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Abstract 

Existing research has focused on solving problems in the area of project management using 

variety of approaches including search based software engineering approach. The main aim of 

this research is to evaluate the performance of metaheuristics search techniques such as genetic 

algorithm, simulated annealing and tabu search in resource allocation problem with project 

management discipline. This will enable the paper to introduce an alternative approach to solve 

this Resource Constrained Project Scheduling Problem (RCPSP). The nature of this research is 

both constructive and experimental therefore software development research methodology will 

be utilised as a guideline. 

This study reports a comprehensive set of experiments which evaluate the performance of 

metaheuristics search techniques. Initial set of experiments were performed over various 

numerical test function to verify the implementation of search techniques. The next stage of 

experiments had focused on the scalability of these search techniques. Based on the first two 

experiments, search techniques were evaluated against a discrete problem to further explore the 

scalability. Finally, a multi objective test case problem was evaluated which focused around 

RCPSP. For each of these experiments the parameters were fine-tuned during the design phase 

of the experiments.  

Based on the experiments, it was apparent that the metaheuristics search techniques can be 

used to solve problems in resource allocation within project management discipline. Finally, a 

comparison analysis strongly suggests that overall simulated annealing had performed better 

than genetic algorithm and tabu search. 

Key words: Software engineering, search based software engineering, metaheuristics search 

techniques, resource constrained project scheduling problem, cost allocation, project 

management. 
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1 Introduction 
This chapter presents the motivation and background for this research. The main objective of 

this research is to evaluate search based approaches when applied to project scheduling, cost 

estimation and resource allocation problems in software engineering project management. 

1.1 Background and Motivation 
The discipline of Software Engineering has been in existence since early 1960s and since then, it 

has evolved tremendously and during which many new subsidiaries of software engineering have 

been introduced. Search based approaches in Software Engineering date back to the 1970s when 

researchers started to investigate automated approach to software testing (Miller & Spooner, 

1976). Search Based Software Engineering (SBSE) was formalised in 2001 (Harman & Jones, 2001) 

and presented as sub-discipline software engineering.  The underlying principles of SBSE involve 

the application of metaheuristics search techniques like genetic algorithms, simulated annealing 

and tabu search to software engineering problems. The approach is inspired by the observation 

that many activities in software engineering can be formulated as optimisation problems and are 

therefore tractable to automatic solution. 

Since then the majority of SBSE research is still focused on software testing as this is an area that 

is easily formulated as a search problem (Harman, 2007). However, a growing number of 

researchers have implemented SBSE to solve problems in more challenging areas of Software 

Engineering, such as Requirements Engineering, Resource Allocation, Cost Estimation and Project 

Scheduling (Harman, 2007). This research focuses on the areas of Resource Allocation, Cost 

Estimation and Project Scheduling in software project planning.  

Managing software projects has been a crucial task since the early days of software engineering. 

Over the years, basic principles of software engineering have evolved and as a result principles of 

software project planning have evolved as well. In recent years, almost all industries use 

software and because of which the demand of software development and/or implementation 

have increased considerably. Most of the development and/or implementation of software 

require a project management strategy in order to be successful. As software complexity and size 

increases, the need for both efficient and effective project management approaches will grow. 

Since the size and the number of software projects have increased considerably, the problems 

with resource allocation, cost estimation and project scheduling have become more visible than 

ever. Hence, there is huge demand for new methods and technologies to enable software project 
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managers to solve the problems in the area of cost estimation, resource allocation and project 

scheduling more efficiently and effectively. Over the years, the demand for introducing new 

methods and/or technologies mentioned above have increased and based on that the need for 

this research can be justified. 

1.2 Definitions 

1.2.1 Heuristics 
Heuristics is a method which has the ability to produce good solution for a given problem within 

a reasonable amount of computation time. An ideal example of heuristic approach would be to 

use the rule of thumb when making a decision (Herroelen, 2005). 

1.2.2 Metaheuristics 
Like heuristics, metaheuristics is also an approach to solve a problem. Metaheuristics approach 

tries to optimise a problem by continuously trying to find an optimum solution based on the 

given criteria. Common metaheuristics techniques include but are not limited to genetic 

algorithm, simulated annealing, and tabu search (Harman & Jones, 2001). 

1.2.3 Search Based Software Engineering 
In the discipline of software engineering there are several problems and search based software 

engineering is one of the approaches to solves those problems using metaheuristics search 

techniques such as genetic algorithm, simulated annealing, tabu search, etc (Harman & Jones, 

2001). 

1.2.4 Work Breakdown Structure 
In project management, when all the deliverables are grouped into smaller deliverable 

components is called Work Breakdown Structure (WBS) (Herroelen, 2005). Establishing a WBS is 

a part of the project scheduling exercise and this is one of the main ingredients for establishing 

requirements for funding and resources.   

1.3 Statement of Problem 
Most software projects require some sort of project management to govern its resources, cost 

and scheduling. The biggest challenge for a software project is to complete on time and budget. 

It has been observed that most software projects need to be considered at least partial failures 

because so few projects meet all of the cost, schedule, quality or requirement objectives (May, 

1998). Such doom and gloom is not uncommon in the literature review, and any discussion of 

critical success and failure factors in software development would be incomplete without 
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recognising the essays of the Fred Brooks (1995) that discussed many such factors. According to 

the widely quoted Chaos Report by the Standish Group, citied by Yeo (2002), declared that 

software projects are in chaos with only 16.2% of software projects are actually being successful. 

Whilst some authors have questioned the relevance and integrity of the Chaos report (Glass, 

2006), it is clear that developing software is equally challenging today as it was at the time of 

writing of the Mythical Man Month (Brooks, 1995) though the reason and their relative impact 

may have changed in the intervening period. The prevalence of failing software is one of the 

major drivers for this research as there is a clear need for more effective project management 

practices. 

To complete a project successfully, project managers have two main goals. The first is the 

creation of a realistic project plan, and secondly the management of unforeseen circumstance to 

ensure that plan is implemented. Part of the creation of the plan involves the allocation of tasks 

to resources with proper deadlines.  

However, there are several reasons that could force a project to fail or not complete within a 

given time frame and budget. Problems in the management of resources, time frame, budget, 

risks, and many more are some of the main contributing factors for failure. Such problem falls 

into two categories that match the above goals. The problems in the first category are caused by 

creating an unrealistic plan because the availability of a given resource is not fully understood or 

interactions between tasks are not clearly defined. The problems in the second category are 

caused as a result of unforeseen circumstances. This research essentially addresses the first 

category of problems by providing an approach for project managers to better understand the 

constraints imposed on their projects by the availability of resources. Whilst small project plans 

for allocating resources and scheduling can be established using heuristics (rule of thumb) 

approaches. Such approaches may not be suitable for larger projects, and therefore tool support 

is recommended to plan a project. In most cases managing project (small or big) can encounter 

problems in the following areas: 

1.3.1 Resource Allocation 
In planning a project, allocating resources to tasks is one of the most important activities. This 

part of planning is categorised in two sections, first section focuses on allocating resources to 

each tasks based on the priority of the task. A simple rule is applied whereby if the priority of the 

task is higher than more resources are allocated. At times, tasks with low priority have minimum 

or no resources assigned to it. The second section focuses on planning a contingency for all tasks 
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so that if there are any available resources they can be allocated based on the priority of the 

tasks. Examples of resources are human resources, equipment, software licenses, funding, and 

many more. Depending on the size of the project, resources can either be allocated manually or 

by the means of a computer program. 

1.3.2 Cost Estimation 
Cost is one of the most important ingredients to plan a software project. The main purpose of 

this activity is to estimate cost accurately so that the project can be completed within allocated 

budget. Inappropriate cost estimation can lead to cost overrun or even failure of a project. 

During this stage of planning, based on the estimated costs it allows the project managers to 

secure resources for each tasks. The planning for this stage is usually done in three steps. First, 

identify all the tasks of the projects and their priority, based on the result generated from the 

first step, the Second focuses on estimating start and end date for each tasks and how much 

resources each task would require. Finally, the project managers need to establish total cost for 

each task based on resources allocated. After allocating each task, project managers can 

estimate cost for the entire project. 

1.3.3 Project Scheduling 
The main purpose of scheduling a software project is to determine its start and end date. 

Typically a start and end date is set for each task so that an overall timeframe is determined. The 

Project Manager cannot start working on scheduling until they have established a work break 

structure (WBS), list of tasks, effort required for each tasks, and list of available resources. 

Furthermore, during the life of the project, project managers are consistently working on 

schedule to ensure that project’s deadline is achieved. Since this task is implemented at the very 

start of projects, sometimes it may be hard to determine start and end date due to many reasons 

such as availability resources, cuts in funding from project sponsors, and many more. 

Inappropriate scheduling of a project indicates that the project may not be completed within the 

given time frame and budget. Furthermore, it may also mean that third party resources 

(equipment, human resources, etc) that were allocated based on the initial start and end date of 

a task may not be available. 

As mentioned earlier, most aspects of project planning can have problems in the area of resource 

allocation, cost estimation and project scheduling. When all the three problems are combined 

they can be classified as a “Resource Constrained Project Scheduling Problem” (RCPSP). 

Researchers have explored RCPSP solutions for several decades with the first major review of 
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RCPSP literature occurring in 1995 (OZdamar & Ulusoy, 1995) with work continuing to the 

present day (Bianco & Caramia, 2011). The sheer volume of articles published of this topic over 

this time period indicates the significance of the challenge presented by the problem. 

The main goal of RCPSP is to estimate cost and resources required for each tasks so that the 

duration of the project is minimised without exceeding budget. The RCPSP is very complex 

problem to solve and visualise. To demonstrate this problem, a simple project with ten activities 

displayed in Figure 1.1. In this figure each node represents an activity which also displays its 

precedence constraint using the arcs. Furthermore each node has predefined days and resources 

to complete a task. Task #1 and Task #10 both acts as a project milestone. 

 

Figure 1.1 Project Network Diagram 

Based on the scenario outlined in Figure 1.1, a solution needs to be generated using heuristics 

approach whereby all the resources are optimally utilised to complete ten tasks. This simple 

example assumes that all resources are equal and may be assigned to any task. An optimum 

solution for Figure 1.1 is graphically presented in Figure 1.2. Hence looking at this scenario, it was 

relatively easy to find an optimum schedule using heuristics (rule of thumb) approach but by 

heuristics do not gurantee an optimum solution but it has the potential to provide a good 

solution within a reasonable amount of computation time. In “real-world” projects have 

hundreds of tasks and it could be very difficult to generate an optimum schedule using heuristic 

approach because it would be very difficult to remember various combinations of resources, 

tasks, available time, available cost, etc. 
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Figure 1.2 Optimal Solution for Figure 1.1 

Over the years, several researchers have tried to solve RCPSP using various methods, but the 

main categories are presented in Figure 1.3. However, this research will try to resolve the RCPSP 

using “Classical Metaheuristics” which includes implementations of Genetic Algorithm, Tabu 

Search and Simulated Annealing. 

 

Figure 1.3 RCPSP Solving Techniques (Kolish & Hartman, 2006) 

1.4 Research Question 
Based on the problems mentioned in section 1.2, it is clear that there is an ongoing issue with 

project planning (resource allocation, cost estimation and project scheduling) activities. For the 

purpose of this research, there will be an attempt made to represent these in accordance with 

the principles underlying search based software engineering and solve the problem using 

metaheuristic search algorithms. As a result of initial study, following questions have been 

formulated: 

1.4.1 Question 1 
Can resource allocation and cost estimation be effectively formulated as a search problem that 

is tractable to be solved using metaheuristic search algorithms? 

RCPSP 
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Methods 
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1.4.2 Question 2 
Which metaheuristic search algorithms demonstrate the most desirable performance when 

solving these problems? 

1.5 Thesis Structure 
This thesis is categorised into five main chapters. This first chapter identifies problems in the area 

of project scheduling, cost estimation, and resource allocation. To illustrate the problem a simple 

example with an ideal solution is presented. The second chapter provides the context for this 

research by identifying past and current research in the area of search based software 

engineering, metaheuristics search techniques, discrete optimisation problems, project 

management principles, problems with cost estimation, resource allocation and project 

scheduling. Furthermore, this chapter identifies how various authors have tried to use search 

based software engineering to solve these problems. The third chapter focuses on the research 

methodologies used to conduct this research. This chapter describes the framework that was 

developed to conduct experiments to explore the research questions. The fourth chapter is 

broadly categorised into four main sections which includes verification of metaheuristics search 

techniques, the scalability testing using Bump functions, scalability testing using n-Queens 

problem and lastly solve RCPSP using genetic algorithm, simulated annealing and tabu search. 

The last chapter of this research will focus on discussions around the data and the analysis 

generated in previous section and then the paper will be completed with a conclusion of the 

discussions and identify the direction(s) for future research. 
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2 Literature Review 
The main objective of this chapter is to identify past and current research which has tried to 

resolve project scheduling problems using search based software engineering approaches and to 

define the basis of metaheuristic search algorithms. Based on the knowledge gained from 

literature review, limited number algorithms will be selected for implementation to solve sample 

project scheduling problems. While identifying the literature, this chapter also defines and 

explains some of the key concepts used across all the chapters. 

To ensure the robustness of this research, the review of literature has been conducted using the 

most relevant literature. Primarily, the review of literature has been conducted to lay the 

background knowledge of this research. After that, the review of literature will be further 

categorised into three problem areas as mentioned in the Chapter 1, Section 1.2. Hence the 

review of literature will be categorised into: 

• Search and Optimisation Algorithm: One of the main objectives of this research is to 

evaluate metaheuristics search techniques. As such there are several techniques for 

optimising problems, but for this research, literature about few methods will be detailed. 

• Discrete Problems: As a part of the evaluation process in this study, metaheuristics 

search techniques will be evaluated against a discrete problem. Literature in this area will 

describe various discrete problems, but for the purpose of this research n-queen problem 

has been selected to conduct experiments. Literature in this area will help design the 

experiments and additionally results from these experiments can be compared against 

the literature review. Additionally, Metaheuristics search techniques will also be 

evaluated against variety of numerical test functions and the description for these 

numerical test functions will be detailed in Experimental Design. This will mainly focus on 

presenting the solutions space and the formula used to carry out the experiments. 

• Search Based Software Engineering: This research is categorised under the discipline of 

search based software engineering, hence this section will give a detailed introduction 

about the discipline. Furthermore, following sections of literature review will use this as a 

foundation to explain their arguments and findings. 

• Project Management: Since this research is partially related to managing projects, it is 

important that the literature in the discipline of project management has been reviewed. 

This review will enable the paper to establish basic principles of project management 
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which can be applied in evaluation process of the data that is generated from the 

implementation. 

• Software Project Management: In addition to literature review in project management 

discipline, this chapter will also conduct a review in software project management a child 

discipline of project management discipline. Review in this area will lay the foundation 

knowledge for research in software project planning (cost estimation and resource 

allocation). 

• Cost Estimation Models: This review of literature will highlight how various authors have 

used the principles of search based software engineering to build cost estimation model. 

• Resource Constraint Project Scheduling Problem: Similar to literature review of cost 

estimation models, this chapter will also review literature from various authors who have 

tried to resource constraint project scheduling problem using search based software 

engineering. 

For the purpose of gathering accurate and robust information, various articles have been 

collected from different disciplines and sources. The main disciplines that were used to gather 

articles are as follows (but not limited to): 

• Software Engineering 

• Search based software engineering 

• Optimisation 

• Numerical test functions 

• Discrete problems 

• Metaheuristics search techniques 

• Project management 

• Resource constrained project scheduling problem 

In addition to this, to a build strong research background, articles have been selected from a 

wide range of time line starting as early as 1960s to most contemporary articles dated in 2011. 

Although some articles are old, but they help develop a good research background. As the 

research progresses, contemporary articles have been selected for annotations.  
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2.1 Search and Optimisation Algorithms 

The purpose of this section is to compare a variety of optimisation techniques. There are many 

different methods available for evaluating solutions to a given problem and searching for an 

optimal solution. These vary from calculus based techniques through to combinatorial methods. 

There are four main types of optimisation methods. 

2.1.1 Classical Optimisation Theory 
Classical optimisation theory develops the use of differential calculus to determine maxima and 

minima for unconstrained and constrained functions. The classification of such techniques varies 

in two general two classes, direct and indirect. Indirect methods search for optimum points by 

solving the equations that are obtained by setting the first derivative of the objective function to 

zero. Direct methods search for optima by taking a point on the objective function surface and 

moving in a direction determined by the gradient at that point. Both direct and indirect 

approaches are generally referred to as gradient methods (Gill, Murray & Wright, 1981). 

Neither of these general methods is particularly useful outside of the simple domain where the 

objective function is uni-modal, smooth and continuous. They act primarily as local search and 

are prone to become trapped on sub-optimal peaks. Classical techniques are not considered 

sufficiently robust to provide useful solutions to many complex problems. 

2.1.2 Linear Programming 
Linear programming (Luenberger, 1984) technique is applicable where the objective function and 

constraints are formed as linear functions of the independent problem variables. Linear 

programming methods can easily deal with both equality and inequality constraints. 

The most general and widely used linear programming techniques, is the Simplex Method 

(Nelder & Mead, 1965). In 1947, George Dantzig created a simplex algorithm to solve linear 

programs for planning and decision-making in large-scale enterprises. The algorithm's success led 

to a vast array of specializations and generalizations that have dominated practical operations 

research for half a century. This method can deal with large numbers of problem variable and is 

easily implemented as a numerical computation. For simple linear optimisation problems the 

simplex method is a powerful tool which finds the optimum point in a multi-variate feasible 

region. Unfortunately, many optimisation problems are non-linear and other methods are 

required to find solutions.  
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2.1.3 Non-Linear Programming 
Non-linear programming (Luenberger, 1984) methods fall into both uni-variate and multi-variate 

categories. Essentially, non-linear programming methods are search techniques where an 

algorithm directs the search towards an optimal solution. Because the methods are based on 

searching, as opposed to calculus, the objective functions do not need to be smooth or 

continuous. Hence, non-linear programming methods have become widely popular. Examples of 

uni-variate methods include the Golden Section Search (Press, Flannery, Teukolsky & Vettering, 

1986), Rosenbrock’s method (Rosenbrock, 1960) and Quasi-Newton methods such as BFGS. 

These simple searches have been extended into the multi-variate domains to give rise to 

methods such as Powell’s Method of Conjugate Directions (Powell, 1977) and the Hooke and 

Jeeves Pattern Search (Hooke & Jeeves, 1961). Using these methods, constraints are normally 

dealt with by the use of penalty functions. 

A non-linear programming method has advantage of numerical computation, but also suffers in 

that they are generally local search methods. Without resorting to numerous and complex 

penalty functions they are not robust enough to search extremely convoluted objective function 

surfaces to any degree of accuracy. It is necessary to check that the methods are finding truly 

optimum solutions and this process of reiteration prolongs the time required for an analysis. 

2.1.4 Metaheuristics 
In recent years, research in the area of solving problems with optimisation techniques has 

increased considerably and leading to development of new systems and methods. When the 

performances of new developments are compared to linear programming methods, it is clear 

that new optimisation techniques are more robust and efficient. Harman & Jones (2001) 

mentioned that most of these techniques are currently implemented in disciplines like software / 

mechanical engineering, biotic engineering, software testing, and many more. Additionally, such 

techniques have also been used to solve problems like Travelling Salesman Problem, N-Queen 

Problem and many more. The importance of metaheuristics has been increasing over the years 

and to support that argument, many researchers have attempted to solve “real world” problems.  

2.1.4.1 Simulated Annealing 

Simulated annealing is a metaheuristics search technique which can be used to solve 

optimisation problems. The technique has the ability to find solutions in large and small spaces. 

Unlike few other search techniques, this technique is a direct search method involving a single 

search trajectory (Kirkpatrick, Gelatt & Vecchi, 1983). The name and inspiration for this search 
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technique was derived from the process of annealing solid material (e.g.: metal). This annealing 

process involved heating and gradually cooling the solid material so that the defects are reduced. 

After the completion of this process, it can be concluded that the solid material has reached a 

global minimum state. 

Simulated annealing operation is very straight forward. When the algorithm is initiated, an initial 

set of problem is selected on random. Hence a value of x is chosen for the solution and the cost 

function is minimised. The size of the problem usually determines the cost of the function. 

Hence, if the size of the problem is large then the cost of the problem is larger and vice versa. 

After initial value is selected, it changes slightly to generate a new candidate solution from the 

neighbourhood of the initial solution. After selecting a new candidate solution, value of the cost 

function is obtained and if the value is better than previous candidate solutions then it is 

retained. However, if the value is worse than any other candidate solution, then there is small 

probability that the search will move to the next candidate solution and continue. The calculation 

of the probability is calculated using the equation mentioned below and the equation is similar 

to Maxwell-Boltzmann probability function. 

𝑝 = 𝑒𝑥𝑝 �
−∆E
𝑇

� 

Equation 2.1 Maxwell-Boltzmann Probability Function 

In equation presented above, T represents the temperature and ∆E represents the change in 

energy. Apart from the equation, this search technique requires some basic ingredients and they 

are as follows (Clark, et al., 2003): 

• Definition of neighbourhood and its configuration. 

• Cooling schedule specification 

When there is a change in the value of the cost function, it determines the change in energy. The 

units of temperature control parameters and cost function are the same. Additionally, 

temperature control parameter also enables the probability of selection. During the initial stages 

of the execution process of the algorithm, the temperature is kept steady and this allows the 

system to gain momentum in searching. Ideally as the temperature drops, the probability of 

selecting a bad solution reduces. Hence towards the end, this algorithm tends to move towards 

an optimum solution. 
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2.1.4.2 Tabu Search 

Tabu search has similar search method characteristics to simulated annealing and is generally 

implemented as a single search trajectory direct search method. The concept was originally 

coined by Glover (1989, 1990), and since then the application of this search technique has 

increased considerably. Tabu search has been successfully implemented to solve discrete 

combinatorial optimisation problems such as graph colouring and Travelling Salesman Problems, 

and has also been applied to a range of practical problems. In terms of operations, tabu search 

uses a local or neighbourhood search procedure to iteratively move from one potential solution 

to an improved solution in the neighbourhood. This iteration stops when terminating criteria has 

been met. To avoid finding an inappropriate solution and to ensure that the search space is 

explored by the local search procedures, tabu search thoroughly examines the neighbourhood of 

each solution as the search progresses. The solutions admitted to the new neighbourhood, are 

determined through the use of memory structures. These memory structures, the search 

progresses by iteratively moving from the current solution to an improved solution. These 

memory structures form what is known as the tabu list, a set of rules and banned solutions used 

to filter which solutions will be admitted to the neighbourhood to be explored by the search. In 

its simplest form, a tabu list is a short-term set of the solutions that have been visited in the 

recent past. To implement this technique efficiently, it is necessary that following ingredients 

must be considered (Clark, et al., 2003): 

• Neighbourhood of a solution 

• Aspiring move definition 

2.1.4.3 Genetic Algorithms 

Unlike simulated annealing and tabu search, genetic algorithm is not a local search method. This 

search technique classified as an evolutionary search method. This algorithm was built on the 

principles of Darwinian Evolution (Clarke et al., 2003; Goldberg, 1989) and was first developed in 

1975 (Holland, 1975). Since its introduction, this search technique has been used in variety of 

disciplines and there is substantial research to identify its practical implementations. 

Goldberg (1989) further adds that genetic algorithm is a non-derivative based optimisation 

technique and the outcome of this algorithm is not but the survival of the fittest. When the 

algorithm is initiated, a candidate solution set is created on random and this is called population. 

Using the existing population, new generation is created using genetic operators like crossover, 
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mutation, and reproduction. Ideally as the algorithm progresses, the solutions are improved and 

optimum solutions can be achieved over time. 

• Crossover: Is a genetic operator that combines two chromosomes to produce a new 

chromosome. The idea behind crossover is that the new chromosome may be better than 

both of the parents if it takes the best characteristics from each of the parents. Crossover 

occurs during the evolution according to a user-defined crossover probability. There are 

several methods of selection of chromosomes for crossover like Roulette wheel selection, 

Boltzman selection, Tournament selection, Rank selection and many more. There are also 

varieties of crossover techniques such as one-point crossover, two-point crossover, three 

parent crossover, crossover for ordered chromosomes, and “cut and splice”. 

• Mutation: This operator alters one or more gene values in a chromosome from its initial 

state. This can result in entirely new gene values being added to the gene pool. With 

these new genes values, the genetic algorithm may be able to generate a better solution. 

Mutation is an important part of the genetic search as it helps to prevent the population 

from stagnation at any local optima. Mutation occurs during evolution according to a 

user-defined mutation probability. 

Genetic Algorithms are a broad and effective search method which has been applied to a wide 

range of practical problems. The term Genetic Algorithm is particularly broad and covers many 

variations in implementation ranging from the simple GA presented by Golberg (1989) through 

to complex multi-objective algorithms such as NSGA-II (Deb, Agrawal, Pratap & Meyarivan, 

2000). To efficiently implement genetic algorithm, following ingredients must be considered: 

• Probability of crossover and mutation operators 

• Selection criteria for crossover, mutation or reproduction 

2.1.4.4 Particle Swarm Optimisation  

Particle swarm optimisation has been in existence since 1995. The inspiration behind this 

technique is derived by the social behaviour of bird flocking. This behaviour slightly makes this 

algorithm like genetic algorithm hence would classify under evolutionary methods of solving 

discrete optimisation problems (Kennedy & Eberhart, 1995; Shi & Eberhart (1998)). In saying 

that, this search technique doesn’t have operators in the same was as a genetic algorithm 

(crossover, mutation and reproduction). PSO optimizes a problem by having a population of 

candidate solutions, here dubbed particles, and moving these particles around in the search-
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space according to simple mathematical formulae over the particle's position and velocity. Each 

particle's movement is influenced by its local best known position and is also guided toward the 

best known positions in the search-space, which are updated as better positions are found by 

other particles. This is expected to move the swarm toward the best solutions. An extensive 

survey of PSO applications is made by Poli (2008) and has verified that this technique has been 

used for both research and practical implementation. 

2.1.4.5 Ant Colony Optimisation 

Ant colony optimisation is a general search technique and unlike the previous search techniques. 

This search technique was introduced Marco Dorigo in 1992. It is ideally suited to graph based 

problem domains but can also solve discrete combinatorial optimisation problem (Christodoulou, 

2010). As the name suggests “ant colony”, the principles behind this technique came from the 

behaviour of real ant colonies. The main idea is that ants in a colony lay a path and other 

members of colony follow the path. Eventually the path leads to an optimum solution. Since its 

introduction, this technique has been used extensively to solve huge range of numerical test 

problems. The ACO algorithm has been applied to the RCPSP (Merkle, Middendorf & Schmeck, 

2000) which can be represented as a graphing problem. 

2.1.4.6 Other Algorithms 

Apart from the algorithms mentioned earlier, there are varieties of algorithms which can be used 

and these techniques are (but not limited to) Artificial Immune System (Farmer, Packard & 

Perelson, 1986), Harmony Search (Geemm, Kim & Loganathan, 2001), the Firefly algorithm (Yang, 

2009) and Spiral Optimisation (Tamura & Yasuda, 2011). Many of these algorithms are in essence 

attempts to hybridise or reinforce concepts that are taken from more established algorithms. 

Whilst they may offer certain features that make them useful and appealing, they are currently 

excluded from this study.     

2.2 Discrete Optimisation Problems 

As the name suggests these problems are discrete in nature unlike the numerical test functions 

which are mainly continuous in nature. Usually discrete problems are extremely hard to solve 

within a reasonable amount of time without the use of some techniques. Ideally these can be 

solved using metaheuristics search techniques mentioned in section 2.2, but is not limited to 

that. There are varieties of discrete problems, how for the purpose of this study, the literature 

will briefly focus on the following: 
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2.2.1 Travelling Salesman Problem 
This problem was first established in 1930s and the main agenda for this problem is to find the 

shortest route for a travelling salesman in such a way that all the cities are visited and ensure 

that no two cities are visited twice (Lin & Kernighan, 1973). Authors have also mentioned that 

underlying principles of this problem has been used to solve variety of optimisation problem in 

various disciplines like shipping, planning, logistics, DNA sequences, etc. Using this problem there 

are variety of other problems developed like bottle neck travelling salesman problem, 

generalised travelling salesman problem and many more. 

2.2.2 Knapsack Problem 
This problem is also known as the rucksack problem. To explain this problem, let’s consider an 

example where n is the number of available items with a weight and a value associated with it. 

Hence the ideal solution to this problem is to determine the best combination of items where 

the weight is minimised and the value is maximised (Ross & Tsang, 1989). This problem has some 

practical implementation when solving RCPSP with financial constraints. 

2.2.3 N-Queens Problem 
N-Queen problem was first introduced in 1848 and it is a problem of placing chess queen on nxn 

chessboard so that no two queen attack each other (Martinjak & Golub, 2007). The main agenda 

behind this problem is to place maximum number of queens on a chessboard so that no two 

queens attack each other. On a chessboard a queen can attack in all the cells in its same row or 

column and either diagonal. The original problem related to allocating eight queens a spot on the 

8 x 8 chessboard (Martinjak & Golub, 2007). Hence to enable the implementation of this 

problem, it has to be generalised to represent n number of queens and this generalisation 

process has occurred in 1975 (Martinjak & Golub, 2007). Authors have also further argued that 

this problem usually take longer to compute then other continuous problems. Like other discrete 

problems, the principles behind this problem has been also implemented to in practical scenarios 

like parallel memory storage, managing traffic, deadlocks, and many more. 

2.2.4 Summary 
All the problems mentioned above belong to the same category of NP-Hard problem in 

combinatorial optimisation studied in computer science discipline. At time, metaheuristics search 

techniques are implemented to solve other problems but to verify the performance and viability 

of the search techniques, the above mentioned problems can be used. For the purpose of this 

study, one of the experiments will focus on solving n-queen problem using genetic algorithm, 

simulated annealing and tabu search. 
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2.3 Search Based Software Engineering 

Search Based Software Engineering (SBSE) was introduced in 2001 by Harman & Jones (2001). 

The main objective of SBSE is to solve problems in software engineering using metaheuristics 

search techniques such as genetic algorithm, simulated annealing, Tabu Search, Particle Swarm 

Optimisation, and many more. Past literature indicates that several researchers tried to solve 

problems in software engineering, in the area of software testing and software project cost 

estimation using genetic programming and parallelisation, which were not categorised under 

SBSE. SBSE topic was consistently researched since 2001, but this topic was revisited in 2007 by 

Harman (2007) to reassess the current and future of SBSE. In his article Harman concluded that 

SBSE is still a widely researched topic and is expecting that the research will grow more in this 

domain. So far, research has been carried out in following areas: 

• Software testing 

• Test data generation 

• Reverse engineering 

• Software Estimation 

• Resource allocation and cost estimation. 

According to authors Harman & Jones (2001) and Harman (2007), to efficiently solve any 

optimisation problem in software engineering which are not polynomially solvable, it is 

necessary that it should be reformulated as “Search Problem” or “NP Complete Problem”. To 

reformulate optimisation problem as a search problem, following are the three main ingredients: 

• Representation: To represent the most optimum solutions, it is necessary to identify and 

define the nature of the problem. Based on the requirements, each problem will have its 

own unique representation.  

• Fitness Function: When a metaheuristic search technique is implemented, it may go 

through several iterations and generate possible candidate solutions. To determine if the 

selected candidate solution is optimum, it is evaluated against a fitness function. Each 

fitness function provides the ability to generate a landscape which represents all the 

candidate solutions. Ideal fitness landscapes should not be flat or have sudden spikes in 

the presentation. Fitness functions are easier to develop when the type of the problem is 

simple, but it becomes increasingly difficult to develop a fitness functions when the type 

of the problem is extremely complex.  
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• Operators: There are varieties of search techniques which can be implemented to solve 

“search problem” and each techniques require different types of operators. As a 

minimum, each search technique will require an operator which can help generate initial 

candidate solution. 

The factors mentioned above have been well established since the introduction of SBSE but in 

comparison to that, Clarke et al. (2003) have also shared similar view, but the research is 

constructed from a different point of view whereby operators have been combined with the 

“Fitness Function”. Their main reason for such an approach is to reduce complexity whilst 

reformulating software engineering as a search problem. 

2.3.1 Validity of Search Based Software Engineering 
After reviewing the literature it is clear that not all software engineering problems can be solved 

using metaheuristics search techniques, this is mainly because some problems may require 

human intervention. Before metaheuristics search techniques are implemented to solve a 

software engineering problem, it must answer the following questions: 

• Is the solution space big enough?  

• If the solution space is big enough then, would it be possible to implement metaheuristics 

search techniques? 

• Is the developed fitness function suitable to the search problem? 

• For the given problem, are there any existing solutions? 

Based on the answer for the questions mentioned above, we can validate the use of SBSE to 

solve a search problem. Once validated the next step would be to select and implement a 

metaheuristics search techniques. 

2.3.2 Metaheuristics Search Techniques in SBSE 
Before 2001, literature indicates that optimisation problems in Software Engineering can be 

solved using classical techniques such as linear programming. However, authors Clark et al. 

(2003) and Harman (2007) have argued that linear programming models are not the best option 

for solving optimisation problems. This is because there are instances where the problems have 

multiple characteristics, fitness functions and they could also be multi objective. Clarke et al. 

(2003) and Harman (2007) have identified three areas where problems could persist when 

implementing metaheuristics search techniques, but they have also provided potential solution 

to overcome the problems. A detailed analysis can be viewed in Table 2.1. 
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Categories 

Metaheuristics Search Techniques 

Limitations How to overcome limitations 

Global Optimum 

An algorithms performance 

can be based on the 

solution it delivers. In this 

case, it is highly like that a 

global optimum may not be 

achieved. 

Search techniques have a threshold 

limitations and have issues with: 

1: search method may not reach 

threshold 

2: how is the threshold set? 

Predictability 

Algorithms can generate 

different results at each 

execution 

Metaheuristics are almost all 

stochastic search techniques so by 

their very nature they can produce 

different results each time executed. 

Computation Expense 

To yield accurate results, 

large number of candidate 

solutions must be 

evaluated before a possible 

candidate can be selected 

of good quality. 

These techniques may not be fast 

enough to yield results, but on the 

other hand these techniques are only 

applicable when the solution space 

and problem domain are big enough. 

Hence in such circumstances, 

software engineering should have 

the patience to wait for a good 

candidate solution. 

Table 2.1 Search-Based Techniques (Clarke et al., 2003) 

Table 2.1 indicates that metaheuristics search techniques may face certain challenges to solve 

search problem. However, it has been argued that even though there are limitations, they can be 

resolved (Clarke et al., 2003) and there is literature in the past which has proved that 

metaheuristics search techniques have been implemented successfully by the following 

researchers: 

• McMinn (2004), Harman (2007) and Harman, Sung, Lakhotia, McMinn, & Shin (2010) 

have explored the possibility of implementing SBSE in the area of test data generation 

and additionally, few customised metaheuristics search techniques were developed for 

their empirical study. 
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• Arcuri & Yao (2007) and Afzal, Torkar, & Feldt (2009) have carried out an in-depth 

research for generating software tests using SBSE approach. Authors have highlighted the 

quality, feasibility, usability of search techniques and they have also highlighted few 

limitations which coincide with the limitations presented in Table 2.1. However, all the 

authors have concluded their research that metaheuristics search techniques can be 

successfully implemented in generating software tests. 

• Wong, Aaron, Segall, Lynch, & Mancoridis (2010) and Krogmann, Kuperberg & Reussner 

(2010) have successfully implemented metaheuristics search techniques like genetic 

algorithm to solve problems in the area of reverse engineering. Addition to this, authors 

have also identified past research and a growing trend for future research.  

Based on the examples mentioned above, it is clear that metaheuristics search techniques have 

been used and the research and implementation increased considerably. Harman & Jones (2001) 

and Harman (2007) have both specified in their research that to solve problems in software 

engineering using SBSE, any metaheuristics search techniques (genetic algorithms, simulated 

annealing, tabu search, hill climbing, and many more) can be used, but having said that Harman 

(2007) has clearly identified genetic algorithm, simulated annealing and hill climbing are the 

most common search techniques that have been applied to date in the SBSE community. 

Furthermore, the metaheuristics search techniques can be categorised in two categories such as 

local search techniques and evolutionary search techniques and can be viewed in Figure 2.1. 

 

Figure 2.1 Search-Based Techniques (Clarke et al., 2003) 

The majority of these metaheuristics search techniques have been discussed in section 2.1.4 and 

the selection of a set of candidate algorithms is discussed in section 3.2. 
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2.4 Software Project Planning 

The software engineering discipline has been in existence for a long time and since its 

introduction there have been substantial involvement project management techniques to 

manage software development / maintenance projects. Over the years, there has been extensive 

publication in the area of project management / scheduling. Herroelen (2005) has further 

suggested that there is abundance literature in this area, but for several reasons the theories has 

not been implemented into the practice. Project management in the discipline of software 

engineering has always been a problem and there could be several reasons for it. Herroelen 

(2005) argued that these problems are mainly caused because of the following reasons: 

• Poor project management skills 

• Poor leadership skills 

• Size of the projects 

• Lack of resources 

• Inappropriate cost estimation and allocation methods 

Furthermore, Herroelen (2005) also mentioned that above problems has been identified by 

literature in the past. To overcome the above mentioned problems, Herroelen has proposed a 

hierarchical project management model which can be observed in Figure 2.2. In interest of 

solving the above mentioned problems, author has also suggested the use of heuristics 

approaches and there has been literature in the past whereby researchers and practitioners have 

used algorithms to solve project management / scheduling problem. 
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Figure 2.2 Hierarchical Project Management Model (Herroelen, 2005) 

The problem with software project planning has been acknowledged by variety for literature in 

the past. In interest of that, Gueorguiev, Harman and Antoniol (2009), Chang, Jiang, Di, Zhu and 

Ge (2008) and Killc, Ulusoy and Serifoglu (2008) have also identified similar trends and have tried 

to solve this problem using search-based software engineering approaches. All the authors 

mentioned above had one purpose for their research and that was to resolve problems in 

software project planning, whereby projects are completed on time without being escalated and 

within budget. Literature also suggests that in the past researchers and practitioners have used 

following methods to resolve these problems but are not limited to: 

• Third party project management software 

• Past experience of project planners / managers 

• Case based reasoning 

2.5 Resource Constrained Project Scheduling Problem (RCPSP) 

The main focus of the previous section of the literature review was to highlight general problems 

associated with software project planning. RCPSP is a subsection of this issue identified with 

software project planning and literature in this section will make the use of search-based 

software engineering to resolve those issues. Kolisch & Hartmann (2006) have argued that the 

problem with software project planning is a high level problem and when the problems are 
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analysed further, it turns out that in most cases the problems were caused because the 

resources were scarce. Furthermore, Pinto, Ainbinder & Rabinowitz (2009) have argued that 

there are three main resources which are usually scarce in a software project and they are as 

follows: 

• Lack of human resource 

• Lack of funding 

• Lack of available time 

The above mentioned categories are similar to Herroelen (2005) whereby he was trying to 

explain reasons for failure or escalation of a project. Kolisch and Hartmann (2006) have 

suggested that if a software project is facing RCPSP, then it is very likely that project will either 

fail or be escalated. This is the main justification stated by Kolisch and Hartmann (2006) in 

support of their research to solve RCPSP. Authors have argued that literature in the past suggest 

that researchers and practitioners have used several different methodologies to solve RCPSP, but 

unfortunately, none of the methodologies have been successfully implemented in the “real-

world”. Categories can be observed in Figure 2.3. 

 

Figure 2.3 Methodologies to Solve Resource Constraint Project Scheduling Problem (Kolisch & 

Hartmann, 2006) 

Comparing Figure 2.1 (Clarke et al., 2003) and Figure 2.3 (Kolisch & Hartmann, 2006), it is clear 

that there is a different taxonomy of methods to solve search problems. Furthermore, Kolisch & 

Hartmann (2006) have clearly extended the thoughts of Clarke et al. (2003) by conducting 

experiments to resolve this problem (i.e. implementing search techniques to solve RCPSP). 

Having said that, Kolisch & Hartmann (2006) have conducted experiments based on their 
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assumptions of their own past research conducted in 2001, the results can be biased. On the 

other hand Gueorguiev, Harman, & Antoniol (2009) have conducted experiments using data from 

the “real-world” scenario and this could potentially return results which are not biased. 

Kolisch & Hartmann (2006) and Gueorguiev, Harman, & Antoniol (2009) all have mainly focused 

on solving RCPSP using search-based software engineering approaches. The authors have clearly 

followed the guidelines provided by Harman and Jones (2001) and Clarke et al. (2003) whereby 

they reformulated the RCPSP as search problem. In the next stage authors have selected a 

representation of the problem and after that; they have identified their fitness functions to 

evaluate candidate solutions. Having said that, each research had different criteria for fitness 

functions and this is mainly because the nature of the experiments was different. 

2.6 Cost Estimation in Software Project Planning 

In most projects, cost is the most crucial factor which could decide the success rate of project 

completion. Over the years, there have been abundant studies, whereby researchers and 

practitioners have tried to reduce the cost of the project (Azar, Harmanani, & Korkmaz, 2009). 

Many articles also suggest that simply managing the project and resources are not enough; the 

cost should also be managed efficiently. Furthermore, based on the past literature it is clear that 

estimating cost in a software project planning has been an ongoing issue and has not been 

completely resolved as yet. Lokan (2005) has also suggested that since the size of projects are 

growing considerably, it is necessary that there should be some automations / models to solve 

the cost estimation problem. To that end, Lokan (2005) has suggested the use of search-based 

software engineering concept to solve this problem. The concepts discussed by Lokan (2005) are 

extended by Li, Xie, & Goh (2009), whereby they have argued that if the cost of completing a 

software project is too high, then it could be possible that the software project was not 

successfully. On the other hand Li, Xie, & Goh (2009) have argued that in such cases there could 

be off-the-shelf products which could meet the requirements of the software project. In the past, 

studies have developed several methodologies for solving the cost estimation problem, 

classification of these methodologies can be observed in Figure 2.4. 
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Figure 2.4 Software Cost Estimation Methodologies (Li, Xie, & Goh, 2007) 

Figure 2.4, suggests that research has generated several methods to solve cost estimation 

problem. Lokan (2005) on the other hand, has presented his own view of estimations based on 

analogy. This can be observed in Figure 2.5.  

 

Figure 2.5 Estimation Method Based on Analogy (Lokan, 2005) 

Lokan (2005), Li, Xie, & Goh (2007) and Li, Xie, & Goh (2009), all have tried to solve cost 

estimation problem using the concept of search-based software engineering. The authors have 

clearly followed the guidelines provided by Harman and Jones (2001) and Clarke et al. (2003) 

whereby they reformulated the cost estimation as an optimisation problem. In the next stage 

authors have selected a representation of the problem and identified their fitness functions to 

evaluate candidate solutions.  
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3 Research Design 
Literature review presented in chapter two has identified various research opportunities. On that 

basis, this chapter represents the research methodology and the research questions. Thereon, 

based on research questions this chapter will present an experimental design that is adopted for 

the purpose of this work. 

3.1 Research Methodology 

Research in search based software engineering has been extensive since 2001, but they were not 

categorised under search based software engineering discipline. According to Harman (2007) this 

discipline has not been researched to its full potential hence there is enough room for growth 

and improvement. The literature review has identified a trend of research methodologies used to 

conduct research in the discipline of search-based software engineering. Most of the researchers 

mentioned in the literature review have used the constructivist approach to conduct their 

research. Furthermore, each of them has also made the use of experimental research methods 

where they have conducted experiments to justify their assumptions.  

In the literature review, most researchers have applied the combination of constructivist and 

experimental research methodologies. This research will utilise the framework presented by 

Nunamaker, Chen, & Purdin (1991) and Hevner, March, Parl, & Ram (2004). The research method 

presented by Nunamaker, Chen, & Purdin (1991) is the system development research 

methodology. The research framework presented by Hevner, March, Parl, & Ram (2004) is 

design-science research guidelines. Both have both argued that system development research 

methodology and design-science research guidelines have been used as a backbone for 

conducting research in the area of software engineering. 

3.1.1 How does this research fit into System Development Research Methodology? 
According to Nunamaker, Chen, & Purdin (1991) any research in the field of engineering or 

applied science having the characteristics of developmental and formulative behaviour can 

potentially use the system development research methodology. For this research, one of the 

main objectives would be to develop genetic algorithm, simulated annealing and tabu search 

metaheuristics search techniques to solve resource allocation and cost estimation problem. Since 

this research is constructive in nature, it is an indication that system development research 

methodology may be suitable. 
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3.1.2 How does this research fit into Design-Science Research Guidelines? 
The concept of design-science has been an integral part of software engineering (Hevner, March, 

Park & Ram, 2004). Design-science can contribute a model or a pattern to solve software 

engineering problem. The main objective of design-science would be to find new knowledge, 

products, ideas, and innovations. Literature suggests that the findings generated from the 

research are built on existing theories that have already been applied and well researched. 

Following are the reason as to how this research fit into design-science research guidelines: 

• Discipline 

The design-science research guideline is mainly utilised in the discipline of software 

engineering and based on the literature review, search based software engineering is a 

subsection of software engineering discipline. Hence, it would be the preferred choice of 

research guideline. 

• Research Implementation 

There has been substantial research in the areas of search based software engineering, 

software project planning and resource allocation and cost estimation in software project 

planning. Furthermore, there is good amount of literature in which researchers and 

practitioners have tried to solve resource allocation and cost estimation problem using 

variety of metaheuristics search techniques. 

• Past Research 

Based on the literature review, it is apparent that since 2001 there has been substantial 

amount work put in the discipline of search based software engineering. Additionally, 

findings from the past research in search based software engineering have not only been 

applied and tested but also the findings have been extended by other researchers. 

Hence from the reasons mentioned above it is an indication that this research fits well into the 

design-science research guideline presented by Hevner, March, Parl, & Ram (2004). 
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3.1.3 Research Questions 
To validate the research topic, the following questions were explored: 

3.1.3.1 Question 1 

Can resource allocation and cost estimation be effectively formulated as a search problem that 

is tractable to be solved using metaheuristic search algorithms? 

3.1.3.2 Question 2 

Which metaheuristic search algorithms demonstrate the most desirable performance when 

solving these problems? 

3.1.4 Research Guidelines 
For this research, the guidelines presented by Holz, Applin, Haberman, Joyce, Purchase, & Reed 

(2006) will be utilised. The main objective of establishing guidelines is to assist in the high level 

planning of the research. When conducting research using approach as presented by Holz, 

Applin, Haberman, Joyce, Purchase, & Reed (2006) in the area of computer science the 

researchers has explored the following four critical points: 

3.1.4.1 What do you expect to achieve out of this research? 

• To answer this question, the past and the current research will be identified. For the 

purpose of this paper, a detailed research has been carried out in the area of search 

based software engineering and how it can be used to solve resource allocation and cost 

estimation problem in software project planning. 

• Identify areas where there is a potential for growth in future. Since the introduction of 

search-based software engineering in 2001, research has sprouted in several different 

areas. Hence this research will identify how it has affected the area of software project 

planning and what affect would it have in future. 

• In this research, the aim is to create knowledge using constructivist approach, which 

means it will identify a different way to solve existing problem (i.e. resource allocation 

and cost estimation problem in software project planning). 

3.1.4.2 Where is the data coming from? 

• To collect data a tool is developed. This tool will demonstrate the ability to handle 

multiple search techniques such as genetic algorithm, simulated annealing and tabu 

search. In addition to this, all the data collected will be stored in a database which can be 

accessed at later stages for further analysis. The main objective of this tool will be to 
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solve continuous and discrete numerical test functions and also will have the ability to 

solve uni-objective and multi-objective problems. The data required for conducting 

experiments will be conceptual in nature. 

3.1.4.3 What are you going to do with the data? 

• Once all the experiments are completed, all the collected data will be used to evaluate 

the performance of the implemented metaheuristics search techniques. The collected 

data will also help identify any particular themes or patterns in the behaviour of the 

algorithms.  

3.1.4.4 Has the research achieved the goal? 

• The evaluated results will be compared against the goals that were set out to achieve at 

the beginning of this research. 

• Recognise limitations of this research. 

• Conclude the research by identifying potential improvements and a recognisable path for 

other researchers for future. 

From above mentioned questions for this research, it is clear that this approach would suit the 

research. It is absolutely necessary that this research will need to construct a software / tool 

which will include the implementation of metaheuristics search techniques like genetic 

algorithm, simulated annealing and tabu search. These search techniques will then be used to 

solve continuous and discrete problems and will also resource allocation and cost estimation 

problem in software project planning. This approach is illustrated in Figure 3.1. 
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Figure 3.1 Research Methodology (Holz, Applin, Haberman, Joyce, Purchase, & Reed, 2006) 

3.1.5 System Development Research Methodology and Design Science 
To conduct this research in an effective and efficient manner, a research guideline and 

methodology will be used as a reference. This will enable this research to answer the questions 

in robust and rigorous way. The guidelines used for this research is presented in section 3.1.4 and 

as for the research methodology, the nature of this research (exploratory and constructivist) 

coincides with the research methodology presented by Nunamaker & Chen (1990) and is 

illustrated in Figure 3.2. 
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Figure 3.2 System Development Framework (Nunamaker & Chen, 1990) 

The framework presented above is also further extended by Holz, Applin, Haberman, Joyce, 

Purchase, & Reed (2006) and Nunamaker, Chen, & Purdin (1991). Hence for the purpose of this 

research, the foundation of the implementation is established using the framework presented 

above. The description of how each element of framework is used to develop the 

implementation is presented below: 

3.1.5.1 Prepare a Conceptual Framework 

Establishing a conceptual framework is nothing but laying down a foundation for developing an 

application to solve the problems stated at the beginning of this research. If the conceptual 

framework is developed without fully understanding the problem space, the summary of data 

collected could be inconclusive and because of which end results of the research would not be 

able to answer the research questions. Conceptual frameworks are usually built on research 

questions and an in-depth literature review. Based on extensive literature review and research 

questions, it is clear that there is a need for further research in this area. Once the application 

has been built using the conceptual framework, the performance of the application can be 

observed and additionally it would also give a detailed insight on the research problem. 

3.1.5.2 Develop a System Architecture 

A good conceptualisation of the problem space and framework can lead to good system 

architecture. Hence, good system architecture will allow its components to be placed in 

appropriate places and have its own unique functionality. Based on the research definition and 

research methodology (constructivist approach) various components will be designed and 
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developed. In addition to this, Nunamaker & Chen (1990) have specified that before defining the 

architecture, the scope and functionality of the developed system must be established.  Before 

the architecture was implemented, following aspects of the research were considered: 

One of the research objectives is to examine if the metaheuristics search techniques like genetic 

algorithm, simulated annealing and tabu search can be successfully implemented in the area of 

project management to solve problems like resource allocation, cost estimation and scheduling. 

Hence there is a need to develop these metaheuristics search techniques within the project 

management component. In addition to this, each search techniques should be implemented to 

provide a basis for comparison and evaluation against other implemented search techniques. 

The framework of the system should also have the capability of implementing additional search 

techniques in the area of project management and by doing so; this implementation can be 

extended for future research. 

An examination of effectiveness of applying several metaheuristics search techniques to solve 

problem in the area of project management is another important element of this research. 

Therefore each implemented search technique should go through an evaluation process. This 

process should be embedded as a part of the framework. Ideally the evaluation process will 

include measuring performance of each search techniques against various continuous and 

discrete numerical test functions. The developed framework supports the flexible inclusion and 

exclusion of numerical test functions into the evaluation process. This process is developed in 

such a way that the end users can configure the inclusion or exclusion of numerical test functions 

depending on the metaheuristics search techniques. 

3.1.5.3 Analyse and design the system 

Based on the literature review and identification of limitation of prior research to solve resource 

allocation, cost estimation, and project scheduling problems in the area of project management 

has led to this implementation. The system will be designed into three main steps. The first step 

of the design is to establish metaheuristics search techniques like genetic algorithm, simulated 

annealing and tabu search. This step of the design will act as foundation of the system and will 

be used in during each evaluation and / or data analysis phases. The second step is to design the 

“Evaluation Engine” which will determine the viability and feasibility of the implemented search 

techniques and additionally will also attempt to solve resource allocation, cost estimation and 

project scheduling problem based on case study. The last part of the system design is to prepare 

an engine which collects the data from all the evaluations which will be used for answering the 
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research questions and additionally will help conclude this research with a direction of future 

research. The entire system design is illustrated in Figure 3.3.  

 

Figure 3.3 Overview of System Design 

3.1.5.4 Build the System 

In order to develop the system effectively and efficiently the system design mentioned earlier 

will be used as a blue print. This element of the framework will involve the development of each 

metaheuristics search techniques mentioned earlier and it would also require the 

implementation of the following numerical test functions: 

• Axis Parallel Hyper Ellipsoid fitness function 

• Griewangk fitness function 

• Rastrigin fitness function  

• Rosenbrock’s Banana fitness function 

• Schwefel fitness function 

• Axis parallel hyper-ellipsoid fitness function 

• Griewangk fitness function 

• Himmelblaus fitness function 

• Bump fitness function with dimensions of 2, 5, 10, 15, 20 and 50. 

The next stage is to develop the component which will allow the search techniques to solve n-

queens, resource allocation, cost estimation and project scheduling problem. The last step in 

building the system is to implement a data collection engine which collects data from all the 
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evaluations and store in a structurally designed data store. Finally all the developed components 

of the system should support flexible configurations of all the parameters to enable the 

examination of various scenarios without further development of the system. 

3.1.5.5 Evaluation 

The research methodology and the guidelines presented in Section 3.1 require the observation 

and evaluations of the implementation. To facilitate this evaluation process of search based 

software engineering an experimental methodology is applied to asses both the usability and the 

performance (Collis & Hussey, 2009). The experimentation methodology will enable this research 

to confirm a theory as presented in literature review, highlight the relevance of the experiment 

against research questions and will also validate the implementation. Ideally before any research 

experiments are carried out, an expected solution to the experiment must be defined and 

experiments should be flexible enough to be repeated several times if required. The final results 

are generated once all the experiments are completed and all the data is collected. These results 

are then compared against expected solution. Above all, the design of the experiments should be 

aligned with the main research objectives. This will help answer the research questions set out at 

the beginning of the research. 

3.2 Metaheuristics Selection & Implementation 

Using the research objectives, guidelines and methodology, this section will describe in detail 

about the selection, design and implementation of metaheuristics search techniques. As 

discussed in Section 3.1, the development of these metaheuristics search techniques will go 

through an iterative process. At each stage of development, the implementation will be validated 

against literature review, research objectives and the research methodology. Hence each the 

development of each search techniques will go through the steps of designing of conceptual 

framework, identify its place in the system architecture, design of algorithm, actual development 

of the search technique and lastly the evaluation process. By doing so, there is a high probability 

of achieving results. In this research, metaheuristics search techniques like genetic algorithm, 

simulated annealing, and tabu search will be constructed. These search techniques are 

developed on a standard Dell laptop with Intel Core i5 with 4GB RAM and Windows XP as its 

operating system. All the development work is carried out in Microsoft environment. The 

development platform is Visual Studio 2010, the programming language is C# and the underlying 

development framework is .NET Framework 4.0. The architecture, modules and expected 

behaviour of each search techniques are as follows: 
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3.2.1 Algorithm Selection 
As part of this research a range of traditional and metaheuristic optimisation algorithms were 

considered. Due to time constraints, only a very small number of the algorithms were selected 

for implementation and evaluation. These were Genetic Algorithms, Simulated Annealing and 

Tabu Search. 

These were considered to be “reasonably representative” of a range of algorithms that include 

population-based approaches, trajectory approaches and memory based approaches. The 

algorithms are also considered to be some of the most popular by the SBSE community (Harman, 

2007) and are therefore a good starting point for evaluating algorithms on a particular problem 

domain. 

One of the limitations of this study is the small range of algorithms investigated along with the 

relatively naive implementations. However, such a limitation does not detract from the quality of 

the research. If the algorithms are not suitable for solving the RCPSP then further algorithms will 

be investigated. 

3.2.2 Genetic Algorithm 
One of the main aims of this research is to identify the feasibility of genetic algorithm in the area 

of project management. The GA implemented in this research is a simple GA based on the work 

of Goldberg (1989) consisting of a single population of individuals, roulette wheel selection, 

single-point crossover and bit-string mutation. Whilst more complex variations on the Genetic 

Algorithm exist, the use of a simple GA is intended to provide a baseline for future work to allow 

any performance gain for more complex implementations to be evaluated. Hence, to address this 

genetic algorithm has been implemented using various classes. The main classes are as follows: 

3.2.2.1 clsChromosome 

This is the most important part of genetic algorithm implementation. This class will facilitate the 

crossover and mutation operations.  This class has a few publicly available properties like fitness 

function value, numbers of genes, length and the mutation rate. The idea is that 

clsGeneticAlgorithm will hold a collection (array) of clsChromosome instances and each 

chromosome object will be evaluated against the fitness function which is implemented as an 

interface in clsGeneticAlgorithm. After the evaluation against fitness functions the outcome is 

recorded in variable _Fitness. The class diagram of this implementation is illustrated in Figure 

3.4. 
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Figure 3.4 UML Diagram of Chromosome Class 

3.2.2.2 clsChromosomeCollection 

To get some modularisation and simplicity, the collection (array) of clsChromosome is 

constructed in separate class and illustrated in Figure 3.5. The main objective of this class is to 

act as a collection of object for clsChromosome. 

 

Figure 3.5 UML Diagram of Chromosome Collection Class 

3.2.2.3 clsChromosomeComparer 

Once the fitness values are calculated for all the objects in clsChromosomeCollection, each 

individual item in clsChromosomeCollection is compared by its fitness. Figure 3.6 will illustrate 

the implementation. 
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Figure 3.6 UML Diagram of Chromosome Comparer Class 

3.2.2.4 clsGeneticAlgorithm 

Like clsChromosome, this class is also very crucial for the development of this algorithm. The 

main objective of this class is to execute the genetic algorithm based on the supplied parameters 

and function. This class has a number of publicly available properties which are mainly about the 

configurations of the algorithm. The values are passed on to clsChromosome for mutation or 

crossover. Additionally, this is the class which calculates the fitness value for each chromosome 

and sorts it in an appropriate order. The functions engine is designed as an interface hence the 

type of function can be configurable. 

 

Figure 3.7 UML Diagram of Genetic Algorithm Class 
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In addition to the implementation of genetic algorithm, there is a process as to how this 

algorithm is executed. Hence this section will describe the basic schema of genetic algorithm. 

First step will create an initial population i.e., the first generation of the genetic process. The 

members of this initial population are known as chromosome. The next step will determine the 

objective function value for each chromosome in the population and after that; the algorithm 

applies a selection parameters to randomly partition the generation into pairs of individual. For 

each resulting pair of parent, the crossover operator is applied and subsequently the mutation 

operator is applied to newly produced offspring. The implementation of the crossover and 

mutation operator is illustrated in Figure 3.8 and Figure 3.9 respectively.  The flow of genetic 

algorithm implemented in this research is similar to evaluation carried out by Pinto, Ainbinder & 

Rabinowitx (2009) where they have also used genetic algorithm to tackle the same problem.  

 

Figure 3.8 Implementation of Crossover Operator 

 

Figure 3.9 Implementation of Mutation Operator 

Overall it is fairly complex to visualise the entire implementation of genetic algorithm, hence the 

pseudo code is presented below: 

 Begin Genetic Algorithm 
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  Generate the initial generation of chromosome of size (x); 
  Evaluate fitness of each chromosomes based on the supplied function; 
  g = 1; 
  While g < |G| DO 
   g += 1; 
   Select individuals for reproduction; 
   Crossover individuals; 
   Mutate offspring; 
   Revaluate fitness of each chromosome;   
  End While 
 End 
 

Once the algorithm is implemented, the next stage of development is to fine tune the genetic 

algorithm using the parameters. The ideal parameters for genetic algorithm are mutation rate, 

crossover rate, population size, generation size, chromosome size, and the iterations. After fine 

tuning the algorithms the final set of parameters are presented in Table 3.1. 

Algorithm Parameter Name Parameter Value 

Genetic algorithm 

Crossover Rate 0.8% 

Mutation Rate 0.06% 

Population Size 300 

Chromosome Size 2 

Table 3.1 Parameters for Genetic Algorithm 

3.2.3 Simulated Annealing 
Like genetic algorithm, simulated annealing was also implemented using similar tools and 

techniques to tackle the same problem. In this implementation of simulated annealing, three 

classes are developed. This algorithm will also utilise the interface from the evaluation engine. 

3.2.3.1 clsSimulatedAnnealing 

This is the main class in implementation of simulated annealing which handles the process of 

finding an optimum solution for a given function. The class includes a few publicly available 

properties which are used as configuration for the algorithm. The method ExecuteSA() is 

executed to find the best possible solution for the given parameters and the fitness function. The 

SAFunction class implements an interface from the evaluation engine which allows the selection 

of fitness when executing this algorithm. 
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Figure 3.10 UML Diagram of Simulated Annealing Class 

3.2.3.2 clsSimulatedAnnealingData 

To make this implementation simpler, the data is stored in this class. This is a helper class and 

can be embedded in clsSimulatedAnnealing. This class is illustrated in Figure 3.11. 
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Figure 3.11 UML Diagram for Simulated Annealing Data Class 

3.2.3.3 clsSimulatedAnnealingDataCollection 

The collection (array) of data objects is constructed in separate class and illustrated in Figure 

3.12. 

 

Figure 3.12 UML Diagram for Simulated Annealing Data Collection Class 

Simulated annealing is a popular metaheuristics search techniques and its main objective is to 

find an acceptable solution in a fixed amount of time (Martinjak & Golub, 2007). For this 

implementation, the first step of the algorithm is to select a “best” solution randomly. The next 

stage is to start the iteration process based on the supplied parameters. In all the iteration a new 

candidate for the solution is selected randomly and it is evaluated against the current best 

solutions. Depending on the outcome of the evaluation process, a new best candidate can be 

selected. This evaluation process is heavily dependent on the supplied fitness function. The 

iteration is repeated until the terminating conditions are met and the best solution at that time is 

returned. Additionally at each stage the temperature is reduced by the cooling ratio which can 

be configured. So the probability of replacing the current best candidate solution with a better 

candidate solution is high when the temperature is high. As the temperature reduces, it is an 
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indication that the algorithm might be closer to find its best candidate solution. The above 

mentioned flow of algorithm has also been flowed by Martinjak & Golub (2007) but in this 

instance they have used this metaheuristics search techniques to solve the n-queen problem. 

Even though the problems are different the underlying concepts of simulated annealing still 

remains the same. The pseudo code for this algorithm is presented below: 

Begin Simulated Annealing 
  Set T to T0; 
  Select initial solution X; 
  Px = Evaluate(X); 

Xbest = X; 
Pbest = Px; 

  While c < |Cmax| DO 
Y = Select a neighbour on random from solution set; 
If (Evaluate(Y)>Px) then 
 X = Y; 

Px = Evaluate(Y); 
If (Px > Pbest) then 
 Xbest = X; 
 Pbest = Px; 

   else 
    r = Random(1); 
    if r < exp(e(Evaluate(Y)-Evalute(X))/T) then 
     X = Y; 
     Px = Evalute(Y); 
   Set cooling ration to T 
  End While 
  Return Xbest; 

End 
 

Like genetic algorithm, simulated annealing will also go through the process of fine tuning the 

parameters. The ideal parameters for simulated annealing are starting temperature, decreasing 

temperature, epsilon and the Markov Chain length. After fine tuning the algorithm the final set 

of parameters are presented in Table 3.2.  

Algorithm Parameter Name Parameter Value 

Simulated Annealing 

Starting Temperature 50000 

Decreasing Temperature 0.85 

Epsilon 0.01 

Markov Chain Length 10 

Table 3.2 Standard Parameters for Simulated Annealing 

3.2.4 Tabu Search 
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The implementation of tabu search has used the same tools and technologies that were used by 

genetic algorithm and simulated annealing. For this implementation, three main classes are 

designed and developed. This implementation also uses the evaluation engine to determine its 

fitness function. The classes for tabu search are as follows: 

3.2.4.1 clsTabuSearch 

This is the main class in implementation of tabu search which handles the process of finding an 

optimum solution for a given function. The class includes a few publicly available properties 

which are used as configuration for the algorithm. The method ExecuteTS() is executed to find 

the best possible solution for given parameters and the function. The TSFunction class 

implements an interface from the evaluation engine which allows the selection of fitness when 

executing this algorithm. 

 

Figure 3.13 UML Diagram for Tabu Search Class 

3.2.4.2 clsTabuSearchData 

To make this implementation simpler, the data is stored in this class. This is nothing but a helper 

class and can be embedded in clsTabuSearchData. This class is illustrated in Figure 314. 
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Figure 3.14 UML Diagram for Tabu Search Data Class 

3.2.4.3 clsTabuSearchDataCollection 

The collection (array) of data objects is constructed in separate class and illustrated in Figure 

3.15. 

 

Figure 3.15 UML Diagram for Tabu Search Data Collection Class 

Like genetic algorithm and simulated annealing, tabu search is also a popular algorithm when 

tackling problems in the area of project management. The main objective of this search 

technique is to solve discrete combinatorial optimisation problem. The implementation in this 

section mainly focuses on replacing the current solution (X) with another one (Y) with the 

maximum fitness function value in the whole neighbourhood of X. At times when X is compared 

with Y, it could be possible that they are the same. In this case they are temporarily stored in a 

list called “tabu list”. A similar algorithm was also implemented by Matinjak & Golub, 2007 and 

Kanmani & Maragathavalli, 2010. The pseudo code for this algorithm is presented below. 

 Begin Tabu Search 
  Select initial solution X; 
  Xbest = X; 
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Pbest = Evaluate(X); 
  While c < |Cmax| DO 
   N = N(X) \ TabuList; 
   Find Y = N such that Evaluation(Y) is maximum; 
   TabuList[c] = Change(Y,X); 
   X = Y 
   if (Evaluate(X) > Pbest) then 
    Xbest = X; 
    Pbest = Evaluate(X); 
  End While 
  Return Xbest; 
 End 
To ensure the development of this algorithm has been accurate, it will go through a series of fine 

tuning exercises. In these exercises, the algorithm is executed several times and during each 

execution different parameters are supplied to see the behaviour of the algorithm. After several 

tests, final set of parameters for the tabu search algorithm are presented in Table 3.3. 

Algorithm Parameter Name Parameter Value 

Tabu Search 
Tabu List Size 10 

Neighbourhood Size 300 

Table 3.3 Standard set of parameters for Tabu Search 

3.3 Experimental Design 

As established in section 3.1, the nature of this research is constructivist and experimental in 

nature. Hence Nunamaker, Chen & Purdin (1991) have identified that the design of the 

experiments is very crucial part of the research. An effective design will help address the 

research questions. The main aim of this section is to describe the technical design and 

implementation of all the experiments in this research. Additionally, in this empirical study, the 

principal goal is to solve problems like resource allocation, cost estimation and project 

scheduling in the area of project management. Before these research problems are tackled, each 

metaheuristics search techniques will be evaluated against various numerical test functions.  To 

implement an effective experimental design, a class library has been developed using the same 

tools and technologies used for developing metaheuristic search techniques. The library was 

developed in such a way that additional functions / problems could be easily added and it would 

be available for all the metaheuristics search techniques without modifying them. The 

architecture of the evaluation engine is illustrated in Figure 3.16. 
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Figure 3.16 UML Diagram for Evaluation Engine 

To address the research questions in structured manner, the empirical study will be carried out 

in four phases and they are as follows: 

3.3.1 Phase 1: Metaheuristics Verification 
According to the authors Elbeltagi, Hegazy & Grierson (2005), it is a common approach to 

measure performance of algorithms using numerical test functions. This is mainly because each 

numerical test function will have its own unique characteristics which can shape the outcome of 

the algorithm. To judge the performance of each algorithm, at the end of each evaluation 

following questions will be answered: 

• Did the algorithm find an optimum solution? 

• How many evaluations does it take to find optimum solution? 

• What is average variance of performance between each data point for each algorithm 

(presented in Table 4.2 to 4.8 and in Table 4.10 to 4.15)? 

This experiment will be carried out in six times for each metaheuristics search technique against 

following numerical test functions: 
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3.3.1.1 Rastrigin Fitness Function 

This will be the first experiment where metaheurisitcs search techniques will be evaluated 

against this fitness function. The analysis and data collected from this evaluation is presented in 

section 4.1.1 and the equation used to carry out this evaluation is presented in Equation 3.1. The 

global minimum for this function is established at 0 (Buche, Schraudolph & Koumoutsakos, 2005) 

and the solution space (between -5.12 and 5.12) is presented in Figure 3.1. Furthermore, this 

function is difficult to solve because the solution space is large and there are large number of 

local minima. 

𝑓(𝑥) =  𝐴𝑛 +  �[𝑥�� − 10 𝐴cos (2𝜋𝑥�)
�

���

] 

Equation 3.1 Rastrigin Fitness Function 

 

Figure 3.17 Solution Space for Rastrigin Numerical Test Function (Buche, Schraudolph & 

Koumoutsakos, 2005) 

3.3.1.2 Rosenbrock’s Fitness Function 

Like Rastrigin fitness function, this function also has a global minimum of 0 (Buche, Schraudolph 

& Koumoutsakos, 2005). The search space for this function is restricted between -10 and 10. The 

solution space for this function is presented in Figure 3.18. The equation used to generate data is 

presented in Equation 3.2. Additionally, the analysis and data collected from this evaluation is 

presented in Section 4.1.2. 

𝑓(𝑥,𝑦) = (1 − 𝑥)� +  100(𝑦 − 𝑥�)� 

Equation 3.2 Rosenbrock's Banana Fitness Function 
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Figure 3.18 Solution Space for Rosenbrock's Banana Fitness Function (Buche, Schraudolph & 

Koumoutsakos, 2005) 

3.3.1.3 Schwefel Fitness Function 

Unlike the previous two functions, the minimum value for this function is established at -512 and 

the solution space is presented in Figure 3.19 (Barchiesi, 2009). The analysis and data collected 

from this evaluation is presented in Section 4.1.3. This evaluation was carried using the equation 

presented in Equation 3.3. 

𝑓(𝑥) =  �− 𝑥�  .
�

���

 𝑠𝑖𝑛��|𝑥�|� 

Equation 3.3 Schwefel Fitness Function (Barchiesi, 2009) 
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Figure 3.19 Solution Space for Schwefel Fitness Function (Barchiesi, 2009) 

3.3.1.4 Axis Parallel Hyper-Ellipsoid Fitness Function 

The search space for this fitness function is between -5.12 and 5.12 and the global minimum 

value is established at 0. The solution space is presented in Figure 3.20 and the equation is 

presented in Equation 3.4. Based on the equation, the analysis and data collected is presented in 

Section 4.1.4. 

𝑓(𝑥) =  �𝑖. 𝑥��
�

���

 

Equation 3.4 Axis Parallel Hyper-Ellipsoid Fitness Function 

 

Figure 3.20 Solution Space for Axis Parallel Hyper-Ellipsoid Fitness Function (Peram, 

Veeramachaneni & Mohan, 2003) 
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3.3.1.5 Griewangk Fitness Function 

In this fitness function, the range of search space is between -600 and 600 and the global 

minimum value is 0 (Peram, Veeramachaneni & Mohan, 2003). The equation and solution space 

is presented below in Equation 3.5 and Figure 3.21 respectively. Using the equation mentioned 

below data is collected and presented in Section 4.1.5. 

𝑓(𝑥) =  �
𝑥��

4000

�

���

−  � cos �
𝑥�
√𝑖
�

�

���

+  1 

Equation 3.5 Griewangk Fitness Function 

 

Figure 3.21 Solution Space for Griewangk Fitness Function (Peram, Veeramachaneni & Mohan, 

2003) 

3.3.1.6 Himmelblaus Fitness Function 

This is the last experiment in the first phase of experiments. This function has four local maxima 

(Takahashi & Kobayashi, 2001): 

• 3.584428 and -1.848126 with a local minimum of 0 

• -3.779310 and -3.283186 with a local minimum of 0 

• -2.805118 and 3.131312 with a local minimum of 0  

• 3.0 and 2.0 with a local minimum of 0. 

Apart from the four local maxima, this function has a global minimum of 0. The solution space for 

this function is presented in Figure 3.22 and the equation is presented in Equation 3.6. Analysis 

and data collected from this experiment is presented in Section 4.1.6. 
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𝑓(𝑥) =  (𝑥� + 𝑦 − 11)�  +  (𝑥 +  𝑦� − 7)� 

Equation 3.6 Himmelblaus Fitness Function 

 

Figure 3.22 Solution Space for Himmelblaus Fitness Function (Takahashi & Kobayashi, 2001) 

3.3.2 Phase 2: Scalability Testing 
Numerical test functions implemented in the first evaluation are continuous in nature and their 

input parameters vary continuously between an upper and lower bound. However, the functions 

have different solution space and as a result it is difficult to conclude the performance of 

algorithms. This phase utilises the Bump function (Keane, 1994) that has been designed to be 

easy to code with arbitrary numbers of dimensions but hard to solve. This function gives a highly 

bumpy surface where the true global optimum is usually defined by the constraints.  The Bump 

function has previously been used as a scalability testing function (Connor, 1999). This phase of 

experiments was further divided into six sub exercises and in each exercise the bump function 

was supplied with a different dimension to observe the behaviour of all the metaheuristics 

search techniques. The base function was flexible enough, so that changes in dimension were 

configurable and would not require further development. The global minimum for this function is 

established at 0 and the solution space for this function with a dimension of two is presented in 

Figure 3.23. In addition to this the equation used to conduct analysis and collect data is 

presented in Equation 3.7. 

𝑓(𝑥) =  
𝑎𝑏𝑠(∑ 𝑐𝑜𝑠�(𝑥�) − 2�

��� ∏ 𝑐𝑜𝑠�(𝑥�)�
��� )

�∑ 𝑖𝑥���
���

 

Equation 3.7 Bump Fitness Function 
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Figure 3.23 Solution Space for Bump Function (n = 2) (Keane, 1994) 

This phase of experiment will carry out evaluation of genetic algorithm, simulated annealing and 

tabu search using the equation mentioned above. Each algorithm will be evaluated against 

dimension of 2, 5, 10, 15, 20, and 50. The data and analysis for each dimension are presented in 

Sections 4.2.1 to 4.2.6. 

3.3.3 Phase 3: Discrete Scalability Testing 
The first two phases of the evaluation mainly focused around the validity and scalability of the 

metaheuristics search techniques against numerical test functions and continuous bump function 

with variety of dimension. Although the evaluation provides useful insight into the performance 

of search techniques, project scheduling problems tends to be discrete in nature – either there 

are a limited number of values each parameter can take or the parameter values can only be 

used in certain combinations. Hence the numerical test functions may not provide robust data to 

support the evaluation of algorithm performance. The main aim of this phase is to use the same 

metaheuristics search techniques to solve a discrete problem. For this experiment, the n-queens 

problem has been chosen mainly because this problem falls in the category of NP-hard problems.  

In this experiment, genetic algorithm, simulated annealing and tabu search have been adapted to 

solve n-queen problem, identify efficiencies and achievements. The literature for this problem 

has been presented in section 2.3.3 and the idea behind the implementation is derived from 

evaluations carried out by Martinjak & Golub (2007). Based on the idea, algorithms will be 

developed which allocates each queen a location on the chessboard. The main criterion is to 

ensure that the algorithm will place each queen uniquely for each row and column. To achieve 

this functionality a solution representation is developed using Martinjak & Golub (2007) as 
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reference. The solution representation of this problem is n-tuples (q1, q2, q3, ….,qn) that are a 

permutation of tuple (1,2, 3,….,n) (Martinjak & Golub, 2007). 

For each search techniques, the upper bound complexity is determined as well as the complexity 

of fitness function. The tool and technology used to develop this component is the same as the 

previous phases. Since all the three search techniques have the heuristics element in them 

(Harman, 2007), it seems like there will be a need to develop a specific heuristics function. The 

implementation of this function is illustrated in Figure3.24. To validate this implementation the 

data collected from this experiment will compared against the data collected by Martinjak & 

Golub (2007). The results collected from this experiment are presented in Chapter 4, Section4.3. 

 

Figure 3.24 Heuristics Implementation of n-queen Problem 

3.3.4 Phase 4: Resource Allocation, Cost Estimation and Project Scheduling Problem 
This is the last and the most crucial phase of the experiment for this research problem in project 

management are tackled using metaheuristics search techniques. Previous phases of 

experimentation have been intended to help refine and validate the implementation of the 

algorithms. Additionally, previous evaluation would also help generate some analysis of 

performance for each search techniques. Based on the previous experiment design and 

implemented, this phase will only focus on discrete problems. This experiment is further divided 

into two categories i.e.: uni-objective and multi-objective. 
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3.3.4.1 Uni-Objective: Resource Unconstrained and Constrained Project Scheduling 

The main aim of this experiment is to schedule resource-unconstrained and constrained project 

by use of metaheuristics search techniques. The tools and technologies required to implement 

these search techniques is the same as previous evaluations. Based on the literature review, 

traditionally most of the projects were schedules using critical path method (Herroelen, 2005). 

This approach mainly relies on forward and backward pass calculation to solve the critical path in 

a network. The first step of the evaluation will generate a network diagram which will highlight 

all the critical paths in the projects. At this stage of evaluation, total duration of the project will 

be established and will be used as a benchmark to compare the performance of each 

metaheuristics search techniques at a later stage. The next step of this evaluation is to schedule 

the same project without any resource constraints and using the same metaheuristics search 

techniques. Results from this evaluation will be compared against the results generated from 

critical path method. The last step is almost similar to the previous step except the project and its 

activities have constrained the resources. The results from this evaluation will be compared 

against both the previous steps. The project data for this experiment was also used by 

Christodoulou (2010) where they have evaluated same case study using ant colony optimisation 

search techniques. The results generated from this experiment are presented in Section 4.4.1. 

3.3.4.2 Multi-Objective: Cost Estimation and Project Scheduling 

The main objective of this experiment is to tackle the time-cost trade-off problem in the area of 

project management. Traditionally, there are trade-offs between time and cost when scheduling 

a project, hence if the resource is less expensive, then the project will take longer to complete. 

The principal aim of the implementation would be to identify the relationship between time and 

cost and from there on schedule the project in an effective and efficient manner meaning that 

the total cost of the project should not be too high or too low. In addition to this, the 

implementation will primarily focus on cost and duration of the activities. The logic of all the 

metaheuristics search techniques to generate a trade-off curve will go through a four step 

process and they are as follows: 

• Step 1: Activities with longest and shortest duration should be selected and stored in a 

temporary collection object (array). All the activities in this collection object must have its 

total cost and duration. This information will be utilised from the critical path method. At 

this stage, a random solution is selected as best possible solution by default. 
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• Step 2: Once the collection object is initialised, the total cost and duration of the project 

is established. To generate the time-cost trade-off curve, calculate the distance between 

each consolidated project element (total cost and duration) with the segment of the 

convex hull. 

• Step 3: For each item in the collection object, a fitness value is computed using the 

formula mentioned in Equation 4.1. After the fitness value is computed, the probability of 

each item is determined and if the item is selected it is then saved into a temporary 

collection. 

• Step 4: Repeat step 2 – 3 until appropriate time-cost trade-off curve is generated. 

The main idea behind the above mentioned four steps is to ensure that time-cost trade-off curve 

is generated for each metaheuristics search techniques. The source data used in this experiment 

is referenced from Elbeltagi, Hegazy & Grierson (2005) and Feng, Liu & Burns (1997). In addition 

to this, the results generate from this experiment is presented in chapter 4, section 4.4.2.  

3.4 Summary 

This chapter described the design and implementation of genetic algorithm, simulated annealing 

and tabu search in the area of project management. Various numerical test functions were also 

designed and implemented. The study was designed to ensure that metaheuristics search 

techniques were validated for their implementation and performance. By doing so, these 

experiments acted as the foundation of the research before it tackled more advanced problems 

like resource allocation, cost estimation and project scheduling problem. All the search 

techniques were fine-tuned during this designing process and because of this exercise, standard 

set of parameters were established for each search techniques. 
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4 Results 
The main aim of this chapter is to present the data collected from various experiments and 

analyse on the behaviour and performance of metaheuristics search techniques. The 

experimental design is described in detail in Chapter 3 Section 3.3. The implementation will 

follow the established guidelines and the results are also presented in same order and structure. 

Chapter 3 has already identified research questions and its corresponding experiments. These 

experiments are carried out in four phases and they are as follows: 

4.1  Phase 1: Metaheuristics Verification 

The initial data was collected by executing genetic algorithm, simulated annealing and tabu 

search based on selected numerical test functions. The main aim of this evaluation is to conduct 

experiments to ensure that all the metaheuristics search techniques have found the global 

minimum value. These evaluations were carried out for each search techniques to point where 

there was no further improvement in the solution. For all the evaluations, each implemented 

search techniques was able to find global minimum value. The summary from these evaluations 

is presented in Table 4.1 

Numerical Test Functions Metaheuristics Search Techniques 

 Genetic Algorithm Simulated Annealing Tabu Search 

 IV Min Eval IV Min Eval IV Min Eval 

Rastrigin 4.2 0 9 3.5 0 8 3.8 0 9 

Rosenbrock’s Banana 3.3 0 9 4.1 0 9 3 0 10 

Schwefel 512 -512 8 475 -512 10 420 -512 10 

Axis Parallel Hyper – Ellipsoid 3.7 0 8 3.1 0 10 3.3 0 7 

Griewangk 4.0 0 9 3.9 0 8 2.8 0 10 

Himmelblaus 4.9 0 9 3.3 0 8 3 0 9 

Table 4.1 Summary of Results 

The columns in Table 4.1 represent the following: 

• IV: This stands for “Initial Value” and represents the first value generated when each 

search technique is evaluated against each numerical test functions.  

• Min: This stands for “Minimum” and represents the global minimum achieved by each 

search technique for each numerical test functions. 

• Eval: This stands for “Evaluations” and the values are represented in thousands. The value 

presented in this column indicates the number iterations taken for each algorithm to find 

global minimum. 
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Based on the summary of results presented in Table 4.1, the overall performance of each search 

techniques can be judged. For Rastrigin fitness function, simulated annealing found the global 

minimum quicker than genetic algorithm and tabu search. However, the initial objective function 

value is lower than other two search techniques. In Rosenbrock’s Banana fitness function, 

genetic algorithm and simulated annealing took the same number of iterations to find global 

minimum value, but the initial objective function value is lower than simulated annealing. This 

indicates that convergence of simulated annealing is much quicker than genetic algorithm. In 

contrast to this, tabu search took the longest to find the global minimum value. For Schwefel 

fitness function, the solution space a considerably larger and more complex making it more 

complicated to solve this problem. In this function genetic algorithm found the global minimum 

value the quickest but the initial objective function value was higher than other two search 

techniques which mean that when all the search techniques were initialised, the initial objective 

function value of genetic algorithm was quite far from global minimum value. For Axis-Parallel 

Hyper Ellipsoid fitness function, tabu search was the quickest to find global minimum value and 

unfortunately this was the only function were tabu search was deemed to be the best 

performing search technique. Simulated annealing had achieved the global minimum value 

quickest when evaluated against Griewangk fitness function. In the same function, the initial 

objective function value for tabu search was the least but took the longest to find the global 

minimum value. Like the previous evaluation, simulated annealing was the quickest to find global 

minimum value, but in this function, genetic algorithm and tabu search took the same number of 

iterations to find global minimum value. 

Considering the analysis mentioned above, simulated annealing has performed better in most 

fitness functions when compared against other two search techniques. For analysing the 

performance of each fitness function, they will be judged on the basis of initial objective function 

value and how soon the search technique has found the global minimum objective function 

value. Analysis and implementation for each fitness function is as follows: 
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4.1.1 Rastrigin Fitness Function 
The equation used to implement this function is presented in Equation 3.1. In this function, 

simulated annealing and tabu search had performed considerably well by achieving 3.5 and 3.8 

initial objective function value respectively. In this case, simulated annealing had achieved the 

least initial objective function value and it also found an optimum solution earlier than genetic 

algorithm and tabu search. Looking at the performance analysis presented in Table 4.2, it is clear 

that genetic algorithm was not performing well up to 7000 iterations whereas simulated 

annealing and tabu search both were performing well against the average objective function 

value. Ideally if the values are less than average, then the performance of search technique at 

that data point might be considered better. The data collected from this evaluation has been 

illustrated in Figure 4.1. Table 4.2 will represent the performance for each algorithm against 

average results at the interval of 1000 iterations. 

 

Figure 4.1 Algorithm Convergence (Rastrigin Function) 

 

Table 4.2 Rastrigin Function Performance Analysis 
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4.1.2 Rosenbrock’s Banana Fitness Function 
This function was implemented using the equation presented in Equation 3.2 and like Rastrigin 

function, simulated annealing has performed well but additionally genetic algorithm has also 

performed well by finding the minimum objective function quicker than tabu search. The initial 

objective function value for simulated annealing was lot higher than other two, but simulated 

annealing has dropped fairly quickly to find the minimum objective function value. Hence looking 

at the performance results in Figure 4.2, it is clear that simulated annealing has converged lot 

quicker than other two search techniques. Hence for this fitness function, the best performing 

search techniques based on average results was genetic algorithm and simulated annealing. The 

visual representation of data collected from this evaluation is presented in Figure 4.2 and Table 

4.3 will compare the results for each algorithm at interval of 1000 iterations against the average 

results.  

 

Figure 4.2 Algorithm Convergence (Rosenbrock’s Banana Function) 

 

Table 4.3 Rosenbrock’s Banana Function Performance Analysis 
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4.1.3 Schwefel Fitness Function 
The equation used to implement this function is presented in Equation 3.3. As mentioned earlier, 

the solution space for this function is different to other functions and the global minimum value 

for this function is established at -512. All the search techniques are able to find global minimum 

objective function value, some faster than others. The initial objective function value of tabu 

search was the least but it took the longest to find the global minimum objective function value. 

Similarly, simulated annealing took the same number of iterations as tabu search to find the 

global minimum objective function value but the initial objective function value was much higher 

than tabu search. Genetic algorithm was the quickest to find the global minimum objective 

function value, but the initial value was lot higher than other two object function value. When 

the overall performance of each search technique is compared, genetic algorithm seems to be 

the best performing search technique. The illustration of data collected from this evaluation is 

presented in Figure 4.3 and Table 4.4 will present the performance analysis for each algorithm 

against average results at the interval of 1000 iterations. 

 

Figure 4.3 Algorithm Convergence (Schwefel Function) 

 

Table 4.4 Schwefel Function Performance Analysis 
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4.1.4 Axis Parallel Hyper-Ellipsoid Fitness Function 
The equation used to implement this function is presented in Equation 3.4. In this function the 

least initial objection function value was found by simulated annealing. However, simulated 

annealing took the longest to find the minimum global objective function value. In contrast to 

this, the initial objective function value for tabu search was slightly higher than simulated 

annealing, but it found the global minimum objective function value lot quicker than simulated 

annealing and genetic algorithm. To summarise the overall performance of each search 

techniques based on average results, tabu search has performed better than the other two 

search techniques. The performance of each algorithm can be measured against average results 

at the iteration of 1000 in Table 4.5 and the results are illustrated in Figure 4.4. 

 

Figure 4.4 Algorithm Convergence (Axis Parallel Hyper-Ellipsoid Function) 

 

Table 4.5 Axis Parallel Hyper-Ellipsoid Function Performance Analysis 
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4.1.5 Griewangk Fitness Function 
The equation used to implement this function is presented in Equation 3.5. In this function, the 

minimum initial objective function value was achieved by tabu search but it took the longest to 

find the global minimum objective function value. Simulated annealing was the fastest to find 

global minimum objective function value. Although, the initial value was high, the convergence 

progress quickly towards the minimum objective function value. Genetic algorithms initial 

objective function value was higher than other two search techniques and it found the minimum 

objective function value just before tabu search. Figure 4.5concludes that the performance of 

both genetic algorithm and simulated annealing are consistent across all the iterations, but 

because the optimum solution was found quicker by simulated annealing, it can be determined 

as better performing search techniques. The performance analysis of the collected data against 

average results at the interval of 1000 iterations is presented in Table 4.6. 

 

Figure 4.5Algorithm Convergence (Griewangk Function) 

 

Table 4.6 Griewangk Function Performance Analysis 
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4.1.6 Himmelblaus Fitness Function 
The function was implemented using the equation presented in Equation 3.6. Like most functions 

mentioned earlier, simulated annealing found the global minimum objective function value lot 

quicker than genetic algorithm and tabu search. In this case, the initial objective function value 

achieved by genetic algorithm was quite high when compared with other two and tabu search 

found the least initial objective function value. During the initial stages of convergence, it 

appears as though tabu search was performing well against average results, but towards the end, 

it was clear that convergence of simulated annealing dropped quickly and found the global 

minimum objective function value fastest. Additionally, genetic algorithm was the worst 

performing search techniques, but right through all the iterations, the objective function value 

was higher than average results. The performance of each algorithm can be measured against 

average results at the interval of 1000 iterations in Table 4.8 and the results are illustrated in 

Figure 4.7. 

 

Figure 4.6 Algorithm Convergence (Himmelblaus Function) 

 

Table 4.7 Himmelblau Function Performance Analysis 
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8 0.4 0.3 0 0.9
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4.1.7 Summary  
The first phase of the evaluation indicates that overall performance of simulated annealing has 

been better then genetic algorithm and tabu search. Not only that, but detailed performance 

analysis also indicates that simulated annealing has performed better in most evaluations The 

best performing results are presented in Table 4.9.  

Fitness Functions Best Performing Algorithm 

Rastrigin Simulated Annealing 

Rosenbrock’s Banana Genetic Algorithm and Simulated Annealing 

Schwefel Genetic Algorithm 

Axis Parallel Hyper – Ellipsoid Tabu Search 

Griewangk Simulated Annealing 

Himmelblaus Simulated Annealing 

Table 4.8 Best Performing Algorithm 

To answer the questions that were set out earlier, all the algorithms had found global minimum 

objective function value some faster than others. In addition to this, the performance variance 

against the average results for metaheuristics search techniques has been presented. The results 

achieved from this evaluation are purely based on continuous numerical test functions which 

were fine tuned by adjusting the input parameters (experimental design, Section 3.3.1); hence 

these numerical test functions were limited to get an understanding of the discrete problem that 

the research is addressing. So, the next stage will evaluate how these search techniques perform 

on the scalable Bump problem. 

 

 

 

 

 

 

 

 

 



Chapter 4: Results 

 

65 
 

4.2 Phase 2: Scalability Testing 

After the broader evaluations of genetic algorithm simulated annealing and tabu search on 

continuous numerical test functions, this section will evaluate these search techniques using the 

bump fitness function with the dimension of 2, 5, 10, 15, 20 and 50.  The equation used to 

implement this function is presented in Equation 3.7 and the data collected from these 

evaluations has been illustrated in Figure 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12. In addition to that the 

summary of data collected is presented in Table 4.9 which highlights the initial objective function 

value and global minimum objective function value and the number of iterations the search 

techniques took to find an optimum solution. 

Bump Fitness Function Metaheuristics Search Techniques 

 Genetic Algorithm Simulated Annealing Tabu Search 

Dimensions IV Min Eval Max Min Eval Max Min Eval 

n = 2 5.1 0 9 4.8 0 9 5.3 0 9 

n = 5 4.9 0 9 4.8 0 9 5.1 0 10 

n = 10 5.3 0 10 5 0.3 10 4.5 0.9 10 

n = 15 4.1 0 10 4.3 1.1 10 4.7 1.3 10 

n = 20 4.7 0.6 10 4.2 1.3 10 4.5 1.7 10 

n = 50 4.8 1 10 4.6 1.5 10 4.8 1.9 10 

Table 4.9 Summary of Results from Evaluating Bump Function 

The columns in Table 4.1 represent the following: 

• IV: This stands for “Initial Value” and represents the first value generated when each 

search technique is evaluated against each dimension of bump function.  

• Min: This stands for “Minimum” and represents the global minimum achieved by each 

search technique for each dimension in bump function. 

• Eval: This stands for “Evaluations” and the values are represented in thousands. The value 

presented in this column indicates the number iterations taken for each algorithm to find 

global minimum. 

As mentioned in phase 1 of evaluation, the performance of an algorithm can be judged on its 

initial objective function value and how soon the global minimum objective function value was 

found.  Based on the criteria mentioned above and the summary of results presented in Table 

4.9, the overall performance of each search techniques can be judged. When the dimension of 

the bump function is initialised at 2, all the search techniques can find a global minimum 

objective function value and each one of them have taken same number iterations to achieve 
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this results. When the dimension is increased to 5, it takes longer for tabu search to find 

minimum objective function value whereas for genetic algorithm and simulated annealing it took 

the same number of iterations as the previous evaluation. In the next stage of evaluation the 

dimension is increased to 10 and during this evaluation genetic algorithm and simulated 

annealing can find global minimum objective function value, but tabu search has struggled to 

find an optimum value. When the dimension is initialised to 15, genetic algorithm can find global 

minimum object function value whereas simulated annealing and tabu search could not find 

optimum value. To get more detailed understanding of the performance, the dimension is 

further increased to 20 and 50. The results from these evaluations indicate that none of the 

search techniques were able to find a global minimum objective function value. Hence, it is 

apparent that the ability to search for an optimum solution becomes difficult as the size of the 

problem is increased. The detailed analysis each implementation is as follows: 
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4.2.1 Bump (n = 2) 
In this instance, all the search techniques have achieved global minimum object function value at 

the same time, but having said that, the initial objective function value achieved by all the 

algorithms are not same. The initial objective function value achieved by simulated annealing 

was lower than other two search techniques and the convergence gradually moved towards the 

minimum objective function value. In compare to that, the initial object function value was 

second highest and there is a sudden drop in the convergence between iterations 4000 and 

6000. Overall tabu search had the highest initial objective function value and in most iterations 

when the results are compared against average results this search techniques has not performed 

well. Hence based on the analysis presented it is apparent that performance of simulated 

annealing is better than other two search techniques. The data collected from this evaluation has 

been presented in Figure 4.7 and the performance analysis for each algorithm against average on 

interval of 1000 iterations is presented in Table 4.10. 

 

Figure 4.7 Algorithm Convergence (Bump Function n = 2) 

 

Table 4.10 Bump Function Performance Analysis (n = 2) 
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4.2.2 Bump (n = 5) 
In this implementation, the dimension of the bump function was increased to 5 to ensure that 

the algorithm can still find global minimum objective function value when the size of the problem 

has increased. Hence for this implementation all the algorithms have found an optimum solution 

but genetic algorithm was the fastest. Unlike previous evaluation, simulated annealing took 

longer to find the optimum value. When considering the overall performance, genetic algorithm 

has performed well when compared against the average whereas simulated annealing has 

performed well only on certain evaluations. Hence for this evaluation the best performing search 

techniques was genetic algorithm. The data collected from this evaluation is illustrated in Figure 

4.8 and performance analysis for each algorithm against average at interval of 1000 iterations is 

presented in Table 4.11. 

 

Figure 4.8 Algorithm Convergence (Bump Function n = 5) 

 

Table 4.11 Bump Function Performance Analysis (n = 5) 
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4.2.3 Bump (n = 10) 
Looking at the illustration of data collected from this evaluation in Figure 4.9, it is clear that when 

the dimension of the bump function is increased the search techniques take longer to find the 

optimum solution. In this case, genetic algorithm found an optimum solution, but simulated 

annealing and tabu search could not find an optimum solution. Even when the optimum solution 

was not found evaluations were carried until there was no improvement in the solution. Genetic 

algorithm has achieved the highest initial objective function value. Even though tabu search did 

not find its global minimum, it is clear that up to 7000 iterations tabu search was performing 

better than average. Table 4.12 represents the performance evaluations of all the algorithms 

against the average at interval of 1000 iterations.  

 

Figure 4.9 Algorithm Convergence (Bump Function n = 10) 

 

Table 4.12 Bump Function Performance Analysis (n = 10) 
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4.2.4 Bump (n = 15) 
In this instance simulated annealing and tabu search could not find an optimum solution and this 

is caused by increasing the dimension of the bump function. When compared these two 

algorithms with previous implementation of bump function with the dimension of 10, there is a 

huge difference in the final solution. In contrast to that, so far genetic algorithm has performed 

consistently well by finding a global minimum objective function value for each implementation. 

Since genetic algorithm has found the global minimum value, it can be determined that this 

algorithm has performed better than other two. The data collected from this evaluation is 

illustrated in Figure 4.10 and Table 4.13 presents the performance analysis of each algorithm 

against the average results at interval of 1000 iterations. 

 

Figure 4.10 Algorithm Convergence (Bump Function n = 15) 
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1 4.4 4.1 4.3 4.7
2 4.4 4.1 4.3 4.7
3 4.2 3.9 4 4.7
4 3.7 3.9 4 3.2
5 2.7 3.5 2.8 1.7
6 2.3 2.3 2.8 1.7
7 2 2.3 2.1 1.5
8 1.9 2.2 2.1 1.5
9 1.3 0.7 1.7 1.5

10 0.8 0 1.1 1.3  

Table 4.13 Bump Function Performance Analysis (n = 15) 
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4.2.5 Bump (n = 20) 
When the dimension of the bump function is increased to 20, it is noticed that all the search 

techniques were not able to find the global minimum objective function value. Performance of 

simulated annealing and tabu search have been consistent when compared against the previous 

two evaluations whereas for this evaluation genetic algorithm struggled to find an optimum 

solution. For genetic algorithm, the initial objective function value was the highest but between 

iterations 8000 and 10000 the convergence of dropped considerably and performed better than 

average. Furthermore, the performance of genetic algorithm in previous iterations was less than 

average and in contrast to that simulated annealing and tabu search were better or equal to 

average. The performance of each algorithm can be measured against average results at the 

interval of 1000 iterations in Table 4.14 and the results are illustrated in Figure 4.11. 

 

Figure 4.11 Algorithm Convergence (Bump Function n = 20) 

 

Table 4.14 Bump Function Performance Analysis (n = 20) 
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4.2.6 Bump (n = 50) 
To ensure that the performances of all the algorithms are consistent, the dimension of the bump 

function is increased to 50. Based on the results illustrated in Figure 4.12, it is clear that 

performance of each search techniques has reduced considerably. Like previous evaluations, 

genetic algorithm has found the best global minimum objective function value when compared 

against simulated annealing and tabu search. However, when the performance of genetic 

algorithm is compared against average results, it is apparent that genetic algorithm did not 

converge well until the end of the evaluation. In contrast to that, simulated annealing did not 

find the best global minimum value, but it had consistently converged towards the global 

minimum. Similar behaviour is also observed by tabu search. The performance of each algorithm 

can be measured against average results at the interval of 1000 iterations in Table 4.15. 

 

Figure 4.12 Algorithm Convergence (Bump Function n = 50) 

Iterations 
(000's)

Average GA SA TS

1 4.3 4.5 4.4 4.1
2 4.3 4.5 4.4 4.1
3 3.8 4.2 3.5 3.7
4 3.7 4.2 3.5 3.5
5 3.3 3.5 3 3.5
6 2.7 3 2.2 2.8
7 2.6 2.8 2.2 2.8
8 2.3 2.8 2 2.1
9 2 2.1 1.9 2

10 1.5 1 1.5 1.9  

Table 4.15 Bump Function Performance Analysis (n = 50) 
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4.2.7 Summary 
Based on the first and second phase of evaluations, the performance of simulated annealing has 

been better than genetic algorithm and tabu search. When the dimension of the bump function 

was 5 and 10, the performance of tabu search had been much better than genetic algorithm and 

simulated annealing. In saying that, as the dimension of the bump function kept on increasing 

the performance of tabu search and simulated annealing dropped considerably whereas the 

performance of genetic algorithm was consistent throughout except when the dimension was 

increased to 20 and 50, genetic algorithm found it hard to find the optimum solution. The 

performance of the algorithm was based on the parameters which were established in 

experimental design (Chapter 3, Section 3.3) hence there is a possibility that the performance of 

the algorithms can be improved by changing the standard parameters. Evaluations from phases 

one and two will act as the building blocks for phases three and four. In the next phase the study 

will evaluate a n-queens problem which is discrete in nature. 
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4.3 Phase 3: Discrete Scalability Testing 

The previous exercises focused around validating the performance of genetic algorithm, 

simulated annealing and tabu search using numerical test functions and emphasised on 

validating the scalability of the algorithms using bump function. In this exercise the scalability has 

been explored further by solving n-queen problem using the metaheuristics search techniques 

mentioned above. According to literature review, it has been established that n-queen problem 

can be solved using metaheuristics search techniques (Laguna, 1994 and Martinjak & Golub 

2007). The data collected from similar evaluations carried out by Martinjak & Golub (2007) will 

be used as the benchmark to compare the data collected from this evaluation. All the algorithms 

are executed until the first solution is found; in a series of ten runs for a given number of queens. 

In addition to this each, evolution ends when a solution is found. The analysis for each algorithm 

is as follows: 

4.3.1 Genetic Algorithm 
In this algorithm, mutation rate was 0.06% which helps changing two randomly chosen positions. 

The crossover rate was established at 0.08% and was implemented in a way that redundant 

positions of parents were transferred to a child, whilst other positions were selected randomly. 

The population size used for this evaluation was established at 100 chromosomes. The results 

generated from this evaluation are presented in Table 4.16. 

n 

(Queen) 

Iterations (in 10 runs) 

Min 

Min % 

Change Max 

Max % 

Change Average 

Avg % 

Change 

8 3 200% 12 20% 5.2 30% 

10 18 13% 220 95% 55.8 14% 

30 220 4% 1751 13% 1014.5 11% 

50 499 2% 12752 -85% 4237.9 -76% 

75 985 -12% 15417 -4% 5149.4 -10% 

100 3231 -5% 15323 5% 9473.1 7% 

200 12787 -4% 46641 -3% 20786.4 -9% 

300 18653 -8% 35347 -7% 22489.3 -19% 

500 32389 -11% 150294 -10% 76841.2 -14% 

Table 4.16 Genetic algorithm results in n-queen problem 

In Table 4.16, column “n-Queen” represents the number of queens that was used to solve the 

problem. The columns “Min” and “Max” indicates minimum and maximum iterations the 

algorithm took to find the optimum solution which were executed in ten runs. In addition to this, 
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the % change column for min, max and average is calculated by dividing the number of iterations 

the algorithm took to find the best solution (in this evaluation) by the number of iteration the 

same algorithm took to find the best solution in the evaluation carried out by Martinjak & Golub 

(2007).  

Based on the results presented in Table 4.16, it is evident that the genetic algorithm 

implemented in this research can solve the n-queen problem. When the results are compared 

against the results presented by Martinjak & Golub (2007), the performance of this algorithm is 

consistent, but having said that there are some differences in each scenario (i.e.: solving the 

problem using different number of queens). Such inconsistencies are common when using a 

stochastic search technique. When this problem was solved for scenario 8, 10, 30 and 50 queens, 

genetic algorithm took more iteration to find the most optimum solution when compared 

against results presented by Martinjak & Golub (2007). In contrast to that, for scenario 50, 75, 

100, 200, 300 and 500 queens, genetic algorithm found the best solution faster when compared 

against Martinjak & Golub (2007). The variance for each scenario is presented in Table 4.16. 

This algorithm was executed until the first solution was found; in a series of ten runs. This step is 

then further repeated for different size of the problem (i.e., different number of queens). As 

illustrated in Figure 4.13, when the size of the problem was less than 75 queens, genetic 

algorithm was able to find optimum solution for each run but as the size of the problem was 

increased the genetic algorithm was not able to find optimum solution for each run. When the 

size of the problem was 75 queens then genetic algorithm could find optimum solution 9 times 

out of 10, whereas when the size of the problem was 100 and 200 queens, it could find optimum 

solution 9 times out of 10. Lastly when the size of the problem was 300 and 500 genetic 

algorithm did not perform well because it only found the optimum solution 7 times out of 10. 

Hence as the size of the problem is increased the performance of this algorithm reduces. The 

reduction in performance behaviour matches previous evaluation where the genetic algorithm 

was used to solve Bump function with a dimension of 15, 20 and 50.   
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Figure 4.13 Number of Optimum Solutions vs. Imperfect Solutions 

4.3.2 Simulated Annealing 
Like genetic algorithm, one of the objectives is to change two randomly chosen positions until 

such point where no better solution can be found. In this algorithm, decreasing temperature was 

initialised at 0.99% and the starting temperature was established at 1000. Values for these 

parameters have also been used by Martinjak & Golub (2007). The results generated from this 

evaluation are presented in Table 4.17 and the definition of this table is the same as Table 4.16. 

n 

(Queen) 

Iterations (in 10 runs) 

Min 

Min % 

Change Max 

Max % 

Change Average 

Avg % 

Change 

8 79 20% 982 22% 501.4 2% 

10 211 4% 2249 12% 1346.2 2313% 

30 1524 9% 3951 5% 1125.7 11% 

50 1911 5% 5741 6% 4356.1 3% 

75 3685 12% 10158 3% 5236.8 2% 

100 4265 -5% 10254 -13% 9314.5 -2% 

200 8864 -3% 37598 -3% 19745.3 -5% 

300 19548 -10% 30215 -5% 20148.6 -10% 

500 32146 -11% 80215 -4% 72467.2 -6% 

Table 4.17 Simulated Annealing results in n-queen problem 

Like genetic algorithm, simulated annealing can also solve the n-queen problem. When the 

results were compared against the benchmark (i.e.: results presented by Martinjak & Golub 

(2007)), the performance of simulated annealing is almost similar, but in saying that there were 
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variances at each scenario and those variances are presented in Table 4.17. When the number of 

queens were less than or equal to 75, simulated annealing took more iterations to find the most 

optimum solution, but when the number of queens was greater than 75, then simulated 

annealing took less iterations to find the most optimum solution. 

The performance of simulated annealing has been better than genetic algorithm and tabu search 

by finding optimum solutions for all the runs for all size of the problem except when the size of 

the problem is 500 queens, it was not able to find an optimum solution only one time. In 

compare to that, genetic algorithm and tabu search both could not only find optimum solution 

seven times out of ten runs. The performance of simulated annealing is in contrast with previous 

evaluations whereby simulated annealing was the second best performing algorithm. However, 

when looking at the trend, if the size of the problem is increased it may be possible that 

performance of simulated annealing could also deteriorate. This reduction in performance 

behaviour matches the behaviour when simulated annealing solved Bump problem with 

dimensions of 10, 15, 20 and 50. The variance analysis is presented in the Figure 4.14. 

 

Figure 4.14 Number of Optimum Solutions vs. Imperfect Solutions 
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performance of the algorithm than the initial solution of queens. The results generated from this 

evaluation are presented in Table 4.16. 

n 

(Queen) 

Iterations (in 10 runs) 

Min 

Min % 

Change Max 

Max % 

Change Average 

Avg % 

Change 

8 3 50% 20 18% 11.3 74% 

10 5 25% 33 10% 15.1 44% 

30 10 43% 40 167% 22.9 114% 

50 11 -8% 48 71% 19.4 5% 

75 16 -16% 44 -10% 27.7 -5% 

100 21 -19% 71 -8% 39.5 -6% 

200 79 -11% 179 -4% 118.6 -2% 

300 159 -3% 266 -6% 205.7 -2% 

500 344 -1% 410 -13% 380.5 -4% 

Table 4.18 Tabu Search results in n-queen problem 

The results presented in Table 4.18, indicates that n-queen problem can be successfully solved 

using a tabu search algorithm. When these results are compared against the results presented by 

Martinjak & Golub (2007), the performance is consistent with the benchmark results, but there 

are still some variances at each scenario 

Tabu search has been the lowest performing algorithm across all the evaluations when compared 

against genetic algorithm and simulated annealing. This algorithm was executed until the first 

solution was found; in a series of ten runs. This step is then further repeated for different size of 

the problem (i.e.:- different number of queens). The variance analysis is illustrated in Figure 4.15. 

Tabu search could not find optimum for all the runs if the size of the problem was greater than or 

equal to 50 queens. The behaviour is similar to genetic algorithm, except genetic algorithm could 

find optimum solutions for all runs when the size of the problem was 50 queens but for the same 

problem, tabu search could only find optimum solution 9 times out of 10 runs. In addition to 

that, as the size of the problem is increased the performance of the algorithm is deteriorated. 

This behaviour is consistent with tabu search solved Bump problem with a dimension of 10, 15, 

20, and 50. As the size of the dimension increased, it became more difficult for tabu search to 

find optimum solution.  
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Figure 4.15 Number of Optimum Solutions vs. Imperfect Solutions 

4.3.4 Summary 
This evaluation showed that n-queen problem can be solved using genetic algorithm, simulated 

annealing and tabu search. In addition to that, the results generated from this evaluation were 

also compared against results generated by Martinjak & Golub (2007) and the performance of 

each algorithm was almost similar. The performance of each algorithm can be judged on the 

number fitness function computation (Feng, Liu & Burns, 1997). For this evaluation the 

performance is for each algorithm is presented in Table 4.19 and comparison between each 

algorithm is illustrated Figure 4.16 on a log scale. 
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Genetic Algorithm Simulated Annealing Tabu Search 

8 455 513 257 

10 5,145 1,102 512 

30 99,548 2,236 5,021 

50 125,648 3,015 23,664 

75 65,235 5,526 80,515 

100 790,525 7,747 210,357 

200 1,954,568 20,790 2,135,659 

300 2,277,855 22,154 10,125,463 

500 5,490,358 50,157 42,265,835 

Table 4.19 Average number of fitness function computation 
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Figure 4.16 Average Fitness Function Computation 

Based on the illustration in Figure 4.18, it is clear that overall simulated annealing found the most 
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optimum solution with the least number of fitness function computation but having said that 

tabu search was the best performing algorithm in this scenario by finding the optimum solution 

using the least number of fitness function computation. As the size of the problem is increased, 

tabu search and genetic algorithm both required more fitness function computation to find the 

most optimum solution. Based on the analysis presented above, it is clear that overall the best 

performing search techniques was simulated annealing followed by genetic algorithm and lastly 
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4.4 Phase 4: Resource Allocation, Cost Estimation and Project Scheduling Problem 

This is the last phase of the experiments where problems like resource allocation, cost estimation 

and project scheduling are tackled. This experiment is further compartmentalised in to two main 

sections: 

4.4.1 Scheduling Resource Unconstrained and Constrained Project 
To schedule a project effectively, project planners must select appropriate costing and 

resourcing options. This selection will determine the duration of the project. In most cases, 

projects have multiple costing and resourcing options which lead to multiple due dates. The main 

objective in the evaluation is to schedule resource unconstrained and constrained project using 

metaheuristics search techniques. As with the previous evaluations, the same algorithms were 

implemented to resolve continuous and discrete problems whereby in most of the cases the 

algorithms were able to find the optimum solution. Hence the performance of algorithms from 

previous evaluations will be compared against the performance of the same algorithm in this 

evaluation.  

Traditionally, project schedules can be generated using a critical path method and that project 

planners can also include resources and activities assigned to those resources. Unfortunately, 

such schedules have a flip side whereby it is difficult for project planners to identify when the 

resources were freed from the previous activity. Hence this evaluation will overcome the 

limitation identified by using critical path method. Before the evaluation process starts, let us 

consider a small project presented in Table 4.20 by each activity with its early start, early finish, 

late start, late finish and total float. This data was also used by Christodoulou (2010) to schedule 

the project using ant colony optimisation algorithm. Figure 4.17 illustrates the critical path for 

this small project. 

Activity no. Start Node End Node Successor Early Start Early Finish Late Start Late Finish Total Float 

1 0 2 7,8,9 0 20 15 35 15 

2 0 5 7 0 33 45 78 45 

3 0 8 9 0 70 24 94 24 

4 1 3 8,9 0 40 0 40 0 

5 1 5 7 0 37 41 78 41 

6 1 6 9 0 56 41 97 41 

7 2 7 9 20 87 48 115 28 

8 2 8 9 20 79 35 94 15 

9 2 9 - 20 98 48 126 28 

10 3 8 9 40 94 40 94 0 

11 3 9 - 40 94 72 126 32 
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12 4 5 7 0 29 49 78 49 

13 4 6 9 0 43 54 97 54 

14 5 7 9 37 74 78 115 41 

15 6 9 - 56 85 97 126 41 

16 7 9 - 87 98 115 126 28 

17 8 9 - 94 126 94 126 0 

Table 4.20 Test Problem for discrete optimisation (Christodoulou, 2010) 

 

Figure 4.17 Critical Path Method for Data in Table 4.20 

The critical path calculations on the above mentioned case study topology is based on the results 

of early start, early finish, late start, late finish and total float by applying traditional critical path 

planning methods. Based on the critical path method calculation and activities 4, 10 and 17 have 

been identified as critical and the total duration of the project is 126 time units.  

Christodoulou (2010) has also solved the above mentioned case study using critical path method 

and the results generated from his evaluation is the same as the results generated from this 

evaluation. Additionally, he also solved the same study in resource unconstrained and resource 

constrained environment. Hence the following sections will describe the scheduling of the case 

study in unconstrained and constrained environment. 
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4.4.1.1 Evaluation of Resource-Unconstrained Scheduling 

Resource unconstrained scheduling is fairly straight forward and in most cases can be solved 

using critical path methods. Since the case study is relatively simple, all search techniques were 

able to find an optimum solution. In this case the optimum solution is 126 time units for the 

project duration. When this solution is compared against the solution presented using critical 

path method it is the same. 

Although in this case the solution is the same as critical path method, it may always not be the 

same. If the size of the project would be extensively large then finding optimum project duration 

would take longer and may not be correct because of human intervention. In this case study, the 

critical path method calculation required ten conditional statements and 17 additions / 

subtraction for each forward or backward pass in the network. In contrast to that genetic 

algorithm, simulated annealing and tabu search are lot more efficient in finding the optimum 

solution. The advantage of this might not be so obvious in this evaluation mainly because of the 

size of the data, but it is likely that for larger dataset these algorithms would generate results 

significantly faster and efficiently. 

Algorithm Duration Critical Path Activities Iterations 

Ant Colony Optimisation (Christodoulou, 2010) 126 4, 10, 17 <= 50 

Genetic  Algorithm 126 4, 10, 17 <= 39 

Simulated Annealing 126 4, 10, 17 <= 49 

Tabu Search 126 4, 10, 17 <= 55 

Table 4.21 Solution for Resource-Unconstrained Case Study 

The results presented above for each algorithm are the same and that is mainly because there 

are no constraints on the project. However, some search techniques have found the optimum 

solution sooner than other search techniques. In this case, genetic algorithm was the quickest to 

find the best solution. In the evaluations carried out by Christodoulou (2010), he has also 

achieved the same results as genetic algorithm, simulated annealing and tabu search. Although 

the size of the case is study is fairly small the overall process for calculating the total duration 

and identifying critical activities was very straight forward. The main idea behind this evaluation 

is to schedule the project as soon as possible ignoring constraints. However, if we were to assign 

resources constraint to each task and still want the same due date, there would be some over 

allocated resources. The resource histogram generated from this evaluation is presented in 

Figure 4.18. 



Chapter 4: Results 

 

84 
 

 

Figure 4.18 Unconstrained Resource-Flow 

The histogram presented above indicates that the project will still be completed in the 126 time 

units. For this experiment, it is assumed that resources are limited and each resource will only be 

available for a certain hours during the day. Based on Figure 4.18 the blue bars indicate that 

resources are optimally allocated whereas bars in red means that resources are over allocated. 

The dark black line in the histogram indicates maximum allocation of resources  

4.4.1.2 Evaluation of Resource-Constrained Scheduling 

As soon as there is a constraint on resources for the project, the scheduling becomes very 

complicated and critical path method may not be sufficient to achieve an optimised project 

schedule. The lack of resources needed to start and complete an activity makes certain critical 

paths unfeasible and hence some of the activities in a project can be put on hold which in turn 

can impact the entire project schedule. In critical path method the importance of activities are 

determined by its total float value. The importance of activity increases as the value of total float 

drops. Therefore, when scheduling project activities with fewer totals float value gets preference 

in allocating resources. 

It is assumed that each activity presented in Figure 4.19, 4.20 and 4.21 utilises one unit of 

resources for each day and based on that a resource histogram can be generated. However, for 

this evaluation it is assumed that the availability of resource is constrained to seven units. Similar 

case was also implemented in the previous evaluations. The resource histogram which is 

illustrated in Figure 4.18 which exhibits for certain activities, the need for resources has 
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exceeded the available resource threshold. When the constraints are implemented following 

results are generated, shown in Table 4.22. 

Algorithm Duration Critical Path Activities Iterations 

Ant Colony Optimisation (Christodoulou, 2010) 142 3, 13, 15 <= 50 

Genetic  Algorithm 139 4, 7, 17 <= 58 

Simulated Annealing 147 5, 9, 17 <= 55  

Tabu Search 143 2, 9, 17 <= 62 

Table 4.22 Solution for Resource-Constrained Case Study 

This table represents time taken in the duration column, and also highlights the critical activity. 

The first results are derived from Christodoulou (2010) experiments. In his experiments, ant 

colony optimisation finds a solution that takes 142 time units to complete a project and in 

comparison that genetic algorithm implemented in this research will take 139 time units and the 

critical activities are 4, 7 and 17. While genetic algorithm has found the solution by projecting to 

complete the project in 139 time units, it tool more iterations than ant colony optimisation and 

simulated annealing. Ant colony optimisation has outperformed simulated annealing and tabu 

search. Although in previous evaluation simulated annealing has performed better in this case 

tabu search has achieved better results by finding a schedule which can complete the projects in 

143 time units with 2, 9 and 17 as critical activities. 

The data collection from implementing genetic algorithm, simulated annealing and tabu search 

was populated in Microsoft project 2007 to generate a resource flow histogram as illustrated in 

Figure 4.19, 4.20 and 4.21 respectively. 

 

Figure 4.19Genetic Algorithm Constrained Resource-Flow 
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Figure 4.20 Simulated Annealing Constrained Resource-Flow 

 

Figure 4.21 Tabu Search Constrained Resource-Flow 
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4.4.2 Cost Estimation in Project 
This section evaluates the performance of the metaheuristics search techniques with a time-cost 

trade-off construction project scheduling problem which is discrete in nature. Hence to evaluate 

the algorithm, researcher has used data presented in Table 4.23. This data was also used by 

Elbeltagi, Hegazy & Grierson (2005) and Feng, Liu & Burns (1997) to solve discrete optimisation 

problem by implementing a number of different algorithms.  

Activity Depends Option 1 Option 2 Option 3 Option 4 Option 5 

no. on Duration Cost Duration Cost Duration Cost Duration Cost Duration Cost 

1   14 2,400 15 2,150 16 1,900 21 1,500 24 1,200 

2   15 3,000 18 2,400 20 1,800 23 1,500 25 1,000 

3   15 4,500 22 4,000 33 3,200 33 3,200 33 3,200 

4   12 45,000 16 35,000 20 30,000 20 30,000 20 30,000 

5 1 22 20,000 24 17,500 28 15,000 30 10,000 30 10,000 

6 1 14 40,000 18 32,000 24 18,000 24 18,000 24 18,000 

7 5 9 30,000 15 24,000 18 22,000 18 22,000 18 22,000 

8 6 14 220 15 215 16 200 21 208 24 120 

9 6 15 300 18 240 20 180 23 150 25 100 

10 2,6 15 450 22 400 33 320 33 320 33 320 

11 7,8 12 450 16 350 20 300 20 300 20 300 

12 5,9,10 22 2,000 24 1,750 28 1,500 30 1,000 30 1,000 

13 3 14 4,000 18 3,200 24 1,800 24 1,800 24 1,800 

14 4,10 9 3,000 15 2,400 18 2,200 18 2,200 18 2,200 

15 12 12 4,500 16 3,500 16 3,500 16 3,500 16 3,500 

16 13,14 20 3,000 22 2,000 24 1,750 28 1,500 30 1,000 

17 11,14,15 14 4,000 18 3,200 24 1,800 24 1,800 24 1,800 

18 16,17 9 3,000 15 2,400 18 2,200 18 2,200 18 2,200 

Total  100 169,820 131 136,705 159 107,650 166 101,178 169 99,740 

Table 4.23 Test Problem for discrete optimisation (Elbeltagi, Hegazy & Grierson, 2005) 

The data presented above relates to a project which constitutes 18 activities and has been 

presented with five options of different cost and duration.  In each case, the first option is the 

most expensive option but it will take the least number of days to complete the project and the 

fifth option is the cheapest option and it will take the longest to complete. For each task the 

project managers would have to choose from five options and this could traditionally be done 

using heuristics approaches, but to get most optimised solution, one of the five options will be 

selected for each task using genetic algorithm, simulated annealing and tabu search. As 

mentioned earlier, this data is related to time-cost trade-off problem and in real world the ideal 

set of solutions for this problem should look similar to Figure 4.22. 
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This graph represents the pareto-optimal front of solutions. It is a unique line through the total 

set of solutions that represents what is considered to be non-dominated solutions. Each solution 

along the pareto-optimal front is equally valid in terms of how it trades off cost and time. 

Before the evaluations are carried out, a critical path must be established for the 18 tasks 

mentioned in Table 4.23. The critical path is illustrated in Figure 4.23. In this critical path, 

information about cost and time is not displayed. However, the researcher has used this critical 

path as a template to input results generated from the evaluations. The critical path can be 

established using the values provided in column “Depends on” and the tasks which does not 

have values, indicates that they do not have any precedence.  
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Figure 4.22 Relationship between Time and Cost of Activity (Trade off Curve) 

Figure 4.23 Critical Path Method for Data in Table 4.21 
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All the evaluations carried out must consider the critical path mentioned in Figure 4.23. In 

addition to this the main objective of this evaluation is to minimise the total cost of the project 

and to do this a fitness function has been used against each algorithm: 

𝑓(𝑥) = 𝑀𝐼𝑁 �𝑇 𝑋 𝐼 +  �𝐶��

�

���

� 

Equation 4.1 Cost Estimation Fitness Function 

The variables mentioned in the above mentioned fitness function represents the following: 

• n = number of activities 
• 𝐶��= direct cost of activity I using its method of construction j 
• T = total project duration 
• I = daily indirect cost 

Search techniques like genetic algorithm, simulated annealing and tabu search will be used to 

minimise the total cost of the project using the fitness function mentioned above. The underlying 

application and parameters for each algorithm is similar to the previous evaluations. The results 

generated from these evaluations will be compared against the results from evaluations carried 

out by Elbeltagi, Hegazy & Grierson (2005) and Feng, Liu & Burns (1997).  

4.4.2.1 Results and Discussion 

The summary of results generated from this evaluation is presented in Table 4.24. This table 

represents the minimum and average of project cost and duration. It also presents the 

percentage of success against other algorithm. The percentage of success is calculated based on 

numbers of days and total cost of the project. Hence, lower the total cost of project and 

duration, higher the success rate of the algorithm. 

Algorithms Minimum Average  

 Duration Cost Iterations Duration Cost Iterations % Success 

Genetic Algorithm 104 139,320 64 111 152,010 68 50 

Simulated Annealing 110 145,820 77 118 156,310 80 30 

Tabu Search 108 156,720 71 113 156,910 75 20 

Table 4.24 Summary of Results 
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Genetic algorithm was the best performing algorithm by finding an option for project managers 

to complete the project in 104 days with total cost of 139,320 units with a success rate of 50%. 

Whereas best combination found by simulated annealing was to complete the project in 110 

days with total cost of 145,820 units and a success rate of 30%. The best combination found by 

tabu search was to complete the project in 108 days with total cost of 156,720 units and a 

success rate of 20%. Although the combination found by tabu search enables the project to 

complete faster than simulated annealing. The cost of proposed combination from tabu search is 

more than simulated annealing. Hence, simulated annealing has a greater success rate than tabu 

search. These results can be compared with those of Feng, Liu & Burns (1997) who utilised a 

Genetic Algorithm to solve this problem and they discovered two non-dominated solutions, 100 

days/$133,320 and 101 days/$129,320. The best solution found in the current research is very 

close to the pareto-optimal front for this problem. The above solutions appear to be an 

improvement when compared with the results of Elbeltagi, Hegazy & Grierson (2005). Their 

comparative study indicated that the Particle Swarm Optimisation algorithm was best at solving 

the problem; however the best solution it found was 110 days/ $161,270. The overall results 

achieved for each algorithm is presented in a time-cost trade-off curve as illustrated in Figure 

4.24. 

 

Figure 4.24 Optimised Trade-Off Curve 

Figure 4.22, depicts the relationship between time and cost for a project and represents an ideal 

solution to a time-cost trade-off problem. Based on that, we can conclude that genetic algorithm, 

simulated annealing and tabu search all have been able to achieve an ideal relationship between 

$90,000 

$100,000 

$110,000 

$120,000 

$130,000 

$140,000 

$150,000 

$160,000 

$170,000 

100 110 120 130 140 150 160 170 

Co
st

 

No. of Days 

Optimised Trade off Curve 

Genetic Algorithm  

Simulated Annealing 

Tabu Search 



Chapter 4: Results 

 

91 
 

time and cost for a project management scenario. The final solution for each algorithm is 

illustrated in Figure 4.24 using time-cost trade-off curve. During the initial stages of evaluation, 

trade-off curve are generated, but they are scattered all over the solution space and does not 

gather into one region. As the evaluation progresses the trade-off curve takes shape like the 

relationship described in Figure 4.22. Genetic algorithm took 64 iterations to achieve final 

generation which produced the trade-off curve whereas simulated annealing took 77 iterations 

and tabu search took 71 iterations. An effective way to judge a performance of the algorithm is 

to ensure that the trade-off curve is closest to the axis (Feng, Liu & Burns, 1997). Hence looking 

at Figure 4.24, it is evident that trade-off curve for genetic algorithm has performed better than 

that of simulated annealing and tabu search. Performance between simulated annealing and 

tabu search is almost contradicting to itself whereby for results up to 120 days, trade-off curve 

for tabu search was closer to axis when compared against simulated annealing, but results after 

120 days trade-off curve for simulated annealing was much closer to axis. So far, genetic 

algorithm has performed consistently well when compared against the previous evaluations, but 

in saying that genetic algorithm has not performed well when it was used to solve numerical test 

functions and n-queen problem. Simulated annealing was the second most favourable for this 

evaluation, and that is consistent with the previous evaluations except it was the most 

favourable choice of algorithm to solve n-queen problem. Based on the overall results, it is 

evident that tabu search is the least favourable choice of algorithm to solve the problems 

mentioned in this and previous exercises. In contrast to that Elbeltagi, Hegazy & Grierson (2005) 

have mentioned that tabu search has been used widely by many researchers to solve not only 

time-cost trade-off problem, but many other NP-hard problems. After finding the trade-off curve, 

project managers can determine the total cost of the project by summing up the estimated 

indirect cost and direct cost from trade-off curve. Using trade-off curve as the objective function 

allows for much more efficient evaluation of various other indirect costs. 
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5 Conclusions 
This research has carried out experiments using variety of search techniques like genetic 

algorithm, simulated annealing and tabu search. These experiments focused on evaluating 

metaheuristics search techniques against continuous and discrete problems. Majority of the 

evaluations mainly focused around solving RCPSP using metaheuristics search techniques. The 

framework and design of the research was detailed in Chapter 3 which also included the 

architecture of the formulated tool to help collect data from various evaluations. The collected 

data was then used to compare performance against each search techniques. Based on the data 

collected over several evaluations it has increased the relevance of the results, and has assisted 

in answering the research questions that were set out at the beginning of the research.  

Question 1:- Can resource allocation and cost estimation be effectively formulated as a search 

problem that is tractable to be solved using metaheuristic search algorithm? 

Answer: According to discussions in section 4.4, metaheuristics search algorithms were used to 

solve problems with resource allocation and cost estimation in project management. To solve 

these problems, two separate project management scenario were re-formulated as a search 

problem. All the implemented search techniques were able to solve the problem. However, 

some search techniques found the solution faster than other search techniques. 

Question2: Which metaheuristic search algorithms demonstrate the most desirable performance 

when solving the problems?  

Answer:  Based on the collected data it is clear that all implemented metaheuristics search 

techniques were able to solve the problem. Overall simulated annealing frequently achieved 

favourable results for more complex problems when compared against genetic algorithm and 

tabu search. The only exception to this is the bump problem whereby genetic algorithm out 

performed simulated annealing and tabu search. The overall performance of each algorithm 

against each evaluation is presented in Table 5.1 and it is clear that performance of simulated 

annealing has been concluded as best for six times whereas performance of genetic algorithm 

has been concluded as best for four times. The difference between performances is not huge 

between simulated annealing and genetic algorithm. In contrast to that, performance of tabu 

search has been concluded as best only for one time, a lot less than simulated annealing and 

genetic algorithm. 
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Evaluation Type Best Performing Algorithm 

Rastrigin Simulated Annealing 

Rosenbrock’s Banana Genetic Algorithm and Simulated Annealing 

Schwefel Genetic Algorithm 

Axis Parallel Hyper-Ellipsoid Tabu Search 

Griewangk Simulated Annealing 

Himmelblaus Simulated Annealing 

Bump Genetic Algorithm 

N-Queen Simulated Annealing 

RCPSP Genetic Algorithm and Simulated Annealing 

Table 5.1 Metaheuristics Search Techniques Favourable Score against each Evaluation 

It is possible to conclude that the complexity of the problem domain is clearly a contributing 

factor towards different algorithms performance. Of the algorithms tested, the Genetic 

Algorithm is the only population-based search method. For relatively straight forward problems, 

the population provides a computational overhead that is not justified. However, for more 

complex problems where the single-trajectory direct search methods become limited in their 

ability to identify a globally optimum solution, the use of a population-based method becomes 

advantageous. 

To conclude the researcher draws the conclusion that overall performance of simulated 

annealing is better than the tabu search and genetic algorithm. The work implemented in this 

research was able to address the research questions and add to the body of knowledge regarding 

the solution of RCSCP using metaheuristic search algorithms. However, in “real-world” the 

project management scenarios are complicated and fairly dynamic hence a more deeps research 

is required to increase the confidence for using search base software engineering approach. 
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5.1 Limitations 

This section describes the limitation of the research. The data and conclusion drawn from this 

research were carried out with some sample data mainly referenced from Christodoulou, 2010 

and Elbeltagi, Hegazy & Grierson (2005). Although the underlying data was different for solving 

resource constraint project scheduling problem (section 4.4.1) and cost estimation in project 

planning (Section 4.4.2), the size of the data was not big enough to draw a general conclusion for 

this problem. Hence, it would be reasonable to state that project management practitioners 

would not have absolute confidence in the approach presented in this research. In addition to 

this, the application developed for this research may not be feasible for other project 

management software to implement. Additional restriction is based on the fact that the 

application was developed in a .NET Environment and will need modifications to make the 

implementation more generic so that wider audience can use it. 

In addition to the size of the data and environment limitation, the resource constrained project 

scheduling problem and cost estimation problem were only solved using two main constraints 

like labour and costing options. But in the “real world” scenario, there are many more 

constraints which need sincere considerations while scheduling a project. Furthermore, all the 

experiments were carried out using three search techniques (genetic algorithm, simulated 

annealing, and tabu search) hence there were three different results presented for each 

experiments. This is a limitation because he project planners will have to choose the best option 

and because of the parameters supplied to the algorithms vary, the results may not always be 

consistent. 

Finally, the implemented search techniques were specifically designed to exclude enhanced 

features that have been known to improve search performance. This was to allow a baseline set 

of results to be achieved against which future implementations can be compared to show the 

relative improvement for each enhancement. 
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5.2 Guidance for Future Research 

This section of the paper describes the next step in the development of this research and will 

also highlight the possibility of new work which could add another facet to this research 

Considering the aims established at the beginning of this research and the results obtained from 

the evaluation, it would be reasonable to state that there is still some need to develop the 

application in this research to the next level. So far, in the research the implemented application 

focused on optimising metaheuristics search techniques for various numerical test functions and 

to solve RCRSP. Hence the next step would be to enhance the scope of this research by 

implementing a natural evolution which can act as a new method to solve RCPSP. So for the 

research has only focused on constraints like human and cost, but for future it would be 

desirable to include additional constraints in project scheduling problem. In project scheduling 

most common constraints can exists whilst establishing the follows: 

• Project team and sub teams 

• Skills of team members 

• Availability of third party resources 

• Effort required from each team members 

In project scheduling, the list of constraint is not limited to the list mentioned above, but they 

would be the most desirable to enhance the scope of this research. When project planners are 

scheduling a project, the above mentioned constraints have a negative impact on the due date of 

the project. Hence new methods should have the ability to identify critical elements of the 

project well in advance so that the project planners can take appropriate action to maintain the 

schedule of the project. 

In addition, future work should also address the simplistic implementation of the algorithms 

used. In particular, enhanced multi-objective algorithms should be implemented and the 

performance gain measured relative to the baseline results. What is clear from the current 

research is that the performance of a given algorithm is closely tied to the complexity of the 

problem. Whilst multi-objective implementations of the algorithms, for example NSGA-II (Deb, 

Agrawal, Pratap & Meyarivan, 2000) may lead to further improvements in results, it remains to 

be proven that the use of such an algorithm is justifiable for RCSCP. The results in these thesis 

will allow the performance of such algorithms in terms of solution quality be evaluated in light of 

the additional computation cost of the implementation. 
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7 Appendix 

7.1 Implementation of Rastrigin Numerical Test Function 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace Master.Thesis.EvaluationFunction.Functions 
{ 
    public class Rastrigin : FunctionProvider 
    { 
 
        #region Methods 
 
        public override double ObjFunction(double[] Values) 
        { 
            // ---- Declarations ---- 
            double ReturnValue; 
 
            // ---- Throw exception if its greater then 2 ---- 
            if (Values.Count() > 2) 
            { 
                throw new Exception("Incorrect number of parameters, Function 
cancelled."); 
            } 
             
            // ---- Set the function value ---- 
            ReturnValue = (Values[0] * Values[0]) + (Values[1] * Values[1]) - (Math.Cos(18 
* Values[0])) - ((float)Math.Cos(18 * Values[1])); 
 
            // ---- Return the value ---- 
            return ReturnValue; 
        } 
 
        #endregion 
 
    } 
} 
 

7.2 Implementation of Rosenbrock’s Banana Numerical Test Function 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace Master.Thesis.EvaluationFunction.Functions 
{ 
    public class RosenbrocksBanana : FunctionProvider 
    { 
 
        #region Methods 
 
        public override double ObjFunction(double[] Values) 
        { 
            // ---- Declarations ---- 
            double ReturnValue; 
 
            // ---- Throw exception if its greater then 2 ---- 
            if (Values.Count() > 2) 
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            { 
                throw new Exception("Incorrect number of parameters, Function 
cancelled."); 
            } 
             
            // ---- Set the function value ---- 
            ReturnValue = (0.01 * (100 * ((Values[1] - (Values[0] * Values[0])) * 
(Values[1] - (Values[0] * Values[0]))) + ((1 - Values[0]) * (1 - Values[0])))); 
 
            // ---- Return the value ---- 
            return ReturnValue; 
        } 
 
 
        #endregion 
 
    } 
} 

7.3 Implementation of Schwefel Numerical Test Function 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace Master.Thesis.EvaluationFunction.Functions 
{ 
    public class Schwefel : FunctionProvider 
    { 
         
        #region Methods 
 
        public override double ObjFunction(double[] Values) 
        { 
            // ---- Declarations ---- 
            double ReturnValue = 0; 
 
            // ---- Throw exception if its greater then 2 ---- 
            if (Values.Count() > 2) 
            { 
                throw new Exception("Incorrect number of parameters, Function 
cancelled."); 
            } 
            // ---- Set the function value ---- 
            // ---- Loop i through n incrementing by 1. Get the subtotal based on the 
formula. ---- 
            for (int i = 0; i <= Values.Count()-1; i++) 
            { 
                ReturnValue += Values[i] * (Math.Sin(Math.Sqrt(Math.Abs(Values[i])))); 
            } 
 
            // ---- Return the value ---- 
            return ReturnValue*(-1.0); 
        } 
 
        #endregion 
 
    } 
} 
 

7.4 Implementation of Axis Parallel Hyper-Ellipsoid Numerical Test Function 
using System; 
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using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace Master.Thesis.EvaluationFunction.Functions 
{ 
    public class AxisParallelHyperEllipsoid: FunctionProvider 
    { 
 
        #region Methods 
 
        public override double ObjFunction(double[] Values) 
        { 
            // ---- Declarations ---- 
            double ReturnValue; 
 
            // ---- Throw exception if its greater then 2 ---- 
            if (Values.Count() > 2) 
            { 
                throw new Exception("Incorrect number of parameters, Function 
cancelled."); 
            } 
 
            // ---- Set the function value ---- 
            ReturnValue = ((Values[0] * Values[0]) + (2* (Values[1] * Values[1]))); 
 
            // ---- Return the value ---- 
            return ReturnValue; 
        } 
 
        #endregion 
 
    } 
} 
 

7.5 Implementation of Griewangk Numerical Test Function 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace Master.Thesis.EvaluationFunction.Functions 
{ 
    public class Griewangks: FunctionProvider  
    { 
 
        #region Methods 
 
        public override double ObjFunction(double[] Values) 
        { 
            // ---- Declarations ---- 
            double ReturnValuePart1; 
            double ReturnValuePart2; 
            double ReturnValue; 
 
            // ---- Throw exception if its greater then 2 ---- 
            if (Values.Count() > 2) 
            { 
                throw new Exception("Incorrect number of parameters, Function 
cancelled."); 
            } 
 
            // ---- Set the function value ---- 



Chapter 7: Appendix 

 

104 
 

            ReturnValuePart1 = ((Values[0] * Values[0]) + (Values[1] * Values[1]))/4000; 
            ReturnValuePart2 = ((Math.Cos(Values[0] / Math.Sqrt(1))) * (Math.Cos(Values[1] 
/ Math.Sqrt(2)))) +1; 
            ReturnValue = ReturnValuePart1 + ReturnValuePart2; 
 
            // ---- Return the value ---- 
            return ReturnValue; 
        } 
 
        #endregion 
 
    } 
} 

7.6 Implementation of Himmelblaus Numerical Test Function 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace Master.Thesis.EvaluationFunction.Functions 
{ 
    public class Himmelblaus: FunctionProvider 
    { 
        
        #region Methods 
 
        public override double ObjFunction(double[] Values) 
        { 
            // ---- Declarations ---- 
            double ReturnValuePart1; 
            double ReturnValuePart2; 
            double ReturnValue; 
 
            // ---- Throw exception if its greater then 2 ---- 
            if (Values.Count() > 2) 
            { 
                throw new Exception("Incorrect number of parameters, Function 
cancelled."); 
            } 
 
            // ---- Set the function value ---- 
            ReturnValuePart1 = Math.Cos((Values[0] * Values[0]) + Values[1] - 11) * 
((Values[0] * Values[0]) + Values[1] - 11); 
            ReturnValuePart2 = Math.Cos(Values[0] * (Values[1] * Values[1]) - 7) * 
(Values[0] * (Values[1] * Values[1]) - 7); 
            ReturnValue = ReturnValuePart1 + ReturnValuePart2; 
 
            // ---- Return the value ---- 
            return ReturnValue; 
        } 
 
        #endregion 
 
    } 
} 
 

7.7 Implementation of Bump Numerical Test Function 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
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namespace Master.Thesis.EvaluationFunction.Functions 
{ 
    public class Bump: FunctionProvider 
    { 
 
        #region Methods 
 
        public override double ObjFunction(double[] Values) 
        { 
            // ---- Declarations ---- 
            int intCounter; 
            double ReturnValuePart1 = 0, ReturnValuePart2 = 0, ReturnValuePart3 = 0, 
ReturnValue; 
 
            // ---- Loop through each value ---- 
            for (intCounter = 0; intCounter < Values.Length; intCounter++) 
            { 
                ReturnValuePart1 += Math.Abs(Math.Cos(Values[intCounter]) * 
Math.Cos(Values[intCounter]) * Math.Cos(Values[intCounter]) * 
Math.Cos(Values[intCounter])); 
                ReturnValuePart2 = ReturnValuePart2 * Math.Cos(Values[intCounter]) * 
Math.Cos(Values[intCounter]); 
                ReturnValuePart3 += (intCounter + 1) * Values[intCounter] * 
Values[intCounter]; 
            } 
 
            // ---- Get the square root for ReturnValuePart3 ---- 
            ReturnValuePart3 = Math.Sqrt(ReturnValuePart3); 
 
            // ---- Set the return value ---- 
            ReturnValue = ((ReturnValuePart1 - 2 * ReturnValuePart2) / ReturnValuePart3); 
 
            // ---- Return the function value. Multiply by -1 if the value is negative. --
-- 
            if (ReturnValue < 0) { return ReturnValue * -1; } 
            else { return ReturnValue; } 
        } 
 
        #endregion 
 
    } 
} 
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