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Abstract

Volatility derivatives are products where the volatility is the main underlying

notion. These products are particularly important for market investors as they

use them to have insight into the level of volatility to efficiently manage the market

volatility risk. This thesis makes a contribution to literature by presenting a set

of closed-form exact solutions for the pricing of volatility derivatives.

The first issue is the pricing of variance swaps, which is discussed in Chapter

2, 3, and 4. We first present an approach to solve the partial differential equation

(PDE), based on the Heston (1993) two-factor stochastic volatility, to obtain

closed-form exact solutions to price variance swaps with discrete sampling times.

We then extend our approach to price forward-start variance swaps to obtain

closed-form exact solutions. Finally, our approach is extended to price discretely-

sampled variance by further including random jumps in the return and volatility

processes. We show that our solutions can substantially improve the pricing

accuracy in comparison with those approximations in literature. Our approach is

also very versatile in terms of treating the pricing problem of variance swaps with

different definitions of discretely-sampled realized variance in a highly unified

way.

The second issue, which is covered in Chapter 5, and 6, is the pricing method

for volatility swaps. Papers focusing on analytically pricing discretely-sampled

volatility swaps are rare in literature, mainly due to the inherent difficulty as-

sociated with the nonlinearity in the pay-off function. We present a closed-form

exact solution for the pricing of discretely-sampled volatility swaps, under the

framework of Heston (1993) stochastic volatility model, based on the definition

of the so-called average of realized volatility. Our closed-form exact solution

for discretely-sampled volatility swaps can significantly reduce the computational

time in obtaining numerical values for the discretely-sampled volatility swaps, and

substantially improve the computational accuracy of discretely-sampled volatility

swaps, comparing with the continuous sampling approximation. We also investi-

gate the accuracy of the well-known convexity correction approximation in pric-

ing volatility swaps. Through both theoretical analysis and numerical examples,
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we show that the convexity correction approximation would result in significantly

large errors on some specifical parameters. The validity condition of the convexity

correction approximation and a new improved approximation are also presented.

The last issue, which is covered in Chapter 7 and 8, is the pricing of VIX

futures and options. We derive closed-form exact solutions for the fair value of

VIX futures and VIX options, under stochastic volatility model with simultane-

ous jumps in the asset price and volatility processes. As for the pricing of VIX

futures, we show that our exact solution can substantially improve the pricing

accuracy in comparison with the approximation in literature. We then demon-

strate how to estimate model parameters, using the Markov Chain Monte Carlo

(MCMC) method to analyze a set of coupled VIX and S&P500 data. We also con-

duct empirical studies to examine the performance of the four different stochastic

volatility models with or without jumps. Our empirical studies show that the

Heston stochastic volatility model can well capture the dynamics of S&P500 al-

ready and is a good candidate for the pricing of VIX futures. Incorporating jumps

into the underlying price can indeed further improve the pricing the VIX futures.

However, jumps added in the volatility process appear to add little improvement

for pricing VIX futures. As for the pricing of VIX options, we point out the solu-

tion procedure of Lin & Chang (2009)’s pricing formula for VIX options is wrong,

and alert the research community that this formula should not be further used.

More importantly, we present a new closed-form pricing formula for VIX options

and demonstrate its high efficiency in computing the numerical values of the price

of a VIX option. The numerical examples show that results obtained from our

formula consistently match up with those obtained from Monte Carlo simula-

tion perfectly, verifying the correctness of our formula; while the results obtained

from Lin & Chang (2009)’s pricing formula significantly differ from those from

Monte Carlo simulation. Some other important and distinct properties of the

VIX options (e.g., put-call parity, the hedging ratios) have also been discussed.
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Chapter 1

Introduction and Background

1.1 Volatility Derivatives

Volatility derivatives are special financial derivatives whose values depend on the

future level of volatility. While volatility is traditionally viewed as a measure

of variability, or risk, of an underlying asset, the rapid development of trading

volatility derivatives introduces a new view on volatility not only as a measure

of volatility risk, but also an independent asset class. Hereby, by trading volatil-

ity derivatives, volatility, like any other asset, can be used by itself in a variety

of trading strategies. Even though it is also possible to obtain the exposure to

volatility before the introduction of volatility derivatives by taking and delta-

hedging the positions in vanilla options, this alternative approach however has

an obvious weakness- the necessity of continuous delta-hedging. The frequent

re-balancing to keep the options portfolio delta-neutral, as required by the delta-

hedging (constant buying/ selling of underlying), generates transaction costs and

can be connected with liquidity problems: some stocks and indices can be expen-

sive to trade or they may lack liquidity. On the contrary, volatility derivatives

do not have this drawback; they offer straightforward and pure exposure to the

volatility of the underlying asset (see e.g., Carr & Madan 1998).

By providing a more efficient solution to obtain pure exposure to volatility

alone, trading volatility derivatives has been growing rapidly in the last decades.

Investors in the market use volatility derivatives to have an insight into the dy-
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2 Chapter 1: Introduction and Background

namics of volatility, which empirical evidence shows not to be constant. For this

reason, an investor who thinks current level of volatility is low, may want to take

a position that profits if volatility rises. As illustrated by Demeterfi et al. (1999),

there are at least three reasons for trading volatility. Firstly, one may want to

take a long or short position simply due to a personal directional view of the fu-

ture volatility level. Secondly, speculators may want to trade the spread between

the realized volatility and the implied volatility. These two reasons involve direct

speculation on the future trend of stock or index volatility. Thirdly, one may need

to hedge against volatility risk of his portfolios. This is a more important rea-

son for trading volatility since bad estimation or inefficient hedging of volatility

risk might result in financial disasters. In practice, derivative products related to

volatility and variance have been experiencing sharp increases in trading volume

recently. Jung (2006) showed that there was still growing interest in volatility

products, such as conditional and corridor variance swaps, among hedge funds

and proprietary desks.

Generally, there are two types of volatility derivatives (see, Dupire 2005). Each

type of volatility derivative is associated with a particular measure of volatility.

The two parties of the contract define, at the beginning of the contract, the spe-

cific measure of the realized volatility to be considered. The first type of volatility

derivatives is historical volatility- or variance-based products, the payoff function

of which is based on the realized volatility or variance discretely sampled at some

pre-specified sampling points over the time of returns on the stock price. Most

products of this type are over-the-counter (OTC) contracts, such as volatility

swaps, variance swap, corridor variance swap, and options on volatility/variance.

There are some listed products of this kind as well, such as futures on realized vari-

ance, which are in essence “exchange-listed” version of OTC variance swaps. For

example, Chicago Board Options Exchange (CBOE) launched 3-month variance

futures on S&P 500 in May 2004, and 12-month variance futures in March 2006.

In September 2006, New York Stock Exchange (NYSE) Euronext also started to
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offer the cleared-only, on-exchange solution for variance futures on FTSE 100,

CAC 40 and AEX indices. The second type of volatility derivatives is future

implied-volatility based products. A lot of implied volatility indices have been

launched in the major security exchanges to reflect the near-term market implied

volatility, e.g., VIX index in the Chicago Board Options Exchange (CBOE) on

the volatility of S&P500, VSTOXX on Dow Jones EURO STOXX50 volatility,

VDAX on the volatility of DAX published by the German exchange Deutsche

Böers, VX1 and VX6 published by the French exchange MONEP, etc. These

indices are often used as a benchmark of equity market risk and contain expecta-

tion of option market about future volatility. The introduction of these implied

volatility indices has laid a good foundation for constructing tradable volatility

products and thus facilitating the hedging against volatility risk and speculating

in volatility derivatives. In CBOE, a set of volatility derivatives based on the im-

plied volatility index (VIX) has already been launched very recently, such as VIX

futures in 2004, VIX options in 2006, Binary options on VIX in 2008, Mini-VIX

futures 2009, etc.

1.1.1 Variance Swaps

The most common claim of volatility derivatives is variance swaps. First variance

swap contracts were traded in late 1998. For the relatively short period of time,

trading interest of variance swaps have been experiencing rapid growth and these

OTC derivatives have developed from simple contracts on future variance to much

more sophisticated products. And today we already observe the emergence of the

3-rd generation of variance swaps: gamma swaps, corridor variance swaps and

conditional variance swaps.

Variance swaps are essentially forward contracts on the future realized vari-

ance of the returns of the specified underlying asset. The payoff at expiry for the

long position of a variance swap is equal to the annualized realized variance over
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a pre-specified period minus a pre-set delivery price of the contract multiplied by

a notional amount of the swap in dollars per annualized volatility point, whereas

the short position is just the opposite. Thus it can be easily used for investors to

trade future realized variance against the current impled variance (the strike price

of the variance swaps), gaining exposure to the so-called volatility risk. There is

no cost to enter these contracts as they are essentially forward contracts. The

payoff at expiry for the long position of a volatility or variance swap is equal

to the realized volatility or variance over a pre-specified period minus a pre-set

delivery price of the contract multiplied by a notional amount of the swap in

dollars per annualized volatility point. A report∗ from CBOE indicates that “a

recent estimate from risk magazine placed the daily volume in variance swaps

on the major equity-indices to be US$5M vega (or dollar volatility risk per per-

centage point change in volatility) in the OTC markets. Furthermore, variance

trading has roughly doubled every year for the past few years”. Broadie & Jain

(2008a) even estimated that daily trading volume on indices was in the region

of $30 million to $35 million notional. The interest in trading volatility-based

financial derivatives, such as variance swaps, seems to be still strongly growing

among hedge funds and proprietary desks as Jung (2006) pointed out. It can be

imagined that recent market turmoil due to the US subprime crisis would fur-

ther enhance the trading of volatility-based financial derivatives, and thus greatly

promote research in this area.

More specifically, the value of a variance swap at expiry can be written as

(RV − Kvar) × L, where the RV is the annualized realized variance over the

contract life [0, T ], Kvar is the annualized delivery price for the variance swap,

which is set to make the value of a variance swap equal to zero for both long and

short positions at the time the contract is initially entered. To a certain extent,

it reflects market’s expectation of the realized variance in the future. T is the

life time of the contract and L is the notional amount of the swap in dollars per

∗http://cfe.cboe.com/education/finaleuromoneyvarpaper.pdf
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Figure 1.1: The cash flow of a variance swap at maturity

annualized variance point (i.e., the square of volatility point), representing the

amount that the holder receives at maturity if the realized variance RV exceeds

the strike Kvar by one unit. The unit of L is dollar per unit variance point; for

example L = 25, 000/(variance point). A sample term sheet of a variance swap

written on the realized variance of S&P500 is shown in Appendix A, and Figure

1.1 demonstrates the cash flow of a variance swap at maturity. For more details

about the variance swaps and variance futures, readers are referred to the web

sites of CBOE† or NYSE Euronext‡.

One of the most important concepts associated with the variance swaps is the

measurement of realized variance. At the beginning of a contract, it is clearly

specified the details of how the realized variance should be calculated. Important

factors contributing to the calculation of the realized variance include underlying

asset(s), the observation frequency of the price of the underlying asset(s), the

annualization factor, the contract lifetime, the method of calculating the variance.

Some typical formulae (Howison et al. 2004; Little & Pant 2001) for the measure

of realized variance are

RVd1(0, N, T ) =
AF

N

N∑
i=1

log2(
Sti

Sti−1

)× 1002 (1.1)

†http://cfe.cboe.com/Products/Spec VT.aspx
‡http://www.euronext.com/fic/000/010/990/109901.ppt
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or

RVd2(0, N, T ) =
AF

N

N∑
i=1

(
Sti − Sti−1

Sti−1

)2 × 1002 (1.2)

where Sti is the closing price of the underlying asset at the i -th observation

time ti, and there are altogether N observations. AF is the annualized factor

converting this expression to an annualized variance. If the sampling frequency

is every trading day, then AF = 252, assuming there are 252 trading days in one

year, if every week then AF = 52, if every month then AF = 12 and so on. We

assume equally-spaced discrete observations in this thesis so that the annualized

factor is of a simple expression AF = 1
∆t

= N
T
.

As shown by Jacod & Protter (1998), when the sampling frequency increases

to infinity, the discretely-sampled realized variance approaches the continuously-

sampled realized variance, Vc(0, T ), that is:

RVc(0, T ) = lim
N→∞

RVd1(0, N, T ) =
1

T

∫ T

0

σ2
t dt× 1002 (1.3)

where σt is the so-called instantaneous volatility of the underlying. Of course, if

there is no assumption on the stochastic nature of the volatility itself, instanta-

neous volatility is nothing but local volatility as stated in Little & Pant (2001).

Since in practice the measure of realized variance is always done discretely, pricing

approach for variance swaps based on this continuously-sampled realized variance

will result in a systematic bias, as discussed in this thesis.

1.1.2 Volatility Swaps

A volatility swap is also a forward contract on the future realized volatility of

the stock price. This contract is similar to and works exactly as a variance swap

except that the traded (“swapped”) asset here instead of the variance, is directly

the volatility. The notional amount L of the payoff is now in dollar per unit

volatility point. From now on, we distinguish two kinds of volatility swaps: the
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standard deviation swap and the volatility-average swap.

The measure of the volatility in the case of standard deviation swap is the

square root of the variance; that is the standard deviation of the returns on the

underlying stock price over the contract lift. In this case, Kvol denotes the strike

of a standard deviation volatility swap and the payoff of the standard deviation

volatility swap is

(RVd1(0, N, T )−Kvol)× L (1.4)

where RVd1(0, N, T ) is the discretely-sampled realized volatility defined by the

standard deviation, i.e.,

RVd1(0, N, T ) =

√√√√AF

N

N∑
i=1

(
Sti − Sti−1

Sti−1

)2

× 100 (1.5)

When the sampling frequency increases to infinity, this discretely-sampled

realized volatility approaches to a continuous sampled realized volatility

RVc1(0, T ) = lim
N→∞

√√√√AF

N

N∑
i=1

(
Sti − Sti−1

Sti−1

)2

× 100 =

√
1

T

∫ T

0

σ2
t dt× 100

(1.6)

The second type of volatility swap is the volatility-average swap in which the

measure RVd2(0, N, T ) of the realized volatility is simply the average over time of

the absolute returns on the stock price. In discrete time that is

RVd2(0, N, T ) =

√
π

2NT

N∑
i=1

∣∣∣∣Sti − Sti−1

Sti−1

∣∣∣∣× 100 (1.7)

where N is the total number of sampling times over the contract life [0, T ], Sti

is the stock price at time ti, and |Sti−Sti−1

Sti−1
| is the return on the stock price at

time ti. In continuous time when the sampling frequency increases to infinity,
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Figure 1.2: The payoffs of variance and volatility swaps for long position with
strike=20 volatility points and notional amount L=2,000,000.¶

this discrete measure of realized volatility can be approximated by

RVc2(0, T ) = lim
N→∞

√
π

2NT

N∑
i=1

∣∣∣∣Sti − Sti−1

Sti−1

∣∣∣∣× 100 =
1

T

∫ T

0

σtdt× 100 (1.8)

The payoff of a volatility swap is directly proportional to realized volatility;

the profitability of a variance swap, however, has a quadratic relationship to

realized volatility, as shown in Figure 1.2. Since a long position of a variance

swap gains more than a simple volatility swap when volatility increases and loss

less than a volatility swap when volatility decreases, variance swap levels are

typically quoted above the expected level of the future realized volatility (i.e.,

above the option-implied volatility). This spread between variance and volatility

swaps is call convexity.

1.1.3 VIX Futures and Options

The Volatility Index (VIX) is a volatility index launched by the CBOE (Chicago

Board Options Exchange) in 1993 to replicate the one-month implied volatility of

¶Source: Bear Stearns Equity Derivatives Strategy, Bloomberg.
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the S&P 100 index. In 2003, the calculation method was changed and expanded

to replicate the S&P500. Since its introduction, VIX has been considered to be

the world’s benchmark for stock market volatility. The new definition of VIX is

based on a model-free formula and computed from a portfolio of 30-calendar-day

out-of-money options written on S&P500 (SPX). This new definition reflects the

market’s expectation of the 30-day forward S&P500 index volatility and serves

as a proxy for investor sentiment, rising when investors are anxious or uncer-

tain about the market and falling during times of confidence. This VIX index,

often referred to as the “investor fear gauge”, is therefore closely monitored by

active traders, financial analysts as well as the media for insight into the finan-

cial market. Some other major security markets have also developed volatility

indices to measure the market volatility risk, e.g., VDAX published by the Ger-

man exchange Deutsche Böers, VX1 and VX6 published by the French exchange

MONEP, etc.

The introduction of VIX has laid a good foundation for constructing tradable

volatility products and thus facilitating the hedging against volatility risk and

speculating in volatility derivatives. For instance, on March 26, 2004, the CBOE

launched a new exchange, the CBOE Futures Exchange (CFE) to start trading

VIX futures, which is a type of new futures written on the new definition of VIX.

On February 24, 2006, CBOE started the trading of VIX options to enlarge the

family of volatility derivatives. Since its inception, the VIX futures and options

market has been rapidly growing. For example, according to the CBOE Futures

Exchange press release on Jul. 11, 2007, in June 2007 the average daily volume

of VIX option was 95,283 contracts, making the VIX the second most actively

traded index and the fifth most actively traded product on the CBOE. On July

11, open interest in VIX options stood a 1,845,820 contracts (1,324,775 calls and

521,045 puts). In the same month, the VIX futures totalled 78,578 contracts

traded with open interest at 49,894 contracts at the end of June. Being warmly

welcome by the financial market, these volatility derivatives were awarded the
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most innovative index derivative products∥.

1.2 Mathematical Background

One of the key problems in mathematical finance is how to derive the fair value of

a financial contract (e.g., options, futures etc.). To consider this kind of evaluation

problems from a modeling point of view, we now introduce the fundamental

background of mathematical knowledge.

1.2.1 Fundamental Pricing Theorems

We denote the deterministic risk-free interest rate by r(t). The discount factor

for the present value at time t of one currency unit of a risk-free cash flow at time

T is denoted by DF (t, T ) and defined by:

DF (t, T ) = e−
∫ T
t r(s)ds (1.9)

and the money market account is defined by:

DF−1(0, t) = e
∫ t
0 r(s)ds (1.10)

We now introduce the fundamental pricing framework, as stated in the follow-

ing two theorems. Before stating them, we need the probability space (Ω,Ft,Q).

Here, Ω is the samples pace, Ft is the filtration representing the information flow

of asset prices up to time t, and Q is a probability measure. Subsequently, all

expectations are taken with respect to the measure Q.

A special and important probability measure is the martingale pricing measure

Q under which the asset price process S(t), adopted to Ft, satisfies the following

∥http://www.cboe.com/AboutCBOE/ShowDocument.aspx?DIR=ACNews&FILE=20061205.doc
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martingale properties:

i) EQ[|S(t)|] <∞,

ii) EQ[DF (t, T )S(T )|S(t)] = S(t)
(1.11)

Such a martingale pricing measure Q is also called pricing or risk-neutral measure.

In mathematical finance terms, we mean by no arbitrage value of the contingent

claim its fair value under a martingale pricing measure Q. If the derivative claim

is sold by its fair value then the expected returns on both investment strategies

- buying the derivative security or replicating it by trading in the underlying

security and money market account - are equal to the risk-free rate of return. Al-

though a smart investor may seek and grab such a riskless way of making profits,

it would only be a transient opportunity. Once more investors and traders jump

in to share the “free lunch”, prices of the securities would change immediately.

Hence the old equilibrium would break down and be replaced by a new equilib-

rium, i.e. arbitrage opportunities would vanish. That is why our discussions of

pricing derivatives are based on no arbitrage. It is also an implication of the

efficient market hypothesis.

The next two theorems are fundamental to calculate fair values of contingent

claims. In a general sense, they establish a relationship between arbitrage oppor-

tunities with the risk-neutral measure (see, e.g., Harrison & Kreps 1979; Harrison

& Pliska 1981; Delbaen & Schachermayer 1994).

Theorem 1 (First Fundamental Theorem of Asset Pricing) The existence

of a martingale pricing measure Q that satisfies the requirements i) and ii) in Eq.

(1.11) implies the absence of risk-free arbitrage opportunity in the market. With

the existence of a martingale pricing measure Q, the discounted no-arbitrage price

processes of all contingent claims are martingales under the measure Q.

The next theorem postulates the existence of a unique replicating strategy for

derivative securities.
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Theorem 2 (Second Fundamental Theorem of Asset Pricing) If and only

if there exists a unique martingale measure Q that satisfies the requirements i)

and ii) in Eq. (1.11), the financial market is complete, i.e., every financial con-

tingent claim on asset S(t) is uniquely replicable by a hedging portfolio consisting

of positions in asset S(t) and in money market account.

We note that finding a unique measure Q that satisfies the requirements i)

and ii) is extremely involved when there is a few risky factors. However for

practical purposes, we can assume that the measure Q is already fixed by market

participants and it is reflected in market prices of traded derivative securities.

Accordingly, the problem of finding measure Q comes down to enforcing the

martingale condition for the model implied evolution of the asset price process

under the measure Q and calibrating parameters of our chosen pricing model

to market prices of traded securities. This estimated measure Q is sometimes

called empirical or pricing martingale measure, and this approach to specify Q is

used by a majority of market participants of mark-to-market and risk-manager

positions. The replication strategy (under the measure Q) is typically achieved by

assembling many (hundreds of) individual option contracts in a portfolio (the so-

called option book) and then hedging aggregated risks of these portfolios (books).

1.2.2 Stochastic Calculus

Now, we introduce some important modeling tools to study the problem of pricing

and hedging financial derivative securities.

We assume a stochastic process S(t) is driven by the following stochastic

differential equation (SDE):

dSt = µ(t, St−)dt+ σ(t, St−)dW (t) + j(t, St−, J)dN(t) (1.12)

where St− stands for the value of the process St just before jump J occurs. W (t)

is a standard Wiener process and N(t) is Poisson process with stochastic intensity
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γ(t, St). ProcessesW (t) and N(t) are assumed to be independent and adopted to

Ft. The random variable J is measurable on Ft with a probability density func-

tion ω(J) describing the magnitude of the jump when it occurs, and j(t, St−, J)

maps the jump size to post-jump value of St.

We assume that J has finite first and second moments and that the coefficients

of this SDE satisfy the Lipschitz regularity conditions:

PQ
(∫ t

0
σ2(t′, St′)dt

′ <∞
)
= 1,∀t, 0 ≤ t <∞;

PQ
(∫ t

0
|µ(t′, St′)|dt′ <∞

)
= 1,∀t, 0 ≤ t <∞;

PQ
(∫ t

0
j2(t′, St′)|dt′ <∞

)
= 1, ∀t, 0 ≤ t <∞;

(1.13)

To study the pricing of financial derivatives, the following theorem is fundamental.

Theorem 3 (Itô Lemma) If St has a SDE given by Eq. (1.12), and f(t, y) ∈

C1,2([0,∞)× R), then f = f(t, St) has a stochastic dynamics given by

df(t, St) =

(
∂f

∂t
+ µ(t, St−)

∂f

∂S
+

1

2
σ2(t, St−)

∂2f

∂S2

)
dt

+σ(t, St−)
∂2f

∂S2
dW (t) + (f(t, St− + j(t, St−, J))− f(t, St−))dN(t)

(1.14)

where St− is the value of the process St just before jump J occurs.

1.2.3 Connections Between PDE and SDE

The Feynman-Kac theorem and Kolmogoroff (Fokker-Plank) backward equations

are our key tool to study the pricing problem from the P(I)DE standpoint, by

relating the expectation of the derivative payoff under the martingale measure Q

with the P(I)DE, which can be solved analytically or numerically.

In general, the backward Kolmogoroff equation is applied by valuing derivative

securities, which might also include some optionality features, such as American

options which can be exercised by the holder at any time up to maturity time T .

For option pricing purposes we state this important result relating expectations

with respect to realizations of stochastic processes to specific PIDE-s.
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Theorem 4 (Kolmogoro Backward Equation and Feynman-Kac Theorem)

If µ(t, S) and σ2(t, S) satisfy the Lipschitz condition Eq. (1.13) and f(t, y) ∈

C2([0,∞)×R) satisfies the following partial integro-differential equations (PIDE)

∂f

∂t
+ µ(t, S)

∂f

∂S
+

1

2
σ2(t, S)

∂2f

∂S2
− g(t, S)f(t, S)

+γ(t, S)

∫ ∞

−∞
[f(t, S + j(t, S, J))− f(t, S)]ω(J)dJ = 0

(1.15)

with final condition f(T, S) = p(S), then the solution f(t, S) to the above PIDE

has the stochastic expectation representation

f(t, S) = EQ[e−
∫ T
t g(t′,St′ )dt

′
p(S)|Ft], (t 6 T ) (1.16)

where St is driven by Eq. (1.12).

1.2.4 Transformations

Transform methods, particularly Fourier transforms, are one of the classical and

powerful methods for solving ordinary and partial differential equations as well as

integral equations. The idea behind these methods is to transform the problem to

a space where the solution is relatively easy to obtain. The corresponding solution

is referred to as the solution in the Fourier or Laplace space. The original function

can be retrieved either by means of computing the inverse transform analytically

or, in complicated cases, by methods of numerical inversion.

The generalized Dirac function and its derivative are important for our devel-

opments. Let δα(t) denote the generalized Dirac function, and δ
(n)
α (t) be its n-th

order derivative, then for a general smooth function ϕ(t):

∫ ∞

−∞
δα(t)ϕ(t)dt = ϕ(α)∫ ∞

−∞
δ(n)α (t)ϕ(t)dt = (−1)nϕ(n)(α)

(1.17)

We now introduce the Fourier transform and its generalization. The basic
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definitions of Fourier transform and its inversion are given by

F [ϕ(t)]|ω =

∫ ∞

−∞
ϕ(t)e−jωtdt,

F−1[ϕ(ω)]|t =
1

2π

∫ ∞

−∞
ϕ(ω)ejωtdω

(1.18)

Unfortunately, with this basic definition of Fourier transform, it is even not

possible to perform transform to some fundamental functions, such as the real

exponential function et, or the payoff function of a vanilla European option

max (S −K, 0). So we need to consider a generalization of Fourier transform

(see, e.g., Lewis 2000; Poularikas 2000 for more details). We first define a set of

rapidly decreasing test functions Φ that satisfies the following two properties:

1. Each test function in Φ is an analytical test function on the entire complex

plane;

2. Each test function, ϕ(x+ jy), in Φ satisfies

ϕ(x+ jy) = O(e−γ|x|) asx→ ±∞ (1.19)

for every real of y and γ.

It can be verified that every rapidly decreasing test function ϕ(t) in Φ is clas-

sical transformable. The generalized Fourier transform of a function f , F [f(t)]|ω,

is the function that satisfies the following equation

∫ ∞

−∞
F [f(t)]|ωϕ(ω)dω =

∫ ∞

−∞
f(y)F [ϕ(t)]|ydy (1.20)

for every rapidly decreasing test function ϕ(t) in Φ. Likewise, if G(ω) is a function

for which the following equation

∫ ∞

−∞
F−1[G(ω)]|tϕ(t)dt =

∫ ∞

−∞
G(y)F−1[ϕ(ω)]|ydy (1.21)

is well defined for every rapidly decreasing test function ϕ(t) in Φ, then F−1[G(ω)]|t
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is the generalized inverse Fourier transform of G(ω).

Using this generalized definition of Fourier transform, it can be shown that

for any complex value, α+ jβ,

F [ej(α+jβ)t]|ω = 2πδα+jβ(ω) (1.22)

and

F [δj(t)]|ω = eω (1.23)

1.2.5 Characteristic Function

Now we start to introduce the characteristic function, which plays a vital role for

a real-valued random variable in probability theory.

The characteristic function of a real-valued random variable S is defined by

f(ϕ) = EQ[eiϕS] =

∫ ∞

−∞
eiϕxp(x)dx (1.24)

Actually, the characteristic function is the Fourier transform of the probability

density function p(x) of the random variable S. The characteristic function of a

random variable completely characterizes the distribution of a random variable;

two variables with the same characteristic function are identical distributed. Fur-

thermore, a characteristic function is always continuous and satisfies f(0) = 1.

More importantly, the corresponding probability density function p(x) and cu-

mulative density function P (x) can be obtained by inverting the characteristic

function f(ϕ),

p(x) =
1

2π

∫ ∞

−∞
e−iϕxf(ϕ)dϕ (1.25)

and

P (x) = Prob(S ≤ x) =
1

2
− 1

π

∫ ∞

0

Re

[
e−iϕxf(ϕ)

ϕi

]
dϕ (1.26)

The reason that the characteristic function is important in mathematical fi-
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nance is the transitional probability density function is usually difficult to be

found analytically, whereas its Fourier transform (i.e., the characteristic func-

tion), is comparatively easy to be obtained. Since the terminal condition for the

characteristic function is the well smooth exponential function, its corresponding

PDE is comparatively easier to be solved. With the help of the characteristic

function, it is therefore convenient to switch the computation to the frequency

domain to solve the option pricing problems. For example, Heston (1993) de-

termined the price of an vanilla European call option by obtaining the explicit

solution of the characteristic function, based on a stochastic volatility model.

1.3 Mathematical Models

A good pricing model should produce the price of a financial derivative which

are very close to the real market price of the this contract. The prices of exotic

options given by models based on Black-Scholes assumptions can be wildly inac-

curate because they are frequently even more sensitive to levels of volatility than

standard European calls and puts. Therefore currently traders or dealers of these

financial instruments are motivated to find models to price options which take

the volatility smile and skew in to account. To this extent, stochastic volatility

models are partially successful because they can capture, and potentially explain,

the smiles, skews and other structures which have been observed in market prices

for options. In this section, we shall have an overview of these pricing models for

financial derivatives.

1.3.1 Black-Scholes Model

The Black-Scholes exponential Brownian motion model provides an approximate

description of the behaviour of asset prices and serves as a benchmark against

which other models can be compared. However, volatility does not behave in the

way the Black-Scholes equation assumes; it is not constant, it is not predictable, it
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is not even directly observable. Plenty of evidence exists that returns on equities,

currencies and commodities are not normally distributed, they have higher peaks

and fatter tails. Volatility has a key role to play in the determination of risk and

in the valuation of derivative securities. This section reviews the Black & Scholes

(1973) arbitrage argument from option valuation under constant volatility. This

allows us to introduce some frequently used notation and provides a basis for

the generalization to stochastic volatility. Black & Scholes (1973) model assumes

that the stock price satisfies the following stochastic differential equation(SDE):

dS = µSdt+ σSdW (1.27)

where µ is the deterministic instantaneous drift or return of the stock price, and

σ is the volatility for the stock price.

In the Black & Scholes (1973), it is also assumed that there is a money market

security (bank account) paying continuously compounded annual rate r and se-

curity markets are perfect so that one can trade continuously with no transaction

costs and no arbitrage opportunities∗∗.

Under these assumptions, one can construct a portfolio consisting of one Eu-

ropean option C with arbitrary payoff C(S, T ) = Ψ(S) and a number −ϕ of an

underlying asset. The value of the portfolio at time t is:

Π = C − ϕS (1.28)

where ϕ is a constant and makes Π instantaneously risk-free. The jump of the

value of this portfolio in one infinitesimal time step is:

dΠ = dC − ϕdS (1.29)

∗∗There are never any opportunities to make an instantaneous risk-free profit. “There is no
such things as free lunch”.
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Hence by the principle of no arbitrage, Π must instantaneously earn the risk-free

bank rate r:

dΠ = rΠdt (1.30)

The central idea of the Black-Scholes argument is to eliminate the stochastic

component of risk by making the number of shares equal to:

ϕ =
∂C

∂S
(1.31)

Applying Itô’s lemma to C(S, t) and with some substitutions, one gets

∂C

∂t
+

1

2
S2σ2∂

2C

∂S2
+ rS

∂C

∂S
= rC (1.32)

This is the Black-Scholes equation and is a linear parabolic partial differential

equation. In fact, almost partial dierential equations in finance are of a similar

form. One of the attractions of the Black-Scholes equation is that the option price

function is independent of the expected return of the stock µ. The Black-Scholes

equation was first written down in 1969, but the derivation of the equation was

finally published in 1973.

The payoff for a European (vanilla) call option with strike K is C(S, T ) =

max (S −K, 0), and the option’s price at time t has an analytic or closed-form

solution (i.e., the Black-Scholes formula) by solving the Black-Scholes equation

in the form:

C(S, t) = SN(d1)−Ke−r(T−t)N(d2) (1.33)

where

d1 =
log ( S

K
) + (r + 1

2
σ2)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

(1.34)
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Figure 1.3: The implied volatility of ASX SPI 200 index call options††

and N(d) is the standard normal cumulative distribution function

N(d) =
1√
2π

∫ d

−∞
e−x2/2dx (1.35)

Conversely, if one knows the market value of the option, one can calculate the

volatility for these instruments using the Black-Scholes formula (Eq. (1.33)) and

a numerical method that solves to converge to the unique implied volatility for

this option price (e.g., use the Newton-Raphson method). This value of volatility

obtained from the market option price by conversely solving the Black-Scholes

formula is called implied volatility. When the implied volatilities for market

prices of options written on the same underlying price are plotted against a range

of strikes and maturities, the resulting graph is typically downward sloping for

equity markets, or valley-shaped for currency markets, as shown in Fig. 1.3. This

observation violates the Black-Scholes model because volatility is not, as assumed

††The implied volatility is calculated from the ASX SPI 200 index call options which will
expire in one month. Data are obtained from Australia Stock Exchange, on Feb. 8, 2010. The
ASX SPI index is 4521 on that date.
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in Black-Scholes model, a deterministic quantity. Either the term “volatility

smile” or “volatility skew” may be used to refer to the general phenomena of

volatilities varying by strikes.

1.3.2 Local Volatility Model

There have been many approaches to remedy the drawback of the constant volatil-

ity assumption within the Black-Scholes model. The local volatility model, a con-

cept originated by Derman & Kani (1994), and Dupire (1994), treats volatility

as a function of the current asset level St and of time t, instead of a constant as

assumed in Black-Scholes model. Given the prices of call or put options across

all strikes and maturities, one can deduce the local volatility function to match

the theoretical option prices with the market prices. Dupire (1994) showed that

if the spot price follows a risk-neutral random walk of the form:

dS

S
= rdt+ σ(S, t)dW (1.36)

and if no-arbitrage market prices for European vanilla options are available for all

strikes K and expiries T , then σL(K,T ) can be extracted analytically from these

option prices. If C(S, t,K, T ) denotes the price of a European call with strike K

and expiry T , Dupire’s famous equation is obtained:

∂C

∂T
= σ2

L(K,T )
K2

2

∂2C

∂K2
− rK

∂C

∂K
(1.37)

Rearranging this equation, the direct expression to calculate the local volatility

(Dupire formula) is obtained:

σ2
L(K,T ) =

√
∂C
∂T

+ rK ∂C
∂K

K2

2
∂2C
∂K2

(1.38)
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Unlike the naive volatility produced by applying the Black-Scholes formula to

market prices, the local volatility is the volatility implied by the market prices

and the one factor Black-Scholes. One potential problem of using the Dupire

formula (1.38) is that, for some financial instruments, the option prices of different

strikes and maturities are not available or not enough to calculate the right local

volatility. Another problem is for strikes far in- or out-the-money, the numerator

and denominator of this equation may become very small, which could lead to

numerical inaccuracies.

1.3.3 Stochastic Volatility Models

Stochastic volatility models are conceptually quite different from the fitting ap-

proach of local volatility model. In these models, the volatility is neither a con-

stant as assumed in Black-Scholes model, nor a deterministic function of the

current asset level St and of time t as assumed in local volatility model. Rather,

it is by itself stochastic.

What is happening may be viewed in some different and related ways. Op-

tions prices are determined by supply and demand, not by theoretical formula.

The traders who are determining the option prices are implicitly modifying the

Black-Scholes assumptions to account for volatility that changes both with time

and with stock price level. This is contrary to the Black and Scholes (1973) as-

sumptions of constant volatility irrespective of stock price or time to maturity.

That is, traders assume σ = σ(St, t), whereas Black-Scholes model assumes that

σ is just a constant.

By imposing specific stochastic processes for both the stock price and its

instantaneous variance (or volatility), a stochastic volatility model is based on a

structural assumption on the underlying stock price. In this way, the stochastic

volatility model is to incorporate the empirical observation that volatility appears

not to be constant and indeed varies, at least in part, randomly, by making the
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volatility itself a stochastic process. The candidate models have generally been

motivated by intuition, convenience and a desire for tractability. In particular,

the popular Heston (1993) model assumes that the instantaneous variance of

the stock price is a square-root diffusion whose increments are correlated to the

increments of the return of the stock price. Other popular stochastic volatility

models are model by Stein & Stein (1991), model by Schöbel & Zhu (1999),

GARCH diusion model (Lewis 2000), to name but a few. In addition, there are

also models which incorporate jump processes (see, for example, Merton 1976;

Madan et al. 1998) or mixtures of both concepts such as Bates (1996), Duffie

et al. (2000). Stochastic volatility on option values is similar to the effect of a

jump component: both increase the probability that out-of-the-money options

will finish in-the-money and vice versa (Wiggins 1987). Whether the smile is

skewed left, skewed right, or symmetrical in a stochastic volatility model depends

upon the sign of the correlation between changes in volatility and changes in stock

price (Hull & White 1987).

The stochastic nature of the instantaneous variance of the stock price process

is particular important if we want to price and hedge heavily volatility-dependent

exotic options such as options on realized variance or cliquet-type products. Such

products cannot be priced correctly in the BS-model since their very risklies in

the movement of volatility (or variance, for that matter) itself.

While Black and Scholes (BS) used only the underlying stock price and the

bond to hedge a derivative in their model, this cannot be justified anymore:

their model is not able to capture what is today known as the volatility skew or

volatility smile, of the implied volatility of traded vanilla options. The root of

the discrepancy is that volatility is not, as assumed in BS model, a deterministic

quantity. Rather, it is by itself stochastic.

 dSt = µStdt+
√
VtStdB

S
t

dVt = κ(θ − Vt)dt+ σV
√
VtdB

V
t

(1.39)
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where µ is the deterministic instantaneous drift or return of the stock price,

and the variance V is correlated with the stock price by ρ, We cannot hold or

“short” volatility, but can hold a position in a second option to do hedging. So let

us consider the valuation of the volatility dependent instrument (e.g., volatility

swaps), assuming that one can take long or short positions in a second instrument

as well as in the underlying.

In the Black-Scholes case, there is only one source of randomness-the stock

price, which can be hedged with stock. In the present case, random changes in

volatility also need to be hedged in order to form a riskless portfolio. So we

setup a portfolio Π containing the option to be priced whose value is denote by

C(S, V, t), a quantity −ϕ1 of the stock and a quantity −ϕ2 of another asset whose

value U depends on volatility. We have

Π = C − ϕ1S − ϕ2U (1.40)

The change in this portfolio in a time increment dt is given by

dΠ = dC − ϕ1dS − ϕ2dU (1.41)

As by standard, one applies Ito’s Lemma to this portfolio to obtain

dΠ = adS + bdV + cdt (1.42)

where

a =
∂C

∂S
− ϕ1 − ϕ2

∂U

∂S
, b =

∂C

∂S
− ϕ1 − ϕ2

∂U

∂S

c = (
∂C

∂t
+

1

2
S2V

∂2C

∂S2
+ ρSσV V

∂2C

∂S∂V
+

1

2
σ2
V V

∂2C

∂V 2
)

−ϕ2(
∂U

∂t
+

1

2
S2V

∂2U

∂S2
+ ρSσV V

∂2U

∂S∂V
+

1

2
σ2
V V

∂2U

∂V 2
)

(1.43)

Clearly we wish to eliminate the stochastic component of risk by setting a =
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b = 0, so one can rearrange the hedge parameters in the form:

dΠ = adS + bdV + cdt (1.44)

where

ϕ1 =
∂C

∂S
− ϕ2

∂U

∂S

ϕ2 = (
∂C

∂V
)/(

∂U

∂V
)

(1.45)

to eliminate the dS term and the dV term. The avoidance of the arbitrage, once

these choices of ϕ1 and ϕ2, are made, is the condition:

dΠ = rΠdt

dΠ = r(V − ϕ1S − ϕ2U)dt
(1.46)

where we have used the fact that the return on a risk-free portfolio must be

equal to the risk-free bank rate which we will assume to be deterministic for our

purposes. Combining equations (2.14) and (2.15), collecting all C terms on the

left hand side and all U terms on the right hand side, one gets:

(
∂C

∂t
+

1

2
V S2∂

2C

∂S2
+ ρSσV V

∂2C

∂S∂V
+

1

2
σ2
V V

∂2C

∂V 2
+ rS

∂C

∂S
− rC)/

∂C

∂V
=

(
∂U

∂t
+

1

2
V S2∂

2U

∂S2
+ ρSσV V

∂2U

∂S∂V
+

1

2
σ2
V V

∂2U

∂V 2
+ rS

∂U

∂S
− rU)/

∂U

∂V

(1.47)

The left-hand side is a function of C only and the right-hand side is a function

of U only. The only way that this can be is for both sides to be equal to some

function depending only on variables S, V and t. So, if one writes both sides as

f(S, V, t), in doing so, one arrives at the general PDE for stochastic volatility:

(
∂C

∂t
+

1

2
V S2∂

2C

∂S2
+ ρσV SV

∂2C

∂S∂V
+

1

2
σ2
V V

∂2C

∂V 2
+ rS

∂C

∂S
− rC) = −(α− λβ)

∂C

∂V
(1.48)

where, without loss of generality, we have written the arbitrary function f of S,

V and t as (α−λβ). Conventionally, λ is called the market price of volatility risk

because it tells us how much of the expected return of C is explained by the risk
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(i.e., standard deviation) of V in the Capital Asset Pricing Model framework.

1.4 Literature Review

1.4.1 Variance Swaps and Volatility Swaps

Since the sharp increase in the trading volume of variance swaps recently, it has

drawn considerable research interests to develop appropriate valuation approaches

for variance swaps. In the literature, there have been two types of valuation

approaches, numerical methods and analytical methods.

Of all the analytical methods, there are two subcategories. The most influ-

ential ones were proposed by Carr & Madan (1998) and Demeterfi et al. (1999).

They have shown how to theoretically replicate a variance swap by a portfolio

of standard options. Without requiring to specify the function of volatility pro-

cess, their models and analytical formulae are indeed very attractive. However, as

pointed out by Carr & Corso (2001), the replication strategy has a drawback that

the sampling time of a variance swap is assumed to be continuous rather than

discrete; such an assumption implies that the results obtained from a continuous

model can only be viewed as an approximation for the actual cases in financial

practice, in which all contacts are written with the realized variance being evalu-

ated on a set of discrete sampling points. Another drawback is that this strategy

also requires options with a continuum of exercise prices, which is not actually

available in marketplace. The second kind of analytical methods is the stochas-

tic volatility models. Grunbichler & Longstaff (1996) first developed a pricing

model for volatility futures based on mean-reverting squared-root volatility pro-

cess. Heston (2000) derived an analytical solution for both variance and volatility

swaps based on the GARCH volatility process. Javaheri et al. (2004) also dis-

cussed the valuation and calibration for variance swaps based on the GARCH(1,1)

stochastic volatility model. They used the flexible PDE approach to determine
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the first two moments of the realized variance in the context of continuous as

well as discrete sampling, and then obtained a closed-form approximate solution

after the so-called convexity correction was made. Howison et al. (2004) also

considered the valuation of variance swaps and volatility swaps under a variety

of diffusion and jump-diffusion models. In their work, approximate solutions of

the PDE for pricing volatility-related products are derived. Swishchuk (2004)

used an alternative probabilistic approach to value variance and volatility swaps

under the Heston (1993) stochastic volatility model. More recently Elliott et al.

(2007) proposed a model to evaluate variance swaps and volatility swaps un-

der a continuous-time Markov-modulated version of the stochastic volatility with

regime switching, with both probabilistic and PDE approaches being discussed.

All these stochastic volatility models, however, are based on the assumption that

the realized variance is approximated with a continuously-sampled one, which

will result in a systematic bias for the price of a variance swap. As will be shown

later, while the approximation methods provide fairly reasonable estimates for

the value of variance swaps with high sampling frequencies, they may lead to

large relative errors for variance swaps with small sampling frequencies or long

tenors.

Various numerical methods, as an alternative to analytical methods, were also

intensively developed recently. A typical article in this category belongs to Little

& Pant (2001). In their article, it is shown how to price a variance swap using

the finite-difference method in an extended Black-Scholes framework, in which

the local volatility is assumed to be a known function of time and spot price

of the underlying asset. By exploring a dimension reduction technique, their

numerical approach achieves high efficiency and accuracy for discretely-sampled

variance swaps. Windcliff et al. (2006) also explored a numerical algorithm to

evaluate discretely-sampled volatility derivatives using numerical partial-integro

differential equation approach. Under this framework, they investigated a variety

of modeling assumptions including local volatility models, jump-diffusion models
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and models with transaction cost being taken into consideration. Although these

two numerical methods evaluate variance swaps based on discretely-sampled real-

ized variance and achieve high accuracy, the major limitation is that their models

do not incorporate stochastic volatilities that are the most commonly used to

model the dynamics of equity indices. To remedy this drawback, Little & Pant

(2001) and Windcliff et al. (2006) pointed out, respectively, in the conclusions

of their papers that for better pricing and hedging general variance swaps one

needs to adopt an appropriate model that incorporates the stochastic volatility

characteristics observed in financial markets.

To properly address this discretely sampling effect, several works have been

done very recently. Broadie & Jain (2008b) presented a closed-form solution for

volatility as well as variance swaps with discrete sampling. They also examined

the effects of jumps and stochastic volatility on the price of volatility and variance

swaps by comparing calculated prices under various models such as the Black-

Scholes model, the Heston stochastic volatility model, the Merton (1973) jump

diffusion model and the Bates (1996) and Scott (1997) stochastic volatility and

jump model. However, their solution approach is primarily based on integrating

the underlying stochastic processes directly and it appears that it can only be

used when the realized variance is defined in such a particular form that the

stochastic processes assumed for the underlying can happen to be exactly the

same as that defined in the calculation of the realized variance. In other words,

Broadie & Jain (2008b)’s approach can only be used when the realized variance

is defined as the average of the squared log returns (Eq. (1.1)), as Zhu & Lian

(2009d) pointed out.

On the other hand, Zhu & Lian (2009d,f) presented an completely different

approach to obtain two closed-form formulae for variance swaps based on the

two different definitions of discretely-sampled realized variance (Eq. (1.1 and

(1.2)), under the Heston (1993)’s stochastic volatility model. Unlike Broadie &

Jain (2008b)’s approach, Zhu & Lian (2009d)’s approach of solving the governing
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PDE system directly is more versatile in terms of dealing with different forms of

realized variance. Moreover, Zhu & Lian (2009g,b) have shown that they approach

can be future extended to price forward-start discretely-sampled variance swaps

and to price variance swaps based on a more general framework that allows for

stochastic volatility, random jumps in return distribution and random jumps in

variance process. Our these papers on the pricing of variance swaps with discrete

sampling form the main contents of Chapter 2, 3 and 4 of this thesis.

As for the pricing of volatility swaps, the most popular method is the model-

dependent approach. By using Taylor’s expansion, Brockhaus & Long (2000)

obtained an analytical approximation of the convexity correction for the pricing

of volatility swaps. Javaheri et al. (2004) discussed the valuation of volatility

swaps in the GARCH(1,1) stochastic volatility model using a partial differential

equation approach to determine the first two moments of the realized variance

and then adopting Brockhaus & Long (2000)’s convexity approximation approxi-

mation to price the volatility swaps. Friz & Gatheral (2005) provided a numerical

integration approach for computing fair strikes of volatility swaps in the Heston

stochastic volatility model, under the assumption of zero correlation between the

underlying and the volatility processes. Broadie & Jain (2008a) computed fair

volatility strikes by deriving a partial differential equation which exploits a no-

arbitrage relationship between variance and volatility swaps. Broadie & Jain

(2008b) however pointed that Brockhaus & Long (2000)’s approximation is not

necessarily accurate in the stochastic volatility model, and presented a closed-

form exact solution based on the Heston stochastic volatility model.

Even though most of researchers in this area seem to believe that the pric-

ing and hedging of a volatility swap are, unlike variance swaps, highly model-

dependent, Carr & Lee (2005) demonstrated, under the assumption of zero cor-

relation between the asset and its volatility process, as well as the assumption

of continuous trading in a continuum of strikes, that a self-finance portfolio has

equal value to the continuously sampled volatility swap at expiration time T , and
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hence developed model-free trading strategies to price and replicate volatility

swaps.

Papers focusing on analytically pricing discretely-sampled volatility swaps are

rare in literature, mainly due to the inherent difficulty associated with the non-

linearity in the pay-off function. Zhu & Lian (2009c) present a closed-form exact

solution for the pricing of discretely-sampled volatility swaps, under the frame-

work of Heston (1993) stochastic volatility model, based on the definition of the

so-called average of realized volatility (Eq. (1.7)). As for the standard deriva-

tion volatility swaps, in which the realized volatility is defined as the square root

of the realized variance as shown in Eq. (1.5), there is no exact solution avail-

able at all for the discretely-sampled volatility swaps. Broadie & Jain (2008b)

presented a closed-form approximation to price continuously-sampled standard

derivation volatility swaps (Eq. (1.6)), based on the Heston model. A more com-

mon approach in literature is Brockhaus & Long (2000)’s convexity correction

approximation. Zhu & Lian (2010e) systematically investigated the accuracy and

the validity condition of the convexity correction approximation, through both

theoretical analysis and numerical examples, and found out this approximation

on some specifical parameters would result in significantly large errors. They also

presented a new approximation, which is an extension of the convexity correction

formula, to improve the accuracy. The Chapter 5 and 6 of this thesis are based

on these two recent papers of ours (i.e., Zhu & Lian 2009c, 2010e).

1.4.2 VIX Futures and Options

Given the growing popularity of trading VIX futures, considerable research in-

terests have also been drawn to the development of appropriate pricing models

for VIX futures. Grunbichler & Longstaff (1996) first developed a pricing model

for volatility futures and volatility options based on a mean-reverting squared-

root volatility process. Carr & Wu (2006) presented a lower bound and an upper



Chapter 1: Introduction and Background 31

bound for the price of VIX futures. By using the Jensen’s inequality, they have

shown that the lower bound is the forward-starting volatility swap rate (strike

price) and the upper bound is the squared root of forward-starting variance swap

rate over the period (t, t+ 30/365). Dupire (2005) derived the convexity adjust-

ment that needs to be subtracted from the price of forward variance to arrive at

the fair value of VIX futures. Zhang & Zhu (2006) proposed an expression for

VIX futures, assuming S&P500 is modeled by Heston (1993)’s stochastic volatil-

ity. Zhu & Zhang (2007) further derived a no-arbitrage pricing model for VIX

futures based on the variance term structure. Lin (2007) presented a convexity

adjustment approximation for the value of the VIX futures under various stochas-

tic volatility models with simultaneous jumps both in the asset price and variance

processes. Psychoyios et al. (2007) provided a pricing model for both VIX futures

and VIX options based on the squared root mean reverting process with jumps.

Brenner et al. (2007) used market data to establish the relationship between the

VIX futures prices and the VIX itself. They further theoretically explained the

relationship between VIX and VIX futures, the valuation of VIX futures and

model calibration, based on Heston (1993)’s stochastic volatility model. Sepp

(2008a, 2008b) applied the square root stochastic variance model with variance

jumps to describe the evolution of S&P500 volatility, and demonstrated how to

apply the model to the pricing and hedging of VIX futures and options. Some

other typical recent papers about the VIX and its derivatives (futures and op-

tions) include Zhang et al. (2010), Zhang & Huang (2010), Lu & Zhu (2009),

Carr & Lee (2009) etc.

Zhu & Lian (2009a) recently derived a closed-form exact solution for the fair

value of VIX futures under stochastic volatility model with simultaneous jumps

in the asset price and volatility processes. With the newly-found pricing formula

available, especially with its great computational efficiency, we are also able to

conduct empirical studies, aiming at examining the performance of four different

stochastic volatility models with or without jumps. More importantly, using the
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Markov Chain Monte Carlo (MCMC) method to analyze a set of coupled VIX

and S&P500 data, we demonstrate how to estimate model parameters. Through

these empirical studies, we are able to compare the pricing performance of four

models, of which analytical pricing formulae have been found and presented in

this chapter. The Chapter 7 of this thesis is based on our this paper (i.e., Zhu &

Lian 2009a).

Lin & Chang (2009) presented a closed-form pricing formula for VIX options

that reconcile the most general price processes of the S&P500 in the literature:

stochastic volatility, price jumps, and volatility jumps. Utilizing this closed-form

pricing formula for VIX options, they empirically investigated how much each

generalization of the S&P500 price dynamics improves VIX option pricing, and

concluded that a model with stochastic volatility and state-dependent correlated

jumps in S&P500 returns and volatility (i.e., Duffie et al. 2000) is a better alter-

native to the others in terms of pricing VIX options. By applying the exactly

same pricing formula for VIX options shown in Lin & Chang (2009), Lin & Chang

(2010) further studied the relationships among stylized features on S&P 500, VIX

and options on VIX, and examined how jump factors impact VIX option pricing

and hedging. Zhu & Lian (2010b), however, pointed out that the correctness

of the formula proposed in Lin & Chang (2009) is in serious doubt. Using a

completely different approach from Lin & Chang (2009), they presented an an-

alytical exact solution for the price of VIX options under stochastic volatility

model with simultaneous jumps in the asset price and volatility processes. They

also offered numerical results to illustrate the correctness of their formula, and

the incorrectness of the formula in Lin & Chang (2009).

1.5 Structure of Thesis

In this thesis, we develop some highly efficient approaches to analytically price

volatility derivatives. In particular, using our approach, we present a set of closed-
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form exact pricing formulae for discretely-sampled variance swaps, forward-start

variance swaps, volatility swaps and VIX futures and options.

In Chapter 2, we present two closed-form exact solutions to price variance

swaps with discrete sampling times by solving the partial differential equation

(PDE) system based on the Heston (1993) two-factor stochastic volatility model,

embedded in the framework proposed by Little & Pant (2001). In comparison

with all the previous approximation models based on the assumption of con-

tinuous sampling time, the current research of working out closed-form exact

solutions for variance swaps with discrete sampling times at least serves for two

major purposes: (i) to verify the degree of validity of using a continuous-sampling-

time approximation for variance swaps of relatively short sampling period; (ii) to

demonstrate that significant errors can result from still adopting such an assump-

tion for a variance swap with small sampling frequencies or long tenor. Other

key features of our new solution approach include: (a) with the newly found an-

alytic solutions, all the hedging ratios of a variance swap can also be analytically

derived; (b) numerical values can be very efficiently computed from the newly

found analytic formula.

In Chapter 3, a more general and condense approach is presented to price

forward-start variance swaps with discrete sampling times, based on the Heston

(1993) two-factor stochastic volatility model. By developing the forward charac-

teristic function, it is shown this approach possesses some great advantages over

those in literature: (1) treating the pricing problem of variance swaps with dif-

ferent definitions of discretely-sampled realized variance in a highly unified way;

(2) easily obtaining analytical closed-form solutions for forward-start variance

swaps with two popularly-used definitions of discretely-sampled realized variance;

(3) enabling the investigation of some important properties of the forward-start

variance swaps, utilizing the elegant and simple form of the obtained solutions.

Thereby, this work represents a substantial progress in the field of pricing variance

swaps.
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In Chapter 4, we extend the approach in Chapter 3 to price discretely-sampled

variance by further including random jumps in the return and volatility processes,

and present two new closed-form exact solutions for the prices of variance swaps

with discrete sampling times based on the Heston stochastic volatility and random

jumps in the return and volatility processes. By working out the closed-form ex-

act solutions for such a general model with jumps being possibly included in both

the underlying and the variance, our new formulae for the two most commonly-

adopted definitions of discretely-sampled realized variance can serve to improve

the computational speed and accuracy in pricing variance swaps as well as in

model calibration using stochastic volatility models with jumps. The fact that

the newly-derived formulae can cover a wide range of models proposed in the

literature, i.e., either with jumps being included in the underlying process or in

the variance process or both, further demonstrate that our approach is a highly

versatile and unified approach that can be used for pricing discretely-sampled

variance swaps. Utilizing our new closed-form exact solutions, we have also con-

ducted some cross-model comparison, examining various parameters involved in

the jump processes.

In Chapter 5, we present a closed-form exact solution for the pricing of

discretely-sampled volatility swaps, under the framework of Heston (1993) stochas-

tic volatility model, based on the definition of the so-called average of realized

volatility. Papers focusing on analytically pricing discretely-sampled volatility

swaps are rare in literature, mainly due to the inherent difficulty associated with

the nonlinearity in the pay-off function. By working out such a closed-form exact

solution for discretely-sampled volatility swaps, this work has: (1) significantly

reduced the computational time in obtaining numerical values for the discretely-

sampled volatility swaps; (2) substantially improved the computational accuracy

of discretely-sampled volatility swaps, comparing with the continuous sampling

approximation; (3) enabled all the hedging ratios of a volatility swap to be also

analytically derived.
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In Chapter 6, we investigate another important issue in pricing volatility

swaps. Convexity correction is a well-known approximation technique used in

pricing volatility swaps. However, studies focusing on examining the accuracy

of the technique itself are rare and the validity condition of this convexity cor-

rection approximation was hardly addressed and discussed in literature. In this

chapter, we systematically investigate the accuracy and the validity condition of

the convexity correction approximation, through both theoretical analysis and

numerical examples. Hereby, our study answers the two basic questions in adopt-

ing the convexity correction approximation to derive approximate formula for

pricing variance or volatility swaps: (a) why and when the convexity correction

approximation will result in significantly large errors. In other words, what is

the validity condition of applying the convexity correction approximation; (b)

a better accuracy cannot be achieved by extending the convexity correction ap-

proximation, which is the second-order Taylor expansion, to third order or fourth

order Taylor expansions. Some other contributions of this study include: (1)

alerting that one should be aware of the inaccuracy of this approximation and be

very careful in using it; (2) a new approximation, which is an extension of the

convexity correction approximation, has been proposed to improve the accuracy.

In Chapter 7, we price VIX futures by deriving a closed-form exact solution for

the fair value of VIX futures under stochastic volatility model with simultaneous

jumps in the asset price and volatility processes. Since the inception of the

volatility index (VIX) by the CBOE in 1993, in particular, the introduction of the

VIX futures by CBOE in 2004, various pricing models with stochastic volatilities

have been proposed to value VIX futures. However, rarely could an analytic

closed-form solution be found, especially for models that include jumps in both

VIX and its volatility. Thus the derivation of this formula for VIX futures with a

very general dynamics of VIX represents a substantial progress in identifying and

developing more realistic VIX futures models and pricing formulae. With the

newly-found pricing formula available, especially with its great computational
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efficiency, we are also able to conduct empirical studies, aiming at examining the

performance of four different stochastic volatility models with or without jumps.

More importantly, using the Markov Chain Monte Carlo (MCMC) method to

analyze a set of coupled VIX and S&P500 data, we demonstrate how to estimate

model parameters, which is a crucial step for any fancy mathematical model to

be of practical use. Through these empirical studies, we are able to compare the

pricing performance of four models, of which analytical pricing formulae have

been found and presented in this chapter.

In the Chapter 8, we demonstrate the derivation of an analytical exact solution

for the price of VIX options under stochastic volatility model with simultaneous

jumps in the asset price and volatility processes. We point out that the solution

procedure of Lin & Chang (2009)’s pricing formula for VIX options is incorrect.

Our approach presented in this chapter is totally different from the approach in

Lin & Chang (2009) in obtaining a closed-form pricing formula for VIX options.

We then show that the numerical results obtained from our formula consistently

match up with those obtained from Monte Carlo simulation perfectly, verifying

the correctness of our formula. However the results obtained from Lin & Chang

(2009)’s pricing formula significantly differ from those from Monte Carlo simu-

lation, confirming our doubt that their pricing formula is incorrect. It is shown

that our pricing formula is very efficient in computing the numerical prices of VIX

options. Some important and distinct properties of the VIX options (e.g., put-call

parity, the hedging ratios) have also been discussed in this chapter. Therefore,

our formula can be a very useful tool in trading practice when there is obviously

increasing demand of trading VIX options in financial markets.



Chapter 2

Pricing Variance Swaps with

Discrete Sampling

2.1 Introduction

The trading volume of variance swaps has been experiencing a sharp increase

recently. This has drawn considerable research interests to develop appropriate

valuation approaches for variance swaps. However, most of the studies in liter-

ature are based on the assumption that the realized variance is approximated

with a continuously-sampled one, as discussed in Chapter 1. In this chapter, we

price discretely-sampled variance swaps based on Heston’s two-factor stochastic

volatility model embedded in Little & Pant’s (2001) framework. Unlike Broadie

& Jain (2008b)’s approach, our approach presented here is much simpler by solv-

ing the governing PDE system directly and is more versatile in terms of dealing

with different forms of realized variance. In this way, the nature of stochastic

volatility is included in the model and most importantly, two closed-form exact

solutions can be worked out, even when the sampling times are discrete, for the

corresponding two definitions of the discretely-sampled realized variance.

Furthermore, it is shown that our solutions degenerate to continuous sampling

model when sampling frequency approaches infinity, as expected. Our explicit

37
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pricing formulae for variance swaps presented here should be valuable in both

theoretical and practical senses. Theoretically, although there are many existing

models, as mentioned above, to price variance swaps, the closed-form exact so-

lutions for discretely-sampled variance swaps are presented for the first time in

the stochastic volatility framework. Secondly, our discrete model can be used to

verify the validity of the corresponding continuous models for the specific pay-off

discussed here and thus would fill a gap that has been in the field of pricing

variance swaps. Thirdly, the Fourier inverse transform in our model has been

analytically worked out, which is a significant step forward in the literature of

Heston’s model. Practically, the final form of our solution is simple enough in a

closed form and thus can be easily used by market practitioners. Furthermore,

our explicit solution shows substantial advantage, in terms of both accuracy and

efficiency, over previous numerical or approximate approaches, and thus it can

satisfy the increasing demand of trading variance swaps in financial markets.

This chapter is organized into four sections. In Section 2.2, a detailed descrip-

tion of variance swaps is first provided, followed by our analytical formulae for

the variance swaps. In Section 2.3, some numerical examples are given, demon-

strating the correctness of our solutions from various aspects. Comparison with

continuous sampling models and discussion for other properties of the variance

swaps are also carried out. In Section 2.4, a brief summary is provided.

2.2 Pricing Variance Swaps

In this section, we use the Heston (1993) stochastic volatility model to describe

the dynamics of the underlying asset. To evaluate the discretely-sampled realized

variance swaps, we employ the dimension reduction technique proposed by Little

& Pant (2001) to analytically solve the associated PDE and hence obtain closed-

form analytical solutions for fair strike prices of variance swaps with discrete

sampling.
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2.2.1 The Heston Stochastic Volatility Model

It is a well-known fact by now that the Black & Scholes (1973) model may fail to

reflect certain features of the reality of financial markets due to some unrealistic

assumptions, such as the constant volatility assumption; numerous phenomena

such as smile effect (Wilmott 1998), skewness and kurtosis effects (Voit 2005) have

been observed and reported, suggesting necessary improvements of the Black-

Scholes model.

In the hope of remedying some apparent drawback of the Black-Scholes model,

many models have been proposed to incorporate stochastic volatility, stochastic

volatility with jump, stochastic volatility and stochastic interest rate (c.f., Stein

& Stein 1991; Heston 1993; Scott 1997; Schöbel & Zhu 1999). In order to assess

the performance of these models, Bakshi et al. (1997) systematically analyzed the

performance of incorporating stochastic volatility, jump diffusion, and stochastic

interest rate, and concluded that the most important improvement over the Black-

Scholes model was achieved by introducing stochastic volatility into option pricing

models. Once this is done, introducing jumps and stochastic interest rate leads to

only marginal improvement in option pricing. For this reason, we shall focus on

the stochastic volatility model in this chapter, leaving stochastic volatility with

jump diffusions model to be discussed in Chapter 4. Among all the stochastic

volatility models in the literature, model proposed by Heston (1993) has received

the most attention since it can give a satisfactory description of the underlying

asset dynamics (Daniel et al. 2005; Silva et al. 2004). In the Heston (1993)

model, the underlying asset St is modeled by the following diffusion process with

a stochastic instantaneous variance Vt. dSt = µStdt+
√
VtStdB

S
t

dVt = κ(θ − Vt)dt+ σV
√
VtdB

V
t

(2.1)

where µ is the expected return of the underlying asset, θ is the long-term mean
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of variance, κ is a mean-reverting speed parameter of the variance, σV is the

so-called volatility of volatility. The two Wiener processes dBS
t and dBV

t describe

the random noise in asset and variance respectively. They are assumed to be

correlated with a constant correlation coefficient ρ, that is (dBS
t , dB

V
t ) = ρdt.

The stochastic volatility process is the familiar squared-root process. To ensure

the variance is always positive, it is required that 2κθ ≥ σ2 (see Cox et al. 1985;

Heston 1993; Zhang & Zhu 2006).

According to the existence theorem of equivalent martingale measure, we are

able to change the real probability measure to a risk-neutral probability measure

and describe the processes as:

 dSt = rStdt+
√
VtStdB̃

S
t

dVt = κQ(θQ − Vt)dt+ σV
√
VtdB̃

V
t

(2.2)

where κQ = κ+λ and θQ = κθ
κ+λ

are the risk-neutral parameters, the new param-

eter λ is the premium of volatility risk (Heston 1993). As illustrated in Heston’s

paper, applying Breeden (1979)’s consumption-based model yields a volatility

risk premium of the form λ(t, St, vt) = λV for the CIR square-root process. For

the rest of this chapter, our analysis will be based on the risk-neutral probability

measure. The conditional expectation at time t is denoted by EQ
t = EQ[· | Ft],

where Ft is the filtration up to time t.

2.2.2 Variance Swaps

As discussed in Chapter 1, variance swaps are forward contracts on the future

realized variance of the returns of the specified underlying asset. The value of a

variance swap at expiry can be written as (RV −Kvar)×L, where the RV is the

annualized realized variance over the contract life [0, T ], Kvar is the annualized

delivery price for the variance swap, which is set to make the value of a variance

swap equal to zero for both long and short positions at the time the contract
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is initially entered. To a certain extent, it reflects market’s expectation of the

realized variance in the future. L is the notional amount of the swap in dollars

per annualized volatility point squared and T is the life time of the contract. For

more details about the variance swaps and variance futures, readers are referred

to the web sites of CBOE∗ or NYSE Euronext†.

At the beginning of a contract, it is clearly specified the details of how the

realized variance should be calculated. Important factors contributing to the

calculation of the realized variance include underlying asset(s), the observation

frequency of the price of the underlying asset(s), the annualization factor, the

contract lifetime, the method of calculating the variance. Some typical formulae

(Howison et al. 2004; Little & Pant 2001) for the measure of realized variance are

RVd1(0, N, T ) =
AF

N

N∑
i=1

(
Sti − Sti−1

Sti−1

)2

× 1002 (2.3)

or

RVd2(0, N, T ) =
AF

N

N∑
i=1

log2
(
Sti

Sti−1

)
× 1002 (2.4)

where Sti is the closing price of the underlying asset at the i -th observation

time ti, and there are altogether N observations. AF is the annualized factor

converting this expression to an annualized variance. If the sampling frequency

is every trading day, then AF = 252, assuming there are 252 trading days in one

year, if every week then AF = 52, if every month then AF = 12 and so on. We

assume equally-spaced discrete observations in this thesis so that the annualized

factor is of a simple expression AF = 1
∆t

= N
T
.

In the literature, these two definitions have been alternatingly used to mea-

sure the realized variance, even though in practice most of the contracts appear

to be drawn up using the definition RVd2(0, N, T ) for the realized variance. For

example, while Little & Pant (2001) used RVd1(0, N, T ) in their numerical method

∗http://cfe.cboe.com/Products/Spec VT.aspx
†http://www.euronext.com/fic/000/010/990/109901.ppt
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pricing model for variance swaps, Broadie & Jain (2008b) employed RVd2(0, N, T )

as the discretely-sampled realized variance to price variance swaps. Zhu & Lian

(2009d) pointed out that Broadie & Jain (2008b)’s approach could be only applied

if the realized variance is defined by RVd2(0, N, T ) and showed a completely dif-

ferent approach of pricing variance swaps based on the definition RVd1(0, N, T )

under the Heston (1993)’s stochastic volatility model. Windcliff et al. (2006)

discussed how to numerically price variance swaps using the both definitions as

the measurement of realized variance under Black-Scholes framework. They ref-

ereed RVd1(0, N, T ) and RVd2(0, N, T ) as actual-return variance and log-return

variance, respectively. Hereafter, definitions RVd1(0, N, T ) and RVd2(0, N, T ) are

referred to as the actual-return realized variance and the log-return realized vari-

ance, respectively.

As shown by Jacod & Protter (1998), when the sampling frequency increases

to infinity, the discretely-sampled realized variance approaches the continuously-

sampled realized variance, RVc(0, T ), that is:

RVc(0, T ) = lim
N→∞

RVd1(0, N, T ) =
1

T

∫ T

0

σ2
t dt× 1002 (2.5)

where σt is the so-called instantaneous volatility of the underlying. Of course, if

there is no assumption on the stochastic nature of the volatility itself, instanta-

neous volatility is nothing but local volatility as stated in Little & Pant (2001).

In the risk-neutral world, the value of a variance swap at time t is the ex-

pected present value of the future payoff. This should be zero at the beginning

of the contract since there is no cost to enter into a swap. Therefore, the fair

variance delivery price can be easily defined as Kvar = EQ
0 [RV ], after setting the

initial value of a variance swap to be zero. The variance swap valuation problem

is therefore reduced to calculating the expectation value of the future realized

variance in the risk-neutral world.



Chapter 2: Pricing Variance Swaps with Discrete Sampling 43

2.2.3 Our Approach to Price Variance Swaps

We first illustrate our approach to obtain the closed-form analytical solution for

fair strike price of a variance swap by taking RVd1(Ts, N, Te) as the definition of

the realized variance. For the case of RVd2(Ts, N, Te), the solution procedure is

very similar and the corresponding pricing formula can be easily obtained with

little effort, demonstrating the versatility of this approach, as shall be shown in

the next subsection.

As illustrated in Eq. (2.4), the expected value of realized variance in the risk

neutral world is defined as:

EQ
0 [RVd1(0, N, T )] = EQ

0 [
1

N∆t

N∑
i=1

(
Sti − Sti−1

Sti−1

)2]×1002 =
1002

N∆t

N∑
i=1

EQ
0 [(

Sti − Sti−1

Sti−1

)2]

(2.6)

So the problem of pricing variance swap is reduced to calculating the N expec-

tations in the form of:

EQ
0 [(

Sti − Sti−1

Sti−1

)2] (2.7)

for some fixed equal time period ∆t and N different tenors ti = i∆t (i =

1, · · · , N). In the rest of this section, we will focus our main attention on cal-

culating the expectation of this expression. As shall be shown later, we need

to consider two cases, i = 1 and i > 1, due to the difference in the calculation

procedures. In the process of calculating of this expectation, i, unless otherwise

stated, is regarded as a constant. And hence both ti and ti−1 are regarded as

known constants.

Firstly we consider the case i > 1. In this case the time ti−1 > 0 and thus

Sti−1
is also an unknown at the current time t = 0. Therefore, the payoff function

depends on two unknown variables Sti−1
and Sti which are the underlying price in

the future. This two-dimensional payoff function makes the problem extremely

difficult to deal with. We will however show that the problem could be solved by

firstly introducing a new variable It and then decomposing the original problem
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into two one-dimensional problems which could be relatively easier to be solved

analytically. This technique was firstly proposed by Little & Pant (2001).

Let us first introduce a new variable It

It =

∫ t

0

δ(ti−1 − τ)Sτdτ (2.8)

where the δ(·) is the Dirac delta function. Note that It = 0 for t < ti−1 and

It = Sti−1
for t ≥ ti−1.

We now consider a contingent claim Ui = Ui(St, vt, It, t) whose payoff at expiry

ti is (
Sti

Iti
− 1)2. Following the general asset valuation theory by Garman (1977),

or the standard analysis of Asian options with stochastic volatility (Fouque et al.

2000; Wilmott 1998), we obtain the PDE for Ui (subscripts have been omitted in

the PDE without ambiguity).

∂Ui

∂t
+

1

2
V S2∂U

2
i

∂S2
+ ρσV V S

∂U2
i

∂S∂V
+

1

2
σ2
V V

∂U2
i

∂V 2
+ rS

∂Ui

∂S

+[κQ(θQ − V )]
∂Ui

∂V
− rUi + δ(ti−1 − t)

∂Ui

∂I
= 0

(2.9)

The terminal condition is

Ui(S, v, I, ti) =

(
S

I
− 1

)2

(2.10)

Howison et al. (2004) also derived a similar PDE based on their model, however,

they didn’t solve the PDE directly.

The Feynman-Kac theorem (Karatzas et al. 1991) states that the solution of

the PDE system satisfies:

EQ
0 [(

Sti

Iti
− 1)2] = ertiUi(S0, v0, I0, 0) (2.11)

Thus it is sufficient to solve the PDE (2.9) with terminal condition (2.10) to

obtain the expectation (2.7) we require. To solve this PDE system, we need to
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utilize the properties of variable It and the Dirac delta function in the equation.

The property of Dirac delta function indicates that any time away from ti−1

the PDE (2.9) could be reduced as

∂Ui

∂t
+
1

2
V S2∂U

2
i

∂S2
+ρσV V S

∂U2
i

∂S∂V
+
1

2
σ2
V V

∂U2
i

∂V 2
+rS

∂Ui

∂S
+[κQ(θQ−V )]

∂Ui

∂v
−rUi = 0

(2.12)

This means that we have managed to get rid of variable It in the equation except

at the time ti−1. However, we cannot declare that we have succeeded in getting

rid of one spatial dimension due to the presence of It in the terminal condition

(2.10). To handle the It in the terminal condition, we turn to the so-called jump

condition.

As mentioned previously, It = 0, t < ti−1 and It = Sti−1
, t ≥ ti−1. The variable

It therefore experiences a jump in value across time ti−1. The no-arbitrary pricing

theory however requires the claim’s value should remain continuous. This leads

to an additional jump condition at time ti−1 (refer to Wilmott et al. (1993) for a

further discussion of jump conditions),

lim
t↑ti−1

Ui(S, v, I, t) = lim
t↓ti−1

Ui(S, v, I, t) (2.13)

From this viewpoint, we can equivalently solve the PDE (2.12) with terminal

condition (2.10) and jump condition (2.13) in order to obtain the expectation we

are interested in. Furthermore, inspired by the property of variable It, we consider

dividing the time domain [0, ti] into two parts [0, ti−1] and [ti−1, ti] since during

each of the two time sub-domains, It could be regarded as constant. Hence, it is

a clever idea to solve the PDE system by two stages, the first stage in [ti−1, ti]

and the second stage in [0, ti−1]. During each of the two stages the PDE systems

have one dimension less than the original PDE system. The obtained solution of

the first stage will provide the terminal condition for PDE system in second stage

through the jump condition (2.13). We need to remark that this is one of the key
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features of the research in this chapter. Little & Pant (2001) were the first to use

the dimension reduction approach which provides many computational benefits in

their instantaneous local volatility model. In this study, the approach is applied

to the stochastic volatility model and provides us with a closed-form solution.

Now, the PDE system (2.9) could be equivalently expressed by two PDE

systems as


∂Ui

∂t
+

1

2
V S2∂U

2
i

∂S2
+ ρσV V S

∂U2
i

∂S∂V
+

1

2
σ2
V V

∂U2
i

∂V 2
+ rS

∂Ui

∂S
+ [κQ(θQ − V )]

∂Ui

∂V
− rUi = 0

Ui(S, V, I, ti) = (
S

I
− 1)2 ti−1 ≤ t ≤ ti

(2.14)

and


∂Ui

∂t
+

1

2
V S2∂U

2
i

∂S2
+ ρσV V S

∂U2
i

∂S∂V
+

1

2
σ2
V V

∂U2
i

∂V 2
+ rS

∂Ui

∂S
+ [κQ(θQ − v)]

∂Ui

∂V
− rUi = 0

lim
t↑ti−1

Ui(S, V, I, t) = lim
t↓ti−1

Ui(S, V, I, t) 0 ≤ t ≤ ti−1

(2.15)

Note that It is a fixed number It = Sti−1
in the domain ti−1 ≤ t ≤ ti and It = 0

in 0 ≤ t < ti−1. We firstly analytically solve the PDE system (2.14) using the

generalized Fourier transform method (see Lewis 2000; Poularikas 2000).

Proposition 1 If the underlying asset follows the dynamic process (2.2) and a

European-style derivative written on this underlying asset has a payoff function

U(S, V, T ) = H(S) at expiry T , then the solution of the associated PDE system

of the derivative value


∂U

∂t
+

1

2
V S2∂U

2

∂S2
+ ρσV V S

∂U2

∂S∂V
+

1

2
σ2
V V

∂U2

∂V 2
+ rS

∂U

∂S
+ [κQ(θQ − V )]

∂U

∂V
− rU = 0

U(S, V, T ) = H(S)

(2.16)

can be expressed in closed form as:

U(x, V, t) = F−1[eC(ω,T−t)+D(ω,T−t)VF [H(ex)]] (2.17)
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using generalized Fourier transform method (see Lewis 2000; Poularikas 2000),

where x = lnS, j =
√
−1 and ω is the Fourier transform variable, and



C(ω, τ) = r(ωj − 1)τ +
κQθQ

σ2
V

[(a+ b)τ − 2 ln(
1− gebτ

1− g
)]

D(ω, τ) =
a+ b

σ2
V

1− ebτ

1− gebτ

a = κQ − ρσV ωj, b =
√
a2 + σ2

V (ω
2 + ωj), g =

a+ b

a− b

(2.18)

The proof of this proposition is left in Appendix B.1.

It should be noted that Formula (2.17) has been deliberately left in a rather

general form. This is because the payoff function H(S) hasn’t been specified yet.

In this most general form, Proposition 1 is applicable to most derivatives whose

payoffs depend on spot price S of underlying asset in the framework of Heston’s

stochastic volatility. The original result of Heston (1993) is actually a special

case covered by this proposition.

However, for some payoffs, the Fourier transform in Proposition 1 has to

be interpreted as the generalized Fourier transform, which is a useful tool for

pricing derivatives. For most popularly used financial derivatives, such as vanilla

call options with H(S) = max(S −K, 0), performing the generalized Fourier

transform is straightforward. The main difficulty with this approach, however,

is associated with the Fourier inverse transform needed to be performed, if one

wishes to reduce the computational time substantially. For our specific case,

H(S) = (S
I
− 1)2, the Fourier inverse transform could be explicitly worked out

and hence the solution can be written in a much simple and elegant form.

Based on the generalized Fourier transform, we can perform the transforma-

tion as

F [ejαt] = 2πδα(ω) (2.19)

where j =
√
−1, α is any complex number and δα(ω) is the generalized delta
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function satisfying ∫ ∞

−∞
δα(t)Φ(t)dt = Φ(α) (2.20)

In our specific case PDE (2.14), H(S) = (S
I
− 1)2. By setting x = lnS and

noting I a constant, we perform the generalized Fourier transform to the payoff

function H(ex) with regards to x.

F [(
ex

I
− 1)2] = 2π[

δ−2j(ω)

I2
− 2

δ−j(ω)

I
+ δ0(ω)] (2.21)

Using the Proposition 1, the solution of PDE (2.14) is given by

Ui(S, V, I, t) = F−1[eC(ω,ti−t)+D(ω,ti−t)V 2π[
δ−2j(ω)

I2
− 2

δ−j(ω)

I
+ δ0(ω)]]

=

∫ ∞

−∞
eC(ω,ti−t)+D(ω,ti−t)V [

δ−2j(ω)

I2
− 2

δ−j(ω)

I
+ δ0(ω)]e

xωjdω

=
1

I2
eC(ω,ti−t)+D(ω,ti−t)V+xωj|ω=−2j −

2

I
eC(ω,ti−t)+D(ω,ti−t)V+xωj|ω=−j

+eC(ω,ti−t)+D(ω,ti−t)V+xωj|ω=0

=
e2x

I2
eC̃(ti−t)+D̃(ti−t)V − 2ex

I
+ e−r(ti−t) (2.22)

where x = lnS and ti−1 ≤ t ≤ ti, and C̃(τ) and D̃(τ) are equal to C(−2j, τ),

D(−2j, τ) respectively, and have simple forms as



C̃(τ) = rτ +
κQθQ

σ2
V

[(ã+ b̃)τ − 2 ln(
1− g̃eb̃τ

1− g̃
)]

D̃(τ) =
ã+ b̃

σ2
V

(
1− eb̃τ

1− g̃eb̃τ
)

ã = κQ − 2ρσV , b̃ =
√
ã2 − 2σ2

V , g̃ = (
ã

σV
)2 − 1 + (

ã

σV
)

√
(
ã

σV
)2 − 2

(2.23)

Now, we have succeeded in obtaining the solution for the PDE system (2.14),

which is the first stage in calculating EQ
0 [(

Sti − Sti−1

Sti−1

)2]. It should be remarked

that we have actually solved an option pricing problem based on Heston’s stochas-

tic volatility model. The very reason that we have explicitly worked out the

Fourier inverse transform so that our final solution (2.22) of the first stage can be
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written in such a simple and closed form, whereas the Fourier inverse transform

could not be worked out by Heston (1993), is because of the very special form of

the payoff function (2.10). One may argue that Heston’s solution for a simple Eu-

ropean call is still in closed form, because there is only an explicit integral left to

be calculated, the same as the calculation of the cumulative distribution function

required in using the Black-Scholes formula. But, a sharp difference between the

two is that the integrand of the latter is a well-defined and smooth real function

whereas the integrand of the former (i.e., the Heston’s original solution as well as

the solutions presented in many other follow-up papers based on Heston’s model,

such as Bakshi et al. 1997; Bates 1996; Pan 2002), is a complex-value function, as

a result of the Fourier inverse transform not being analytically performed. The

main disadvantage of a solution being left in terms of complex-valued integrals is

that the numerical calculation of these integrals has to be handled very carefully

as they are multi-valued complex functions, which may cause some problems when

one needs to decide which root is the correct one to take. There have been exam-

ples reported in the literature (e.g., Kahl & Jackel 2005) for the wrong numerical

integration that those complex-valued integrand may result in. In comparison

with those complicated integral calculations, the advantage of our compact solu-

tion (2.22) is obvious. Although our success in analytically performing Fourier

inverse transform under the Heston’s model may be limited for a special form of

payoff function, it made us to believe that there might be other payoff functions,

with which the Fourier inverse transform can be worked out analytically as well.

This belief has not been clearly articulated in the relevant literature before; all

the papers following Heston’s work stopped at the same point where Heston did,

i.e., did not bother to analytically perform the Fourier inverse transform at all.

To finish off the calculation of EQ
0 [(

Sti − Sti−1

Sti−1

)2], we need to move to the

second stage, i.e. solving the PDE system (2.15), after the imposition of the

jump condition (2.13). As we shall show later, the simple form of solution (2.22)

has paved an easy way of obtaining an analytical solution in the second stage.
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By noting the fact that limt↓ti−1
lnSt = ln I due to the definition of I, we have,

lim
t↓ti−1

Ui(S, V, I, t) = eC̃(∆t)+D̃(∆t)V + e−r∆t − 2 (2.24)

For the simplicity of notation, the right hand side of above equation is denoted

as f(V ), i.e.,

f(V ) = eC̃(∆t)+D̃(∆t)V + e−r∆t − 2 (2.25)

which is now the terminal condition for the PDE system (2.15) in the period

0 ≤ t ≤ ti−1, according to the jump condition (2.13).

It should be noticed that the terminal condition (2.25) for the PDE system

(2.15) in the period 0 ≤ t ≤ ti−1 happens to contain one independent variable, V ,

only. One can thus take the advantage of this fact and solve the problem neatly

with the following proposition.

Proposition 2 If the underlying asset follows the dynamic process (2.2), the

derivative written on some stochastic aggregated property of this underlying asset

with payoff function depending on the VT only, i.e., U(S, V, T ) = G(VT ) at expiry

T will satisfy the PDE


∂U

∂t
+

1

2
V S2∂U

2

∂S2
+ ρσV V S

∂U2

∂S∂V
+

1

2
σ2
V V

∂U2

∂V 2
+ rS

∂U

∂S
+ [κQ(θQ − V )]

∂U

∂V
− rU = 0

U(S, V, T ) = G(V )

(2.26)

The solution of this PDE can be obtained analytically in the form of

U(S, V, t) =

∫ +∞

0

e−r(T−t)G(VT )p(VT |Vt)dVT (2.27)

where

p(VT |Vt) = ce−W−v(
v

W
)q/2Iq(2

√
Wv)

c =
2κQ

σ2
V (1− e−κQ(T−t))

, W = cVte
−κQ(T−t), v = cVT , q =

2κQθQ

σ2
V

− 1

(2.28)
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and Iq(·) is the modified Bessel function of the first kind of order q.

The proof of Proposition 2 is trivial, as it is actually implied by the Feynman-Kac

formula, which states that the solution of PDE (2.26) can be derived from the

conditional expectation of the payoff function under the risk-neutral probability

measure. Hence, the solution can be expressed in the form of

U(S, V, t) = EQ
t [e

−r(T−t)G(VT )] (2.29)

where the associated two processes St and Vt follow the stochastic processes in

(2.2), respectively. The expectation is actually not related to the process S since

the payoff function is independent of S. The process Vt is the well-known CIR

squared-root process (Cox et al. 1985) and the distribution is the noncentral

chi-square, χ2(2v; 2q + 2, 2W ), with 2q + 2 degrees of freedom and parameter of

non-centrality 2W proportional to the current variance, Vt. Once we realized that

the needed transition probability density function p(VT |Vt) has been given in Cox

et al. (1985), as shown in Equation (2.28), the proof naturally follows.

Using the Proposition 2, we can express the solution of PDE system (2.15) as

Ui(S, V, I, t) =

∫ ∞

0

e−r(ti−1−t)f(Vti−1
)p(Vti−1

|Vt)dVti−1
(2.30)

where f(V ) and p(Vti−1
|Vt) are given in Eq. (2.25) and Eq. (2.28) respectively,

and 0 ≤ t < ti−1. This means for each i > 1 the expectation (2.7) has been found

by solving the PDE systems (2.14) and (2.15) in two stages,

EQ
0 [(

Sti − Sti−1

Sti−1

)2] = ertiUi(S0, V0, I0, 0)

=

∫ ∞

0

er∆tf(Vti−1
)p(Vti−1

|V0)dVti−1
(2.31)

As Zhang & Zhu (2006) commented in their paper, the integration in the

above equation usually cannot be explicitly carried out; we had initially decided
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to leave our final solution in this integral form too. However, after a careful

examination of the properties of the integrand, we realized that the elegant form

of f(V ), which is the solution of the first stage, could be explored again. Utilizing

the characteristic function of noncentral chi-squared distribution (Johnson et al.

1970), we have successfully carried out the above integral analytically and obtain

a fully closed-form solution as our final solution for the price of a variance swap

with the realized variance defined by (2.3). This has made our solution in a

remarkably simple form as

EQ
0 [(

Sti − Sti−1

Sti−1

)2] = er∆tfi(V0) (2.32)

where

fi(V0) =

∫ ∞

0

f(Vti−1
)p(Vti−1

|V0)dVti−1

= e
C̃(∆t)+

cie
−κQti−1

ci−D̃(∆t)
D̃(∆t)V0

(
ci

ci − D̃(∆t)
)
2κQθQ
σ2
V + e−r∆t − 2 (2.33)

and ci =
2κQ

σ2
V (1−e−κQti−1 )

. To a certain extent, it is even simpler than that of the

classic Black-Scholes formula, because the latter still involves the calculation of

the cumulative distribution function, which is an integral of a smooth real-value

function, whereas there is no need to calculate any integral at all in our final

solution! The details of analytically carrying out the integration in Eq. (2.33)

are left in Appendix B.2.

Utilizing (2.32), the summation in (2.6) can now be carried out all the way

except for the very first period with i = 1.

We need to treat the case i = 1, separately, simply because in this case we

have ti−1 = 0 and Sti−1
= S0, which is the current underlying asset price and is a

known value, instead of an unknown value of Sti−1
for any other cases with i > 1.
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So the expectation that needs to be calculated in this special case is reduced to

EQ
0 [(

Sti

S0

− 1)2] (2.34)

which can be easily derived by invoking Proposition 1 directly,

EQ
0 [(

St1

S0

− 1)2] = er∆tf(V0) (2.35)

Summarizing the calculation procedure discussed above, we finally obtain the

fair strike price for the actual-return variance swap as:

Kvar = EQ
0 [RVd1(0, N, T )] =

er∆t

T
[f(V0) +

N∑
i=2

fi(V0)]× 1002 (2.36)

whereN is a finite number denoting the total sampling times of the swap contract.

This formula is obtained by solving the associated PDEs in two stages. Since we

have managed to express the solution of the associated PDEs, in both stages,

in terms of simple and elementary functions, we are able to write the fair strike

price of an actual-return variance swap with discretely-sampled realized variance

defined in Eq. (2.3) in a simple and closed form.

In fact, even for the a log-return variance swap with discretely-sampled re-

alized variance defined in Eq. (2.4), our approach presented here can also be

analogically applied to obtain a closed-form exact solution, demonstrating the

flexibility of our approach.

As shown previously, the problem of pricing a log-return variance swap is

reduced to calculating the N expectations in the form of:

EQ
0

[
log2(

Sti

Sti−1

)

]
(2.37)

for some fixed equal time period ∆t and N different tenors ti = i∆t (i =
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1, · · · , N).

This expectation can be carried out by solving the two PDE systems as


∂Ui

∂t
+

1

2
V S2∂U

2
i

∂S2
+ ρσV V S

∂U2
i

∂S∂V
+

1

2
σ2
V V

∂U2
i

∂V 2
+ rS

∂Ui

∂S
+ [κQ(θQ − V )]

∂Ui

∂V
− rUi = 0

Ui(S, V, I, ti) = log2(
S

I
) ti−1 ≤ t ≤ ti

(2.38)

and


∂Ui

∂t
+

1

2
V S2∂U

2
i

∂S2
+ ρσV V S

∂U2
i

∂S∂V
+

1

2
σ2
V V

∂U2
i

∂V 2
+ rS

∂Ui

∂S
+ [κQ(θQ − V )]

∂Ui

∂V
− rUi = 0

lim
t↑ti−1

Ui(S, V, I, t) = lim
t↓ti−1

Ui(S, V, I, t) 0 ≤ t ≤ ti−1

(2.39)

where It is a fixed number It = Sti−1
in the domain ti−1 ≤ t ≤ ti and It = 0 in

0 ≤ t < ti−1. The solutions of these two PDE systems are actually implied by

the Proposition 1 and Proposition 2.

Specifically, based on the generalized Fourier transform, we can perform the

transformation as

F [xn] = 2πjnδ(n)(ω) (2.40)

where j =
√
−1, n is any integer and δ(n)(ω) is the n-th order derivative of the

generalized delta function satisfying

∫ ∞

−∞
δ(n)(ω)Φ(ω)dω = (−1)nΦ(n)(0) (2.41)

By setting x = lnS and noting I a constant, we perform the generalized

Fourier transform to the payoff function H(x) in PDE (2.38) with regards to x.

F [(x− log I)2] = 2π[−δ(2)(ω)− 2jδ(1)(ω) log (I) + δ(ω) log2 I] (2.42)
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Using the Proposition 1, the solution of PDE (2.38) is given by

Ui(S, V, I, t) = F−1[eC(ω,ti−t)+D(ω,ti−t)V 2π[−δ(2)(ω)− 2jδ(1)(ω) log (I) + δ(ω) log2 I]

=

∫ ∞

−∞
eC(ω,ti−t)+D(ω,ti−t)V [−δ(2)(ω)− 2jδ(1)(ω) log (I) + δ(ω) log2 I]exωjdω

= −f (2)(0) + 2jf (1)(0) log I + f(0) log2 I (2.43)

where f(ω) = eC(ω,ti−t)+D(ω,ti−t)V+xωj, with x = logS and ti−1 ≤ t ≤ ti. The

terms f (2)(0) and f (1)(0) can be easily computed, using symbolic calculation

packages, such as Maple 10.

To finish off the calculation of EQ
0 [log

2 (
Sti

Sti−1

)], we need to move to the second

stage, i.e. solving the PDE system (2.39), after the imposition of the jump con-

dition (2.13). By noting the fact that limt↓ti−1
logSt = log I due to the definition

of I, we obtain

lim
t↓ti−1

Ui(S, V, I, t) = e−r∆tg(V ) (2.44)

where g(V ) is the expression

g(V ) = (D(1))2V 2 + (2C(1)D(1) −D(2))V + (C(1))2 − C(2) (2.45)

resulting from computing all the derivatives in (2.43) with C(1) = ∂C(ω,∆t)
∂ω

|ω=0,

C(2) = ∂2C(ω,∆t)
∂ω2 |ω=0. D

(1) and D(2) are defined similarly. C(ω, τ) and D(ω, τ) are

given in Eq. (2.18).

Eq. (2.44) is now the terminal condition for the PDE system (2.39) in the

period 0 ≤ t ≤ ti−1, according to the jump condition (2.13).

Using the Proposition 2, we can express the solution of PDE system (2.39) as

Ui(S, V, I, t) =

∫ ∞

0

e−r(ti−1−t)e−r∆tg(Vti−1
)p(Vti−1

|Vt)dVti−1
(2.46)

where 0 ≤ t < ti−1, g(Vti−1
) and p(Vti−1

|Vt) are given in Equation (2.45) and

Equation (2.28) respectively. This means for each i > 1 the expectation (2.37)
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has been found by solving the PDE systems (2.38) and (2.39) in two stages,

EQ
0 [log

2(
Sti

Sti−1

)] = ertiUi(S0, V0, I0, 0)

=

∫ ∞

0

g(Vti−1
)p(Vti−1

|V0)dVti−1
(2.47)

Utilizing the characteristic function of noncentral chi-squared distribution

(Johnson et al. 1970), we have successfully carried out the above integral an-

alytically and obtain a fully closed-form solution as our final solution for the

price of a variance swap with the realized variance defined by (2.4). This has

made our solution in a remarkably simple form as

EQ
0 [log

2(
Sti

Sti−1

)] = gi(V0) (2.48)

where

gi(V0) =

∫ ∞

0

g(Vti−1
)p(Vti−1

|V0)dvti−1

= (D(1))2(
q̃ + 2Wi + (q̃ +Wi)

2

c2i
)

+(2C(1)D(1) −D(2))(
q̃ +Wi

ci
) + (C(1))2 − C(2) (2.49)

ci =
2κQ

σ2
V (1−e−κQti−1 )

, Wi = ciV0e
−κQti−1 and q̃ = 2κQθQ

σ2
V

.

Utilizing (2.48), the summation in (2.4) can now be carried out all the way

except for the very first period with i = 1, which can be easily derived by invoking

Proposition 1 directly,

EQ
0 [log

2(
Sti

Sti−1

)] = g(V0) (2.50)

Summarizing the calculation procedure discussed above, we finally obtain the

fair strike price for the log-return variance swap as:

Kvar = EQ
0 [Vd2(0, N, T )] =

1

T
[g(V0) +

N∑
i=2

gi(V0)]× 1002 (2.51)
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whereN is a finite number denoting the total sampling times of the swap contract.

The above equation gives a fair strike price for log-return variance swaps in a

simple and closed-form solution.

One may wonder why not use the Feynman-Kac formula to calculate the ex-

pectation of the payoff function directly instead of painfully detouring around

to solve a PDE (2.14) in Stage 1 first and then using the Feynman-Kac formula

in Stage 2. This is actually due to the dimensionality of the payoff functions

(
Sti−Sti−1

Sti−1
)2 and log2(

Sti

Sti−1
), that involves two stochastic variables, Sti and Sti−1

.

To use the Feynman-Kac formula for this two dimensional payoff function, one

needs to find the joint transition probability function of the two stochastic vari-

ables, which is a very difficult task, and even if it could be successfully found,

there are still difficulties involved in the numerical computation of the resulted

two-dimensional integral. This is why we chose to use this two-stage approach to

reduce the dimensionality of solving the original problem with the Feynman-Kac

formula directly. The great benefit of using these analytic formulae for the prices

of variance swaps with the realized variance being defined in Eq. (2.3) and (2.4)

is illustrated in the next section through some examples.

2.3 Numerical Examples and Discussions

In this section, we show some numerical examples for illustration purposes. Al-

though theoretically there would be no need to discuss the accuracy of a closed-

form exact solution and present numerical results, some comparisons with the

Monte Carlo (MC) simulations may give readers a sense of verification for the

newly found solution. This is particularly so for some market practitioners who

are very used to MC simulations and would not trust analytical solutions that

may contain algebraic errors unless they have seen numerical evidence of such

a comparison. In addition, comparisons with the previous continuous sampling

model will also help readers understand the improvement in accuracy with our
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exact solution. Furthermore, we shall discuss some essential properties of variance

swaps as well, utilizing the newly found analytical solutions.

To achieve these purposes, we use the following parameters (unless otherwise

stated): v0 = 0.04, θQ = 0.022, κQ = 11.35, ρ = −0.64, σV = 0.618, r = 0.1,

T = 1 in this section. This set of parameters for the square root process was

also adopted by Dragulescu & Yakovenko (2002). As for the MC simulations,

we took asset price S0 = 1 and the number of the paths N = 200, 000 for all

the simulation results presented here. All the numerical values of variance swaps

presented in this section are quoted in variance points (the square of volatility

points).

2.3.1 Monte Carlo Simulations

Our MC simulations are based on a simple simulation of the CIR variance process,

which is anything but straightforward. Glasserman (2003) proposed a method

to simulate the square-root process by sampling the transition density function.

Broadie & Kaya (2006) developed an approach for exact simulation of Heston

dynamical process. Andreasen (2006) also suggested a method using log-normal

approximation for the transition density of the variance with matched first two

moments. Higham & Mao (2005) proved that the Euler-Maruyama discretization

is an attractive approach, providing qualitatively correct approximations. Since

our aim is primarily to obtain some benchmark values for our solutions Eq. (2.36)

and Eq. (2.51), we will not focus our attention on the use of other variance

reduction techniques that could further enhance the computational efficiency. In

our MC simulations, we have employed the simple Euler-Maruyama discretization

for the Heston model St = St−1 + rSt−1∆t+
√

|Vt−1|St−1

√
∆tW 1

t

Vt = Vt−1 + κQ(θQ − Vt−1)∆t+ σ
√
|Vt−1|

√
∆t(ρW 1

t +
√

1− ρ2W 2
t )

(2.52)
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Our discrete model (Actual−return realized variance)
Monte Carlo simulations
The continuous model (Swishchuk, 2004)

Figure 2.1: A comparison of fair strike values of actual-return variance swaps
obtained from our closed-form solution, the continuous approximation and the
Monte Carlo simulations, based on the Heston stochastic volatility model

where W 1
t and W 2

t are two independent standard normal random variables.

Shown in Fig. 2.1, as well as in Table 2.1, are three sets of data, for the

strike price of actual-return variance swaps obtained with the numerical imple-

mentation of Formula (2.36), those from MC simulations (2.52) and the numerical

results obtained from the continuously-sampled realized variance Formula (2.54).

And shown in Fig. 2.2 is a comparison of the strike prices of log-return vari-

ance swaps obtained with the numerical implementation of Formula (2.51), those

from Monte Carlo simulations (2.52) and the numerical results obtained from the

continuously-sampled realized variance Formula (2.54).

One can clearly observe that the results from our exact solution perfectly

match the results from the MC simulations. To make sure that readers have

some quantitative concept of how large the difference between the results from

our exact solution and those from the MC simulations, we have also tabulated the

relative difference of the two as a function of the number of paths, using our exact



60 Chapter 2: Pricing Variance Swaps with Discrete Sampling

0 10 20 30 40 50

230

240

250

260

270

280

290

300

Sampling Frequency (Times/Year)

C
al

cu
la

te
d 

S
tr

ik
e 

P
ric

e 
fo

r 
V

ar
ia

nc
e 

S
w

ap
s 

(V
ar

ia
nc

e 
P

oi
nt

s)

 

 

Our discrete model (Log−return realized variance)
Monte Carlo simulations
The continuous model (Swishchuk, 2004)

Figure 2.2: A comparison of fair strike values of log-return variance swaps ob-
tained from our closed-form solution, the continuous approximation and the
Monte Carlo simulations, based on the Heston stochastic volatility model

solution (2.36) as the reference in the calculation, in Table 2.2. Clearly, when

the number of paths reaches 200,000 in MC simulations, the relative difference

of the two is less than 0.1% already. Such a relative difference is further reduced

when the number of paths is increased; demonstrating the convergence of the MC

simulations towards our exact solution.

On the other hand, in terms of computational time, the MC simulations take

a much longer time than our analytical solutions do. To illustrate it clearly,

Table 2.1: The strike prices of discretely-sampled actual-return variance swaps
obtained from our closed-form solution Eq. (2.36), the continuous approximation
and MC simulations

Sampling Frequency Discrete Model Continuous Model MC Simulations
Quarterly(N=4) 267.6 235.9 267.3
Monthly(N=12) 242.7 235.9 243.2

Fortnightly(N=26) 238.6 235.9 238.1
Weekly(N=52) 237.1 235.9 237.4
Daily(N=252) 236.1 235.9



Chapter 2: Pricing Variance Swaps with Discrete Sampling 61

Table 2.2: Relative errors and computational time of MC simulations in calcu-
lating the strike prices of actual-Return variance swaps

Path Numbers of the MC Relative Error % Computational Time(s)
10,000 0.233 5.126
100,000 0.191 89.549
200,000 0.074 360.268
500,000 0.012 2,184.239

we compare the computational times of implementing Formula (2.36) and the

MC simulations with sampling frequency for the realized variance equalling to

5 times per year. Table 2.2 shows the computational times for different path

numbers in the MC simulations. In contrast to a formidable computational time

of 2,184.239 seconds using the MC simulations with 500,000 paths, implementing

Formula (2.36) just consumed 0.011 seconds; a roughly 200 thousands folds of

reduction in computational time for one data point. The difference is even more

significant when the sampling frequency is increased; we had to abandon the

calculation when the sampling frequency became daily as it just simply took too

long to finish off the calculation on our PC (as a result, one cell in Table 2.1 is

left empty). This is not surprising at all since time-consuming is a well-known

drawback of MC simulations.

2.3.2 The Validity of the Continuous Approximation

In the literature, many researchers, such as Swishchuk (2004), Zhang & Zhu

(2006), have proposed continuous sampling models for variance swaps based on

the Heston model. In their papers, the realized variance (2.4) is approximated by

RVc(0, T ) =
1

T

∫ T

0

Vtdt× 1002 (2.53)

for the convenience of calculation. This is because Swishchuk (2004) has shown

that once the realized variance is defined in terms of an integral, the expectation
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of this continuous integral can be easily obtained, utilizing the second stochastic

process defined in (2.2). The resulting fair delivery price for the variance swap is

thus written as

EQ
0 [RVc(0, T )] = [V0

1− e−κQT

κQT
+ θQ(1− 1− e−κQT

κQT
)]× 1002 (2.54)

which can be interpreted as a weighted average of the spot variance v0 and the

long-term mean of variance θQ. Indeed, this formula is very simple and can

be easily implemented in calculating the numerical value of EQ
0 [RVc(0, T )]. For

the convenience of referencing, this formula will be referred to as the Swishchuk

formula hereafter, although many others also derived this formula.

Due to the lack of exact solution, in the past, for pricing a variance swap

with discrete sampling, the Swishchuk formula was primarily used in pricing

variance swaps, based on the assumption that the sampling period, such as daily

sampling, is short enough so that the result obtained from the continuous model

should be close to that without the continuum assumption of the sampling period.

However, no one knew exactly how close the results were because there was no

exact solution as a pricing formula for the case of discrete sampling times. Nor

did any one know when the Swishchuk formula starts to yield large errors when

the sampling time is large enough. In other words, there is a validity issue for

the Swishchuk formula, since it is nevertheless an approximation in the trading

practice where the sampling time, no matter how small, is always discrete. Our

newly-derived formulae can now be used not only as pricing formulae for any

discrete sample period, but also as a validation tool for checking the accuracy

level that the Swishchuk formula yields as a function of the sampling period.

In Fig. 2.1 and Fig. 2.2, we illustrate the numerical results of the Swishchuk

formula (2.54) which is obtained from the continuous approximation model. From

these figures, one can clearly see that the values of our discrete formulae asymp-

totically approach the values of the continuous approximation model when the
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Figure 2.3: Calculated fair strike values of actual-return and log-return variance
swaps as a function of sampling frequency

sampling frequency increases; the realized variance defined in (2.53) appears to

be the limit of the realized variance defined in Eq. (2.4) and Eq. (2.3) as ∆t→ 0.

Of course, one can theoretically prove that our solutions (2.36) and (2.51) indeed

approach the Formula (2.54) when the discrete sampling period approaches zero,

i.e.,

lim
∆t→0

er∆t

T
[f(V0) +

N∑
i=2

fi(V0)] = V0
1− e−κQT

κQT
+ θQ(1− 1− e−κQT

κQT
) (2.55)

With the proof of this limit, which is left in Appendix B.3, our solution is once

again verified as the correct solution for the discrete sampling cases, taking the

continuous sampling case as a special case with the sampling period shrinking

down to zero.

On the other hand, we now can use our discrete model to check the validity of

the continuous model as an approximation. Shown in Fig. 2.3 is a refined plot of

Fig. 2.1 and Fig. 2.2, in order to compare the degree of approximation between

daily and weekly sampling. With the daily sampling, the relative difference be-

tween the results of the actual-return variance swap and the continuous model is
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0.101%, whereas it has increased to 0.530% for weekly sampling. For log-return

variance swaps, the relative difference is even greater, with 0.201% for daily sam-

pling and 1.00% for weekly sampling. If the long-term mean variance is further

reduced to θQ = 0.01 from θQ = 0.022 while the other parameters are held the

same, the relative difference between the results of variance swaps of weekly sam-

pling and the continuous model becomes more than doubled to reach 1.226% for

actual-return variance swaps, and 1.70% for log-return variance swaps of weekly

sampling. With a relative difference of the order of one percent, adopting the

continuous model as an approximation to price variance swaps with weekly sam-

pling is clearly not justifiable. For example, when the error level reaches more

than 0.5%, Little & Pant (2001) has already concluded, within the Black-Scholes

framework, that such an error is “fairly large” so that adopting the continuous

model might not be so justifiable any more. Our current findings not only con-

firm Little & Pant (2001)’s conclusion, but also show that, under the Heston

model, the difference between the continuous model and the discrete model will

exponentially grow, when the sampling frequency is reduced, as shown in Fig.

2.1. Of course, contracts with sampling frequency higher than weekly are very

rare in practice. However, specially designed over-the-counter (OTC) contacts of

long tenor may still have sampling frequencies small enough to not warrant the

realized variance being calculated with the continuous model.

The effect of contract lifetime has been demonstrated in Fig. 2.4, in which

the calculated fair strike price is plotted as a function of the tenor of a swap con-

tract. Clearly, all models show that the fair strike price falls as tenor increases.

However, the difference between the two becomes larger and larger as tenor in-

creases, further demonstrating the need of using the correct formula presented

in this chapter for the discrete sampling case, rather than using the continuous

model as an approximation.
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Figure 2.4: Calculated fair strike values of actual-return and log-return variance
swaps as a function of tenor

2.3.3 Comparison with Other Solutions

Recently, Broadie & Jain (2008b) presented a closed-form formula for log-return

variance swaps as that presented in this chapter. However, their solution approach

is totally different from ours as what we have presented here. While Broadie &

Jain (2008b) derived the discrete variance strike for variance swaps by integrating

the underlying stochastic processes directly, we have directly solved the governing

PDEs that were derived based on the same underlying stochastic processes. The

two resulting formulae appear to be quite different in form. It is therefore quite

interesting to compare the prices of discretely-sampled variance swaps obtained

from these two formulae.

One should notice that the definition of the realized variance defined in Broadie

& Jain (2008b) is slightly different from Eq. (2.4) used in this thesis. However,

the difference between the two is so trivial that all we needed to do was to re-scale

the calculated results by a constant, in order to make a good comparison with the

results presented in Broadie & Jain (2008b). In other words, the results we have

re-calculated from Broadie & Jain (2008b)’s formula were obtained with their Eq.

(45) being re-scaled by a factor of N−1
N

, where N is the number of sampling points
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defined in Eq. (2.4). These results are presented in Fig. 2.5 later.

The main advantage of our approach is its versatility in dealing with different

definitions of the realized variance in the payoff function, namely our approach

can be easily applied to price variance swaps for both actual-return-based realized

variance and the log-return realized variance, and may even possibly be extended

to price other volatility- or variance-based derivatives, since our approach does

not depend on if the payoff is of such a particular form that the underlying

stochastic differential equations can be directly integrated. For example, the

approach presented in Broadie & Jain (2008b) cannot be used to price variance

swaps with the actual-return-based realized variance (Eq. (2.3)) defined in the

payoff as pointed out by Zhu & Lian (2009d). However, when the payoff is defined

by the log-return-based realized variance, Eq. (2.3), which is exactly the same as

that defined in Broadie & Jain (2008b), we should have every reason to believe

that the pricing formulae should yield the same numerical values, although they

may appear in different analytical forms.

Shown in Fig. 2.5 is a comparison of the fair delivery prices of variance swaps

obtained from these two formulae as a function of sampling frequency. The nu-

merical results calculated from both formulae appear to agree with each other

perfectly, as they should be. It is also shown that numerical results calculated

from both analytical pricing formulae match up with those obtained from the

implementation of Monte Carlo simulation, providing a verification of the cor-

rectness of the newly-derived analytical pricing formula presented here as well as

that presented in Broadie & Jain (2008b).

With the newly found closed-form formulae for the both cases when the re-

alized variance is defined by RVd1(0, N, T ) (the actual-return realized variance)

and RVd2(0, N, T ) (the log-return-based realized variance), we can also make a

comparison of the price difference for two swap contracts being identical ex-

cept the payoff involving these two most frequently used definitions of realized

variance. Such a comparison should be very interesting, because intuitively the
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Figure 2.5: The comparison of our results with those of Broadie & Jain (2008)
for log-return variance swaps

realized variance defined by the actual-return variance, RVd1(0, N, T ), should be

a more straightforward definition with a direct financial interpretation than that

defined through the log-return realized variance, RVd2(0, N, T ). However, the

latter seems to be always more popular in practice, perhaps dues to the mathe-

matical tractability it leads to. One naturally wonders if they would lead to quite

difference prices if other terms are otherwise identically given.

Fig. 2.6 displays the variance strike prices computed using the two definitions

of realized variance, RVd1(0, N, T ) and RVd2(0, N, T ), as a function of different

sampling frequencies. The results show that the strike price associated with a log-

return realized variance RVd2(0, N, T ) is less than that associated with the actual-

return realized variance RVd1(0, N, T ) for low sampling frequencies. However,

when the sampling frequency is increased beyond about 5 times per annum, the

strike price for a variance swap contract with the log-return realized variance

defined in its payoff becomes greater than that with the actual-return realized

variance. Given that most of variance swaps have a sampling frequency much

higher than 5 times per annum, we may conjecture that variance swaps associated

with the log-return realized variance should have a higher strike price than those
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with the actual-return variance realized variance in practice. The reason that

we call this a conjecture rather than a conclusion is that to draw a conclusion,

one really needs to test if this is true for all other parameters in the parameter

space. Such tests must be thorough, and thus would be quite time consuming.

Therefore, we have decided to leave it for future research. On the other hand, our

conjecture is indeed reenforced by the results presented in Fig. 2.3 and Fig. 2.4,

which further demonstrate that both strike prices associated with the log-return

realized variance and the actual-return variance realized variance are higher than

those associated with the continuously-sampling approximation, but strike prices

associated with the log-return is usually higher than those associated with the

actual return, at least for the most common sampling frequencies used in financial

practice. In practice most of the contracts sampling is done daily or weekly and

sometimes monthly (very rarely). For weekly sampling realized variance, there is

a 0.46% difference between the strike prices calculated with the two definitions

of realized variance. The effect of discreteness further decreases as sampling

frequencies increases further; the strike prices obtained with two formulae for

discretely-sampled variance swaps do approach to that of the continuous-sampled

variance swaps, as one would have expected.

A couple of more points should be remarked before leaving this section.

Firstly, with the newly found analytic solution, all the hedging ratios of a variance

swap can also be analytically derived by taking partial derivatives against various

parameters in the model. With symbolic calculation packages, such Mathematica

or Maple, widely available to researchers and market practitioners, these partial

derivatives can be readily calculated and thus omitted here. However, to demon-

strate how sensitive the strike price is to the change of the key parameters in

the model, we performed some sensitivity tests for the example presented in this

section. Shown in Table 2.3 are the results of the percentage change of the strike

price when a model parameter is given a 1% change from its base value used in

the example presented in this Section. Clearly, the strike price of a variance swap
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Figure 2.6: The effect of alternative measures of realized variance

appears to be most sensible to the long-term mean variance θQ for the case stud-

ied. On the other hand, the spot variance V0 may also have significant influence

in terms of the sensitivity of the strike price. Secondly, due to the notational

amount factor L and the size of the contract traded per order, the 1% or 2%

relative error may result in a considerable amount of absolute loss if the formula

based on the continuous approximation is adopted. Combining these two points

together, one may conclude that even with a relatively high sampling frequency,

such as daily sampling, the approximation based on the continuous model could

still lead to larger errors for a certain combination of parameter values. Thereby,

having closed-form formulae for the case of discrete sampling would enable us to

completely abandon the approximation formula based on the continuous model;

whether the sampling period is small or not, the computational time of adopting

our newly-derived formulae, Eq. (2.36), and Eq. (2.51) is virtually the same as

that of adopting the traditional formula, Eq. (2.54).
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Table 2.3: The sensitivity of strike price of variance swap (daily sampling)

Name Value Sensitivity
κQ 11.35 -0.066%
θQ 0.022 0.85%
σV 0.618 -0.0015%
V0 0.04 0.15%

2.4 Conclusion

In this chapter, we have applied the Heston stochastic volatility model to describe

the underlying asset price and its volatility, and obtained two closed-form exact

solutions for discretely-sampled variance swaps with the actual-return and log-

return realized variance. This can be viewed as a substantial progress made in

developing a more realistic pricing model for variance swaps. Through numerical

examples, we have shown that the our formulae can improve the accuracy in

pricing variance swaps. We have compared the results produced from our new

solutions with those produced by the MC simulations for the validation purposes

and found that our results agree with those from the MC simulations perfectly.

The significance of our work can be illustrated in two aspects. Theoretically,

our discrete model can be used to verify the validity of the corresponding con-

tinuous models. Our study has demonstrated that the well-known continuous

approximation in the literature for variance swaps leads to an error exponentially

growing with the inverse of the sampling frequencies. The study of this chapter

thus would fill a gap that has been in the field of pricing variance swaps. Fourier

inverse transform in our model has been analytically worked out, which is a

significant step forward in the literature of Heston’s model. Practically, the com-

putational efficiency is enormously enhanced in terms of assisting practitioners

to price variance swaps, and thus it can be a very useful tool in trading practice

when there is obviously increasing demand of trading variance swaps in financial

markets.



Chapter 3

Pricing Forward-Start Variance

Swaps

3.1 Introduction

In Chapter 2, we have discussed the pricing of discretely-sampled variance swaps,

based on the Heston stochastic volatility model, to improve the pricing accuracy

the continuously-sampling approximations in literature. This chapter will address

the pricing problem of forward-start variance swaps, as most of those traded

variance swaps in markets or even some over-the-counter ones are of a forward-

start nature, characterized by the starting time of the sampling period being a

future date.

Forward-start variance swaps are a kind of variance swaps whose annual-

ized realized variance is measured between two future dates Ts and Te, where

0 < Ts < Te, with t = 0 being the current time. Even though forward-start vari-

ance swaps seem to be a simple and natural extension to the normally defined

variance swaps with the sampling period covering all the time between now and a

future time T , the introduction of the forward-start feature can increase the flex-

ibility of variance swaps in hedging risk, and hence greatly promote the trading

of variance swaps. This is indeed the case as variance futures are indeed listed as

71



72 Chapter 3: Pricing Forward-Start Variance Swaps

standardized forward-start variance swaps in some stock exchanges. For exam-

ple, Chicago Board Options Exchange (CBOE) launched 3-month and 12-month

variance futures on S&P 500 in May 2004 and March 2006, respectively. New

York Stock Exchange (NYSE) Euronext also started to offer variance futures on

FTSE 100, CAC 40 and AEX indices in September 2006. All those listed variance

futures are nothing but forward-start variance swaps.

However, up to now, none in literature has taken the forward-start feature

into consideration which is usually imbedded in most of traded variance swaps,

in the context of stochastic volatility and discretely-sampled realized variance.

In this chapter, we present an approach to price discretely-sampled forward-start

variance swaps based on Heston’s two-factor stochastic volatility model. In this

way, the nature of stochastic volatility is included in the model and most im-

portantly, two closed-form exact solutions can be worked out for forward-start

variance swaps with the two alternative definitions of realized variance, respec-

tively. The main contributions of this study can be summarized in the following

aspects. Firstly, by developing a forward characteristic function, we demonstrate

a more versatile approach to deal with the issue of pricing forward-start variance

swaps under stochastic volatility, and obtain two close-form exact solutions for the

price of forward-start variance swaps based on two different definitions of realized

variance. Secondly, this study also contributes to the literature in that the new

approach presented in this chapter is applicable to the both definitions of realized

variance. It actually handles the pricing of different definitions of realized variance

in a highly unified and consistent way, which can been viewed as an advantage

over those in the literature (e.g., Broadie & Jain 2008b; Zhu & Lian 2009d).

Thirdly, with closed-form exact solutions obtained from the newly-developed ap-

proach available to us, we can easily investigate some important properties of

variance swaps, by examining the effect of the forward-start feature on the values

of variance swaps, discussing the continuously sampling approximation and the

effect of sampling frequency to the prices of variance swaps, and comparing the
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difference between the two alternative definitions of discretely-sampled realized

variance, i.e., the realized variance defined as the sum of log-return of the under-

lying asset or defined as the sum of relative percentage return of the underlying

asset.

The rest of this chapter is organized into four sections. In Section 3.2, a

detailed description of forward-start variance swaps is first provided, followed by

our solution approach and analytical formulae for the variance swaps. In Section

3.3, discussions about the forward-start feature, effects of sampling frequency

and other properties are carried out. Some numerical examples are also given,

demonstrating the correctness of our solutions. In Section 3.4, a brief summary

is provided.

3.2 Our Solution Approach

In this Chapter, we still use the Heston (1993) stochastic volatility model to

describe the dynamics of the underlying asset. To price forward-start variance

swaps with discretely-sampled realized variance, we explore a new approach by

developing a forward characteristic function first and then using it to obtain

closed-form exact solutions.

In the Heston (1993) model, the underlying asset St and its stochastic in-

stantaneous variance Vt are modeled by the following diffusion processes, in the

risk-neutral probability measure Q:

 dSt = rStdt+
√
VtStdB̃

S
t

dVt = κQ(θQ − Vt)dt+ σV
√
VtdB̃

V
t

(3.1)

3.2.1 Forward-Start Variance Swaps

The most difference between a forward-start variance swap and a normally-defined

variance swap discussed in Chapter 2 is that the starting point Ts of the total
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sampling period [Ts, Te] (0 < Ts < Te), over which the realized variance is dis-

cretely sampled, is not the current time 0, when the forward-start variance swap

is initially entered. We refer to [Ts, Te] as the total sampling period, in compar-

ison with the sampling period that is used to define the time span between two

sampling points within the total sampling period.

When the starting point of the sampling period Ts = 0, that is the case that

has been discussed in Chapter 2 (also see Broadie & Jain (2008b) and Zhu &

Lian (2009d)) already and the variance swap will be referred to as a normally-

defined variance swap hereafter. If Ts > 0, a variance swap has a forward-start

feature and can thus be called a forward-start variance swap. This would add

an additional dimension of complexity, in comparison with the case with Ts = 0,

because additional unknowns of STs > 0 and σTs > 0 will be present in the

calculation of the realized variance defined over a future time period [Ts, Te]. The

additional complexity has to be dealt with because most of the actually traded

variance swaps in practice all into the category of Ts > 0. For example, all

variance futures contracts listed in CBOE are forward-start variance swaps∗.

As the normally-defined variance swaps, some typical formulae for the measure

of realized variance, RV (Ts, N, Te), are

RVd1(Ts, N, Te) =
AF

N

N∑
i=1

(
Sti − Sti−1

Sti−1

)2

× 1002 (3.2)

or

RVd2(Ts, N, Te) =
AF

N

N∑
i=1

log2
(
Sti

Sti−1

)
× 1002 (3.3)

where ti, i = 0...N , is the i-th observation time of the realized variance in the

pre-specified time period [Ts, Te], and t0 = Ts, tN = Te. Sti is the closing price

of the underlying asset at the i -th observation time ti, and there are altogether

N observations. AF is the annualized factor converting this expression to an

annualized variance. For most of the traded variance swaps, or even over-the-

∗http://cfe.cboe.com/education/VT IUGRUG.aspx
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counter ones, the sampling period is usually constant to make the calculation of

the realized variance easier. Therefore, we also assume equally-spaced discrete

observations in the period [Ts, Te] as well. As a result, the annualized factor is of

a simple expression AF = 1
∆t

= N
Te−Ts

. Clearly, with these notations, normally-

defined variance swaps would be those with their realized variance defined as

either RVd1(0, N, Te) or RVd2(0, N, Te), while forward-start variance swaps are just

those with their realized variance defined as RVd1(Ts, N, Te) or RVd2(Ts, N, Te),

assuming the current time is 0 and Ts > 0. Hereafter, definitions RVd1(Ts, N, Te)

and RVd2(Ts, N, Te) are referred to as the actual-return realized variance and the

log-return realized variance, respectively. For more details about the variance

swaps and variance futures, readers are referred to the web sites of CBOE† or

NYSE Euronext‡.

When the sampling frequency increases to infinity, the discretely-sampled real-

ized variance approaches the continuously-sampled realized variance, RVc(Ts, Te),

i.e.,

RVc(Ts, Te) = lim
N→∞

RVd1(Ts, N, Te) = lim
N→∞

RVd2(Ts, N, Te) =
1

Te − Ts

∫ Te

Ts

σ2
t dt×1002

(3.4)

where σt is the so-called instantaneous volatility of the underlying, a concept that

is associated with any stochastic volatility model.

In the risk-neutral world, the fair variance delivery price of a variance swap

at time 0, when the contract is initially entered, is the expectation value of

the future realized variance, i.e., Kvar = EQ
0 [RV (Ts, N, Te)]. In this chapter,

we shall develop a more general and versatile approach to obtain closed-form

solutions for the prices of forward-start variance swap with the realized variance

defined by RVd1(Ts, N, Te) and RVd2(Ts, N, Te), respectively, in a unified way, as

demonstrated in the next section.

†http://cfe.cboe.com/Products/Spec VT.aspx
‡http://www.euronext.com/fic/000/010/990/109901.ppt
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3.2.2 Forward Characteristic Function

As the normally-defined variance swaps discussed in Chapter 2, the value of a

forward-start variance swap at time 0 is the expected present value of the future

payoff. This should be zero at the beginning of the contract since there is no

cost to enter into a swap. Therefore, the fair variance delivery price can be easily

defined as Kvar = EQ
0 [RV (Ts, N, Te)], after setting the initial value of variance

swaps to be zero. The variance swap valuation problem is therefore reduced to

calculating the expectation value of the future realized variance in the risk-neutral

world.

Pricing formula for variance swaps with the realized variance defined by

RVd1(0, N, Te) has been presented by Zhu & Lian (2009d), and pricing formu-

lae for variance swaps with the realized variance defined by RVd2(0, N, Te) have

been respectively presented by Zhu & Lian (2009f) and Broadie & Jain (2008b).

Here in this chapter, we shall develop a more general and versatile approach to

obtain closed-form solutions for the prices of forward-start variance swap with

the realized variance defined by RVd1(Ts, N, Te) and RVd2(Ts, N, Te), respectively,

in a unified way, as demonstrated in the next section.

To pave the way of obtaining analytical solutions for the pricing of forward-

start variance swaps, we demonstrate in this subsection the derivation of the

so-called forward characteristic function.

Assuming the current time is 0, we let yt,T = logST − logSt (t < T ) and define

the forward characteristic function f(ϕ; t, T, V0) of the stochastic variable yt,T as

the Fourier transform of the probability density function of yt,T , i.e.,

f(ϕ; t, T, V0) = EQ[eϕyt,T |y0, V0], t < T (3.5)

It should be noted that the imaginary unit j =
√
−1 has been deliberately ab-

sorbed into the parameter ϕ of the Fourier transform. In some references (e.g.,

Cont & Tankov 2004), the Fourier transform of the probability density function
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of yt,T without the explicit use of j is called a moment generating function. Here,

for simplicity, we shall still call it the forward characteristic function because the

explicit exposition of j does not alter the essence of this function at all. What’s

more important is to search for an explicit and analytical expression of this expec-

tation, which forms the core of this chapter as shown in the following proposition:

Proposition 3 If the underlying asset follows the dynamics (3.1), then the for-

ward characteristic function of the stochastic variable yt,T = logST−logSt (t < T )

is given by:

f(ϕ; t, T, V0) = eC(ϕ,T−t)g(D(ϕ, T − t); t, V0) (3.6)

where 

C(ϕ, τ) = rϕτ +
κQθQ

σ2
V

[(a+ b)τ − 2 ln(
1− gebτ

1− g
)]

D(ϕ, τ) =
a+ b

σ2
V

1− ebτ

1− gebτ

a = κQ − ρσV ϕ, b =
√
a2 + σ2

V (ϕ− ϕ2), g =
a+ b

a− b

(3.7)

and

g(ϕ; τ, V ) = exp

(
−2κθ

σ2
V

ln (1 +
σ2
V ϕ

2κQ
(e−κQτ − 1)) +

2κQϕ

σ2
V ϕ+ (2κQ − σ2

V ϕ)e
κQτ

V

)
(3.8)

The proof of this proposition is left in Appendix C.

Several unique features of this function could be remarked. Firstly, com-

parison with the normally defined characteristic functions of stochastic variable

logST (such as the one presented in Heston (1993)), this expression of forward

characteristic function is in a more general form which covers the normal one

as a special case; by settling t = 0 in the Eq. (3.6), the forward character-

istic function degenerates to the normally defined one (by the difference of a

factor eϕ logS0). For example, the characteristic function of stochastic variable

yT = logST , which was first presented by Heston (1993) as a useful tool to obtain



78 Chapter 3: Pricing Forward-Start Variance Swaps

closed-form solutions for options with stochastic volatility, can be easily found out

to be eϕ logS0f(ϕ; 0, T, V0), utilizing the Proposition 3. Secondly, even though the

forward characteristic function appears to be a simple extension to the normally

defined characteristic function, the derivation procedure of the former is far more

involving than that of the latter. We had to analytically solve two associated

PDEs successively in two steps for the former case, whereas only first step of

these two steps was needed to obtain the latter. Thirdly, it is important to notice

that the key step in pricing a forward-start variance swap is the calculation of

expectation of payoff function depending on two stochastic variables, St and ST ,

and thus the forward characteristic function presented here can be used to price

derivatives whose payoff function depends on two stochastic variables, a case that

cannot be handled by the normally defined characteristic function. Finally, the

forward characteristic function no longer depends on the stock price but only on

the instantaneous variance and the time to maturity. This is because of a very

special feature of the Heston model, in which the stochastic process of Vt is inde-

pendent of S. As a result, the quotient of ST

St
, which is used in the calculation of

the EQ
0 [RVd1(Ts, N, Te)] and E

Q
0 [RVd2(Ts, N, Te)], is independent of the price St.

3.2.3 Pricing Forward-Start Variance Swaps

With the availability of forward characteristic function, we now proceed to pric-

ing a forward-start variance swap. As discussed above, the fair strike price of a

variance swap can be defined as Kvar = E0[RV (Ts, N, Te)], once the detailed defi-

nition of the realized variance, RV (Ts, N, Te), is specified. In this chapter, we will

concentrate on the two alternative definitions of realized variance, RVd1(Ts, N, Te)

specified in Eq. (3.2) and RVd2(Ts, N, Te) specified in Eq. (3.3).

We first illustrate our approach to obtain the closed-form analytical solution

for fair strike price of a variance swap by taking RVd1(Ts, N, Te) as the definition

of the realized variance. For the case of RVd2(Ts, N, Te) the solution procedure is



Chapter 3: Pricing Forward-Start Variance Swaps 79

very similar and the corresponding pricing formula can be easily obtained with

little effort, demonstrating the versatility of this approach.

As illustrated in Eq. (3.2), the expected value of realized variance in the

risk-neutral world is defined as:

Kvar = EQ
0 [RVd1(Ts, N, Te)] = EQ

0 [
1

N∆t

N∑
i=1

(
Sti − Sti−1

Sti−1

)2

]× 1002

=
1

N∆t

N∑
i=1

EQ
0

[(
Sti − Sti−1

Sti−1

)2
]
× 1002

(3.9)

where N is a finite number denoting the total sampling times of the swap con-

tract. So the problem of pricing variance swap is reduced to calculating the N

expectations in the form of:

EQ
0

[(
Sti − Sti−1

Sti−1

)2
]

(3.10)

for some fixed equal time interval ∆t and N different tenors ti = Ts + i∆t (i =

1, · · · , N). Once the details of the variance swaps are specified (and hence a

specific discretization along the time axis [Ts, Te] is made), all the sampling points

ti (i = 1, · · · , N) are fixed points and hence can be regarded as known constants.

For each i (i = 1, · · · , N), ti and ti−1 are two constants future time points

(assuming the current time is 0), and hence Sti and Sti−1
in the expression(

Sti−Sti−1

Sti−1

)2
are two stochastic variables. This is a pricing problem whose payoff

depends on two stochastic variables and we need to use the forward characteristic

function presented in Proposition 3, i.e.,

EQ
0 [(

Sti

Sti−1

− 1)2] = EQ
0 [(e

2yti−1,ti − 2eyti−1,ti + 1)]

= f(2; ti−1, ti, V0)− 2f(1; ti−1, ti, V0) + 1

(3.11)

where yti−1,ti = logSti − logSti−1
and function f(ϕ; ti−1, ti, V0) is given in Eq.

(3.6).
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Following this procedure, the summation in Eq. (3.9) can now be carried out

all the way with i ranging from 1 to N , and we finally obtain the fair strike price

for the variance swap in the form of:

Kvar = EQ
0 [RVd1(Ts, N, Te)] =

1

Te − Ts

N∑
i=1

[f(2; ti−1, ti, V0)− 2f(1; ti−1, ti, V0) + 1]× 1002

(3.12)

Eq. (3.12) is a simple and closed-form solution for the fair strike price of a

discretely-sampled forward-start variance swap. To a certain extent, it is even

simpler than that of the classic Black-Scholes formula, because the latter still in-

volves the calculation of the cumulative distribution function, which is an integral

of a smooth real-value function, whereas there is no need to calculate any inte-

gral at all in our final solution! Furthermore, the whole derivation procedure as

shown above is much simpler than those in literature. For example, Zhu & Lian

(2009d) and Zhu & Lian (2009d) obtained the final solutions of variance swaps

by painfully solving two associated PDEs, which correspond to the two steps in-

volved in the current approach. Broadie & Jain (2008b)’s approach appears to

have involved an even terribly long and tedious derivation.

More importantly, the derivation procedure presented here is so versatile that

it can be analogically applied to the case of RVd2(Ts, N, Te) with hardly any addi-

tion effort. The key step of obtaining a closed-form pricing formula for variance

swaps in this case is the calculations of the N expectations in the form of:

EQ
0

[(
log

Sti

Sti−1

)2
]

(3.13)

for some fixed equal time interval ∆t and N different sampling points ti = Ts+i∆t

(i = 1, · · · , N). Again, all the sampling points ti (i = 1, · · · , N) are fixed points

and hence can be regarded as known constants, once the details of the variance

swaps are specified.

For each i (i = 1, · · · , N), this expectation can be analytically carried out by
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utilizing the forward characteristic function, i.e.,

EQ
0

[(
log

Sti

Sti−1

)2
]
= EQ

0 [(yti−1,ti)
2] = f (2)(0; ti−1, ti, V0) (3.14)

where f (2)(0; ti−1, ti, V0) = ∂2f(ϕ;ti−1,ti,V0)
∂ϕ2 |ϕ=0, i.e., the second order derivative of

the characteristic function given in Eq. (3.6) with ϕ = 0, which can be easily

computed, using any symbolic calculation package, such as Maple.

In this way, the fair value of a variance swap is equal to the sum of the N

expectations and hence can be given in the form of:

Kvar = EQ
0 [RVd2(Ts, N, Te)] =

1

Te − Ts

N∑
i=1

f (2)(0; ti−1, ti, V0)× 1002 (3.15)

Now, we have succeeded in obtaining the two solutions, Eq. (3.12) and Eq.

(3.15), for the pricing of forward-start variance swaps based on a stochastic volatil-

ity model (Heston model). It should be remarked that both formulae are obtained

in a neat and closed form; they are actually simpler than the Black-Scholes for-

mula, in the sense that there is no need of calculating any integral at all. By

developing the forward characteristic function, the whole derivation procedures

of the two formulae become very simple and easy. An even more noticeable advan-

tage of this approach is that it unifies the pricing procedures of the two definitions

of realized variance associated within the variance swaps, whereas the approach

in Broadie & Jain (2008b) is so limited that it is incapable of dealing with the

definition of RVd1(Ts, N, Te). It should be noted the main difficulty associated

with our approach lies in the derivation of the forward characteristic function,

which involves two steps of solving PDEs in order to analytically carry out the

calculation for the expectation. After obtaining the useful forward characteristic

function, the rest calculations of variance swaps are straightforward. In the next

section, through some examples, we demonstrate some great benefits of using

these analytic formulae for the price of forward-start variance swaps.
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3.3 Numerical Results and Discussions

In this section, we first present some numerical examples to illustrate the cor-

rectness of our closed-form exact solutions by comparing with Monte Carlo (MC)

simulations. We then show some comparisons with the previous continuous sam-

pling model to help readers to understand the improvement in accuracy with our

exact solutions. We shall also discuss the effects of alternative measures of real-

ized variance and the effects of forward-start features imbedded in forward-start

variance swaps, utilizing the newly found analytical solutions.

To achieve these purposes, we use the following parameters (unless otherwise

stated) to specify the underlying process: V0 = (20%)2, θQ = (14.83%)2, κQ =

11.35, ρ = −0.64, σV = 0.618, r = 10% in this section. As for the MC simulations,

we took asset price S0 = 1 and the number of the paths N = 200, 000 for all the

simulation results presented here. Following the definition of 12-month variance

futures in CBOE, we choose the total sampling period of realized variance to be

12 months in future, [Ts, Ts + 12/12], in the calculation of forward-start variance

swaps, with Ts being specified later. Following the quotation rules of variance

futures in CBOE, all the numerical values of variance swaps presented in this

section are quoted in terms of variance points (the square of volatility points),

which are defined as realized variance multiplied by 10,000.

3.3.1 Continuous Sampling Approximation

Before performing the Monte Carlo simulations, we also worked out, for the

comparison purpose, the corresponding pricing formula based on the continuous

sampling approximation.

In the literature, many researchers (i.e., Swishchuk 2004) have proposed a

continuous sampling approximation for realized variance to price the normally de-

fined variance swaps, based on Heston model. In Chapter 2, we have pointed out

that adopting such a continuous sampling approximation for a normally defined
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variance swap with small sampling frequencies or long tenor can result in sig-

nificant pricing errors, comparing with the exact value of the discretely-sampled

variance swap. For the case of forward-start variance swaps, a similar approxi-

mation pricing formula can also be obtained by carrying out the expectation of

the continuously-sampled realized variance, i.e.,

EQ
0 [RVc(Ts, Te)] = EQ

0 [
1

Te − Ts

∫ Te

Ts

Vtdt× 1002]

= [V0(
e−κQTs − e−κQTe

κQ(Te − Ts)
) + θQ(1− e−κQTs − e−κQTe

κQ(Te − Ts)
)]× 1002

(3.16)

where Vt is the instantaneous variance (which is the square of the instantaneous

volatility defined in our Eq. (3.4), i.e., σ2
t = Vt). This formula is very simple and

can be easily implemented in calculating the numerical value of EQ
0 [RVc(Ts, Te)].

However, similar to the question raised by Zhu & Lian (2009d) for the normally

defined variance swaps, there is also a validity issue for this formula, since it is

nevertheless an approximation of the true value of the actually traded variance

swaps where the sampling time, no matter how small, is always discrete. A

naturally raised question is how close the results of the approximation and the

true values are. One would also like to know when the approximation formula

starts to yield large errors when the sampling time is large enough. To address

this question, we compare the numerical results obtained from this approximation

formula, the newly developed analytical formulae for discretely sampled realized

variance and the Monte Carlo simulations.

3.3.2 Monte Carlo Simulations

Our MC simulations are based on a simple Euler-Maruyama discretization for

the Heston model St = St−1 + rSt−1∆t+
√

|Vt−1|St−1

√
∆tW 1

t

Vt = Vt−1 + κQ(θQ − Vt−1)∆t+ σ
√
|Vt−1|

√
∆t(ρW 1

t +
√
1− ρ2W 2

t )
(3.17)
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The discrete model with actual−return variance
The discrete model with log−return variance
The continuous model
The MC simulation with actual−return variance
The MC simulation with log−return variance

Figure 3.1: Calculated fair strike values as a function of sampling frequency

where W 1
t and W 2

t are two independent standard normal random variables.

Shown in Fig. 3.1, as well as in Table 3.1, are the comparison of five sets of

data for the strike price of the variance swap. These data were obtained from

the numerical calculation of Eq. (3.12) and Eq. (3.15), the MC simulations

(3.17) for the corresponding two definitions, and the numerical calculation of

the continuously-sampled realized variance Eq. (3.16), respectively. The starting

time of the sampling period is set to be 3 months (i.e., Ts = 1/3) in the calculation

of the forward-start variance swaps. One can clearly observe that the results

from our exact solution perfectly match the results from the MC simulations. For

example, for the forward-start variance swaps with actual-return realized variance

RVd1(Ts, N, Te), the relative difference between numerical results obtained from

the Eq. (3.12) and the MC simulations is less than 0.1% already, when the number

of paths reaches 200,000 in MC simulations. Such a relative difference is further

reduced when the number of paths is increased; demonstrating the convergence

of the MC simulations towards our exact solution and hence to a certain extent

providing a verification of the correctness of our exact solutions.
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Table 3.1: The numerical results of discrete model, continuous model and MC
simulations

Sampling Frequency Monthly(N=12) Weekly(N=52) Daily(N=252)
RVd1(Ts, N, Te) 227.9 222.2 221.1
RVd2(Ts, N, Te) 230.3 223.2 221.4
RVc(Ts, Te) 220.9 220.9 220.9

MC for RVd1(Ts, N, Te) 227.2 222.9 221.5
MC for RVd2(Ts, N, Te) 230.0 223.8 221.2
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The discrete model with actual−return variance (weekly sampling)
The discrete model with log−return variance (weekly sampling)
The continuous model

Figure 3.2: Calculated fair strike values as a function of the starting time of
sampling while the total sampling period is held as a constant, Te − Ts = 1

3.3.3 The Effect of Forward Start

Although most practically traded variance swaps (e.g., variance futures) have

imbedded the forward-start feature, however only few papers in the literature

have considered this important feature. With the explicit closed-form solutions

available to us, it is interesting to investigate the effects of this forward-start

feature on the pricing of variance swaps.

Plotted in Fig. 3.2 are three sets of data, which represent the fair price of vari-

ance swaps calculated from Eq. (3.12), Eq. (3.15) and Eq. (3.16), respectively,

with the starting time of sampling period, Ts, varying from 0 to 6 months while
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the total sampling period Te − Ts is held as a constant. Of course, this means

that the total tenor of a contract, Te, is varying too. When the starting time

of sampling is equal to 0, the variance swap degenerates to a normally defined

variance swap. It can be observed that the price of variance swaps decreases

when the starting time of sampling increases, showing that the forward-start fea-

ture imbedded in variance swaps may significantly alter the the value of variance

swaps. For example, comparing with the normally defined variance swaps with

Ts = 0, the value of a swap contract with starting time of sampling being 6

months in future (i.e., Ts = 6/12) have decreased by 7.6%! One can also observe

that as the sampling window of a constant width Te − Ts is shifted along with

the time axis when the start of the sampling Ts is increased, the price of variance

swaps tends to approach the long-term mean of variance, which is set to be 220

variance points in this example (i.e., θQ × 1002). This asymptotic trend of the

fair strike value towards the long-term mean of variance can be explained by a

close examination of the continuous case Eq. (3.16), in which the final swap price

can be viewed as a weighted average of current instantaneous variance V0 and

long-term mean of variance θQ, with the weights being WV0 = e−κQTs−e−κQTe

κQ(Te−Ts)
and

WθQ = 1−WV0 , respectively. As the starting time of sampling increases, the spot

variance, V0, is weighted less and less on the values of variance swaps, while the

long-term mean of variance, θQ, is gaining more weights. In the discretely sam-

pling cases, one may not be able to rewrite the Eq. (3.12) and Eq. (3.15) in terms

of two weight functions WV0 and WθQ that are totally independent of the V0 and

θQ. But the trend of V0 and θQ being weighted by two functions of two almost

monotonicity but opposite rate of change (one increasing and one decreasing) can

certainly been seen from Fig. 3.2, in which the discretely-sampled realized vari-

ance eventually approaches a constant, that is greater than the long-term mean

of variance, when the start of the sampling Ts is increased.

We have also examined the case when the terminating time of sampling is held

as a constant, while the starting time of sampling is increased. Of course, the
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The discrete model with actual−return variance (weekly sampling)
The discrete model with log−return variance (weekly sampling)
The continuous model

Figure 3.3: Calculated fair strike values as a function of the starting time of
sampling while the terminating time of sampling is held as a constant, Te = 1

width of the sampling window Te − Ts now varies with the change of the start of

the sampling Ts. But, the trend displayed in Fig. 3.3 appears to be very similar

to that displayed in Fig. 3.2. Therefore, we can conclude that if the start of the

sampling time is too far away from the current time, one may use the long-term

mean of variance as a good approximation for the expectation of the realized

variance, regardless of the width of the sampling window Te − Ts being a fixed

constant or not.

3.3.4 The Effect of Mean-reverting Speed

κQ is the parameter controlling the speed of mean reversion from the spot vari-

ance. Again, using the continuous sampling case, one can easily understand how

κQ controls the speed of mean reversion towards the long-term mean of variance.

From Eq. (3.16), we can see that WV0 is a decreasing function of the parameter

κQ, which means a greater value of κQ reduces the weight of V0 on the total value

of variance swap, while increasing the weight of θQ at the same time. Therefore,

a higher value of κQ means the variance Vt approaches to the long-term mean of
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Figure 3.4: Calculated fair strike values as a function of the starting time of
sampling while the total sampling period is held as a constant, Te − Ts = 1

variance θQ more quickly, and as a result, θQ naturally gains more weight on the

value of the variance swap.

Demonstrated in Fig. 3.4 is the effect of κ on the prices of variance swaps.

When κ is specified to be 11.35, the value of a 3-month forward-start variance

swap (Ts = 3/12) is 222 forRVd1(3/12, 52, 15/12) and 223 forRVd2(3/12, 52, 15/12),

respectively; whereas, when κQ is reduced to be 5 and other parameters are holden

the same, the value of a 3-month forward-start variance swap increases to be 231

and 232 for the two corresponding definitions of the realized variance. One should

also notice that the value of forward-start variance swap with a larger κQ value

is consistently lower than that with smaller κQ. This is because a larger κQ value

has made θQ being weighted much more than V0, although the former is specified

smaller than latter in this example, resulting a lower price of variance swap for

all the starting time that has been examined and displayed in Fig. 3.4. If the

specification of θQ and V0 is reversed, i.e., with θQ > V0, the prices of variance

swaps with different κQ values should be reversed too.
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3.3.5 The Effect of Realized-Variance Definitions

As mentioned above, the two definitions, RVd1(Ts, N, Te) and RVd2(Ts, N, Te),

have been alternatively used as the realized variance in the literature. With the

newly found closed-form formulae, Eq. (3.12) and Eq. (3.15), for the correspond-

ing two different definitions of realized variance available to us, we can make

a comparison of the price difference for two swap contracts being identical ex-

cept the payoff involving these two most frequently used definitions of realized

variance. Such a comparison should be very interesting, because intuitively the

realized variance defined by the actual-return variance, RVd1(Ts, N, Te), should

be a more straightforward definition with a direct financial interpretation than

the log-return realized variance, RVd2(Ts, N, Te). However, the latter seems to be

always more popular in practice, perhaps due to the mathematical tractability it

leads to. One naturally wonders if they would lead to quite difference prices if

other terms are otherwise identically given.

Fig. 3.2 displays the variance strike prices computed using the two definitions

of realized variance with weekly sampling, RVd1(Ts, N, Te) and RVd2(Ts, N, Te), as

a function of the starting time of sampling. The results show that the strike price

associated with an actual-return realized RVd1(Ts, N, Te) is consistently less than

that associated with the log-return realized variance variance RVd2(Ts, N, Te).

This finding serves, to a certain extent, as a confirmation of the conjecture raised

by Zhu & Lian (2009f) that variance swaps associated with the log-return real-

ized variance should have a higher strike price than those with the actual-return

variance realized variance in practice, even though our finding in this chapter

is based on the forward-start variance swaps and the conjecture then was made

for the normally defined variance swaps. This conjecture is also verified by Fig.

3.1, which displays the values of forward-start variance swaps as a function of

sampling frequency.

As shown in Fig. 3.1, there is a difference of 0.50% between the strike prices
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calculated with the two definitions of realized variance, for weekly sampling fre-

quency. The effect of discreteness decreases as sampling frequencies increases; the

strike prices obtained with two formulae for discretely-sampled variance swaps do

approach to that of the continuous-sampled variance swaps, as one would have

expected.

3.3.6 The Effect of Sampling Frequencies

In Fig. 3.1 and Fig. 3.2, we have also shown the numerical results obtained from

the continuous approximation, Eq. (3.16). From Fig. 3.1, one can clearly see that

the values of our discretely sampling model asymptotically approach the values of

the continuous approximation model when the sampling frequency increases; the

continuously-sampled realized variance (Eq. (3.4)) appears to be the limit of the

both discretely-sampled realized variance, Eq. (3.2) and Eq. (3.3), as ∆t→ 0. Of

course, one can theoretically prove that our solutions Eq. (3.12) and Eq. (3.15)

indeed approaches the formula (3.16) when the discrete sampling time approaches

zero. With the proof of this limit, our solution is once again verified as the correct

solution for the discrete sampling cases, taking the continuous sampling case as

a special case with the sampling interval shrinking down to zero.

On the other hand, with the daily sampling, there is a relative difference of

0.11% between the results of the actual-return variance model (RVd1(4/12, 252, 16/12))

and the continuous model (RVc(4/12, 16/12)), and a relative difference of 0.22%

between the results of the log-return variance model (RVd2(4/12, 252, 16/12)) and

the continuous model (RVc(4/12, 16/12)). When the sampling frequency becomes

weekly sampling (52 sampling times/years), these corresponding relative differ-

ences have increased to 0.59% and 1.09%, respectively. If the long-term variance

is reduced to θQ = 0.01 while the other parameters are held the same, those

relative differences would be further enlarged. With a relative difference of the

order of one percent, adopting the continuous model as an approximation to price
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Table 3.2: The sensitivity of strike price of variance swap (daily sampling)

Name Value Sensitivity
κQ 11.35 -0.066%
θQ 0.022 0.85%
σV 0.618 -0.0015%
V0 0.04 0.15%

variance swaps with weekly sampling may not be acceptable already, as Little &

Pant (2001) has already concluded that an error level reaching more than 0.5% is

“fairly large” so that adopting the continuous model may not be so justifiable any

more. Of course, when the sampling frequency is further reduced, the difference

between the continuous model and the discrete model will exponentially grow.

With the newly-found analytic solutions, all the hedging ratios of a variance

swap can also be analytically derived by taking partial derivatives against various

parameters in the model, which are omitted here since these partial derivatives

can be readily calculated using symbolic calculation packages. To demonstrate

how sensitive the strike price is to the change of the key parameters in the model,

we performed some sensitivity tests for the example presented in this section.

Shown in Table 2 are the results of the percentage change of the strike price when

a model parameter is given a 1% change from its base value used in the example

presented in this Section. Clearly, the strike price of a variance swap appears to

be most sensible to the long-term mean variance θQ for the case studied. On the

other hand, the spot variance V0 may also have significant influence in terms of

the sensitivity of the strike price.

As shown in Table 3.2, the effect of the “vol. of vol.”, σV , on the price of a

discretely-sampled variance swap appears to be very small, if we are confined to

the case of daily or even weekly sampling. However, the “vol. of vol.” neverthe-

less remains in our pricing formulae Eq. (3.12) and Eq. (3.15). This is no longer

the case in the continuous sampling approximation, in which σV has completely

disappeared! This can be clearly seen from our Eq. (3.16) in Section 3.1 and
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papers published before by other authors (Howison et al. 2004; Swishchuk 2004;

Javaheri et al. 2004; Elliott et al. 2007). This is an interesting as well as amazing

observation as it implies that making a continuous approximation in terms of

sampling period totally negates the initial motivation of adopting a stochastic

volatility model as the final pricing formulae do not depend of the fluctuation of

the assumed stochastic volatility anyway; one might as well just use a determin-

istic local volatility function to begin with. This observation of course further

strengthens the case we present here, i.e., abandoning the continuous approxi-

mation and developing closed-form exact solutions for discrete sampling cases is

the only consistent approach to adopt in dealing with discretely-sampled variance

swaps.

3.4 Conclusion

In this chapter, a substantial progress has been made in the field of pricing

forward-start variance swaps, by developing a new approach that possesses some

great advantages over those in the literature. We have applied the Heston stochas-

tic volatility model to describe the underlying asset price and its volatility, and

obtained two closed-form exact solutions for discretely-sampled variance swaps

with the different popularly-used definitions of realized variance. It has been

shown how to handle the pricing of different definitions of realized variance in a

highly unified way, which can been seen as a great advantage over those in liter-

ature. By taking the forward-start variance swaps into consideration, this study

has also filled a gap in the field of variance swaps pricing. Using the newly-found

solutions, we have investigated some important properties of variance swaps, by

examining the effect of forward-start feature and the mean-reversion speed on the

values of variance swaps, discussing the continuously sampling approximation and

the effect of sampling frequency to the prices of variance swaps, and comparing

the difference between the two alternative definitions of discretely-sampled real-
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ized variance.



Chapter 4

Pricing Variance Swaps with

Stochastic Volatility and Random

Jumps

4.1 Introduction

In the previous two chapters, we have demonstrated how to analytically price

discretely-sampled variance swaps (with or without forward-start feature), under

the Heston (1993) stochastic volatility model. In this chapter, we further extend

the approach presented in Chapter 3 to a general framework that allows for

stochastic volatility, random jumps in return distribution and random jumps in

variance process, to obtain closed-form exact solutions for the two popularly-used

discretely-sampled realized variance.

This general specification, which will be refereed to as the SVJJ model here-

after, is general enough to cover most of the already-known alternative models

as its special cases, including (i) the Heston stochastic volatility (SV) model, (ii)

the stochastic volatility with jumps in asset return (SVJ) model, (iii) the stochas-

tic volatility model with jumps in variance process (SVVJ) model, and (iv) the

stochastic volatility, random jumps in both return distribution and variance pro-

94
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cess (SVJJ) model. The Heston SV model has the advantage of non-negative

variance, easily capturing volatility smile as well as the mean-reverting feature

observed in options market. Bates (1996) and Bakshi et al. (1997) extended the

SV model to the SVJ model, which was found to be extremely useful in improv-

ing the performance of pricing short-term options. However, researchers found

strong evidence for model mis-specification in the SVJ model framework, and

hence called for further extension models, such as adding jumps in the variance

process. The further inclusion of jumps in the variance process leads to the so-

called SVVJ model and the SVJJ model (see, e.g., Duffie et al. 2000; Pan 2002;

Eraker 2004).

There are several reasons that we believe such an extension of finding the most

general closed-form solution to cover all four different stochastic volatility models

will benefit the research community as well as market practitioners. Firstly, the

newly-found analytic solutions would cover a wide range of stochastic volatility,

with or without jumps being included in either the return distribution or the

variance process or even both. Since such closed-form solutions were not avail-

able for the SVJJ model in the literature, this study fills a gap that has been in

the field of pricing variance swaps. Secondly, this study also demonstrates that

the versatility of the approach proposed by Zhu & Lian (2009d), as it can also

be applied to price variance swaps under the SVJJ model, dealing with the both

different definitions of realized variance in a highly unified way. Our approach

has a clear advantage over Broadie & Jain (2008b)’s approach, which is primarily

based on integrating the underlying stochastic processes directly and it is not

possible to be extended to the SVJJ model. Even under the SV or SVJ model,

their approach could only be applied when the realized variance is defined as the

average of the squared log return of the underlying asset, leaving the case of the

realized variance being defined as the average of the squared relative percent-

age increment of the underlying price unsolvable. Thirdly, having worked out

the closed-form exact solutions for the most general SVJJ model enables us to
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not only carry out some cross-model and cross-payoff comparisons for discretely-

sampled variance swaps, but also examine some important properties such as the

effect of the sampling periods and ultimately the accuracy of the extreme case

when the continuously-sampling approximation is adopted as an alternative of

pricing discretely-sampled variance swaps.

The rest of this chapter is organized into four sections. In Section 4.2, a de-

tailed description of variance swaps is first provided, followed by the discussion

of the SVJJ model. We then present our solution approach and analytical formu-

lae for the discretely-sampled variance swaps under the SVJJ model. In Section

4.3, utilizing the newly-discovered analytical formulae, we discuss the effect of

jumps on the prices of variance swaps as well as the effects of sampling frequency

and other properties. Some numerical examples are also given in this section,

demonstrating the correctness of our solutions. In Section 4.4, a brief summary

is provided.

4.2 Our Solution Approach

In this section, we use the framework of stochastic volatility with jump diffusions

to describe the dynamics of the underlying asset. This general pricing framework

that leads to the SVJJ model takes all SV, SVJ and SVVJ as special cases. Based

on this general model, we present our approach to obtain two closed-form exact

solutions for the pricing of variance swaps for the two definitions of discretely-

sampled realized variance.

The definitions of variance swaps are the same as those discussed in Section

3.2.1. Specifically, we still price forward-start variance swaps with discrete sam-

pling, for the actual-return realized variance RVd1(Ts, N, Te) and the log-return

realized variance RVd2(Ts, N, Te). In the risk-neutral world, the value of a vari-

ance swap at time 0 is the expected present value of the future payoff. This

should be zero at the beginning of the contract since there is no cost to enter
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into a swap. Therefore, the fair variance delivery price can be easily defined as

Kvar = EQ
0 [RV (Ts, N, Te)], after setting the initial value of variance swaps to be

zero. The variance swap valuation problem is therefore reduced to calculating

the expectation value of the realized variance in the risk-neutral world.

4.2.1 Affine Model Specification

Our general analysis model in this chapter incorporates stochastic volatility char-

acteristic and simultaneous jumps in asset price and volatility process. This gen-

eral model was initially proposed by Duffie et al. (2000). Under the risk-neutral

probability measure Q, the underlying asset, denoted by St, is assumed to follow

the process


d logSt = (r − µQ − 1

2
Vt)dt+

√
VtdW

S
t (Q) + d

Nt(Q)∑
n=1

ZS
n (Q)


dVt = κQ(θQ − Vt)dt+ σV

√
VtdW

V
t (Q) + d

Nt(Q)∑
n=1

ZV
n (Q)

 (4.1)

where:

rt is the constant spot interest rate;

V is the diffusion component of the variance of the underlying asset dynamics

(conditional on no jumps occurring);

dW S
t (Q) and dW V

t (Q) are two standard Brownian motions correlated with E[dW S
t , dW

V
t ] =

ρdt;

κQ, θQ and σV are respectively the mean-reverting speed parameter, long-term

mean, and variance coefficient of the diffusion Vt;

Nt is the independent Poisson process with intensity λ, that is, Pr{Nt+dt −Nt =

1} = λdt and Pr{Nt+dt −Nt = 0} = 1− λdt. The jumps happen simultaneously

in underlying dynamics St and variance process Vt;

The jump sizes are assumed to be ZV
n ∼ exp(µV ), and Z

S
n |ZV

n ∼ N(µQ
S+ρJZ

V
n , σ

2
S);

µ = λ(
exp(µQ

S+
1
2
σ2
S)

1−ρJµV
− 1) is the risk premium of the jump term in the process to
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compensate the jump component.

This general model, combining both the stochastic volatility and jump diffu-

sions characteristics, takes the four models (SV, SVJ, SVVJ and SVJJ) as special

cases according to the specification of jump components in Eq. (4.1).

As the complexity of these models progresses with jump terms being added to

various stochastic processes, so does the degree of difficulty involved in searching

for an analytic closed-form solution. This may explain why no one has taken the

SVJJ model into consideration in the pricing of discrete sampling variance swaps.

4.2.2 Pricing Variance Swaps

We now discuss our analytical solution approach for the determination of the

fair price of a variance swap, under the general SVJJ model, which incorporates

not only the Heston stochastic volatility but also random jumps in return and

volatility processes.

As discussed in Section 2.1, the fair strike price of a variance swap can been

defined as Kvar = E0[RV (Ts, N, Te)], after the details of the realized variance,

RV (Ts, N, Te), is specified. We shall illustrate our approach to obtain an an-

alytical closed-form solution for fair strike price of a variance swap by tak-

ing RVd1(Ts, N, Te) as the definition of the realized variance. For the case of

RVd2(Ts, N, Te) the solution procedure is very similar and the corresponding pric-

ing formula can be easily obtained with little effort, demonstrating the versatility

of this approach. If the realized variance in a variance swap contract is defined

in Eq. (3.2), the expected value of realized variance in the risk-neutral world is

then:

Kvar = EQ
0 [Vd1(Ts, N, Te)] = EQ

0

[
1

N∆t

N∑
i=1

(
Sti − Sti−1

Sti−1

)2
]
× 1002

=
1

N∆t

N∑
i=1

EQ
0

[(
Sti − Sti−1

Sti−1

)2
]
× 1002

(4.2)
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where N is a finite number denoting the total sampling times of the swap con-

tract. So the problem of pricing variance swap is reduced to calculating the N

expectations in the form of:

EQ
0

[(
Sti − Sti−1

Sti−1

)2
]

(4.3)

for some fixed equal time interval ∆t and N different tenors ti = Ts + i∆t (i =

1, · · · , N). Once the details of the variance swaps are specified (and hence a

specific discretization along the time axis [Ts, Te] is made), all the sampling points

ti (i = 1, · · · , N) are fixed points and hence can be regarded as known constants.

The main difficulty associated with this pricing problem is the fact that two

stochastic variables, Sti and Sti−1
, concurrently exist inside of the expectation

operator in Eq. (4.3) as they are the underlying prices at two future sampling

points ti and ti−1 for each i (i = 1, · · · , N) (assuming the current time is 0). Zhu

& Lian (2009d,f) have shown an approach to handle this difficulty by solving the

governing PDE in two steps, based on the special SV model. In this chapter, we

present a further extension of the approach shown in Chapter 3 to price discretely-

sampled variance swaps based on the SVJJ model, with the condensed and more

systematic approach of directly utilizing the forward characteristic function. This

approach is versatile enough to handle these two definitions in a highly unified

manner.

We first demonstrate the derivation of the forward characteristic function in

the SVJJ model. Assuming the current time is 0, we let yt,T = logST − logSt (t <

T ) and define the forward characteristic function f(ϕ; t, T, V0) of the stochastic

variable yt,T as the Fourier transform of the probability density function of yt,T ,

i.e.,

f(ϕ; t, T, V0) = EQ[eϕyt,T |y0, V0], t < T (4.4)

The imaginary unit j =
√
−1 has been deliberately absorbed into the parameter ϕ

of the Fourier transform. This forward characteristic function in the SVJJ model
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can be carried out explicitly as:

Proposition 4 If the underlying asset follows the dynamics (4.1), then the for-

ward characteristic function of the stochastic variable yt,T = logST−logSt (t < T )

is given by:

f(ϕ; t, T, V0) = eC(ϕ,T−t)+A(ϕ,T−t)g(D(ϕ, T − t); t, V0) (4.5)

where

C(ϕ, τ) = (r − µ)ϕτ +
κQθQ

σ2
V

[(a+ b)τ − 2 log(
1− gebτ

1− g
)]

D(ϕ, τ) =
a+ b

σ2
V

1− ebτ

1− gebτ

A(ϕ, τ) = λ

(
exp (µSϕ+

1

2
σ2
Sϕ

2)

)(
(a+ b)τ

c(a+ b) + µV ϕ̃
+

2µV ϕ̃

(ac+ µV ϕ̃)2 − (bc)2
logB

)
−λτ

B = 1 +
c(b− a)− µV ϕ̃

2bc
(e−bτ − 1)

a = κQ − ρσV ϕ, b =

√
a2 + σ2

V ϕ̃, g =
a+ b

a− b
, c = 1− ρJµV ϕ, ϕ̃ = ϕ(1− ϕ)

µ̄ = λ(
exp(µS + 1

2
σ2
S)

1− ρJµV

− 1)

(4.6)

and

g(ϕ; τ, V ) = eE(ϕ,τ)+F (ϕ,τ)+G(ϕ,τ)V (4.7)

where



E(ϕ, τ) =
2µV λ

2µV κQ − σ2
V

log

(
1 +

ϕ(σ2
V − 2µV κ

Q)(e−κQτ − 1)

2κQ(1− µV ϕ)

)
F (ϕ, τ) =

−2κQθQ

σ2
V

log

(
1 +

σ2
V ϕ

2κQ
(e−κQτ − 1)

)
G(ϕ, τ) = 2κQϕ

σ2
V ϕ+(2κQ−σ2

V ϕ)eκ
Qτ

The proof of this proposition is left in Appendix C.

A comparison with the characteristic function defined in Heston (1993) for

the stochastic variable logST shows that the forward characteristic function, Eq.
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(4.5), is of a more general form than that defined in Heston (1993). That is, the

latter is, up to a difference of a factor eϕ logS0 , a special case with t and λ in the

former being both set to zero. In other words, the characteristic function of the

stochastic variable yT = logST , which was first presented by Heston (1993) as a

useful tool to obtain closed-form solutions for options with stochastic volatility,

can be easily found to be eϕ logS0f(ϕ; 0, T, V0), utilizing Proposition 4.

Having worked out the needed forward characteristic function, Eq. (4.3) can

be written in terms of the spot variance V0 as

EQ
0 [(

Sti

Sti−1

− 1)2] = EQ
0 [(e

2yti−1,ti − 2eyti−1,ti + 1)]

= f(2; ti−1, ti, V0)− 2f(1; ti−1, ti, V0) + 1

(4.8)

where yti−1,ti = logSti − logSti−1
and function f(ϕ; ti−1, ti, V0) is given in Eq.

(4.5). Consequently, the summation in Eq. (4.2) can be carried out all the way

with i ranging from 1 to N , leading to the fair strike price for the variance swap

being worked out in terms of the spot variance V0 as

Kvar = EQ
0 [RVd1(Ts, N, Te)] =

1

Te − Ts

N∑
i=1

[f(2; ti−1, ti, V0)− 2f(1; ti−1, ti, V0) + 1]× 1002

(4.9)

Since the forward characteristic function is obtained for the most general SVJJ

model, Eq. (4.9) is a simple and closed-form solution for the fair strike price of

a discretely-sampled variance swap with the market volatility being calibrated

with any of the four different stochastic processes (with or without jumps). It

is amazing that with a much more complicated dynamics used to model both

the underlying and the variance than that adopted in the Black-Scholes model,

this formula is even simpler, to a certain extent, than that of the classic Black-

Scholes formula, because the latter still involves the calculation of the cumulative

distribution function, which is an integral of a smooth real-value function, whereas

there is no need to calculate any integral at all in our final solution!
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More importantly, the derivation procedure presented here is so versatile that

it can be analogically applied to the case of RVd2(Ts, N, Te) with hardly any

additional effort. The key step of obtaining a closed-form pricing formula for

variance swaps in this case is the calculation of the N expectations in the form

of:

EQ
0

[
log2

(
Sti

Sti−1

)]
(4.10)

for some fixed equal time interval ∆t and N different sampling points ti = Ts+i∆t

(i = 1, · · · , N). Again, all the sampling points ti (i = 1, · · · , N) are fixed points

and hence can be regarded as known constants, once the details of the variance

swaps are specified.

For each i (i = 1, · · · , N), this expectation can be analytically carried out by

utilizing the forward characteristic function, i.e.,

EQ
0

[
log2

(
Sti

Sti−1

)]
= EQ

0 [(yti−1,ti)
2] = f (2)(0; ti−1, ti, V0) (4.11)

where f (2)(0; ti−1, ti, V0) = ∂2f(ϕ;ti−1,ti,V0)
∂ϕ2 |ϕ=0, i.e., the second-order derivative of

the characteristic function given in Eq. (4.5) with ϕ = 0, which can be easily

computed, using any symbolic calculation package, such as Maple. Therefore, the

fair value of a variance swap with the payoff defined by RVd2(Ts, N, Te) can now

be easily worked out as:

Kvar = EQ
0 [RVd2(Ts, N, Te)] =

1

Te − Ts

N∑
i=1

f (2)(0; ti−1, ti, V0)× 1002 (4.12)

Again, this exact formula for a variance swap with the payoff defined byRVd2(Ts, N, Te)

is of amazing simplicity too as the one presented in Eq. (4.9) for a variance swap

with the payoff defined by RVd1(Ts, N, Te).

Before we demonstrate some great advantages of using these analytic formulae

to price variance swaps, through some examples in the next section, the subtle

difference between this approach and that shown in Zhu & Lian (2009d) should
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be pointed out. At the first glance, they appear to be different in form. However,

a scrutiny reveals that the two approaches in essence are the same. As shown in

the proof of the Proposition 4, working out the forward characteristic function

under the SVJJ model has actually involved two steps, with two corresponding

PDEs being successively solved. This procedure is just equivalent to the one

demonstrated in Zhu & Lian (2009d) by solving the governing PDEs directly in

two steps. In this sense, this study is an extension of the approach presented by

Zhu & Lian (2009d), demonstrating the high versatility of their approach which

is applicable not only for the SV model but also for the SVJJ model. By de-

veloping the forward characteristic function and hence integrating the two steps

into one proposition in this chapter, the whole derivation procedure of the two

formulae becomes simpler and easier. The pricing procedures of the two defi-

nitions of realized variance are also highly unified in this way. In contrast, the

approach presented by Broadie & Jain (2008b) is limited in the sense that it is in-

capable of dealing with the definition of RVd1(Ts, N, Te) based on the SV model.

Moreover, their approach appears to be more difficult in handling the pricing

problem of variance swaps based on the SVJJ model, no matter which defini-

tion of discretely-sampled realized variance, RVd1(Ts, N, Te) or RVd2(Ts, N, Te), is

adopted. It should be stressed the main difficulty associated with our approach

lies in the derivation of the forward characteristic function, which involves two

steps of solving PDEs in order to analytically carry out the calculation for the

expectation.

4.3 Numerical Results and Discussions

In this section, we firstly present some numerical examples for illustration pur-

poses. Although theoretically there would be no need to discuss the accuracy of a

closed-form exact solution and present numerical results, some comparisons with

the Monte Carlo (MC) simulations may give readers a sense of verification for the
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newly found solution. This is particularly so for some market practitioners who

are very used to MC simulations and would not trust analytical solutions that

may contain algebraic errors unless they have seen numerical evidence of such

a comparison. In addition, comparisons with the continuous sampling model

will also help readers to understand the improvement in accuracy with our ex-

act solution of discretely-sampled realized variance. We shall also discuss the

effects of alternative measures of realized variance in variance swaps, utilizing the

newly-found analytical solutions.

To achieve these purposes, we use the parameters (unless otherwise stated)

reported in Duffie et al. (2000) that were founded by minimizing the mean-squared

differences between models and the market S&P500 options prices on November

2, 1993, i.e.,
√
V0 = (8.7%), θQ = (8.94%)2, κQ = 3.46, σV = 0.14, ρ = −0.82,

λ = 0.47, µV = 0.05, µS = −0.086∗, σS = 0.0001, ρJ = −0.38, r = 3.19%. This

set of parameters was also adopted by Broadie & Jain (2008a). As for the MC

simulations, we took asset price S0 = 1 and the number of the paths N = 500, 000

for all the simulation results presented here. Following the quotation rules of

variance futures in CBOE, all the numerical values of variance swaps presented

in this section are quoted in terms of variance points (the square of volatility

points), which are defined as realized variance multiplied by 10,000.

4.3.1 Continuous Sampling Approximation

Before performing the Monte Carlo simulations, we have also worked out the

corresponding pricing formula based on the continuous sampling approximation,

under the framework of SVJJ model.

In the literature, many researchers (i.e., Swishchuk 2004) have proposed con-

tinuous sampling approximations for realized variance to price the variance swaps,

based on the Heston stochastic volatility model. Some others (e.g., Little & Pant

∗The value of µS is backward calculated by using µ = θ(1, 0) − 1 with µ = −0.10 in Duffie
et al. (2000).
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2001, Broadie & Jain 2008b, Zhu & Lian 2009d,f) however pointed out that adopt-

ing such a continuous sampling approximation under the SV model for a variance

swap with small sampling frequencies or long tenor can result in significant pric-

ing errors, comparing with the exact value of the discretely-sampled variance

swap. As for the framework of SVJJ model, the continuous sampling approxima-

tions become somewhat more complicate, due to the fact that there exist several

versions of continuously-sampled realized variance.

Corresponding to the definition of actual-return realized variance, Eq. (3.2),

the continuously-sampled realized variance is denoted by the RVc1(Ts, Te) and

given by:

RVc1(Ts, Te) = lim
N→∞

AF

N

N∑
i=1

(
Sti − Sti−1

Sti−1

)2

× 1002

=

 1

Te − Ts

∫ Te

Ts

Vtdt+

N(Te)∑
k=N(Ts)

(eZ
s
k − 1)2

× 1002
(4.13)

The expectation of this expression can be carried out and hence the approximation

pricing formula for a variance swap based on this continuously-sampled realized

variance is obtained,

EQ
0 [RVc1(Ts, Te)] = [AV0 + (1− A)(θQ +

λµV

κQ
) + λC1]× 1002 (4.14)

with

A =
e−κQTs − e−κQTe

κQ(Te − Ts)

C1 =
exp(2µS + 2σ2

S)

1− 2ρJµV

− 2
exp(µS +

σ2
S

2
)

1− ρJµV

+ 1

(4.15)

Zhu & Lian (2009f) presented numerical examples based on the SV model to

demonstrate that the prices of variance swaps obtained from the two discretely-

sampled variance swaps asymptotically approach to the value of continuous-

sampled variance swaps when the sampling frequency increases to infinity. Their

work shows that the effect of discreteness resulted from the different definition of

discretely-sampled realized variance decreases as sampling frequencies increases
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and the two definitions of discretely-sampled realized variance have the same

limiting value when the discrete sampling time approaches zero. Under the

SVJJ model, however, the continuous sampling approximations for the discretely-

sampled actual-return or log-return realized variance (i.e., the limiting value of

Eq. (3.2) and Eq. (3.3) when the sampling frequency increases to infinity) are

not the same any more. We used the RVc2(Ts, Te) to denote the continuously-

sampled realized variance corresponding to the log-return realized variance, Eq.

(3.3), i.e.,

RVc2(Ts, Te) = lim
N→∞

AF

N

N∑
i=1

log2
(
Sti

Sti−1

)
× 1002

=

 1

Te − Ts

∫ Te

Ts

Vtdt+

N(Te)∑
k=N(Ts)

(Zs
k)

2

× 1002
(4.16)

The expectation of this expression can also be carried out and the approximation

pricing formula for a variance swap based on this continuously-sampled realized

variance is obtained as,

EQ
0 [RVc2(Ts, Te)] = [AV0 + (1− A)(θQ +

λµV

κQ
) + λC2]× 1002 (4.17)

with

A =
e−κQTs − e−κQTe

κQ(Te − Ts)

C2 = σ2
S + 2ρ2Jµ

2
V + 2ρJµV µS + µ2

S

(4.18)

These two versions (i.e., Eq. (4.14) and Eq. (4.17)) of continuously-sampled

realized variance degenerate to exactly the same one if no jumps are assumed

within the underlying process (i.e., the SV and SVVJ models), as can be clearly

observed from these two formulae (by setting ZS = 0, ZV = 0 for SV model and

ZS = 0 and ρJ = 0 for SVVJ models, respectively). When the jumps in the

underlying process are taken into consideration (the SVJ and SVJJ models), it

is not the case any more, and the issues on choosing the appropriate continuous

sampling approximations deserve to have some clarification. For example, Bakshi

et al. (1997) chose Eq. (4.14) as the approximation formula to calculate the
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continuously-sampled variance under the SVJ model (their Eq. (4)), while Sepp

(2008a) and Broadie & Jain (2008b) believed the continuously-sampled variance

should be calculated using Eq. (4.17). The fact is that both of these claims are

correct, depending on the definition of the discretely-sampled realized variance

they are approximating. With the discretely-sampled realized variance being

defined in Eq. (3.2), the continuous sampling variance naturally corresponds to

Eq. (4.14). On the other hand, if the discretely-sampled realized variance is

measured with Eq. (3.3), then the continuous sampling variance should be Eq.

(4.17).

Besides the two versions of continuous sampling approximations discussed

above, there is another continuous sampling approximation that can be used to

price variance swaps. With no jumps assumed in the underlying asset price (i.e.,

in the SV and SVVJ models), Carr & Madan (1998) and Demeterfi et al. (1999)

respectively demonstrated that the continuously-sampled realized variance can be

replicated by a portfolio of out-of-the-money options. This replication strategy

has also been applied to introduce the new definition of the VIX (cf. Carr & Wu

2006). Within this approach, the continuously-sampled realized variance is given

by

RVc3(Ts, Te) =
2

Ts − Te

(∫ Te

Ts

dSt

St

− log

(
STe

STs

))
× 1002 (4.19)

The explicit pricing formula for variance swaps can be obtained by carrying out

the expectation of this continuously-sampled realized variance in the form of

EQ
0 [RVc3(Ts, Te)] = [AV0 + (1− A)(θQ +

λµV

κQ
) + λC3]× 1002 (4.20)

with

A =
e−κQTs − e−κQTe

κQ(Te − Ts)

C3 = 2[
exp(µQ

S + 1
2
σ2
S)

1− ρJµV

− (µQ
S + ρJµV )− 1]

(4.21)

Two naturally raised questions are how close the results of the above three
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approximations are when there are jumps specified in the underlying process and

how much each of them deviates from the true values of a discretely-sampled

variance swap under different definitions of the realized variance, particularly

when the sampling period is large. To properly address these questions, we

compare the numerical results obtained from these approximation formulae, the

newly-developed analytical formulae for discretely-sampled realized variance and

the Monte Carlo simulations.

4.3.2 Monte Carlo Simulations

Our MC simulations are based on a simple Euler-Maruyama discretization for

the SVJJ model
Vti = Vti−1

+ κQ(θQ − Vti−1
)∆t+ σ

√
|Vti−1

|
√
∆t(ρW 1

t +
√
1− ρ2W 2

t ) +

N(ti+1)∑
j=N(ti)

ZV
j (Q)

logSti = logSti−1
+ (r − µ− 0.5Vti)∆t+

√
|Vti|

√
∆tW 1

t +

N(ti+1)∑
j=N(ti)

ZS
j (Q)

(4.22)

where W 1
t and W 2

t are two independent standard normal random variables, and

N(ti) refers to total jumps in time [0, ti].

Shown in Fig. 4.1, as well as in Table 4.1, are the comparison of six sets

of data for the strike price of the variance swap. These data were obtained

from the numerical calculation of Eq. (4.9) and Eq. (4.12), the MC simulations

(4.22) for the corresponding two definitions, and the numerical calculation of the

continuously-sampled realized variance Eq. (4.14) and Eq. (4.17) respectively. In

Table 4.1, we also displayed the numerical values obtained from the calculation

of Eq. (4.20).

One can clearly observe that the results from our exact solution perfectly

match the results from the MC simulations. For example, for the weekly-sampled

variance swaps with actual-return realized variance RVd1(0, 52, 1), the relative

difference between numerical results obtained from the Eq. (4.9) and the MC
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Figure 4.1: Calculated fair strike values in the SVJJ model as a function of the
sampling frequency, which ranges from weekly (N=52) to daily (N=252)

simulations is less than 0.1% already, when the number of paths reaches 200,000 in

MC simulations. Such a relative difference is further reduced when the number of

paths is increased; demonstrating the convergence of the MC simulations towards

our exact solution and hence to a certain extent providing a verification of the

correctness of our exact solutions.

Table 4.1: The numerical results of discrete model, continuous model and MC
simulations

Sampling Frequency Monthly(N=12) Weekly(N=52) Daily(N=252)
RVd1(Ts, N, Te) 175.00 175.74 175.96
RVd2(Ts, N, Te) 183.91 182.28 181.86
RVc1(Ts, Te) 176.02 176.02 176.02
RVc2(Ts, Te) 181.75 181.75 181.75
RVc3(Ts, Te) 179.76 179.76 179.76

MC for RVd1(Ts, N, Te) 175.1 175.7 176.0
MC for RVd2(Ts, N, Te) 183.9 182.3 181.9
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4.3.3 The Effect of Realized-Variance Definitions

As mentioned above, the two definitions, RVd1(Ts, N, Te) and RVd2(Ts, N, Te),

have been alternatively used as the realized variance in the literature. With

the newly found closed-form formulae, Eq. (4.9) and Eq. (4.12), for these two

different definitions of realized variance available to us, we can make a com-

parison of the price difference for two swap contracts being otherwise identical

except the payoff involving these two most frequently used definitions of realized

variance. Such a comparison should be very interesting, because intuitively the

realized variance defined by the actual-return variance, RVd1(Ts, N, Te), should

be a more straightforward definition with a direct financial interpretation than

the log-return realized variance, RVd2(Ts, N, Te). However, the latter seems to be

more popular in practice, perhaps due to the mathematical tractability it leads

to. One naturally wonders if they would lead to quite different prices if other

terms are identical.

Fig. 4.1 displays the variance strike prices computed using the two definitions

of realized variance, RVd1(Ts, N, Te) and RVd2(Ts, N, Te), as a function of the

sampling frequency. The results show that the strike price associated with an

actual-return realized RVd1(Ts, N, Te) is consistently less than that associated

with the log-return realized variance variance RVd2(Ts, N, Te). This finding serves

as a confirmation of the conjecture raised by Zhu & Lian (2009f) that variance

swaps associated with the log-return realized variance should have a higher strike

price than those with the actual-return variance realized variance in practice,

even though the conjecture then was made under the SV model.

The differences between the two definitions have even been greatly amplified

under the SVJJ model, comparing with those under the SV as presented by

Zhu & Lian (2009f). For the case of weekly sampling (N = 12), there is a

difference of 3.59% between the strike prices calculated with the two definitions

of realized variance. Although the effect of discreteness decreases as sampling
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Figure 4.2: Calculated fair strike values in the SV model as a function of the
sampling frequency, which ranges from weekly (N=52) to daily (N=252)

frequencies increase, the strike prices obtained with two formulae for discretely-

sampled variance swaps do not approach to each other in the limit case. There

is a difference of 3.15% even when the sampling frequencies increase to infinity,

whereas the two calculated values are the same in SV model.

4.3.4 The Effect of Jump Diffusion

In this section, we first examine the net effect of jumps in the pricing variance

swaps, by comparing the strike prices of variance swaps obtained from the SV,

SVJ, SVVJ and SVJJ models. For the purpose of comparison, we set the corre-

sponding jump parameters to be zero when there are no jumps assumed for the

corresponding processes, and keep other parameters unchanged (i.e., by setting

ZS = 0 and ZV = 0 in the SV model, ZV = 0 and ρJ = 0 in the SVJ model,

ZS = 0 and ρJ = 0 in the SVVJ model, respectively, with all the rest parameters

being those presented in the introduction part of Section 4.3).

In Fig. 4.2, we have shown the strike prices of variance swaps based on the SV

model, for the several definitions of realized variance (i.e., the log-return variance
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Figure 4.3: Calculated fair strike values in the SVJ model as a function of the
sampling frequency, which ranges from weekly (N=52) to daily (N=252)

RVd2(0, N, 1), the actual-return variance RVd1(0, N, 1), the three continuously-

sampled variance RVc1(0, 1), RVc2(0, 1), and RVc3(0, 1)). It can be observed that

the prices of variance in this model have greatly decreased, comparing with their

counterparts in the SVJJ model, as presented in Fig. 4.1 and Table 4.1. For ex-

ample, the price of log-return variance swap with weekly sampling, RVd2(0, 52, 1),

is only 79.04 in the SV model, which has decreased as much as 56.6% by compar-

ing with the value of 182.28 in the SVJJ model. It can also be easily noted that

the strike prices obtained from the two definitions of discretely-sampled realized

variance asymptotically approach to the same price with continuously-sampled

realized variance.

Plotted in Fig. 4.3 are the prices of variance swaps based on the SVJ model.

In the SVJ model, which allows jumps to occur in the underlying prices, the

strike prices of variance swaps are higher than their counterparts in the case of

SV model, but lower than those in the case of SVJJ model. For example, the price

of log-return variance swap with weekly sampling, RVd2(0, 52, 1), is now 114.21

in the SVJ model, which has increased 44.5% by comparing with the value of

79.04 in the SV model. These comparisons show that inclusion of jumps will
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significantly increase the strike prices of variance swaps when other parameters

are kept unchanged. This is not surprising at all because random jumps have

virtually caused additional uncertainty of the underlying, and hence the realized

variance, which is a measure of underlying uncertainty, will naturally increase

when jumps are introduced into the process describing the underlying.

On the other hand, it is very interesting to have observed that, different from

the jumps effect in the SVJ model, in which jumps are added into the underlying

process, the values from the three versions of continuously-sampled variance swaps

(i.e., RVc1(0, 1), RVc2(0, 1), RVc3(0, 1)) under the SVVJ model, in which jumps

are allowed to occur in the volatility process but not in the underlying process,

are exactly the same, as shown in Fig. 4.4, whereas those values calculated from

the two discretely-sampled variance swaps are still different from each other. This

is because when sampling periods approach zero, the additional terms associated

with jumps in RVc1(Ts, Te) and RVc2(Ts, Te) vanish, resulting in that the definition

of continuously-sampled realized variance being identical. On other other hand,

similar to the case appeared in the SVJ model, the strike price of a variance

swap based on this SVVJ model is higher than the value of an identical contract

based on the SV model, but lower than the one in the SVJJ model. For example,

the price of a log-return variance swap with weekly sampling, RVd2(0, 52, 1), in

the SVVJ model is 127.97, which represents a 61.9% increase to the price of

79.04 calculated from the SV model. This again shows the added jumps into the

volatility process can also increase the value of a variance swap, as a result of

additional uncertainties associated indirectly through the volatility process rather

than the case of a direct impact on the underlying price in the SVJ model.

As for the prices obtained from the two discretely-sampled variance swaps,

it is observed that the variance swap prices calculated under the SV, SVJ and

SVVJ models all increase as the sampling frequency decreases. It is also observed

that with variance swap prices calculated from RVd2(Ts, N, Te) for all these three

models are higher than those calculated from RVd1(Ts, N, Te) for this particular
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Figure 4.4: Calculated fair strike values in the SVVJ model as a function of the
sampling frequency, which ranges from weekly (N=52) to daily (N=252)

set of parameters.

While comparisons along this line give the readers a quantitative sense of

the effect of the added jumps, it could be somewhat misleading, as it may give

readers a wrong impression that adding jumps would substantially alter the price

of a variance swap. It should be pointed out that simply comparing strike prices

of variance swaps with or without the jump diffusions while other parameters

remaining the same is meaningless in financial practice, since, for the same set

of underlying data, one will normally obtain a set of totally different parameters

for models with or without jumps during the phase of model calibration. Since

the main purpose of this paper is to present analytical formulae to price variance

swaps based on the SVJJ model, a financially meaningful examination of jump

effect has been left in a future empirical study, utilizing the pricing formulae

presented in this paper.

Broadie & Jain (2008b) also investigated the effect of ignoring jumps in com-

puting strike price of variance swaps, under the SVJ model, using the value

obtained from continuously-sampled log-return realized variance (i.e., Eq. (4.17)

in our SVJJ model) as the benchmark. However, a careful study of their paper
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shows that their examination of the effect of “ignoring” jumps is different from

what we are discussing here in this paper. While we have focused on the effect

of “ignoring” jumps starting from the very beginning of the construction of the

SVJJ model, their discussion focused on the effect of “ignoring” jumps in the

construction of the VIX only. That is, while we have examined both definitions

of continuously-sampled actual-return realized variance (i.e., Eq. (4.14)) and

continuously-sampled log-return realized variance (i.e., Eq. (4.17)), they queried

the effect of “ignoring” jumps in the definition RVc3(Ts, Te) (i.e., Eq. (4.20)) and

added back the jump effect from this point onwards and then compare the results

with those obtained from the SVJ model directly. Of course, their approach is

based on an unstated assumption that the linear superposition is valid in the ad-

dition and deletion of jump components in the adopted stochastic model. With

the newly-derived formulae, it is quite easy to follow Broadie & Jain (2008b)’s

approach to examine the effect of “ignoring” jumps in the definition of VIX based

on the more general SVJJ model.

The pricing formula, Eq. (4.20), has ignored the effect of jumps in computing

the realized variance. The difference between the variance swap strike price of

continuously-sampled actual-return realized variance (i.e., Eq. (4.14)) and the

value obtained from replication strategy by ignoring the jumps effect (i.e., Eq.

(4.20)) is:

EQ
0 [RVc1(Ts, Te)]− EQ

0 [RVc3(Ts, Te)]

= λ

(
exp(2µS + 2σ2

S)

1− 2ρJµV

− 4
exp(µS +

σ2
S

2
)

1− ρJµV

+ 2(µQ
S + ρJµV ) + 3

)
(4.23)

and the difference between variance swap strike price of continuously-sampled log-

return realized variance (i.e., Eq. (4.17)) and the value obtained from replication
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strategy by ignoring the jumps effect (i.e., Eq. (4.20)) is:

EQ
0 [RVc2(Ts, Te)]− EQ

0 [RVc3(Ts, Te)]

= λ

(
σ2
S + ρ2Jµ

2
V + (µQ

S + ρJµV + 1)2 + 1− 2
exp (µQ

S + 1
2
σ2
S)

1− ρJµV

)
(4.24)

Eq. (4.23) and Eq. (4.24) indicate that when there is no jump (i.e., λ = 0) as-

sumed within the model, there will be no difference between the prices obtained

from continuously-sampled actual-return realized variance (i.e., Eq. (4.14)), continuously-

sampled log-return realized variance (i.e., Eq. (4.17)) and the value obtained from

replication strategy by ignoring the jump effect (i.e., Eq. (4.20)). In the case of

SVJ and SVJJ models, the three values are different however. For example,

using the presented parameters, we can compute the strike prices of variance

swaps and obtain that E0[RVc1(Ts, Te)] = 176.02, E0[RVc2(Ts, Te)] = 181.75 and

E0[RVc3(Ts, Te)] = 179.76. Thus, by ignoring the jumps, one may over-price the

actual-return variance swap by 2.12% and under-price the log-return variance

swap by 1.10%. Following the comment made by Little & Pant (2001) that an

error level reaching more than 0.5% is “fairly large”, the over-estimation of 2.12%

or under-estimation of 1.10% is surely unacceptable.

4.3.5 The Effect of Sampling Frequencies

In Fig. 4.1 and Table 4.1, we have also shown a comparison of strike prices

of variance swaps with the discrete sampling and the corresponding continuous

sampling.

From Fig. 4.1, one can clearly see that the values of the discrete sampling

models asymptotically approach those of the continuous approximation coun-

terparts when the sampling frequency increases, i.e., the continuously-sampled

realized variance (Eq. (4.14)) is the limit of the actual-return discretely-sampled

realized variance, Eq. (3.2), while the continuously-sampled realized variance

(Eq. (4.17)) is the limit of the log-return discretely-sampled realized variance,
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Eq. (3.3), as ∆t→ 0.

On the other hand, with the daily sampling, there is a relative difference of

0.03% between the results of the actual-return variance model, RVd1(0, 252, 1),

and its continuous counterpart, RVc1(0, 1), and a relative difference of 0.06% be-

tween the results of the log-return variance model, RVd2(0, 252, 1), and the contin-

uous counterpart, RVc2(0, 1). When the sampling frequency becomes weekly (52

sampling times/years), these corresponding relative differences have increased to

0.16% and 0.29%, respectively. Comparing with the effect of different definitions

of realized variance or the effect of including jump diffusion, the errors resulted

from the sampling frequency appear to be very small, based on this particular

set of model parameters.

Several remarks should be made before leaving this section. Firstly, with the

newly-found analytic solutions, all the hedging ratios of a variance swap can also

be analytically derived by taking partial derivatives against various parameters

in the model. With symbolic calculation packages, such Mathematica or Maple,

widely available to researchers and market practitioners, these partial derivatives

can be readily calculated and thus omitted here. However, to demonstrate how

sensitive the strike price is to the change of the key parameters in the model,

we have performed some sensitivity tests for the example presented in this sec-

tion†. Shown in Table 4.2 are the results of the percentage change of the strike

price when a model parameter is given a 1% change from its base value used

in the example presented in this Section. Clearly, under the SVJJ model, not

only can the volatility specification parameters (κQ, θQ and V0) significantly af-

fect the strike price of a variance swap, the jump diffusion parameters (λ, µS, µV

and ρJ) paly even more important roles in determining the price of a variance

swap. This finding reiterates the importance of investigating the effect of jump

diffusion in pricing variance swaps and thereby highlight the significance of this

†The sensitivity tests presented here are performed using the pricing formula of actual-return
realized variance (Eq. (4.9)). The parameters sensitivities for the case of log-return realized
variance (Eq. (4.12)) are very close to the case of actual-return realized variance.



118Chapter 4: Pricing Variance Swaps with Stochastic Volatility and Random Jumps

Table 4.2: The sensitivity of the strike price of a variance swap (weekly sampling)
Name Value Sensitivity
κQ 3.46 -0.18%
θQ 0.008 0.32%
V0 (8.7%)2 0.12%
λ 0.47 0.55%
µS -0.087 0.41%
µV 0.05 0.38%
ρJ -0.38 0.10%

σS, ρ, σV , r # < 0.01%

study. Secondly, due to the notational amount factor L and the size of the con-

tract traded per order, the 1% or 2% relative differences, resulted from adopting

different definitions of realized variance, or using the continuous approximation,

or even ignoring the jump diffusions, may result in a considerable amount of ab-

solute loss. Combining these points together, it is absolutely preferable to work

out the closed-form exact formulae for the variance swaps with popularly-used

definitions of discretely-sampled realized variance under the general SVJJ model.

The analytical and closed-form properties of those formulae also enables us to

efficiently obtain the numerical results. Furthermore, numerical efficiency is also

vitally important for any pricing formula; not only producing numerical values

of the formula itself requires speedy calculations, calibrating model parameters

with financial market data may require thousands, if not millions, of iterations

and thus any reduction in computational time per iteration would considerably

speed up the calibration process. In this regard, nothing can be better than

analytical closed-form exact solutions, as have been shown in this chapter.

4.4 Conclusion

In this chapter, we have applied the Heston stochastic volatility model with ran-

dom jumps in the underlying return and volatility process (SVJJ model) to de-

scribe the underlying asset price and its volatility, and based on this general
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SVJJ model, we obtained two closed-form exact solutions for discretely-sampled

variance swaps corresponding to two popularly-used definitions of realized vari-

ance. Utilizing the newly-found analytical and closed-form solutions for the most

general SVJJ model, we have carried out some cross-model and cross-payoff com-

parisons for discretely-sampled variance swaps. We have also examined some

important properties such as the effect of the sampling periods and ultimately

the accuracy of the extreme case when the continuously-sampling approximation

is adopted as an alternative of pricing discretely-sampled variance swaps. We

have found that the price of a variance swap is very sensitive to the parameters

of random jumps in the underlying return and volatility process, and the strike

price of a variance swap with log-return realized variance is consistently higher

than its counterpart associated with actual-return realized variance.



Chapter 5

Pricing Volatility Swaps with

Discrete Sampling

5.1 Introduction

In the previous chapters, we have discussed the pricing of variance swaps, based

on the definitions of discretely-sampled realized variance. However, despite many

common features between volatility swaps and variance swaps, the former is

viewed to be more difficult to price analytically than the latter because the pay-

off function involves either square root operator or absolute value operator. As

a result, quite a few closed-form solution have been discovered for the latter (cf.

Zhu & Lian 2009d) whereas it is very rare to see a paper discussing closed-form

solution for the former, particularly when the sampling is discretely conducted.

The main purpose of this chapter is to present the valuation approach for

volatility swaps and we will hereafter focus our main attention on the discussion

of volatility swaps. As illustrated in Howison et al. (2004), there are at least two

different measurements of realized volatility. The most popularly-used one is de-

fined as the square root of the average of realized variance, and a volatility swap

contract based on this definition can be termed as a standard derivation swap.

Alternatively, as most of the volatility swaps are traded over-the-counter, it is also

120
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possible to design other measurement of realized volatility and hence construct

corresponding volatility swaps, provided that the designed measurement of real-

ized volatility can well capture the historical volatility features of the underlying

index. The so-called average of realized volatility is such a measurement which

is even more robust than the most popularly-used one, i.e., the square root of

the average of realized variance, as pointed out by Howison et al. (2004). They

termed a volatility swap based on this definition of average of realized volatility

as a volatility-average swap.

However, despite these analytic works have been growing rapidly and enriched

the literature of pricing volatility swaps, a common limitation is that the realized

variance or realized volatility is defined by a continuously-sampling approxima-

tion, whereas in financial practice the realized variance or realized volatility of

a swap contract is always discretely sampled. Therefore, these continuously-

sampling approximations will surely result in a systematic bias for the actual

price of a variance swap or a volatility swap which is discretely sampled.

To properly address this discretely sampling effect, several works have been

done very recently. Little & Pant (2001) and Windcliff et al. (2006), respectively,

presented numerical algorithms to price discretely-sampled variance swaps un-

der local volatility models. To further extend the research of pricing discretely-

sampled variance swaps, some researchers started to explore the possibility of

working out analytic closed-form solutions for the price of discretely-sampled vari-

ance swaps within the framework of stochastic volatility models. Javaheri et al.

(2004) pointed out the importance of investigating discretely-sampled volatility

swaps under the GARCH model, but unfortunately they did not present an ef-

fective pricing approach. Broadie & Jain (2008b) presented a set of closed-form

solutions for volatility as well as variance swaps with discrete sampling using

stochastic volatility models to price discretely-sampled variance swaps. Alter-

natively, based on the Heston (1993) stochastic volatility model, Zhu & Lian

(2009d,f) showed a completely different approach, by analytically solving the as-
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sociated PDEs, to obtain two closed-form formulae for variance swaps based on

two different definitions of discretely-sampled realized variance.

Despite these works in developing more accurate pricing formulae for variance

swaps, none has considered the pricing of volatility swaps based on the discretely-

sampled realized volatility in the literature. In this chapter, under the Heston

stochastic volatility model, we present an approach to price discretely-sampled

volatility swaps, and most importantly, a closed-form exact solution for the price

of discretely-sampled volatility-average swaps. There are several reasons that

we believe this research will benefit the research community as well as market

practitioners. Firstly, this study, by working out an exact closed-form solution

for the discretely-sampled volatility-average swaps based on the Heston stochastic

volatility model, fills a gap that there is no exact pricing formula available for

discretely-sampled volatility swaps in the literature. Secondly, this study also

demonstrates that our proposed solution approach can be used to work out a lower

bound for the standard derivation swap in which the realized volatility is defined

as the square root of the average of realized variance. Thirdly, it can be used as a

benchmark tool for numerical methods developed to price volatility swaps whose

payoff function has made the search of closed-form analytical solution impossible.

The rest of this chapter is organized into four sections. For the easiness of

reference, we shall start with a description of our solution approach and our

analytical formula for the volatility swaps in Section 5.2. Then, some numerical

examples are given in Section 5.3, demonstrating the correctness of our solution

from various aspects. In the mean time, we also provide some comparisons to

continuous sampling models and discussions on other properties of the volatility

swaps. Our conclusions are stated in Section 5.4.
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5.2 Our Solution Approach

In this section, we use the Heston (1993) stochastic volatility model to describe

the dynamics of the underlying asset. We then present our pricing approach to

price discretely-sampled volatility-average swaps and obtain a closed-form exact

solution.

In the Heston model, the underlying asset St and its stochastic instantaneous

variance Vt are modeled by the following diffusion processes, in the risk-neutral

probability measure Q:

 dSt = rStdt+
√
VtStdB̃

S
t

dVt = κQ(θQ − Vt)dt+ σV
√
VtdB̃

V
t

(5.1)

5.2.1 Volatility Swaps

A volatility swap is a forward contract on realized historical volatility of the

specified underlying equity index. In such a contract, the buyer receives a payout

at expiry from the counterpart selling the swap if the realized volatility of the

stock index over the life of swap contract exceeds the implied volatility swap

rate (i,e., the trike price of the forward contract) pre-specified at the inception

of the contract. Thus it can be easily used for investors to trade future realized

volatility against the implied volatility (the strike price of the volatility swaps),

gaining exposure to the so-called volatility risk.

The amount paid at expiration is based on a notional amount times the dif-

ference between the realized volatility and implied volatility. More specifically,

assuming the current time is 0, the value of a volatility swap at expiry can be

written as (RV(0, N, T )−Kvol)× L, where the RV(0, N, T ) is the annualized re-

alized volatility over the contract life [0, T ], Kvol is the annualized delivery price

for the volatility swap, which is set to make the value of a volatility swap equal to

zero for both long and short positions at the time the contract is initially entered.

To a certain extent, it reflects market’s expectation of the realized volatility in the
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future. L is the notional amount of the swap in dollars per annualized volatility

point squared. The realized volatility is always discretely sampled over a time

period [0, T ], with T being referred to as the total sampling period, in compar-

ison with the sampling period that is used to define the time span between two

sampling points within the total sampling period.

At the beginning of a contract, it is clearly specified the details of how the

realized volatility, RV (0, N, T ), should be calculated. Important factors con-

tributing to the calculation of the realized volatility include underlying asset(s),

the observation frequency of the price of the underlying asset(s), the annualiza-

tion factor, the contract lifetime, the method of calculating the volatility. Some

typical formulae (Howison et al. 2004; Windcliff et al. 2006) for the measure of

realized variance are

RVd1(0, N, T ) =

√√√√AF

N

N∑
i=1

(
Sti − Sti−1

Sti−1

)2

× 100 (5.2)

or

RVd2(0, N, T ) =

√
π

2NT

N∑
i=1

∣∣∣∣Sti − Sti−1

Sti−1

∣∣∣∣× 100 (5.3)

where ti, i = 0...N , is the i-th observation time of the realized variance in the

pre-specified time period [0, T ], and t0 = 0, tN = T . Sti is the closing price of

the underlying asset at the i -th observation time ti, and there are altogether

N observations. AF is the annualized factor converting this expression to an

annualized variance. For most of the traded variance swaps, or even over-the-

counter ones, the sampling period is usually constant to make the calculation

of the realized variance easier. Therefore, we assume equally-spaced discrete

observations in the period [0, T ] in this paper. As a result, the annualized factor

is of a simple expression AF = 1
∆t

= N
T
.

In the literature, these two definitions have been alternatively used to mea-

sure the realized volatility (Howison et al. 2004). The definition RVd1(0, N, T )
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is essentially calculated as the square root of average realized variance. How-

ison et al. (2004) termed a volatility swap contract using this measurement to

calculate realized volatility as a standard derivation swap. On the other hand,

the definition RVd2(0, N, T ) is just the average of realized volatility, and How-

ison et al. (2004) termed a volatility swap associated with this definition as a

volatility-average swap. Barndorff-Nielsen & Shephard (2003) studied the theo-

retical properties of the average of realized volatility, Eq. (5.3), and found that

definition RVd2(0, N, T ) is a more robust measurement of realized volatility. In

this paper, we shall first choose the average of realized volatility, Eq. (5.3), as

the measurement of realized volatility and present our approach to analytically

price volatility swaps based on this measurement of discretely-sampled realized

volatility. We shall then discuss the difference between these two definitions

RVd1(0, N, T ) and RVd2(0, N, T ), when we present some numerical examples in

Section 5.3.

In the risk-neutral world, the value of a variance swap at time 0 is the expected

present value of the future payoff. This should be zero at the beginning of the

contract since there is no cost to enter into a swap. Therefore, the fair volatility

delivery price can be easily defined as Kvol = EQ
0 [RV (0, N, T )], after setting the

initial value of volatility swaps to be zero. The volatility swap valuation problem

is therefore reduced to calculating the expectation value of the realized volatility

in the risk-neutral world.

5.2.2 Pricing Volatility Swaps

We now discuss our analytical solution approach for the determination of the

fair price of a volatility swap, under the Heston stochastic volatility model.

As discussed above, the fair strike price of a volatility swap can be defined as

Kvol = E0[RV (0, N, T )], after specifying the detailed definition of realized volatil-

ity, RV (0, N, T ). In this paper, we will concentrate on the definition of realized
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volatility, RVd2(0, N, T ) (Eq. (5.3)), and illustrate our approach to obtain the

closed-form analytical solution for fair strike price of a volatility swap.

As illustrated in Eq. (5.3), the expected value of realized volatility in the

risk-neutral world is defined as:

Kvol = EQ
0 [RVd2(0, N, T )] = EQ

0

[√
π

2NT

N∑
i=1

∣∣∣∣Sti − Sti−1

Sti−1

∣∣∣∣
]
× 100

=

√
π

2NT

N∑
i=1

EQ
0

[∣∣∣∣Sti − Sti−1

Sti−1

∣∣∣∣]× 100

(5.4)

where N is a finite number denoting the total sampling times of the swap con-

tract. So the problem of pricing volatility swap is reduced to calculating the N

expectations in the form of:

EQ
0

[∣∣∣∣Sti − Sti−1

Sti−1

∣∣∣∣] (5.5)

for some fixed equal time interval ∆t and N different tenors ti = i∆t (i =

1, · · · , N). Once the details of the volatility swaps are specified (and hence a

specific discretization along the time axis [0, T ] is made), all the sampling points

ti (i = 1, · · · , N) are fixed points and hence can be regarded as known constants.

As the pricing of variance swaps, the main difficulty associated with this

pricing problem is still due to the fact that two stochastic variables, Sti and

Sti−1
, concurrently exist inside of the expectation operator in Eq. (5.5), as they

are the underlying prices at two future sampling points ti and ti−1 for each i

(i = 1, · · · , N) (assuming the current time is 0). Following the approach presented

in Chapter 3 and 4, we utilize the forward characteristic function presented in

Proposition 3 to handle this pricing problem.

Using this forward characteristic function Eq. (3.6), the probability den-

sity function, denoted by p(yti−1,ti), of the stochastic variable yti−1,ti(= logSti −

logSti−1
) can be easily obtained by performing the inverse Fourier transform with

regard to the forward characteristic function. Furthermore, the probability of the
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event {yti−1,ti > 0}, denoted by Qi (i.e., Qi = Prob(yti−1,ti > 0)), can also be

easily carried out by utilizing the relationship between the characteristic function

and the cumulative function in the form of (see Heston 1993; Bakshi et al. 1997)

Qi =

∫ ∞

0

p(yti−1,ti)dyti−1,ti =
1

2
+

1

π

∫ ∞

0

Re

[
f(ϕj; ti−1, ti, V0)

ϕj

]
dϕ (5.6)

Meanwhile, it can be verified that the function q(yti−1,ti) = e(yti−1,ti−r∆t)p(yti−1,ti)

(∆t = ti − ti−1) satisfies the following two properties: (1) q(yti−1,ti) ≥ 0; (2)∫∞
−∞ q(yti−1,ti)dyti−1,ti = 1. Hereby, it can be concluded that the function q(yti−1,ti) =

e(yti−1,ti−r∆t)p(yti−1,ti) is a probability density function of a stochastic variable,

whose corresponding characteristic function, denoted by f̃(ϕ, ti−1, ti, V0), can be

obtained by performing the Fourier transform with regard to the probability den-

sity function q(yti−1,ti), i.e.,

f̃(ϕ, ti−1, ti, V0) = F [e(yti−1,ti−r∆t)p(yti−1,ti)]

= e−r∆tF [eyti−1,tip(yti−1,ti)]

= e−r∆tf(ϕj + 1; ti−1, ti, V0)

(5.7)

The last step is followed by noting the relationship f(ϕj; ti−1, ti, V0) = F [p(yti−1,ti)]

and the property of Fourier transform, with the Fourier transform being defined

as F [ψ(x)] =
∫∞
−∞ ejϕxψ(x)dx (see e.g., Poularikas 2000).

Similarly, the probability, Q̃i =
∫∞
0
q(yti−1,ti)dyti−1,ti , can be carried out, by

utilizing the corresponding characteristic function f̃(ϕ; ti−1, ti, V0), in the form of

Q̃i =

∫ ∞

0

e(yti−1,ti−r∆t)p(yti−1,ti)dyti−1,ti =
1

2
+

1

π

∫ ∞

0

Re

[
e−r∆tf(ϕj + 1; ti−1, ti, V0)

ϕj

]
dϕ

(5.8)

Using the forward characteristic function Eq. (3.6), and the two expressions

of the probabilities Qi and Q̃i, the expectation in Eq. (5.5) can be written in the
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form of

EQ
0 [|

Sti

Sti−1

− 1|] = EQ
0 [|eyti−1,ti − 1|] =

∫ ∞

−∞
|eyti−1,ti − 1|p(yti−1,ti)dyti−1,ti

=

∫ ∞

0

(eyti−1,ti − 1)p(yti−1,ti)dyti−1,ti +

∫ 0

−∞
(1− eyti−1,ti )p(yti−1,ti)dyti−1,ti

= −
∫ ∞

0

p(yti−1,ti)dyti−1,ti +

∫ 0

−∞
p(yti−1,tiy)dyti−1,ti

+er∆t

(∫ ∞

0

q(yti−1,ti)dyti−1,ti −
∫ 0

−∞
q(yti−1,tiy)dyti−1,ti

)
= 1− 2Qi + er∆t(2Q̃i − 1)

=
2

π

∫ ∞

0

Re

[
f(ϕj + 1; ti−1, ti, V0)− f(ϕ; ti−1, ti, V0)

ϕi

]
dϕ

(5.9)

Following this procedure, the summation in Eq. (5.4) can now be carried out

all the way with i ranging from 1 to N , consequently leading to the final pricing

formula for the volatility swap in the form of:

Kvol = EQ
0 [RVd2(0, N, T )] =

√
π

2NT

N∑
i=1

∣∣∣∣Sti − Sti−1

Sti−1

∣∣∣∣× 100

=

√
2

πNT

∫ ∞

0

N∑
i=1

Re

[
f(ϕj + 1; ti−1, ti, V0)− f(ϕj; ti−1, ti, V0)

ϕj

]
dϕ× 100

(5.10)

N is a finite number denoting the total sampling times of the swap contract. The

above equation gives a fair strike price for volatility-average swaps, based on the

definition of RVd2(0, N, T ), in a simple and closed-form solution.

By developing the forward characteristic function and hence integrating the

two steps into one proposition in this chapter, the whole derivation procedure of

the pricing formula for volatility-average swaps becomes simpler and easier. The

great benefit of using this analytic formula for the pricing of volatility-average

swaps is illustrated in the next section through some examples.
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5.3 Numerical Results and Discussions

In this section, we firstly present some numerical examples of comparing our

pricing formula with the Monte Carlo (MC) simulations for illustration purposes.

Although theoretically there would be no need to discuss the accuracy of a closed-

form exact solution and present numerical results, some comparisons with the MC

simulations may give readers a sense of verification for the newly found solution.

This is particularly so for some market practitioners who are very used to MC

simulations and would not trust analytical solutions that may contain algebraic

errors unless they have seen numerical evidence of such a comparison. In addition,

comparisons with the continuous sampling model will also help readers to under-

stand the improvement in accuracy with our exact solution of discretely-sampled

realized volatility. We shall then discuss the effects of two different measures of

realized volatility in volatility swaps, utilizing the newly-found analytical solu-

tions.

To achieve these purposes, we use the following parameters (unless otherwise

stated): V0 = 0.04, θQ = 0.022, κQ = 11.35, ρ = −0.64, σV = 0.618, r = 0.1,

T = 1 in this section. This set of parameters for the square root process was

also adopted by Dragulescu & Yakovenko (2002). As for the MC simulations, we

took asset price S0 = 1 and the number of the paths N = 200, 000 for all the

simulation results presented here. Following the quotation rules of VIX futures

in CBOE, all the numerical values of volatility swaps presented in this section

are quoted in terms of volatility points, which are defined as realized volatility

multiplied by 100.
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Figure 5.1: A comparison of fair strike prices of volatility swaps based on our
explicit pricing formula and the Monte Carlo simulations

5.3.1 Monte Carlo Simulations

Our MC simulations are based on the simple Euler-Maruyama discretization for

the Heston model St = St−1 + rSt−1∆t+
√

|Vt−1|St−1

√
∆tW 1

t

Vt = Vt−1 + κQ(θQ − Vt−1)∆t+ σV
√

|Vt−1|
√
∆t(ρW 1

t +
√

1− ρ2W 2
t )

(5.11)

where W 1
t and W 2

t are two independent standard normal random variables.

Shown in Fig. 5.1, as well as in Table 5.1, are two sets of data, for the

strike price of volatility swaps obtained with the numerical implementation of

Eq. (5.10) and those from MC simulations (5.11). One can clearly observe that

the results from our exact solution perfectly match the results from the MC

simulations. To make sure that readers have some quantitative concept of how

large the difference between the results from our exact solution and those from

the MC simulations, we have also tabulated the relative difference of the two as

a function of the number of simulation paths, using our exact solution as the

reference in the calculation, in Table 5.2. Clearly, when the number of paths
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Table 5.1: The numerical results of volatility-average swaps obtained from our
analytical pricing formula, MC simulations and continuous sampling approxima-
tion
Sampling frequency Analytical formula Approximation MC simulations
Quarterly(N=4) 16.36 14.04 16.33
Monthly(N=12) 15.15 14.04 15.10

Fortnightly(N=26) 14.66 14.04 14.69
Weekly(N=52) 14.39 14.04 14.40
Daily(N=252) 14.13 14.04 14.14

Table 5.2: Relative errors and computational time of MC simulations

Path numbers of the MC Relative Error % Computational time(s)
10,000 0.233 6.21
100,000 0.191 61.47
200,000 0.074 254.12
500,000 0.012 1044.23

reaches 200,000 in MC simulations, the relative difference of the two is less than

0.1% already. Such a relative difference is further reduced when the number of

paths is increased; demonstrating the convergence of the MC simulations towards

our exact solution.

On the other hand, in terms of computational time, the MC simulations take

a much longer time than our analytical solution does. To illustrate it clearly, we

compare the computational times of implementing Eq. (5.10) and the MC sim-

ulations with sampling frequency for the realized variance equalling to 5 times

per year. Table 5.2 shows the computational times for different path numbers in

the MC simulations. In contrast to a long computational time of 1044.23 seconds

using the MC simulations with 500,000 paths, implementing Eq. (5.10) just con-

sumed 0.01 seconds; a roughly 100 thousands folds of reduction in computational

time for one data point. The difference is even more significant when the sam-

pling frequency is increased. This is not surprising at all since time-consuming is

a well-known drawback of MC simulations.
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5.3.2 Other Definition of Realized Volatility

While the focus of the paper is on the volatility swaps with the realized volatility

being defined as the average of realized volatility (Eq. (5.3)), one may wonder

why volatility swap contracts with the square root of average realized variance

(Eq. (5.2)) in their payoff could not be worked out with the same approach. This

is primarily due to the following three reasons.

Firstly, the nonlinear nature of the square root operation involved in the

measurement, i.e., the square root of average of the discretely-sampled realized

variance being outside of the summation operator, has made it extremely difficult

to develop explicit pricing formula, because one can no longer exchange the order

of these operators.

Secondly, since most of the volatility swaps are traded over the counter, the

two participants of a contract can construct their own volatility swap contract to

suit their requirements, provided that the required efficient pricing method and

effective hedging strategies are available. Consequently, one may wish to choose a

contract for which, a closed-form pricing formula can be worked out for its payoff

function, in order to take the full advantage offered by an analytical closed-form

solution in terms of simplicity in the solution form, significant less computational

time and ultimate numerical accuracy.

Thirdly, the definition of the average of realized volatility is also a nice candi-

date in capturing historical realized volatility, as reported in many previous stud-

ies. For example, Andersen & Bollerslev (1997), Andersen & Bollerslev (1998),

Granger & Sin (2000) have empirically studied the properties of the average of

realized volatility, Eq. (5.3). Barndorff-Nielsen & Shephard (2003) analyzed the

theoretical properties of the average of realized volatility, Eq. (5.3), and pro-

vided a theory for the use of the average of realized volatility. Davis & Mikosch

(1998) even found evidence that if returns do not possess fourth moments then

using the average of realized volatility rather than the square root of average
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realized variance would be more reliable. Howison et al. (2004) also remarked

that the average of realized volatility, Eq. (5.3), is a “more robust” measure of

realized volatility. All these previous works seem to imply that the definition of

the average of realized volatility may be a better definition than the square root

of average realized variance anyway, which has thus motivated us to work out

a closed-form exact pricing formula for volatility swaps based on this average of

realized volatility definition first.

Of course, searching for a closed-form pricing formula for volatility-average

swaps may even facilitate the search for a closed-form pricing formula for standard-

deviation volatility swaps based on the square root of the average of realized vari-

ance (i.e., Eq. (5.2)) as a natural next step of our study. Besides, the newly-found

pricing formula for volatility-average swaps may benefit the pricing of standard-

deviation volatility swaps as these two are somewhat related; the former is in

fact a lower bound the latter, if all other terms of the contacts being identical

except the definitions of the realized variance. This can be easily proved through

utilizing the Cauchy inequality (Bronshtein et al. 1997):

√
1

NT

N∑
i=1

∣∣∣∣Sti − Sti−1

Sti−1

∣∣∣∣ ≤
√√√√ 1

T

N∑
i=1

(
Sti − Sti−1

Sti−1

)2

(5.12)

which indicates that
√
2/πKvol is a lower bound for the price of a volatility swap

defined in Eq. (5.2), where Kvol is given in Eq. (5.10). It should be noted that

there have been different lower bounds proposed in the literature for standard-

deviation volatility swaps; our newly-found lower bound is obtained and applies

for the case of discretely sampling.

In the next section, we shall further compare volatility swaps with the two

different definitions of realized volatility through numerical examples.
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5.3.3 Continuous Sampling Approximation

In the literature of pricing variance swaps, many researchers (i.e., Swishchuk

(2004)) have proposed a continuous sampling approximation for realized variance

to price the variance swaps, based on the Heston stochastic volatility model. Some

others (e.g., Little & Pant (2001), Broadie & Jain (2008b), Zhu & Lian (2009f),

Zhu & Lian (2009d)) however pointed out that under the stochastic volatility

model adopting such a continuous sampling approximation for a variance swap

with small sampling frequencies or long tenor can result in significant pricing

errors, comparing with the exact value of the discretely-sampled variance swap.

As for the pricing of volatility swaps, it is also quite interesting to examine the

accuracy level that the continuous sampling approximation formula yields as a

function of the sampling period. We therefore have worked out the corresponding

pricing formula based on the continuous sampling approximation, for the two

definitions of realized volatility (i.e., Eq. (5.2) and Eq. (5.3)).

Corresponding to the definition of the square root of average realized vari-

ance, RVd1(0, N, T ), the continuously-sampled realized volatility is denoted by

the RVc1(0, T ) and given by:

RVc1(0, T ) = lim
N→∞

√√√√AF

N

N∑
i=1

(
Sti − Sti−1

Sti−1

)2

× 100 =

√
1

T

∫ T

0

Vtdt× 100

(5.13)

where Vt is the spot variance of the underlying price. Under the Heston stochastic

volatility mode, Broadie & Jain (2008b) showed how to analytically price volatility

swaps based on this continuously-sampled realized volatility, Eq. (5.13), and

presented the formula as:

Kc1 = EQ
0 [RVc1(t, T )] =

1

2
√
π

∫ ∞

0

1− EQ
0 [e

−sRVc1(t,T )]

s
3
2

ds (5.14)
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with

EQ
0 [−sRVc1(t, T )] = exp (A(s, T )−B(s, T )V0)

A(s, T ) =
2κθ

σ2
V

log

(
2γ(s) exp ((γ(s) + κ)T/2)

(γ(s) + κ)(exp (γ(s)T )− 1) + 2γ(s)

)
B(s, T ) =

2s(exp (Tγ(s))− 1)

T [(γ(s) + κ)(exp (γ(s)T )− 1) + 2γ(s)]

γ(s) =
√
κ2 + 2sσ2

V /T

(5.15)

Accordingly, the continuously-sampled realized volatility of the average of

realized volatility, RVd2(0, N, T ), is denoted by the RVc2(0, T ) and given by:

RVc2(0, T ) = lim
N→∞

√
π

2NT

N∑
i=1

∣∣∣∣Sti − Sti−1

Sti−1

∣∣∣∣× 100 =
1

T

∫ T

0

√
Vtdt× 100

(5.16)

The expectation of this expression can be carried and hence the approximation

pricing formula for a variance swap based on this continuously-sampled realized

variance is obtained,

Kc2 = EQ
0 [RVc2(0, T )] =

1

2T
√
π

∫ T

0

∫ ∞

0

1− EQ
0 [e

−sVt ]

s
3
2

dsdt× 100 (5.17)

where EQ
0 [e

−sVt ] is actually the characteristic function of the stochastic variable Vt

and given by EQ
0 [e

−sVt ] = g(−s; t, V0) with g(ϕ; τ, V ) being defined in Eq. (3.8).

A question is naturally raised: how close the results of the two approximations

and the true values are. One would also like to know when the approximation

formulae start to yield large errors when the sampling time is large enough.

To address this question, we compare the numerical results obtained from this

approximation formulae, the newly-developed analytical formulae for discretely-

sampled realized variance and the Monte Carlo simulations.
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Prices of volatility−average swaps obtained from our explicit formula
Prices of volatility−average swaps obtained from Monte Carlo simulations
Prices of volatility−average swaps obtained from continuous sampling approximation
Prices of standard derivation swaps obtained from continuous sampling approximation
Prices of standard derivation swaps obtained from Monte Carlo simulations

Figure 5.2: A comparison of fair strike prices of volatility swaps based on the two
definitions of realized volatility obtained from our explicit pricing formula, the
Monte Carlo simulations, and the corresponding continuous sampling approxi-
mations.

5.3.4 The Effect of Realized-Variance Definitions

As mentioned above, the two definitions, RVd1(0, N, T ) and RVd2(0, N, T ), have

been alternatively used as the realized volatility in the literature. We now make a

comparison of the price difference for two swap contracts being otherwise identical

except the payoffs involving these two different definitions of realized volatility.

Such a comparison should be very interesting and helpful for us to identify the

difference between the two definitions of realized volatility.

Fig. 5.2 displays the strike prices computed using the two definitions of real-

ized volatility, RVd1(0, N, 1) and RVd2(0, N, 1), as a function of the sampling fre-

quency, and their corresponding continuous sampling approximations, Eq. (5.13)

and Eq. (5.16), where the numerical results for the standard derivation swaps

(based on the definition of RVd1(0, N, 1)) are obtained by implementing the MC

simulations (5.11), and numerical results for volatility-average swaps (based on
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the definition of RVd2(0, N, 1)) are obtained by implementing both the MC simu-

lations (5.11) and our closed-form pricing formula (5.10). The results show that

the strike price of a volatility-average swap with RVd2(0, N, 1) is consistently less

than that of a standard derivation swap with RVd1(0, N, 1). With the increasing

of sampling frequency in computing the realized volatility, the difference between

the two becomes more significant. It can also be observed that the values of

the two discretely-sampled realized volatility, RVd1(0, N, 1)) and RVd2(0, N, 1)),

asymptotically approach the values of their corresponding continuous approxima-

tions (Eq. (5.13) and Eq. (5.16)), when the sampling frequency increases.

Several remarks should be made before leaving this section. Firstly, with the

newly-found analytical solution, all the hedging ratios of a volatility swap can also

be analytically derived by taking partial derivatives against various parameters

in the model. With symbolic calculation packages, such Mathematica or Maple,

widely available to researchers and market practitioners, these partial derivatives

can be readily calculated and thus omitted here. However, to demonstrate how

sensitive the strike price is to the change of the key parameters in the model, we

performed some sensitivity tests for the example presented in this section. Shown

in Table 5.3 are the results of the percentage change of the strike price when a

model parameter is given a 1% change from its base value used in the example

presented in this Section. Clearly, the strike price of a volatility swap appears

to be most sensible to the long-term mean variance, θQ, for the case studied.

On the other hand, the parameter “vol of vol”, σV , may also have significant

influence in terms of the sensitivity of the strike price. We also notice that the

strike price of a volatility swap is less sensitive to the spot variance V0. This

finding is surprisingly opposite to the case of a variance swap, which is much

more sensitive to the spot variance V0 but less sensitive to “vol of vol” σV , as

reported in Zhu & Lian (2009d). Secondly, due to the notational amount factor

L and the size of the contract traded per order, the 1% or 2% relative differences,

resulted from adopting different definitions of realized volatility, or using the
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Table 5.3: The sensitivity of the strike price of a volatility swap (daily sampling)

Name Value Sensitivity
κQ 11.35 -0.044%
θQ 0.022 0.50%
σV 0.618 -0.16%
V0 (20%)2 0.07%

continuous approximations, may result in a considerable amount of absolute loss.

Combining these points together, one may realize that it is even more desirable

to work out the closed-form exact formula for the discretely-sampled volatility

swaps to improve the pricing accuracy. Numerical efficiency is vitally important

for any pricing formula; not only producing numerical values of the formula itself

requires speedy calculations, calibrating model parameters with financial market

data may require thousands, if not millions, of iterations and thus any reduction

in computational time per iteration would considerably speed up the calibration

process. In this regard, nothing can be better than an analytical closed-form

exact solution.

5.4 Conclusion

In this chapter, we have applied the Heston stochastic volatility model to de-

scribe the underlying asset price and its volatility, and obtained a closed-form

exact solution for discretely-sampled volatility swaps with the realized volatility

defined as the average of the absolute percentage increment of the underlying

asset price. This can be viewed as a substantial progress made in the field of

pricing volatility swaps. Through numerical examples, we have shown that the

our discrete model can improve the accuracy in pricing volatility swaps. We have

compared the results produced from our new solution with those produced by

the MC simulations for the validation purposes and found that our results agree

with those from the MC simulations perfectly. This study also demonstrates that
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our proposed solution approach can be used to work out a lower bound for the

corresponding standard-derivation swap in which the realized volatility is defined

as the square root of the average of realized variance. Furthermore, with the

newly-found analytical formula, the computational efficiency is enormously en-

hanced in terms of assisting practitioners to price variance swaps, and thus it

can be a very useful tool in trading practice when there is obviously increasing

demand of trading variance swaps in financial markets.



Chapter 6

Examining the Accuracy of the

Convexity Correction

Approximation

6.1 Introduction

In Chapter 5, we presented a closed-form exact solution for discretely-sampled

volatility swaps with the realized volatility defined as the average of the absolute

percentage increment of the underlying asset price, Eq. (5.3). However, the

prices of volatility swap contracts with the square root of average realized variance

(Eq. (5.2)) in their payoff could not be worked out with the same approach. In

fact, analytically calculating the expectations of these payoff functions containing

square root operators can sometimes be very difficult. As a result, the convexity

correction approach is used to approximate the square root function, in order to

derive analytic approximations to pricing volatility swaps, based on the definition

of square root of average realized variance, (see, e.g., Brockhaus & Long 2000;

Swishchuk 2004; Javaheri et al. 2004; Elliott et al. 2007; Benth et al. 2007 etc).

Lin (2007) also applied a similar analysis to propose an approximation for the

strike price of VIX futures. It seems to be quite common in finance practice to

140
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encounter a payoff function of an exotic financial derivative with the square root

operator involved. In this chapter, we examine the core issue of the convexity

correction approximation (CCA), its accuracy, and the validity condition of this

CCA in pricing volatility swaps. For simplicity, our discussion in this chapter

is based on the continuously-sampled realized volatility, Eq. (5.13). For the

completeness reason, the approximation for VIX futures based on the same CCA

technique will also be discussed in this chapter. The detailed discussion about

pricing VIX futures is presented in Chapter 7.

In comparison with other solution approaches, analytic approximation for-

mulae developed based on the convexity correction approach certainly have their

own advantage in terms of providing simple and speedy pricing formulae for some

very complicated pricing problems. However, studies focusing on examining the

core issue of the convexity correction approximation (CCA), its accuracy, are

very rare in literature, and the validity condition of this CCA remains unclear.

The only paper that can be found in the literature is the one by Broadie & Jain

(2008b), who briefly discussed the convexity correction approximation and con-

cluded that it may not provide a good approximation of fair strikes of volatility

swaps in models with jumps in the underlying asset. Our numerical examples

presented later in this chapter also show that the CCA, sometimes, is very poor

with substantially large pricing errors. Clearly, there is an urgent need to sys-

tematically examine the accuracy as well as the reliability of this popularly-used

approximation and work out its validity condition.

This chapter addresses these two inter-related and important issues. Particu-

larly, we mainly concern the following two basic questions. First, for a determin-

istic function f(x) =
√
x, the convergence condition of the Taylor expansion is

very clear. It is also a straightforward but important exercise to check whether

the point x satisfies the convergence condition before applying the Taylor ex-

pansion as an approximation. However, what is the convergence condition of

applying the Taylor expansion while the independent variable x is a stochastic
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variable, which implies that the realized value of x might be any possible value?

More importantly, how to examine whether the convergence condition is satis-

fied? Second, it can be shown that Brockhaus & Long (2000)’s CCA is essentially

the application of the second-order Taylor expansion of the square root function

with independent variable being a stochastic variable (e.g., the future realized

variance in pricing volatility swaps, the value of future volatility index in pricing

VIX futures). As a result, a naturally raised question is: do higher-order Taylor

expansions, such as the third order or fourth order, achieve better accuracies to

approximate the function f(x) =
√
x while x is a stochastic variable?

To address these two basic questions, this chapter firstly discusses about the

validity condition of this second-order Taylor expansion (i.e., the CCA) from the

theoretical analysis aspect, and then presents three specific numerical examples to

examine the accuracies of the CCA and its variations (the third- or fourth-order

Taylor expansions). The main contribution of this chapter can be summarized in

four folds: (1) pointing out the surprisingly large differences in accuracy among

approximations in some specific parameters, and further alerting that one should

be aware of the inaccuracy of this approximation and be very careful in using it;

(2) analyzing the reason why the CCA performs very poor sometimes, and more

importantly, proposing a useful mechanism (a test ratio) to detect the possible

unacceptable large errors; (3) identifying the pitfall of believing that an further

inclusion of higher order terms into the second order expansion will naturally

achieve a better accuracy. Our study shows that it is not so at all for most of the

cases in approximating square root function involved with stochastic variables;

(4) utilizing the proposed test ratio, we propose a more accurate approximation

for the pricing of volatility swaps.

The work presented here could not have been carried out without some re-

cently discovered exact solutions for volatility swaps and VIX futures under the

Heston model. However, our real goal is to provide a correction formula, accom-

panying the adoption of the CCA, for the case that there is no closed-form exact
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solution and the CCA must be adopted to render a fast and yet accurate enough

solution formula.

The remainder of this chapter is organized as follows. In Section 6.2, we

show how the CCA can be derived to price volatility swaps and VIX futures,

followed by the discussion of the validity condition of the CCA. In Sections 6.3,

three specific examples are presented to show the comparison of the CCA and the

improved formula in terms of their accuracy. Our conclusion is stated in Section

6.4.

6.2 Convexity Correction and Convergence Anal-

ysis

A volatility swap is a forward contract written on the annualized standard de-

viation of the log asset returns. The payoff at expiry for the long position is

equal to the annualized realized volatility over the pre-specified period minus the

pre-set delivery price of the contract multiplied by a notional amount of the swap

in dollars per annualized volatility point, whereas the short position is just the

opposite.

The realized volatility at expiration of a volatility swap on the price of an

asset S is commonly calculated as the square root of the realized variance, and

the fair strike price of a volatility swap, denoted by Kvol, is set at the initiation

of the contract so the contract’s net present value is equal to zero, i.e.,

EQ
0 [(
√
RV(0, T )−Kvol)× L] = 0 (6.1)

where RV(0, T ) is the annualized realized variance of the asset S over the contract

life [0, T ]. Therefore, the fair strike price is the expectation value of the realized
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volatility in the risk-neutral world, i.e.,

Kvol = EQ
0 [
√
RV (0, T )] (6.2)

and RV(0, T ) is given by

RV(0, T ) = lim
N→∞

1

N∆t

N∑
i=1

log2
(
Sti

Sti−1

)
× 1002 (6.3)

Due to the nonlinear square root function involved in the expectation in Eq.

(6.2), it is difficult to carry out the expectation analytically. On the other hand,

Jensen’s inequality shows that the fair volatility strike price is upper bounded by

the square root of the expectation of the annualized realized variance :

Kvol = EQ
0 [
√
RV (0, T )] ≤

√
EQ

0 [RV (0, T )] (6.4)

where EQ
0 [RV (0, T )] is essentially the strike price of a variance swap, and can be

relatively more easily computed, as shown by Zhu & Lian (2009d), Broadie &

Jain (2008b), Itkin & Carr (2010), etc.

Obviously, Eq. (6.4) is a very loose upper bound and it may lead to large

errors if it is used as a pricing formula. In order to achieve better accuracies,

Brockhaus & Long (2000) presented the so-called CCA to approximate the fair

volatility strike, using a second-order Taylor expansion of the square root func-

tion. Mathematically, their CCA is based on the first three terms of the Taylor

expansion of f(x) =
√
x around the point x0,

√
x =

√
x0+

(x− x0)

2
√
x0

− (x− x0)
2

8
√
x0

3 +
(x− x0)

3

16
√
x0

5 − 5(x− x0)
4

128
√
x0

7 +O((
x− x0
x0

)5) (6.5)

In the specific case of pricing volatility swaps, one just needs to substitute x =

RV (0, T ) and x0 = EQ
0 [RV (0, T )] in Eq. (6.5), and then take expectation under

the risk-neutral measure on the both sides of Eq. (6.5) to obtain an approximation
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formula to price volatility swaps. In this way, Brockhaus & Long (2000)’s CCA

can be obtained by taking the second order expansion (i.e., the first three terms)

in Eq. (6.5) and ignoring the higher order terms, which results in

Kvol ≈
√
Kvar −

V arQ0 [RV (0, T )]

8
√
Kvar

3 (6.6)

where Kvar = EQ
0 [RV (0, T )] is the strike price of a variance swap which can be

easily determined with the approach recently discussed in Zhu & Lian (2009d),

Broadie & Jain (2008b), Itkin & Carr (2010). Lin (2007) also applied a similar

analysis to propose an approximation for the strike price of VIX futures.

For a deterministic function f(x) to be expanded in Taylor series (Eq. (6.5)),

it is well known that the convergence condition for the Taylor series expansion

is that the x should satisfy the condition |x− x0| ≤ x0. When this condition

holds, the Taylor expansion converges very quickly and the higher order terms

are negligible compared to the first three terms in the expansion. Hence, if the

first three terms on the right hand side of Eq. (6.5) are taken, i.e., with a second-

order expansion, we should have a good approximation of
√
x for all values of

x satisfying |x− x0| ≤ x0. Of course, in the convergent radius |x− x0| ≤ x0, a

better accuracy can be achieved if higher-order terms are further included.

Intuitively, one may expect a better accuracy can also be achieved by ex-

tending Brockhaus & Long (2000)’s second-order CCA to the third order or even

fourth order in the Taylor expansion of the square root function as in the deter-

ministic case. In fact, such an extension was indeed attempted. For example,

Brenner et al. (2007) proposed the third order Taylor expansion approximation

formula for VIX futures, based on the Heston stochastic volatility model (Eq. (9)

in their paper). Sepp (2007) presented the fourth order expansion to approximate

the expectation of a general smooth nonlinear function of a stochastic variable

(cf. Theorem 1.3.2 (Eq. (1.3.6)) of his paper). However, no one has addressed the

issue whether a better accuracy can indeed be achieved by including the higher
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order terms (the third- or the fourth-order terms) into Brockhaus & Long (2000)’s

second-order CCA.

Since the CCA appears to be a natural way to deal with the difficulty whenever

there is a presence of a nonlinear operator, such as the square root operator,

involved in the payoff function, its convergence in the context of the Taylor series

expansion being used in conjunction with a stochastic independent variable needs

to be systematically examined. Such an examination will provide a good guidance

when the CCA is adopted to derive an approximation formula for pricing any

financial derivatives, such as volatility swaps and VIX futures, where there is

a square root function f(x) =
√
x in the payoff with the independent variable

x being a stochastic variable (e.g., future realized variances, or future values of

VIX2). We shall show that a higher order expansion does not necessarily achieve

a better accuracy in this case. In fact, we found that in most cases, the third

order (or the fourth order) expansion performs much worse than the second order

one, as will be demonstrated in the numerical examples.

For the CCA, Eq. (6.6), to converge and hence to provide a good approxi-

mation of EQ
0 [
√
RV (0, T )], it is strictly required that the realized variance of the

stock price path over the time span [0, T ] should satisfy

|RV (0, T )− EQ
0 [RV (0, T )]| ≤ EQ

0 [RV (0, T )] (6.7)

which can be rewritten as

0 ≤ RV (0, T ) ≤ 2EQ
0 [RV (0, T )] (6.8)

In other words, the CCA would work well if the convergence condition, Eq.

(6.8), holds on the stock price path. Since RV (0, T ) is a stochastic variable, whose

value cannot be determined until a sample path is drawn, we should interpret

Eq. (6.8) in the context of probability theory. By defining the excess probability
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p ≡ Prob
(
RV (0, T ) ≥ 2EQ

0 [RV (0, T )]
)
, Eq. (6.8) is equivalent in saying that

the excess probability p is zero, which is an issue also shown in Broadie & Jain

(2008b).

Hence p = 0 can be viewed as a validity condition for the convexity correction

approximation. Our experience is that p = 0 holds only for a small number of

stochastic processes adopted to price financial derivatives (e.g., pricing volatility

swap in the Black-Scholes model). This condition does not hold at all for most

of the cases in pricing volatility swaps and VIX futures. Our numeral examples

show that when the excess probability p is small (e.g., less than 5%), the second

order CCA can still achieve acceptable accuracy, but including higher order (the

third- or fourth-order) terms is useless, if they haven’t made it worse, in improving

accuracies.

It is thereby very important to observe the excess probability in applying the

CCA to price volatility swaps. Unfortunately, this excess probability is normally

difficult to calculate analytically, which requires the availability of the associate

probability density function or characteristic function. For most occasions of us-

ing the Taylor expansions, these density functions (or characteristic functions)

are not easily obtainable, which is the exact reason one has to use the approx-

imations in the first place. If the density function can be worked out, one can

then use it to calculate the expectation of the square root function directly and

obtain exact values, instead of using the Taylor expansions.

An alternative way must be sought to avoid this dilemma. We propose a

more easily computed ratio which extracts the useful information from the excess

probability to serve as an indicator in identifying the relative errors that the CCA

may lead to. This useful ratio, denoted by SCV hereafter, is defined as

SCV =
V arQ0 [RV (0, T )](
EQ

0 [RV (0, T )]
)2 (6.9)

It can be shown that the SCV ratio is nothing but the square of the coefficient
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of variation (CV), which is a normalized measure of dispersion of a probability

distribution in statistics and is computed as

CV =
Standard Deviation

Mean
(6.10)

Since the CV is a measure of the dispersion of data points around the mean, it

should have a close positive correlation with the excess probability p ≡ Prob(RV (0, T )

≥ 2EQ
0 [RV (0, T )]), which essentially also measures the concentration degree of

the stochastic variable RV (0, T ) around its mean EQ
0 [RV (0, T )]. In simple words,

when the SCV (or CV) ratio is low, which means data concentrate more closely

around the mean value, the excess probability would also be low, and vice versa.

Our belief of using this SCV ratio as an error indicator of CCA is also sup-

ported by another argument. By the Chebyshev’s inequality, we have

Prob (|X − E[X]| ≥ α) ≤ σ2

α2
. (6.11)

When α is set to E[X], σ2/α2 is just the SCV ratio V ar[X]/E[X]2, as defined in

Eq. (6.9). Hereby, the SCV ratio is the upper bound of the excess probability.

Our numerical examples below will illustrate that the SCV ratio can indeed serve

as a good indicator in identifying relative pricing errors resulted from the con-

vexity correction approximation. Our numerical results will also show that the

second-order CCA consistently under-estimates the true values. Furthermore, we

can identify by using the linear regression that there is a close linear relationship

between the relative errors resulted from the second-order CCA and the SCV

ratios. Hence, utilizing the fact of the close linear relationship between the SCV

ratios and the relative errors, we now can propose an improved approximation as

Kvol ≈

(√
Kvar −

V arQ0 [RV (0, T )]

8
√
Kvar

3

)
× (1 + α · SCV) (6.12)

α is a correction factor that needs to be determined empirically. Ideally, for a
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specific functional form, to which the Taylor expansion is utilized, its value should

be within a narrow range and this range may change when another function is

to be approximated. Our numerical experience indeed confirms that this factor

is around 0.02 − 0.04 for all the test cases we have so far conducted for the

square root function. Therefore, we have set α to 0.03 in all numerical examples

presented in the next section, where we demonstrate this improved approximation

can substantially reduce the relative errors.

6.3 Illustrations and Discussions

In this section, we shall present some numeral examples, for illustration purpose,

to examine the accuracy of the improved approximation formula and to show the

robustness of the SCV ratio in identifying the relative errors.

6.3.1 Volatility Swaps in Heston Model

The Heston (1993) model is the most popular stochastic volatility model and has

received the most attention, since it can give a satisfactory description of the

underlying asset dynamics (Daniel et al. 2005; Silva et al. 2004). Based on the

Heston stochastic volatility model, Brockhaus & Long (2000) first proposed the

CCA to approximate the value of a volatility swap. A lot of recent studies for the

pricing of volatility swaps are also based on the Heston model (see, for example,

Elliott et al. 2007; Swishchuk 2004). Hereby, we first examine the accuracy of

the CCA in the Heston model.

In the Heston model, the underlying asset St is modeled by the following

diffusion process with a stochastic instantaneous variance Vt, in the risk-neutral

measure Q,  dSt = rStdt+
√
VtStdB

S
t

dVt = κ(θ − Vt)dt+ σV
√
VtdB

V
t

where r is the risk-free interest rate, θ is the long-term mean of variance, κ is a
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mean-reverting speed parameter of the variance, σV is the so-called volatility of

volatility. The two Wiener processes dBS
t and dBV

t describe the random noise

in asset and variance respectively. They are assumed to be correlated with a

constant correlation coefficient ρ, that is (dBS
t , dB

V
t ) = ρdt. The stochastic

volatility process is the familiar squared-root process. To ensure the variance is

always positive, it is required that 2κθ ≥ σ2 (see Cox et al. 1985; Heston 1993;

Zhang & Zhu 2006).

For the volatility swaps based on Heston model, Broadie & Jain (2008b) re-

cently proposed an analytical exact solution, as

Kvol = EQ
0

[√
RV(0, T )

]
=

1

2
√
π

∫ ∞

0

1− E[e−sRV (0,T )]

s
3
2

ds (6.13)

where E[e−sRV (0,T )] is the Laplace transform of the realized variance, and given

by Eq. (D1). It should be noted that there is a typo in the Eq. (A-12) in Broadie

& Jain (2008b), which has been corrected in Eq. (D1) in this thesis.

We use this formula to obtain exact volatility strike prices as benchmark

values to examine the accuracy of the convexity correction approximation (the

second order Taylor’s expansion) and its higher order extensions (i.e., third order

and fourth order expansions). The numerical results of the benchmark values

are obtained with the following parameters: θ = 0.019, κ = 6.21, σV = 0.61,
√
V0 = 10.1%.

Shown in Fig. 6.1, as well as in Table 6.1, are numerical results of volatil-

ity strike prices obtained from the numerical implementation of the exact pricing

formula, Eq. (6.13), the second-order, third-order and fourth-order Taylor expan-

sion approximations, and the improved approximation Eq. (6.12), respectively.

One can observe that the Brockhaus & Long (2000)’s second order approximation

is reasonable for values close to the exact volatility strike for this specific case,

with relative error being 2% when time to maturity T = 0.3 and less than 0.4%

when time to maturity T approaching to 2 years. However, we found that the
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Volatility strike obtained from the exact formula (Broadie & Jain, 2008)
Volatility strike obtained from the second−order approximation
Volatility strike obtained from the third−order approximation
Volatility strike obtained from the fourth−order approximation
Volatility strike obtained from the improved formula

Figure 6.1: A comparison of the exact volatility strike and the approximations
based on the Heston model

performance of the third-order and fourth-order Taylor expansions are very poor

in approximating volatility strikes, particularly when the time to maturity T de-

creases. It can also be observed that results from our proposed approximation

Eq. (6.12) have the lowest relative pricing errors. In fact, the results obtained

from the proposed improved formula match, almost dot-to-dot, with those ob-

tained from the exact solution; this has numerically demonstrated that adopting

the proposed improved formula is a far-better choice than adopting higher-order

terms in Taylor’s expansion to derive a higher-order approximation formula. Of

course, the main reason behind this is that higher-order approximations are not

necessarily of “higher order” in terms of error reduction anymore when the Taylor

expansion is used in the case of expansion of a function of stochastic variables.

To make sure that readers have some quantitative concept of how large the

difference between the results from the exact solution and those from the ap-

proximations, we have also tabulated the results and the relative differences in
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Table 6.1: Strikes of one-year maturity volatility swaps obtained from the exact
pricing formula and the approximations in the Heston model

Formulae Volatility Strikes Relative Errors SCV
The exact formula 12.701

The second-order approximation 12.586 -0.905% 0.407
The third-order approximation 12.979 2.188%
The fourth-order approximation 12.190 -4.023%
Our improved approximation 12.728 0.212%

Table 6.1, for the case of time to maturity T = 1. As can be seen, both the

third-order and the fourth-order Taylor expansions perform much worse than the

second-order expansion. The third-order approximation has over-estimated the

true value by 2.188%, which has doubled the relative errors of the second-order

approximation of -0.905%. Opposite to third-order approximation, the fourth-

order approximation under-estimates the exact volatility strike by -4.023%. And

the improved approximation has the lowest pricing error of 0.212%.

To clearly explain the reason why the third-order and fourth-order approxi-

mations are even worse than the second-order one, we have run the Monte Carlo

simulations to sample the Heston model with T = 1 and calculate the realized

variance for each sample path of the Heston model. In this way, we can ana-

lyze the contribution towards the overall relative errors from three components

of the sampled realized variance, RV (0, 1), in three intervals [0, x0], [x0, 2x0] and

[2x0,∞], respectively (Note: x0 = EQ
0 [RV (0, T )]). If the error contribution from

the interval [2x0,∞], has significantly increased, when the overall relative error

becomes high with higher order approximations, it will confirm our hypopiesis

that the inclusion of higher order terms does not necessarily improve accuracy,

at least based on numerical evidence.

Tabulated in Table 6.2 are the relative error contribution for the three ap-

proximations in each of the spacial intervals, respectively. Roughly speaking, the

relative errors in three spacial intervals in Table 6.2 contribute to the total rel-

ative error of the corresponding approximation listed in Table 6.1, weighted by
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Table 6.2: The relative errors of the three approximations in the three intervals

[0, x0] [x0, 2x0] [2x0, ∞ ]
Probability 61.0% 31.6% 7.4%

The second-order approximation 1.74% -0.467% -10.37%
The third-order approximation 0.74% 0.202% 13.8%
The fourth-order approximation 0.36% -0.107% -25.45%

x0 = EQ
0 [RV (0, T )]
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Relative Pricing Errors of the Second−Order Convexity Corrections

Figure 6.2: Relative pricing errors of the second order approximation as a function
of SCV ratio in Heston model

the probability of a sample point appearing in the relevant interval. It can be

observed from Table 6.2 that the higher order expansions (the third or fourth

order expansions) can indeed reduce the relative errors within the intervals [0, x0]

and [x0, 2x0]. This is because the Taylor expansion of the square root function,

Eq. (6.5), is convergent very well in the interval [0, 2x0], and hence a higher

order approximation should achieve a better accuracy. However, in the interval

[2x0,∞], the Taylor expansion of the square root function is no longer conver-

gent, and as a result, a higher order expansion will perform substantially worse in

this domain. And overall, the higher order approximations results in much larger

relative errors, as shown in Table 6.1.

Next, we investigate the relationship between the SCV ratio and the relative



154 Chapter 6: Examining the Accuracy of the Convexity Correction

error from the second-order approximation in pricing volatility swaps. Plotted in

Fig. 6.2 is the relative error from the second-order approximation as a function

of SCV ratio. There seems to be a highly linear relationship between the two

variables, as can be observed. To identify the quantitative relationship, we regress

the relative error (RE) from the second-order approximation on the SCV ratio

and obtain

RE = −0.453 + 3.616SCV + ϵ R2 = 99.8% (6.14)

As we know, the coefficient of determination, R2, is a statistical measure of how

well the regression line approximates the real data points and hence gives infor-

mation about the goodness of fit of a model. With R2 being almost 1 in our

regression, it is therefore shown that the relative pricing errors indeed have a

great linear relationship with the SCV. Consequently, it makes sense to use the

SCV as an indicator to identify the large pricing errors potentially resulted from

adopting the CCA.

6.3.2 Volatility Swaps in GARCH Model

GARCH model is another most widely used model in macroeconomics and finance

with many important implications. The variance process in a continuous version

of GARCH can be written in the form of

dVt = κ(θ − Vt)dt+ γVtdB
V
t (6.15)

Based on this continuous GARCH model, Javaheri et al. (2004) discussed the

pricing of volatility swap. They used the flexible PDE approach to determine

the first two moments of the realized variance and then obtained the CCA for

volatility swaps.

Different from the Heston model, it is very hard to work out the characteristic

function for the stochastic variable VT , conditional on V0, for this continuous-time
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limit GARCH(1,1) model. Although Heston & Nandi (2000) presented a charac-

teristic function based on the discrete GARCH(1,1), their model however differs

from the continuous-time limit GARCH(1,1) discussed in this chapter as well as

in Javaheri et al. (2004) . Due the lack of any exact formula for pricing volatility

swaps under this GARCHmodel, one has to either resort to some computationally

much more expensive numerical methods such as the finite difference or Monte

Carlo simulations, or adopt the CCA if one wishes to substantially reduce the

computational time. From this viewpoint, it is particularly important to analyze

the accuracy of the approximations.

For the purpose of obtaining exact solutions as benchmark values to analyze

the accuracy of the approximation, we use the finite difference method. Following

Javaheri et al. (2004), it can be shown that the price of a volatility swap, F (t, V, I),

satisfies the following PDE

∂F

∂t
+

1

2
γ2V 2∂

2F

∂V 2
+ κ(θ − V )

∂F

∂V
+ V

∂F

∂I
= 0 (6.16)

with the payoff function F (T, V, I) =
√

I
T
, and the variable I is defined as It =∫ t

0
Vsds.

We solve this PDE in the region 0 ≤ t ≤ T , Vmin ≤ V ≤ Vmax, Imin ≤ I ≤ Imax

with the payoff conditions. Following the studies of Wilmott (2000) and Broadie

& Jain (2008a), we use the boundary conditions for V and I:

∂2F

∂V 2
|(V=Vmin,Vmax) = 0,

∂2F

∂I2
|(I=Imin,Imax) = 0 (6.17)

We examine the accuracy by taking the set of parameters in Javaheri et al.

(2004), i.e., θ = 0.0397, κ = 20.889, γ = 4.438 and V0 = (19%)2. Shown in Fig.

6.3 are numerical results of volatility strike prices obtained from the numerical

implementation of the finite difference method and the second-order Taylor ex-

pansion approximation. In this set of specific parameters of the GARCH model,
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Volatility strike obtained from the finite difference method
Volatility strike obtained from the second−order approximation
Volatility strike obtained from the improved formula

Figure 6.3: A comparison of the volatility strikes from the finite difference and
those from approximations in the GARCH model

the Brockhaus & Long (2000)’s second order approximation is very accurate with

relative error less than 0.8% when time to maturity T = 0.3. While the relative

pricing errors resulted from adopting the second-order approximation in this case

are lower than those in the Heston model, those resulted from adopting our im-

proved formula (Eq. (6.12)) are even smaller, as shown in Fig. 6.4. Again, it is

shown that our improved approximation can further reduce the relative pricing

errors. This has demonstrated the consistence of the improved formula across

different models.

The regression equation of the relative error of the second-order approximation

on the SCV ratio is

RE = −0.190 + 5.082SCV + ϵ R2 = 99.4% (6.18)

Once again, these results show that the relative pricing errors are highly linearly

related to the SCV ratio, demonstrating the importance of SCV ratio in identi-
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Relative Pricing Errors of the Second−Order Convexity Correction

Figure 6.4: Relative pricing errors of the second order approximation as a function
of SCV ratio in GARCH model

fying the relative pricing errors while applying the CCA to price volatility swaps

in practice.

6.3.3 VIX Futures in SVJJ Model

Now, we examine the accuracy of the convexity correction approximation in pric-

ing VIX futures. The VIX future was introduced by CBOE in 2004, and the

interest in trading VIX futures has been growing very quickly. The underlying

of VIX futures is the square root of VIX2
t , which can be computed based on the

prices of a portfolio of 30-calendar-day out-of-the-money S&P500 calls and puts

with weights being inversely proportional to the squared strike price. The payoff

of a VIX future at expiration T is VIXT , and hence the strike price of a VIX

future at time t is

F (t, T ) = EQ[VIXT |Ft] = EQ[

√
VIX2

T |Ft]× 100 (6.19)

Again, similar to the pricing problem of volatility swaps, the calculation of
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VIX future strike also involves an expectation of the square root function. Using

the CCA for the square root function, Lin (2007) presented an approximation

for the value of the VIX futures under the Heston stochastic volatility models

with simultaneous jumps both in the asset price and variance processes (SVJJ

model). In particular, Lin (2007)’s analysis was based on the assumption that the

dynamics processes of the S&P500 index and its variance under the risk-neutral

probability measure Q follow the processes,


dSt = Strtdt+ St

√
VtdW

S
t (Q) + d

Nt(Q)∑
n=1

Sτn− [e
ZS
n (Q) − 1]

− Stµ
Qλdt

dVt = κQ(θQ − Vt)dt+ σV
√
VtdW

V
t (Q) + d

Nt(Q)∑
n=1

ZV
n (Q)


(6.20)

By using the CCA based on this SVJJ model, Lin (2007) presented the VIX

futures formula in the form of

F (t, T ) = EQ[VIXT |Ft] ≈
√
EQ

t (VIX
2
T )−

varQ(VIX2
T )

8[EQ(VIX2
T )]

3
2

(6.21)

where varQ(VIX2
T )/(8[E

Q(VIX2
T )]

3
2 ) is the convexity adjustment relevant to the

VIX futures. Detailed expressions of EQ
t (VIX

2
T ) and varQ(VIX2

T ) are given by

Eq. (8) and Eq. (9) in Lin (2007).

For the same problem, Zhu & Lian (2009a) managed to obtain a closed-form

exact pricing formula for VIX futures in the form of:

F (t, T,VIXt) =
1

2
√
π

∫ ∞

0

1− e−sbf(−sa; t, τ, V IX2
t−b

a
)

s
3
2

ds (6.22)

where f(ϕ; t, τ, Vt) is the moment generating function of the stochastic variable

VT (cf. Eq. (7.8), also Eq. (10) in Zhu & Lian (2009a) for the specific form of

f(ϕ; t, τ, Vt)).

In our examples, we use the parameters (unless otherwise stated) reported in
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Strikes of VIX futures obtained from the exact formula (Zhu & Lian 2009)
Strikes of VIX futures obtained from the second−order approximation (Lin 2007)
Strikes of VIX futures obtained from the improved formula

Figure 6.5: A comparison of the VIX futures strikes from the exact formula and
those from the convexity correction approximation in the SVJJ model

Duffie et al. (2000) that were founded by minimizing the mean-squared differences

between models and the market S&P500 options prices on November 2, 1993.

This set of parameters has been adopted by Broadie & Jain (2008a) as well.

Specifically, these parameters are θ = 0.008, κ = 3.46, σV = 0.14, λ = 0.47,

σS = 0.0001, µ = −0.10, µV = 0.05, ρJ = −0.38,
√
V0 = 8.7%.

In Fig. 6.5, we have plotted the fair price of VIX futures obtained with the

numerical implementation of Eq. (6.22), and those obtained from Lin (2007)’s ap-

proximation. From this figure, one can clearly see that there are noticeable gaps

between numerical results obtained from the exact solution and those from the

approximation formula. For a one-year VIX future, the exact solution produces

a value of 13.40 while the CCA results in a value of 12.78, exhibiting a relative

difference of -4.60%. For example, in the literature of pricing variance swaps,

even when the error level reaches more than 0.5%, Little & Pant (2001) already

declared that it is “fairly large” so that adopting approximation model to price

variance swaps might not be justifiable. With this concept in mind, an error of -

4.60% of Lin (2007)’s approximation formula is certainly unacceptable for market
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Relative Pricing Errors of the Second−Order Convexity Correction

Figure 6.6: Relative pricing errors of the second order approximation in pricing
VIX futures as a function of SCV ratio in SVJJ model

traders. At the same time, the price of a VIX future obtained from the improved

formula is 13.07, representing a relative error of -2.51%, which is substantially

less than the relative error of -4.60% resulted from Lin (2007)’s second-order ap-

proximation. When the correction factor in Eq. (6.12) is increased, the resulting

relative error of this improved formula will be further reduced.

Of course, when other parameters, such as volatility of volatility, σV , are

changed, the differences between the exact solution and the Lin (2007)’s second-

order approximation might even exponentially grow. When the σV reaches 0.5,

which is a reasonable and often reported value in the literature of empirical studies

(e.g., Zhang & Zhu 2006; Brenner et al. 2007), the relative difference of one-year

VIX futures obtained from the two solutions becomes as high as -11.3%!

In this case, there is still a highly linear relationship between the relative error

resulting from the Lin (2007)’s approximation and the SCV ratio, as shown in

Fig. 6.6. The regression equation of the relative error resulting from the Lin

(2007)’s approximation on the SCV ratio is

RE = −4.954 + 13.082SCV + ϵ R2 = 98.6% (6.23)
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Figure 6.7: A comparison of VIX futures strikes obtained from the exact formula
and the second-order and the third-order approximations in the Heston model

The very high value of the coefficient of determination, R2, again verifies that the

SCV ratio is informative in identifying relative errors of the approximation.

Before leaving this section, we want to point out again that the third-order

approximation performs even worse in pricing VIX futures. Brenner et al. (2007)

explored the third-order approximation already by carrying out the Taylor expan-

sion of the square root function to the third order and obtained an approximation

formula for VIX futures, again based on the Heston stochastic volatility model.

Plotted in Figure 6.7 displays the comparisons of the results obtained from the

exact formula in the special case of SV model, the exact formula presented by

Zhang & Zhu (2006), the approximation formula presented by Lin (2007) and

the approximation formula presented by Brenner et al. (2007), respectively, with

parameters being those presented in Brenner et al. (2007)∗. The figure shows

∗In this figure, we use the parameters presented in the empirical studies of Brenner et al.
(2007) for comparison purpose, i.e., κ = 5.5805, θ = 0.03259, σV = 0.5885, and

√
V0 = 8.7%.

Since Brenner et al. (2007)’s approximation is obtained based on the Heston stochastic volatility
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that the Lin (2007)’s approximation formula always undervalues VIX futures and

performs poorly with non-trivial relative pricing errors. For example, for a one-

year VIX future, our exact solution produces a value of 16.90 while the second-

order CCA results in a value of 16.66, exhibiting a relative difference of −1.8%,

which is still quite large and unacceptable for market traders. The Brenner et al.

(2007)’s third-order approximation formula works even worse than Lin (2007)’s

second-order approximation formula, as can be clearly observed in Figure 6.7.

For example, Brenner et al. (2007)’s third-order approximation results in a value

of 17.70 for a one-year VIX future, representing a relative difference of 4.73%.

The third-order approximation formula has not only reversed the under-pricing

characteristics of the second-order approximation formula, but also resulted in

more significant over-pricing errors than the second-order approximation. Fi-

nally, this figure also shows that our proposed improved approximation can once

again substantially reduce the relative errors.

6.4 Conclusion

In this chapter, we have examined the accuracy of the well-known CCA as an

approximation to price volatility swaps and VIX futures. In the first part, we

point out the reason why the CCA is sometimes inaccurate, and we have demon-

strated the validity condition for the application of CCA. Our research shows

that the excess probability is vitally important for the application of convexity

correction approximation. We then propose a useful ratio to identify the rela-

tive errors. With the application of this ratio, we suggest a new approximation

to greatly improve the accuracy of the CCA. In the second part, we illustrate

our theoretical analysis through three numerical examples: the pricing of volatil-

ity swaps in the Heston model; the pricing of volatility swaps in the GARCH

model; and the pricing of VIX futures in the SVJJ model. Our study reveals

model, without jump diffusions being considered, other jump diffusion relevant parameters (λ,
µS , σS , µV , ρJ) are set to be zero.



Chapter 6: Examining the Accuracy of the Convexity Correction 163

that there are surprisingly large differences in accuracy among the Brockhaus &

Long (2000)’s second-order convexity correction approximation in some specific

parameters, hence we alert that one should be aware of the inaccuracy of this ap-

proximation and be very careful in using it. Furthermore, we have demonstrated

that further inclusion of higher order terms into the second-order approximation

will normally result in an even worse accuracy in approximating square root func-

tion involved with stochastic variables. On the other hand, we recommend that

if one aims to reduce the error resulted from adopting a second-order convexity

correction approximation when driving a closed-form analytical solution become

futile, one is far better off to adopt the newly proposed improved formula than

to take higher-order terms in the convexity correction approximation into the

consideration, as these the inclusion of these higher-order terms are not neces-

sarily reduce relative errors in most of the cases, as demonstrated in this chapter

already.



Chapter 7

Pricing VIX Futures

7.1 Introduction

In the previous chapters, we have demonstrated the approach of analytically

pricing variance and volatility swaps, which are historical variance- and volatility-

based volatility derivatives. In this chapter, we will address the pricing problem

of another important implied-volatility based products - the VIX futures traded

in the CBOE. This chapter derives a closed-form exact solution for the fair value

of VIX futures under a stochastic volatility model with simultaneous jumps in

the asset price and volatility processes. The derivation of this formula for VIX

futures with a very general dynamics of VIX represents a substantial progress in

identifying and developing more realistic VIX futures models and pricing formu-

lae. With the newly-found pricing formula available, we then conduct empirical

studies to examine the performance of four different stochastic volatility models

with or without jumps. More importantly, using the Markov chain Monte Carlo

(MCMC) method to analyze a set of coupled VIX and S&P500 data, we demon-

strate how to estimate model parameters. Our empirical studies show that the

Heston stochastic volatility model can well capture the dynamics of S&P500 al-

ready and is a good candidate for the pricing of VIX futures. Incorporating jumps

into the underlying price can indeed further improve the pricing the VIX futures.

164
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However, jumps added in the volatility process appear to add little improvement

for pricing VIX futures.

Since its introduction in 1993 by CBOE (Chicago Board Options Exchange),

Volatility Index (VIX) has been considered to be the world’s benchmark for stock

market volatility. In September 2003, CBOE switched to a new definition of

VIX, which is based on a model-free formula and computed from a portfolio

of 30-calendar-day out-of-money options written on S&P500 (SPX). This new

definition reflects the market’s expectation of the 30-day forward S&P500 index

volatility and serves as a proxy for investor sentiment, rising when investors are

anxious or uncertain about the market and falling during times of confidence.

This VIX index, often referred to as the “investor fear gauge”, is therefore closely

monitored by active traders, financial analysts as well as the media for insight

into the financial market.

The introduction of VIX has laid a good foundation for constructing tradable

volatility products and thus facilitating the hedging against volatility risk and

speculating in volatility derivatives. For instance, on March 26, 2004, the CBOE

launched a new exchange, the CBOE Futures Exchange (CFE) to start trading

VIX futures, which is a type of new futures written on the new definition of VIX.

On February 24, 2006, CBOE started the trading of VIX options to enlarge the

family of volatility derivatives. Since its inception, the VIX futures market has

been rapidly growing. For example, according to the data on the CBOE website,

while the actual trading volume was 332 on February 28, 2005, corresponding

to US$4 millions, the open interest of VIX futures reached 9240, which corre-

sponds to a market value of US$112 millions. Being warmly welcome by the

financial market, these volatility derivatives were awarded the most innovative

index derivative products∗. In fact, “few proposed types of derivatives securities

have attached as much attention and interest as futures and options contracts on

volatility” (Grunbichler & Longstaff 1996).

∗http://www.cboe.com/AboutCBOE/ShowDocument.aspx?DIR=ACNews&FILE=20061205.doc
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Given the growing popularity of trading VIX futures, considerable research

interests have been drawn to the development of appropriate pricing models for

VIX futures, as discussed in Chapter 1. However, it is worth noting that al-

though the rapid development of those models has indeed greatly enriched the

literature in the area of pricing VIX futures, some limitations and weaknesses

remain and hence further studies are required. For example, Zhang & Zhu (2006)

only considered the model with stochastic volatility characteristic, without pay-

ing attention to the importance of possible jumps associated with the underlying

S&P500. Besides, their empirical studies show that there is an easily identifiable

gap between the prices produced by their model and those observed from the

market, indicating that their model and calibration approach may need to be

further improved. Grunbichler & Longstaff (1996) and Psychoyios et al. (2007)

assumed that the VIX spot evolves independently from the actual evolution of

S&P500. As a result, they might have mis-specified the VIX futures and VIX

options, especially the volatility-of-volatility risk, as illustrated by Sepp (2008b).

Sepp (2008b) himself considered a model with a jump component in the dynamics

that the variance follows, without paying attention to jumps in return distribu-

tion of the underlying. Furthermore, the pricing formula in his paper, which

involves complex-value integration and recursive computation, seems to be too

complicate to be used in terms of price calculation and model calibration. As

for the studies by Lin (2007), although both jumps in asset price and variance

process have been taken into consideration, a major problem is that their VIX

futures pricing formula is based on the convex adjustment approximation, which

is not justifiable for models with stochastic volatility or jumps, as shall be shown

later.

With the steadily increasing demand of trading VIX futures, there is an ap-

parent need to conduct further studies for the theoretical as well as practical

purpose. Hence this study is well motivated. In particular, we will complete

three main tasks in this chapter: (1) deriving an efficient exact pricing formula
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for VIX futures under a general framework of stochastic models with jumps being

incorporated in both the underlying and the variance; (2) analyzing the accuracy

of the well-known convexity correction approximation in pricing VIX futures;

and (3) estimating corresponding model parameters from joint VIX and S&P500

market data and empirically examining the performance of alternative models in

terms of pricing VIX futures.

We firstly develop a closed-form and exact pricing formula to evaluate the VIX

futures in a general framework that allows for stochastic volatility, random jumps

in return distribution, and random jumps in variance process. Such a model will

be refereed to as the SVJJ model hereafter. This specification is general enough to

cover most of the already-known alternative models as its special cases, including

(i) the Heston’s (1993) stochastic volatility (SV) model, (ii) the stochastic volatil-

ity with jumps in asset return (SVJ) model, (iii) the stochastic volatility model

with jumps in variance process (SVVJ) model, and (iv) the stochastic volatility,

random jumps in both return distribution and variance process (SVJJ) model.

The Heston (1993)’s SV model has the advantage of non-negative variance, easily

capturing volatility smile as well as the mean-reverting feature observed in op-

tions market. Bates (1996) and Bakshi et al. (1997) extended the SV model to

the SVJ model, which was found to be extremely useful in improving the perfor-

mance of pricing short-term options. However, researchers found strong evidence

for model misspecification in the SVJ model framework, and hence called for fur-

ther extension models, such as adding jumps in the variance process. The further

inclusion of jumps in the variance process leads to the so-called SVVJ model and

the SVJJ model (e.g., Duffie et al. 2000; Pan 2002; Eraker 2004).

The former three models are special cases of the SVJJ. Consequently, we con-

centrate our effort on the SVJJ model when obtaining the analytical formula for

VIX futures. As shall be shown later, the characteristic function is found by

analytically solving the associated governing partial integro-differential equation

(PIDE) in the SVJJ model. Contrast to the research conducted by Lin (2007),
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who proposed an approximate formula for VIX futures in the general SVJJ model

using the convexity adjustment approximation, we found an exact formula for

VIX futures by inverting the characteristic function. With this newly-found for-

mula, the numerical computation for the price of a VIX futures contract can be

efficiently carried out. The numerical comparison shows that the results from

our exact solution perfectly match with the those obtained from the Monte Carlo

simulations. Further comparison indicates there is nontrivial differences between

our results and those from the Lin (2007)’s approximation solution. We also find

that the three-order approximation proposed in Brenner et al. (2007) performs

even worse in the SVJJ model than Lin (2007)’s approximation formula. Natu-

rally, the advantage of using our exact solution over Lin (2007)’s approximation

is clearly demonstrated.

With the pricing formulae now available for the four models (SV, SVJ, SVVJ

and SVJJ), one of the natural questions is naturally raised; which one of them is

the most suitable in terms of pricing VIX futures in practice, i.e., which one results

in the lowest pricing errors. Although there exist many studies in the literature

discussing the effects of model specification in pricing and hedging options (e.g.,

Bakshi et al. 1997; Pan 2002; Eraker 2004; Broadie et al. 2007), there are very

few papers empirically examining the model specification in pricing and hedging

VIX futures. Lin (2007) first conducted the empirical studies to investigate the

pricing and hedging performances of several dynamics specification for VIX and

VIX futures, and found that the SVJ model outperformed for the short-dated

futures, and adding volatility jumps (SVJJ model) can overall enhance hedging

performance.

In this chapter, we re-examine the effects of adding jumps in underlying and

the volatility processes, taking advantage of our newly-developed exact pricing

formula. Using the joint time series data of S&P500 and VIX, we demonstrate

the determination of model parameters with the MCMC approach. With these

parameters extracted from the market data, we then empirically examined the
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pricing performance of four models (SV, SVJ, SVVJ and SVJJ). Our empirical

studies show that the Heston stochastic volatility model (SV) can well capture

the dynamics of S&P500 already and is a good candidate for the pricing of VIX

futures. Incorporating jumps into the underlying price can further improve the

pricing the VIX futures. However, jumps added in the volatility process appear

to be of little improvement in pricing VIX futures.

This chapter is organized into four sections. In Section 7.2, a detailed de-

scription of the general S&P500 specification is first provided, followed by the

explanation of VIX definition and then our analytical formula for VIX futures.

Some numerical examples are also provided to illustrate some fundamental prop-

erties of our newly-derived VIX futures pricing formula. In Section 7.3, we show

how model parameters can be determined from the coupled data of S&P500 and

VIX, using the MCMC approach. The pricing performance of each of these alter-

native models is empirically examined and compared, taking advantaging of our

explicit VIX futures pricing formula. In Section 7.4, a brief summary is provided.

7.2 VIX Futures Models

The purpose of this section is to derive a closed-form formula for VIX futures, in

the framework of stochastic volatility with jump-diffusion characteristics observed

in the voluminous time-series literature. This general pricing framework includes

all those models (SV, SVJ and SVVJ) to be studied in the empirical studies as

special cases. For the purpose of verifying the newly-developed formula, some

comparisons with the Monte Carlo simulation are presented. A closed-form exact

solution in such a general framework also enables us to closely scrutinize the

accuracy of some approximation formulae in the literature (e.g., Lin 2007; Brenner

et al. 2007).
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7.2.1 Volatility Index

The VIX was introduced in 1993 by the Chicago Board Options Exchange (CBOE)

and switched to a new methodology in 2003. The new VIX is calculated in a

model-free manner as a weighted sum of out-of-money option prices across all

available strikes on the S&P500 index. As detailed in the CBOE white paper†,

the new VIX, which is the underlying of VIX futures and options, is defined by

means of VIX2
t ,

VIX2
t = (

2

τ

∑
i

∆Ki

K2
i

erτQ(Ki)−
1

τ
[
F

K0

− 1]2)× 100 (7.1)

where τ = 30
365

, Ki is the strike price of the i-th out-of-the-money option in

the calculation, F is the time-t forward index level, Q(Ki) denotes the time-t

midquote price of the out-of-the-money option at strike Ki, K0 is the first strike

below the forward index level, r denotes the time-t risk-free rate with maturity

τ .

For a better understanding of the financial interpretation, this expression of

the VIX squared can be presented in terms of the risk-neutral expectation of the

log contract, with mathematical simplification (see Lin 2007; Duan & Yeh 2007

for more details),

VIX2
t = −2

τ
EQ[ln (

St+τ

F
)|Ft]× 1002 (7.2)

where Q is the risk-neutral probability measure, F = Ste
rτ denotes the 30-day

forward price of the underlying S&P500 with a risk-free interest rate r under

the risk-neutral probability, and Ft is the filtration up to time t. Under the

assumption that the S&P500 index does not jump, Carr &Wu (2006) have further

shown that the VIX squared is just the conditional risk-neutral expectation of the

annualized realized variance of the S&P500 return over the next 30 calendar days,

which means VIX squared can be viewed as an approximation of the one-month

†see the white paper of VIX, available at http://www.cboe.com/micro/vix/vixwhite.pdf



Chapter 7: Pricing VIX Futures 171

variance swap rate up to discretization error (from using a finite number of options

in the VIX definition). However, when jumps are taken into consideration, the

VIX squared differs from the one-month realized variance of underlying S&P500.

Broadie & Jain (2008b) analyzed the difference between the VIX squared and

the one-month continuous realized variance and concluded that the mean value

of the jump size strongly influences whether the portfolio of options (or the VIX

index) under- or over-approximates the realized variance.

It is worth noting that although the construction of VIX squared is model-

free, which can be replicated by a portfolio of out-of-money options written on

S&P500 as illustrated in Equation (7.1), the VIX itself cannot be replicated by

a portfolio of options. The main difficulty in replicating the VIX is that the

computation of the VIX involves a square root operator against the price of the

portfolio of options. Carr & Wu (2006) pointed that although the at-the-money

implied volatility is a good approximation of the volatility swap rate, the payoff on

a volatility swap (which is essentially the VIX) is notoriously difficult to replicate.

As a result, any pricing formula for the fair value of VIX futures should be model-

dependent. This kind of issues about the pricing of VIX derivatives has been

shown in literature (e.g., Lin 2007; Sepp 2008b). With the purpose of obtaining

the exact pricing formula in a general framework, we demonstrate our general

model and pricing approach in the following two sections.

7.2.2 Affine Model Specification

Due to the fact that the VIX2
t is the risk-neutral expectation of the log contract

of S&P500, one natural method to model the VIX2
t and VIXt is to model the dy-

namics of S&P500. In literature, there have been elaborate efforts by researchers

to build models that admit the “volatility smile” in the implied volatility ex-

tracted from the cross-section option prices, or “fat tails” in return distributions.

Previous research has mainly focused on two approaches: (1) developing stochas-
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tic volatility models that allow for “leverage effect”, and (2) developing models

that incorporate discontinuous jumps in the asset price or the stochastic volatility

process.

Our general analysis model in this chapter incorporates stochastic volatility

characteristic and simultaneous jumps in asset price and volatility process. This

general model was initially proposed by Duffie et al. (2000). Under the physical

probability measure P, the S&P500 index, denoted by St, is assumed to follow


dSt = St(rt + γt)dt+ St

√
VtdW

S
t + d

(
Nt∑
n=1

Sτn− [e
ZS
n − 1]

)
− Stµλdt

dVt = κ(θ − Vt)dt+ σV
√
VtdW

V
t + d

(
Nt∑
n=1

ZV
n

) (7.3)

where:

rt is the constant spot interest rate;

V is the diffusion component of the variance of the underlying asset dynamics

(conditional on no jumps occurring);

dW S
t and dW V

t are two standard Brownian motions correlated with E[dW S
t , dW

V
t ] =

ρdt;

κ, θ and σV are respectively the mean-reverting speed parameter, long-term mean,

and variance coefficient of the diffusion Vt;

Nt is the independent Poisson process with intensity λ, that is, Pr{Nt+dt −Nt =

1} = λdt and Pr{Nt+dt −Nt = 0} = 1− λdt. The jumps happen simultaneously

in underlying dynamics St and variance process Vt;

The jump sizes are assumed to be ZV
n ∼ exp(µV ), and Z

S
n |ZV

n ∼ N(µS+ρJZ
V
n , σ

2
S);

µ = eµS+
1
2
σ2
S/(1− ρJµV )− 1 is the risk premium of the jump term in the process

to compensate the jump component, and γt is the total equity premium.

One of the reasons that we spent some efforts to study this rather general

model and obtain a closed-form solution is that this general model, combining
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both the stochastic volatility and jump diffusions characteristics, takes the follow-

ing four models as special cases according to the specification of jump components

in Equation (7.3).

The first special case is that Eq. (7.3) reduces to the Heston (1993) stochastic

volatility (SV) model, when the jumps are set to zero, i.e., λ = 0, ZS
t = ZV

t = 0.

The Heston (1993) model contains some very unique features and has become a

widely accepted model in option pricing theory. For example, the parameter σV is

commonly referred to as the “volatility-of-volatility”. Higher value of σV results

in “fatter tails” in the return distribution of the underlying. The correlation

parameter, ρ, is typically found to be negative, implying that a fall in price of the

underlying usually will be accompanied by an increase in volatility. This effect is

sometimes referred to as the “leverage effect” (Black 1976).

The stochastic volatility with jumps (SVJ) in return model is an extension to

the SV model that allows random jumps to occur in the underlying prices. Again,

the SVJ model can be regarded as a special case of the general dynamics Equation

(7.3) with ZV
t = 0 and ZS being a jump size process, typically specified to be

normal distribution as ZS
t ∼ N(µS, σ

2
S). This extension can be easily justified as

it reflects an important assumption that the discrete and unexpected arrival of

new information has resulted in an instantaneous revision of underlying prices.

Adding the jump component in the stock returns distribution should improve

fitness of model to the observed stock return in financial market, since the jump

component adds mass to the tails of the returns distribution. Bakshi et al. (1997)

used this model with stochastic interest rate as their general specification to test

the source of model misspecification in the option pricing and found that adding

jump feature to the SV model can greatly improve the performance in pricing

and hedging options, especially in pricing short-term options.

The third special case of the Equation (7.3) is the case in which jumps are

allowed appearing in the variance, Vt, process but no jumps in the underlying

prices. Differing from the SVJ model, this special case, abbreviated by SVVJ
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hereafter, is nested by setting ZS
t = 0 and ZV

t ∼ exp(µV ). Recently, this speci-

fication was employed by Sepp (2008b) to price the VIX options as well as VIX

futures. One of the motivations of this model is the added volatility jump compo-

nent will typically add right skewness in the distribution of volatility, and hence,

overall fatten the tails of the returns distribution. Another motivation is that

model with jumps in volatility may generate the level of skewness implied by the

volatility observed smirk in market data, as illustrated in Bakshi et al. (1997)

and Bates (1996).

Finally, the general model (Eq. (7.3)) itself is a combination of SVJ and

SVVJ model, which is labeled stochastic volatility with simultaneous jumps in

underlying and volatility processes (SVJJ). In this model, jumps in volatility

and prices are driven by the same Poisson process, meaning that price jumps

will simultaneously impact both prices and volatility. The jump arrival intensity

λ is assumed to be constant in this chapter. This assumption is supported by

Chernov et al. (2003) and Andersen et al. (2002), who found that there is no

evidence for a time-varying intensity based on their time-series-based analyses.

Bates (2000) also found that strong evidence for misspecification in models with

state-dependent intensities. This assumption of constant jump arrival intensity

has also been adopted by Broadie et al. (2007). While we have assumed that

jumps would occur at the same time, the jump sizes do not have to be the same;

jump sizes are assumed to be ZV
n ∼ exp(µV ), and ZS

n |ZV
n ∼ N(µS + ρJZ

V
n , σ

2
S)

with correlation ρJ . One may note that in the SVJ model only price movements

resulting from Brownian shocks will have an impact on volatility while price moves

stemming from jumps have no impact on volatility. By introducing simultaneous

jumps in both returns and volatility processes, this shortcoming is corrected in the

general model, which is one of the major advantages over the SVJ mode. Hence,

this specification has received considerable attention in recent literature. For

examples, Duffie et al. (2000), Pan (2002), Eraker et al. (2003), Eraker (2004),

Lin (2007), Broadie et al. (2007) employed this model in their theoretical or
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empirical analysis. Pan (2002) argued that the addition of a volatility jump

component might explain her findings of a severely pronounced increase in the

volatility smile for short maturity, far in the money put options. It is also possible

for skewness to be added into the conditional returns distribution through the

parameter ρJ in the SVJJ model. The term λµ = EP[ZS
t dN ] compensates the

jump component in return.

In the literature of pricing VIX futures, Zhang & Zhu (2006) and Brenner

et al. (2007) used the SV model. Zhu & Zhang (2007) employed the SV model

with parameters assumed to be time-varying. Sepp (2008b)’s study is based on

the SVVJ model. Lin (2007) and Sepp (2008a) respectively used the general SVJJ

model to study the VIX futures and VIX options‡. In this study, we managed

to obtain a closed-form and exact pricing formula for VIX futures based on the

general SVJJ model and this solution is presented in the next section. The

pricing performance of the various SV, SVJ, SVVJ and SVJJ models in pricing

VIX futures will be demonstrated in the empirical study section.

7.2.3 Pricing VIX Futures

In this section, we discuss our analytical solution approach for the determination

of the fair price of a VIX future contract. As we shall show later, the associated

PDE is analytically solved and an explicit closed-form solution is obtained.

We firstly present the dynamics processes of the S&P500 index and its variance

under the risk-neutral probability measure Q, following the standard analysis in

‡In Zhu & Zhang (2007) and Sepp (2008b), some volatility structural parameters are assumed
to be time-varying. In Lin (2007), the jump density λ is assumed to be a linear specification
λ0 + λ1Vt, for some nonnegative constants λ0 and λ1.
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literature (i.e., Duffie et al. 2000; Pan 2002; Eraker 2004; Broadie et al. 2007),


dSt = Strtdt+ St

√
VtdW

S
t (Q) + d

Nt(Q)∑
n=1

Sτn− [e
ZS
n (Q) − 1]

− Stµ
Qλdt

dVt = κQ(θQ − Vt)dt+ σV
√
VtdW

V
t (Q) + d

Nt(Q)∑
n=1

ZV
n (Q)


(7.4)

where µQ = eµ
Q
S+

1
2
σ2
S/(1 − ρJµV ) − 1 and µQ

S is the corresponding risk-neutral

parameter of µS. Consistent with the specification considered in Pan (2002) or

Eraker (2004), the risk premium parameters in our study are specified as: diffusive

volatility risk premium ηV = κQ−κ and jump risk premium ηJ = µQ
S−µS. One can

notice that the σV , ρ, κθ, λ and other jumps parameters are the same under both

the physical probability measure P and the risk-neutral probability measure Q.

The specification for diffusive volatility risk premium ηV is standard in literature,

whereas there are various ways of specifying the measure changes (jump risk

premium) for the jump processes. Broadie et al. (2007) considered a more general

specification for the measure changes for the jump processes by allowing the jump

intensity and all the jump parameters to change across measures P and Q.

As shown in Eq. (7.2), VIX squared is virtually just the conditional risk-

neutral expectation of the log contract of the S&P500 over the next 30 calendar

days. Under the general specification Eq. (7.4), this expectation can be carried

out explicitly in the form of,

VIX2
t = (aVt + b)× 1002 (7.5)

where 
a =

1− e−κQτ

κQτ
, and τ = 30/365

b = (θQ +
λµV

κQ
)(1− a) + λc

c = 2[µQ − (µQ
S + ρJµV )]

as shown in Lin (2007), Broadie & Jain (2007) and Duan & Yeh (2007).
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The VIX squared is thus a linear function of the instantaneous variance, Vt.

One can take advantage of this linear relationship to calculate the instantaneous

variance, Vt, of the S&P500, once the VIX value is given. This has considerably

facilitated the calculation involved in our newly-developed formula which explic-

itly relates the price of a VIX future with the instantaneous variance, Vt. It can be

clearly observed that the VIX is lower bounded by
√
b. This theoretical positive

lower bound can easily explain the fact that the lowest value of actual VIX value

data in CBOE was 9.31 volatility points during January 2nd, 1990 to August

29th, 2008§. Differing from our VIX process modeling approach by starting from

the process of S&P500 and deriving the VIX according its definition Eq. (7.1),

Grunbichler & Longstaff (1996) and Psychoyios et al. (2007) directly modeled

VIX process by a mean-reverting squared-root process, assuming the VIX spot

evolves separating from the actual evolution of S&P500. As a result, the VIX

value in the their models may theoretically approach to zero or even negative,

which is inconsistent with the VIX value data. In this perspective, our approach

by taking advantage of the relationship to model VIX process seems to be more

realistic in describing the VIX process.

Carr & Wu (2006) illustrated that under the assumption of no-arbitrage and

continuous marking to market, the VIX futures price, F (t, T ), is a martingale

under the risk-neutral probability measure Q. Lin (2007) and Zhang & Zhu

(2006) also concluded that the futures price is a martingale. Hence the futures

price is

F (t, T ) = EQ[VIXT |Ft] = EQ[
√
aVT + b|Ft]× 100 (7.6)

where F (t, T ) is the value of the VIX futures at time t with settlement at time

T .

A couple of more points should be remarked before proceeding to present our

exact and closed-form solution for the VIX futures.

§9.31 is the lowest daily closing value of VIX. The lowest intraday value of VIX is 8.63
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Firstly, one may wonder now that if the VIX squared can be replicated by

a portfolio of options, why a similar approach cannot be adopted to construct a

portfolio of the S&P500 options to replicating the VIX itself and hence pricing

the VIX futures with the value of the portfolio. This is actually due to the fact

that VIX, which is the underlying value of the VIX futures, involves a square root

operator against the price of the portfolio of options. The nonlinear nature of

the square root operation has prevented the replication approach being applied

to construct a portfolio of options for the VIX. Some researchers have tried and

concluded that the construction of a portfolio of options for the VIX is extremely

difficult. For example, Carr & Wu (2006) pointed out the replicate strategy for

the square-root nonlinear function is “notoriously difficult to construct”. Lin

(2007) also illustrated that one cannot use the replicate approach for VIX futures

and as a result the pricing formula for the fair value of VIX futures should be

model-dependent.

Secondly, due to the fact that VIX is not a tradable asset, there is no cost-of-

carry relationship between VIX futures and their underlying value, VIX, as that

of the stock futures and underlying stock price. As a result, the drift term of the

VIX process under the risk neutral probability measure is not the risk-free interest

rate any more, and the classic stock futures pricing approach is inappropriate

to price the VIX futures. In other words, the price of a VIX future contract

(at time t with settlement at time T), F (t, T ), cannot be simply calculated by

F (t, T ) = VIXte
r(T−t), a formula that would be normally used to calculate the

price of a future contract written on stocks.

In order to find a closed-form formula for the exact price of a VIX future

contract, we must proceed to carry out the expectation in Eq. (7.6) by explicitly

working out the conditional probability density function pQ(VT |Vt). With the

instantaneous variance following the stochastic differential equation (SDE) in

Eq. (7.4), the corresponding risk-neutral probability density function can be

determined by inverting the associated characteristic function.
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We consider the moment generating function, f(ϕ; t, τ, Vt), of the stochastic

variable VT , conditional on the filtration Ft, with time to expiration τ = T − t.

f(ϕ; t, τ, Vt) = EQ[eϕVT |Ft] (7.7)

Accordingly, the characteristic function is just f(ϕi; t, τ, Vt). The moment gen-

erating function can be interpreted as a contingent claim whose payoff at expiry

T is eϕVT with interest rate being 0. Feynman-Kac theorem implies that f(ϕ, τ)

must satisfy the following backward PIDE

 −fτ + κQ(θQ − V)fV +
1

2
σ2V fV V + λEQ[f(V + ZV )− f(V )|Ft] = 0

f(ϕ; t+ τ, 0, V ) = eϕV

Following the solution procedure in literature (Heston (1993), Duffie et al.

(2000), and among many others), the moment generating function for the variance

process Vt in Eq. (7.4) has the following exponential affine form : f(ϕ; t, τ, Vt) =

eC(ϕ,τ)+D(ϕ,τ)Vt+A(ϕ,τ), under some technical regularity conditions. The coefficients

C(ϕ, τ), D(ϕ, τ), and A(ϕ, τ) are obtained through solving a set of ordinary dif-

ferential equations (ODE). In Appendix E, it is shown that the solution of PIDE

(7.8) is

f(ϕ; t, τ, Vt) = eC(ϕ,τ)+D(ϕ,τ)Vt+A(ϕ,τ) (7.8)

where


A(ϕ, τ) =

2µV λ

2µV κQ − σ2
V

ln (1 +
ϕ(σ2

V − 2µV κ
Q)

2κQ(1− µV ϕ)
(e−κQτ − 1))

C(ϕ, τ) =
−2κθ

σ2
V

ln (1 +
σ2
V ϕ

2κQ
(e−κQτ − 1))

D(ϕ, τ) = 2κQϕ

σ2
V ϕ+(2κQ−σ2

V ϕ)eκQτ

Assuming we stand at time t, the Fourier inversion of the characteristic func-
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tion f(ϕi; t, τ, Vt) provides the required conditional density function pQ(VT |Vt)

pQ(VT |Vt) =
1

π

∫ ∞

0

Re[e−iϕVT f(iϕ; t, τ, Vt)]dϕ (7.9)

The price of a VIX future contract at time t is thus expressed in the form of

F (t, T ) = EQ[VIXT |Ft] =

∫ ∞

0

pQ(VT |Vt)
√
aVT + bdVT × 100 (7.10)

Under the Heston stochastic volatility framework, which is a special case cov-

ered by the general dynamics presented in this chapter, Zhu & Zhang (2007)

proposed their VIX futures pricing formula. Similarly in form to the pricing for-

mula shown in Eq. (7.10), their pricing formula for the VIX futures is expressed

in the form of a two-dimensional integral with one of the integrands being the

complex function, i.e., the Fourier inverse transform, in order to obtain the prob-

ability density function from the characteristic function. We initially decided to

leave our final solution in this two-dimensional integral form too. However, after

a careful examination of the properties of the integrand, we realized that the inte-

gration could be further simplified, by utilizing a mathematical identity to avoid

the complicate Fourier inverse transform and obtain a closed-form solution as our

final solution for the price of VIX futures. This had significantly simplified the

calculation time and made it possible for us to adopt our formula in the empirical

analyses later.

Schürger (2002) has shown that, after interchanging the expectation and in-

tegral using Fubini’s theorem, the expectation of square root function can be

expressed as,

E[
√
x] =

1

2
√
π

∫ ∞

0

1− E[e−sx]

s
3
2

ds (7.11)

Invoking this identity, Formula (7.10) can be simplified as

F (t, T ; Φ) =
1

2
√
π

∫ ∞

0

1− e−sbf(−sa; t, τ, Vt)
s

3
2

ds (7.12)
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where f(ϕ; t, τ, Vt) is the moment generating function shown in Eq. (7.8). No-

ticeably, this pricing formula for VIX futures under the general SVJJ model has

a parameter vector Φ = {κ, θ, σV , ηV , λ, µS, σS, µV , ρJ , ηV }. And the price of VIX

futures in Eq. (7.12) is a function of the instantaneous variance, Vt, which can

be easily calculated from a given VIX value through Eq. (7.5). Therefore, as

a conclusion of our formula derivation, we have successfully obtained a one-to-

one function between the VIX futures price and the VIX itself, as stated in the

following proposition.

Proposition 5 If S&P500 index follows the general dynamics given by Equation

(7.4), the conditional probability density function of VIXT , denoted by p
Q(VIXT |VIXt),

is given by

pQ(VIXT |VIXt) =
2VIXT

aπ

∫ ∞

0

Re

[
e−iϕ(

V IX2
T−b

a
)f
(
iϕ; t, τ, (VIX2

t − b)/a
)]
dϕ

(7.13)

and the price of a VIX future at time t with maturity T is given by the following

formula:

F (t, T,VIXt) =
1

2
√
π

∫ ∞

0

1− e−sbf(−sa; t, τ, V IX2
t−b

a
)

√
s
3 ds (7.14)

where f(ϕ; t, τ, Vt) is the moment generating function of the stochastic variable

VT , and given by Eq. (7.8).

The pricing formula has several distinctive features. Firstly, this pricing for-

mula is so far more general than any closed-form exact solutions reported in the

literature; it applies to economies with stochastic volatility, jump risk in the price

process, and jump in the variance process, taking the existing SV, SVJ and SVVJ

models as special cases. For example, the pricing formula proposed by Zhang &

Zhu (2006) in the Heston model (SV) can be obtained by setting λ = 0 in Eq.

(7.10). This has considerably reduced the effort of deriving closed-form pricing

formulae for the SV, SVJ, SVVJ and SVJJ models individually. With this most
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general formula in hands, all one needs is to decide what model would be the

most appropriate dynamics to describe the underlying first and then take the

appropriate special case as needed.

Secondly, the pricing formula (7.12) for VIX futures involves only one di-

mensional integral with its integrand being a well-defined and smooth real func-

tion, since it has completely avoided numerically performing the complex-valued

Fourier inverse transform. However, Zhu & Zhang (2007) had left their final VIX

futures pricing formula in the form of two-dimensional integral without being able

to carry out the complex-valued Fourier inverse transform. Although the parame-

ters in their discussions were assumed to be time-varying in the framework of the

Heston SV model, we find that our approach presented in this chapter can also

be applied to simplify their final solution and avoid the complex-valued Fourier

inverse transform. The main disadvantage of a solution being left in terms of

complex-valued integrals is that the numerical calculation of these integrals has

to be handled very carefully as the integrands are multi-valued complex func-

tions, which may cause some problems when one needs to decide which root is

the correct one to take. There have been examples reported in the literature

(e.g., Kahl & Jackel 2005) for the wrong numerical integration when a Fourier

inversion is performed. In comparison with those complicated integral calcula-

tions, the numerical advantage of our compact solution (7.12) is obvious. Such

advantage has also been clearly demonstrated by Zhu & Lian (2009d) when they

developed their variance swaps pricing model.

Thirdly, under the general dynamics as specified in Eq. (7.3), Lin (2007)

employed the so-called convexity correction approximation (Brockhaus & Long

2000; Bates 2006), which is essentially the second-order Taylor expansion of the

square root function, for the square root of latent affine stochastic process to

calculate the expectation in Eq. (7.6) and hence obtained an approximation

formula for VIX futures. By using the convexity correction approximation, he
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was able to present the VIX futures formula in the form of

F (t, T ) = EQ[VIXT |Ft] ≈
√
EQ

t (VIX
2
T )−

varQ(VIX2
T )

8[EQ(VIX2
T )]

3
2

(7.15)

where varQ(VIX2
T )/{8[EQ(VIX2

T )]
3
2} is the convexity adjustment relevant to the

VIX futures. However, Broadie & Jain (2008b) pointed out that the convexity

correction is not justifiable at all for the Heston model, or Merton jump diffusion

model. They also have shown some numerical evidence that the convexity correc-

tion performs poorly in the Heston stochastic volatility model and even worse in

models with jumps, such as Merton jump diffusion model or Bates model (SVJ).

Even though their analysis aimed at examining the performance of convexity cor-

rection approximation for volatility swaps, we have every reason to doubt that

Lin (2007)’s approximation-based VIX futures formula doesn’t work well either.

Therefore, this adds another motivation for us to find out an exact formula for

VIX futures as presented in this chapter. The numerical comparisons between Lin

(2007)’s approximation formula (7.15) and our exact formula (7.12) confirm that

the convexity correction indeed doesn’t work well for some parameters, as was

also confirmed by Broadie & Jain (2008b)’s findings. Furthermore, our numerical

comparisons reveal that the third-order Taylor expansion approximation performs

even worse than seconde-order approximation, which is the totally at odds with

the conclusion of Brenner et al. (2007) who explored the third-order Taylor ex-

pansion to give an approximate formula for VIX futures prices and claimed that

it was “very accurate” for reasonable set of parameter values. All the numerical

analyses will be shown in the next section.

Fourthly, this pricing formula (7.12) for VIX futures inherently possesses a

number of interesting properties, consistent with many reported properties about

volatility futures in the literature (c.f., Grunbichler & Longstaff 1996; Psychoyios
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et al. 2007). For example,

lim
(T−t)→0

F (t, T ) = VIXt (7.16)

which is the standard convergence property of futures prices to the underlying

spot value at maturity, as a necessary condition for any futures contract to be

correctly priced. When the time-to-maturity increases, however, the VIX futures

prices have distinct property, in that the futures prices are becoming less sensitive

to the spot VIX value and fail to capture the evolution of the VIX as time-to-

maturity increases. In the limiting case, the futures prices approach to a constant

that is independent of the VIX value, i.e.,

lim
(T−t)→∞

F (t, T ) = Constant (7.17)

As will be shown in the empirical studies later, this term structure of VIX fu-

tures prices is indeed consistent with the actually traded prices in CBOE. This

feature is quite unique itself, in contrast to those of futures contracts written on

commodities or equities; the latter always move in an one-to-one fashion with the

underlying spot price, even with very large time to expiring.

7.2.4 Numerical Examples

In this section, we show some numerical results to illustrate the properties of

our newly-found VIX futures pricing formula. We firstly compare the results

obtained from the implementation of Eq. (7.12) with those from Monte Carlo

simulations to verify the correctness of our newly-found formula. Although the-

oretically there would be no need to discuss the accuracy of a closed-form exact

solution and present numerical results, some comparisons may give readers a sense

of verification for the newly-found analytical solution. We then present some nu-

merical comparisons with the results obtained from our exact solution Eq. (7.12)



Chapter 7: Pricing VIX Futures 185

and those from the convexity correction approximations (e.g., Lin 2007; Brenner

et al. 2007). These comparisons will help readers understand the improvement in

accuracy of our exact solution.

In our examples, we use the parameters (unless otherwise stated) reported in

Duffie et al. (2000) that were founded by minimizing the mean-squared differences

between models and the market S&P500 options prices on November 2, 1993.

Listed in Table 7.1 are these parameters, which are the same set of parameters

adopted by Broadie & Jain (2008a) as well.

Table 7.1: Parameters for SV, SVJ and SVJJ models

Parameters SV model SVJ model SVJJ model
θ 0.019 0.014 0.008
κ 6.21 3.99 3.46
σV 0.61 0.27 0.14
λ N/A 0.11 0.47
σS N/A 0.15 0.0001
µ N/A -0.12 -0.10
µV N/A N/A 0.05
ρJ N/A N/A -0.38√
V0 10.1% 9.4% 8.7%

To verify the correctness of our solution, we have used Monte Carlo method to

simulate the underlying process (7.3) and calculate VIX futures prices according

to Eq. (7.6). We took 200, 000 paths for all the simulation results presented

here. It should be remarked that a nice simulation of the CIR variance process

is anything but straightforward. For simplicity, we have employed the simple

Euler-Maruyama discretization for the variance dynamics:

vt = vt−1 + κQ(θQ − vt−1)∆t+ σ
√
|vt−1|

√
∆tWt +

Nt∑
n=1

ZV
n (7.18)

where Wt is a standard normal random variables, ZV
n ∼ exp(µV ), and Nt is the

independent Poisson process with intensity λ∆t.

Plotted in Fig. 7.1 are three sets of data, the fair price of VIX futures ob-
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Figure 7.1: A comparison of VIX futures strikes obtained from our exact formula,
the MC simulations and Lin (2007)’s approximation, as a function of tenor, based
on the SVJJ model

tained with the numerical implementation of Eq. (7.12), those obtained from the

approximation solution (7.15) and the numerical results obtained from the Monte

Carlo simulations (8.23). All these numerical results are obtained using the SVJJ

model with the input parameters listed in Table 7.1.

One can clearly observe that the results from our exact solution perfectly

match with the results from the Monte Carlo simulations. The value of the rela-

tive difference between of our results and those of the Monte Carlo simulations is

less than 0.16% already when the number of paths reaches 200,000 in the Monte

Carlo simulations. Such a relative difference is further reduced when the number

of paths is increased; demonstrating the convergence of the Monte Carlo simula-

tions towards our exact solution. On the other hand, in terms of computational

time, the Monte Carlo simulations take a much longer time than our analytical

solution does. In contrast to a formidable computational time of 273.219 seconds

for one data point using the Monte Carlo simulations with 200,000 paths, im-
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Figure 7.2: A comparison of VIX futures strikes obtained from our exact formula,
the MC simulations and Lin (2007)’s approximation, as a function of “vol of vol”,
based on the SVJJ model

plementing Formula (7.12) just consumed 0.07 seconds; a roughly 4,000 folds of

reduction in computational time for one data point. This is not surprising at all

since time-consuming is a well-known drawback of Monte Carlo simulations. Of

course, some variance reduction techniques (e.g., Glasserman 2004) may be used

to enhance the computational efficiency of the Monte Carlo simulations. Since

our aim in this chapter is primarily to obtain values from the Monte Carlo simula-

tions for the comparison and verification purpose, we did not focus our attention

on improving the numerical efficiency of the Monte Carlo method. However, from

our previous experience, it is unlikely that any improved Monte Carlo simulation

would have an efficiency exceeding that of an analytical solution no matter what

reduction techniques one may adopt.

In Fig. 7.1, we have also plotted the numerical results of Lin (2007)’s approxi-

mation solution which is obtained using the convexity correction approach. From

this figure, one can clearly see that there are non-trivial gaps between numeri-
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cal results obtained from our exact solution and those from the approximation

formula. For a one-year VIX future, our exact solution produces a value of 13.4

while the convexity approximation results in a value of 12.8, exhibiting a relative

difference of -4.47%, which is quite large and unacceptable for market traders.

For example, in the literature of pricing variance swaps, even when the error level

reaches more than 0.5%, Little & Pant (2001) already declared that it is “fairly

large” so that adopting approximation model to price variance swaps might not

be justifiable. With this concept in mind, an error of -4.47% of Lin (2007)’s

approximation formula is certainly unacceptable. This finding is consistent with

the conclusion by Broadie & Jain (2008b), who concluded that the convexity cor-

rection formula “performs poorly in the Heston stochastic volatility model and

even worse in models with jumps”.

Of course, when other parameters, such as volatility of volatility, σV , are

changed, the differences between our exact solution and the approximation solu-

tion might even exponentially grow. Plotted in Fig. 7.2 is the effect of changing

parameter σV while the other parameters are held the same. As one can see, both

solutions indicate that the VIX futures prices decrease when σV increases. How-

ever, the values produced by the approximation solution decrease much faster

than those produced from our exact solution. When the σV reaches 0.5, which is

a reasonable and often reported value in the literature of empirical studies (e.g.,

Zhang & Zhu 2006; Brenner et al. 2007), the relative difference between the re-

sults of the two solutions becomes as high as -11.3%! In Fig. 7.2, one can also

observe that our solution matches up the results from Monte Carlo simulations,

once again verifying the correctness of our exact solution.

Lin (2007)’s convexity correction approximation is essentially a Taylor-series

expansion of the square root function to the second order. One may wonder if

a better accuracy can be achieved by extending the convexity correction approx-

imation to the third order in the Taylor expansion of the square root function.

Brenner et al. (2007) explored such an extension already by carrying out the
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Taylor expansion of the square root function to the third order and obtained an

approximation formula for VIX futures, based on the Heston stochastic volatil-

ity model as well. Brenner et al. (2007) claimed that the third-order Taylor

expansion-based approximation formula “is very accurate for reasonable set of

parameter values” for the SV model. It is thereby quite interesting to examine

how their third-order approximation formula has improved the accuracy.

We tried to replicate Brenner et al. (2007)’s word in order to examine the

degree of improvement of their formula over Lin (2007)’s second-order approxi-

mation. In Brenner et al. (2007)’s study, they did not illustrate the specific def-

inition of reasonable set of parameter values, nor did they give any examples of

reasonable sets of parameter values. For the purpose of examining the accuracy

of Brenner et al. (2007)’s approximation formula, we adopted the parameters

presented in their empirical studies to do numerical comparisons, κ = 5.5805,

θ = 0.03259 and σV = 0.5885. This set of parameters was obtained by using the

calibration method, i.e., minimizing the sum of square differences between VIX

futures market prices and the approximation formula based-theoretical prices,

and hence it should be a “reasonable set of parameter values”. Plotted in Fig.

7.3 and Fig. 7.4 display the comparisons of the results obtained from our ex-

act formula in the special case of SV model, the exact formula presented by

Zhang & Zhu (2006), the approximation formula presented by Lin (2007) and

the approximation formula presented by Brenner et al. (2007), respectively, with

parameters being those presented by Brenner et al. (2007). As can be seen in

the both figures, results of our exact formula match up with those from Zhang

& Zhu (2006)’s exact formula for VIX futures, once again verifying the correct-

ness of our exact formula. It should also be noted that Zhang & Zhu (2006)’s

exact formula for VIX futures is based on the Heston stochastic volatility (SV)

framework, which is a special case covered by our general model (SVJJ). The two

figures also show that the Lin (2007)’s approximation formula always undervalues

VIX futures and performs poorly. For examples, the relative error is -1.8% for



190 Chapter 7: Pricing VIX Futures

Figure 7.3: A comparison of VIX futures strikes obtained from our exact formula
and the approximations in literature, as a function of tenor, based on the Heston
model

a one-year VIX futures contract, which is the largest relative difference between

the solid line and the dash-dotted line displayed in Fig. 7.3. The Brenner et al.

(2007)’s third-order approximation formula works even worse than Lin (2007)’s

second-order approximation formula. As can be clearly observed in Fig. 7.3,

the third-order approximation formula has not only reversed the under-pricing

characteristics of the second-order approximation formula, but also resulted in

significant over-pricing errors in comparison with the prices obtained with our

new exact solution.

The consistent over-pricing from the third-order approximation, as opposed

to the consistent under-pricing from the second-order approximation, can be ex-

hibited more clearly when we plot the VIX futures prices against the volatility

of volatility, σV , in Fig. 7.4. From this diagram, we can also conclude that

the convexity correction approximation works well when σV is sufficiently small.

However, when σV has passed certain threshold (it is roughly 0.5 in this particular
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example), the deviation resulted from the convexity correction approximation, no

matter if it is from the second-order or the third-order approximation, will be-

come unacceptably too large. In this particular case, we can see that Brenner

et al. (2007)’s third-order approximation formula performs far worse than the Lin

(2007)’s second-order approximation. Theoretically, if the Taylor expansion se-

ries converges well, formulae derived with a third-order expansion should exhibit

better accuracy than those derived with a second-third order expansion. If there

is no sign of improvement in accuracy when a higher-order expansion is used, or

the third-order expansion performs even worse than the second-order expansion

as shown in Fig. 7.4, the series may not even converge and neither of them can

really be used as a reliable approximation. Of course, it is quite possible that

under some other sets of parameters, the two approximations may work well and

the third-order approximation formula may indeed achieve higher accuracies than

the second-order approximation formula. The fact that the accuracies of the both

Lin (2007)’s and Brenner et al. (2007)’s approximation formulae are sensitive to

the volatility of volatility, σV , suggests that adopting the convexity correction

approximation based on a Taylor series expansion of square root function is not

suitable at all; this further reinforces the case that exact solutions needs to be

derived as we present in this chapter.

7.3 Empirical Studies

Like any other pricing formulae, such as the Black-Scholes formula, to apply our

newly-developed general formula to price VIX futures in practice, one needs to

know what parameters to use. The determination of the model-needed parame-

ters in a proper and sensible way can itself be a difficult problem. Furthermore,

just as a question raised by Bakshi et al. (1997), one now naturally has to choose,

according to some criteria, the most suitable one to price VIX futures, among the

four available models (SV, SVJ, SVVJ and SVJJ models). The most commonly
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Figure 7.4: A comparison of VIX futures strikes obtained from our exact formula
and the approximations in literature, as a function of “vol of vol”, based on the
Heston model

adopted criteria are i) by the least “pricing errors” between the model-predicted

values and the set of market data chosen for the empirical study under some

appropriately designed norms to measure the “pricing errors”; ii) by the best

“hedging performance” in the sense that the chosen model can indeed render var-

ious hedging (such as Delta hedge) against risks specified within the model; iii)

by the best fit of the model-implied parameters, which are determined from the

derivative prices obtained from the model and market data in an “indirect” and

“implied” sense, and those determined directly from analyzing the time series of

the underlying such as the S&P500 for the case of pricing VIX options or futures.

However, implementing any of these criteria usually means that one faces a highly

computationally intensive task as any routine required to carry out the compu-

tational task usually involves millions, if not billions, of iterations. Now, with

our newly-found closed-form pricing formula that covers four different models,

the computation involved in the parameter determination will be substantially
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reduced, thus allowing us to compare which model is the most suitable one to

price VIX futures. In this section, we present such an empirical study conducted

to test the pricing performance of the four models (SV, SVJ, SVVJ and SVJJ).

7.3.1 The Econometric Methodology

“In applying the option pricing models, one always encounters the difficulties that

the spot volatility and the structural parameters are unobservable” (Bakshi et al.

1997). To address these difficulties, a number of methods have recently been pro-

posed to estimate the uncertain structural parameters in the latent volatility dy-

namics as well as the jump diffusion, including the generalized method of moments

(GMM) (Singleton 2001; Pan 2002), the efficient method of moments (EMM)

(Gallant et al. 1997; Andersen et al. 1999; Andersen et al. 2002; Ortelli & Tro-

jani 2005), the maximum likelihood estimation (MLE) (Bates 2006; Ait-Sahalia

& Kimmel 2007), the quasi-maximum likelihood estimation (QMLE) (Ruiz 1994;

Sandmann & Koopman 1998), the Markov chain Monte Carlo (MCMC) (Eraker

et al. 2003; Eraker 2004; Johannes & Polson 2002; Jacquier et al. 2004; Forbes

2007; Yu & Meyer 2006), and the calibration method (Bakshi et al. 1997; Duffie

et al. 2000; Broadie et al. 2007). Zhou (2000) performed a Monte Carlo study on

EMM, GMM, QMLE, and MLE for the Heston square-root stochastic volatility

model. Although there are pros and cons of each these estimation methods, as

pointed out by Andersen et al. (2002) and Bates (2006) in their brief review of

these methods, the MCMC method appears to be a robust and popular method.

There are three main reasons why we chose the MCMC method in this study.

Firstly, in order to estimate the parameters needed to price VIX futures, we ini-

tially chose the calibration method to infer the parameters by minimizing the

squared differences between theoretical values calculated from any VIX futures

model and those observed in the market, as Bakshi et al. (1997), Zhang & Lim

(2006), Broadie et al. (2007) did. Our experience is that some very minor dis-
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turbance in the initial value for the optimization results in huge changes in the

optimized solution obtained from the optimization algorithm. In other words,

the calibration approach appears to be unstable. The instability may result from

the highly nonlinear inherence in the object function itself, as has been reported

by Zhang & Lim (2006). Secondly, it has been well reported in the literature that

the MCMC method has sampling properties superior to other methods. For ex-

ample, Jacquier et al. (1994) found that the MCMC method outperforms GMM

and QMLE in parameter estimation of stochastic volatility models. Andersen

et al. (1999) found that the MCMC method also outperforms EMM. Some other

advantages (such as computational efficiency, accounting for estimation risk and

providing estimations of the latent volatility as well as jumps parameters) are also

reported (Eraker et al. 2003). Finally, as commented by Broadie et al. (2007),

an efficient estimation procedure should utilize not only the information stored

in the underlying that varies as a function of time over the period of study but

also the cross-sectional information stored in the derivatives prices over the same

period of time. This is also a view shared by other (e.g., Pan 2002; Jones 2003;

Eraker 2004). Incorporating all these three features, especially the last one that

the joint data of underlying and the cross-sectional derivatives prices were used

to estimate the model parameters, the MCMC method naturally became our se-

lected method to conduct the empirical study, in which three sets of market data

(S&P500, VIX values and VIX futures prices) were available to us; simultaneously

utilizing these sets of data would allow the extracted parameters to ultimately

reflect the most unbias information contained in each individual set.

The MCMC method has been used in analyzing time series for a long time.

Eraker et al. (2003) adopted this approach to estimate stochastic volatility models

with jumps in returns and volatility. Jacquier et al. (2004) comprehensively

discussed its application with a number of examples. This method was then

extended by Eraker (2004) using not only the underlying time-series data but also

the options prices as well. In our study, we employ the MCMCmethod to estimate
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model parameters and analyze model performance. These MCMC analyses are

implemented by using the software package WinBUGS, which provides an easy

and efficient implementation of the Gibbs sampler, and has been successfully

applied for a variety of statistic models such as random effects, generalized linear,

proportional hazards, latent variables, and even state space models (Yu & Meyer

2006). Quite a few papers have been proposed in estimating stochastic volatility

models using the WinBUGS (for example, Meyer & Yu 2000; Berg et al. 2004;

Yu 2005; Yu & Meyer 2006). Readers are referred to Meyer & Yu (2000) for

a comprehensive introduction on using WinBUGS to determine the parameters

used in stochastic volatility models.

In order to use the MCMC method to estimate the structural parameters and

the latent stochastic volatility in our VIX futures pricing model, we construct a

time-discretization of Eq. (7.3).


Yt = µ+

√
Vt−1ε

S
t + ZS

t dq

Vt = Vt−1 + κ(θ − Vt−1) + σV
√
Vt−1ε

V
t + ZV

t dq

VIX2
t = (aVt + b)× 1002 + εV IX

t

(7.19)

where dq =1 indicates a jump arrival, εSt and εVt are standard normal random vari-

ables with correlation ρ, Yt are continuous daily returns, e.g., Yt = ln (St/St−1).

All the parameters are quoted using a daily time interval following the convention

in the time-series literature.

Before continuing with the algorithm, it is important to note the following

remarks. Firstly, one may note that there should be a variance risk premium in the

return drift, µ+ βVt−1. The term βVt−1 has been ignored from our analysis since

the resulted bias is insignificant in daily-interval discretization, consistent with

the similar conclusions drawn by Andersen et al. (2002), Pan (2002) and Eraker

et al. (2003). Secondly, provided that the Feller condition holds, the Vt process

will have a positive solution (Johannes & Polson 2002). Thirdly, an additional
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term that represents the difference between the model-predicted value and the

recorded market value, or the so-called “pricing errors”, εV IX
t , is introduced in Eq.

(7.19). The main reason to introduce such a “pricing error” term is to deal with

the stochastic singularity, or what one would call an over-determination problem

in solving a system of mathematical equations. In finance practice, there are

always more observed market values than the number of parameters that are

used in a pricing model, which means that no model is capable of simultaneously

fitting all of the recorded market values tick by tick. The implied volatility

smile is a typical example of this type of over-determination problems. With

the introduction of a “pricing error” term, we are then able to use the MCMC

method to overcome the difficulties involved in this over-determination problem

in a statistical manner.

For pricing errors, Eraker (2004) adopted a serial dependent AR(1) model,

which is equivalent to assuming that pricing errors follow the independent Ornstein-

Uhlenbeck processes, based on the prior belief that if an asset is mispriced at time

t, it is also likely to be mispriced at time t+ 1. In our study, we follow Johannes

& Polson (2002), assuming that εV IX
t at different t is independent and normally

distributed with the zero mean and a known variance, σ2
U . We have also adopted

the prior distributions suggested by Eraker et al. (2003) and Eraker (2004) for

the unknown parameters, to implement the MCMC inference model.

7.3.2 Data Description

The daily VIX index value and VIX futures prices can be obtained directly from

the CBOE. The VIX index data, including the daily open, high, low and close, are

available from the January 2, 1990 to the present. And the VIX futures prices,

including open, high, low and close and settle prices, as well as the trading volume

together with the open interest, are downloadable from the CBOE from March

26, 2004 to the present. In our studies, we use the VIX daily close levels and VIX
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futures daily settle prices over the period from March 26, 2004 to July 11, 2008.

Several exclusion filters were applied to the raw data to construct the VIX

futures prices data that are eventually used in our analysis. Firstly, VIX futures

that are less than 5 days to maturity were taken out of the raw sample to avoid

any liquidity-related bias. This is because there are cases in the last few days

before expiration when the VIX futures prices move in the opposite direction

to that of the underlying VIX movement. This filter principle was also used

by Bakshi et al. (1997) and Zhang & Lim (2006). Secondly, VIX futures data

with the associated open interest less than 200 contracts were excluded from the

sample to avoid any liquidity-related bias. Lastly, futures prices that are less than

0.5 were not used to mitigate the impact of prices discreteness because of the tick

size of 0.01. This is because most option pricing models assume continuous price

movements, whereas in the real world the price moves in ticks. Nandi (1996),

Bakshi et al. (1997) and Zhang & Lim (2006) used this filter rule. In our studies,

the minimum futures price in the raw data is 9.95 anyway and so no sample data

has been filtered out by this rule. Based on the criterion, we have 6433 VIX

futures prices. Because the VIX futures price is independent with the risk-free

interest rate, we do not need to use any interest-rate proxy, such as the LIBOR

rate.

Prior to March 26, 2007, the underlying value of VIX futures contract is VIX

times 10 under the symbol “VXB”, i.e., VXB=VIX×10. And the VIX futures

contract size is $100 times VXB. For example, with a VIX value of 17.33 on

March 26, 2004, the VXB would be 173.3 and the contrac size would be $17,330.

In order to bring the traded futures contract prices in line with the underlying

VIX index, CBOE Futures Exchange (CFE) rescaled the VIX futures contracts,

effective on March 26, 2007, by using the VIX index level as the underlying instead

of the VXB. At the same time, CFE increased the previous multiplier for the VIX

futures contracts from $100 to $1,000. As a result, the traded futures price were

reduced by a factor of ten and the minimum tick was reduced from $0.10 to $0.01



198 Chapter 7: Pricing VIX Futures

0

10

20

30

40

50

V
IX

 D
ai

ly
 C

lo
si

ng
 P

ric
es

VIX 

Jun1990 Mar1993 Dec1995 Sep1998 May2001 Feb2004 Nov2006 Aug2008
0

400 

800

1200

1600

2000

S
P

X
 D

ai
ly

 C
lo

si
ng

 P
ric

es

S&P500 (SPX)

Date

VIX daily closing prices

S&P500 daily closing prices

Figure 7.5: The historical data of VIX index and S&P500 index from Jun. 1990
to Aug. 2008

index point, but the dollar value of both remained the same. Thus the rescaling

did not change the dollar value of VIX futures contracts. The settlement date is

usually the Wednesday prior to the third Friday of the expiration month. In our

studies, we rescale the VIX futures price among the period from March 26, 2004

to March 25, 2007 by dividing the contract prices by 10, as guided by the CFE

rescaling method¶.

To illustrate, Figure 7.5 plots the time series of S&P500 and VIX index. As

can be immediately observed from the figure, the VIX index has a mean-reverting

behavior and has a high volatile behavior.

Table 7.2 provides some basic statistic properties of the S&P500, VIX index

and VIX futures. The futures data are divided into 3 categories according to the

term to expiration as (i) short-term (< 60 days); (ii) medium-term (60-180 days);

and (iii) long-term (> 180 days). This classification was also used by Lin (2007)

in pricing VIX futures and Bakshi et al. (1997) in analyzing S&P500 options.

¶http://cfe.cboe.com/Data/HistoricalData.aS&P500
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Table 7.2: Descriptive statistics of VIX and daily settlement prices of the VIX
futures across maturities

Daily settlement prices of VIX futures
S&P500 return VIX value All <60 days 60-180 days >180 days

Obs. # 4537 1081 6433 2479 1868 2086
Mean 0.000268 15.63 17.89 17.03 18.53 18.34
Median 0.000432 14.02 16.31 15.13 16.50 16.73
Std 0.01012 4.74 4.16 4.56 4.18 3.39
Minimum -0.07113 9.89 10.37 10.37 12.53 13.52
Maximum 0.05574 32.24 30.61 30.61 27.24 26.26
Skewness -0.11414 1.22 0.60 0.82 0.44 0.77
Kurtosis 6.61850 3.63 2.08 2.37 1.64 2.09

7.3.3 Empirical Results

By implementing the above MCMC procedure in the software package WinBUGS,

we obtained the volatility and jumps parameters, using the joint data of VIX

value and S&P500 as inputs to estimate the parameters Φ. This estimation was

separately done for each of the four models. Table 7.3 reports the mean and

standard deviations of each estimated parameters in the four models. Following

the convention in the literature (Eraker 2004), all the parameters are quoted using

a daily time interval, which can be annualized to be comparable to the typical

results in the literature (e.g., Pan 2002; Lin 2007).

These reported parameters are quite informative. Table 7.3 shows that θ val-

ues are 1.761, 1.684, 1.624, and 1.541 respectively for the SV, SVJ, SVVJ and

SVJJ models, which correspond to the annualized long-term volatilities of 21.1%,

20.6%, 20.2%, 19.7%. These estimations are slightly higher than the uncondi-

tionally sampled standard deviation of S&P500 return data, which corresponds

an annualized value of 16.1% (see Table 7.2)∥. These discrepancies indicate that

the sample period for our VIX futures (2004-2008) may be a relatively higher

volatile period than that of the S&P500 (1990-2008). Our estimations for θ are

slightly smaller than those reported in Lin (2007), Eraker (2004), Zhang & Zhu

∥16.1% = 0.01012
√
252
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Table 7.3: The parameters of the SV, SVJ, SVCJ, and SVSCJ models estimated
from the MCMC method

Parameters SV SVJ SVVJ SVJJ
θ 1.761 1.684 1.624 1.541

(0.283) (0.303) (0.280) (0.205)

κQ 0.009 0.009 0.007 0.008
(0.001) (0.000) (0.001) (0.000)

σV 0.153 0.120 0.136 0.045
(0.020) (0.055) (0.055) (0.010)

ηV -0.008 -0.010 -0.007 -0.007
(0.002) (0.002) (0.001) (0.001)

ρ -0.753 -0.668 -0.766 -0.577
( 0.023) (0.034) (0.038) (0.081)

λ 0.002 0.001 0.0007
(0.000) (0.000) (0.000)

µQ
S -0.510 -0.736

(0.061 ) (0.070 )

σS 2.007 2.305
(0.722) (0.922)

µV 2.044 0.374
(1.020) (0.047)

ηJ -0.101 -0.218
(0.043) (0.037)

ρJ 0.422
(0.034)

Note. This table reports the means and standard deviations (within parentheses) of each
estimated parameters in the four models, using the joint data of VIX value and S&P500.
Following the convention in the literature (Eraker 2004), all the parameters are quoted
using a daily time interval, which can be annualized to be comparable to the typical results
in the literature (e.g., Pan 2002; Lin 2007).

(2006), however very close to the impled estimation in Bakshi et al. (1997). The-

oretically, the effective long-term mean variance is θ for the SV and SVJ models,
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and θ + λµV

κ
for SVVJ and SVJJ models. For the SVVJ and SVJJ models, the

estimated values of θ are smaller than those in SV and SVJ models, suggesting

that the jump components in volatility processes have indeed captured a portion

of the unconditional return variance. This feature is indeed in line with those

reported in the literature (e.g., Pan 2002; Lin 2007).

Our estimates of volatility of volatility σV are slightly larger than those re-

ported by Eraker et al. (2003) obtained from time-series analysis on long-time

S&P500 return, while smaller than those estimated by Eraker (2004) using joint

data of return and option prices. These estimates in our study are a little smaller

than those in the literature of VIX futures studies, such as Zhang & Zhu (2006)

and Lin (2007). As pointed out by Eraker (2004), there is a certain disagreement

whether estimates obtained previously are reasonable.

Our estimates of the “leverage effect”, ρ, range from -0.577 to -0.766 in the

four models. The absolute values of these estimates are slightly larger than those

documented in the literature, for example, ρ=-0.39 in Jacquier et al. (2004), -0.40

in Eraker et al. (2003), -0.58 for SVJJ in Eraker (2004). Interestingly, Bakshi et al.

(1997) obtained estimates of -0.64, -0.76 and -0.70 for ρ in the SV model, using

the data of all options, short-term options and at-the-money options respectively.

Lin (2007) presented an estimate of -0.6936 for SVJ model. This disagreement

indicates the estimate of ρ is still inconclusive. For the purpose of pricing VIX

future, the estimate of ρ is not so important because the VIX and VIX futures

are independent of this parameter.

7.3.4 Comparative Studies of Pricing Performance

In this section, we discuss the empirical performance of the four models in this

chapter in fitting the historical VIX futures prices. By following the studies in

Lin (2007), we employ three measures of “goodness of fitting” (the root mean

squared error (RMSE), the mean percentage error (MPE) and the mean absolute
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error (MAE)) to assess the pricing performance for each of the four VIX futures

pricing models. For this purpose, we firstly compute the model-determined future

price using parameters reported in Table 7.3, then subtract it from its observed

market counterpart, to obtain the squared pricing error, percentage pricing error,

and absolute pricing error. This procedure is repeated for every future and each

day in the sample to eventually obtain the mean values of the three tests.

The RMSE, MPE and MAE values for the short-term, mid-term and long-term

futures contracts are tabulated in Table 7.4. Firstly, the RMSE and MAE are

the lowest (except the short-term futures contracts) for the SVJJ model, ranking

SVJJ model the best. This suggests that the specification benefits are indeed

generated by introducing simultaneous jumps in return and volatility processes.

On the other hand, from the panel of MPE values, in contrast to the above

conclusion, SV model generally outperforms the other three models. Secondly,

we find very few benefits generated by adding jump in return, as the SVJ model

outperforms the SV model only marginally, or even performs worse than SV

model according to the MPE test. Comparing with the SVVJ model, the SVJJ

model, which is constructed by adding jump in underlying into the SVVJ model,

only yields marginal improvement, except for the long-term futures contracts.

Therefore, it may not be worthwhile for the effort spent on adding up jumps

in volatility process. Thirdly, it is shown that SVVJ model performs very well

for the short-term and medium-term futures. However, it significantly overprices

the long-term futures with MPE as high as 10.790%. Lastly, all the three tests

show that the four models perform better for short-term futures than for long-

term contracts. For example, the MPE is 3.303% for short-term futures in SVJJ

model, whereas it increases to 8.942% for long-term contracts, which is more than

doubled. This is also true for other test measures or other models.

To illustrate the pricing performance of the various models more clearly, we

examine the performance of models in fitting the VIX futures term structure.

Following the basic idea of VIX futures term structure proposed by Brenner et al.
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Table 7.4: The test of pricing performance of the four models

Time to Expiration
Pricing Errors Models All Futures <=60 60-180 >=180
RMSE SV 2.668 1.782 2.940 3.230

SVJ 2.615 1.731 2.856 3.198
SVVJ 2.578 1.633 2.718 3.271
SVJJ 2.485 1.625 2.657 3.095

MPE(%) SV 5.399 2.880 5.112 8.651
SVJ 5.624 3.174 5.340 8.790
SVVJ 6.184 2.556 5.855 10.790
SVJJ 5.774 3.303 5.514 8.942

MAE SV 2.343 1.479 2.713 3.037
SVJ 2.296 1.443 2.635 3.006
SVVJ 2.237 1.335 2.505 3.068
SVJJ 2.174 1.351 2.449 2.907

Note. For a given model, we compute the price of each VIX future using the previously
estimated parameters reported in Table 7.3, the current day’s VIX and the maturity of the
VIX future, then subtract it from its observed market counterpart, to obtain the squared
pricing error, percentage pricing error, and absolute pricing error. This procedure is re-
peated for every future and each day in the sample to eventually obtain the mean values of
the three tests.

(2007), we sort all the observed futures prices according to the expiration and

group these futures by every 30 day to expiration, and then compute the average

prices of each group. In this procedure, we obtain an empirical term structure

of VIX futures, as plotted in Fig. 7.6. Then, we compute futures values as a

function of expiration, using our empirically obtained parameters in Table 7.3

with the VIX value in VIX futures pricing formula (7.12) being the mean value of

VIX 15.63 (see Table 7.2). Hence we figure out four VIX futures term structure

curves, corresponding to the four models SV, SVJ, SVVJ, and SVJJ.

It can be observed that the empirical term structure of VIX futures price as

well as the model-based theoretical term structures is of upward sloping, indi-

cating the short-term mean level of volatility is relatively low compared with the

long-term mean level and that the volatility is increasing to the long-term high

level. It can be also easily observed that all term structure curves are concave,
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Figure 7.6: A comparison of the term structures of average VIX futures prices
obtained from empirical market data and the four models

and asymptotically approach their upper bounds, indicating that futures prices

become less sensitive to time-to-maturities when time-to-maturities increase, and

eventually independent of time-to-maturities when time-to-maturities are large

enough. This interesting property, observed from the empirical data of VIX fu-

tures, is consistent with our theoretical analysis, Eq. (7.17). As shown in Figure

7.6, all four models can overall capture the term structure of the VIX futures very

well. In particular, SVJJ model performs the best, and SVVJ model the worst,

as SVVJ model performs poorly in fitting the long-term contracts.

In Figure 7.7, the model implied density distribution for the VIX is compared

with the empirical frequency of the VIX, which is calculated from VIX closing

levels observed in CBOE from March 26, 2004 to July 11, 2008. The model

implied density is computed based on the Eq. (7.9) and the relationship between

VIX and Vt as shown in Eq. (7.5), using the parameters in Table 7.3. It should be

noted Eq. (7.9) is the conditional transitional probability density, and empirical

VIX frequency is a steady-rate one. To reduce the effect of the spot VIXt, we

choose VIXt to be the mean of VIX value, 15.63, and T−t = 10 years in computing

the model implied density. It can be observed in Figure 7.7 that none of the four
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Figure 7.7: A comparison of the steady-rate VIX density functions obtained from
empirical market data and the four models

models can capture the “right tail” of the VIX as observed in empirical data.

However, relatively, SVJJ model is better than the other three. SVVJ is again

the worst. In the related literature, only Sepp (2008b) and Sepp (2008a) discussed

this issue. By calibrating the model to the VIX options data observed on July

25, 2007, Sepp (2008b) obtained his parameters for the model and worked out

the VIX density. Unfortunately, his model-implied density cannot capture the

right tail feature of the VIX empirical frequency either. Sepp (2008a) estimated

the model parameters by minimizing the squared difference between the model

and empirical quantiles. In this way, he found the model-implied density fits

the empirical counterpart very well. On the contrary, we found models based

on this set of parameters in Sepp (2008a) cannot capture the VIX futures term-

structure as shown in Figure 7.6. The calculated performance tests (RMSE, MPE

and MAE) based on Sepp (2008a)’s parameters are also significantly larger than

those in Table 7.4. It appears to be a dilemma that is difficult in fitting the

VIX futures and VIX values well at the same time. This is actually an essential
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question in the empirical study literature, as addressed by Bakshi et al. (1997)

and Eraker (2004). Just similar to the well-known question raised by Bakshi et al.

(1997) and Bates (1996) in the empirical studies of options pricing, the implied

structural volatility parameters that well fit the derivatives market prices (such

as S&P500 options or VIX futures) cannot capture the corresponding underlying

processes (S&P500, VIX). Although Eraker (2004) found reconciling evidences

from spot and option prices by using the MCMC method to infer the related

model parameters, we are so far convinced that it is still a very difficult task,

trying to obtain the parameters that can well capture the VIX and VIX futures

both at the same time.

7.4 Conclusion

In this chapter, we have presented a newly-found closed-form exact solution for

VIX futures. The analytic pricing formula has some very unique features. First

of all, it is an “umbrella” solution that covers four different stochastic volatility

models with or without jumps in underlying and volatility processes to describe

the S&P500. Or it is an amazingly “four-in-one” closed-form pricing formula for

VIX futures. Secondly, this formula can be efficiently numerically evaluated since

it involves a single integral with a real integrand. With this high computational

computational efficiency, not only is a much shorter computational time needed to

compute the price of a VIX futures contract in comparison with the Monte Carlo

simulations, it also greatly facilitates the determination of model parameters,

needed when a model is used in practice. Finally, while we have demonstrated

that our new formula takes some previously derived formula(e.g., SV) as a special

case, it has filled up a gap that there is no closed-form exact solution available

in the literature for some other cases (SVJ, SVVJ and SVJJ). Consequently,

we were able to use the new formula to examine the accuracy of the analytic

approximations previously available for the SVJ, SVVJ and SVJJ cases.
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We were also able to use these formulae to conduct empirical studies. Using

the joint time series data of S&P500 and VIX, we have demonstrated the deter-

mination of model parameters with the MCMC approach thorough a numerical

example. With these parameters extracted from the market data, we then em-

pirically examined the pricing performance of four models (SV, SVJ, SVVJ and

SVJJ), taking advantage of our newly-found explicit pricing formula. Our empiri-

cal studies show that the Heston stochastic volatility model (SV) can well capture

the dynamics of S&P500 already and is a good candidate for the pricing of VIX

futures. Incorporating jumps into the underlying price can further improve the

pricing the VIX futures. However, jumps added in the volatility process appear

to add little improvement for pricing VIX futures.



Chapter 8

Pricing VIX Options

8.1 Introduction

In Chapter 7, we demonstrated the derivation of a closed-form exact solution for

the fair value of VIX futures under stochastic volatility model with simultaneous

jumps in the asset price and volatility processes (SVJJ). We also showed how to

estimate model parameters and compare the pricing performance of four models,

using the Markov chain Monte Carlo (MCMC) method to analyze a set of coupled

VIX and S&P500 data.

In this chapter, we present an analytical exact solution for the price of VIX

options under stochastic volatility model with simultaneous jumps in the asset

price and volatility processes. We shall demonstrate that our new pricing for-

mula can be used to efficiently compute the numerical values of an VIX option.

While we also show that the numerical results obtained from our formula consis-

tently match up with those obtained from Monte Carlo simulation perfectly as

a verification of the correctness of our formula, numerical evidence is offered to

illustrate that the correctness of the formula proposed in Lin & Chang (2009) is

in serious doubt. Moreover, some important and distinct properties of the VIX

options (e.g., put-call parity, hedging ratios) are also examined and discussed.

Trading volatility is nothing new for option traders. Most option traders

208
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rely heavily on volatility information to choose their trades. For this reason,

the Chicago Board Options Exchange (CBOE) Volatility Index, more commonly

known by its ticker symbol VIX, has been a popular trading tool for option and

equity traders since its introduction in 1993. Until recently, traders used regular

equity or index options to trade volatility, but many quickly realized that this

was not the best method. On February 24, 2006, the CBOE started trading

options on the VIX, giving investors a direct and effective way to use volatility.

The VIX option contracts are the first products on market volatility listed on

an SEC-regulated securities exchange∗. As a natural extension of the successful

introduction of VIX Futures launched on March 26, 2004 on the CBOE Futures

Exchange (CFE), the introduction of VIX options have greatly facilitated the

hedging against market volatility and consequently allow traders to better manage

their portfolio. All VIX futures and options listed on CBOE have well-defined

expiration dates; the Wednesday that is thirty days prior to the third Friday

of the calendar month immediately following the expiring month. Investors and

traders don’t have to establish expensive long straddles and strangles or short

butterflies and condors to make a volatility play; if they expect increasing market

volatility, they can use a long call option on the VIX to attempt to capitalize on

their forecast. Similarly, they can replace negative volatility strategies like short

straddles and strangles or long butterflies and condors with a long put option

on the VIX. Needlessly to say, VIX options are very powerful risk management

tools.

The special feathers of VIX options create all sorts of potential opportunities

that were previously unavailable for traders and risk managers, and the trading

popularity of VIX options has been growing very quickly since their introduction.

According to the CBOE Futures Exchange press release on Jul. 11, 2007, in June

2007 the average daily volume of VIX option was 95,283 contracts, making the

VIX the second most actively traded index and the fifth most actively traded

∗http://www.cboe.com/micro/vix/vixoptions.aspx
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product on the CBOE. On July 11, open interest in VIX options stood a 1,845,820

contracts (1,324,775 calls and 521,045 puts). In the same month, the VIX futures

totalled 78,578 contracts traded with open interest at 49,894 contracts at the end

of June.

Given the rapidly growing popularity of trading VIX options and futures,

as well as the unique and interesting features of VIX options and futures, con-

siderable research attention has been drawn to the development of appropriate

pricing models for VIX options and futures, as discussed in Chapter 1. However,

research on the valuation of VIX options is far from concluded. Very recently,

Lin & Chang (2009) presented a closed-form pricing formula for VIX options

that reconcile the most general price processes of the S&P500 in the literature:

stochastic volatility, price jumps, and volatility jumps. Their solution was ob-

tained by analytically working out the characteristic function of the log (VIX2),

through solving the associated PDE. Utilizing this closed-form pricing formula

for VIX options, they empirically investigated how much each generalization of

the S&P500 price dynamics improves VIX option pricing, and concluded that a

model with stochastic volatility and state-dependent correlated jumps in S&P500

returns and volatility (i.e., Duffie et al. 2000) is a better alternative to the others

in terms of pricing VIX options. By applying the exactly same pricing formula for

VIX options shown in Lin & Chang (2009), Lin & Chang (2010) further studied

the relationships among stylized features on S&P 500, VIX and options on VIX,

and examined how jump factors impact VIX option pricing and hedging.

Unfortunately, a careful scrutinization of Lin & Chang (2009)’s formula reveals

that there is an error contained in their derivation for the characteristic function

log(VIX2); our numerical test results obtained from their pricing formula for VIX

options substantially differ from those obtained from the Monte Carlo simulations.

This error, which does not seem to be a typo, is fatal and uncorrectable, unless

one starts to reconstruct the exact closed-form solution using a different approach.

In this chapter, following the approach shown in Zhu & Lian (2009a,d), we
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demonstrate our approach to obtain a correct formula for the price of VIX op-

tions. Although we adopt the same general specification of the S&P500 pro-

cess as Lin & Chang (2009) did, our solution approach is totally different from

theirs. Of course, the closed-form pricing formula for VIX options we have de-

rived is different from theirs as well. In order to support our arguments with

convincing evidence that our solution is correct, we provide numerical simulation

results, which clearly demonstrate that the numerical values of the option price

obtained from our newly-derived formula match perfectly with those produced

with the Monte Carlo simulations, whereas the results obtained from Lin & Chang

(2009)’s pricing formula substantially deviate from those of the MC simulations.

The contribution of this study to the existing literature is therefore obvious: (1)

by pointing out the incorrectness of Lin & Chang (2009)’s pricing formula, we

alert that it should no longer be used; (2) more importantly, a new closed-form

pricing formula for VIX has been presented, together with its great efficiency in

computing the numerical values of VIX options being clearly demonstrated; (3)

some important and distinct properties of the VIX options (e.g., put-call parity,

hedging ratios) have also been discussed.

The rest of the chapter is organized as follows. In Section 8.2, based on the

general SVJJ model, we present our closed-form pricing formula for VIX options.

In Section 8.3, some numerical examples are provided to examine the correctness

of our formula and the incorrectness of Lin & Chang (2009)’s formula. Some

other important properties of the VIX options (e.g., put-call parity, the hedging

ratios) are also discussed. In Section 8.4, a brief conclusion is provided.

8.2 VIX Options

The stochastic volatility model with simultaneous jumps in both asset price and

volatility processes (referred to as SVJJ hereafter) is the most general process

used for the equity derivatives in literature (see, Andersen et al. 2002 Duffie et al.
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2000; Eraker et al. 2003; Eraker 2004; Broadie et al. 2007; Lin & Chang 2009,

etc). Like Lin & Chang (2009)’s starting point, our analysis is also based on this

general SVJJ model†.

In the risk-neutral probability measure Q, we assume the dynamics of S&P500

index, denoted by St, follows the SVJJ model, i.e., form of


dSt = Strtdt+ St

√
VtdW

S
t (Q) + d

Nt(Q)∑
n=1

Sτn− [e
ZS
n (Q) − 1]

− Stµ
Qλdt

dVt = κQ(θQ − Vt)dt+ σV
√
VtdW

V
t (Q) + d

Nt(Q)∑
n=1

ZV
n (Q)


(8.1)

where:

V is the diffusion component of the variance of the underlying asset dynamics

(conditional on no jumps occurring);

dW S
t and dW V

t are two standard Brownian motions correlated with E[dW S
t , dW

V
t ] =

ρdt;

κ, θ and σV are respectively the mean-reverting speed parameter, long-term mean,

and variance coefficient of the diffusion Vt;

Nt is the independent Poisson process with intensity λ, that is, Pr{Nt+dt −Nt =

1} = λdt and Pr{Nt+dt −Nt = 0} = 1− λdt. The jumps happen simultaneously

in underlying dynamics St and variance process Vt;

The jump sizes are assumed to be ZV
n ∼ exp(µV ), and Z

S
n |ZV

n ∼ N(µS+ρJZ
V
n , σ

2
S),

eZ
S
n (Q) − 1 is the percentage price jump size with mean µ;

µ = eµS+
1
2
σ2
S/(1− ρJµV )− 1 is the risk premium of the jump term in the process

to compensate the jump component, and γt is the total equity premium.

As discussed in Chapter 7, the square of VIX (denoted by VIX2) defined in

†In Lin & Chang (2009), the jump density λ is assumed to be a linear specification λ0+λ1Vt,
for some nonnegative constants λ0 and λ1. In this study, the λ1 is set to be zero for simplicity.
Our approach presented in this paper can also be applied to Lin & Chang (2009)’s model with
hardly any additional effort.
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the CBOE white paper‡ can be interpreted, with mathematical simplification, as

the risk-neutral expectation of the log contract (see Lin 2007; Duan & Yeh 2007;

Zhu & Lian 2009a for more details),

VIX2
t = −2

τ
EQ[ln (

St+τ

F
)|Ft]× 1002 (8.2)

where Q is the risk-neutral probability measure, F = Ste
rτ denotes the 30-day

forward price of the underlying S&P500 with a risk-free interest rate r under the

risk-neutral probability, and Ft is the filtration up to time t.

Under the general specification Eq. (8.1), the expectation in Eq. (8.2) can be

carried out explicitly in the form of,

VIX2
t = (aVt + b)× 1002 (8.3)

where 
a =

1− e−κQτ

κQτ
, and τ = 30/365

b = (θQ +
λµV

κQ
)(1− a) + λc

c = 2[µQ − (µQ
S + ρJµV )]

Since the underlying for VIX options is the expected, or forward, value of VIX

at the expiry, rather than the current, or spot VIX value, we can know that the

price of a European VIX call option, C(t, T ) at time t with time-to-maturity τ

(or expiring at date T = τ + t) and strike K is given by

C(t, T ) = e−t(T−t)EQ[max{F (T, T,VIXT )−K, 0}|Ft] (8.4)

where F (t, T,VIXt) is the VIX future price at the maturity date T . Given that

the maturity date T is the same for both the VIX future and the VIX option,

and also that the VIX future price coincides with the VIX index at this date, this

‡see the white paper of VIX, available at http://www.cboe.com/micro/vix/vixwhite.pdf
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pricing formula can be rewritten as

C(t, T ) = e−t(T−t)EQ[max{VIXT −K, 0}|Ft] (8.5)

A major objective of this paper is to show how this expectation can be ana-

lytically worked out to price VIX call options, utilizing the characteristic function

of the stochastic variable VT , as demonstrated in the next section.

8.2.1 Our Formula

As stated in the Introduction, we believe that Lin & Chang (2009)’s approach

contains fundamental errors and thus a completely different way of finding the

exact solution is necessary. Clearly, in order to obtain a closed-form formula for

the price of a VIX call option§, one needs to work out the transitional probability

density function of stochastic variable VIXT to calculate the expectation in Eq.

(8.5). This required transitional probability density function actually has already

been presented in Proposition 5 in Chapter 7, in the form of

pQ(VIXT |VIXt) =
2VIXT

aπ

∫ ∞

0

Re

[
e−iϕ(

V IX2
T−b

a
)f
(
iϕ; t, τ, (VIX2

t − b)/a
)]
dϕ

(8.6)

where τ = T − t and f(ϕ; t, τ, Vt) is the moment generating function of the

stochastic variable VT , given by

f(ϕ; t, τ, Vt) = eC(ϕ,τ)+D(ϕ,τ)Vt+A(ϕ,τ) (8.7)

§For VIX put options, our approach can be adopted as well. Alternatively, one can use the
put-call parity, which will be discussed in the next section of this chapter.
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with


A(ϕ, τ) =

2µV λ

2µV κQ − σ2
V

ln (1 +
ϕ(σ2

V − 2µV κ
Q)

2κQ(1− µV ϕ)
(e−κQτ − 1))

C(ϕ, τ) =
−2κθ

σ2
V

ln (1 +
σ2
V ϕ

2κQ
(e−κQτ − 1))

D(ϕ, τ) = 2κQϕ

σ2
V ϕ+(2κQ−σ2

V ϕ)eκ
Qτ

Thus, the price of a VIX call option at time t is expressed in the form of

C(t, T ) = e−r(T−t)

∫ ∞

0

pQ(VIXT |VIXt)(VIXT −K)+dVIXT (8.8)

This formula, however, is computational expensive, due to the existence of

the double integral with one of the integrands being the complex inverse Fourier

transform to obtain the probability density function from the characteristic func-

tion. A key to the success of our study hinges on whether or not we can reduce

the dimensionality of the integral involved and thus improve the computation

efficiency, in order to derive a pricing formula that can achieve the same goal as

that of Lin & Chang (2009) but in the mean time is error-free. To improve the

computational efficiency, we realized that this formula could be substantially sim-

plified, by interchanging the order of the two integral calculations and utilizing

the generalized Fourier transform (Lewis 2000; Poularikas 2000; Sepp 2007):

∫ ∞

0

e−ϕy(
√
y −K)+dy =

√
π

2

1− erf(K
√
ϕ)

√
ϕ
3 (8.9)

where ϕ is the complex Fourier transform variable with Re[ϕ] > 0, and erf(Z) is

the complex error function defined by

erf(Z) =
2√
π

∫ Z

0

e−s2ds (8.10)

Since the algorithm for the numerical calculation of the error function is stan-

dard and very efficient, we can in this way obtain a simplified pricing formula and
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hence substantially improve the computational efficiency. In fact, this approach

can also be applied to obtain a pricing formula for the strike price of a VIX fu-

ture, by interchanging the order of integral and utilizing the following Fourier

transform ∫ ∞

0

e−ϕy√ydy =

√
π

2

1
√
ϕ
3 (8.11)

where ϕ is the complex Fourier transform variable with Re[ϕ] > 0. The both

pricing formulae are stated in the following proposition

Proposition 6 If S&P500 index follows the general dynamics given by Equation

(8.1), the conditional probability density function of VIXT , denoted by p
Q(VIXT |VIXt),

is given by

pQ(VIXT |VIXt) =
2VIXT

aπ

∫ ∞

0

Re

[
e−iϕ(

V IX2
T−b

a
)f
(
iϕ; t, τ, (VIX2

t − b)/a
)]
dϕ

(8.12)

and the price of a VIX call option, C(t, T,VIXt), at time t with maturity T is

given by the following formula:

C(t, T,VIXt) =
e−r(T−t)

2a
√
π

∫ ∞

0

Re

[
eiϕb/af

(
ϕi; t, τ, (VIX2

t − b)/a
) 1− erf(K

√
ϕi/a)√

ϕi/a
3

]
dϕ

(8.13)

and the strike price of a VIX future, F (t, T,VIXt), at time t with maturity T is

F (t, T,VIXt) =
1

2a
√
π

∫ ∞

0

Re
[
eiϕb/af

(
ϕi; t, τ, (VIX2

t − b)/a
)
/
√
ϕi/a

3
]
dϕ

(8.14)

where f(ϕ; t, τ, Vt) is the moment generating function of the stochastic variable

VT , and given by Eq. (8.7).

As shown in Cox et al. (1985), for the simple Heston model, the transitional

probability density function of the square root process of instantaneous variance
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VT in the risk-neutral probability measure Q is given in the form of

gQ(VT |Vt) = ce−W−v(
v

W
)q/2Iq(2

√
Wv) (8.15)

with

c =
2κQ

σ2
V (1− e−κQ(T−t))

, W = cVte
−κQ(T−t), v = cVT , q =

2κQθQ

σ2
V

− 1

(8.16)

and Iq(·) is the modified Bessel function of the first kind of order q. The dis-

tribution function is the noncentral chi-square, χ2(2v; 2q + 2, 2W ), with 2q + 2

degrees of freedom and parameters of noncentrality 2W proportional to the cur-

rent variance, Vt. Utilising this explicit form of transitional probability density

function for the Heston stochastic volatility model, we can obtain the following

proposition.

Proposition 7 If S&P500 index follows the Heston (1993) stochastic volatility

model, the conditional probability density function of VIXT , p
Q(VIXT |VIXt), is

given by

gQ(VIXT |VIXt) =
2VIXT

a
fQ(

VIX2
T − b

a
|VIX

2
t − b

a
) (8.17)

where gQ(VT |Vt) is the transitional probability density function of the instanta-

neous variance VT in the Heson model and is given by Eq. (8.15). The price of

VIX futures with maturity T is given by following formula (Zhang & Zhu (2006)’s

formula)

F (t, T,VIXt) = EQ[VIXT ] =

∫ ∞

0

VIXTg
Q(VIXT |VIXt)dVIXT (8.18)

and the price of a VIX call option, C(t, T,VIXt), at time t with maturity T is

given by

C(t, T,VIXt) = e−r(T−t)

∫ ∞

0

(VIXT −K)+gQ(VIXT |VIXt)dVIXT (8.19)
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It should be remarked that both Eq. (8.13), which is for the price of a VIX

call option based on the general SVJJ model, and Eq. (8.19), which is for the

price of a VIX call option based on the simple Heston stochastic volatility model,

involve the quadrature of a single integral only and can thus be extremely effi-

ciently computed in order to obtain numerical values. We have carried out some

numerical validation, which shall be presented in the next section, to demonstrate

the correctness of our newly-derived pricing formulae for VIX options.

8.3 Numerical Results and Discussions

For the purpose of demonstrating the correctness of our formula and the incor-

rectness of Lin & Chang (2009), we present some numerical examples in this

section. We compare the results obtained from our formula, those from Lin &

Chang (2009)’s formula, and those from Monte Carlo simulation. We then discuss

the put-call parity, risk management ratios, and some other important properties

of VIX options.

8.3.1 Lin & Chang (2009)’s Formula

For the time-t price, C(t, T ), of a European call option written on VIX with strike

price K and expiry at time T (or time-to-maturity τ), Lin & Chang (2009) have

shown that C(t, T ) can be obtained by solving the following partial differential

equation (PDE) (the Eq. (5) in their paper)¶

1

2
V
∂2C

∂L2
+

[
r − λ0κ

Q − (λ1κ
Q +

1

2
)V

]
∂C

∂L
+ ρσV V

∂2C

∂L∂V
+

1

2
σV V

∂2C

∂V 2

+EQ
t {[λ0 + λ1(V + ZV )]C(t, τ ;L+ ZS, V + ZV )− (λ0 + λ1V )C(t, τ ;L, V )}

+κQ(θQ − V )
∂C

∂V
− ∂C

∂τ
− rC = 0

(8.20)

where L = lnS, and the terminal condition is C(T, T ) = max (VIXT −K, 0).

¶The notations in their paper have been converted into our notations.
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Then, following a similar solution procedure presented by Heston (1993), they

worked out a characteristic function, f2(t, τ ; iϕ) (the equation in Appendix A in

their paper), of the stochastic variable ln (VIX2
T ), (i.e., f2(t, τ ; iϕ) = EQ

t [exp(iϕ ln (VIX
2
T ))])

and presented the price of a VIX call option in the form of (Eq. (6) in their paper)

C(t, T ) = e−r(T−t)[F (t, T,VIX)Π1 −KΠ2] (8.21)

where the risk-adjusted probabilities, Π1 and Π2, are recovered from inverting the

characteristic functions:

Π1 =
1

2
+

1

π

∫ ∞

0

Re

[
e−iϕ ln (K2)f2(t, τ ; iϕ+ 1/2)

iϕf2(t, τ ; 1/2)

]
dϕ

Π2 =
1

2
+

1

π

∫ ∞

0

Re

[
e−iϕ ln (K2)f2(t, τ ; iϕ)

iϕ

]
dϕ

(8.22)

They also commented that the fair value of the VIX futures can be obtained by

setting iϕ = 1/2 in f2(t, τ ; iϕ), i.e., F (t, T,VIX) = f2(t, τ ; 1/2).

However, a mis-match of the results obtained from Eq. (8.21) and those

obtained from a Monte Carlo simulation has alerted us for a possible incorrectness

of Lin & Chang (2009)’s characteristic functions f2(t, τ ; iϕ) of ln (VIX2
T ). We

initially thought that there might be a typo in Lin & Chang (2009)’s formula.

However, after carefully examining their solution procedure of the characteristic

function of ln (VIX2)∥, we started to realize that the fatal mistake actually stems

from the fact that they tried to follow the same solution procedure described in

Heston (1993), by assuming the solution of the PDE (Eq. (B6) in their paper)

has a specific form as exp[C(T − t)+J(T − t)+D(T − t) ln(VIX2
t )]. This specific

representation of solution implies that all the functions C(T − t), D(T − t) and

J(T−t) are independent of the variable ln(VIX2
t ). However, the form of f2(t, τ ; iϕ)

in the eventually obtained solution (Eq. (B16)) is clearly at odds with this

∥Although there is no detailed derivation of this characteristic function in the jour-
nal paper Lin & Chang (2009), a very detailed mathematical derivation of this char-
acteristic function can be easily found in their working paper downloadable from
http://www.fma.org/Texas/Papers/vixopt FMA2008-fullpaper.pdf
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assumption! We also considered the possibility that Lin & Chang (2009) might

have actually assumed C(T − t), D(T − t) and J(T − t) were dependent on the

variables T−t and ln(VIX2
t ) but have intentionally omitted ln(VIX2

t ) in presenting

Eq. (B6) for the sake of simplicity. Unfortunately, it does not work either as it

is then impossible to transform the PDE (Eq. (B6)) to the ODEs (Eq. (B15)),

when C(T − t), D(T − t) and J(T − t) are assumed to be functions of both

variables T − t and ln(VIX2
t ). The conflict between the assumed functional form

and the obtained solution in the solution process for f2(t, τ ; iϕ) clearly suggests

that there is an inherent flaw in the solution process itself and thus the obtained

f2(t, τ ; iϕ) is a wrong solution to the PDE. Consequently, we believe that both

the formulae for VIX options and VIX futures (i.e., F (t, T,VIX) = f2(t, τ ; 1/2))

in Lin & Chang (2009) and Lin & Chang (2010) are wrong and our numerical

experiments further confirm our conjecture, as shall be demonstrated below.

8.3.2 Monte Carlo Simulations

For simplicity, we have employed the simple Euler-Maruyama discretization for

the variance dynamics:

Vt = Vt−1 + κQ(θQ − Vt−1)∆t+ σ
√

|Vt−1|
√
∆tWt +

Nt∑
n=1

ZV
n (8.23)

where Wt is a standard normal random variables, ZV
n ∼ exp(µV ), and Nt is the

independent Poisson process with intensity λ∆t. With the sampled path of V ,

we calculate the sampling VIX path according to Eq. (8.3), and obtain the prices

of VIX call options and futures based on this simulation procedure.

8.3.3 Numerical Results

For the purpose of examining the correctness of Lin & Chang (2009)’s formula,

our numerical examples presented here are based on the Heston stochastic volatil-
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Results obtained from the VIX options formual in Lim & Chang (2009)

Results obtained from the newly−found VIX options pricing formula Eq. (8.13)
Results obtained from the VIX option formula Eq. (8.19) in the Heston model
Results obtained from the MC simulation

Figure 8.1: A Comparison of the Prices of VIX Options Obtained from Our Exact
Formula and the Formula in Lin & Chang (2009), as A Function of Tenor, based
on the Heston Model (K = 13)

ity model, which is a special case covered by our general SVJJ model and by Lin

& Chang (2009)’s model. We show that even for this simple and special case of

the general SVJJ model, for which Lin & Chang (2009)’s formula has covered,

results obtained from Lin & Chang (2009)’s formula significantly differ from those

obtained from our formula, while the latter match up perfectly with those ob-

tained from the MC simulations. Listed in the second column of Table 7.1 are

the parameters used in the numerical examples.

Plotted in Fig. 8.1 are four sets of data: the prices obtained with the numerical

implementation of Eq. (8.13), those obtained from the newly-derived formula Eq.

(8.19), those obtained from the Lin & Chang (2009)’s formula and the numerical

results obtained from the Monte Carlo simulations (8.23).

One can clearly observe that the results from our exact solutions Eq. (8.13)

and Eq. (8.19) perfectly match with the results from the Monte Carlo simula-

tions; the relative difference between of our results and those of the Monte Carlo

simulations is less than 0.10% already when the number of paths reaches 200,000
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in the Monte Carlo simulations. This has demonstrated the correctness of our

exact solutions from a different angle. On the other hand, one can observe that

the results obtained from Lin & Chang (2009)’s formula significantly differ from

those obtained from our solutions, and from the Monte Carlo simulations.

This significant discrepancy exists not only in the pricing of VIX options, but

also in the pricing of VIX futures. Lin & Chang (2009) showed that the fair strike

price of a VIX future is F (t, T,VIX) = f2(t, τ ; 1/2). By comparing the numerical

results from this formula and our VIX pricing formulae Eq. (8.14) and Eq. (8.18),

the formula in Zhu & Lian (2009a), as well as the results obtained from Monte

Carlo simulation, we found that there is also a great difference between the results

obtained from Lin & Chang (2009)’s formula and those from the other methods,

as illustrated in Figure 8.2.

For exactly the same pricing model and the same parameters, we should have

every reason, theoretically, to believe that the pricing formulae should yield the

same numerical values in terms of pricing VIX options and futures, although they

may appear in different analytical forms. However, this is not the case as clearly

exhibited in Figure 8.2. After carefully checking our computational code and

with the fact that the results from our solution match with those obtained from

the Monte Carlo simulations so well, we had to rule out the possibility that there

might be a typo in Lin & Chang (2009)’s formula. This then led us to carefully

examine their solution procedure of the characteristic function of ln (VIX2) and

eventually found the reason why their pricing formulae for both VIX futures and

options obtained are wrong, as discussed in Section 8.3.1. Of course, this also led

us to search for a correct way of finding the exact solution Eq. (8.13) as presented

in Section 8.2.1.

8.3.4 Properties of VIX Options

Now, we discuss some important and distinct properties of VIX options.
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Results obtained from the formula in Lin & Chang (2009)

Figure 8.2: A Comparison of VIX Futures Strikes Obtained from Our Exact
Formula and the Formulae in Literature, as A Function of Tenor, based on the
Heston Model

Firstly, VIX options have one major difference from most other options; i.e.,

their “underlying instrument”. For example, when pricing an equity option,

such as options written on the General Electric (GE), the “underlying price”

is clearly the price of GE stocks. Similarly, for options on November soybean

futures, the underlying price is the price of the November futures contract. For

VIX options, however, the underlying price is the price of the corresponding VIX

futures contract rather than the spot VIX index, which is calculated, starting

from year 2003, based on a set of S&P500 options. Although as time passes

the estimated VIX forward prices from the S&P500 options gradually converge

the spot VIX and eventually equal to the spot VIX at expiry, resulting in a

seemingly-the-same payoff value (see Eq. (8.4) and (8.5)) at expiry, the fact that

their underlying is the corresponding VIX futures price, which is not correlated

to VIX spot price by a simple cost-of-carry relationship has made the pricing of

these options different from equity options written on the tradable asset.

Secondly, because VIX itself is not a tradable asset, there is no cost-of-carry
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relationship between VIX futures and the spot VIX values, i.e., F (t, T,VIXt) ̸=

VIXte
rτ , as illustrated in Zhang & Zhu (2006), Zhu & Lian (2009a) and Zhang

et al. (2010). As a result, the put-call parity for VIX options is different from

that for options written on stocks. On Feb. 19, 2010, for example, the VIX

index closed at 20.02, and the May 2010 VIX 20-strike call and put closed at 5.05

and 0.87, respectively. At first glance, it might seem that the traditional put-call

parity has been violated and an arbitrage opportunity existed. But, the pitfall

is because the traditional put-call parity relation does not hold for these options

any more, as explained by Grunbichler & Longstaff (1996) who showed that since

volatility is not a traded asset, the price of a volatility call can be below their

intrinsic value. A better way to show the correct put-call parity through the

following mathematical deduction:

C(t, T,VIXt)− P (t, T,VIXt)

= e−rτEQ[(VIXT −K)+ − (K − VIXT )
+|Ft]

= e−rτEQ[VIXT −K|Ft]

= e−rτF (t, T,VIXt)−Ke−tτ

(8.24)

Clearly, this has demonstrated that all one needs to so is to replace the underlying

price in the traditional put-call parity by the “discounted” forward volatility,

which is reflected in a tradable asset, the VIX future. In other words, for VIX

options, the put-call parity should be interpreted as an equality holding among

a VIX call and a VIX put and their “true” underlying, the VIX futures price.

With this in mind, the closing prices listed in the example given above would be

almost perfectly in line with the put-call parity, Eq. (8.24), if one notices that

the May 2010 VIX futures actually closed at 24.10 on Feb. 19, 2010.

Thirdly, with the availability of the exact and analytical pricing formulae Eq.

(8.13) and (8.19), all the hedging ratios of a VIX call option can be easily deduced

analytically. Here, to demonstrate the sensitivity of a VIX call to the parameters,

we present some numerical examples of the ∆, based on the SVJJ model with
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Figure 8.3: The Delta of VIX Options with different maturities: = 5, 20, 40 and
128 days, based on the SVJJ Model.

parameters being those in the fourth column of Table 7.1.

∆ is the sensitivity of the call price with respect to the forward VIX values

(i.e., the VIX futures prices). The justification for using VIX futures prices

as the underlying of VIX call options is that VIX options are priced based on

VIX futures rather than on the spot VIX. The magnitude of ∆ is related to

volatility call option hedging effectiveness. The highest the ∆, the more sensitive

to volatility changes is the volatility call. Figure 8.3 shows the ∆ of the VIX calls

as a function of the underlying (i.e., VIX futures). The figure is drawn for r =

3.19%, and K=20. Other model parameters are those in the fourth column of

Table 7.1. We can easily observe that that ∆ is always positive. The magnitude

of ∆ depends on the level of volatility and the time-to-maturity. It can also be

observed that as time-to-maturity T − t increases, the values of the ∆ decreases

and flattens out. This implies that the sensitivity of the VIX call option price to

the underlying decreases as time-to-maturity increases. In other words, as time

to maturity increases, the VIX call option loses its hedging effectiveness. The
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Figure 8.4: The Prices of VIX Options, as A Function of the Time to Maturity,
based on the SVJJ Model.

important implication of the result is that long maturity volatility calls are not

effective for hedging or trading volatility purposes

Finally, it can be shown that the VIX call pricing formula (8.13) has the

following limiting property:

lim
T−t→∞

C(t, T,VIXt) = 0 (8.25)

This equation shows that for very long maturities the VIX call option, in contrast

to the standard equity call options, is going to be worthless, just as it was the

case in the models of Detemple & Osakwe (2000), and Grunbichler and Longstaff

(1996). This is due to the mean reverting nature of volatility. In the long-run,

volatility will revert to it’s long run mean value. Figure 8.4 shows the value of

the VIX call option as a function of the time-to-maturity. We can see that the

call options, in contrast to standard options, are concave functions of volatility;

the value of the volatility call initially increases and then flattens out.
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8.4 Conclusion

In this chapter, we have derived an analytical exact solution for the price of VIX

options under stochastic volatility model with simultaneous jumps in the asset

price and volatility processes. The approach presented in this study is totally

different from the approach presented by Lin & Chang (2009) in obtaining a

closed-form pricing formula for VIX options. We then showed some numerical

examples to demonstrate that the results obtained from our formula perfectly

match up with those obtained from the Monte Carlo simulations as a verification

of the correctness of our formula, whereas the results obtained from Lin & Chang

(2009)’s pricing formula significantly differ from those from Monte Carlo simula-

tions, confirming our doubt that their pricing formula is not correct at all. It was

shown that our pricing formula is very efficient in computing the numerical prices

of VIX options. Some important and distinct properties of the VIX options (e.g.,

put-call parity, the hedging ratios) have also been discussed. Clearly, our formula

can be a very useful tool in trading practice when there is obviously increasing

demand of trading VIX options in financial markets.



Chapter 9

Concluding Remarks

In this thesis, we develop some highly efficient approaches to analytically price

volatility derivatives. In particular, using our approaches, we present a set of

closed-form exact pricing formulae for discretely-sampled variance swaps, forward-

start variance swaps, volatility swaps, VIX futures and options.

We first discuss the pricing of variance swaps. We present an approach to solve

the partial differential equation (PDE), based on the Heston (1993) two-factor

stochastic volatility, to obtain closed-form exact solutions to price variance swaps

with discrete sampling times. We then extend our approach to price forward-start

variance swaps to obtain closed-form exact solutions. Finally, our approach is ex-

tended to price discretely-sampled variance by further including random jumps in

the return and volatility processes. We show that our solutions can substantially

improve the pricing accuracy in comparison with those approximations in litera-

ture. Our approach is also very versatile in terms of treating the pricing problem

of variance swaps with different definitions of discretely-sampled realized variance

in a highly unified way.

Following the study of pricing variance swaps, we discuss the pricing of another

important volatility derivatives, i.e., volatility swaps. Papers focusing on analyt-

ically pricing discretely-sampled volatility swaps are rare in literature, mainly

due to the inherent difficulty associated with the nonlinearity in the pay-off

228
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function. We present a closed-form exact solution for the pricing of discretely-

sampled volatility swaps, under the framework of Heston (1993) stochastic volatil-

ity model, based on the definition of the so-called average of realized volatility.

Our closed-form exact solution for discretely-sampled volatility swaps can sig-

nificantly reduce the computational time in obtaining numerical values for the

discretely-sampled volatility swaps, and substantially improve the computational

accuracy of discretely-sampled volatility swaps, comparing with the continuous

sampling approximation. We also investigate the accuracy of the well-known

convexity correction approximation in pricing volatility swaps. Through both

theoretical analysis and numerical examples, we show that the convexity correc-

tion approximation would result in significantly large errors on some specifical

parameters. The validity condition of the convexity correction approximation

and a new improved approximation are also presented.

Finally, we study the pricing of VIX futures and options. We derive closed-

form exact solutions for the fair value of VIX futures and VIX options, under

stochastic volatility model with simultaneous jumps in the asset price and volatil-

ity processes. As for the pricing of VIX futures, we show that our exact solution

can substantially improve the pricing accuracy in comparison with the approxi-

mation in literature. We then demonstrate how to estimate model parameters,

using the Markov Chain Monte Carlo (MCMC) method to analyze a set of cou-

pled VIX and S&P500 data, and further empirically examine the performance of

four different stochastic volatility models with or without jumps. Our empirical

studies show that the Heston stochastic volatility model can well capture the dy-

namics of S&P500 already and is a good candidate for the pricing of VIX futures.

Incorporating jumps into the underlying price can indeed further improve the

pricing the VIX futures. However, jumps added in the volatility process appear

to add little improvement for pricing VIX futures. As for the pricing of VIX

options, we point out that Lin & Chang (2009)’s pricing formula for VIX options

is incorrect at all. More importantly, we present a totally different closed-form
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exact pricing formula for VIX options. It is shown that our pricing formula for

VIX options is very efficient in computing the numerical prices of VIX options.

The numerical examples show that the results obtained from our formula con-

sistently match up with those obtained from Monte Carlo simulation perfectly,

verifying the correctness of our formula. However the results obtained from Lin &

Chang (2009)’s pricing formula significantly differ from those from Monte Carlo

simulation, confirming our doubt that their pricing formula is incorrect. Some

important and distinct properties of the VIX options (e.g., put-call parity, the

hedging ratios) have also been discussed in this thesis.

Several directions may be worthy of further pursuing. The approaches pre-

sented in this thesis can be extended to price some other even complicated volatil-

ity derivatives, for example, the “options on variance”, gamma swaps etc. In

literature, Sepp (2008a) and Carr & Lee (2005) respectively discussed the pricing

of options on variance, based on the continuous sampled realized variance. But

no one has addressed the issue of pricing these options based on the discretely-

sampled realized variance. Some studies on this problem are certainly meaningful

for the academic as well as practical purpose. In terms of pricing VIX derivatives,

empirically, it is still not known whether and by how much each generalization

(e.g., inclusion random jumps) of S&P500 price dynamics improves VIX option

pricing. And more importantly, it remains to be an open question why the model

parameters in the same model empirically estimated from the market data with

different approaches are significantly different and what is the most reliable way

to estimate the parameters in the asset and volatility process. Hereby, future

study on the model calibration is another extremely important issue.



Appendix A

A Sample Term Sheet of A
Variance Swap

Figure A.1: A sample term sheet of a variance swap written on the variance of
S&P500. Source: Bear Stearns Equity Derivatives Strategy, Bloomberg.
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Appendix B

Proofs for Chapter 2

B.1 Proof of Proposition 1

We now present a brief proof of Proposition 1.

The PDE system is
∂U

∂t
+

1

2
vS2∂U

2

∂S2
+ ρσV vS

∂U2

∂S∂v
+

1

2
σ2
V v
∂U2

∂v2
+ rS

∂U

∂S
+ [κQ(θQ − v)]

∂U

∂v
− rU = 0

U(S, v, T ) = H(S)

(B1)

Firstly, we do the transform by letting τ = T − t

x = lnS
(B2)

After the transformation, the PDE system is converted to
∂U

∂τ
=

1

2
v
∂U2

∂x2
+ ρσV v

∂U2

∂x∂v
+

1

2
σ2
V v
∂U2

∂v2
+ (r − 1

2
v)
∂U

∂x
+ [κQ(θQ − v)]

∂U

∂v
− rU = 0

U(x, v, 0) = H(ex)

(B3)

Solution for this PDE system can be obtained through generalized Fourier trans-

form with respect to x. More details about the generalized Fourier transform,

one can refer to Lewis (2000) and Poularikas (2000). Based on the generalized

Fourier transform, we can do the transformation

F [ejαt] = 2πδα(ω) (B4)
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where j =
√
−1 and δα(ω) is the generalized delta function satisfying∫ ∞

−∞
δα(t)Φ(t)dt = Φ(α) (B5)

with α being any complex number.

Applying the transform to the PDE with respect to the variable x, we obtain

the following problem for Ũ(ω, v, τ) = F [U(x, v, τ)]
∂Ũ

∂τ
=

1

2
σ2
V v
∂Ũ2

∂v2
+ [κQθQ + (ρσV ωj − κQ)v]

∂Ũ

∂v
+ [(rωj − r)− 1

2
(ωj + ω2)v]Ũ

Ũ(ω, v, 0) = F [H(ex)]

(B6)

Following Heston’s (1993) solution procedure, the solution of the above PDE

system can be assumed of the form:

Ũ(ω, v, τ) = eC(ω,τ)+D(ω,τ)vŨ(ω, v, 0) (B7)

One can then substitute this function into the PDE to reduce it to two ordinary

differential equations,
dD

dτ
=

1

2
σ2
VD

2 + (ρωσV j − κQ)D − 1

2
(ω2 + ωj)

dC

dτ
= κQθQD + r(ωj − 1)

(B8)

with the initial conditions

C(ω, 0) = 0, D(ω, 0) = 0 (B9)

The solutions of these equations can be easily found as
C(ω, τ) = r(ωj − 1)τ +

κQθQ

σ2
V

[(a+ b)τ − 2 ln(
1− gebτ

1− g
)]

D(ω, τ) =
a+ b

σ2
V

1− ebτ

1− gebτ

(B10)

where

a = κ− ρσV ωj, b =
√
a2 + σ2

V (ω
2 + ωj), g =

a+ b

a− b
(B11)

One should note that the Fourier transform variable ω appears as a parameter in

function C and D.
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Therefore, the solution of the original PDE can be obtained after the inverse

Fourier transform in form as

U(x, v, τ) = F−1[Ũ(ω, v, τ)] (B12)

= F−1[eC(ω,T−t)+D(ω,T−t)vF [H(ex)]] (B13)

B.2 The Derivation of Eq. (2.32)

If setting stochastic variable χ2
t = 2cVt, then χ2

t is subject to noncentral chi-

squared distribution, χ2(2v; 2q+2, 2W ), with probability density function denoted

by pχ2
t
(x). We can easily verify that p(VT |Vt) = 2cpχ2

T−t
(2cVT ). c, W , q and

p(VT |Vt) are given in Eq. (2.28) and Eq. (2.25).

Hence,

EQ
0 [(

Sti − Sti−1

Sti−1

)2] =

∫ ∞

0

er∆tf(vti−1
)p(vti−1

|v0)dvti−1
(B14)

= er∆tEQ
0 [e

C̃(∆t)+D̃(∆t)vti−1 + e−r∆t − 2] (B15)

= er∆t(eC̃(∆t)EQ
0 [e

D̃(∆t)vti−1 ] + e−r∆t − 2) (B16)

= er∆t(eC̃(∆t)EQ
0 [e

D̃(∆t)
2c

χ2
ti−1 ] + e−r∆t − 2) (B17)

= er∆t(eC̃(∆t)(1− 2Φ)−(q+1)e
2WΦ
1−2Φ |

Φ=
D̃(∆t)

2c

+ e−r∆t − 2) (B18)

= er∆t(e
C̃(∆t)+

WD̃(∆t)

c−D̃(∆t) (
c

c− D̃(∆t)
)
2κQθQ
σ2
V + e−r∆t − 2) (B19)

It should be noted the parameters c, W are determined by the time ti−1 in Eq.

(2.28) with T = ti−1 and t = 0.

fi(V0) = e
C̃(∆t)+

cie
−κQti−1

ci−D̃(∆t)
D̃(∆t)V0

(
ci

ci − D̃(∆t)
)
2κQθQ
σ2
V + e−r∆t − 2 (B20)

where ci =
2κQ

σ2
V (1−e−κQti−1 )

.

Hence,

EQ
0 [(

Sti − Sti−1

Sti−1

)2] = er∆tfi(v0) (B21)
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B.3 The Derivation of Eq. (2.55)

Now, we prove Eq. (2.55). Using l’Hôpital’s rule, one can easily verify that

lim
∆t→0

C̃(∆t) = 0 lim
∆t→0

D̃(∆t) = 0 (B22)

and

lim
∆t→0

eC̃(∆t)+D̃(∆t)v0 + e−r∆t − 2 = 0 (B23)

lim
∆t→0

eC̃(∆t)+D̃(∆t)v0 + e−r∆t − 2

∆t
= v0 (B24)

lim
∆t→0

fi(v0)

∆t
= v0e

−κQ(i−1)∆t + θQ(1− e−κQ(i−1)∆t) (B25)

Therefore,

lim
∆t→0

er∆t

T
[f(v0) +

N∑
i=2

fi(v0)] =
1

T
lim
∆t→0

N∑
i=2

∆t(v0 +
fi(v0)

∆t
) (B26)

=
1

T
lim
∆t→0

N∑
i=1

∆t[v0e
−κQ(i−1)∆t + θ∗(1− e−κ∗(i−1)∆t)] (B27)

=
1

T

∫ T

0

[v0e
−κQt + θQ(1− e−κQt)]dt (B28)

= v0
1− e−κQT

κQT
+ θQ(1− 1− e−κQT

κQT
) (B29)
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Proof for Chapter 3 and 4

we now give a brief proof for Proposition 3 and 4. Assuming the current time is 0,

we let yt,T = logST − logSt (t < T ), where St is the underlying price following the

SVJJ model (i.e., Eq. (4.1)). The forward characteristic function f(ϕ; t, T, V0) of

the stochastic variable yt,T is defined as

f(ϕ; t, T, V0) = EQ[eϕyt,T |y0, V0], t < T (C1)

This expectation can be analytically carried out by solving two PDE successively,

due to the tower rule of expectation, i.e.,

f(ϕ; t, T, V0) = EQ[eϕyt,T |y0, V0] = EQ [EQ[eϕyt,T |yt, Vt] | y0, V0]
]

(C2)

The inner expectation, U(ϕ; t, T,X, V ) = EQ[eϕyt,T |yt, Vt], can be carried out by

solving the following PIDE, utilizing the Feynman-Kac theorem:
∂U

∂t
+ (r − λµ− 1

2
V )

∂U

∂X
+ [κQ(θQ − Vt)]

∂U

∂V
+

1

2
V
∂U2

∂X2
+ ρσV V

∂U2

∂XV

+1
2
σ2
V V

∂U2

∂V 2 + λEQ[U(X + JX , V + JV )− U(X,V )|Ft] = 0

U(ϕ; t = T, T,X, V ) = eϕX

(C3)

where X = logS. Following the solution procedure used by Heston (1993),

Bakshi et al. (1997) and Duffie et al. (2000), the solution of the above PIDE can

be assumed of the form:

U(ϕ; t, T,X, Vt) = eC(ϕ,T−t)+D(ϕ,T−t)Vt+ϕX+A(ϕ,T−t) (C4)
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One can then substitute this function into the PDE to reduce it to the following

three ordinary differential equations (ODE)
−∂C
∂t

= (r − µ)ϕ+ κQθQD

−∂D
∂t

=
1

2
(ϕ− 1)ϕ+ (ρσV ϕ− κQ)D +

1

2
σ2D2

−∂A
∂t

= λEQ[eϕZ
S
n (Q)+ZV

n (Q)D − 1|Ft]

(C5)

with the initial conditions

C(ϕ, 0) = 0, D(ϕ, 0) = 0, A(ϕ, 0) = 0 (C6)

The solutions of these equations can be easily found as

C(ϕ, τ) = (r − µ)ϕτ +
κQθQ

σ2
V

[(a+ b)τ − 2 log(
1− gebτ

1− g
)]

D(ϕ, τ) =
a+ b

σ2
V

1− ebτ

1− gebτ

A(ϕ, τ) = λ

(
exp (µSϕ+

1

2
σ2
Sϕ

2)

)(
(a+ b)τ

c(a+ b) + µV ϕ̃
+

2µV ϕ̃

(ac+ µV ϕ̃)2 − (bc)2
logB

)
−λτ

B = 1 +
c(b− a)− µV ϕ̃

2bc
(e−bτ − 1)

a = κQ − ρσV ϕ, b =

√
a2 + σ2

V ϕ̃, g =
a+ b

a− b
, c = 1− ρJµV ϕ, ϕ̃ = ϕ(1− ϕ)

µ̄ = λ(
exp(µS + 1

2
σ2
S)

1− ρJµV

− 1)

(C7)

This affine-form solution obtained from the calculation of the inner expecta-

tion facilitates the calculation of the exterior expectation, which is

EQ [EQ[eϕyt,T |yt, Vt] | y0, V0
]
= EQ [eC(ϕ,T−t)+D(ϕ,T−t)Vt+ϕX+A(ϕ,T−t) | y0, V0

]
(C8)

This expectation can be carried out by using the characteristic function, g(ϕ;T −

t, Vt), of the stochastic variable VT . Utilizing the Feynman-Kac theorem, the

function g(ϕ;T−t, Vt), which is defined as g(ϕ;T−t, Vt) = EQ[eϕVT |yt, Vt], should
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satisfy the following PDE
∂g

∂t
+ κQ(θQ − V)

∂g

∂V
+

1

2
σ2V

∂2g

∂V 2
+ λEQ[g(V + ZV )− g(V )|Ft] = 0

g(ϕ; 0, V ) = eϕV
(C9)

Again, following the same solution procedure, we can solve this PIDE in closed-

form by using a guess of the affine-form solution as,

g(ϕ;T − t, Vt) = eE(ϕ,T−t)+F (ϕ,T−t)+G(ϕ,T−t)Vt (C10)

One can then substitute this function into the PIDE to reduce it to three ordinary

differential equations, 
−∂G
∂t

= −κQG+
1

2
σ2
VG

2

−∂F
∂t

= κQθQG

−∂E
∂t

= λEQ[eGZV
t − 1|Ft]

with the initial conditions

E(ϕ, 0) = 0, F (ϕ, 0) = 0, G(ϕ, 0) = ϕ (C11)

The solutions to these ODEs are
E(ϕ, τ) =

2µV λ

2µV κQ − σ2
V

log

(
1 +

ϕ(σ2
V − 2µV κ

Q)

2κQ(1− µV ϕ)
(e−κQτ − 1)

)
F (ϕ, τ) =

−2κθ

σ2
V

log

(
1 +

σ2
V ϕ

2κQ
(e−κQτ − 1)

)
G(ϕ, τ) = 2κQϕ

σ2
V ϕ+(2κQ−σ2

V ϕ)eκQτ

where τ = T − t.

Summarizing above discussion, we can obtain the forward characteristic func-

tion, f(ϕ; t, T, V0), of stochastic variable, yt,T , in the form of

f(ϕ; t, T, V0) = EQ[eϕyt,T |y0, V0] = EQ [EQ[eϕyt,T |yt, Vt] | y0, V0
]

= EQ[eC(ϕ,T−t)+D(ϕ,T−t)Vt+A(ϕ,T−t)|y0, V0] = eC(ϕ,T−t)+A(ϕ,T−t)EQ[eD(ϕ,T−t)Vt|y0, V0]

= eC(ϕ,T−t)+A(ϕ,T−t)g(D(ϕ, T − t); t, V0)

(C12)
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The Laplace Transform of the
Realized Variance in Chapter 6

Appendix The Laplace transform of the realized variance RV (0, T ) in the

Heston stochastic volatility model is given by,

EQ
0 [e

−sRV (0,T )] = exp [A(T, s)−B(T, s)V0] (D1)

where 

A(T, s) =
2κθ

σ2
V

log

(
2γ(s)e

(γ(s)+κ)T
2

(γ(s) + κ)(eγ(s)T − 1) + 2γ(s)

)
B(T, s) =

2s(eγ(s)T − 1)

T [(γ(s) + κ)(eγ(s)T − 1) + 2γ(s)]

γ(s) =

√
κ2 + 2

sσ2
V

T
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Proof for Chapter 7

For the SVJJ model, Feynman-Kac theorem implies that f(ϕ; t, τ, Vt) satisfies −fτ + κQ(θQ − V)fV +
1

2
σ2V fV V + λEQ[f(V + ZV )− f(V )|Ft] = 0

f(ϕ; t+ τ, 0, V ) = eϕV

Following the solution procedure used by Heston (1993), Bakshi et al. (1997),

Duffie et al. (2000) and many others, we can solve this PIDE in closed-form by

using a guess of the affine-form solution as,

f(ϕ; t, τ, Vt) = eC(ϕ,τ)+D(ϕ,τ)Vt+A(ϕ,τ) (E1)

One can then substitute this function into the PIDE to reduce it to three

ordinary differential equations,
Dτ = −κQD +

1

2
σ2
VD

2

Cτ = κQθQD

Aτ = λEQ[eDZV
t − 1|Ft]

with the initial conditions

C(ϕ, 0) = 0, D(ϕ, 0) = ϕ, A(ϕ, 0) = 0 (E2)
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The solutions to these ODEs are
A(ϕ, τ) =

2µV λ

2µV κQ − σ2
V

ln (1 +
ϕ(σ2

V − 2µV κ
Q)

2κQ(1− µV ϕ)
(e−κQτ − 1))

C(ϕ, τ) =
−2κθ

σ2
V

ln (1 +
σ2
V ϕ

2κQ
(e−κQτ − 1))

D(ϕ, τ) = 2κQϕ

σ2
V ϕ+(2κQ−σ2

V ϕ)eκ
Qτ
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