

1

Information Extraction From Free Text Comments in

Questionnaires

Kartik Ramachandran

A thesis submitted to Auckland University of Technology for the fulfillment of the

requirements for the degree of Master of Computer and Information Sciences (MCIS)

2017

School of Computing and Mathematical Sciences

Primary Supervisor: Shoba Tegginmath

Table of Contents

2

Table of Contents

List of Figures ... 6

List of Tables ... 7

List of Equation ... 8

Attestation of Authorship ... 9

Acknowledgment .. 10

Abstract .. 11

Chapter 1: Introduction .. 12

1.1 Introduction and background information ... 12

1.2 Introduction to NLP .. 14

1.3 Introduction to Data mining ... 14

1.4 Motivation .. 15

1.5 Research Problem and Question ... 16

1.6 Scope ... 16

1.7 Thesis structure .. 18

Chapter 2: Literature Review .. 20

2.1 Introduction ... 20

2.2 Sentiment Analysis Review .. 20

2.2.1 Areas of Application of Sentiment Analysis .. 21

2.2.2 Process of Sentiment Analysis ... 22

2.2.3 Classification of existing solutions ... 25

2.3 Sentiment Analysis Methods and Tools ... 26

2.3.1. Sentiment Classification on Online Customer Reviews .. 27

2.3.2. Concept-Level Sentiment Analysis ... 27

2.3.3. Interdependent Latent Dirichlet Allocation... 28

2.3.4. A Joint Model of Feature Mining and Sentiment Analysis .. 29

2.3.5. Opinion Digger ... 30

2.3.6. Latent Aspect Rating Analysis .. 31

2.3.7. More approaches and tools ... 32

2.4 Sentiment analysis in the medical field .. 36

2.4.1 Sentiment analysis from the medical web .. 36

2.4.2 Sentiment analysis from biomedical literature ... 38

Table of Contents

3

2.4.3 Sentiment analysis from other medical texts ... 39

2.4.4 Summary of medical opinion mining approaches ... 39

2.5 N-Grams .. 40

2.5.1 Calculating N-grams .. 40

2.5.2 Use and application of N-grams ... 41

2.5.3 Pseudo-code to generate N-grams ... 43

2.6 Gaps and key challenges ... 43

2.7 Summary ... 44

Chapter 3: Data mining and NLP ... 46

3.1 Introduction ... 46

3.2 Data Mining... 46

3.3 Knowledge Discovery Process (KDP) .. 47

3.4 Stages of KDP .. 48

3.5 Text Mining ... 49

3.5.1 The Seven Practice Areas of Text Analytics .. 50

3.5.2 Interactions between Practice Area ... 51

3.6 NLP .. 52

3.6.1 Parsing ... 53

3.6.2 Discourse ... 53

3.6.3 Text Categorization .. 54

3.7 WordNet in NLP ... 56

3.7.1 How does WordNet work? .. 59

3.8 Word Sense Disambiguation (WSD) .. 61

3.8.1 Performing WSD ... 63

3.8.2 WSD using SentiWordNet ... 66

3.9 Summary ... 66

Chapter 4: Analyzing Negative Sentiments .. 67

4.1 Introduction .. 67

4.2 SentiWordNet ... 68

4.3 Negation Identification and Calculation in Sentiment Analysis ... 68

4.4 Summary ... 71

Chapter 5: Methodology and Framework ... 72

5.1 Introduction ... 72

Table of Contents

4

5.2 Evaluation ... 72

5.2.1 The Test Set .. 72

5.2.2 Accuracy .. 73

5.2.3 Precision and Recall .. 74

5.3 Typical workflow of sentiment analysis module .. 75

5.4 Natural Language Toolkit (NLTK) ... 75

5.5 NLTK Processing Tasks ... 76

5.5.1 Tokenization and Stemming ... 76

5.5.2 Tagging .. 77

5.5.3 Chunking and Parsing ... 79

5.6 Classification Algorithms .. 80

5.6.1 Naïve Bayes Algorithm .. 81

5.6.2 Support Vector Machine (SVM) ... 81

5.6.3 Decision Tree Classification Algorithm ... 83

5.6.4 Decision Tree Algorithm – J48 ... 83

5.7 Summary ... 83

Chapter 6: Results ... 84

6.1 Introduction ... 84

6.2 Framework .. 84

6.2.1 Data Collection ... 84

6.2.2 Data Processing ... 85

6.2.3 Feature Extraction .. 85

6.2.4 POS Tagging ... 85

6.2.5 Calculate Sentiment Polarity .. 86

6.3 Project Setup Instructions .. 87

6.4 Results .. 90

6.5 Summary ... 92

Chapter 7: Review, limitations, and future research ... 92

7.1 Introduction ... 93

7.2 Research Review and Summary ... 93

7.3 Limitations ... 95

7.4 Future Work or Research ... 96

References .. 98

Table of Contents

5

Appendix .. 103

List of Figures

6

List of Figures

Figure 1 Different Stages of Sentiment Analysis (Source: (Zhang & Desouza, 2014)17

Figure 2 Sentiment Analysis Process (Source: (Chandni et al., 2015)22

Figure 3 Sentiment Analysis Components (Source: Asghar et al., 2017)...................................24

Figure 4 Sentiment Analysis Classification (Source: (Collomb et al., 2014)26

Figure 5 KDP Diagram (Source: (Fayyad et al., 1996) ..48

Figure 6 Text Mining (Source: (G. Miner, January 2012) ...50

Figure 7 Interactions between Practice Areas Source: (G. Miner, January 2012)51

Figure 8 Application of NLP (Source: Chowdhury, 2003) ..52

Figure 9 WordNet Synsets (Source: http://wordnetweb.princeton.edu/perl/webwn)61

Figure 10 WSD Workflow (Source: Hung & Chen, 2016) ..65

Figure 11 Negation Identification and Calculation (Source: Asmi & Ishaya, 2012)71

Figure 12 Precision and Recall (Source: NLTK, 2017) ..74

Figure 13 Sentiment Analysis using SentiWordNet (Source: (Amiri & Chua, 2012)87

List of Tables

7

List of Tables

Table 1 Approaches and Techniques from Existing Solutions ...25

List of Equation

8

List of Equation

Equation 1 Calculating N-Gram (Source: Banerjee & Pedersen, 2003)41

Equation 2 F-Score or F-Measure Source: (NLTK, 2017) ..75

Equation 3 Bayes Formula Bayes Formula (Source: (Medagoda et al., 2015)81

Equation 4 SVM Error Function Source: (Medagoda et al., 2015) ...82

Equation 5 J48 Information Gain Source: (Medagoda et al., 2015) ...83

Attestation of Authorship

9

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person (except where explicitly defined in the acknowledgements), nor material which to

a substantial extent has been submitted for the award of any other degree or diploma of

a university or other institution of higher learning.

- Kartik Ramachandran

Acknowledgment

10

Acknowledgment

My Acknowledgement extends to all the people directly or indirectly for their help in

completing my thesis.

Most importantly, I thank Dr. Shoba Tegginmath, my primary supervisor, for her

guidance and patience throughout the entire course of my thesis. I also express my

gratitude towards Dr. Parma Nand, who has provided me with valuable reviews which

has helped me improve my written work.

I would also like to thank Program Administrators for the School of Computing and

Mathematical Sciences at AUT, for their help throughout the course of my thesis.

I would like to express deepest gratitude to my mother, Kalyani Ramachandran and my

brother, Kirti Ramachandran for their unwavering support, belief and encouragement

throughout this journey.

Lastly, I would like to thank all my friends, who have been a gem and have supported

and motivated me constantly during difficult times.

Abstract

11

Abstract

The last 15 years have seen a tremendous explosion in the amount of information

available, encoded both in structured forms such as databases and XML files as well as

free, naturally occurring forms such as HTML pages and word documents. This

availability of free texts has created a need for automated text processing tools so that

information can be extracted in a timely and effective manner.

This research investigated the extraction of information from free text responses to

open-ended questions in questionnaires. The research undertook to develop a

framework for analyzing open question responses to extract structured information

which can then be conflated with the closed question responses in order to produce a

more informative report from the survey, in particular to determine the sentiment

expressed in the response.

Specifically, this research will help in understanding the positive or negative nature of

the respondent’s answers through the creation of software tools using Natural

Language Toolkit (NLTK) and data mining and Natural Language Processing

techniques and will help surveyors (Health centers, doctors, data analysts) obtain

additional information from surveys. There is also a discussion of existing sentiment

analysis solutions as well as the different components and ways of analyzing sentiment

and creating a Natural Language Processing tool which would be interesting to future

developers of such systems.

This research was successfully able to classify free text responses as positive or

negative. While we appreciate that more time to fine tune the application and perform

more training and testing would have been useful, the results obtained are promising.

We have successfully developed a platform which can be used for generating a custom

corpus and provide interested developers a starting framework to develop sentiment

analysis tools.

Chapter 1: Introduction

12

Chapter 1: Introduction

1.1 Introduction and background information

The world has seen a tremendous increase in the use of digital documents due to the

increased availability of hardware tools used to digitize non-digital data and the

increased availability of software tools which create digital data such as images or word

documents (Sebastiani, 2005). At the same time, Natural language and data mining

researchers have been striving to improve solutions for storing, organizing and most

importantly retrieving huge amount of data in digital form generated every second from

natural language text (Sebastiani, 2005).

Data or knowledge discovery, also known as data mining, is the process of evaluating

data from various viewpoints and putting it together into novel and valuable information

which can be used to decrease costs or increase revenue or both. Data mining allows

us to view data from different angles and categorize, filter and summarize it and this

helps users to find relationships within data. To summarize, data mining is the process

of discovering patterns and relations between various fields in a relational database

(Palace, 1996). Data mining consists of five major elements (Palace, 1996):

1. Extract, transform, and load transaction data onto the data warehouse system

2. Store and manage the data in a multidimensional database system

3. Provide data access to business analysts and information technology professionals

4. Analyze the data by application software

5. Present the data in a useful format, such as a graph or table

Natural language processing (NLP), an area at the intersection of artificial intelligence

and linguistics, began in the 1950s and was considered to be different from information

retrieval which uses statistics-based techniques to search and index huge volumes of

data. Research in NLP has received increasing attention over the last 30 years and in

the last decade, concrete commercial applications are being created for business,

industry and services. With time however, the fields of data mining and NLP have

converged (Nadkarni, Ohno-Machado, & Chapman, 2011).

Chapter 1: Introduction

13

The last 5 years have seen a significant shift in ways we communicate with others using

short loosely structured or unstructured text (Nand & Perera, 2015). This has created

the need to look for techniques which can help users conveniently access huge volume

of unstructured repositories of text which can be done by:

• Creating powerful tools for finding relevant document(s) within a large repository

which will accept a natural language query and give the user a list of documents

according to the relevance of information user requires

• Creating tools powerful enough to convert unstructured repository of documents or

data into a structured one which creates ease of storage, browsing and searching

(Sebastiani, 2005)

Text classification is a sub discipline of data mining that is specifically concerned with

building tools aimed at partitioning an unstructured collection of data or documents into

a structured one. Text classification has two major variations. The first is text clustering

which deals with finding undetected group structure in the repository and the second is

text categorization which deals with categorizing or structuring the repository according

to the scheme provided as input (Sebastiani, 2005).

A more recent discipline of computational linguistics, Opinion Mining is concerned with

opinion, not the topic, expressed in a document. For instance, applications that

determine opinions of users have helped in the review of products while others have

helped in tracking general public attitude towards a political candidate.

Various sub-tasks of Opinion Mining have been identified (Esuli & Sebastiani, 2006):

1. Finding factual nature or opinions expressed in text on subject matter, which can be

achieved by performing binary text categorization under subjective or objective

categories.

2. Finding orientation of document i.e. determining whether a piece of subjective text

expresses negative or positive opinion.

3. Evaluating strength of document orientation i.e. deciding for example whether

opinion expressed is weakly positive, or mildly positive, or strongly positive.

Chapter 1: Introduction

14

1.2 Evaluation in NLP

While a good deal of time has been devoted to the study of computational models of

languages and to their implementation into applications, very little attention has been

given to evaluating their performance and accuracy. Two main reasons for this were

that early results of NLP applications had a poor impact which did not push for the need

for accurate performance evaluation and secondly, the unavailability of formal tools

which can appropriately define NLP systems at different levels of abstraction such as

linguistic models, external behavior and knowledge representation methods, knowledge

bases and processing algorithms. This has impeded the development of methods for

performance evaluation in NLP. Recently as a result of growing interest in NLP,

performance evaluation has been seen as an important research problem and has

begun to appeal to larger research interests as it helps to evaluate the results obtained

from a system up to a certain point in development, and helps us to plan for the next

stages of refinement and implementation. However it should be noted that several NLP

applications that are available in the market do not consider performance evaluation

(Nadkarni et al., 2011).

1.3 Introduction to Data mining

The aim of data mining is to understand large amounts of mostly unsupervised data, in

various domains. This definition of data mining is intuitive and easy to understand. The

users of data mining are often domain experts who not only own the data but also

collect the data. It is generally assumed that data owners have some understanding of

the data and the processes that generated the data. Businesses are the largest group of

data mining users since they routinely collect massive amounts of data and have a

vested interest in making sense of the data; their goal is to make their companies more

competitive and profitable. Data owners desire not only to better understand their data

but also to gain new knowledge about the domain that is present in their data for solving

problems in novel, possibly better ways.

Data mining is not just an “umbrella” term coined for making sense of data. The major

distinguishing characteristic of data mining is that it is data driven, as opposed to other

Chapter 1: Introduction

15

methods that are often model driven. In statistics, researchers often deal with the

problem of finding the smallest data size that gives sufficiently confident estimates. In

data mining it is the opposite, namely, data size is large and we are interested in

building a data model that is small (not too complex) but still describes the data well.

Knowledge Discovery Process (KDP), also called knowledge discovery in databases,

seeks new knowledge in some application domain. It is defined as the nontrivial process

of finding valid, novel, potentially useful, and ultimately understandable patterns in data.

The process generalizes to non-database sources of data although it emphasizes

databases as a primary source of data. It consists of many steps (one of which is Data

Mining), each attempting to complete a discovery task and each accomplished by the

application of a discovery method. Knowledge discovery concerns the entire knowledge

extraction process, including how data are stored and accessed, how to use efficient

and scalable algorithms to analyse massive datasets, how to interpret and visualize the

results, and how to model and support the interaction between human and machine. It

is also concerned with support for learning and analysing the application domain. The

KDP model consists of a set of processing steps to be followed by practitioners when

executing a knowledge discovery project. The model describes procedures that are

performed in each of its steps. It is primarily used to plan, work through, and reduce the

cost of any given project.

1.4 Motivation

Surveys are composed of closed and open ended questions. While closed questions

restrict the frame of reference, open ended questions provide liberty to the user to

express their opinion more freely. Some surveys require respondents to express their

opinions using natural language text. Reading these surveys manually is time intensive

and analyzing user opinion correctly becomes difficult, especially with the large amounts

of text that need to be analyzed. Therefore this research has the aim of analyzing

sentiment expressed in free text comments in questionnaires. Free text analysis will be

done by automating the process which involves the creation of artifacts which can be

Chapter 1: Introduction

16

used to analyze the sentiment of free text, and determine the polarity (positive or

negative) and strength of a free text comment.

There are tools in the market (commercial or open source) which help to find the

sentiment expressed by a document. The available tools however lack documentation

about the methodology used, algorithms applied to classify text and sentiment analysis

algorithm used. This provided the main impetus for this research, which was to follow an

accepted and viable research methodology to analyse the sentiment expressed, within

a reusable framework, and to provide the documentation that is missing from tools

available in the market. During this process, the goals were to: understand the process

of sentiment analysis starting from text extraction to calculating positive and negative

sentiment and most importantly create artifacts which can subsequently be used to

analyze the sentiment of other types of free text. The framework created can be

extended for future research in this field. The framework can also be used as a starting

point to analyze document sentiment in various other languages.

1.5 Research Problem and Question

The research problem addressed in this thesis can be stated as information extraction

from free text comments in questionnaires using NLP and data mining techniques.

This thesis set out to answer the following research question:

How can an effective sentiment analysis tool be built to analyse free text

comments in questionnaires?

A supplementary research question investigated is:

Will a corpus created from the data be useful in analyzing sentiment expressed in

the data?

1.6 Scope

The scope of the thesis is to study the different components of data mining and NLP

and use this knowledge to create a tool which can extract free text responses from a

Chapter 1: Introduction

17

questionnaire; analyze the sentiments expressed in the responses and classify

responses as positive or negative.

The different stages of sentiment analysis that we follow in this research are depicted in

Figure 1:

Figure 1 Different Stages of Sentiment Analysis (Source: (Zhang & Desouza, 2014)

In the process of creating the software tool we also investigate the utility of a corpus in

sentiment analysis—the corpus will be created from the data used in this research. The

resulting corpus can be used as reference for future analysis of text. We will use

different libraries and algorithms to classify text which is a well-rounded approach that is

followed by software practitioners while creating language classification software. While

the code will be tailored to the current study, i.e. to patient comments about doctors, the

code can be extended in future to extract results related to demographics of patients

such as race, sex, age.

In Section 1.2, we discussed the lack of attention towards the evaluation of performance

and accuracy in NLP applications. Therefore, in this research we will be evaluating

Chapter 1: Introduction

18

results using accepted Information Science measures and this is discussed in Chapter

5.

1.7 Thesis structure

The rest of the thesis is structured as described in the following paragraphs.

Chapter 2 reviews literature on sentiment analysis and provides information about the

process and different components used to create an effective sentiment analysis tool

and the areas of application of sentiment analysis, application in medical field. Then we

take a detailed look at existing sentiment analysis. Chapter 2 also discusses research in

a related area—that of n-grams—which is an important technique for solving the

problem of language recognition, used in information retrieval. We look at how n-grams

are calculated and then look at the use and areas of application and finish the chapter

with pseudo code to generate n-grams and gaps and key challenges.

Chapter 3 begins with details about data mining and KDP, followed by text mining and

the seven areas of practice in text mining, which is followed by a discussion on natural

language processing, its components and various tools. Before diving deep into

sentiment analysis, it is essential to discuss Word Sense Disambiguation (WSD) and

performing WSD on a document. The chapter concludes with a discussion about

Wordnet—a lexical resource and SentiWordnet, another lexical resource, which is used

in this thesis.

We look at analyzing negative sentiment in Chapter 4, which is one of the most complex

tasks in sentiment analysis and how it can be performed. We then look at pseudo code

which can help us perform negation of sentiment polarity.

In Chapter 5, we discuss about the evaluation techniques for classification

models. After looking at the sentiment analysis workflow, we look at the Natural

Language Toolkit and processing tasks, which are widely used for sentiment analysis

for educational and research purposes. We then study supervised classification

algorithm which we will use in this thesis.

Chapter 1: Introduction

19

We present the software tool framework and set up instructions using the code in the

appendix, in Chapter 6. We also present results obtained by running the tool on test

data.

Finally, we review the thesis in Chapter 7, followed by limitations of the tool and areas

for future research and work.

This thesis also has an extensive appendix, which provides further background

information on the code written to create the custom corpus and perform various NLP

tasks.

Chapter 2: Literature Review

20

Chapter 2: Literature Review

2.1 Introduction

This chapter discusses current literature and work in sentiment analysis along with the

analysis process and classification methods used. Section 2.2 will discuss sentiment

analysis followed by a section which discusses the areas of application of sentiment

analysis. Classification of existing sentiment analysis method is discussed in the fourth

section. The next section shows us the process of sentiment analysis and then we look

at different sentiment analysis methods, after which we look at sentiment analysis in the

medical field. WSD and N-grams are some of the most widely used techniques for

information retrieval and it was essential to review the literature and understand n-

grams before the framework for this thesis could be finalized. Finally, we look at the

current gaps and challenges in the application of natural language processing to

analyzing and classifying text and documents. Finally, a summary concludes the

chapter.

2.2 Sentiment Analysis Review

Sentiment analysis is the computational study of human opinions, emotions, attitudes

and thoughts towards an event or topic or individual. Opinion or sentiment mining,

sentiment extraction and subjectivity analysis are other terms used for sentiment

analysis (Chandni, Chandra, Pahade, & Gupta, 2015). Sentiment analysis uses natural

language processing, computation techniques and text analysis to automate the entire

process of extracting and classifying sentiment reviews. Sentiment analysis has spread

across many fields such as marketing, consumer information, books, websites,

application and social media. The main aim of analyzing sentiments in a variety of areas

is to analyze and examine the reviews and score of sentiments (Hussein, 2016).

Opinions usually comprise of polarity which can positive or negative, the target or the

aspects about which the sentiment was expressed, and the time at which the opinion

was expressed.

Chapter 2: Literature Review

21

Typically, we can perform sentiment analysis by using lexicon-based method or

machine learning or a combination of the two methods also known as hybrid methods.

Machine learning uses algorithm that needs to be trained with labelled data and then

the model is used for classifying new documents. The labelled data is created by human

annotator and is a labor-intensive process. Distant supervision is an alternative method

which relies on usage of certain emoticons which signify sentiments. Although distant

supervision has been proved to do well in classification, it is very difficult to integrate it

with machine learning algorithm. Lexicon based methods make use of sentiment

lexicons which associate terms with sentiment polarity (negative, positive or neutral)

usually by using a numerical score that is an indicator of sentiment strength and

dimension. But sentiment lexicons do not contain sentiment bearing and domain

specific terms and this makes it difficult to classify high sentiment bearing words

properly (Muhammad, Wiratunga, Lothian, & Glassey, 2013).

The goal of sentiment analysis is to analyze and examine the sentiments shown in the

sentence and determine the polarity of the sentence. Sentiment analysis can be

examined as a process of three systemization levels which are document level, aspect

level and sentence level. Document level sentiment analysis sets to organize thoughts

in a document as carrying a positive or negative or neutral sentiment. An aspect is a

part of the product/movie that has been commented on in a review. For example,

‘battery life’ in the opinion phrase ‘The battery life of this camera is too short’. Sentence

level opinion mining first tries to recognize the sentence as subjective or objective and

then if a sentence is subjective it tries to examine whether it displays positive or

negative sentiment. There is no real distinction between document- and sentence-level

analysis because sentences are considered small records from a document (Chandni et

al., 2015).

2.2.1 Areas of Application of Sentiment Analysis

Consumers make a choice or decision regarding a product from the information about

the reputation of the product derived from the opinions of other users. When users

choose a product, they are interested or attracted to certain aspects of the product and

may comment on specific aspects in their review. A review is an assessment of the

Chapter 2: Literature Review

22

quality of a product, for example, that is posted online. An aspect is a part of the product

that has been commented on in a review. For example, ‘battery life’ in the opinion

phrase ‘The battery life of this camera is too short’. A rating is an intended interpretation

of user satisfaction in terms of numerical values. Most review websites use ratings

(number of stars) in the range from 1 to 5. Sentiment analysis can help collect the

opinions of the reviewers and help estimate ratings on a specific aspect of the product,

as a single global rating can be deceiving. Thus, sentiment analysis or mining can be

used to give an indication or recommendation in choosing products. Another usage of

sentiment analysis is for the organizations or companies to know the opinion consumers

have of their products, which then can be used to improve on the aspects consumers

did not like or found unsatisfactory. Sentiment analysis can also help companies

understand which aspects consumers liked, and automatically suggest advertisement

for other products that suit a viewer’s opinion and this provides numerous opportunities

in the human–machine interface domain.

2.2.2 Process of Sentiment Analysis

Figure 2 Sentiment Analysis Process (Source: (Chandni et al., 2015)

The process of sentiment analysis, as shown in Figure 2, may be simplistically viewed

as a series of actions that begin with a sentence to be analysed and ends with the

Chapter 2: Literature Review

23

determination of the polarity of the sentence. The feature extraction phase deals with

features which may be of the following types in sentiment classification:

1. Part of speech (POS): It includes adjectives which are important for opinion or

thought.

2. Presence of Terms and their Frequencies: These features are type of word i.e.

individual word or N-gram words and their relative count of frequencies. Frequency

count is used to show the relative value of features.

3. Words and Phrases for opinion: words and phrases that are commonly used to the

opinions like love or hate, high or low.

4. Negation: as a negative word before any word may change the meaning of that word

or opinion e.g. not love is similar to hate. (Chandni et al., 2015).

(Asghar, Khan, Ahmad, Qasim, & Khan, 2017) detail many of the functions performed

during lexicon-based sentiment analysis, presented here in Figure 3. Their method is

based on the three steps: 1. Acquisition of data from different online resources; 2. Noise

reduction, performed by applying different preprocessing techniques to refine the text

that can be used for later processing, and 3. Classification techniques applied to classify

the reviews into positive, negative or neutral.

Chapter 2: Literature Review

24

Figure 3 Sentiment Analysis Components (Source: Asghar et al., 2017)

Chapter 2: Literature Review

25

In the following section, we look at the different ways existing solutions have been

classified.

2.2.3 Classification of existing solutions

Existing solutions on sentiment analysis can be classified on different points such as

technique used, view of text, level of detail of text analysis, rating level, etc. From a

technical standpoint, we can classify based on the approaches.

Table 1 Approaches and Techniques from Existing Solutions

Method/Approach Measure/Technique Used

Machine Learning Learning algorithms

Lexicon-based Semantic orientation

Rule-based Classification

Statistical Multinomial distribution, Clustering

As shown in Table 1, the machine learning method uses several learning algorithms to

determine the sentiment by training on a known dataset. The lexicon-based approach

involves calculating sentiment polarity for a review using the semantic orientation of

words or sentences in the review; “semantic orientation” is a measure of subjectivity and

opinion in text. The rule-based approach looks for opinion words in a text and then

classifies it based on the number of positive and negative words. It considers different

rules for classification such as dictionary polarity, negation words, booster words,

idioms, emoticons, mixed opinions, to mention a few. Statistical models represent each

review as a mixture of latent aspects and ratings. It is assumed that aspects and their

ratings can be represented by multinomial distributions and try to cluster head terms

into aspects and sentiments into ratings.

Most of the solutions for review classification rely on polarity of the review and machine

learning techniques. Solutions which aim for more detailed classification of user reviews

use a great deal of linguistic features including negation, modality, intensification and

Chapter 2: Literature Review

26

discourse structure. Figure 4 gives further detail on the classification of existing

methods.

Figure 4 Sentiment Analysis Classification (Source: (Collomb et al., 2014)

Another classification of sentiment analysis is oriented more on the structure of the text:

document level, sentence level or word/feature level classification. Document-level

classification aims to find a sentiment polarity for the whole review, whereas sentence

level or word-level classification can express a sentiment polarity for each sentence of a

review and even for each word. (Collomb et al., 2014) state that most of the methods

tend to focus on document-level classification. They also distinguish methods which

measure sentiment strength for different aspects of a product and methods which

attempt to rate a review on a global level.

In the next section, we look at some of the sentiment analysis methods from literature.

2.3 Sentiment Analysis Methods and Tools

In this section, we discuss various sentiment analysis methods and tools created by

researchers in performing sentiment analysis.

Chapter 2: Literature Review

27

2.3.1. Sentiment Classification of Online Customer Reviews

(Khan, Baharudin, & Khan, 2011) presented a domain-independent rule-based method

for classifying sentiments from customer reviews that works in three parts. First, the

reviews are split into sentences, corrected and POS tagged, and the base word of each

word in the sentence is stored. Next, opinion word extraction is used to find out the

polarity of the sentence based on the contextual information and structure of the

sentence. The noun phrases are the aspects of the product. The third part consists of

classifying the sentence as subjective or objective—using rule based methods. Each

word conveys opinion and has a semantic score which is calculated from SentiWordNet

dictionary, and a weight is assigned to a sentence, by rating each term, to decide if it

conveys positive or negative sentiment.

For evaluation, (Khan et al., 2011) collected three types of customer reviews (movie,

hotel and airline reviews) which had an average of 1,000 movie and airlines reviews and

2,600 hotel reviews. The performance was assessed with an accuracy of 91% at the

review level and 86% at the sentence level; moreover, the sentence level sentiment

classification performed better than the word level. The accuracy of 70-75% seems

better than the average results of other methods but there is no comparison provided

with other lexicon-based methods, nor with learning-based methods.

2.3.2. Concept-Level Sentiment Analysis

pSenti is a concept level sentiment analysis system which combines lexicon based and

learning-based approaches. It measures and reports the overall sentiment of a review

through a score that can be positive, negative or neutral or 1–5 stars classification. The

main advantages and main interests of this article are the lexicon/learning symbiosis,

the detection and measurement of sentiments at the concept level and the lesser

sensitivity to changes in topic domain.

It works in four parts:

1. Pre-processing of the review where the noise (idioms and emoticons) is removed

and each word is tagged and stored by the method Part of Speech (POS).

Chapter 2: Literature Review

28

2. Aspects and views are extracted to generate a list of top 100 aspect groups and

top 100 views. The aspects are identified as nouns and noun phrases, and the

views as sentiment words, adjectives and known sentiment words which occur

near an aspect.

3. Then the lexicon-based approach is used to give a “sentiment value” to any

sentiment word and generates features for the supervised machine learning

algorithm.

4. Algorithm generates a “feature vector” for each aspect which is either the sum of

the sentiment value for a sentiment word or the number of occurrences of this word

in relation with other adjectives.

To evaluate this method, experiments were conducted on software reviews (more than

10,000) and movie reviews (7,000) datasets. Software reviews were separated into

software editor reviews and customer software reviews categories. In their experiments,

pSenti’s accuracy was proved close to the pure learning-based system and higher than

the pure lexicon-based method. It was also shown that the performance was not as

good on customer software reviews as on software editor reviews because customer

software reviews are usually much “noisier” (with comments that are irrelevant to the

subject) than professional software editor reviews. Its accuracy was also affected by

many reviews for which it did not detect any sentiment or assigned neutral score.

However, the sentiment separability in movie reviews was much lower than in software

reviews. One of the reasons is that many movie reviews have plot descriptions and

quotes from the movie where words are identified as sentiments by the system

(Collomb et al., 2014; Mudinas, Zhang, & Levene, 2012).

2.3.3. Interdependent Latent Dirichlet Allocation

(Moghaddam & Ester, 2011), introduced Interdependent Latent Dirichlet Allocation

(ILDA) in 2011. They introduced the probabilistic assumption that there is

interdependency between an aspect and its corresponding rating. ILDA is a probabilistic

graphical model which shows each review as a mixture of latent aspects and ratings. It

assumes that aspects and their ratings can be represented by multinomial distributions

and tries to cluster head terms into aspects and sentiments into ratings. ILDA relies on a

Chapter 2: Literature Review

29

concept introduced in 2003 by (Blei, Ng, & Jordan, 2003). Latent Dirichlet Allocation

(LDA). It is a generative probabilistic model for collections of discrete data such as text

corpora. The basic idea is that each item of a collection is modeled as a finite mixture

over an underlying set of latent variables.

Their experiments showed notable improved results for ILDA compared to the other two

graphical models described in the paper (PLSI and LDA), gaining in average almost

20% for the accuracy of rating prediction. They obtain in average 83% accuracy in

aspect identification and 73% accuracy in aspect rating.

2.3.4. A Joint Model of Feature Mining and Sentiment Analysis

This solution was introduced in 2011 by (de Albornoz, Plaza, Gervás, & Díaz, 2011).

The authors propose a method that globally rates a product review into three categories

by measuring the polarity and strength of the expressed opinion. This solution was

chosen as a representative of the global rating solutions, as it goes further than other

solutions; It tries to find the strength of the opinion as well as the relevance of the

feature the opinion is about.

The mechanism of this method is straightforward:

1. Important features are found

2. Sentences having opinions on those features are found in the body of the review

and polarity and strength are computed

3. Next, a global score is computed. The method does not rely on any earlier

knowledge about the importance of the features to the customer, contrary to Hu and

Liu, but learn it from a set of reviews using an unsupervised model. Another

contribution is that each feature is automatically weighted. Feature importance and

opinion extraction, as well as opinion rating rely on the WordNet lexical database for

English. This can be an important disadvantage of the method, as it cannot be

applied on reviews written in other languages.

4. The fourth step – rating reviews are predicted and these reviews are structured

using Vector Feature Intensity (VFI) graph. It is constructed using the strength of the

opinion and the relevance of the feature. This graph is fed as input to any machine

learning algorithm that will classify the review into different rating categories.

Chapter 2: Literature Review

30

This solution offers flexibility when it comes to choosing the best machine learning

method for classifying reviews.

2.3.5. Opinion Digger

The solution Opinion Digger was introduced in 2010 by (Moghaddam & Ester, 2010)

and is a good and exact example of a completely unsupervised machine learning

method. The particularity of this solution is to use as input a set of known aspects of a

product and a ratings guideline (5 means “excellent” 4 means “good”). With these

elements, Opinion Digger finds and outputs a set of other aspects and ratings in each

aspect according to the guideline. The impetus for this research was based on the fact

that many reviewing websites like amazon.com provide these input elements but there

was no method that used them.

Opinion digger works in two steps:

1. In the first phase, Opinion Digger decides the set of aspects. After the pre-

processing, each sentence is tagged with POS. It assumes that aspects are nouns

so it first isolates the frequent nouns as potential aspects. With the sentences

matching the known aspects, they determine opinion patterns as sequence of POS-

tags that expressed opinion on an aspect. The frequent patterns used with known

aspects are considered opinion patterns. If reviews with a “potential aspect” noun

match at least two different opinion aspects, Opinion digger considers the noun as

an aspect.

2. The second phase is rating the aspects. For each sentence having an aspect,

Opinion Digger associates the closest adjective to the opinion. It searches two

synonyms from the guideline in the WordNet synonymy graph. The estimated rating

of the aspect is the weighted average of the corresponding rating in the guideline.

Weight is calculated by the inverse of the smallest path distance between the

opinion adjective and the guideline’s adjective in the WordNet hierarchy.

The experiments show good performance in aspect determination and an excellent

accuracy in ratings. The evaluation of aspect ratings was made using only the known

set of aspects and compared to 3 other unsupervised methods. Opinion Digger

performs with an average ranking loss of only 0.49 which is the difference between

Chapter 2: Literature Review

31

estimated and actual ratings. By incorporating new current information in the machine

learning process, Opinion Digger increases the accuracy of the unsupervised machine-

learning method.

2.3.6. Latent Aspect Rating Analysis

This solution treats a special problem called Latent Aspect Rating Analysis with a

model-based method. The model is called the Latent Rating Regression (LRR) model

and was created by (Wang, Lu, & Zhai, 2010). It estimates ratings on different aspects

in a review but also decides the emphasis of the author on each aspect. It uses a given

set of aspects and the overall ratings of the review. It starts with an aspect-

segmentation step. By recursively associating words with aspects, it builds an aspect

dictionary and links each phrase of a review to the corresponding aspect, then it applies

the model. The assumption of reviewer’s rating behavior is as follows: to generate an

opinionated review the reviewer first decides the aspects for reputation evaluation that

she/he wants to comment on; and then for each aspect, the reviewer carefully chooses

the words to express her/his opinions. The reviewer then forms a rating on each aspect

based on the sentiments of words she/he used to discuss that aspect. Finally, the

reviewer assigns an overall rating depending on a weighted sum of all the aspect

ratings, where the weights reflect the relative emphasis she/he placed on each aspect.

So, the overall rating is not directly decided by the words used in the review but rather

by latent ratings on different aspects which are decided by the words.

With a probabilistic regression approach, Latent Aspect Rating Analysis converts the

model into a Bayesian regression problem, and then decides the aspect ratings and

weight with consideration to the author’s intent. The overall rating r is assumed to be a

sample drawn from a Gaussian distribution with variance delta square and mean the

weighted sum of the aspect ratings S. S is the result of the weighted sum of the words

W in the reviews. A multivariate Gaussian distribution is employed as the prior for

aspect weight’s alpha.

The experimentation shows an average performance compared to other unsupervised

methods in aspect ratings. However, it achieves what it set out to achieve—to estimate

an aspect’s weight (Collomb et al., 2014; Wang et al., 2010).

Chapter 2: Literature Review

32

2.3.7. More approaches and tools

In this section, we go on to introduce some more research and tools in the area of

sentiment analysis.

(Asghar et al., 2017) looked at enhancing the performance of sentiment analysis and

resolving the issues of data sparseness and incorrect classification caused by the

presence of noisy text, emoticons, modifiers and domain specific words (See Figure 3).

The basic theme was to reduce noise from the review text by applying different pre-

processing steps and processes through a variety of classifiers. The proposed method

was used to test the text from different online forums; the reviews compiled from these

sources were used as input items.

One simple way proposed to detect the polarity of a message is based on the

emoticons it contains. Emoticons have become popular in recent years, to the extent

that some (e.g. <3) are now included in English Oxford Dictionary. Emoticons are

primarily face-based and represent happy or sad feelings, although a wide range of

non-facial variations exist: for instance, <3 represents a heart and expresses love or

affection. To extract polarity from emoticons, a set of common emoticons, which also

includes popular variations that expresses positive, negative and neutral sentiments,

are utilized (Gonçalves, Araújo, Benevenuto, & Cha, 2013).

Linguistic Inquiry and Word Count (LIWC)is a text analysis tool that evaluates

emotional, cognitive, and structural components of a given text based on the use of a

dictionary containing words and their classified categories. In addition to detecting

positive and negative effects in each text, LIWC provides other sets of sentiment

categories. For example, the word “agree” belongs to the following word categories:

assent, affective, positive emotion, positive feeling, and cognitive process (Gonçalves et

al., 2013).

Machine-learning-based methods are suitable for applications that need content-driven

or adaptive polarity identification models. Several key classifiers for identifying polarity

in online social network data have been proposed in the literature. A very

comprehensive work developed SentiStrength which compared a wide range of

Chapter 2: Literature Review

33

supervised and unsupervised classification methods, including simple logistic

regression, SVM, J48 classification tree, JRip rule-based classifier, SVM regression,

AdaBoost, Decision Table, Multilayer Perception, and Naive Bayes. It was shown that,

SentiStrength implements the state-of-the-art machine learning method in the context of

online social networks. SentiStrength version 2.0, is available at

http://sentistrength.wlv.ac.uk/Download (Gonçalves et al., 2013).

SentiWordNet is a tool that is widely used in opinion mining, and is based on an English

lexical dictionary called WordNet. Wordnet groups adjectives, nouns, verbs and other

grammatical classes of a word into synonym sets called synsets. SentiWordNet

associates three scores—positive, negative, and objective (neutral)—with synsets from

the WordNet dictionary to indicate the sentiment of the text. The scores, which are in

the values of [0, 1] and add up to 1, are obtained using a semi-supervised machine

learning method SentiWordNet was evaluated with a labeled lexicon dictionary. To

assign polarity based on this method, the average scores of all associated synsets of a

given text are considered, and the text is considered to be positive if the average score

of the positive affect is greater than that of the negative affect. Scores from objective

sentiment were not used in determining polarity. SentiWordNet version 3.0, which is

available at http://sentiwordnet.isti.cnr.it/. WordNet is discussed in Chapter 3 and

SentiWordNet in Chapter 4 (Gonçalves et al., 2013).

SenticNet is a method of opinion mining and sentiment analysis that explores artificial

intelligence and semantic Web techniques. SenticNet infers polarity of common sense

concepts from natural language text at a semantic level (Gonçalves et al., 2013).

The method uses NLP techniques to create a polarity for nearly 14,000 concepts. For

example, to interpret a message “Boring, it’s Monday morning”, SenticNet first tries to

identify concepts, which are “boring” and “Monday morning”. Then it assigns a polarity

score to each concept, in this case, -0.383 for “boring”, and +0.228 for “Monday

morning” (Gonçalves et al., 2013). The resulting sentiment score of SenticNet is an

average of the polarity scores which is -0.077. The National Health Service in England

used SenticNet to test and evaluate the polarity in opinions of patients about the health

http://sentistrength.wlv.ac.uk/Download
http://sentiwordnet.isti.cnr.it/

Chapter 2: Literature Review

34

service. We use SenticNet version 2.0, which is available at http://sentic.net/ (Gonçalves

et al., 2013).

SASA is a method based on machine learning techniques such as SentiStrengh and

was evaluated with 17,000 labeled tweets on the 2012 U.S. Elections. The open source

tool was evaluated by the Amazon Mechanical Turk (AMT), where “turkers” were invited

to label tweets as positive, negative, neutral, or undefined. The SASA python package

version 0.1.3 is available at https://pypi.python.org/pypi/sasa/0.1.3 (Gonçalves et al.,

2013).

Happiness Index is a sentiment scale that uses the popular Affective Norms for English

Words (ANEW). ANEW is a collection of 1,034 words commonly used associated with

their affective dimensions of valence, arousal, and dominance. Happiness Index was

constructed based on the ANEW terms and has scores for a given text between 1 and

9, indicating the amount of happiness existing in the text. The authors calculated the

frequency that each word from the ANEW appears in the text and then computed a

weighted average of the valence of the ANEW study words. The validation of the

Happiness Index score is based on examples. ANEW was applied to a dataset of song

lyrics, song titles, and blog sentences. It was found that the happiness score for song

lyrics had declined from 1961 to 2007, while the same score for blog posts in the same

period had increased (Gonçalves et al., 2013). To adapt Happiness Index for detecting

polarity, any text that is classified with this method in the range of [1..5] is considered to

be negative and in the range of [5..9] to be positive.

PANAS-t is a psychometric scale proposed for detecting mood fluctuations of users on

Twitter. The method consists of an adapted version of the Positive Affect Negative

Affect Scale (PANAS), which is a method in psychology. PANAS-t is based on a large

set of words associated with eleven moods: joviality, assurance, serenity, surprise, fear,

sadness, guilt, hostility, shyness, fatigue, and attentiveness (Gonçalves et al., 2013).

This method is used to track any increase or decrease in sentiments over time and to

associate text to a sentiment, PANAS-t first utilizes a baseline or the normative values

of each sentiment based on the entire data. Then the method computes the P(s) score

for each sentiment s for a given time as values between [−1.0, 1.0] to indicate the

https://pypi.python.org/pypi/sasa/0.1.3

Chapter 2: Literature Review

35

change. For example, if a given set of tweets contain P(“surprise”) as 0.250, then

sentiments related to “surprise” increased by 25% compared to a typical day. Similarly,

P(s) = −0.015 means that the sentiment s decreased by 1.5% compared to a typical day

(Gonçalves et al., 2013).

There are various other solutions in the market which offer a variety of opinion mining

tools; most of them are custom made to analyze the sentiments from customer reviews

about products and services by interpreting natural language. An example of a freely

available application that simply analyzes terms can be found at http://twitrratr.com/

(Cieliebak, Dürr, & Uzdilli, 2013).

Wordclouds are also becoming more and more used in making sense of large quantities

of information in a snapshot and is a popular solution for word visualization. Such tools

are also extremely simplified and only offer a visualization of the most commonly used

terms, which gives an idea of what the document is about. Tools such as those

available at www.wordle.com offer an appealing design solution that can serve as an

entry level in the opinion mining market (Cieliebak et al., 2013).

Another way of classifying or making sense of large amount of information is to rely on

human effort using collective intelligence and or crowdsourcing, where people will not

only filter but also signal the most important ones. The website www.uservoice.com

provides such a tool which allows users to send feedback and rate other users’ ideas,

and this helps in creating new ideas (Cieliebak et al., 2013).

There is a flourishing market of enterprise-level software for opinion mining with much

more advanced features. These tools are largely in use by companies to monitor their

reputation and the feedback about products on social media. In the government context,

opinion mining has long been in used as an intelligence tool to detect hostile or negative

communications. These tools rely on machine learning for finding and classifying

relevant comments, using a combination of latent semantic analysis, support vector

machines, "bag of words" and semantic orientation. These processes need significant

human effort aided by machines; tools in the market rely on a combination of machine

and human analysis, typically using machines to augment human capacity to classify,

Chapter 2: Literature Review

36

code and label comments. Automated analysis is based on a combination of semantic

and statistical analysis. Recently, because of the sheer increase in the quantity of

datasets available, statistical analysis is becoming more important (Cieliebak et al.,

2013).

Table 2 lists some of the commercially available sentiment analysis tools which can

analyze arbitrary texts, with free API access and are available free of charge (Cieliebak

et al., 2013).

Table 2 Commercial Tools. (Source: Cieliebak et al., 2013)

2.4 Sentiment analysis in the medical field

As the goal of this thesis is to analyze sentiments expressed by patients of a medical

centre, a review of existing research on sentiment analysis in the medical field was

undertaken. Such literature can be grouped based on textual source (e.g. medical web

content, biomedical literature and clinical notes), task (e.g. polarity analysis, outcome

classification), method (e.g. rule-based, machine-learning based) and level (e.g. word

level, sentence level).

2.4.1 Sentiment analysis from the medical web

Most research on sentiment analysis in the domain of medicine considers web data

such as medical blogs or forums for mining or studying patient opinions or measuring

quality. For example, a method was introduced that separates factual texts from

Chapter 2: Literature Review

37

experiential texts to measure content quality and credibility in patient-generated content.

As factual content is better than affective content since more information is given (in

contrast to moods and feelings), a system has been developed using subjectivity words

and a medical ontology to evaluate the factual content of medical social media.

As in general sentiment analysis, existing approaches to sentiment analysis from

medical web data are either machine-learning based or rule-based. Most of the work

focuses on polarity classification.

(Xia, Gentile, Munro, & Iria, 2009) introduced a multi-step approach to patient opinion

classification. Their approach decides the topic and the polarity expressed towards it.

An F-measure of around 0.67 was reported.

(Sokolova, Matwin, Jafer, & Schramm, 2013) tested several classifiers including naive

Bayes, decision trees and support vector machines for the sentiment classification of

tweets. Texts were represented as bags of words. Two classification tasks were

considered: three-class (positive, negative and neutral) and two-class (positive,

negative). The best F-measure of 0.69 was achieved with an SVM classifier.

The work by (Biyani et al., 2013) focused on determining the polarity of sentiments

expressed by users in online health communities. More specifically, they performed

sentiment classification of user posts in an online cancer support community (cancer

survivors network) by exploiting domain-dependent and domain-independent sentiment

features as the two complementary views of a post and exploiting them for post-

classification in a semi-supervised setting employing a co-training algorithm. This work

was later extended with features derived from a dynamic sentiment lexicon, while the

previous work used a general sentiment lexicon to extract features.

(Smith & Lee, 2012) studied another aspect of sentiment in patient feedback, namely

discourse functions such as expressiveness and persuasiveness. A classifier was

evaluated based on a patient feedback corpus from NHS Choices. The results illustrate

that the multinomial naive Bayes classifier with frequency-based features can achieve

the best accuracy (83.53%). Further, the results showed that a classification model

trained solely on an expressive corpus can be directly applied to the persuasive corpus

Chapter 2: Literature Review

38

and achieve a performance comparable to the training based on the corpus with the

same discourse function.

(Sharif, Zaffar, Abbasi, & Zimbra, 2014) presented an interesting application of

sentiment analysis with their extracts of semantic, sentiment and affect cues for

detecting adverse drug events reported by patients in medical blogs. This approach can

reflect the experiences of people when they discuss adverse drug reactions as well as

the severity and emotional impact of their experiences.

(Na et al., 2012) presented a rule-based linguistic approach for the sentiment

classification of drug reviews. They used existing resources for sentiment analysis,

namely SentiWordNet and the Subjectivity Lexicon, and came up with linguistic rules for

classification. Their approach achieved an F-measure of 0.79. Additional work has

tackled the detection and analysis of emotion in medical web documents.

(Sokolova & Bobicev, 2013) considered the categories encouragement (e.g. hope,

happiness), gratitude (e.g. thankfulness), confusion (e.g. worry, concern, doubt), facts,

and facts + encouragement. They used the affective lexicon WordNetAffect for emotion

analysis of forum entries. However, the f-score achieved, with a naive Bayes classifier,

was 0.518.

Also, it is interesting to note the work of (Melzi et al., 2014) who applied an SVM

classifier on a feature set comprising unigrams, bigrams and specific attributes to

classify sentences into one of six emotion categories.

2.4.2 Sentiment analysis from biomedical literature

In addition to medical social media data, biomedical literature has been analyzed with

respect to the outcome of a medical treatment. In this context, sentiment refers to the

outcome of a treatment or intervention. Four classes were considered in existing work:

positive, negative, neutral outcome and no outcome. (Niu, Zhu, Li, & Hirst, 2005) used a

supervised method to classify the (outcome) polarity at sentence level. Unigrams,

bigrams, change phrases, negations and categories were employed as features. As per

the results, the algorithm’s accuracy was improved by the usage of category information

Chapter 2: Literature Review

39

and context information derived from a medical terminology ontology—the unified

medical language system.

(Sarker, Mollá-Aliod, & Paris, 2011) developed a new feature called the relative average

negation count (RANC) to calculate polarity with respect to the number and position of

the negations. This count suggests that a larger total number of negations reflects a

negative outcome. The experimental corpus was collected from medical research

papers, which are related to the practice of evidence-based medicine. An NGram

feature set with RANC exploited by an SVM classifier achieved an accuracy of 74.9%.

2.4.3 Sentiment analysis from other medical texts

Researchers have focused medical texts to apply sentiment analysis methods to suicide

notes which was a shared task in an i2b2 challenge. (Cambria, Benson, Eckl, &

Hussain, 2012) introduced Sentic PROMs, where emotion analysis methods were

integrated into a framework to measure healthcare quality. In a questionnaire, patients

answered questions regarding their health status. From the free text entered, emotion

terms such as “happy” and “sad” were detected using the semantic resources WordNet-

Affect and ConceptNet. The extractions were assigned to one of 24 affective clusters

following the concept of hourglass of emotions. Performance was promising with an F-

score of 0.61 being achieved with an SVM classifier. This concept presents the affective

common-sense knowledge in terms of a vector, which shows the location in the

affective space.

2.4.4 Summary of medical opinion mining approaches

In summary, existing methods for sentiment analysis in the medical domain so far have

focused on processing web content or biomedical literature. The clinical narratives

which are used to record the activities and observations of physicians as well as patient

records have not yet been analyzed in this context. In terms of methods, rule-based

approaches are presented, but most papers report on machine-learning methods (SVM,

naive Bayes, and regression tree) using features such as parts of speech and uni-band

trigrams. Although general sentiment lexicons are exploited, experiments showed that

they are not well suited for capturing the meanings in medical texts. In contrast to

Chapter 2: Literature Review

40

“normal” sentiment analysis, additional domain-specific features have been explored in

some approaches, mainly UMLS concepts reflecting medical conditions and treatments.

The main tasks considered have been polarity classification, but new tasks are

emerging including outcome classification, information content classification or emotion

analysis. However, the existing work on medical sentiment analysis does not cover all

facets of sentiment analysis described in Section 2. In summary, there is still a huge

potential for future research.

2.5 N-Grams

N-grams is one of the most used techniques for solving the problem of language

recognition that is used in information retrieval (Jacob and Gokhale, 2007). N-gram

based techniques are used in NLP and its applications where they are used as features

to create vector space and then classification algorithms are applied to this model. The

values of these features are n-grams frequencies. Traditional N-grams can be a

sequence of words in a text, POS tags, or any other elements as they appear one after

the other. N-grams correspond to the number of elements in a sequence (Sidorov,

Velasquez, Stamatatos, Gelbukh, & Chanona-Hernández, 2014). N-grams are

substrings of a large string of length n which is split in to strings of fixed length. For

example, the string “MALWARE”, can be segmented into several 4-grams: “MALW”,

“ALWA”, “LWAR”, “WARE” and so on (Santos, Penya, Devesa, & Bringas, 2009).

N-gram technique has been used for analysis for quite a long time in the field of NLP for

tasks such as language modelling and speech recognition. In 1994, character n-gram

was used mainly for text categorization, but currently, common n-gram (CNG) analysis

has been successfully applied to authorship attribution, detection of dementia and text

clustering.

2.5.1 How N-grams Work

Text n-grams are used widely in NLP for text mining tasks.

N-grams are co-occurring words in each window selected from a sentence and while

computing n-gram we move forward on words.

Chapter 2: Literature Review

41

Consider the following sentence "The cow jumps over the moon". To calculate bigram

where N=2, N-gram for the sentence would be:

• the cow

• cow jumps

• jumps over

• over the

• the moon

For N=3, the n-grams would be:

• the cow jumps

• cow jumps over

• jumps over the

• over the moon

So, bigram generated 5 n-grams whereas trigram generated 4 n-grams. For

unigram, N=1 and this is essentially the individual words in a sentence. When N>3 this

is usually referred to as four grams or five grams and so on.

If X = Number of words in each sentence K, the number of n-grams for sentence K

would be:

𝑁𝑔𝑟𝑎𝑚𝑠𝐾 = 𝑋 − (𝑁 − 1)

Equation 1 Calculating N-Gram (Source: Banerjee & Pedersen, 2003)

It is essential to identify tokens in a sentence as N-grams are formed by connecting

tokens (Banerjee & Pedersen, 2003).

2.5.2 Use and application of N-grams

N-grams are used for a variety of tasks such as developing a language model which

can be unigram or bigram or trigram model. Microsoft and Google have developed web

scale n-gram models which are used for a variety of tasks such as spelling correction,

text summarization and word breaking.

N-grams are also used in developing features for supervised machine learning

classification algorithms such as SVMs, MaxEnt models, Naive Bayes, etc. The idea is

to use tokens such as bigrams in the feature space instead of just unigrams. But the

Chapter 2: Literature Review

42

use of bigrams and trigrams in feature space may not necessarily yield any significant

improvement.

N-gram methodologies are used a great deal in statistical modeling which is used for

predicting the next word in any sentence. The language model predicts that the

probability of the next word depends on last N-1 words.

Shannon game is an application which tries to guess the next letter (Shannon, 1951).

(Damashek, 1995) measured topical similarity in unrestricted text using n-grams while

(Huang, Peng, Schuurmans, Cercone, & Robertson, 2003) identified boundaries of

sessions using n-grams in a large collection of Livelink log data. (Cavnar & Trenkle,

1994) researched electronic documents, and they calculated the frequency of n-grams

in terms of textual errors, such as spelling and grammatical errors. (Roark, Saraclar, &

Collins, 2007) used a discriminative n-gram approach for speech recognition. N-gram

language modeling can be used for optical or speech character recognition, handwriting

recognition, spelling correction and statistical machine translation. Spelling errors can

be detected using character n-grams and is used in predicting topic continuations in

search engine queries, more than word n-grams.

(Mcnamee & Mayfield, 2004) used the character n-gram method for multilingual text

retrieval. They aimed to show that the character n-gram tokenization can provide

retrieval accuracy better than the other language specific approaches. (Liu & Kešelj,

2007) studied automatic classification of web user navigation patterns, and they

implemented the character n-gram method for capturing textual content of web pages.

(Kanaris & Stamatatos, 2007) studied about webpage genre identification for improving

the quality of search engines, and they applied the character n-gram method to identify

of webpage genres. (Chau, Lu, Fang, & Yang, 2009) researched the character usage of

Chinese search logs from Chinese search engines; since the character n-gram method

is independent from language, they implemented this method to their study without any

difficulty. (Vilares, Vilares, & Otero, 2011) used the classic stemming based methods

and the character n-gram method for identifying spelling mistakes and make corrections

in Spanish. They compared these methods and showed performance results in their

study. In addition to these studies, (El-Nasan A. & M., 2002; Senda & Yamada, 2001)

Chapter 2: Literature Review

43

used the character n-gram method in handwriting recognition (Gencosman, Ozmutlu, &

Ozmutlu, 2014).

Next, we look at code which can be used to generate N-grams.

2.5.3 Pseudo-code to generate N-grams

The following code may be used to generate N-gram(s); given length of n-gram to be

generated and a sentence, a list is returned which will hold the list of n-grams

generated.

void GenerateNGrams(int N, String sent) {

 String [] tokens = sent.split("\\s+"); //split sentence into tokens

 List<string> ngramList = new List<string>();

 //GENERATE THE N-GRAMS

 for (int k=0; k < (tokens.length - N+1); k++) {

 String s="";

 int start=k;

 int end=k+N;

 for (int j=start; j<end; j++) {

 s=s+""+tokens[j];

 }

 //Add n-gram to a list

 ngramList.add(s);

 }

}

2.6 Gaps and Key Challenges

Solutions for sentiment analysis are being developed, typically by reducing the amount

of human effort needed to classify text. But there are challenges that have been

identified and are applicable to this thesis.

1. Detecting fake reviews and spam, which is done by identifying duplicates and outliers

and the reputation of reviewers.

Chapter 2: Literature Review

44

Fake reviews refer to fake or bogus reviews which misguide the users or customers by

providing them ‘false’ positive or negative opinion about any object. Spam makes

opinion or sentiment analysis useless in many areas and is a challenge faced by

sentiment analysis and researchers (Chandni et al., 2015).

2. The integration of opinion with behavior and implicit data, to validate and provide

further analysis into the data beyond opinion expressed.

3. Availability of opinion mining software, currently can only be afforded by

organizations and governments, but not by citizens. In other words, governments

have the means today to monitor public opinion in ways that are not available to the

average citizen. Citizens produce and publish content but are unable to analyze it.

4. The usability and user-friendliness of tools need to be improved so as to be usable by

citizens and not just by data analysts (Osimo & Mureddu, 2012).

5. Language Problem: Researchers always face a challenge for building lexicons,

corpora and dictionaries for any language although there are a number of resources

available for English language.

6. NLP processing needs more enhancement with respect to domain-dependent

sentiment analysis and or context-based mining, which will give good results

compared to domain independent corpus. But domain-dependent corpora are more

difficult to build (Chandni et al., 2015).

2.7 Summary

This chapter presented a literature review of areas closely aligned with the topic of this

thesis. It was found that current research focusses on: Reduction of human effort

needed to analyze content; Semantic analysis through lexicon/corpus of words with

known sentiment for sentiment classification; Identification of opinionated material to be

analyzed; and Computer-generated reference corpuses in the healthcare field. We then

looked at N-Grams, which is a technique widely used for text mining, the algorithm used

Chapter 2: Literature Review

45

to calculate n-grams and the pseudo code which can be written in any programming

language to generate n-grams.

Current gaps in research and key challenges in the field were also presented.

Chapter 3: Data mining and NLP

46

Chapter 3: Data mining and NLP

3.1 Introduction

Literature on sentiment analysis was reviewed in the previous chapter where we also

looked at the different tools and methods, and areas of application of sentiment

analysis. This chapter focuses on data mining and the process and stages of knowledge

discovery. Section 3.2 introduces data mining while in the next sections we discuss

KDP, followed by stages of KDP. In Section 3.5, we discuss text mining where we look

at the seven practice areas where text mining is applied and the interaction between

these areas. After this, we discuss NLP and its components which is one of the key

practice areas in the discussion of text mining.

3.2 Data Mining

Data mining is mainly used to make sense of huge volumes of unsupervised data in

different domains. Data mining users are domain experts who own and collect data

which means that they understand data and the processes that are used to generate it.

Businesses routinely collect huge volumes of data and invest huge amount of time to

make sense of that data. Business houses often use data mining to increase profit, gain

competitive advantages and gain better insight of the domain to create novel

approaches to problem solving.

Data mining is mainly classified into three major activities:

1. Making sense of data is the first key activity which varies depending on the user’s

experience.

2. Knowledge derived should be useful, meaningful, valid and novel for the data owners

to understand and create models that can be described in easy to understand terms,

making this the second key activity which requires generated models to be valid.

3. Finally discovered knowledge must be novel. We should understand that data mining

is about analyzing large amounts of data and requires the use of data mining

Chapter 3: Data mining and NLP

47

techniques to analyze and reduce the data in terms of both dimensionality and

quantity.

Data mining mostly deals with unsupervised data as it is much easier and less costly to

collect unsupervised data as with supervised data we need to have known inputs that

correspond to known outputs which are determined by domain experts. This makes it

important to understand the process that leads to new knowledge discovery, which is a

sequence of steps to be followed to discover patterns in data. These steps can be

discovered with the help of an open source or commercial software tool. Process

models are used to formalize KDP and this helps institutions to understand, plan and

execute KDP which in turn helps save time and cost. Steps in process model are non-

trivial and involve multiple iterations of interaction with data owners (Baitharu & Pani,

2016).

3.3 Knowledge Discovery Process (KDP)

As previously mentioned in Chapter 1, Knowledge Discovery is the process of

evaluating data from various sources and viewpoints and putting it together into useful

information. KDP needs to be structured as a standardized process model for the

following reasons:

1. Product of data mining should be useful to the owners. Unstructured and blind

application of data mining frequently results in meaningless knowledge which does

not contribute to problem solving, ultimately leading to failure of a project. A well-

defined process would result in an understandable, novel and valid product.

2. A logical, well-thought out structured approach to KDP can help any decision maker

understand the importance and value as well as the mechanics behind KDP. There

is huge untapped potential knowledge available in possibly valuable data which

humans may fail to understand. Decision makers often do not want to put in the

time and money on formal methods of knowledge extraction from data but often rely

on domain experts for information. However, being the ultimate decision maker,

they frequently end up trying to understand the technology applied to create

Chapter 3: Data mining and NLP

48

solutions. Logical and structured process models help resolve any doubts and

questions they may have.

3. A solid grounded framework is required for knowledge discovery projects and

require significant project management effort, team work and careful scheduling and

planning.

4. Knowledge discovery projects should use well-defined models like waterfall or agile

methodologies like software engineering does, which is a relatively new and

dynamic field.

5. Modern data miners need to learn accepted industry standards and standardization

would help in creating news methods and procedures which will enable end users to

deploy their projects easily and would directly lead to projects which are cheaper,

faster, manageable and more reliable. Altogether, this would promote the creation

of business terminologies which will result in greater acceptability and exposure for

the field of knowledge discovery (Fayyad, Piatetsky-Shapiro, & Smyth, 1996).

3.4 Stages of KDP

KDP depends heavily on techniques from statistics and machine learning and makes

use of ideas from database query, machine learning, visualization and artificial

intelligence areas, the focus being the creation of techniques for extracting knowledge.

Figure 4.1 shows five important steps in KDP and these steps are explained

subsequently.

Figure 5 KDP Diagram (Source: (Fayyad et al., 1996)

1. Data selection: In this step, the task related to analysis task is selected from

datasets or databases.

Chapter 3: Data mining and NLP

49

2. Data preprocessing: Missing observations are replaced, extreme values, data noise

and inconsistencies are removed.

3. Data transformation and reduction: In this step, data is converted into convenient

structures. Here we try to find useful structures to implement data mining.

4. Data mining: We select suitable KDP or data mining algorithm to extract data

patterns.

5. Interpretation or evaluation: Is used by user to understand and extract knowledge

from the patterns mined, this interpretation is typically carried out by visualizing the

models, patterns or the data for the models (Kurgan & Musilek, 2006; Reinartz,

2002).

After looking into data mining and KDP, next we look at text mining and text analytics to

understand how data mining and NLP are used to extract, analyze and process

structured and unstructured data.

3.5 Text Mining

Text mining and text analytics are terms used to describe a range of technologies for

processing and analyzing semi or unstructured text data. We need to know both types

of techniques so we can apply powerful algorithms to large document databases

helping to convert them to structured and numerical formats, which can be used to

classify documents. Text mining is emerging out of a group of related and distinct but

related fields and due to the disparity and breadth of these distinct fields it becomes

difficult to characterize what text mining is. This situation is further complicated by the

fact that different areas of text mining are in different stages of maturity. There is a total

of seven different text mining practices that we need to consider when talking about text

mining (G. Miner, January 2012). Figure 6 shows the seven practice areas and these

are explained in the section that follows.

Chapter 3: Data mining and NLP

50

Figure 6 Text Mining (Source: (G. Miner, January 2012)

3.5.1 The Seven Practice Areas of Text Analytics

Text mining has been divided into seven practice areas, based on the uniqueness of the

characteristics of each of these areas. Though these practice areas are distinct they are

interrelated as well, as explained here:

1. Search and Information Retrieval (IR): Storage and retrieval of text documents,

including search engines and keyword search.

2. Document clustering: Grouping and categorizing terms, snippets, paragraphs, or

documents, using data mining clustering methods.

3. Document classification: Grouping and categorizing snippets, paragraphs, or

documents, using data mining classification methods based on models trained on

labeled examples.

4. Web mining: Data and text mining on the Internet, with a specific focus on the scale

and interconnectedness of the web.

Chapter 3: Data mining and NLP

51

5. Information extraction (IE): Identification and extraction of relevant facts and

relationships from unstructured text; the process of making structured data from

unstructured and semi structured text.

6. NLP: Low-level language processing and understanding tasks (e.g., tagging part of

speech); often used synonymously with computational linguistics.

7. Concept extraction: Grouping of words and phrases into semantically similar groups

(G. Miner, January 2012).

3.5.2 Interactions between Practice Area

The seven practice areas of text analytics overlap considerably, since many practical

text mining tasks sit at the intersection of multiple practice areas. A visualization of this

overlap between practice areas is shown as a Venn diagram in Figure 7. For example,

entity extraction draws from the practice areas of information extraction and text

classification, and document similarity measurement draws from the practice areas of

document clustering and information retrieval. (G. Miner, January 2012)

Figure 7 Interactions between Practice Areas Source: (G. Miner, January 2012)

Chapter 3: Data mining and NLP

52

In the next section, we discuss NLP and its components which are important for

document classification.

3.6 NLP

NLP is an area of research and application that explores how computers can be used to

understand and manipulate natural language text or speech to do useful things. NLP

researchers aim to gather knowledge on how human beings understand and use

language so that appropriate tools and techniques can be developed to make computer

systems understand and manipulate natural languages to perform the desired tasks.

The foundations of NLP lie in several disciplines—computer and information sciences,

linguistics, mathematics, electrical and electronic engineering, artificial intelligence and

robotics, and psychology, to name a few (Chowdhury, 2003).

Figure 8 Application of NLP (Source: Chowdhury, 2003)

Some of the applications of NLP are: Spelling Correction; Search engines; Speech

engines; Spam classifiers; News feeds; Machine translation; IBM Watson. The

development of these areas is shown in Figure 8. NLP is one of the most niche areas

Chapter 3: Data mining and NLP

53

and requires a very specific skill set with understanding of the language and the tools to

process the language efficiently (Hardeniya, Perkins, Chopra, Joshi, & Mathur, 2016).

3.6.1 Parsing

The process of parsing helps with automatic analysis of a sentence, or an entire

discourse, that is viewed as a sequence of words which allows us to decide the

syntactic structure of a sentence. The grammar for natural languages is ambiguous and

typical sentences have multiple possible analyses. In fact, for a typical sentence there

may be thousands of potential parses most of which will seem completely nonsensical

to a human (Clark, Fox, & Lappin, 2010). Parsing needs a mathematical model of

syntax of language of interest that is expected to be formal grammar, which consists of

a collection of rules that specify elements of the language (words) and how they are

used to create a sentence. Parsing is the core central component of an NLP tool and

helps represent the structure of a sentence as a list or tree. Bottom-up, top-down, left-

corner, head-corner and statistical parsing are some of the strategies used to parse a

sentence. Parsed information is passed to modules that implement pragmatic, semantic

and discourse processing. Therefore, parsing is an important aspect in showing

meaning and determining the structure of a sentence in language processing.

3.6.2 Discourse

Informal language does not consist of isolated pieces of sentences or text but of words

which together form a unified whole which we call a discourse. As discussed, parsing

passes useful information to the module that implements discourse processing, which

tells us how these two components i.e. parsing and discourse, interact with each other.

In this section we discuss discourse, discourse structure and related terms.

Discourse is a piece of writing or serious speech on a subject or conversation or plain

discussion between different people in a language. The text so produced is a set of

coherent and cohesive sentences which helps achieve a communication goal.

Coherence specifically has more to do with a meaningful relation between two words

and how they combine to produce a meaningful discourse structure. The sequence of a

Chapter 3: Data mining and NLP

54

discourse topic is typical of certain genre or document and accounts for the way texts

are segmented and organized by topics (Eugenio, 2005). Interpretation, production and

utterances of phrases whose meaning depends on the context of the discourse and the

fact that a sequence of utterances conveys a meaning which is more than the sum of

the individual utterances are two phenomena which are intrinsic to discourse

processing.

Discourse generation basically deals with generation of coherent text and discourse

processing is the last stage in interpretation of a language after parsing and sematic

analysis. Language generation begins with non-linguistic illustration of information, after

which we can perform discourse processing which imposes order and structure over the

set of messages. This is followed by linearization and planning, which includes

sentence aggregation and relating individual terms to their entities of interest. The final

step in discourse generation is linguistic realization proper, namely, applying the rules of

grammar to produce a text that is syntactically and morphologically correct.

Anaphora or co-reference, helps in setting up referential dependency between two or

more expressions and refers to referentially dependent expressions in natural language

which contribute their meaning to a sentence by helping identify another expression

which provides them their semantic value. For example, consider the following

statement: Mark felt that there was someone watching him. Knowing that ‘him’ refers to

‘Mark’, the pronoun is an anaphor and ‘Mark’ is an antecedent. Both refer to the same

person ‘Mark’. Co-Reference is often used to describe this relation between an

antecedent and anaphor (Liddy, 1990).

3.6.3 Text Categorization

Text categorization has become increasingly important and deals with automated

assignment of natural language texts to predefined categories. Text categorization has

found primary application in assigning subject categories to documents to help

information retrieval. NLP uses text categorization heavily for data extraction.

Categorization is used to filter out unnecessary parts of the document or the whole

document, which is unlikely to have the text or can also be used to route words to

Chapter 3: Data mining and NLP

55

category specific processing modules or create fillers for some fields. In general, text

categorization tries to recreate human categorization judgement.

One approach to building a text categorization system is to manually assign documents

to certain categories and then use inductive learning to assign documents to categories

automatically in future, based on the texts they have. Rules, or boolean expressions,

can be created which capture certain combination of keywords that indicate a class.

Class is more often a subject area such as coffee or person. Apart from manual

classification or hand-crafted rules by domain experts which may exceed or rival the

accuracy of automatic classication, there exists machine learning based text

classification where the rules or decision criteria are more often learned from the

training data. This approach is also known as statistical text classification if the learning

method or algorithm used is statistical. Statistical approach require a large number of

documents for each class and completely eliminates the need for manual classification

(Lewis & Ringuette, 1994; Manning, Raghavan, & Schütze, 2008). Information about

individual words is stored in a lexicon and computational lexical representation

techniques have been created to model lexical knowledge. Computational lexicon helps

perform mapping from phonology or orthography (the system of contrastive

relationships among the speech sounds that constitute the fundamental components of

a language) to some combination of semantic, syntactic and pragmatic information. It is

used to deliver information to modules which is used to analyze or generate speech or

text. Information contained in the computational lexicon depends on the system. For

example, a lexicon for a Part of Speech (POS) tagger would be much simpler as

compared to a lexicon for a natural language interface. Generally we think of commonly

used approaches to lexical representation as forms of attribute-value representation,

and in such formalism information is represented as pairing of attributes and associated

values (Pustejovsky, 2005).

As human beings cannot read, understand or synthesize megabytes or terabytes of

data or text daily, researchers have explored various information management

strategies and the most common of these are information filtering and Information

Retrieval (IR). IR systems are harvesters that bring back useful information from vast

Chapter 3: Data mining and NLP

56

fields of raw information. Information is often available in journal articles or newspapers

and IR systems can retrieve articles that are relevant to the search criteria.

IE systems can transform huge amount of useful information into required text. IE

begins with collecting texts and then transforming them into data that is readable and

can be analyzed. It helps retrieve text fragments and extract information from these

fragments and then puts them together into a coherent framework. Information retrieved

is stored in traditional databases and then data can be retrieved using standard queries.

Currently, IE systems are partly accurate and deal with specific types of texts. IE, from

the perspective of NLP, is a set of tasks which are well defined, use real-world texts,

poses difficult and interesting NLP problems and performance can be compared to

human performance on the same task (Cowie & Lehnert, 1996).

After discussing the different components of an NLP system, we move on to discuss

Word Sense Disambiguation, beginning with a discussion about WordNet.

3.7 WordNet in NLP

WordNet lexicon database is used widely for information retrieval and translation which

require WSD and is a tool that is widely used by the natural language community.

WordNet, which started as a project in 1985, is a semantic dictionary designed to

represent words and related concepts as an interrelated system which is consistent with

the way any human would organise his own mental lexicons. WordNet is not a

traditional dictionary or thesaurus, and is also different from most of the other lexicon

dictionaries compiled before, but it combines the features of both dictionary and

thesaurus (Kreutzer & Witte, 2013).

There were three assumptions made at the initial stages of development, one was

separability hypothesis, which says that every lexical component of any language can

be isolated and studied separately from other components. This idea seemed

promising as a person’s vocabulary grows with time, and phonology and grammar do

not change. The second was patterning, which suggested that people could not master

all the lexical knowledge of any language by remembering every single word’s meaning

Chapter 3: Data mining and NLP

57

separately, but rather by understanding the patterns and relations between different

words. The third assumption was comprehensive hypothesis which suggested a need

for lexical storage like a human’s, and must understand the process of natural

language. At the same time, computational linguists were looking for alternative theories

to express word semantics which would not depend on the decomposition of the word.

Thus, they came up with networks and diagrams to represent semantic relations

between words. In the early days, WordNet was used to decide if relational semantics

could be applied to large lexicons (Kreutzer & Witte, 2013).

WordNet usage for WSD, to begin with, was limited by sparsity of its arcs. For example,

the verb interest is connected to the adjective interesting and noun interest. But since a

noun has more than one meaning or sense, not all of the synonyms are related to the

adjective sense or verb sense and these must be entered manually. Adding more

information about their meaning is useful for machine and human users. A user who

wishes to better understand the definition or gloss can refer to the synsets (set of

synonyms) for more information on verbs, adjectives, nouns and adverbs in that gloss.

This work resulted in the creation of a semantically better annotated corpus, WordNet,

that can be used to test and train natural language systems. (Boyd-Graber, Fellbaum,

Osherson, & Schapire, 2006) tried to improve the density of WordNet and make it a

more efficient tool for natural language by collecting more than 120,000 ratings from

human annotators. The strength links in WordNet are weighted and directed which

helps in expressing more discernable semantic relations. The WordNet lexicon has

nouns, verbs, adjectives and adverbs. Lexical information is organized in terms of word

meanings rather than word forms. (Navigli & Lapata, 2010)

The corpus used for the initial development of WordNet was the Brown corpus.

Adjective pairs were also incorporated along with various synonyms and antonym

dictionaries. A year later, Fred Chang’s list of words were used and added as input.

COMLEX lexicon which had 39,143 words were added as well. As the list of words grew

it became necessary to divide the database. The division into database took the

syntactic categories of the words into account and different files for verbs, nouns,

adjectives and later adverbs. Later verbs and nouns were divided into different classes.

Chapter 3: Data mining and NLP

58

The WordNet team created a lemmatization program which returned the base form of

any word, as WordNet was not able to recognise plurals. In 1991, ConText was

developed which pre-processed text by performing various NLP tasks and the output

was stored in WordNet. In this way, semantic tagging was used to greatly improve the

coverage for words and meanings appearing in WordNet (Kreutzer & Witte, 2013).

The number of glosses in WordNet has grown steadily since 1989 when it had 37,409

synsets and no glosses, until 1995 when it had 91,050 synsets and 75,389 glosses. The

current number is 117597 synsets. The first version of WordNet that was publicly

available was version 1.0 in 1991. However, WordNet is still being worked on. The

current version, 2.1, is available for free download on the WordNet website

http://wordnet.princeton.edu/.

The structure of WordNet is based on the word as a basic unit and thus WordNet does

not decompose words into smaller meaningful units. WordNet also does not contain

units larger than words, such as scripts or frames, which have been proposed as

building blocks for other lexicons. For example, a frame would be a lexicalized concept

that is relevant to a certain type of situation. Frames include both verbs and nouns and

their relations that hold true in the situation in question. Even if WordNet does not have

a frame lexicon its relational semantics network still reflects some of the structure of

frame semantics. For example, verbs like sell and buy are related in the WordNet

lexicon to “commercial transaction”.

The division of words into four separate nets, one for each open word class, also entails

that WordNet has no information about the syntagmatic properties of words. Another

characteristic of WordNet is that unlike other dictionaries it has short phrases, such as

“bad person,” that are thought to be not para-phrasal by single words. These phrases

are needed to fill lexical gaps by serving as connections between two words when there

is no single word with the desired meaning to connect them. These gaps are not

structural artefacts, but quite often, they are lexicalized in other languages, just not in

English.

http://wordnet.princeton.edu/

Chapter 3: Data mining and NLP

59

Also, a distinction that has been made between meanings of words is the separation of

meanings into the camps of lexical and encyclopedic knowledge. But this distinction

was not incorporated into WordNet since WordNet does not try to include any of the

latter, although the synonym set information provided by WordNet often goes beyond

lexical meaning. Although initially the only information synsets were supposed to hold

was pointers to other synsets, it was felt that a description of the current sense would

help in distinguishing highly similar synsets for words that appear in many synsets.

Later, this was found to be helpful in dealing with many technical concepts whose

lexical definitions intermixed with encyclopedic knowledge. Thus, overall WordNet found

the need to store more than only lexical meaning, even if it was meant only for

reasoning and inference purposes (Kreutzer & Witte, 2013).

3.7.1 How does WordNet work?

Lexical data is arranged in terms of the word meanings rather than the word forms.

Senses in WordNet database (http://wordnetweb.princeton.edu/perl/webwn) are

represented by synonym sets or synsets with words in each synset sharing a common

sense of the word. For example, consider the senses of verb drink: “consume liquids”,

“consume alcohol” and “toast”; See Figure 9 for a representation of this information.

Each word in a synset is associated with a part of speech which is denoted by a

subscript where n stands for noun, v for verb, a for adjective, and r for adverb. Each

synset is associated with a textual definition which explains the meaning of the word.

The synsets are ranked as per the frequency of occurrence in the SemCor corpus which

is a subset of Brown corpus with word senses. A superscript denotes the ranking of the

sense of the word. For example, the 5th sense of the word drink in the figure above

would be denoted as drinkv
5. The latest WordNet version 3.0 contains 155,000 words

arranged in more than 117,000 synsets. Semantic and lexical relations are also

encoded in WordNet. Lexical relations connect pairs of word senses, whereas, semantic

relations relate synsets. Lexical relations in WordNet are nominalization (e.g., the noun

drinkingn
1 is a nominalization of the verb drinkv

1), antonymny (e.g., colda
1 is an antonym

of hota1), pertainymy (e.g., dentala1 pertains to toothn
1), and so on (Navigli & Lapata,

2010).

Chapter 3: Data mining and NLP

60

Chapter 3: Data mining and NLP

61

Figure 9 WordNet Synsets (Source: http://wordnetweb.princeton.edu/perl/webwn)

In this research, we use SentiWordNet, which was created from WordNet and contains

all semantically similar synsets of WordNet, to help calculate the sentiment score of a

sentence. This is discussed in Chapter 4.

3.8 Word Sense Disambiguation (WSD)

Humans use words that can be interpreted in many ways; such ambiguity is common

and based on the context of the conversation or sentence.

1. I like poaching

2. I like poaching eggs

The above sentences clearly have different meanings. A machine needs to break down

sentences into textual information and create data structures which are analyzed to

understand the meaning of the sentences. Demand for automatic methods of processing

large amount of unstructured data such as web pages, data warehouses and corpora has

increased in the last few decades. Traditional methods of information retrieval always fail

when they are applied to such data as they do not extract relevant information and are

not able to discard documents which fail to meet users’ queries. WSD is an intermediate

task for text disambiguation that can be configured as a stand-alone module or integrated

into a bigger application. (Navigli, 2009)

Chapter 3: Data mining and NLP

62

WSD helps with computational interpretation of meaning of words and it relies heavily on

the approach to word sense representation, sense inventory granularity, unrestricted

nature versus domain-orientated nature of words and the set of words to disambiguate

the meaning. WSD can be summarized as a technique applied to a set of words to

associate suitable sense using one or more knowledge sources such as a corpus, which

can be annotated or unlabeled or more structured resources such as machine readable

dictionaries or semantic networks (Navigli, 2009).

However, WSD is a difficult task when you consider the computational limitations.

Knowledge resources, information about words, senses and context in the target word

were some of the areas which are considered important for NLP. Generalization was

difficult back in the 70’s considering the limitation of computing power. Large scale lexical

resources were released in the 80’s which helped in extracting knowledge using

automatic methods. The 90’s saw the creation of periodic evaluation campaigns and

employment of massive statistical methods which has continued to present days (Navigli,

2009).

Improved WSD systems were developed with the availability of annotated corpora.

Supervised algorithms greatly outperform unsupervised algorithms but they often need

huge amounts of annotated training data, and creating this data is labor intensive and

an expensive task and must be repeated for new languages or domains. Given the data

requirements for supervised classification and the current scarcity of suitable data for

many text genres and languages, unsupervised approaches offer hope for large-scale

sense disambiguation. Unsupervised approaches do not use labeled training data to

perform sense disambiguation. Unsupervised approaches exploit the structure and

relations per pre-existing sense of the repository or inventory to perform disambiguation

task accurately. A restrictive view of “unsupervised” applies to methods for sense

disambiguation, which tries to automatically find all senses of a word without labeled

training data (Navigli & Lapata, 2010). Graph-based methods which represent a

knowledge base in graphs have become a popular choice for domain-independent

knowledge-based WSD systems and offer the advantage of scanning through the entire

knowledge base during the disambiguation process.

Chapter 3: Data mining and NLP

63

There are three mainstream approaches to word sense disambiguation:

1. Supervised WSD: this approach uses machine learning to understand a classifier

for a target word from the labeled training data. Among supervised methods,

memory based and SVM approaches have been proven to be best systems.

2. Knowledge-based WSD: these methods exploit knowledge resources such as

dictionaries or thesauri to decide the senses of words in context. They have the

advantage of a wider coverage, thanks to the use of large amounts of structured

knowledge. The best knowledge-based systems in the literature, such as Degree or

Personalized PageRank, exploit WordNet or other resources to build a semantic

graph and exploit the structural properties of the graph to choose the proper senses

of words in context.

3. Unsupervised WSD: these are Word Sense Induction techniques aimed at

discovering senses automatically based on unlabeled corpora to offer a sense

choice for a word in context. They do not exploit any manually sense-tagged

corpus.

The question of which approach is best in general, and for which application, is still very

much open. In fact, until recently, the general belief was that supervised WSD

performed better than knowledge-based WSD. However, recent results show that, in the

presence of enough knowledge or within a domain, knowledge-rich systems can beat

supervised approaches while offering, at the same time, much wider coverage (Navigli,

2009).

3.8.1 Performing WSD

The main goal of sentiment analysis is to use automated methods to extract emotions

from text or documents, while analyzing the overall sentiment of the document which

needs us to extract information from the text. Sentiment lexicons are often employed to

find the words used in the document which tells us about the sentiment of the word.

WordNet is the foundation for SentiWordNet lexicon which uses a semi-supervised

approach to constructing a vocabulary database which helps us find out the polarity of

Chapter 3: Data mining and NLP

64

the document. SentiWordNet can be considered as a general sentimental vocabulary

database which helps us find sentimental words in a word of mouth document. Word

sense identification affects sentiment analysis which is due to the fact that one word can

have more than one meaning and the meanings expressed by words change, based on

background and environment. Sentimental attitude changes when meaning of the word

changes, which affects the overall sentiment analysis results. SentiWordNet provides us

with meanings of a word which are considered as senses and each sense is assigned

sentiment polarity score; sense 1 characterizes the sense used most often in general

situations.

Two approaches are used to select sentiment scores for words that have multiple

meanings. The first is to pick sense 1 of the word to serve as the meaning of the word in

the text, this method does not consider the domain knowledge and usually results in

biased sentiment analysis results. For example, in the context of movie reviews, the

word “suck” is most likely to mean “inappropriate or lousy”, and is used to express the

opinion that the movie is very poor. The sentiment, in this case, is negative. However, in

SentiWordNet, the meaning represented by sense 1 of the word is “a sucking action”

and is classified as having neutral sentiment. If the sense 1 meaning is automatically

selected, the sentiment would clearly be incorrect. The second method is to take the

average of the sense scores for all meanings for words with multiple meanings, and use

the average sentiment score to conduct analysis. However, this method does not take

the effects of domain knowledge into consideration, and could also result in issues with

the accuracy of sentiment analysis.

(Hung & Chen, 2016) recognized that words used in different domains may have

different senses, different sentiment values and even different sentiment orientations.

Figure 9 shows the structure of their approach.

Chapter 3: Data mining and NLP

65

Figure 10 WSD Workflow (Source: Hung & Chen, 2016)

Preprocessing of documents

First, we remove all the non-necessary tags from document and then as words may

have different meanings we use different parts of speech (POS) for a word. Third we

can lemmatize the word to its base form using SentiWordNet or WordNet and then

perform word cleansing by removing stop words.

Tokenization

Tokens are features of text and the basic unit for processing. Two approaches which

stand out are word-based and phrase-based approaches. Word based tokenization,

which is also known as unigram-based approach, treats each single word as a feature.

After preprocessing a word of mouth text, we use term frequency to select other

important features from the remaining word. Term frequency of a word basically implies

that it is significant in relation to the text. If a word occurs multiple number of times in a

document, it is an important concept to the document. Word-based tokenization does

not understand the relationship between words. Phrase-based tokenization, also known

Chapter 3: Data mining and NLP

66

as bigram language model, helps decide the relationship between two words through

calculation of the number of times any two words appear together in a text document

(Hung & Chen, 2016).

3.8.2 WSD using SentiWordNet

SentiWordNet is based on WordNet, which shows possible senses for a word and lists

each sense in order of usage frequency. A word may have different senses with

different sentiment values or even different sentiment orientations. SentiWordNet can

provide a word with a proper sentiment orientation and sentiment value, only if the

sense of this word is clear. Thus, a WSD-based lexicon is domain oriented. A word may

have several senses depending on the correct part of speech. The proper sense of a

word can be found by comparing the target document with the glosses (definitions) of

each sense of this word, defined in WordNet (Hung & Chen, 2016).

3.9 Summary

To summarize, we looked at data mining, KDP and the stages of KDP. Next, we

considered text mining and the seven practice areas of text analytics and following this,

we looked at NLP which is one of the seven practice areas. We then looked at the

different components of NLP, followed by WordNet and finally WSD. Word sense

disambiguation is one of the most important phases of sentiment analysis and can be

performed in a supervised or unsupervised manner or by using knowledge-based ways

of performing WSD.

Chapter 4: Analyzing Negative Sentiments

67

Chapter 4: Analyzing Negative Sentiments

4.1 Introduction

Sentiment analysis is one of the major sub-problems in NLP and when applied to

analyzing review comments, it helps in understanding the aspect or topic being

reviewed, and whether the review are positive or negative. Data can be structured or

unstructured; while structured data can be easily analyzed, analyzing unstructured data

needs complex algorithms. Different levels of sentiment analysis can be performed.

Document-level analysis looks at analyzing a document while sentence-level analysis

helps analyze one sentence at a time and provides us with a summary of the sentence

analyzed. Aspect-level analysis, analyzes the overall opinion on an entity and is the

most basic form of sentiment analysis. Sentiment words have an important role in

identifying the sentiments in a document which are combined to form a sentiment

lexicon. Sentiment lexicons are used by complex algorithms to analyze the sentiments

of a document which can be subjective or objective. Subjective sentences provide

opinion about a person or subject and are easy to analyze whereas objective sentences

express irony or negation and are more of a challenge to analyze (Medhat, Hassan, &

Korashy, 2014).

Supervised and unsupervised learning algorithms or techniques are two of the main

techniques used for sentiment classification. Text classification based on classifiers are

used for supervised learning which uses frequency and terms, phrases and words,

sentiment shifters and part of speech, negation and so on, to analyze or classify a

document. Unsupervised techniques use fixed syntactic patterns and POS tagging to

identify the entity, aspects and opinions. Maintaining a sentiment word dictionary like

SentiWordNet or WordNet, based on the weight of the opinions is another approach for

unsupervised learning which helps in understanding the effect of negation or sentiment

shifting words. (Medhat et al., 2014)

Chapter 4: Analyzing Negative Sentiments

68

4.2 SentiWordNet

SentiWordNet was created by automatic annotation of all semantically similar synsets of

WordNet, based on the notion of negativity, positivity and neutrality. Each synset from

WordNet is related to three numerical scores denoting sentiment, which indicates how

negative (Neg), positive (Pos) or neutral ((Obj) for objective) the terms contained in the

synset are. Different opinion-related properties are found for different senses of the

same term. Each of the scores are in the range 0.0. to 1.0 and the sum of the three

equals 1.0 for each synset. The scores show that the synset has each of the opinion-

related properties to some degree which gives us an idea about the sense of the

corresponding term. For example, the synset for adjective estimableJ
1 in SentiWordNet

1.0 for the sense “deserving of respect or high regard” has a Pos score of 0.75. Neg

score of 0.0 and Obj score of 0.25, while the synset for adjective estimableJ
3 belonging

to the sense “may be computed or estimated” has a Pos and Neg score of 0 but an Obj

score of 1.0. SentiWordNet 3.0 can be freely downloaded from

http://sentiwordnet.isti.cnr.it/ for non-profit research purposes (Baccianella, Esuli, &

Sebastiani, 2010).

4.3 Negation Identification and Calculation in Sentiment Analysis

Sentiment analysis is used to find out positive and negative sentiments (feelings,

opinions and emotions) in text which are based on the meaning of words used in

different situations and scenarios. Different grammatical rules can be used to express

similar feelings in written text which may have negations which can change the meaning

of words. Therefore, it becomes necessary to identify negation and its scope within a

sentence to correctly identify sentiments expressed (Asmi & Ishaya, 2012).

Finding negation is a complex task and its complexity increases with use of different

negation words. Along with negation words such as nor, not, and so on, we must look

out for prefixes, suffixes, diminishers and word intensifiers which can introduce negation

in a sentence and there is a need for considerable effort to enlist such words. Negation

sentences have been considered. The pseudo code that follows calculates negative

polarity for a word that the word has a higher negative score (Asmi & Ishaya, 2012).

Chapter 4: Analyzing Negative Sentiments

69

Table 3: Negation Identification (Source: Asmi & Ishaya, 2012)

Table 3 can be used for identifying negation in ‘part of sentence’. Part of sentence is
used to calculate the polarity of a sentence. A sentence can have either simple or
complex part of sentence like Noun phrase which is a pronoun and a noun, or Verb

Chapter 4: Analyzing Negative Sentiments

70

phrase which is a verb and a noun. The following details possible parts of sentence in a
sentence; the subsequent example farther down the page works with an actual
complete sentence.

(Sentence
(Noun Phrase (Pronoun, Noun))
(Adverbial Phrase (Adverb))
(Verb Phrase (Verb)
(Sentence

(Verb Phrase (Verb)
(Noun Phrase (Noun))

))))

Sentiment polarity calculation has always been a nested process and this process helps

us to calculate the sentiment of the inner most level first and then moves on to higher

levels which is called as sentiment propagation. The process helps us to calculate the

intensity and polarity of the phrases and words and negative polarity is also considered

while calculating the sentiment. The following examples illustrate the process of polarity

calculation (Asmi & Ishaya, 2012).

‘They have not succeeded, and will never succeed, in breaking the will of this valiant people.’

(Sentence

(Pronoun They)
(Verb Phrase

(Verb Phrase (have not)
(Verb Phrase (Verb succeeded)))
(and)
(Verb Phrase (will)

(Adverbial Phrase (Adverb never))
(Verb Phrase (succeed)))
(Prepositional Phrase (in)

(Sentence
(Verb Phrase (breaking)
(Noun Phrase
(Noun Phrase (the will))

(Prepositional Phrase (of)
(Noun Phrase (this valiant people)))))))))

The negation word ‘not’ is affecting ‘succeeded’ (+) (which is a positive word) while

never is affecting succeed (+). Both successes are in breaking (-) the will of people who

are valiant (+) people. As they have not succeeded in doing something negative and the

polarity of sentence is positive as shown in Figure 11.

Chapter 4: Analyzing Negative Sentiments

71

Figure 11 Negation Identification and Calculation (Source: Asmi & Ishaya, 2012)

4.4 Summary

In this chapter, we looked at SentiWordNet for use in sentiment analysis. We also

considered the effect of negative words and calculating negation in sentiment analysis.

Chapter 5: Methodology and Framework

72

Chapter 5: Methodology and Framework

5.1 Introduction

In this chapter, we start by first looking at evaluation measures used in NLP and the

typical workflow of a sentiment analysis module. We then discuss Natural Language

Toolkit (NLTK) which is a python module and then we go on to look at the different

components of NLTK which can be used to process and analyze the sentiments

expressed by a document. Finally, we discuss various classification algorithms that can

be used in sentiment analysis classification.

5.2 Evaluation

Several different evaluation techniques are required to be used to verify whether the

classification models produce the correct output. And this result is necessary to decide

the accuracy of the model and the purposes it can be used for. Evaluating a tool is also

considered to be an effective mechanism to make future improvements to a model

(NLTK, 2017).

5.2.1 The Test Set

Evaluation techniques generally compute a score for a model by comparing the labels

generated for input in a test set with the correct labels for that input. Test and training

sets used need to have the same format, but they should be unique enough so that the

classification model learns to generalize to new samples and will not give incorrect high

scores. The least frequently occurring labels should occur at least 50 times in a test set

for a classification task that has many labels or may include uncommon labels. If the

test set has a number of labels which are closely related, then the size of the test set

needs to be increased to make up for the lack of diversity which will produce skewed

evaluation results. For example, consider the following code sample where we create

test set and training set by randomly assigning sentences from the data source (brown

corpus – category ‘news’).

import random

Chapter 5: Methodology and Framework

73

from nltk.corpus import brown

tagged_sents = list(brown.tagged_sents(categories='news'))

random.shuffle(tagged_sents)

size = int(len(tagged_sents) * 0.1)

train_set, test_set = tagged_sents[size:], tagged_sents[:size]

The above code sample lets us create test and training set which would be very similar

and would generate results with high score. So, a better approach would be to create

test and training set from different documents as follows

file_ids = brown.fileids(categories='news')

size = int(len(file_ids) * 0.1)

train_set = brown.tagged_sents(file_ids[size:])

test_set = brown.tagged_sents(file_ids[:size])

A more stringent evaluation can be achieved by using test set from a document that is

related to training set

train_set = brown.tagged_sents(categories='news')

test_set = brown.tagged_sents(categories='fiction')

A classifier that performs well on this test set, can be confidently used to generalize well

beyond the data that it was trained on.

5.2.2 Accuracy

Accuracy measures the percentage of inputs in the test set which have been labelled

correctly by the classifier. For example, a gender name classifier which predicts the

correct name for 60 times against a test set containing 80 names would have an

accuracy of 75% (i.e. 60/80).

nltk.classify.accuracy() is the function used to calculate the accuracy of a classifier on a

test set:

classifier = nltk.NaiveBayesClassifier.train(train_set)

print 'Accuracy: %4.2f' % nltk.classify.accuracy(classifier, test_set)

Accuracy: 0.75

It is also important to take into consideration the frequencies of each class label in a test

set. For example, consider a classifier that decides the correct sense of the word ‘bank’,

Chapter 5: Methodology and Framework

74

where different word senses may be: financial institution; earth mass or hill side; or a

row of objects. If we evaluate this classifier on a financial news-wire text, we would find

that bank is matched to financial-institution sense 19 out of 20 times with an accuracy of

95%. Instead, if we used a more balanced corpus where the most frequent word sense

has a frequency of 40%, then a high accuracy score would be a much more significant

result.

5.2.3 Precision and Recall

Search related or IR task can provide us with misleading accuracy. A model which

labels every document as irrelevant will give us an accuracy score of 100% as can be

seen in Figure 9, as the number of irrelevant documents outweighs the ones that are

relevant for the task.

Figure 12 Precision and Recall (Source: NLTK, 2017)

Hence it is necessary to use a different set of measures for search tasks, based on the

number of items in each of the four categories as shown in Figure 9:

• True positives: are relevant items that were correctly found as relevant.

• True negatives: are irrelevant items that were correctly found as irrelevant.

• False positives: are irrelevant items that were incorrectly found as relevant.

• False negatives: are relevant items that were incorrectly found as irrelevant.

We can define the following metrics based on the above four numbers:

Chapter 5: Methodology and Framework

75

• Precision, which shows how many of the items that were found were relevant,

which is 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃).

• Recall, which shows how many of the relevant items that were found, is 𝑇𝑃/(𝑇𝑃 +

𝐹𝑁).

• The F-Score or F-Measure combines the precision and recall giving a single score

and is defined as the harmonic mean of the precision and recall:

(2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

Equation 2 F-Score or F-Measure Source: (NLTK, 2017)

5.3 Typical workflow of sentiment analysis module

Having looked at evaluation measures that we will use in this thesis, we go on to

consider the typical workflow of a sentiment analysis module (Zhang & Desouza, 2014).

Step 1. Set up input parameters & extract raw text data (online reviews, blogs,

Tweets, or other documents).

Step 2. Process raw data:

• Clean up text

• Remove stop words

• Stemming

• Translate text into corpus matrices

Step 3. Conduct a few classifiers to calculate the polarity of the formatted data.

Step 4. Evaluate the accuracy and efficiency of each algorithm.

Step 5. Produce outputs e.g. sentiment scores, spreadsheets, graphs.

5.4 Natural Language Toolkit (NLTK)

NLTK is a python module which offers many NLP processing tasks along with data

types, corpora and readers, tutorials, animated algorithms and problem sets. Data types

in NLTK include tags, chunks, trees, token and feature structures. Implementation for

stemmers, taggers, parsers, chunkers, classifiers, clusterers and tokenizers are offered

in interface definitions and reference. Corpus readers and samples include Chunking

corpus, Brown Corpus, Treebank, SentiWordNet and CMU Pronunciation Dictionary.

NLTK is ideally suited for learning or conducting research in NLP and has been used

Chapter 5: Methodology and Framework

76

successfully in prototyping platforms, building research systems and teaching or

individual study tool. Python as a programming language has a minimal learning curve

compared to other languages in the market and it allows users to explore via its

interactive interpreter. Code in python can be encapsulated and reused easily, it has an

extensive library and offers tools for graphical and numerical processing. NLTK has

grown significantly as each new processing task added requirements on input and

output data. As the numbers of tasks multiply, data management becomes more and

more difficult. For more information, including documentation, download pointers, and

links to courses that have adopted NLTK, please see: http://nltk.sourceforge.net/ (Bird,

2006).

Next, we look at Natural Language Toolkit, a module which can be used to build a

sentiment classifier and analyzer, and which was used in this research.

5.5 NLTK Processing Tasks

In this section, we look at some of the NLTK processing tasks that are used in every

sentiment analysis process (Perkins, 2014).

5.5.1 Tokenization and Stemming

The following three lines of a program show how to import a tokenize package, define a

text string and tokenize the string on whitespace to create a list of tokens. There are

several other tokenizers which can be used.

text = ’This is a test.’

list(tokenize.whitespace(text))

[’This’, ’is’, ’a’, ’test.’]

Then we can stem the output from tokenizer as follows:

text = ’stemming is exciting’

tokens = tokenize.whitespace(text)

porter = stem.Porter()

for token in tokens:

print porter.stem(token)

http://nltk.sourceforge.net/

Chapter 5: Methodology and Framework

77

Output: stem word is excit

The corpora included with NLTK come with corpus readers that understand the file

structure of the corpus, and load the data into Python data structures. For example, the

following code reads part of the Brown Corpus. It prints a list of tuples, where each tuple

consists of a word and its tag.

for sent in brown.Tagged(’a’):

print sent

[(’The’, ’at’), (’Fulton’, ’np-tl’), (’County’, ’nn-tl’), (’Grand’, ’jj-tl’), (’Jury’, ’nn-tl’), (’said’, ’vbd’), ...]

NLTK also offers support for conditional frequency distributions, making it easy to count

items of interest in specified contexts. Such information may be useful for studies in

stylistics or in text categorization.

5.5.2 Tagging

The simplest possible tagger assigns the same tag to each token (Perkins, 2014):

my_tagger = tag.Default(’nn’)

list(my_tagger.tag(tokens))

[(’John’, ’nn’), (’saw’, ’nn’), (’3’, ’nn’), (’polar’, ’nn’), (’bears’, ’nn’), (’.’, ’nn’)]

Simple tagger will tag only 10–20% of the tokens correctly. However, it is a reasonable

tagger to use as a default if a more advanced tagger fails to determine a token’s tag.

The regular expression tagger assigns a tag to a token per a series of string patterns.

For instance, the following tagger assigns cd to cardinal numbers, nns (nouns) to words

ending in the letter s, and nn (noun) to everything else:

patterns = [

(r’\d+(.\d+)?$’, ’cd’),

(r’\.*s$’, ’nns’),

(r’.*’, ’nn’)]

simple_tagger = tag.Regexp(patterns)

list(simple_tagger.tag(tokens))

[(’John’, ’nn’), (’saw’, ’nn’), (’3’, ’cd’), (’polar’, ’nn’), (’bears’, ’nns’), (’.’, ’nn’)]

Chapter 5: Methodology and Framework

78

The tag.Unigram class implements a simple statistical tagging algorithm where it

assigns the tag for every token. For example, it will assign the tag jj to any occurrence

of the word frequent, since frequent is used as an adjective (e.g. a frequent word) more

often than it is used as a verb (e.g. I frequent this cafe). Before a unigram tagger can be

used, it must be trained on a corpus, as shown below for the first section of the Brown

Corpus.

unigram_tagger = tag.Unigram()

unigram_tagger.train(brown(’a’))

Once a unigram tagger has been trained, it can be used to tag new text. Note that it

assigns the default tag ‘None’ to any token that was not encountered during training.

text = "John saw the books on the table"

tokens = list(tokenize.whitespace(text))

list(unigram_tagger.tag(tokens))

[(’John’, ’np’), (’saw’, ’vbd’), (’the’, ’at’), (’books’, None), (’on’, ’in’), (’the’, ’at’), (’table’, None)]

We can instruct the unigram tagger to ‘back off’ to our default simple_tagger when it

cannot assign a tag itself. Now all the words are guaranteed to be tagged:

unigram_tagger = tag.Unigram(backoff=simple_tagger)

unigram_tagger.train(train_sents)

list(unigram_tagger.tag(tokens))

[(’John’, ’np’), (’saw’, ’vbd’), (’the’, ’at’), (’books’, ’nns’), (’on’, ’in’), (’the’, ’at’), (’table’, ’nn’)]

We can go on to define and train a bigram tagger, as shown below:

bigram_tagger = tag.Bigram(backoff=unigram_tagger)

bigram_tagger.train(brown.tagged(’a’))

We can easily evaluate this tagger against some gold-standard tagged text, using the

tag.accuracy() function. NLTK also includes a Brill tagger and an HMMtagger.

Chapter 5: Methodology and Framework

79

5.5.3 Chunking and Parsing

Chunking is a technique for shallow syntactic analysis of text. Chunk data can be

loaded from files that use the common bracket or IOB notations. We can define a

regular-expression based chunk parser for use in chunking tagged text. NLTK also

supports simple cascading of chunk parsers. Corpus readers for chunked data in Penn

Treebank and CoNLL-2000 are provided in NLTK, along with comprehensive support

for evaluation and error analysis.

NLTK offers several parsers for context-free phrase-structure grammars. Grammars can

be defined using a series of productions as follows (Perkins, 2014):

grammar = cfg.parse_grammar(’’’

S -> NP VP
VP -> V NP | V NP PP
V -> "saw" | "ate"
NP -> "John" | Det N | Det N PP
Det -> "a" | "an" | "the" | "my"
N -> "dog" | "cat" | "ball"
PP -> P NP
P -> "on" | "by" | "with"
’’’)

Now we can tokenize and parse a sentence with a recursive descent parser. Note that

we avoided left-recursive productions in the above grammar, so that this parser does

not get into an infinite loop.

text = "John saw a cat with my ball"

sent = list(tokenize.whitespace(text))

rd = parse.RecursiveDescent(grammar)

Now we apply it to our sentence, and iterate over all the parses that it generates.

Observe that two parses are possible, due to prepositional phrase attachment

ambiguity.

for p in rd.get_parse_list(sent):
print p

(S:
(NP: ’John’)

Chapter 5: Methodology and Framework

80

(VP:
(V: ’saw’)
(NP:
(Det: ’a’)
(N: ’cat’)
(PP: (P: ’with’)
(NP: (Det: ’my’) (N: ’ball’))))))
(S:
(NP: ’John’)
(VP:
(V: ’saw’)
(NP: (Det: ’a’) (N: ’cat’))
(PP: (P: ’with’)
(NP: (Det: ’my’) (N: ’ball’)))))

The same sentence can be parsed using a grammar with left-recursive productions, so

long as we use a chart parser. We can invoke NLTK’s chart parser with a bottom-up

rule-invocation strategy with chart.ChartParse(grammar, chart.BU STRATEGY). Tracing can

be turned on to display each step of the process. NLTK also supports probabilistic

context free grammars, and offers a Viterbi-style PCFG parser, together with a suite of

bottom-up probabilistic chart parsers.

5.6 Classification Algorithms

Classification is the process to find the properties that help us find the group to which

each word or case belongs. There are two methods of finding the semantic orientation

which helps find the polarity of the sentence: supervised and unsupervised classification

techniques. For this thesis, we will be experimenting or creating our own corpus from

the training document which will help us classify the test document. Hence, a

supervised classification algorithm seems fit for this thesis. Most common among the

supervised algorithm for sentiment analysis is the Naïve Bayes and Support Vector

machine. Naïve Bayes is the simplest yet effective supervised classification algorithm

and is most widely used (Perkins, 2014).

Chapter 5: Methodology and Framework

81

5.6.1 Naïve Bayes Algorithm

Naive Bayes classification technique is based on Bayesian theorem and is particularly

suited when the dimensionality of inputs is high. Let R = {R1, R2, R3,….Rn} denotes the

set of training opinions, where each opinion is labeled with one of the cording in C = {P,

N, O}. Given some new opinion, the aim is to estimate the probability of each code.

Using Bayes formula,

𝑝 (
𝑐

𝑟
) =

𝑝 (
𝑟
𝑐) 𝑝(𝑐)

𝑝(𝑟)

Equation 3 Bayes Formula Bayes Formula (Source: (Medagoda et al., 2015)

We are interested in the relative order of codes for a given opinion R, if p(r) is

independent of codes, then we can consider

𝑝 (
𝑐

𝑟
) = 𝑝 (

𝑟

𝑐
) 𝑝(𝑐)

If F is the ordered sequence of the features that compose the opinion R then F= {w1,

w2, w3, w4} Where, w1 and w3 are adjective positive score and w2 and w4 are

adjective negative score

𝑝 (
𝑐

𝑟
) = 𝑝 (

𝑟

𝑐
) 𝑝(𝑐) = 𝑝(𝑐) ∏ 𝑝(𝑤𝑘/𝑐)

𝑝

𝑘=1

And classify r into the most possible code c using

arg
max

𝑐
𝑝(

𝑐

𝑟
)

(Medagoda et al., 2015)

5.6.2 Support Vector Machine (SVM)

SVM is the best binary classification method and a non-probabilistic classification

technique that looks for a hyperplane with the maximum margin between the positive

and negative examples of the training opinions. Support Vector Machines are based on

the concept of decision planes that define decision boundaries. A decision plane is one

that forms a separation between a set of objects, which have different class

memberships (Medagoda et al., 2015).

Chapter 5: Methodology and Framework

82

Decision planes are the classifiers either a line or a curve. A simple classifier may use

liner decision planes rather than more complex structures. Classification tasks based on

drawing separating lines to distinguish between objects of different class memberships

are known as hyperplane classifiers. SVM is primarily a classification method that

performs classification tasks by constructing hyperplanes in a multidimensional space

that separates cases of different class labels. SVM supports both regression and

classification tasks and it can handle multiple continuous and categorical variables

(Medagoda et al., 2015).

To construct an optimal hyperplane, SVM employs an iterative training algorithm; this is

used to minimize an error function. According to the form of the error function, SVM

models can be classified into distinct groups. In the simplest SVM, training involves the

minimization of the error function (Medagoda et al., 2015).

1

2
 𝑤𝑇 𝑤 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=0

Equation 4 SVM Error Function Source: (Medagoda et al., 2015)

Subject to the constrains

𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 𝑎𝑛𝑑 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑁

Where C is the capacity constant w is the vector of coefficients, b, a constant and ξ are

parameters for handling non-separable data (inputs). The index i labels the N training

cases. Note that y (∈±1) is the class label and 𝑥𝑖 is the independent variables. The

kernel φ is used to transform data from the input (independent) to the feature space. It

should be noted that the larger the C, the more the error is penalized. Thus, C should

be chosen with care to avoid over fitting. It is suggested in that SVM does not depend

on the dimensionality of the problem when compared with other machine learning

methods. The success of SVM in text categorization lies in its automatic capacity tuning

by minimizing, i.e. the extraction of a small number of support vectors from the training

data that are relevant for the classification (Medagoda et al., 2015).

Chapter 5: Methodology and Framework

83

5.6.3 Decision Tree Classification Algorithm

Decision tree is a graph with branches that represent every possible outcome of a

decision. The rules produced by a decision tree model are human readable and are

easily interpretable. The classification task using decision tree technique can be

performed without complicated computations and the technique can be used for both

continuous and categorical variables. In this work, a decision tree model

was tested to classify comments broken down to Positive, Negative or Neutral and then

the rules generated by the decision trees were investigated (Medagoda et al., 2015).

5.6.4 Decision Tree Algorithm – J48

J48 is a univariate decision tree classification method which creates trees based on the

information gain. It tests whether all cases belong to the same class; if true then the tree

is a leaf and is labeled as a class. Next for each attribute calculate the information gain.

The information gain can be calculated as (Medagoda et al., 2015)

𝐺𝑎𝑖𝑛(𝑝, 𝑗) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑝 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (
𝑖

𝑝
))

Equation 5 J48 Information Gain Source: (Medagoda et al., 2015)

Where,

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (
𝑗

𝑝
) =

𝑝𝑗

𝑝
 log 𝑝𝑗/𝑝

Finally, find the best fitting attribute based on the current selection criteria. Once the

initial tree is constructed using the entropy then pruning is carried out to remove the

5.7 Summary

In this chapter, we discussed the evaluation methods that can be applied to a

classification model and a typical sentiment analysis workflow. Then we looked at

Natural Language Toolkit, a python module, which is widely used for studies and

research in sentiment analysis and its classification algorithms, after which we looked at

some of the supervised algorithms available in NLTK which we use in this research.

Chapter 6: Results

84

Chapter 6: Results

6.1 Introduction

In this chapter, we discuss the custom tool framework and compare with some of the

commercially available tools from Microsoft, IBM and Google and then finally how to

start up the tool to create custom corpus and obtain the results. The tool we create will

be used to study the different components involved in the process of sentiment analysis

and this will help us understand the rigorous process of creating a commercially viable

tool, while addressing outliers and overfitting.

6.2 Framework

To create a workable solution, we use a lexicon-based method which is based on

SentiWordNet and we use aspect level sentiment analysis to obtain positive and

negative features of any given text or we can train and test using a classification

algorithm. The main aim is to find and extract the features to be analyzed and calculate

its polarity. The steps we perform are discussed in the following subsections. The code

used to perform the experiments in presented in the Appendix.

6.2.1 Data Collection

Designing a dataset is the first step in opinion mining where opinions are collected from

various sources like reviews, blogs etc. of a domain. For the thesis, we use secondary

data—an excel spreadsheet provided by the Health Centre, which has review

comments from patients about doctors, along with other demographic information like

patient and doctor gender, and so on. Review comments from patients are in column

#23 of the spreadsheet and the first row contains the header for the column.

Therefore, data collection for this thesis is effectively done by Health Centre by means

of an online review or by asking patients to submit paper forms at the Health Centre

reception.

Chapter 6: Results

85

6.2.2 Data Preprocessing

Dataset is cleaned and preprocessed and some common steps include removing non-

textual contents and HTML tags and removing information about the reviews that are

not needed for sentiment analysis, such as review dates and reviewers’ names.

At this stage, for the tool created, headers for the columns are ignored as they do not

convey any sentiment which would add up to the sentiment polarity of the document.

We make sure that stop words are removed and the correct column which contains

patient reviews is chosen for calculating sentiment of the document.

6.2.3 Feature Extraction

Identification and selection of features is perhaps the most important task of opinion

mining. There can be more than one name for the same aspect, for example “story of

the book is good” or someone else may use “the storyline of the book is fantastic”,

where story and storyline have the same meaning.

This stage of the framework is taken care of by the tool, where the tool is trained by a

movie review corpus and a custom corpus in turn, which will train the tool in

identification and selection of the features.

6.2.4 POS Tagging

POS tagger parses a sentence or document and tags each term with its part of speech.

For POS tagging we used the Stanford POS tagger. This tagger is used to split text data

into sentences and to produce the part-of-speech tag for each word (whether the word

is a noun, verb, adjective, etc.). The following shows a sentence that is parsed and POS

tags applied.

“The feel of the phone is the best of the series.”

When we apply the POS-tagger, it generates the following parts of speech for the
sentence.

“The_DT feel_NN of_IN the_DT phone_NN is_VBZ the_DT best_JJS of_IN the_DT

series_NN.”

Chapter 6: Results

86

This would be one of the most important stages of the tool, where the test set is

tokenized and POS tagged for sentiment analysis. NLTK module for tokenizing and

POS tagging is used to perform this part of the framework. See Appendix.

6.2.5 Calculate Sentiment Polarity

At this stage, we calculate the sentiment polarity using SentiWordNet which is a lexical

resource used for opinion mining. We can also train and test using classification

algorithms. SentiWordNet synset has three scores: Positive, negative and objective,

which tells us how positive or negative or objective the term in the synset is. Each of the

three is assigned a score from 0.0 to 1.0 and their sum is 1.0 for each synset and the

entries contain the parts of speech category of the displayed entry, its positivity, its

negativity, and the list of synonyms. The word presented in the form of lemma #sense-

number, where the first sense corresponds to the most frequent use of the word and the

different word senses can have different polarities.

In the second approach, we use SentiWordNet to check the polarity of the test

sentences and create a custom corpus which we use for sentiment analysis prediction.

This, we estimate, will help achieve better accuracy in analyzing the sentiments.

Chapter 6: Results

87

Figure 13 Sentiment Analysis using SentiWordNet (Source: (Amiri & Chua, 2012)

6.3 Project Setup Instructions

1. Install latest Python from https://www.python.org/ and NPM (install Nodejs which

installs NPM on your machine)

2. Install NLTK and dependencies from NLTK website (http://www.nltk.org/install.html)

3. Install FLASK and FLASK CORS latest version

(http://flask.pocoo.org/docs/0.10/installation/)

4. Create a folder structure as shown below.

Note that the data set is contained in gmc II pq dataset.csv file.

Chapter 6: Results

88

Runserver.py is used to run flask server and access methods as services such as

reading csv files, tokens, tagging, classification and ascertaining document sentiment.

Currently all services are programmed to be accessed as ‘GET’ methods.

init.py file inside the ‘FilesToHost’ folder is first executed when Flask server is started.

Start the ‘Flask’ server by navigating to the folder where we have RunServer.py file and

open command prompt and type in python.exe runserver.py

File paths may change based on the location of files on your machine.

Once the server starts we will see the following message on the command prompt.

To access any ‘GET’ service type in http://127.0.0.1:5000/readcsv/gmc II pq dataset

ALL CASES 18.11.2009 CW.csv in your favorite browser and if the service works you

would see the comments in the file as shown:`

Chapter 6: Results

89

Creating the Custom Corpus

We create two folders first programmatically

We then feed the program with sample csv files containing our test data, created from

the dataset, which can be used to train the classifier and create a corpus which can be

used for future analysis. The Appendix contains the code used to create the custom

corpus.

Chapter 6: Results

90

6.4 Results

After multiple runs on the test data set, we achieved the following result sets.

1. Using Naive Bayes Classifier: The following result was obtained after creating a

custom corpus and running the tool to analyze sentiments on the questionnaire using

Naive Bayes Classifier.

1st run

Document sentiment Positive

Accuracy 0.935

positive precision 0.959

positive recall 0.958

negative precision 0.847

negative recall 0.850

2nd run

Document sentiment Positive

Accuracy 0.939

positive precision 0.942

positive recall 0.982

Chapter 6: Results

91

negative precision 0.924

negative recall 0.785

As we can see, we get a very high precision and high recall, which tells us that the

classifier used is very good. Training set used trained the classifier which helped us

classify the document with good accuracy. We can say this is almost an ideal test result

one should expect in almost all situations to ensure document is classified correctly and

proper results are obtained.

2. Using SentiwordNet: The tool was programmed to run and analyze the

questionnaire directly using SentiwordNet and after multiple runs the document was

analyzed as positive. SentiwordNet has positive and negative index values for a word

which we use to categorize every word used in the document and calculate the

overall sentiment of the document.

3. Using movie review corpus: In this test run we use movie review corpus, which is

widely used to classify natural languages and is a huge collection of natural language

sentences.

1st run

Document sentiment Positive

Accuracy 0.967

positive precision 0.938

positive recall 1.0

negative precision 1.0

negative recall

0.935

2nd run

Document sentiment Positive

Accuracy 0.967

positive precision 0.938

Chapter 6: Results

92

positive recall 1.0

negative precision 1.0

negative recall 0.935

Comparing this run to the previous runs with custom corpus, we obtain good results. This

tells us that, we were able to create a good quality custom corpus which gives us precision

and recall as close to a research quality corpus.

4. Using Support Vector Machine: The document was classified as negative using

Support Vector Machine with Linear Support Classification variation after both creating

a custom corpus, and using movie review and running the tool to analyze sentiments.

SVC and NuSVC can also be used as variations with SVM.

We were not able to evaluate the results on using SVM; we could not obtain the accuracy,

precision and recall as it requires usage of sci-kit, which would push the timelines for this

research. This can however be undertaken as a separate research topic.

In conclusion, with the direct use of SentiWordNet, the document is classified as a positive

document. However, when using corpora, we get a contrasting result. When executing

the application using Bayes and custom corpus the document is classified as positive.

When using SVM with both the custom corpus and movie corpus, the document is

classified as negative.

6.5 Summary

In this chapter, we looked at the framework which we used in the creation of sentiment

analysis tools. We then looked at the steps to set up the project and finally presented

the results obtained.

The results obtained show us that while we could classify the document as a positive or

a negative document, we would have obtained better results if we had the time to fine

tune the application and use expert help in creating the training and test sets. However,

the results obtained are promising within the time constraints of this research.

Chapter 7: Review, limitations, and future research

93

Chapter 7: Review, limitations, and future research

7.1 Introduction

In this Chapter, we discuss the results obtained and the implications, followed by the

limitations of the tool and the changes that it needs to be a commercial viable tool.

Finally, we consider about the future work or research that can be carried out to take

this research further, or generally further the research in this area.

7.2 Research Review and Summary

This thesis set out to investigate the question:

1. How can an effective sentiment analysis tool be built to analyze free text

comments in questionnaires?

And a supplementary question:

2. Will a corpus created from the data be useful in analyzing sentiment expressed in

the data?

We built a basic sentiment analysis tool which can use SentiWordNet or custom corpus

or movie reviews corpus to analyze sentiments in free text responses.

The software tool at this stage needs fine tuning in the following areas:

1. Improve and increase the size of custom corpus by using more test to obtain good

precision and recall.

2. This would also provide us better precision and recall scores.

3. Consider the demographic information available and create graphs or visual

representation for different parameters like gender, age of the patient and doctors.

Throughout the thesis, we have tried to study, research and understand different

components that we need to create a simple but effective sentiment analysis and

classification tool.

Chapter 7: Review, limitations, and future research

94

Literature review was conducted to understand sentiment analysis and its process and

sentiment analysis methods and tools. In this Chapter, we looked at sentiment analysis

from the medical web, biomedical literature and other medical texts, which shows us

that SVM classifier is widely used for classification of medical field data (refer Section

2.4). For the tool, we created a classifier using Naive Bayes and SVM. Though at this

stage the tool requires further improvement, we were able to successfully create a tool

which would tell us the overall sentiment conveyed by the patient review document

(response). Further this tool can also be used as a data mining tool that would help us

filter data by patient or doctor’s age or sex.

Next, we briefly looked at N-Gram which is another effective approach to study

sentiments. Although we did not directly use N-grams in our research, this can be an

alternative we can add to the tool giving the user a choice of different approaches.

After discussing the fundamental concepts needed to understand the different

processes in sentiment analysis in chapter 3, we look at SentiWordNet, which is mainly

used to calculate sentiment polarity (positive, negative or neutral). We use

SentiWordNet to create our custom corpus to help us obtain better precision with

classification tasks. We also used SentiWordNet to create an alternative approach to

analyze document sentiments and we achieved a positive result. After SentiWordNet, it

was necessary to study negation identification in sentiment analysis, which is one of the

most complex tasks. Pseudocode provided was used in the tool to consider negative

words so that their polarity of the negative word can be reversed. Code used in this

research is presented in the Appendix.

In Chapter 5, we discussed about NLTK which is one of the widely used NLP toolkit. We

look at the different processing task and classification algorithms which we applied in

our tool. We presented a framework and project setup instructions, which can be used

to effectively create a custom NLP tool.

To summarize, following are the major steps involved in sentiment analysis:

1. Data Collection

2. Data Preprocessing

Chapter 7: Review, limitations, and future research

95

3. Feature Extraction

4. POS Tagging

5. Calculate Sentiment Polarity

While the tool developed needs more training and testing before it can be a practical

solution for future work, we have successfully developed a platform which can be used

for generating custom corpus and provide anyone with an understanding to help them

start to develop commercial sentiment analysis tools.

7.3 Limitations

The tool developed as a part of this thesis, provides us with ample opportunities to learn

about the process of developing a commercially feasible sentiment analysis tool but

when compared to Microsoft, IBM or Google sentiment analysis API’s or tools in the

market, it has limitations which can be tackled or can be overcome over a period of

time.

1. NLTK, python module used for creating the tool, as mentioned in (Bird, 2006), is

ideally suited for learning or conducting research in NLP and has been used

successfully in prototyping platforms, building research systems and teaching or

individual study tool.

However, to build a commercial tool we cannot wholly rely on NLTK module to

provide us with solutions to perform different processes. A mix of system and

programming languages need to be used to create a platform which can hopefully

provide better results.

2. We have not included any mechanism to detect fake or duplicate review or to check

the reputation of the reviewer.

3. As previously stated, we could not obtain the accuracy, precision and recall scores

when using SVM, due to the time constraints, as it requires usage of sci-kit.

Chapter 7: Review, limitations, and future research

96

4. As mentioned in Section 2.8, NLP needs more enhancement with respect to domain-

dependent sentiment analysis, which would need considerable changes to the

underlying NLTK module used.

5. SentiWordNet, although a good general-purpose lexicon database for use in

sentiment analysis in English, researchers face a challenge in building lexicons,

corpora and dictionaries for any other language.

7.4 Future Work or Research

The tool developed reads patient review comments about doctors which can be

extended to comments collected from social media and other sources about the doctor

or hospital.

1. We have created a corpus which is used to further classify the document; this can be

extended to create an elaborate domain dependent lexicon database which will help

classify negative sentiments in future.

2. Visualization is of one of the main aspect of any data mining program. Popular

libraries like D3.js can be used to present data extracted in form of graphs.

3. It would be interesting to use sci-kit with NLTK in order to experiment with SVM.

4. Different algorithms along with their variations can be studied to improve the

performance and accuracy of the results obtained. In this thesis, we have mostly

looked at using supervised algorithms like Native Bayes or SVM. Future work can be

done on usage of unsupervised classification algorithms.

5. Different stages of data mining or NLP can be studied and improved by using

different algorithms than the ones used by default in NLTK.

6. As mentioned above different components can be studied and improved, and this can

be done by using more efficient programming languages which can be used to

replace NLTK module or create tools which would give results faster or help create

better solution.

Chapter 7: Review, limitations, and future research

97

7. API solutions offered by Microsoft, IBM and Google, which can be good substitute for

NLTK to understand the sentiments expressed by reviewers.

References

98

References

Amiri, H., & Chua, T.-S. (2012). Sentiment Classification Using the Meaning of Words
Symposium conducted at the meeting of the Workshops at the Twenty-Sixth
AAAI Conference on Artificial Intelligence

Asghar, M. Z., Khan, A., Ahmad, S., Qasim, M., & Khan, I. A. (2017). Lexicon-enhanced
sentiment analysis framework using rule-based classification scheme. PLOS
ONE, 12(2), e0171649. doi:10.1371/journal.pone.0171649

Asmi, A., & Ishaya, T. (2012). Negation identification and calculation in sentiment
analysis Symposium conducted at the meeting of the The Second International
Conference on Advances in Information Mining and Management

Baccianella, S., Esuli, A., & Sebastiani, F. (2010). SentiWordNet 3.0: An Enhanced
Lexical Resource for Sentiment Analysis and Opinion Mining Symposium
conducted at the meeting of the LREC

Baitharu, T. R., & Pani, S. K. (2016). Analysis of Data Mining Techniques for Healthcare
Decision Support System Using Liver Disorder Dataset. Procedia Computer
Science, 85, 862-870.

Banerjee, S., & Pedersen, T. (2003). The design, implementation, and use of the ngram
statistics packageSpringer. Symposium conducted at the meeting of the CICLing

Bird, S. (2006). NLTK: the natural language toolkitAssociation for Computational
Linguistics. Symposium conducted at the meeting of the Proceedings of the
COLING/ACL on Interactive presentation sessions

Biyani, P., Caragea, C., Mitra, P., Zhou, C., Yen, J., Greer, G. E., & Portier, K. (2013).
Co-training over domain-independent and domain-dependent features for
sentiment analysis of an online cancer support communityACM. Symposium
conducted at the meeting of the Proceedings of the 2013 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan), 993-1022.

Boyd-Graber, J., Fellbaum, C., Osherson, D., & Schapire, R. (2006). Adding dense,
weighted connections to WordNet Symposium conducted at the meeting of the
Proceedings of the third international WordNet conference

Cambria, E., Benson, T., Eckl, C., & Hussain, A. (2012). Sentic PROMs: Application of
sentic computing to the development of a novel unified framework for measuring
health-care quality. Expert Systems with Applications, 39(12), 10533-10543.

Cavnar, W. B., & Trenkle, J. M. (1994). N-gram-based text categorization. Ann Arbor
MI, 48113(2), 161-175.

Chandni, Chandra, N., Pahade, R., & Gupta, S. (2015). Sentiment Analysis and its
Challenges.

Chau, M., Lu, Y., Fang, X., & Yang, C. C. (2009). Characteristics of character usage in
Chinese Web searching. Information Processing & Management, 45(1), 115-130.

Chowdhury, G. G. (2003). Natural language processing. Annual review of information
science and technology, 37(1), 51-89.

Cieliebak, M., Dürr, O., & Uzdilli, F. (2013). Potential and Limitations of Commercial
Sentiment Detection Tools Symposium conducted at the meeting of the
ESSEM@ AI* IA

References

99

Clark, A., Fox, C., & Lappin, S. (2010). The handbook of computational linguistics and
natural language processing (Vol. 57): Wiley. com.

Collomb, A., Costea, C., Joyeux, D., Hasan, O., & Brunie, L. (2014). A study and
comparison of sentiment analysis methods for reputation evaluation. Rapport de
recherche RR-LIRIS-2014-002.

Cowie, J., & Lehnert, W. (1996). Information extraction. Communications of the ACM,
39(1), 80-91.

Damashek, M. (1995). Gauging similarity with n-grams: Language-independent
categorization of text. Science, 267(5199), 843.

de Albornoz, J., Plaza, L., Gervás, P., & Díaz, A. (2011). A joint model of feature mining
and sentiment analysis for product review rating. Advances in information
retrieval, 55-66.

Esuli, A., & Sebastiani, F. (2006). Determining Term Subjectivity and Term Orientation
for Opinion Mining Symposium conducted at the meeting of the EACL

Eugenio, B. D. (2005). Discourse processing. Retrieved 26/10/2013, 2013, from
http://www.credoreference.com.ezproxy.aut.ac.nz/entry/wileycs/discourse_proce
ssing

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge
discovery in databases. AI magazine, 17(3), 37.

G. Miner, D. D., J. Elder, A. Fast, T. Hill, and R. Nisbet, Elsevier. (January 2012). The
Seven Practice Areas of Text Analytics.

Gencosman, B. C., Ozmutlu, H. C., & Ozmutlu, S. (2014). Character n-gram application
for automatic new topic identification. Information Processing & Management,
50(6), 821-856.

Gonçalves, P., Araújo, M., Benevenuto, F., & Cha, M. (2013). Comparing and
combining sentiment analysis methodsACM. Symposium conducted at the
meeting of the Proceedings of the first ACM conference on Online social
networks

Hardeniya, N., Perkins, J., Chopra, D., Joshi, N., & Mathur, I. (2016). Natural Language
Processing: Python and NLTK. Birmingham, UNKNOWN: Packt Publishing.
Retrieved from
http://ebookcentral.proquest.com/lib/aut/detail.action?docID=4747560

Huang, X., Peng, F., Schuurmans, D., Cercone, N., & Robertson, S. E. (2003). Applying
machine learning to text segmentation for information retrieval. Information
Retrieval, 6(3), 333-362.

Hung, C., & Chen, S.-J. (2016). Word sense disambiguation based sentiment lexicons
for sentiment classification. Knowledge-Based Systems, 110, 224-232.

Hussein, D. M. E.-D. M. (2016). A survey on sentiment analysis challenges. Journal of
King Saud University-Engineering Sciences.

Kanaris, I., & Stamatatos, E. (2007). Webpage genre identification using variable-length
character n-gramsIEEE. Symposium conducted at the meeting of the Tools with
Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE International Conference on

Khan, A., Baharudin, B., & Khan, K. (2011). Sentiment classification from online
customer reviews using lexical contextual sentence structureSpringer.
Symposium conducted at the meeting of the International Conference on
Software Engineering and Computer Systems

http://www.credoreference.com.ezproxy.aut.ac.nz/entry/wileycs/discourse_processing
http://www.credoreference.com.ezproxy.aut.ac.nz/entry/wileycs/discourse_processing
http://ebookcentral.proquest.com/lib/aut/detail.action?docID=4747560

References

100

Kreutzer, J., & Witte, N. (2013). Opinion Mining Using SentiWordNet. Uppsala
University.

Kurgan, L. A., & Musilek, P. (2006). A survey of Knowledge Discovery and Data Mining
process models. The Knowledge Engineering Review, 21(1), 1-24.

Lewis, D. D., & Ringuette, M. (1994). A comparison of two learning algorithms for text
categorizationCiteseer. Symposium conducted at the meeting of the Third annual
symposium on document analysis and information retrieval

Liddy, E. D. (1990). Anaphora in natural language processing and information retrieval.
Information processing & management, 26(1), 39-52.

Liu, H., & Kešelj, V. (2007). Combined mining of Web server logs and web contents for
classifying user navigation patterns and predicting users’ future requests. Data &
Knowledge Engineering, 61(2), 304-330.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information
retrieval (Vol. 1): Cambridge University Press Cambridge.

Mcnamee, P., & Mayfield, J. (2004). Character n-gram tokenization for European
language text retrieval. Information Retrieval, 7(1), 73-97.

Medagoda, N., Shanmuganathan, S., & Whalley, J. (2015). Sentiment lexicon
construction using SentiWordNet 3.0IEEE. Symposium conducted at the meeting
of the Natural Computation (ICNC), 2015 11th International Conference on

Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and
applications: A survey. Ain Shams Engineering Journal, 5(4), 1093-1113.

Melzi, S., Abdaoui, A., Azé, J., Bringay, S., Poncelet, P., & Galtier, F. (2014). Patient's
rationale: Patient Knowledge retrieval from health forums Symposium conducted
at the meeting of the eTELEMED: eHealth, Telemedicine, and Social Medicine

Moghaddam, S., & Ester, M. (2010). Opinion digger: an unsupervised opinion miner
from unstructured product reviewsACM. Symposium conducted at the meeting of
the Proceedings of the 19th ACM international conference on Information and
knowledge management

Moghaddam, S., & Ester, M. (2011). ILDA: interdependent LDA model for learning latent
aspects and their ratings from online product reviewsACM. Symposium
conducted at the meeting of the Proceedings of the 34th international ACM
SIGIR conference on Research and development in Information Retrieval

Mudinas, A., Zhang, D., & Levene, M. (2012). Combining lexicon and learning based
approaches for concept-level sentiment analysisACM. Symposium conducted at
the meeting of the Proceedings of the First International Workshop on Issues of
Sentiment Discovery and Opinion Mining

Muhammad, A., Wiratunga, N., Lothian, R., & Glassey, R. (2013). Domain-Based
Lexicon Enhancement for Sentiment Analysis Symposium conducted at the
meeting of the SMA@ BCS-SGAI

Na, J.-C., Kyaing, W. Y. M., Khoo, C. S., Foo, S., Chang, Y.-K., & Theng, Y.-L. (2012).
Sentiment classification of drug reviews using a rule-based linguistic
approachSpringer. Symposium conducted at the meeting of the International
Conference on Asian Digital Libraries

Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural language
processing: an introduction. Journal of the American Medical Informatics
Association, 18(5), 544-551.

References

101

Nand, P., & Perera, R. (2015). An evaluation of POS tagging for tweets using HMM
modeling.

Navigli, R. (2009). Word sense disambiguation: A survey. ACM Computing Surveys
(CSUR), 41(2), 10.

Navigli, R., & Lapata, M. (2010). An experimental study of graph connectivity for
unsupervised word sense disambiguation. IEEE transactions on pattern analysis
and machine intelligence, 32(4), 678-692.

Niu, Y., Zhu, X., Li, J., & Hirst, G. (2005). Analysis of polarity information in medical
textAmerican Medical Informatics Association. Symposium conducted at the
meeting of the AMIA annual symposium proceedings

NLTK. (2017). NLTK 3.2.4 documentation. Retrieved from http://www.nltk.org/
Osimo, D., & Mureddu, F. (2012). Research challenge on opinion mining and sentiment

analysis. Universite de Paris-Sud, Laboratoire LIMSI-CNRS, Bâtiment, 508.
Palace, B. (1996). Data Mining. Retrieved from

http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/dat
amining.htm

Perkins, J. (2014). Python 3 Text Processing with NLTK 3 Cookbook: Packt Publishing
Ltd.

Pustejovsky, J. (2005). Lexicon: Natural Language Processing. Retrieved 26/10/2013,
2013, from
http://www.credoreference.com.ezproxy.aut.ac.nz/entry/wileycs/lexicon

Reinartz, T. (2002). Stages of the discovery processOxford University Press, Inc.
Symposium conducted at the meeting of the Handbook of data mining and
knowledge discovery

Roark, B., Saraclar, M., & Collins, M. (2007). Discriminative n-gram language modeling.
Computer Speech & Language, 21(2), 373-392.

Santos, I., Penya, Y. K., Devesa, J., & Bringas, P. G. (2009). N-grams-based File
Signatures for Malware Detection. ICEIS (2), 9, 317-320.

Sarker, A., Mollá-Aliod, D., & Paris, C. (2011). Outcome polarity identification of medical
papers.

Sebastiani, F. (2005). Text Categorization.
Shannon, C. E. (1951). Prediction and entropy of printed English. Bell Labs Technical

Journal, 30(1), 50-64.
Sharif, H., Zaffar, F., Abbasi, A., & Zimbra, D. (2014). Detecting adverse drug reactions

using a sentiment classification framework.
Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., & Chanona-Hernández, L.

(2014). Syntactic n-grams as machine learning features for natural language
processing. Expert Systems with Applications, 41(3), 853-860.

Smith, P., & Lee, M. (2012). Cross-discourse development of supervised sentiment
analysis in the clinical domainAssociation for Computational Linguistics.
Symposium conducted at the meeting of the Proceedings of the 3rd Workshop in
Computational Approaches to Subjectivity and Sentiment Analysis

Sokolova, M., & Bobicev, V. (2013). What Sentiments Can Be Found in Medical
Forums? Symposium conducted at the meeting of the RANLP

http://www.nltk.org/
http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm
http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm
http://www.credoreference.com.ezproxy.aut.ac.nz/entry/wileycs/lexicon

References

102

Sokolova, M., Matwin, S., Jafer, Y., & Schramm, D. (2013). How Joe and Jane Tweet
about Their Health: Mining for Personal Health Information on Twitter
Symposium conducted at the meeting of the RANLP

Vilares, J., Vilares, M., & Otero, J. (2011). Managing misspelled queries in IR
applications. Information Processing & Management, 47(2), 263-286.

Wang, H., Lu, Y., & Zhai, C. (2010). Latent aspect rating analysis on review text data: a
rating regression approachACM. Symposium conducted at the meeting of the
Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining

Xia, L., Gentile, A. L., Munro, J., & Iria, J. (2009). Improving Patient Opinion Mining
through Multi-step ClassificationSpringer. Symposium conducted at the meeting
of the TSD

Zhang, Y., & Desouza, P. (2014). Enhance the Power of Sentiment Analysis.
International Journal of Computer, Information, Systems and Control
Engineering.

Appendix

103

Appendix

1. First we read the entire csv and then read a particular column which contains user

comments and excludes first row and cells which have no comments. In a csv,

columns with no comments have ‘999’

from FilesToHost import app
import nltk
import json
import numpy
import csv
@app.route("/readcsv/<csvfilename>")
def readcsv(csvfilename):
 returnlist=[]
 with open(csvfilename, newline='') as csvfile:
 dataReader = csv.reader(csvfile, delimiter=',', quotechar='|')
 for row in dataReader:
 commentobj = row[23]
 if (commentobj == "999" or commentobj == "comments"):
 commentobj = 'na'
 else:
 returnlist.append(commentobj)
 return json.dumps(returnlist)

2. Tokenization

The following code helps us to tokenize the data.

from FilesToHost import app
import nltk
import json
import numpy
@app.route("/tokenize/<word>")
def tokenize(word):
 return json.dumps(Tokenizer(commentobj))
def Tokenizer(tokens):
 return nltk.word_tokenize(tokens)

Appendix

104

3. Fetch Stopwords

In the following code we remove all the stopwords by importing all the stopwords

from nltk corpus. We can add our own list of stopwords in the following code.

from FilesToHost import app
import nltk
import json
import numpy
from nltk.corpus import stopwords
stopwordlist = stopwords.words('english')
@app.route("/stopwords")
def stopwords():
 return json.dumps(stopwordlist)

4. POS Tagging

In the following code we POS tag the sentence by using nltk’s pos_tag method.

from FilesToHost import app
import nltk
import json
import numpy
@app.route("/postag/<sentence>")
def PosTaggingCsv (sentence):
 return json.dumps(nltk.pos_tag(sentence.split()))

5. Positive sentiment

In the following code we obtain the positive score of the word using SentiWordNet.

We iterate over the list of word we obtain after tokenizing them and then we pass it to

SentiWordNet and positive score is fetched by calling pos_score() method.

from FilesToHost import app
import json
import nltk
from nltk.corpus import sentiwordnet as swn
@app.route("/sentiwordnetpos/<word>/<pos>")
def sentiwordnetpos(word, pos):
 returnlist=[]
 posscore=0
 test = list(swn.senti_synsets(word))
 for iterating_var in test:

Appendix

105

 posscore += iterating_var.pos_score()
 return json.dumps(posscore)

6. Negative sentiment

In the following code we obtain the negative score of the word using SentiWordNet.

We iterate over the list of word we obtain after tokenizing them and then we pass it to

SentiWordNet and negative score is fetched by calling neg_score() method.

from FilesToHost import app
import json
import nltk
from nltk.corpus import sentiwordnet as swn
@app.route("/sentiwordnetneg/<word>/<pos>")
def sentiwordnetneg(word, pos):
 returnlist=[]
 negscore=0
 test = list(swn.senti_synsets(word))
 for iterating_var in test:
 negscore += iterating_var.neg_score()
 return json.dumps(negscore)

7. Creating custom corpus

As a part of creating a customized solution to study the process of Sentiment

analysis, a python program was written which could create custom corpus for any

dataset. This program would go through the entire dataset and would then classify

the sentences as positive or negative and this can be used in future to obtain better

results.

from FilesToHost import app

import json
import nltk
from nltk.corpus import sentiwordnet as swn
from nltk.sentiment.util import *
from nltk.classify import NaiveBayesClassifier
import datetime
import time
@app.route("/createpersonalcorpus/<sentence>")

Appendix

106

def createpersonalcorpus(sentence):
 posscore=0
 negscore=0
 totalscore=0
 personalCorpusDir = "D:\\College
Studies\\MasterThesis\\SentimentAnalyzer\\FlaskSample\\Corpus\\"
 #get negated words
 negatedwords = negation(sentence)
 #print(negatedwords)
 #tokenize
 tokens = Tokenizer(sentence)
 #cleantokens
 cleanedTokens = CleanTokens(tokens)

 #postag
 postaggedsentence = PosTag (cleanedTokens)

 #get sentiword net score for each word in the pos tagged array
 for items in postaggedsentence:
 mappedValue = MapValue(items[1])
 if (mappedValue != ''):
 sentiword = list(swn.senti_synsets(items[0], mappedValue))
 for word in sentiword:
 posscore += word.pos_score()
 negscore += word.neg_score() * -1
 totalscore = totalscore + posscore + negscore
 ts = time.time()
 dt = datetime.datetime.fromtimestamp(Fayyad et al.).strftime('%Y-%m-%d-%H-
%M-%S')

 #after calculating scores write sentences
 if totalscore >= 0:
 fo = open(personalCorpusDir + "pos\\" + "pos"+ dt +".txt", "a+")
 fo.write(sentence + "\n");
 fo.close()
 else:
 fo = open(personalCorpusDir + "neg\\" + "neg"+ dt +".txt", "a+")
 fo.write(sentence + "\n");
 fo.close()

Appendix

107

 return json.dumps(totalscore)

def Tokenizer(sentence):
 return nltk.word_tokenize(sentence)

def CleanTokens(tokens):
 returnlist=[]
 donothin = ''
 for token in tokens:
 if (token == '.' or token == '``'):
 donothin = 'need to check this again'
 else:
 returnlist.append(token)
 return returnlist

def negation(sentence):
 sent = sentence.split()
 return mark_negation(sent)

def PosTag (tokens):
 return nltk.pos_tag(tokens, 'universal')

def MapValue(val):
 if val == 'NOUN':
 return 'n'
 elif val == 'ADJ':
 return 'a'
 elif val == 'VERB':
 return 'v'
 elif val == 'ADV':
 return 'r'
 else:
 return ''

Appendix

108

8. Sentiment analysis using Movie Review

from FilesToHost import app

import nltk.classify.util

import json

import csv

from nltk import precision

from nltk import recall

import collections

import nltk.classify.util, nltk.metrics

from nltk.classify import NaiveBayesClassifier

from nltk.corpus import movie_reviews as mr

from nltk.corpus import stopwords

stopwordlist = stopwords.words('english')

@app.route("/sentimentanalyzedoc")

def sentimentanalyzedoc():

 return sentiment_analyze(word_feats)

def sentiment_analyze(featx):

 negids = mr.fileids('neg')

 posids = mr.fileids('pos')

 posfeats = [(featx(mr.words(fileids=[f])), 'pos') for f in posids]

 negfeats = [(featx(mr.words(fileids=[f])), 'neg') for f in negids]

 trainfeats = negfeats + posfeats

 classifier = NaiveBayesClassifier.train(trainfeats)

 tokenizeddoc = word_feats(TokenizeDoc())

 observed = classifier.classify(tokenizeddoc)

 print ('doc sentiment: ' + observed)

 testsets = collections.defaultdict(set)

 refsets = collections.defaultdict(set)

 for i, (feats, label) in enumerate(trainfeats):

 refsets[label].add(i)

 observed = classifier.classify(feats)

 testsets[observed].add(i)

Appendix

109

 print ('accuracy:', nltk.classify.util.accuracy(classifier, trainfeats))

 print ('pos precision:', precision(refsets['pos'], testsets['pos']))

 print ('pos recall:', recall(refsets['pos'], testsets['pos']))

 print ('neg precision:', precision(refsets['neg'], testsets['neg']))

 print ('neg recall:', recall(refsets['neg'], testsets['neg']))

 print ('most important information:', classifier.show_most_informative_features())

 return json.dumps('nothing')

def word_feats(words):

 return dict([(word, True) for word in words])

def TokenizeDoc():

 returnlist=[]

 donothing = ''

 with open('D:\\College Studies\\MasterThesis\\SentimentAnalyzer\\gmc II pq

dataset ALL CASES 18.11.2009.csv', newline='') as csvfile:

 dataReader = csv.reader(csvfile, delimiter=',', quotechar='|')

 for row in dataReader:

 commentobj = row[23]

 if (commentobj == "999" or commentobj == "comments"):

 commentobj = 'na'

 else:

 tokenized = Tokenizer(commentobj)

 for token in tokenized:

 tempObj = token.split(',')

 if (tempObj[0] == '.' or tempObj[0] == '``' or

tempObj[0].lower() in stopwordlist):

 donothin = 'need to check this again'

 else:

 returnlist = returnlist + tempObj

 return returnlist

def Tokenizer(tokens):

 return nltk.word_tokenize(tokens)

10. Sentiment analysis using custom corpus

from FilesToHost import app

import json

Appendix

110

import csv
import collections
import nltk.classify.util, nltk.metrics
from nltk.classify import NaiveBayesClassifier
from nltk import precision
from nltk import recall
import os
from nltk.corpus.reader.plaintext import PlaintextCorpusReader
from nltk.corpus import CategorizedPlaintextCorpusReader

@app.route("/finalclassification")
def finalclassification():
 mydir = 'D:\\College
Studies\\MasterThesis\\SentimentAnalyzer\\FlaskSample\\Corpus\\'
 mr = CategorizedPlaintextCorpusReader(mydir, r'(?!G. Miner).*\.txt',
cat_pattern=r'(neg|pos)/.*', encoding='ascii')
 posids = mr.fileids('pos')
 negids = mr.fileids('neg')
 posfeats = [(ConvertToDictionary(mr.words(fileids=[f])), 'pos') for f in posids]
 negfeats = [(ConvertToDictionary(mr.words(fileids=[f])), 'neg') for f in negids]
 trainsets = posfeats + negfeats
 classifier = GetClassifier(trainsets)
 filepath = 'D:\\College
Studies\\MasterThesis\\SentimentAnalyzer\\FlaskSample\\gmc II pq dataset ALL CASES
18.11.2009.csv'
 tokenizeddoc = ConvertToDictionary(TokenizeDoc(filepath))
 observed = classifier.classify(tokenizeddoc)
 print ('doc sentiment: ' + observed)
 testsets = collections.defaultdict(set)
 refsets = collections.defaultdict(set)
 for i, (feats, label) in enumerate(trainsets):
 refsets[label].add(i)
 observed = classifier.classify(feats)
 testsets[observed].add(i)
 print ('accuracy:', nltk.classify.util.accuracy(classifier, trainsets))
 print ('pos precision:', precision(refsets['pos'], testsets['pos']))
 print ('pos recall:', recall(refsets['pos'], testsets['pos']))
 print ('neg precision:', precision(refsets['neg'], testsets['neg']))
 print ('neg recall:', recall(refsets['neg'], testsets['neg']))

Appendix

111

 print ('most important information:',
classifier.show_most_informative_features())

 return json.dumps(observed)

def GetClassifier (trainSets):
 return NaiveBayesClassifier.train(trainSets)

def ConvertToDictionary(words):
 return dict([(word, True) for word in words])

def TokenizeDoc(filepath):
 returnlist=[]
 donothing = ''
 with open(filepath, newline='') as csvfile:
 dataReader = csv.reader(csvfile, delimiter=',', quotechar='|')
 for row in dataReader:
 commentobj = row[23]
 if (commentobj == "999" or commentobj == "comments"):
 commentobj = 'na'
 else:
 tokenized = Tokenizer(commentobj)
 for token in tokenized:
 tempObj = token.split(',')
 if (tempObj[0] == '.' or tempObj[0] == '``'):
 donothin = 'need to check this again'

 else:
 returnlist = returnlist + tempObj

 return returnlist

def Tokenizer(tokens):
 return nltk.word_tokenize(tokens)

We then use Javascript Ajax to call these services and use HTML to view the data

<!DOCTYPE html>
<html>
<head>

Appendix

112

 <title>Doctor Review</title>
</head>
<body>
<p> View Results</p>

<input type="file" name="filename" id="filename">

<select id="doctorFilter">
 <option selected></option>
 <option selected>All</option>
</select>
<select id="patientFilter">
 <option selected></option>
 <option selected>All</option>
</select>

<input type="hidden" id="csvSentences" value=""/>

<input type="hidden" id="commentArr" value=""/>
<input type="hidden" id="negatedArr" value=""/>
<input type="hidden" id="posTaggedArr" value=""/>
<input type="hidden" id="negatedWordArr" value=""/>
<input type="hidden" id="totalPosScore" value=""/>
<input type="hidden" id="totalNegScore" value=""/>
<input type="hidden" id="totalDocScore" value=""/>
<input type="hidden" id="csv" value=""/>

<div id="score"></div>
<div id="div1"></div>

<input type="button" id="posTag" value="Get Pos Tagged"/>
<input type="button" id="getNegatedWords" value="Get Negated Words"/>
<input type="button" id="getPosScore" value="Get Positive Score"/>
<input type="button" id="getNegScore" value="Get Negative Score"/>
<input type="button" id="getDocScore" value="Get Document Score"/>

Appendix

113

<input type="button" id="createCorpus" value="Create Corpus"/>
<input type="button" id="classifyDocument" value="Classify"/>

<script src="https://code.jquery.com/jquery-2.2.3.min.js"></script>
<script>
$(function() {
 var stopwordsArr = "";
 var commentArr = [];
 var posTagged = [];
 var negationDetected = [];
 var allDocIdArr = [];
 var allPatientIdArr = [];
 var csvData = [];

 $("#filename").change(function(e) {
 var ext = $("input#filename").val().split(".").pop().toLowerCase();

 if (e.target.files != undefined) {
 var reader = new FileReader();
 reader.onload = function(e) {
 var csvval=e.target.result.split("\n");

 var csvCounter = 1;
 var prevDocId = 0;
 var prevPatientId = 0;

 for (var i=1; i < csvval.length; i++)
 {
 csvCounter ++;
 if (csvval[i].split(",")[24] != '999' &&
csvval[i].split(",")[24] != undefined)
 {
 if (csvval[i].split(",")[0] != undefined)
 {
 if (prevDocId !=
parseInt(csvval[i].split(",")[0]))
 {

Appendix

114

 var tempDocId =
csvval[i].split(",")[0]

 var options = "<option>" +
parseInt(tempDocId) + "</option>";

 $('#doctorFilter').append(options);
 }

 prevDocId =
parseInt(csvval[i].split(",")[0]);
 }

 if (csvval[i].split(",")[1] != undefined)
 {
 if (prevPatientId !=
parseInt(csvval[i].split(",")[1]))
 {

 var options = "<option>" +
parseInt(csvval[i].split(",")[1]) + "</option>";

 $('#patientFilter').append(options);
 }

 prevPatientId =
parseInt(csvval[i].split(",")[1]);
 }

 var tempData = csvval[i].split(",")[24];

 if ($('#csvSentences').val() == "")
 {
 $('#csvSentences').val(tempData);
 }
 else
 {
 var stored = $('#csvSentences').val();

Appendix

115

 $('#csvSentences').val(stored + "," +
tempData);
 }

 csvData.push(csvval[i].split(",")[0] + ";" +
csvval[i].split(",")[1] + ";" + tempData);

 //tokenize and add to array
 $.ajax({
 type: "GET",
 url:
"http://localhost:5000/removestopword/"+ tempData,
 async: true,
 cache: false,
 processData: false,
 success: function(data, textStatus, xhr) {

 commentArr.push(JSON.parse(data));

 }});

 $.ajax({
 type: "GET",
 url: "http://localhost:5000/negation/"+
tempData,
 async: true,
 cache: false,
 processData: false,
 success: function(data, textStatus, xhr) {

 negationDetected.push(JSON.parse(data));

 }});

 }
 }

 $('#csv').val(csvData);

Appendix

116

 var interval = setInterval(function(){
 if(csvCounter == csvval.length){
 clearInterval(interval);
 var negText = [];
 for(var i=0; i < negationDetected.length; i++)
 {
 for(var j=0; j <
negationDetected[i].length; j++){

 negText.push(negationDetected[i][j].replace(".", ""))
 }
 }
 $('#negatedArr').val("");
 $('#negatedArr').val(negText);

 var allText = "";
 for(var j=0; j < commentArr.length; j++)
 {
 if (allText == "") {
 allText = commentArr[j];
 }
 else{
 allText = allText + "," +
commentArr[j];
 }

 }
 $('#commentArr').val("");
 $('#commentArr').val(allText);
 }
 }, 2000);
 };
 reader.readAsText(e.target.files.item(0));
 }
 return false;
 });

 $('#posTag').click(function(){
 $.ajax({
 type: "GET",

Appendix

117

 url: "http://localhost:5000/postag/"+ $('#commentArr').val(),

 async: true,
 cache: false,
 processData: false,
 success: function(data, textStatus, xhr) {
 $('#posTaggedArr').val("");
 posTagged.push(data);
 $('#posTaggedArr').val(posTagged);
 }
 });
 });

 $('#patientFilter').change(function(){
 var commentArr = [];
 var negationDetected = [];
 var counter = 0;
 var selectedText = $("select#patientFilter option:selected").text();

 var csvData = $('#csv').val().split(",");

 for(var count = 0; count < csvData.length; count++)
 {
 var csvRow = csvData[count].split(";");
 counter++;
 if (csvRow[1] == selectedText)
 {
 var tempData = csvRow[2];

 //tokenize and add to array
 $.ajax({
 type: "GET",
 url: "http://localhost:5000/removestopword/"+ tempData,

 async: true,
 cache: false,
 processData: false,
 success: function(data, textStatus, xhr) {
 commentArr.push(JSON.parse(data));

Appendix

118

 }});

 $.ajax({
 type: "GET",
 url: "http://localhost:5000/negation/"+ tempData,

 async: true,
 cache: false,
 processData: false,
 success: function(data, textStatus, xhr) {
 negationDetected.push(JSON.parse(data));

 }});
 }
 }

 var interval = setInterval(function(){
 if(counter == csvData.length){
 clearInterval(interval);
 var negText = [];
 for(var i=0; i < negationDetected.length; i++)
 {
 for(var j=0; j < negationDetected[i].length; j++){

 negText.push(negationDetected[i][j].replace(".", ""))
 }
 }
 $('#negatedArr').val("");
 $('#negatedArr').val(negText);

 var allText = "";
 for(var j=0; j < commentArr.length; j++)
 {
 if (allText == "") {
 allText = commentArr[j];
 }
 else{
 allText = allText + "," + commentArr[j];
 }

Appendix

119

 }
 $('#commentArr').val("");
 $('#commentArr').val(allText);
 }
 }, 2000);
 });

 $('#doctorFilter').change(function(){
 var commentArr = [];
 var negationDetected = [];
 var counter = 0;
 var selectedText = $("select#doctorFilter option:selected").text();

 var csvData = $('#csv').val().split(",");

 for(var count = 0; count < csvData.length; count++)
 {
 var csvRow = csvData[count].split(";");
 counter++;
 if (csvRow[0] == selectedText)
 {

 var tempData = csvRow[2];

 //tokenize and add to array
 $.ajax({
 type: "GET",
 url: "http://localhost:5000/removestopword/"+ tempData,

 async: true,
 cache: false,
 processData: false,
 success: function(data, textStatus, xhr) {
 commentArr.push(JSON.parse(data));

 }});

 $.ajax({
 type: "GET",

Appendix

120

 url: "http://localhost:5000/negation/"+ tempData,

 async: true,
 cache: false,
 processData: false,
 success: function(data, textStatus, xhr) {
 negationDetected.push(JSON.parse(data));

 }});
 }
 }

 var interval = setInterval(function(){
 if(counter == csvData.length){
 clearInterval(interval);
 var negText = [];
 for(var i=0; i < negationDetected.length; i++)
 {
 for(var j=0; j < negationDetected[i].length; j++){

 negText.push(negationDetected[i][j].replace(".", ""))
 }
 }
 $('#negatedArr').val("");
 $('#negatedArr').val(negText);

 var allText = "";
 for(var j=0; j < commentArr.length; j++)
 {
 if (allText == "") {
 allText = commentArr[j];
 }
 else{
 allText = allText + "," + commentArr[j];
 }
 }
 $('#commentArr').val("");
 $('#commentArr').val(allText);
 }
 }, 2000);

Appendix

121

 });

 $('#getPosScore').click(function(){
 var parsed = JSON.parse($('#posTaggedArr').val());
 var posScoreArr = [];

 for(var count=0; count < parsed.length; count++){
 var mapped = Map(parsed[count][1]);
 parsed[count][1] = mapped;

 if (parsed[count][1] != undefined && (parsed[count][0].indexOf("'")
< 0))
 {
 $.ajax({
 type: "GET",
 url: "http://localhost:5000/sentiwordnetpos/"+
parsed[count][0] + "/" + parsed[count][1],
 async: false,
 cache: false,
 processData: false,
 success: function(data, textStatus, xhr) {
 posScoreArr.push(parseFloat(data));
 }});
 }
 }
 $('#totalPosScore').val("");
 $('#totalPosScore').val(posScoreArr);
 });

 $('#getNegScore').click(function(){
 var parsed = JSON.parse($('#posTaggedArr').val());
 var negScore = 0;
 var negScoreArr = [];

 for(var count=0; count < parsed.length; count++){
 var mapped = Map(parsed[count][1]);
 parsed[count][1] = mapped;

 if (parsed[count][1] != undefined && (parsed[count][0].indexOf("'")
< 0))

Appendix

122

 {
 $.ajax({
 type: "GET",
 url: "http://localhost:5000/sentiwordnetneg/"+
parsed[count][0] + "/" + parsed[count][1],
 async: false,
 cache: false,
 processData: false,
 success: function(data, textStatus, xhr) {
 negScore = parseFloat(data) * -1;
 negScoreArr.push(negScore);
 }});
 }
 }
 $('#totalNegScore').val("");
 $('#totalNegScore').val(negScoreArr);
 });

 $('#getDocScore').click(function(){
 var parsed = JSON.parse($('#posTaggedArr').val());

 var docScore = 0;
 var counter = 0;
 var posScore = 0;
 var negScore = 0;

 var posScoreArr = $('#totalPosScore').val().split(',');
 var negScoreArr = $('#totalNegScore').val().split(',');
 var negatedWordArr = $('#negatedWordArr').val().split(',');

 for(var count=0; count < negatedWordArr.length; count++)
 {
 //reverse negated words
 if (negatedWordArr[count] != "")
 {
 if (posScoreArr[count] > 0)
 {
 negScore = (1 - parseFloat(posScoreArr[count])) *
(parseFloat(posScoreArr[count]) * -1);

Appendix

123

 }
 else if (negScore < 0)
 {
 posScore = (1 - parseFloat(negScoreArr[count])) *
(parseFloat(negScoreArr[count]) * -1);
 }
 }
 else
 {
 posScore = parseFloat(posScoreArr[count]);
 negScore = parseFloat(negScoreArr[count]);
 }

 docScore = docScore + posScore + negScore;
 }

 if (docScore > 0){
 $('#div1').html("The document has positive reviews overall");
 $('#score').html("Overall doc score: " + docScore);
 }
 else{
 $('#div1').html("The document has negative reviews overall");
 $('#score').html("Overall doc score: " + docScore);
 }
 });

 $('#createCorpus').click(function(){
 var csvsentences = $('#csvSentences').val().split(',');

 for(var count = 0; count < csvsentences.length; count++){
 $.ajax({
 type: "GET",
 url: "http://localhost:5000/createpersonalcorpus/"+
csvsentences[count],
 async: false,
 cache: false,
 processData: false,
 success: function(data, textStatus, xhr) {

Appendix

124

 }});
 }
 });

 $('#classifyDocument').click(function(){
 var csvsentences = $('#csvSentences').val().split(',');

 for(var count = 0; count < csvsentences.length; count++){
 $.ajax({
 type: "GET",
 url: "http://localhost:5000/finalclassification",
 async: false,
 cache: false,
 processData: false,
 success: function(data, textStatus, xhr) {

 }});
 }
 });

 $('#getNegatedWords').click(function(){
 var parsed = JSON.parse($('#posTaggedArr').val());

 var counter = 0;
 var negatedWordArr = [];
 var negatedWord = "";
 var negText = $('#negatedArr').val().split(',');

 for(var count=0; count < parsed.length; count++){
 var mapped = Map(parsed[count][1]);
 parsed[count][1] = mapped;

 if((parsed[count][0].indexOf("'") > 0 ||
parsed[count][0].indexOf("'") < 0)){

 if (parsed[count][1] != undefined && negText[counter] !=
undefined){
 if (negText[counter].indexOf("_NEG") >=0)
 {

Appendix

125

 negatedWordArr.push(negText[counter].substr(0,
negText[counter].indexOf("_NEG")));
 }
 else
 {
 negatedWordArr.push("");
 }
 }
 counter++;

 }
 }
 $('#negatedWordArr').val("");
 $('#negatedWordArr').val(negatedWordArr);
 });
});
function Map(param)
{
 switch(param)
 {
 case 'NOUN':
 return 'n';
 case 'ADJ':
 return 'a';
 case 'VERB':
 return 'v';
 case 'ADV':
 return 'r';
 }

}

</script>

</body>

</html>

