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Abstract 

 

From  the  advent  of  association  rule  mining,  it  has  become  one  of  the  

most researched areas of data exploration schemes. In recent years, 

implementing association  rule  mining  methods  in  extracting  rules  from  a  

continuous  flow  of voluminous data, known as Data Stream has generated 

immense interest due to its emerging applications such as network-traffic 

analysis, sensor-network data analysis. For such typical kinds of application 

domains, the facility to process such enormous amount of stream data in a 

single pass is critical.  

 

Nowadays, many organizations generate and utilize vast data streams (Huang, 

2002). Employing data mining schemes on such massive data streams can 

unearth real-time trends and patterns which can be utilized for dynamic and 

timely decisions. Mining  in  such  a  high  speed,  enormous  data  streams  

significantly  differs  from traditional  data  mining  in  several  ways.  Firstly,  the  

response  time  of  the  mining algorithm should be as small as possible due to 

the online nature of the data and limited resources  dedicated  to mining  

activities  (Charikar,  2004).  Second,  the underlying data  is highly  volatile  

and  subject  to change  over  period  of  time (Chang,  2003). Moreover, since 

there is no time for preprocessing the data in order to remove noise, the 

streamed data can have noise inherent in it. Due to all aforementioned 

problems, data stream mining is receiving increasing attention  and  current  

research  is  now  focused  on  the  efficient  resolution  to  the problem cited 

above.  

 

Although, the field of data stream mining is being heavily investigated, there is 

still a lack of a holistic and generic approach for mining association rules from 

data streams. Thus, this research attempts to fill this gap by integrating ideas 

from previous work in data stream mining. This investigation focuses on the 

degree of effectiveness of using a probabilistic approach of sampling in the data 

stream together with an incremental approach to maintenance of frequent 

itemsets in a data stream environment. The following thesis describes the 

design and experimentation conducted with a novel association rule mining 

algorithm that can be deployed on a high speed data stream.  
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Chapter 1 Introduction 

 

1.1 Motivation for the Research 

 

Association rules, as its name suggests, expresses relationships between items 

in (generally large) datasets. This powerful data mining technique has a wide 

range of applications including Market-Basket analysis, text mining, web mining 

and pattern recognition between genes in a dataset. Such rules enable users to 

uncover hidden relationships and patterns in large datasets. For example, 

customer’s buying patterns or relationships between different genes in 

organisms. The seminal work of (Agrawal, 1994) and the proposed Apriori 

algorithm spurred a plethora of research in the area of association rule mining. 

 

In a wide range of emerging applications, data is in the form of an enormous, 

continuous stream where the speed at which the data is produced outstrips the 

rate at which it can be mined (Charikar, 2004). This is in direct contrast to 

traditional static databases; thus data stream mining therefore is substantially 

deviant from conventional data mining in numerous aspects. Firstly, the 

absolute volume of data embedded in a data stream over its lifespan can be 

overwhelmingly huge (Gaber, 2005). Secondly, due to resource bottlenecks, 

generating timely responses by keeping response time to queries on such data 

streams is necessary (Jiang, 2006). 

 

Because of the issues stated above, data stream mining has become the 

subject of intense research and the problem of obtaining timely and accurate 

association rules is a contemporary research topic. There is a critical need to 

switch from traditional data mining schemes to those methods that are able to 

operate on an open-ended, high speed stream of data (Manku, 2002).  

 

Due to the inherent nature of a data stream, any mining scheme faces the 

following challenges (Gaber, 2005). Firstly, due to the continuous nature of 

stream data, the traditional approach of scanning the database multiple times 

for model creation is no longer feasible. Moreover, the time required to rescan 

the database can severely degrade performance and response time. In the 

most fundamental sense, storage of the large amount of data produced will 
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pose a major constraint on storage resources. Hence, an effective and compact 

memory structure along with an appropriate single pass algorithm becomes 

indispensable for data stream mining (Jiang, 2006).  

 

Secondly, the algorithm should be able to adjust itself to the changing nature of 

the stream data which gives rise to the notion of Concept Drift (Wang, 2003). All 

data streams are susceptible to change in the content of data with the passage 

of time. Such changes in data content usually give rise to changes in patterns, 

thus giving rise to the phenomenon referred to as Concept Drift. Concept drift 

tends to further complicate the process of mining as patterns which were 

generated on a past segment of data may not hold in the future, thus giving 

need to a continuous monitory mechanism that checks and updates models 

created as and when necessary. 

 

Thirdly, due to the fact that data in a stream may arrive at high speed, the data 

has to be processed quickly lest we lose important data. This constrains the 

mining speed to be faster than the incoming data rate (Lin, 2005), otherwise, 

the algorithm will have to employ some form of approximation technique such 

as load-shedding, sampling, or sketching (Gaber, 2005) which has the effect of 

degrading accuracy due to the probabilistic approach employed. Since storage 

of data in secondary storage is not an option, the success of any data stream 

mining algorithm depends on its ability to build a synopsis of the data in main 

memory and maintain such a synopsis in the face of continuous changes that 

take place in the underlying data stream. To this end, research into closed 

itemset mining becomes relevant as closed itemsets are a compact 

representation of the set of all itemsets without loss of information (Chi, 2004).  

Given a set of frequent closed itemsets it is possible to deduce the subset of 

frequent itemsets, along with their support values. Thus closed frequent itemset 

mining is one of the fundamental building blocks of this research. 

 

The three factors above, taken together, dictate that an incremental approach to 

mining needs to be adopted in a data stream environment (Huang, 2002). The 

major factor affecting the efficacy of such a mining algorithm is: computing 

resources such as CPU time and memory; hence a resource-aware algorithm 

capable of adjusting itself as per resource availability is crucial for upholding the 
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performance of the mining algorithm. Thus, it is clear that in the field of data 

stream mining, a novel approach is required that for exploits the generation of 

frequent closed itemsets along with sampling and memory optimization 

techniques is crucial. 

 

1.2 Research Objective 

 

Many application domains require investigating the associations inherently 

present in the databases, such domains include text mining, pattern analysis, 

web data analysis, bio informatics (Pang, 2006). Association rule mining, as the 

name suggests, an activity of discovering hidden relationships and associations 

in the large databases, therefore becomes a highly valuable and vital data 

mining technique in such domains. Armed with information and relationships 

provided by association rule mining techniques , the data miner can have the 

ability to determine buying patterns of customers in market-basked analysis 

application or to unearth the genetic correlation in a bio-informatics study or to 

discover credit card defaulter behavioral patterns in banking domain.  

 

Association rule mining basically can be seen as a two step activity: first, 

determining the frequent itemsets that fulfill the minimum support threshold, 

second, deriving rules from the frequent itemsets that were discovered in first 

step. Since, the efficiency and effectiveness of the generated rules is highly 

affected by the frequent itemset mining phase (Chi, 2004), the frequent itemset 

mining phase has received much significant attention so far. The works such as 

(Chi, 2004), (Charikar, 2004), (Yu, 2004), (Jiang, 2006) are few examples 

where the focus of the research has been mainly on frequent itemset mining 

rather than rule generation phase. Another reason for researchers to focus on 

frequent itemset mining is because the rule generation can be executed 

exponentially quicker than first phase (Bodon, 2003). Therefore, this research 

also is focused on the problem of the frequent itemset mining instead of the rule 

generation. 

 

The seminal work of (Aggarwal, 1993) first addresses the problem definition of 

frequent itemset mining, which can be modified to adjust finding frequent 

itemsets over continuous data stream and be expressed as following, 
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Let ‘I’= {i1, i2, i3... im} be set of items. A data stream of transactions ‘T’ is a 

sequence of incoming transactions where each transaction contains itemset ‘X’ 

which is a subset of items ‘I’. Support of ‘X’, denoted as ‘sup(X)’ is the number 

of transactions that contained X. The itemset X is a frequent itemset is sup(X) ≥ 

‘s’, where ‘s’ is minimum support threshold. The algorithm Data-Stream-Mining 

(DSM) is to find an approximate collection of frequent itemsets (relative to the 

minimum support threshold provided by the miner). The approximation is 

controlled (similar to (Yu, 2004)) by parameters epsilon ‘ε’ and delta ‘δ’ to 

regulate the degree of error and reliability respectively. 

 

1.3 Structure of the thesis 

 

This chapter has discussed the challenges associated with rule generation in a 

data stream environment. Technical issues such as the need for efficient 

memory management and the need for an incremental approach for model 

building were shown to be indispensable for mining rules in a data stream 

environment. Furthermore, the problem of concept drift was identified and it was 

noted that a monitoring mechanism that continuously tracks changes in the data 

stream needs to be implemented. 

 

 In the next chapter we will survey past work done in the area of association rule 

mining, with particular emphasis to algorithms proposed for mining in a data 

stream environment. We will also note and briefly comment on research into 

closed frequent itemset mining as it forms one of the cornerstones of our 

research. 

 

In Chapter 3 we will present our methodology which will include an overall 

architecture and the design of the algorithm that we utilized for experimentation. 

The three different strands of our research, namely the partitioning of the data 

stream into blocks, the use of closed itemset mining and the incremental 

approach will be fully described. 

 

A plan for the empirical study will be presented in Chapter 4. We will detail the 

various experiments that we ran and compare results with previous work, where 
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appropriate. Our experimentation will track performance measures such run 

time, memory consumption and rule accuracy which is measured in terms of 

Precision and Recall. 

 

Chapter 5 presents the experimental results that show that our proposed 

algorithm outperformed the current state of the art data stream association rule 

miner on all metrics that we tracked. 

 

Chapter 6 discusses several different directions in which future work can be 

undertaken to further improve the performance of our proposed. Chapter 7 

concludes the thesis with a discussion of the key achievements of the research. 
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Chapter 2 Literature Review 

 

2.1 Introduction 

 

The problem of mining association rules from a data stream has been 

addressed by many authors but there are several issues (as highlighted in 

previous sections) that remain to be addressed. In the following section we will 

discuss existing literature based on the problems in data stream mining that 

they address. 

 

The research in this domain can be effectively classified into three different 

domains namely, Exact methods for Frequent Itemset Mining, Approximate 

Methods and Memory Management techniques adopted for data stream mining.  

 

 

2.2 Exact approaches to Frequent Itemset Mining 

 

There are two main approaches to mining association rules in a data stream 

and these can be categorized into either Exact or Probabilistic approaches 

(Gaber, 2005). The Exact approaches offer the highest level of accuracy but 

compromises on execution speed, particularly in the case of voluminous, high 

speed streams. The algorithms that adopt exact approaches include (Yang, 

2004), (Chi, 2004).  

 

(Yang, 2004) proposed a method for determining short frequent itemsets in one 

scan of data and then generating association rules from the discovered frequent 

itemsets. It used a basic primitive data structure, an array, to store the support 

information of the frequent itemsets for a predefined length of the itemset. The 

elements in the array are arranged in lexicographical order just as in a 

dictionary. The array at any moment of time contains only those itemsets who 

has length less than ‘k’ where ‘k’ is predefined maximum length of frequent 

itemsets in the database. Since the array is set up in lexicographical order, 

adding a new itemset to the array becomes very efficient and quick with the 

help of a merge sort operation. 
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Whenever a transaction is received, for all the itemsets that fulfill the itemset 

length condition (less than k), a method ‘rank’ is invoked to return the index of 

the itemset in the array structure. Once the index position is obtained, the 

itemset at that location gets its support count incremented. If the itemset does 

not exist then an entry for the new itemset is created with the help of the merge 

sort operation. Whenever the user requests mined results, all the itemsets 

fulfilling minimum support threshold are determined by traversing the array and 

the association rules are generated and presented to the user. 

 

The approach proposed by (Yang, 2004) suffered from a major limitation in that 

it was capable of only handling short (k ≤ 3, where ‘k’ is length of itemset) 

itemsets and it failed in the case of large itemsets. It is based on the assumption 

that most applications would be interested in only short frequent itemsets. This 

assumption is questionable in a data stream environment. 

 

Chi (2004) proposed a new algorithm, Moment, to mine and store all closed-

frequent-itemsets using a sliding window which holds the most recent samples 

in a data-stream. The recent samples are stored using memory-structure called 

the Closed-Enumeration-Trees (CET) The CET is constructed using a depth-

first process which maintains every itemset in lexicographical order and if the 

itemset is found frequent then it is added to the tree as a node. Non-frequent 

itemsets are also stored as they may become frequent in the future. This 

approach distinguishes between 4 types of nodes, namely, Infrequent gateway 

node (infrequent nodes whose parents and/ siblings are frequent), Unpromising 

gateway node (infrequent node who has a superset having same support as 

itself), Intermediate node (frequent node who has a superset having same 

support as itself), and Closed node (node which has no children with greater or 

equal support as itself).  

 

During the sliding window timeframe, whenever a transaction arrives, Moment 

classifies the nodes present in the transaction into one of the 4 categories 

mentioned previously. Unlike prefix trees, Moment’s CET maintains only closed 

itemsets and nodes that mark the boundary between closed itemsets and the 

rest of the itemsets. A hash table keeps track of all the nodes seen so far which 

is updated to maintain support information of all the nodes seen so far. After the 
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arrival of a new transaction the oldest transaction is effectively deleted from the 

time window by traversing through the nodes that were affected by this 

transaction. At the same time the new transaction is added by noting the node 

type for each itemset contained in the transaction and updating the relevant 

nodes in the CET as needed. Whenever the user requests for mined results the 

CET (which observes only closed nodes and boundary nodes) is traversed to 

mine the top ‘n’ closed-frequent itemsets. 

 

(Chi, 2004) assumed that all the interesting changes occur at the boundary of 

closed-frequent itemsets and rest of the itemsets which turns out to be true 

most of the time. Nevertheless, the Moment algorithm suffers greatly due to the 

CET data structure (cost-enumeration-trees) whose operations such as tree 

creation and maintenance is very time-consuming (since it scans the 

constructed tree in a depth-first manner). Although the algorithm suggested by 

(Chi, 2004) outperformed the then state-of-art approach which was CHARM (M. 

Zaki, Gouda, K., 2001), it maintained a large number of nodes in the tree 

structure which hindered its performance significantly.  

 

Table 2-1: Node maintenance Statistics (Chi, 2004) 

 

It is evident from Table 2.1 that Moment spends significant amount of resources 

on creating and maintaining a huge number of unnecessary nodes. Column 4 

shows that the total number of nodes it maintains is at least 26.5 times the 

number of closed frequent nodes. Given that all information on rule generation 

can be obtained through the use of closed frequent itemsets only, it is evident 

that the storage and computational overheads consumed by Moment are very 

high.  
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Thus, it can be surmised that, although algorithms based on exact methods 

guarantee better accuracy they suffer greatly in terms of computation time and 

memory requirements. Therefore, several approximation based methods were 

initiated to provide satisfactory performance by keeping computation costs 

under control. Such approximation based approaches include (Yu, 2004), 

(Wang, 2003), (Manku, 2002) and (Charikar, 2004).  

 

2.3 Approximate approaches to Frequent Itemset Mining 

 

We now describe approximate methods that prioritize on performance, at the 

possible expense of accuracy. Some of them offer worst-case error guarantees 

to provide a level of confidence in the results generated (for example, (Charikar, 

2004)). The algorithms that do not provide such error guarantees include (Yu, 

2004). Since these were approximated results, the algorithms following these 

methods suffered from either False-Positives (certain itemsets which are not 

frequent are wrongly identified as frequent itemsets) or False-Negatives (certain 

frequent itemsets are not identified by the algorithm as frequent itemsets) (Yu, 

2004)(Jiang, 2006). Many of these algorithms employed approximation 

techniques such as sampling, load-shedding, clustering and sliding window 

mechanisms (Gaber, 2005). 

 

Yu (2004) proposed algorithms that can mine frequent items as well as frequent 

itemsets from data-streams with the use of a memory-consumption constraint. 

The suggested algorithm, Frequent-Data-stream-Pattern-Matching, (FDPM) 

produces a set of frequent itemsets that has Recall values that are reported to 

be in the high 90 percentile mark, meaning that the results it produces are a 

very good approximation to that produced by exact methods such as Moment. 

The approximation is governed by two parameters that are referred to as the 

error-control and reliability-control parameters that set the level of error and the 

degree of statistical significance attributable to the result, respectively. The 

algorithm is false-negative oriented meaning that it may not pick every frequent 

itemset but it guarantees that every itemset picked is frequent. 

 

The algorithm uses the Chernoff bound (Ravikumar, 2004) to conceptually 

partition the data stream into frames, each of which represents a chunk of data 
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on which inferences about the frequency status of itemsets can be made with a 

pre- specified probabilistic guarantee.  FPDM2 uses two data structures, 

namely, ‘P’ and ‘F’. The structure P maintains all the frequent itemsets in the 

current frame whereas F maintains frequent itemsets seen so far. Whenever a 

transaction arrives FPDM2 updates the support information of itemsets that 

exist in P. At the end of a frame it determines the frequent itemsets in P that 

must be transferred to F. Once the current frequent itemsets are transferred to 

F, the data structure P is truncated in order to make room for frequent itemsets 

from the next data frame. Whenever the user requests the mined results, the 

algorithm outputs elements from F that fulfill the minimum support threshold. As 

mentioned before the approach is false negative in nature and was compared 

against (and outperformed) false positive approaches such as Lossy-counting 

and Sticky sampling (Manku, 2002). The Chernoff bound enabled the FPDM2 

algorithm to prune infrequent itemsets from the data structure F safely without 

loss of information as statistical guarantees could be obtained regarding the 

frequency status of such itemsets. Thus, the memory resources consumed by 

FDPM could be kept within very tight bounds unlike exact methods such as 

Moment. 

 

Charikar also employed an approximate approach (Charikar, 2004). With the 

help of a compact data-structure, their Count-sketch algorithm mined the data 

stream in a single pass.   

 

The thrust of (Charikar, 2004) lies in the creation and maintenance of its data 

structure, Count Sketch. This data structure consists of a collection of hash 

functions along with an array of counters that simulate an array of hash tables 

(referred to as Heaps). Count sketch has two crucial methods: to append the 

newly found itemset, and to estimate its support count (which is done with the 

help of median values obtained from hash functions). Once the data structure is 

constructed, whenever a new transaction comes, the algorithm computes the 

estimated support count for itemsets present in the transaction and adds them 

into the data structure if the estimate for these itemsets is greater than the 

estimated value for that heap. If the itemset already exists then its count 

information is updated. Whenever the user requests for mined results, it reports 

the top ‘k’ elements as frequent itemsets.  
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This approach mainly focused on obtaining the top ‘n’ frequent itemsets with the 

help of an efficient data-structure. The algorithm is simple in design and is 

compared with a traditional sampling algorithm. The Count-sketch algorithm 

outperformed sampling in the context of storage-space since Count-sketch 

keeps only the top ‘n’ objects from stream whereas sampling keeps 

substantially a large number of objects. The proposed algorithm can be 

extended to a 2-pass algorithm for a scenario of estimating items with large 

frequency-change between two inter-connected data-streams; this issue was 

not addressed so far by any other work. The algorithm is based on hash 

functions which are inherently fast, thus yielding increased speed for the Count-

sketch algorithm. The data structure count-sketch stores only top ‘k’ elements at 

any moment of time. In spite of this, the authors did not address the cost of 

actually storing the elements from the data-stream since different encoding 

techniques (such as Zipfian method) will yield different space usage.  

 

It can be deduced that both exact and probabilistic approaches each have their 

own benefits and drawbacks. Therefore, selection of an association rule mining 

approach should be done as per the domain of investigation since some of the 

application domains may require a higher degree of accuracy (such as the 

Medical or Financial sectors) and certain domains like Marketing require faster 

rather than the most accurate results. 

 

2.4 Memory Management Techniques 

 

With respect to memory management, researchers have emphasized on the 

use of compact data structures for incrementally maintaining itemsets in 

contrast to traditional static database approaches (Jiang, 2006). This is primarily 

because the traditional approaches are not applicable for data stream mining for 

several reasons. First is the problem of insufficient memory. The stream data is 

vast in volume and storing such voluminous data is impractical. Second, the 

support information of the transactions is susceptible to frequent updates and 

therefore, scanning and updating such a huge volume of data is a very costly 

process. Therefore, it is essential to keep minimal, yet sufficient enough for 

mining the association rules from stored data. As an answer to this problem, 
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research by (Yang, 2004), (Charikar, 2004), (Chang, 2003) keeps only frequent 

itemsets in main memory (Jiang, 2006). Thus, their research concentrates on 

the use of compact and efficient memory structures to hold information 

pertaining to only frequent itemsets. 

 

(Charikar, 2004) used the Count-sketch data structure that keeps the estimated 

count support of high frequency itemsets. The main problem with this approach 

is that it supports the generation of only top ‘N’ itemsets (as ranked by 

frequency of occurrence in the data) and does not consider the notion of 

concept drift. Moreover, it suffers from the accuracy-space tradeoff as with 

many other approximation based approaches. Yu (2004) showed that small 

increases in accuracy were accompanied by very exponential increases in 

memory requirements. 

 

Another similar approach is that of (Huang, 2002) which followed the use of the 

FP (frequent-pattern) tree structure, a compact data structure (Lin, 2005) for 

intermediate storage of frequent itemsets. This method is modified and followed 

by many other research works such as (Lin, 2005) and (Chi, 2004). Yet, 

creation, maintenance, and traversal remain primary concern and potential 

bottleneck for FP tree (Huang, 2002). 

 

In general, the literature has employed the tree structure for maintaining 

frequent itemsets and this research will be following the same approach of 

using tree structure for intermediate storage of frequent itemsets.  

 

As mentioned so far, mining association rules from stream data demands 

significant amount of computation resources such as CPU time and memory. 

This is mainly due to the fact that the algorithm has only one scan of the data in 

data stream mining. Thus, the decision as to when to update the model 

(whether at mining time or as and when updates come) is crucial and influences 

the performance of the underlying mining algorithm (Jiang, 2006). 

 

The most commonly followed approach is the use of an incremental approach 

for maintaining and updating association rules. The first such effort was that of 

(Cheung, 1996). Although, this approach was not fully applicable for stream 
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data, it provided the necessary framework for all other approaches that follow 

an incremental approach for updating and maintaining association rules. Zheng 

in (Zheng, 2003) employed a metric for determining the difference between 

sequential patterns. This metric was used to indicate when to update the 

support information of the sequential patterns. Nevertheless, this approach was 

suitable only where the problem of concept drift was minimal. Certain other 

approaches try to determine a trigger event which can be used as a cue to 

update all the transactions. Such approaches include (Ben-David, 2004) which 

used statistical means such as chi-square methods to find out the difference 

between past frame data and current frame data. Depending on the variation in 

the data the decision of updating the rule base or to defer the update to a later 

stage was taken. Nevertheless, it assumed that the underlying data distribution 

would remain the same for the lifespan of the data stream which is seldom the 

case in most real-world data streams. 

 

Besides an efficient memory construct to hold valuable information, memory 

management also involves the use of the closed frequent itemsets. In practice, 

transactional data leads to the production of an exponentially vast number of 

frequent patterns, therefore it becomes incumbent to discover a small fraction of 

patterns that are representative and from which other frequent itemsets can be 

derived (Pang, 2006). There are two such representations, namely, Maximal 

frequent itemsets, and, Closed frequent itemsets (Celgar, 2006). The proportion 

of maximal and closed frequent itemsets against frequent itemsets is as shown 

in following figure. 

 

Fig. 2-1 Relationships between Frequent, Closed frequent and Maximal 

frequent itemsets (Pang, 2006) 
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A maximal frequent itemset can be defined as a frequent itemset for which none 

of its direct children (supersets) are frequent itemsets, whereas, a closed 

frequent itemset ‘X’ can be defined as a frequent itemset for which none of its 

direct successors (supersets) have same support as that of ‘X’. It is clear from 

the definition and the figure above that the number of maximal itemsets in a 

dataset is significantly lesser than that of closed frequent and frequent itemsets. 

In spite of providing a concise representation, Maximal frequent itemsets do not 

provide lossless representation since they do not contain support details of their 

ancestors (subsets). Closed frequent itemsets, on the other hand do provide a 

compact and lossless representation and therefore much research (Jiang, 

2006), (Wen, 2004), (Chi, 2004), (Zaki, 2002) has focused on exploiting the 

power of closed frequent itemsets in association rule mining. 

 

Jiang (2006) exploited closed frequent itemsets for association mining in a data 

stream environment. The proposed algorithm, called CFI-stream computes 

closed itemsets incrementally, on the fly without any support information (with 

the help of closure function). It uses the closure function to determine whether 

an itemset is closed or not. The data structure referred to as DI Update (Direct 

Update) tree stores only closed itemsets in a lexicographical order. 

 

CFI-stream is based on sliding window framework and therefore has to account 

for new transactions arriving in the window as well as decaying the effect of 

transactions that were dropped off. Whenever a transaction is dropped off as 

result of its departure from the sliding window, a routine traverses through every 

itemset in that transaction and then updates the related closed itemsets to 

reflect deletion of the transaction. Addition of a new transaction is also dealt 

with similarly by updating only associated closed itemsets. This checking of 

closed nodes to see if they are associated with itemsets from current 

transaction saves computational time in case of introduction of a new 

transaction, but it can severely degrade performance while diminishing the 

effect of past transactions since it has to traverse through the tree for all the 

nodes and update them. 

 

Although CFI-stream outperformed Moment (Chi, 2004) in most of the 

experiments, it is highly efficient only for the datasets where there exists a 
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higher degree of correlation between the transactions. Moreover, the 

housekeeping functions to simulate sliding window framework, such as 

traversing the DI Update tree and updating all the associated closed nodes for 

introduction of new transactions and deletion of old transactions can very well 

be resource consuming. 

 

It is observed that closed frequent itemset mining has been significantly 

researched for last few years and it continues to be so because of advent of 

different application domains such as high speed data streams. 

 

2.5 Summary 

 

In this chapter, we have provided a brief outline of association rule mining 

algorithms in data stream environment with the help of basic introduction, 

variety of approaches, their pros and cons. We have also underlined the current 

major issues in mining association rules in data streams. In the following 

chapters we will carry out a detailed analysis of the research methodologies, 

research issues and design a novel algorithm followed by an analysis of 

experimental results in Chapter 5. 
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Chapter 3 Research Methodology 

 

3.1 Introduction 

 

This chapter presents the research methodology and paradigm that 

fundamentally governs the methodology selected to fulfill the planned objectives 

of this research. It offers a brief overview of research approach, the 

methodology chosen to carry out this research and the research methods that 

were employed. 

  

The  field  of  data  mining  is  essentially  concerned  with  pragmatic  and  

efficient  solutions.  Data  mining  is  mainly  employed  in  order  to  optimize  

the value of existing  data  and  extract  useful  and  valuable  information  from  

large datasets.  Therefore, such  investigations are more closely aligned with a 

Positivist research paradigm or theoretical perspective  since  we  assume  that  

the  application  of  data mining  will  result  in  the generation of useful 

knowledge (Dash, 2005).   

  

The French philosopher Comte suggested that a positivist approach utilizes 

observation and experiment to understand the domain under consideration 

(Dash, 2005) which is the case in data mining as well. Hence, this research will 

be heavily reliant on the positivist (Collis, 2003) research paradigm. 

 

3.2 Research Approach 

 

As  opposed  to the Positivist  research  approach,  Interpretivist  research  

tends  to  be subjective  in  nature  where  interpretation  of  an  individual  (or  

researcher)  about  a phenomenon  or  event  is  important  (Burrel,  1979).  

However,  the  key  features  of the Positivist research  approach  such  as  the  

notion  of  objectivity,  well-planned experiments and research, the seeking of   

exact measurements and evaluations, etc. tends to align with  this  research 

work more  closely  than  the Interpretivist  approach.  Therefore, this research 

will utilize the Positivist approach.   
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3.3 Research Opportunities and Hypotheses 

 

The  Introduction  section  underlined  some  of  the  crucial  issues  that  need  

to  be  addressed  in data stream mining. Despite the fact that there has been 

substantial research carried out in the area of data stream mining , it still lacks  

a holistic and generic approach to mine association rules from data streams. 

Thus, this research will attempt to fill this gap by integrating ideas from previous 

work in data stream mining.  This investigation will  focus  on  the  degree  of  

effectiveness  of  using  a  probabilistic approach of  sampling  in  the data  

stream  together with  an  incremental approach  to maintaining frequent 

itemsets in a data stream environment. 

 

3.4 Overall Architecture 

 

This section highlights the interface of main building blocks in this algorithm (the 

building blocks are explained at length in next section). The basic building 

blocks this algorithm is based on are as follows, 

• Tree Data Structure, 

• Chernoff Bounds, 

• 1 Itemset pruning, 

• Closed Itemsets, 

• Generation of Frequent Itemsets (FIs) from Closed Frequent Itemsets 

(CFIs) 

The aforementioned blocks mainly make the foundation of the proposed 

algorithm, Data Stream Mining. Our approach is based on closed frequent 

itemset mining, and therefore there has been a strong necessity to have a tree 

data structure which is capable of holding parent-child relationship; essential in 

closed itemset determination.  

 

Chernoff bounds is a statistical guarantee which allows determining a number of 

samples (in our case, transactions) that would allow us to infer with acceptable 

confidence. Chernoff bounds allows us to establish the number of transactions 

that make up the individual frames (Yu, 2004).  
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The powerset generation, an imperative task in order to determine all possible 

supersets of singleton items turns out to be a resource intensive process since 

the average number of singleton items in a transaction from data stream can 

very well be in few hundreds, moreover, many of such generated powersets 

yield no rewards in closed itemset mining, therefore, we have incorporated a 

method of 1 itemset pruning which strips the incoming transaction from any 

infrequent items found in previous passes of processing, allowing us to reduce 

the number of singleton items that generate interesting supersets without losing 

any information. In this way, we use only the previously found frequent items to 

generate powerset since according to Apriori principle; no infrequent subset can 

lead to frequent superset (Aggarwal, 1994).  

 

Closed itemset mining is a very promising alternative to frequent itemset mining 

mainly because closed frequent itemsets provide a concise and lossless 

representation (Pang, 2006) allowing us not only to infer the support information 

of its supersets but also generation of all the frequent itemsets. It means that 

just by maintaining closed frequent itemsets we can determine all the frequent 

itemsets along with their support information. Since the closed frequent itemsets 

are subset of frequent itemsets (Pang, 2006), maintaining a smaller number of 

items offers us computational gains. 

 

Our algorithm is mainly closed frequent itemset mining, but in order to generate 

interesting patterns, we need the frequent itemsets. (Pang, 2006) presented a 

method to identify all frequent itemsets along with their support information from 

closed frequent itemsets, we shall be implementing this method in our algorithm 

so as to list out frequent itemsets as mined results. 

 

Following diagram highlights the overall architecture of our algorithm underlining 

how the building blocks mentioned previously fit together in our algorithm, 
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Fig. 3-1 Overall Architecture 

 

As shown in figure 3-1, the algorithm reads the input transaction file (in a data 

stream environment, it shall be continuous stream of transactions), the Chernoff 

bounds breaks the input transaction stream into frames, depending on 

previously identified frequent singletons, 1 itemset pruning removes infrequent 

singletons from the transaction. Once, the transaction is striped off from the 

infrequent items, a block of code generates powerset for every pruned 

transaction. Once the powerset is generated, with the definition of closed 

itemset, the algorithm updates the closed tree that holds the intermediate 

information about all the closed itemsets. At the end of every frame, we store 

the closed itemsets found in that frame into the closed tree, whenever the user 

requests for the mined results, the algorithm traverses through the closed tree 

and determines the closed frequent itemsets, once all the closed frequent 

itemsets are identified, the routine to generate FIs from CFIs is called, giving us 

all the frequent itemsets along with their support information. 
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3.5 Basic Building Blocks 

 

This section presents the major building blocks that constitute the proposed for 

mining association rules in a Data Stream environment. 

 

3.5.1 Data Structure 

 

In the domain of high speed data streams where the volume of incoming data is 

enormous, an effective and concise data structure is required to store, update 

and retrieve essential information. This is mainly because of memory 

constraints and the huge amount of incoming data in case of data streams 

(Jiang, 2006). In the absence of such a compact data structure buffering of data 

on secondary storage may be required, leading to significant increases in 

processing time due to I/O operations.  

 

An efficient data structure is therefore a vital part of an effective data stream 

mining we thus seek a compact memory structure capable of supporting 

efficient insertion, deletion, modification and retrieval. 

 

The existing literature has favored several variations of a tree data structure 

such as the Frequent Pattern (FP) Tree (Huang, 2002) and the Closed 

Enumeration Tree CET (Chi, 2004) for the following reasons, 

• A tree data structure aids in fast counting of itemsets (Huang, 2002). 

• With trees, we can employ inter and intra-node pruning techniques which will 

help us in reducing search space (Moonesinghe, 2006). 

• It facilitates easy insertion, deletion, retrieval and updation of information 

(Huang, 2002). 

 

Because of aforementioned reasons, the use of a tree data structure to store 

itemset information is common and therefore this research will also make use of 

the tree structure for retaining support information about the discovered 

frequent closed itemsets. 
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3.5.2 Chernoff Bound 

 

The Chernoff bound which is a special case of the Chernoff inequality and gives 

a lower bound value for ‘n’ independent, yet equally likely incidents (Ravikumar, 

2004). Algorithms such as CHARM (M. Zaki, Li, W., Ogihara, M., 1997) and 

Moment (Yu, 2004) used the Chernoff bound for determining a sample size 

because of Chernoff bound’s statistical guarantees on the degree of error in the 

estimation of itemset support.  

 

Considering ‘X’ as a real valued variable with range R, the Chernoff bound 

states that (Ravikumar, 2004), with a probability of (1-δ ) the actual mean of the 

variable ( X&&& ) under consideration is within ‘Є’ of the mean irrespective of the 

underlying stochastic distribution of the variable X, where Є is given by: 

Equation 3.1 

In other words, the above statement means that if we can determine X&&&  to be 

within Є of its actual value with a probability of ’δ ’, we need to accumulate only 

‘n’ samples of variable ‘X’ to make inferences. The value n is given by: 

 

Equation 3.2 

If we associate X&&&  with the running support value of an itemset then the 

Chernoff bound enables us to determine the size of that block of data from 

which statistically sound inferences can be made about the frequency status of 

itemsets.  

 

3.5.3 1 Itemset Pruning  

 

The necessary step for computing itemsets from the stream of items in a 

transaction is the computation of a powerset that would take into account all the 

possible combinations of itemsets of size 1 (that is, individual items appearing in 

the transaction without combination with other items) seen in a transaction. The 

problem such an approach is that in a data stream where the incoming 
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transaction can very well hold hundreds of items, the CPU time would be 

prohibitive as the time complexity for the powerset computation is O(2n) where n 

is the  items in the transaction. 

 

As a solution to this problem, our approach undertakes 1 itemset pruning.  In 

this approach, the data stream is segmented into a number of equal-sized 

blocks which we call frames. The size of a frame is determined by the Chernoff 

and is given by,  

 

Equation 3.3 

(For derivation of above formula from generic Chernoff bounds formula, please 

refer (Yu, 2004)). As per above formula, when, the minimum support threshold 

‘s’=0.001 and delta ‘δ ’= 0.1, the memory bound n0 = 7991, that is every frame 

is marked by 7991 transactions. 

 

 We use the first frame of data to determine a list of 1-frequent itemsets 

(singletons).  We then make use of the Apriori property (Agrawal, 1994) which 

states that a subset of a frequent itemset must also be a frequent itemset which 

implies that no superset that is infrequent can ever yield a frequent subset.  It is 

therefore safe and appropriate to focus resources on computing the powerset 

from only the frequent singletons. Once the first frame is processed, we are in a 

position to prune infrequent singletons and compute the powerset only from the 

singletons who survive the pruning step. In order to avoid missing frequent 

singletons in subsequent frames, we will monitor singletons in every frame and 

compile a list of singletons that were frequent up to the last frame that was fully 

processed. At the end of every frame, the algorithm will identify the set of 

frequent singletons found in the current frame and compare it with the 

cumulative list found across all previous frames. The union of these sets will 

then be used to prune the transactions in the current frame. The procedure is 

outlined in Fig 3-2 below. 
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Repeat following steps for transactions 1 to n0 (as calculated 

by the Chernoff Bound)

Read the transaction

Parse the transaction and tokenize to get 

singletons

Create a new singleton if it doesn’t exist, update its 

support count if it already exists

Prepare the list of frequent singletons found in 

pass 1 to be used for pruning in next pass

 

Fig. 3-2 Item Pruning 

3.5.4 Closed Itemset Mining 

 

Frequent itemset mining has a crucial role to play in association rule mining 

(Agrawal, 1994). Nevertheless, the task of mining association rules can result in 

a huge number of candidate itemsets that need to be assessed against their 

frequency status, thus impacting on efficiency. The classical Apriori (Agrawal, 

1994) approach generates candidate k-itemsets for every pair of (k-1) frequent 

itemsets. When the minimum support threshold is et a low enough value, this 

can result in a combinational explosion the number of candidates to be 

processed (Chi, 2004).  

 

Closed Frequent itemset mining presents itself as an attractive alternative to 

classical frequent itemset mining, particularly in a data stream environment. A 

closed itemset I is any itemset that does not contain a superset with the same 

frequency as itself. A closed frequent itemset is one that has support above the 

minimum support threshold. Extensive research has shown that the set of 

closed frequent itemsets is a small subset of the set of all frequent itemsets 

(Chi, 2004), (Gaber, 2005), (Pang, 2006), (Jiang, 2006). At the same time, 

closed frequent itemsets can be used to both derive the identities and the 

support values of all frequent itemsets (Pang, 2006). Pang et al describe an 

algorithm by which the support of all frequent itemsets can be extracted 

efficiently from the set of closed frequent itemsets. 
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We now illustrate the compact nature of closed itemsets with a simple example. 

Consider the following example of a frequent itemset lattice corresponding to a 

set of 4 transactions. 

 

Fig. 3-3 Itemset Lattice 

 

Figure 3-3 highlights a frequent itemset lattice with a minimum support 

threshold of 1. The transactional dataset that produces this lattice is shown 

below in Table 3-1. 

 

Transaction 
ID Items 

1 C       
2 B D     

3 A C D   

4 A B C D 

Table 3-1 Transactional dataset A 

 

As it is clear from this simple example, the number of closed frequent itemsets 

is significantly lower than that of frequent itemsets Given the compact nature 

and the lossless representation of closed itemsets it is a logical choice for 

mining data streams which require models to be stored entirely in memory and 

it for these reasons that we adopted this approach in our research. Closed 

itemsets offer the possibility of mining at low support thresholds that tend to 

overwhelm the memory due to the often exponential increase in the number of 

candidate itemsets that need to be tracked with classical frequent itemset 

mining. Closed itemset mining, on the other hand effectively enables the miner 

to operate at lower support levels than would be possible with traditional 

methods.  

 



 34 

3.5.5 Generation of Frequent Itemsets from Closed Frequent Itemsets  

 

As explained before, maintaining the closed itemset serves multiple purposes, 

viz. compact representation and reduced overhead. Another such advantage of 

concentrating on closed frequent itemsets is that the Closed Frequent Itemsets 

(CFIs) provide loss-less information, meaning that by just keeping track of CFIs, 

we can find out all other frequent itemsets as well. Once the closed frequent 

itemsets (CFIs) are identified, these CFIs can be used to determine the support 

of all the non closed frequent itemsets (Pang, 2006). The basic principle needed 

to find the support of non-closed frequent itemsets is to exploit the definition of a 

closed frequent itemset, that is, if a node is not closed, its support must be the 

same as one of its supersets. According to the Apriori principle, any transaction 

that has a superset of item X must also contain item X itself, but any transaction 

that contains X does not necessarily include the superset of X; therefore, the 

support of a non-closed frequent itemset must be equal to the maximum 

support among its supersets (Pang, 2006).  The following routine infers the 

support of non-closed frequent itemsets from the set of closed frequent 

itemsets, 

 

Routine: calculateSupport () 

Parameters: 

• Let ‘C’ be a list of closed frequent itemsets, 

• Let ‘F’ be a list of all non-closed frequent itemsets, 

• Let ‘maxLength’ be length of the largest frequent itemset 

 

Method: 

1. Find the maxLength in order to facilitate bottom-up traversal (that is 

largest itemset first) 

2. For k= maxLength to 1 

a. Find list of all the frequent itemsets ‘Fk’ of size ‘k’,  

b. For all ‘f’ Є Fk, repeat following, 

i. If ‘C’ does not contain ‘f’, then support of ‘f’ is maximum of 

its descendants’ supports 

c. End for 

3. End for 



 35 

 

Description:  

The routine traverses the tree in a bottom up fashion. For each node scanned 

its closure status is first determined; if the node is not closed then, as 

mentioned previously, its support must be the maximum of its supersets’ 

support. On the other hand if the node is closed then no further action is taken 

other than to scan the next node in the bottom up traversal order. 

 

In this way, the compact and lossless closed itemset representation allows us to 

find all possible frequent itemsets without actually storing them. 

 

3.5.6 Overall Algorithm Structure 

 

As discussed in previous sections, the most suitable data structure for frequent 

closed itemset mining is a tree structure. Accordingly this research uses a tree 

structure for storing itemset information that would facilitate the mining phase 

later on.  

 

Each node in the tree represents an itemset ‘i’.  Unlike prefix trees (Chang, 

2003) and FP trees (Giannella, 2003), this tree structure maintains only closed 

itemsets which includes both frequent and infrequent itemsets. However, the 

algorithm will undertake periodic pruning to ensure that tree maintains closed 

itemsets that are either currently frequent or have the potential to become 

frequent over a period of time into the future. The pruning routine that we use is 

as follows, 

 

Routine: pruneTree () 

Parameters: 

• Let ‘H’ be a list of closed itemsets in the form of a Hash table, 

• Let ‘minSup’ be a minimum support threshold, 

 

Method: 

4. For all the elements in Hash table, do the following 

a. Retrieve the node ‘N’ from the tree with the help of reference from 

Hash table, 
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b. If Support(N) < minSup, then 

i. Obtain the list  ‘L’ containing all the children of N, 

ii. Remove the nodes present in ‘L’ from tree and hash table 

c. End If 

5. End for 

 

Description:  

The pruneTree routine, traverses through Hash table that keeps track of all the 

frequent nodes created so far, and investigates infrequent closed nodes present 

in the hash table. Once, we have obtained the infrequent nodes, we retrieve 

their reference from hash table in order to find corresponding nodes in the tree 

(which has parent-child information of the nodes). After we get a list of 

infrequent nodes, we traverse through their children and remove them from the 

tree as well as the hash table. It makes more sense to remove the children of 

infrequent nodes and purge that branch because the children of infrequent 

nodes can only become frequent if one or more of their parents become 

frequent, therefore we give chance to infrequent nodes to become frequent in 

future but purge their children. 

 

The node structure is as follows and shown in Figure 3-4: 

• Itemset identification,  ‘i’, 

• Support ‘s’, 

• Links to its immediate ancestors and descendants. 

 

Fig. 3-4 Node Structure 

The literature has adopted several variations of tree structures such as the FP 

tree (Huang, 2002), CET tree (Chi, 2004) and prefix tree (Chang, 2003). This 

algorithm however is based on the lattice tree structure similar to the work of 

(Chang, 2003). One of the tasks for future work would be comparing and 

contrasting other tree structures available and verifying the use of lattice for 

storing intermediate information about itemset supports. 
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This research concentrates on discovering closed itemsets over a data stream. 

On arrival of a new transaction, the algorithm will inspect every Itemset in the 

transaction and update the support counts of related closed itemsets. All the 

current closed itemsets are maintained in the lattice tree structure. This tree 

structure always remains resident in main memory so as to reduce memory 

latency. Consider following set of transactions shown in Table 3-2: 

 

Transaction 
ID Items 

1 A B      

2 A B C   

3 A C    

4 B C   

5 A C D  

Table 3-2: Transactional dataset B 

 

The above set of transactions will result in the closed itemset tree given in 

Figure 3-5. As mentioned previously we observe that the number of closed 

nodes (at 8) is significantly less than the number of nodes that a simple prefix 

tree would have generated (at 15) for the same set of transactions. 

 

Fig. 3-5 Closed tree 

 

Although most of the algorithms output the closed itemsets as soon as the user 

requests for the mined results, this algorithm however postpones the output of 

results until the end of the current frame as determined by the Chernoff bound. 

This is in order to achieve processing efficiency in terms of computing time and 

speed. The algorithm could output the mined results whenever user asks for it 

but this would give rise to a less accurate picture;  therefore, as a solution to 

this issue, the algorithm postpones the output until the expiry of the frame. 

A 

AB 

B C 

Ø 

AC BC 

ABC ACD 
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However, in the context of a high speed data stream with tens of thousands of 

transactions arriving per second the time postponement will be negligible in 

size. Consider a test scenario that we executed in experimentation, where 

minimum support threshold was 5% and delta threshold was 10%, the average 

execution time for a frame was 75 milliseconds which is much smaller than the 

human reaction time which is generally 120 to 160 milliseconds (Kosinski, 

2009), suggesting that there will be no practical need in a real time scenario to 

output instantaneous mined results. Moreover, the higher human response time 

indicates that the effect of postponing of the mining will be insignificant.  

 

Our approach produces an incremental algorithm where it inspects closed 

itemsets and updates their support information on the basis of past mined 

results. This is therefore a more effective approach than those algorithms which 

scan and generate closed itemsets multiple times. Following routine presents 

the algorithm used to process the first frame. 

 

Routine: firstPass () 

Parameters: 

• Let ‘minSup’ be the minimum support threshold, 

• Let ‘frameSize’ be number of transactions per frame determined by the 

Chernoff bound, 

• Let ‘frequentSingletons’ be the list of frequent 1 itemsets found in this 

frame 

• Let H be a hash table contains the identity of frequent itemsets, 

 

Method: 

1. For index=0 to frameSize 

a. Read the transaction from the data file, 

b. Parse and tokenize the transaction to obtain the singleton items 

c. For all tokens, repeat 

i. If the token is already seen previously then update its 

support information, 

ii. Else, create a node entry in the hash table H for the newly 

obtained token 

d. End for 
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2. End For 

3. Populate the list ‘frequentSingletons’ with frequent 1 level items with the 

help of minSup threshold 

 

Description: 

The pass through the first frame is primarily to determine frequent singletons 

which will be used to prune transactions in subsequent frames. Whenever a 

transaction arrives, it is parsed and tokenized to obtain singleton itemsets. 

Once, all the singletons in a transaction are identified, they are looked up 

against a hash table that maintains singletons observed so far. If a particular 

singleton exists in the hash table then its support information is updated or else 

a new entry corresponding to the previously unregistered singleton is created. 

Once all the transactions from pass 1 are processed, a temporary list is 

populated with the frequent singletons found in the pass; this list will be used for 

transaction pruning in the next pass. 

 

Routine: secondPass () 

Parameters: 

• Let ‘minSup’ be the minimum support threshold, 

• Let ‘frameSize’ be number of transactions per frame as determined by 

the Chernoff bound, 

• Let LA be the list of frequent singletons found across all previous passes 

• Let LC be the list of frequent singletons found in the current pass 

• Let LT be the list of singletons of interest in the current transaction 

• Let H be a hash table contains the identity of frequent itemsets, 

 

Method: 

 LC =Φ 

1. For index=0 to frameSize 

a. Read the transaction from the data file, 

b. LT= Φ 

c. Parse and tokenize the read transaction to obtain singletons, 

d. For all the singletons, repeat 

i. If the singleton is already seen then update its support 

information, 
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ii. Else, create a node entry in the hash table H for the newly 

obtained singleton 

e. End for 

f. // now get singletons belonging to the current transaction that 

have been //found to be frequent in pass 1 

g. LT= {set of singletons in current transaction} ∩ LA  

h. Generate the powerset of LT 

i. For every element of the powerset, repeat 

i. If the element is already seen then update its support 

information, 

ii. Else, create a node entry in hash table H for the new 

element, 

j. LC = LC U LT 

k. End for 

l. // ensure that items that become frequent in the current pass are 

picked up in // the next pass 

m. LA = LA U LC  

 

Description: 

This pass is used to find out frequent itemsets to be used for Apriori-like 

pruning. Steps 1-a to 1-e are similar to that of routine firstPass () which deal 

with singleton maintenance. Once the first pass is done, all subsequent passes 

through the data use the LA list to purge infrequent singletons from the current 

transaction; in this way the pruned transaction contains only frequent singletons 

seen so far. We do not lose any potential frequent items because even if an 

item is flagged as being infrequent in the LA list it still has an opportunity to be 

inserted into the LA list at the end of the pass if it does become frequent in the 

current pass. This will ensure that such an item is picked up in the next pass.  

 

We now describe a generic routine that is used to mine the stream from the 3rd 

pass onwards. 

 

Routine: mineData () 

Parameters: 

• Let ‘minSup’ be minimum support threshold, 
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• Let ‘frameSize’ be number of transactions per frame determined by 

Chernoff bounds, 

• Let LC be list of frequent 1 level items found in this pass 

• Let LA be list of current frequent singletons found across all frames so far 

• Let H be a hash table contains the identity of frequent itemsets, 

 

Method: 

1. Repeat while data file is not empty, 

a. For index=0 to frameSize, 

i. Read and parse the transaction to generate singletons, 

ii. For every singleton, 

1. If the singleton has already been seen then update 

its support information, 

2. Else, create a node entry in hash table H for the 

newly obtained singleton 

iii. End for 

iv. LT = LT ∩ LA  

b. Generate the powerset of LT 

// The logic here is first identify frequent itemsets found in previous 

pass, if an itemset is not frequent then it is not viable to generate 

its superset since due to Apriori principle that future superset will 

also be infrequent. // 

i. For every element of powerset, repeat 

1. Check if the element was marked as frequent in 

previous pass, 

a. If frequent then add it to a temporary list T, 

b. Else, continue to the next element in 

powerset 

ii. End for, 

iii. For all the elements in T, repeat 

// In this step, we find out the common prefixed itemsets. 

Such itemsets, when merged together will be prime 

candidates for being frequent – itemsets AB, AC which 

have already been identified as being frequent when 
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merged gives ABC which is a prime candidate for being 

frequent // 

1. Retain only those elements that have common 

prefixes 

2. Add them to list “powersetElements”  

iv. Goto step(iii) to generate supersets, 

v. For all the elements, in powersetElements list, repeat 

// This step deals with the node creation and maintenance 

for the closed tree.// 

1. If the element exists as node in the Tree, then 

retrieve the node and update its support information 

2. Else, 

a. Check whether this node qualifies to be 

added to the createNode list (refer to the 

description below for explanation),  

b. If node qualifies to be added, then check if 

there exists superset ‘e’ of current node ‘f’.  If 

so, then add node ‘f’ with support =  

support(e)+1, 

LC = LC U LT 

vi. End for 

vii. Now, the createNode list contains only closed nodes to be 

created with their support information, create entries in tree 

for all the elements from the createNode list, 

viii. This marks the end of the frame, 

c. Prune the tree by deleting children of infrequent nodes, keep 

infrequent nodes so as to give them chance to become frequent in 

future frames, 

d. LA = LA U LC  

2. Traverse through the tree and determine Closed frequent itemsets (all 

the nodes that fulfill the minSup threshold will qualify as CFIs), 

3. Generate frequent itemsets from CFIs (as explained in section 3.4.5) 

4. Output the list of frequent itemsets. 
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Description: 

This routine is the central focus of the proposed data stream mining approach. 

The initial steps 1-a-i to 1-a-iii are similar to that of the routines given earlier for 

passes 1 and 2. Similar to pass 2, after stripping off the infrequent items from 

the transaction we generate a powerset (containing itemsets, rather than items), 

so there is a major difference in powerset generation when compared to passes 

1 and 2. In this pass, as in all passes, we make use of the Apriori pruning 

principle. We use the frequent itemsets found in pass 2 to aid us in this step and 

it works as follows.  After obtaining frequent singletons, we generate itemsets of 

size 2 from singletons.  We then check for existence of any frequent itemset in 

this size 2 itemset list; if there are any frequent itemsets found then we check 

for common prefixes (there is no need to generate supersets of two or more 

itemsets if they do not have any common prefixes). If we get any frequent 

itemsets composed from common prefixes then all we have to do is to find 

higher level itemsets from these common prefixed frequent itemsets. This is a 

recursive procedure which is used to generate all higher level itemsets.  Figure 

3-6 further explains the use of the Apriori principle to optimize powerset 

generation. 

 

Fig. 3-6 Powerset Generation 

Consider the example shown above where we have A, B, C as frequent 

singletons; our powerset generation approach first generates their immediate 

supersets AB, AC, and BC. Once they are generated, we determine the 

itemsets to be used for higher level powerset generation (common prefixed 

frequent itemsets). In the above example, assuming that AB and AC are 

frequent itemsets (and given the fact that they have a common prefix A), they 

will be used to generate the level 3 itemset that is ABC. In this way we avoid 

creation of unnecessary and potentially infrequent powerset elements.  
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Figure 3-7 shows that after the powerset is generated, we check every element 

of the powerset against the hash table that is superimposed on prefix tree 

structure.  

 

Fig. 3-7 Hash table superimposed on Tree 

 

If an itemset is already seen, then we update its support count or else we add it 

to a temporary list which is responsible for batch creation of nodes at the end of 

transaction. While adding an itemset to this list we perform one basic check: we 

add an itemset to this list only if there does not exist, a superset of this node in 

the temporary list having the same support. This test is to ensure that we do not 

create nodes that are not closed. Once the node qualifies to be created, we 

then check the starting support value that it needs to have; for this we look up 

the hash table to find a superset, if we find such superset then the starting 

support of this new node must be support of superset+1 (as explained in 

algorithm). At the end of the transaction, the temporary list “createNode” has all 

the nodes that must be created as a consequence of the current processed 

transaction. Now we traverse through the createNode list and generate nodes 

for all the entries present in that list. The tests that we just explained ensure that 

at any moment of time our hash table which is superimposed on a prefix tree 

contains only closed nodes (frequent as well as infrequent) at any moment of 

time. These steps are repeated for all the transactions constituting frame 

(marked by Chernoff bounds value). After the frame expiry, we update the lists 

and hash tables to reflect latest frequent singletons and itemsets information 

and prune the children of infrequent closed nodes from the tree; this keeps tree 

nodes bound and ensures faster traversal through the tree.  
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Because the Apriori principle is used in generating the powerset, we avoid 

creation of children of infrequent itemsets similar to Moment (Chi, 2004). At the 

end of the frame we also undertake pruning.  In this phase we traverse through 

the tree and identify the latest infrequent nodes. Once we have obtained these, 

we purge their children since for these children nodes to be frequent or even 

potentially frequent, their parents must become frequent first, therefore it is safe 

to delete them. Due to these two mechanisms, namely, using Apriori principle 

for powerset generation and pruning at the frame end, we keep the node 

creation and maintenance operations under good control. 

 

Since there is no definite end to data stream the above steps are carried out 

until such time that the user requests for mined results. Whenever the user 

requests for the output, we traverse through the tree and identify all the closed 

frequent itemsets.  

 

Consider the following worked example that illustrates the working of the 

algorithm. The transactions T1, T2, T3, T4 and T5 are considered to arrive in 

consecutive frames F1, F2, F3, F4 and F5. For the sake of simplicity we use a 

frame size of 1, although in practice the frame size will be much higher than 

this.  Table 3-3 gives details of the five transactions.  

 

Transaction ID Items 

T1 A B D 

T2 A B 

T3 A 

T4 B C 

T5 A B C 

Table 3-3: Transactional dataset C 

 

The expansion of the tree occurs as shown in Figure 3-8. 
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Fig. 3-8 Closed Tree construction 

 

As explained previously, Pass 1 and 2 do not result in the creation of closed 

tree, as their role is to determine frequent singletons and frequent itemsets to 

be used for transaction pruning and powerset reduction. In pass 1, the 

transaction T1 is treated purely as a collection of singletons and corresponding 

entries in the hash table that maintains singletons are made. In pass 2, 

transaction T2 is not needed to be pruned since it does not contain any 

infrequent singleton, the algorithm then generates all the powerset elements (as 

shown in the figure above), and these powerset elements are used in next pass 

to restrict powerset generation. During the pass 3, the actual creation of the 

closed tree commences. Transaction T3 that contains only A is responsible for 

the creation of a closed node A. The next transaction T4 is purged to remove 

item C since it has not been seen previously and therefore results only in 

creation of another node B in the closed tree. The final transaction T5 contains 
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all the singletons seen previously; therefore no transaction pruning is 

performed. In the generation of the powerset, items A and B gives rise to higher 

level elements such as AB, AC, and BC since A, B and C are nodes in the 

closed tree. One point to note here is that, this will not lead to the creation of 

powerset element ABC since none of its parents are yet frequent. In this way 

we limit and optimize powerset generation. The output of pass 5 is mined output 

with a minimum support threshold of 40%. 

 

3.6 Summary 

 

In this chapter, we have outlined and discussed research approaches and 

objectives, along with the basic building blocks that constitute our proposed 

approach for association rule mining in a data stream environment. We 

provided an overall framework for our research approach as well as detailed 

algorithms that describe our proposed data stream miner for generating 

association rules. The following chapters will cover the empirical studies and 

research findings. 

 



 48 

Chapter 4 Experimental Design 

 

4.1 Introduction 

 

This chapter will focus on describing the describing the experiments designed to 

evaluate the performance of our proposed Data Stream Mining (DSM) 

algorithm. DSM is compared against a contemporary frequent itemset mining 

algorithm called the Frequent Pattern Data Miner or FPDM2 (Yu, 2004). 

Although DSM was designed to mine closed frequent itemsets efficiently, we 

have extended its capabilities to mine all frequent itemsets by incorporating a 

routine that determines the frequent itemsets from the closed frequent itemsets 

(as explained previously in Chapter 3).  

 

The following sections will explain the experimental design along with metrics 

that we used to compare the performance of DSM against that of FPDM2. 

 

4.2 Datasets 

 

The experimentation is carried out with the help of synthetic datasets that are 

generated through the use of a dataset generator that is publically available 

(Agrawal, 1994). Acquiring a real life dataset is quite difficult due to the fact that 

many organizations refuse to part with their data because of the sensitivity and 

confidentiality of the data. Therefore, artificial synthetic data generators such as 

IBM are very commonly used by researchers to evaluate and benchmark their 

algorithms’ performances.  

 

At the same time synthetic dataset generators have the added advantage that 

various different data characteristics can be captured which may not manifest 

with certain real word datasets. Such characteristics are the degree of sparsity 

of the data, variation in the length of the frequent itemsets, the number of items 

in a transaction and finally the number of transactions itself. Variations in these 

key data characteristics enable us to test the sensitivity of the algorithms on 

each of these different conditions. 
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We have generated three synthetic datasets with the help of IBM generator by 

varying parameters such as average transaction length, average size of a 

potential frequent itemset, number of unique itemsets in the generated dataset 

and the number of transactions in the dataset. Table 4-1 describes the 

aforementioned values for generated datasets. 

 

Dataset 

Average 

Transaction 

Size 

Average 

Frequent 

Itemset size 

Unique 

Items 

Number of 

Transactions 

T5I4 5 4 10K 500K 

T10I4 10 4 10K 100K 

T15I6 15 6 10K 100K 

Table 4-1: Parameter Values 

 

The above configurations for datasets are the most commonly used by Data 

Stream mining researchers such as (Yu, 2004), (Chi, 2004) for benchmarking 

their proposed algorithms.  

 

4.3 Performance Metrics 

 

The DSM and FPDM2 algorithms are evaluated against certain commonly used 

performance metrics such as Accuracy (in terms of Recall and Precision), 

Computational performance (in terms of time taken to process the dataset), and 

Memory consumption in terms of number of nodes maintained. Recall and 

precision can be defined as shown in Table 4-2 below (Provost, 1998). 

 

Metrics Definition 

Recall Recall indicates how many correct frequent itemsets were found.  

Precision 

Precision indicates how many of frequent itemsets found are 

correct 

Table 4-2: Performance Metrics 

 

The above metrics are further elaborated as below, 
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Fig. 4-1: Recall and Precision formulae 

 

where “Frequent Itemsets in data” corresponds to all the frequent itemsets that 

are actually present in the dataset (identified using Apriori implementation), and 

“Retrieved frequent itemsets” are the itemsets reported by algorithms (DSM and 

FPDM2) as frequent itemsets. 

 

4.4 Support and Reliability 

 

Minimum support is the threshold that determines whether an itemset is of any 

interest to the end user. The reliability, on the other hand is the probability  that 

the estimated support of an itemset as measured over the frame structure 

imposed by the Chernoff bound is within a given error margin, ∈. These two 

parameters are the key factors that affect performance, given a dataset. Table 

4-3 shows the support and reliability values used for the experimentation: 

Parameter Values used 

Support 0.1 

  0.05 

  0.01 

Reliability 0.1 

  0.05 

  0.01 

Table 4-3: Key Parameters used in Experimentation 

 

The support range of [.01, 0.1] is typically used by many researchers in 

association rule mining. Typically, low support values stress association mining 

algorithms as they give rise to many candidate itemsets, thus requiring large 

CPU and memory resources. 
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The reliability measure expresses a probability that the estimate of support 

produced by the Chernoff bound is in error. A value of r means that the true 

support value is within an interval of [-∈,∈] with (1-r)*100% probability. The 

three settings of the reliability parameter allow us to test our results at the 90%, 

95% and 99% probability levels. Again, these settings have typically been used 

in prior research before (Yu, 2004), (Cormode, 2007), (Chuang, 2009). 

 

4.5 Experimental Plan 

 

The experiments were conducted on a Windows XP PC equipped with a 1.7 

GHz Intel Pentium IV processor, 1 GB of RAM memory and 40 GB of hard disk 

space. The algorithms were implemented in the Java programming language. 

The following sections describe how the different experiments were designed. 

 

4.5.1 Experiment 1 

 

This experiment was mainly designed to compare DSM and FPDM2 with 

respect to the previously explained performance metrics. For this experiment, 

we have used the T10I4 and T15I6 datasets which are relatively dense when 

compared to T5I4 used in the previous experiment. The following steps were 

executed in this experiment: 

 

a) For the T10I4 dataset, vary the minimum support parameter while keeping 

delta constant, 

b) For theT10I4 dataset, vary the delta parameter while keeping minimum 

support constant, 

c) Repeat steps a and b for the T15I4 dataset  

d) Measure the accuracy, computational performance and memory 

consumption for each of the steps a), b) and c) above. 

 

4.5.2 Experiment 2 

 

This experiment was sketched to determine the effect of concept drift (Wang, 

2003) on the performance of DSM and to compare it against FPDM2. Here, we 

developed a routine that simulated the effect of concept drifts with the help of a 
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Java construct called Random Generator. This random generator (on the basis 

of an input parameter that governed the degree of concept drift) randomly 

selects a subset of previously found frequent singletons whose effect will be 

diminished by removing them from transactions to exhibit the effect of concept 

drift. In this experiment, we have considered two scenarios, first, where the data 

stream suffers from concept drift from the beginning, and second, where the 

concept drift occurs after several frames of transactions are processed. The 

simulation of concept drift can be understood from the following routine, 

 

Routine: conceptDrift () 

Parameters: 

• Let ‘cDrift’ be a flag indicating that user has requested to simulate effect 

of concept drift, 

• Let ‘cThreshold’ be the degree of concept drift 

 

Method: 

1. Read user input corresponding to concept drift and assign it to cDrift, 

2. Check if cDrift= True, then 

a. For all the transactions, do following, 

i. Find out all the singletons present in this transaction, 

1. For all the singletons, do following, 

2. Call a random generator to obtain a random number 

‘randNum’ corresponding to the current singleton, 

3. If randNum ≥ cThreshold then do not remove this 

singleton from the consideration, 

4. Else, eliminate this singleton from the transaction to 

be processed (to routine mineData()), 

5. End If 

6. End For 

b. End for 

3. Else, continue processing of all the transactions as explained in 

mineData() 

6. End If 
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Description:  

This routine is an ongoing check for all the transactions. When the user initiates 

the algorithm, an input is received from the user indicating whether or not the 

user intends to enable the concept drift simulation. If the user has requested to 

activate the concept drift, then a small block of code is called before processing 

every singleton of a transaction. This block of code generates a random number 

that is checked against the concept drift threshold cThreshold. If the random 

number generated qualifies (that is greater or equal to cThreshold), then this 

singleton of the transaction can be processed, else, the current singleton is 

removed from the transaction.  

 

This block of code works in juxtaposition with the function that prunes the 

transaction from the infrequent singletons. While purging an incoming 

transaction of infrequent singletons, this routine ensures that only selected 

frequent singletons are advanced for further processing. The selection process 

targets frequent singletons at random.  

 

We used the T10I4 dataset for this experiment and the following steps were 

undertaken: 

 

a) For DSM, we varied the degree of concept drift from 0% to 60% in steps of 

20% while keeping the support and delta parameters constant, 

b) Recorded recall and Precision for DSM, 

c) Repeated steps a) and b) for FPDM2. 

 

4.5.3 Experiment 3 

 

The underlying intention of this experiment is to understand the effects of 

sparsity on DSM performance. For this experiment, we have used the T5 I4 

dataset which is sparse in nature (average size of transaction being 5 items per 

transaction).  Since the dataset is sparse we needed a significant number of 

transactions to ensure the reliability of the mined results. The experiment 

carried out the following: 
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a) Varied the minimum support threshold given as input parameter while 

keeping reliability (delta) constant 

b) Measured the performance in terms of accuracy, computational performance 

and memory consumption. 

 

4.6 Summary 

 

This chapter presented the reasoning and the structure of the empirical study 

that we have used to evaluate the performance of the suggested algorithm. It 

also presented a description of the datasets and the performance metrics with 

which the assessment is to be carried out. 
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Chapter 5 Research Findings 

 

5.1 Introduction 

 

The previous chapters have described the fundamental background behind 

closed itemset mining, research objectives, overall architecture, and 

experimental design. This chapter will focus on the experimental findings. 

 

Both DSM and FPDM2 were tested on synthetic datasets and compared 

against predefined performance metrics such as Accuracy, Computational 

Performance, and Memory consumption. 

 

5.2 Findings from Experiment 1 

 

This experiment was mainly designed for comparing DSM and FPDM2 with 

respect to performance.  We first varied the minimum support threshold while 

keeping the delta parameter constant.  We recorded the accuracy, performance 

and memory consumption for DSM and then repeated the procedure for 

FPDM2. For this experiment, we have used T10I4 and T15I6 dense datasets 

generated using the IBM data generator (IBM). The Recall and Precision were 

calculated by comparing DSM and FPDM2 results against the Apriori 

implementation (http://www.borgelt.net/apriori.html). 

 

The Apriori implementation was run against data batched across a fixed number 

of frames and presented as a single unit fixed size dataset to the Apriori 

algorithm. It should be stressed that Apriori was only used for benchmarking 

purposes for the Precision and Recall values. As mentioned earlier in the thesis 

Apriori cannot be used in an actual data stream environment. 

 

For the dataset T10I4, Table 5-1 gives the findings. 
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  DSM FPDM2 

  Recall Precision Recall Precision 

Support Delta         

0.1 0.1 100% 100% 100% 89% 

0.05 0.1 100% 100% 100% 93% 

0.01 0.1 100% 100% 100% 94% 

Table 5-1: Accuracy with fixed Delta-Experiment 1-1 

 

DSM and FPDM2 performed equally well on Recall for this experiment; 

however, in terms of Precision, DSM outperformed FPDM2 (as shown in above 

table). FPDM2 reported an increased false positive rate, reporting more 

frequent nodes than what exists in reality. This is basically because FPDM2 

periodically prunes its primary and secondary pool, removing all the support 

information of the pruned itemsets. Thus when these itemsets are seen again, 

their support information is incomplete and inaccurate, resulting in marking 

infrequent nodes as frequent and vice versa (as seen in next experiment 

results).  

 

We then repeated the same procedure with varying delta and keeping the 

minimum support threshold constant at 0.05.  Here, DSM outperformed FPDM2 

in terms of Recall as well as Precision, 

 

  DSM FPDM2 

  Recall Precision Recall Precision 

Delta Support         

0.1 0.05 100% 100% 100% 93% 

0.05 0.05 93% 100% 80% 100% 

0.01 0.05 100% 100% 80% 100% 

Table 5-2: Accuracy with fixed Support- Experiment 1-2 

 

As the delta threshold was lowered, FPDM2’s Recall suffered whereas DSM 

continued to outperform FPDM2.  In terms of Precision, initially FPDM2 had 

poor Precision for the higher value of delta, but as the delta threshold was 

lowered, it matched DSM’s Precision. The frame size is inversely proportional to 

the delta value (as shown in section 3.4.2). As delta decreases, the frame size 
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increases and the Chernoff estimate of support becomes more reliable, causing 

a lesser number of frequent itemsets to be incorrectly deleted from FDPM2’s 

secondary pool which keeps track of frequent itemsets over a period of time (as 

opposed to the primary pool that keeps track of the frequent itemsets found in 

current frame). This gives rise to an improvement in FDPM2’s Precision.  

 

Next, we evaluated the memory and computational performances of DSM and 

FPDM2. DSM continued to outperform FPDM2 on both these metrics.  

 

Memory and Time with fixed Delta
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Fig. 5-1 Memory and time with fixed delta-Experiment 1-1 
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Memory and Time with fixed Support
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Fig. 5-2 Memory and time with fixed support-Experiment 1-2 

 

DSM computes the frequent itemsets only when the user requests for mined 

results; until such time DSM continues to process and maintain closed frequent 

itemsets. Since the number of closed frequent nodes is significantly lesser than 

frequent nodes, maintaining and processing takes a lesser amount of time. 

Therefore FPDM2 consumes more space and execution time for maintaining 

and reporting frequent itemsets as compared to DSM which is based on closed 

frequent itemset mining. 

 

We next ran experiments on the T15I6 dataset, and the results were 

significantly different. For constant delta and varying support, both DSM and 

FPDM2 performed equally well on Recall and Precision; whereas for constant 

support and varying delta, DSM outperformed FPDM2 in terms of Recall but 

recorded similar Precision to FPDM2.  

 

Tables 5-3 and 5-4 highlight the findings of this experimental setting, 
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  DSM FPDM2 

  Recall Precision Recall Precision 

Support Delta         

0.1 0.1 100% 100% 100% 100% 

0.05 0.1 100% 100% 100% 100% 

0.01 0.1 100% 100% 100% 100% 

Table 5-3: Accuracy with fixed Delta-Experiment 1-3 

 

  DSM FPDM2 

  Recall Precision Recall Precision 

Delta Support         

0.1 0.05 100% 100% 100% 100% 

0.05 0.05 93% 100% 89% 100% 

0.01 0.05 100% 100% 81% 100% 

Table 5-4: Accuracy with fixed Support-Experiment 1-4 

 

The T15I6 dataset was significantly denser than T10I4, and therefore the loss of 

support information that FPDM2 suffered in a less dense dataset was not as 

influential, resulting in better Precision and Recall. In the case of fixed support, 

the density of the dataset helped FPDM2 to result better recall than its Recall in 

similar settings with T10I4 dataset. 

 

DSM and FPDM2 were again tested against computational performance and 

memory consumption for this dataset and results were similar to the results 

obtained for the T10I4 dataset. DSM was marked as better in terms of number 

of nodes created as well as average time taken to process a frame of 

transactions as determined by the Chernoff Bound. 

 

Figures 5-3 and 5-4 below report the execution time and number of nodes 

created for this experiment, 
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Memory and Time with fixed Delta
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Fig. 5-3 Memory and time with fixed delta-Experiment 1-3 
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Fig. 5-4 Memory and time with fixed support-Experiment 1-4 

 

As it is clear from the graph, DSM generates lesser nodes than FPDM2 and 

finishes its frames significantly earlier than FPDM2. DSM has continued to 

outperform FPDM2 in terms of computational time and space is mainly 

because, DSM is based on the closed frequent itemset based approach, 
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maintaining closed frequent nodes has proven to be much more efficient than 

maintaining a huge collection of frequent nodes. Once DSM has mined closed 

frequent itemsets, generation of frequent itemsets from CFIs (as explained 

before) is a significantly easy, quick task and is carried out only once while 

presenting output to the user. This saves a significant amount of memory and 

CPU time. FPDM2 does not have this liberty and therefore suffered as 

compared to DSM. 

 

5.3 Findings from Experiment 2 

 

Experiment 3 was carried out to test the effects of concept drift on accuracy of 

DSM. To carry out this experiment, a small routine was developed which with 

the help of Random generator (a Java construct). This routine randomly selects 

whether to process a singleton from the transaction or not (as explained before 

in experimental design). In this experiment, we have considered two settings, 

one, where the data stream exhibits the effects of the concept drift from the 

beginning (that is, we call the routine that deals with concept drift simulation 

from pass 3 onwards), and second, where the concept drift begins to 

demonstrate after a larger number (for this dataset, the drift was triggered after 

50th frame) of passes of transactions are processed. 

 

The findings of the first setting are as shown in Figure 5-5 and 5-6. 
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Fig. 5-5 Recall with fixed support-Experiment 2-1 
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Precision with fixed Support
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Fig. 5-6 Precision with fixed support-Experiment 2-2 

 

As it is clear from above figures, FPDM2 severely underperformed DSM in 

terms of Recall. At 20% of the concept drift, FPDM2 recorded a recall of 53% 

whereas DSM registered 87% Recall. As we continued to increase the degree 

of concept drift, FPDM2 continued to degrade its Recall steeply while DSM’s  

Recall reduced more gradually. In terms of Precision, however, both DSM and 

FPDM2 performed equally well, recording 100% precision on all levels of 

concept drift indicating that all the presented itemsets were undoubtedly 

frequent itemsets. The FPDM2 reported significantly lesser Recall because, due 

to concept drift, a lesser number of the nodes obtained a chance to prove 

themselves frequent and more of the nodes were pruned (since their support 

was not large enough to qualify as being frequent) in FPDM2, resulting in a 

sharp drop in Recall. The lowest recorded Recall was 13% for FPDM2 whereas 

DSM delivered 40% Recall at 60% of concept drift. DSM’s performance was not 

as affected as FPDM2 because DSM, instead of deleting the infrequent nodes, 

only purges their descendants’ branch in the closed tree, thus allowing a 

potentially frequent node to prove itself in future frames.  

 

Both algorithms reported 100% Precision because the itemsets that were 

reported as frequent itemsets were having high enough support to be 

unaffected by the degree of concept drift.  
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The outputs of second setting were better than those of first setting in the case 

of Recall, Figures 5-7 and 5-8 report the outcomes of the second setting. 
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Fig. 5-7 Recall with fixed support-Experiment 2-3 
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Fig. 5-8 Precision with fixed support-Experiment 2-4 

 

In the second setting, the effects of concept drift were exhibited after few frames 

have been processed by both the algorithm. The dataset used was T10I4 

having 100K transactions and the concept drift routine was called after 

processing half of the transaction base, that is, after 50K transactions were 
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processed. This setting recorded improved results in DSM primarily because, 

since the concept drift began exhibiting its effect (that is when the routine 

started randomly selecting set of previously seen frequent singletons and 

removing them from the transaction), the algorithm had seen enough of the data 

to build its baseline and keep on processing incrementally. At 20% of concept 

drift DMS recorded 100% recall, the lowest recorded value for DSM in this 

setting was 87% whereas in previous setting this value was 40%. FPDM2 as 

well performed better than it had performed in the previous setting, since 

FPDM2 also got a chance to observe the data stream for several frames, the 

effect of future concept drift was not heavily detrimental, the highest and lowest 

recall FPDM2 reported were 80% and 60% respectively (significantly better than 

previous values of 53% and 13% respectively). 

 

5.4 Findings from Experiment 3 

 

The previous two experiments clearly established the superiority of DSM over 

FDPM2. We were thus interested in assessing how DSM would perform on a 

sparse dataset. The output of DSM was cross-checked against an Apriori 

implementation provided at http://www.borgelt.net/apriori.html as in the previous 

two experiments. Table 5-5 displays the result for the T5I4, a sparse dataset. 

 

Support Delta Recall Precision 

0.007 0.1 86% 100% 

0.006 0.1 94% 100% 

0.005 0.1 94% 98% 

0.004 0.1 96% 99% 

0.003 0.1 97% 100% 

Table 5-5: Accuracy findings-Experiment 3 

 

We t varied the support threshold values in a tight range from 0.007 to 0.003, as 

shown in the Table 5-5. Support values above the upper threshold of 0.007 

produced very few frequent itemsets. As the minimum support threshold was 

lowered, Precision and Recall tended to improve. As transaction pruning is 

done on the basis of historical information, higher support levels give rise to 

more aggressive pruning of transactions, resulting in some frequent itemsets 
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being pruned. This results in lower Recall values at the high end of the support 

range. 

  

Next, we traced DSM in terms of Memory consumption and Computational 

performance; the findings are as shown in Table 5-6. 

 

Support Delta Nodes Time (mSec) 

0.007 0.1 479 25 

0.006 0.1 651 61 

0.005 0.1 1572 152 

0.004 0.1 4372 747 

0.003 0.1 16757 7587 

Table 5-6: Performance findings-Experiment 3 

 

The findings in terms of memory consumption and execution time were in line 

with past research; as we lower the minimum support threshold, the number of 

nodes created in the closed tree increased and so did the execution time for 

mining. As in (Yu, 2004) and the experiment described above, the reduction in 

the support threshold widened the perimeter of nodes that are considered in 

future frames and resulted in lesser degree of pruning, thus giving rise to  an 

increase in the number of nodes. The increase in the number of nodes also 

gave rise to an increase in execution time since more number of nodes had to 

be maintained. 

 

Following figure 5-9 details the rise in the number of nodes created and 

corresponding increase in execution time, 
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Fig. 5-9 Execution details- Experiment 3 

 

5.5 Summary 

 

This chapter has presented the research findings and analysis of the 

experimental outputs. We have used graphs and tables whenever appropriate 

to explain the outputs in more detail.  

 

All the experiments have proved that our proposed algorithm DSM has 

outperformed FPDM2 (Yu, 2004) in terms of all the performance metrics during 

all the experiments. DSM has also proved itself to be promising in dealing with 

the phenomenon of concept drift which is quite often observed in real-world 

data streams. 
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Chapter 6 Future Work 

 

Although this research has proposed a generic algorithm for mining closed 

frequent itemsets from a high speed data stream, there is a great deal of scope 

for further development of this algorithm. 

 

One possible extension of this research would be an investigation of the 

benefits of deferred updates. Deferring the updates means postponing the 

updates to the support information until the expiry of the current frame.  At the 

expiry of the frame all updates are batched together and then applied as one 

single operation, rather than updates being applied for each transaction. This 

mechanism offers the opportunity of reducing CPU overhead by reducing the 

number of update operations on the closed tree, which is the current 

performance bottleneck in the DSM algorithm.   

 

However, this deferred update mechanism poses a few challenges as well. One 

such challenge is to avoid revisiting nodes to avoid redundant (and in some 

cases spurious) updates. Another problem is to keep track of the deferred 

support value that must be added to every node’s support count. These issues 

must be handled as part of implementing the deferred update strategy. As a 

part of future work, we will be addressing these issues and analyzing the effects 

of deferring updates on the accuracy of the mined results. 

 

Another area of the future research would be to estimate, rather than to 

measure the support information of the itemsets (Laur, 2005). Estimating the 

support rather than updating every itemset on its occurrence can be significantly 

rewarding. Along with support estimation, a closure-property-check, similar to 

(Jiang, 2006) (which uses Galois operator, a commonly used mathematical 

function as a closure operator) to determine whether an itemset is likely to be 

closed itemset or not can further increase gains. The future research would 

therefore be scrutinizing this combination of the support estimation and a 

closure-properly-check. 

 

Future work will also explore possibilities to further optimize the powerset 

generation that the algorithm has to perform while processing the input 
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transactions. Despite the heuristics used to trim transactions and reduce the 

size of the powerset generated, there will always be a low enough support 

threshold that causes the number of frequent items in a transaction to be large. 

This in turn will give rise to correspondingly larger powersets. It will thus be 

profitable to look for more efficient ways to handle powerset creation by 

exploiting previously seen information. 

 

Yet another direction for future research is to exploit the concept of maximal 

frequent itemset mining. Maximal itemset are an even more compact 

representation of frequent itemsets then closed frequent itemsets. There has 

been a great deal of research in Maximal frequent itemset mining (Gouda, 

2001), (Yang, 2004), (Ao, 2007). Our future research will also try to look into the 

opportunities and challenges that Maximal frequent itemset mining holds in a 

data stream environment. 
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Chapter 7 Conclusion 

 

Data stream mining is one of the most intensely investigated and challenging 

research domains in contemporary research in the data mining discipline as a 

whole. The peculiarities of data streams render conventional mining schemes 

inappropriate.  

 

In this research, we presented an overview of a novel approach for mining the 

closed itemsets from a data stream. We have implemented an efficient closed 

prefix tree to store the intermediate support information of frequent itemsets. 

Moreover, we have employed the Apriori principle to reduce unnecessary 

powerset creation along with transaction pruning to further enhance transaction 

processing. We developed an incremental closed itemset mining algorithm 

based on the probabilistic guarantees of Chernoff bounds.  

 

The Chernoff bound helps in purging unnecessary itemsets from the data 

stream and keeps the memory requirements within reasonable bounds. We 

compared our approach with the FPDM2 algorithm proposed by Yu (2004). 

Although FPDM2 is a frequent itemset mining algorithm and DSM a closed 

frequent itemset mining algorithm, a basic routine computing frequent itemsets 

from closed frequent itemsets enabled us to assess the performance of both the 

approaches on the uniform grounds.  

 

Our experimentation showed that DSM not only outperformed FPDM2 in all the 

experimental settings but also excelled during the test for the effects of concept 

drift. The next step in the research would be advancing the investigation into the 

future research areas highlighted in the previous chapter.  
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