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Abstract: The aim of this study was to determine the acute metabolic effects of different magnitudes of
wearable resistance (WR) attached to the thigh during submaximal running. Twenty endurance-trained
runners (40.8 ± 8.2 years, 1.77 ± 0.7 m, 75.4 ± 9.2 kg) completed six submaximal eight-minute running
trials unloaded and with WRs of 1%, 2%, 3%, 4% and 5% body mass (BM), in a random order.
The use of a WR resulted in a 1.6 ± 0.6% increase in oxygen consumption (VO2) for every 1% BM of
additional load. Inferential based analysis found that the loading of ≥3% BM was needed to elicit
any substantial responses in VO2, with an increase that was likely to be moderate in scale (effect size
(ES) ± 90% confidential interval (CI): 0.24 ± 0.07). Using heart rate data, a training load score was
extrapolated to quantify the amount of internal stress. For every 1% BM of WR, there is an extra
0.17 ± 0.06 estimated increase in training load. A WR ≥3% of BM was needed to elicit substantial
responses in lactate production, with an increase which was very likely to be large in scale (ES ± 90%
CI: 0.41 ± 0.18). A thigh-positioned WR provides a running-specific overload with loads ≥3% BM,
resulting in substantial changes in metabolic responses.

Keywords: limb loading; heart rate; oxygen consumption

1. Introduction

Endurance running attracts millions of participants both recreationally and competitively across
the globe. Modifiable factors, such as training, play a vital role in enhancing the qualities that determine
running performance. The physiological mechanisms that determine endurance running performance
include the maximum volume of oxygen that can be ventilated, delivered and used by the body’s
cells at sea level (VO2max) [1], the percentage of VO2max that a runner can sustain before blood
lactate accumulation exceeds clearance (%VO2max at second ventilatory threshold VT2) [2,3], and the
metabolic cost of running at a given velocity (RE) [1]. Many trained runners also use resistance training
to improve their running performance, be it by indirectly improving RE, muscular power capabilities
or running performance [4]. Moreover, in recreational distance runners, heavy resistance, explosive
resistance and muscle endurance resistance training have been found to significantly improve running
performance [5]. It is therefore the objective of the practitioner to fully understand the appropriate
training determinants and to be able to effectively and efficiently program training, ensuring the
optimal transfer to performance and the minimization of injuries. At elite levels, the concepts of
progressive overload and specificity become more important.

One means of progressive overload is through wearable resistance (WR), which involves an
external load being attached to areas of the body enabling a sport-specific form of loading [6,7].
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Previous studies have used a wide magnitude of loads (<1% to 40% body mass (BM)) attached to the
trunk or limbs during different sporting actions [6,8]. Though heavier loads (>10% BM) have been used
with trunk WR, lighter WR loads (<8.5% BM) have been sufficient to significantly increase metabolic
demands compared to unloaded walking and running, indicated by increases in oxygen consumption
(VO2), heart rate (HR), energy workload and energy cost [6]. With metabolic demands being greater
with lower body limb loading and demands increasing as comparable load is moved to a more distal
position [9–11], Martin [11] found that adding 0.25 (0.69% BM) and 0.50 kg (1.39% BM) to each thigh at
a running velocity of 12 km·h−1 increased VO2 by 1.7% and 3.5%, respectively. The researchers noted
that HR increases were consistent with increases in VO2, but also noted that HR was less sensitive
to lower extremity loading [11]. The WR loads used by Martin [11] were added via packets of lead
pellets, which were sown into pockets within the shorts. Similarly, the majority of the previous WR
running research that has investigated metabolic cost involved cumbersome methods for attaching the
external load, which may have unfavourably affected the running mechanics [6]. Moreover, limited
research into endurance runners and even more so trained endurance runners has been completed.
It is also unknown how a spectrum of incremental WR loads will impact metabolic cost and what
this relationship looks like. Understanding the metabolic effects from between loads may enable
practitioners to prescribe a more appropriate loading %BM to target different aspects of training. Given
the improved technology in recent WR loading, and the fact that an incremental spectrum of loading
has yet to be investigated, the purpose of this study was to investigate how a magnitude of between 1%
and 5% BM WR attached to the thigh affected the acute metabolic responses to submaximal running
in endurance-trained runners. It was hypothesized that the additional loading from the WR would
overload the leg musculature, resulting in greater metabolic responses during submaximal running.

2. Materials and Methods

2.1. Subjects

Twenty endurance-trained runners (two female and 18 male, 40.8 ± 8.2 years, 1.77 ± 0.7 m,
75.4 ± 9.2 kg) were recruited for the current study. All of the runners had no history of any major health
issues and had completed a minimum of one half-marathon distance event in the 12 months prior to
the commencement of the study. In addition, they were required to be actively engaged in endurance
running training at the onset of the study and have an average VO2max of 59.6 ± 7.9 mL·kg−1

·min−1.
The ethical approval for this study was obtained from the AUT University Ethics Committee. Before
testing, all of the participants provided their informed consent in writing and completed a pre-exercise
health questionnaire (Par-Q).

2.2. Procedure

All running trials were conducted under stable laboratory conditions (ambient conditions:
21 ± 3 ◦C, <60% relative humidity) on a motorized treadmill (Woodway, Waukesha, WI, USA) with
the gradient set a 1% [12]. The HR response data was collected using an HR monitor (Polar A300,
China) and the oxygen consumption data was measured using a carbon dioxide and oxygen analyzer
(Metalyzer Cortex, Biophysik GmbH, Leipzig, Germany), which was calibrated before each testing
session according to the manufacturer’s specifications. All of the capillary samples were drawn from
the preferred finger of the runner and lactate (LA) accumulation was measured using a blood LA
analyzer (LA Pro 2, Shiga, Japan). Any subjective data was measured by way of the rate of perceived
exertion (RPE) using a modified BORG 10-point scale [13]. For the WR conditions, subjects were
required to wear a pair of compression shorts with associated loads (LilaTM, ExogenTM, Wilayah
Persekutuan Kuala Lumpur, Malaysia). The WR was added via 100 or 200 g increments and the total
load for each trial was rounded to the nearest 100 g. The loading schemes began with each WR load
placed alternatively from the anterior to the posterior, in a stacked balance of distal to proximal (see
Figures 1 and 2). A spectrum of WR loading was used (0%, 1%, 2%, 3%, 4%, and 5% BM) which was
comparable to previous WR studies [11,14–17], to examine changes between the loading magnitudes.
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Figure 1. Example of a thigh wearable resistance loading pattern (1% body mass). Figure 1. Example of a thigh wearable resistance loading pattern (1% body mass).
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Figure 2. Example of a thigh wearable resistance loading pattern (5% body mass). 

For each participant, the study was conducted over a maximum of 15 days. This included one 
familiarization session and three testing sessions (see Figure 3) under laboratory conditions. The 
purpose of the familiarization session was to allow each runner to become accustomed to treadmill 
running while wearing both the compression shorts and all the metabolic measuring equipment. The 

Figure 2. Example of a thigh wearable resistance loading pattern (5% body mass).

For each participant, the study was conducted over a maximum of 15 days. This included one
familiarization session and three testing sessions (see Figure 3) under laboratory conditions. The purpose
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of the familiarization session was to allow each runner to become accustomed to treadmill running while
wearing both the compression shorts and all the metabolic measuring equipment. The participants
completed a self-paced run for 20 min followed by a 10 min recovery. During this recovery time, the graded
exercise test (GXT) protocol was discussed and an HR monitor and gas mask fitted. The participants then
completed a further 10 min run—including a sufficient amount of the GXT incremental protocol, to feel
comfortable with the procedures—and no data was collected. The participants were instructed to refrain
from training on the day of testing session one and to avoid any strenuous training sessions 24 h prior.
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Figure 3. Structure of the testing sessions.

Testing session one occurred within seven days of completing the familiarization session.
The purpose was to generate a VO2 response profile to graded exercise to establish VT1, VT2

and VO2max. The participants completed a self-paced 20 min warm-up on a treadmill and were given
a recovery period of 10 min prior to the commencement of the GXT. The starting speed was maintained
for 1 min, followed by an increase of 0.5 km·h−1 every 30 s until the point of voluntary exhaustion [18].
The starting speed was adjusted on an individual basis, to ensure volitional exhaustion at between
8 and 12 min. VO2 was tracked continuously at a sampling rate of 0.1 Hz, and the HR and RPE
were recorded at each speed increment, with LA being measured immediately after completion of
the test. The maximum oxygen consumption was, on average, over 30 s and was considered to be
achieved if any one of the following criteria were met: a plateau in VO2 was reached, despite an
increase in workload; a respiratory exchange ratio (RER) >1.15 was observed; an HR within five beats
of the age predicted maximum (220-AGE) was reached; or a peak exercise blood LA concentration
>8 mmol/L was achieved [19]. The testing sessions two and three included all submaximal running
trials, to measure metabolic and subjective responses while un-loaded and loaded. Testing session two
occurred within 2–5 days of testing session one and testing session three occurred within 2–3 days of
testing session two, to ensure no fatigue between all three sessions (Barnett, 2006). Testing session two
included three WR loads, testing session three included the final three WR loads and load order was
randomized. At the start of both testing sessions two and three, an 8 min warm up—set at a running
speed equivalent to VT1—was completed, followed by a 10 min recovery. VT1 was chosen as this is
close to the typical training intensity in endurance sports, in line with the polarized model of training.
The polarized training model has been shown to be common practice among elite endurance runners,
for whom long, slow distance training at lower intensities (<VT2) makes up 75% of an individual’s
training volume, with shorter, higher intensity bouts of effort (>VT2) making up the remainder of
the training program [13]. Each submaximal running trial lasted 8 min, with 10 min seated recovery
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between each subsequent trial. The oxygen consumption and HR were tracked for 2 min prior to each
trial starting, for the 8 min of each trial (with the final 2 min used for analysis) and for 2 min post trial.
The rate of perceived exertion and LA was recorded immediately post completion of each 8 min trial.

Statistical Analysis

Descriptive statistics—including the means and standard deviations—were calculated for each
measure. The statistical aim of this study was to make an inference about the impact on metabolic stress
of submaximal running with WR, which requires a determination of the magnitude of an outcome.
The traditional sample size estimation and hypothesis testing approach was not appropriate for this
study design [20]. Accordingly, inferential statistics were used to examine the qualitative meaning of
the observed changes in the metabolic cost (VO2, HR, LA) and perception (RPE) of submaximal running,
with loaded compared to unloaded examples. The collected data was presented as the mean value for
each, with the reported effect size (ES) and percent differences at a 90% confidence interval (CI). The
smallest worthwhile change was used to determine if any observed changes were considered trivial,
possible or likely, including the magnitude of each change, calculated as a change in score standardized
to 0.2 of the between–subject SD from the unloaded condition [21]. The qualitative probabilities were
defined by the scale <0.5% most likely trivial increase, <5% very likely trivial increase, <25% likely
trivial increase, 25–75% possible small increase, >75% likely moderate increase, >95% very likely large
increase, >99.5% most likely very large increase and the outcome was deemed unclear where the 5%
and 90% CI of the mean change overlapped with both the positive and negative outcomes [20]. To help
quantify the metabolic cost of WR based on relative exercise intensity and duration, HRs were used to
extrapolate a training load score (TLS) for each load [22] for 10 min of running. To understand the
relationship between metabolic variables (VO2, HR and TLS) and load, a scatterplot was created in
excel to establish a linear equation and R2 value for each variable. The formula used for calculating the
Training Load Score (Training Stress Score (TSS) [22] was:

TLS = (sec × HR × IF)/(VT2 × 3600) × 100
IF (intensity factor) = HR/VT2

Key: TLS: Training load score, HR: Heart rate (average heart rate during exercise), IF: Intensity
factor, VT2: Second ventilatory threshold (the point at which LA accumulation exceeds clearance).

3. Results

The mean oxygen consumption of submaximal running at 1% BM was 3.67 L (±0.59) with an
increase of 1.7% (±0.01), however this resulted in a likely trivial increase (0.13± 0.08) (Table 1). Similarly,
a very likely trivial increase was witnessed at 2% BM (0.06 ± 0.7) with a mean oxygen consumption of
3.73 L (±0.62) and a 2.4% (±0.01) increase. Both 3% and 4% BM reported a likely moderate increase
(0.24 ± 0.07 and 0.29 ± 0.09 respectively), with mean oxygen consumption values of 3.80 L (±0.62)
and 3.84 L (±0.64) respectively, and 4.3% (±0.01) and 5.4% (±0.02) increases respectively. The 5% BM
condition saw a most likely very large increase (0.43 ± 0.07) at 3.94 L (±0.66) mean oxygen cost and an
8.1% (±0.01) increase. Figure 4 contains the percentage change in oxygen response from unloaded to
loaded (±90% CI). Linear regression was carried out and showed a positive relationship (R2 = 0.96),
representing an additional 1.59% (±0.62%) increase in oxygen consumption for every 1% BM of
additional load.

The mean HR response to submaximal running with a load of 1%BM was 158 bpm (±13.42), with a
0.4% (±0.01) increase and resulted in a very likely trivial increase (0.05± 0.11) (Table 2). A Possible small
increase was witnessed at 2% and 3% BM (0.17 ± 0.15 and 0.2 ± 0.13 respectively), with mean values
of 159.50 (±13.42) and 160 bpm (±12.35) respectively, with 1.5% (±0.01) and 1.8% (±0.01) increases
respectively. There was a mean HR response of 162 bpm (±11.99) and a 2.9% (±0.01) increase at 4% BM,
reporting a likely moderate increase (0.32 ± 0.16). At 5% BM, a very likely large increase (0.33 ± 0.12)
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with a mean HR response of 162 bpm (±11.36) and 2.9% (±0.01) increase was seen. Figure 5 contains the
percentage change in HR responses from unloaded to loaded (±90% CI). Linear regression was carried
out and showed a positive relationship (R2 = 0.94), representing an additional 0.63% (±0.32) increase in
HR response for every 1% BM of additional load. Figure 6 represents the relationship between the TLS
extrapolated from the HR data for the equivalent of 10 min of running at VT1 and load. The regression
equation showed a positive linear relationship (R2 = 0.96), representing an additional 0.17 (±0.06) of
internal training stress for every 1% BM of additional load for 10 min of running.

Table 1. Acute oxygen responses with thigh wearable resistances.

Training Load (%BM) Mean VO2 (L) Effect Size (±90% CI) Rating

0% 3.64 ± 0.57 - -
1% 3.67 ± 0.59 0.13 (0.06; 0.21) (7/93/0) likely trivial increase
2% 3.73 ± 0.62 0.13 (0.07; 0.19) (3/97/0) very likely trivial increase
3% 3.80 ± 0.62 0.24 (0.17; 0.3) (84/16/0) likely moderate increase
4% 3.84 ± 0.64 0.29 (0.2; 0.38) (94/6/0) likely moderate increase
5% 3.94 ± 0.66 0.43 (0.37; 0.5) (100/0/0) most likely very large increase

Abbreviations: BM, body mass; CI, Confidence interval. Values are the mean VO2 collected over the final 2 min
period of 8 min of submaximal treadmill running at the first ventilatory threshold.
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Figure 4. Percent increase in acute oxygen consumption with thigh wearable resistances, compared to
unloaded 8 min submaximal running trials.

Table 2. Acute heart rate responses to thigh wearable resistance.

Training Load (%BM) Mean Heart Rate (bpm) Effect Size (±90% CI) Rating

0% 157 ± 12 - -
1% 157 ± 13 0.05 (−0.07; 0.16) (2/98/0) very likely trivial increase
2% 159 ± 13 0.17 (0.02; 0.31) (36/64/0) possible small increase
3% 159 ± 12 0.2 (0.07; 0.33) (49/51/0) possible small increase
4% 161 ± 11 0.32 (0.16; 0.47) (90/10/0) likely moderate increase
5% 161 ± 11 0.33 (0.21; 0.45) (96/4/0) very likely large increase

Abbreviations: BM, body mass; CI, Confidence interval. Values represent the mean HR collected over the final 2
min period of 8 min of submaximal treadmill running at the first ventilatory threshold.
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Figure 6. Extrapolated Training Load Score (TLS) for thigh wearable resistance for the equivalent of
10 min of running.

The blood LA responses post submaximal running with a load of 1%BM resulted in a mean
accumulation of 2.77 mmol/L (±1.90), however, an unclear effect was exhibited with more data needed
(0.0 ± 0.28) (Table 3). A likely trivial increase at 2% BM (0.08 ± 0.15) with a mean accumulation of
4.83 mmol/L (±2.04) was observed. The loads at 3% and 4% BM reported very likely large increases
(0.41 ± 0.18 and 0.42 ± 0.19 respectively) with mean accumulations of 3.27 (±1.79) and 3.30 mmol/L
(±2.03) respectively. Loads at 5% BM produced a mean accumulation of 3.52 mmol/L (±2.35) and
reported a most likely very large increase (0.49 ± 0.15).
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Table 3. Acute Lactate responses to thigh wearable resistances.

Training Load (%BM) Mean LA (mmol/L) Effect Size (±90% CI) Rating

0% 2.62 ± 1.56 - -
1% 2.77 ± 1.90 0.0 (−0.27; 0.28) (12/77/11) unclear effect
2% 4.83 ± 2.04 0.08 (−0.07; 0.23) (10/90/0) likely trivial increase
3% 3.27 ± 1.79 0.41 (0.23; 0.60) (97/3/0) very likely large increase
4% 3.30 ± 2.03 0.42 (0.23; 0.61) (97/3/0) very likely large increase
5% 3.52 ± 2.35 0.49 (0.34; 0.63) (100/0/0) most likely very large increase

Abbreviations: BM, body mass; CI, Confidence interval. The values are mean blood LA accumulations sampled
immediately post 8 min of submaximal treadmill running at the first ventilatory threshold.

Post submaximal running with a load of 1% BM resulted in a possible small increase (0.28 ± 0.25)
and a mean reported score of 3.35 (±1.16) in RPE (Table 4). There was a likely moderate increase at
2% BM (0.43 ± 0.23), with a mean reported score of 3.68 (±1.44) and there was a mean reported score
of 3.73 (±1.33) and very likely large increase at 3% BM (0.52 ± 0.26). Both 4% and 5% BM reported
most likely very large increases (0.82 ± 0.29 and 0.86 ± 0.28 respectively), with mean reported scores of
4.20 (±1.26) and 4.38 (±1.57) respectively.

Table 4. Acute rate of perceived exertion responses to thigh wearable resistances.

Training Load (%BM) Mean Rate of Perceived Exertion Effect Size (±90% CI) Rating

0% 3.08 ± 1.37 - -
1% 3.35 ± 1.16 0.28 (0.03; 0.53) (70/30/0) possible small increase
2% 3.68 ± 1.44 0.43 (0.19; 0.66) (95/5/0) likely moderate increase
3% 3.73 ± 1.33 0.52 (0.26; 0.78) (98/2/0) very likely large increase
4% 4.20 ± 1.26 0.82 (0.53; 1.11) (100/0/0) most likely very large increase
5% 4.38 ± 1.57 0.86 (0.58; 1.14) (100/0/0) most likely very large increase

Abbreviations: BM, body mass; CI, Confidence interval. The values are mean RPE scores recorded immediately
post 8 min of submaximal treadmill running at the first ventilatory threshold.

4. Discussion

The aim of this study was to understand the acute metabolic effects of thigh WRs during
submaximal running in endurance-trained runners. It was found that for every 1% BM of additional
load, there is an expected 1.59% (±0.62) and 0.63% (±0.32) increase in VO2 and HR response respectively.
A thigh WR of at least 3% BM was needed to have a likely moderate increase (0.24 ± 0.07) in VO2

response, with a most likely very large increase (0.43 ± 0.07) exhibited at 5% BM. A loading of at least
2% BM was needed to have a possible small increase (0.17 ± 0.15) in HR response, with a very likely
large increase (0.33 ± 0.12) at 5% BM. This resulted in a predicted 0.17% (±0.06) increase in internal
stress for every 1% BM of additional load for 10 min of running at a speed equivalent to VT1. For the
mean RPE, a loading of 2% resulted in likely moderate increases, with 3% BM needed for very likely
large increases. Findings from this study provide further WR information for practitioners over a
magnitude of thigh WR loads, to effectively integrate WR into their training regimes.

The VO2 and HR data collected in this study agrees with previously reported findings, showing
that limb loading during locomotion can increase the metabolic cost compared to unloaded [9,10],
however, these studies investigated lower extremity loading (feet). Martin’s [11] is the only other
metabolic study to use thigh loading, and reported an increase in oxygen consumption of 1.7% and
3.5% when the equivalents of 0.69% and 1.39% BM, respectively, were added to the thighs of highly
trained male distance runners, with increases in VO2 response to load reaching statistical significance
(p < 05). From the findings in this study, the incremental loading of 1% to 5% BM resulted in linear
increases in VO2 from 1.7% to 8.1%. Comparatively, an increase in VO2 of 1.59% for every 1% BM
(equivalent to 0.75 kg when extrapolated from the mean weight of our participants) of additional
load was also observed. Accordingly, the increase in cost is slightly less compared to the findings of
Martin [11]. The statistical method used in the current study (inferential based analysis), demonstrated
that thigh WR loading of at least 3% BM was needed to lead to a likely moderate increase (0.24 ± 0.07).
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Martin [11] produced statistically significant increases in oxygen consumption at loads lower than 3%
BM on the thighs, however, they did not report any effect sizes to establish the magnitude of this change.
From studies that used heavier WR attached to the trunk, non-significant, small effect size increases
(0.1%–0.3%) in VO2 were found during 3 min running at four speeds (9.6–13.1 km/h) utilizing 5% and
10% BM loading [23], while moderate and significant increases (6%–17%) were found during walking
with heavier WR (10%–20% BM) from 4 min stages at speeds of 3–6.4 km/h [24]. Therefore—despite
the lighter loads used in this study (1%–5% BM)—when WR is attached to the thighs, greater VO2

changes occur compared to trunk placement, most likely due to the greater inertial demands from
distal thigh loading.

In terms of HR responses, Martin [11] only reported on mean values, but showed a similar trend to
that of VO2 in that HRs increased slightly with additional loads to the thighs. These changes, however,
did not reach statistical significance and the researchers suggested that HR is a less sensitive measure
of thigh loading under 1.39% BM. Comparatively, in this study, an increase in HR of 0.63% was found
for every 1% BM (equivalent to 0.75 kg when extrapolated from the mean weight of our participants) of
additional load, which is less than half that of VO2 (1.59%) for the same load. Inferential based analysis
demonstrated that thigh loading of at least 2% BM was needed to lead to a possible small increase
(0.17 ± 0.15) in HR response with 1% BM reporting a very likely trivial increase (0.05 ± 0.11). Using the
HR data collected, a TLS was extrapolated to help quantify the amount of internal stress each loaded
trial would have over a 10 min running period. Based on the linear regression equation produced
for TLS plotted against load, for every 1% BM of additional load, there is an extra 0.17 increase in
internal stress. A TLS was calculated, as it is a commonly used method for quantifying training stress
for endurance athletes and may help put into context the impact that added load has on HR. Linear
increases were found in mean RPE (3.08 to 4.38) with a loading of 2%, resulting in likely moderate
increases, while very likely large increases were found with 3% BM. The authors note and acknowledge
that the following limitations of the research should be considered for future investigations. This study
may only suggest the possible responses found during the repeated application of such loading
schemes to short-term submaximal running at a speed equivalent to VT1. Due to the subject inclusion
criteria (male and female endurance-trained runners), the findings of this study may only be applied to
this population. Trials were performed under laboratory conditions, which are not directly comparable
to the traditional method of training for endurance-trained runners.

5. Conclusions

The current findings suggest that using thigh-loaded WRs while running at a speed equivalent
to VT1 will elicit an increase in metabolic response when compared to unloaded running. There is
an expected increase in VO2 and HR response of 1.59% (±0.62) and 0.63% (±0.32), respectively, for
every 1% BM of additional load and an increase in exercise stress of 0.17 (±0.06) for the equivalent
of 10 min of running for every 1% BM of additional load. However, loads of at least 2% and 3% BM
are needed to see substantial increases in HR and VO2 responses respectively. The findings from
the current study provide some evidence for quantifying the potential increases in both VO2 and
HR responses to thigh WR loading during short-term submaximal running. It also gives means for
quantifying an expected TLS for loaded submaximal running for a given duration. WRs attached to the
legs enable a running-specific form of resistance training to be incorporated into training programing.
Practitioners may be interested in moving the load distally away from the hip, as this placement seems
to have a greater impact on metabolic cost, compared to commonly used trunk loading. However, this
evidence is based only on 8 min of running and the effects of longer duration WR running under these
conditions are still unknown and, more importantly, how the nature of this stimulus carries over to
performance should be considered for future research. Building an understanding about how WR
impacts the body acutely is important to help guide an evidence-based approach to programming,
however, ultimately the potential longitudinal adaptations from WR require future investigations.
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