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Abstract 

Design erosion is a persistent problem within the software engineering discipline. 

Software designs tend to deteriorate over time regardless of the ambitions of the 

development stakeholders involved. The preservation and restoration of the software 

design and architecture are often hampered by rapid increases in size and complexity, 

changing requirements and insufficient understanding of the aspired architectural 

design. Technical debt accumulates due to neglected refactoring and maintenance 

activities. A comprehensive redesign and redevelopment is often inevitable if the 

deterioration is not confined at an early stage. 

A variety of architecture management, reverse engineering and refactoring 

approaches are available which can prevent or overcome this cycle of architecture 

deterioration. Architecture management approaches help to monitor the architecture 

and identify emerging violations. Reverse engineering approaches help to analyse and 

understand the current structure of the system, and refactoring techniques can be used 

to restructure the system. However, the subsequent implementation of architecture 

management approaches into a legacy system is a complex and time consuming 

endeavour which requires thorough reverse engineering, manual analysis and 

refactoring to re-establish a well-structured and violation-free architectural design. 

Hence, such approaches are typically only able to deliver partial solutions to the 

problems of architecture erosion, confinement of deterioration or to the challenge of 

architecture reconstruction. 

The objective of the research presented in this thesis is to evaluate whether a Search 

Based Software Engineering (SBSE) approach can offer valuable support and solutions 

within these problem domains. The present research provides a framework to recover 

high-level architecture designs of software systems by structuring low-level artefacts 

into high-level architecture artefact configurations. The framework is implemented 

within a toolset to demonstrate its feasibility and to enable a thorough evaluation of the 

framework. The prototype features the flexible combination and configuration of SBSE 
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techniques with established architecture metrics and design goals to discover feasible 

high-level architectural designs. A variety of analysis and visualisation techniques are 

implemented to effectively evaluate the quality of the identified solutions. The output 

of this process is an architecture design classification that can be integrated seamlessly 

into the development process to identify emerging design deteriorations. 

An important by-product of the evaluation of this research is a multi-objective 

evaluation artefact that enables the statistical analysis of multi-objective solution sets 

based on the computation of optimal Pareto-Front performance metrics. The evaluation 

framework enables the statistical analysis of performance snapshots by supporting the 

agglomeration and slicing of solution sets based on user configurations. 

It has been found in this research that the application of multi-objective 

optimisation techniques is a feasible approach to discover high-level software 

architecture configurations that feature software quality attributes that would be 

acceptable in practise. The inclusion of conceptual target architecture models in 

combination with software architecture conformance metrics enables the identification 

of modular software architecture configurations that align with desired high-level 

architecture designs. The performance of different Multi-Objective Evolutionary 

Algorithm (MOEA) implementations and MOEA tunings across different architecture 

reconstruction scenarios and software systems has been evaluated in this thesis. It has 

been found that the application of MOEA concepts such as genetic algorithms, scatter 

search, decomposition based search, differential evolution and particle swarm 

optimisation are feasible in the targeted application domain. The most prominent 

finding is that relaxed forms of Pareto-Dominance in combination with particle swarm 

optimisation search are powerful in finding promising architecture configurations in 

settings that feature many objectives.
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1 Introduction 

 Rationale 

Almost fifty years ago, the term ‘software crisis’ was first mentioned at the NATO 

Software Engineering Conference in 1968 (Randell, 1996). The term reflects concerns 

over the resistance of software systems to change and the difficulty to maintain stable 

software systems. The result is a predominance of inflexible and unstable software 

systems (De Silva & Balasubramaniam, 2012). 

The paradigms, processes, tools, computational platforms and techniques in the 

field of software engineering have changed immensely over the past 50 years, but the 

problems which have been summarized under the term ‘software crisis’ still exist. 

Contemporary software systems that comprise any reasonable amount of functionality 

are invariably accompanied by a non-trivial degree of complexity (Martin, 2011). One 

reason for this complexity is the diversity of the artefacts (e.g. files, methods, classes, 

packages) involved in the software system. Furthermore, any given system structure is 

not static; the structure of the system changes through maintenance, requirements 

changes, added features and refactorings (Bosch, 2010). This creates difficulties for 

individuals attempting to understand the design, structures, and dependencies that 

comprise the architecture of a software system. As a result, realizing new requirements 

and maintaining a large software system is challenging. 

Adding new functionality to an existing software system without considering the 

conceptual architecture or maintaining the integrity of the software system can result in 

system erosion. As a consequence software quality decreases and the system will be 

less flexible, less robust and harder to maintain and understand. Therefore the software 

maintenance cost increases. To confine or even reverse system erosion, methods of 

intensive reverse engineering, manual analysis and refactoring are generally required to 

re-establish a structured, violation-free and current architectural design. However, 
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development stakeholders often hesitate to engage in such complex and labour 

intensive tasks due to other pressing commitments and deadlines (De Silva & 

Balasubramaniam, 2012). 

An established software engineering concept, and one method to confine erosion, is 

the maintenance of a high-level conceptual architecture design. Such conceptual 

architecture designs operate as a blue-print of the aspired design of the system. 

Software engineering tools exist that support the automatic compliance checking of 

conceptual and physical architecture artefacts. However, such architecture monitoring 

activities are often not implemented in the software development process and so 

conceptual designs are either not-defined or become outdated (De Silva & 

Balasubramaniam, 2012).  

The challenges of the introduction of an architecture monitoring process to confine 

software erosion are, firstly, to find a feasible start classification of physical architecture 

artefacts in the conceptual architecture model and secondly to follow the 

implementation of refactorings to resolve architecture violations. The intention of these 

activities is to create a modular software system in which the physical architecture 

aligns with the desired conceptual architecture design. If the high-level architecture is 

violation-free the individual subsystems can be refactored or replaced to migrate the 

subsystems in line with new distribution requirements or simply to increase the design 

quality of the subsystems. 

To date no approaches exist that support development stakeholders in the process 

to fit the physical architecture of a software system into the conceptual high-level 

architecture of a system. The reconstruction of a design based on the analysis of an 

existing system is complex. Multiple objectives need to be taken into consideration to 

find acceptable solutions. These objectives depend, for example, on factors such as the 

level of erosion, future plans on the refactoring or migration of the software system, 

agreed software quality standards and system knowledge of development stakeholders. 
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Little is currently known regarding the applicability of multi-objective optimisation 

approaches to regain software system structures. A flexible approach that offers 

stakeholders access to a variety of objective configurations, reconstruction strategies, 

optimisation algorithms and tunings can only be useful to extend the body of knowledge 

in this problem domain of architecture reconstruction. 

 Objective and Contribution 

The main objective of this research is to evaluate the feasibility of multi-objective 

optimisation strategies when applied in the area of architecture reconstruction to 

identify feasible architecture classifications that can operate as a starting point for the 

modularisation of software systems and the containment of software erosion. 

Achievement of this objective is evaluated through the utilisation of a novel multi-

objective architecture reconstruction framework that has been implemented in the 

course of this research. The framework supports recovery of high-level architecture 

designs of software systems by structuring low-level artefacts into high-level 

architecture artefacts. The output of this novel architecture reconstruction framework is 

an architecture design classification that can be integrated seamlessly into the 

development process to identify emerging design deteriorations and therefore confine 

the modularisation of the software system. The developed framework is implemented 

within a prototype to demonstrate its feasibility and utility. 

The present research is informed by previous work which used Search Based 

Software Engineering (SBSE) to cluster physical source code elements by rewarding high 

cohesion in modules and penalising high coupling between modules (Mitchell, 2002). It 

is hence anticipated that the application of optimisation techniques is a feasible 

approach to classify physical source code elements into conceptual architecture designs 

and to reconstruct conceptual high-level architecture designs. 

The present research suggests that the exclusive application of the rewarding of high 

cohesion in modules and penalising of high coupling as implemented in related research 
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is insufficient to reconstruct high-level architecture designs. Thus, a variety of software 

metrics proposed in the architecture design literature are applied to assess the quality 

of the design of high-level software architectures. The use of these architecture design 

metrics in architecture reconstruction problem scenarios is evaluated in the present 

research. This evaluation extends the understanding of the feasibility to employ such 

architecture design metrics in architecture reconstruction problem scenarios. 

The reconstruction of software architectures depends on multiple factors and 

different requirements on the architecture configuration of a software system (e.g. 

distribution characteristics, module quality). Hence, the requirements on any given 

reconstructed architecture configuration solution are likely to differ depending on the 

desired modularisation, migration and refactoring objectives. It is thus anticipated that 

an approach that relies on a fixed configuration of reconstruction objectives would not 

address the challenges in the architecture reconstruction problem domain. In the 

present research a framework is implemented that enables the flexible definition of 

objective configurations to fit the objective configuration to individual architecture 

reconstruction requirements. The objective configuration is employed in a multi-

objective optimisation approach. Hence, the developed framework combines the 

application of Multi-Objective Evolutionary Algorithm (MOEA) techniques with 

established architecture design metrics to discover high-level architectural designs. The 

developed prototype enables the employment of a variety of different MOEAs and 

MOEA tunings. To date there is no framework that has been shown to combine these 

techniques and metrics and it is contended that the research reported here extends 

current understandings of the possibilities and constraints in this area. 

The application of multi-objective optimisation approaches results in optimal Pareto-

Fronts (see: section 2.4.2) that feature multiple solutions. However, development 

stakeholders are most likely interested in the selection of one final solution that can be 

employed in the architecture management process. The review and selection of 

promising solutions based on the visualisation of multiple dimensional solution sets, 
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especially with more than three dimensions, is complex. Additionally, it is argued that 

the solution characteristics encountered in the problem domain of architecture 

reconstruction might not strictly underlie the assumptions of Pareto optimality. For 

example, quality assessment based on the employment of architecture design metrics 

(e.g. cohesion, coupling, number of cycles, number of architecture violations, distance 

from main sequence, cumulative component dependency) utilises simplified surrogates 

to assess the quality of a solution but this does not mandatorily translate to better 

architecture solution performance from a stakeholder point of view. To overcome such 

a restriction the implemented framework is able to consider the complete set of visited 

solutions. Hence the objective configuration rather represents a point of gravity towards 

which the search converges. However, it is anticipated in the present research that the 

stakeholder must be in charge to review and identify promising solutions. The present 

research hence offers a novel approach to the optimisation domain that enables 

stakeholders to visualise and filter multi-dimensional solution sets. 

The evaluation of the performance of multi-objective optimisation approaches is in 

itself a complex activity. Related research in the multi-objective Search Based Software 

Engineering (SBSE) domain focuses mostly on the evaluation of the general feasibility of 

a developed approach and so the performance of different MOEA implementations and 

MOEA tunings is hardly compared (Sayyad & Ammar, 2013). Consequently, the research 

base to enable general assumptions on the performance of MOEA implementations or 

tunings in software engineering problem contexts is missing. The present research 

provides a multi-objective evaluation framework that enables the statistical evaluation 

and comparison of the performance of different MOEA tunings based on the calculation 

of optimal Pareto-Front performance indicators and analyses of the advancement in the 

objective space. 

In summary, the main contribution of the present research is a novel framework, 

and a functioning prototype as an implementation of this framework, to recover high-

level architecture designs of software systems to confine architectural deterioration. A 
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second key contribution of this research is a novel evaluation framework that has been 

developed to enable the statistical comparison of multi-objective solution sets. Finally, 

the application of the evaluation framework in architecture reconstruction problem 

contexts provides empirical evidence on the performance of multiple Multi-Objective 

Evolutionary Algorithm (MOEA) implementations and MOEA tunings in the problem 

domain of architecture reconstruction. 

 Structure of the Thesis 

This thesis is structured into seven chapters. Chapter one, this chapter, describes the 

motivation for the research, outlines the research objective and asserts the main 

contributions of the research. The remaining chapters of the thesis are structured as 

follows: Chapter two examines relevant research in the areas of software erosion, 

software architecture, architecture reconstruction and Search Based Software 

Engineering (SBSE). Chapter three discusses the applied research methodology and the 

design of the research. Chapter four illustrates the design and implementation of the 

framework in a software artefact called Rearchitecturer1. Chapter five describes the 

design and implementation of a multi-objective evaluation framework to statistically 

evaluate multi-objective optimisation solution sets. Chapter six demonstrates the 

application of the developed multi-objective evaluation framework in the target 

application domain of architecture reconstruction. Finally, Chapter seven provides 

conclusions gained from this research and highlights the contribution of this study to the 

related research fields. Furthermore, the limitations of this study are considered and 

recommendations for future research are given.  

                                                      

1 https://code.google.com/p/rearchitecturer/ 
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2 Related Work 

The main objective of this work is to evaluate the feasibility of the application of 

multi-objective evolutionary algorithms in the domain of software architecture 

reconstruction. This objective is motivated by the pressing problem of software 

architecture erosion and the resulting complexity faced by developers when 

reengineering software module configurations from eroded software systems. 

Accordingly, this work relates to a variety of areas and problem domains within the 

software engineering discipline. These areas include software erosion, software 

architecture modelling and design, software architecture reconstruction and software 

architecture quality assessment, along with Search Based Software Engineering (SBSE) 

as an enabling technique for the approach developed in the present research. Relevant 

and contributing research in these areas are illustrated in the following sections. 

 Erosion of Software Systems 

Erosion of software systems is not a new phenomenon and so it has been widely 

discussed to date. In the earliest days of the field McIlroy, Buxton, Naur, and Randell 

(1968) and Dijkstra (1972) stressed that the software engineering discipline was in a 

crisis due to inflexible software designs and consequently low maintainability. In the 

forty-plus years since this work was published little has changed in respect of design 

maintainability despite many advances in software development tools and techniques.  

Lehman (1980) formulates a set of laws that explain the inevitable and continuous 

evolution of software systems. These laws express the phenomena of continuing 

change, steady development, continuing growth, increasing complexity, declining 

quality and self-regulation. Self-regulation describes the need of a system to adapt to its 

environment. Hence, even if a system satisfies the requirements at a point of time 

environment changes will eventually occur and require change. The existence of these 

laws has been empirically confirmed in a wide range of software system projects (see, 

for instance, the recent work of Yu & Mishra (2013)). Consequently, the erosion of 
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software systems is an inevitable side-effect that is likely to become evident in most 

non-trivial software systems. 

Also, Jacobson, Christerson, Johnson and Övergaard (1992) note that software 

systems which are used are necessarily modified to adapt to changing domains, user 

and technology requirements. These modifications will gradually increase the 

complexity of the code base and consequently reduce both the understandability and 

maintainability of the software system. This increase in complexity is an unavoidable 

product of the business practices that enable software vendors to develop competitive 

software systems.  

The increase in complexity combined with an often evident lack of documentation, 

as described by Parnas (2011) and Forward and Lethbridge (2002), hinders development 

stakeholders to understand and change design aspects of the system. As a consequence, 

uninformed design decisions might lead to a solution design that damages the 

architectural integrity of the system. Additionally, state-of-the-art development 

environments support automatic import features which put developers at risk to 

inadvertently include unnecessary and unwanted dependencies (De Silva & 

Balasubramaniam, 2012). Hence, the risk of a fast increase in coupling and complexity of 

software artefacts is omnipresent. The unhindered expansion of deterioration can lead 

to unsustainable designs, which leave only a complete redesign as a feasible option (De 

Silva & Balasubramaniam, 2012). However, even if a software system does not become 

completely inoperative, erosion will make the system more predisposed to defects, high 

maintenance costs and degrading performance, which has the potential to consequently 

lead to even more erosion. This cycle of erosion can degrade the value, usefulness and 

technical dominance of a software product (De Silva & Balasubramaniam, 2012). 

A number of case studies point out that architecture erosion is a widespread 

problem in both commercial and open source software projects. Eick, Graves, Karr, 

Marron and Mockus (2001) depict the effect of erosion in a study of a 15-year old 
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telecommunication software system developed in C and C++ and featuring more than 

one hundred million lines of code. Eick et al. (2001) measure the impact of the 

implementation of change requests onto the erosion level of a system and identified a 

strong relationship between the required development effort to implement change 

requests and the level of erosion in the concerned components. It was also noted that 

an increase in the number of induced defects occurred during the implementation of 

change requests in components with a higher degree of erosion, and a stronger increase 

of erosion occurred based on higher initial levels of deterioration in the concerned 

artefacts.  

Godfrey and Lee (2000) extract and analyse the architecture of the Mozilla2 web 

browser (predecessor of Firefox) and identified a substantial number of undesirable 

interdependencies among the core artefacts of the system. Van Gurp and Bosch (2002) 

analyse the extracted data from Godfrey and Lee (2000) and conclude that these 

undesirable interdependencies might have an influence on delayed releases and also on 

the redevelopment of some of the core artefacts of the system. Similar findings are 

made on the relationship between erosion and maintenance activities with Ant3 

(Dalgarno, 2009), and the Linux kernel4 (Van Gurp & Bosch, 2002).  

Izurieta and Bieman (2007) describe decay or erosion as the deterioration of the 

internal structure of the design of a software system. This breakdown of the internal 

structure of a design is caused by changes that do not conform with the intended 

architectural patterns. Such changes can include violation of encapsulation, failure to 

follow pre-defined coding styles, and failure to meet quality criteria measured by 

inheritance depth, cyclomatic complexity and/or number of methods in class. Izurieta 

and Bieman (2007) define design pattern rot and design pattern grime as subclasses of 

                                                      

2 http://www.mozilla.org 
3 http://ant.apache.org/ 
4 https://www.kernel.org/ 
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erosion. Design pattern rot is described as the breakdown of the structural integrity of a 

design pattern realization. Design pattern grime does not violate the structural integrity 

of a pattern, but is the build-up of artefacts in design-pattern classes that have no direct 

relevance in the realisation of the design pattern. In a subsequent study Izurieta and 

Bieman (2013) examine the extent to which software design patterns rot and 

accumulate grime by studying the aging of design patterns. The authors analyse the 

open source systems JRefactory5, AgroUML6 and eXist7 in a case study and generate 

UML models from the three implementations at multiple time points to examine the 

decay of design patterns over time. Izurieta and Bieman (2013) find no evidence of 

design pattern rot in the examined systems, which means none of the introduced design 

patterns were deleted or broken. However, Izurieta and Bieman (2013) report modular 

grime build-up in all examined systems during their evolution. Dependencies between 

design pattern components increased without regard for pattern intent, reducing 

pattern modularity and decreasing testability and adaptability. Hence, the study 

supports the finding that the grime that builds up around design patterns is mostly due 

to increases in coupling. 

The following section discusses an example in which the impact of cyclic 

dependencies on the quality of software systems is demonstrated. One of the 

fundamental design rules for a good physical design of software systems is a cyclic-free 

dependency structure between artefacts. Cyclic dependencies are a form of erosion and 

hence have a negative impact on a number of aspects of software quality such as 

understandability, reusability and testability (Oyetoyan, Cruzes, & Conradi, 2013). 

Accordingly, cyclic dependencies on any abstraction level are understood as an anti-

                                                      

5 http://jrefactory.sourceforge.net/ 
6 http://argouml.tigris.org/ 
7 http://exist.sourceforge.net/ 
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pattern of software design (Martin, 2008). Figure 1 depicts a cyclic dependency between 

three artefacts of a software system. 

 

Figure 1: Cyclic dependency design 

A further drawback of a cyclic dependency design is that the involved artefacts 

cannot be understood, tested or reused independently from one another. As a 

consequence the size and complexity of the cyclic component is unnecessarily inflated, 

as is the size and complexity of components using the cyclic artefact. An impact analysis 

to determine which artefacts will be affected by a change is significantly hindered within 

cyclic artefacts and a change within one artefact automatically involves all artefacts of 

the cycle. No specific responsibility can be assigned to the artefacts involved in the cyclic 

dependency. Additionally, no hierarchical order can be derived if cyclic dependencies 

exist between modules. Furthermore, the artefacts involved in a cycle cannot be tested 

independently (Beck, 2003): a test-case that calls an artefact of the cyclic artefact 

depends on each of the artefacts of the cyclic dependency. Consequently, the 

application of a hierarchal unit testing strategy, in which entities are tested following 

their dependency hierarchy to determine which artefact is responsible for a failing unit 

test, is infeasible. 

Artefact A

Artefact B

Artefact C
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In contrast, a non-cyclic dependency design does not manifest the drawbacks just 

discussed. Figure 2 depicts a non-cyclic dependency design. 

 

Figure 2: Non-cyclic dependency design 

A non-cyclic dependency design enables an impact analysis to state a reliable 

conclusion about the artefacts that are involved in a source code change. Additionally, 

the artefacts of a non-cyclic dependency design can be levelled and responsibility can be 

assigned to the individual artefacts as illustrated in Figure 2. Finally, the thorough 

application of a hierarchical unit testing strategy is feasible. For example, test suites 

might exist to test Artefact C and Artefact B. Certainly, the test suite designed to test 

Artefact B also executes code of Artefact C due to the dependency from Artefact B to 

Artefact C. Nevertheless, the conclusion can be made that Artefact B is responsible for 

the failing of a test in the test suite of Artefact B if the test suite of Artefact C passes. 

Hence, design decisions made regarding the logical design which lead to cyclic 

dependencies of the physical design should be avoided. Martin (2008) highlights that 

software designs that are not designed to be flexible with a particular focus to 

accommodate change tend to erode sooner. Hence, the design of software 

architectures is an important concern to prevent software erosion. The next section 

provides a brief overview on prevalent design techniques for software architectures. 
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 Design of Software Architectures 

The architecture of a software system is an abstract model of that system, where 

fine-grained entities are classified into increasingly abstract modules. An architectural 

view of a system therefore raises the level of abstraction, hiding details of 

implementation, algorithms and data representations (Bass, Clements, & Kazman, 

2003). These architectural views enable different aspects of a system to be represented. 

For example, architectures can visualise the system from a service, application, 

implementation, data or process perspective (Koschke, 2008). Having a current 

representation of the system architecture is crucial in order to maintain, understand 

and evaluate a large software application (Sora, Glodean, & Gligor, 2010).  

The present research focuses exclusively on the implementation perspective of 

software architectures. The implementation perspective is a representation of the 

software system on the basis of compilation units, compilation unit members, the 

dependency relationships between these artefacts and the aggregation of these 

artefacts into more coarse artefacts. The representation and analysis of software 

architecture on the implementation and dependency level supports the understanding 

of the current design of a system and is crucial in enabling the identification of design 

flaws (Koschke, 2008). Within the reverse engineering discipline the physical software 

artefacts and their dependencies are often referred to as a software architecture. 

However, De Silva and Balasubramaniam (2012) state that a good understanding of the 

physical design of the system and of the flaws in the system is by itself most likely 

insufficient to prevent the erosion of design if no understandings of the targeted design 

exist. 

2.2.1 Physical and Conceptual Design of Software Architectures 

Jacobson, Christerson, Johnson and Övergaard (1992) suggest that a software 

architecture is an abstraction of domain- and enterprise-specific entities. Hence, an 

ideal design of a software architecture facilitates not only an aggregation of the physical 

implementation units into abstract subsystems but also describes the purpose of the 
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software system itself. Lakos (1996) also differentiates between the design of a software 

system into an implementation design and a conceptual design. 

The implementation design describes the composition of the system on compilation 

units and function level. For example, an implementation design decision might be to 

decide if a relationship is implemented by using an inheritance or delegation pattern. 

From an implementation design perspective all entities exist at the same level in a 

shared namespace without any boundaries (Lakos, 1996).  

Fowler (2002) describes the conceptual design as a view onto the system from a 

coarse grained and abstract level. The implementation design artefacts are partitioned 

into coarse grained artefacts such as packages, directories, libraries, subsystems, layers 

and maybe even layer groups. These coarse grained conceptual artefacts serve as 

containers in which to accumulate more detailed design artefacts or even finer grained 

conceptual artefacts from lower conceptual design levels that feature a mutual 

architectural design attribute (Bass et al., 2003). For example, packages accumulate 

compilation units, subsystems accumulate packages and layers might accumulate 

subsystems. From a conceptual architecture design perspective it is aspired that 

conceptual artefacts accumulate artefacts that comply with a certain technical, domain 

or environment aspect (Taylor, Medvidovic, & Dashofy, 2009). For example high-level 

artefacts might accumulate view, client or database functionality. Correspondingly, 

high-level artefacts should disclose details about the technical implementation or 

frameworks applied within the application (Martin, 2008). Furthermore, relationships 

between these coarse grained artefacts are defined as part of the conceptual design 

process. Relationships between implementation artefacts such as inherits from, has a, 

uses relationship are modelled as depends on relationships within the conceptual design 

(Lakos, 1996). 

Malveau and Mowbray (2003) suggest the classification of the design of a software 

system into Micro-Design and Macro-Design. The Micro-Design level describes the finely 
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grained issues of the design and composition of low-level artefacts such as files or 

classes. At Micro-Design level, the key concerns are the provision of functionality and 

the optimization of performance. The Macro-Design level describes issues at a higher 

abstraction level such as system-level architecture, enterprise architecture and global 

systems. At the Macro-Design level, the main concerns lean toward management of 

complexity and change. Malveau and Mowbray (2003) imply that these design forces 

are also present at finer grains, but are not of the same importance as they are at the 

Macro-Design levels. The system-level architecture entails the grouping of artefacts on 

the Micro-Design level into abstract conceptual artefacts, but also the definition of 

interfaces and dependencies between these conceptual system-architecture elements. 

Design patterns are an integral and accepted design instrument of state-of-the-art 

systems on the Micro Design level (Martin, 2011). Object oriented design patterns offer 

an agreed structural composition of low level artefacts for development problems 

(Gamma, Helm, Johnson, & Vlissides, 1995). Freeman (2004) highlights design patterns 

as instruments to facilitate experience reuse instead of code reuse. Design patterns 

offer a uniform solution that features high recognition value and good quality 

characteristics. Such good quality characteristics are, for example, easier maintainability 

and flexibility of designs, and reduced numbers of defects and faults (Aversano, Canfora, 

Cerulo, Del Grosso, & Di Penta, 2007; Di Penta, Cerulo, Guéhéneuc, & Antoniol, 2008; 

Porras & Guéhéneuc, 2010). 

High-level design patterns exist that define the design on the conceptual 

architecture level. The conceptual architecture of an application can be modelled to 

facilitate different architecture patterns such as client/server, component based, 

vertical and/or horizontal layered, message bus, filter, dispatcher, Service oriented 

Architecture (SoA) or Rich Internet Application (RIA) (Taylor et al., 2009). These 

architecture styles support different domain, quality and environment requirements. 

Depending on the requirements and purpose of the system, multiple styles are 

combined to define a complete conceptual architecture model. For example, layered 
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architectures can be used with component-based, object-oriented or SoA styles. The 

requirements of the system determine the selection and mixture of architecture 

patterns. For example, a strongly distributed architecture might lead to strict layered 

architecture while a performance-critical system might be implemented as a transient 

layered architecture.  

Most of the architecture styles or combinations of architecture styles can be 

modelled with a layered or subsystem based architecture model and allowed 

dependencies between these high-level artefacts. Hence, the implemented prototype 

developed and evaluated in the present research focuses on the reconstruction of 

subsystem and layered high-level architectures. Figure 3 illustrates an example of a 

conceptual architecture description that facilitates strict horizontal and transient 

vertical layering.  

 

Figure 3: Conceptual architecture model 
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In the example presented in Figure 3 the horizontal layers represent the enterprise 

entities from a technical perspective while the vertical layers describe domain-specific 

applications. Allowed dependencies between layers are defined and shown as arrows 

between the layers. Subsystems exist within the intersection of horizontal and vertical 

layers and these subsystems accumulate implementation artefacts such as folders, 

packages and compilation units that feature functionality corresponding to their 

horizontal or vertical classification.  

The conceptual architecture model facilitates a development blueprint for the 

development stakeholders. Taylor et al. (2009) highlight that the conceptual design is 

not only an abstraction of the logical design. It is in fact a description of the aspired 

design and ideally presents the purpose of the system. Martin (2008) highlights that a 

conceptual software architecture is a description of the application and not the 

technical implementation details. Fowler (2002) suggests that an ideal conceptual 

architecture models the domain and technical environment of the software system and 

delivers a framework to maintain desired quality aspects.  

In spite of its asserted importance, Jansen, Avgeriou, and van der Ven (2009) and 

Van Heesch, Avgeriou, and Hilliard (2012) argue that the documentation of the 

architecture of software systems is often outdated or at least partially lost. Hence, the 

information about the desired design and the classification of low-level artefacts into a 

conceptual architecture model might be incomplete. Hence, the present research 

applies reverse engineering approaches that rely on the analyses of source code, as a 

current form of documentation, to partition software systems. 

It is acknowledged that reverse engineering approaches as applied within this 

research have limited power to discover compositions that express the original purpose 

of the system. Nevertheless, the present research follows the hypothesis that the 

inclusion of conceptual architecture configurations in the reconstruction process is a 

viable instrument to find more targeted modularisations and establish a desired 



18 
 
 

modularisation in the code base. Whilst such modularisations may not provide an 

absolute best architecture, they offer the potential to slow or reverse the gradual 

degradation of the system. Based on this established modularisation, manual 

refactorings can be conducted to further improve the modularisation or the 

replacement of modules, which as a result is more straightforward due to a more 

organised dependency structure. Correspondingly, the next section briefly describes 

methods of conformance checking of physical and conceptual architecture designs. 

2.2.2 Conformance of Physical and Conceptual Architecture Design 

Murphy, Notkin and Sullivan (2002) emphasise that the compliance of the physical 

architecture and the conceptual model needs to be continuously checked and that the 

two should  be aligned as needed, to obtain a violation-free architecture. Ideally, the 

physical dependencies should align with the conceptual architecture model of the 

system (Taylor et al., 2009), although in practice this may not always be achieved. An 

architecture violation is therefore understood as a dependency within the physical 

dependency structure which conflicts with the defined dependencies of the conceptual 

architecture (Fowler, 2002). Identified architecture violations need to be eliminated to 

obtain a modular physical code base and also to obtain the desired architectural design 

within the physical code base (Fowler, 2002). Figure 4 demonstrates an example of a 

conceptual architecture model that exhibits a physical dependency that conflicts with 

the defined conceptual architecture model. 
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Figure 4: Conceptual architecture model with architecture violation 

The depicted dependency violates the horizontal conceptual layering rules with an 

access from Data-Access to Business-Logic and the vertical conceptual layering with an 

access from User to Customer. Physical dependencies that do not conflict with the 

conceptual architecture model are not shown in Figure 4.  

Architecture violations occur if the conceptual and physical architectures drift apart. 

Additionally, violating dependencies create cyclic dependencies on layer, subsystem and 

maybe even package level. Correspondingly, the consideration of the conceptual 

architecture model gives access to a variety of software architecture metrics that are 

relevant to assess the maintainability and modularisation of a software system. Section 

2.3 describes the metrics that are said to be particularly relevant for the conduct of this 

research. Some of these metrics assess the classification of the physical source code 

artefacts in the conceptual architecture. 
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Depending on the nature of the architecture violations, different refactoring 

techniques can be applied to resolve them (Fowler, 2002). For example, if a compilation 

unit has been created in the wrong package, a simple move compilation unit refactoring 

might be sufficient to resolve the existing architecture violation. However, if a 

compilation unit features two responsibilities which belong in two different artefacts of 

the conceptual architecture model, the code segments that entail these responsibilities 

need to be decomposed and put into new and/or existing artefacts within suitable high-

level artefacts of the conceptual architecture. Low-level refactorings such as extract 

method, move method and move field, which are capable of changing the composition 

and consequently the dependency structure of the concerned compilation units 

themselves, need to be applied to eliminate such architecture violations (Fowler, 1999). 

On the other hand, changes in technical implementation or domain aspects of the 

system might require a review of the conceptual architecture model (Martin, 2011). 

In order to resolve architectural violations using refactorings there is the 

prerequisite to identify if any architecture violations exist. Different approaches exist to 

help in the process of identifying architecture violations. Reflexion Models (RM) and 

Domain Specific Languages (DSL) are the most popular methods to define conceptual 

architectures and detect architectural violations with the aim to confine the erosion of 

software architectures (Maffort, Valente, Anquetil, Hora, & Bigonha, 2013). 

Murphy and Notkin (1997) and Murphy, Notkin, and Sullivan (2002) depict the 

Reflexion Model as a framework to prevent the deterioration of software architectures. 

The reflexion model features a conceptual architecture as a set of subsystems. Allowed 

and forbidden dependencies between the conceptual artefacts are defined and physical 

implementation units are mapped into the subsystems. Reflexion models can detect the 

absence of dependencies, which are mandatory dependencies in the conceptual model 

that are not present in the physical dependency model, and divergences, which are 

forbidden dependencies that are not allowed based on the conceptual model but that 
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are present in the physical model. Figure 5 illustrates the general process of the 

application of the Reflexion Model. 

 

Figure 5: Reflexion model process (adapted from Murphy et al. (2002)) 

The application of Domain Specific Languages (DSL) is an extended approach to 

facilitate the requirement of defining a conceptual architecture and to execute 

compliance monitoring (Passos, Terra, Valente, Diniz, & Mendonça, 2010). DSLs that 

focus on architecture conformance provide means for software architects to express in 

a customized syntax the constraints defined by the planned architecture. However, the 

mapping from physical implementation artefacts follows a similar procedure as the 

mapping within the Reflexion Model. A specific implementation of a DSL in the domain 

of architecture conformance description is the Dependency Constraint Language (DCL) 

(Passos et al., 2010; Terra & Valente, 2009; Terra, Valente, Bigonha, & Czarnecki, 2012). 

Terra and Valente (2009) present an alphabet and construction rules of the DCL as 

illustrated in Figure 6. 
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Figure 6: Alphabet and construction rules of DCL (Terra and Valente, 2009) 

A variety of commercial and open source systems exist (Ducasse & Pollet, 2009; 

Duszynski, Knodel, & Lindvall, 2009; Sangal, Jordan, Sinha, & Jackson, 2005) to support 

the tasks of architecture monitoring and conformance checking. Dependometer8, Lattix9, 

Sotograph10 and XRadar11 are examples of such architecture management systems. 

These architecture monitoring tools feature mixed implementations of the ideas of the 

Reflexion Model paired with individual techniques of DSL. The objective of each of these 

systems is to prevent and contain the erosion of software systems. Each of these tools 

requires the definition of a conceptual architecture and a manual mapping of the 

physical architecture into the conceptual or desired architecture. Within the mentioned 

architecture management systems the mapping is implemented by assigning packages 

or package patterns to subsystem, layer and/or vertical slice artefacts. 

A drawback of the application of the Reflexion Model and DSL is that both 

approaches require the definition of the conceptual architecture model and mapping of 

the physical architecture into the conceptual architecture model to reveal the whole 

spectrum of absences and divergences that can exist in the source code. Hence, the task 

to (perhaps retrospectively) define the conceptual architecture and define the mapping 

                                                      

8 http://source.valtech.com/display/dpm/Dependometer 
9 http://www.lattix.com/ 
10http://www.hello2morrow.com/products/sotograph 
11http://xradar.sourceforge.net/ 
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of the physical artefacts into the conceptual architecture model requires a sound 

understanding of the aspired system design and the application domain of the system. 

These tasks can be challenging for development stakeholder, particularly if the system is 

long-lived and/or is not well documented. 

Maffort et al. (2013) and Taylor et al. (2009) highlight that, despite the availability of 

approaches to conduct compliance checking of physical architecture and conceptual 

architecture, only a limited number of software projects thoroughly apply such 

techniques. Consequently, without a rigorous compliance checking and refactoring of 

the physical architecture, the conceptual and physical architectures tend to drift apart 

for many software systems. 

 Quality Assessment of Software Architectures 

It has long been held that the assessment of the quality of a software artefact is a 

complex endeavour (Jones, 1997; Kan, 2002; Mordal et al., 2013). One way to evaluate 

the quality of software artefacts is the application of software metrics (Fenton & Neil, 

2000). Software metrics are surrogates that represent a quality aspect of an artefact 

under consideration as a numerical value. The present research implements a search 

based driven software modularisation approach. The concepts suggested in Harman and 

Clark (2004) to utilise software metrics as a fitness function is implemented in this 

research to evaluate the generated architecture configurations and enable the 

navigation through the search space. 

This section describes software design metrics that are particularly relevant for the 

assessment of software architecture designs. The described metrics have been 

implemented within the developed prototype, which is described in Chapter 4. 

Additionally, the presented software design metrics are utilised during the evaluation of 

the targeted objectives of the present research. The following sections describe the 

concepts that underlie these metrics and the reasoning for their application in the 

present research. Some of the illustrated metrics (cohesion and coupling) have already 
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been applied in related research activities and Section 2.4.3 highlights such research 

projects in more detail. Nevertheless, as far as it can be determined the combination of 

metrics within a multi-objective search approach has not been attempted. 

2.3.1  Cohesion Metrics 

There is general consensus within the software engineering community that high 

cohesion within artefacts is a desired design goal and an indicator of good design 

(Martin, 2008). The reasoning that underlies this design principle is that an artefact 

should focus on its purpose, i.e. only entail functions and structures that relate to the 

intention of the artefact (Meyer, 1988). The benefit of such a design is that artefacts 

that feature high cohesion are easier to understand, test and maintain. On the other 

hand artefacts with low cohesion would entail a variety of responsibilities and are 

consequently harder to understand, test and maintain.  

Various metrics exist to measure cohesion within classes. Cohesion metrics that 

operate on higher abstraction levels such as package, subsystem and system level are of 

particular relevance to address the objective of the present research. Gui and Scott 

(2006) suggested to measure cohesion on higher abstraction levels to evaluate 

component re-usability, and as such they defined the cohesion of a high-level artefact as 

the mean of the cohesion measures of all members of the artefact. Martin (2000) 

proposed a package level metric called Relational Cohesion (RC) that expresses the 

interconnection of the low-level artefacts that are included in a high-level artefact as a 

numerical value. RC is calculated as a ratio of the number of dependencies that are 

internal to the high-level artefact (i.e. dependencies that do not connect or refer to 

other artefacts outside the high-level artefact for which the RC metric is calculated) and 

the number of low-level artefacts that are included in the high-level artefact. A 

shortcoming of the RC metric is that the best RC measure for an artefact is achieved if 

the dependency graph within the artefact is complete. However, such a graph will most 

definitely feature cyclic dependencies. Cyclic dependencies on low design levels, such as 

class level, are often unavoidable and acceptable to a certain degree. However, utilising 
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the RC metric on a subsystem level with packages as the member artefacts is more 

concerning, as the RC metric would allow cyclic dependencies between packages which 

would negatively impact various quality attributes of the system partitioning such as 

understandability, reusability and testability. 

The RC metric is applied as the cohesion measure of choice within the present 

research despite the mentioned challenges linked with its application. Hence, it is 

important (and feasible) to include optimisation goals that battle these shortcomings of 

the RC metric. It is understood that it would be promising to apply cohesion 

implementations which consider different aspects of cohesion and not only internal 

artefact dependencies in a reconstruction approach. These measures might be able to 

capture the original principles of cohesion more accurately. However, having no access 

to corresponding implementations and/or inadequate performance to apply these 

metrics in a search based context hinders the implementation of such cohesion 

implementations in the present research. 

2.3.2  Coupling Metrics 

Coupling measures the strength of dependency between artefacts (Meyer, 1988). 

Consequently, coupling gives an indication to what degree a program artefact relies on 

each one of the others. Low or loose coupling indicates that the source code is 

organized in such a way that it features no strong dependencies between each of its 

members (Szyperski, Bosch, & Weck, 1999).  

The dependencies of an artefact can be differentiated into afferent and efferent 

dependencies (Martin, 1994). Afferent coupling (CA) measures the number of artefacts 

that depend upon the artefact under consideration. CA is essentially an indicator of how 

much responsibility an artefact has. CA can help to reveal the effects that a change to an 

artefact will have on depending artefacts. Efferent coupling (CE) describes the number 

of artefacts that the artefact under consideration depends upon. CE is an indicator of 
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the artefact’s independence. CE can be a useful indicator to evaluate the degree to 

which outside changes will affect an artefact. 

Design techniques to achieve low coupling within software systems are, for example, 

prevention of cyclic dependencies, maintenance of high-level dependency structures, 

referencing of interfaces instead of concrete types and application of dependency 

injection frameworks. Previous research that applies SBSE in the area of software 

modularisation, as is described in more detail in section 2.4.3, focuses on reducing the 

coupling between artefacts by reducing the number of direct dependencies between 

artefacts. These studies suggest that the reduction of edges between artefacts is a 

feasible objective to modularize low-level artefacts into modules at higher abstraction 

levels. One example that underpins the limitations of the application of the number of 

direct dependencies between artefacts modules, as described by Mitchell and 

Mancoridis (2001a), Mahdavi, Harman, and Hierons (2003) and Praditwong, Harman, 

and Yao (2011), is that a solution is considered an improved solution as long as the 

number of edges between the existing artefacts is reduced. This contradicts design 

principles of software architecture that allow high-level artefacts to use other high-level 

artefacts and forbid or limit access to other artefacts (Lakos, 1996). Correspondingly, 

from an architecture design point of view, it has to be recognised that the existence of 

dependencies between high-level artefacts is not necessarily an anti-pattern to indicate 

high coupling. Therefore, the strength of coupling is not defined by the number of 

dependencies between artefacts but rather which artefacts, and how an artefact 

accesses another artefact. 

The present research promotes that other aspects of coupling are also important in 

terms of reconstructing an accurate and useful high-level architecture model. Such 

aspects are reduction of cyclic dependencies between artefacts, organisation and 

grouping of members within high-level artefacts, consideration of hierarchical structures 

and access permissions of high-level artefacts. This research proposes that the 

consideration of such aspects supports the reconstruction of a high-level architecture 
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model that facilitates understandability, testability and reusability. Nevertheless, it is 

acknowledged that the design of the prototype developed in the current research is not 

able to change the implementation and dependency structure below compilation unit 

level. Hence, the reconstruction can only take place within the limitations of such an 

approach and the design of the reconstructed system.  

The following sections present an overview of coupling metrics that are utilised 

within the evaluation of the developed architecture reconstruction prototype and which 

consider aspects such as dependency flow and structure instead of relying on the 

exclusive reduction of dependencies between artefacts. Additionally, the sections 

outline how these coupling metrics contribute to the implementation of the objectives 

of the present research. 

2.3.3 Cycles and Architecture Violation Metrics 

As illustrated in Section 2.1, the existence of cyclic dependencies limits reusability, 

testability and the impact analysis of changes in the involved system artefacts. Empirical 

evidence supports that cyclic dependencies are evident in almost all non-trivial software 

systems on lower abstraction levels (Melton & Tempero, 2007).  Recent research 

empirically underpins that most cycles on compilation-unit level do not deteriorate the 

testability and reusability of software systems (Al-Mutawa, Dietrich, Marsland, & 

McCartin, 2014). Falleri, Denier, Laval, Vismara, and Ducasse (2011) argue that the 

composition of individual cycles should be considered, to assess the impact on the 

quality of a software system. For example, longer cycles have a more negative impact on 

the structural quality of a software system. However, an established principle of good 

architectural design is that software architectures feature a cycle-free design on 

package and higher abstraction levels to support quality attributes such as testability, 

reusability and understandability (Martin, 2008). Nevertheless, the optimisation of 

architecture compositions towards designs that feature a small number of cycles is a 

worthwhile objective and hence pursued in this research project. The application of 

more specific cycle detection metrics as suggested in Falleri et al. (2011) is certainly 
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promising but an objective for future research that should be pursued once the general 

feasibility of cycle detection metrics in multi-objective optimisation approaches has 

been evaluated. 

Both Seng, Bauer, Biehl, and Pache (2005) and Abdeen, Ducasse, Sahraoui, and 

Alloui (2009) apply cycle detection metrics within a single objective search based 

modularisation problem. These approaches are capable of identifying cycles between 

modules that feature a direct cyclic dependency between two directly connected 

modules. Hence, the approach presented in Seng et al. (2005) and Abdeen et al. (2009) 

are not able to resolve cycles that span across more than two modules. Naturally, longer 

cycles have a more negative impact on the quality of a software system. Hence, the 

development of an approach that also captures cycles with more than two elements is 

an important advancement of previous approaches to assess the quality of a design. 

A number of early approaches for identifying the absolute number of elementary 

cycles within a graph have been evaluated to inform the current work (Johnson, 1975; 

Szwarcfiter & Lauer, 1976; Tarjan, 1973; Tiernan, 1970). However, within the 

development of the present research it has been found that the computational 

complexity on lower artefact levels (e.g. compilation unit level) is too high to justify the 

application of these cycle detection approaches within an optimisation approach. One 

possible explanation is that the worst case computational complexity of these cycle 

detection algorithms is evident in complete graphs. Hence, within the application of 

SBSE approaches that start with random initialised sets of solutions it is likely that the 

solutions feature high connectivity that then causes long evaluation run times of the 

applied algorithm. Hence, the search is incapable of creating a sufficient number of 

offspring in an acceptable amount of time to identify solution attributes that are 

relevant to create solutions with a lower number of elementary cycles. This suggests 

that the application of algorithms that calculate the absolute number of elementary 

cycles is infeasible in a search based driven context. 
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Nevertheless, Tarjan (1972) introduced an algorithm to calculate the Strongly 

Connected Components (SCC) of a graph. A SCC is defined as a set of vertices in which a 

path exists from any vertex to any other vertex of the SCC. Hence, all members of a SCC 

feature cyclic dependencies between each other. A vertex that is not a member of a 

cycle forms a strongly connected component by itself. From a software design 

perspective it is desired to have only SCCs that include one single member. 

The worst case complexity to calculate the SCC of a graph is O(|V|+|E|) for a graph 

G(V,E) with V vertices and E edges. This low complexity makes the number of SCCs a 

promising objective metric for application in the present research. Correspondingly, an 

objective metric has been implemented as part of this research. This objective enables 

to employ an optimisation based on the number of SCCs that feature more than two 

members on layer, subsystem and package levels. More detail on the employment of 

this and other objectives in the Rearchitecturer prototype can be found in Chapter 4. 

Another aspect to support the modularisation of software systems is the reduction 

of architecture violations. Layered and subsystem architecture designs can be defined 

within the conceptual architecture model. Additionally, allowed and forbidden 

dependencies between the defined layers and subsystems can be defined. These high-

level layer and subsystem configurations represent a conceptual target-architecture 

model that can be considered during the architecture reconstruction process that is 

implemented in the Rearchitecturer prototype. The low-level artefacts are classified into 

the defined architecture model during the reconstruction process. Architecture 

violations occur if the classification of a software system does not match the targeted 

architecture design (compare section: 3.1). The developed approach offers the 

detection of architecture violations on subsystem, package, compilation-unit and type 

level. The number of architecture violations can be utilised as an objective to find 

configurations that align with the defined architecture model. It has to be raised as a 

limitation of the proposed approach that such an objective will attempt to resolve every 

cycle and architecture violation even if the origin of such violation has its origin in a 
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micro design implementation that does not conform with the targeted conceptual 

architecture model. 

2.3.4 Structure Assessment Metrics 

The present research addresses the reconstruction of a software architecture design 

by classifying low level-artefacts (e.g. compilation units and/or packages) into artefacts 

of higher abstraction levels (e.g. packages, subsystems and layers) depending on the 

reconstruction strategy. Previous research in this area focused on the grouping of 

elements into the next highest abstraction level (Abdeen et al., 2009; Mitchell & 

Mancoridis, 2006; Praditwong et al., 2011). When dealing with different abstraction 

levels it is worth considering the structure of the elements within high-level artefacts 

and to discuss the impact on quality aspects of the reconstructed architecture. Lakos 

(1996) introduced a set of metrics that focus on more expansive aspects of the 

dependency structure and that correspondingly might be valuable within the evaluation 

of the present research. The following sections depict and discuss Cumulative 

Component Dependency (CCD) and Normalized Cumulative Component Dependency 

(NCCD) as two promising metrics to be applied within a multi-objective architecture 

reconstruction approach. 

The Cumulative Component Dependency (CCD) metric introduced by Lakos (1996) 

features promising aspects to be applied within a search based driven architecture 

reconstruction approach. CCD is defined as the sum of all depending artefacts of all 

members of an artefact (Lakos, 1996). Figure 7 illustrates three examples of the 

calculation of the CCD metric. Each of the entities represents a software artefact. These 

artefacts can be a compilation unit, a package or even a subsystem or layer. Each 

artefact depends on itself and the number of dependant artefacts. The CDD for a 

dependency graph is defined as the sum of the number of dependant artefacts of each 

artefact of the dependency graph. 
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Figure 7: CCD calculation 

In introducing the CCD metric Lakos (1996) originally focuses on measuring aspects 

that impact link and compile time. However, it can be reasoned that the CCD metric and 

its extensions have relevance to assessing aspects of software design quality. Figure 7, 

for example, illustrates that the CCD metric penalises the existence of cyclic 

dependencies. The dependency graph with 3 elements and a cyclic dependency leads to 

a CCD value of 9 whereas the dependency graph with no cyclic dependency produces a 

CCD value of only 5. Therefore, minimizing CCD for a given set of components is a design 

goal (Lakos, 1996). 

As noted above, the approach that has been developed within the present research 

is unable to change the dependency structure of artefacts at compilation unit level as no 

transformations are supported in the present research to change the composition of 

compilation units. Hence, the CCD metric measures of individual compilation unit 

artefacts remain unchanged. Nevertheless, the CCD can be calculated for higher 

abstraction levels. Figure 8 pictures two example classifications of an identical 

dependency graph featuring the classification of seven compilation-unit artefacts into 

three package artefacts. The example assumes that the packages are also assigned to an 

artefact of higher abstraction, such as a subsystem or a layer. Figure 8 shows that 

different partitionings of low-level artefacts can lead to different CCD metric values at 

higher abstraction levels. 
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Figure 8: Impact of cyclic dependencies on CCD 

The example illustrated in Figure 8 further suggests that generally a minimisation of 

the CCD measure rewards horizontally levelled and cyclic free designs. Hence, the CCD 

metric is a promising metric candidate for the optimisation of high-level-architecture 

designs. However, one drawback of applying CCD within a search based driven 

architecture reconstruction approach is that the optimal or lowest possible CCD is 

achieved for a design if all low-level artefacts are assigned into one of the high-level 

grouping artefacts and respectively no dependencies between modules exist. Figure 9 

illustrates such an extreme classification in which all low-level artefacts are assigned 

into Subsystem1. None of the low-level artefacts are assigned into Subsystem2 and 

Subsystem3. Such an unfeasible modularisation outcome would be likely if the CCD 

metric is utilised as a single objective optimisation goal. 
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Figure 9: Impact of unbalanced classification on CCD 

Three feasible approaches can be employed within the Rearchitecturer prototype to 

overcome the rewarding of extremely flat designs as a disadvantage of the application 

of the CCD metric as an objective setting. First, other objectives such as maximising the 

number of members in the high-level artefact or minimizing the standard derivation of 

CCD of all high-level artefacts can be employed to battle such undesired extreme 

solutions.  The downside of this approach is that the optimal set of solutions (compare 

optimal Pareto-Front in section: 2.4.2) might contain solutions that feature empty high-

level artefacts. Hence, the Pareto-Front has to be manually reviewed to exclude such 

unfeasible solutions. Another method to exclude extremely flat solutions is the 

definition of constraints that penalise solutions that feature unwanted metric attributes. 

Finally, the Normalized Cumulative Component Dependency metric also introduced by 

Lakos (1996) as an extension of the CCD metric offers partial support to overcome the 

shortcoming that the CCD metric rewards extreme solutions which feature the grouping 

into one single high level-artefact. 
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The previous section depicted that the CCD metric enables the evaluation of 

software assemblies based on the number of dependent components. Low measures of 

CCD indicate cyclic free and rather flat hierarchical designs that feature good testability, 

understandability and reusability. High CCD measures, on the other hand, indicate 

rather vertical designs with high coupling. That said, the CCD metric is not independent 

of system size. Bigger systems will feature higher CCD measures, which will 

consequently hinder the assessment of the hierarchical quality and shape of a system 

based on the CCD measurement alone. Lakos (1996) introduces the Normalized 

Cumulative Component Dependency (NCCD) metric to eliminate the effect of system 

size. The NCCD metric calculates the ratio of the CCD of a system containing N 

components and the CCD of a balanced binary tree-like system with the same number of 

components. As an example, Subsystem1 in Figure 9 entails a balanced binary tree of 

low level artefacts. The formula to calculate the CCD Balanced Binary Tree metric for an 

artefact with N elements is presented in Lakos (1996) as:  

CCD Balanced Binary Tree (N) = (𝑁 + 1) log2(𝑁 + 1) − 𝑁 

The NCCD metric as a ratio of the CCD of an artefact with N elements and the 

corresponding balanced binary tree with N is calculated as follows: 

NCCD(artefact) =
𝐶𝐶𝐷 (𝑎𝑟𝑡𝑒𝑓𝑎𝑐𝑡)

CCD Balanced Binary Tree (N)
 

Lakos (1996) states that a system that features a NCCD of less than 1.0 indicates a 

more loosely coupled design and a system with a NCCD of greater than 1.0 indicates a 

more vertical and more tightly coupled design. The circumstance that the NCCD metric 

considers the CCD of a balanced binary tree enables valuable conclusions to be drawn 

about the shape of the dependency graph within an artefact. For example, the coupling 

hierarchy of an artefact will be similar to the coupling hierarchy within a balanced binary 

tree if an assembly features a NCCD measure that is similar to 1.0. Only a few low-level 

artefacts within such a design will feature a high afferent coupling and a high 
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responsibility. Additionally, the lower the level of the component within the tree-

structure the lower is the ratio of afferent coupling to efferent coupling. No components 

within the assembly feature high efferent and high afferent coupling within a CCD 

structure with a balanced binary tree structure. Consequently, a balanced binary tree 

structure is a useful target structure to find assemblies that support favourable quality 

aspects and also to prevent extreme horizontal designs. Hence, the application of the 

NCCD metric is promising within an optimisation approach to discover designs that 

feature such preferable structural attributes. 

It needs to be kept in mind that the original purpose of the NCCD metric is to assess 

the quality of a software system based on the assessment of low-level dependencies. As 

addressed previously, the approach developed within the present research is unable to 

change the dependency structure below compilation unit level. Consequently, the 

approach is unable to change actual re-use or understandability at the source code 

element level. Nevertheless, the application of the NCCD metric is promising in terms of 

creating assemblies of low-level artefacts that support good reusability, 

understandability and testability based on the initial system design. However, it is 

understood that these reconfigurations can only operate within the parameters of the 

original source code design of the system.  

Another metric to assess the structure of a software design is the Distance metric. 

The Distance metric describes the distance from the main sequence of the Abstractness 

(A) and Instability (I) metric of an artefact (Martin, 2000). Abstractness is the ratio of the 

number of abstract classes and interfaces in the artefact under consideration to the 

total number of classes within the artefact. Abstractness has a range of 0.0 to 1.0. An 

Abstractness of 0.0 indicates a completely concrete package and an Abstractness of 1.0 

describes an artefact that only entails abstract artefacts. Instability describes the ratio of 

Efferent Coupling (CE) to total coupling (CE + CA) and is an indicator of the artefact's 

resilience to change. The range for Instability is 0.0 to 1.0. An Instability measure of 0.0 

indicates that an artefact does not have any efferent couplings and consequently is 
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highly stable. An Instability measure of 1.0 indicates that a component has only efferent 

couplings and consequently is a highly unstable artefact. 

The Distance metric attempts to balance the metrics of Abstractness and Instability 

by drawing the Main Sequence as a straight line on the Cartesian coordinates X=0 and 

Y=1 to X=1 and Y=0 in which Abstractness and Instability are described on the Y- and X-

Axes. The Distance metric is expressed as a numerical value of the distance from this 

main sequence. Figure 10 illustrates the concept graphically. 

 

Figure 10: Distance from main sequence (adapted from Martin (2000)) 

An artefact directly on the main sequence is optimally balanced with respect to its 

abstractness and stability. The range for this metric is 0.0 to 1.0. A Distance of 0.0 

indicates an artefact that is squarely on the main sequence and features a balanced mix 

of stability and abstractness, whereas a Distance of 1.0 indicates an artefact that is as far 

from the main sequence as possible and consequently is unbalanced in respect to 
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Abstractness and Instability. Martin (2000) defines the zones of extreme distance as the 

“zone of pain” (I and A both close to 0) and the ”zone of uselessness” (I and A both close 

to 1.0). Assemblies that are close to the “zone of pain” are concrete and stable and, 

according to Martin (2000), potentially hard to maintain. The other extreme “zone of 

uselessness” describes assemblies that are abstract and unstable and thus are 

potentially useless (Martin, 2000). The extreme configurations are either completely 

abstract or stable (x=0, y=1) or completely concrete and unstable (x=1, y=0). However, it 

is an unlikely situation that all artefacts within a code base have Abstractness and 

Instability values of 1.0 or 0.0. Hence, most artefacts will feature values between the 

two. By monitoring the Distance from the Main Sequence metric one can identify 

artefacts that are becoming unbalanced. The Distance metric has potential merit within 

an architecture monitoring scenario in terms of identifying artefacts that are becoming 

unbalanced. However, a partial objective of the present research is to determine the 

utility of software architecture metrics when applied within an architecture 

reconstruction approach. The application of the Instability metric as an optimisation 

goal is certainly feasible within an automatic architecture reconstruction approach. Even 

if Instability has not been applied directly as an objective within other SBSE software 

clustering and modularisation approaches, other research has applied diverse 

configurations of coupling successfully. Thus, the contribution of the explicit application 

of the Instability metric is unlikely to produce deeper insights. The application of the 

Distance metric as well as the Abstraction metric within a single objective architecture 

reconstruction scenario is not promising as arbitrary classifications that do not consider 

the dependencies between interfaces and abstract artefacts and their concrete 

implementers will unlikely produce useful results. However, Amoui, Mirarab, Ansari and 

Lucas (2006) utilise the Distance metric as a fitness function within a single objective 

Genetic Algorithm (GA) implementation to include design patterns in UML 

representations. It is suggested in the present research that the application of multiple 

software metrics in a multi-objective optimisation approach is a promising approach to 

create solutions that exhibit good performance in multiple solution aspects. The 
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Distance metric is an example metric, whose application in a single-objective approach 

is probably not very useful but is a potentially useful objective candidate in a multiple 

objective approach in which other metrics assess quality aspects that are neglected by 

the Distance metric. 

 Search Based Software Engineering (SBSE) 

The present research utilises Search Based Software Engineering (SBSE) in the 

domain of software architecture reconstruction. This section briefly sets out the 

fundamental characteristics and concepts of SBSE. Furthermore, aspects of Evolutionary 

Algorithms (EA) and Multi-Objective Evolutionary Algorithms (MOEA) are highlighted 

given the focus of this research. Finally, the most pertinent literature that applies SBSE 

techniques in the domain of software partitioning and modularisation is discussed. 

Harman and Jones (2001) introduced SBSE as the application of metaheuristic 

algorithms to solve linear optimization problems in the domain of software engineering. 

They acknowledge that a vast number of application areas for metaheuristics in the 

domain of software engineering might exist in which the computational complexity to 

achieve an optimal solution would be very high if the solution space (i.e. the number of 

potential solutions) is large, or that there may even be no optimal solution which 

outperforms any other solution in all performance aspects. However, it might not 

necessarily be required to identify the absolute optimal solution for that particular 

problem. One of the key assumptions of SBSE is that within the solution space good 

solutions exist besides the optimal solution, which can sufficiently satisfy the 

requirements of stakeholders. In these problem domains metaheuristics can support the 

discovery of good solutions relatively fast. A good or nearly optimal solution that can be 

found more quickly than the optimal solution may be sufficient for stakeholders.  

Since the original proposal SBSE has emerged as a vibrant research topic with 

evidence in the literature showing that the approach is widely applicable across the 

whole spectrum of software engineering lifecycle activities e.g. requirements 
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engineering (Bagnall, Rayward-Smith, & Whittley, 2001), release planning (Brasil, da 

Silva, de Freitas, de Souza, & Cortés, 2012; Greer & Ruhe, 2004), project planning and 

estimation (Burgess & Lefley, 2001; Connor & Shah, 2014; Rodríguez, Ruiz, Riquelme, & 

Harrison, 2011; Sarro, 2011), refactoring and maintenance (Harman & Tratt, 2007; 

Hemati-Moghadam & Ó Cinnéide, 2012; O'Keeffe & Cinnéide, 2006), testing (Ribeiro, 

Zenha-Rela, & Fernández de Vega, 2009; Wegener, Baresel, & Sthamer, 2001),cloud 

computing (Harman, Lakhotiaa, Singerb, Whiteb, & Yooa, 2012), software 

modularisation (Mitchell & Mancoridis, 2001a; Praditwong et al., 2011) and quality 

assurance (Khoshgoftaar, Khoshgoftaar, & Seliya, 2004). 

A range of search techniques exist, including gradient methods, direct search or 

metaheuristics. Metaheuristics are more common in recent literature, because the high 

complexity of many problems does not suit gradient or direct search methods (Talbi, 

2009). The term heuristic refers to problem-solving strategies that apply general sense 

and assumptions and loosely applicable information to arrive at a nearly optimal 

solution in a relatively short period of time (Yang, 2008). Coello, Lamont and Van 

Veldhuisen (2007) refer to heuristic algorithms as a branch of operations research. 

Heuristics are often applied if there is no formal method known to calculate the optimal 

solution, or there is a formal way known but the computational complexity exceeds 

polynomial time. Heuristic algorithms can be distinguished into specific heuristic 

algorithms and metaheuristic algorithms (Talbi, 2009). For example, Lin and Kernighan 

(1973) introduce a specific heuristic algorithm to solve the ‘travelling salesman’ 

problem. In comparison to specific heuristic algorithms, metaheuristic algorithms are 

designed more generically to be able to solve different problems (Yang, 2008). 

Correspondingly, the term ‘meta’ relates to ‘upper’ or ‘higher level methodology’. 

Metaheuristics can be classified into a range of different categories. Common 

classifications of metaheuristics into nature inspired vs. non-nature inspired, 

deterministic vs. stochastic, single-objective vs. multiple-objective, and single solution 

vs. population based algorithm can be found in the literature (Coello et al., 2007; Talbi, 
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2009). The metaheuristics applied within the present research are Multi-Objective 

Evolutionary Algorithms (MOEAs). Based on the classifications just noted MOEAs belong 

to the group of multi-objective, population based, stochastic and nature inspired 

algorithms. 

2.4.1 Evolutionary Algorithms (EA) 

The objective of this section is to describe and discuss the main components of 

Evolutionary Algorithms (EAs) and to link these concepts with the targeted application in 

the domain of architecture reconstruction. A wide number of different variations of EAs 

exist e.g. Genetic Algorithms, Particle Swarm Optimization, Scatter Search, Differential 

Evolution, Decomposition Based Evolutionary Algorithm, Bee Colony, Artificial Immune 

System, and hybrid variations as mixed implementations of the former (Coello et al., 

2007). Nevertheless, the common principles of EAs are similar. Hence, the description of 

EAs provided here is deliberately based on a unifying presentation of the common 

basics as the strategy adopted within this work is to apply and evaluate different kinds 

of EAs. 

Coello et al. (2007) and Glover and Kochenberger (2003) both specify the essential 

components for the definition of an EA as a representation/encoding, a fitness function, 

a population, a parent selection mechanism, variation operators and a survivor selection 

mechanism. 

The Solution Representation 

Coello et al. (2007) and Talbi (2009) highlight the definition of a suitable 

representation as one of the fundamental components of the implementation of 

metaheuristics. A representation is a model of the original problem domain and is 

therefore an encoding of the original solution space into the EA solution space. 

Instances of the representation are the individuals that are generated by the EA 

implementation. Solutions of the original problem domain are called phenotypes and 

the encoded representations within the EA implementation are called genotypes (Coello 
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et al., 2007). Usually, a one-to-one relationship from genotype to phenotype is common 

but one-to-many and many-to-one relationships are also feasible. Defining another 

relationship than one-to-one has an impact on the size of the genotype and phenotype 

space and consequently the level of detail to which solutions can be identified. Within 

the present research a one-to-one mapping has been implemented. To apply an EA in a 

new problem domain a suitable encoding to present the genotype needs to be defined 

and a mapping function has to be implemented which transforms the genotype into the 

phenotype. The genotype consists of a number of decision variables (Agoston E Eiben & 

Smith, 2003). The decision variables are the fragments of the genotype, which are 

altered by the EA implementation. A decision variable features a type. Linear encodings 

of decision variables such as binary, discrete, and permutation encodings but also 

nonlinear encodings such as tree representations can be handled by EAs (Coello et al., 

2007). Mixed encodings are supported in some EA implementations (Talbi, 2009). 

Hence, the encoding of the genotype with established decision variables makes EAs a 

universal and robust tool suitable for application in diverse problem domains. In 

comparison to classical optimisation methods the universal encodings prevent the 

necessity for adaption of the actual algorithm implementation to enable their 

application in new problem domains. 

Figure 11 depicts a simple example of the encoding that has been developed in this 

research. The depicted encoding scenario enables the classification of low-level 

artefacts into a high-level conceptual architecture model. 
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Figure 11: Encoding of architecture classification problem 

Each of the low-level artefacts of the software system is represented by an integer 

decision variable. The range of the integer decision variables is defined by the number 

of high-level artefacts of the conceptual architecture model. 

Specific genotype instances are created by the applied EA implementation. Hence, 

the genotype instance is a numerical representation of the classification of the artefacts 

of the system into the subsystem of the conceptual architecture model. 

In the present research a representation is developed that enables the classification 

of low-level artefacts into high-level artefacts on different abstraction levels. 

Additionally, high level artefacts and dependencies can be discovered in the search 

process. Section 4.1.3 describes the representation that has been implemented in the 

present research in more detail. 
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Obviously, the genotype instance does not enable a direct statement to be made 

about the fitness of the classification. Consequently, the genotype representation is 

transformed into a phenotype instance that enables the assessment of the quality of a 

generated solution. 

The Fitness Function 

Whilst EAs or metaheuristics in general can produce a variety of different solution 

candidates, the fitness of these solution instances needs to be determined to allow a 

ranking of the solutions. This requirement is satisfied by the fitness function (also 

referred to as the objective or evaluation function) (Coello et al., 2007; Agoston E Eiben 

& Smith, 2003; Talbi, 2009). The fitness function defines the quality of a solution in the 

specific problem context. Hence, a fitness function quantifies the optimality of a 

solution (Talbi, 2009) and expresses the goal of the search. The fitness function is usually 

composed from quality measures of the genotype space (Agoston E Eiben & Smith, 

2003). As such, the quality of the fitness function depends on a sound orchestration and 

estimation of the influencing factors. Mostly, the fitness function is designed as a 

surjective transformation which maps the solution space into the set of real 

numbers 𝑓: 𝑆 → 𝑅. Consequently, the fitness function enables a ranking of solutions. 

Feasible fitness functions to evaluate the fitness of a generated solution in the targeted 

problem domain for this research are, for example, the number of architecture 

violations, the number of cycles, and the cohesion or the coupling on any artefact 

abstraction level. A detailed description of the software design metrics that have been 

selected as being relevant for the implementation of the present research and 

consequently can be employed as fitness functions is given in section 4.1.2. 

The Evolutionary Algorithm Process 

The encoding of solutions and the fitness function to evaluate solutions represent 

the basic components for the representation and evaluation of EAs. However, the 

process of EAs is also of central importance to drive the evolution of solutions towards 
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their further improvement. Figure 12 illustrates the basic workflow of a general EA 

implementation. 

 

Figure 12: Evolutionary algorithm process (adapted from Eiben-Smith (2003)) 

A population is a set of genotypes and it forms the unit of evolution. Hence, EA 

implementations alter the population by changing decision variable values and adding 

or removing individuals (Coello et al., 2007). In the targeted problem domain the 

alteration of decision variable values translates to the reassigning of software artefacts 

into different conceptual architecture artefacts. 

A tuning parameter, often required for the execution of an EA implementation, is 

the population size which defines the number of individuals within the population. 

Within the EA process an initial population of individuals is created. Talbi (2009) and 

Coello et al. (2007) list Random Generation, Sequential Diversification, Parallel 

Diversification and Heuristic Initialisation as possible strategies to create the initial 

population. 

The individuals of the population are evaluated and solution aspects are selected to 

seed the next generation based on the evaluated fitness of the solutions. This process is 

called parent selection (Agoston E Eiben & Smith, 2003) or mating selection (Coello et 

al., 2007). If an individual is selected this individual becomes a parent for the next 
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generation. The parent selection process within EA implementation is usually based on 

stochastic methods. For example, the selection process prefers individuals with higher 

fitness as parents of the next generation, but also a weaker individual might have a 

chance to reproduce (Talbi, 2009). This behaviour allows EAs to escape local minima by 

preventing the stagnation of the population.  

Variation operators such as recombination and/or mutation strategies are applied to 

the parents to create the next population (Agoston E Eiben & Smith, 2003). 

Recombination conglomerates aspects of two or more individuals (parents) and results 

in one or more individuals (children). 

The selection of attributes from the parent individuals is usually probability based 

and depends on random drawings. However, often recombination tuning parameters 

can be injected in the EA process to influence the recombination method. The principle 

of recombination is inspired by nature and assumes that creating offspring from 

individuals with desirable features can lead to individuals which combine these desired 

features and outperform the parents (Luke, 2010). However, this evolutionary process 

does not work in every case and might lead to offspring which are no better or worse 

than the parents (Luke, 2010). Hence, within the EA process multiple instances of 

offspring are created and evaluated in the hope of finding an improved solution. 

Crossover is often used as a synonym for the term recombination (Talbi, 2009). 

The importance of recombination in the different EA dialects varies. For example, 

Glover and Kochenberger (2003) state that within Genetic Algorithms and Genetic 

Programming recombination is often the only applied variation parameter. In 

Evolutionary Programming, on the other hand, recombination is almost never used as 

the probability based mating of programme representations rarely produces feasible 

and improved solutions (Glover & Kochenberger, 2003). Nevertheless, within the 

targeted problem domain the application of recombination concepts is probably of high 

relevance due to the existence of interdependencies between the artefacts of 
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architecture configurations. Hence, recombination strategies might be able to capture 

such solution aspects and recombine solutions in a meaningful way to quickly enable an 

improved solution development. 

A mutation is a unary operator changing aspects of one or more individuals of a 

population (Coello et al., 2007; Glover & Kochenberger, 2003). The application of a 

mutation is probability based. Technically, this means randomly changing one or more 

decision variable values. Again, mutation has different relevance within the different EA 

dialects. For example, Genetic Algorithms and Genetic Programming abdicate the 

application of mutations almost completely (Glover & Kochenberger, 2003). 

Nevertheless, mutation strategies might indeed be of value for application in the 

targeted problem domain. The capability to evolve a population by applying only 

recombination techniques has limitations due to the explicit reliance on previously 

visited solution attributes (Andrews, 2006). Hence, the application of mutation 

operators is promising to drive exploration into new areas of the search space if a 

further improvement of solutions based on the recombination of solution aspects is 

infeasible. An example of such a scenario in a software modularisation problem is the 

assignment of artefacts which have only been conducted in some of the conceptual 

architecture artefacts. Hence, some classification aspects cannot be explored through 

the explicit application of recombination strategies. 

Variation operator implementation features usually a set of tuning parameters to 

determine aspects such as application probability or diversity. The tuning of these 

parameters has a potential impact on the performance of the EA implementations. 

Agoston E. Eiben, Michalewicz, Schoenauer, and Smith (2007) state that the ideal 

configuration of tuning parameters depends on the nature of the problem and the type, 

number and range of the decision variables that are utilised to represent the problem. 

Furthermore, Agoston E. Eiben et al. (2007) describe that the parameters of EA 

implementations are not necessarily independent. Evaluating all feasible parameter 
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combinations in a systematic manner is practically impossible and the process of 

parameter tuning can be time consuming even if parameters are tuned individually. 

A widely applied practise to identify useful parameter configuration is the iterative 

tuning of parameters until acceptable results are found that enable thorough 

conclusions on the feasibility of an approach. 

For example, the closely related research presented in Praditwong et al. (2011) 

applies a GA implementation in a software modularisation context which implements a 

single-point-crossover and single-point-mutation operator. Praditwong et al. (2011) 

identified a metaheuristic tuning during such an iterative process. They applied a 

metaheuristic configuration that features a population size of 10N and a maximum 

number of generations of 200N, where N is the number of low level modules of the 

analysed system. Single-point crossover and single-point mutation are applied as 

mutation operators. The probability of crossover is 0.8 if the population size is less than 

100 and 1.0 if the population size is higher. The probability of the mutation operator is 

0.004 log2(N). Barros (2012) applied an identical parameter tuning in their study. 

Praditwong et al. (2011) and Barros (2012) state that the applied configuration is 

suitable to demonstrate the feasibility of their approach but do not claim that the 

utilised parameter tuning is an optimal configuration for the developed software 

module classification problem. 

In summary, the support of recombination and mutation strategies is important for 

the thorough implementation of EAs in a software modularisation and architecture 

reconstruction context. However, previous research has not shown to which extent 

recombination and mutation operators are involved in identifying promising solution 

candidates. Hence, the approach implemented in this research should feature flexible 

support to employ recombination and mutation strategies to enable the evaluation of 

the relevance of recombination and mutation strategies within the software 

modularisation and architecture reconstruction process. 
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The execution of recombination and mutation leads to the creation of a set of new 

individuals (the offspring). The offspring compete with the individuals of the old 

generation for a place in the next generation. This last step of the EA iteration is called 

survivor selection or replacement (Coello et al., 2007; Agoston E Eiben & Smith, 2003; 

Talbi, 2009). The replacement phase does not vary much from the parent selection 

process apart from its occurrence after offspring creation. As discussed earlier, the 

population size is generally (apart from some EA dialects) a constant during the runtime. 

Naturally, the number of offspring individuals exceeds the defined population size. 

Hence, it has to be decided which individuals survive and are a part of the next 

generation (Glover & Kochenberger, 2003). This decision is usually based on the fitness 

ranking of the offspring and the individuals in the previous population (Coello et al., 

2007; Talbi, 2009). 

Another variable to determine the survival of solutions might be the age of the 

population (Coello et al., 2007). Survival selection is, compared to the stochastic 

selection strategies of the EA process, usually deterministic (Glover & Kochenberger, 

2003). 

The application of EA entails two key concepts, first the application of variation 

operators to create diversity and novelty, and second the selection strategies to create 

environmental pressure to drive the search towards better fitness of population 

individuals (survival of the fittest). This combination of variation and selection operators 

leads to a fitness improvement in consecutive populations. This process of parent 

selection, recombination, mutation and survivor selection is repeated until a 

termination criterion is fulfilled. Two scenarios of termination are generally applied 

within the optimisation discipline. First the termination can be based on a desired 

fitness of the optimal solution. The search is terminated once that level of fitness has 

been reached. However, this requires that the optimisation algorithm is able to discover 

a solution that features this level of fitness and that the desired level of fitness can be 

specified. The other and more commonly applied strategy in the domain of EA is based 
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on the definition of one or more stopping criteria. Common scenarios for this are the 

definition of maximum elapsed CPU time or the maximum number of fitness evaluations 

(Luke, 2010). The utilisation of CPU time is probably not desired in a research project 

that is reliant on the empirical evaluation of search outputs. One reason for this is that 

execution on different machines would lead to different search outputs as the 

performance of the evaluation machines might not necessarily be identical. Such a 

scenario would bias the comparability of search results. Hence, the reliance on a fixed 

number of iterations or generations is likely to be a better stopping criterion in the 

present research to enable the rigorous comparability of search results. 

A desired execution of an EA features fast convergence with good diversity of 

evaluated solutions within the solution space. The survivor selection operator rewards 

improvement in the objective space and consequently drives the EA towards optimal 

convergence. The crossover and mutation operators, on the other hand, seek to obtain 

diversity in the objective space. Hence, the survivor selection mechanism and the 

crossover and mutation operators are in an on-going competition for convergence and 

diversity. 

Besides the tuning of the algorithm parameters, the performance of EA 

implementations is also affected by characteristics of the problem. However, both 

Coello et al. (2007) and Talbi (2009) state that evolutionary algorithms have been 

proven to be robust and successfully applied in a wide and diverse range of difficult 

problem domains such as problems with high-dimensional decision variable and 

objective spaces, problems which require the search to travel through large infeasible 

spaces before finding a feasible space, and problems with many local optima. 

State of the art EA implementations can apply strategies to leverage the impact of 

decision variables on the solution quality by implementing a dynamic exploration of the 

search space. Depending on the evolutionary algorithm, different strategies are applied 

to exploit the structure and relationship of the decision variable space. Correspondingly, 
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Coello et al. (2007) state that evolutionary algorithms do not only attempt to converge 

towards an optimal fitness value from one generation to the next, in fact the application 

of evolutionary algorithms is also a process of adaption in which the fitness of an 

individual is not only seen as an objective function but also as an expression of 

environmental requirements.  

The motivation of this work is to find structures within the source code of a software 

system and classify these into conceptual architecture models that can be utilised as 

development blueprints in later development phase. Hence, EAs might deliver a potent 

method to identify useful structures for the reconstruction of software architectures. 

2.4.2 Multi-Objective Evolutionary Algorithms (MOEAs) 

The present research applies Multi-Objective-Evolutionary-Algorithms (MOEAs) 

in the domain of software architecture reconstruction. The previous section illustrated 

the basic principles of EAs and their potential for implementation in the domain of 

software architecture reconstruction. Nevertheless, section 2.2 highlighted that the 

design of a software architecture is driven by multiple objectives. For instance, a 

potential conflicting goal within the present research is the minimisation of cycles and 

the maximising of cohesion within software artefacts. Both of these goals are valid from 

a software design perspective. Exclusively focusing on the minimisation of the number 

of cycles or only focusing on maximising the cohesion within modules will likely create 

solutions that are biased towards one objective and feature unacceptable performance 

in the other. This section illustrates the reasoning for the application of MOEAs within 

the present research and the basic concepts that underlie MOEAs. 

In single objective optimization, a metaheuristic will converge towards one 

solution that features optimality based on the definition of one objective (Glover & 

Kochenberger, 2003). The outcome of a single objective search is one solution that 

outperforms every other solution that has been visited during the search process in 

terms of the defined objective. Any other enhancing or degrading solution attribute is 
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not considered during the selection process. This unconditional optimisation of one 

single attribute of the solution, without allowing any trade-off in other solution 

attributes of the solutions, will hardly offer a sufficient solution for non-trivial problems. 

The incorporation of multiple objectives might then provide a more balanced 

solution. The goal of multi-objective optimisation is to find a solution that trades off 

multiple objectives. The search process itself is then a battle between the individual 

objectives (Coello et al., 2007). Research in the operations research discipline suggests 

different approaches to including multiple objectives into the optimisation process. 

Eiben and Smith (2003) highlight the combination of objective values into a 

single value as one potential approach to include multiple objective measurements into 

a search. Under such an approach single objective optimisation techniques can be 

utilised after the objective values have been aggregated into a single value. Advanced 

approaches suggest the definition of a weighting scheme to enable an importance 

ranking between the objectives (Agoston E Eiben & Smith, 2003). This may not be 

straightforward, however, as the application of a weighting scheme implies that the 

relevance of objectives can be established before the conduct of the optimisation. 

Additionally, different weighting schemes with the same objective setting will discover 

different final solutions. Moreover, only one single solution is found and no alternatives 

are discovered during the search. Additionally, different objectives might feature a 

different range of values. One objective might feature values in the range 0 - 1.0 and 

another objective might feature values 0 - ∞. A normalisation is not feasible before the 

search is completed unless the absolute range of objective values is known. In short, the 

application of weighting schemes to rank objective goals is complex and hence not used 

in this research. 

Another approach is to incorporate all objectives as separate functions. The 

principle of Non-Dominance introduced by Edgeworth (1881) and extended by Pareto 

(1896) is often utilised instead of optimizing all the objective functions individually. A 
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solution is dominated if, within a set of solutions, at least one other solution exists that 

outperforms it in all objective values. A Non-Dominated or Pareto-Optimal solution 

outperforms every member of a set of solutions in at least one objective but performs 

worse or equal in at least one other objective (Coello et al., 2007). In other words, a 

solution is Non-Dominated or Pareto-Optimal if there is no known solution that 

outperforms at least one objective without decreasing the performance in any other 

objective. It is important to note that the objectives in which a solution outperforms, is 

equal to or is worse than another solution can differ from solution to solution. A set of 

solutions features Pareto-Optimality if every solution of the set does not dominate any 

other solution of the set. Given that no single solution dominates all solutions of an 

optimisation run, the result of a multi-objective optimisation is a set of Non-Dominating 

solutions. The set of all Non-Dominated solutions of an optimisation run is called the 

Pareto-Front. Each of the solutions of the Non-Dominated Pareto-Front dominates an 

area of the search space. Figure 13 illustrates a Pareto-Front with three solutions A, B, C 

and the corresponding dominated solution space.  

 

Figure 13: A non-dominated Pareto-Front 

The disadvantage of the application of the Non-Dominance principle within 

metaheuristics is that Pareto-Fronts cannot be ranked directly. The assessment of the 
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performance of an optimisation run that features the Non-Dominance principle is more 

complex than the performance evaluation of a single objective optimisation. However, 

performance indicators exist to evaluate the performance of MOEAs. A detailed 

overview of multi-objective performance indicators that are applied in the present 

research is presented in section 3.3.4. 

Additionally, the Pareto-Front contains solutions that excel in some objectives 

but may perform poorly in others. In other words, it cannot be determined which 

solution of a Pareto-Front is the best from the perspective of a stakeholder. The 

understanding is that only limited approaches exist to effectively review Pareto-Fronts 

(Blasco, Herrero, Sanchis, & Martínez, 2008; Kasprzyk, Reed, Characklis, & Kirsch, 2012).  

 Sayyad and Ammar (2013) review a total of 51 papers that applied multi-

objective approaches in the SBSE discipline between 2004 and 2013 and classify the 

papers based on the application area in the categories requirements (10 papers), design 

tools and techniques (15 papers), testing/debugging (16 papers) and software project 

management (10 papers). According to this classification the present research would be 

placed in the category of design tools and techniques. However, only the research of 

Praditwong et al. (2011) and Barros (2012) is directly related to the objectives of the 

present research, as these studies apply multi-objective approaches in the area of 

software modularisation. A detailed description of these two research contributions is 

given in section 2.4.3. Furthermore, Sayyad and Ammar (2013) analyse the papers based 

on the number of applied objectives, the applied multi-objective search algorithms, the 

application of an open source multi-objective framework and the application of quality 

indicators. Figure 14 depicts a classification of the number of objectives and the 

corresponding research papers identified by Sayyad and Ammar (2013). 
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Figure 14: Number of objectives in multi-objective research 

Only a few of the research efforts consider more than three objectives. However, it 

might be questioned whether real world applications can be simplified to such a small 

number of objectives and still be a realistic model of the targeted problem domain. 

Seven of the reviewed papers present different formulations for a specific problem by 

applying different objective settings for a problem presentation. Praditwong et al. 

(2011) and Barros (2012) both use two fitness functions with 4 or 5 objectives. Barros 

(2012) also compares the efficiency of the two different objective settings with each 

other (compare: section 2.4.3). However, it can be stated, based on all the reviewed 

papers by  Sayyad and Ammar (2013), that none of the approaches allows stakeholders 

to define or change the objective configuration of the fitness function. 
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Figure 15 gives a compilation of the frequency of the application of specific 

algorithms as presented by Sayyad and Ammar (2013). 

  

Figure 15: Frequency of application of multi-objective algorithms 

NSGA-II, introduced by Deb, Pratap, Agarwal, and Meyarivan (2002), is the algorithm 

of choice in 53% of the reviewed papers. Additionally, 17 papers (33%) reported using 

implementations of the algorithms that are available in tools such as jMetal12 (13 

papers), Matlab (2 papers), Frontier (1 paper) and Opt4J13 (1 paper). The researchers 

implement proprietary algorithms in the remaining two thirds of the papers. Sayyad and 

Ammar (2013) report that 36 papers (70%) used only a single algorithm whereas 15 

papers (30%) used multiple algorithms for comparison purposes. Praditwong et al. 

(2011) used a self-implemented two-archive GA implementation and Barros (2012) 

utilised the NSGA-II implementation from the jMetal framework. 15 papers (30%) used 

quality indicators to assess the quality of the Pareto-Fronts. Hypervolume (HV) was the 

most widely used indicator and was applied in 12 papers. A detailed overview of 

                                                      

12 http://jmetal.sourceforge.net/ 
13 opt4j.sourceforge.net/ 
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optimisation performance metrics and reasoning for the application of specific 

optimisation performance metrics in the present research is given in section 3.3.4. 

Praditwong et al. (2011) use no Pareto-Front quality indicator; instead they utilise the 

MQ measure introduced by Mitchell and Mancoridis (2001a) to compare the 

performance with a single objective approach. Barros (2012) utilises 

GenerationalDistance and Error Ratio as performance indicators. The review of the 

literature presented in Sayyad and Ammar (2013) reveals some methods that should be 

followed for the implementation of a multi-objective architecture reconstruction and 

classification approach. 

In summary, current research has neglected to compare the performance of 

different MOEA implementations and MOEA tunings to enable conclusive statements to 

be made regarding the performance of different algorithm implementations. 

Additionally, the application of Pareto-Front quality indicators, different problem 

formulations and objective settings are often overlooked in multi-objective SBSE 

research. This research closes this research gap by firstly offering the flexible 

employment of a variety of MOEA implementations in different architecture 

reconstruction scenarios and secondly by providing a multi-objective evaluation 

framework that enables the tool-driven comparative evaluation of multi-objective 

solution sets. 

2.4.3 Search Based Modularisation Approaches 

Within the present research an approach has been developed that applies MOEA 

implementations in the area of architecture reconstruction. This approach is 

implemented as a software modularisation approach that considers a conceptual 

architecture model during the modularisation process. In the reviewed literature no 

approach describes the consideration of a conceptual architecture model within a 

search based modularisation approach. Nevertheless, various approaches implement 

search based techniques within low-level software modularisation. The review of such 

related approaches is very useful to inform the selection of methods and techniques for 
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possible application in the challenging field of software architecture reconstruction. This 

section presents a summary of the research that applies search based software 

engineering in the problem domain of software modularisation, decomposition and 

partitioning. In particular, Mancoridis, Mitchell, Chen and Gansner (1999) and Seng, 

Bauer, Biehl and Pache (2005) present the main approaches to applying SBSE techniques 

to reengineer the structure of a software system. 

Mancoridis et al. (1999) show that the structure and complexity of cluster analysis as 

applied to software systems mean that search based software engineering is a 

promising approach to create feasible solutions. The objective of the approach, first 

presented in Mancoridis et al. (1999) and then extended in Mitchell (2002), Mitchell and 

Mancoridis (2006) and Mitchell and Mancoridis (2008), is to discover a cluster 

configuration which features high cohesion within clusters and low coupling between 

clusters. The input data is a dependency graph representing a software system with 

software artefacts and their dependencies. The output is a so-called Module 

Dependency Graph (MDG) which features a classification of the nodes into a number of 

clusters. The number of modules is a result of the search process and cannot be 

controlled externally. The search utilises an iterative single-solution based approach that 

reassigns nodes into modules. The instances of the MDG that are visited during the 

search are evaluated utilising the Module Quality (MQ) measure as an objective function 

(Anquetil & Lethbridge, 1999). The MQ measure is designed to reward high cohesion in 

modules and penalise high coupling between modules. The MQ measure for a MDG 

with n modules is calculated by computing a Cluster Factor (CF) for each of the n clusters 

of the MDG. The CF is defined as a normalized ratio between the total weight of the 

internal edges and half of the total weight of the external edges. The weight of an edge 

can be defined as a numeric value as part of the input dependency graph or, if no value 

is given, the default edge weight is 1.0. Anquetil and Lethbridge (1999) define the CF for 

a module 𝑚 with a set of inter-module edges (𝜇𝑖) and a set of intra-module edges (𝜀 𝑖, 𝑗 

or 𝜀 𝑗, 𝑖) as depicted in the following equation: 
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The weighting of an edge determines the strength of an edge connection. The 

weighting is considered during the calculation of the CF metric and correspondingly has 

an impact on the search output. However, as illustrated in section 2.4.2 the definition of 

a weighting scheme is itself a complex task and might prevent a search from discovering 

promising solutions. Hence, an unbiased search as applied in a Non-Dominance driven 

multi-objective strategy, which navigates through the search space regardless of pre-

defined user weightings in conjunction with a subsequent containment of the solution 

space, is a more unbiased and flexible solution approach. 

Mitchell and Mancoridis (2006) depict the MQ measure to determine the absolute 

quality of a MDG. The MQ measure is calculated as the sum of all clusters of a MDG. 

Hence, the formula to calculate the MQ measure for a MDG with 𝑚 modules is defined 

as follows 𝑀𝑄 =  ∑ 𝐶𝐹 𝑖𝑚
𝑖=1 . The MQ measure operates as a fitness surrogate to express 

the quality of a solution in a single value. The feasibility of the visited solutions is based 

on the ranking of their MQ value in relation to the MQ value of other solutions.  

The approach developed by Mancoridis et al. (1999) is, for example, implemented 

within the Bunch artefact. Correspondingly, Bunch is applicable to identify 

modularisation compositions that feature low coupling and high cohesion based on a 

given dependency graph.  

The reengineering of module constellations in software systems based on low 

numbers of efferent/afferent edges and a high degree of internal edges is certainly a 

valid approach. However, contemporary considerations of coupling within the software 

engineering literature do not assert that the dependencies between two modules 

should be reduced to an absolute minimum. For example, it is not necessarily a bad 
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design if an artefact on any abstraction level uses other artefacts heavily. However, the 

work of Mancoridis et al. (1999) defines loose coupling as a low number of 

dependencies between subsystems. Correspondingly, other design preferences that 

could operate as feasible objectives to reengineer modular software architecture 

designs are, for example: 

 A desired (low) number of cyclic dependencies between artefacts 

 A desired number and structure of conceptual architecture artefacts 

 The differentiation between valid and invalid dependencies between 

conceptual architecture artefacts 

 A maximum number of efferent or afferent coupled artefacts to control 

responsibility and independence of artefacts 

 The mutual grouping of abstract classes  and interfaces with the 

corresponding implementers. 

The Bunch tool supports a hill-climbing algorithm, an exhaustive clustering 

algorithm, and a Genetic Algorithm (GA) as well as a Simulated Annealing (SA) 

implementation (Mancoridis et al., 1999; Mitchell, 2002; Mitchell & Mancoridis, 2008). 

The implemented algorithms are single objective optimisation algorithms. The studies 

demonstrate that the complexity of the clustering problem makes the application of the 

exhaustive search infeasible for non-trivial dependency graphs (Mitchell & Mancoridis, 

2006). Mitchell and Mancoridis (2002) and Mahdavi et al. (2003) state that the 

performance of their hill-climbing implementation out-performs the GA and SA 

implementations based on MQ–objective achievement. 

The hill-climbing clustering algorithm implemented within Bunch starts with a 

random cluster configuration of the MDG as the current search representation. A node 

from the cluster configuration is selected and reassigned to another cluster with the 

objective to find cluster configurations that feature an improved MQ. The solution is 

evaluated based on its MQ value. The solution becomes the new current representation 
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in the search space if it features better fitness based on the MQ measure. This process is 

iterated until an improvement is found. The hill-climbing implementation stops when no 

configuration in the direct neighbourhood can be found with a higher MQ. 

The hill-climbing clustering algorithm implemented in the work of Mancoridis et al. 

(1999); Mitchell (2002); Mitchell and Mancoridis (2001a, 2006, 2008) is initialised with 

randomly created initial cluster configurations. Hence, it is unlikely that two clustering 

runs will produce identical clustering results. Mitchell and Mancoridis (2002; 2001a) 

note that stakeholders would likely expect similar clustering outputs. Mitchell and 

Mancoridis (2001a) introduced EdgeSim and MeCI as cluster similarity measurements 

that, besides the placement of modules into clusters, also take the connectivity of the 

system modules into account. For each edge of the module dependency graph, EdgeSim 

measures the number of times that an edge serves as an intra-edge across multiple 

clustering runs. The intra-edge count is divided by the total number of runs to attain a 

normalised intra-edge count that is independent of the total number of clustering runs. 

The frequency of the intra-edge count is aggregated into ranges. To enable the 

comparison of the EdgeSim measure across systems the frequencies are normalised by 

dividing the number of edges of the frequencies with the total number of edges of the 

clustered module dependency graph. Mitchell and Mancoridis (2001a) argue that a high 

degree of edges within the high percentage ranges and the low percentage ranges is 

favourable. A high count of edges within the high percentage ranges indicates that a 

high number of edges have repeatedly served as intra-module edges. A high edge count 

within the low percentage range indicates that a high number of edges have repeatedly 

been inter-module edges. Hence, a high percentage in the low number of inter-edge 

counts and in the high number of inter-edge counts indicate good stability or reliability 

in a clustering algorithm. A high number of edge counts within the mid-percentage 

ranges show that the algorithm produced solutions in which dependency edges have 

served as an inter- or intra-module edge a balanced number of times, which is not a 

desirable output in terms of stability. 
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Mitchell and Mancoridis (2008) evaluate the stability of their implemented hill-

climbing algorithm against a set of seven real systems and six randomly generated 

dependency graphs. The systems varied in size between 28 and 558 nodes and between 

85 and 3793 node edges. Every system is clustered a hundred times and attributes of 

the clustering results, such as cluster count and MQ, are compared in scatter plots. The 

authors argue that agglomeration within the scatter plots can be observed, which 

supports the claim that there is similarity in certain attributes of the solutions. 

Additionally, the EdgeSim metric is calculated with frequency ranges of zero (0%), low 

(0.1% - 10%), medium (10.1% – 75%), and high (75.1% – 100%). In spite of the wide 

range of the medium frequency bin, only up to 25% of the edges of the 13 systems 

under evaluation are within the medium range. This indicates fairly good stability of the 

evaluated hill-climbing algorithm as at least 75% of the edges are within the zero, low 

and high ranges. Additionally, the evaluated hill-climbing algorithm performs better with 

dependency graphs derived from real systems than with randomly generated 

dependency graphs based on the EdgeSim metric.  

More importantly, the fact that Mitchell and Mancoridis (2001a, 2008) differentiate 

between the reliable assignment of inter- and intra-edges raises the idea that not only is 

the objective to optimise the absolute clustering quality based on cohesion and coupling 

important, but that aspects such as which edges are inter- or intra-edges and overall 

dependency relationships should be considered during the modularisation process. 

A general issue that can also be encountered in the Bunch implementation is that 

hill-climbing implementations stall in local optima (Glover & Kochenberger, 2003). 

Mahdavi et al. (2003) propose a multi-hill-climbing approach to overcome the problem 

of premature convergence of single hill-climbers towards local optima. The approach 

that is presented in Mahdavi et al. (2003) is divided into the execution of an initial set of 

hill-climbs and a following set of best hill-climbs that are identified to a cut off 

threshold. Common features of the best solutions of the initial hill-climbs are identified. 

These common features form building blocks for a set of subsequent hill-climbs. A 
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building block features a set of nodes that are tied in to a particular cluster if all initial 

hill-climbs place the nodes under consideration in the same cluster. The research of 

Mahdavi et al. (2003) is motivated by the hypothesis that the compliant allocations of 

the initial hill-climbing runs deliver evidence that good solutions should also contain 

these node allocations in common clusters. In Mahdavi et al. (2003) a set of twenty-

three initial hill-climbs are executed. After the initial run the building blocks are 

calculated and another set of twenty-three hill-climbs are performed using the 

calculated building blocks as fixed input sets. The result sets of the final runs are merged 

and the best solution of all runs is presented as the final solution. The MQ measure is 

utilised as a fitness function to determine the fitness of the visited solutions. Ten initial 

runs, each with a different cut off threshold starting from the best ten percent to the 

best one hundred percent (effectively no cut off), are executed to reveal the most 

promising cut-off point. The study has been conducted with nineteen dependency 

graphs extracted from small systems with twenty modules to larger systems with just 

over four hundred nodes.  

Mahdavi et al. (2003) find that the application of a multiple hill-climbing technique 

together with the proposed building block technique is able to find better solutions than 

a pure single hill-climbing run based on the absolute MQ measure. Threshold cut-off 

points of ten and twenty per cent reveal an improvement in terms of the MQ measure 

for all systems in comparison to a single hill-climbing run in all evaluated systems. 

Additionally, higher cut-off points also improved the final result within larger systems. 

Nevertheless, the approach suggested in Mahdavi et al. (2003) to overcome the stall of 

the search in local optima is rather complex. A more straightforward approach might be 

the application of Evolutionary Algorithms (EA) as such algorithm implementations are 

not as prone to stall in local optima. 

Harman, Swift, and Mahdavi (2005) evaluate the robustness of the MQ and 

EValuation Metric (EVM) fitness function. The EVM is introduced by Tucker, Swift, and 

Liu (2001) and applies to problems of time-series data and clustering of gene expression 
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data. However, Harman et al. (2005) suggest that EVM is also suitable for 

modularisation problems as it rewards larger numbers of intra-module relationships, 

but does not penalize the occurrence of inter-module relationships as strictly as the MQ 

function. Even if not stated explicitly, research suggests that a less strict penalization of 

inter-module edges, and with that the minimisation of the absolute number of inter-

module dependencies, is not necessarily an ideal approach to rebuild software system 

structures. 

The EVM metric considers all possible relationships within a cluster and rewards 

those that actually exist within the MDG and penalises dependencies that do not exist 

within the MDG. To calculate the EVM metric every possible intra-module dependency 

of every cluster is visited. If the dependency exists within the dependency graph under 

consideration, the EVM is incremented by one. If, on the other hand, the dependency 

does not exist within the actual dependency graph, the EVM score is decremented by 

one. Tucker et al. (2001) and Harman et al. (2005) argue that this approach indirectly 

penalizes high coupling because re-arranging nodes between clusters can change high 

coupling between two modules to lower coupling between them and can also increase 

the EVM score of the solution.  

It needs to be noted that the EVM metric rewards solutions with a high occurrence 

of cyclic dependencies within clusters. This might not be such an issue if the clustered 

nodes are compilation units, because the approaches under consideration do not 

feature functionality to resolve these anyway. However, if the modularisation is to be 

applied at higher abstraction levels, such as assignment of packages into subsystems, 

the occurrence of cyclic dependencies within subsystems and between packages within 

subsystems is unfavourable from a software design perspective (Fowler, 2001; Lakos, 

1996; Martin, 2000). 

Harman et al. (2005) evaluate the robustness of software modularisation using SBSE. 

They introduce artificial noise by mutating the occurrence of edges within the 
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dependency graph. The study applies the hill-climbing algorithm introduced by Mitchell 

and Mancoridis (2001a). Real and artificially generated systems with 20 to 174 nodes 

and 57 to 360 edges are evaluated. For each system twenty hill-climbing solutions are 

generated with the MQ and EVM fitness function, equally split between those with and 

without noise introduction. The run without noise introduction operates as the ideal 

clustering solution. The Weighted–Kappa (WK) metric, introduced in Altmann (1991), is 

utilised to evaluate the impact of the noise (edge mutations) on the performance of the 

two fitness functions. The WK metric expresses the similarity of two clustering results as 

a normalised value. Hence, the WK metric for each fitness function is calculated by using 

the noisy and noise-free cluster configuration from each fitness function. As expected, 

the study reports a decrease in the WK metric with a higher degree of noise for the EVM 

as well as the MQ clustering solutions. However, the WK similarity measured in the MQ 

clusters declines more substantially in comparison to the WK similarity measured in the 

EVM clustering solutions with an increasing level of noise. These findings indicate that 

the EVM metric features greater robustness when applied to real software systems 

(Harman et al., 2005). The introduction of noise can be considered as consistent with 

the erosion of a software system in which more and more arbitrary dependencies occur 

in conflict with the original architecture design of the system. It can be argued that the 

EVM metric copes more effectively with eroded systems due to the less stringent 

penalization of inter-module relationships and hence performs better in systems that 

feature a certain level of dependency erosion. This aligns with the previously proposed 

argument of the present research which states that minimisation of the number of 

inter-module dependencies is not necessarily the best objective to modularise software 

artefacts into conceptual architecture models. This is based on the reasoning that the 

erosion evident in a system should not bias the outcome of the modularisation as these 

unwanted dependencies do not reflect the conceptual architecture design of the 

system. Additionally, occurrences of dependencies between conceptual architecture 

artefacts are not necessarily undesirable. The occurrence of dependencies between 

conceptual architecture artefacts is legitimate as long as these dependencies follow the 
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aspired dependency design of the conceptual architecture model. Hence, other 

objectives need to be identified that rely on different software design aspects to rebuild 

the classification of software artefacts into the conceptual architecture and counter the 

explicit reliance on high cohesion and low coupling within modules. 

Abdeen et al. (2009) apply Simulated Annealing to optimise class partitioning within 

the existing package structure of a software system. Measures for Inter-Package 

Dependencies, Inter-Package Connections, Inter-Package Cyclic-Dependencies, Package 

Cohesion, Package Coupling and Package Cyclic-Dependencies are agglomerated into a 

single objective fitness function. The fitness function of Abdeen et al. (2009) is limited to 

identify direct cycles. Hence, cycles that span across more than two elements cannot be 

identified with the implemented approach. However, the consideration of longer cycles 

is highlighted as being worthwhile as long cycles have an even stronger negative impact 

on the design quality of software systems (Fowler, 2001; Oyetoyan et al., 2013). 

Furthermore, the approach presented by Abdeen et. al. (2009) supports constraints that 

relate to package size, to the number of classes that are allowed to change their 

packages, and to specific classes and packages that are not eligible to be moved or 

changed. These constraints can be defined by development stakeholders before the 

execution of the optimisation process. 

Abdeen et al. (2009) evaluate their approach in a set of four case studies. The 

evaluated systems JEdit14, ArgoUML15 , JBoss16, Azureus17 comprise between 812 and 

4212 classes and between 19 and 380 packages. Thus, the evaluated systems are 

considerably bigger than the systems evaluated in comparable studies (Mitchell and 

Mancoridis, 2008; Praditwong et. al., 2011). Abdeen et al. (2009) execute the algorithm 

ten times for each software application due to the non-deterministic characteristic of 

                                                      

14 http://www.jedit.org/ 
15 http://argouml.tigris.org/ 
16 www.jboss.org/ 
17 http://sourceforge.net/projects/azureus/ 
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the Simulated Annealing implementation. Each execution of the algorithm conducts a 

total of 1500 transformations of the package partitioning of the system. Abdeen et al. 

(2009) compare the average gain of the ten algorithm executions to the original package 

partitioning of the evaluated software applications for each of the six fitness function 

components. Hence, the optimisation is driven by the agglomerated single objective 

fitness function while the evaluation considers the individual objectives separately.  

Abdeen et al. (2009) claim that the observed reduction of the average package 

coupling and the number of cycles during the case studies is an indication that a 

relatively small number of transformations can lead to a noticeable improvement in 

cyclicality and coupling within the evaluated systems.  

Seng et al. (2005) also present a single objective approach that searches for an 

optimal subsystem decomposition by optimizing metrics and heuristics of good 

subsystem design. The approach of Seng et al. (2005) groups compilation units into a 

higher abstraction level. From a software design perspective the subsystems can be 

understood as packages or folders of the software system. Seng et al. (2005) apply a 

genetic algorithm implementation. The fitness function, in which w1, w2, w3, w4 and 

w5 are user defined weights, is defined as follows: 

𝑓 = 𝑤1 ×  𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 +  𝑤2 ×  𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 +  𝑤3 ×  𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 +  𝑤4 × 𝑐𝑦𝑐𝑙𝑒𝑠 +  𝑤5 ×  𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘𝑠  

The fitness function is based on the two most commonly adapted quality concepts – 

cohesion and coupling. Additionally, the bottleneck and cycle metrics are feasible 

optimisation concepts of object oriented design. The authors apply their approach 

within a case study to the JHotDraw18 system, which comprises 207 classes and 28,776 

Lines of Code (LoC). Results show that the search is able to improve the fitness function 

measurement in comparison to the initial fitness based on the original package 

                                                      

18 http://www.jhotdraw.org/ 
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configuration of the system. The best identified solution features a subsystem 

decomposition of 25 subsystems with an average subsystem size of seven classes. 

Schmidt, MacDonell and Connor (2012) present a feasibility study of the application 

of an automatic refactoring approach to increase cohesion of packages, reduce coupling 

between packages and reduce the number of architecture violations in the model of a 

software system. The approach employed a single objective EA implementation. 

Method and constants are represented as decision variables and the genotype instance 

defines the assignment of methods and constants into compilation units. The approach 

utilises a single objective fitness function in which the three individual objectives 

(package cohesion, package coupling and number of architecture violations) were 

combined into one objective representation. The evaluation confirms the applicability of 

the approach to find solutions with a low number of architecture violations and 

acceptable cohesion and coupling based on its application in a simple model of a 

software system. This work informed early directions of the present research, although 

the focus was then redirected due to the previously discussed restrictions of single 

objective approaches and their unsatisfying performance that prohibited the application 

of the approach to non-trivial software systems. 

Etemaadi, Emmerich and Chaudron (2012) and Etemaadi and Chaudron (2012) 

propose a conceptual framework for the application of multi-objective optimisation for 

the design of embedded architectures. Additionally, Etemaadi and Chaudron (2012) 

highlight NSGAII (Deb, Agrawal, Pratap, & Meyarivan, 2000) and SPEA2 (Zitzler, 

Laumanns, & Thiele, 2001) as promising algorithm candidates for the implementation of 

such a framework. However, to this stage no further development of the approach 

besides the proposal of such ideas has been reported on the project webpage19. 

                                                      

19 http://www.liacs.nl/~etemaadi/home/ 
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As highlighted above, Praditwong et al. (2011) approach software clustering from a 

multi-objective perspective by implementing the concepts of Pareto Optimality and 

Non-Dominance. Praditwong et al. (2011) highlight that in previous studies (Harman et 

al., 2005; Mahdavi et al., 2003; Mancoridis et al., 1999; Mancoridis, Mitchell, Rorres, 

Chen, & Gansner, 1998; Mitchell, 2002; Mitchell & Mancoridis, 2001a, 2001b, 2006, 

2008; Mitchell, Traverso, & Mancoridis, 2001) only fixed weighted agglomerations of 

high cohesion and low coupling as a single objective function have been applied. 

Praditwong et al. (2011) extend the Bunch tool by adding a multi-objective genetic 

algorithm implementation. The research formulates the Equal-size Cluster Approach 

(ECA) and the Maximizing Cluster Approach (MCA) objective settings, which can be 

executed with the genetic algorithm implementation. The ECA formulates an objective 

setting defined as maximizing the sum of intra-edges of all clusters, minimizing the sum 

of inter-edges of all clusters, maximising the number of clusters and maximising the MQ 

measure. The objectives of the MCA are defined as maximising the sum of intra-edges of 

all clusters, minimizing the sum of inter-edges of all clusters, maximising the number of 

clusters, maximising the MQ measure and minimizing the number of isolated clusters. 

The two multi-objective settings and the original single objective MQ based hill-climbing 

setting are evaluated based on the execution of seventeen real world problems. The 

systems used in the evaluation feature 20 to 198 modules and 57 to 3,262 

dependencies. Each system is clustered with each of the three objective settings, a total 

of thirty times. The results are compared on the basis of the average MQ performance 

and the calculation of statistical significance by applying a t-test. The results indicate 

that the Equal-size objective setting produces a better final solution, based on the best 

found MQ value, than the existing single-objective hill-climbing approach and the MCA 

implementation. An evaluation of the spread or convergence of the Pareto-Front is not 

conducted as only the final best solution based on the MQ value is considered for the 

evaluation of the three objective settings.  
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However, the consideration of the complete Non-Dominated Pareto-Front (NDPF) is 

more appropriate to make conclusions on the performance of a MOEA implementation. 

Additionally, the inclusion of the development of the search instead of only considering 

the final search outcome is also a valuable aspect to assess the performance of a MOEA 

configuration. Hence, consideration of the performance of the complete optimal Pareto-

Front as well as the speed of convergence are valuable areas of research to extend the 

understanding of the general performance of MOEA implementations. 

Barros (2012) extends the work of Praditwong et al. (2011) and compares the 

performance of a multi-objective clustering approach with three different objective 

configurations. The first objective configuration features four objectives: coupling (to be 

minimised), cohesion (to be maximized), cluster size difference (to be minimised), and 

number of clusters (to be maximized). In the second configuration the MQ metric was 

added as a fifth objective (to be maximized). Similarly, in the third configuration the 

EVM metric was added to the original first objective configuration as a fifth objective (to 

be maximized). Barros (2012) employs the NSGAII algorithm implementation from the 

JMetal framework to evaluate the three different objective configurations by applying 

each of the objective configurations to a set of 14 software system instances. These 

software system instances feature 26 to 195 classes and 61 to 1,137 type dependencies. 

Each pair of an objective configuration and a software system instance is executed 30 

times, due to the probability-based concepts of the implemented NSGAII algorithm, to 

enable general statements on the performance of the individual objective 

configurations to be made. An optimal Pareto-Front is built for each of the executed 

objective configuration and system instance pairs by joining the fronts generated by 

each executed run of the corresponding configuration. Finally, Barros (2012) removes 

the MQ and EVM objective settings from the corresponding fronts and the three fronts 

are merged to generate a final best optimal Pareto-Front. The merged best optimal 

Pareto-Front is compared with the optimal Pareto-Fronts of the three configurations in 

terms of both the Error Ratio and Generational Distance. Furthermore, the Mann-



70 
 
 

Whitney p-value and the effect size for the Error Ratio and Generational Distance are 

calculated by applying a pairwise comparison of the three objective configurations 

across all 14 software system instances. 

Based on the presented data, Barros (2012) concludes that suppressing MQ and 

EVM from the search process can help to find solutions with improved Error Ratio and 

Generational Distance. Nevertheless, it needs to be raised that objective configurations 

that include the MQ and EVM metric might have had a disadvantage as the additional 

objective adds a dimension of complexity. Hence, the research design utilised by Barros 

(2012) might have disadvantaged the objective configurations that include the MQ and 

EVM metric. Additionally, it needs to be raised that the application of the Error Ratio 

and Generational Distance features some limitations. Section 3.3.4 gives a more detailed 

and graphical explanation of such limitations. Therefore, the application of performance 

metrics (e.g. Additive Epsilon Indicator and/or Hypervolume) that evaluate the relative 

convergence of Pareto-Fronts might give more insight into the comparative 

performance of different search configurations.  

Despite these limitations, the objective stated in Barros (2012) has relevance for the 

present research. Barros (2012) conducted this research to evaluate if objective 

configurations that focus less on reducing dependencies between modules are able to 

deliver better module configurations. The present research adopts a similar stance, 

noting that a good architecture design or even a good modularisation should not focus 

exclusively on the minimisation of dependencies between modules. Instead tolerable 

dependencies between modules may well exist if they align with the desired system 

design, while other dependencies may be less favourable e.g. cyclic dependencies or 

dependencies that violate the conceptual architectural design. 

In general, interesting techniques and approaches have been proposed to overcome 

challenges in the application domain of search based software modularisation. 

Nevertheless, it is evident that these approaches do not permit any comparison of 
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solution outcomes across the individual studies. Hence, a framework that allows the 

performance evaluation of SBSE approaches would be helpful to assess and compare 

the feasibility of the developed approaches. 

 Summary of Related Work 

This chapter reviewed literature in the areas of software erosion, design principles of 

software architectures, principles of SBSE and MOEAs. The review of the literature 

helped to identify research gaps that are central to the formulation of the research 

objective of this research. 

In summary, SBSE driven modularisation approaches feature pre-defined sets of 

objectives. The only parameters to influence the search in the reviewed single objective 

studies is the definition of weights for the components of the single objective function, 

(Seng et al., 2005), or the definition of the strength of dependencies between low-level 

artefacts (Mitchell, 2002). Evident in most studies that applied optimisation strategies in 

the area of software clustering is the creation of solutions based on the rewarding of 

high cohesion and low coupling of interrelated implementation artefacts. Harman, 

McMinn, de Souza & Yoo (2012) and Abdeen et al. (2009) state that the designed fitness 

functions are in fact not applicable to capture a complete representation of good 

software design principles and that more flexible approaches are required to identify 

promising solutions. In terms of the objective of this research these previously applied 

metrics can conflict with the general design principles of high-level architecture models. 

Reasons for this are, for example, no consideration of the natural dependency flow from 

higher implementation artefacts to lower implementation artefacts, no consideration of 

allowed and forbidden dependencies between high-level architecture artefacts, and no 

consideration of the structure within high-level artefacts. Hence, the extension of fitness 

functions to incorporate metrics that more effectively consider concepts associated with 

high-level architectural design and that battle indicators of architectural erosion, as 

presented in section 2.3, is worthwhile. 
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The related research that has been conducted in the domain of SBSE and software 

partitioning (single- and multi-objective) focusses on the composition of low-level 

artefacts (compilations units) into the next higher abstraction level (packages or 

folders). However, software architectures feature abstractions on multiple levels (e.g. 

packages, subsystems, layers, layer groups). An approach commonly adopted in 

software architecture design is to group packages or folders into conceptual 

architecture models, which feature a defined set of subsystems and dependencies 

between these high-level artefacts. These conceptual architecture models are a 

representation of the desired design of the system. The design of this conceptual 

architecture model is driven by desired domain and distribution aspects of the system. 

The reviewed approaches discover a model of the next higher level of abstraction as 

part of the solution. The extension of previous work by enabling the reconstruction of 

multiple models of different abstractions and the classification of software artefacts into 

these models is worthwhile. The consideration of predefined conceptual architecture 

models is also a more realistic adaption of the manual software architecture 

reconstruction process in which low-level artefacts are manually classified into artefacts 

at higher abstraction levels. 

The design of software architecture configurations depends on a variety of 

potentially conflicting requirements. Within this research it is anticipated that a 

predefined configuration of objectives and objective weights has limited validity to 

satisfy the requirements of development stakeholders in every software modularisation 

or architecture reconstruction scenario. Furthermore, it is hypothesized that the quality 

of an architecture design cannot be expressed in one single fitness value. It is therefore 

suggested in this research that the application of MOEAs in combination with the 

application of established high-level software architecture design metrics is a promising 

area of research. 



73 
 
 

Barros (2012) applied a NSGAII algorithm and Praditwong et al. (2011) applied a 

TWO Archive based GA implementation in the problem domain of software 

modularisation. However, a wide range of other MOEA implementations exists, 

including Differential Evolution, Scatter Search, Particle Swarm Optimisation and 

Decomposition based EAs. Nothing is currently known regarding the performance of 

such MOEA implementations in the targeted application domain, and more generally 

very little is known in relation to the performance of MOEA implementations when 

applied to other software engineering problems. Hence, it is worthwhile to thoroughly 

evaluate and compare the performance of other MOEA implementations and tunings in 

the targeted application domain. This might also lead to insights that enable conclusions 

to be drawn regarding the general performance of MOEA implementations in other 

related application domains. 

Additionally, a variety of multi-objective approaches exist that might be leveraged to 

address problems in the domain of software engineering. However, different 

experimental designs are employed to demonstrate the feasibility of the developed 

approaches. For example, Barros (2012) applies Error Ratio and Generational Distance to 

evaluate the optimal Pareto-Fronts that are achieved in the two applied fitness function 

settings. On the other hand, Praditwong et al. (2011) rely on the MQ metric to assess 

the performance of their approach. It is anticipated that a comprehensive and flexible 

multi-objective evaluation framework that would enable the comparison of solution sets 

independently of the solution implementation would be a valuable contribution to the 

SBSE community. It would be valuable to include additional multi-objective performance 

metrics, e.g. Inverted Generational Distance, Additive Epsilon Indicator, Spacing and 

Hypervolume (compare: section 3.3.4), in such a framework. 

The present research also assumes that a variety of feasible solutions are discovered 

in the search. Such solutions might or might not necessarily be included in the optimal 

Pareto-Front. Hence, it is worthwhile to evaluate the feasibility to implement an 

approach that enables development stakeholders to filter and review the set of 
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discovered solutions efficiently based on solution attributes that extend the defined 

objective configuration. 

A variety of different search based driven partitioning, modularisation and 

decomposition approaches have been reviewed in this chapter. At this stage none of the 

described approaches is available to the public. One of the outcomes of this research is 

a candidate prototype, namely the Rearchitecturer system, that addresses and evaluates 

the points of contribution addressed above. The availability of such a candidate 

prototype as an extendable open-source artefact is valuable in enabling replication and 

extension of the research conducted and reported here as well as supporting 

comparisons with other research efforts.  
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3 Methodology 

An appropriate research methodology needs to be implemented to demonstrate 

and evaluate the relevance and effectiveness of the approach developed in this research 

in a robust and rigorous way. 

The main objective of this research is to evaluate the feasibility of multi-objective 

optimisation strategies when applied in the area of architecture reconstruction to 

identify feasible architecture classifications that can operate as a starting point for the 

modularisation of software systems and the containment of software erosion. Through 

the course of this research a software prototype is implemented that features 

architecture reconstruction functionality based on the application of multi-objective 

optimisation methods. This prototype is the basis for the evaluation of the objective of 

this research. Hence, this research is both exploratory and constructivist in nature. 

Therefore, the objective of the present research fits the frameworks and guidelines of 

design science in the information systems discipline (Hevner, March, Park, & Ram, 2004; 

Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007; Vaishnavi & Kuechler, 2008). 

These research guidelines are used extensively in high quality research across the 

domains of software engineering and information systems development and 

management (Antunes, Zurita, & Baloian, 2014; Melville, 2010; Pruijt & Brinkkemper, 

2014). 

The present research therefore applies the Design Science Research Methodology 

(DSRM) as specified by Peffers et al. (2007), consisting of six stages that operate as a 

template for the conduct, presentation and evaluation of design science research in the 

information systems discipline. Figure 17 depicts these six stages and the nominal 

process of design science research as presented in Peffers et al. (2007): 
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Figure 16: Research process of the DSRM (Peffers et al., 2007) 

The first step of the research process described in Peffers et al. (2007) serves to 

identify and motivate the relevance of the addressed research problem. The five 

subsequent steps (Define Objective of a Solution, Design & Development, 

Demonstration, Evaluation, and Communication) are conducted in an iterative manner. 

Each phase is revisited a number of times and refined throughout the duration of the 

research as new understandings are discovered during the review and analysis of the 

outputs of the individual phases. This iterative approach enables the adaptation and 

refinement of the design of the artefact under development. 

The individual phases need to be populated with problem context specific activities 

to enable the conduct of the research. The following sections describe these context 

specific activities that have been employed in the present research. The sequence of the 

presentation adapts the nominal sequence of the design science research process as 

described by Peffers et al. (2007). The identification of a problem and the definition of 

an objective as well as the design, development and demonstration phase are highly 

interconnected in the present research and are therefore presented conjointly in the 

following sections. Additionally, a contribution of this research is a multi-objective 

evaluation framework that enables the flexible and repeatable analysis and comparison 
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of result datasets. Hence, the methods and techniques that are utilised to evaluate the 

designed architecture reconstruction artefact and to collect datasets are of particular 

relevance for the implementation of this research. 

 Identification of the Problem and Definition of the Research 

Objectives 

Relevant literature needs to be reviewed to identify a research problem in the 

targeted problem domain and to define the research objectives. Hence, this research 

project started with an in-depth literature review to ensure familiarity with the 

philosophies that underpin this domain, existing research, challenges, opportunities and 

open questions. This project draws on a number of different research areas within the 

software engineering discipline, particularly software architecture management and 

monitoring, architecture reconstruction, software modularisation and partitioning, 

software quality assessment, search based software engineering and, most importantly, 

research that combines these fields. The reviewed literature also enables justified claims 

to be made regarding the novel contributions of the solution presented in this research. 

The relevant findings of the reviewed literature are presented in Chapter 2 of the thesis. 

Based on the reviewed literature, research gaps have been identified that are central to 

the formulation of the research objective. The summary of the identified research gaps 

and the subsequent formulation of the objectives of the present research are presented 

in section 2.5 of this thesis. 

 Design, Development and Demonstration 

A prototype, namely the Rearchitecturer system, is designed and developed to 

enable the evaluation of the objectives of the present research. The developed 

prototype enables the reconstruction of software architecture configurations based on 

the application of multi-objective optimisation techniques. Different compositions of 

technologies and components are feasible in supporting the development of such a 

candidate prototype. However, the designed prototype can only represent one feasible 
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composition of such technologies. Hence, the selection of state-of-the art-technologies 

is crucial if the research is to produce a high performing instance of the developed 

theoretical framework. Existing technologies and methods are reviewed and evaluated 

within this research stage in order to identify an efficient and useful orchestration of 

technologies and to reuse existing components for the development of candidate 

prototypes. Various concepts that are essential for the implementation of a search 

based driven architecture reconstruction approach, such as high-level architecture 

patterns, architecture design metrics, methods to define conceptual architecture 

models, approaches to conduct compliance checking of conceptual and physical 

architecture models, and MOEA approaches and principles, are all reviewed and 

documented as part of the literature review presented in Chapter 2. A variety of open-

source libraries exist that facilitate such functionality. Additionally, a variety of 

programming paradigms and languages exist in the software engineering discipline. 

Correspondingly, different architecture designs and patterns are favoured depending on 

the applied programming paradigm and system distribution. The scope of this research 

is not to deliver a prototype that enables a solution for every one of these programming 

languages, programming paradigms, architecture styles and patterns. The objective of 

this research is to evaluate the feasibility of a search based driven architecture 

reconstruction framework. For the evaluation of this research a representative 

programming language and paradigm combined with a selection of architecture styles 

and architecture patterns is sufficient to demonstrate the designed theoretical 

framework. The evaluation of this work focuses exclusively on software systems that are 

developed in Java. A variety of open-source systems exist that have been developed in 

Java. Many of these systems have been actively developed for several years and most 

likely face the known problems of software erosion. Such open-source systems 

represent a viable pool of candidate systems for the evaluation of the developed 

prototype. 
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Chapter 4 discusses aspects of the design and implementation of the Rearchitecturer 

prototype in detail. Additionally, Chapter 4 demonstrates the functionality of the 

Rearchitecturer component and highlights how the functionality and evaluation aspects 

contribute to the domain of multi-objective software modularisation and architecture 

reconstruction. 

 Evaluation of Prototype 

The objective of the system analysis and evaluation stage is to gather data that 

enables the formulation of conclusions on the feasibility, contributions and limitations 

of the developed approach. This data is collected through the application of the 

developed candidate prototype. The evaluation of the prototype reveals the capability 

of the constructed theoretical framework to overcome the problems addressed by the 

research objective. The definition of suitable methods of system analysis and evaluation 

is crucial to enable a thorough and sound data collection, analysis and conclusion on the 

feasibility of the developed approach. 

The Rearchitecturer component features a range of software architecture metrics, 

reconstruction strategies, MOEA implementations and variation operations. The flexible 

design of the component enables the definition of a variety of optimisation 

configurations. The execution and analysis of all combinations of these feasible setups 

exceeds the scope of the present research. Hence, it is necessary to identify evaluation 

scenarios that contribute data towards the evaluation of the formulated objective. 

Furthermore, methods need to be identified to conduct the analysis of the collected 

data to enable conclusions regarding the feasibility of the designed approach. The 

selection of suitable application scenarios, MOEA implementations, MOEA parameter 

tunings, evaluation systems, but also the evaluation and analysis techniques themselves, 

is discussed in the following sections. 
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3.3.1 Architecture Reconstruction Application Scenarios 

The present research applies the concepts presented in Harman and Clark (2004) 

that outline the application of software metrics as fitness functions to determine the 

fitness of a generated solution. Software design metrics that asses the quality of 

software architecture compositions are relevant in the evaluation. An overview of 

established software architecture metric implementations has been given in section 2.3. 

These seven architecture design metrics are employed as optimisation goals in the 

evaluation of this research. 

The approach developed in this research facilitates the classification of software 

artefacts into conceptual architecture models on multiple abstraction levels. 

Additionally, conceptual architecture models can be reconstructed as part of the 

reconstruction process. However, following Breivold, Crnkovic, and Larsson (2012), 

Fowler (2002) and Martin (2011), this research perceives the conceptual architecture 

model as a blueprint of the desired design of the system. A conceptual architecture 

model is supposed to describe the design of the system based on domain aspects 

(Martin, 2011). Hence, the design of the conceptual model is ideally driven by domain 

aspects and their relationships. The implementation of the system should adapt to this 

blueprint. Correspondingly, the conceptual model should not reflect the 

implementation of the system. Hence, from an architecture design perspective the 

rebuilding of the conceptual architecture based on the structures of the physical source 

code artefact conflicts with the ideas presented in the mentioned architecture design 

literature. Therefore, experiments are conducted in the evaluation of this research that 

consider predefined conceptual architecture models. These conceptual architecture 

models operate as target architectures during the classification process. 

The conceptual architecture model can be utilised to model different system 

architectures. For example, a transient architecture style can be utilised if the 

application is running on one machine and no machine boundaries exist (Fowler, 2002). 

A strict layer dependency, in which a layer can only access artefacts in the directly 
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depending layer, can be applied to model machine boundaries (Fowler, 2002). The 

structure of the conceptual architecture is considered by some of the employed 

architecture design metrics. Hence, the employment of different architecture styles 

within the evaluation is useful to reveal information on the applicability of the approach 

within different architecture styles. 

Principles of good architecture design envisage that classification of physical source 

code artefacts into conceptual high-level artefacts is driven by the intended 

functionality of the physical artefacts (Martin, 2011). The optimisation implemented in 

this research is based on established architectural design indicators and does not 

automatically consider functionality aspects of the physical artefacts. However, 

stakeholders might have an understanding of this intended functionality for some of the 

physical artefacts that they want to have included in the solution. Hence, stakeholders 

can assign artefacts prior to the execution of the search to include their domain 

knowledge into the architecture reconstruction process. The developed approach 

supports such predefined assignments. As a result any visited solution will feature the 

predefined artefact assignments. The consideration of such a manual assignment 

impacts the solution space of the search and impacts the performance of the employed 

search. Hence, the inclusion of an experiment scenario that considers predefined 

artefact assignments is helpful to gather data on the performance of the employed 

MOEA implementations. 

The analysis of the actual functionality of the physical artefacts of the analysed 

software systems, definition of a corresponding conceptual architecture and assignment 

of a subset of the physical artefacts into suitable subsystems is beyond the scope of the 

present research. However, a randomised assignment of physical source code artefacts 

combined with the subsequent execution of the optimisation is a useful method to 

generate data that enables conclusions to be drawn on the performance of MOEA 

implementation operating in constraint classification scenarios. It is necessary to 

conduct multiple iterations of the randomised assignment of physical source code 
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artefacts and the subsequent optimisation to gain a set of results that enables 

representative conclusions. 

3.3.2 Applied MOEA Implementations 

The previous sections identified application scenarios to evaluate the feasibility of 

the designed approach in an architecture reconstruction problem context. MOEA 

implementations need to be employed to run the optimisation in the outlined 

architecture reconstruction scenarios. 

The application of optimisation approaches is appropriate where there is no known 

deterministic method that will generate a good solution in an acceptable amount of 

time and where the complexity of the problem is too high to apply a brute force 

approach. These problem scenarios leave optimisation approaches as the last resort to 

avoid the application of a solution generation approach that relies explicitly on guessing 

(random search) (Luke, 2010). Arcuri and Briand (2011) describe random search 

implementations as an essential benchmark to determine the relative usefulness of 

randomised optimisation implementations. Additionally, however, Arcuri and Briand 

(2011) highlight that comparative studies of selected optimisation implementations with 

a random search implementation are rarely conducted. 

The optimisation community has developed a variety of different MOEA 

implementations in recent decades. As presented in section 2.4.2, Sayyad and Ammar 

(2013) reviewed 51 research papers that apply multiple optimisation techniques in the 

SBSE domain and report that a total of 25 different MOEA implementations have been 

applied. The most commonly applied MOEA implementations are NSGAII (34), SPEA2 

(9), MOCELL (7), PAES (4) and MOGA (4). The other twenty MOEA implementations are 

only utilised once or twice in the reviewed studies. Sayyad and Ammar (2013) also 

report that only 30% of the research efforts in the multiple objective SBSE discipline 

apply more than one MOEA implementation. 
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Two multi-objective GA implementations have been applied in the related problem 

domain of software modularisation. Barros (2012) applied NSGAII and Praditwong et al. 

(2011) applied a TWO Archive based GA implementation in the problem domain of 

software modularisation. However, there are no comparisons of different MOEA 

implementations in any known research (Sayyad & Ammar, 2013). 

The absence of comparative studies that analyse the performance of multiple MOEA 

implementations encourages the employment of different types of MOEA 

implementations in the targeted problem domain. However, the lack of consistent 

evaluation approaches to evaluate different MOEA implementations or settings makes it 

difficult to compare results and make general statements regarding the general 

feasibility of approaches. Hence, a novel multi-objective evaluation framework is a 

further valuable contribution to this research area. 

The approach developed in this research integrates two optimisation frameworks 

(MOEA and JMetal) (compare: section 4.1.4). One advantage of the utilisation of these 

frameworks is that a variety of established MOEA implementations is available to be 

applied in the addressed problem domain. Nevertheless, the employment of each of the 

many MOEA implementations available is beyond the scope of this work.  

The objective configuration that is applied in the evaluation of this research features 

a total of eight objectives. Basic MOEA implementations have difficulties in achieving 

good convergence in complex optimisation configuration settings (Hughes, 2005; Li & 

Zhang, 2009). He and Yen (2014) quote relaxed concepts of Pareto-Dominance, 

decomposition based concepts, performance indicator based concepts or grid based 

concepts as potentially helpful to overcome the challenges of many objective 

configuration settings. In the evaluation of this research a mixture of established MOEA 

implementations (NSGAII - Genetic Algorithm, AbYSS – Scatter Search, GDE3 - 

Differential Evolution) in combination with MOEA implementations that apply 

decomposition based concepts (MOEAD) and ε-dominance (OMOPSO - Particle Swarm 
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Optimisation) as a relaxed form of Pareto-Dominance are applied. Additionally, 

RandomSearch is applied as a benchmark implementation. Thus, in total a set of six 

MOEA implementations are employed in the evaluation of this research that feature a 

variety of different optimisation strategies. 

3.3.3 Evaluation Systems 

The defined problem scenarios and MOEA configurations are applied on a set of 

software systems to enable conclusions to be drawn on the performance, applicability 

and scalability of the developed approach. 

It has been found that the consideration of the systems or metrics incorporated in 

existing benchmark suites such as the Qualitas Corpus or the Dacapo  benchmark is not 

feasible. The Qualitas Corpus benchmark suite provides size metrics of multiple system 

releases. In the present research the reconstruction of only one recent release is 

examined, as the objective of this research does not focus on the transformability of 

software systems at different stages of the system lifecycle. In addition, the Qualitas 

Corpus suite features a total of 112 examined systems. The examination of such a high 

number of systems is computationally infeasible as the evaluation design requires the 

execution of all experiment settings for each system. The Dacapo benchmark suite 

provides a set of runtime metrics. The approach considered in the present research 

focuses on the optimisation of static high-level quality indicators. While the assessment 

of dynamic metric benchmarks and comparison with convergence of static metrics is 

worthwhile it is argued in this research that the consideration of dynamic quality 

benchmarks would add limited insights to demonstrate the feasibility of a multi-

objective architecture reconstruction approach. Hence, it has been concluded in this 

research that the application of the approach to benchmark suites would not add value 

to the evaluation of this research. Instead, recent releases of open-source systems have 

been utilised as evaluation systems. The evaluation of the systems has been started on 

smaller systems to prove the general feasibility of the approach. The size of the 

evaluation systems has been increased incrementally to demonstrate the scalability of 
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the developed approach. As a result, the approach has been evaluated on the following 

five software systems: Apache Log4j, Apache Commons Math, Apache Ant, Lucene and 

Rearchitecturer. 

All but the Rearchitecturer system are established open-source projects with an 

active user community. Multiple developers are permanently involved in the 

maintenance and enhancement of these projects. These systems each feature a 

module-based architecture that is publicly available on the corresponding system 

webpages. The modules in these systems are maintained as separate projects. The 

dependencies between the modules are organised with Maven20. Hence, at a project 

level the systems are cycle free and have a defined dependency structure. However, 

none of the projects employs a dependency management tool (such as Sonar, XRadar or 

DependoMeter). Hence, the smallest unit from a high-level architecture perspective is a 

Maven project. Dependencies between packages of the same module are not restricted 

and monitored. It is unknown if metrics are applied to review the architectural quality of 

the individual modules in these systems. 

The Rearchitecturer system, on the other hand, has been developed as a prototype 

for the evaluation of this research. Thus, one developer was involved in the 

development of the Rearchitecturer system and no active user-community exists at this 

stage. In summary, the selected systems are of different size, structure and maturity. 

Table 1 depicts software metrics that describe aspects of the size and structure of the 

selected software systems. 

 

 

                                                      

20 http://maven.apache.org 
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Table 1: Size Metrics of Evaluation Systems 

Name Number of 

Packages 

Lines Of Code Number of Types 

Apache Ant v.1.9.2 276 131,212 1,772 

Apache Math v.3.2 140 171,171 2,106 

Apache Log4j v.1.2.17 40 30,456 453 

Lucene v.4.4.0 50 151,340 2,264 

Rearchitecturer 51 33,231 537 

3.3.4 Optimisation Performance Metrics 

The empirical performance evaluation of single objective optimisation focuses on 

the quality assessment of the final solution based on the achievement within the 

desired objective and the computational effort expended to achieve solutions (Coello et 

al., 2007; Talbi, 2009). 

Consideration of absolute achievement in a desired objective has the advantage that 

the achieved values are specific to the problem and hence allow an assessment of a 

solution from a domain perspective. For example, stakeholders might not be satisfied 

with a minimum number of 500 architecture violations in an optimisation run that 

features the minimisation of architecture violations as the only optimisation goal. It 

seems likely that only solutions that feature close to zero architecture violations would 

be considered as a useful outcome from a software engineering perspective. Hence, the 

consideration of absolute achievement in each of the individual objective dimensions, 

based on the presentation of descriptive statistics such as minimum, maximum, mean, 

median and standard deviation of the populations, is an important instrument to reveal 

information on the feasibility of the approach. 

In addition, and a key differentiator from prior research, the present research 

applies multi-objective optimisation techniques. The assessment of a multi-objective 

solution set based on the assessment of achievement in the individual objectives has 
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limited value in terms of making conclusions on the overall performance of a MOEA 

optimisation setting. The review of a dataset from the individual objectives perspective 

does not permit any conclusions to be drawn on the performance of the promising 

solutions of this dataset in other objective dimensions. 

To thoroughly evaluate the performance of a multi-objective approach, all of the 

employed objectives need to be taken into consideration. Hence, the performance 

assessment of multi-objective based optimisation approaches is more complex. The 

major difficulty of multi-objective assessment is that the output of the optimisation 

process is not a single solution but rather a non-dominated Pareto-Front (compare 

section 2.4.2). Multiple non-dominated Pareto-Fronts need to be compared to evaluate 

the performance of different multi-objective metaheuristics. Figure 17 shows two non-

dominated Pareto-Fronts of a two objective minimisation problem. None of the 

presented Pareto-Fronts dominates the other completely. This makes a comparison of 

the two approximation sets challenging (see: Figure 17). 

 

Figure 17: Non-dominated Pareto-Front of two different algorithms 



88 
 
 

Performance indicators offer support when assessing the quality of Pareto-Fronts 

(Coello et al., 2007; Okabe, Jin, & Sendhoff, 2003; Talbi, 2009). Generally, performance 

indicators that assess convergence and diversity aspects of Pareto-Fronts can be 

differentiated. However, hybrid forms, which express convergence and diversity aspects 

in one metric, also exist (Luke, 2010). Additionally, performance indicators that require 

or do not require the true Pareto-Front to be calculated can be differentiated. The true 

Pareto-Front is understood as the best achievable Pareto-Front of a problem (Coello et 

al., 2007). Often the true Pareto-Front is not known or cannot be calculated for a 

problem. This certainly applies in the targeted problem domain, as the true Pareto-

Front, that entails all non-dominated architecture configuration solutions for a selected 

optimisation configuration, is not known and cannot be generated deterministically. The 

developed evaluation approach creates a super-NDPF of combined NDPFs from the 

individual optimisation runs that can be considered an approximation of the true 

Pareto-Front. The creation of such a super-NDPF is an established technique of 

evaluation and has been applied in other optimisation research (Barros, 2012; Ferrer, 

Chicano, & Alba, 2012; Sayyad, Menzies, & Ammar, 2013). A limitation of utilising an 

approximation instead of the true Pareto-Front is that the performance indicator only 

calculates a relative convergence and diversity. Hence, results that have been created 

with different super-NDPFs are not directly comparable. In the present research this 

needs to be considered if NDPFs are calculated with different objective settings or with 

different software systems. Hence, an approach is suggested that relies on the 

application of normalisation techniques to enable the comparison of performance 

indicator results from such incompatible NDPF calculations. 

This research evaluates the feasibility of a multi-objective reconstruction approach 

based on the utilisation of architecture design metrics as optimisation goals. In the 

evaluation, established performance metrics are considered to enable statements on 

the performance of the applied algorithms. The performance metric implementations of 
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the JMetal21 and MOEA framework are utilised in the present research. As noted above, 

Sayyad and Ammar (2013) recently reviewed 51 research papers that applied multi-

objective optimisation techniques and analysed, among other things, the method of 

evaluation evident in these papers. Sayyad and Ammar (2013) state that 15 of the 51 

research papers applied multi-objective performance metrics to conduct the evaluation. 

Different performance metrics, such as Spacing, Error Ratio, Generational Distance, 

Inverted Generational Distance and Hypervolume are applied in these studies.  

The following sections give an overview of some of the more commonly used 

performance metrics that are applicable to evaluate the feasibility of the developed 

approach. 

Spacing 

The Spacing metric describes the spread of the solutions within the objective space 

of a non-dominated approximation set (Zitzler, Thiele, Laumanns, Fonseca, & Da 

Fonseca, 2003). A higher value indicates better spread in the objective space, whereas a 

low spacing value indicates that all solutions of the analysed approximation set are close 

together and feature a small spread in the objective space. Hence, the comparison of 

the spacing metric for a set of algorithms when applied to the same search problem can 

indicate whether an algorithm can find solutions that feature a better spread along the 

objective space. However, it is also suggested in the present research that more 

condensed NDPF are potentially more desired in a multi-objective software 

modularisation problem as stakeholders prefer modularisation solutions that feature a 

well-balanced achievement in the defined objectives. Section 4.2.2 discusses this 

problem characteristic in more detail. 

Additionally, if all algorithms under consideration feature a low spread it does not 

necessarily indicate poor performance of the algorithms themselves, but rather denotes 

                                                      

21 http://jmetal.sourceforge.net/ 
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that no great changes in the objective space could be achieved. Hence, the spacing 

metric is also a measure to characterise the complexity of the search landscape. 

Contribution and Error Ratio 

The Contribution metric is a convergence metric that reports the ratio of the number 

of solutions of an optimal Pareto-Front of the algorithm under consideration that are 

also members of the true Pareto-Front (Van Veldhuizen & Lamont, 1999). On the other 

hand, the Error Ratio reports the ratio of members that are not in the true optimal 

Pareto-Front and the total number of solutions of the optimal Pareto-Front of the 

algorithms under consideration. Nevertheless, both metrics express exact matches in 

the optimal Pareto-Front calculated by the algorithm under consideration and a best 

known Pareto-Front.  

A general critique of the Contribution and Error Ratio performance metrics is that 

they report a binary match of solutions in Pareto-Fronts. Solutions that are close to the 

best known optimal Pareto-Front but not included in the best known Pareto-Front are 

not considered (Van Veldhuizen & Lamont, 2000). Hence, the Contribution and Error 

Ratio performance indicators do not consider relative convergence and have limitations 

due to their reliance on reporting binary convergence. Barros (2012) constitutes the 

only related research that applied the Error Ratio performance metric in an evaluation. 

Generational Distance (GD)  

The Generational Distance (GD) calculates the average population distance from the 

optimal Pareto-Front calculated by an algorithm under consideration to a best known 

Pareto-Front (Van Veldhuizen & Lamont, 2000). The best known Pareto-Front can be the 

true Pareto-Front or an approximation based on the calculation of multiple algorithms. 

The sum of the minimum distance is calculated from every member of the optimal 

Pareto-Front to the closest member in the best known Pareto-Front. Figure 18 illustrates 

the calculation of distance for the GD metric based on a two-objective minimisation 
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problem. The calculated sum is divided by the number of members of the optimal 

Pareto-Front. 

  

Figure 18: Calculation of Generational Distance metric 

One point of critique in the rigour of the GD performance metric is that it does not 

consider the spread, shape and number of solutions in the best known Pareto-Front 

(Zitzler, Brockhoff, & Thiele, 2007). Hence, the GD metric reports good performance if 

the members of the optimal Pareto-Front under consideration are close to any solution 

of the best known Pareto-Front. This is particularly relevant if the optimal Pareto-Front 

does not feature a wide spread or only features a small number of solutions. Hence, the 

similarity of the spread, shape and the number of solutions of the two Pareto-Fronts is 

not considered. An explicit reliance on the GD performance metric is not recommended.  

Sayyad et al. (2013) reports that the GD performance metric is applied in a total of 

four SBSE papers in the problem domains of testing, software project management and 

software clustering. Barros (2012) applies the GD performance metric in the related 

problem domain of software clustering. 
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Inverted Generational Distance (IGD) 

The Inverted Generational Distance (IGD) calculates the distance from the best 

known Pareto-Front to the optimal Pareto-Front (Li & Zhang, 2009). This addresses the 

shortcoming of the GD metric mentioned in the previous section if the best known 

Pareto-Front features a different shape or wider spread along the objective space than 

the optimal Pareto-Front. Hence, it is relevant to consider the IGD metric during the 

evaluation process. If the result is similar to the GD metric it can be concluded that the 

shape and spread of the best Pareto-Front and the known Pareto-Front are 

commensurate. A noticeable disagreement in the GD and the IGD measurement 

indicates that the shape and spread of the best known Pareto-Front and calculated 

Pareto-Front are different, which is an unfavourable performance characteristic of the 

evaluated algorithm. Sayyad and Ammar (2013) report the application of the IGD metric 

in the problem domains of testing (Assunção, Colanzi, Pozo, & Vergilio, 2011), software 

deployment and configuration in the cloud (Frey, Fittkau, & Hasselbring, 2013). 

Epsilon Indicator 

The Epsilon Indicator (EI) calculates the minimum factor by which an approximation 

set has to be translated into the objective space to dominate another currently 

dominating approximation set (Coello et al., 2007). The EI metric is motivated by the 

assumption that an approximation, that dominates another, is more favourable and 

features absolute better solutions. In the scenario of a performance evaluation of an 

algorithm, the EI metric is calculated for an optimal Pareto-Front that is known and the 

true Pareto-Front. The true Pareto-Front can be a consolidation of the optimal Pareto-

Front from various algorithms or the absolute true Pareto-Front. The EI is calculated 

based on the worst case solution distance of the multi-objective space to make the 

approximation set dominate the best-known approximation set. Hence, a large gap 

between two approximation sets leads to a poor EI metric value. Figure 19 illustrates 

the calculation of the EI based on a two-objective minimisation problem.  
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Figure 19: Calculation of the Epsilon Indicator metric 

Based on the review conducted by Sayyad and Ammar (2013) the EI performance 

metric is applied as a performance indicator in SBSE related research. 

Hypervolume 

Hypervolume is defined as the n-dimensional space that is confined by an n-

dimensional set of points (Zitzler, Brockhoff, & Thiele, 2007). When applied to multi-

objective optimisation, the n-dimensional objective values of the individual solutions of 

the Pareto-Front solutions are understood as vectors. The space that spans along these 

vectors in relation to a reference point, usually the anti-optimal point or worst possible 

point for the space, is the Hypervolume. Hence, the Hypervolume calculates the space 

that is weakly dominated by a Pareto-Front. The Hypervolume is reported as a 

normalised value based on an approximated optimal Pareto-Front or the true Pareto-

Front. Correspondingly, the Hypervolume metric expresses in a single unary value a 

measure of the spread of the solutions along the Pareto-Front, as well as the distance of 

a Pareto-Front from an optimal Pareto-Front. Hence, the Hypervolume is maximised only 

if the set of solutions contains all Pareto optimal points. Figure 20 pictures the 

calculation of the Hypervolume metric based on two Pareto-Front solution sets. 
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Figure 20: Calculation of the Hypervolume metric 

Zitzler et al. (2007) argue that the Hypervolume metric only produces good measures 

if the spread and shape of the Pareto-Front are similar to the optimal Pareto-Front. 

Sayyad et al. (2013) state that Hypervolume is the most widely applied performance 

indicator, being applied in a total of 12 studies out of a reviewed pool of 51. However, 

none of the reviewed research efforts utilises Hypervolume in problem domains that are 

related with the present research. 

3.3.5 Methods of Statistical Analysis  

The present research evaluates the feasibility of MOEA implementations in the 

problem domain of software modularisation and architecture reconstruction. The MOEA 

implementations that are applied in this research feature strategies that are of a 

probabilistic nature to overcome the limitation of deterministic optimisation 

approaches that can stall in local optima (compare section: 2.4.2). Hence, multiple 

executions of the same objective configurations are likely to discover different optimal 

Pareto-Fronts due to the employment of these probability-based characteristics. 
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Correspondingly, it is not feasible to derive conclusions on the performance of an 

employed optimisation configuration based on a single execution. Evaluation methods 

need to be implemented that address these probabilistic characteristics of the applied 

MOEA implementations and thus enable statements to be made regarding the general 

performance of algorithms and reconstruction configurations. 

Arcuri and Briand (2011) analyse the methods and evaluation techniques of 

optimisation approaches in sixteen research papers that apply randomized algorithms in 

problem domains of software engineering. They highlight that some of the evaluation 

methods that are applied in the reviewed papers are insufficient to support thorough 

conclusions on the performance of the analysed problem implementations and 

algorithms (e.g. no application of multiple runs (8 papers) and/or no application of 

statistical testing (11 papers)). Based on the review, Arcuri and Briand (2011) suggest a 

set of practical guidelines for the thorough performance evaluation of randomised 

algorithms. The key elements of these practical guidelines are the application of 

multiple repetitions of runs, application of Mann-Whitney U-tests for non-parametric 

results or t-tests for result sets that feature normal distribution characteristics, 

reporting of all obtained p-values regardless of whether or not these exhibit 

significance, and reporting of standardized effect sizes. Additionally, means, standard 

deviations, variance min/max values, skewness, median and absolute deviation should 

be reported if possible to support the application of meta-analysis. Finally, where the 

evaluation considers more than two randomised algorithms, Arcuri and Briand (2011) 

suggest a sequence of pairwise comparisons of descriptive statistics followed by 

pairwise statistical tests and effect size measures. 

Multiple Runs and Sample Size 

The probabilistic nature of the employed MOEA implementations demands the 

execution of multiple runs of metaheuristic configurations followed by the calculation of 

descriptive statistics. The literature on the evaluation of optimisation approaches gives 

different advice on an optimal number of reruns that are required to derive sound 
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assumptions on the performance of an optimisation setting. Talbi (2009) specifies a 

minimum of 10 runs using identical settings and postulates an optimum of 100 identical 

runs to support thorough statistical analysis. Rice (2007) claims that 30 reruns are 

sufficient to reach representative results. The results of these reruns create the 

populations from which descriptive statistic measures can be calculated. Certainly, a 

higher number of reruns enables more representative descriptive measures. However, 

the number of reruns of an objective setting is limited by technical feasibility and 

available resources. 

Additionally, it needs to be considered that a bigger sample size increases the 

likelihood of the rejection of the null hypothesis if statistical hypothesis testing methods 

are applied. This effect can become problematic if too large sample sizes are used and 

marginal differences become statistically significant even if the differences themselves 

have no practical importance (Lenth, 2001). Hence, effect size and descriptive statistic 

measures need to be applied in combination with statistical hypothesis testing methods 

to enable reliable statements to be made on the difference in performance of different 

optimisation configurations. 

The common approach in optimisation research is to conduct the analyses based on 

the final Pareto-Front of the analysed search configurations (Coello et al., 2007; Talbi, 

2009). In the evaluation of the present research twelve reruns of an optimisation 

configuration have been conducted to create datasets that exhibit sufficient statistical 

value. Hence, an optimisation configuration that consists of a MOEA configuration 

setting (MOEA implementation, variation operator setting), a system that is analysed, a 

conceptual architecture configuration, objective setting and a reconstruction 

configuration is executed twelve times. Hence, the analyses of metaheuristic 

configurations without any agglomeration of solution sets at a particular time of the 

search feature at least a sample size of twelve individuals in each population. 
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The analysis without the agglomeration of solution sets (e.g. projects, architecture 

settings, MOEA implementation or variation operator) feature limited informative value 

so the agglomeration is a valuable approach to support the validity and feasibility of an 

objective setting. A multi-objective evaluation framework has been developed that 

enables the agglomeration of configuration aspects based on the desired analysis 

(compare: section 4.3). This agglomeration of data sets increases the sample size. For 

example, the number of samples increases to 50 (5 systems x 10 reruns) per algorithm 

(6) if an analysis of an architecture reconstruction scenario across all evaluation systems 

is conducted.  

Additionally, the implemented evaluation framework extends previous research by 

featuring functionality to agglomerate and slice data sets by configuration attributes 

(compare: section 5.5) and functionality to include multiple snapshots in the analysis to 

analyse the speed of convergence of the search (compare: section 5.6). These analysis 

configurations have an impact on the sample size. Hence, agglomerating multiple 

configuration aspects to, for example, evaluate the performance of a MOEA 

implementation in different problem scenarios might lead to large sample sizes. Again, 

such large sample sizes are prone to create statistically significant results even if the 

effect size and differences in mean or median are minor. Hence, in particular in such 

large sample sizes it is important to consider the differences of descriptive statistics and 

effects size measure to enable thorough conclusions on the differences of the compared 

samples. 

Distribution Characteristics 

The distribution characteristics of the samples are an important attribute to 

determine appropriate statistical methods that are conducted to analyse statistical 

differences in population sets. Different tests such as the Kolmogorov–Smirnov, Shapiro-

Wilk, Pearson's chi-squared tests and others exist to determine if a population features 

normal distribution characteristics (Razali & Wah, 2011). As discussed in the previous 

section, the samples that are analysed in the evaluation of this research feature a range 
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of different sizes and can contain a large number of individuals. The Shapiro-Wilk test is 

able to determine normality for populations sizes of n >= 5 up to n <=2000 (Razali & 

Wah, 2011). Razali and Wah (2011) state that it is an established practise to apply the 

Kolmogorov–Smirnov test for sample sizes bigger than 50 individuals. Hence, in this 

research, the Kolmogorov–Smirnov test has been used to test if the populations feature 

a normal distribution. The null-hypothesis of the Kolmogorov–Smirnov is that a 

population is normally distributed (Razali & Wah, 2011). A p-value is calculated that 

indicates if a population departs from a normal distribution. A common threshold to 

reject the null-hypothesis of the Kolmogorov–Smirnov test and correspondingly to 

determine if a population features normal distribution is 0.05. Hence, a p-value of > 0.05 

expresses that a distribution features normality and vice versa. A threshold of 0.05 is 

also applied in the present research to determine if the normality condition is fulfilled.  

The application of the Kolmogorov–Smirnov test on the data sets that are analysed 

in the evaluation of this research revealed that the collected data sets do not follow the 

characteristics of the normal distribution (compare results Chapter 4). The circumstance 

that the normality condition is not fulfilled limits the application to non-parametric 

statistical methods. 

Statistical Hypothesis Testing 

The presentation of descriptive statistics such as mean, median, standard deviation 

and range is useful to gain insight into the performance of the different optimisation 

configurations and enables statements to be made regarding differences in 

performance. However, the exclusive application of descriptive statistics is not sufficient 

to determine the level of confidence with which the differences between the 

populations might be claimed to be accurate. Statistical hypothesis testing can thus be 

conducted on the collected datasets to confirm if the data sets feature statistically 

significant differences. If normality conditions are fulfilled the most commonly applied 

statistical tool is the student t-test (Arcuri & Briand, 2011). Arcuri and Briand (2011) and 

Talbi (2009) suggest the application of non-parametric analysis methods, such as Mann–
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Whitney–Wilcoxon, Permutation Test, Bootstrap, McNemar, Friedman and Kruskal-

Wallis, if the normality condition is not fulfilled. 

Given the non-normality of the data sets collected in this research, the Mann–

Whitney–Wilcoxon test is applied as a non-parametric statistical tool to determine any 

statistical differences between individual pairs of data groups. The Mann–Whitney–

Wilcoxon test reveals if a set of samples of metric measurements of metric M obtained 

by search configuration S1 is significantly different than a set of samples of metric 

measurements of metric M obtained by search configuration S2. 

The present research compares the performance of different MOEA 

implementations and architecture reconstruction settings across multiple evaluation 

systems. As such, multiple Mann-Whitney-Wilcoxon tests need to be implemented to 

identify statistical differences between the individual optimisation settings. The 

application of multiple significance tests increases the risk of a false positive significant 

outcome, known as a Type I Error (Sheskin, 2003). For example, the performance of six 

algorithms is compared within the evaluation of this research. The individual 

comparisons of the performance of these algorithms requires the execution of 15 (6(6-

1)/2) significance tests. 

The procedure to counteract the problem of false positive significant outcomes is to 

conduct an upstream statistical test to reveal if statistical differences between the 

dataset groups exists, followed by the application of a post-hoc analysis to compare 

pairs of data-set groups to identify individual statistical differences between data set 

groups (Sheskin, 2003). Within this research the non-parametric Kruskal-Wallis and the 

parametric one-way ANOVA are applied to identify if any significant differences exist 

between data-set groups. The Kruskal-Wallis and one-way ANOVA return a significance 

level (p-value) that reports the probability that no difference between the data sets 

exists. A commonly accepted and widely applied threshold of the p-value to accept the 

rejection of the null hypothesis in empirical research is p < 0.05 (Sheskin, 2003). 
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If the application of the Kruskal-Wallis or one-way ANOVA confirms a significant 

difference in the data groups, a post-hoc analysis is applied to identify individual 

differences between the data set groups. Pairwise Mann-Whitney-Wilcoxon (non-

parametric) or student t-tests (parametric) are applied to determine the statistical 

difference between the individual population groups. 

However, the increased risk of Type I Errors remains through the application of 

multiple significance tests. A common practise to reduce the risk of false positive 

outcomes is to adjust the significance level of the applied post-hoc tests (Sheskin, 2003). 

The correction method that is applied in the evaluation of this research is the 

Bonferroni-Dunn method in which the desired significance level is divided by the 

number of comparisons (Dunn, 1961). The number of conducted pairwise significance 

comparisons can be determined by calculating the triangular number  𝑇(𝑛 − 1) =

𝑛(𝑛−1)

2
 where 𝑛 is the number of populations. For the previous example, 6 algorithms are 

compared and a total of 𝑇(𝑛 − 1) = 15 significance tests are required. Correspondingly, 

the corrected significance level is calculated as follows 
0.05

15
= 0.0033. 

3.3.6 Summary 

The previous sections presented the selection of architecture reconstruction 

scenarios, evaluations systems and MOEA implementations that are utilised in the 

experimental evaluation of the developed framework. Furthermore, methods are 

discussed that are crucial for the thorough analysis of the collected results. An outcome 

of this research is the implementation of an evaluation framework that embodies the 

described techniques and enables the comparative analysis of the performance of 

different metaheuristic tunings, MOEA algorithms and reconstruction configurations 

automatically. The implementation and application of this evaluation framework is 

presented in chapter 5. 
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 Communication of Findings 

This thesis presents the documentation of the research stages that contribute to the 

development of the suggested approach and the findings of the above stages. 

Additionally, to provide full traceability for the collected results and findings, the data is 

published on the project webpage22. Furthermore, the developed source code is also 

available on the project webpage to enable other researchers to validate and extend the 

work. The publication in research journals and conferences that address work in the 

area of software architecture reconstruction and search based software engineering is 

currently underway to make the findings available to the wider research community. 

These steps support the communication of the problem, its significance, the utility, 

novelty and rationale of the solution, the rigor of its design, and its demonstrated 

effectiveness, to other researchers. 

  

                                                      

22 http://code.google.com/p/rearchitecturer 
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4 Design of a Multi-Objective Architecture Reconstruction 

Component 

The objective of this research is to evaluate the feasibility of multi-objective 

optimisation strategies when applied in the area of architecture reconstruction to 

identify feasible architecture classifications that can operate as a starting point for the 

modularisation of software systems and the containment of software erosion. A novel 

approach has been developed to address relevant and contemporary challenges in the 

targeted problem domain. As highlighted in section 2.4.3, previous research that applied 

SBSE in similar problem domains features pre-defined sets of optimisation goals and 

MOEA configurations. This research proposes a more flexible design to enable the 

execution and evaluation of different configurations. 

More specifically, the developed approach enables the stakeholder to define search 

configurations by orchestrating attributes of the configuration of metaheuristics, 

reconstruction objectives and optimisation goals. Additionally, this work integrates the 

notion of conceptual architecture models in the search process. Depending on the 

configuration, a conceptual architecture model can operate as a target design or be 

reconstructed as an objective of the search process. Furthermore, a set of candidate 

methods are suggested to enable the stakeholder to review, constrain and analyse the 

visited solutions. Additionally, the approach demonstrates the feasibility of seamless 

integration of discovered solutions into the architecture management and monitoring 

process.  

Figure 21 depicts the process that has been developed in this research to first 

employ the search and then support the user in identifying a final solution from the pool 

of visited solutions  in the multi-objective search process. 
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Figure 21: Process of Multi-Objective Architecture Reconstruction Framework 

An open source artefact, called Rearchitecturer23, has been developed in the course 

of this research as a prototype implementation of the developed approach to enable the 

evaluation of the objectives of the present research.  

The Rearchitecturer artefact enables the employment of a diverse set of state-of-

the-art MOEA implementations and MOEA tunings. The employment of a variety of 

MOEA implementations and tunings can be overwhelming in practise and might well be 

beyond the capabilities of a ‘normal’ software designer who is likely to have a limited 

understanding of the concepts of multi-objective optimisation. Certainly, the practicality 

                                                      

23 http://code.google.com/p/rearchitecturer/ 
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of using such a flexible solution is disputable. However, little is known on the impact of 

different MOEA tunings in software engineering problem scenarios (see: section 2.4.3). 

Hence, at this stage no reliable recommendations can be made a priori regarding a 

MOEA tuning that performs well in the targeted problem domain. Correspondingly, the 

present research suggests an approach that allows the user to control a wide range of 

MOEA implementations and tunings to extend the body of knowledge of the 

performance of individual MOEA tunings in the targeted problem domain. Hence, the 

design of the implemented prototype needs to be understood as a prerequisite to 

enable the discovery of the impact on the performance of individual tunings for the 

later recommendations of pre-set tunings. 

The next sections focus on the description of the tool’s functionality and typical use 

of the Rearchitecturer artefact and describe how it addresses the targeted research 

objectives. Discussion of specific implementation details is kept to a minimum. 

Nevertheless, in some sections references to specific implementation classes are given. 

The source code of the Rearchitecturer artefact can be downloaded from the project 

webpage. Hence, if further information on the implementation is required the Javadoc 

of the corresponding classes is a good starting point. 

The chapter is divided into two parts, section 4.1 presents the demonstration of the 

supported configuration aspects and section 4.2 describes the implemented methods to 

present and review search results. Furthermore, the Rearchitecturer artefact features 

the option to empirically evaluate multi-objective search results. The employment of the 

multi-objective evaluation framework is presented in chapter 5 as it is independent of 

the architecture reconstruction problem context. 

 Rearchitecturer Search Configuration 

The configuration is a fundamental component for the effective execution of the 

search and the subsequent evaluation of the results. The search configuration defines 

the applied objectives, the reconstruction objectives, the MOEA configuration and 

information related to the physical and conceptual architecture. 
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The search configuration is represented by an XML file that defines the input 

directory of the software system’s physical class files and an optional conceptual 

architecture model that can be used as a target design in the architecture 

reconstruction process. Details on the reasoning for the inclusion of an architecture 

description, and aspects of the structure of these architecture descriptions, can be 

found in section 4.1.1. 

Another crucial component in the configuration of the search is the definition of the 

optimisation goals (see section: 4.1.2), reconstruction objectives (see section: 4.1.3) and 

the MOEA tuning (see section: 4.1.4). The search configuration is managed in an 

instance of the experiments.SearchConfiguration class. The JAXB24 framework is utilised 

as a persistence framework to store and load SearchConfiguration instances. 

The Rearchitecturer component features a Swing based Graphical User Interface 

(GUI) through which the user is able to define, edit and employ search configurations 

and architecture descriptions. The GUI is started by executing the main method of the 

startup.RearchitecturerStarter class. Figure 22 pictures a screenshot of the 

Rearchitecturer configuration perspective and highlights the visual components that are 

responsible for the definition and employment of the search configuration and 

architecture description. 

                                                      

24 https://jaxb.java.net/ 
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Figure 22: Screenshot of the Rearchitecturer search configuration GUI 

The configuration perspective enables the stakeholder to define a search 

configuration setting by selecting the conceptual and physical architecture, the 

optimisation goals, the metaheuristic configuration and the reconstruction objectives. 

The controls at the bottom of the configuration perspective of the Rearchitecturer 

artefact enable the initiation of the reconstruction based on the defined configuration. 

Additionally, the configuration perspective of Rearchitecturer enables the saving, 

loading and altering of reconstruction configurations. Additionally, the Rearchitecturer 

artefact comprises functionality that supports the employment of search configurations 
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and architecture descriptions in batch mode to enable the execution of different 

reconstruction and MOEA configurations (see section: 4.3). Furthermore, the 

architecture description and experiment configuration collectively operate as a 

description of the gathered datasets and are used in the empirical analysis framework to 

determine differences between datasets (see section: 4.3). 

4.1.1 Definition of Conceptual and Physical Architecture 

To address the objective of this research an approach has been developed that 

supports the classification of software artefacts into high-level architecture descriptions 

based on the definition of multi-objective metric goals. The application of an 

architecture reconstruction approach implies that the conceptual architecture is at least 

partially lost and that it is not trivial to re-establish a conceptual architecture model of 

the software system (Koschke, 2008). Nevertheless, development stakeholders might 

have a partial understanding of the desired architecture design of the system. The 

integration of such information into the architecture reconstruction process can then 

lead the search to architecture configurations that facilitate desired dependency and 

modularisation characteristics. Consequently, the Rearchitecturer component supports 

the definition of a conceptual architecture configuration to facilitate the consideration 

of a conceptual architecture model during the modularisation process. Additionally, the 

design of the reconstruction objectives enables the discovery of instances of the 

conceptual architecture model during the search process (compare section: 4.1.3 for a 

more detailed description). Some of the implemented software design metrics, which 

can be utilised as optimisation goals, consider the conceptual architecture model 

(compare section: 4.1.2). The employment of such metrics as optimisation goals further 

enables the inclusion of the conceptual architecture model into the optimisation 

process. 

The developed prototype supports the definition of subsystem- and layer-based 

conceptual architecture models. The conceptual architecture model can also entail 

layers and subsystems. Additionally, allowed and forbidden dependencies between 
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architecture artefacts can be defined. The implementation of a conceptual architecture 

model based on subsystems and dependencies between subsystems thus enables user-

driven definition of most of the established high-level architecture patterns. The 

conceptual architecture model is defined in an XML-based architecture description file. 

Furthermore, the entities of the physical architecture also need to be defined, to 

enable the classification of the physical architecture entities into the conceptual 

architecture model. As implemented, Rearchitecturer focuses on the modularisation of 

java systems. Hence, the input directories of the java class files need to be defined to 

inform Rearchitecturer which compilation units have to be parsed to build the physical 

architecture model. This definition of the location of the java class files is also included 

in the described XML architecture description file.  

The format of the architecture description file, to define the conceptual architecture 

model and the location of the compilation units, follows the general structure suggested 

in the Dependometer25 framework. The architecture description file can be loaded, 

saved and edited within the Rearchitecturer configuration frame or be included as part 

of the system call in the batch execution mode. Appendix B depicts an example of such 

an architecture description file. Other examples of architecture description files that 

have been utilised within the evaluation of the objectives of the present research are 

available on the Rearchitecturer project website. 

4.1.2 Definition of Optimisation Goals 

The objective of this research requires the evaluation of the feasibility to apply search 

based software modularisation approaches in the architecture classification and 

reconstruction domain. Concepts of architectural design need to be included to evaluate 

the applicability of SBSE in architecture reconstruction scenarios. Both Aleti, Buhnova, 

Grunske, Koziolek, and Meedeniya (2013) and De Silva and Balasubramaniam (2012) 

                                                      

25 http://sourceforge.net/projects/dependometer/ 
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describe the grouping of individual elements into components of higher abstraction 

levels as one of the fundamental concepts of software architectures. Additionally, the 

usage of a conceptual architecture models is an established method to assess and 

monitor the erosion of software systems (De Silva & Balasubramaniam, 2012). 

The present research applies the proposal of Harman and Clark (2004) to utilise 

software metrics as fitness functions within optimisation approaches. Section 2.4.3 

illustrated other research that has utilised software metrics as fitness functions in the 

domain of search based driven software modularisation and clustering. The present 

research states that the objective settings of previous approaches might not be suitable 

to reconstruct architecture configurations as the employed objectives potentially 

conflict with recognised principles of software architecture design (e.g. minimizing the 

number of inter-edges, MQ). Certainly, it is an established principle of good software 

engineering to design solutions that feature low coupling. However, as noted previously, 

dependencies between modules should not necessarily be seen as being unwanted. For 

example, dependencies that align with the desired dependency flow of the conceptual 

architecture should not be penalised. Additionally, the described approaches suggest a 

fixed set of objectives and define these as the means by which to reconstruct software 

modularisation designs. 

The present research contributes a multi-objective architecture reconstruction 

approach that includes specific architecture design metrics more suited to assessing the 

quality of an architecture configuration.  

Software design metric considers quality aspects at a specific abstraction level. For 

example, a software design metric might operate on the micro-design level and hence 

only evaluate aspects within a method or compilation unit. However, other metrics 

operate on higher abstraction levels and examine quality aspects within the dependency 

structure of a set of compilation units. Metrics that measure aspects of high abstraction 
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levels are particularly relevant for the present research due to the explicit focus on 

reconstructing high-level architecture models of software systems. 

This research asserts that the integration of a conceptual architecture model is a 

beneficial approach to guide the search towards desired modularisations. Instead of 

developing such functionality from scratch, the Dependometer architecture 

conformance checking engine is integrated into the Rearchitecturer artefact to parse the 

conceptual architecture model and enable the calculation of some of the implemented 

metrics. The employment of the Dependometer artefact enables the inclusion of 

conceptual architecture models that feature subsystem, horizontal and vertical layer-

based architecture models. The Dependometer API supports the definition of forbidden 

and allowed dependencies between the elements of the conceptual architecture model. 

Nevertheless, changes to the Dependometer code-base have been developed in this 

research to enhance the performance of the Dependometer architecture verification 

process to enable its application within a SBSE approach. Additionally, the Classcycle 

library is utilised instead of the built-in Dependometer parser to build the physical 

architecture model of the system. 

Overall the developed approach supports a wide range of software architecture metrics 

that consider the defined conceptual architecture. The Rearchitecturer artefact features, 

in the current implementation, a total of 57 project-, 23 layer- and 21 subsystem-

metrics that express quality attributes as numerical values. The relevance and 

background of the main architecture design metrics (cohesion, coupling, architecture 

violations, cycles and structure assessment metrics) that are employed in the evaluation 

of this research have been addressed in detail in section 2.3. Nevertheless, a variety of 

additional metrics have been implemented in the Rearchitecturer artefact. However, 

while potentially of interest to those designing and refactoring systems, these metrics 

are of secondary relevance in the evaluation of the objective of the present research 

and a detailed description is beyond the scope of this thesis. A list of the implemented 

metrics can be found on the Rearchitecturer project page; all of the metrics are derived 
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from existing literature and this research is not proposing new metrics. The cycle metric 

implementations have been implemented from scratch as no suitable open-source 

implementation could be found that featured suitable performance. The 

implementation of the cycle metrics to determine the number of cycles on layer, 

subsystem and package levels is based on the algorithm presented in Tarjan (1972) that 

describes an approach to determine the number of strongly connected components in a 

dependency graph. 

The Rearchitecturer component supports stakeholders in their defining a set of 

optimisation goals in a flexible manner to express the desired architectural design of the 

system. The defined optimisation goals operate as objectives in the employed search. 

Hence, the optimisation goals are a representation of the desired architectural design of 

the system. A diverse configuration of design objectives is supposed to guide the search 

towards solutions that feature good and balanced quality in the desired objectives. 

Figure 23 depicts the GUI component that represents an optimisation goal configuration 

within the Rearchitecturer configuration perspective. The depicted optimisation goal 

targets a value of 1.0 of the Normalized Cumulative Component Dependency (NCCD) 

metric in the subsystem level5::application. 

 

Figure 23: Optimisation goal configuration 

An optimisation goal consists of one of the implemented software design metrics, an 

application level and a desired optimisation objective. Additionally, a specific conceptual 

architecture artefact has to be selected if the application level is on a layer, subsystem 

or package level. Furthermore, a desired optimisation direction or targeted range has to 

be defined. Possible optimisation objectives are the minimisation and maximisation of 

the selected software design metric or the definition of a desired range of the design 
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metric measurement that should be evident in the solutions. The range optimisation 

objective requires the definition of a “from” and “to” value. 

Harman, Clark, and Cinnéide (2013) and Nakib and Siarry (2013) highlight that the 

evaluation of performance is crucial for the successful application of search based 

approaches. Hence, development activities have also been conducted in the present 

research to optimise the performance of the applied framework. For example, 

development activities have been conducted to optimise the metric calculation process 

to avoid unnecessary computational overhead. According to the utilised research 

methodology the effect of such development activities on the performance has been 

iteratively reviewed to enable a targeted implementation of the research objectives. 

4.1.3 Definition of Architecture Reconstruction Objective 

Architecture reconstruction is a type of reverse engineering in which architectural 

information is reconstructed for an existing system. This information can be gathered 

from the source, the system execution, available documentation, stakeholder interviews 

and domain knowledge (Koschke, 2008). As presented in section 2.2, multiple 

architecture views onto a software system exist. The focus of the present research is to 

reconstruct and discover views of the modularisation and implementation perspective 

of software systems based on the analysis of the source code. 

The present research contributes a dynamic modularisation approach that enables 

the reconstruction of architecture classifications on different abstraction levels. The 

implemented reconstruction strategies support the classification of low level artefacts 

(compilation units or packages/folders) into abstraction artefacts of the next higher 

abstraction level (packages/folders or subsystems). Hence, the reconstruction strategies 

that can be employed in the Rearchitecturer component are: 

 The classification of compilation units into packages/folders 

 The classification of packages/folders into subsystems 
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The implemented reconstruction strategies can be employed individually or 

agglomerated to classify compilation units and packages/folders conjointly in the 

corresponding high-level artefacts. 

Additionally, the reconstruction strategies feature, besides the classification of low-

level artefacts into the corresponding high-level artefacts, the optional development of 

the corresponding high-level artefacts e.g. packages/folders and/or subsystems and 

subsystem dependencies. The classification strategy classifies low-level artefacts into 

the corresponding developed high-level artefacts if the creation of high-level artefacts is 

employed. Constraints can be set to define the maximum number of packages and/or 

subsystems depending on the employed classification strategies. If the re-development 

of the abstraction level is not aspired the implemented package/folder structure or 

defined conceptual architecture model definition is utilised as the default partitioning 

for the classification of low-level artefacts. The reconstruction objective can be defined 

in the configuration perspective of the Rearchitecturer artefact. Figure 24 depicts the 

GUI of the reconstruction objective configuration. 

 

Figure 24: Reconstruction goal configuration 

The reconstruction objective is the key component to determine the problem 

representation. The reconstruction objective is represented by the definition of the type 

and size of the decision variable and the implementation of the encoding. As depicted in 
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section 4.3.1 and implemented within this research, the encoding transforms a decision 

variable instance, which is created by the employed MOEA algorithm, into an 

architecture modularisation instance. 

The problem representation is implemented as a set of decision variables that are 

defined based on the physical and conceptual architecture model and the 

reconstruction objective. Consequently, the genotype representation as the number, 

type and range of the decision variables depend on these configuration parameters. The 

genotype instances are transformed into a phenotype representation that allows the 

calculation of the implemented software design metrics. The transformation process 

also considers the configuration parameters to create a valid phenotype instance. The 

phenotype representations are implemented as different graph models that represent 

the required aspects of the physical and conceptual architecture model and enable the 

efficient calculation of the implemented metrics. Additionally, the Rearchitecturer 

component features functionality to export phenotype instances into an architecture 

description file. The exported architecture description file can be utilised by the 

Dependometer architecture management framework. Hence, the generated 

architecture description file can be employed as a conceptual architecture model within 

the architecture management and monitoring process. The following sections discuss 

aspects of the design and implementation of the two implemented reconstruction 

strategies in more detail. 

Classification of Compilation Units into Packages/Folders 

The classification of compilation units into subsystems strategy supports the 

classification of compilation units into the existing or a re-developed package/folders 

structure. The design of the encoding is implemented as a set of integer variables. The 

number of integer variables is defined by the number of compilation units in the 

analysed software system. Each of these compilation unit decision variables features a 

range. The range is defined as an integer value between zero and the number of 

packages in the system. A genotype instance is created from the employed MOEA by 
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outfitting all decision variables with integer values in the defined range. Each of the 

genotype instances that are created by the MOEA represents a different classification of 

compilation units into packages/folders. If the re-building of the package structure is 

selected the maximum number of packages, which is defined by the stakeholder, is 

utilised as the upper end of the range for each of the compilation unit decision 

variables. A package is created in the conceptual architecture model representation 

(phenotype) if at least one compilation units has been assigned to the package based on 

the genotype representation. 

Another aspect that is relevant for the application of SBSE is the complexity of the 

solution space. The total number of solutions of the assigned compilation unit 

reconstruction strategy that can be visited depends on the number of compilation units 

and the number of package artefacts. The number of all possible solutions based on the 

illustrated design of the decision variables for a system S with a number of compilation 

units C and a number of packages P can be calculated as follows:  

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝐶𝑜𝑚𝑝𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑈𝑛𝑖𝑡𝑠) 𝑆 = 𝑃𝐶  

The complexity function illustrates that the classification of compilation units 

features exponential complexity based on the number of compilation units and a non-

trivial package structure. As depicted in section 3.3.3, this research utilises a set of open 

source systems to evaluate the feasibility of the developed approach. It is straight-

forward to calculate the number of possible solutions based on the compilation units 

and package information of the evaluation systems that are given in Table 1 in section 

3.3.3. Even the smallest of the evaluation systems (Log4j v.1.2.17) features a number of 

possible solutions of 24314 ≈ 2.43 × 10433. This high complexity of the total search 

space renders an exhaustive evaluation as infeasible. However, the high complexity also 

indicates that the application of SBSE is a justifiable approach to find reasonable good 

compilation unit partitionings.  
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Classification of Packages into Subsystems 

The classification of packages into folders reconstruction strategy supports the 

classification of packages into the subsystems of a defined or developed conceptual 

architecture model. Commercial and open-source architecture monitoring systems as 

for example Sonargraph26, Dependometer27, Struture10128, XRadar29 and Lattix30 enable 

the mapping of the physical implementation by allowing stakeholders to assign 

packages into subsystems of a given conceptual architecture model. Hence, the 

implemented reconstruction strategy models this common use-case of software 

architecture management systems to enable stakeholders to assign packages or folders 

into subsystems of a conceptual architecture model. 

The decision variable implementation is similar to the decision variable 

implementation of the classification of compilation units into packages reconstruction 

strategy. The main differences are that the decision variables represent packages 

instead of compilation units and the genotype decision variable values link to 

subsystems of the conceptual architecture model. Additionally, decision variables are 

required to enable the MOEAs to model subsystem dependencies if the conceptual 

architecture model is rebuilt. 

A set of integer package decision variables represent the packages of the system. 

The package decision variables are altered by the employed MOEA. The value of the 

package decision variable represents the classification of a package into a subsystem. 

The pre-defined range of the package variables is limited to an integer value between 

zero and the number of subsystems within the conceptual architecture model. Hence, 

the genotype instance indicates the assignment of a package into a particular package. 

Additionally, the reconstruction strategy is able to rebuild the conceptual architecture 

                                                      

26 http://www.hello2morrow.com 
27 http://source.valtech.com/display/dpm/Dependometer 
28 http://structure101.com 
29 http://xradar.sourceforge.net 
30 http://www.lattix.com 
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model. The stakeholder can define the maximum number of subsystems. The number is 

utilised as the upper end of the range for each of the package decision variables. A 

subsystem is created in the conceptual architecture model representation (phenotype) 

if at least one package has been assigned to the subsystem based on the genotype 

representation. 

Additionally, if the conceptual architecture model is rebuilt, it is also required that 

the allowed dependencies between subsystems are defined. A matrix (number of 

maximum subsystems x number of maximum subsystems) of binary decision variables is 

employed as an encoding to re-build the allowed dependencies between subsystems. 

An allowed dependency is created within the phenotype if the binary decision variable is 

true and both subsystems contain at least one package. A drawback of this encoding 

implementation is that it allows the building of cyclic dependencies at the subsystem 

level. A remedy to encounter the creation of cyclic dependencies is the definition of an 

optimisation goal that penalises the creation of solutions that feature such unwanted 

cyclic dependencies e.g. minimise cyclic dependencies between subsystems or 

packages. 

As this reconstruction strategy operates on a higher abstraction level with more 

coarse grained artefacts it is likely that the complexity to visit and evaluate all possible 

solutions is considerably reduced. Hence, it is even more pertinent to evaluate the 

complexity of the classification of packages into subsystems reconstruction strategy to 

determine if the degree of complexity justifies the application of SBSE. The complexity 

of the classification of packages into subsystems depends on the number of packages 

and the number of subsystems of the conceptual architecture model. The complexity of 

the classification of packages into subsystems and the rebuilding of the subsystem 

dependencies for a system S with a number of packages P and a number of subsystems 

N is calculated as follows:  

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑆 (𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑠) = 𝑁𝑃  ×  𝑁2 



118 
 
 

Even if the problem solution works with more coarse grained artefacts, the problem 

features an exponential complexity based on the number of packages and non-trivial 

subsystem configurations. To calculate the complexity of the classification of packages 

reconstruction strategy, a conceptual architecture model is needed, unless the 

conceptual architecture model is built as part of the classification process. Within the 

evaluation of this research conceptual architecture models are utilised with at least four 

subsystems. As illustrated in section 3.3.3 the smallest system that is analysed in the 

evaluation is Log4j (v.1.2.17) which comprises a total of 24 packages. The complexity of 

all possible package configurations of the Log4j system into a conceptual architecture 

model with four subsystems and rebuilding of the subsystem dependency structure 

is 424 × 42 ≈ 4.50 × 1015. This example shows that the building of subsystem 

dependencies decision variables adds a rather small degree of complexity to the overall 

complexity of this reconstruction strategy. Nevertheless, this example also illustrates 

that the complexity of the classification of packages into subsystems is too high to 

justify an exhaustive evaluation of all possible solutions in an acceptable amount of 

time. Instead SBSE seems to be a justifiable approach to find feasible package 

partitionings.  

4.1.4 Metaheuristic Configuration 

Coello et al. (2007) and Talbi (2009) suggest a separation of SBSE implementations into 

three components: implementation of the metaheuristic, representation of a solution 

and the fitness function. This research adapts the suggested separation into these three 

components. The fitness function and problem representation are domain specific to 

exploit domain specific knowledge. As illustrated in section 4.1.2, the fitness function 

within the present research is implemented as an agglomeration of optimisation goals 

that are defined by the stakeholder. The design of the representation that has been 

illustrated in detail in section 4.1.3 is implemented as a set of decision variables in which 

number, type and range are adapted to the reconstruction objective, the analysed 

system and the aspired conceptual architecture model. The metaheuristic 
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implementation generates instances of the representation and employs the defined 

fitness function to evaluate the fitness of the generated representation instance. Parent 

selection, recombination, mutation and survivor selection strategies are employed by 

the applied metaheuristic implementation to evolve the fitness of a population. This 

decoupling of the metaheuristic implementation from the fitness function and 

representation implementation enables the re-use and flexible exchange of 

acknowledged metaheuristic implementations. This enables a straightforward 

comparative evaluation of different metaheuristic implementations. 

The next section illustrates the employment of metaheuristics in the present research 

and the means that are available to stakeholders to control the selected metaheuristic 

implementation. The objective of the present research focuses in particular on the 

applicability of MOEA in the problem domain of architecture reconstruction and 

software modularisation. As described in section 2.4.3, related research so far has 

evaluated the applicability of Hill Climbing and GA metaheuristic implementations in the 

problem domain of software modularisation (Mitchell & Mancoridis, 2008; Praditwong 

et al., 2011). A much broader range of acknowledged MOEA implementations e.g. 

Scatter Search, Particle Swarm Optimisation, decomposition and differential evolution 

based MOEA implementations exist. Hence, it has been an objective of this research to 

enable the application of a diverse range of MOEA implantations. 

A variety of libraries exists to support the application of metaheuristics in new 

problem domains. It has been decided to utilise existing metaheuristic frameworks 

within this research to access established MOEA implementations instead of 

implementing a set of proprietary and self-implemented adaptions of metaheuristic 

algorithms. Correspondingly, a part of the research effort within the present research 

has been the review of existing and applicable metaheuristic frameworks. 
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The Watchmaker Framework31 is an open source Java library that exclusively targets 

single objective optimization. As outlined in previous sections of this thesis, the 

application of single objective optimisation is not considered to be sufficient to offer a 

comprehensive solution to the problem of architecture reconstruction. ECJ32, JMetal33, 

MOEA34, Opt4j35 and PISA36 are multi-objective evolutionary algorithm optimisation 

frameworks. All of these frameworks feature advantages and disadvantages and likely 

all of them would have been applicable in the targeted problem domain. However, the 

present research utilises a combination of the MOEA, JMetal and PISA metaheuristic 

frameworks to enable the Rearchitecturer component to feature a wide range of 

different MOEA implementations. These three MOEA libraries have been selected as 

they offer a variety of different algorithms and the encoding model features good 

compatibility, so that its integration into the Rearchitecturer artefact has been relatively 

straightforward. Nevertheless, some minor extensions to the PISA and JMetal 

frameworks had to be made to be able to integrate the libraries in the developed 

component. These extensions mainly concern areas of parallel evaluation of objective 

functions, slight modifications of aspects of the encoding representation and 

modifications to enable the seamless support of exchangeable variation operators 

across the three MOEA frameworks. The MOEA, JMetal and PISA frameworks offer a 

total of twenty-eight multi-objective algorithms, and ten of these algorithms are 

implemented within the Rearchitecturer component. The selection ensures that a wide 

range of different evolutionary algorithm implementations are available without 

integrating duplicates or only slight variations of the MOEA, JMetal and PISA algorithms. 

Nevertheless, the integration of additional algorithm implementations of the MOEA, 

JMetal and PISA libraries is straightforward and can be easily conducted based on the 

                                                      

31 http://watchmaker.uncommons.org 
32 http://cs.gmu.edu/~eclab/projects/ecj 
33 http://jmetal.sourceforge.net 
34 http://www.moeaframework.org 
35 http://opt4j.sourceforge.net 
36 http://www.tik.ee.ethz.ch/pisa/?page=selvar.php 
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current integration classes in the Rearchitecturer implementation. Table 2 depicts the 

algorithms that are currently integrated in the Rearchitecturer component, a 

classification of each algorithm and the reference that presented the implemented 

MOEA originally. 

Table 2: Implemented Evolutionary Algorithms in Rearchitecturer Component 

Algorithm Algorithm Type Reference 

AbYSS Hybrid: scatter search + 

genetic operators 

(Nebro et al., 2008) 

CellDE Hybrid: cellular genetic 

algorithm + differential 

evolution  

(Durillo, Nebro, Luna, & 

Alba, 2008) 

OMOPSO Particle swarm 

optimization 

(Sierra & Coello, 2005) 

GDE3 Differential evolution (Kukkonen & Lampinen, 

2005) 

MOCell Cellular genetic algorithm (Nebro, Durillo, Luna, 

Dorronsoro, & Alba, 2007) 

MOEA/D-DE Decomposition based 

evolutionary algorithm 

(Li & Zhang, 2009) 

NSGA-II Genetic algorithm (Deb et al., 2002) 

SMPSO Particle swarm 

optimization 

(Nebro et al., 2009) 

SPEA2 Genetic algorithm (Zitzler et al., 2001) 

Random Random based 

evolutionary algorithm 
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The configuration perspective of Rearchitecturer offers support to select an 

algorithm, and to configure algorithm parameters and variation operators. Figure 25 

depicts the visual implementation of the algorithm configuration component. 

 

Figure 25: Rearchitecturer metaheuristic configuration component 

The metaheuristic configuration component enables the user to select one of the 

implemented MOEAs depicted in Table 2. Furthermore, the number of iterations, the 

population size, the number of seeds and a crossover and a mutation operator can be 

defined. A seed is an independent run of the MOEA configuration in the applied 

problem. The number of seeds defines the number of runs that are conducted. The 

number of iterations determines the exit condition for each seed. An iteration cycle 

comprises the generation and evaluation of a solution. The population determines the 

number of solutions in a generation. All of the solutions of a generation need to be 

created and evaluated before the parent selection, recombination, mutation and 

survivor selection can be executed. Hence, a bigger generation gives the recombination 

strategies access to a wider gene pool. On the other hand, a smaller population features 

a more frequent application of parent selection, recombination, mutation and survivor 

selection mechanisms, but a smaller gene pool from which to create offspring. 
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All of the implemented MOEA algorithms exhibit some kind of probability-based 

strategies to overcome local optima. Consequently, an algorithm that runs with the 

same configuration is likely to result in different optimal Pareto-Fronts. Hence, multiple 

runs with identical configurations have to be conducted to enable the thorough 

evaluation and comparison of search results on which generalizable conclusions on the 

performance of an algorithm configuration can be based. 

A range of crossover and mutation operators can be applied to change the 

recombination and mutation behaviour of the applied algorithm. Simulated Binary 

Crossover, Differential Evolution, Parent-Centric Crossover and Unimodal Distribution 

Crossover are the available recombination operators. Polynomial- and Uniform-

Mutation are the available mutation operators that are implemented within the 

Rearchitecturer component. In general, it has been aspired to integrate each of the 

available variation operators seamlessly with the implemented algorithms. 

Nevertheless, some of the algorithms feature restrictions for the application of the 

variation operators. For example, the random search is by definition unable to utilise 

any of the variation operators. Additionally, some integration issues have been 

encountered during the implementation process so an immaculate operation of any 

algorithm and variation operator configuration is not guaranteed. Nevertheless, a 

detailed illustration of the conflicts of the supported MOEA algorithms and variation 

operators is not presented as part of this research. A detailed illustration about the 

incompatibility of the metaheuristic algorithm implementations and the variation 

operators would exceed the scope of this work and doubtfully add ample value to 

address the objectives of this work, as the variation operator are of secondary relevance 

during the evaluation process. 
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 Presentation, Constraining and Review of Architecture Design 

Configurations 

Previous research in related problem domains, such as that presented by Mitchell 

and Mancoridis (2008), Praditwong et al. (2011) and Abdeen et al. (2009), focuses on 

the identification and evaluation of one final best solution. The present research agrees 

with the general objective of previous studies that development stakeholders likely 

desire to identify an “optimal” solution, particularly given that one of the emphases of 

the presented approach is to create an architecture configuration that could be used in 

the architecture management and monitoring process of a software project. 

However, it is also anticipated in this research that it is unlikely that the automatic 

identification and presentation of one “optimal” solution, that features the ”best” 

metric goal measurements, will in fact deliver a satisfying solution for every 

optimisation and application scenario. This is particularly infeasible as the present 

research employs multi-objective search techniques. The application of multi-objective 

approaches leads to an optimal Pareto-Front that most likely includes, for non-trivial 

objective configurations, multiple solutions (compare section: 2.4.2). Hence, the 

automatic selection of one single solution from an optimal Pareto-Front is not only 

infeasible but also impractical as it would require the discarding of promising solutions 

that dominate areas of the objective solution space. On the other hand it is also 

acknowledged that the presentation of printouts of approximation sets and Pareto-

Fronts might be of little help to the development stakeholders who are seeking to 

identify an optimal solution or identify attributes that characterise a good solution. This 

implies that candidate techniques are needed to facilitate flexible support to 

development stakeholders to visualise approximation sets of software modularisation 

solutions and that stakeholders require functionality to review specific solutions in 

problem domain specific perspectives to identify promising solutions and/or solution 

aspects. 
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The implemented Rearchitecturer component therefore provides a set of candidate 

methods to visualise, review and constrain solution sets to enable the user to efficiently 

identify solutions that can be employed in the architecture monitoring and management 

process. 

4.2.1 Presentation of Solution Sets 

The Rearchitecturer component features functionality to visualise different solution 

set configurations in 2D or 3D representations. The Pareto-Front, all visited solutions or 

a selected generation of solutions, can be visualised. The visualisation is not limited to 

the set of objectives that are configured in the search. Hence, the visualisation 

perspectives enable stakeholders to assign any of the recorded software design metrics 

(compare: section 4.1.2) to any axis in the visualisation perspective. 

Figure 26 depicts a screenshot of the implementation of the 2D solution visualisation 

component and highlights the sub-components that enable the stakeholder to review 

and constrain solution sets. 
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Figure 26: Screenshot Rearchitecturer 2D solution visualisation 

The screenshot in Figure 26 has been created based on a search configuration with a 

maximum of 400,000 solution iterations and a population size of 100. Apache-log4j-

1.2.17 is utilised as the evaluated system and the classification is conducted based on 

the assignment into a conceptual architecture model with four transient layers. The two 

objectives ‘minimise the Range Of Types In Subsystems metric’ and ‘minimise the 

Number of Forbidden Type Dependencies metric’ have been employed as optimisation 

goals in this search. This models the objectives of stakeholders to create solutions that 

feature no or very few architecture violations (represented by the minimise Number Of 

Forbidden Type Dependencies objective) and a fairly homogenous distribution of the 

number of types in the individual subsystems (represented by the minimise Range Of 

Types In Subsystems objective). 



127 
 
 

Additionally, the two reconstruction strategies assign packages into subsystems 

combined with assign compilation units into packages are applied. OMOPSO (particle 

swarm optimisation) is employed as a search algorithm. Each modularisation solution of 

the displayed solution set is represented by a corresponding entity in the coordinate 

system. 

The metric to axis configuration enables the assignment of software design metrics 

to the individual axes of the solution set visualisation component. Figure 26 depicts the 

optimal Pareto-Front of the two objectives that are employed in the search on the X- 

and Y-axis at the end of the search.  

The assignment of the metrics to the axes is not limited to the objectives of the 

search. Any recorded metric can be assigned to any of the axes. This allows the 

visualisation of solution sets from different software design perspectives. In the 

presented example, the optimal Pareto-Front features 62 solutions that dominate the 

other solutions that have been visited during the search. The 2D visualisation utilises the 

JFreeChart 37 library to visualise the solutions of a solution set. 

The 3D visualisation perspective features the same functionality as the 2D 

visualisation with the main difference that an additional metric dimension is visualised. 

Figure 27 depicts an example of the 3D visualisation that features the following 

objectives: minimise Number Of Forbidden Type Dependencies, minimise Normalised 

Cumulative Component Dependency (NCCD) and minimise Range Of Types In 

Subsystems. The search features a maximum number of 200,000 iterations and the 

optimal Pareto-Front includes a total of 230 solutions. The other search configuration 

attributes are identical with the configuration presented in the previous example. 

                                                      

37 http://www.jfree.org/jfreechart/ 
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Figure 27: Screenshot Rearchitecturer 3D visualisation 

This example models the objective of stakeholders to create solutions that feature 

no or very few architecture violations (minimise Number Of Forbidden Type 

Dependencies), a good distribution of types in the individual subsystems (minimise 

Range Of Types In Subsystems) and a structure within subsystems that features aspects 

similar to the structure of a balanced binary tree (minimise NCCD). The other search 

configuration attributes are identical with the configuration presented in the previous 

example. 

The optimal Pareto-Front presented in Figure 27 indicates that the assessment of 

the objective attributes is challenging in a 3D visualisation. Hence, functionality is 

implemented to rotate and elevate the displayed 3D coordinate system to observe the 

solution set from different perspectives. The ChartDirector library is utilised to 

implement the 3D visualisation. 
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4.2.2 Constraining of Solution Sets 

The application of multiple objective optimisation results in optimal Pareto-Fronts. 

The solutions of these optimal Pareto-Fronts dominate areas of the objective space. 

However, the solutions of the optimal Pareto-Front are likely to feature different 

degrees of feasibility from the stakeholder perspective. Hence, stakeholders desire 

approaches to efficiently identify highly feasible solutions that can be employed in the 

target problem domain. Furthermore, the present research suggests that other 

promising solutions might be discovered that are not included in the optimal Pareto-

Front. However, the inclusion of the complete set of visited solutions in the decision-

making process renders the identification of a feasible solution as even more complex. 

As has been noted previously, a variety of multi-objective approaches are 

implemented to tackle problems in software engineering domains (Sayyad & Ammar, 

2013). The review of these approaches suggests that to this date no approaches exist 

that support stakeholders in the process of identifying highly promising solutions in 

multi-objective optimisation scenarios. A candidate implementation is suggested in this 

research that enables stakeholders to include software design and domain knowledge in 

the solution process to constrain a solution set to a manageable size and to identify 

highly promising solutions. The remainder of this section discusses relevant aspects to 

justify the implemented approach. 

A result of the application of the concept of non-dominance is that optimal Pareto-

Fronts often feature solutions that excel in a subset of the objectives and feature poor 

performance in other objectives. This is fine in most multi-objective optimisation 

problems as the solutions that are included in the optimal Pareto-Front are often highly 

competitive. However, it is anticipated in this research that some of the solutions that 

are included in the optimal Pareto-Front are not desirable from a software engineering 

perspective. For example, stakeholders most likely prefer software architecture 

compositions that feature a good balance between the objectives of the search. Hence, 
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it is unlikely that stakeholders would accept high trade-offs in some objectives to gain a 

particularly good outcome in another objective. 

For example, the solutions from the previously visualised optimal Pareto-Front 

examples (Figure 26 and Figure 27) that feature a high Number Of Forbidden Type 

Dependencies or a high Range Of Types In Subsystems are most likely not acceptable 

from a software engineering perspective even if these solutions feature very good 

performance in the other objectives. Hence, stakeholders might only be interested in a 

subset of the optimal Pareto-Front. However, the definition of thresholds to identify 

acceptable solutions depends on various factors such as the requirements for the final 

solution, achievement in the individual objectives, overall performance of the search 

and available computational resources. 

For demonstration purposes it is assumed in the following example that 

stakeholders do not accept solutions that feature more than 100 architecture violations 

as it is likely impossible for a stakeholder to be able to estimate the severity of these 

violations if more architecture violations exist. Additionally, the Log4J system features a 

total of 453 types. It is assumed in this example that stakeholders do not accept 

solutions that feature a difference between the biggest and smallest subsystem of more 

than 150 types. Figure 28 highlights a set of promising solutions based on such threshold 

definitions. 
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Figure 28: Promising solutions in a 2D optimisation scenario 

In this example fifteen solutions are within the defined threshold parameters. 

Hence, the remaining solutions can be labelled as infeasible based on the defined 

thresholds. The selection of such a set of feasible solutions within a two or three 

objective optimisation is trivial and does not require any elaborate tool support apart 

from the implemented visualisation of 2D and 3D sets, zooming (2D and 3D) and rotate 

(3D) functionality to efficiently identify promising solution sets. However, the 

identification of promising solution sets based on more than three objectives is not 

feasible with such techniques. Additionally, this research suggests that there is value in 

including solutions in the promising region that are not on the optimal Pareto-Front. The 

inclusion of all visited solutions increases the complexity for stakeholders to efficiently 
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identify promising solutions. The remainder of this section discusses the value of the 

implemented candidate approaches to constrain solutions to identify promising 

solutions efficiently in optimisation scenarios with more than three objectives and in 

solution sets that do not underlie the concepts of optimal Pareto-Front dominance.  

It has been observed in this research that some metrics feature better convergence 

than others. For example, Cohesion, Coupling, NCCD and Distance usually achieve very 

good convergence so that (depending on the MOEA tuning) each of the solutions of the 

optimal Pareto-Front for those metrics is likely to be acceptable from a stakeholder 

perspective. However, the achievement of acceptable results in other objectives, such 

as the minimisation of the number of cycles and the minimisation of the number of 

architecture violations, seems to be much more difficult. Hence, optimal Pareto-Fronts 

might feature solutions with excellent achievement in some objectives but only some 

solutions with acceptable results in other objectives (compare: Figure 27). This might 

then only offer stakeholders a limited number of solution candidates that have 

acceptable performance in the more challenging objectives. Stakeholders therefore 

might want to accept trade-offs and relax the restrictions of just considering solutions of 

the optimal Pareto-Fronts to explore a wider pool of solutions that feature acceptable 

performance in these more challenging objectives. 

Additionally, it has been noted (in section 2.3) that software design metrics are 

simplified surrogates used to assess the fitness of a solution. For example, it cannot be 

unequivocally concluded that a solution that features ‘better’ Cohesion, Coupling or 

NCCD measurements is actually better from a software engineering perspective. This 

statement should not be taken as indicating that software design metrics are an 

infeasible method to determine the quality of a software configuration. Instead, it 

should rather raise awareness that there is a potential degree of fuzziness that might 

hinder the exact identification of the most promising solutions. 



133 
 
 

These problems have been partially addressed by the implementation of multiple 

optimisation goals, to enable the assessment of software design quality from multiple 

perspectives and the associated reliance on the concept of Pareto dominance that 

includes any solution that dominates objective space. However, this research also 

anticipates that there is additional value in considering solutions in the decision making 

process that are within the acceptable parameters from a development stakeholder 

perspective, thus enabling stakeholders to select from a wider pool of solutions. 

Given the search process, a multitude of different software modularisations are 

generated and evaluated during a search. Most likely, some of the solutions that are 

visited during the search feature good convergence and meet the thresholds that are 

acceptable for the stakeholder. For example, Figure 29 presents the 400,000 solutions 

that have been visited in the previous optimisation example (comprising two 

objectives), and the solutions that are considered to be particularly promising, based on 

the previously discussed thresholds, are highlighted. 
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Figure 29: Visited solutions of the two objective example 

Figure 29 highlights that the presentation of all visited solutions is overwhelming for 

stakeholders. Correspondingly, stakeholders are most likely unable to efficiently identify 

a promising solution candidate from the pool of all visited solutions. Hence, tool support 

is required to confine the set of solutions to a manageable size.  

The Rearchitecturer prototype therefore enables stakeholders to iteratively 

constrain solution sets and review individual solutions beyond the limitations of the 

optimisation settings and the identified optimal Pareto-Front. Furthermore, the 

Rearchitecturer component supports stakeholders in discarding solutions from the 

visualised solution set that feature undesired quality aspects. It is anticipated that such 
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filter strategies might be a valuable complement to the search configuration in enabling 

stakeholders to identity a manageable set of highly promising solutions more efficiently. 

A component has therefore been implemented to enable stakeholders to constrain 

the presented solution sets based on the metric measurements of the individual 

solutions. The Rearchitecturer artefact is able to collect a variety of additional solution 

metrics, and these solution attributes can be utilised to constrain the set of promising 

solutions. Such a constraint component exists for each of the recorded metrics. Each of 

these metric constraint components enables the stakeholder to define a range of metric 

measurements for a particular recorded metric.  

Figure 30 depicts two examples of the Metric Constraint component. The depicted 

example confines the visualisation to solutions that feature a 

NumberOfForbiddenTypeDependencies measurement of < 100 and a 

RangeOfNumberOfTypesInSubsystems measurement of < 150. 

 

Figure 30: Example of the Rearchitecturer constraint component 

Each of the bars within the slider component represents a modularisation solution 

that has been discovered in the search. Multiple solutions can feature the same 

identical metric value. Hence, multiple solutions can be presented by one bar. The 

constraining is triggered by moving one of the two (lower and upper) sliders or by 

entering a value in one or both of the two text fields. As a result, only solutions that 

feature metric measurements within the desired range of measurements are displayed. 

Figure 31 depicts the result based on the threshold configurations just discussed. 
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Figure 31: Example of a constraint solution set 

The constrained solution set features a total of 2007 solutions. It is evident that it is 

impractical to review all of the solutions presented in Figure 31. Additionally, the 

constrained setup only confined the solution set according to the objectives employed 

in the search. This certainly has only limited value, as simple zooming would have been 

sufficient to identify such a solution set. However, the Rearchitecturer records metrics 

regardless of whether these are included in the objective setting. Hence, the solution 

set can be further confined based on attributes that are not included in the 

optimisation. The further review of the constraint component revealed that solutions 

exist that feature metric values that are not acceptable from a software engeneering 

perspective. In this example, additional constraints on the NCCD, Coupling and Cycle 
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metrics have been defined iteratively to reduce the number of solutions. Figure 32 

depicts the final constrained configuration that has been identified in this process. 

 

Figure 32: Constraint configuration of non-objective metrics 

Figure 33 depicts the constrained solution set now based on the constraint 

configuration presented in Figure 32 and Figure 31. 
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Figure 33: Solution set based on employed constraint configuration 

Application of the thresholds depicted in Figure 32 reduced the number of solutions 

from 2007 solutions to a total of 8 solutions. Hence, these 8 solutions from the 

complete set of the visited solutions (400,000 – compare: Figure 29) meet the 

thresholds set in Figures 30 and Figure 31. The iterative configuration of thresholds took 

approximately 30 minutes in this example. 

The suggested technique provides an iterative, flexible and user-informed approach 

to reduce the set of visited solutions incrementally to a manageable set of genuinely 

promising solutions. The approach enables the interactive exclusion of unacceptable 

solutions and the acceptance of solutions that meet the requirements of stakeholders. 

That said, stakeholders can readily relax the constraints if no adequate solutions 

matching the desired criteria are found. It is anticipated that the application of the 
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suggested approach is more suitable in the targeted problem domain in comparison to 

the ‘blind’ application of the NDPF concept that only accepts the best solutions that 

dominate an area of the objective space. It is assumed in this research that stakeholders 

are not necessarily seeking the absolute best achievement in an objective dimension but 

rather prefer solutions that feature good quality in multiple solution aspects. 

Another aspect that can be observed in the example just provided is that none of 

the identified solutions is located on the original optimal Pareto-Front (compare: Figure 

28). The solutions on the optimal Pareto-Front break the quality requirements for 

solutions defined in the filter configuration (compare Figure 31 and Figure 32), because 

the filter components constrain attributes that are not included in the original objective 

setting. Hence, consideration of the complete set of visited solutions enabled the 

identification of highly promising solutions that originally were not considered based on 

the concept of optimal Pareto Dominance. It can be argued that all of the defined 

constraints could also be employed as objectives of the search. However, the 

stakeholder cannot know before the search which solution attributes will feature 

undesired values. Thus, the up-front definition of the criteria in the objective setting is 

complex and is most likely never complete. Additionally, the inclusion of more 

objectives negatively impacts the performance of the search. 

The suggested approach is also likely to be helpful if more than three objectives are 

employed and a visualisation of all the objective dimensions is not feasible. Additionally, 

the suggested approach can be employed to assure that each of the visualised solutions 

fulfils a minimum requirement in the non-visualised objectives. 

4.2.3 Review of Solution Candidates 

The objective goal setting in this research is not understood as the ultimate model of 

the targeted design. The present research anticipates the fitness-function configuration 

as an abstract model of the desired modularisation design that operates as a point of 

gravity and consolidates the evolutionary search towards solutions that excel within the 

defined objective settings. However, other aspects of quality exist that cannot 
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necessarily be captured with the help of software design metrics, or whose definition 

within a multi-objective configuration is too complex. Based on the lack of measures 

that facilitate such support, as highlighted in section 2.5, an objective of the present 

research is to suggest an approach to support the exploration and review of solution 

sets to efficiently identify promising solutions. 

Stakeholders most likely desire support to review solutions in more detail so as to 

identify solution attributes or an entire solution that could be applied as an architecture 

model within the architecture management process. A software component has 

therefore been developed and integrated into Rearchitecturer that enables the 

visualisation of the partitioning of the physical architecture into a conceptual 

architecture model. Figure 29 shows an architecture modularisation solution that has 

been created within the previous search example. 

 

 

Figure 34: Example visualisation of an architecture classification solution 
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The component supports the visualisation of layers and subsystems and their 

allowed conceptual dependencies. Furthermore, the classification of packages into 

subsystems, the classification of compilation units into packages and the physical 

dependencies between packages and compilation units, based on their physical 

dependencies on compilation unit level, can be visualised.  

Furthermore, the values of all recorded metrics of the displayed modularisation 

solution are depicted to support the stakeholder in their evaluation of quality aspects of 

the solution that are beyond the exclusive performance in the objective settings and the 

capability of the visualisation. Finally, the component offers support to save the 

conceptual architecture model and classification of the physical architecture artefacts 

into a XML-file that can be processed by the Dependometer architecture management 

tool. Hence, the solution can be utilised as a development blueprint within the 

architecture monitoring and management process. 

The ZGRViewer 38 framework has been utilised to implement the described 

component to visualise specific architecture modularisations. ZGRViewer is a graph 

visualisation framework specifically designed to handle large graphs. ZGRViewer offers a 

zoomable user interface and easy navigation within the visualized structures (Pietriga, 

2005). The ZGRViewer framework displays graph models expressed in the DOT language 

designed by AT&T GraphViz39. Hence, the DOT executable needs to be installed and 

accessible in the path of the executing machine to utilise the functionality to visualise 

specific architecture modularisation solutions within the Rearchitecturer artefact. A 

minor set of source code contributions have been made to the ZGRViewer repository. 

These contributions address features of the cluster-, subgraph- and edge-visualisation 

and integration of the ZGRViewer into SWING components. 

 

                                                      

38 http://zvtm.sourceforge.net/zgrviewer.html 
39 http://www.graphviz.org/ 
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 Batch Driven Execution of Search Configurations 

The present research applies multi-objective and randomised algorithms in the 

problem domain of architecture reconstruction. An objective in the design of the 

Rearchitecturer artefact is to enable stakeholders to configure search parameters in a 

flexible manner. The current design of the Rearchitecturer artefact supports the 

employment of a vast number of objectives, reconstruction configurations, MOEA 

implementations and MOEA tunings. Hence, the design of the Rearchitecturer 

component enables the employment of a variety of architecture reconstruction and 

MOEA configuration scenarios. 

The GUI component supports the storage of the objective values and decision 

variables of the visited solutions in a csv file. However, the main purpose of the GUI 

component is to support stakeholders in the process of identifying feasible architecture 

configurations. Hence, the purpose of the GUI component is not to provide an interface 

to collect solution sets for comparative studies. 

However, the execution of various configuration settings and multiple reruns of 

configuration settings is required to enable a representative analysis of the feasibility of 

the developed approach. For example, the main results that are presented in Chapters 5 

and 6 have been collected by employing three different architecture reconstruction 

scenarios, with six different MOEA implementations and five open-source software 

systems. Hence, the employment of 90 combinations of search configurations has been 

required for the collection of this main dataset. Additionally, 10 reruns of each 

configuration are employed to enable robust statistical analysis of the result sets. The 

number of employed search configurations is even higher if different mutation and 

crossover tunings are employed in the evaluation (see: section 6.1). 

The definition and employment of such a high number of search configurations with 

the developed GUI component of the Rearchitecturer component would be tedious. 

Hence, the GUI component is not suitable to conduct a study of the size aspired in this 
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research. Correspondingly, the employment of a batch-driven execution framework that 

enables the programmatic execution of search configurations is more suitable to collect 

the solution sets that are required in the evaluation of this research. Appendix E 

describes the employment the batch driven execution of search configurations in the 

Rearchitecturer component. 

 Summary 

The present chapter described the design and implementation of the 

Rearchitecturer artefact. It has been emphasised in this chapter that the implemented 

Rearchitecturer artefact suggests a set of novel configuration and solution exploration 

approaches. 

The Rearchitecturer artefact enables a flexible approach for the employment of 

optimisation goals, represented by established software architecture design metrics and 

reconstruction objectives, to express a desired software architecture design. A variety of 

state-of-the-art MOEA implementations can be employed as search algorithms. 

The implemented visualisation approach enables stakeholders to visualise and 

explore the complex multi-dimensional solution sets. A novel concept that is supported 

in the Rearchitecturer component is to explore the complete set of visited solutions 

instead of exclusively relying on the presentation of the optimal Pareto-Front. The 

visualisation perspectives of Rearchitecturer also enable stakeholders to constrain 

solution sets based on desired quality aspects to identify particularly promising regions 

of interest in the solution sets. The designed candidate methods enable the exploration 

and constraining of solution sets from different software design perspectives, 

independent of the original optimisation goal configuration. Hence, these suggested 

candidate techniques can support development stakeholders to gain a deeper insight 

into the complex inter-dependencies that exist between the different design objectives 

of the problem domain and to efficiently identify promising solutions independently of 

the traditional assessment techniques evident in the domain of multi-objective 
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optimisation. Furthermore, a visualisation approach is presented that enables 

stakeholders to review solutions individually. Solution candidates can be exported and 

utilised in the architecture management process to monitor the modularity and 

architectural conformance of a software system in the ongoing software development 

process. 

It has been demonstrated with an application example that the suggested candidate 

approaches are feasible methods to consider the design expertise of stakeholders in the 

solution selection process. The insight gained in this demonstration supports the 

argument that the exclusive reliance on the concept of non-dominance is not 

necessarily sufficient to identify the most promising solution candidates. It has rather 

been demonstrated that promising solutions might exist that exhibit more desirable 

features but are not included in the optimal Pareto-Front. The suggested candidate 

approaches are not only a contribution to the problem domain of software 

modularisation and architecture reconstruction. The application of the suggested 

candidate approaches might also be applicable and valuable in other multi-objective 

optimisation approaches to identify feasible solution candidates. 
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5 A Multi-Objective Evaluation Framework 

Statements on the general feasibility of a MOEA-driven architecture reconstruction 

approach and MOEA tunings that lead to solutions exhibiting good performance in the 

targeted problem domain are required to address the research objectives. In section 

3.3.4 and section 3.3.5 relevant aspects for the evaluation of multi-objective approaches 

and randomised algorithms are discussed. A novel evaluation framework, as an 

implementation of the discussed multi-objective evaluation concepts, has been 

developed to facilitate the robust statistical analysis of data sets to address such 

objectives of the present research. 

The application of the evaluation framework is divided into (1.) the employment of a 

set of search configurations to create data sets of the visited solutions, followed by (2.) 

the statistical analysis of these data sets. The separation of the collection of the solution 

sets and the down-stream statistical analysis of those solution sets enables the 

employment of the implemented evaluation framework in other multi-objective 

optimisation approaches if these approaches were to adhere with the output format 

suggested in this research.  

The purpose of this chapter is to depict and explain the functionality of the evaluation 

framework. Output examples of graphs and tables are presented as produced by the 

multi-objective evaluation framework. However, the data presented in graphs and 

tables functions as an example to demonstrate the analysis functionality of the 

evaluation framework, and so the outputs themselves are not necessarily discussed in 

depth. Chapter 6 applies the evaluation framework on different architecture 

reconstruction scenarios and discusses the results in more detail. 

 Execution of Search Analysis 

The evaluation of this research requires the analysis of multiple search tunings to 

allow statements on the impact of individual tuning parameters on the search 

performance. Correspondingly, multiple solution sets are produced in the data 
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collection process. The analysis framework conducts the statistical analysis of these 

solution sets. The employment of the analysis framework is described in Appendix F. 

The analysis results can be classified and then sliced to evaluate performance 

differences of individual performance tunings. 

 Classification of Solution Sets 

The evaluation framework is able to consider the data of multiple solution set 

directories. The input directories include the ExperimentConfiguration instance and the 

corresponding solution sets. A classification model is built from the solution sets and the 

attributes of the accompanying ExperimentConfiguration instances. More specifically, 

the classification attributes are the variation operator configuration, the employed 

MOEA implementation, the objective configuration and other meta-information. The 

meta-information is problem-specific and added into the ExperimentConfiguration 

instances through the execution of call-back functionality during the execution of the 

search. In this research the meta-information includes the name of the software system 

that has been used during the employment of the ExperimentConfiguration and the 

design of the applied conceptual architecture. Hence, a model of the 

ExperimentConfiguration and the corresponding solution sets is built. This model is a 

prerequisite to agglomerate and compare the performance of configuration attributes 

in different configuration scenarios. 

 Creation of Non-Dominated Pareto-Fronts (NDPF) 

A Non-Dominated Pareto-Front (NDPF) is created for each seed of the solution set. 

Additionally, a true or best NDPF is required for the calculation of performance metrics 

that measure solution convergence (compare section: 3.3.4). An approximation of a true 

NDPF is created by merging the individual NDPFs of the individual seeds of the solution 

sets. 

A challenge in the evaluation of MOEAs is that the merging of NDPFs is not 

necessarily meaningful in all evaluation scenarios. For example, the merging of NDPFs of 
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different software systems might not be seen as desirable if the performance of MOEAs 

across different software systems is evaluated based on the analysis of the achievement 

in multi-objective performance indicators. The reason for this is that software systems 

feature different levels of complexity (e.g. different numbers of artefacts and 

dependencies). As a result the optimisation in the different objectives (e.g. minimisation 

of architecture violations or cycles) is generally simpler in less complex software 

systems. Hence, it is likely that the solutions of a NDPF of a less complex system will 

feature better convergence towards an optimal solution. Correspondingly, the solutions 

of the NDPF of the less complex system will dominate the NDPF of the more complex 

software system if NDPFs of different software systems are merged. Hence, there is a 

chance that the more complex system is excluded from the performance analysis. 

However, stakeholders are interested in identifying MOEA implementations and tunings 

that perform well across different kinds of system sizes. Hence, it is suggested in the 

present research that NDPFs should be contained in separate NDPF pools to overcome 

this problem. A best NDPF is calculated for each pool of NDPFs. 

The evaluation framework therefore implements the suggested approach that 

enables the separate handling of NDPFs. Performance metrics are calculated for each 

NDPF in relation to the best NDPF of the pool (see section 5.4). The calculated 

performance indicators of the individual NDPF criteria pools are normalised to allow a 

comparison and consolidation of result sets across NDPF criteria pools. 

The software system attribute is utilised as a NDPF pooling criterion in the 

evaluation of this research that analyses the achievement of convergence-based 

performance indicators across multiple systems.  

 Calculation of Performance Metrics 

The evaluation framework enables the statistical analyses of the development of 

individual objective values and unary Pareto-Front performance indicators. The 

reporting of objective values enables statements to be made on solution achievement 
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from a problem domain perspective. However, the reporting of individual objective 

achievements has the disadvantage that only statements on performance in one 

objective dimension at a time are possible. 

The advantage of the application of unary performance indicators is that a single 

value is reported that expresses the goodness of the optimal Pareto-Front. This includes 

the progress in all objective dimensions. However, the performance indicators are 

domain independent. Consequently, the performance indicators only give a relative 

assessment of the goodness of an optimisation run. Hence, the consideration of Pareto-

Front performance metrics in combination with the assessment of objective 

achievement is useful to assess the performance of optimisation runs. The objective 

achievement is conducted on the basis of the objective achievement within the 

generational populations or the objective achievement of the optimal Pareto-Front. 

Hence, all solutions of a generation or the optimal Pareto-Front are consolidated. 

The implemented evaluation approach calculates the performance metrics Spacing, 

Contribution, Generational Distance, Additive Epsilon Indicator and Hypervolume. The 

convergence performance metrics are calculated for each seed by using the calculated 

best NDPFs of the corresponding NDPF classification criteria set (software system in the 

architecture reconstruction problem). 

The performance indicators and the objective achievement are not calculated only 

once at the end of the search as is most common in prior research. The present research 

anticipates that the reporting of performance metrics and objective progress at multiple 

time points is a valuable evaluation approach to enable statements to be made 

regarding the development of the search. Hence, the performance metrics are 

calculated at multiple iteration points of the search, based on the defined frequency. 

The calculated performance indicators of the individual NDPF criteria pools are 

normalised to enable the comparison and consolidation of result sets across NDPF 
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criteria pools. The calculation of the performance indicators is executed in parallel, 

based on the defined number of cores in the AnalysisConfiguration instance. 

 Slicing of Search Configurations (Seeds) 

Both Sayyad and Ammar (2013) and Arcuri and Briand (2011) state that SBSE 

research generally claims contributions based on the employment of a single search 

configuration. A typical use case is the application of a single MOEA implementation 

with one set of variation operators in a single problem scenario (Arcuri & Briand, 2011). 

However, the applied MOEA, the variation operator tuning and the problem scenario 

can potentially have a noticeable effect on the performance of the approach. The 

present research anticipates that a more comprehensive evaluation approach is needed 

to support thorough conclusions on the feasibility and performance of a search based 

problem solution. This research suggests that the agglomeration and classification of 

solution sets based on configuration attributes provide such an approach. The 

agglomeration of search configuration attributes is useful to gather confidence in the 

general feasibility of an approach. For example, the agglomeration of the software 

system property is a useful measure to enable statements to be made on the general 

performance of the approach and configuration across different systems. However, to 

gain insights into the impact on the performance of individual configuration attributes a 

separation of solution sets based on search configuration attributes is also useful. 

For instance, the agglomeration of the analysed systems coupled with the 

separation of the employed MOEA implementations is a useful means to analyse the 

performance of individual MOEAs across multiple systems. Another evaluation scenario 

is, for example, to assess the impact of variation operator settings across different 

software systems, MOEA configuration and architecture reconstruction settings. 

The evaluation framework creates a result file for any combination of agglomeration 

and classification of the search criteria. The result files feature the mean of the 
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performance metrics of the agglomerated solution sets at the defined frequency 

intervals up to the defined termination criteria.  

The remainder of this section depicts an application example of the evaluation 

framework in which a set of MOEA implementations across different systems and 

variation operator settings is analysed. The software system attribute, variation 

operator setting and conceptual architecture configuration are agglomerated and a 

classification based on the MOEA implementation is conducted. 

The solution sets have been collected in a set of experiments in which 8 objectives 

are employed (see section 2.3 for a detailed description of the employed objectives) to 

reconstruct the architecture classification of a set of five software systems (Lucene, 

Apache Ant, Apache Math, Apache Log4j, Rearchitecturer). One reconstruction method 

is applied in which compilation units are assigned to the existing packages and the 

packages are assigned into three different conceptual architecture models that feature 

four layers. Sections 6.1 and 6.2 describe the conceptual architecture design and 

experiment setup in more detail. Six algorithms (MOEA, AbYSS, NSGAII, OMOPSO, GDE3, 

Random) are executed with each of these configurations. This results in a total of 90 

different search configurations (6 MOEA implementations x 5 software system x 3 

reconstruction scenarios). 10 seeds are collected for each evaluation scenario. Hence, 

this evaluation scenario created a total of 900 solution sets (90 search configurations x 

10 seeds). The termination criterion is set to 50,000 solution evaluations. Hence, each 

solution set features a total of 50,000 visited solutions. The frequency is set to 10,000, 

meaning that a snapshot of the performance indicators is calculated every 10,000 

solutions. Such a low frequency has been selected to enable the presentation of 

snapshots across the complete search due to space restrictions in the presented tables 

of results. In the later evaluation of this research a higher frequency of 100 is used to 

enable a more accurate recording of the performance development of the search. 
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In the first agglomeration example the performance of the MOEA implementations 

is compared. Correspondingly, the evaluation framework separates the solution sets 

(900) into six algorithm groups. Each group features a total of 150 (900 /6 algorithms) 

solution sets. Each of these groups contains solution sets that have been created by 

employing search configurations that feature the five different software systems. 

Table 3 depicts the mean of the Hypervolume performance metric and gives 

information on the agglomeration of the individual search configuration attributes. 

Table 3: Development of Hypervolume – Slicing by MOEA implementation 

Algorith
m 

Syste
m 

Mutation 
Rate 

NrAgglSeed
s 

1000
0 

2000
0 

3000
0 

4000
0 

5000
0 

AbYSS * * 150 0.05 0.06 0.07 0.08 0.09 

GDE3 * * 150 0.02 0.04 0.05 0.06 0.07 

MOEAD * * 150 0.02 0.03 0.05 0.06 0.07 

NSGAII * * 150 0.02 0.03 0.04 0.05 0.06 

OMOPSO * * 150 0.32 0.36 0.38 0.40 0.41 

Random * * 150 0.00 0.00 0.00 0.00 0.00 

*agglomerated parameter 

Information on other classification attributes such as information on the population 

size, other variation operator information and criteria has been removed from the 

original evaluation framework output to enable clearer presentation in this thesis. 

Nevertheless, the analysed data in this example does not feature differences in these 

attributes. Figure 35 graphically depicts the development of the mean Hypervolume 

values as presented in Table 3. 
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Figure 35: Development of Hypervolume – Slicing by MOEA implementation 

The information presented in Table 3 and Figure 35 is useful to assess the mean 

performance of the agglomerated seeds in the individual MOEA implementations. The 

Hypervolume measures the dominated space of an optimal Pareto-Front in relation to a 

best or reference Pareto-Front (compare section 3.3.4). Hence, a higher Hypervolume 

measure indicates better performance of a slice. 

The evaluation framework can also be used to analyse the impact of other 

configuration aspects. Five different probabilities of Polynomial Mutation rates are 

compared in the following example. See section 6.1 for details on the applied 

Polynomial Mutation strategy. A data set is collected that features the previous 

configuration and five different Polynomial Mutation rate settings are applied. 

Obviously, Random search is not impacted by different mutation rate tunings and so is 

excluded from this analysis. A total of 375 search configurations are employed in this 
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example (5 algorithms x 5 software systems x 3 reconstruction scenarios x 5 mutation 

rate settings). Each search configuration is executed 10 times. Hence, a total of 3,750 

seeds are executed. The collected solution sets are classified into five groups (pm.rate 

0.0, pm.rate 0.1, pm.rate 0.3, pm.rate 0.5, pm.rate 0.7) as the mutation rate is used as 

the agglomeration criterion. Each group features a total of 750 seeds. Table 4 presents 

the Hypervolume results in table format as created by the evaluation framework. 

Table 4: Development of Hypervolume – Slicing by Mutation Rate 

Algorithm System Mutation Rate Seeds 10000 20000 30000 40000 50000 

* * 0.0 750 0.066 0.083 0.095 0.104 0.110 

* * 0.1 750 0.068 0.084 0.095 0.103 0.112 

* * 0.3 750 0.067 0.083 0.095 0.106 0.113 

* * 0.5 750 0.074 0.091 0.103 0.111 0.118 

* * 0.7 750 0.068 0.085 0.096 0.104 0.111 
*agglomerated parameter 

Figure 36 depicts the corresponding graph visualisation of the results. 

 

Figure 36: Development of Hypervolume – Slicing by Mutation Rate 
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This example demonstrates the slicing of the same data sets to assess the impact of 

different mutation rate tunings across multiple MOEA implementations. Hence, the 

illustrated examples show the feasibility of the evaluation framework to slice data sets 

based on different criteria to investigate the impact of different tuning parameters 

(MOEA implementation and mutation rate). Additionally, the agglomeration of datasets 

with different parameter tunings of non-investigated criteria enables more general 

statements to be made on the impact of a specific tuning. The interface of the 

evaluation framework supports the user in agglomerating any combination of search 

configuration parameters. If no slicing criteria are defined each search configuration is 

depicted separately and no agglomeration of solution sets is conducted. The slicing is 

conducted for each of the six implemented performance metrics (Spacing, Contribution, 

Generational Distance, Inverted Generational Distance, Additive Epsilon Indicator, and 

Hypervolume). 

 Statistical Comparison of Performance 

In the previous slicing example the mean development of a performance indicator 

from a population of seeds is presented (compare: Table 3 and Table 4). The mean of a 

performance indicator is probably the most common descriptive statistic in a 

performance comparison scenario. However, the interface of the evaluation framework 

allows the output of multiple descriptive statistic measures. The supported descriptive 

statistic measures are the mean, median, minimum, maximum, kurtosis, skewness and 

standard deviation.  

As discussed previously each MOEA implementation applied methods of random 

variation. Inductive statistics need to be applied to determine if a population features 

significant performance differences. Sufficiently large populations of individuals are 

therefore needed to support the conduct of statistical analysis. Populations of 

performance metric measures are created based on a defined range of performance 

snapshots. Descriptive statistics (mean, median, minimum, maximum, kurtosis, 

skewness, standard deviation and Kolmogorov-Smirnov p-value) are calculated for the 

http://en.wikipedia.org/wiki/Kurtosis
http://en.wikipedia.org/wiki/Skewness
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generated populations. In this example, the Hypervolume performance of the 

performance snapshot at iteration 50,000 is presented. This analysis example considers 

the same dataset as used in section 5.5. A detailed description on the configuration of 

this dataset can be found in section 6.2. The dataset is sliced by the applied MOEA 

implementation. Hence, each slice features a population of 150 individuals. The 

following equation gives a more formal description of the calculation of the population 

size:

(6 algorithms x 5 software systems x 3 reconstruction scenarios x 1 variation operator setting x 10 seeds)  

6 𝑠𝑙𝑖𝑐𝑖𝑛𝑔 𝑔𝑟𝑜𝑢𝑝𝑠 (𝑀𝑂𝐸𝐴 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠)
. 

Table 5 presents the corresponding output gathered by the evaluation framework. 

Table 5: Descriptive Statistics - Hypervolume (Iteration 50,000) 

 Algorithm Mean Median Max Min SD Kurtosis Skewness KS N 

AbYSS 0.0913 0.0602 0.3818 0.0074 0.0843 1.0938 1.4307 0 150 

GDE3 0.0657 0 0.2325 0 0.0642 -0.6066 0.671 0 150 

MOEAD 0.0725 0 0.3542 0 0.0912 0.7097 1.3286 0 150 

NSGAII 0.0575 0 0.2667 0 0.0602 0.1944 0.8645 0 150 

OMOPSO 0.4098 0.3326 1 0.0717 0.224 -0.4711 0.3439 0 150 

Random 0.0011 0 0.0085 0 0.0021 2.1354 1.8604 0 150 

 

The comparison of the reported descriptive statistics facilitates the general 

performance assessment of the individual slice populations. However, these descriptive 

statistics present only an aggregation of a set of snapshots from the search 

development presented in Table 3. The presentation of the development of descriptive 

statistics by itself is not sufficient to determine the statistical difference of the 

populations. The evaluation framework therefore supports the automated statistical 

significance testing of the population slices at certain points of the search. 

The evaluation framework uses the p-value of the Kolmogorov-Smirnov Normality to 

determine if the normality condition is fulfilled within the individual populations. The p-

value of the Kolmogorov-Smirnov test determines the appropriate method to test 
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statistical significance. A one-way ANOVA is applied if the normality condition is fulfilled 

in all populations, whereas the non-parametric Kruskal-Wallis test is applied if the 

normality condition is not fulfilled in at least one of the populations. The one-way 

ANOVA or Kruskal-Wallis test determines if any significant differences between the data 

sets exist. Depending on the fulfilment of the normality condition the student t-test or 

Mann-Whitney test is applied to calculate the significance of differences for the 

individual population pairs. In general, the normality condition is not fulfilled in the 

datasets that have been analysed in the evaluation of this research (compare: Table 5). 

Correspondingly, the framework applies the Kruskal-Wallis test and Mann-Whitney tests 

in the down-stream post-hoc analysis. The Kruskal-Wallis p value reports that a 

significant difference ( < 0.001) between the populations of the discussed example data 

sets exist.  

In the post-hoc analysis a significance test is conducted for each pair of populations 

to determine the statistical differences between the individual population pairs. Hence, 

a high number of significance tests are conducted depending on the number of 

populations. If many significant comparisons are conducted the significance level needs 

to be reduced to limit the risk of false positive significance outcomes. 

The evaluation framework therefore applies the Bonferroni correction to calculate a 

new significance level. The calculation of the Bonferroni correction is described in 

section 3.3.5. In the discussed example the new significance level is 0.0033. Table 6 

presents the output of p-values of the Mann-Whitney tests. 

Table 6: Hypervolume Mann-Whitney – p-value (Iteration 50,000) 

Algorithm AbYSS GDE3 MOEAD NSGAII OMOPSO Random 

AbYSS 1.0000 0.0015 0.0000 0.0000 0.0000 0.0000 
GDE3 0.0015 1.0000 0.6758 0.0932 0.0000 0.0000 
MOEAD 0.0000 0.6758 1.0000 0.2399 0.0000 0.0000 

NSGAII 0.0000 0.0932 0.2399 1.0000 0.0000 0.0000 
OMOPSO 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 
Random 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 
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The significance table shows that there is a significant difference between Random, 

OMOPSO, AbYSS and any other algorithm. No sufficient statistical differences can be 

reported between GDE3, MOEAD and NSGAII. However, these statistical results do not 

permit any conclusions to be drawn on the actual difference of the individual 

algorithms. Correspondingly, the actual difference of the mean and/or median in 

combination with the statistical significance needs to be assessed to make a conclusion 

on the actual difference of the sample size. Additionally, the mean/median might not be 

sufficient to make conclusions on the reliability of the algorithm performance. Hence, 

the SD is another indicator that might need to be considered. The comparison of such 

multiple outputs is most likely necessary to enable a justified conclusion on the 

performance of individual populations. 

The evaluation framework calculates the Cohen’s d effect size to assess the 

magnitude of any difference. Cohen (2013) defines the Cohen's d effect size as the 

difference between two means divided by the standard deviation. The evaluation 

framework calculates Cohen’s d as follows: 

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 =  
𝑀𝑒𝑎𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1) − 𝑀𝑒𝑎𝑛 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2)

𝑆𝐷(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1) + 𝑆𝐷 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2)
2

 

A Cohen’s d measure of 0.2 equates to a small effect, 0.5 equates to a medium 

effect, and greater than 0.8 equates to a large effect. Table 7 depicts the Cohen’s d 

effect size measures of the discussed example.  

Table 7: Hypervolume – Effect-Size Cohen’s d (Iteration 50,000) 

Algorithm AbYSS GDE3 MOEAD NSGAII OMOPSO Random 

AbYSS 0.0000 -0.3444 -0.2143 -0.4670 2.0661 -2.0859 

GDE3 0.3444 0.0000 0.0872 -0.1310 2.3875 -1.9457 

MOEAD 0.2143 -0.0872 0.0000 -0.1972 2.1402 -1.5285 

NSGAII 0.4670 0.1310 0.1972 0.0000 2.4792 -1.8115 

OMOPSO -2.0661 -2.3875 -2.1402 -2.4792 0.0000 -3.6144 

Random 2.0859 1.9457 1.5285 1.8115 3.6144 0.0000 
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Positive values indicate that the population named in the horizontal heading 

features higher values whereas negative values show that the population of the vertical 

description features higher values. Positive effect size measures do not necessarily 

translate to better performance. For example, the Additive Epsilon Indicator, 

Generational Distance and Inverted Generational Distance indicate better performance 

if smaller values are reported. Hence, for these metrics, negative values indicate better 

performance. In contrast, positive Hypervolume measures indicate better performance. 

Table 7 indicates that AbYSS, GDE3, MOEAD and NSGAII feature a large effect size in 

comparison to Random. Additionally, AbYSS features a medium effect size in 

comparison to GDE3, MOEAD and NSGAII. Finally, the large effect sizes in the OMOPSO 

column show that OMOPSO distinctly outperforms all other algorithms. 

The discussed example has only been demonstrated based on the Hypervolume 

performance metric: This example of the application of the evaluation framework 

compared the Hypervolume performance of a set of algorithms across multiple systems 

and mutation rate settings. Nevertheless, the evaluation framework supports the same 

statistical analysis for other performance metrics (e.g. Generational Distance, Inverted 

Generational Distance, Additive Epsilon Indicator, Spacing, and Contribution) and also 

for any recorded objective or non-objective solution attribute. Hence, the evaluation 

framework provides a comprehensive and flexible approach enabling users to assess 

and compare the performance of slices of datasets based on the statistical analysis of 

multiple performance indicators. 

 Performance Development Analysis 

The previous examples demonstrate the statistical analysis of dataset slices based on 

the final snapshot of the search. This is the approach that is typically used to evaluate 

the performance of optimisation approaches. However, through the evaluation of this 

research it has been observed that scenarios exist in which different configuration 

settings perform differently through the course of the search. For example, Figure 37 
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presents the mean development of the Pareto-Front in the Number of Package Cycles 

objective. 

 

Figure 37: Mean of optimal Pareto-Front in Number of Package Cycles Objective 

The example depicts that the time point of the analysis impacts the outcome of a 

performance evaluation. For example, the mean performance of the GDE3 (M = 186.11) 

algorithm is very similar to the performance of AbYSS (M = 185.29) at iteration 50,000. 

However, there is a noticeable performance difference through the course of the 

search, in that AbYSS features a better average performance during the development of 

the search. Such a phenomenon has been observed in the development of performance 

indicators as well as in the development of objective achievement measures as 

presented in the example above. 

It has therefore been determined in the developed evaluation framework that the 

consideration of a range of snapshots in the statistical analysis might be a valuable 

extension in the evaluation of multi-objective search results to enable the user consider 

0

50

100

150

200

250

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
u

m
b

e
r 

o
f 

P
a

ck
a

ge
 C

yc
le

s

Number of Iteration

AbYSS GDE3 MOEAD NSGAII OMOPSO Random

http://dict.leo.org/ende/index_de.html#/search=phenomenon&searchLoc=0&resultOrder=basic&multiwordShowSingle=on


160 
 
 

differences in performance through the search process as well as the rapidness of 

convergence. 

Multiple analysis snapshots are taken based on the evaluation configuration. 

Additionally, the configuration enables the definition of a range in which the 

performance snapshots are consolidated. Populations of performance snapshot 

measures are therefore created based on the defined range. Descriptive statistics, 

measures of statistical difference and effect size measures are calculated for the 

combined populations as presented in section 5.6. Table 8 presents the descriptive 

statistics at the end of the search (analysis snapshot at iteration 50,000). Table 9 

presents the range agglomeration of the entire search (iteration 0 -50,000). A 

performance snapshot interval of 100 is applied in this example. Hence, a performance 

snapshot is calculated every 100 iterations. The population is created based on the data 

collected in these performance snapshots. 

Table 8: Descriptive Statistics - Number of Package Cycles (Iteration 50,000) 

Algorithm Mean Median Max Min SD KS Normality N 

AbYSS 185.30 89.23 620.00 15.00 186.79 0.00 3607.00 

GDE3 186.12 103.30 620.00 19.00 180.21 0.00 4880.00 

MOEAD 111.43 62.15 590.00 18.00 129.63 0.00 4635.00 

NSGAII 164.50 87.04 630.00 19.00 171.70 0.00 4356.00 

OMOPSO 196.50 90.68 600.00 2.00 188.13 0.00 3898.00 

Random 203.29 88.21 600.00 19.00 212.98 0.00 1662.00 
 

Table 9: Descriptive Statistics - Number of Package Cycles (Iteration 0-50,000) 

Algorithm Mean Median Max Min SD KS Normality N 

AbYSS 180.74 85.95 620.00 15.00 187.17 0.00 611253.00 

GDE3 186.15 102.64 620.00 19.00 181.32 0.00 854369.00 

MOEAD 119.40 63.82 600.00 18.00 139.38 0.00 813862.00 

NSGAII 166.78 87.29 630.00 19.00 174.47 0.00 754854.00 

OMOPSO 196.62 91.93 600.00 2.00 189.04 0.00 692638.00 

Random 199.93 85.76 610.00 19.00 213.43 0.00 325170.00 
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It has been highlighted in the discussion of the results of Figure 37 that AbYSS and 

GDE3 feature a similar mean performance at iteration 50,000 but that their 

performance through the search features some differences. This is supported by the 

results of the performance snapshot taken after 50,000 iterations, in which AbYSS and 

GDE3 have an almost identical mean value (compare: Table 8). Consideration of the 

complete set of multiple performance snapshots, however, confirms a lower mean 

value of the AbYSS population (M=180.74) in comparison to the GDE3 population 

(M=186.15) (compare: Table 9). 

As discussed in the previous section significance analysis is conducted by the 

evaluation framework to assess statistical differences between the individual 

populations. The Kruskal-Wallis test showed that statistical differences between the 

individual populations in both performance analyses exist. Additionally, the conducted 

pair-wise significance comparisons showed statistical significance for all pairs in the two 

analyses examples. However, as discussed in section 3.3.5, the high number of 

individuals in the analysed populations (compare: Table 8 and Table 9) increases the 

likelihood of the rejection of the null hypothesis even with marginal differences in effect 

sizes. The presentation of the results of the statistical difference analysis are omitted 

due to their limited informative value. Nevertheless, the result sets can be downloaded 

from the project webpage40. 

The effect size therefore needs to be considered to enable statements to be made 

on the magnitude of the differences between the populations. Table 10 and Table 11 

present the Cohen’s d measures of the mean advancement of the two analyses. 

 

                                                      

40 http://code.google.com/p/rearchitecturer/wiki/evaluationResults 
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Table 10: Effect-Size Cohen’s d - Number of Package Cycles (Iteration 50,000) 

Algorithm AbYSS GDE3 MOEAD NSGAII OMOPSO Random 

AbYSS 0.000 0.004 -0.467 -0.116 0.060 0.090 

GDE3 -0.004 0.000 -0.482 -0.123 0.056 0.087 

MOEAD 0.467 0.482 0.000 0.352 0.535 0.536 

NSGAII 0.116 0.123 -0.352 0.000 0.178 0.202 

OMOPSO -0.060 -0.056 -0.535 -0.178 0.000 0.034 

Random -0.090 -0.087 -0.536 -0.202 -0.034 0.000 

 

Table 11: Effect-Size Cohen’s d - Number of Package Cycles (Iteration 0-50,000) 

Algorithm AbYSS GDE3 MOEAD NSGAII OMOPSO Random 

AbYSS 0.000 0.029 -0.376 -0.077 0.084 0.096 

GDE3 -0.029 0.000 -0.416 -0.109 0.057 0.070 

MOEAD 0.376 0.416 0.000 0.302 0.470 0.457 

NSGAII 0.077 0.109 -0.302 0.000 0.164 0.171 

OMOPSO -0.084 -0.057 -0.470 -0.164 0.000 0.016 

Random -0.096 -0.070 -0.457 -0.171 -0.016 0.000 

 

The effect sizes show no mentionable difference between the AbYSS and GDE3 

population (compare: Table 10 and Table 11) in both analyses. However, the effect size 

increased from -0.004 in the analysis at iteration 50,000 to -0.029 in the analysis that 

included multiple snapshots between iteration 0 - 50,000. Similar effects could be 

observed in other pair comparisons e.g. NSGAII vs. AbYSS.  

In conclusion, this section demonstrated that the inclusion of multiple performance 

snapshots is a feasible technique to consider the development of the search instead of 

just relying on an arbitrary time point in the search. However, the example showed that 

the inclusion of multiple snapshots only leads to marginal impacts on the descriptive 

statistics and effect size measures. These results have been confirmed with other 

examples that showed similar effects. 

 



163 
 
 

 Summary 

This chapter described the functionality and employment of the implemented multi-

objective evaluation framework. The evaluation framework creates performance 

snapshots at multiple time points of the search, based on the user-defined analysis 

configuration. A performance snapshot consists of the calculation of multiple optimal 

Pareto-Front performance indicators. The novel evaluation framework enables the 

consolidation and slicing of performance snapshots that have been collected across 

different optimal Pareto-Front approximations. The slicing is conducted based on the 

specification of MOEA tuning parameters and a range of performance snapshot time 

points. Hence, the slicing enables the evaluation of the impact of different search 

parameter configurations on the search performance, the consolidation of a tuning 

parameter that features different attributes to evaluate the general performance of 

another tuning parameter, and the consolidation of multiple performance time points to 

include the development of the search in the performance evaluation. 

The evaluation framework also conducts statistical analysis of the solution sets 

based on the consolidation of the calculated performance snapshots into slicing 

populations. Descriptive statistics are calculated for the sliced populations. Parametric 

or non-parametric significance tests are conducted based on the fulfilment of normality 

distribution characteristics to reveal statistical differences between pairs of sliced 

performance snapshot populations. Additionally, the effect sizes of the individual sliced 

population pairs are calculated to enable justified statements to be made regarding the 

difference of performance of the sliced populations.  
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6 Application of the Multi-Objective Evaluation 

Framework 

This section demonstrates the application of the developed multi-objective 

evaluation framework in the problem domain of architecture reconstruction. In these 

experiments the performance of a set of six MOEA (AbYSS, GDE3, MOEAD, NSGAII, 

OMOPSO, Random) implementations across five different software systems (Apache Ant 

v.1.9.2, Apache Commons Math v.3.2, Apache Log4j v.1.2.17, Lucene v.4.4.0, 

Rearchitecturer) is evaluated. The following set of eight selected optimisation goals is 

applied in these experiments:  

1) maximise cohesion within subsystems 

2) minimise efferent coupling within subsystems 

3) minimise afferent coupling within subsystems 

4) converge NCCD within subsystems to 1.0 

5) minimise distance in subsystems 

6) minimise number of architecture violations on compilation unit level 

7) minimise number of cycles on package level 

8) minimise the range of compilation units in subsystems.  

 

These selected objectives have been identified and discussed in the literature review 

(compare: section 2.3). An exception is the range of compilation units in subsystems 

metric, which is not a software engineering metric as such. However, it has been found 

through the course of this research that there was a tendency of the optimisation 

approaches to organise low-level artefacts into a small number of high-level artefacts to 

reach good performance in the number of cycles on package level, number of 

architecture violations on compilation unit level and coupling metrics. The other metrics 

have not been able to counteract this movement. As a result, the employment of the 

original seven software engineering optimisation goals led to an unacceptable number 

of solutions that featured an organisation of most low-level artefacts in only a few big 
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high-level artefacts. The range of compilation units in subsystems metric has been 

introduced to counteract this tendency. However, it is acknowledged that the 

minimisation of the range of compilation units in subsystems metric is not an 

architecture design metric that would usually be seriously considered in the manual 

design process of software architecture configurations. 

The following sections discuss the findings derived from the conducted experiments. 

The experiments to collect the solution sets and run the analysis have been executed on 

two virtual machines. Appendix A: gives details of the configuration of these virtual 

machines. 

 MOEA Parameter Tuning 

The MOEA implementations that are utilised in the Rearchitecturer component 

enable the tuning of a variety of optimisation parameters (e.g. population size, number 

of iterations, different crossover and variation operators and the corresponding 

crossover and mutation parameter settings). 

The MOEA parameters that are applied in the evaluation experiment have been 

tuned iteratively until a configuration has been identified that demonstrates results 

sufficient to support valid conclusions on the feasibility of the developed approach. 

Experiments have shown that good convergence of the applied MOEA implementations 

is usually achieved within 3,000 – 5,000 iterations (compare: Figure 42 on page 175). 

That said, 50,000 iterations is used as a termination criterion in the following 

experiments and hence is more than sufficient to show that good convergence has 

indeed been reached. Additionally, it has been found that the population size does not 

impact the search outcome significantly. Nevertheless, for the sake of completeness a 

population size of 50 is consistently applied in the following experiment settings. 

Additionally, a set of crossover and mutation variation operators had to be selected and 

tuned. The encoding in this research employs real value decision variables (compare: 

section: 4.1.3). Hence, variation operators have to be applied that allow handling real 
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value decision variables. The applied variation operators are Polynomial Mutation (PM) 

and Simulated Binary Crossover (SBX). 

PM simulates the offspring distribution of binary-encoded bit-flip mutation on real-

valued decision variables (Deb, 2001). Polynomial Mutation (PM) features rate and 

distribution index tuning parameters. The PM rate defines the probability that a decision 

variable is perturbed. The PM distribution index determines the magnitude of a 

mutation (Deb, 2001). Lower PM distribution index values are considered to create 

stronger mutations and results in decision variables that feature a more developed 

deviation from the original value of the decision variable. Higher values result in 

mutations that generate decision variable values that are similar to the parent. 

SBX attempts to simulate the offspring distribution of binary-encoded single-point 

crossover on real-valued decision variables (Deb & Agrawal, 1995). The tuning 

parameters of SBX are a distribution index and a probability rate. The SBX rate defines 

the probability that a crossover variation is conducted. The SBX distribution index 

controls the shape of the offspring distribution. Higher values for the distribution index 

generate offspring closer to the parents. In general, lower SBX and/or PM distribution 

indexes are likely to create more spread and are fitter to escape local optima (Hamdan, 

2011). However, this should depend on the structure of the problem and 

implementation of the problem encoding (e.g. causality and continuity of decision 

variable representations). 

A set of experiments has been conducted to evaluate the impact of the four tuning 

parameters. Each variation operator parameter is iteratively changed while the 

remaining parameters are set to a fixed value. The following variation operator tunings 

have been evaluated in these experiments: 

 pm.rate: 0.0, 0.1, 0.3, 0.5, 0.7 

 pm.distributionIndex: 5, 10, 15, 20 

 sbx.rate: 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 



167 
 
 

 pm.distributionIndex: 5, 10, 15, 20 

The five MOEA implementations (non-Random) that consider variation operators are 

employed in this setting with the five software systems discussed and the three 

conceptual target architecture models (compare: section 6.2). The outcome of the 

experiments revealed that a higher sbx.rate parameter configuration leads to improved 

optimal Pareto-Front performance and that the best performance is achieved with a 

sbx.rate setting of 1.0. The tuning of the remaining three variation operator parameters 

showed only marginal differences in effect size. The presentation of these results is 

omitted due to their insignificant impact on the search performance. However, the 

results of the experiments can be downloaded from the project webpage41. The 

following variation operator settings are applied in the remaining experiments to enable 

the traceability of the presented experiment results: mutation rate= 0.5, mutation 

distribution index = 10.0, crossover rate = 1.0 and crossover distribution index = 10.0. 

 MOEA Performance in Multiple Architecture Reconstruction 

Scenarios 

As discussed earlier in the thesis it is anticipated in this research that the conceptual 

architecture is a target design of the system. Hence, in this experiment a pre-defined 

conceptual architecture model is considered and so the conceptual architecture is not 

discovered during the reconstruction process. Correspondingly, the reconstruction 

configuration employs the assignment of compilation units into the existing packages of 

the system and the assignment of the packages into the layers of the conceptual target 

architecture. 

Experiments with transient and strict conceptual architecture models with a 

different number of layers (2, 3 and 4 layers) have been conducted in the course of this 

                                                      

41 http://code.google.com/p/rearchitecturer/wiki/evaluationResults 
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research. The general structure of these conceptual models is based on the C2-

architecture-style to support separation of concerns and high-level modularisation of 

the reconstructed system (Taylor et al., 2009). 

As expected it has been found that the application of conceptual architecture 

models with a higher number of layers is a more complex search problem. 

Consequently, the absolute achievement of MOEAs in conceptual architecture target 

models with a lower number of layers is better. Nevertheless, it has been found that the 

application of a different number of conceptual architecture layers does not impact the 

individual MOEA implementations in comparison to one another. Hence, in the 

experiment presented in this section only conceptual architecture models that feature 

four conceptual layers are employed. However, three different conceptual architecture 

paradigms are used to evaluate the performance of MOEAs in different architecture 

reconstruction scenarios. 

The first conceptual target architecture model features four transient layers in which 

each top layer can access any bottom layer. Figure 38 depicts the employed transient 

architecture model. Such an architecture design is common when no distribution of the 

system is evident and consequently all the artefacts are available on the same machine. 

 

Figure 38: Transient Architecture Model 
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The second conceptual target architecture model features four strict layers in which 

each top layer can access only one directly depending layer. Figure 39 depicts the 

employed strict architecture model. Such an architecture design can, for example, be 

used to model a distribution of layers across machine boundaries. 

 

Figure 39: Strict Architecture Model 

In the third reconstruction scenario, the strict target conceptual architecture as 

presented in Figure 39 is utilised and at the beginning of each seed three packages are 

assigned randomly to each layer. The packages and compilation units that are included 

in the corresponding packages are not reassigned. Hence, every solution features the 

initial package assignment of the corresponding seed. The idea of this reconstruction 

scenario is to simulate that the development stakeholder might have an understanding 

of the assignment of some packages and would like to include this knowledge in the 

created solutions.  

These experiment scenarios add up to a total of 90 different experiment 

configurations (6 MOEA implementations x 5 systems x 3 reconstruction scenarios) that 

are executed for the collection of the data. Each search configuration is executed 10 

times to accommodate the probability characteristics of the MOEA implementations. 

Hence, the described experiment configuration features a total of 900 solution sets. 
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The classification of the evaluation systems into the different conceptual target 

architectures features different levels of complexity. For example, the resolution of 

architecture violations is harder within a strict architecture than for classification into 

the transient target architecture. Additionally, the solution space is constrained in the 

reconstruction scenario, in which packages are fixed into layers. Hence, finding solutions 

that feature good performance in the subsystem structure metrics is more complex. To 

demonstrate the impact on the different target architectures the dataset is sliced by 

consolidating algorithms and systems and the separation of result sets is based on the 

different target architecture designs. The analysis of the sliced datasets confirmed a 

different level of performance achievement depending on the level of the complexity of 

the reconstruction scenario. Figure 40 depicts the corresponding Hypervolume 

performance development graph: 

 

Figure 40: Hypervolume - Slicing based on Conceptual Target Architecture 
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The graph shows that the transient- and strict- reconstruction scenarios achieve 

equally good Hypervolume performance. Understandably, the Hypervolume 

performance of the third architecture example is substantially lower due to the increase 

of complexity based on the upstream assignment and mounting of packages into 

subsystems. 

In the analysis presented in section 6.3 and 6.4 the performance of the employed 

MOEA implementations across the three reconstruction scenarios is evaluated. The 

three architecture reconstruction datasets are consolidated to enable such an analysis. 

However, a prerequisite for the validity of such a comparison is that each reconstruction 

scenario contributes to the approximated true Pareto-Front, as the analysis relies mainly 

on achievement in the objective space and convergence of the optimal Pareto-Fronts. 

The solution sets of a reconstruction scenario are excluded from the analysis if the 

optimal Pareto-Front of that reconstruction scenario is not contributing to the 

approximated true Pareto-Front and the slicing is based on the employed MOEA 

implementations. For example, if the least complex architecture reconstruction scenario 

dominates the optimal Pareto-Front of the more complex architecture scenarios the 

analysis only considers the solution sets of the least complex architecture 

reconstruction solution sets. The Contribution performance metric is useful in this 

regard to confirm if each reconstruction scenario is able to contribute towards the 

approximated true Pareto-Front. Figure 41 depicts the development of the contribution 

performance metric through the search process in the individual reconstruction 

scenarios. 
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Figure 41: Contribution - Slicing by Conceptual Target Architecture 
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to advance the individual objective dimensions is necessary to enable statements on the 

applicability of the selected high-level architecture design metrics to be made. 

No generally accepted method has been established in other multi-objective 

research to assess the achievement in the objective space. For example, related 

research has relied on the presentation of the MQ measure, Generational Distance and 

Error Ratio to evaluate the relative convergence of optimal Pareto-Fronts. However, 

within the present approach the explicit reliance on the application of multi-objective 

performance metrics that calculate relative convergence of similarity to a best optimal 

Pareto-Front might be misleading. For example, two optimisation configurations might 

reduce the number of architecture violations to 500 and 800. A convergence-based 

performance metric will confirm a better performance for the approach that achieved 

500 architecture violations if we ignore the existence of other solutions and objectives 

in this example. However, both solutions are most likely still too complex to allow 

stakeholders to understand the solution and manually resolve remaining forbidden 

dependencies. Hence, both configurations would be infeasible for use in the target 

application domain. Hence, assessment of the objective achievement is an important 

component to assess the overall feasibility of the developed approach. 

Theoretically, the objective achievement can be assessed based on any of the 

solution sets evident in a multi-objective optimisation. These kinds of solutions sets are: 

the complete set of visited solutions, the current population, and the optimal Pareto-

Front. The implemented evaluation framework supports the assessment of the objective 

achievement based on all three of these solution sets. Descriptive statistics are 

calculated for the individual solution sets at each performance snapshot. The selection 

of the solution set and the descriptive statistics depends on the user’s research interest. 

The first analysis demonstrates the convergence in the individual objectives. Hence, 

the solutions of the generational populations or more specifically the solution that 

features the best performance in the desired objective is used in this analysis.  
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This evaluation uses the same data configuration as described in section 6.2 with 

only one variation operator setting. The results are sliced by the applied MOEA 

implementation. Correspondingly, a population of 150 is created for each MOEA 

implementation at each performance snapshot. The evaluation framework reports 

descriptive statistics for each performance snapshot. In this evaluation, the interval for 

performance snapshots is aligned with the population size of the generations and is 

correspondingly set to 50 iterations. Hence, 1,000 performance snapshots are calculated 

in this analysis. 

Figure 42 depicts the mean development of the best achievement of the eight 

employed objectives. The mean for each objective is presented for each performance 

snapshot. 
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Figure 42: Objective Achievement in Populations 
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The objective development depicts that each of the employed MOEA 

implementations features better performance than Random in seven of the eight 

objective dimensions. Additionally, OMOPSO features the best overall advancement in 

the same seven objectives. Furthermore, no specific performance differences can be 

reported between NSGA-II, GDE3, ABYSS and MOEAD in these seven objective 

dimensions. 

An exception is the Range Of Types In Subsystems objective in which only AbYSS 

shows better convergence than Random. However, it needs to be considered that the 

presented results are the mean of the best performances per population at each 

generation of the search. Hence, it is not a representation of the overall search process 

or achievement in that objective. The presented results are simply an indication of the 

feasibility of the approach to converge the individual objectives. 

It may be suggested that the review of the objective achievement of the optimal 

Pareto-Front is a better evaluation instrument to assess the general feasibility of an 

optimisation approach in the individual objective dimensions. However, the 

presentation of the mean development of the objective progress of the optimal Pareto-

Front solution set is most likely also an unreliable means to assess the performance of a 

configuration setting. The reason for this is that the trade-off concept of optimal Pareto-

Fronts leads to the inclusion of solutions that dominate any area of the objective space. 

These solutions therefore might feature poor performance in the reviewed objective. 

Hence, while a good progress in the minimum and maximum value of an objective is 

achieved the mean progress might be relatively constant in the reviewed objective. 

Hence, it is suggested in this research that the reporting of descriptive statistics, and in 

particular the review of minimum, maximum and distribution characteristics of 

objective achievement of the optimal Pareto-Front, are more valuable methods to 

review achievement in the objective space. 
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This analysis relies on achievement in the objective space in the optimal Pareto-

Fronts. The normality condition is not fulfilled in these datasets. Hence, no valid 

conclusions can be drawn on the distribution of the data based on the Mean and SD 

measures. Hence, Mean and SD measures are not presented but can be found in the 

original datasets on the project webpage. Consequently, the following tables present 

the Minimum, Maximum and Median of the objective measures of the optimal Pareto-

Fronts. The populations for these descriptive measures are created based on the 

objective measures of the solutions of the optimal Pareto-Fronts of the created slices. 

The results presented in the tables are sliced by the applied MOEA implementation and 

system to enable the assessment of the objective performance of MOEAs in the 

individual systems.  

Histograms are presented to communicate the distribution characteristics and the 

achievement in the objective space. In the first presented objective (Number of Package 

Cycles) the histograms are presented for each system individually (see: Figure 43). The 

review of the performance of the individual MOEA implementations in the individual 

systems has shown that the MOEA implementations feature similar performance 

characteristics in the other objectives. Hence, in the histograms of the remaining seven 

objectives the optimal Pareto Fronts of all systems are consolidated in a single 

histogram for each objective. It is suggested that such a consolidation is admissible as 

the aim of this section is to show the general performance of MOEA implementation in 

the objective space across a set of representative software systems. It is acknowledged 

that the different complexity of the systems might lead to the aggregation of objective 

values at different objective regions. Nevertheless, the datasets are still comparable as 

the same evaluation systems are used in the slices. 

Furthermore, the three architecture reconstruction scenarios are consolidated to 

convey a more representative demonstration of the performance of the MOEA 

implementations in the objective space across different systems. No noteworthy 

difference between the reconstruction scenarios has been found that would justify the 
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separate presentation by reconstruction scenario (compare: section 6.2). An aim of this 

analysis is to show the distribution characteristics of the optimal Pareto-Front sets. This 

is useful to assess the number of solutions that are discovered within promising areas of 

the search. Hence, the optimal Pareto-Fronts of the seeds of each slice are not merged 

to include the distribution characteristics of the different configuration settings. The 

total number of individual optimal Pareto-Fronts that are considered in this analysis is 

900 (compare: section 6.2). These optimal Pareto-Fronts feature a combined total of 

236,570 solutions. The data sets that feature a slicing based on system, employed 

reconstruction scenario and also the number of non-dominated solutions to each slice 

are available on the project webpage. 

Table 12 presents the minimum, maximum and median of the Number of Packages 

Cycles metric in the optimal Pareto-Fronts. 
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Table 12: Descriptive Statistics – Number of Package Cycles 

System Algorithm Min Max Median 

apache ant AbYSS 46.00 60.00 55.95 

 GDE3 55.00 60.00 59.70 

 MOEAD 39.00 60.00 58.17 

 NSGAII 55.00 60.00 59.97 

 OMOPSO 0.00 60.00 35.58 

 Random 55.00 60.00 59.99 

apache log4j AbYSS 1.00 620.00 370.05 

 GDE3 1.00 620.00 358.46 

 MOEAD 1.00 590.00 287.46 

 NSGAII 1.00 620.00 332.29 

 OMOPSO 0.00 600.00 347.77 

 Random 180.00 610.00 477.19 

apache math AbYSS 44.00 60.00 52.54 

 GDE3 50.00 60.00 57.91 

 MOEAD 47.00 60.00 57.51 

 NSGAII 55.00 60.00 58.24 

 OMOPSO 0.00 60.00 25.62 

 Random 55.00 60.00 55.02 

lucene AbYSS 15.00 20.00 19.20 

 GDE3 19.00 20.00 19.59 

 MOEAD 18.00 20.00 19.60 

 NSGAII 19.00 20.00 19.52 

 OMOPSO 0.00 20.00 14.69 

 Random 19.00 20.00 19.46 

rearchitecturer AbYSS 29.00 47.00 41.05 

 GDE3 34.00 47.00 42.99 

 MOEAD 32.00 47.00 43.82 

 NSGAII 37.00 47.00 44.61 

 OMOPSO 0.00 47.00 26.12 

 Random 39.00 47.00 44.75 

 

The optimal Pareto-Front development for the Number of Package Cycles objective 

depicts that OMOPSO features the best performance based on the achieved range in all 

systems. Additionally, only OMOPSO is able to discover solutions in all systems that 

feature zero cycles. The other MOEA implementations can only compete with OMOPSO 

in terms of absolute achievement in the log4j system. The lowest optimal Pareto-Front 
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median value is achieved by the OMOPSO implementation in four of the five systems. 

The only exception is the decomposition based MOEAD implementation in the log4j 

system. Hence, the absolute achievement towards the desired optimisation direction of 

the other MOEA implementations depends strongly on the complexity of the system. 

Figure 43 presents the histograms of the Number of Package Cycles objective in the 

migrated evaluation systems. The number of solutions of the optimal Pareto-Fronts for 

each algorithm between an objective value range is shown in the histograms. 

 

Figure 43: Histogram Number of Package Cycles Objective in Systems 
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The histograms depict that the apache log4j system features the most homogenous 

distribution and the widest spread, with solutions that feature up to 620 cycles 

(compare: Table 12). A possible explanation is that log4j features the lowest complexity 

in terms of number of types and dependencies. Hence, the employed MOEA 

implementations can visit a relatively bigger part of the search space in the log4j 

system. Consequently, solutions can be discovered that feature better achievement in 

the objectives. This most likely also leads to higher trade-offs in other objective and 

consequently a wider range of solutions. The other systems also feature a high number 

of solutions with acceptable Number of Cycles in Packages measures. It is not really 

possible to state at this stage what are the reasons why there is such a narrow range 

achieved in the more complex systems and why only OMOPSO is able to find highly 

promising solutions in the more complex systems.Table 13 depicts the descriptive 

statistics of the Number of Forbidden Outgoing Type Dependencies metric in the optimal 

Pareto-Fronts. 
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Table 13: Descriptive Statistics - Number of Forbidden Type Dependencies 

System Algorithm Min Max Median 

apache ant AbYSS 460.00 3000.00 2033.37 

 GDE3 320.00 3000.00 1784.63 

 MOEAD 220.00 3000.00 1524.63 

 NSGAII 500.00 3000.00 1770.56 

 OMOPSO 1.00 3000.00 1656.58 

 Random 2000.00 3000.00 2711.85 

apache log4j AbYSS 11.00 19.00 16.46 

 GDE3 13.00 19.00 17.49 

 MOEAD 12.00 19.00 17.44 

 NSGAII 13.00 19.00 17.54 

 OMOPSO 0.00 19.00 12.57 

 Random 15.00 19.00 17.64 

apache math AbYSS 660.00 3000.00 2119.18 

 GDE3 330.00 3000.00 1953.53 

 MOEAD 600.00 3000.00 1909.11 

 NSGAII 400.00 3000.00 1910.24 

 OMOPSO 1.00 3000.00 1458.10 

 Random 0.00 3000.00 2792.83 

lucene AbYSS 2.00 2500.00 1526.55 

 GDE3 1200.00 2500.00 2076.50 

 MOEAD 70.00 2500.00 1321.62 

 NSGAII 850.00 2500.00 1895.28 

 OMOPSO 1.00 2500.00 1474.07 

 Random 980.00 2500.00 1936.06 

rearchitecturer AbYSS 130.00 930.00 636.45 

 GDE3 10.00 930.00 565.15 

 MOEAD 140.00 890.00 523.92 

 NSGAII 6.00 920.00 541.79 

 OMOPSO 1.00 900.00 532.02 

 Random 580.00 910.00 783.12 

 

In general, the presented statistics of the optimal Pareto-Fronts of the Number of 

Forbidden Type Dependencies achievement show results similar to those achieved for 

the previous metric. In general, OMOPSO features the best absolute achievement in this 

objective across all systems. An exception is Random that discovered a solution with 0.0 

forbidden type dependencies in the apache math system. Additionally, NSGAII and 
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GDE3 are able to find promising solutions in the Rearchitecturer system and AbYSS is 

able to find promising solutions for the lucene system. 

The other MOEA algorithms show worse performance in more complex systems 

apart from this coincidental discovery by the Random implementation in the apache 

math system. A difference in comparison to the findings of the previous Number of 

Package Cycles metric is the small range of metric measurements in the log4j system. 

Figure 44 presents the histogram of the Number of Forbidden Outgoing Type 

Dependencies objective. From this objective onwards the individual system slices are 

consolidated in one histogram. The reason for this is that this study mainly investigates 

the general performance of the individual MOEA implementations in a representative 

set of software systems. Nevertheless, the tables still give the descriptive statistics for 

the individual systems to enable the assessment of the impact of different system sizes 

on the objective achievement. 

It is anticipated in the Number of Forbidden Outgoing Type Dependencies objective 

that solutions with more than 100.0 solutions can be considered as infeasible. Hence, 

solutions with a higher number of Forbidden Outgoing Type Dependencies are 

consolidated in the last bin. 
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Figure 44: Histogram Number of Forbidden Outgoing Dependencies objective 

Figure 44 depicts that OMOPSO is able to progress the search to solutions with a 

reasonable number of solutions with fewer than 15.0 architecture violations. Such 

solutions are able to be discovered in all systems (compare: Table 13). The solutions of 

the non-OMOPSO slices are probably discovered in the apache-log4j systems as the 

non-OMOPSO algorithms have been unable to discover solutions with fewer than 100.0 

architecture violations in the more complex software systems (compare: Table 13). This 

assertion is also supported by the flat landscape between 25.0 and 100.0 violations, in 

which barely any solutions are discovered by any of the employed MOEA 

implementations. Consequently, the data supports the expectation that the complexity 

of the transformed system strongly impacts achievement in the Number of Forbidden 

Outgoing Type Dependencies. 
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The third objective (relating to NCCD) measures the internal structural quality of the 

subsystems of the desired target architecture. Table 14 illustrates the Minimum, 

Maximum and Median of the NCCD metric. 

Table 14: Descriptive Statistics - NCCD 

System Algorithm Min Max Median 

apache ant AbYSS 14.00 170.00 29.62 

 GDE3 15.00 170.00 28.34 

 MOEAD 14.00 85.00 24.14 

 NSGAII 12.00 180.00 29.25 

 OMOPSO 6.20 300.00 40.44 

 Random 21.00 40.00 22.29 

apache log4j AbYSS 0.00 1.50 0.69 

 GDE3 0.00 1.50 0.69 

 MOEAD 0.00 1.70 0.83 

 NSGAII 0.00 1.60 0.72 

 OMOPSO 0.00 1.30 0.71 

 Random 0.00 1.20 0.66 

apache math AbYSS 0.00 85.00 7.49 

 GDE3 3.50 80.00 6.84 

 MOEAD 4.10 12.00 6.03 

 NSGAII 2.80 85.00 6.92 

 OMOPSO 0.00 100.00 8.25 

 Random 0.00 7.30 5.98 

lucene AbYSS 3.30 180.00 10.99 

 GDE3 7.50 18.00 10.36 

 MOEAD 5.40 26.00 9.85 

 NSGAII 7.20 22.00 10.31 

 OMOPSO 2.70 330.00 12.60 

 Random 7.00 19.00 10.29 

rearchitecturer AbYSS 0.00 70.00 6.40 

 GDE3 0.00 85.00 6.67 

 MOEAD 3.20 35.00 5.50 

 NSGAII 1.90 90.00 6.70 

 OMOPSO 0.00 95.00 8.04 

 Random 0.00 10.00 5.92 
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The minimum values indicate that the approach is capable of optimising the NCCD 

objective towards promising values. In general, the results are similar to the results for 

the previous objectives with the best minimum value and range achieved by OMOPSO 

across all systems. Random is again able to discover solutions in the Rearchitecturer, 

Apache Math, and Apache Log4j systems that feature a NCCD measure of 0.00. The 

review of the distribution in the histogram reveals that these discoveries of the Random 

implementation are of a coincidental nature, as Random only contributes a few 

solutions with such competitive NCCD measures to the optimal Pareto-Fronts. Figure 45 

presents the histogram of the NCCD objective. Solutions with a NCCD measure of more 

than 20.0 are consolidated in the last bin. 

 

Figure 45: Histogram NCCD objective 

The histogram indicates that all of the algorithms are able to achieve solutions with 

acceptable NCCD measures. In section 2.3.4 it has been discussed that an optimal NCCD 
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Front datasets feature a NCCD measure of < 15.0. A NCCD of less than 15.0 is an 

acceptable structural quality based on the complexity of the optimised software 

systems. Hence, this raises the question if the NCCD metric is a good quality indicator 

that challenges the optimisation adequately. The optimal Pareto-Fronts contain 

solutions that feature the best trade-offs between the individual objectives. Hence, 

many other solutions have been visited that feature worse quality in the NCCD metric. 

Hence, very good achievement in a substantial part of the optimal Pareto-Front is 

certainly good. However, techniques are required, as presented in section 4.2.2, to 

identify the most promising solutions based on other solution aspects. 

The fourth objective (Distance from Main Sequence) measures the mixture of 

abstract and implementation classes in high-level artefacts. Table 15 depicts the 

Minimum, Maximum and Median of the Distance from the Main Sequence metric. 
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Table 15: Descriptive Statistics - Distance from the Main Sequence 

System Algorithm Min Max Median 

apache ant AbYSS 0.26 0.74 0.48 

 GDE3 0.25 0.73 0.46 

 MOEAD 0.24 0.62 0.46 

 NSGAII 0.24 0.76 0.45 

 OMOPSO 0.02 0.80 0.46 

 Random 0.48 0.60 0.53 

apache log4j AbYSS 0.00 95.00 48.74 

 GDE3 0.00 90.00 45.54 

 MOEAD 0.00 85.00 38.58 

 NSGAII 0.00 90.00 42.88 

 OMOPSO 0.00 90.00 45.74 

 Random 0.00 90.00 60.69 

apache math AbYSS 0.00 0.69 0.50 

 GDE3 0.22 0.72 0.48 

 MOEAD 0.26 0.66 0.47 

 NSGAII 0.24 0.77 0.46 

 OMOPSO 0.00 0.77 0.46 

 Random 0.00 0.61 0.54 

lucene AbYSS 0.12 0.70 0.42 

 GDE3 0.34 0.58 0.45 

 MOEAD 0.24 0.63 0.41 

 NSGAII 0.26 0.60 0.44 

 OMOPSO 0.00 0.77 0.41 

 Random 0.30 0.60 0.45 

rearchitecturer AbYSS 0.00 0.76 0.48 

 GDE3 0.00 0.77 0.46 

 MOEAD 0.28 0.70 0.46 

 NSGAII 0.18 0.76 0.46 

 OMOPSO 0.00 0.78 0.46 

 Random 0.00 0.60 0.51 

 

All of the MOEA implementations achieved acceptable minimum values in the 

considered optimal Pareto-Fronts. The maximum values indicate that the MOEA 

implementations also entered highly infeasible solution space for the log4j system. 

Contrary to prior expectations, the Distance from Main Sequence measures in the more 

complex systems do not feature any extreme high values. Figure 46 presents the 
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histogram of the Distance objective. A classification of solutions into ten bins has been 

chosen in this histogram with a cut-off value of 2.0 to limit the visualisation to 

competitive solutions. 

 

Figure 46: Histogram Distance from Main Sequence objective 

The histogram shows that all of the MOEA implementations are able to discover 

promising solution candidates. As for the previous objectives OMOPSO still features the 

best absolute achievement. Nevertheless, MOEAD, GDE3 and AbYSS discover a higher 

number of promising solutions than the OMOPSO search. A high number of promising 

solutions is good to allow stakeholders to make use of the implemented constraining 

approaches to identify a final solution.  

It has been shown in Figure 42 that the fifth objective (Range of Types in Subsystem 

metric) features hardly any convergence towards the desired optimisation direction 

within the mean generational development. Table 16 illustrates the descriptive statistics 

of the Range of Types in Subsystems metric. 
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Table 16: Descriptive Statistics - Range of Types in Subsystems 

System Algorithm Min Max Median 

apache ant AbYSS 0.00 1000.00 598.52 

 GDE3 2.00 1100.00 659.80 

 MOEAD 1.00 1100.00 626.73 

 NSGAII 0.00 1000.00 654.09 

 OMOPSO 0.00 1100.00 693.04 

 Random 1.00 490.00 199.07 

apache log4j AbYSS 0.00 310.00 136.08 

 GDE3 0.00 310.00 145.43 

 MOEAD 0.00 290.00 117.32 

 NSGAII 0.00 310.00 153.22 

 OMOPSO 0.00 310.00 149.36 

 Random 0.00 230.00 81.72 

apache math AbYSS 0.00 920.00 483.81 

 GDE3 1.00 980.00 515.51 

 MOEAD 0.00 840.00 384.56 

 NSGAII 0.00 930.00 519.53 

 OMOPSO 0.00 960.00 597.23 

 Random 0.00 470.00 154.07 

lucene AbYSS 0.00 1400.00 700.16 

 GDE3 0.00 1000.00 287.72 

 MOEAD 0.00 1300.00 636.22 

 NSGAII 2.00 1100.00 457.84 

 OMOPSO 0.00 1400.00 714.48 

 Random 2.00 1000.00 434.70 

rearchitecturer AbYSS 0.00 430.00 179.62 

 GDE3 0.00 480.00 214.54 

 MOEAD 1.00 390.00 144.87 

 NSGAII 1.00 460.00 222.36 

 OMOPSO 0.00 490.00 238.61 

 Random 0.00 260.00 71.81 

 

The analyses of the objective achievement in the optimal Pareto-Fronts show that, 

for all algorithms, solutions are discovered that feature a small Range of Types in 

Subsystems measurement. All MOEA implementations are able to find solutions in all 

systems that feature hardly any difference in subsystem size. Stakeholders are probably 

interested in a relatively homogenous distribution of types in subsystems. However, an 
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absolute equal size of subsystems is certainly not required. Hence, a review of the 

distribution in this objective is valuable to allow statements to be made on the number 

of solutions that are discovered within the promising area of this dimension. Figure 47 

presents the histogram of the Range of Types in Subsystems objective. 

 

Figure 47: Histogram Range of Types in Subsystems objective 

The discovered solutions of all MOEA implementations feature a wide range of 

Range of Types in Subsystems measures: solutions with balanced and unbalanced 

distributions of types in subsystems are discovered by all MOEA implementations. 

Recall that the Range of Types in Subsystems metric is used to counteract the risk of 

MOEA implementations organising low-level artefacts into just one subsystem to 

achieve low numbers of cycles and architecture violations. Hence, the Range of Types in 

Subsystems metric does not express a software engineering concept as such. However, 

the wide spread of the objective measures shows that quite a few solutions of the 

optimal Pareto-Fronts are not useful for further consideration. 

OMOPSO featured the best absolute achievement in the previously discussed 

objectives. This achievement was particularly relevant as only OMOPSO has been able to 
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drive the search into highly desired objective space within the more complex software 

systems. However, the histograms for the Range of Types objective depict that all MOEA 

implementations are able to discover a number of solutions with a good balanced 

distribution of types in the subsystem characteristics. Additionally, it can be stated that 

the MOEAD and GDE3 implementation are even able to find a higher number of 

promising solutions than OMOPSO in this objective.  

Another interesting aspect of these particular results is the competiveness of the 

Random search implementation in terms of absolute achievement as well as the 

number of promising solutions in this objective. A possible explanation is that the 

decision variables to control the classification feature are not independent of one other 

and no causality in the organisation of low-level artefacts in subsystems is evident. 

Consequently, the evolutionary concepts of the advanced MOEA implementations 

cannot be leveraged in this objective. 

The sixth objective considered in this discussion is the Relational Cohesion in 

Subsystems metric. The Relational Cohesion metric is the only objective that features 

the maximisation of a metric as an optimisation target. Table 17 illustrates the 

descriptive statistics and Figure 48 presents the histograms of the Relational Cohesion in 

Subsystems objective. 
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Table 17: Descriptive Statistics - Relational Cohesion in Subsystems 

System Algorithm Min Max Median 

apache ant AbYSS 0.72 1.30 0.91 

 GDE3 0.70 1.90 0.92 

 MOEAD 0.80 1.40 0.94 

 NSGAII 0.74 2.00 0.95 

 OMOPSO 0.74 2.00 1.06 

 Random 0.78 1.10 0.89 

apache log4j AbYSS 0.00 0.78 0.46 

 GDE3 0.00 0.79 0.45 

 MOEAD 0.00 0.77 0.44 

 NSGAII 0.00 0.78 0.44 

 OMOPSO 0.00 0.78 0.45 

 Random 0.00 0.66 0.49 

apache math AbYSS 0.00 1.70 1.12 

 GDE3 0.87 2.10 1.11 

 MOEAD 0.93 1.70 1.17 

 NSGAII 0.86 2.20 1.16 

 OMOPSO 0.00 2.30 1.41 

 Random 0.00 1.30 1.05 

lucene AbYSS 0.00 1.50 0.83 

 GDE3 0.56 1.20 0.78 

 MOEAD 0.56 1.70 0.90 

 NSGAII 0.56 1.30 0.82 

 OMOPSO 0.00 1.50 0.88 

 Random 0.56 1.30 0.82 

rearchitecturer AbYSS 0.00 1.30 0.68 

 GDE3 0.00 1.40 0.66 

 MOEAD 0.48 1.50 0.75 

 NSGAII 0.42 1.40 0.69 

 OMOPSO 0.00 1.60 0.70 

 Random 0.00 0.99 0.62 
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Figure 48: Histogram Relational Cohesion in Subsystems objective 

The descriptive statistics depict that OMOPSO outperforms the other MOEA 

implementations for most systems in terms of the absolute achievement in the 

Relational Cohesion in Subsystems metric. The only exception is MOEAD with slightly 

better achievement for the lucene system. However, the histogram shows that only very 

few solutions with highly promising cohesion characteristics are discovered. 

The efferent and afferent coupling metrics feature relatively similar performance 

characteristics and are presented conjointly. Table 18 and Table 19 present the 

descriptive statistics of the two objectives. 
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Table 18: Descriptive Statistics - Efferent Coupling of Subsystems 

System Algorithm Min Max Median 

apache ant AbYSS 46.00 250.00 152.33 

 GDE3 30.00 240.00 137.58 

 MOEAD 31.00 230.00 132.56 

 NSGAII 47.00 250.00 132.98 

 OMOPSO 0.33 240.00 123.95 

 Random 160.00 240.00 205.16 

apache log4j AbYSS 0.00 65.00 38.50 

 GDE3 0.00 65.00 36.79 

 MOEAD 0.00 60.00 35.20 

 NSGAII 0.00 65.00 35.47 

 OMOPSO 0.00 65.00 36.36 

 Random 0.00 65.00 46.82 

apache math AbYSS 0.00 230.00 150.91 

 GDE3 35.00 240.00 137.92 

 MOEAD 55.00 230.00 152.64 

 NSGAII 39.00 240.00 132.86 

 OMOPSO 0.00 230.00 108.98 

 Random 0.00 220.00 194.67 

lucene AbYSS 0.67 230.00 126.48 

 GDE3 100.00 220.00 171.37 

 MOEAD 7.50 220.00 124.53 

 NSGAII 65.00 220.00 150.71 

 OMOPSO 0.25 220.00 119.45 

 Random 75.00 220.00 153.33 

rearchitecturer AbYSS 0.00 100.00 65.47 

 GDE3 0.00 100.00 58.28 

 MOEAD 20.00 90.00 60.82 

 NSGAII 1.30 100.00 57.10 

 OMOPSO 0.00 95.00 54.19 

 Random 0.00 95.00 76.68 
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Table 19: Descriptive Statistics - Afferent Coupling of Subsystems 

System Algorithm Min Max Median 

apache ant AbYSS 50.00 400.00 223.33 

 GDE3 29.00 390.00 185.74 

 MOEAD 28.00 370.00 161.83 

 NSGAII 48.00 380.00 180.13 

 OMOPSO 0.33 380.00 178.12 

 Random 250.00 380.00 311.66 

apache log4j AbYSS 0.00 55.00 7.22 

 GDE3 0.00 50.00 7.42 

 MOEAD 0.00 27.00 5.18 

 NSGAII 0.00 50.00 7.45 

 OMOPSO 0.00 75.00 8.77 

 Random 0.00 37.00 6.00 

apache math AbYSS 0.00 380.00 235.93 

 GDE3 31.00 370.00 206.81 

 MOEAD 55.00 380.00 200.84 

 NSGAII 34.00 380.00 196.04 

 OMOPSO 0.00 370.00 166.51 

 Random 0.00 370.00 316.48 

lucene AbYSS 0.00 320.00 170.74 

 GDE3 130.00 310.00 239.18 

 MOEAD 17.00 310.00 151.40 

 NSGAII 90.00 310.00 209.65 

 OMOPSO 0.00 320.00 164.57 

 Random 110.00 310.00 217.13 

rearchitecturer AbYSS 0.00 130.00 81.05 

 GDE3 0.00 130.00 69.00 

 MOEAD 17.00 120.00 66.01 

 NSGAII 2.00 130.00 67.65 

 OMOPSO 0.00 120.00 66.49 

 Random 0.00 120.00 98.58 

 

The coupling metrics depict a familiar performance profile in which all of the MOEA 

implementations are able to discover promising solutions based on the assessment of 

the efferent and afferent coupling achievements. However, the maximum coupling 

values indicate that highly infeasible solutions are also included in the optimal Pareto-
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Fronts. Figure 49 and Figure 50 depict the distributions of the efferent and afferent 

coupling metrics in the corresponding histograms. 

 

Figure 49: Histogram Efferent Coupling of Subsystems objective 

 

Figure 50: Histogram Afferent Coupling of Subsystems objective 

The histograms of both coupling metrics underpin that the advanced MOEA 

implementations outperform Random in both objectives in terms of the depth of the 
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dive into the promising objective space and the absolute numbers of solutions that 

feature promising coupling attributes. 

The presented tables and histograms show that all of the MOEA implementations 

are able to find acceptable values in the eight objective dimensions. In general, the 

more advanced MOEA implementations feature better performance than the Random 

search implementation. Additionally, the data suggests that OMOPSO outperforms the 

other MOEA implementations in the design metrics that are particularly relevant for the 

construction of high-level architecture designs. This is not only underpinned by the 

absolute objective achievement but also by the number of solutions within promising 

objective space over most of the eight objectives. Additionally, the more advanced 

MOEA implementations feature higher numbers of discovered solutions on the optimal 

Pareto-Fronts where Random features the lowest numbers on the optimal Pareto-

Fronts. Hence, the advanced MOEA implementations offer stakeholders a higher 

number of competitive solutions. 

It has been discussed in Chapter 4 that stakeholders desire solutions that feature 

good advancement in the individual objectives as well as good balance between the 

individual objectives. However, it has been found, based on the presented histograms, 

that the analysed optimal Pareto-Fronts include solutions in almost all objective 

dimensions that feature unacceptable metric measurements. Hence, the presented data 

supports the application of constraint techniques over solution sets to reduce the 

solution sets to a manageable number of highly promising solutions (compare: section 

4.2.2). 

The presentation of the histograms and descriptive statistics in this section supports 

the assessment of the performance and distribution characteristics of the MOEA 

implementations in the individual objectives. The implemented evaluation framework 

supports the calculation of statistical significance tests and effect size measures for each 

objective based on the generational and optimal Pareto-Front solution set and the 
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descriptive statistics of these solution sets. However, the analysis is very complex as the 

measures would have to be reported for each objective individually. Additionally, 

differences in performance would occur in the individual objectives and forming a 

general conclusion on the performance of the individual configuration slices is very 

difficult based on the statistical analysis of the individual objectives. Hence, the analysis 

of the achievement in the individual objective dimensions is not suitable to determine 

the overall performance of the MOEA implementations, as only one objective at a time 

is being been reviewed. A more appropriate method to determine the overall 

performance is the consideration of multi-objective performance metrics. The next 

section presents the results of an analysis based on the application of such multi-

objective performance metrics. 

 Analysis of MOEA performance in the Optimal Pareto-Fronts 

As discussed in section 5.4 Pareto-Front performance metrics provide a useful 

means by which to consolidate the performance of multi-objective metrics into a single 

comparable value. Multi-objective performance metrics such as Hypervolume and 

Contribution have been presented in earlier sections of the thesis to reveal performance 

differences in multiple variation operator tunings (see: section 5.5) and architecture 

reconstruction scenarios (see: section 6.2). As presented in section chapter 5, the 

consideration of multi-objective performance metrics in combination with measures of 

statistical difference testing are a powerful and straightforward approach to determine 

and statistically justify the performance differences of multiple search configurations. 

Hence, the suggested approach is also applied to determine the absolute difference of 

performance of the employed MOEA implementations. Figure 51 depicts the 

development of the six captured performance metrics based on the discussed dataset 

and the slicing into the employed MOEA implementations. 
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Figure 51: Performance Indicators - Slicing based on MOEA implementation 

All but the Spacing performance metric confirm that all MOEA implementations 

feature better performance than a Random search. As discussed in section 3.3.4, it 

cannot be determined in this research if a wider Spacing is a desired Pareto-Front 

attribute in the targeted problem domain. Additionally, the mean development of 

performance metrics shows that OMOPSO outperforms all other MOEA 

implementations in the presented performance indicators. In the performance metrics 

that measure relative convergence (Additive Epsilon Indicator, Generational Distance, 
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Hypervolume and Inverted Generational Distance) an almost full convergence can be 

observed between iteration 2,000-3,000. 

No major differences in performance development can be observed that depart 

from the final performance outcome of the MOEA implementation slices. Hence, the 

remaining analysis focuses only on the discussion of the performance snapshot at 

iteration 50,000. Table 20 depicts the mean performance indicators and the population 

size of the performance snapshot at iteration 50,000. 

Table 20: Mean Performance of MOEA implementations (Iteration 50,000) 

Performance Indicator AbYSS GDE3 MOEAD NSGAII OMOPSO Random 

Spacing 0.0131 0.0152 0.0150 0.0120 0.0098 0.0257 

Inverted Generational Distance 0.2621 0.3047 0.3164 0.3075 0.1189 0.4374 

Hypervolume 0.0912 0.0666 0.0765 0.0577 0.4162 0.0047 

Additive Epsilon Indicator 0.7453 0.8581 0.8690 0.8992 0.5526 0.9538 

Contribution 0.0051 0.0039 0.0115 0.0033 0.0910 0.0007 

Generation Distance 0.0021 0.0012 0.0016 0.0013 0.0006 0.0033 

N 180 180 180 180 180 180 

 

The Kruskal-Wallis test has been applied due to the departure from normality in all 

populations in the performance snapshot at iteration 50,000. The pair-wise significance 

comparisons of the MOEA implementations with Random search, and of OMOPSO with 

any other MOEA implementation, confirmed a statistically significant difference in all 

performance metrics. The pair-wise comparison of NSGAII, GDE3, AbYSS and MOEAD in 

the Additive Epsilon Indicator, Contribution, Generational Distance, Hypervolume, and 

Inverted Generational Distance performance indicator measures do not feature any 

noteworthy statistically significant outcomes. (Note that presentation of the p-values 

has limited value in terms of determining the actual performance difference of the 

individual MOEA implementations. Hence, the reporting of the p-values is omitted here. 
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Nevertheless, the corresponding datasets can be downloaded from the project 

webpage42.) 

It is anticipated that the reporting of the effect size measures across the individual 

performance metrics offers more value to those assessing the performance differences 

of the individual MOEA implementations. The evaluation framework calculates the 

effect size for any combination of MOEA implementations. However, the presentation 

of these results would be likely overwhelming. Instead, the presentation of the 

comparison of the MOEA implementations with a Random search is useful and enables 

an effective performance comparison of the employed MOEA implementations. 

Correspondingly, Table 21 presented the effect size measures of the calculated multi-

objective performance metric indicators. 

Table 21: Cohens'd Effect-Size of Performance Indicators (Iteration 50,000) 

 

AbYSS 
vs. 

Random 
GDE3vs. 
Random 

MOEAD vs. 
Random 

NSGAII vs. 
Random 

OMOPSO vs. 
Random 

AEI 3.50 1.44 1.37 1.06 3.96 

Contribution 0.99 1.09 1.18 0.98 2.68 

GD 0.21 1.06 0.78 1.00 1.48 

Hypervolume 1.74 1.52 1.27 1.40 3.13 

IGD 1.58 1.28 1.05 1.22 3.43 

Spacing 0.32 0.26 0.27 0.36 0.42 

 

The effect size table confirms that the advanced MOEA implementations feature a 

large effect size in relation to the Random search implementation in the three most 

established performance indicator measures (Additive Epsilon Indicator, Hypervolume, 

Inverted Generational Distance). Additionally, OMOPSO features the overall best 

performance against Random in these performance measures with an effect size value 

of more than 3.0. AbYSS, GDE3, MOEAD and NSGAII feature relatively similar 

                                                      

42 http://code.google.com/p/rearchitecturer/wiki/evaluationResults 
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performance in all of the performance indicators, with slightly better performance of 

AbYSS in the Additive Epsilon Indicator, Hypervolume, and Inverted Generational 

Distance performance metric. Exception are the observations of the Generational 

Distance and Contribution metric in which AbYSS has a relatively low performance in 

comparison with its immediate competitors GDE3, MOEAD and NSGAII. Additionally, 

OMOPSO features only a Generational Distance effect size of 1.48 and a slightly lower 

contribution measure of 2.68. However, these observations align with the general 

criticism of the Generational Distance and Contribution performance metrics (compare: 

section 3.3.4). 

 Summary 

This chapter presented the results of the application of the Rearchitecturer in an 

architecture reconstruction scenario with eight objectives. The architecture 

configuration of five open-source software systems was transformed towards three 

different target architecture models. It was found that the employment of different 

variation operator settings has only a marginal impact on the search performance. 

Additionally, the employment of different target architecture models showed that only 

the upstream mounting of packages into high-level artefacts impacts the search 

negatively. However, only a small effect size could be found. Hence, the evaluation 

confirmed that the developed approach is applicable across different architecture 

reconstruction scenarios and features relatively similar performance results in different 

architecture reconstruction scenarios. 

Furthermore, the generational population advancement of the employed MOEA 

implementations in the individual objectives was examined. It was shown that the 

approach is able to converge the employed high-level architecture metrics towards the 

desired optimisation target. Additionally, distribution characteristics of the achieved 

optimal Pareto-Front were discussed. It was found that the system size impacts the 

search performance. Furthermore, the performance of the individual MOEA 

implementation was analysed based on the review of the achievement in multi-
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objective performance indicator metrics. It was shown that the advanced MOEA 

implementations feature better performance than the Random search implementation. 

Furthermore, in particular the OMOPSO implementation that employs a relaxed form of 

Pareto-Dominance featured the overall best performance in the evaluated application 

scenarios. Additionally, OMOPSO was the only MOEA implementation that was able to 

achieve acceptable objective values in the architecture metrics in the more complex 

software systems. 
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7 Conclusion 

This chapter concludes the research presented in this thesis. Firstly, it discusses the 

contributions made in the area of search based software architecture reconstruction. 

Secondly, limitations of this research are summarised and finally areas of further 

research are discussed. 

 Discussion of Contributions 

The main objective of this research has been to evaluate the feasibility of multi-

objective optimisation strategies when applied in the application domain of architecture 

reconstruction. This objective has been successfully achieved by the implementation of 

the Rearchitecturer tool that has been used to evaluate different optimisation strategies 

and algorithms applied to architecture reconstruction. This has provided insights into 

the process as well as strong contributions to the body of knowledge in this domain. The 

following sections discuss the main contributions and findings of this research.  

7.1.1 A Multi-Objective Architecture Reconstruction Framework 

The review of related literature reported primarily in Chapter 2 revealed that no 

research has been conducted that assesses the performance of different MOEA 

implementations in the application domain of software modularisation, and the specific 

applicability of high-level architecture metrics to reconstruct architecture designs. This 

research addressed these gaps by contributing a novel architecture reconstruction 

framework that enables the flexible employment of MOEA configurations and high-level 

architecture design metrics. The framework is manifested in a substantial open-source 

software system, called Rearchitecturer, that classifies low-level software artefacts into 

conceptual high-level target architecture models.  

Previous research in the domain of search based software modularisation, as 

exemplified in Mitchell (2002), Seng et al. (2005), Abdeen et al. (2009) and Praditwong 

et al. (2011), focuses in particular on the grouping of low-level artefacts (classes/files) 

into the next higher abstraction level (packages/folders). The new framework 
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implemented in this research also enables the operation of classifications on a higher 

abstraction level (classification of packages into subsystems). The framework thus 

allows the classification of compilation units into packages and/or the classification of 

packages into the subsystems of a conceptual architecture model. Furthermore, the 

approach enables the redevelopment of the entities and dependencies of conceptual 

architecture artefacts (packages, subsystems and dependencies between subsystems). 

Constraints can be defined to limit the number of conceptual artefacts within the 

architecture e.g. maximum number of packages and/or maximum number of 

subsystems in the architecture model. 

Within previous research the artefacts of the abstraction level are developed during 

the modularisation process and the approaches do not allow inducing high level artefact 

configurations. The principle of software architecture design that the conceptual 

architecture model describes the purpose of the software system instead of being a 

reflexion of the implementation of the design, as emphasized in Fowler (2002) and 

Martin (2011), is not supported by such approaches. The present research therefore 

contributes an approach that separates the employment of the classification of low-

level artefacts and the development of the high-level structure. The conceptual 

architecture model can be induced into the classification process. As such, this 

conceptual architecture model can operate as a blueprint for the aspired design of the 

system.  

The design of high-level architectures depends on multiple factors, such as the 

desired modularity, the module dependencies, the application domain and 

implemented high-level architecture frameworks. The developed architecture 

reconstruction framework gives stakeholders flexible control over the configuration of 

the employed objectives to express such different requirements. A variety of 

established high-level architecture design metrics are implemented in the 

Rearchitecturer prototype and can be employed as search objectives. This flexible 
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control of the objective configuration is a distinct feature in comparison to other SBSE 

approaches in which the objective configuration is pre-defined. 

In the presented approach, optimisation configurations can be created that feature 

many objectives. The application of optimisation approaches with a high number of 

objectives is complex. Pareto-Fronts with more than three dimensions cannot be 

effectively visualised and the application of multi-objective problems that feature more 

than three objectives usually results in optimal Pareto-Fronts with many solutions (He & 

Yen, 2014). The high number of solutions in such optimal Pareto-Fronts quickly exceeds 

the abilities of stakeholders to manually review the individual solutions. It has been 

discussed that stakeholders most likely desire only one optimal solution that can be 

applied in the architecture management process. To this date no approach had been 

suggested that supports stakeholders in identifying the most promising solution of the 

optimal Pareto-Front. This research contributes a novel candidate approach that 

supports stakeholders to iteratively refine the space of acceptable solution attributes 

across all collected architectural metrics to efficiently reduce the number of solutions in 

the reviewed solution set. Hence, architectural metrics can be constrained even if they 

were not utilised as search objectives.  The identified highly promising solutions can be 

graphically visualised to support stakeholders in identifying a final solution that can be 

employed in the architecture management process.  

In conclusion, the contribution of the implemented dynamic problem representation 

in the developed framework enables the reconstruction of software architecture 

configurations on different abstraction levels and considers aspects of the desired 

conceptual architecture model. This dynamic problem representation in combination 

with the implemented flexible objective configuration approach contribute a framework 

that can help the user to gain valuable insight into the problem domain of architecture 

reconstruction and software modularisation. Additionally, the extensible integration of a 

range of established optimisation libraries now enables the application and 
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performance evaluation of a previously inaccessible diversity of MOEA implementations 

and variation operator tunings in architecture reconstruction application contexts. 

7.1.2 A Multi-Objective Evaluation Framework 

The design of the Rearchitecturer prototype enables the employment of a variety of 

MOEA implementations with different objective configuration, architecture 

reconstruction and variation operator settings. A representative evaluation of the 

objectives of this research demands the employment of multiple MOEA 

implementations in different software systems, architecture configurations and MOEA 

tunings. Due to the probability-based characteristics of the applied MOEA 

implementations these different evaluation scenarios create optimisation configurations 

that need to be executed multiple times. Descriptive and inductive statistical measures 

need to be calculated to identify different effects between optimisation configurations. 

The review of applicable evaluation frameworks in the area of multi-objective 

evaluation approaches revealed that no generally established process exists to 

empirically evaluate and compare the results of multi-objective optimisation 

approaches. As there is no such process, researchers often apply different approaches 

or use different measures to evaluate performance. This makes it challenging for 

researchers to gain useful and conclusive insight from existing results. 

This research therefore contributes a novel multi-objective evaluation framework 

that analyses optimisation results independently of the problem-formulation. The 

framework enables the slicing and agglomeration of optimisation result sets based on 

user definition of configuration parameters to evaluate the impact of configuration 

settings on the search performance. The implemented evaluation framework enables 

the user to analyse achievement in the objective space for the set of visited solutions 

and the set of optimal Pareto-Front solutions. Histograms of objective achievement can 

be created to enable the review of the distribution characteristics of such solutions sets 

in the objective space. Additionally, the evaluation framework integrates a set of six 

multi-objective performance metrics to support user assessment of the composition and 
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convergence of optimal Pareto-Fronts. Descriptive statistics are calculated for the 

objective achievement as well as multi-objective Pareto-Front metrics based on the 

configured data-set slicing. Methods of statistical difference testing are employed 

corresponding to the normality characteristics of the data slices. Additionally, effect size 

measures are calculated to determine an absolute measure of difference between the 

individual data slices. In conclusion, the novel evaluation framework contributes a 

structured means to evaluate the performance of multi-objective approaches 

independently of the actual problem formulation. The configurable agglomeration and 

slicing approach of optimisation datasets based on configuration attributes contributes 

a powerful method to evaluate the impact of specific configuration parameter tunings 

on the search performance in more general optimisation configuration contexts. In 

addition, it has the potential to be applied across a wide range of different application 

domains to ensure consistency and comparability of results. 

7.1.3 Experimental Evaluation of Architecture Reconstruction Approach 

The performance of six MOEA implementations (MOEAD, GDE3, NSGAII, AbYSS, 

OMOPSO and RandomSearch) has been evaluated in the application domain of 

architecture reconstruction. The applied MOEA implementations have been selected 

based on their different search strategies and wide application in other SBSE research 

(NSGAII - Genetic Algorithm, AbYSS – Scatter Search, GDE3 - Differential Evolution). 

Additionally, MOEA implementations are employed that feature search strategies that 

have been found to overcome the challenges in complex optimisation configurations 

with many objectives. These search strategies are a decomposition-based MOEA 

implementation (MOEAD) and a relaxed form of Pareto-Dominance (ε-dominance) 

incorporated in a particle swarm implementation (OMOPSO). Random search has been 

used as a benchmark to determine if the employed advanced MOEA implementations 

feature better performance than an approach that relies on a random creation of 

solutions. 
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A reconstruction scenario is employed that assigns compilation units into packages 

and packages into the high-level subsystems of a pre-defined target architecture model. 

Three different target architecture models are employed to evaluate the performance 

of the MOEA implementation in reconstruction scenarios that feature different 

architectural requirements. The six MOEAs are employed to transform the architectural 

composition of five open-source software systems into the three target architecture 

model designs. The five open-source software systems vary in size (compare: section 

3.3.3) to provide insights into the performance of the MOEA implementations in 

systems that feature different levels of complexity. 

In this experimental evaluation eight high-level software design metrics are 

employed as search objectives. This objective configuration features cohesion and 

coupling metrics similar to configurations that have been employed in related research, 

but also features specific high-level architecture design metrics such as the Number of 

Cycles in Packages, Number of Forbidden Type Dependencies, NCCD and Distance from 

Main Sequence that have not been previously applied in a multi-objective 

modularisation approach. The analysis showed that the application of such high-level 

architecture metrics is feasible and that the MOEA implementations are capable of 

driving the search towards solutions that feature highly promising solution attributes 

(compare: section 6.3). Nevertheless, the evaluation also showed that some MOEA 

implementations (AbYSS, GDE3, NSGAII, MOEAD) could only achieve highly promising 

solutions for the less complex software systems. An exception has been the OMOPSO 

implementation that also discovered some highly promising solution objective measures 

in all of the transformed software systems. It has also been observed that the other 

MOEA implementations (AbYSS, GDE3, MOEAD, NSGAII) are able to discover a higher 

number of solutions than OMOPSO in the relatively promising objective space. This 

observation has been made in the Cohesion in Subsystems, Distance from Main 

Sequence, Number of Cycles and Range of Types in Subsystems objectives. 
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Furthermore, the performance of the optimal Pareto-Front achievement of the 

MOEA implementations has been reviewed based on the application of multi-objective 

performance indicators (compare Figure 51). It has been found that all advanced MOEA 

implementations feature significantly better performance than Random for the Additive 

Epsilon Indicator, Contribution, Generational Distance, Hypervolume and Inverted 

Generational Distance performance indicators. These performance indicators also 

confirm the superior performance of the OMOPSO implementation. These performance 

indicators show relatively similar performance results for the remaining MOEA 

implementations. Based on the overall analysis of the performance indicator results, 

OMOPSO features the overall best Pareto-Front and objective achievement in the 

scenarios considered here. 

It is likely, however, that the prominent performance of the OMOPSO 

implementation is mainly based upon the application of the relaxed form of Pareto-

Dominance. Research that analysed the performance of standard MOPSO and NSGAII 

implementations found relatively poor performance of these MOEA implementations in 

objective formulations with many objectives (Köppen & Yoshida, 2007; Mostaghim & 

Schmeck, 2008). The strict concept of Pareto-Dominance is not fully suited to the 

application of many objectives. Pareto-Dominance requires a better objective 

performance in at least one objective and equal performance in the remaining vectors 

to include a solution in the Pareto-Front. This is more and more unlikely if the number of 

objectives increases. Hence, the MOPSO implementation may get trapped by the local 

best selection of the particles itself without being able to find new dominating positions. 

The application of ε-dominance as a relaxed form of Pareto-Dominance as suggested in 

Sierra and Coello (2005) proved to be a prominent strategy to overcome the challenges 

of many objectives in the application domain of software modularisation. 

Another strategy that is potentially promising to overcome the challenges of 

configurations with many objectives is the application of decomposition based MOEA 

implementations (He & Yen, 2014). However, the performance indicator measures of 
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the applied MOEAD implementation did not provide any particular evidence of a better 

performance of the MOEAD implementation in comparison to the AbYSS, NSGAII and 

GDE3 implementations. 

Furthermore, the impact of different variation operator settings and architecture 

reconstruction scenarios on the search performance has been evaluated. The evaluation 

of the impact of different variation operator tunings revealed significant differences 

between tunings. However, the effect size measures showed no mentionable 

performance effects between the individual tunings. Hence, the tuning of the variation 

operator parameters has only a marginal impact on the performance of the search in 

the developed problem formulation (compare: section 6.1). The application of different 

target architecture models revealed the existence of a slight effect on the search 

performance based on the complexity on the applied target architecture model 

(compare: section 6.2). 

In conclusion, the experimental results discussed in this section contributed 

empirical evidence supporting the applicability and performance of evolutionary 

algorithms, beyond the application of basic GA implementations, in the application 

domain of software architecture reconstruction. Furthermore, the application of the 

developed multi-objective evaluation framework contributes evidence that a tool-

supported process for the evaluation of the performance of optimisation configuration 

settings is feasible. 

 Limitations 

This research has been a significant but still initial effort to assess the applicability of 

multi-objective search driven techniques to transform the architectural configuration of 

software systems towards desired architectural designs. The initial and explorative 

character of this research implies some limitations that are discussed in this section. 
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The present research focuses on the reconstruction of architecture models of 

software systems by applying software quality metrics as fitness functions. In theory an 

architecture model should describe what a system is supposed to do and not be a 

representation of the system’s implementation. This work partially addressed this by 

allowing the inclusion of user-defined layering and subsystems paired with dependency 

configurations. These configurations can and should represent technical and/or domain 

aspects of the system. However, the classification into these modules is based on the 

fitness of software architecture metrics. Hence, it is acknowledged that a 

modularisation approach that is driven by optimising architecture design metrics, as 

suggested in this research, is not capable of extracting domain aspects of the source 

base and assigning these into the corresponding artefacts of the conceptual architecture 

model. Nevertheless, the assumption within this research is that such modularisation 

approaches are capable of finding partitionings that fit the targeted conceptual 

architecture model from a software design perspective, and that these configurations 

can operate as a feasible basis for further development and architecture compliance 

checking. The complementation with approaches to identify and classify domain and/or 

technical aspects remains a challenge to create applicable architecture reconstruction 

approaches. 

The presented approach is able to assign compilation units to packages and to assign 

existing or new packages to high-level artefacts. The assignment of compilation units 

into packages does not change the design of the system on the micro-design level. Low-

level refactoring such as create compilation unit, move member and split method would 

be required to change the design on the micro-level to change the dependency 

structure of the physical architecture on the compilation unit level. Initial experiments 

with low-level refactorings have been conducted in this research. However, insufficient 

performance results have been achieved which prevented a rigorous experimental 

analysis within a multi-objective optimisation approach. Nevertheless, the problem that 
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such refactorings would be driven by software engineering metrics and would not 

include domain aspects would remain for the application of low-level refactorings.  

Furthermore, the designed approach supports the employment of a wide set of 

different optimisation goals, conceptual architecture patterns, MOEA implementations 

and tunings. In this research only one objective setting, a set of six MOEA 

implementations, a set of three architecture patterns, one mutation operator and 

crossover operator have been evaluated. This is certainly not a complete exploration of 

the available configuration aspects. Nevertheless, it has been attempted to select these 

elements in a rigorous way based on experimental and literature review findings. 

However, there is a chance that other optimisation configurations exist that could 

contribute other valuable insights that were not gained in the employed evaluation. 

As a proof of concept, the architecture configurations of five open-source software 

systems have been transformed in the evaluation of this research. The selected systems 

feature a different number of packages, number of compilation units and number of 

dependencies to accommodate the conduct of a representative evaluation.  The most 

recent source code releases, at the time of the conduct of the evaluation, have been 

used to enable an evaluation that is as current as possible. Nevertheless, the reliance on 

such a set of software systems implies that only reliable statements on the performance 

of the approach in other systems can be made if these systems were to feature similar 

structural attributes as the original evaluation systems. 

 Future Work 

This section discusses the areas of potential further research that have emerged 

during this research project. 

This research relied on the validation of the proposed approach based on 

quantitative measures of quality and performance. More broadly, the development of 

the architecture reconstruction prototype has been driven by its potential application in 
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a software development context. The consideration of relevant context workflows is 

based on the experience of the researcher in the area of software architecture 

management and monitoring. However, these workflows are unverified in terms of the 

potential integration of a multi-objective architecture reconstruction approach in the 

software development process. Their application in real software engineering contexts 

with involvement of development stakeholders contributing explicit system knowledge 

would be useful to assess the genuine applicability of the developed approach.  

A potential problem of such an end-user evaluation is that the current design of the 

tool exposes the end-user heavily to the concepts and tuning of MOEAs. Hence, at this 

stage of the tool’s development a good understanding of MOEAs and their tuning is 

essential. Further development based on the insights gained in this research could hide 

the MOEA tuning from the end-user and recommend settings that have delivered good 

convergence in previous optimisations. Nevertheless, the general concepts of MOEAs 

(such as optimal Pareto-Fronts) need to be understood for the effective use of the tool.  

A potential scenario for the end-user evaluation would be the application of software 

architecture engineers (e.g. refactoring consultants) who are educated in the MOEA 

concepts. These software architecture engineers could then advise development 

stakeholders on potential refactoring strategies based on the insights gained in the 

application of the tool. 

In this research the employed objective setting features a total of eight objectives. 

One of the reasons for the employment of such a high number of objectives has been to 

demonstrate the feasibility of the approach to deal with quite complex objective 

configurations. Nevertheless, the application of so many objectives increases the 

complexity of the search and renders some MOEA algorithms as infeasible. It is worth 

investigating if these MOEA implementations deliver better achievement outcomes in 

objective configurations with fewer objectives. 
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Additionally, it has been discussed that other techniques exist to enable MOEA 

implementations to overcome the challenges of complex objective configurations (grid-

based and performance-indicator based MOEA implementations). However, at this 

stage the Rearchitecturer component does not support MOEA implementations that 

utilise such strategies.  

Furthermore, the results presented in the evaluation of this thesis have often been 

consolidated to enable statement to be made regarding the general feasibility of the 

developed approach. Such an analysis carries the risk that interesting insights are 

obfuscated by the reliance on average (or similar) values. A more detailed analysis might 

provide valuable insights into certain specific performance differences (e.g. analysis of 

the impact of a system’s size on the search performance, or analysis of the impact of 

different variation operator tunings in different MOEA implementations). 

Finally, the implemented evaluation framework should also be useful in future 

research that addresses such ongoing questions in the problem area of MOEA-driven 

architecture reconstruction (e.g. application of additional MOEA implementations, 

different objective configurations, MOEA tunings and reconstruction configurations). 

 Conclusion 

The main objective of this work has been to evaluate the feasibility of multi-

objective optimisation strategies when applied in the area of architecture 

reconstruction, to identify feasible architecture classifications that can operate as a 

starting configuration for the modularisation of software systems and the containment 

of software erosion.  

It has been shown in this work that it is indeed feasible to find software architecture 

configurations by applying multi-objective optimisation techniques. It has been 

demonstrated in the evaluation that the search converges the architecture 

configurations towards desired software architecture design metrics. Solutions that 
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feature objective measures, that would be acceptable in practise, in all objectives of the 

applied objective configuration, could be identified within the smaller software systems 

that have been transformed in this study.  

The inclusion of conceptual target architecture models in combination with the 

number of Forbidden Type Dependency, Number of Cycle and NCCD metrics enables the 

identification of modular software architecture configurations that align with the 

desired high-level design. Furthermore, the identified software architecture 

configurations can be utilised in the future software architecture management and 

monitoring process to identify the occurrence of new violations that might occur during 

ongoing development of the system. Hence, the created architecture configuration can 

be a first stepping stone to contain the further erosion of a software system. 
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Appendix A: Computational Resources 

The experiments (search and evaluation analysis) are executed on two virtual machines 

that have been hosted on a Virtual Machine (VM) farm. The two VM’s feature the 

following configuration:  

• 24 (6x4) virtual cores (Opteron – 6348) 

• 256 GB memory 

• Ubuntu 12.04 Operating System 
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Appendix B: Architecture Configuration Instance 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<!DOCTYPE project SYSTEM "Configuration.dtd">  

<project  

  name="apache log4j"  

 

 <!-- DIRECTORIES --> 

  <input dir="../target/classes/"/> 

 

 <!-- SKIP --> 

 <skip prefix="java.lang.[a-zA-Z]*"/>  

 <skip prefix="java.io.*"/>  

 <skip prefix="java.text.*"/> 

 <skip prefix="java.util.*"/> 

 

 <!-- LOGICAL ARCHITECTURE --> 

 <layer name="bottom"> 

  <description>bottom Layer</description> 

     <subsystem name="application"> 

   <description></description> 

  </subsystem> 

 </layer> 

 <layer name="mid"> 

  <description>Service Layer</description> 

  <subsystem name="application"> 

   <description></description> 

   <depends-upon name="bottom::application"/> 

        </subsystem> 

 </layer> 

     <layer name="mid2"> 

  <description>Service Layer</description> 

  <subsystem name="application"> 

   <description></description> 

   <depends-upon name="bottom::application"/> 

            <depends-upon name="mid::application"/> 

        </subsystem> 

 </layer> 

    <layer name="top"> 

  <description>top layer</description> 

         <subsystem name="application"> 

   <description></description> 

            <depends-upon name="bottom::application"/> 

            <depends-upon name="mid::application"/> 

              <depends-upon name="mid2::application"/> 

  </subsystem> 

 </layer> 

</project> 

  



231 
 
 

Appendix C: Instance of ExperimentConfiguration  

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<experimentConfiguration> 

    <algorithmConfigurationContainer> 

        <algorithmName>NSGAII</algorithmName> 

        <fromNumberOfIterations>50000</fromNumberOfIterations> 

        <fromPopulationSize>200</fromPopulationSize> 

        <numberOfSeeds>12</numberOfSeeds> 

        <numberOfThreads>12</numberOfThreads> 

        <variationsOperators> 

            <_variationPropertyTupel> 

                <variationPropertyTupel> 

                    <fromValue>0.5</fromValue> 

                    <name>pm.rate</name> 

                    <toValue>0.0</toValue> 

                </variationPropertyTupel> 

                <variationPropertyTupel> 

                    <fromValue>10.0</fromValue> 

                    <name>pm.distributionIndex</name> 

                    <toValue>0.0</toValue> 

                </variationPropertyTupel> 

            </_variationPropertyTupel> 

            <_isCrossover>false</_isCrossover> 

            <_name>Polynomial Mutation</_name> 

        </variationsOperators> 

        <variationsOperators> 

            <_variationPropertyTupel> 

                <variationPropertyTupel> 

                    <fromValue>1.0</fromValue> 

                    <name>sbx.rate</name> 

                    <toValue>0.0</toValue> 

                </variationPropertyTupel> 

                <variationPropertyTupel> 

                    <fromValue>10.0</fromValue> 

                    <name>sbx.distributionIndex</name> 

                    <toValue>0.0</toValue> 

                </variationPropertyTupel> 

            </_variationPropertyTupel> 

            <_isCrossover>true</_isCrossover> 

            <_name>Simulated Binary Crossover</_name> 

        </variationsOperators> 

     </algorithmConfigurationContainer> 

     <optimisationGoals> 

        <numberInResultFile>0</numberInResultFile> 

        <objective>Minimize</objective> 

        <rearchitecturerMetric> 

            <_metric> 

                   

           <_key>NumberOfCyclesInPackages_project_apache_log4j</_key> 

                <_name>Number of Cycles in Packages</_name> 

                <_entitiyType>Project</_entitiyType> 

                <_entitiyName>apache_log4j</_entitiyName> 

                <_simpleName>NumberOfCyclesInPackages</_simpleName> 

                <name>NumberOfCyclesInPackages</name> 

            </_metric> 
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        </rearchitecturerMetric> 

    </optimisationGoals>   

    <optimisationGoals> 

        <numberInResultFile>0</numberInResultFile> 

        <objective>Minimize</objective> 

        <rearchitecturerMetric> 

            <_metric> 

                <_key>NCCD_project_apache_log4j</_key> 

                <_name>NCCD</_name> 

                <_entitiyType>Project</_entitiyType> 

                <_entitiyName>apache_log4j</_entitiyName> 

                <_simpleName>NCCD</_simpleName> 

                <name>NCCD</name> 

            </_metric> 

        </rearchitecturerMetric> 

    </optimisationGoals>  

    <project>Apache Log4j</project> 

    <reconstructionConfiguration> 

        <reassignCompilationsRandomlyAtSeedStart>false 

        </reassignCompilationsRandomlyAtSeedStart> 

        <_assignCompilationsUnits>true</_assignCompilationsUnits> 

        <_assignPackages>true</_assignPackages> 

        <_maxNumberofPackages>3</_maxNumberofPackages> 

        <_maxNumberofSubsystems>3</_maxNumberofSubsystems> 

        <_redevelopPackageStructure>false 

        </_redevelopPackageStructure> 

        <_redevelopSubsystemStructure>false 

        </_redevelopSubsystemStructure> 

    </reconstructionConfiguration> 

    <reconstructionName>AssignCompilationUnitsAndPackages 

    </reconstructionName> 

    <recordAccuraccyMetrics>false</recordAccuraccyMetrics> 

    <recordDecisionVariableValues>false 

    </recordDecisionVariableValues> 

    <trackArchitectureSolutions>false</trackArchitectureSolutions> 

    <_enableLogging>false</_enableLogging> 

    <_keepPreviousDefinedPackageToSubsystemAssignments>false 

    </_keepPreviousDefinedPackageToSubsystemAssignments> 

    <_numberOfSubsystemDependencies>3 

    </_numberOfSubsystemDependencies> 

</experimentConfiguration> 
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Appendix D: Instance of MetaExperimentConfiguration 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<metaExperimentConfiguration> 

    <_algorithms>OMOPSO</_algorithms> 

    <_algorithms>AbYSS</_algorithms> 

    <_algorithms>NSGAII</_algorithms> 

    <_algorithms>MOEAD</_algorithms> 

    <_algorithms>GDE3</_algorithms> 

    <_algorithms>Random</_algorithms> 

        <_configurations> 

        <_architectureConfiguration>/path/to/apache-ant-

1.9.2/architectureConfiguration.xml 

        </_architectureConfiguration> 

        <_metaheuriticConfiguration>/path/to/apache-ant-

1.9.2/experimentConfiguration.xml 

        </_metaheuriticConfiguration> 

        </_configurations> 

           <_configurations> 

        <_architectureConfiguration>/path/to/apache-log4j-

1.2.17/architectureConfiguration.xml 

        </_architectureConfiguration> 

        <_metaheuriticConfiguration>/path/to/apache-log4j-

1.2.17/experimentConfiguration.xml 

        </_metaheuriticConfiguration> 

        </_configurations> 

    <_numberOfIterations>55000</_numberOfIterations> 

    <_numberOfParallelExecutions>20</_numberOfParallelExecutions> 

    <_numberofPackageAssignments>0</_numberofPackageAssignments> 

    <_numberofSeeds>4</_numberofSeeds> 

    <_numberofVariations>3</_numberofVariations> 

    

<_subDir>strict_keep_assignments_pm_rate_05_sbx_rate_10_pm_di_10_sbx_di

_10_8_objectives</_subDir> 

</metaExperimentConfiguration> 
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Appendix E: Batch Driven Execution of Search 

Configurations 

The main functionality to execute experiment scenarios in batch mode is 

implemented in the class batch.RearchitecturerExperimentExecuter. A reference to a 

JAXB-xml file instance of the type MetaExperimentConfiguration is required as a 

parameter to execute the creation of data sets. The MetaExperimentConfiguration 

instance defines: 

• A reference to an ExperimentConfiguration instance 

• A set of systems (references to architecture descriptions files) 

• A set of MOEA implementations 

• The number of seeds (reruns) 

• A target result directory 

• The number of cores that are utilised in the search 

The ExperimentConfiguration instance describes the configuration of the search 

such as objective configuration, variation operator settings and reconstruction methods. 

Appendix C depicts an example of an ExperimentConfiguration instance. The 

ExperimentConfiguration instance can be executed independently, for example, by 

loading it into the GUI component. However, this study is mainly interested in 

comparative evaluations of different configuration settings. Hence, the 

ExperimentConfiguration instance is executed with each system configuration and 

MOEA implementation that is defined in the MetaExperimentConfiguration instance. 

Appendix D depicts an example of a MetaExperimentConfiguration instance. Each of 

these constellations is a separate search configuration. The number of seeds defines the 

number of reruns of these search configurations.  
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The employment of a search configuration in the Rearchitecturer component results 

in a solution set. A solution set contains a header line with the names of the objectives 

and the corresponding objective values of the visited solutions of an experiment 

configuration run. Hence, a solution set represents a seed of the execution of a search 

configuration. The objective names and objective values are separated by commas (csv 

format). 

The Rearchitecturer artefact stores the solution sets (seeds) with the corresponding 

ExperimentConfiguration and ArchitectureConfiguration instance in a subdirectory of 

the target result directory. Hence, all solution sets in one of these subdirectories have 

been created based on the same search configuration. The 

batch.RearchitecturerExperimentExecuter implementation enables the execution of 

configuration runs in parallel based on the number of cores that are defined in the 

MetaExperimentConfiguration instance. The MetaExperimentConfiguration instances 

that have been employed in the data collection and the scripts to execute the individual 

evaluation scenarios of this research can be downloaded from the project webpage. 
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Appendix F: Employment of Search Configuration Analysis 

The class analysis.RearchitecturerExperimentExecuter implements the main method 

to conduct statistical analysis of solution sets. A reference to a JAXB-xml file instance of 

the type AnalysisConfiguration is required as a parameter to execute the analysis of data 

sets. Appendix:G depicts an example of an AnalysisConfiguration instance. The 

AnalysisConfiguration instance defines: 

• A set of input directories of solution sets 

• A target directory of the result files of the analysis 

• Number of cores that are utilised in the analysis 

• Frequency of analysis snapshots 

• Termination criteria (solution number) 

• Method of Analysis 

• NDPF classification criteria 

• Performance snapshot range 

The AnalysisConfiguration instance allows the user to control different aspects of 

the analysis. The following sections elaborate on the functionality of the analysis 

framework and relate the functionality aspects to the corresponding configuration 

parameters. The set of AnalysisConfiguration instances that are employed in the 

evaluation of this research are available on the Rearchitecturer project website. 
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Appendix G: Instance of AnalysisConfiguration  

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<analysisConfiguration> 

    <algorithms>Random</algorithms> 

    <algorithms>NSGAII</algorithms> 

    <algorithms>GDE3</algorithms> 

    <algorithms>OMOPSO</algorithms> 

    <algorithms>MOEAD</algorithms> 

    <algorithms>AbYSS</algorithms> 

    <systems> 

        <entry> 

         <key>Apache Ant</key> 

         <value>/path/to/output/for/project/apache_log4j/</value> 

         </entry> 

    <entry> 

         <key>Lucene</key> 

         <value>/path/to/project/results/lucene/</value> 

         </entry> 

    </systems> 

    <_frequency>200</_frequency>         

    <_metaResultsOutputDir>/>/path/to/results/metaresults 

    </_metaResultsOutputDir> 

    <_numberOfIterations>50000</_numberOfIterations> 

    <_resultInputDir>/path/to/project/solutionsets/apache_log4j 

    </_resultInputDir> 

    <_resultInputDir>/path/to/project/solutionsets/lucene 

    </_resultInputDir> 

    <_numberOfCores>16</_numberOfCores> 

    <paretoFrontMetrics>true</paretoFrontMetrics> 

    <performanceMetrics>true</performanceMetrics> 

    <objectiveMetrics>true</objectiveMetrics> 

</analysisConfiguration> 


