first mount takes 11 seconds while the last mount takes 6.5 seconds with pro-
gressive shortening in between. The first dismount takes 9 seconds and the last dis-
mount takes 6.7 seconds again with progressive shortening. There is also a small
shortening of the interval between each mount/dismount pair with the first interval
being 11.3 seconds and the last being 7.2 seconds. However there is also a longer
interval after the first two pairs.

The interval between each mount and dismount (when the participant is sitting on
the horse) is much more consistent (probably as a result of the script). The first and
second mount to dismount intervals are both 4 seconds and the last mount to dismount
interval is 3.4 seconds.
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Figure 5.5: Subset of sensor data collected from a participant during a laboratory session.

The periods prior to the mount/dismount series records the sensor on a bench after
being turned on, being fitted to the participant’s wrist and then the participant wait-
ing around while the researcher checked and adjusted equipment such as the video
camera. The period after the series is essentially the participant taking off the sensor
and it being placed back on a bench.
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Figure 5.6: LALab Input Data Set

Figure 5.6 depicts the recorded time series after pre-processing and manual la-
belling. The three panels each show the 3-dimensional recordings from the ac-
celerometer, gyroscope and magnetometer respectively. The alternating background
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stripes show the activity undertaken during recording (mounting, dismounting and
null class). The figure depicts all 17 mounts and dismounts and the figure has been
truncated to the right to help highlight the mount and dismount data.

From figure 5.6, careful observation shows that there is a slight drift upwards over
time with the Gyroscope data. This drift is relatively common with lower priced
Gyroscopes and this tendency has been ignored in the data analysis. In addition, the
y axis (green) of the Magnetometer data also drifts upwards over time, while the x
and z axis do not show the same level of drift. The presence of the drift on only a
single axis is possibly due to the sensor moving slightly on the participant’s wrist as
they move about. In addition, some level of drift is common with consumer level
Magnetometers such as this one but normally the drift would be present on all axis.

The level of drift in the raw magnetometer data represents 3.5% of the possible
range, over 17 minutes but once the Magnetometer data is cleaned and normalised
the drift is magnified and represents a 32.7% difference in range over the full 17
minutes. Cleaning and normalisation has expanded the central part of the signal and
emphasised the drift. However, most of the drift occurs before the first mount and
after the last dismount. Between the first mount and last dismount the drift in the
cleaned and normalised signal is only slightly more than 1.69% of the full range and
so for these iterations this Magnetometer drift has also been ignored.

5.3.7 Input Data Editing & Error Checking

The raw data files are hand edited to remove extraneous set up data and commands
that were logged before and after the main data file. Column labels are inserted as
the first line of the cleaned file. An error checking routine is then run against the file
to check for missing and out of range data. No out of range, invalid or missing data
was found in this file.

5.3.8 Data Synchronisation & Labelling

Synchronisation was done following the process outlined in Figure 4.1 and described
in Section 4.6.3, see page 79. Once synchronisation is complete the video is used to
find the frame where the occurrence of each activity starts and finishes. The video
frame numbers are then translated into an applicable sample numbers from the sensor
stream, based on the synchronisation point, and class labels are added to the sensor
data based on the activity definitions.

5.3.9 Realistic Data Encoding

The time series data obtained from the sensors are presented to the reservoir in the
form of an ordered sequence of real-valued data vectors. In order to compute an
input compatible with the SNN, each real value of a data vector is transformed into
a spike train using a spike encoding. Based on the earlier work with synthetic data
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we decided to use Population encoding only, as this was the only technique that gave
satisfying results.

Population encoding uses more than one input neuron to encode a single time
series. The idea is to distribute a single input to multiple neurons, each of them being
sensitive to a different range of real values. This implementation is based on arrays
of receptive fields with overlapping sensitivity profiles as described in Bohte et al.
(2002); Schliebs et al. (2009). The reader is referred to the mentioned references for
further details and examples of this encoding algorithm. As a result of the encoding,
input neurons emit spikes at predefined times according to the presented data vectors.

5.3.10 Readout and Learning - LSM with Realistic Data

In this part of the study, we use the typical analogue readout function in which every
spike is convolved by a kernel function that transforms the spike train of each neuron
in the reservoir into a continuous analogue signal.

We use an exponential kernel with a time constant of τ = 50ms. The convolved
spike trains are then sampled using a time step of 10ms resulting in 500 time series –
one for each neuron in the reservoir. In these series, the data points at time t represent
the readout for the presented input sample. A very similar readout was used in many
other studies, e.g. in Schrauwen et al. (2008) for a speech recognition problem.

Readouts were labelled according to their readout time t. If the readout occurred
at the time when a sensor signal of interest (e.g. mounting/dismounting the horse)
was fed into the reservoir, then the corresponding readout is labelled accordingly.
Consequently, a readout belongs to class 0 (base class), if it was obtained during the
presentation of a part of the input signal that is of no particular interest.

The final step of the LSM framework consists of a mapping from a readout sample
to a class label. The general approach is to employ a machine learning algorithm to
learn the correct mapping from the readout data. In fact, since the readout samples are
expected to be linearly separable with regard to their class label Maass et al. (2002), a
comparably simple learning technique can be applied for this task. From the labelled
readouts, we obtained a ridge regression model for each activity of interest mapping
a reservoir readout sample to the corresponding class label. Ridge regression is es-
sentially a regularized linear regression that has been reported to counteract model
over-fitting. We tried different values for the regularization parameter α and used
α = 10 for this design iteration.

5.3.11 Results - LSM with Realistic Data

Figure 5.7 shows the outputs obtained from each of the individual processing steps of
the LSM framework. Sub-figure A shows the input data, sub-figure B shows the ef-
fect of the input on the Population encoded input neurons, sub-figure C shows the re-
sponse from the output neurons when using Population encoding, sub-figure D shows
the internal liquid state when using Population encoding and sub-figure E shows the
results of the weighted outputs of the Population encoded data after linear regression
plus the training signal for both Mounts and Dismounts.
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The data consists of a set of nine time series over a time window of 6500ms of
simulation time which included 17 occurrences of two alternating mounting and dis-
mounting patterns, cf. Figure 5.7A. The encoded spike trains (Population encoding)
derived from the time series are depicted in 5.7B. The figures show a raster plot of
the neural activity of the input neurons over time. A point in these plots indicates a
spike fired by a particular neuron at a given time.

Figure 5.7: Results obtained from the LSM using realistic data as input.
See text for detailed explanations on the figure.
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The obtained spike trains were then fed into a reservoir resulting in characteristic
response patterns of the reservoir neurons, cf. Figure 5.7C. The reservoir is contin-
uously read out every 10ms of the time simulation using the technique described in
section 5.3.10. Figure 5.7D shows the readouts over time for the Population-encoded
reservoir inputs. The colour in these plots indicates the value of the readout obtained
from a certain neuron; the brighter the colour, the larger the readout value. The bright
horizontal lines in this plot indicate the reservoir neurons that are directly stimulated
from the encoded spike trains of the input neurons. The stimulus causes a character-
istic readout pattern in which the mount and dismount signals are detectable.

The learning and classification step of the LSM framework is presented in the last
plot of Figure 5.7E. Within this figure, graph R1 (class 1) represents Mounts and
graph R2 (class 2) represents the Dismounts. Within R1 the target signal (Mounts)
is shown in dark red with the output (predicted) signal shown in dark blue and over-
printed. Within R2 the target signal (Dismounts) is shown in light blue and the output
(predicted) signal in light red.

We used two ridge regression models, one for learning the mounting class and
the other for learning the dismounting class. Both ridge regression models were
trained on the first 3250ms of readout data and then tested on the entire set of time
series. For the testing, we obtain the output of both regression models and choose
the one reporting the larger output in order to decide the class label (winner-takes-all
strategy).

Contrasting the two regression models associated with R1 and R2 it can be seen
from the figure that, in this case, the models was able to clearly differentiate Mounts
from Dismounts in all cases where actual Mounts or Dismounts occurred. At around
3800 the predicted class 1 signal (Mount) is showing some additional amplitude dur-
ing a dismount activity but the class 1 amplitude is clearly much lower than the class
2 amplitude and so this dismount is correctly classified. At around 4000 the class 2
(dismount) amplitude is raised during a mount activity but again the class 1 ampli-
tude is much higher than the class 2 amplitude during this sequence and so, again, the
activity is correctly classified. However, at around 5900 both the class 1 and class 2
signal amplitudes increase during a period when nether a mount nor a dismount is oc-
curring and so both signals produce a false positive although as the class 2 amplitude
is higher only a false positive dismount would result. The opposite occurs at around
6300. In both cases the actually activity being performed by the subject is that they
are taking off the sensor from their wrist.

A sample was considered as correctly classified, if the corresponding model output
was larger than a threshold of 0.6 for mount/dismount samples. The model reported
excellent classification on the training data (97.2%) and a satisfying classification
accuracy on the testing data (85.1%). Errors usually occurred immediately after the
onset of a signal when the reservoir had not yet accumulated sufficient information
about the pattern. Considering the short training period, this result is encouraging.
The classification accuracy decreases at the very end of the simulation. Here the
horse rider actually removes the sensor from her wrist which is an activity not trained
within the system resulting in highly variable model outputs including false positive
classification.
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5.3.12 Discussion - LSM with Realistic Data

This part of the research takes the initial ideas and framework that were applied to
synthetic data and applies these ideas and framework to realistic data captured dur-
ing a scripted activity session from a single participant (rider) under laboratory con-
ditions. The LSM model that was produced met and exceeded the design goals,
successfully classifying the two activities of interest although also producing false-
positive results as well.

While these results are encouraging, it should be acknowledged that the data does
not include any of a myriad of common activities normally encountered by horse
riders and where one such activity was included (taking off the sensor device) this
resulted in a false positive being detected for both classified activities. Countering
this caution, none of these activities were included within the training sub-set of
the data and so (perhaps) it is unreasonable to be too critical of the false-positive
detections until more varied data is included within the training set.

In addition, the script that the participant followed while recording this data was
very regular, with regular pauses and repetition of a small subset of activities with the
same orientation (horse to rider) and within a confined geographic area. This regu-
larity creates artificial artefacts within the data and, unfortunately, it is not possible
to tell what artefacts of the data the LSM is learning and so it is not know how well
this will translate into a real-world situation or even across multiple riders within a
scripted, laboratory environment.

At this stage the author was reasonably confident that RC techniques in general and
LSM based models in particular were capable of classifying spatio-temporal inertial
sensor data. However, this data has not been tested with alternate, windowed and
more traditional classifiers and so at this stage it is not know if RC techniques have
advantages or disadvantages over more traditional techniques.

A LSM is a complex system with a large number of parameters needed to config-
ure spike encoding, reservoir size and connectivity, readout and learning algorithms.
A grid search was used to select feasible parameters for this design iteration and a
typical run of the grid search, utilising LSM models with 500 neurons and repeating
each train and test cycle three times to enable us to average the model response took
between five and seven days of elapsed processing time on a MS Windows i7 PC.
Such long runs were prone to problems in a networked, corporate type computing
environment subject to enforced software updating and the occasional power outage.
If a problem occurred during such a long run then a lot of time was lost re-running
the model. A solution that did not need such long run times was highly desirable.

Despite this the results that were obtained were promising enough to convince the
author that the concept of using a RC based classifier was feasible enough to progress
on to simplifying the overall technique, decreasing run times for model testing and
applying RC techniques to multiple participants and real world data. What was clear,
though, was that LSM techniques in particular required considerable tuning of the
largish numbers of parameters in order to produce reasonable results.
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5.3.13 How the design iterated

The proof-of-concept work had provided enough confidence to continue down the
track of using non-windowed RC techniques as a classifier for punctual activities
but it was also clear that there was a need to try more complex (and perhaps larger)
datasets, additional parameter tuning and result visualisation. The existing tools were
complex to operate and required a lot of processing power to run.

A wider view was taken and the author looked at other possible tool-sets that would
allow for similar things to be done but perhaps in a less complex manner, using
tool-sets that were more generalised so that existing libraries could be used, where
possible, for alternate techniques and where more easily parallelisable versions of
routines or code could be found that would reduce the elapsed compute time so that
the long compute times needed for optimising parameter sets could be made more
manageable.

5.4 E X P L O R AT I O N P H A S E ( P H A S E 2 )

The aim of this second phase of the research was to explore the various forms of RC,
parameter selection and input data pre-processing to obtain a workable set of tools to
allow the goal driven research to progress at a quicker rate. A summary of the results
from this phase of the work were reported in Hunt et al. (2014).

Phase one work has shown promise of a potentially reliable classification technique
for punctual movements, however the ability to further explore this problem area
has been constrained by a need to optimise the run-time parameters for the LSM.
Early efforts were based around using a simple grid search to find useful parameter
sets based on heuristic advice on likely good starting points. Some of these early
grid searches took between five and seven days of continuous running on a single i7
MS Windows based PC using code developed by Schliebs in Python. A number of
the datasets contain in excess of 36,000 samples of sensor readings and none of the
datasets in the current collection contain less than 10,000 sensor reading samples.
Training and testing a LSM on datasets of this size paired with numbers of neurons
in (perhaps) the low thousands requires significant computing resources using then
available techniques and equipment. While this was workable for one-off iterations
once there was a useful set of LSM run-time parameters matched to the dataset, it
was much less workable when trying to optimise the LSM run-time parameters.

There are a number of ways to either reduce the computing resources required or
increased the available compute power, such as:

1. optimising and re-implementing the python code using C for key areas;

2. parallelising the code so that it could take advantage of multi-processor i7 and
similar CPU’s;

3. redesigning the code to use GPU’s for key, compute intensive parts; running
the grid searches on a networked Condor cluster or running the GPUised code
on a local GPU cluster;
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4. using alternate, potentially more computationally efficient RC techniques and
changing the parameter search methodology to something a bit smarter than a
simple grid search.

5.4.1 Performance Improvement Problem Identification

The long, multiple day, LSM parameter optimisation runs took too long to run and
when run on a desktop computer in a corporatised (university) environment some-
times failed prior to completion as a result of power outages (cleaners or others turned
off computers at night) or corporate enforced reboots after system and security up-
dates. This meant that potentially a run might take even longer with re-starts with the
worst recorded case taking over three weeks to run a single optimisation with three
restarts. The extended time between having an idea about how something could be
improved, developing the code to implement that idea and then demonstrating that
idea in practise was proving impractical and was restricting any desire to try new
ideas. The period of time between having the idea and demonstrating the idea needed
to be reduced.

5.4.2 Performance Improvement Motivation

The motivation for this design iteration was to improve the available tool-set by
speeding up the time between ideation and demonstration so that it became possi-
ble to have more ideation–demonstration cycles. This, in turn, would allow for more
comprehensive demonstrations of the value of using RC models to classify punctual
activities based on inertial spatio-temporal data.

As a first step, it was decided to try using ESN technology as an alternative to
LSM technology to see if this would give similar error rates during testing while
reducing compute requirements. Work such as Verstraeten et al. (2007) provides an
excellent comparison of LSM and ESN techniques across different dataset types and
they found that the use of spiking techniques (LSM) were generally more beneficial
at equivalent neuron population sizes but did not report computational requirements.
Our own experience suggested that ESN’s, in general, required less computational
resources but there was no imperative evidence to test if increasing the ESN neuron
population size could produce equivalent error rates to LSM techniques with smaller
neuron populations while retaining the potential computational advantages of ESN.
A decision was made to implement ESN techniques in R (R Core Team, 2012) and
re-run the initial LSM Realistic Data iteration (Schliebs et al., 2013) to see if this
approach had any advantages. Schliebs wrote an R routine that implements ESN as
defined by Lukoševičius and Jaeger (2009, pp 127-149).

5.4.3 Performance Improvement Design Goals

The goals of this first exploratory step was to ensure:
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1. that the newly written ESN R code worked as planned by achieving comparable
results vis-a-vis the Python based LSM code

2. that the partially parallelised version of the PSO search ran with considerably
less elapsed time than the grid-based search, in an appropriate environment.

5.4.4 Performance Improvement Measures of Success

1. A classification rate similar to that achieved by the LSM model

2. An elapsed compute time for the parameter optimisation process that is con-
siderably less than that for a grid search with a similar parameter range.

5.4.5 Performance Improvement Description

The first step in this phase was to repeat the LSM work with the LALab data using
the newly written ESN routines in R. In addition, it was decided to try to speed up
the model parameter optimisation searches by switching from a grid-based search
methodology to an evolutionary algorithm, specifically a PSO. PSO technology has
been recommended by researchers such as Lin, Ying, Chen, and Lee (2008) because
of their ability to cover a wide search space relatively quickly.

R immediately proved to be a good choice as it has an existing library routine de-
signed to implement PSO optimisation techniques (Bendtsen., 2012). This proved
to be a simple call to a ’psooptim’ function within R. In conjunction with the de-
cision to use a PSO parameter optimisation search a decision was made to write the
basic parameter search code to enable partial paralllelisation of the code in Posix run-
time environments in order to further speed up the model parameter search process.
Schliebs wrote an initial version of the ESN parameter search code to implement both
partial parallelisation and the PSO search technique. This section of work follows the
recommendations in “How to do good research in activity recognition” (Plötz, 2010).
This section of work was reported in Hunt et al. (2014).

5.4.6 Entity description

The entities involved in this section of work are the horse rider and the horse. In this
case the horse is a built for purpose wooden model that allows multiple mounts and
dismounts in a laboratory setting without having to deal with horse welfare or safety
issues.

5.4.7 Session Script

The script asked the participant to start and finish each mount/dismount pair at the
same spot in the laboratory, within three metres of the wooden horse but clear of
all obstacles. Prior to each mount/dismount pair the participant clapped her hands
over her head two times as a synchronisation signal (to enable the inertial data to
be synchronised with the video). After each set of claps and upon mounting the



5.4 E X P L O R AT I O N P H A S E ( P H A S E 2 ) 115

participant was asked to pause for approximately five seconds by standing or sitting
still while counting 1001 ... 1005.

5.4.8 Sensor

The SparkFun 6DoF inertial sensor is as described in Section 5.3.4, on page 104.

5.4.9 Data description

The same dataset used in 5.3.6 was deliberately chosen to enable a comparison be-
tween LSM and ESN technology and consists of one of the two laboratory riding
sessions, utilising a single participant mounting and dismounting a wooden horse 17
times with the sensor on her right wrist, while following a scripted activity sheet.

The participant, who was an experienced rider, wore the sensor on her right wrist
using a simple stretchable Velcror bandage for attachment. The participant self-
described herself as right-handed. The “horse” used during the laboratory sessions
was a built-for-purpose wooden framed horse (Diana) of approximately 16 hands in
height (163cm at the “shoulder”), draped with a standard European riding saddle and
stirrups.

During the laboratory sessions the video camera was fixed into position using
clamps so that the researcher was free to move around if needed. Again, figure 5.5,
on page 106 shows a sample of the data from two mounts and dismounts recorded
during this session.

5.4.10 Input Data Editing & Error Checking

This was as described in Section 5.3.7 on page 107.

5.4.11 Data Synchronisation & Labelling

This was as described in Section 5.3.8 on page 107.

5.4.12 Data Cleaning and Pre-processing

The sensor readings are normalised to a range between -1 and 1. The ESN prefers
input in the range [−1, 1] and so normalisation gives an opportunity to extract max-
imum information from the signal. Prior to normalisation the 0.1% upper and lower
quantiles were removed as suggested in Discovering knowledge in data: an introduc-
tion to data mining, Larose (2014, p. 35). Removing the outliers and replacing them
with the signal mean value allows for the maximum signal range at the cost of a very
small number of changes to the signal.
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5.4.13 Data Encoding

One advantage of using an ESN model without LIF spiking neurons is that the input
data does not need to be encoded into spike trains. The time series data obtained from
the sensors are cleaned, pre-processed (as above) and presented to the reservoir in the
form of an ordered sequence of real-valued data vectors.

5.4.14 Reservoir Description

The Reservoir is a transformation of the inputs into a high-dimensional, intermediate,
feature space that is then reflected by the output neurons at each time step.

The three components of the ESN model are the Input, Reservoir and Output neu-
rons. One input neuron is employed for each input data vector (9 in this case), one
neuron for each output Class (2 in this case) and a parametrised, selectable number
of Reservoir neurons (939 in this case).

Table 5.2: Set up parameters for the initial ESN model.
Fixed Options

Item Description Justification
Neural model Analogue sigmoid acti-

vation using tanh
Jaeger (2005)

Input connectivity Fully connected, uni-
directional, input to
reservoir, random dis-
tribution of weights,
approximately 50%
excitatory and 50%
inhibitory (random
sample −1 and +1)

Jaeger (2005)

Reservoir connectivity Fully connected,
asymmetric topology
between reservoir neu-
rons, random, normal
distribution of weight
values with a mean of 0
and sd of 1

Jaeger (2005)

Variable, Run-Time Options
Parameter Description Justification
Input values 9 vectors of normalized,

real-valued data
Input

Number of neurons 939 Parameter search
Input scaling 0.9147 Parameter search
Neuron leak rate 0.0594 Parameter search
Linear Regression Regularisation 2.7000 Parameter search
Spectral Radius 1.0000 Parameter search
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In a generalised ESN model, each input neuron is connected to each Reservoir
neuron, but not directly to the Output neurons. Connections from the Input neurons
directly to the Output neurons are an optional feature of ESN’s. Each connection
from the Input to the Reservoir has a randomly set weight of either -1 or +1. This
results in approximately 50% excitatory and 50% inhibitory connections.

Each Reservoir neuron is connected with each other Reservoir neuron, including
itself. Each Reservoir neuron interconnection has an initial value taken from a ran-
dom, normal distribution with a mean of 0 and a Standard Deviation of 1. These
initial Reservoir weights are then scaled by the selectable Spectral Radius parameter
value to ensure that the Reservoir weight matrix is less than unity.

The Input and Reservoir weights are initiated prior to training and remain static
throughout training and testing. A subsequent reinitialisation will result in a different,
random set of weights being set.

The Output neurons, in this implementation of the ESN model, are not connected
back into the Reservoir. This is an optional feature of the ESN model. The Reser-
voir neurons are connected to the Output neurons though, of course, and the weights
for these connections are initially set to zero and are then modified during training.
The Reservoir neurons use tanh to implement a sigmoid activation function. In this
implementation, Regularised Regression is used to train the output weights.

5.4.15 Results

An evolutionary algorithm, i.e. a PSO is used to do a search of the parameter space
for the ESN, to find a suitable configuration to use. The regularization parameter
α, the number of reservoir neurons Nx, the scaling factor of the input weights, the
leaking rate a and the spectral radius ρ(W) are optimised. The ranges for these ESN
parameters are generally accepted sensible ranges and were taken from Lukoševičius
(2012) and are shown in table 5.3. The lower bound for the regularisation parameter
was set at zero (minimum) and the upper bound was set at 5 as a combination of the
advice from Lukoševičius and experience. Lukoševičius (2012, p. 10) cautions that
setting regularisation too high may result in the ESN model being too sensitive to the
input (over-trained) and/or unstable but does not suggest an upper-bound. In some
early attempts at optimising this parameter it tended not to go much higher than 3
or 4 and was often much less than this and so an upper bound of 5 was set and kept
throughout this work.

The PSO was run with 14 particles (Bendtsen., 2012) over 50 generations and
within each generation the ESN was initialized and trained five times to take some ac-
count of the stochastic nature of the initialization process. The reservoir is initialised
with randomly assigned weights and so, as pointed out by Lukoševičius (2012, p.
8), each reservoir’s performance can vary slightly even when the meta-parameters
are the same. Lukoševičius suggests that for “large” reservoirs that this variation in
performance is minor but does not, specifically, define what is meant by “large” al-
though Jaeger (2005) suggests that anything over 100 neurons is large for an ESN.
The author’s experience supports this supposition that performance variation is minor
and this is supported by the overall performance of the classifier when presented with
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previously unseen data. However, to counter this variance in the earlier grid based
meta-parameter search process when compute processing took an inordinate amount
of time each reservoir was regenerated three times for each test and the error cost that
was used for tuning was averaged. In this iteration the PSO search and parallelisation
of the code has reduced the compute resources and so each individual test during
meta-parameter tuning is repeated 5 times and the error cost is averaged. In addition,
as recommended by Lukoševičius the random seed is set at the start of each set of
tests to aid with repeatability.

50 generations was chosen as the stopping point for the PSO throughout this work
based on experience. Early attempts to optimise similar parameter sets showed that
the search stabilised within 15-25 generations and looking at Figure 5.8 it can be
seen that this run stabilised after around 20 generations. Each ESN was trained on
the first 50% of the time series and the entire series was used for testing. The root
mean square error between target and actual network output on the test set was used
as a fitness measure for the PSO.

The results of this search process can be seen in figure 5.8. As is visible from the
diagram, four of the five parameters (Number of neurons, Input Scaling, Leak Rate
and Spectral Radius) had settled into a small range within 20 generations. Regu-
larization, the fifth parameter, appears less critical for this problem and a range of
configurations reported satisfying test errors.
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Figure 5.8: Optimising the ESN parameters

The selected parameters from the PSO that were used to run the ESN were Regu-
larisation (2.7), Neurons (939), Input Scaling (0.9147), Leaking Rate (0.05937) and
Spectral Radius (1.0). Fifty percent of the data file was used for training and the full
file was used for testing. The file was divided in two parts with no account for where
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ESN parameters & ranges

Parameter Id Range Justification

Regularisation α 0 to 5 Lukoševičius (2012, p. 10)

Number of Neurons Nx 100 to 1,000 Lukoševičius (2012)

Input Scaling 0 to 1 Full range

Leaking Rate a 0 to 1 Full range

Spectral Radius ρ(W) 0 to 1 Lukoševičius (2012)

Table 5.3: PSO Parameter Ranges
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Figure 5.9: ESN Results, truncated to emphasise classes

that separation point fell in terms of the classes. In this case, as a result of where the
mounts and dismounts occur, the first half of the file includes the first 8 mounts and
the first 7 dismounts. The output from the test run is shown in figure 5.9.

Using a cut off point set at 0.5 of the continuous output y(t) has all mounts and
dismounts successfully classified with one false positive mount classified during the
sequence when the participant takes off the sensor (not visible in above results figure).
No false positive dismounts were classified. Within each mount and dismount there
is a slight lag between the class label and the classified label in most cases with an
associated drop off towards the end of each class. This is an expected characteristic
of the reservoir property as the reservoir needs some time to establish a recognised
pattern.

5.4.16 Discussion

The initial goal was to develop the ESN code and re-run the LSM Realistic Data
iteration so that it was possible to compare LSM technology with ESN technology.
However, this was not done in a formal sense. The ESN classifier had worked well
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Class Predicted Label

Label 0 1 2

0 3298 53 45

1 103 1281 0

2 58 0 1163

Table 5.4: Confusion Matrix of Results

in this particular situation, using data from a scripted activity in a laboratory setting
collected from a single participant. The false positives towards the end and in some
cases midstream, possibly indicates that the ESN classifier would benefit from addi-
tional training that provides a wider variety of signals that are outside of the desired
classes.

It is worth noting that the use of overhead claps for synchronisation and the
scripted pauses in activity introduce noticeable signal artefacts into the data. While
it is not possible with an ESN to tell what properties of the signal are used by the
classifier it is probable that the artefacts make a contribution to classification.

For example, the initial spike in the classifier response in the wider gap between
the second dismount and the third mount (at around 125 seconds in Figure 5.9 on
page 119) may be indicative of the ESN starting to respond to the synchronisation
signal during the slightly longer pause. In addition, the clear pause in activity after
mounting consistently occurs just prior to dismounting and so this artefact may well
contributing to dismount classification success. It would be unwise to conclude that
the current classifier is suitable for use on data that does not contain artificial artefacts.

The current pre-processing techniques that were used to normalise the signal be-
tween -1 and +1 will have created additional signal artefacts including magnifying the
drift in the Magnetometer and Gyroscope data. The removal of outliers has enabled
the central portion of the signal to be amplified but the outliers are real data and so by
removing them the underlying activity signatures have been changed. These issues,
without resolutions, will make it difficult to generalise the results across participants
and across other sensors.

This data was collected from a single individual using a single (wooden) horse on
the same day using the same equipment. This provides unrealistic consistency. In
the real world not only do riders not follow a script when mounting and dismounting
they also come in all sizes, temperaments and skill levels; their horses come in all
sizes, temperaments and training levels; additional equipment may be involved such
as a rider holding a crop while mounting and differing techniques may be used while
mounting. All of this cautions the author against simplistically concluding that he is
close to having a simple, reliable technique of classifying this (or any other punctual
activity) that works across riders and situations.

This dataset represents an idealised scenario and provides an excellent chance of
successful classification. The positive results are pleasing and they need further de-
velopment before it can be safely concluded that RC techniques in general and ESN
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techniques in particular are suited to classifying punctual human activities based on
inertial data. However, despite this caution, these results are positive, seem to be
as accurate as LSM techniques and are less resource intensive than the prior Python
based LSM tool-set. As a result there was a willingness to follow this path further
and a general confidence that ESN techniques are as effective as the earlier LSM
techniques in this area.

While the same data was used, similar results were achieved and this work was
reported in a paper (Hunt et al., 2014), no attempt was made to actually compare the
computing resources between both RC techniques. Instead a pragmatic decision was
made to continue further work using ESN technology based on:

• the author’s (developing) better knowledge of R as a programming language
versus Python

• The more resource efficient parallelised version of the PSO parameter search
optimiser versus the grid-based Python search optimiser that enables us to ex-
periment widely without worrying about lengthy jobs running over numerous
days that may fail midstream

• The ready availability of library packages for Machine Learning and supple-
mentary technologies within R

The earlier LSM work was done using Python based code developed by Schliebs
for Knowledge Engineering and Discovery Research Institute (KEDRI) and is part of
KEDRI’s tool-kit for work of this nature. This system was run on a Macintosh com-
puter. In the beginning, the Python code was run by Schliebs while this researcher
contributed by running the grid search to optimise the LSM parameters, produced
some of the graphics and pre-processed the inertial data on a MS Windows based PC.
The plan was to progressively move all technical work from Schliebs to the author as
the author learnt how to operate and modify the code base.

At the beginning of this work, the author had a passing knowledge of programming
in Python but did not have any substantive development experience in Python beyond
some simplistic learning exercises and had no experience in R of any sort. For this
part of the work, Schliebs wrote an underlying library routine to implement ESN
techniques within R, while the author developed almost all of the ancillary R code
needed to run each design iteration (using the ESN library routine), pre-process the
data, optimise the model parameters and visualise the results. Note that the ESN
written by Schliebs includes some plotting routines that allow the ESN model to
be visualised. As a result, the author learned R and learnt it to a depth beyond his
knowledge of Python.

The results produced using the ESN model were comparable to those produced
from the LSM model with similar performance to the Python code. In addition,
it became clear that R is a very powerful language and environment for scientific
computing with libraries for all of the areas needed in this investigation. Schliebs
then left the research team. With substantive time invested in learning R versus a
passing knowledge of Python and greater familiarity with the process of operating
the ESN routines it was decided that ongoing research would be conducted using R
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and that meant that a decision would need to be made about how to use LSM models
in future research, the options seemed to be:

• Interface R with the Python code when needing to run the LSM code

• Re-write the LSM code in R

• Stick with using ESN models only for the remainder of this research.

With the departure of Schliebs the author no longer had ready access to a Mac-
intosh based computer and had reduced access to the LSM code written in Python.
While both of these issues could have been resolved they involved effort and addi-
tional resources that were not absolutely necessary.

Without access to both the LSM and ESN technology on the same hardware plat-
form it would have been difficult to quantitatively assess the performance of one tech-
nology against the other. While putting them both on the same hardware platform was
possible, it required time and effort that was better spent further investigating one of
these two branches of RC.

A start was made along several lines before coming to this conclusion. Firstly
a Macintosh computer was borrowed and an attempt was made to install and run
the LSM Python code but the author’s lack of experience with both Mac OS and
Python meant that this process was time consuming and frustrating. The author also
considered running the ESN R code under Mac OS and this was probably the best
of the choices in terms of performance via a single computer but ultimately it was
decided that relative performance on a single computer was not an important enough
issue to invest time into resolving when the possibility existed of running compute
intense parallel processing optimisation runs on clustered Linux computers instead.

5.4.17 Results versus Goals

1. that the newly written ESN R code worked as planned by achieving comparable
results vis-a-vis the Python based LSM code.

The core ESN model code went through two major iterations before the author
was happy that it implemented a ESN model with suitable functionality. Both
versions were written by Schliebs with some feedback from Hunt. The biggest
difference between the versions is that the initial version was written using
well structured for loops for repetitive functions while the second used R’s
matrix operators and thereby enhanced possible future parallelisation attempts.
This use of R’s matrix operators had a tendency to decrease execution times,
although this was not measured formally and nor was any performance increase
particularly notable.

In addition, the initial implementation allowed for both real and discrete
outputs as a selectable run time parameter. Between the versions it was de-
cided that this was outside of the core functionality required from this code
and so the code was altered to allow for real outputs only, with the possibility
of discretising those outputs, when required, using specific functions for that
as post-model processing activities.
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The third major change was that model plotting routines that were initially
included within the core code were extracted out and provided as a separate
function to enable changes to the plotting code to be kept separate from the
ESN model creation and running routines.

Lastly, the initial code included techniques for undertaking parameter searches
using both a grid search and PSO search. This code was also taken out and
placed into a separate ”tools” routine in the second version of the code.

Schliebs undertook additional tests and declared the code ”complete” and
”functioning correctly” as per Lukoševičius and Jaeger (2009), then handed
the code over to Hunt. Hunt accepted the code once it became apparent that it
was achieving comparable results to the LSM iteration.

The 500 neuron LSM model using parameters optimised via a grid search
processed the LALab file and correctly classified all mounts and dismounts
with false-positive mounts and dismounts at the end of the input, using a 0.6
cut-off. Sample by sample testing classification using the LSM was 85.1%
correct in this instance.

Figure 5.10: Non-truncated results of LALab classification using LSM.

The 939 neuron ESN model using parameters optimised via a PSO search
processed the same LALab file and also correctly classified all mounts and
dismounts and also produced false positive mounts and dismounts at the end
of the input using a 0.5 cut-off. A 0.5 cut-off being more sensitive to false-
positives. Sample by sample testing classification using the ESN was 95.6%
correct in this instance. It was interesting to note that the output signal from two
different RC techniques appear to be very similar, including the signal shape at
the end where the rider is taking off the sensor.

The stochastic nature of ESN models is demonstrated in Figure 5.11. Pro-
ducing this figure meant re-initialising the model as the initial run had only pro-
duced and retained the truncated figure and when the model was re-initialised
the input and reservoir neuronal weights were reset. Even though the same
parameter values were used for this model it has an additional false-positive
mount just after the eleventh real mount, undoubtedly as a result of differing
internal neuronal weights. A different view of this output data showing just
the classes at the 0.5 cut-off level is shown in Figure 5.12. This view makes it
easier to see where the false-positives occur.
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Figure 5.11: Non-truncated results of LALab classification using ESN.
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Figure 5.12: Classes from LALab classification using ESN, at 0.5 cut-off.

It is suggested, based on these reported outputs, that the ESN R code has
worked as designed and has achieved comparable results to the Python based,
LSM code and as a result this design goal has been achieved.

2. that the partially parallelised version of the PSO search ran with considerably
less elapsed time than the grid-based search, in an appropriate environment.

A single grid based search for the Python based LSM code typically took five
to seven days (120–168 hours) of elapsed processing time to complete on a
single MS Windows based i7 PC. To take account of the stochastic nature of
this LSM code each parameter set was run three times and the error rate was
averaged across the three runs. A similar grid based search was initially written
in R for the R based ESN code. These R encoded grid based searches took a
similar amount of time to run, typically around seven days, on a MS Windows
based i7 PC.

After writing the PSO R based code a search across a similar parameter set
on the same MS Windows based i7 PC completed in hours rather than days.
On the same MS Windows i7 PC a non-parallelised PSO parameter search
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took 20 hours, 38 minutes and 26 seconds elapsed time to run with five repeats
of each ESN being run and averaged, for 50 generations versus only three re-
peats when using the Grid search. On a VMWare virtual eight core machine
running Debian the same search, across the same data, again with five repeats
and 50 generations, took 5 hours, 55 minutes and 6 seconds elapsed time to
run. Table 5.5 summarises these results.

The reduction in elapsed time with the parallel PSO search on the Debian
machine was noticeable and was a major factor in deciding to stick with R,
ESN models and PSO parameter searches. With this reduction in elapsed time
it became feasible to test multiple scenarios without losing significant amounts
of time for each test, especially if a test failed for some reason and needed to
be repeated.

Search Machine Op Sys Parallel Repeats Elapsed Hr:Mn

Grid i7 MS Windows 7 No 3 144:00

PSO i7 MS Windows 7 No 5 20:38

PSO Virtual 8 core Debian Yes 5 5:55

Table 5.5: Comparing each parameter search techniques elapsed time performance

R and RStudio have shown their versatility and usefulness in many situa-
tions. For example, when more sophisticated graphing was needed, the GG-
Plot2 library that is powerful and (relatively) simple to use was found. When
a SVM or Random Forest model was needed as a classifier for the same input
data, a R library to do this was readily available and relatively simple to imple-
ment. R code can be interactively developed and run within RStudio on either
a local PC running MS Windows, on a Macintosh computer or via Amazon’s
Elastic Cloud Compute facility, utilising Debian multi-processor virtual ma-
chines over the Internet when required. R’s flexibility and usability both within
a MS Windows environment and across other operating systems environments
has been exemplary. With the addition of Latex and GIT, R and RStudio pro-
vide a powerful researcher workbench for research of this nature.

R code development has continued and Hunt is now the only researcher
working on code development for this research and so Ipso Facto, Hunt has
learned enough R to take over R development for this research.

In addition, Hunt et al. (2014) and Hunt and Parry (2015) demonstrates that
Hunt has been able to take on the role of lead author for papers and to lead the
research.

The parallelised version of the PSO code uses the R package ’parallel’ (R
Core Team, 2012) to achieve parallel processing. This library function utilises
’fork’ to run multiple threads on multi-core processors under POSIX environ-
ments. Under MS Windows environments there is no equivalent to ’fork’ and
so the same code runs as a single thread. Running the same parallelised code
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in both Linux and MS Windows environments results in the same outputs but
with shorter elapsed run times under multi-core Linux environments.

5.5 A M E N D I N G T H E AC T I V I T Y D E FI N I T I O N - M O U N T I N G V M O U N T E D

After running the realistic data iteration against the LSM model, as described in sec-
tion 5.3 it was realised that while the LSM (and later the ESN) did indeed normally
take some time to ramp up to a correct activity classification at the start of the activity,
that this ramp up period was usually short and in the order of one or two samples.
As a result the decision to add a 10 sample start buffer to the activity class was ques-
tioned. At the same time, the decision to add an end buffer to encapsulate some small
part of the mounted activity that follows mounting was also questioned.

Lastly, while looking at the activity definitions the wisdom of starting the stirrup
mount when the rider has both feet on the ground, versus at a later point was ques-
tioned. With the laboratory activities that used a ’wooden’ horse questioning this start
point versus a later start point was mute as the ’wooden’ horse did not move during
mounting. In the real world, however, riders mount real horses rather than ’wooden’
horses and real horses sometimes move away from a rider as they try to mount. With-
out going into a longish explanation about why this might be, let it suffice that this
moving away from the rider is encountered often enough to be worth considering.
Within the real-world data, there are real examples of this behaviour.

When a horse moves away from the rider as they prepare to mount, the rider must
follow the horse, let the horse go or continue holding on while the horse moves away
and risk overbalancing and falling on the ground. Typically, riders encounter this
behaviour after they have put their left foot into the stirrup and so if they hold onto
the horse as it moves they end up hopping along beside the horse as it moves until
they are stable enough to start mounting.

In one session, the rider hopped for several minutes before being able to success-
ful mount. As a result, sticking with the initial definition of mounting both makes
mounting different between situations when the horse moves (and it does not move)
and increases the time variance between different situations. In addition, using the
last time the rider has two feet on the ground results in the inclusion of false start
mount data when the horse moves away enough to have the rider take their foot out
of the stirrup and start again. It is suggested that this false start mount data may
prejudice the ability to correctly classify mounts in real world situations.

It is also worth noting that it can take considerable effort for a rider to raise their
body when doing a stirrup mount especially when a rider who is somewhat shorter
than a particular size for the size of the horse attempts a stirrup mount. In this case
(short rider and/or tall horse) then the rider often tends to "bounce" once or more
before doing the actual mount in order to gain enough momentum to get their body
up high enough to get their leg over the horse’s back.

These bounces could either be viewed as a form of preparation for mounting and
included or they could be viewed as a sub-activity separate from mounting and only
encountered in some limited cases and so not part of the mount. This later stance was
adopted and any bounces were not included in the new re-definition of mounting.
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In terms of horse welfare, bouncing prior to mounting while having one foot in
the stirrup puts unnecessary pressure on the horse’s back, especially if the saddle is
ill-fitting or badly adjusted and so can injure or hurt the horse. In general, knowl-
edgeable riding coaches strongly discourage riders from bouncing prior to mounting
and usually encourage the rider to instead use a mounting block or other stationary
thing to assist in raising their body in relation to the horse in order to prevent injury
to the horse while mounting.

A similar definition is proposed that starts just a little bit later (for non-moving
mounts) and is more general, results in less time variation and excludes possible
bounces pre-mount. It is more succinct and more general. With dismounts, particu-
larly drop-style dismounts, the rider will often break the impact of landing back on
the ground by bending their knees and then bouncing back upright. On reconsider-
ation, it was decided to have a similar philosophy to mounts and only include the
minimum aspects of dismounting and so a decision was made to end the dismount
when both of the rider’s legs first touch the ground. Thereby excluding any knee-
bend or hop on dismount. For both activities it was also decided to remove any buffer
from both ends and rely on the classifier responding quickly enough to capture the
event.

As with all activities, identifying the precise beginning and ending of a mount/dis-
mount is not trivial, this is supported by other researchers such as Plötz (2010). Both
the prior definition and the new definition are difficult to identify exactly within this
dataset as the author had not defined the mount (or dismount) activities formally at
the time the data was collected. Without a pre-defined definition for the activities of
interest the author did not know exactly where to point the camera during data cap-
ture and so, in general the camera shot records the rider’s upper body but does not
show their feet and so in pinpointing the start of the mount an observer needs to look
on the video for an upwards body movement after the rider has put their foot into the
stirrup and use that as the start of the mount. For the dismount, an observer needs to
look for the frame where the rider’s body first stops moving after dismounting and
use as the end point. This results in a slightly arbitrary start and end points for videos
that do not show the rider’s feet. These start and end points are open to interpretation
and can move by a couple of samples depending on each viewing of the video. At
this stage it is not clear if these start and end points for the activities are useful or
not useful and this needs further investigation and thought. In the meantime, they are
what was used in the following work.

5.6 F O R M A L R E - D E FI N I T I O N O F A S T I R RU P M O U N T

A stirrup mount is defined as the period from when a rider with a foot in a stirrup,
lifts their last foot off the ground and starts mounting until the point where they have
their weight in the saddle.
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(a) Prior to mount (b) Last leg leaves the ground

(c) Mounting (d) Mounted

Figure 5.13: Mounting the Lab horse using a stirrup mount technique

5.7 F O R M A L R E - D E FI N I T I O N O F A D I S M O U N T

A dismount is defined as the period from when a rider, seated in the saddle, leans
forward to start dismounting until the point where both feet first touch the ground.

Having redefined the two activities the author then went back through the videos
and placed new class labels on the samples that were included within the redefini-
tions. A summary of a sample of the changes is shown in Figure 5.6 to give a feel for
how the classes actually changed after redefinition.

While the classes were redefined after running the LSM iteration and prior to the
first ESN design iteration, the author did not want to re-run the LSM iteration against
the new classes because of the very long compute elapsed time needed to run the grid
search for the LSM iteration and so the author ran the initial ESN iteration against
the same data as the LSM iteration (Section 5.4) to enable a comparison between the
two techniques and then ran the following design iteration (Section 5.8) to compare
the changes to the class labels using the new ESN tools.
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(a) Prior to dismount (b) Leaning forward

(c) Dismounting (d) Dismounted

Figure 5.14: Dismounting from the Lab horse using a drop technique

Original Class New Class

Activity Start End Length Start End Length

Mount 1 5067 5175 109 5138 5157 20

Mount 2 5415 5522 108 5484 5507 24

Mount 3 5940 6032 93 6004 6023 20

Mount 4 6224 6307 84 6278 6298 21

Mount 5 6532 6614 83 6585 6604 20

Dismount 1 5214 5301 88 5235 5256 22

Dismount 2 5562 5649 88 5591 5609 19

Dismount 3 6078 6156 79 6104 6118 15

Dismount 4 6359 6429 71 6383 6402 20

Dismount 5 6674 6748 75 6693 6712 20

Table 5.6: Comparison of a sample of original and redefined classes from LALab
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5.8 R E P E AT E S N R E A L I S T I C DATA I T E R AT I O N W I T H M O D I FI E D C L A S S E S

The second step in this exploratory phase is to demonstrate the ability of the ESN
model to classify the new, shorter classes by re-running the prior iteration with the
same input data but with the new class definitions.

5.8.1 New Classes Problem Identification

In this case, the problem to be resolved is very clear, the definition of the two classes
has changed and so it became necessary to demonstrate that the new classes could be
classified at a similar level of reliability as the prior classes.

5.8.2 New Classes Motivation

The motivation for this design iteration was also clear, the newly defined classes
could not be used without a clear demonstration that they would be classified reliably
using the same data and techniques as the prior classes.

5.8.3 New Classes Design Goals

The goals for this design iteration are: That the activities within the LALab data can
be classified at a similar level of accuracy using the new classes as that achieved using
the original classes. While a similar or better level of correct classification would be
desirable, a less accurate classification on this dataset will still be acceptable because
the original class definitions could more easily encompass extraneous signal artefacts
caused by the regularity of the laboratory script process. So, even if less accurate
classification results, the new class definitions will be retained because they are more
accurate definitions that will hopefully translate into a more general definition espe-
cially within the real data. A large drop in accuracy on this dataset though will be
some concern.

5.8.4 New Classes Measures of Success

A classification rate similar to that achieved by the classifier from Section 5.4.

5.8.5 New Classes Demonstration Description

The Entity descriptions, Session script, Sensor description, Input data editing & error
checking, Data synchronisation & labelling, Data cleaning and pre-processing and
Data encoding will be as described within Sections 5.4.6, 5.4.7, 5.4.8, 5.4.10, 5.4.11,
5.4.12 and 5.4.13 on pages 114 to 116.
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5.8.6 Data description

The same dataset as used in 5.3.6, namely LAlab, was again used. Of course the class
labels have been redefined but otherwise the input data is as previously described.

Figures 5.15 and 5.16 show the input data with the original long classes and the
same data with the shorter classes. The long classes are easily discernible by the
wider alternating red and blue ’stripes’, while the shorter classes in Figure 5.16 are
harder to discern at this level of zoom.

Figure 5.15: LALab input data with longer classes

Figure 5.16: LALab input data with shorter classes
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5.8.7 PSO parameter description

PSO parameters range for search

Parameter Id Range Justification

Regularisation α 0.0001 to 5 S. 5.4.15

Number of Neurons Nx 200 to 1,000 Lukoševičius (2012)

Input Scaling 0 to 1 Full range

Leaking Rate a 0 to 1 Full range

Spectral Radius ρ(W) 0 to 1 Lukoševičius (2012)

ESN Repeats 7 S. 5.4.15

Particles S 14 Bendtsen. (2012)

Generations 50 S. 5.4.15

Table 5.7: PSO Parameter Ranges for short classes

A PSO search was run using the parameter ranges listed in table 5.7. This search
took 6hrs 31mins 23.5 secs elapsed time to complete on an Amazon ECC virtual
8 processor machine running Debian. The ESN parameters with the lowest fitness
score for the shorter classes was found in the 50th generation and they are listed in
Table 5.8, column (b), alongside the prior parameters used for the longer classes, for
ease of comparison. A second set of short class parameters that came out of a test PSO
search are also shown, in Table 5.8, column (c). With this iteration, the opportunity
was taken to vary the PSO search ranges with a non-zero lower bound was added for
the regularisation parameter, the lower bound for reservoir size increased to 200 and
the number of repeats of each set of tests was increased from 5 to 7.

With regularisation it was noted that prior searches had spent time trying to drive
the value for regularisation down to values close to zero that were almost indistin-
guishable from each other because of their small size and so a decision was made
to limit how small this value could become so that more of the search time could be
spent in more productive areas. The lower limit on the reservoir size was increased to
reflect that most good solutions were found well above 500 neurons and so this also
enables the PSO search to concentrate its efforts in more productive areas. Lastly,
with the increase in search efficiency there was extra compute resources available
and so these were used to help increase confidence in repeatability by increasing the
number of times the reservoir was regenerated.

5.8.8 ESN parameter description

Table 5.8 (b) shows the ESN configuration that provided the minimum score from
the PSO run. The PSO code progressively reports its progress and in this case the re-
searcher tried some of the interim sets of parameters and noted one set [Table 5.8 (c)]
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that seemed to provide a useful outcome despite not having the minimum found score
and this alternate parameter set and its results are also reported here.

Table 5.8: Set-up parameters for the second ESN model.
Fixed Options

Neural model Analogue sigmoid activation using tanh Jaeger (2005)
Input connectivity Fully connected, uni-directional, input to

reservoir, random distribution of weights, ap-
proximately 50% excitatory and 50% in-
hibitory (random sample −1 and +1)

Jaeger (2005)

Reservoir connectivity Fully connected, asymmetric topology be-
tween reservoir neurons, random, normal dis-
tribution of weight values with a mean of 0
and sd of 1

Jaeger (2005)

Variable, Run-Time Options
Input values 9 vectors of normalized, real-valued data

Long class
(a)

Short class
(b)

Alt Short
(c)

Justification

Number of neurons 939 994 779 Search
Input scaling 0.9147 0.9704 0.7835 Search
Neuron leak rate 0.0594 0.2716 0.2252 Search
Regularisation 2.7000 1.1632 1.0293 Search
Spectral Radius 1.0000 0.9595 0.9343 Search

5.8.9 Optimisation Results

A pictorial view of the PSO search process progress is shown in Figure 5.17, (b).
It is juxtaposed to the same view of the prior search progress for the longer classes
[Figure 5.17, (a)] to aid comparisons.

While most ESN parameters settled after 20 generations for the longer classes,
with the shorter classes the search space was still yielding parameter sets that re-
sult in better fitness scores right through until the PSO search was terminated at 50
generations. In particular, Spectral Radius (a parameter with a logarithmic effect)
continues to show variation throughout the search. The number of neurons settled
into a (high) narrow range after 40 generations. Input scaling and Leaking rate show
some bursts of variation that may be associated with Spectral radius.
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(a) Long classes
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(b) Short classes

Figure 5.17: Comparing the PSO outputs - LALab Long and Short classes

5.8.10 Demonstration Results

ESN models were run using both the parameter set from the PSO that produced the
lower score and the alternate parameter set. The real outputs from these runs are
shown in Figure 5.19 and Figure 5.20. in addition, the output from the ESN model
that was run using the original, longer parameters is shown in Figure 5.18 for com-
parative purposes. The two false positives that are marked within Figure 5.18 occur
when the output signal exceeds 0.6 and consist of a Mount false Positive associated
with the participant removing the sensor (at around 7900) and another one at around
5000, immediately after a successfully classified Mount. In the latter case this may be
some sort of ripple effect from the prior Mount as the signal amplitude drops quickly
after the Mount then immediately rises quickly for the False Positive and then drops
again equally quickly.

The shorter classes can be seen in Figures 5.19 and 5.20, compared with Fig-
ure 5.18. The figures have been marked with arrows to make it easier to see the raw
false positive ESN outputs. At this level of zoom it is harder to pick up the false
negatives in a pictorial view, but these are shown in the Confusion matrices. Again,
the false positives occur when the output signal exceeds 0.6 and in this case there is
only a single Mount false positive that occurs towards the end of the plot and is as-
sociated with the participant removing the sensor. There are also five Dismount false
positives, two at around 5800 that may be associated with a slightly longer pause
between mounting and dismounting, another at around 6400 that seems to align with
a lower amplitude output at the same spot in Figure 5.18 and the last two towards the
end of the plot that are also probably associated with the participant taking off the
sensor. Figure 5.19 shows six segments of raw false positive output at an 0.6 score
cut off level. Two of these segments, towards the end of the dismount signal, are very
close together and are indicated with a single arrow.

Figure 5.20 was produced from the alternate set of short class parameters and it
can be seen that there are only three segments of false positive output scores at the
0.6 cut-off level. Interestingly, these align with similar false positives towards the end
of the plot in figure 5.19, perhaps indicating consistent signal artefacts in these areas.
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Figure 5.18: LALab ESN output for long classes

Figure 5.19: LALab ESN output for short classes

This alternate classifier seems to have a more useful outcome and this alternate pa-
rameter set and its outputs, measures and implications are discussed in the following
discussion section. Both ESN models utilising the shorter classes have produce more
raw false positive score segments than the ESN model optimised for the original,
longer classes.



5.8 R E P E AT E S N R E A L I S T I C DATA I T E R AT I O N W I T H M O D I FI E D C L A S S E S 136

Figure 5.20: LALab ESN output for short classes, alternative parameters

The real-valued output from the ESN models is subsequently passed through a
post-processing function that turns the real-values into class labels. Confusion matri-
ces base on these class labels are shown in tables 5.9 (a) and (b) and table 5.10.

Class Predicted Label

Label 0 1 2

0 5036 252 19

1 148 1236 0

2 129 0 1092

(a) Long classes, minimum score

Class Predicted Label

Label 0 1 2

0 7189 0 33

1 80 289 0

2 25 0 296

(b) Short classes, minimum score

Table 5.9: ESN Confusion Matrices for LALab Long and Short classes at 0.6 cut-off

The change in the class width is (obviously) reflected in the increased number of
samples that are in the base class versus the mount and dismount classes and this
makes comparing the raw confusion matrices difficult. The difference is not great,
however, and the two confusion matrices from the two runs have similar numbers.
To aid comparison between the longer and shorter classes the classifier precision and
recall based on multi-class precision and recall (Forman, 2003) have been calculated.
These results are shown in Table 5.11.

These results demonstrate that all three ESN models did very well at classifying
this data. Use of shorter classes seems to have improved both precision and recall
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Class Predicted Label

Label 0 1 2

0 7196 0 26

1 84 285 0

2 29 0 292

Table 5.10: ESN Confusion Matrix for LALab Short classes using alternative parameters

Iteration Statistic Base Mount Dismount

Long classes, minimum score Precision 0.9479 0.8306 0.9829

Recall 0.9489 0.8931 0.8943

Short classes, minimum score Precision 0.9856 1.0000 0.8997

Recall 0.9954 0.7832 0.9221

Short classes, alternate params Precision 0.9845 1.0000 0.9182

Recall 0.9964 0.7724 0.9097

Table 5.11: Comparing Precision/Recall for LALab Long versus Short classes at 0.6 cut-off

for the base class by a small amount. Mounts seem to have slightly better precision
but somewhat worse recall using shorter classes while dismounts are the opposite
with slightly worse precision and marginally better recall using shorter classes. The
author suspects that these seeming improvements are not statistically significant and
so calculated the unweighed and weighed Cohen Kappa scores to test for significance.

Using the ’cohen.kappa’ function from Revelle (2014) in ’R’, at the default 0.05
probability level for the confidence intervals, the unweighed and weighted kappa
levels of both the (a) and (b) sub-tables of table 5.9 and of table 5.10 were calculated
to allow for further comparison of the classification of longer and shorter classes.
This shows more clearly that the classifiers have very similar Cohen Kappa scores,
implying that the classifiers are equivalent and the confidence levels overlap in all
cases, giving some confidence that the classifier accuracies are similar at a statistically
significant level.
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lower est. upper

unweighed 0.85 0.86 0.87

weighted 0.87 0.88 0.90

Number of subjects 7912

(a) Long classes, minimum fitness

lower est. upper

unweighed 0.87 0.89 0.91

weighted 0.88 0.90 0.92

Number of subjects 7912

(b) Short classes, minimum fitness

Table 5.12: Cohen Kappa and Weighed Kappa correlation coefficients and confidence bounds
that compare the classification against the known classes

lower est. upper

unweighed 0.87 0.89 0.90

weighted 0.88 0.90 0.92

Number of subjects 7912

Table 5.13: Cohen Kappa and Weighed Kappa comparisons - LALab Short Classes, Alternate
Parameters

Plots of the output classes for all three cases in Figures 5.21, 5.22 and 5.23 are
shown so that it is easier to visualise the final classification results. Again the false
positives are highlighted with arrows on the figures.

Figure 5.21: LALab Predicted versus Actual Short classes, parameters from minimised score

Here it can be seen that the two closely adjacent false positives segments high-
lighted in the ESN real output have been merged by the post-processing function in
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Figure 5.21 and that two false positive segments that were too short for the classifi-
cation criteria were filtered out.

Figure 5.22: LALab Predicted versus Actual Short classes, alternative parameters

Figure 5.22 shows that two segments of real valued data above the 0.6 cut-off have
again been filtered out by the post-processing, leaving only a single false positive
classification segment. Figure 5.23 shows that neither set of real valued output from
the longer class ESN model above the 0.6 cut-off has been filtered out by the post-
processing function and so both false positive segments remain.

Figure 5.23: LALab Predicted versus Actual Long classes
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5.8.11 Discussion

The raw, real-valued outputs from the ESN models seemed to be worse for both sets
of short label model parameters compared with the model utilizing the longer classes
and optimised parameters at an 0.6 cut-off level. However when the raw values were
passed through the function that converts raw outputs into classes the precision and
recall levels show that all three classifiers had similar levels of accuracy. The Cohen
Kappa scores (weighed and unweighed) for all three models all fell within a 90%
confidence level range for each other and conclude from this that the three models
were all similarly effective at classifying the activities of interest.

It is noteworthy that the alternate set of parameters for the shorter classes produced
results that were at least equally effective at classifying the activities of interest, even
though those parameters were excluded from the preferred parameters during the
PSO search process. This leads to questioning the effectiveness of the fitness score
that is currently used within the PSO search process.

To date a single dataset, captured from a single participant under laboratory condi-
tions that utilised scripted activities has been used. The same dataset has been main-
tained throughout to better enable the ability to compare model changes (from LSM
to ESN) and class definition changes (from longer to shorter classes). There is now a
need to test models based on more than one dataset and more than one participant to
see if the levels of classification reliability remains.

The work so far has split the dataset into two parts, one for training and another
for testing and the testing dataset includes all of the training data. These same two
datasets have been used both while searching the parameter space for optimised pa-
rameters and also while testing models based on those parameters. Again, this prac-
tise was maintained to aid the ability to compare between the initial work and the
subsequent work but the author’s knowledge of classification best practise has im-
proved over this time and it is now realised that using the same files during both
model tuning (selecting an optimised parameter set) and model testing biases and
probably over-fits the model to the datasets used (Flexer, 1996; Henery, 1994). The
final tests need to be done using data that has not been seen before. In addition, the
final test should not include data used during training as this tends to suggest that the
model’s classification accuracy is higher than it really is.

As noted in the Data chapter, the Magnetometer sensor readings are both very noisy
and are dependent on geographical position in their raw form. In the work to date the
issue of noise has been ignored and as a result of using a single participant in a
fixed geographic position following a provided activity script the issue of geographic
dependence has been irrelevant. The future work will be with files that are not subject
to these constraints and so these issues need to be dealt with. Following the principles
of Occam’s razor, the simplest solution within the Black-Box approach is to exclude
the Magnetometer sensor data from the studies from now on.
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5.8.12 Results versus Goals

It is concluded that the design goals for this stage of the research have been met
as it has been demonstrated that two ESN models were able to classify Mounts and
Dismounts at equivalent levels of accuracy to the original ESN model that was based
on the longer classes.

5.8.13 How the design iterated

The next step in the design cycle is to create an ESN model using similar techniques
but utilising the unscripted, real-world data, captured from a number of different par-
ticipants to demonstrate that the results with the first participant were not a fluke. The
following work will not be directly comparable as the items noted as better practice
in subsection 5.8.11 will be implemented in order to improve the reliability of the
results and conclusions.

5.9 OV E R A L L S U M M A RY O F L E A R N I N G S AT T H I S P O I N T

The author developed a set of tools that formed a workbench for future work and
learned a number of things during the work described within this chapter that are
relevant to the ongoing, iterative development of the classifier artefact that is the goal
of this work and these are listed here because they help direct the following work.
These learnings are:

• Often ESN models built using just Gyroscope data have similar accuracy to
a model trained on both Gyroscope and Accelerometer data and the model
utilising less input data is less resource intensive.

• Generally larger models, particularly those larger than 1,000 neurons, seemed
to improve classification but this is usually as a result of over-training and when
such large models are tested on new data they resulted in worse results.

• Design iterations with less sensor inputs (e.g. only using Gyroscope data) en-
counter over-training with less neurons and useful results can be achieved with
models of around 300–400 neurons. This is consistent with the recommenda-
tions of Lukoševičius (2012) that reservoirs only be as large as needed.

• Adding small numbers of neurons to a model can improved classification but
often only marginally and on a linear scale whereas the subsequent increase in
resource usage is logarithmic.

• Some quite small models with 50–60 neurons can achieve quite useful classi-
fication in some circumstances and appear to be more sensitive to other ESN
model parameters. This is consistent with both the advice of Lukoševičius
(2012) and the suggestion by Jaeger (2005) that smaller models, below 100
neurons can be used as some form of ensemble.

• For data that is relatively symmetrically distributed around the zero mean (as
with Gyroscope data) improvements in classification can be achieved in some
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cases by adding a linear offset to the data. See also Jaeger (2005). In these
cases adding a constant input that is offset from zero sometimes has a similar
effect.

• Using a simplistic error cost function that calculates the normalised mean square
error across the entire model output during parameter tuning can result in pa-
rameters that are optimised to drive the model output towards zero when used
with data where the class values versus non-class values are very rare. Within
this work, class values typically number around 15–22 across a typical real
world data file containing 36,000–50,000 rows and so the class values are rare
compared with the non-class values.

• Generating an ESN model for a single class (e.g. Mounts only) substantially re-
duces the computing resources needed to compute the machine learning model.

• Working with a two class classifier (base class and one activity class) means
that it is easier to compare between ESN models as most existing performance
measures such as area under the ROC curve are designed for two class prob-
lems.



Chapter6
R E A L W O R L D DATA D E S I G N C Y C L E

This chapter is the third phase of classifier development and involves using the
Researcher Workbench and RC classifier tool-set that was developed during the
prior chapter to iteratively create a RC based classifier that is capable of classifying
the real-life activity of interest. This process results in the development of the
artefact that meets the overall research goal.

6.1 I N T RO D U C T I O N

Chapter 5 describes the overall development goals and the first, proof-of-concept,
phase of this work. This is followed by a summary of the work done exploring differ-
ent facets of the data, the ESN techniques for classifying it and the development of the
tool-set into a researcher’s workbench. The earlier work gives confidence that ESN
techniques are applicable for classifying spatio-temporal inertial data and the explo-
ration work provides experience with differing ways of applying ESN techniques to
this data.

This chapter brings that earlier work and the learnings from that work (as sum-
marised in Section 5.9 on page 141) together in a focused attempt to classify the
real world data. In the earlier work it wasn’t clear if classification was succeeding
because of inherent properties of the activities of interest or instead because of the
properties imparted to the data as a result of the participants following a regular, arti-
ficial script. In working with real-world data the author expects that the data will be
much less regular and so there is more likelihood that successful classification will
be as a result of the inherent effects of the activity of interest.

A different approach is taken in this part of the work, starting with minimal data,
simple models and a single activity of interest then iteratively working outwards from
there, adding complexity where it will aid more consistent classification, measuring
the results and then repeating the cycle.

6.2 S U M M A RY O F I T E R AT I V E D E V E L O P M E N T C Y C L E

During this part of the work eight iterations of goal directed development are un-
dertaken and evaluated, starting with a simplistic evaluation of the best ESN model
developed during the second, tool development phase that only looked at the data

143
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Figure 6.1: Iterative Development from Simple to Satisfactory

from the laboratory based, scripted activities; to the development of a ESN model
based on earlier learnings and using the data collected during real–world, unscripted
riding activities through to a satisfactory, best–so–far, ESN model that manages to
correctly classify five out of the seven mounts that it is tested on. These iterations are
summarised here and then expanded on in the following pages.

Section 6.4 on page 147 describes iteration 01–01, the first iteration in this series
and in this first iteration using real–world, unscripted activity data the author decided
to test the best performing ESN model from the phase two work against the real–
world data in a somewhat simplistic attempt to see if the model developed from the
scripted, laboratory based data had validity when used with real–world data.

Section 6.5 on page 149 describes iteration 02–01. This is the first ESN model built
specifically for the data captured from the unscripted, real–world riding activities and
is used as the base model against which to compare the following design iterations.
This model incorporated much of the learning that had been gained from the phase
two activities. Following the simplification design strategy, the process of producing,
tuning and testing the ESN model was simplified and standardised. A Debian based,
multi–core, virtual server, set up within the Amazon Elastic Cloud Compute environ-
ment, running R and RStudio is used for this and subsequent design iterations. This
platform then became the standardised (and easily cloned) platform for running the
PSO parameter search during the tuning cycle for each subsequent model.

Section 6.6 on page 160 describes iteration 03–01. The primary purpose for this
design iteration is to look at a suggestion in Jaeger (2005, p. 44) to beware of sym-
metric input. According to Jaeger, when the input values are roughly symmetrical
around zero then the ESN using a sigmoid actuator may not learn effectively. The
Gyroscope signal is very much symmetrical around zero. The input signal used with
this iteration will have a constant offset added to it so that it is no longer symmetrical
around zero and is instead offset from zero.
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Section 6.7 on page 169 describes iteration 04–01. The design goal for this iter-
ation is to test a simple ensemble using both the gyroscope data as input plus the
output from a much smaller, 60 neuron, ESN. The idea for this iteration came from
comments by (Lukoševičius, 2012, p. 669) on the possibility of splitting a reservoir
into different populations with differing parameters as a way of dealing with multiple
time scales within the same input stream.

Section 6.8 on page 180 describes iteration 04–02. This iteration is similar to
iteration 04–01 except that it builds and tests the ESN model using parameters from
a earlier iteration. This parameter set then becomes the standard parameter set for the
following design iterations.

Section 6.9 on page 190 describes a set of design iterations that use under-sampled
training data. While Section 6.10 on page 198 describes a set of design iterations
that use different features generated from the the Gyroscope data using a Butterworth
filter.

Section 6.11 on page 206 describes a set of iterations (including iteration 07-01)
that add Acceleration data to the Gyroscope data to see if this improves classification.
As was noted during the second, tool development phase, the raw Accelerometer data
as three separate axis are somewhat inconsistent and so for this iteration set the author
uses the “net acceleration power” instead of the individual axis.

Section 6.12 on page 224 describes design iteration 08-01. This iteration is es-
sentially an attempt to demonstrate the robustness of ESN classification of punctual
activity by using an alternate R code library written by Mantas Lukoševičius, an ex–
student of Jaeger’s. Lukoševičius had posted some public code on the internet in
various languages with a simple implementation of an ESN. A copy of the Lukoše-
vičius “R” code is run against the data used in iteration 07-01.

6.3 R E A L W O R L D DATA

6.3.1 Background

When the real world data was gathered the intention was to record as much of a com-
plete riding session as possible. Horses don’t stand around in paddocks or barns with
saddles on their backs and reins in their mouths waiting to be ridden. A horse that is
kept in a paddock will spend most of its day moving around, eating and interacting
with other horses in its herd. A horse kept in a barn will typically spend less time eat-
ing (as it is normally fed more concentrated food that is easier for people to handle)
but will still spend time moving around and doing barn-type horse activities.

This means that the horse has to be prepared for riding, ridden and then there are
post riding activities associated with putting the horse back into its paddock or barn.
In many cases, the rider is responsible for preparing and putting away her own horse.
These preparation and put-away phases are considered (by the author) to be part of
the riding session and so, as far as possible, were recorded.

The significance of the presence or absence of preparation and post-riding activi-
ties becomes much more obvious when looking at the false positives from classifica-
tion. During the Masters work when a possible pattern that seemed to be consistently
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present during stirrup mounts was identified, it was theorised that a similar pattern
might well be prevalent for certain types of backwards and forwards ”brushing” ac-
tivity and such activity is typically encountered during preparation and post riding
when the horse gets brushed to clean off dirt and sweat. The expectation going into
this phase was that if false positives were encountered then they were most likely to
occur during brushing.

6.3.2 Classification Outcomes

In a two class classification problem such as that within this part of the work, there
are four possible outcomes. A data point within a Mount sequence is correctly clas-
sified as a Mount (True Positive) or incorrectly classified as a Base Class (False
Negative). A data point within a Base class sequence is correctly classified as a Base
class instance (True Negative) or incorrectly classified as a Mount (False Positive).

Within this work, a Mount is intended to be used as a trigger event and so if, for
example, a mount data sequence contained (say) eight data points at 10hz then suc-
cessful classification of that mount is achieved if one or more of the eight data points
produce an output from the ESN model that is high enough to be distinguished as
a Mount. Within the earlier phases of this work we saw that the ESN output re-
sponse for a Mount was usually an inverted V with the ESN output quickly rising
from around zero to a peak of some sort and then quickly falling back to around to
zero. Given this scenario of only needing one of the eight Mount data points to be
classified correctly when evaluating one ESN model against another there are two
key outcomes that are of interest and they are True Positives (one or more correct
classifications within a Mount sequence) and False Positives (one or more contigu-
ous sequences of Mount classifications during a Base class sequence). We are also
somewhat interested in True Negatives but much less so as the number of Base class
data points is far greater and tends to overwhelm the comparison between different
models. However, we are not at all interested in the number of False Negatives when
comparing models.

To reiterate, given a Mount sequence of (say) eight data points where one of the
data points is correctly classified as a Mount (True Positive) and seven are incorrectly
classified as Base class (False Negative) versus a situation where three data points
are correctly classified and five are incorrectly classified then within this work, both
situations are considered equally correct and desirable. As a result, False negatives
are reported in the following confusion tables but not commented on.

6.3.3 Data Description

The data files that were used during this phase are listed in the table 6.1, along with
information on how they were used (training, tuning or testing) and if they encapsu-
late preparation or post-riding activities.

Files described as “Train-Tune” were used to train the ESN and tune the parameter
search process. Files described as “Test” were held back and only used to test an
optimised set of parameters that had been trained in an earlier process. There were
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Session Participant Usage Preparation Post Riding
0716-2 RA Train-Tune Yes No
0719-1 RB Test No Yes
0812-2 RA Test Yes No
0829-1 RC Test No No
0830-3 RD Test Yes Yes
0902-1 RE Test Yes Yes
0902-2 RC Test Yes Yes
0912-1 RF Train-Tune Yes Yes
0912-2 RG Train-Tune Yes No
0913-3 RF Train-Tune Yes Yes

Table 6.1: Real world data capture sessions

ten real world data sets available after, four data sets were used for training and tuning
and six were held back for testing. Five data sets included both preparation and post-
riding phases. One data set contained two mounts and dismounts as the participant
dismounted and then re-mounted during their riding session.

Unfortunately, there are not three usable real-world data sets from any one partic-
ipant and the author was keen to have at least one collection of three so that intra-
participant training and testing might be tested. To resolve this two lots of two mounts
from the LA Laboratory data set 0813-1 LA were included and used during training
and tuning and the 0719-1 LA data set was reserved for testing. Other data sets were
allocated to “Train-Tune” or “Test” in a somewhat arbitrary manner that resulted in
a relatively balanced mix. In the end, there was insufficient time and data to test
intra-participant classification.

6.4 L A B O R AT O RY E S N M O D E L W I T H R E A L W O R L D DATA ( 01 -01 )

It had been assumed that the ESN models that were built based purely on the lab-
oratory data captured during the scripted sessions would not work with real world
data because of artefacts within the laboratory data caused by following the script.
However, it was decided to test this rather than just assuming that the outcome would
be unsatisfactory.

6.4.1 Description (01-01)

Training Data: Subset of 0813-1 LA (laboratory)
Testing Data: Full 0719-1 RB
Included Sensors: Accelerometer and Gyroscope
The sensor readings are normalised, real-values ranging between -1 and 1
No outliers were removed.
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Table 6.2: Run Time Parameters for ESN iteration 01-01.
Name Value Justification
Input values 6 vectors of data Input choice
Classes Mount, Dismount Prior comparison
Number of neurons 999 Search result
Input scaling 0.6922 Search result
Neuron leak rate 0.7367 Search result
Regularisation 4.5639 Search result
Spectral Radius 1.0000 Search result

6.4.2 Results and Discussion (01-01)

At first look of figure 6.2 the assumptions are confirmed and clearly this ESN model
is not a suitable candidate classifier for Mounts and Dismounts as false positives
far outnumber the true positives. However, that this model did correctly classify
the Mount and Dismount as shown by the arrows on the figure and confirmed in
Figure 6.3 (zoomed in on the Mount) gives some comfort that additional work and
more realistic training data may well produce the results that are desired.

Figure 6.2: Testing Real World Data against Laboratory Data Model
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Figure 6.3: Zoomed in Test of Real World data using Laboratory Model

6.5 I N I T I A L - E S N M O D E L W I T H R E A L W O R L D DATA ( 02 -01 )

The aim of this process was to build an initial, base ESN model based on what had
been learned during phase one and two, using real world data. The goal in this first
of the iterative steps was to build a simple model that works to some extent that will
then be the base for adding features that improve its ability to classify. Future design
iterations will be tested against this base when features (and complexity) are added
to see if the additional features add to classification accuracy and if they do, at what
cost.

6.5.1 Problem Identification (02-01)

Classifying real world activity is generally considered much more difficult than clas-
sifying scripted activity. Activity classification researchers such as Foerster et al.
(1999), Bao and Intille (2004) and Ravi et al. (2005) have described achieving high
classification levels for scripted activities recorded within laboratory situations but
noted that their classification levels fell dramatically (24%–66.7% drop) when used
with real-world, unscripted activities. This design iteration is the first within this
work that demonstrates the ability of an ESN to classify punctual activity where the
ESN model parameters have been optimised for real-world data. It is an important
first step in this phase of the research as it sets the benchmark for the design iterations
that follow.



6.5 I N I T I A L - E S N M O D E L W I T H R E A L W O R L D DATA ( 02 -01 ) 150

6.5.2 Motivation (02-01)

The envisaged wearable coach that is the end point for this research is designed to
be used by riders as they do their everyday training in the real world of horse riding.
As a result it is crucial that any classifier that is being considered for use within this
coaching system be capable of classifying unscripted activities across a variety of
riders in a variety of real situations.

6.5.3 Design Goal (02-01)

The Design Goal for this iteration was to generate a base ESN model that was capable
of successfully classifying mounts from the set of test data where the ESN model was
simple and based on the experience gained to-date.

6.5.4 Measure of Success (02-01)

The measure of success was to consider a class as being correctly classified if the
model output was greater than 0.6 during some point within the Mount sequence.

6.5.5 Data Description (02-01)

Training Data; concatenation of:

• Partial 0813-1 LA (laboratory) – Subset from end including two mounts

• Partial 0716-2 RA – Central (riding) region reduced

• Partial 0912-1 RF – Central (riding) region reduced

Tuning Data; concatenation of:

• Partial 0813-1 LA (laboratory) – Subset from beginning including two mounts

• Partial 0912-2 RG – Central (riding) region reduced

• Partial 0913-3 RF – Central (riding) region reduced

A portion of data between the Mount and Dismount, recorded while the participant
was riding the horse, was cut from Training and Tuning data to assist in balancing
class and non-class sizes.

Testing Data; concatenation of:

• Full 0719-1 RB

• Full 0812-2 RA

• Full 0829-1 RC

• Full 0830-3 RD

• Full 0902-1 RE
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• Full 0902-2 RC

No part of the testing data-sets were removed. That is all datasets in their entirety
were concatenated together and used for testing.

6.5.6 Static Parameter Description (02-01)

The following static parameters were used during this iteration:

• Error Cost Function: (conditional mean square error class + conditional mean
square error non-class)/2

• Included Sensors: Gyroscope only

• The sensor readings are linearly transformed, real-values ranging between -1
and 1. No outliers were removed

• Offset added to sensor data: Null

6.5.7 PSO Parameter Description (02-01)

PSO parameter ranges for search

Name Id Range Justification

Regularisation α 0.0001 to 5 S. 5.4.15

Number of Neurons Nx 100 to 360 Lukoševičius (2012) NB.

Input Scaling 0.0001 to 1 Full range

Leaking Rate a 0.0001 to 1 Full range

Spectral Radius ρ(W) 0.6000 to 1 S. 5.4.15 NB.

ESN Repeats 7 S. 5.4.15

Particles S 14 Bendtsen. (2012)

Maximum Generations 25 S. 5.4.15 NB.

Table 6.3: PSO Parameter Ranges for Iteration 02-01

A PSO search was run using the parameter ranges listed in table 6.3 to find a good
set of meta–parameters to use to train the ESN model for classification. The PSO
search parameters are in two parts, the first part includes the ESN meta-parameter
ranges to search across and include Regularisation, Number of Neurons, Input Scal-
ing, Leaking Rate and Spectral Radius. The chosen ranges were selected based on
the work done within the Exploration phase of this work, Section 5.4 and, in partic-
ular, 5.4.15. Input Scaling and Leaking Rate cover the full range for both of these
parameters with a 0.0001 start point. Please note that the lower bound for the num-
ber of neurons has been chosen based on both a recommendation from Jaeger (2005)
and prior work while the upper bound for the number of neurons was chosen both
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Figure 6.4: Parameter Optimisation for 02-01 Model

on advice from Lukoševičius (2012) that model parameters can be tuned on smaller
models and then scaled up later and pragmatically based on the earlier work with
reasonable results being found within this range while managing the additional, ex-
ponential growth in computer processing that comes with higher neuron numbers. In
addition, the earlier work demonstrated that a lower bound of 0.6 for Spectral Radius
is a good starting point based both on processing time practicalities and a recommen-
dation from Lukoševičius that Spectral Radius rates above 0.7 tended to give better
results.

The second set of parameters, ESN Repeats, Particles and Maximum Generations
are used by the PSO search control the search itself and again the parameter values
were chosen based on the earlier exploratory work. The initial value of the internal
ESN inter–neuron weights are set stochastically and so any new ESN model that is
generated, even though it has the same meta–parameters will produce a slightly dif-
ferent result because of the differing inter–neuronal weights. To partially account for
this the PSO search code recreates (repeats) each model that it tests and then uses
the average Error Cost function across all of the repeats. For this work 7 repeats
was chosen versus the 3 repeats that was typically used within the exploratory phase
work. The additional repeats is a somewhat arbitrary balance between the additional
computing resources needed to create, train and test each iteration versus the addi-
tional confidence that can be drawn from averaging a higher number of instances.
The move to running the PSO search on a multiprocessor Debian virtual machine in
the Amazon Compute Cloud enables the repeats to be done in parallel on separate
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processors and so the overall elapsed search time was controlled at the expense of
more processors. The number of particles was set heuristically based on a combi-
nation of the recommendation that accompanies the R PSO package that was used
to conduct the PSO search (see (Bendtsen., 2012, p.7)) and experience running PSO
searches during the exploration phase. Bendtsen’s manual for the use of the PSO
package suggests that a useful starting point for the number of particles is related to
the number of dimensions that the search is conducted across (in this work 5 dimen-
sions) and is calculated as floor(10 + 2 ∗ sqrt(length(par))) or 14 and then adjust
that number slightly to a number that suits the problem at hand. The experience from
the exploratory work was that a particle count of 14 gave useful results while con-
suming reasonable compute resources and so that number of particles has been used
throughout. The final parameter used by the PSO search is a stopping condition and
these series of searches has used a maximum number of generations (set to 25) as the
experience from the exploratory work was that was sufficient generations to settle on
a good–enough result.

This search ran on an Amazon ECC virtual 8 processor machine running Debian.
The ESN parameters with the lowest fitness score are listed in table 6.4. During
parameter optimisation the Regularization parameter quickly dropped to its minimum
value. Input Scaling took slightly longer (about 15 generations) to drift towards its
maximum value. Over a similar number of generations, Leaking Rate stabilised at
around 0.13 and Spectral Radius floated around 0.9. Number of Neurons took around
17 generations to stabilise between 300 and 360.

6.5.8 Run time Parameter Description (02-01)

Once the optimised ESN model meta–parameters were found from the PSO search
they were then used as run time parameters for an new ESN model that was built,
trained and tested on a Windows 7 based PC running an i7 processor and 8GB RAM.
This ESN model was then trained with the previously unseen riding real–world con-
catenated dataset using the parameters listed in table 6.4.

Table 6.4: Run Time Parameters for ESN iteration 02-01.
Name Value Justification
Input values 3 vectors of data Chosen input
Classes Mount only Chosen class
Number of neurons 336 Search result
Input scaling 0.9252 Search result
Neuron leak rate 0.1379 Search result
Regularisation 0.0001 Search result
Spectral Radius 0.9455 Search result
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6.5.9 Training Results (02-01)

Training completed in 7.71 seconds elapsed.

Table 6.5: Computing times for ESN iteration 02-01 Training.
Descriptor Training Time in Seconds
User Time 7.28
System Time 0.09
Elapsed Time 7.50

6.5.10 Test Results (02-01)

The model was trained once using the parameters found during the parameter optimi-
sation process and with the training data specified, with resource usage and results as
listed in table 6.5 and then tested against a dataset that consisted of a concatenation
of each of the test files. The results of testing against the ESN model with the con-
catenated file are shown in Table 6.8. The Classification rate is calculated by dividing
the number of Classified Mounts by the total number of Mounts in the concatenated
test file (7). A Mount is deemed classified if the ESN output is 0.6 or greater for at
least one sample during the Mount segment.
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CONCATENATED

Figure 6.5: Concatenated ESN Output (02-01)
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(a) 0719-1 RB #1 (b) 0812-2 RA #1

(c) 0829-2 RC #1 (d) 0830-3 RD #1

(e) 0902-1 RE #2 (f) 0902-2 RC #1

Figure 6.6: Concatenated Mounts (02-01); 0902-1 RE #1 not shown
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Figure 6.7: Concatenated datasets performance plots (02-01)

Figure 6.8: Concatenated datasets Classes (02-01)
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Table 6.6: Processing Times for Concatenated Datasets (02-01) Test.
Description Time in Seconds
User Time 29.94
System Time 00.89
Elapsed Time 30.83

Table 6.7: Classification Metrics for Concatenated Datasets (02-01) Test.
Metric Value
ESN Test Error 0.2046
RMSE 0.0874
AUC 0.9418

Table 6.8: Testing Results for Concatenated Datasets (02-01).

Classification measures at 0.6 Cut-Off
Classification rate 0.714

Base Class Mount Class
Precision 0.9996 0.0737
Recall 0.9981 0.2920

Confusion Matrix at 0.6 Cut-Off
Predicted

Actual Base Class Mount Class
Base Class 217295 415
Mount Class 80 33

A very satisfactory result for the initial iteration, based on the area under the ROC
curve of 0.9418 (Table 6.7). However, high True Positive rates (0.7 and above, see
Figure 6.7a) are only achieved at low response levels from the ESN model at around
0.2. This is much lower than the selected 0.6 cut-off level. As the cut-off level
is raised from 0.2 towards 0.6, the Precision rate rises slowly while the Recall rate
drops quickly (Figure 6.7b). Looking at the number of True Positives graphed against
the number of False Positives (Figure 6.7c), it can be seen that the cut-off level would
need to be raised well above 1.0 simply to get the total number of False Positives
below 100 with this particular ESN model. Most of the False Positives are associ-
ated with two participant sessions, 0830-3 RD and 0902-1 RE and the False Positives
mostly occur prior to mounting during these two sessions. Both of these sessions
included extensive riding preparation activities including brushing the horse, see Fig-
ure 6.5 and Figure 6.8.

Five of the seven mount sequences are associated with an ESN response of 0.6 or
greater, giving a classification rate of 0.714 at this cut-off level. Two mounts from two
participants (Figures 6.6a & b) are associated with a response that just barely reaches
0.6, three mounts from another two participants (Figures 6.6d & e) are associated
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with very strong ESN responses while the last two mounts from a single participant
(Figures 6.6c & f) are associated with a noticeable but weak response from the ESN
model.

6.5.11 Discussion (02-01)

The results obtained represent the base which can be progressively improved by
adding techniques learned during the second, exploration phase. Improvement may
be difficult considering the high area under the ROC curve of 0.9418 overall and with
five of the six sessions achieving individual area under the ROC curve figures of 0.98
and 0.99 and above.

The challenge now is to improve the results, particularly the unsatisfactory results
from the 0829-2 RC session while maintaining or improving the other results. This
will be especially challenging because the output from the ESN model is not ho-
mogeneous across participant sessions. The two RC data-sets have a response from
the ESN model that favours successful classification at around the 0.2 cut-off level,
RE and RD produced much higher responses that favour successful classification at
around the 1.0 cut-off level while RB and RA produced more moderate responses
that favour successful classification just above 0.6.

In addition, the large skew is class distribution makes measuring the ESN perfor-
mance a challenge. The intention with measurement is to favour the area under the
ROC curve as the primary measure as it is relatively immune to class skew. In par-
ticular, the overall area under the curve for the full concatenated test file will be used
rather than individual session areas under the curve. The secondary measure will be
the classification rate, as defined in section 6.5.10.

6.5.12 Results versus Goals (02-01)

The goal has been exceeded, based on the measure, as four of the six datasets resulted
in an ESN response of greater than 0.6 at some point during the Mount sequences for
the concatenated test dataset.
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6.6 O FF S E T - E S N M O D E L W I T H R E A L W O R L D DATA ( 03 -01 )

According to Jaeger (2005, p. 44), when the input values are roughly symmetrical
around zero then the ESN using a sigmoid actuator may not learn effectively. The
Gyroscope measures rotation acceleration and as a result the signal from the gyro-
scope is very much symmetrical around zero. This symmetry can be seen in Fig-
ure 4.13 on page 88, although this figure shows the data prior to normalisation. The
normalisation process centres the Gyroscope data on zero.

This design iterations builds an ESN using data which has been offset from its
original values, ensuring that it is no longer centred on zero. The results from this
iteration will then be compared against the initial base ESN model.

In order to provide the most useful measures the same data was used to train and
test the new model as that used for the initial model, excepting, of course, that the
data used in these iterations had a positive offset added to it. An arbitrary offset of
+0.45 is used in this iteration, no alternate offset values are tried.

6.6.1 Problem Identification (03-01)

The initial design iteration that used real world data produced good results but did
not meet the overall goal of this research as the number of False Positives were too
high. The problem now is to find a way to maintain or improve the classification rate
while increasing the ability of the classification engine to discriminate the activity of
interest.

6.6.2 Motivation (03-01)

The motivation for this design iteration is a simple one and is to further improve the
classification ability by altering the characteristics of the input data.

6.6.3 Design Goal (03-01)

The goal in this iterative step was to demonstrate an improvement in class discrim-
ination compared with the initial model based on the use of an offset for the input
data.

6.6.4 Measure of Success (03-01)

An overall improvement in the area under the ROC curve while maintaining or im-
proving the classification rate as defined in section 6.5.10.

6.6.5 Data Description (03-01)

Training Data; concatenation of:

• Partial 0813-1 LA (laboratory) – Subset from end including two mounts
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• Partial 0716-2 RA – Central (riding) region reduced

• Partial 0912-1 RF – Central (riding) region reduced

Tuning Data; concatenation of:

• Partial 0813-1 LA (laboratory) – Subset from beginning including two mounts

• Partial 0912-2 RG – Central (riding) region reduced

• Partial 0913-3 RF – Central (riding) region reduced

Data from the riding phase was removed exactly as done for the initial model. In
addition 0.45 was added to all sensor reading in order to offset the data so that it is
no longer centred on zero.

Testing Data; a concatenation of:

• Full 0719-1 RB

• Full 0812-2 RA

• Full 0829-1 RC

• Full 0830-3 RD

• Full 0902-1 RE

• Full 0902-2 RC

The entire data file was always used for testing files. The same 0.45 offset is added
to the test files.

6.6.6 Static Parameter Description (03-01)

The following static parameters were used during this iteration:

• Error Cost Function: (conditional mean square error class + conditional mean
square error non-class)/2

• Included Sensors: Gyroscope only

• The sensor readings are linearly transformed, real-values ranging between −1
and 1. No outliers were removed

• Offset added to sensor data: +0.45

6.6.7 PSO Parameter Description (03-01)

A PSO search was run using the parameter ranges listed in table 6.9. This search ran
on an Amazon ECC virtual 8 processor machine running Debian. The ESN parame-
ters with the lowest fitness score are listed in table 6.10.

During parameter optimisation the Regularization parameter quickly dropped to
its minimum value. Input Scaling took slightly longer (about 15 generations) to drift
towards its maximum value. Over a similar number of generations, Leaking Rate
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PSO parameters range for search

Name Id Value Justification

Regularisation α 0.0001 to 5 Prior S. 6.5.7

Number of Neurons Nx 100 to 360 Prior S. 6.5.7

Input Scaling 0.0001 to 1 Prior S. 6.5.7

Leaking Rate a 0.0001 to 1 Prior S. 6.5.7

Spectral Radius ρ(W) 0.6000 to 1 Prior S. 6.5.7

ESN Repeats 7 Prior S. 6.5.7

Particles S 14 Prior S. 6.5.7

Maximum Generations 25 Prior S. 6.5.7

Table 6.9: PSO Parameter Ranges for Iteration 03-01
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Figure 6.9: Parameter Optimisation for 03-01 Model

stabilised at around 0.13 and Spectral Radius floated around 0.8. Number of Neurons
took around 17 generations to stabilise between 300 and 360. This was very similar to
what happened with the initial model except that all parameters except Regularisation
settled to lower values, reflecting the impact of the higher valued input (once the
offset is added). The largest difference was Spectral Radius, with this settling at 0.75
versus 0.94 for the initial model.



6.6 O FF S E T - E S N M O D E L W I T H R E A L W O R L D DATA ( 03 -01 ) 163

6.6.8 Run time Parameter Description (03-01)

The parameters that produced the lowest error cost during optimisation are shown
in table 6.10 and the ESN model that was built for this set of design iterations was
built, trained and tested on a Windows 7 based PC running an i7 processor and 8GB
RAM with these parameters. The initial parameters are also listed for comparative
purposes.

Table 6.10: Run Time Parameters for ESN iteration 03-01.
Description Current Iteration Justification Initial Iteration
Input values 3 vectors of data Input choice 3 vectors of data
Classes Mount only Class choice Mount only
Number of neurons 332 Search 336
Input scaling 0.8486 Search 0.9252
Neuron leak rate 0.1283 Search 0.1379
Regularisation 0.0001 Search 0.0001
Spectral Radius 0.7589 Search 0.9455

6.6.9 Training Results (03-01)

The model was trained once using the best parameters found during the parameter
optimisation process and with the training data specified, with resource usage and
results as listed in table 6.11, with comparative figures for the initial model. Training
completed in 7.5 seconds elapsed.

Table 6.11: Training Results for ESN iteration 03-01.
Description Current Iteration Initial Iteration
User Time in seconds 7.55 7.28
System Time in seconds 0.09 0.09
Elapsed Time in seconds 7.71 7.50

6.6.10 Test Results (03-01)

The model was trained once using the parameters found during the parameter opti-
misation process and with the training data specified, with resource usage and results
as listed in table 6.11 and then tested against a dataset that consisted of a concatena-
tion of each of the test files, as in iteration 02-01. The results of testing against the
ESN model with the concatenated file are shown in Table 6.14. A Mount is deemed
classified if the ESN output is 0.6 or greater for at least one sample during the Mount
segment. Classification rate is as defined in section 6.5.10.
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Table 6.12: Processing Times for Concatenated Datasets (03-01) Test.
Iteration Id 03-01 02-01
User Time in seconds 29.12 29.94
System Time in seconds 00.64 00.89
Elapsed Time in seconds 29.76 30.83

Table 6.13: Classification Metrics for Concatenated Datasets (03-01) Test.
Iteration Id 03-01 02-01
ESN Test Error 0.2719 0.2046
RMSE 0.0945 0.0874
AUC 0.8697 0.9418

Table 6.14: Results for Concatenated Datasets iteration 03-01.

Measures at 0.6 Cut-Off
Description 03-01 02-01
Classification rate 0.571 0.714

Base Cl Mount Cl Base Cl Mount Cl
Precision 0.9996 0.0414 0.9996 0.0737
Recall 0.9969 0.2566 0.9981 0.2920

Confusion Matrix at 0.6 Cut-Off
Predicted 03-01 Predicted 02-01

Actual Base Cl Mount Cl Base Cl Mount Cl
Base Cl 217039 671 217295 415
Mount Cl 84 29 80 33

Both the area under the ROC curve and the classification rate were worse for this
Offset iteration than for the initial iteration. At 0.8697, (Table 6.14) the area under
the ROC curve is much smaller than the initial 02-01 iteration. In addition the classi-
fication rate at the 0.6 cut-off has dropped to 0.571 from 0.714 with only four of the
seven mount sequences being associated with ESN output response of more than 0.6.

Comparing Figure 6.10 (03-01) with Figure 6.5 (02-01), it can be seen that one
effect of adding the 0.45 offset has been to push the output response to the Base class
slightly higher, in general (mean increased from 0.0203 to 0.0266; standard devia-
tions from 0.0838 to 0.0898), while the response to the Mount class is similar or less
(mean decreased from 0.5239 to 0.3869, standard deviation from 0.4561 to 0.4062).
Also see sub-figures within Figure 6.11, and in particular Figure 6.11e. These shifts
are demonstrated via histograms in Figure 6.12. Four of the seven mount sequences
are associated with an ESN response of 0.6 or greater, giving a classification rate of
0.571 at this cut-off level. This is less than the classification rate achieved for the ini-
tial, 02-01 iteration. Two mounts from two participants (Figures 6.11a & b) are again
associated with a response that just barely reaches 0.6, two mounts from another two
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Figure 6.10: 03-01 - ESN Output for Concatenated Test Data-sets

participants (Figure 6.11d) are associated with very strong ESN responses while the
last three mounts from two participants (Figures 6.11c, e & f) are associated with a
weak response from the ESN model.

Figure 6.13a shows the lower ROC curve for this iteration compared with the initial
02-01 iteration. The current iteration demonstrates less discriminate power at lower
response levels but similar discriminative power at the higher levels. The current
iteration produces more False Positives at the selected 0.6 cut-off level, see Table 6.14
and Figure 6.14.
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(a) 0719-1 RB #1 (b) 0812-2 RA #1

(c) 0829-2 RC #1 (d) 0830-3 RD #1

(e) 0902-1 RG #2 (f) 0902-2 RC #1

Figure 6.11: Mounts for Concatenated (03-01); 0902-1 RG #1 not shown

(a) Mount Class (b) Base Class

Figure 6.12: Comparing ESN Outputs 03-01 and 02-01
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Figure 6.13: 03-01 - Performance Plots for Concatenated Data

Figure 6.14: 03-01 - Classes for Concatenated Test Data
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6.6.11 Results versus Goals (03-01)

The goals have not been met as the Area Under the Curve (AUC) and the classifi-
cation rate at 0.6 have both fallen. The AUC fell from 0.9418 to 0.8697 while the
classification rate fell from 0.714 to 0.571.

6.6.12 Discussion (03-01)

While the overall AUC fell, there were minor falls for 0719-1 RB (0.9923 to 0.9922)
and 0902-2 RC (0.9870 to 0.9846); minor increases for 0812-2 RA (0.9994 to 0.9998)
and 0830-3 RD (0.9828 to 0.9947); a major increase for 0829-2 RC (0.6630 to 0.9586)
and a major decrease for 0902-1 RE (0.9967 to 0.6719). Thus there seems to be some
variability between different participant sessions and while area under the ROC curve
is a measure that is relatively insensitive to class bias it is not insensitive to model
bias.

0902-1 RE, the participant session with the largest decrease in AUC contains
41,000 samples while 0829-2 RC, the participant session with the largest increase
in performance has only 20,000 samples and so the overall results are probably more
influenced by 0902-1 RE than by 0829-2 RC. At this stage in the work, overall AUC
is the best performance measure and using it as the measure it must be concluded that
this iteration did not improve the classification performance for the ESN model.

In addition, the selected cut-off level of 0.6 may not be optimal overall and in
particular is not optimal for each participant session. This level will be maintained
as the cut-off though, at least for the time being so that a consistent approach can be
maintained throughout this phase of the work.
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6.7 E N S E M B L E #1 - E S N M O D E L W I T H R E A L W O R L D DATA ( 04 -01 )

A number of authors including Chawla (2005), Z. Zhou and Liu (2006), Mollineda,
Alejo, and Sotoca (2007) and X. Liu, Wu, and Zhou (2009) have suggested using en-
sembles of classifiers, especially with imbalanced classes and so this design iteration
acknowledges the learning relating to the usefulness of small ESN classifier discussed
in Section 6.1 and looks at a simple ensemble that uses the output of a smaller ESN
classifier as additional input into the main ESN classifier. The aim of this set of de-
sign iterations is to build an ESN classifier using data which includes the output from
a small, parameter optimised ESN in addition to the linearly transformed Gyroscope
data from prior iterations. The goal in this iterative step was again to build and test
a model using modified data and then measure that model against the initial model.
In order to provide the most useful measures the same data was used to train and test
the new model, excepting, of course, that the data used in these iterations includes an
additional signal.

6.7.1 Problem Identification (04-01)

The initial design iteration that used real world data produced good results but did
not meet the overall goal of this research as the number of False Positives were too
high. The problem now is to find a way to maintain or improve the classification rate
while increasing the ability of the classification engine to discriminate the activity of
interest.

6.7.2 Motivation (04-01)

The motivation for this design iteration is a simple one and is to further improve the
classification ability by altering the characteristics of the ESN model and its relation-
ship with the input data.

6.7.3 Design Goal (04-01)

The design goal for this iteration is to test a simple ensemble using both the gyroscope
data as input plus the output from a much smaller, 60 neuron, ESN. The idea for this
iteration came from comments by (Lukoševičius, 2012, p. 669) on the possibility of
splitting a reservoir into different populations with differing parameters as a way of
dealing with multiple time scales within the same input stream. A decision was made
to implement this idea by including the output from a much smaller model, rather
than reprogramming the ESN library code to enable the splitting of the main reservoir
into two or more populations with differing parameters. This alternate approach to
including differing time scales is consistent with (Lukoševičius, 2012, p. 675) and
other authors such as Jaeger and Haas (2004) who report that ensembles of ESN can
sometimes dramatically improve performance over a single ESN.
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6.7.4 Measure of Success (04-01)

An overall improvement in the area under the ROC curve while maintaining or im-
proving the classification rate as defined in section 6.5.10.

6.7.5 Data Description (04-01)

Training Data; concatenation of:

• Partial 0813-1 LA (laboratory) – Subset from end including two mounts

• Partial 0716-2 RA – Central (riding) region reduced

• Partial 0912-1 RF – Central (riding) region reduced

Tuning Data; concatenation of:

• Partial 0813-1 LA (laboratory) – Subset from beginning including two mounts

• Partial 0912-2 RG – Central (riding) region reduced

• Partial 0913-3 RF – Central (riding) region reduced

Data from the riding phase was removed exactly as done for the initial model. In
addition the output from an earlier run of a smaller (less than 60 neurons) model
was added to form a type of two tiered approach.

Testing Data; concatenation of:

• Full 0719-1 RB

• Full 0812-2 RA

• Full 0829-1 RC

• Full 0830-3 RD

• Full 0902-1 RE

• Full 0902-2 RC

The entire data file was always used for testing files. The output from the same
file, run through a smaller model was added as an additional column to the test files.

6.7.6 Static Parameter Description (04-01)

The following static parameters were used during this iteration:

• Error Cost Function: (conditional mean square error class + conditional mean
square error non-class)/2

• Included Sensors: Gyroscope only

• The sensor readings are linearly transformed, real-values ranging between −1
and 1. No outliers were removed

• Additional column of data containing the output from a smaller ESN added
to each file.
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6.7.7 PSO Parameter Description (04-01)

PSO parameter ranges for search

Name Id Value Justification

Regularisation α 0.0001 to 5 S. 6.5.7

Number of Neurons Nx 100 to 360 S. 6.5.7

Input Scaling 0.0001 to 1 S. 6.5.7

Leaking Rate a 0.0001 to 1 S. 6.5.7

Spectral Radius ρ(W) 0.6000 to 1 S. 6.5.7

ESN Repeats 7 S. 6.5.7

Particles S 14 S. 6.5.7

Maximum Generations 25 S. 6.5.7

Table 6.15: PSO Parameter Ranges for Iteration 04-01
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Figure 6.15: Parameter Optimisation for 04-01 Model

A PSO search was run using the parameter ranges listed in table 6.15. This search
ran on an Amazon ECC virtual 8 processor machine running Debian. The ESN pa-
rameters with the lowest fitness score are listed in table 6.16. During parameter
optimisation the Regularization parameter, unlike similar runs with different data
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configurations, rose to a range between 4 and 5. Input Scaling took around 10 gener-
ations to drift towards its maximum value. Over around 12 generations, Leaking Rate
stabilised at around 0.9 and Spectral Radius floated around 0.6. While the number of
Neurons varied over quite a wide range centring around 250 throughout.

This was quite different to what happened with the parameters for the initial model.
The only model parameter that remained similar was Input Scaling, Regression Reg-
ularisation changed from a minimal value to close to the maximum value permitted
by the parameter bounds, Neuron Leak Rate changed from a low value to a high value
while Spectral Radius and Number of Neurons both dropped by around a third.

6.7.8 Run time Parameter Description (04-01)

The parameters that produced the lowest error cost during optimisation are shown in
table 6.16 and the ESN model that was built for this set of iterations was built, trained
and tested on a Windows 7 based PC running an i7 processor and 8GB RAM with
these parameters. This set of run-time parameters is markedly different from other
sets within this series of iterations. Of particular note are:

• Number of neurons – This parameter normally gets optimised at somewhere
near the limit of 360 but in this case settled at only 221.

• Neuron leak rate – In most other iterations this settles to around 0.1 to 0.2,
which is a relatively slow leak rate. In this case it has settled close to the
maximum and so this model will tend to have much less ”memory” than other
models in the series.

• Regression Regularisation – Normally this settles at a very low level, close to
the minimum and as a result minimal regularisation is done. In this case it is
over 4.5 and close to its allowed maximum value, indicating that Regularisation
was needed. This may well be as a result of a correlation between the values in
the additive column and the test input.

• Spectral Radius – Normally this is close to its maximum value of 1.0 but in this
case it has settled to 0.6.

These somewhat unexpected parameter values will likely provide a different ”view”
from the ESN model. It is possible that the PSO search encountered a local minima
that it failed to climb out of within the 25 generations that the PSO search was allowed
to run. This parameter set was so unusual that the author searched back manually
through the log that is kept from the PSO search and found an alternate parameter set
that was closer to the expected values and this parameter set was saved for use in the
next design iteration.
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Table 6.16: Run Time Parameters for ESN iteration 04-01.
Description This Iteration Justification Initial Iteration
Input values 4 vectors of data Input Choice 3 vectors of data
Classes Mount only Class choice Mount only
Number of neurons 221 Search 336
Input scaling 0.9990 Search 0.9252
Neuron leak rate 0.9919 Search 0.1379
Regularisation 4.5198 Search 0.0001
Spectral Radius 0.6247 Search 0.9455

6.7.9 Training Results (04-01)

The model was trained once using the best parameters found during the parameter
optimisation process and with the training data specified, with resource usage and re-
sults as listed in table 6.17, with comparative figures for the initial model. The train-
ing error was more than twice as large (see table 6.17) as that from the initial model.
Training completed in 3.7 seconds elapsed, this is less computational resources than
the initial 02-01 model and is most likely as a result of the smaller number of neurons.

Table 6.17: Training Results for ESN iteration 04-01.
Description This Iteration Initial Iteration
User Time in seconds 3.44 7.28
System Time in seconds 0.14 0.09
Elapsed Time in seconds 3.71 7.50

6.7.10 Testing Results (04-01)

Table 6.18: Processing Times for Concatenated Datasets iteration 04-01.
Iteration Id 04-01 02-01
User Time in seconds 16.63 29.94
System Time in seconds 00.50 00.89
Elapsed Time in seconds 17.13 30.83

The area under the ROC curve has increased slightly for this ESN model, while the
classification rate at the 0.6 cut-off level has fallen (Table 6.20). Looking at the ROC
curve in Figure 6.19a, it can be seen that this ESN model is slightly more discrim-
inative at very low model output levels (less than 0.02), slightly less discriminative
between 0.02 and 0.1 and about the same from 0.1 and above.

Mount precision at the selected cut-off level has increased slightly, while Mount
Recall has fallen with this additive model. There has been a noticeable drop in False
Positives at 0.6 but that is juxtaposed against a noticeable drop in True Positives.
There has also been an increase in the value of the ESN error cost function value for
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Table 6.19: Classification Metrics for Concatenated Datasets iteration 04-01.
Iteration Id 04-01 02-01
ESN Test Error 0.2443 0.2046
RMSE 0.0620 0.0874
AUC 0.9617 0.9418

Table 6.20: Results for Concatenated Datasets iteration 04-01.

Measures at 0.6 Cut-Off
Description 04-01 02-01
Classification rate 0.571 0.714

Base Cl Mount Cl Base Cl Mount Cl
Precision 0.9995 0.0830 0.9996 0.0737
Recall 0.9988 0.2124 0.9981 0.2920

Confusion Matrix at 0.6 Cut-Off
Predicted 04-01 Predicted 02-01

Actual Base Cl Mount Cl Base Cl Mount Cl
Base Cl 217445 265 217295 415
Mount Cl 89 24 80 33

this model although not as pronounced as the increase seen during model training.
Compute elapsed time has fallen substantially, most likely as a result of the smaller
neuronal model.

Figure 6.16: 04-01 - ESN Output for Concatenated Test Data

Looking at Figure 6.16 and comparing it with the equivalent figure for the initial
02-01 iteration, it looks as if the ESN output has mostly moved above zero for this
ESN model but looking at the changes in the means (0.0210 compared with initial
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0.0206) and standard deviations (0.0574 compared with initial 0.0852) it becomes
apparent that while the mean has shifted slightly upwards, the main change is that
there is considerably less variance with the current model. This reduced variance
combined with a skewed frequency distribution anyway (see Figure 6.17) gives the
impression that the response has tended to move above zero.

(a) Mount Class (b) Base Class

Figure 6.17: 04-01 - Comparing ESN Outputs 04-01 and 02-01

The Mounts shown in Figure 6.18 illustrate that the current model has managed
to classify the 0902-2 RC participant session at the 0.6 cut-off level, which previous
models have not done. However, in general, the ESN output from this model for
Mount sequences has been more subdued with the mean Mount response falling from
0.5239 in the initial model to 0.4014 in this model and the standard deviation falling
from 0.4561 to 0.3724. This more subdued response is probably responsible for the
failure to classify both the 0719-1 RB and 0812-2 RA participant sessions.

This model is unlike the earlier models. While the current model has slightly
improved the area under the ROC curve, it has also produced worse results for the
classification rate at the 0.6 cut-off. In addition, it failed to classify two Mount se-
quences that earlier model did classify but managed to classify another Mount se-
quence, 0902-2 RC, that earlier models failed to classify.
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(a) 0719-1 RB #1 (b) 0812-2 RA #1

(c) 0829-2 RC #1 (d) 0830-3 RD #1

(e) 0902-1 RE #2 (f) 0902-2 RC #1

Figure 6.18: Mounts for Concatenated (04-01); 0902-1 RE #1 not shown
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Figure 6.19: Performance Plots for Concatenated Test Data (04-01)

Figure 6.20: Classes for Concatenated Test Data (04-01)
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6.7.11 Discussion (04-01)

Overall a mixed bag of results. The substantially different ESN model parameters
consistently ran with less computing resources than the initial model, probably due
to the number of neurons being 66% (221) less than those for the initial model (336).

The smaller number of neurons combined with the very high leak rate of 0.991919
will have resulted in there being much less memory effect from the recurrent reservoir
connections and this has resulted in a different ”view” on the input data.

Three participant sessions (0719-1 RB, 0812-2 RA and 0902-1 RE) produced re-
sults that were worse than those produced from the initial model. In particular, 0719-1
RB produced much worse results and failed to classify the Mount at a 0.6 cut-off.

At the same time, the remaining three participant sessions (0829-2 RC, 0830-3
RD and 0902-2 RC) produced results that were better than the initial model and in
particular 0902-2 RC produced much better results and was able to classify the Mount
at a 0.6 cut-off.

In all cases the number of False Positives were either substantially reduced (0830-
3 RD, 0902-1 RE and 0902-2 RC) or remained the same at very low or zero numbers
(0719-1 RB and 0812-2 RA and 0829-2 RC). This desirable characteristic is most
likely a result of the current model producing output with less variance than the ini-
tial model (see table 6.21). The ESN output is skewed and any reduction in overall
variance will tend to result in a reduction in the frequency of False Positives as the
base class output will tend to be closer to zero.

Table 6.21: Comparison of Output Variance for iteration 04-01.
Current Initial

Description Std Dev Mean Std Dev Mean
Concat Overall 0.0574 0.0210 0.0852 0.0206
Concat Mounts 0.3724 0.4014 0.4561 0.5239
Concat Base Class 0.0561 0.0208 0.0838 0.0204

0719-1 RB 0.0330 0.0125 0.0518 −0.0102
0812-2 RA 0.0238 0.0039 0.0409 0.0046
0829-2 RC 0.0326 0.0044 0.0452 −0.0019
0830-3 RD 0.0858 0.0534 0.1344 0.0709
0902-1 RE 0.0653 0.0288 0.0847 0.0264
0902-2 RC 0.0368 0.0081 0.0597 0.0062

6.7.12 Results versus Goals (04-01)

Based on the chosen measures, this model has produced a mixed result. It improves
the area under the ROC curve but results in a lower classification rate at the 0.6 cut-
off level. Looking at some of the individual participant sessions, the current model
improves on the classification accuracy of the initial model in some cases and this
characteristic plus the model’s tendency to reduce or maintain a lower level of False
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Positives is attractive as a possible alternative ”view” on the data to that of the initial
model. It is not however, a substantial improvement over the initial model.

In addition, the ESN model parameters are so different from the optimised param-
eters obtained from other iterations in this series that it raises the possibility that the
PSO search encountered a local minima in this case and was captured by that minima.
With this possibility in mind, it was decided to re-run this iteration using the model
parameters from a similar iteration to see if an additive model with more common pa-
rameters produces a better or different result. The results of this re-run are reported
as iteration 04-02, following.
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6.8 E N S E M B L E #1 A - E S N M O D E L W I T H R E A L W O R L D DATA ( 04 -02 )

This iteration was similar to iteration 04–01 except that it built and tested the ESN
model using parameters saved from the PSO output log from the prior iteration, as ex-
plained in Section 6.7.8. The saved parameter set was chosen rather than re-running
the parameter optimisation process with a longer termination generation because the
saved parameters were closer to the expected parameter values and also because run-
ning a longer optimisation process would take much longer and time to complete the
research was quickly running out.

6.8.1 Problem Identification (04-02)

The last design iteration contained two sets of changes, the first to the run time pa-
rameters for the ESN model and the second to the input data that was processed by
the model. Having two sets of changes meant that it was difficult to decide which set
of changes, if only one, had resulted in the change to the classifiers ability to classify
the activity of interest. A process is needed to isolate the input data changes so that
the effects of changing the input data characteristics can be observed.

6.8.2 Motivation (04-02)

The motivation for this design iteration is to rerun the prior iteration but without
run time parameters changes so that the change in input data characteristics can be
observed.

6.8.3 Design Goal (04-02)

The goal of this design iteration is to repeat the work from 04-01 but using an rela-
tively common parameter set to build and train the ESN model so that the effect of
the input data change can be observed and to observe if the change in the input data
has been beneficial for classification or not.

6.8.4 Measure of Success (04-02)

Either an overall improvement in the classification measures from 04-01 or an im-
provement over the classification measures from the initial model.

6.8.5 Data Description (04-02)

Training Data; concatenation of:

• Partial 0813-1 LA (laboratory) – Subset from end including two mounts

• Partial 0716-2 RA – Central (riding) region reduced

• Partial 0912-1 RF – Central (riding) region reduced
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Tuning Data; concatenation of:

• Partial 0813-1 LA (laboratory) – Subset from beginning including two mounts

• Partial 0912-2 RG – Central (riding) region reduced

• Partial 0913-3 RF – Central (riding) region reduced

Data from the riding phase was removed exactly as done for the initial model. In
addition the output from an earlier run of a smaller (less than 60 neurons) model
was added to form a type of two tiered approach.

Testing Data; a concatenation of:

• Full 0719-1 RB

• Full 0812-2 RA

• Full 0829-1 RC

• Full 0830-3 RD

• Full 0902-1 RE

• Full 0902-2 RC

The entire data file was always used for testing files. The output from the same
file, run through a smaller model was added as an additional column to the test files.

6.8.6 Static Parameter Description (04-02)

The following static parameters were used during this iteration:

• Error Cost Function: (conditional mean square error class + conditional mean
square error non-class)/2

• Included Sensors: Gyroscope only

• The sensor readings are linearly transformed, real-values ranging between −1
and 1. No outliers were removed

• Additional column of data containing the output from a smaller ESN added
to each file.

6.8.7 Run time Parameter Description (04-02)

The saved, alternate parameters from the prior iteration are shown in table 6.22 and
the ESN model that was built for this set of design iterations was built, trained and
tested on a Windows 7 based PC running an i7 processor and 8GB RAM with these
parameters. The initial model (02-01) and 04-01 model parameters are also listed for
comparative purposes.
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Table 6.22: Run Time Parameters for ESN iteration 04-02.
Description 04-02 Justification 04-01 02-01
Input data 4 vectors Input choice 4 vectors 3 vectors
Classes Mount only Class choice Mount only Mount only
Number of neurons 294 Alt. search 221 336
Input scaling 0.9899 Alt. search 0.9990 0.9252
Neuron leak rate 0.2286 Alt. search 0.9919 0.1379
Regularisation 0.0004 Alt. search 4.5198 0.0001
Spectral Radius 0.8823 Alt. search 0.6247 0.9455

6.8.8 Training Results (04-02)

The model was trained once using the parameters from table 6.22 and with the train-
ing data specified, with resource usage and results as listed in table 6.23. Training
completed in 5.87 seconds elapsed. The training error at 0.1197 was comparable with
that from the initial model and substantially less than the training error from 04-01.

Table 6.23: Training Results for ESN iteration 04-02.
Description 04-02 04-01 02-01
User Time in seconds 5.58 3.4400 7.28
System Time in seconds 0.14 0.1400 0.09
Elapsed Time in seconds 5.87 3.7100 7.50

6.8.9 Test Results (04-02)

Once training was done, each participants data set was concatenated into a single file
and run against the trained, ESN model. Each individual data set was also used with
the same model to try to find session specific nuances. The results of the concatenated
file are reported along with summaries from the individual session tests.
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Table 6.24: Processing Times for Concatenated Datasets iteration 04-02.
Iteration Id 04-02 04-01 02-01
User Time in seconds 25.54 16.63 29.94
System Time in seconds 00.65 00.50 00.89
Elapsed Time in seconds 26.20 17.13 30.83

Table 6.25: Classification Metrics for Concatenated Datasets iteration 04-02.
Iteration Id 04-02 04-01 02-01
ESN Test Error 0.2745 0.2443 0.2046
RMSE 0.0771 0.0620 0.0874
AUC 0.8714 0.9617 0.9418

Table 6.26: Results for Concatenated Datasets iteration 04-02.

Measures at 0.6 Cut-Off
Description 04-02 04-01 02-01
Classification Rate 0.714 0.571 0.714

Base Mount Base Mount Base Mount
Precision 0.9996 0.1039 0.9995 0.0830 0.9996 0.0737
Recall 0.9982 0.2743 0.9988 0.2124 0.9981 0.2920

Confusion Matrix at 0.6 Cut-Off
Predicted 04-02 Predicted 04-01 Predicted 02-01

Actual Base Mount Base Mount Base Mount
Base 217503 207 217445 265 217295 415
Mount 89 24 89 24 80 33
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Figure 6.21: Concatenated ESN Output for 04-02
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(a) 0719-1 RB #1 (b) 0812-2 RA #1

(c) 0829-2 RC #1 (d) 0830-3 RD #1

(e) 0902-1 RE #2 (f) 0902-2 RC #1

Figure 6.22: Concatenated Mounts (04-02); 0902-1 RE #1 not shown
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Figure 6.23: Concatenated Datasets Performance Plots (04-02)

Figure 6.24: Concatenated datasets Classes (04-02)
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6.8.10 Discussion (04-02)

This set of tests for the 04-02 ESN model once again produced mixed results and it
became clearer that simple one on one comparisons between results from each data
set was not sufficient to provide a reliable comparison of one model against another.

Table 6.27: Comparing Precision Across Four Design Iterations.
Precision at 0.6 Cut-Off

Data-set 02-01 03-01 04-01 04-02
0719-1 RB 1.0000 1.0000 0.0000 1.0000
0812-2 RA 0.5000 1.0000 0.0000 1.0000
0829-2 RC 0.0000 0.0000 0.0000 0.0000
0830-3 RD 0.0263 0.0194 0.0529 0.0301
0902-1 RE 0.1875 0.1456 0.1325 0.2586
0902-2 RC 0.0000 0.0000 0.1875 0.0000

Mean 0.2856 0.3608 0.0622 0.3815
SD 0.3991 0.4981 0.0804 0.4888

Table 6.28: Comparing Recall Across Four Design Iterations.
Recall at 0.6 Cut-Off

Data-set 02-01 03-01 04-01 04-02
0719-1 RB 1.0000 1.0000 0.0000 1.0000
0812-2 RA 0.5000 1.0000 0.0000 1.0000
0829-2 RC 0.0000 0.0000 0.0000 0.0000
0830-3 RD 0.0263 0.0194 0.0529 0.0301
0902-1 RE 0.1875 0.1456 0.1325 0.2586
0902-2 RC 0.0000 0.0000 0.1875 0.0000

Mean 0.2856 0.3608 0.0622 0.3815
SD 0.3990 0.4981 0.0804 0.4888

The substantially different ESN model parameters consistently ran with less com-
puting resources than the initial model, probably due to the number of neurons being
66% (221) less than those for the initial model (336).

The smaller number of neurons combined with the very high leak rate of 0.991919
will have resulted in there being much less memory effect from the recurrent reservoir
connections and this has resulted in a different ”view” on the input data.

Three data sets run against this model (0719-1 RB, 0812-2 RA and 0902-1 RE)
produced results that were worse than those produced from the initial model. In
particular, 0719-1 RB produced much worse results and failed to classify the Mount
at a 0.6 cut-off.

At the same time, the remaining three data sets (0829-2 RC, 0830-3 RD and 0902-
2 RC) produced results that were better than the initial model and in particular 0902-2
RC produced much better results and was able to classify the Mount at a 0.6 cut-off.
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In all cases the number of False Positives were either substantially reduced (0830-
3 RD, 0902-1 RE and 0902-2 RC) or remained the same at very low or zero numbers
(0719-1 RB and 0812-2 RA and 0829-2 RC). This desirable characteristic is most
likely a result of the current model producing output with less variance than the initial
model (see table 6.29). The classes are so skewed towards the base class that any
reduction in overall variance will result primarily from a reduction in variance of the
base class and as the base class is represented by a zero output, such a reduction will
tend to reduce the frequency of False Positives as the base class output will tend to
be closer to zero.

Table 6.29: Comparison of Output Variance for iteration 04-02.
Current Initial

Data set name Std Dev Mean Std Dev Mean
0719-1 RB 0.0330 0.0125 0.0518 −0.0102
0812-2 RA 0.0238 0.0039 0.0409 0.0046
0829-2 RC 0.0326 0.0045 0.0452 −0.0020
0830-3 RD 0.0858 0.0534 0.1344 0.0710
0902-1 RE 0.0653 0.0288 0.0848 0.0264
0902-2 RC 0.0368 0.0081 0.0597 0.0062

6.8.11 Results versus Goals (04-02)

It is difficult to state empirically that the current additive ESN model is better or
worse than the initial model because of the mixed results. However, the current
model improves on the classification accuracy of the initial model in some cases
and this characteristic plus the model’s tendency to reduce or maintain a lower level
of False Positives is attractive as a possible alternative ”view” on the data to that of
the initial model.

6.8.12 Conclusions (04-02)

The classification ability of the ESN model was much more in line with iteration 02–
01 and 03–01 when set up and tested with this alternate parameter set and it was not
otherwise, particularly remarkable. This design iteration, together with the prior one
(04-01), caused a re-think of the use of a parameter optimisation process to search the
parameter space in conjunction with changes to the input data. In essence, an attempt
was being made to compare a number of iterations of similar models whilst chang-
ing two sets of important variables (the data characteristics and the model parameter
characteristics). While such an approach might, eventually, lead to an optimum posi-
tion the process of getting there would be complex. A decision was made to change
tack slightly and to only change one set of variables at a time. A decision was made
to initially keep the model parameter variables static while exploring data changes
and then if and when a recommended data configuration was standardised then to go
back to exploring the model parameters. A decision was made to standardise on the
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model parameters from iteration 02-01 to prevent the necessity of having to go back
and redo prior work. The parameters from 02-01 had been found to be reasonably
comparable with other experiments with the exception of 04-01 and 02-01 was the
benchmark against which newer design iterations were compared.

A decision was also made to change the way future design iterations were reported.
With the removal of the model parameter optimisation process, reporting the results
of the optimisation become pointless. This reduces the amount of detail that needs
to be reported. In the spirit of reporting simplification, a decision was also made to
stop reporting classification results for individual riding sessions and instead to only
report the results of classifying the entire, concatenated test dataset. Together, these
decisions will result in much more compact reporting of future work.

In addition, a decision was made to only report the results of design iterations
where substantial progress was made. Where an individual iteration did not result in
substantial change, it would only get mentioned in passing. In conjunction with this,
an additional cross-reference identifier will be reported that allows the results of a
design iteration to be cross-referenced with the exact code that was run to implement
that design iteration.
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6.9 U N D E R S A M P L I N G - E S N W I T H R E A L W O R L D DATA ( 05 -01 V 13 )

Under-sampling is an accepted technique for improving classification rates when
dealing with rare classes (Chawla, 2005; Drummond, Holte, & others, 2003; Weiss,
2004, 2010). Each design iteration within this research since (and including) iteration
02-01 has used under-sampling to reduce the data within the central, riding region
of the recorded activities. In this series of iterations the amount of under-sampling
is progressively increased by including less of the central, riding region from each
dataset. The first design iteration in this series (V11) under-sampled by including all
data from the start of each dataset up until 4,000 past the mount and then concate-
nated this with data from 4,000 samples prior to the dismount through to the end of
the dataset. Essentially this reduced the number of samples used during riding time
while keeping all other samples. Of course, this under-sampling was only done to the
training data, no data was excluded from the test datasets. The second design itera-
tion (V12) increased the under-sampling by including only up to 1,000 samples after
mounting and 1,000 samples prior to dismounting. The third iteration (V13) kept the
under-sampling rate the same as V12 but took advantage of no longer needing to tune
the ESN model parameters and so was able to include the data previously used during
tuning to add to the amount of training data available. The rationale for excluding
large parts of the data captured after mounting and prior to dismounting was that
during prior real-world design iterations it had been noted that most false positives
were occurring either prior to mounting or after dismounting but not in between these
events.

As noted in section 6.8.12, this set of design iterations follows a slightly different
approach by using a static set of ESN model parameters copied from iteration 02-01
and aims to find the highest classification result from a small set of changes to how
the input data is under–sampled prior to classification. Only three different design
iterations were run and tested, identified as V11 through V13, and the best performing
iteration, V13, is described in detail with any important factors from the other two
noted in passing. Please note that this is not a comprehensive set of tests to provide
insight into the best possible way to under-sample the input data prior to classification
as the large scale of such a goal is outside of this research but is instead a way to try
a limited set of ideas relating to under–sampling.

6.9.1 Problem Identification (05-01)

Earlier instantiations of the ESN classification engine have demonstrated a good abil-
ity to classify mounts based on real-world data but while these initial results are quite
impressive they are not “good enough” to use in real life. Earlier instantiations have
thrown out too many False Positives and have not successfully classified all of the
mounts. Essentially the discriminative ability of the ESN classification engine needs
to be improved.
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6.9.2 Motivation (05-01)

The motivation for this design iteration was to explore some aspects of under-sampling
as an aid to improving the ability of the ESN classification engine to discriminate the
activity of interest.

6.9.3 Design Goal (05-01)

The goal of this set of design iterations was to improve the classification ability of
the ESN model by altering the characteristics of the input data.

6.9.4 Measure of Success (05-01 - V13)

An overall improvement in the area under the ROC curve while maintaining or im-
proving the classification rate as defined in section 6.5.10.

6.9.5 Data Description (05-01 - V13)

Training Data; concatenation of:

• Partial 0813-1 LA (laboratory) – Subset from end including two mounts

• Partial 0716-2 RA – Central (riding) region reduced

• Partial 0912-1 RF – Central (riding) region reduced

• Partial 0912-2 RG – Central (riding) region reduced

• Partial 0913-3 RF – Central (riding) region reduced

Data from the riding phase was removed from each dataset in larger amounts com-
pared with the initial 02-01 model. Only two sections of 1,000 samples of riding
phase data were included from each dataset, 1,000 from immediately after the mount
and 1,000 immediately preceding the dismount.

Testing Data; concatenation of:

• Full 0719-1 RB

• Full 0812-2 RA

• Full 0829-1 RC

• Full 0830-3 RD

• Full 0902-1 RE

• Full 0902-2 RC

The entire data file was always used for testing files.
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6.9.6 Static Parameter Description (05-01 - V13)

The following static parameters were used during this iteration:

• Error Cost Function: (conditional mean square error class + conditional mean
square error non-class)/2

• Included Sensors: Gyroscope

• The Gyroscope sensor readings are linearly transformed, real-values ranging
between 0 and 1.

• The Gyroscope data was diff’ed to ensure that the data mean was stationary

• No outliers were removed

6.9.7 Run time Parameter Description (05-01 - V13)

The parameters from iteration 02-01 were used for this design iteration and are shown
in table 6.30 and the ESN model that was built for this set of design iterations was
built, trained and tested on a Windows 7 based PC running an i7 processor and 8GB
RAM.

Table 6.30: Run Time Parameters for ESN iteration 05-01.
Description This Iteration Justification 02-01 Iteration
Input values 3 vectors of data Input choice 3 vectors of data
Classes Mount only Class choice Mount only
Number of neurons 336 From 02-01 336
Input scaling 0.9252 From 02-01 0.9252
Neuron leak rate 0.1379 From 02-01 0.1379
Regularisation 0.0001 From 02-01 0.0001
Spectral Radius 0.9455 From 02-01 0.9455

6.9.8 Training Results (05-01 - V13)

The training error for this iteration was more than three times as large (see table 6.31)
as that from the initial model. Training completed in 14.39 seconds elapsed, this is
much more computational resources than the initial 02-01 model. The additional
computational requirements are as a result of using the larger training file.

Table 6.31: Training Results for ESN iteration 05-01.
Description This Iteration 02-01 Iteration
User Time in seconds 13.98 7.28
System Time in seconds 0.24 0.09
Elapsed Time in seconds 14.39 7.50
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6.9.9 Testing Results (05-01 - V13)

Table 6.32: Processing Times for Concatenated Test Datasets iteration 05-01 V13.
Iteration Id 05-01 02-01
User Time in seconds 31.43 29.94
System Time in seconds 00.97 00.89
Elapsed Time in seconds 32.41 30.83

Table 6.33: Classification Metrics for Concatenated Test Datasets iteration 05-01 V13.
Iteration Id 05-01 02-01
ESN Test Error 0.3266 0.2046
RMSE 0.0529 0.0874
AUC 0.9062 0.9418

Table 6.34: Results for Concatenated Test Datasets iteration 05-01 V13.

Measures at 0.6 Cut-Off
Description 05-01 02-01
Classification rate 0.286 0.714

Base Cl Mount Cl Base Cl Mount Cl
Precision 0.9995 0.1765 0.9996 0.0737
Recall 0.9998 0.0797 0.9981 0.2920

Confusion Matrix at 0.6 Cut-Off
Predicted 05-01 Predicted 02-01

Actual Base Cl Mount Cl Base Cl Mount Cl
Base Cl 217668 104 217295 415
Mount Cl 42 9 80 33

The area under the ROCcurve increased (0.8676,0.8721 and 0.9062) across all
three under-sampling iterations with this iteration (V13) having the largest area, how-
ever, this is still substantially less than the area under the ROC curve for the original,
02-01 iteration. In addition, the classification rate at the 0.6 cut-off level has fallen
(Table 6.34) substantially. Looking at the ROC curve in Figure 6.27a, this ESN model
is slightly more discriminative at low model output levels (less than 0.1) and about
the same from 0.1 and above.

Mount precision at the selected cut-off level has increased, while Mount Recall
has fallen with this model. There has been a substantial drop in False Positives at the
0.6 cut–off (104 versus 415) but that is juxtaposed against a large drop in both True
Positives (9 versus 33) and in the Classification Rate (0.286 versus 0.714).

Looking at Figure 6.25 and comparing it with the equivalent figure for the initial
02-01 iteration (Figure 6.5 on page 155), the ESN output for this iteration is con-
siderably more subdued than 02-01 with much less variation and that this accounts
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Figure 6.25: 05-01 V13 ESN Output for Concatenated Test Data

for both the drop in false positives and the drop in true positives. The ESN model
response for iteration 05-01 V13 has tended to cluster around zero.
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(a) 0719-1 RB #1 (b) 0812-2 RA #1

(c) 0829-2 RC #1 (d) 0830-3 RD #1

(e) 0902-1 RE #2 (f) 0902-2 RC #1

Figure 6.26: 05-01 V13 Mounts for Concatenated; 0902-1RE #1 not shown
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Figure 6.27: 05-01 V13 Performance Plots for Concatenated Test Data

Figure 6.28: 05-01 V13 Classes for Concatenated Test Data
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6.9.10 Results versus Goals (05-01) V13

This iteration did not meet either of the design goals. The area under the ROC curve
for this design iteration is less than the goal and the classification rate is also less than
the goal.

6.9.11 Discussion (05-01) V13

At first look this design iteration has produced worst results than the initial ESN
model with a substantially lower classification rate, however, this model produces
substantially less False Positives and so if it is possible to retain this ability to reduce
False Positives while somehow boosting the model’s response to True Positives then
under-sampling may yet prove useful.
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This set of design iterations uses a static set of ESN model parameters copied from
iteration 02-01, as noted in section 6.8.12, and aims to find the highest classification
result from a small set of changes to how the input data is filtered prior to classifi-
cation. Only three different design iterations were run and tested, identified as V14
through V16, and the best performing iteration, V15, is described in detail with any
important factors from the other two noted in passing. Please note that this is not a
comprehensive set of tests to provide insight into the best possible way to filter the
input data prior to classification as the large scale of such a goal is outside of this
research but is instead a way to try a limited set of ideas relating to filtering.

Filtering is an accepted technique for improving classification rates by removing
very low frequency trends or drift and high frequency noise from within the ac-
celerometer and gyroscope data and is recommended by a number of authors in-
cluding Anguita, Ghio, Oneto, Parra, and Reyes-Ortiz (2013); Avci et al. (2010);
K. Y. Chen and Bassett (2005); Davey, Anderson, and James (2008); Godfrey, Bourke,
Olaighin, van de Ven, and Nelson (2011); Godfrey, Conway, Meagher, and ÓLaighin
(2008); Lau and Tong (2008); Mannini and Sabatini (2010); Mathie et al. (2004);
Plötz (2010). The question then arose of where the high pass cut off frequency should
be set for filtering out the gyroscope drift. Mathie et al. (2004) reported that the lower
bounds for most human activities sits at around 0.3Hz. C. Yang and Hsu (2010),
while describing a particular inertial recording device suggested that a 0.25Hz lower
bound was acceptable. Godfrey et al. (2008) suggested a lower bound of 0.6Hz but
their work concentrated on human gait analysis and so is only partly comparable.
K. Y. Chen and Bassett (2005) was the most specific when they recommended the
use of a high pass filter set at 0.1Hz to eliminate gyroscope drift and so this was the
value that we used for this set of design iterations. The next consideration was the
type of filter to use and its configuration. D. Liu et al. (2014); Mannini and Sabatini
(2010) both recommended a second order Butterworth filter in similar situations and
so this is the filter configuration used. Lastly, a way of filtering the high frequency
noise was considered. We could have modified the high pass Butterworth filter to be-
come a band pass pass filter to deal with both the low frequency drift and the higher
frequency noise but the author had not used a band pass filter before while a rolling
mean filter had been used successfully during the exploratory phase of this work and
so it was decided to use a rolling mean rather than either another, low pass filter or
a band pass filter. In making this decision the author was cognizant of the design
strategies “favour simplicity” and “be mindful of possible implementation issues”. In
the author’s opinion it is (and was) simpler to filter the high frequency elements us-
ing a simple rolling mean and such an approach is computationally simpler and less
demanding if and when implemented into wearable hardware.

It is worth noting here that prior design iterations within this research, except for
the early LSM and ESN iterations within Chapter 5 (see page 115) where outliers
were removed, have not used filtering techniques on the input data.

In this series of iterations the first iteration (V14) uses a relatively standard But-
terworth filter only and obtained reasonable but not outstanding results with the area
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under the ROC curve of 0.88716. The second iteration (V15) used both a Butter-
worth filter and a rolling mean and achieved very good results (area under the curve
of 0.9694, better than the results from any prior iteration. The last iteration (V16)
used the same filter and rolling mean as V15 but varied the ESN model parameters to
try the parameters from iteration 04-01 where the unusual parameters resulted in an
alternate view of the input data. Iteration V16 resulted in substantially worse results
from classification (AUC of 0.84581) and so iteration V15 was adopted as the best
iteration and used in subsequent design iterations. Design iteration V15 is described
in the following sections in more detail.

6.10.1 Problem Identification (06-01)

Earlier instantiations of the ESN classification engine have demonstrated a good abil-
ity to classify mounts based on real-world data but while these initial results are quite
impressive they are not “good enough” to use in real life. Earlier instantiations have
thrown out too many False Positives and have not successfully classified all of the
mounts. Essentially the discriminative ability of the ESN classification engine needs
to be improved.

6.10.2 Motivation (06-01)

The motivation for this design iteration was to explore some aspects of filtering as
an aid to improving the ability of the ESN classification engine to discriminate the
activity of interest.

6.10.3 Design Goals (06-01 - V15)

The goals for this design iteration are:

1. Maintain or improve the classification rate from 0.714, as achieved with itera-
tion 02-01.

2. Improve the area under the ROC curve from 0.94184, as achieved with iteration
02-01.

3. Maintain or reduce the number of false positives from 104, as achieved with
iteration 05-01 V13.

6.10.4 Measure of Success (06-01 - V15)

An overall improvement in the area under the ROC curve while maintaining or im-
proving the classification rate as defined in section 6.5.10 and a reduction in the
number of False Positives.
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6.10.5 Data Description (06-01 - V15)

Training Data; concatenation of:

• Partial 0813-1 LA (laboratory) – Subset from end including two mounts

• Partial 0716-2 RA – Central (riding) region reduced

• Partial 0912-1 RF – Central (riding) region reduced

• Partial 0912-2 RG – Central (riding) region reduced

• Partial 0913-3 RF – Central (riding) region reduced

Data from the riding phase was removed from each dataset in larger amounts com-
pared with the initial 02-01 model. Only two sections of 1,000 samples of riding
phase data were included from each dataset, 1,000 from immediately after the mount
and 1,000 immediately preceding the dismount.

Testing Data; concatenation of:

• Full 0719-1 RB

• Full 0812-2 RA

• Full 0829-1 RC

• Full 0830-3 RD

• Full 0902-1 RE

• Full 0902-2 RC

The entire data file was always used for testing files.

6.10.6 Static Parameter Description (06-01 - V15)

The following static parameters were used during this iteration:

• Error Cost Function: (conditional mean square error class + conditional mean
square error non-class)/2

• Included Sensors: Gyroscope

• The Gyroscope sensor readings are linearly transformed, real-values ranging
between 0 and 1.

• The Gyroscope data was passed through a second order high-pass Butterworth
filter with a frequency of 0.01Hz, designed to remove signal drift.

• The detrended Gyroscope data was then transformed with a rolling mean.

• No outliers were removed, however the rolling mean would tend to dampen the
outliers.
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6.10.7 Run time Parameter Description (06-01 V15)

The parameters from iteration 02-01 were used for this design iteration and are shown
in table 6.35 and the ESN model that was built for this set of design iterations was
built, trained and tested on a Windows 7 based PC running an i7 processor and 8GB
RAM.

Table 6.35: Run Time Parameters for ESN iteration 06-01 V15.
Description This Iteration Justification 02-01 Iteration
Input values 3 vectors of data Input choice 3 vectors of data
Classes Mount only Class choice Mount only
Number of neurons 336 From 02-01 336
Input scaling 0.9252 From 02-01 0.9252
Neuron leak rate 0.1379 From 02-01 0.1379
Regularisation 0.0001 From 02-01 0.0001
Spectral Radius 0.9455 From 02-01 0.9455

6.10.8 Training Results (06-01 V15)

The training error for this iteration was more than two and a half times as large
(see table 6.36) as that from the initial model. Training completed in 14.35 seconds
elapsed, this is much more computational resources than the initial 02-01 model. The
additional computational requirements are as a result of using the larger training file.

Table 6.36: Training Results for ESN iteration 06-01 V15.
Description This Iteration 02-01 Iteration
User Time in seconds 14.19 7.28
System Time in seconds 0.16 0.09
Elapsed Time in seconds 14.35 7.50

6.10.9 Testing Results (06-01 V15)

Table 6.37: Processing Times for Concatenated Test Datasets iteration 06-01 V15.
Iteration Id 06-01 02-01
User Time in seconds 30.96 29.94
System Time in seconds 00.97 00.89
Elapsed Time in seconds 32.01 30.83
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Table 6.38: Classification Metrics for Concatenated Test Datasets iteration 06-01 V15.
Iteration Id 06-01 02-01
ESN Test Error 0.3349 0.2046
RMSE 0.0323 0.0874
AUC 0.9695 0.9418

Table 6.39: Results for Concatenated Test Datasets iteration 06-01 V15.

Measures at 0.6 Cut-Off
Description 06-01 02-01
Classification rate 0.286 0.714

Base Cl Mount Cl Base Cl Mount Cl
Precision 0.9995 0.1220 0.9996 0.0737
Recall 0.9998 0.0442 0.9981 0.2920

Confusion Matrix at 0.6 Cut-Off
Predicted 06-01 Predicted 02-01

Actual Base Cl Mount Cl Base Cl Mount Cl
Base Cl 217674 36 217295 415
Mount Cl 108 5 80 33

The area under the ROCcurve varied (0.8872,0.9694 and 0.8458) across the three
filtered iterations with this iteration (V15) having the largest area and this is signifi-
cantly more than the area under the ROC curve for the original, 02-01 iteration. How-
ever, the classification rate at the 0.6 cut-off level has fallen (Table 6.39) substantially
compared with iteration 02-01 and is the same as iteration 05-01 V13. Looking at
the ROC curve in Figure 6.30a, this ESN model is more discriminative at low model
output levels (less than 0.2) and about the same from 0.2 and above.

Mount precision at the selected cut-off level has increased by a noticeable amount,
while Mount Recall has fallen with this model. There has been a substantial drop
in False Positives at the 0.6 cut–off (36 versus 415) but that is juxtaposed against a
drop in both True Positives (5 versus 33) and in the Classification Rate (0.286 versus
0.714).

Looking at Figure 6.29 and comparing it with the equivalent figure for the initial
02-01 iteration (Figure 6.5 on page 155), the ESN output for this iteration is con-
siderably more subdued than 02-01 with much less variation and that this accounts
for both the drop in false positives and the drop in true positives. The ESN model
response for iteration 06-01 V15 has tended to cluster around zero.
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Figure 6.29: 06-01 V15 ESN Output for Concatenated Test Data
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Figure 6.30: 06-01 V15 Performance Plots for Concatenated Test Data

Figure 6.31: 06-01 V15 Classes for Concatenated Test Data
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6.10.10 Results versus Goals (06-01) V15

This iteration met two of its design goals but did not meet the third. The area under
the ROC curve for this design iteration is greater than the goal, the number of False
Positive has dropped substantially but the classification rate is less than the goal.

6.10.11 Discussion (06-01) V15

This design iteration has produced better results than the initial ESN model in two
areas but suffers from a substantially lower classification rate. There is a sense that
progress towards the overall goal of this research is being made and future itera-
tions will incorporate a Butterworth filter to detrend the Gyroscope data along with a
rolling mean to smooth the input including any outliers.
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Net acceleration power is a relatively common feature used within IMU based activ-
ity classification although different authors call it by different names. For example,
Z. He, Liu, Jin, Zhen, and Huang (2008) call this feature “net acceleration indepen-
dent of orientation” while Kwapisz, Weiss, and Moore (2011) call this feature “av-
erage resultant acceleration”. Net acceleration power was chosen because its value
is simple to calculate and it is independent of the sensor orientation, as reported by
Z. He et al. (2008) and Kwapisz et al. (2011). With the sensor in this research being
wrist mounted the orientation of the sensor changes often, especially during mount-
ing and as explained in the Data section (Section 4.6), a change in the orientation of
the sensor causes changes across the three axis of the accelerometer and so having an
orientation independent value makes classification more probable. Experience gained
during the exploration phase confirmed that using the three separate acceleration axis
was less useful than using net acceleration power.

The aim of this set of iterations was to build an ESN using data which includes
both the three axis of linearly transformed gyroscope data and the “net acceleration
power” from the accelerometer data. The net acceleration power was calculated by
summing the squares of each axis then taking the square root of the product. The
resultant number was then scaled to be between 0 and 1. The goal in this iterative
step was again to build and test a model using modified input data that includes the
additional accelerometer signal and then measure that model against the initial 02-
01 model. As with recent prior work this set of design iterations uses a static set
of ESN model parameters copied from iteration 02-01, as noted in section 6.8.12.
Six different design iterations were run and tested, identified as V21 through V27
(excluding V24), and the best performing iteration, V23, is described in detail with
any important factors from the other iterations noted in passing.

The first iteration in this series (V21) used the net acceleration power and obtained
a somewhat disappointing area under the ROC curve of 0.91997. Summing the square
of three numbers with values ranging between zero and one and then taking the square
root of that product gives a value between zero and 1.732 while the three Gyroscope
vector range between zero and one. The ESN activation function, tanh, has the affect
of non-linearly scaling its output values so that they are between zero and one. This
means that input values greater than one have very little influence on the ESN model
and this may account for the disappointing result. For the second iteration (V22),
the net acceleration power was divided by 2 to ensure that all input lay between zero
and one and this produced a more useful result with the area under the ROC curve
of 0.96254. The V23 iteration used a Butterworth filter to split the net acceleration
power into a low frequency and a higher frequency band at 5Hz. 5Hz was chosen as it
was suggested as an upper bound for walking by Bouten, Koekkoek, Verduin, Kodde,
and Janssen (1997) and because it was conveniently half of the data sample rate. This
iteration produced very encouraging results with the area under the ROC curve of
0.97315 and the result from this iteration were the best from this set of iterations.

Three further design iterations were attempted in this series, for iteration V25 the
input data was processed exactly the same as for iteration V23, however an ESN
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model with 1,000 neurons was built (much larger neuron number) and the other model
parameters were taken from a recommendation by Lukoševičius in (Lukoševičius,
2012). This produced less interesting results with the area under the ROC curve of
0.94935. Design iteration V26 was similar except that an ESN model with 1,200
neurons was built and its results were even worse with the area under the ROC curve
of 0.93173. For the last design iteration in this series, V27, the ESN parameters were
reverted back to those used in 02-01 except that the number of neurons was raised to
500 (from 336). The results from this iteration were also disappointing with the area
under the ROC curve of 0.94269.

Please note that this is not a comprehensive set of design iterations to provide
insight into the best possible way to incorporate acceleration data into ESN classifiers
as the large scale of such a goal is outside of this research but is instead a way to try
a limited set of ideas relating to incorporating acceleration data.

6.11.1 Problem Identification (07-01)

Earlier instantiations of the ESN classification engine have demonstrated a good abil-
ity to classify mounts based on real-world data but while these initial results are quite
impressive they are not “good enough” to use in real life. Earlier instantiations have
thrown out too many False Positives and have not successfully classified all of the
mounts. Essentially the discriminative ability of the ESN classification engine needs
to be improved.

6.11.2 Motivation (07-01)

The motivation for this design iteration was to explore the addition of net acceler-
ation power to the Gyroscope data as an aid to improving the ability of the ESN
classification engine to discriminate the activity of interest.

6.11.3 Design Goals (07-01 - V23)

The goals for this design iteration are:

1. Maintain or improve the classification rate from 0.714, as achieved with itera-
tion 02-01.

2. Improve the area under the ROC curve from 0.9694, as achieved with iteration
06-01 V15.

3. Maintain or reduce the number of false positives from 36, as achieved with
iteration 06-01 V15.
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6.11.4 Measure of Success (07-01 - V23)

An overall improvement in the area under the ROC curve while maintaining or im-
proving the classification rate as defined in section 6.5.10 and either maintaining or
reducing the number of False Positives.

6.11.5 Data Description (07-01 - V23)

Training Data; concatenation of:

• Partial 0813-1 LA (laboratory) – Subset from end including two mounts

• Partial 0716-2 RA – Central (riding) region reduced

• Partial 0912-1 RF – Central (riding) region reduced

• Partial 0912-2 RG – Central (riding) region reduced

• Partial 0913-3 RF – Central (riding) region reduced

Data from the riding phase was removed from each dataset in larger amounts com-
pared with the initial 02-01 model. Only two sections of 1,000 samples of riding
phase data were included from each dataset, 1,000 from immediately after the mount
and 1,000 immediately preceding the dismount.

Testing Data; concatenation of:

• Full 0719-1 RB

• Full 0812-2 RA

• Full 0829-1 RC

• Full 0830-3 RD

• Full 0902-1 RE

• Full 0902-2 RC

The entire data file was always used for testing files.

6.11.6 Static Parameter Description (07-01 - V23)

The following static parameters were used during this iteration:

• Error Cost Function: (conditional mean square error class + conditional mean
square error non-class)/2

• Included Sensors: Gyroscope and Accelerometer

• The Gyroscope and Accelerometer sensor readings are linearly transformed,
real-values ranging between 0 and 1.

• The Gyroscope data was passed through a second order high-pass Butterworth
filter with a frequency of 0.01Hz, designed to remove signal drift.
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• The detrended Gyroscope data was then transformed with a rolling mean.

• No outliers were removed from either sensor, however the rolling mean applied
to the Gyroscope data would tend to dampen the Gyroscope outliers.

• The three axis of Accelerometer data are combined into a single vector of val-
ues by summing the squares of each axis then taking the square root of the
product.

• The single Accelerometer vector is then transformed into two vectors by using
a Butterworth filter to separate the signal into upper and lower frequency bands.

6.11.7 Run time Parameter Description (07-01 V23)

The parameters from iteration 02-01 were used for this design iteration and are shown
in table 6.40 and the ESN model that was built for this set of design iterations was
built, trained and tested on a Windows 7 based PC running an i7 processor and 8GB
RAM.

Table 6.40: Run Time Parameters for ESN iteration 07-01 V23.
Description This Iteration Justification 02-01 Iteration
Input values 5 vectors of data Input choice 3 vectors of data
Classes Mount only Class choice Mount only
Number of neurons 336 From 02-01 336
Input scaling 0.9252 From 02-01 0.9252
Neuron leak rate 0.1379 From 02-01 0.1379
Regularisation 0.0001 From 02-01 0.0001
Spectral Radius 0.9455 From 02-01 0.9455

6.11.8 Training Results (07-01 V23)

The training error for this iteration was more than two and a half times as large
(see table 6.41) as that from the initial model. Training completed in 14.2 seconds
elapsed, this is much more computational resources than the initial 02-01 model. The
additional computational requirements are as a result of using the larger training file.

Table 6.41: Training Results for ESN iteration 07-01 V23.
Description This Iteration 02-01 Iteration
User Time in seconds 14.03 7.28
System Time in seconds 0.16 0.09
Elapsed Time in seconds 14.20 7.50
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Table 6.42: Processing Times for Concatenated Test Datasets iteration 07-01 V23.
Iteration Id 07-01 02-01
User Time in seconds 31.47 29.94
System Time in seconds 01.11 00.89
Elapsed Time in seconds 32.64 30.83

Table 6.43: Classification Metrics for Concatenated Test Datasets iteration 07-01 V23.
Iteration Id 07-01 02-01
ESN Test Error 0.2373 0.2046
RMSE 0.0299 0.0874
AUC 0.9732 0.9418

Table 6.44: Results for Concatenated Test Datasets iteration 07-01 V23.

Measures at 0.6 Cut-Off
Description 07-01 02-01
Classification rate 0.571 0.714

Base Cl Mount Cl Base Cl Mount Cl
Precision 0.9996 0.8462 0.9996 0.0737
Recall 0.9999 0.1947 0.9981 0.2920

Confusion Matrix at 0.6 Cut-Off
Predicted 07-01 Predicted 02-01

Actual Base Cl Mount Cl Base Cl Mount Cl
Base Cl 217706 4 217295 415
Mount Cl 91 22 80 33

6.11.9 Testing Results (07-01 V23)

All three measures of success have improved substantially from the immediately prior
iteration, the area under the ROC curve has increased from 0.9694 to 0.97315 (Ta-
ble 6.44), the number of false positives has dropped from 36 to 4 and the classification
rate has increased from 0.286 to 0.571. Both the area under the ROC curve and the
number of False Positives has meet the design goals, however, while the classification
rate has improved it has not met the design goal and is still less than than the 0.714
achieved with iteration 02-01. These figures are summarised in Table 6.44. Looking
at the ROC curve in Figure 6.34a, this ESN model is more discriminative at all model
output levels less than 0.2 and has a similar discriminative level above that. The other
iterations for this set produced the following area under the ROCcurve V21 – 0.9200,
V22 – 0.9625, V25 0.9494, V26 – 0.9317 and V27 – 0.9427.

Mount precision at the selected cut-off level and across the board has increased
by a noticeable amount and Mount Recall has also increased substantially with this
model, this is demonstrated in Figure 6.34b. There has been a further substantial drop
in False Positives at the 0.6 cut–off (4 versus 415) and in addition the number of True
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Positives at the 0.6 cut-off level has increased from the last iteration (06-01) but is
still short of the 33 achieved during 02-01. The Classification Rate at 0.571 has also
increased from 06-01 but is again short of that achieved during 02-01 at 0.714).

Figure 6.32: 07-01 V23 ESN Output for Concatenated Test Data

Looking at Figure 6.32 and comparing it with the equivalent figure for the initial
02-01 iteration (Figure 6.5 on page 155), the ESN output for this iteration is con-
siderably more subdued than 02-01 overall with much less variation but the output
from th eESN does rise substantially for all mounts except the third mount. Even the
first two mounts which did not reach the 0.6 cut-off produce a substantial rise in the
ESN output (see zoomed in mount Figures 6.33a and b). Together this accounts for
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both the drop in false positives and the rise in true positives. The False Positives that
reach the 0.6 cut-off are in two clusters, one just prior to the 4th mount and the other
just prior to the 5th mount. On re-checking the video for these two mounts it was
apparent that both clusters coincide with brushing the horse prior to tacking up.

Out of curiosity and while the video files were loaded to check the clusters of
False Positives, a decision was made to also look at mount 0829-2 RC. This mount
has been consistently misclassified across all ESN models (see Figure 6.33c for an
example from this iteration). Somewhat embarrassingly, the video shows that this
mount was not a stirrup mount like all the other mounts in the training and testing
data. Instead it is a mount from a mounting block. Mounting blocks raise the rider’s
height compared with the horse and so an assisted mount from a mounting block
results in considerably different body movements from the rider, especially different
hand movements. In particular, with a mounting block there is no sudden elevation
of the rider’s forearm as they mount.

(a) 0719-1 RB #1 (b) 0812-2 RA #1

Figure 6.33: 07-01 V23 First Two Mounts for Concatenated
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Figure 6.34: 07-01 V23 Performance Plots for Concatenated Test Data

Figure 6.35: 07-01 V23 Classes for Concatenated Test Data
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6.11.10 Testing Results Selected Summary (07-01 V25–V27)

This section summarises some of the more significant results from design iterations
V25 through V27. While design iteration 07-01 V23 produced the highest area under
the ROC curve, other design iterations produced lower areas under the ROC curve,
but still reasonably high whilst producing a better classification ratio or less False
Positives and so these results are summarised below. The equivalent results for the
initial 02-01 iteration are also included for comparative purposes.

Table 6.45: Comparative results for 07-01 V23–V27.
02-01 V23 V25 V26 V27

ESN Parameters
Model Set 02-01 02-01 Lukosevicius Lukosevicius 02-01
Num. Neurons 336 336 1,000 1,200 500

Overall Classification Metrics
RMSE 0.087 0.030 0.027 0.027 0.035
AUC 0.942 0.973 0.949 0.932 0.943

Classification Metrics at 0.6 Cut-off
Rate 0.714 0.571 0.571 0.571 0.714
Mount Precision 0.074 0.846 0.909 1.000 0.562
Mount Recall 0.292 0.195 0.089 0.080 0.283
False Positives 376.000 4.000 1.000 0.000 25.000
True Positives 40.000 22.000 10.000 9.000 32.000

Classification Metrics at 0.39 Cut-off
Rate 0.714 0.857 0.857 0.857 0.857
Mount Precision 0.053 0.383 0.809 0.786 0.266
Mount Recall 0.504 0.363 0.336 0.292 0.407
False Positives 1012.000 66.000 9.000 10.000 127.000
True Positives 57.000 41.000 38.000 33.000 46.000

6.11.10.1 Design Iteration 07-01 V25

This design iteration used the same input data as V23 but substituted ESN model
parameters suggested by Lukoševičius in (Lukoševičius, 2012) with 1,000 neurons
versus 336 neurons for V23, key metrics from this iteration are summarised in Ta-
ble 6.45 on page 214.

This design iteration produced an output that was slightly more subdued than the
output from V23 overall, as noted by the lower Root Mean Square Error (RMSE),
Figure 6.36 on page 215 provides a visual indicator of this. This iteration classi-
fied the mount activities with more precision at the selected 0.6 cut-off (0.9091 V
0.8462). In addition it only produced a single False Positive at that cut-off point
versus 4 for V23. This design iteration produced an area under the ROC curve of
0.94935 that demonstrates that it was somewhat less discriminative at very low levels
(under around 0.025) but similarly discriminative at levels above that (Figure 6.37 a,
page 216. The classification rate for this design iteration of 0.571 at the 0.6 cut-off
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was equal to the classification rate from V23 at the same cut-off point. At a 0.39 cut-
off level this design iteration also bests the initial 02-01 results. A 0.39 cut-off level
produces 9 False Positives, 38 True Positives, a precision rate of 0.8085 and a recall
rate of 0.3362. The precision at this level is much higher than V23 but the recall rate
is slightly less.

Figure 6.36: 07-01 V25 ESN Output for Concatenated Test Data
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Figure 6.37: 07-01 V25 Performance Plots for Concatenated Test Data

Figure 6.38: 07-01 V25 Classes for Concatenated Test Data
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6.11.10.2 Design Iteration 07-01 V26

This design iteration used the same input data as V23 but substituted ESN model
parameters suggested by Lukoševičius in (Lukoševičius, 2012) with 1,200 neurons
and again key metrics from this iteration are summarised in Table 6.45 on page 214.

This design iteration produced an output that was slightly more subdued than the
output from V23 and V25 overall, as noted by the lower RMSE, Figure 6.39 on
page 217 provides a visual indicator of this. In addition, this iteration managed to
correctly classify all the base class samples at the selected 0.6 cut-off and as a result
classified the mount activities with more precision at that level (1.0 V 0.84615) and
no False Positives at that cut-off point. However at the 0.6 cut-off level the Mount
recall for this iteration was much less (0.07965 V 0.19469).

This design iteration produced an area under the ROC curve at 0.93173 that demon-
strates that it was somewhat less discriminative at very low levels (under around
0.025) compared with V23, but similarly discriminative at levels above that (Fig-
ure 6.40 a, page 218). The classification rate for this design iteration of 0.571 at the
0.6 cut-off was equal to the classification rate from V23 at the same cut-off point. At
a 0.39 cut-off level this design iteration also bests the initial 02-01 results. A 0.39
cut-off level produces 9 False Positives, 38 True Positives, a precision rate of 0.8085
and a recall rate of 0.3362.

Figure 6.39: 07-01 V26 ESN Output for Concatenated Test Data
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Figure 6.40: 07-01 V26 Performance Plots for Concatenated Test Data

Figure 6.41: 07-01 V26 Classes for Concatenated Test Data at 0.6 Cut-off
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6.11.10.3 Design Iteration 07-01 V27

This design iteration used the same input data as V23 along with the 02-01 ESN
model parameters but with 500 neurons and again key metrics from this iteration are
summarised in Table 6.45 on page 214. Interestingly, the outputs from this model
meet all of the design goals for improving on the metrics from 02-01. The classifica-
tion rate is the same, the area under the ROC curve is greater and there are less False
Positives, however, this iteration was not chosen as the best in set.

This design iteration produced an output that demonstrated more energetic re-
sponses than the output from V23, V25 and V26 overall but a more subdued response
than that from 02-01, as noted by the higher RMSE, Figure 6.42 on page 219 pro-
vides a visual indicator of this. However, the more energetic responses have resulted
in more False Positives and while more mounts were classified, this was done with
fewer True Positives. Effectively this design iteration traded off a lower precision
(0.5614) in return for a better recall (0.2832).

This design iteration produced an area under the ROC curve at 0.94269 that demon-
strates that it was somewhat less discriminative at very low levels (under around
0.025) compared with V23, but similarly discriminative at levels above that (Fig-
ure 6.43 a, page 220). The classification rate for this design iteration of 0.714 at the
0.6 cut-off was equal to the classification rate from 02-01 and better than V23 at the
same cut-off point. At a 0.39 cut-off level this design iteration also bests the initial
02-01 results in all areas except the number of True Positives although it has the next
highest number of these. A 0.39 cut-off level produces 127 False Positives, 46 True
Positives, a precision rate of 0.2659 and a recall rate of 0.4071.

Figure 6.42: 07-01 V27 ESN Output for Concatenated Test Data
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Figure 6.43: 07-01 V27 Performance Plots for Concatenated Test Data

Figure 6.44: 07-01 V27 Classes for Concatenated Test Data at 0.6 Cut-off
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6.11.11 Results versus Goals (07-01) V23

The selected model from this design iteration set met two of its design goals but did
not meet the third. The area under the ROC curve for this design iteration is greater
than the goal and the number of False Positives at a 0.6 cut-off level has dropped
substantially but the classification rate at the same 0.6 cut-off level is less than the
goal. A different model (V27) did meet all three design goals but it was not the
selected model because it had a much higher level of False Positives. Yet another
iteration from this set (V25) had very similar but better metrics to V23 in all areas
except the area under the ROC curve. All four design iterations produced pleasing
results and this supports the value of including the Accelerometer data in the input
data.

6.11.12 Discussion (07-01) V23 and other iterations

The selected design iteration (V23) has produced better results than the initial ESN
model in two areas but suffers from a lower classification rate at the 0.6 cut-off level.
In many ways the output response from this ESN model is more desirable than the
output response from the 02-01 model. Looking at Figure 6.35, for example, which
shows the model output after the 0.6 cut off has been applied and comparing it with
Figure 6.8 on page 157, it can be seen that there are almost no False Positives (two
shown between mounts three and four) and four of the seven mounts are clearly
defined. Then, taking into account that the third mount is correctly misclassified (as
it is not a stirrup mount) it looks even better with two thirds of the six stirrup mounts
being correctly classified. Lastly, the cut-off level of 0.6 was chosen towards the
start of this research in a somewhat arbitrary manner based on gut feel of a desired
response level from a classifier. There is no other logic associated with this cut-off
level. This cut-off level was maintained through each design iteration for consistency
but now that there are more examples of potential output levels from a “useful” ESN
classification model it seems logical to review this cut-off level.

At a 0.39 cut-off level, for example, this design iteration would correctly classify
all six of the stirrup mounts, resulting in a classification rate of 0.857 (1.0 based on
removing the assisted mount) and an associated rise in False Positives from a total
of four samples at a 0.6 cut-off to a total of 66 samples at 0.39. Of course, in order
to compare like with like the 02-01 cut-off level would also need to be lowered to
0.39 and in this case the 02-01 design iteration would misclassify one stirrup mount,
the last one and even more tellingly, the number of False Positives produced from
02-01would rise substantially to 1,012.

The output from the current design iteration is more subdued but more discrim-
inative. Based on the proposed new cut-off level, this model with the addition of
the additional information in the form of the net acceleration power substantially im-
proves the classification of the Stirrup Mount activity using an ESN classification
model. The improvement in classification is such that this model can be considered
good enough to demonstrate that the overall classification goal for this research had
been achieved.



6.11 AC C E L E RO M E T E R - A D D I T I V E #2 07 -01 V 23 222

Design iteration V25 (Subsection 6.11.10.1) also bested iteration 02-01 at a 0.39
cut-off, with a similar more subdued and more discriminative output, although not
quite as good as V23. This supports a conclusion that this combination of input
data features provides good classification across a variety of different ESN model
characteristics and supports the conclusion that a robust artefact has been produced
that meets the research objectives.

6.11.13 Next Step

At this stage in the research process the project was considerably beyond the antic-
ipated finish time, the funding scholarship had ended and both academic and home
pressures were strongly pushing for an end to the Design Cycle phase so that the
thesis could be completed and submitted for examination. There was only time for
one more design iteration. A decision was made to further test the robustness of the
ability of the ESN model to successfully classify punctual activities by substituting a
different version of the R ESN code library.

All of the classification within this research that is based on ESNs use a library
that implements the ESN concept as described in a paper authored by Lukoševičius
and Jaeger (Lukoševičius and Jaeger (2009)), where the R library code was initially
written by Schliebs and made available for this research. One of Schliebs objective
in writing the library code was to produce efficient R code that was simple to run on
parallel processors so that any search across the model parameter set would use the
minimum of resources. In meeting this goal Schliebs replicated the essential and core
function associated with ESN models as expressed in Lukoševičius and Jaeger (2009)
but did not implement some of the “nice-to-have” features such as the automatic in-
corporation of a vector of ones within the input data, as recommended (for example)
by Lukoševičius in (Lukoševičius, 2012). The library was then subsequently modi-
fied by the author over a number of iterations but the basic structure of the code was
maintained.

During earlier work the author came across a website where Lukoševičius had pub-
lished a small number of sample code files for implementing a minimal ESN in var-
ious programming languages, including R. This was at http://minds.jacobs-university
.de/mantas/code and was cited in conjunction with his publication Lukoševičius (2012).
For some reason Lukoševičius withdrew the original page (URL) where the code was
hosted but then subsequently reposted the code at http://212.201.49.24/mantasCode
and http://212.201.49.24/sites/default/files/uploads/mantas/code/minimalESN.R. Dur-
ing the exploration phase of this research the author downloaded and tested this code
in a limited manner, found a coding error and corrected that.

A decision was made to use the remaining time to demonstrate the robustness
of the ESN model for this work by repeating the selected iteration (V23) from last
set of design iterations using exactly the same data and ESN parameters from the
V23 iteration but substituting the Lukoševičius R code for the Schliebs ESN R code
library. The Lukoševičius R code looked like it had been ported from a MatLab or
some other implementation as it used very simple R statements and did not attempt to
use any R specific statements that would have improved its efficiency. In addition, this

http://minds.jacobs-university.de/mantas/code
http://minds.jacobs-university.de/mantas/code
http://212.201.49.24/mantasCode
http://212.201.49.24/sites/default/files/uploads/mantas/code/minimalESN.R
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alternate code implemented two ideas that were not implemented within the Schliebs
code. The first difference was that the alternate code automatically truncated the early
output from the ESN during training (only) because Lukoševičius and Jaeger had
discovered that during training the ESN model tended to produce unstable output as
the initial data was parsed and until the internal “memory” was filled up. The second,
and probably more crucial, change in the code libraries was the implementation of
the additional fixed value input data vector.

The next and last design iteration, described in the following section, was designed
to demonstrate that an alternate code base with a slightly different implementation of
the ESN model within R would produce a very similar response from the same data.
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6.12 L U KO S E V I C I U S C O D E 08 -01 V 28

The aim of this iteration was to build an ESN using the same data used by itera-
tion 07-01 V23 along with the same ESN parameters used by 07-01 V23 so that
the classification robustness of ESN models classifying a punctual activity could be
demonstrated. In this case, however, a decision was made to increase the number
of neurons from 336 to 1,000. Lukoševičius tended to use 1,000 in his ESN models
and as this iteration used his code a decision was made to also use his recommended
number of neurons.

6.12.1 Problem Identification (08-01)

Design iteration 07-01 demonstrated a very good ability to classify mounts based
on real-world data including a “good enough” reduction in False Positives to enable
a ESN based classifier to be used in real life. As discussed in Section 6.11.13 on
page 222, this classifier and dataset have not yet been subject to external review and
so some critics may question the robustness of this solution.

6.12.2 Motivation (08-01)

The motivation for this design iteration was to partially demonstrate the robustness
of the code and dataset used to classify mounts by substituting an alternate ESN code
library while retaining the same dataset.

6.12.3 Design Goals (08-01 - V28)

The goals for this design iteration are:

1. Achieve a similar or better classification rate to 07-01 V23 (0.571).

2. Achieve a similar or better area under the ROC curve as 07-01 V23 (0.97315).

3. Achieve a similar number of false positives as 07-01 V23 (4).

6.12.4 Measure of Success (08-01 - V28)

The ESN model is expected to produce a similar response overall and a similar or
better area under the ROC curve while maintaining or improving the classification
rate and maintaining a similar number of False Positives.

6.12.5 Data Description (08-01 - V28)

Training Data; concatenation of:

• Partial 0813-1 LA (laboratory) – Subset from end including two mounts

• Partial 0716-2 RA – Central (riding) region reduced
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• Partial 0912-1 RF – Central (riding) region reduced

• Partial 0912-2 RG – Central (riding) region reduced

• Partial 0913-3 RF – Central (riding) region reduced

Data from the riding phase was removed from each dataset in larger amounts com-
pared with the initial 02-01 model. Only two sections of 1,000 samples of riding
phase data were included from each dataset, 1,000 from immediately after the mount
and 1,000 immediately preceding the dismount.

Testing Data; concatenation of:

• Full 0719-1 RB

• Full 0812-2 RA

• Full 0829-1 RC

• Full 0830-3 RD

• Full 0902-1 RE

• Full 0902-2 RC

The entire data file was always used for testing files.

6.12.6 Static Parameter Description (08-01 - V28)

The following static parameters were used during this iteration:

• Error Cost Function: (conditional mean square error class + conditional mean
square error non-class)/2

• Included Sensors: Gyroscope and Accelerometer

• The Gyroscope and Accelerometer sensor readings are linearly transformed,
real-values ranging between 0 and 1.

• The Gyroscope data was passed through a second order high-pass Butterworth
filter with a frequency of 0.01Hz, designed to remove signal drift.

• The detrended Gyroscope data was then transformed with a rolling mean.

• No outliers were removed from either sensor, however the rolling mean applied
to the Gyroscope data would tend to dampen the Gyroscope outliers.

• The three axis of Accelerometer data are combined into a single vector of val-
ues by summing the squares of each axis then taking the square root of the
product.

• The single Accelerometer vector is then transformed into two vectors by using
a Butterworth filter to separate the signal into upper and lower frequency bands.

• The Lukoševičius code automatically adds an additional input vector with fixed
values of 1.0
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6.12.7 Run time Parameter Description (08-01 V28)

The parameters from iteration 02-01 except for the number of neurons were used for
this design iteration and are shown in table 6.46. A decision was made to increase
the number of neurons to 1,000 as most of Lukoševičius’s models used this number
of neurons. The ESN model that was built for this set of design iterations was built,
trained and tested on a Windows 7 based PC running an i7 processor and 8GB RAM.

Table 6.46: Run Time Parameters for ESN iteration 08-01 V28.
Description This Iteration Justification 02-01 Iteration
Input values 5+1 vectors of data Input choice 3 vectors of data
Classes Mount only Class choice Mount only
Number of neurons 1000 Lukoševičius (2012) 336
Input scaling 0.9252 From 02-01 0.9252
Neuron leak rate 0.1379 From 02-01 0.1379
Regularisation 0.0001 From 02-01 0.0001
Spectral Radius 0.9455 From 02-01 0.9455

6.12.8 Testing Results (08-01 V28)

Table 6.47: Processing Times for Concatenated Test Datasets iteration 08-01 V28.
Iteration Id 08-01 07-01 V23
User Time in seconds 441.00 31.47
System Time in seconds 00.08 01.11
Elapsed Time in seconds 441.19 32.64

Table 6.48: Classification Metrics for Concatenated Test Datasets iteration 08-01 V28.
Iteration Id 08-01 07-01 V23
ESN Test Error 0.3269 0.2373
RMSE 0.0378 0.0299
AUC 0.9970 0.9732

User processor time and elapsed processor time have both increased substantially.
partly this can be attributed to the extra neurons in the model but also reflects that this
code has not been optimised for R, where as the Schliebs code has been optimised.
This also demonstrates that while the end effect of the code is the same or similar,
the coding statements that are used in each case are quite different. producing similar
results via two different sets of code provides some confidence that the underlying
algorithm for implementing an ESN classifier is the same and the results produced
are repeatable.

The error recorded from the test run is broadly similar between both iterations,
especially considering that this latest iteration used more than twice as many neurons.
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Table 6.49: Results for Concatenated Test Datasets iteration 08-01 V28.

Measures at 0.6 Cut-Off
Description 08-01 07-01 V23
Classification
rate

0.714 0.571

Base Cl Mount Cl Base Cl Mount Cl
Precision 0.9997 0.5065 0.9995 0.8462
Recall 0.9998 0.3451 0.9999 0.1947

Confusion Matrix at 0.6 Cut-Off
Predicted 08-01 Predicted 07-01 V23

Actual Base Cl Mount Cl Base Cl Mount Cl
Base Cl 218022 38 217706 4
Mount Cl 74 39 91 22

Again, the RMSE of both iterations are broadly comparable and the RMSE for the
current iteration is slightly higher, this is consistent with the response from 07-01
V27 where the larger number of neurons also resulted in an increase in the RMSE.
The area under the ROC curve is similar between both iterations with the current area
increasing to 0.997. This increase may well be attributable to either the larger number
of neurons, the addition of the static values vector or both.

The precision of the current iteration is substantially less than that of 07-01 V23
at the 0.6 cut-off level but this is balanced by a corresponding large increase in recall
at this cut-off level. This behaviour is consistent with a model that generates a more
responsive output and is similar to what was seen with 07-01 V27. The confusion ma-
trix at this same 0.6 cut-off level is consistent with the changes in both precision and
recall, with the number of False Positives at 0.6 increasing to 38 but this is balanced
against the increase in true Positives at this level and notably, the classification rate
for this iteration has increased to 0.714. Figure 6.45 is very similar in shape to Fig-
ure 6.32 on page 211 for iteration 07-01 V23 and is an even closer fit to Figure 6.42
on page 219 for iteration 07-01 V27. The mounts occur where they are expected to
be and even the false mounts occur where they are expected.

The individual mounts shown in Figure 6.46 illustrate that four of the six mounts
that were expected to be classified were classified with a strong response that went
well beyond the 0.6 cut-off, one mount only just made the 0.6 cut-off while the model
response for the sixth mount was just below the 0.6 cut-off and would have been
included if the cut-off was set at 0.5 instead.

The ROC curve (Figure’ 6.47 a) demonstrates that this model is clearly better at
distinguishing mounts at response levels below 0.2 and as good or better at response
levels above that. This can also be seen in the shape of the figure that plots Preci-
sion against Recall (Figure 6.47 b) and Figure 6.47 c, that plots the number of True
Positives against the number of False Positives at various cut-off levels.
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Figure 6.45: 08-01 V28 ESN Output for Concatenated Test Data
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(a) 0719-1 RB #1 (b) 0812-2 RA #1

(c) 0829-2 RC #1 (d) 0830-3 RD #1

(e) 0902-1 RE #1 (f) 0902-1 RE #2

(g) 0902-2 RC #1

Figure 6.46: 08-01 V28 Mounts for Concatenated test data
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6.12.9 Results versus Goals (08-01) V28

This iteration is considered to be similar enough, given the differences in model size
and the additional input vector, to have met its design goals.

6.12.10 Discussion (08-01) V28

Although the goal of this design iteration was not to improve the software artefact,
it did result in a larger area under the ROC curve. This reinforces that while this
research has produced an artefact that is good enough to meet the overall research
goals, there is still a lot more knowledge to be gained about using ESN recurrent
neural networks to classify punctual activities.

6.13 S U M M A RY O F I T E R AT I O N S

6.13.1 01-01 – Run ESN from phase two with real-world data

Section 6.4 on page 147 describes iteration 01–01, the first iteration in this series and
in this first iteration using real–world, unscripted activity data the author decided to
test the best performing ESN model from the phase two work against the real–world
data in a somewhat simplistic attempt to see if the model developed from the scripted,
laboratory based data had validity when used with real–world data. Curiosity rather
than any real expectation of successful classification carry over drove the interest for
this iteration and so it was not disappointing that the results showed that the model
developed for scripted data did not do a particularly good job of classifying the data
from the unscripted activities and in particular the model generated a huge number
of False Positive classification errors. However the model successfully classified
both the Mounts and Dismounts that were in the test data and this was pleasing.
While these successful True Positive classifications could well have been somewhat
of a fluke (given the high number of False Positives) these correct classifications
are encouraging and hinted that the underlying technique of using an ESN classifier
might well successfully transfer from scripted to unscripted activities.

Iteration 01–01 was a transitional situation and so the data used for testing this
model has the same basic characteristics as the data from the scripted activities that
were used to train this model. As a result the test data includes all nine sensor outputs
and sets out to classify both Stirrup Mounts and Dismounts. In addition the cost
function used during both the training and the testing of the model uses a relatively
common least mean square error function.

6.13.2 02-01 – Build new optimised ESN model using real-world data

Section 6.5 on page 149 describes iteration 02–01. The work described in this section
was published in Hunt and Parry (2015). This was the first ESN model built specif-
ically for the data captured from the unscripted, real–world riding activities and was
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used as the base model against which to compare the following design iterations.
This model incorporated much of the learning that had been gained from the phase
two activities. Following the simplification design strategy, the process of producing,
tuning and testing the ESN model was simplified and standardised. A Debian based,
multi–core, virtual server, set up within the Amazon Elastic Cloud Compute envi-
ronment, running R and RStudio was used for this and subsequent design iterations.
This platform then became the standardised (and easily cloned) platform for running
the PSO parameter search during the tuning cycle for each subsequent model.

During this third phase of the design cycle the data was always split into three
separate groups, training, tuning and testing. The training data was used to train the
ESN model. The tuning data was used during the parameter optimisation process to
test against the trained model and finally the testing data was held back to the last
step so that the model can be tested with data that has not previously been seen. This
data is listed in Table 6.1 on page 147.

One of the important things that was learned during the phase two activities was
the difficulties associated with classification of rare classes. This showed up in two
key areas. Firstly, without some technique of introducing a bias into the model train-
ing process there was a tendency for the ESN model to be optimised for the much
more common base class. During this third phase two techniques are used to try to
counter this tendency towards optimising for the base class. The first technique was
to take out (under sample) some of the base class data from the training and tuning
datasets (but never from the testing dataset). This has an added bonus of speeding
up the model development and parameter tuning process as there was less data to
deal with during these parts of the process. The second technique that was used to
bias the model towards the much rarer non–base class data was to use a conditional
mean square error as the cost function to be minimised during tuning rather than a
straightforward mean square error cost function.

In line with the simplification strategy, a decision was made to only classify Mounts
rather than both Mounts and Dismounts. One of the advantages of using an ESN
model for classification is that the same reservoir can be used to classify a number
of different classes in parallel but at this stage of development of the optimisation
process for the ESN model parameters there is no simple technique of balancing po-
tentially opposing parameter settings for differing classes. Of course, if classes have
similar parameter requirements then this is not an issue. Every research project must
ultimately decide what needs to be left out just as importantly as what should be
included and in this case for this project a decision was made to leave out the clas-
sification of multiple classes at this time. This is likely to be one of many future
directions that are looked at for post-doctoral work. One immediate benefit of this
decision was that the model development and tuning process was simplified and sped
up. The modified, shorter version of the Mount definition was used during this phase
of the work, please see Section 5.6 on page 127 for that redefinition.

The last major simplification that was applied to this phase of the work was to start
by using only the Gyroscope data as this data was the least affected by orientation
changes and noise. The intention was to start with only the Gyroscope data and to try
to get as much value out of the Gyroscope data before adding any other sensor data. If
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it becomes possible to consistently classify the Mount activity with only Gyroscope
data then the development process will stop there but if consistent classification was
not possible using only Gyroscope data then data from the other sensors will be added
to see if that helps. This is consistent with the iterative development cycle of Design
Science.

6.13.3 03-01 – Compare ESN model using offset input data against 02-01

Section 6.6 on page 160 describes iteration 03–01. The primary purpose for this
design iteration was to look at a suggestion in Jaeger (2005, p. 44) to beware of
symmetric input. According to Jaeger, when the input values are roughly symmetrical
around zero then the ESN using a sigmoid actuator may not learn effectively. The
Gyroscope signal is very much symmetrical around zero. The input signal used with
this iteration has a constant offset added to it so that it is no longer symmetrical
around zero and is instead offset from zero.

6.13.4 04-01 – Compare ensemble ESN model against 02-01

Section 6.7 on page 169 describes iteration 04–01. The design goal for this iteration
was to test a simple ensemble using both the gyroscope data as input plus the output
from a much smaller, 60 neuron, ESN. The idea for this iteration came from com-
ments by (Lukoševičius, 2012, p. 669) on the possibility of splitting a reservoir into
different populations with differing parameters as a way of dealing with multiple time
scales within the same input stream. A decision was made to implement this idea by
including the output from a much smaller model, rather than reprogramming the ESN
library code to enable the splitting of the main reservoir into two or more populations
with differing parameters. This alternate approach to including differing time scales
is consistent with (Lukoševičius, 2012, p. 675) and other authors such as Jaeger and
Haas (2004) who report that ensembles of ESN can sometimes dramatically improve
performance over a single ESN.

The parameter optimisation process for this iteration produced a parameter set that
was noticeable different from the prior models and the optimised ESN produces a
much flatter output overall that reduces the number of false positives but also reduces
the number of true positives that it classifies. Also of interest was that this ESN
correctly classifies one mount during the final test that had not been classified during
the two prior iterations.

The experience gained during the tool development phase and the initial work done
during this phase lead to an initial conclusion that the parameter optimisation process
for 04–01 may have got itself into a local minima and so this iteration was repeated
with a different set of parameters to see what difference this will make to the ability
of the ESN to correctly classify the test data. This was reported as iteration 04–02.
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6.13.5 04-02 – Compare an alternate ensemble ESN model against 02-01 & 04-01

Section 6.8 on page 180 describes iteration 04–02. This iteration was similar to it-
eration 04–01 except that it builds and tests the ESN model using parameters from
a similar iteration. The parameter set from a different, but somewhat similar earlier
model was chosen rather than re-running the parameter optimisation process with a
longer termination generation because the parameters from the alternate model are
closer to the expected parameter values and also because running a longer optimisa-
tion process would take much longer and time to complete the research was quickly
running out. The classification ability of the ESN model is much more in line with
iteration 02–01 and 03–01 when set up and tested with this alternate parameter set
and it is not particularly remarkable.

6.13.6 05-01 – Compares an ESN model trained with under-sampled input data
against prior models

Section 6.9 on page 190 describes a set of design iterations that was developed using
under-sampled training data. Under-sampling seems to improve classification and as
a result under-sampling was used with the design iterations that followed.

6.13.7 06-01 – Compares an ESN model with additional Gyroscope features against
prior models

Section 6.10 on page 198 describes a set of design iterations that will be developed
using different features generated from the the Gyroscope data using a Butterworth
filter. These features seem to improve classification and are used with the design
iterations that followed.

6.13.8 07-01 – Compares an ESN model with Accelerometer features against prior
models

Section 6.11 on page 206 describes a set of iterations that add Acceleration data to
the Gyroscope data to see if this improves classification. As was noted during the
second, tool development phase, the raw Accelerometer data as three separate axis
are somewhat inconsistent and so for this iteration set the author decided to use the
“net acceleration power” instead of the individual axis. The net acceleration power
is calculated by summing the squares of each axis then taking the square root of the
product. The resultant number is then scaled to be between 0 and 1.

The addition of the additional information in the form of the net acceleration power
substantially improved the classification of the Stirrup Mount activity using the ESN
model. The improvement in classification was such that this model was considered
good enough to demonstrate that the overall classification goal for this research had
been achieved.
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6.13.9 08-01 – Compares an ESN model using alternate R code against 07-01

Section 6.12 on page 224 describes design iteration 08-01. This iteration was es-
sentially an attempt to demonstrate the robustness of ESN classification of punctual
activity by using an alternate R code library written by Mantas Lukoševičius, an ex–
student of Jaeger’s. Lukoševičius had posted some public code on the internet in
various languages with a simple implementation of an ESN. A copy of the “R” code,
once an error within it was fixed, was run against the data used in iteration 07-01.
The results are very similar to those obtained from the original code.



Chapter7
D I S C U S S I O N

This chapter discusses the results of the iterative development done during the three-
phased development of the Punctual classifier of the real-world equestrian sport ac-
tivity and the knowledge gained during that development. It also discusses the impli-
cations and limits of that work.

7.1 I N T RO D U C T I O N

This research set out to design and construct an ACS to classify punctual activities of
interest within Equestrian Sport and in particular, to construct a working system using
real or realistic data so that a RC based punctual ACS could potentially be used within
a wearable coaching system for equestrian sports-people. This goal was achieved
and described in Chapter 6 where a RC based classifier that is capable of classify-
ing non-windowed, real world, punctual activities with possibly divergent temporal
activity frames across multiple subjects in differing geographic locations and on dif-
ferent session dates was demonstrated. Within Chapters 5 and 6 the author discussed
elements relevant to the particular phase or design cycle that was being described.
The iterative development cycle that forms part of the Design Science methodology
used within this research has enabled the author’s understanding and knowledge of
activity classification to grow as the research progressed. Reviewers will note that
the sophistication of the work and the analysis has developed in tandem through the
development chapters of this document. It is also worth reinforcing that this work did
not set out to claim that RC techniques or ESN in particular are better than alternate
techniques of classifying punctual activities but rather that RC techniques and ESN
are capable of being used for this purpose. It is possible that RC techniques may well
be superior in some areas but proving this is something for future work. This chapter
discusses the wider issues that came up while this research was being conducted.

7.2 R E S E A R C H Q U E S T I O N R E V I S I T E D

The work described in section 6.11 demonstrates that it is possible to construct a RC
based classifier that is capable of classifying the activity of interest when presented
with real, unscripted, un-windowed data captured from a wrist mounted inertial sen-
sor.
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In additionsection 5.2 demonstrates that it is possible to construct a RC based clas-
sifier that is capable of classifying complex, un-windowed spatio-temporal data as
a proof-of-concept; and section 5.4 demonstrates that it is possible to construct a
RC based classifier that is capable of classifying scripted, punctual activities using
realistic, un-windowed inertial data with reasonably consistent temporal frames.

Finally, section 6.11 demonstrates that it is possible to construct a RC based clas-
sifier that is capable of classifying unscripted, punctual activities using real, un-
windowed inertial data with divergent temporal frames.

7.3 C O N T R I B U T I O N

This work was successful at demonstrating a classifier that was able to reliably clas-
sify stirrup mounts from real-life horse riding sessions, a complex task given the
rarity of mount data within a typical real-world riding session and the differences in
techniques across different riders. In constructing and demonstrating this classifier
a number of contributions have been made to knowledge. Firstly, to the best of the
author’s knowledge, no other researcher has demonstrated a classifier capable of re-
liably classifying this particular activity and so a contribution has been made to the
general area of equestrian sport.

Secondly, this research has demonstrated the ability of RC based neural networks
to classify human punctual activity based on spatio-temporal inertial sensor data.
The author believes that this is the first time that RC systems have been used to
classify human activities in this manner. Of course, RC systems have been used
successfully as classifiers in other areas but not as inertial data based human activity
classifiers. This research has not attempted to measure a RC based human activity
classifier against more traditional human activity classifiers and so no comparison
may be made between this RC based classifier and another classification technique
in this area however, it is useful, none-the-less, to demonstrate to other researchers
that RC techniques are a possible alternative and part of a wider activity classification
tool-kit.

This work has highlighted the difference between durative and punctual activities
and has pointed out the sparsity of research in the area of punctual activities clas-
sification versus durative activity classification. This is not the first work to have
highlighted these differences but the prior work in this area has been both somewhat
light and not altogether clear and so this work has extended those earlier works and
added clarity in this area. This added clarity combined with the sparsity of work on
punctual activity classifiers may well encourage other researchers to extend this work
on punctual activity classification and to move into other related areas.

This work was successful using relatively simple features extracted from the input
data whereas many other researchers, particularly those with an interest in durative
activities typically use much more complex features calculated from their input data.
As a result, and combined with the intrinsic “memory” that is a feature of RC based
classifiers, other researchers may be tempted to re-explore simpler features in their
own research.
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Looking somewhat wider into the related area of data mining, the ability of the
ESN to successfully classify rare activities may mean that rare data mining techniques
based on ESN may have some merit for researchers in those areas.

7.4 S U M M A RY A N D G E N E R A L I S AT I O N O F R E S U LT S

Throughout the iterative development cycles that are a fundamental part of the Design
Science Methodology each individual iteration described the goals for that iteration,
described the set-up, running and results and then discussed that particular iteration
and came to a conclusion. While the insights sit best within the environment that
created them it is also useful to summarise the main discussion points here so that
the reader has access to them in a concise, combined situation. This also aids in
generalising some of the discussion points. Some of these discussion points that are
considered to be key or important will also be discussed in more detail in following
sections.

The first area to summarise here is the chosen methodology and its effects on the
work. In this discussion Design Science will be contrasted with the Experimental
methodology. This is not meant to be an exhaustive discussion or a complete contrast
between the two methodologies and many other researchers have done that before
and have done it much better than the author can. Some of these include Wynekoop
and Conger (1990), Jarvinen (2000), Kjeldskov and Graham (2003), Hevner et al.
(2004), Winter (2008) and Vaishnavi and Kuechler (2015) and the reader is pointed
to these works if they want a more in-depth discussion.

Without going into a lot of detail, Design Science can be said to be a methodology
that covers a wide area of interest at a relatively low depth and which is designed
to produce something that has utility by working, rather than setting out to find the
truth about something or to find the best way of doing something. In a sense it could
be compared to the PSO search algorithm that was used during the mid part of this
work. Different aspects of, in this case development, are tried and the results are
noted. Areas that seem to offer positive results are kept while areas that seem to offer
negative results are dropped and then a path is sort through the search space that links
the positive areas.

The end artefact produced via Design Science has utility because it works and
anecdotal knowledge is acquired about promising areas for future, more in depth,
studies. However, the down side of this methodology is that it is not possible to say
that the artefact is the best possible artefact overall or even that the areas that provided
positive contributions to the artefacts utility are configured in the most optimal way
nor even that all areas that can contribute positively have been identified. This also
makes it dangerous to attempt to generalise the results too much. Statements such as
“We found that reducing the drift in the Gyroscope data seemed to have beneficial re-
sults for classification when we looked at these X datasets while attempting to classify
Z activity using the W classification engine but we are unable to either quantify the
benefits nor can we assume that this will always be the case” are possible when using
Design Science but more imperative statements such as “We found that reducing the
drift in the Gyroscope data was beneficial for classification and future researchers
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should ensure that this is done before attempting classification based on Gyroscope
data” are not possible because there is no provable foundation for them. As a result,
the following discussion highlights areas that are worth looking at when attempting
to do something similar but there is no recipe to follow that comes out of this work.

7.4.1 Synthetic Activity Data and Liquid State Machine

Section 5.2 on pages 95 through 101 describes the attempt to demonstrate that a
RC technique, LSM, could be used to classify synthetic inertial activity data and it
follows a similar process to that described in Maass et al. (2002). Synthetic inertial
data was generated, a known random noise profile was added to the data and two LSM
classifiers were trained on half of that data using differing spike encoding techniques.
Both models had a similar training profile but when presented with previously unseen
data only the model that used Population encoding for the input spike train had an
acceptable classification result (93.5% accuracy), versus 24.7% accuracy for the BSA
encoded model. The discussion relating to this design iteration is shown in Section
5.2.10 on page 101.

While the Population encoded input spike train data was demonstrated to have
reasonable classification accuracy and the BSA encoded input spike train did not
demonstrate acceptable accuracy the BSA encoding technique should not be written
off as being unacceptable in other circumstances as it is possible that a differently
configured reservoir may produce more acceptable classification. On the other hand,
the Population encoded data did produce promising results in this particular situa-
tion and considering the short training period this was even more encouraging. Most
of the classification errors from the Population encoded data occurred at the start of
the activity and it is suggested that this might be as a result of the classifier needing
to recognise some of the characteristic data associated with the activity and accu-
mulating it before generating enough “energy” to respond with a recognition spike,
however there may be other possible reason for this.

7.4.2 Laboratory Activity Data and Liquid State Machine

Section 5.3 on pages 102 through 112 describes the attempt to demonstrate that a
RC technique, LSM, could be used to classify realistic inertial activity data that was
collected in a laboratory situation with a single participant following a set script of
activities. Following on from the prior iteration, this iteration uses only Population
encoded input data and a one second buffer (10 samples at 10Hz) before and af-
ter the activity of interest to try to pre-load the classifier so that has accumulated
enough relevant signal within the reservoir to start classifying the activity at its actual
boundary. All nine vectors, three by three sensors (Accelerometer, Gyroscope and
Magnetometer), of data are used as input. A drift is noted within the Gyroscope and
Magnetometer data but is not corrected. The input data is cleaned and normalised
prior to encoding into spike trains. The LSM model produces satisfactory results
with 85.1% of samples correctly classified. A sample is considered correctly classi-
fied if the model output is above 0.6 for the classes of interest. False Negative errors
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tend to occur at the start of each activity and False Positive errors occur towards the
end of the input data stream where the LSM model encounters activity data it did not
see during training.

The discussion for this iteration is in Section 5.3.12 and starts on page 111. The
classification accuracy for this iteration met the design goals and is considered sat-
isfactory. However, it should be noted that the data is collected within a laboratory
situation with the participant following a set activity script and so the script itself
introduces signal artefacts into the input data and as it is not possible to tell what data
is influencing the LSM model when it successfully classifies an activity it is possible
that it is the script artefacts that are being used for classification instead of the un-
derlying Mount/Dismount behaviour. In addition, the misclassification of the False
Positive towards the end of the input data highlights that only data directly associ-
ated with Mounting and Dismounting has been captured and tested against and so
it is impossible to predict how well this classifier will react when it encounters data
from wider equestrian activities. There is also no way of predicting how well this
classifier will react to data from a different participant as this has not been tested.
Lastly, LSM models have a large number of meta-parameters that need to be set so
that they function as desired and setting these variables to a useful value is a complex
and long winded process with no agreed heuristics for simplifying this process. This
means that using a LSM model is difficult for most researchers who are not experts
in this area. This complexity triggered a re-examination of the tools that would be
used within the rest of this work.

7.4.3 Exploration Phase

Section 5.4 on page 112 through 130 describes the work done to build a usable re-
searcher’s workbench for Punctual activity classification. A PSO (Back & Schwefel,
1993; Bendtsen., 2012) search was swapped for a grid search to help speed up the
RC model meta-parameter search process. A change was made from Python to R and
RStudio to allow for reproducible research (Stodden, Leisch, & Peng, 2014) and an
integrated development environment with a number of complementary modules in-
cluding easy parallelisation, matrix operations, the PSO search process and the ready
availability of other classification engines (Lantz, 2013) including SVM and HMM
and Random Forest. Parallelisation was implemented on a multi-core virtual machine
that was available on demand utilising Amazon Elastic Cloud Compute. Lastly, the
classifier engine was switched from the more complex to implement LSM to the less
complex ESN (Verstraeten et al., 2007).

In addition the datasets were split into three subsets rather than two as per find-
ings from Flexer (1996) and Henery (1994). One subset was used for training during
the meta-parameter tuning phase and the final test phase, another subset was used
for testing during the meta-parameter tuning phase and the final subset was set aside
and only used during the final test phase. This resulted in developing a very easy to
use researcher’s workbench that was capable of being run locally on MS Windows,
MacIntosh and Linux or remotely on the same three operating systems. The imple-
mentation of ESN using the matrix operations inherent with R, the parallelisation
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of this code and the implementation of the PSO search cut model development time
down from a week or more to typically less than six hours. The use of R’s repro-
ducible research features, its ease of integration with latex and HTML and its strong
graphing features helped make documenting the development simpler and GIT Hub
made managing changes and versions simpler.

This work set up the research process well for the next phase and was culminated
with a reproduction of the prior work done in Section 5.3 using the new tools. The
results of this work are described in Section 5.4.15 on page 117 and the comments are
in Section 5.4.16 on page 119. The new tools were easier and simpler to use and took
considerably less time to run, end to end. Good classification rates were achieved but
given that the data was scripted and recorded in a laboratory environment it is difficult
to assess if the classifier is using signal artefacts from the activities of interest or from
other facets of the script and so there is little confidence that this classifier would work
equally well with real world, unscripted data. This is supported by similar comments
from Bao and Intille (2004) and Ravi et al. (2005).

Following the work done to develop the researcher’s tool bench the activities of
interest were redefined to make the real life versions more consistent and following
this the new activity definitions were tested against the prior ones for consistency.
This process is described in Section 5.8 on pages 130 through 141. The results of
this iteration show that the new activity definitions achieved comparable results to
the prior definitions on the scripted, laboratory data. The discussion for this iteration
is in Section 5.8.11 starting on page 140.

Within this part of the work it was noted that training an ESN model with only
the three vectors of Gyroscope data gave almost as good results as using all nine
vectors. While the Magnetometer data showed some informational value within the
laboratory data which was all collected in the same geographic position starting and
ending with the same compass bearing it is argued (see Section 4.6.5, page 89) that
without transforming the Magnetometer data in some way that it would not be us-
able within the real world data. ESN models with more than 1,000 neurons tend to
be more easily over-trained and when using ESN with only three vectors of input,
models over 500 neurons are easily over-trained. This means that when searching for
optimal meta-parameters most searches should not bother trying more than 500 neu-
rons for three vector input data models. In general adding small numbers of neurons
adds to classification ability linearly but increases computing resource usage loga-
rithmically. Some ESN classification models with only 50 to 60 neurons produced
surprisingly useful results and as a result it is possible to consider using these smaller
and much less resource intensive models in some situations, perhaps as an ensemble
of classifiers.

In some situations when using input data that is relatively symmetrical around a
zero mean such as the Gyroscope data then adding an offset to the data as suggested
by Jaeger (2005) can have beneficial results for classification. When dealing with
highly imbalanced classes such as those encountered for mounting in the real world
then the use of mean square error as a cost minimisation function can produce results
that are highly biased towards the majority (base) class and a more suitable cost
function can produce more balanced results for both the base class and the activity
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of interest. Tuning and testing a ESN model that only needs to consider one class
other than the base class substantially reduces the required computing resources and
produces results that are easier to compare, model on model especially when using
the area under the ROC curve for comparisons. The preferred measure of one model
against another within this is is the Area Under the ROC Curve. This measure has
been chosen as it is relatively immune to class skew and based on advice from Bradley
(1997) and Tang, Zhang, Chawla, and Krasser (2009) considering the wide class
imbalance between the base class and the class for the activity of interest.

As described in Section 6.3.2 on page 146 the activities of interest, Mounts and
Dismounts, are trigger events and so within this work True Positive and False Positive
classification results are given prominence over False Negative results. Provided the
RC model output is strong enough to register at least one point within the range of
the activity of interest then the trigger will be recognised and so when evaluating the
model response no consideration is given to False Negatives.

7.4.4 Laboratory Model with Real World Data

This iteration is described in Section 6.4 on pages 147 through 148 and the results are
discussed in Section 6.4.2 on page 148. This iteration tests the ESN model that was
trained on the laboratory data is Section 5.8 against the real world riding data. The
goal was to see if the laboratory data was similar enough to the real world data that
successful classification could occur. There was no real expectation that this model
would successfully classify the real world data as per Bao and Intille (2004); Foerster
et al. (1999); Ravi et al. (2005) but it was decided to at least test this assumption.

As expected, the laboratory trained ESN classifier was not successful in reliably
classifying the real world Mount and Dismount. The classifier produced a very large
number of False Positives however the classifier did manage to to classify both the
Mount and Dismount at a 0.6 cut-off level. The ratio of False Positives is so high that
this classifier is unusable on real world data and confirms the earlier assumptions that
a classifier trained on a small set of scripted activities quickly breaks down when it
encounters a previously unseen wider variety of real world situations.

7.4.5 Echo State Network Model with Real World Data

This iteration is described in Section 6.5 on pages 149 through 159 and the results are
discussed in Section 6.5.12 on page 159. This iteration classifies Mounts only based
on a ESN model that is trained on three vectors of Gyroscope data from three files
containing real world riding activities, has the meta-parameters of the ESN classifier
tuned using a separate three files containing real world riding activities and then the
ESN optimised model is tested on a further, separate five files containing real world
riding activities. This ESN model and its results then form the base for comparing
future design iterations against.

This ESN classifier achieved an area under the ROC curve of 94.18%, a very satis-
factory result. Five of the seven Mounts were correctly classified at a 0.6 cut-off point,
however at this same cut-off point there were also 415 False Positives. Given the rar-
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ity of the Mount data (less than 0.06%) and the small number of training datasets this
is a satisfactory result and provides confidence that a ESN classifier engine is capable
of reliably classifying this rare, punctual activity.

7.4.6 Echo State Network using Offset Data

This iteration is described in Section 6.6 on pages 160 through 168 and the results
are discussed in Section 6.6.12 on page 168. The potential usefulness of a data offset
for input data that is symmetrical around a zero mean was noted during the review
of knowledge learned during the process of developing the Researchers Workbench
and is supported by the work of Jaeger (2005). This iteration looks to see if adding
an offset to the Gyroscope input data will improve classification.

The results of this design iteration did not demonstrate any improvement in clas-
sification and, in fact, when measured by the area under the ROC curve (86.97%
for this iteration Vs 94.18% for the initial, base, real-world data iteration) the per-
formance of this classifier, when using optimally tuned meta-parameters, dropped
considerably. This is slightly at odds with the advice of Jaeger (2005), however no
attempt was made to manipulate the amount of offset and so this configuration facet
of ESNs is only partially tested and as a result this work offers no advice on this one
way or the other. However, within this work, no offsets were added to input data
in future design iterations except for the very last design iteration where code from
one of Jaeger’s students was used (Lukoševičius, 2012) and instead of offsetting the
input data another vector with a constant high value is added. This alternative design
innovation seemed to have had positive effects. Please see the comments on the last
design iteration for more on this.

7.4.7 Ensemble Echo State Network - iterations 1 & 1A

This iteration is described in Section 6.7 and Section 6.8 on pages 169 through 188
and the results are discussed in Section 6.7.11 on page 178 and Section 6.8.12 on
page 188. A number of authors including Chawla (2005), Z. Zhou and Liu (2006),
Mollineda et al. (2007) and X. Liu et al. (2009) have suggested using ensembles of
classifiers, especially with imbalanced classes and so this design iteration acknowl-
edges the learning relating to the usefulness of small ESN classifier discussed in
Section 6.1 and looks at a simple ensemble that uses the output of a smaller ESN
classifier as additional input into the main ESN classifier.

The meta-parameter tuning process for this classifier produced a somewhat unusual
set of run time parameters compared with prior classifiers. In particular the leaking
rate remained high, tending to indicate that this ESN classifier was more influenced
by the current input rather than the earlier input, indicating that this classifier was
less influenced by the temporal order of the data and was more akin to a simple feed-
forward neural network. The output from this ESN model tended to move above zero
and demonstrated less variance than the output from prior models. This resulted in
considerably less error for the base class with an expected zero output and slightly
less False Positives but this tendency of less variance from zero meant that there were
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also less True Positives for the Mount class. Overall there was was an increase in the
area under the ROC curve.

This model presents a dilemma, on one hand, using the area under the ROC mea-
sure the addition of the additional input vector has improved performance but the
classification rate for the (rare) mount class has fallen and so less mounts are being
classified. In many ways this represents the expected behaviour of a standard classi-
fier when presented with highly imbalanced class data as this data is. The tendency
is to simply classify everything as the base class as this reduces the majority of the
error. However, prior versions of this ESN classifier have performed “better” in that
while they may have more error in the base class they were better as distinguishing
the class of interest. In addition, as a result of the tuned, run time parameters being so
different from the earlier ESN classifiers it is difficult to tell if the changed response
comes as a result of the run time parameter changes or the addition of additional
information from the add on input vector.

Recognising that this dilemma where a major change in run time parameters at the
same time as other changes are being made would make forming conclusions about
the cause of any beneficial change difficult, a decision was made to eliminate changes
in run time parameters by discontinuing the meta-parameter tuning process. This de-
cision was supported by the observation that until this model, the tuning process had
tended to produce very similar run time parameters anyway and this coincides with
some of the observations of Lukoševičius (2012) where he recommends reasonably
generic run time parameters for most ESN models and a suggestion that parameters
perhaps only needed to be tuned for differing temporal scales. That is, it may be ad-
vantageous to tune for longer activities or shorter activities but when activities have a
similar temporal scale then the parameters that suit one activity most likely will also
suit the other, similarly scaled activity. From a design iteration point of view this
has two additional benefits. Firstly it is no longer necessary to run and report on the
meta-parameter tuning process and so some effort is saved and, if tuning is no longer
required then the data which has previously been set aside for testing within the tun-
ing process can, instead, be used to enhance the ESN training process that has been
critically short of training data. With this in mind and to try to separate the changes
from adding the ensemble classifier input from the parameter changes, another iter-
ation was run that used run-time parameters much closer to what had been seen in
earlier iterations.

The results from the second, alternate iteration which used run time parameters
within the expected range showed that the area under the roc curve decreased, both
when compared with the prior iteration and also when compared with the base real
world data iteration. Once again, the number of False Positives dropped, they dropped
slightly compared with the prior iteration but substantially compared with the initial,
base comparison iteration. The number of True Positives remained the same as the
prior iteration but are less than the initial, base iteration. Again the ESN output
variance has been reduced but this has been to the benefit of the base class rather
than to the Mount class. The overall result is a less desirable output from the ESN
classifier, despite the increase in Mount training data.
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In this instance, a decision was made not to use an ensemble classifier of this form
within future design iterations within this work as the overall result was a reduction
in the area under the ROC curve. However, an ensemble classifier in another form,
perhaps as reported in “A Clockwork RNN”, Koutnik, Greff, Gomez, and Schmid-
huber (2014) may be tried as part of future research as this form of classifier holds
the prospect of parallel classification of activities with multiple, different temporal
scales and this is attractive because such a classifier could be much more efficient
with processing resources in a wearable environment due to its parallel classification
abilities.

7.4.8 Increased Under Sampling with Echo State Networks

This set of iterations is described in Section 6.9 on pages 190 through 197 and the
results are discussed in Section 6.9.11 on page 197. Under sampling is an accepted
technique for improving classification rates when dealing with rare classes and has
been recommended by researchers such as Drummond et al. (2003), Weiss (2004)
and Chawla (2005). Each design iteration within this research since (and including)
iteration 02-01 has used under-sampling to reduce the data within the central, riding
region of the recorded activities. In this series of three iterations the amount of under-
sampling is progressively increased by including less of the central, riding region
from each dataset. This set of design iterations does not have their meta-parameters
tuned individual, instead they all use the same run time parameters as used within
Section 6.5 on page 153 to make it easier to separate out the effects of the under sam-
pling from possible effects from run time parameter changes. As no meta-parameter
tuning is required, the testing files from the tuning process are included in the training
process for the test classifiers, thereby providing slightly more training examples of
the Mount activity.

All three iterations produced an area under the ROC curve that is less than the
initial, base real world iteration with V13, with the largest amount of under sampling
providing the best of the three iterations. The output from all three ESN classifiers
was subdued (close to zero). On the surface this is a worse classification result,
however, while the ESN output was subdued, it was still discriminant in that the
output peaks when Mounts were occurring are lower but as the base class signal was
also much closer to zero then it was still possible to distinguish some Mounts, albeit
at a lower output level. In addition there was a substantial drop in False Positives at
a 0.6 cut off level. Once again, this produces a bit of a dilemma, on the one hand
the main measure, the area under the ROC curve has performed worse but on the
other hand the level of False Positives has also dropped significantly from 415 in
the initial, base, real world classifier to 104 in the V13 classifier. A decision was
made to retain under sampling for its possible beneficial effects of reducing False
positives while looking for additional ways of increasing the ESN output response
when encountering the Mount class.
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7.4.9 Filtered Data with Echo State Networks

This set of iterations is described in Section 6.10 on pages 198 through 205 and the
results are discussed in Section 6.10.11 on page 205. As noted in Section 4.6.4 and
in Figure 5.16 on page 131, the Gyroscope data exhibits a drift over time and this
is a characteristic of some Gyroscope sensors that is present within the data used in
this work. Also within Section 4.6.4 where the data capture sensor is described it
was noted that there is considerable noise within the sensor signals that comes from
a variety of sources. Given that this work tracks the signal amplitude over time as the
only input vectors then any drift present within the signal will make the class learning
process more difficult as levels of amplitude will change over time as a result of the
drift rather than as a result of the underlying activities. In addition and as noted
by Lukoševičius (2012) while ESN classification engines are somewhat immune to
random noise at lower levels they can be adversely affected by larger quantities of
noise especially non-random noise. The sensor description noted that some of the
noise was related to radio interference and is not random in nature. As a result, this
series of iterations is designed to look at what happens when the drift and the noise
are removed or reduced. This is not a comprehensive set of experiments, instead
these iterations are designed to give a feel for the usefulness of reducing the very low
frequency drift and the high frequency noise.

It was decided to use a Butterworth filter to reduce the low frequency drift based on
recommendations from Mathie et al. (2004), K. Y. Chen and Bassett (2005), Godfrey
et al. (2008), Lau and Tong (2008), Avci et al. (2010), Mannini and Sabatini (2010),
Plötz (2010), Godfrey et al. (2011), Anguita et al. (2013) and D. Liu et al. (2014).
In deciding where to set the lower bound level for the Butterworth high pass filter
then the advice from Mathie et al. (2004) was that the lower bounds for most human
activity is 0.3Hz was considered along with C. Yang and Hsu (2010) who suggest that
0.25Hz is a possible lower bound. In addition, Godfrey et al. (2008) suggested a lower
bound of 0.6Hz but as their work was solely with human gait it is not so relevant.
K. Y. Chen and Bassett (2005) was the most specific and their recommendation was
to set the filter lower bounds at 0.1Hz to (specifically) eliminate Gyroscope drift
and so this is what was done. In addition, D. Liu et al. (2014) and Mannini and
Sabatini (2010) both recommend a second order Butterworth filter and so that advice
was taken. During the exploratory phase described in Section 5.4 the author had
successfully used a rolling mean to remove noise and so the decision was made to
also use that technique here rather than adding an additional low pass Butterworth
filter to to make a combined band pass Butterworth filter. In part, this decision was
also took account of two of the design strategies described in Section 4.4.4, on page
74, “favour simplicity” and “be mindful of possible implementation issues”.

Three design iterations were created and run with and without the rolling mean.
The best iteration, V15, was the iteration that used both the Butterworth filter and the
rolling mean and it achieved the best results with an area under the ROC curve of
96.94% and only resulted in 36 False Positives at the 0.6 cut-off level. This is much
better than the results from the initial, base, real world classifier and so filtering to
remove drift and a means of reducing noise were carried through to future work.
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7.4.10 Gyroscope and Accelerometer data with Echo State Networks

This set of iterations is described in Section 6.11 on pages 206 through 222 and the
results are discussed in Section 6.11.12 on page 221. This set of iterations was de-
signed to build a series of new ESN classification models based around the idea of
adding additional input vectors based on derivatives calculated from the accelerome-
ter sensor and then compare those to the initial, base ESN classifier to see if adding
the additional information improved the discriminative ability of the new classifier.
Net acceleration power was chosen as the preferred derivative, as explained on page
206, because other researchers such as Z. He et al. (2008) and Kwapisz et al. (2011)
have found it to be simple to calculate and independent of sensor orientation. The
preference for sensor orientation independent data is further described in the Data
section, Section 4.6.

The six iterations included V21, which simply added a single input vector to the
ESN classifier that consisted of the raw net acceleration power values that ranged
between zero and 1.732 and produced somewhat disappointing results with an area
under the ROC curve of 91.99%, less than that produced by the initial, base classifier.
Given the nature of the ESN tanh transformation function, values close to and above
1.0 are difficult to differentiate and so some part of the net acceleration power’s infor-
mation is being lost. It is likely that this loss of information close to and above 1.0 at
least partially accounts for this disappointing result although this is supposition rather
than provable from this work. For the second iteration, V22, the raw net acceleration
power values were divided by two to ensure that all input was between zero and one.
This iteration produced a more useful result with an area under the ROC curve of
96.25%, greater than the 94.18% from the initial, base, real world ESN classifier.

With the third iteration, V23, a decision was made to split the net acceleration
power into a low frequency and a high frequency component and to use those as
two input vectors. Verplaetse (1996) suggests that the human hand and wrist have an
expected frequency of movement of less than 8–12Hz. Maurer, Smailagic, Siewiorek,
and Deisher (2006) suggest that daily activities such a walking and running have a
maximum frequency of less than 20Hz however, more specifically in the case of the
data from this work which does not happen to include any human running, Bouten
et al. (1997) suggests that walking has a frequency between 0.85Hz and 5Hz. As a
result, a decision was made to split the signal at 5Hz to have some sort of separation
between expected body movements and expected wrist and arm movements. This
was also convenient as it is halfway between 0hz and 10Hz sample rate for this data.
However, other researchers may prefer to do more analysis before adopting a similar
split. This ESN classifier produced output that with an area under the ROC curve of
97.31%, produced only four False Positives at the 0.6 cut-off level and was the best
of the series of six iterations.

The remaining three iterations in this series used the same input data as V23 but
increased the neuronal size and varied the meta-parameters for the ESN classifier.
None of these three variations produced results as good as V23 and are otherwise un-
remarkable. It should be noted that no attempt was made to tune the meta-parameters
nor to tune the size of the ESN models. Possible future work includes a more struc-
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ture, experimental attempt to optimise the results from this combination of inputs and
classifier. The graph of the output from this test of the V23 ESN classifier (Figure
6.32 on page 211) is remarkable in that the it is mostly subdued during the sequences
when the base class is present while showing definite increase during all Mount se-
quences except for the third Mount (see subsequent disclosure). The periods during
the base class sequences when the output is higher coincide with participant brushing
their horse’s coat where the arm action is similar to the arm action when mounting.
The author thinks that it is remarkable that despite a relatively small amount of train-
ing data and only seeing seven Mounts during training that this classifier is able to
recognise subsequent, previously unseen, mounts with this level of reliability and
with so few False Positives.

Throughout this work the author has used a classifier output cut-off level of 0.6 to
differentiate between a successfully classified class and one that was not successfully
classified. This figure of 0.6 was chosen arbitrarily at the beginning and was kept
throughout the work for consistency. However, there is no logic behind choosing a
cut-off at this level. The output of the classifier is not a probability, it is simply a
number that comes out of the classifier and while it is usually below one and it is
related to the input which is bounded, it has no formal bound. As a result and as
demonstrated by the ROC curve, the cut-off level could just as easily be set to any
other figure. For example, setting the cut-off level to 0.39 would result in the V23
classifier correctly classifying all six stirrup mounts and would result in only 66 False
Positives, all clustered around the “brushing” activity that can be differentiated using
alternate techniques. With this is mind, the author considers that the v23 classifier
has demonstrated that a classifier artefact has been developed which is capable of
reliably classifying stirrup mounts within the data used in this work.

Disclosure: While reviewing the video data for the test files to ascertain what ac-
tivities the participants were undertaking while the False Positives were generated
the author also decided to review the third Mount that has consistently, throughout
this real world work, failed to be correctly classified or has even been close to being
classified in all cases except that with the strange ESN model meta-parameters en-
countered in the Ensemble section, Section 6.7. On review, embarrassingly, it was
noted that this third Mount was not a stirrup mount like all the others and that it
was instead an assisted Mount from a mounting block. While it is embarrassing to
have not found this class error until this time, on the flip side, it demonstrates that
the classifier is working even better than expected as with this Mount removed, all
other Mounts have resulted in a substantial output up-tick that in coincidental with the
Mount. While this is a net positive result for this classifier it does highlight that the
classifier is quite specialised (by design) and that additional classifiers are required
in order to get comprehensive classification across an area.

7.4.11 Gyroscope and Accelerometer data with Lukosevicius code

This design iteration is described in Section 6.12 on pages 224 through 231 and the
results are discussed in Section 6.12.10 on page 231. This iteration is designed to
demonstrate that the classification done within this work is generalisable to alternate
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code bases. In this iteration a different code library is substituted for the library that
has been used through out the prior work. Lukoševičius (2012) published ESN R code
at http://212.201.49.24/sites/default/files/uploads/mantas/code/minimalESN.R. This
code contained a small error that was corrected by the author. In this iteration the
Lukoševičius code is presented with the same input data used with the V23 classifier.

The Lukoševičius code contains two major differences from the code used for the
prior work, firstly, Lukoševičius’s code discards the early output from ESN during
training. When tuning the meta-parameters using a cost function based on the ESN
output during training then discarding the early output as the reservoir is initially
“filling up” provides a better comparison between ESN models and this is explained
in Lukoševičius’s publication. However, for this iteration where no meta-parameter
tuning is being done this feature has no effect on the results. However, it is worth
noting that attempts to classify any class when a ESN classifier is initialising its
reservoir are unreliable. This has been ignored in this work because all testing is
done on a pre-trained reservoir that is already initialised.

The second difference is that Lukoševičius’s code has an extra input vector au-
tomatically built into it and this automatically generated vector always contains a
continuous series of ones. Again, Lukoševičius (2012) explains the reasoning behind
this. Lukoševičius explains that this is a more effective way of dealing with input
data vectors that are symmetrically distributed around zero. Effectively, this is a bet-
ter way of doing what was unsuccessfully attempted in Section 6.6. In addition, a
decision was made to increase the neuronal count from 336 to 1,000 for this iteration
as Lukoševičius’s published work tends to use reservoirs of this size and this keeps
his code consistent with his published work. this is despite the experience from the
immediately prior work which produced slightly worse results with larger reservoirs.
The other ESN meta-parameters are the same as used in the V23 iteration.

Two major differences can be noted from this iteration using Lukoševičius’s code,
firstly processing and run times increased more than 10 times from that of this project’s
code, reflecting that Lukoševičius’s code has not been optimised for R. The second
major difference is that the area under the ROC has increased even further to 99.70%
(V23 97.32%) and with an increase to 39 (V23 22) True Positives at the 0.6 cut-off
level. However, at the same cut-off level False Positives has increased to 38 (V23
4). This is reflected in Precision at 0.6 which has dropped from 0.84 for V23 to 0.51
for this iteration while Recall has increased from 0.19 for V23 to 0.35 for this iter-
ation. looking at the output graph, Figure 6.45 on page 228 it can be seen that the
output is very similar to that from V23 with the Mounts in the expected places and
even the False Positives in the expected places. As expected from the area under the
ROC curve value, the ROC is demonstrably better (see Figure 6.47a on page 230),
especially at classifier output levels below 0.2.

Despite the differences in input and reservoir size the ESN classifier produced by
Lukoševičius’s code is similar enough to the v23 output that this design iteration can
be said to have met it’s design goals. As an added bonus, this iteration also suggests
that adding an input vector of ones might be a simple way of further improving the
V23 artefact. This is, however, supposition and has not been tested and is left for
future work.

http://212.201.49.24/sites/default/files/uploads/mantas/code/minimalESN.R
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7.4.12 Results Summary and Generalisation

the results from iteration V23 demonstrate that the overall Design Science goal is
complete and the artefact produced is capable of classifying the real-world riding
data to the levels expected. In doing so, progress has not been linear but then that
is the nature of the Design Science methodology. Through out the process areas
have been identified as key to the eventual success and these ideas are discussed
here so that the reader can better generalise this work. The ideas and areas are not
necessarily discussed in the order in which they were presented within the work. The
reader is reminded that while Design Science is a useful way of covering a lot of
ground in a reasonable amount of time, one of its weaknesses is that almost none of
the intermediate results are provable, only the successful delivery of the artefact at
the end proves that it is possible to deliver an artefact on this nature. As such, the
areas covered in this summary and generalisation are recommendations or heuristics
rather than provable fact and while there is evidence to support the recommendations
there is no experimental evidence. Indeed, the production of experimental evidence
is something for future work.

At the beginning on this work the simplest possible data features were used for
input, the raw data itself, after transforming it into a standardised -1 to +1 range.
This was done with an eye to future implementation in an online, wearable situation.
The simpler the data feature, the less processing is required to produce it and so
this means that it can be produced faster than features that require more complex
calculations. As the development proceeded slightly more complex features were
added such as net acceleration power, however, these features were still simple to
calculate. This preference for simpler features where ever possible when aiming for
online classifiers to use within a wearable environment is supported by Plötz (2010).

Try simpler features first when aiming for online, wearable classifiers. Only
add complex features if they are required.

Section 7.4.9 discussed using Butterworth filters and rolling means to detrend the
Gyroscope data and to remove some level of high frequency noise. Doing this seems
to have improved the performance of the artefact and it seems logical that consistent,
noise free data would be easier to classify than data that contains drifts or non-random
noise. Again, this approach is also recommended by Plötz (2010, p. 2). In this case
a Butterworth filter was chosen to remove the drift because it is implementable in
hardware, see Maji, Sree, Kar, Mandal, and Ghoshal (2015), and is therefore fast
enough for online use. Similarly, a rolling mean was chosen to remove the high
frequency noise because it is simple to implement in software with little processing.

Cleaning non-random and excessive noise and removing any drifts within the
data before classification will tend to improve performance.

Section 7.4.10 discussed adding features from the accelerometer data to those from
the Gyroscope data to improve performance. Other researchers including Maurer et
al. (2006, p. 5) have also found that adding additional information from additional
sensors resulted in improved classification performance and so this seems like a rea-
sonable heuristic to recommend.



7.4 S U M M A RY A N D G E N E R A L I S AT I O N O F R E S U LT S 251

Adding additional information from additional sensors has improved classifi-
cation performance in some circumstances

Section 7.4.8 discussed under sampling the majority class as one way of improving
classification performance. In this work, under sampling seemed to provide mixed re-
sults. On one hand, the area under the ROC curve fell when compared with the initial,
base, real world iteration that did not use aggressive under sampling but on the other
hand the classifier output produced substantially less False Positives. In addition,
there were other changes made between the initial, base, real world iteration and the
iteration that used aggressive under sampling, especially having the meta-parameters
tuned to the training data for the initial iteration and so exact comparisons are not
possible and it is not possible to provably argue that the under sampling changes
were beneficial. However, some positive results were noted and under sampling is
recommended by a number of other researchers such as Drummond et al. (2003),
Weiss (2004) and Chawla (2005) and so it seems reasonable to have the following
heuristic.

In some cases under sampling of the majority class can improve classifier per-
formance, possibly improving False Positive rates.

Section 7.4.7 discussed a simple ensemble classifier and as used within this work
it did not improve classification performance however a number of authors including
Chawla (2005), Z. Zhou and Liu (2006), Mollineda et al. (2007) and X. Liu et al.
(2009) recommend ensemble classifiers, especially when working with unbalanced
classes. In addition, Jaeger (2005) specifically recommends ensemble ESN classi-
fiers. The author suspects that the chosen implementation technique within this work
was not optimal and it is suggested that an ensemble more akin to that reported on by
Koutnik et al. (2014) may be more effective, especially as a means of taking advan-
tage of the capability of ESN classifiers to classify multiple classes in parallel.

The simple ensemble classifier that was tried within this work did not result
in classification performance improvements, however, other researchers have
reported success with ensemble classifiers including ESN ensemble classifiers
and they are expected to have additional utility when used to classify multiple
classes in parallel.

Section 7.4.6 discussed the use of an offset added to data that is symmetrical
around a zero mean as a way of improving classifier performance, however, as imple-
mented within this work this did not improve performance. In Section 7.4.11 how-
ever, a different way of improving classification performance for symmetrical data
was tried as part of the Lukoševičius code iteration and this did seem to have positive
results. In addition the addition of an input vector of all ones is highly recommended
by both Jaeger (2005) and Lukoševičius (2012).

When using ESN classifiers several authors report achieving improved per-
formance when an additional input vector of all ones is added

Finally, overall, this work has demonstrated that an ESN classifier was able to suc-
cessfully classify a punctual activity from equestrian sport, Mounting, after reason-
ably minimal access to real world training data. This adds another tool for researchers
looking at doing something similar.
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Reservoir Computing techniques in general and Echo State Networks in par-
ticular have been used in this work to successfully classify a single, rare, punc-
tual activity taken from equestrian sport. It is possible that similar techniques
could be used by other researchers to classify other punctual activities.

The following sections discuss other areas that this work highlighted.

7.5 A P P ROAC H

The approach taken within this research can be characterised as looking for a needle
in a haystack. Basically the research tries to distinguish a relatively short and very
rare sequence of movements from everything else (as the base class).

This work highlighted for the author the difficulties associated with classification
of rare classes. This showed up in two key areas. Firstly, without some way of
introducing a bias towards the class of interest into the model training process there
was a tendency for the ESN model to be optimised for the much more common base
class. During the third phase of development two techniques were used to try to bias
the classification towards the class of interest. The first technique was to take out
(under sample) some of the base class data from the training and tuning datasets (but
never from the testing dataset). This had an added bonus of speeding up the model
development and parameter tuning process as there was less data to deal with during
these parts of the process. The second technique that was used to bias the model was
to use a conditional mean square error as the cost function to be minimised during
tuning rather than a straightforward mean square error cost function. Both of these
techniques had some apparent advantages and this was demonstrated best in the later
models where both the output from the ESN model showed a tendency to cluster
closer to zero during base activities while maintaining a differential above zero for
mount activities and by the increase in the area under the ROC curve.

In addition, within this work the ideal waveform can be characterised by a square
wave that pops up from a sea of flatness. This makes attempts at optimising the
output and/or computing (reducing) the error from the ideal waveform difficult as the
very large base class dominates the results because of its size relative to the activity
of interest (For example, typically one hour of riding or 3600 seconds of base class
versus 5 seconds of mounting activity or more succinctly, 0.14% of activity versus
99.86% of base class). As a result of the dominance by the base class, there is a
strong tendency to classify an instance as the base class by default. Of course, other
researchers have had similar issues and there are established techniques available to
mitigate some of the issues. Nevertheless, searching for rare data is considered to be
a difficult task.

This isn’t typically how the world occurs though. Mounting (or dismounting) a
horse is not an activity that occurs against a background of no other activity or some
homogeneous Null/Base activity. At each moment for which there is data, there is
an activity occurring. Some of these other activities are punctual and quickly change
while others are durative and persist for some period. An alternative then is not
to distinguish one activity of interest from the base (nothingness) class but instead to
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distinguish the activity of interest from other (perhaps similarly signatured) activities.
When stated this way other possible approaches open up.

One important reason that many Activity Classification researchers follow the ap-
proach of distinguishing a particular activity from the Base/Null class is that manually
classifying activities to provide a training signal is extremely time consuming and so
spending the time to manually classify every activity occurring within the data stream
is generally not attempted. Manually classifying the training signal does not scale up
at all well and so most activity classification research only looks at a very small num-
ber of relatively common activities. In addition, in order to manually classify every
possible activity within the data stream the researcher needs a taxonomy that covers
every possible activity. Developing such a taxonomy of all possible activities is in
itself a major task (maybe impossible to agree).

Another reason why most Activity Classification researchers set out to distinguish
a single activity from a base class is that most of the more common tools for compar-
ing one classification attempt against another (such as the area under the ROC curve)
are designed to work on two–class problems (base class and one other class). While
some three class and multi-class comparators exist they tend to be much less main
stream and more complex to use. In addition, in situations similar to those followed
in this research where a (machine learning) algorithm needs to have its parameters
optimised in order to provide a “better” classifier then it becomes more difficult to
optimise for two classes at the same time. This issue was one of the main reasons why
this research changed from the initial intent of classifying both mounts and dismounts
to only classifying mounts. It became too complex and time consuming to optimise
the RC model for two classes at the same time. Optimising a classifier algorithm
across more than two classes at the same time becomes even more difficult.

Distinguishing a single or small subset of activities from the Null/Base class is a
potentially useful shorthand approach when activity and Null classes are relatively
evenly matched (such as in laboratory situations) but hides a potentially more useful
approach. Interestingly, durative activities tend to be less affected by this phenomena
of the need to search for rare data than punctual activities, because by nature, durative
activities persist for longer periods of time than punctual activities and so tend to be
less rare.

When considered against a noisy background of activities occurring at each instant
including activities, meta-activities and sub-activities at differing levels instead of
against a quiet background of the Base activity, then it becomes clearer that a layered
approach may be more useful. Rather than immediately trying to distinguish a par-
ticular activity of interest from everything else, it may be possible to (perhaps auto-
matically) segment the data stream into ”components” or motifs using some criteria.
Say energetic components from not-so-energetic components, as a possible example.
This segmentation and sub-segmentation would proceed to some depth (but not too
deep). Wyatt, Philipose, and Choudhury (2005), Choudhury et al. (2008) and Vah-
datpour et al. (2009) discuss similar concepts. Once the automatic pre-segmentation
into motifs or components is done then a classifier is presented with the problem
of distinguishing the particular activity of interest from other activities with similar
characteristics from within the component segment that it occurs within.
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Sifting the activity of interest from those other activities that are grossly different
from it during the early stages of classification may result, in many cases, in a large
part of the data stream able to be safely ignored when classifying this particular ac-
tivity. The issue then becomes distinguishing the activity of interest from the smaller
subset of activities that are similar to it (in ways defined by the earlier layer separa-
tors). At once there is both a smaller hay stack to search through and an opportunity
to use a specialized algorithm or set of parameters that is optimised for distinguish-
ing activities with similar characteristics that occur within the segment that has been
chosen. This could be particularly useful in situations such as that encountered in
this research where a RC classifier that requires its parameters to be tuned is used.
It then becomes possible to tune the RC model based on the general characteristics
of the sifted components and then use the RC model’s capability to classify multiple
activities in parallel.

Another way of reducing the size of the search hay stack in some cases is to use
domain knowledge relating to how differing activities relate to each other. Some
activities are relatively independent of each other while other activities have a de-
pendency of some sort. This can be especially useful when one of the activities is a
durative activity. For example, running and looking at your watch are two activities,
one durative and the other punctual, that are relatively independent of each other. It
is possible to be running and at the same time either looking at your watch or not
looking at your watch. In addition, it is possible to be looking at your watch while
running or not running. With relatively independent activities the relationship can not
be used to reduce the search space but with dependent activities it may be possible in
some cases to use the relationship to reduce the search space. Taking the example of
two equestrian related activities, mounting/mounted and cantering (or trotting, gal-
loping or walking) then it is not possible to be cantering on a horse without first being
mounted on the horse and in the general course of events it is not possible for both
to occur at the same time. For a less obvious but similar example from equestrian
sport, consider the example of brushing the horse (durative) and mounting (punc-
tual). In the general course of events it is not possible to be both brushing the horse
and mounting at the same time.

These relationships between the durative and punctual activities can be used to
reduce the search space, provided that it is relatively easy to classify the durative
activities and in many cases it is easier to classify the durative activities precisely
because of their regular, cyclic form over a reasonably long period of time. Once the
durative activities are classified then where there is a mutually exclusive relationship
between the durative activities and the punctual activity then those periods when
the durative activities occur can be subtracted from the data stream and so only the
(hopefully) shorter periods left over need to be searched for the punctual activity.

The manual data and video synchronisation process is an excellent if somewhat
crude example of how the relationships between the durative and punctual activities
can be used to reduce the search space. While synchronising the sensor data and
video files the author would first view the sensor data at a relatively high level. When
viewing a real world riding session from a zoomed out perspective it is relatively
obvious when a person is on a moving horse as the relatively regular rhythm of the
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horse’s gait shows up. Using this crude sieve, the author would then expect the mount
to occur relatively close to (and before) the horse’s gait is detected and the dismount
to occur close to (and after) the horse’s gait stops. Of course this is somewhat sim-
plistic as the horse may stand still at any time and the gait may not be unique, but it
serves to illustrate the idea that by identifying the gait sequences and removing them
it is possible to significantly reduce the data to be classified and possibly simplify the
classification. The following two figures (7.1 and 7.2) illustrate how the the higher
frequency signal associated with the durative horse gaits stand out quite well from
other activities.
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Figure 7.1: Example accelerometer X axis data stream illustrating relative ease of identifying
periods when the horse gait is obvious
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Figure 7.2: Example accelerometer Y axis data stream illustrating relative ease of identifying
periods when the horse gait is obvious
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7.6 S I N G L E , W R I S T M O U N T E D S E N S O R

The data used within this research was captured with the a single, wrist mounted IMU
during Hunt (2009); this prior work will, for simplicity, be referred to as “prior work”
from this point onwards. One of the key ideas from that prior work was to explore
the usefulness of data from a single IMU during a period (2007–2008) when most
published research was tending to use multiple IMUs.

During this research one of the strategies has been to favour simplicity (see Section
4.4.4). This is consistent with the use of a single data collection IMU and can be
further observed in the tendency within the third design cycle of this research for
the real–world based activity classification to only use the gyroscope data. However,
as observed, during the final design cycle a derivative of the accelerometer data was
added to the input with excellent effect. This additional discriminant power of the
additional data suggests that adding more data may well be helpful to some extent.
Of course, the extent of improvements from additional data has not been tested in this
research and so it is impossible to say at what point the diminishing returns of extra
discriminant power as opposed to the added complexity of dealing with the additional
data will cross but it is likely that the cross over point of diminishing returns will be
reached at some stage.

Leaving aside the untested suggestion of diminishing returns from additional data,
there is at least one obvious hole with the data from the single IMU used to capture
the data for this research. This hole is that all subjects whose data was used in this
research wore the single IMU on their right wrist. During the data capture from
the prior work some data was captured from subjects that wore the IMU on their
left wrist but unfortunately none of the data from these sessions was usable for a
number of different reasons. Using only a single IMU places an artificial constraint
on activity classification and probably restricts the ability to successfully classify
activities. While there is definitely utility in being able to classify activities based
on the data collected from a single sensor, namely, the ease of use of only needing a
single device that needs to be put on prior to riding, this may be outweighed by the
potential benefits of the additional data from another IMU.

During analysis for the prior work there was some evidence that a subject that
mounted whilst holding an whip resulted in changes to the way that they mounted
that may have resulted in those mounts being misclassified. Unfortunately, the single
occasion during the prior work when a subject mounted whilst holding a whip (in
their right hand) there were (other) data issues that prevented this session from being
used within this research and so this went untested. Nevertheless, there is a possibility
that using an IMU on both wrists may allow mount classification to be generalised
across the relatively common occasions when riders do mount with objects in their
hand(s). This is, perhaps, an area for future research.

In addition, it seems likely that IMUs or sensors placed on other parts of a rider’s
body may provide useful information that enhances classification. Indeed, discus-
sions involving riders during the data capture for the prior work about the purpose
of the data capture resulted in a number of riders asking why a wrist mounted sensor
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was being used to capture data for mounts when data from a pressure sensor on the
saddle or something similar seemed to be a simpler solution.

Undoubtedly, there are many situations when using additional sensors that either
sense different characteristics or that are placed in other body positions would add
significant utility and would enable easier differentiation between similar activities.
For example, if it is assumed that brushing a horse has some similarity in signal
artefacts to mounting a horse (quick yaw movement of the wrist) then having, say,
another inertial sensor mounted on the rider’s waist would (perhaps) make it easier
to distinguish mounting (when the body moves upwards) from brushing (when the
body is more likely to be stable).

This research was conducted using data from a single, (right) wrist mounted sensor
but there is no suggestion that this is the only or preferred situation with regard to
numbers of sensors or sensor placement. This fits well with the overall vision for this
research which envisages multiple sensors of different sorts on a number of places on
a rider’s body as illustrated in Figure 1.1.

7.7 DATA C A P T U R E D AT 10 H Z

The data from the prior work was captured at 10Hz. During the work done within the
prior work some simple experiments were done with the IMU set to capture data at
higher rates, see (Hunt, 2009, pg. 87) for some details on this. This work established
that for the IMU sensor used and combined with the need to transfer that data over a
Bluetooth connection to a data logging device, the maximum reliable sample rate for
the IMU was 100Hz. Of course, other sensors, possibly using different data transfer
technologies may well allow higher sensor sample rates and so the maximum rate
encountered during the prior work is in no way an overall maximum given different
technologies.

This research has only used real sensor data from one source and all of this data
was captured at 10Hz. As a result, this research is unable to provide guidance on
what might be the best or even a good sample rate for data capture for classification
in equestrian sport. This research does not provide any insights into the possibility of
better classification from a more fine grained, higher sample rate and it is not possible
to say if there are helpful signal artefacts that are obscured at 10Hz that might become
more observable at a higher sampling rate. This may well be something that could
be investigated in future research. However, in terms of the preprocessing of the
data and in particular synchronisation of the data to the video of the activities then
it would have been slightly easier if the data had of been captured at a rate closer
to the video rate of 25Hz and perhaps even 50Hz would have made synchronising
the data and video somewhat easier. During synchronisation, it was often difficult
to match the peak acceleration (or deceleration) rates with the overhead clap exactly
because the video frame that best captured the point of impact for the overhead clap
was only one of three potential video frames that matched a single set of IMU sample
values and there was no guarantee that the IMU sample set actually captures the peak
expected from the clap. A sample rate of 25Hz would also not guarantee capturing
the peak or even matching the video as the two signals could be offset from each
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other even though both are recorded at 25Hz. A 50Hz sample rate for the IMU might
have provided a more accurate synchronisation process.

7.8 A LT E R NAT E DATA S O U R C E S

As noted in Sections 7.6 and 7.7, the data available to use within this research has
partly directed some of the design choices. The data collected during the prior work
required significant effort to collect, pre-process and manually classify and as far as
the author knows is the only equestrian sport based dataset of this nature and so it is
a very useful resource and this research would not have been possible without it or
something similar. However, any attempt at developing a new class of classification
algorithm such as applying RC techniques to classify punctual activities from inertial
data that relied on a single dataset would leave open the question of if the success of
the algorithm was somehow tied to the dataset and/or its characteristics.

This research does not answer the question of if the ESN classification model used
within it is somehow tied to the particular dataset used. Answering that question
was never one of the goals of this research. It is however, a worthwhile question to
consider now that the ESN model has been shown to work with the data used within
this research. Turning the question around, it would be useful to know if a ESN
model can be generalised to successfully classify either other punctual activities or
the same activities based on different data?

The easiest of the two options would be to test an ESN classifier on other punc-
tual activities from an existing open–source data repository such as, for example,
the data at the University of California, Irvine, Machine Learning data repository
at http://archive.ics.uci.edu/ml/datasets.html?sort=nameUp&view=list; the Carnegie
Mellon University Multi-Modal Activity database at http://kitchen.cs.cmu.edu/main
.php, the University of Southern California Human Activity dataset at http://sipi.usc
.edu/HAD/USC-HAD.zip, the Opportunity Project datasets at
http://www.opportunity-project.eu/node/48; the UniMiB Smartphone-based Hu-
man Activity Recognition dataset - UniMiB SHAR at http://www.sal.disco.unimib
.it/technologies/unimib-shar/ or the BoxLab repository of Instrumented Living datasets
at http://boxlab.wikispaces.com/List+of+Home+Datasets. BoxLab includes datasets
from Georgia Tech (Aware Home), University of Essex (iSpace/iDorm), University
of Virginia (Smarthouse), MIT (PlaceLab), Duke University (Smart Home) and Uni-
versity of Missouri (Tiger Place). Of these the University of California, Irvine col-
lection seems to be the most comprehensive although many of the datasets it con-
tains that contain inertial data for human activity are completely focussed on Dura-
tive activities and so are in most cases unusable for classifying Punctual activities.
There are some datasets such as PAMAP2 Physical Activity Monitoring Data Set at
https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring that
contain some data that is relevant to Punctual activities. However, perhaps the best
publicly available dataset for Punctual and Durative activities may well be either
the UniMiB SHAR dataset as it contains commonly researched Durative activities
such as walk and run along with some key Punctual activities such as “getting up”,
“standing up” and a number of falls or the “Gestures” dataset from the Opportunity
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Project where subjects were recorded opening drawers and cupboards and other sim-
ilar punctual everyday home activities or the Carnegie Mellon Kitchen dataset where
a number of subjects follow a recipe to cook a dish and the various punctual activities
are noted.

Less easy but of more interest to the author would be to collect new equestrian sport
related data using newer sensors such as the Yost Labs 3-Space sensors (see: https://
www.yostlabs.com/yost-labs-3-space-sensors-low-latency-inertial-motion-capture-suits
-and-sensors) which are capable of outputting Quaternions, Euler angles and rotation
matrices as well as raw inertial readings. Other, similar, commercial sensors are also
available.

Any such work, of course, would be future research. The ready availability of these
data resources does however, give confidence that this research can be extended and
developed further in a number of ways.

7.9 C O M PA R I N G R C T E C H N I Q U E S AG A I N S T OT H E R T E C H N I Q U E S

This research does not claim that RC based activity classification techniques are bet-
ter than other classification techniques nor even that RC based techniques are even
comparable. This was never a goal of this research. The goal of this research was
to design and construct an RC based technique to reliably classify a single punctual
activity from Equestrian sport. This research makes no claim to generalise that ability
to classify punctual activities beyond that single, specified activity.

Of course, having a classification technique that is only applicable to a single ac-
tivity is somewhat limiting and so future research that extends the generality of RC
techniques for classifying other punctual activities would significantly enhance the
value of RC techniques in this area. Given the availability of other datasets that
contain punctual activities as described in Section 7.8, it is easy to envisage how
this research could be extended by applying RC punctual activity classification tech-
niques to other activities and then comparing these results to more traditional activity
classification techniques such as SVM.

However, as noted in Section 3.2.19 on page 55 RC based classifiers have a num-
ber of useful attributes including possible advantages in terms of reduced storage,
reduced computing requirements and potentially earlier classification in addition to
any potential classification advantages for Punctual activities. As a result, a simplis-
tic comparison between a more common classifier such as a SVM would not give a
definitive answer in this context. Such a comparison needs a well thought out and
extensive series of tests against other existing classification techniques and that is
almost another thesis in itself and well beyond the scope and design of this project.

The use of the design science methodology was based around the concept of pro-
ducing and testing a useful artefact, in this case, the RC punctual activity classifier. In
conventional scientific terms my hypothesis was that a RC classifier was a useful tool,
for a number of reasons, to identify punctual events within this dataset and for which
a possible, real-world implementation within a constrained resource, wearable con-
text existed. This “engineering” and design problem approach and methodology is
suited to the multiple potential benefits of a RC classifier. As pointed out above, there

https://www.yostlabs.com/yost-labs-3-space-sensors-low-latency-inertial-motion-capture-suits-and-sensors
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is no intention to state that a RC has better or even comparable accuracy to alternate
classifiers, any attempt to prove that this approach is a more accurate classification
method for Punctual activities in general would need an extensive comparison with
other classifiers, and this represents important future work, but represents an exten-
sion of the original thesis and so is currently outside the scope of this work. Further, a
comparison of accuracy alone would not do adequate justice to this work if it ignored
the additional potential beneficial features of RC based classifiers.

Fortunately, other researchers are also starting to explore the use of RC based clas-
sification engines for human activity recognition and this work is starting to answer
the wider question of where this technique fits into the overall landscape of possible
classification engines. (Palumbo et al., 2016) cites the author’s own work in their
paper which explores the fusion of inertial data and wireless location data as input
into an ESN human activity classifier. The authors of that paper report that their ESN
classification system was used in a classification competition against more traditional
activity classification methods and performed comparably against the other methods.
Importantly, these authors also identified similar requirements for use in a resource
constrained wearable environment and also chose ESN techniques for their potential
computational, storage and response advantages.

(Mici, Hinaut, & Wermter, 2016) report that the best results from their use of
an ESN classification engine for long duration activities within the Cornell Activity
Dataset 120 (CAD-120) collection of video data produced a best set of results where
accuracy, precision and recall were all higher than previously reported results and
where their average across a set of parameters produced comparable results to pre-
viously reported attempts from other researchers. They concluded that ESN were a
more preferable classifier for this data.

(Gallicchio & Micheli, 2016) report on their use of an ESN based classifier for hu-
man “gestures” classification using video data from a Microsoft R© Kinect R© during
the AALTD2016 challenge. In this case the gestures have some features in common
with this author’s definition of Punctual activities. The authors of the paper report
that their solution using the ESN classifier produced the 5th best result out of 22 en-
tries with 94.4% accuracy during the challenge blind test. They further reported that
shortly after the challenge they introduced and ensemble ESN classifier that achieved
an additional 2% gain in accuracy and suggested that additional tuning was likely to
produce even better results. They also reported that part of their reasoning for choos-
ing the ESN classifier was its relative computation efficiency compared with some
alternative (but unspecified) other techniques.

(Basterrech & Ojha, 2016) report on their use of an ESN based classifier to classify
human activity from a limited subset of data collected from three subjects. The au-
thors specifically chose the ESN technique because of its ability to process temporal
data and because of their perception that it is an efficient technique. While this paper
concludes that ESN based classifiers have “very good accuracy” there is no attempt
to contextualise this with other classification techniques.

Overall, while none of the recent work in this area has looked as extensively at
Punctual activities as we would like and there is only one inertial data based exam-
ple of the use of a RC classifier in a situation where the RC technique is directly
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comparable with other techniques, nevertheless, the work by other researchers in this
area strengthens our own proposition that RC based classifiers are a serious option to
consider when classifying human activities from inertial sensor time-series data and
an appropriate tool for the author to choose to use within this thesis. In addition, the
limited results to date indicate that the accuracy of RC based classifiers is at least
comparable to other currently popular human activity classification methods in some
cases and may even have improved classification accuracy in other cases. In addition
and as already noted within the Literature Review, (Niebles et al., 2010) strongly sup-
ports the author’s supposition that Durative and Punctual activities require different
classification algorithms in order to take advantage of the differing aspects of each
type of activity.

7.10 AC T I V I T I E S W I T H D I FF E R E N T T E M P O R A L C H A R AC T E R I S T I C S

One of the potentially beneficial characteristics of RC based activity classification
techniques is the possibility that multiple activities can be classified in parallel from
the same RC model. Where this characteristic can be utilised there is potentially
a considerable saving in computation resources, however, as was discovered during
this research when the initial goal was to classify two punctual activities, Mounting
and Dismounting, there are two issues that tend to make it difficult to use this ability
to classify multiple activities in parallel in real situations.

The first difficulty is that the parameters that define the detailed behaviour of the
RC model need to be tuned so that the model is optimised for reliable classification.
As the number of activities is extended beyond a single activity then the tuning of
the RC model parameters becomes increasing more complex as the reliability of the
classifier needs to be balanced across all activities. The ability to effectively use a
common RC model to classify multiple activities in parallel is especially challenging
when the temporal characteristics of the different activities differ by a significant
amount. For example, if one activity typically takes 3 seconds to perform while
the other activity takes 13 seconds to perform then it can be difficult to tune the
parameters for reliable classification of both activities.

While RC models do not require their input data to be pre-segmented into sepa-
rate windows the model characteristics (and parameters) do affect how much data is
remembered by the model. The number of neurons places a maximum cap on how
much past data can be stored within the model and so this is a gross limit. However,
the number of neurons tends to only be a limit for either very small models or for
activities that take place over quite long periods of time. Of course the rate at which
the input data was sampled also has a major affect. As an example from the data used
within this research which was sampled at 10Hz, a 3 second activity would need an
absolute minimum of 30 neurons to reliably classify that activity with a 40-50 mini-
mum neuron model size being recommended, while a 13 second activity would need
an absolute minimum of 130 neurons for reliable classification with perhaps at least
180 neurons or more being recommended. In addition to the gross limit that comes
from the number of neurons the other factor (parameter) that affects how much data
the model can remember is the Leak Rate.
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The second difficulty lies in the general lack of simple tools to measure the increase
(or decrease) in classification performance beyond the two class problem. This means
that in a three (or more) class problem it becomes difficult to tell if any change has
improved the model’s overall ability to classify the classes or not in most cases and
can be especially challenging if the performance on one class has improved while the
performance on another class has got worse.

One possible solution to the issue of tuning the model parameters to match the
requirements for differing temporal periods is suggested in Koutnik et al. (2014). In
this paper the authors suggest using a Clockwork RNN with multiple modules within
the one model where each module is a standalone RNN within an overall network of
modules with each module’s parameters optimised for a particular temporal period
(clock rate) rather than optimised for each activity. All modules then feed into a
mechanism for choosing the strongest classification. This potentially offers a solution
that allows multiple activities to be classified in parallel without complex parameter
tuning but does not, of itself, also resolve the issue of being able to compare the
reliability of of a multi-class classifier with another multi-class classifier. Again,
while this looks like interesting research it is marked for future work.

7.11 S Q UA R E V E R S U S R I S I N G WAV E C L A S S I FI C AT I O N

During this work the boundaries of the activities of interest have been marked using
a square wave technique. That is, the base class is represented as a series of zeros,
the activity as a series of ones and the ones are aligned with the activity boundaries.
This meant that the training signal that was used to train the model(s) was a square
wave with the peak straddling the activity (see Figure 7.3).
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Figure 7.3: Typical Square Wave Training Signal
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When this sort of training signal is used with a static, rather than a recurrent, clas-
sification technique such as SVM then both the data and the training signal are win-
dowised and the ”window” is moved from left to right until it hopefully encapsulates
enough of the data and training signal to ”learn” the patterns of the input data that
falls within the activity boundaries. The training signal acts to bound the part of the
input data that is of interest. In effect, for static, snapshot type techniques the activity
boundary and the activity class are aligned.

With a recurrent classification technique such as ESN, the class boundary probably
needs to move to the right and be offset from the the activity boundary because an
ESN contains its own memory window (of some size) that can be thought of as trail-
ing back to the left of the current cursor position. Considering Figure 7.3, when the
ESN model cursor gets to 21 the classifier is asked to start outputting a one instead
of a zero, however at this stage the classifier only has knowledge from the Base Class
#1 area of input data (0–20).

If there is a pattern in the data within the activity boundaries then a recurrent clas-
sifier will only recognise that pattern once it is some way into the activity, perhaps it
needs to be almost at 40 before it gets enough signal from within the activity bounds
to correctly classify the activity. This behaviour is very typical of the results that
were obtained during the design iterations and is demonstrated in Figure 7.4 which is
taken from iteration 04-02.

Figure 7.4: Exp. 04-02 0719-1 RB Mount

With this in mind, the author plans to investigate this idea as part of future work.
Various forms of how the class boundary could be offset from the activity boundary
include Figure 7.5a, which simply offsets the class while retaining its square shape
and reducing its width, to Figures 7.5b and c where e a rising class signal is proposed
that more closely matches the response that the model prefers to generate. The dif-
ference between the (b) and (c) versions is that the (c) version of the class signal rises
to 1.5 rather than stopping at 1.0. The ESN model is designed to generate a signal as
its output and so the training signal need not be factors or whole numbers or even be
restricted to the limits that are applied when standardising the input data.
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Figure 7.5: Potential Alternate Class Signals

7.12 P O S S I B L E I M P L E M E N TAT I O N I S S U E S

The investigatory work done within this research has used large, pre-recorded sensor
data files. A typical file, representing data from one multifaceted sensor, captured
at only 10Hz over a typical riding session of 40 to 45 minutes represents around 20
megabytes of data. Other activity classification researchers have tended to use higher
sampling rates to capture their data such as Moore, MacDougall, and Ondo (2008)
(100Hz, ambulation), Chuang et al. (2012) (30Hz, exercise and ambulation), No-
vatchkov and Baca (2012) (100Hz, exercise and weight training), Qaisar et al. (2013)
(150Hz, bowling in cricket) and Mitchell et al. (2013) (16Hz to 22Hz, general activi-
ties such as ambulation and sitting). As discussed in Section 7.7, If we implemented
this technology with a higher sampling rate of, say, 100Hz while keeping everything
else the same then we would increase the data size by one magnitude to around 200
megabytes for the same time interval. However, size issues don’t end there. As en-
visaged, a wearable coaching system (see Section 1.2) would use multiple sensors on
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multiple parts of an athlete’s body and a training session may cover a much longer
period than 40 to 45 minutes and so potentially data sizes could be a further magni-
tude larger at around 2 gigabytes or more per training session. Fortunately though,
the classification engine used can be run on a step by step basis and so typically the
main issue associated with computing with very large data files on lower powered
wearable systems is a storage issue rather than a computational issue, although in-
creasing data rates do require increases in compute cycles to enable the classification
to keep up with the sample rate. Large storage requirements are still somewhat of an
issue during data collection for classifier training however.

A relevant question for technocrats and researchers looking at implementing a RC
based activity classifier similar to the one that this work has created is How much
computing power is required to implement a classifier such as this in a wearable
device situation? Of course, this is an impossible question to answer definitively as
it is dependent on a number of issues, not the least of which is the level of computing
power available on the chosen hardware platform. In a situation where the computing
device is expected to be worn on the human body then normally computing power is
constrained by weight, size and (battery) power available. However, some idea of a
comparative answer is possible. In a general sense, Lukoševičius (2012) A Practical
Guide to Applying Echo State Networks is a good place to start when considering
applying an ESN.

One of the benefits of the ESN technique is that the highest compute intensive part,
the tuning of the model, and the less compute intensive training process can be done
offline before the model is used and so this means that only the classification part
needs to be done as the activity is happening. Within this work the classification was
done across an entire file but even so the compute requirements were relatively minor
with the later iterations requiring, on average, 30 seconds of user compute time to
classify the whole file. Table 6.42 provides an example. In addition, it is envisaged
that the classifier would operate on a step–by–step mode, classifying each sample as
it is received and although there is no empirical evidence from within this work to
support this, it is possible that this level of classification would be achievable on a
modern smartphone. Future work is planned to investigate this possibility.

7.13 L I M I TAT I O N S

While it is natural for any author to want to highlight the usefulness and benefits of
their work it can also be educational to point out the limitations. This section sum-
marises and discusses some limitations of this work and the artefact that it produced.

7.13.1 The role of the artefact within Wearable Coaching

In Section 1.2 on page 3 the concept of a Wearable Coach was introduced and within
this concept a number of necessary components were presented including a series of
classifiers and from this the justification for this classifier artefact was drawn. Essen-
tially, the process envisaged within this idea of a wearable coach was to use a series of
classifiers to establish what activity a person (wanting coaching) is currently doing,
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then to compare how they are doing that activity against some sort of template using
a “comparator” and then if their technique is not ideal to start applying feedback until
such time as they correct their technique. This can be (and was) broken down into
separate components, namely classifiers, comparators, decision systems and feed-
back systems that then need to be managed so that they work together effectively
using some sort of management module.

However, a coaching or training system need not be so disjoint. The idea of ideo-
motor feedback control has been around for some time and other researchers such
as Galtier (2014) have not only demonstrated such systems but, as Galtier has done,
have demonstrated them using RC techniques, ESN in Galtier’s case. What ideomo-
tor feedback systems are designed to do is to drive the output (the feedback) directly
from the input. As an example, imagine an arm brace that was worn while drawing
a circle. With an appropriate ideomotor feedback system then if when drawing the
circle the arm started to move out of round then the feedback system would push it so
that in went back into a round situation. Such a system encompasses all the compo-
nents envisaged above into a single, consistent system. Using such technology within
a wearable coaching system would make a classifier redundant and so this artefact,
a stand-alone classifier, would be redundant. However, classifiers have a number of
uses outside of wearable coaching as noted in Section 2.3.5 on page 20 and so pro-
ducing this classifier artefact has value regardless of how a wearable coaching system
is eventually implemented.

7.13.2 Did some unique aspect of the Data shape the Artefact

This work used a machine learning approach to build the classifier artefact and so,
necessarily, the artefact itself is partially a product of the data with which it was
trained. Of course, the classifier was then tested on similar data that it had not seen
before and so there is some confidence that it is a generalised classifier that is not
fundamentally restricted to the data used within this work. This is to be expected,
however, this process leaves unanswered the question of if some, common, unique
aspect of the data that was used has left a non-obvious influence on the artefact that
would prevent the artefact from being used successfully with other data that does not
have this unique aspect.

Firstly, the obvious artefacts are the data sample rate, the sensor’s position and
orientation on the wrist and the sensor itself. Clearly, a classifier trained on data
samples at 10Hz would have unpredictable outcomes if presented with data sampled
at a significantly different sample rate although I am unaware of any researcher who
has actually tested this experimentally. It does however, seem to be, common sense.

With respect to sensor position and orientation on the wrist there is some confi-
dence that the data is partially generalised and as a result the artefact is reasonably
insensitive to minor differences in position and orientation. The data capture protocol
required the subject to place the sensor on their own wrist and a deliberate decision
was made to suggest only a general placement area for the sensor, although gross
orientation was checked. This meant that participants were free to place and orien-
tate the sensor where it was most comfortable, within reason. One participant did
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attempt to place the sensor on the inside of their wrist but the researcher suggested
to them that this might interfere with their riding and so it was moved to their outer
wrist area. The deliberate policy of leaving participants to place the sensor them-
selves was done so as to best emulate what might happen in a real world situation
where the researcher was not around to tell someone using the sensor how to place
it. This meant that there was some variation both in placement and orientation of the
sensor during data capture. Despite these changes in position and orientation (or per-
haps even because of them) the classifier artefact has been able to generalise between
each session dataset that has been included in the study. This ability to generalise
was undoubtedly assisted by the features which were chosen as they were deliber-
ately chosen to be relatively independent of orientation (e.g Gyroscope data and net
acceleration power from the Accelerometer). Of course, gross changes in orientation
such as a rotation in any plane much beyond around 20–30 degrees or more may well
influence the Gyroscope data enough to prevent reliable classification but this has
not been tested and so these comments are anecdotal only and should be treated with
caution until tested. Gross changes in position are also likely to affect both the Gy-
roscope and Accelerometer data. As a result, the artefact is restricted to classifying
data collected from a similar position and orientation to the data that was used for
training purposes.

Hunt (2009, p.86) describes the sensor used. This sensor is no longer commercially
available. Essentially the Accelerometer within the sensor collected acceleration data
within a range of ± 2G’s and the Gyroscope collected angular data with a sensi-
tivity of 0 to 500 degrees per second. Both the Accelerometer and the Gyroscope
collect analogue data that is then converted to a 32 bit real number using a 10 bit
analogue-to-digital converter. Copies of the relevant data sheets which describe the
individual components of the sensor, their recording range and expected accuracy can
be found at Hunt (2009, p.179–182). Some inertial data based activity classification
datasets such as the UniMiB SHAR dataset have been recorded using different sen-
sors (smartphones) and the authors of that work, Micucci, Mobilio, and Napoletano
(2016), showed that the sensors in each smartphone used were sufficiently similar
that classification across sensors (smartphones) was not a problem. However, for this
classification artefact it would not be safe to assume that data captured by different
sensors with different specifications would be able to be used successfully without
some attempt to standardise the data across the different sensors or to train a new
classifier using data from both types of sensors. As a result, the classifier artefact as
trained within this work is currently limited to working with data from a similar (no
longer commercially available) sensor. this seems like a major limitation, however,
the author contends that based on his experience building different iterations of the
classifier artefact that the process of training the ESN classifier artefact is general
enough that given different training data from a different sensor then an adequately
performing classifier could be constructed to classify addition data from the new sen-
sor. That is, while this instantiation of the artefact is sensor specific, it is relatively
simple, now, to construct another classifier for a new sensor. This is a probable area
for future research.
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7.13.3 No Guarantee of Implementation on a Wearable platform

Section 3.2.21 on page 58 notes that implementing the resultant classifier artefact
is out of scope for this work and so the fact that this classification artefact is not
directly implementable on a wearable platform is not a limitation. However, it is
reasonable to show that there is some possibility of implementing this classification
artefact on a wearable platform. Jaeger (2003) showed that ESN can be implemented
in such a way as to perform adaptive learning and on-line classification. Since then
a number of authors including Jaeger and Haas (2004), Venayagamoorthy (2007)
and Soh and Demiris (2014) have implemented ESN based classifiers that do on-line
classification. From this it is possible to conclude that while the classification artefact
from this work currently works on offline data it is possible to change it so that it also
works on on-line data. However, that is only part of the picture as this classification
artefact runs on a desktop computer with considerable processing power and memory
resources whereas most wearable platforms have considerably less processing power
and memory.

Prater (2016) suggests that the matrix multiplication that most implementations of
ESN neural networks use when implemented on desktop computers are too resource
intensive to use on wearable platforms such as Google’s Android. This is probably
so when ESN neural networks are implemented in high level languages such as R,
as this work did but there is an open question about implementing an ESN neural
network in lower level code on a wearable platform. Even with Prater’s negative
assessment of the ability to implement a standard ESN on Android, Prater did suggest
a modified ESN solution using clustering techniques that does work on Android. In
addition, smartphone and other wearable platforms continue to develop ever faster
(multi) processors and greater memory resources and from this it is reasonable to
assume that one way or another it would be possible to implement a modified version
of the classifier artefact from this work on a wearable platform and this is suggested
as possible future work.

7.13.4 This classifier artefact only recognises a single activity

During the initial stages of this work the author discovered that tuning the the global
parameters that control the ESN configuration for two activities and reliably assessing
classification accuracy improvements when two activities plus a base class was being
considered meant this required much more work and was much more complicated
than simply tuning for and measuring the improvement in a single activity. However,
during later design iterations, at around Section 6.9 on page 190 it became apparent
that the ESN meta-parameters did not need to be optimally tuned in order to achieve
satisfactory classification rates. This is particularly apparent when looking at the note
in Section 6.9.7 on page 192 and at Table 6.30 on page 192 and noting that the meta-
parameters are (purposely) exactly the same as the meta-parameters used in the very
initial real-world classification iteration.

The initial suggestion that every set of ESN meta-parameters needed to be individ-
ually tuned for each new activity would have meant that scaling from one classifying
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one activity to classifying many activities would have effectively meant creating a
new ESN for each activity and this would ultimately be untenable. However, what
the later work within this project showed and what is backed up by authors such as
Koutnik et al. (2014) and Lukoševičius (2012) is that a single reservoir and a single
set of meta-parameters for that reservoir can classify multiple activities in parallel.
The work of Koutnik et al., in particular, points to a technique using his “Clockwork
RNN” where an ensemble of reservoirs set up to classify differing groups of activi-
ties that can be used to help scale across activities that would normally require quite
diverse meta-parameters to work well.

While the work of Koutnik et al. (2014) suggests a way of scaling the ESN compo-
nent there is still the issue that supervised training and hand classification for training
and testing purposes can be extremely time consuming, as was discovered during
this work and so scaling the training and testing data is still a big issue. Within cer-
tain constrained sporting domains such as equestrian sport it may be possible to to
manually classify data and to continue to use supervised training but in less con-
strained domains other solutions are needed. Researchers such as Devert, Bredeche,
and Schoenauer (2007) are pointing the way by suggesting techniques for unsuper-
vised learning with ESNs and this is an important area for future work.

7.13.5 This classifier artefact is limited to the Equestrian Sport Domain

One of the key design decisions from the outset was to create a domain constrained
activity classifier as explained in Section 1.9, page 10, Section 2.3.3 on pages 17
through 19 and in Section 4.4 and so it should be no surprise that the classifier artefact
is indeed constrained to the domain of Equestrian sport. However, it is of some value
to point out what this domain constraint means in a wider sense.

Based on the authors experience within Equestrian sport in New Zealand and his
knowledge of the data collection process it is reasonable to state that the real world
data used within this work is a reasonably good representation of many aspects of
Equestrian sport. While the Swedish riders tend to ride more within indoor arenas
as a result of their climate compared with New Zealand riders the data captured was
from both situations and so the only real major difference between riding in these
countries is covered and the author suspects that between the two countries the range
of activities within European riding is well covered. This means that, but does not
guarantee, that within the domain of Equestrian sport the classifier artefact is unlikely
to classify some other equestrian related activity as a stirrup mount. There is no such
confidence outside of the Equestrian sporting domain however.

It is quite possible that some other human activity in some other domain could
produce a sensor signal that was close to or even the same as that produced by the
mount activity. This is a limitation of all current classifiers as there is no universal
activity classifier at this time and such a universal classifier would make further re-
search into activity classification somewhat irrelevant. The author is not aware of any
particular activity that produces a signal that might be easily confused with mounting
a horse but one may exist and certainly within the data collected for this work it was
found that brushing the horse produced a signal that initially was often confused with
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mounting. A possibly more easy to understand example from a different domain may
help in understanding. Within some of the more detailed data collected from instru-
mented homes such as the OPPORTUNITY dataset (Opportunity Consortium, 2016)
there is signal data from activities such as shutting a drawer. It is possible that the
data signal from a wrist mounted inertial sensor when closing a drawer may be very
similar to a “thrust” motion when practising the sport of Fencing. Without some addi-
tional information from additional sensors it may be difficult to tell the two activities
apart and so classification accuracy may well fall when the two activities co-occur
without prior training for that eventuality. While all current activity classifiers suffer
from this limitation to some level it is well to keep this limitation in mind when using
this or any other classifier.



Chapter8
F U T U R E D I R E C T I O N S A N D C O N C L U S I O N S

This chapter summarises the achievements of the presented research, provides several
directions for future work and has some concluding remarks.

8.1 S U M M A RY O F AC H I E V E M E N T S

This work created a software artefact that successfully classifies the punctual activity
stirrup mounting a horse. In doing this it has demonstrated that very short, punctual
activities of one or two seconds duration and that occur only once can be distin-
guished from within complex, real world riding data of up to an hour and possibly
longer. This is highly significant for technocrats seeking techniques for classifying
other short duration and rare activities in other areas such as the researchers who are
interested in auditing human activities in areas such as automotive assembly, health
rehabilitation and other areas. More importantly in the sporting context within which
this research commenced, it encourages coaches and athletes in equestrian and other
sporting domains to consider how an automated system of auditing particular activ-
ities might help them train and compete more successfully. For example, the tennis
coach that wants her pupil to include at least twenty backhand shots during each day’s
training session now has a potential way of automatically counting those shots pro-
vided a similar artefact can be developed and implemented in some sort of wearable
device that was applicable to tennis. Even more specifically, this artefact if imple-
mented into an equestrian orientated wearable device could automatically distinguish
on–the–horse riding activities from ground activities and could thereby substantially
improve the time taken to manually classify inertial data captured during a riding
session for later analysis. An adaptation of this artefact may also be used to automat-
ically classify on–the–horse activities so that there is less need for manual classifica-
tion, thereby saving significant time and opening up the possibility of automatically
analysing the on–the–horse activities.

8.2 F U T U R E W O R K

A number of possible future extensions to this work are possible and they fall into six
broad areas, these are:

• Investigations of the usefulness of the distinction between Punctual and Dura-
tive activities when building activity classifies based on inertial data
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• Investigations of the benefits of using RC techniques such as ESN and LSM as
classifiers for Punctual and even Durative human activities

• Investigate the utility versus additional processing cost of simple features ex-
tracted from the data such as signal amplitude and acceleration power versus
more complex features

• The implementation of the artefact into a situation where real world data needs
to be classified in real-time as opposed to after the fact

• Building other components of the proposed wearable coaching system and in-
tegrating them into a wearable coaching device

• Other

While these broad areas are shown in a list it is not intended that they should
necessarily be done in this or any other particular order although it is probably wise
to further investigate the usefulness of the Punctual Vs Durative activity distinction
reasonably early in the process. This may well be logically followed or paralleled by
an investigation of RC based classification techniques versus other, more traditional
techniques for both Punctual and Durative activities. This could then be followed
and/or paralleled by the other work.

8.2.1 Publicly Available Inertial Data Based Activity Datasets

In almost all proposed areas of future work additional or alternative data will be
required. There are a number of public, inertial data based, activity datasets that are
available and these include:

• Human Activity Recognition (HAR) Using Smartphones, Anguita et al. (2013)
- Durative daily activities only collected in a laboratory

• Quality of Life, De la Torre et al. (2009) - Punctual and Durative actions while
following a cooking recipe in a laboratory

• UCI Machine Learning Repository, Lichman (2013) - A comprehensive col-
lection of many datasets but most target meta activities with the data collected
from instrumented homes

• A Falls dataset, Medrano, Igual, Plaza, and Castro (2014) - Only contains falls
collected in a laboratory

• UniMiB SHAR, Micucci et al. (2016) - Large number of Durative and Punctual
daily activities (getting up, standing up) plus falls collected in a laboratory

• OPPORTUNITY Datasets, Opportunity Consortium (2016) - Modes of loco-
motion (Durative) and, separately, Punctual activities such as open dishwasher,
move cup and close drawer collected in a laboratory

• Exercise dataset, Reiss and Stricker (2012) - Sports orientated exercise activi-
ties collected in a laboratory

• BOXLab, Tangient LLC (2016) - Various datasets mostly aimed at meta activ-
ities and collected from instrumented homes
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• Amsterdam Instrumented Home, van Kasteren, Englebienne, and Krose (2011)
- A dataset aimed at meta activities collected from an instrumented home

• Mobifall, Vavoulas, Pediaditis, Spanakis, and Tsiknakis (2013) - Durative daily
activities plus falls and two punctual activities, getting into and out of a car
collected in a laboratory

• B-WAR, A. Y. Yang, Jafari, Sastry, and Bajcsy (2009) - Durative only daily
activities collected in a laboratory

• USC-HAD, M. Zhang and Sawchuk (2012) - Durative only daily activities col-
lected in a laboratory

However, perhaps the most interesting publicly available datasets for Punctual and
Durative activities, from the author’s perspective may well be either the UniMiB
SHAR dataset as it contains commonly researched Durative activities such as walk
and run along with some key Punctual activities such as “getting up”, “standing up”
and a number of falls; the “OPPORTUNITY” datasets from the Opportunity Project
where subjects were recorded opening drawers and cupboards and other similar punc-
tual everyday home activities or the Quality of Life dataset where a number of sub-
jects follow a recipe and the various Durative and Punctual activities are noted.

Unfortunately, almost all of the publicly available datasets had the data collected
in a laboratory situation and the closest that some of these datasets come to real
world situations are when the data is collected in instrumented homes. This is in all
probability due to the huge cost in terms of time that is needed to collect data in real
life situations and probably also has some association with the privacy issues that
relate to recording possibly intimate data from individuals in uncontrolled situations.
This, in turn, highlights the value and uniqueness of the real world riding data that
was used in this work.

8.2.2 Investigate the distinction between Punctual and Durative activities

The distinction between Punctual and Durative activities was highlighted within this
work, based on similar activity classification using video data and based on anecdo-
tal reporting from other researchers. However no attempt was made within this work
to experimentally challenge this distinction. One way of challenging this distinction
would be to take a dataset such as UniMiB SHAR dataset that contains both Dura-
tive and Punctual activities and experimentally testing a single classifier that has been
trained to classify all activities against two specialised classifiers, one trained to clas-
sify Punctual and the other trained to classify Durative activities. Such an experiment
would need to use the same classification engine (e.g. SVM, ESN, Random Forest)
and the same features across both situations. For completeness, it would probably
be necessary to test multiple classification engines and multiple feature sets to ac-
count for possible classification bias attached to either the classification engine or the
chosen feature set.
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8.2.3 Investigate the benefits of Reservoir Computing classifiers vs other classifiers

Perhaps the most obvious area of future work would be to compare the ability of
RC techniques for classifying the punctual activity of interest in this publication
with other, more established classification techniques, as described in section 7.9
on page 259.

This work could either be done by applying more established techniques, perhaps
SVM based techniques to the existing equestrian data for a direct comparison with
this work or alternatively by applying RC techniques to publicly available activity
data such as the Punctual activity data from the UniMiB SHAR, OPPORTUNITY
or Quality of Life datasets. The author’s interest is towards the Equestrian data but
this is a unique dataset and it could be argued that any results that come out of the
work done using this dataset may be unique to the dataset and so it would probably
be more productive to apply a RC classification engine to data such as that above that
contains Punctual activities and which has already been classified by one or more
other researchers using more traditional classification engines.

In addition, a potential project could look at the utility of RC based classifiers
versus more traditional classifiers that exploit temporal aspects of the input signal
such HMM based classifiers. In this case, activities need not be restricted to only
classifying Punctual activities. The simplest project to set up would would use the
UniMib SHAR dataset or something similar that contains both Durative and Punctual
activities and which has previously been classified with more traditional classification
engines. In considering this work it may be helpful to consider the work done by
Basterrech and Ojha (2016) who very recently looked at applying ESN technology to
classify Durative activities.

An area of future work that is close to the author’s own personal interests would
be to collect additional equestrian data, perhaps at a higher than 10Hz sample rate, as
described in section 7.7 on page 257 and also perhaps utilising more than one sensor,
as described in section 7.6 on page 256. In both these cases, a modern IMU sensor
would be used that did not have some of the same drawbacks as the original sensor.
With this data, collected at higher sample rates, it would be possible to apply more
traditional classification engines to the data and to look at classifying both Punctual
and Durative equestrian activities such as the horse’s gait.

8.2.4 Investigate the cost benefits of simple activity features Vs complex features

A number of other authors (Banos, Damas, Pomares, Prieto, & Rojas, 2012; Gupta &
Dallas, 2014; Pirttikangas, Fujinami, & Nakajima, 2006) have reported on work that
analyses possible optimum feature sets for human activity classification, however,
all of these works have looked at Durative activities only. This means that another
possible avenue for future work is to do similar feature optimisation work on various
Punctual activity datasets. In addition and with a view to implementing activity clas-
sifiers on wearable devices such as Smart Phones another possible area of future work
is to look at the benefits to classification of additional information provided by more
complex features versus the additional computing costs of calculating those features.
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8.2.5 Implementing the artefact in a real-time classification environment

This work successfully built a classification artefact that runs off-line using a high-
end desktop computer. The ultimate aim is to build a wearable system that operates
in real-time to classify sensor data as it is received. Jaeger (2003) demonstrated that
ESN are capable of both on-line classification and adaptive learning. What is missing
and is a potential area of future work is to implement a RC classifier, probably one
based on ESN technology because LSM technology generally requires more compu-
tational power than ESN (see Verstraeten et al., 2007) in either a smartphone platform
or some sort of other wearable platform in a configuration that would allow for on-
line classification. Prater (2016) suggests that ESN are too complex to implement on
a smartphone platform but does not offer any evidence to back up this claim. How-
ever, Prater does offer a modification to the standard ESN based on clustering rather
than output weight training which is said to decrease computational requirements and
therefore, make it easier to implement an ESN classifier on a smartphone.

8.2.6 Building other components of a Wearable Coach

One of the theoretical benefits of RC classification techniques is the ability to classify
multiple activity classes in parallel. This benefit was not utilised within the current
work for a number of reasons including difficulties encountered trying to tune the RC
parameters for differing activity attributes, especially differing temporal attributes.
However, the author’s experience during the later iterations confirmed that once RC
model parameters were “good enough” in a generalised sense then reliable classifi-
cation can be achieved without having to tune the RC model parameters for an exact
“best match” situation. This then suggests that an area of future work could involve
clustering activities with similar temporal characteristics together with good enough
RC model parameters for the whole cluster might enable successful classification
in parallel. This could be extended even further by utilizing the ideas expressed in
Koutnik et al.’s Clockwork RNN in Koutnik et al. (2014). This possible area of future
work is described in more detail in section 7.10, starting on page 261.

8.2.7 Other possible areas of future work

A more novel area for possible future work is the exploration of the effects of dif-
ferent classification wave forms as described in section 7.11 on page 262. An im-
provement in classification in this area may have wide application for other, non-RC
classification techniques, as well as for RC techniques.

Section 7.5 on page 252 highlighted one of the key constraints that underlies most
of the activity classification work, that manually labelling activities for machine
learning and other similar, training based, techniques is very time consuming and
so dealing with this issue is a general area of future work. Possible future work could
include investigating techniques of automatically labelling activities using ideas from
work such as Choudhury et al. (2008); Spriggs, De La Torre, and Hebert (2009); Vah-
datpour et al. (2009); Wyatt et al. (2005).
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8.3 C O N C L U D I N G R E M A R K S

The research has met its design goals of producing a software artefact that adequately
classifies the punctual activity mounting a horse using a stirrup mount. In the pro-
cess it has highlighted some of the potential benefits of differentiating activities into
punctual and durative meta-classes. In addition a number of areas of potential future
research have been identified, demonstrating that this research has the potential to be
added to in a number of ways.
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