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Abstract 

The last 15 years have seen a tremendous explosion in the amount of information 

available, encoded both in structured forms such as databases and XML files as well as 

free, naturally occurring forms such as HTML pages and word documents. This 

availability of free texts has created a need for automated text processing tools so that 

information can be extracted in a timely and effective manner. 

This research investigated the extraction of information from free text responses to 

open-ended questions in questionnaires. The research undertook to develop a 

framework for analyzing open question responses to extract structured information 

which can then be conflated with the closed question responses in order to produce a 

more informative report from the survey, in particular to determine the sentiment 

expressed in the response. 

Specifically, this research will help in understanding the positive or negative nature of 

the respondent’s answers through the creation of software tools using Natural 

Language Toolkit (NLTK) and data mining and Natural Language Processing 

techniques and will help surveyors (Health centers, doctors, data analysts) obtain 

additional information from surveys. There is also a discussion of existing sentiment 

analysis solutions as well as the different components and ways of analyzing sentiment 

and creating a Natural Language Processing tool which would be interesting to future 

developers of such systems. 

This research was successfully able to classify free text responses as positive or 

negative. While we appreciate that more time to fine tune the application and perform 

more training and testing would have been useful, the results obtained are promising. 

We have successfully developed a platform which can be used for generating a custom 

corpus and provide interested developers a starting framework to develop sentiment 

analysis tools. 
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Chapter 1: Introduction 

1.1 Introduction and background information 

The world has seen a tremendous increase in the use of digital documents due to the 

increased availability of hardware tools used to digitize non-digital data and the 

increased availability of software tools which create digital data such as images or word 

documents (Sebastiani, 2005). At the same time, Natural language and data mining 

researchers have been striving to improve solutions for storing, organizing and most 

importantly retrieving huge amount of data in digital form generated every second from 

natural language text (Sebastiani, 2005).  

Data or knowledge discovery, also known as data mining, is the process of evaluating 

data from various viewpoints and putting it together into novel and valuable information 

which can be used to decrease costs or increase revenue or both. Data mining allows 

us to view data from different angles and categorize, filter and summarize it and this 

helps users to find relationships within data. To summarize, data mining is the process 

of discovering patterns and relations between various fields in a relational database 

(Palace, 1996). Data mining consists of five major elements (Palace, 1996):   

1.  Extract, transform, and load transaction data onto the data warehouse system 

2.  Store and manage the data in a multidimensional database system 

3.  Provide data access to business analysts and information technology professionals 

4.  Analyze the data by application software 

5.  Present the data in a useful format, such as a graph or table 

Natural language processing (NLP), an area at the intersection of artificial intelligence 

and linguistics, began in the 1950s and was considered to be different from information 

retrieval which uses statistics-based techniques to search and index huge volumes of 

data. Research in NLP has received increasing attention over the last 30 years and in 

the last decade, concrete commercial applications are being created for business, 

industry and services. With time however, the fields of data mining and NLP have 

converged (Nadkarni, Ohno-Machado, & Chapman, 2011). 
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The last 5 years have seen a significant shift in ways we communicate with others using 

short loosely structured or unstructured text (Nand & Perera, 2015). This has created 

the need to look for techniques which can help users conveniently access huge volume 

of unstructured repositories of text which can be done by: 

•  Creating powerful tools for finding relevant document(s) within a large repository 

which will accept a natural language query and give the user a list of documents 

according to the relevance of information user requires 

•  Creating tools powerful enough to convert unstructured repository of documents or 

data into a structured one which creates ease of storage, browsing and searching 

(Sebastiani, 2005) 

Text classification is a sub discipline of data mining that is specifically concerned with 

building tools aimed at partitioning an unstructured collection of data or documents into 

a structured one. Text classification has two major variations. The first is text clustering 

which deals with finding undetected group structure in the repository and the second is 

text categorization which deals with categorizing or structuring the repository according 

to the scheme provided as input (Sebastiani, 2005).  

A more recent discipline of computational linguistics, Opinion Mining is concerned with 

opinion, not the topic, expressed in a document. For instance, applications that 

determine opinions of users have helped in the review of products while others have 

helped in tracking general public attitude towards a political candidate. 

Various sub-tasks of Opinion Mining have been identified (Esuli & Sebastiani, 2006):  

1.  Finding factual nature or opinions expressed in text on subject matter, which can be 

achieved by performing binary text categorization under subjective or objective 

categories. 

2.  Finding orientation of document i.e. determining whether a piece of subjective text 

expresses negative or positive opinion. 

3.  Evaluating strength of document orientation i.e. deciding for example whether 

opinion expressed is weakly positive, or mildly positive, or strongly positive. 
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1.2 Evaluation in NLP  

While a good deal of time has been devoted to the study of computational models of 

languages and to their implementation into applications, very little attention has been 

given to evaluating their performance and accuracy. Two main reasons for this were 

that early results of NLP applications had a poor impact which did not push for the need 

for accurate performance evaluation and secondly, the unavailability of formal tools 

which can appropriately define NLP systems at different levels of abstraction such as 

linguistic models, external behavior and knowledge representation methods, knowledge 

bases and processing algorithms. This has impeded the development of methods for 

performance evaluation in NLP. Recently as a result of growing interest in NLP, 

performance evaluation has been seen as an important research problem and has 

begun to appeal to larger research interests as it helps to evaluate the results obtained 

from a system up to a certain point in development, and helps us to plan for the next 

stages of refinement and implementation. However it should be noted that several NLP 

applications that are available in the market do not consider performance evaluation 

(Nadkarni et al., 2011). 

1.3 Introduction to Data mining  

The aim of data mining is to understand large amounts of mostly unsupervised data, in 

various domains. This definition of data mining is intuitive and easy to understand. The 

users of data mining are often domain experts who not only own the data but also 

collect the data. It is generally assumed that data owners have some understanding of 

the data and the processes that generated the data. Businesses are the largest group of 

data mining users since they routinely collect massive amounts of data and have a 

vested interest in making sense of the data; their goal is to make their companies more 

competitive and profitable. Data owners desire not only to better understand their data 

but also to gain new knowledge about the domain that is present in their data for solving 

problems in novel, possibly better ways. 

Data mining is not just an “umbrella” term coined for making sense of data. The major 

distinguishing characteristic of data mining is that it is data driven, as opposed to other 
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methods that are often model driven. In statistics, researchers often deal with the 

problem of finding the smallest data size that gives sufficiently confident estimates. In 

data mining it is the opposite, namely, data size is large and we are interested in 

building a data model that is small (not too complex) but still describes the data well. 

Knowledge Discovery Process (KDP), also called knowledge discovery in databases, 

seeks new knowledge in some application domain. It is defined as the nontrivial process 

of finding valid, novel, potentially useful, and ultimately understandable patterns in data. 

The process generalizes to non-database sources of data although it emphasizes 

databases as a primary source of data. It consists of many steps (one of which is Data 

Mining), each attempting to complete a discovery task and each accomplished by the 

application of a discovery method. Knowledge discovery concerns the entire knowledge 

extraction process, including how data are stored and accessed, how to use efficient 

and scalable algorithms to analyse massive datasets, how to interpret and visualize the 

results, and how to model and support the interaction between human and machine. It 

is also concerned with support for learning and analysing the application domain. The 

KDP model consists of a set of processing steps to be followed by practitioners when 

executing a knowledge discovery project. The model describes procedures that are 

performed in each of its steps. It is primarily used to plan, work through, and reduce the 

cost of any given project.  

1.4 Motivation 

Surveys are composed of closed and open ended questions. While closed questions 

restrict the frame of reference, open ended questions provide liberty to the user to 

express their opinion more freely. Some surveys require respondents to express their 

opinions using natural language text. Reading these surveys manually is time intensive 

and analyzing user opinion correctly becomes difficult, especially with the large amounts 

of text that need to be analyzed. Therefore this research has the aim of analyzing 

sentiment expressed in free text comments in questionnaires. Free text analysis will be 

done by automating the process which involves the creation of artifacts which can be 
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used to analyze the sentiment of free text, and determine the polarity (positive or 

negative) and strength of a free text comment. 

There are tools in the market (commercial or open source) which help to find the 

sentiment expressed by a document. The available tools however lack documentation 

about the methodology used, algorithms applied to classify text and sentiment analysis 

algorithm used. This provided the main impetus for this research, which was to follow an 

accepted and viable research methodology to analyse the sentiment expressed, within 

a reusable framework, and to provide the documentation that is missing from tools 

available in the market. During this process, the goals were to: understand the process 

of sentiment analysis starting from text extraction to calculating positive and negative 

sentiment and most importantly create artifacts which can subsequently be used to 

analyze the sentiment of other types of free text. The framework created can be 

extended for future research in this field. The framework can also be used as a starting 

point to analyze document sentiment in various other languages.  

1.5 Research Problem and Question 

The research problem addressed in this thesis can be stated as information extraction 

from free text comments in questionnaires using NLP and data mining techniques.  

This thesis set out to answer the following research question: 

How can an effective sentiment analysis tool be built to analyse free text 

comments in questionnaires? 

A supplementary research question investigated is: 

Will a corpus created from the data be useful in analyzing sentiment expressed in 

the data? 

 

1.6 Scope 

The scope of the thesis is to study the different components of data mining and NLP 

and use this knowledge to create a tool which can extract free text responses from a 
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questionnaire; analyze the sentiments expressed in the responses and classify 

responses as positive or negative.  

The different stages of sentiment analysis that we follow in this research are depicted in 

Figure 1: 

 
Figure 1 Different Stages of Sentiment Analysis (Source: (Zhang & Desouza, 2014) 

In the process of creating the software tool we also investigate the utility of a corpus in 

sentiment analysis—the corpus will be created from the data used in this research. The 

resulting corpus can be used as reference for future analysis of text. We will use 

different libraries and algorithms to classify text which is a well-rounded approach that is 

followed by software practitioners while creating language classification software. While 

the code will be tailored to the current study, i.e. to patient comments about doctors, the 

code can be extended in future to extract results related to demographics of patients 

such as race, sex, age. 

In Section 1.2, we discussed the lack of attention towards the evaluation of performance 

and accuracy in NLP applications. Therefore, in this research we will be evaluating 
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results using accepted Information Science measures and this is discussed in Chapter 

5. 

1.7 Thesis structure 

The rest of the thesis is structured as described in the following paragraphs. 

Chapter 2 reviews literature on sentiment analysis and provides information about the 

process and different components used to create an effective sentiment analysis tool 

and the areas of application of sentiment analysis, application in medical field. Then we 

take a detailed look at existing sentiment analysis. Chapter 2 also discusses research in 

a related area—that of n-grams—which is an important technique for solving the 

problem of language recognition, used in information retrieval. We look at how n-grams 

are calculated and then look at the use and areas of application and finish the chapter 

with pseudo code to generate n-grams and gaps and key challenges. 

Chapter 3 begins with details about data mining and KDP, followed by text mining and 

the seven areas of practice in text mining, which is followed by a discussion on natural 

language processing, its components and various tools. Before diving deep into 

sentiment analysis, it is essential to discuss Word Sense Disambiguation (WSD) and 

performing WSD on a document. The chapter concludes with a discussion about 

Wordnet—a lexical resource and SentiWordnet, another lexical resource, which is used 

in this thesis.  

We look at analyzing negative sentiment in Chapter 4, which is one of the most complex 

tasks in sentiment analysis and how it can be performed. We then look at pseudo code 

which can help us perform negation of sentiment polarity.  

In Chapter 5, we discuss about the evaluation techniques for classification                 

models. After looking at the sentiment analysis workflow, we look at the Natural 

Language Toolkit and processing tasks, which are widely used for sentiment analysis 

for educational and research purposes. We then study supervised classification 

algorithm which we will use in this thesis. 
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We present the software tool framework and set up instructions using the code in the 

appendix, in Chapter 6. We also present results obtained by running the tool on test 

data. 

Finally, we review the thesis in Chapter 7, followed by limitations of the tool and areas 

for future research and work. 

This thesis also has an extensive appendix, which provides further background 

information on the code written to create the custom corpus and perform various NLP 

tasks. 
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Chapter 2: Literature Review 

2.1 Introduction 

This chapter discusses current literature and work in sentiment analysis along with the 

analysis process and classification methods used. Section 2.2 will discuss sentiment 

analysis followed by a section which discusses the areas of application of sentiment 

analysis. Classification of existing sentiment analysis method is discussed in the fourth 

section. The next section shows us the process of sentiment analysis and then we look 

at different sentiment analysis methods, after which we look at sentiment analysis in the 

medical field. WSD and N-grams are some of the most widely used techniques for 

information retrieval and it was essential to review the literature and understand n-

grams before the framework for this thesis could be finalized. Finally, we look at the 

current gaps and challenges in the application of natural language processing to 

analyzing and classifying text and documents. Finally, a summary concludes the 

chapter. 

2.2 Sentiment Analysis Review 

Sentiment analysis is the computational study of human opinions, emotions, attitudes 

and thoughts towards an event or topic or individual. Opinion or sentiment mining, 

sentiment extraction and subjectivity analysis are other terms used for sentiment 

analysis (Chandni, Chandra, Pahade, & Gupta, 2015). Sentiment analysis uses natural 

language processing, computation techniques and text analysis to automate the entire 

process of extracting and classifying sentiment reviews. Sentiment analysis has spread 

across many fields such as marketing, consumer information, books, websites, 

application and social media. The main aim of analyzing sentiments in a variety of areas 

is to analyze and examine the reviews and score of sentiments (Hussein, 2016). 

Opinions usually comprise of polarity which can positive or negative, the target or the 

aspects about which the sentiment was expressed, and the time at which the opinion 

was expressed.  
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Typically, we can perform sentiment analysis by using lexicon-based method or 

machine learning or a combination of the two methods also known as hybrid methods. 

Machine learning uses algorithm that needs to be trained with labelled data and then 

the model is used for classifying new documents. The labelled data is created by human 

annotator and is a labor-intensive process. Distant supervision is an alternative method 

which relies on usage of certain emoticons which signify sentiments. Although distant 

supervision has been proved to do well in classification, it is very difficult to integrate it 

with machine learning algorithm. Lexicon based methods make use of sentiment 

lexicons which associate terms with sentiment polarity (negative, positive or neutral) 

usually by using a numerical score that is an indicator of sentiment strength and 

dimension. But sentiment lexicons do not contain sentiment bearing and domain 

specific terms and this makes it difficult to classify high sentiment bearing words 

properly (Muhammad, Wiratunga, Lothian, & Glassey, 2013). 

The goal of sentiment analysis is to analyze and examine the sentiments shown in the 

sentence and determine the polarity of the sentence. Sentiment analysis can be 

examined as a process of three systemization levels which are document level, aspect 

level and sentence level. Document level sentiment analysis sets to organize thoughts 

in a document as carrying a positive or negative or neutral sentiment. An aspect is a 

part of the product/movie that has been commented on in a review. For example, 

‘battery life’ in the opinion phrase ‘The battery life of this camera is too short’. Sentence 

level opinion mining first tries to recognize the sentence as subjective or objective and 

then if a sentence is subjective it tries to examine whether it displays positive or 

negative sentiment. There is no real distinction between document- and sentence-level 

analysis because sentences are considered small records from a document (Chandni et 

al., 2015). 

2.2.1 Areas of Application of Sentiment Analysis 

Consumers make a choice or decision regarding a product from the information about 

the reputation of the product derived from the opinions of other users. When users 

choose a product, they are interested or attracted to certain aspects of the product and 

may comment on specific aspects in their review. A review is an assessment of the 
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quality of a product, for example, that is posted online. An aspect is a part of the product 

that has been commented on in a review. For example, ‘battery life’ in the opinion 

phrase ‘The battery life of this camera is too short’. A rating is an intended interpretation 

of user satisfaction in terms of numerical values. Most review websites use ratings 

(number of stars) in the range from 1 to 5. Sentiment analysis can help collect the 

opinions of the reviewers and help estimate ratings on a specific aspect of the product, 

as a single global rating can be deceiving. Thus, sentiment analysis or mining can be 

used to give an indication or recommendation in choosing products. Another usage of 

sentiment analysis is for the organizations or companies to know the opinion consumers 

have of their products, which then can be used to improve on the aspects consumers 

did not like or found unsatisfactory. Sentiment analysis can also help companies 

understand which aspects consumers liked, and automatically suggest advertisement 

for other products that suit a viewer’s opinion and this provides numerous opportunities 

in the human–machine interface domain.  

2.2.2 Process of Sentiment Analysis 

 

Figure 2 Sentiment Analysis Process (Source: (Chandni et al., 2015) 

The process of sentiment analysis, as shown in Figure 2, may be simplistically viewed 

as a series of actions that begin with a sentence to be analysed and ends with the 
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determination of the polarity of the sentence. The feature extraction phase deals with 

features which may be of the following types in sentiment classification: 

1. Part of speech (POS): It includes adjectives which are important for opinion or 

thought.  

2. Presence of Terms and their Frequencies: These features are type of word i.e. 

individual word or N-gram words and their relative count of frequencies. Frequency 

count is used to show the relative value of features. 

3. Words and Phrases for opinion: words and phrases that are commonly used to the 

opinions like love or hate, high or low.  

4. Negation: as a negative word before any word may change the meaning of that word 

or opinion e.g. not love is similar to hate. (Chandni et al., 2015). 

(Asghar, Khan, Ahmad, Qasim, & Khan, 2017) detail many of the functions performed 

during lexicon-based sentiment analysis, presented here in Figure 3. Their method is 

based on the three steps: 1. Acquisition of data from different online resources; 2. Noise 

reduction, performed by applying different preprocessing techniques to refine the text 

that can be used for later processing, and 3. Classification techniques applied to classify 

the reviews into positive, negative or neutral. 
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Figure 3 Sentiment Analysis Components (Source: Asghar et al., 2017) 
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In the following section, we look at the different ways existing solutions have been 

classified. 

2.2.3 Classification of existing solutions 

Existing solutions on sentiment analysis can be classified on different points such as 

technique used, view of text, level of detail of text analysis, rating level, etc. From a 

technical standpoint, we can classify based on the approaches.  

 

Table 1 Approaches and Techniques from Existing Solutions 

Method/Approach Measure/Technique Used 

Machine Learning Learning algorithms 

Lexicon-based Semantic orientation 

Rule-based Classification 

Statistical  Multinomial distribution, Clustering 

 

As shown in Table 1, the machine learning method uses several learning algorithms to 

determine the sentiment by training on a known dataset. The lexicon-based approach 

involves calculating sentiment polarity for a review using the semantic orientation of 

words or sentences in the review; “semantic orientation” is a measure of subjectivity and 

opinion in text. The rule-based approach looks for opinion words in a text and then 

classifies it based on the number of positive and negative words. It considers different 

rules for classification such as dictionary polarity, negation words, booster words, 

idioms, emoticons, mixed opinions, to mention a few. Statistical models represent each 

review as a mixture of latent aspects and ratings. It is assumed that aspects and their 

ratings can be represented by multinomial distributions and try to cluster head terms 

into aspects and sentiments into ratings. 

Most of the solutions for review classification rely on polarity of the review and machine 

learning techniques. Solutions which aim for more detailed classification of user reviews 

use a great deal of linguistic features including negation, modality, intensification and 
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discourse structure. Figure 4 gives further detail on the classification of existing 

methods. 

 
 

 
Figure 4 Sentiment Analysis Classification (Source: (Collomb et al., 2014) 

Another classification of sentiment analysis is oriented more on the structure of the text: 

document level, sentence level or word/feature level classification. Document-level 

classification aims to find a sentiment polarity for the whole review, whereas sentence 

level or word-level classification can express a sentiment polarity for each sentence of a 

review and even for each word. (Collomb et al., 2014) state that most of the methods 

tend to focus on document-level classification. They also distinguish methods which 

measure sentiment strength for different aspects of a product and methods which 

attempt to rate a review on a global level. 

In the next section, we look at some of the sentiment analysis methods from literature. 

2.3 Sentiment Analysis Methods and Tools 

In this section, we discuss various sentiment analysis methods and tools created by 

researchers in performing sentiment analysis.  
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2.3.1. Sentiment Classification of Online Customer Reviews  

(Khan, Baharudin, & Khan, 2011) presented a domain-independent rule-based method 

for classifying sentiments from customer reviews that works in three parts. First, the 

reviews are split into sentences, corrected and POS tagged, and the base word of each 

word in the sentence is stored. Next, opinion word extraction is used to find out the 

polarity of the sentence based on the contextual information and structure of the 

sentence. The noun phrases are the aspects of the product. The third part consists of 

classifying the sentence as subjective or objective—using rule based methods. Each 

word conveys opinion and has a semantic score which is calculated from SentiWordNet 

dictionary, and a weight is assigned to a sentence, by rating each term, to decide if it 

conveys positive or negative sentiment. 

 

For evaluation, (Khan et al., 2011) collected three types of customer reviews (movie, 

hotel and airline reviews) which had an average of 1,000 movie and airlines reviews and 

2,600 hotel reviews. The performance was assessed with an accuracy of 91% at the 

review level and 86% at the sentence level; moreover, the sentence level sentiment 

classification performed better than the word level. The accuracy of 70-75% seems 

better than the average results of other methods but there is no comparison provided 

with other lexicon-based methods, nor with learning-based methods. 

2.3.2. Concept-Level Sentiment Analysis 

pSenti is a concept level sentiment analysis system which combines lexicon based and 

learning-based approaches. It measures and reports the overall sentiment of a review 

through a score that can be positive, negative or neutral or 1–5 stars classification. The 

main advantages and main interests of this article are the lexicon/learning symbiosis, 

the detection and measurement of sentiments at the concept level and the lesser 

sensitivity to changes in topic domain. 

It works in four parts: 

1. Pre-processing of the review where the noise (idioms and emoticons) is removed 

and each word is tagged and stored by the method Part of Speech (POS). 
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2. Aspects and views are extracted to generate a list of top 100 aspect groups and 

top 100 views. The aspects are identified as nouns and noun phrases, and the 

views as sentiment words, adjectives and known sentiment words which occur 

near an aspect.  

3. Then the lexicon-based approach is used to give a “sentiment value” to any 

sentiment word and generates features for the supervised machine learning 

algorithm. 

4. Algorithm generates a “feature vector” for each aspect which is either the sum of 

the sentiment value for a sentiment word or the number of occurrences of this word 

in relation with other adjectives. 

To evaluate this method, experiments were conducted on software reviews (more than 

10,000) and movie reviews (7,000) datasets. Software reviews were separated into 

software editor reviews and customer software reviews categories. In their experiments, 

pSenti’s accuracy was proved close to the pure learning-based system and higher than 

the pure lexicon-based method. It was also shown that the performance was not as 

good on customer software reviews as on software editor reviews because customer 

software reviews are usually much “noisier” (with comments that are irrelevant to the 

subject) than professional software editor reviews. Its accuracy was also affected by 

many reviews for which it did not detect any sentiment or assigned neutral score. 

However, the sentiment separability in movie reviews was much lower than in software 

reviews. One of the reasons is that many movie reviews have plot descriptions and 

quotes from the movie where words are identified as sentiments by the system 

(Collomb et al., 2014; Mudinas, Zhang, & Levene, 2012). 

2.3.3. Interdependent Latent Dirichlet Allocation 

(Moghaddam & Ester, 2011), introduced Interdependent Latent Dirichlet Allocation 

(ILDA) in 2011. They introduced the probabilistic assumption that there is 

interdependency between an aspect and its corresponding rating. ILDA is a probabilistic 

graphical model which shows each review as a mixture of latent aspects and ratings. It 

assumes that aspects and their ratings can be represented by multinomial distributions 

and tries to cluster head terms into aspects and sentiments into ratings. ILDA relies on a 
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concept introduced in 2003 by (Blei, Ng, & Jordan, 2003). Latent Dirichlet Allocation 

(LDA). It is a generative probabilistic model for collections of discrete data such as text 

corpora. The basic idea is that each item of a collection is modeled as a finite mixture 

over an underlying set of latent variables. 

Their experiments showed notable improved results for ILDA compared to the other two 

graphical models described in the paper (PLSI and LDA), gaining in average almost 

20% for the accuracy of rating prediction. They obtain in average 83% accuracy in 

aspect identification and 73% accuracy in aspect rating.  

2.3.4. A Joint Model of Feature Mining and Sentiment Analysis 

This solution was introduced in 2011 by (de Albornoz, Plaza, Gervás, & Díaz, 2011). 

The authors propose a method that globally rates a product review into three categories 

by measuring the polarity and strength of the expressed opinion. This solution was 

chosen as a representative of the global rating solutions, as it goes further than other 

solutions; It tries to find the strength of the opinion as well as the relevance of the 

feature the opinion is about.  

The mechanism of this method is straightforward:  

1. Important features are found 

2. Sentences having opinions on those features are found in the body of the review 

and polarity and strength are computed  

3. Next, a global score is computed. The method does not rely on any earlier 

knowledge about the importance of the features to the customer, contrary to Hu and 

Liu, but learn it from a set of reviews using an unsupervised model. Another 

contribution is that each feature is automatically weighted. Feature importance and 

opinion extraction, as well as opinion rating rely on the WordNet lexical database for 

English. This can be an important disadvantage of the method, as it cannot be 

applied on reviews written in other languages.  

4. The fourth step – rating reviews are predicted and these reviews are structured 

using Vector Feature Intensity (VFI) graph. It is constructed using the strength of the 

opinion and the relevance of the feature. This graph is fed as input to any machine 

learning algorithm that will classify the review into different rating categories. 
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This solution offers flexibility when it comes to choosing the best machine learning 

method for classifying reviews. 

2.3.5. Opinion Digger 

The solution Opinion Digger was introduced in 2010 by (Moghaddam & Ester, 2010) 

and is a good and exact example of a completely unsupervised machine learning 

method. The particularity of this solution is to use as input a set of known aspects of a 

product and a ratings guideline (5 means “excellent” 4 means “good”). With these 

elements, Opinion Digger finds and outputs a set of other aspects and ratings in each 

aspect according to the guideline. The impetus for this research was based on the fact 

that many reviewing websites like amazon.com provide these input elements but there 

was no method that used them. 

Opinion digger works in two steps: 

1. In the first phase, Opinion Digger decides the set of aspects. After the pre-

processing, each sentence is tagged with POS. It assumes that aspects are nouns 

so it first isolates the frequent nouns as potential aspects. With the sentences 

matching the known aspects, they determine opinion patterns as sequence of POS-

tags that expressed opinion on an aspect. The frequent patterns used with known 

aspects are considered opinion patterns. If reviews with a “potential aspect” noun 

match at least two different opinion aspects, Opinion digger considers the noun as 

an aspect.  

2. The second phase is rating the aspects. For each sentence having an aspect, 

Opinion Digger associates the closest adjective to the opinion. It searches two 

synonyms from the guideline in the WordNet synonymy graph. The estimated rating 

of the aspect is the weighted average of the corresponding rating in the guideline. 

Weight is calculated by the inverse of the smallest path distance between the 

opinion adjective and the guideline’s adjective in the WordNet hierarchy.  

The experiments show good performance in aspect determination and an excellent 

accuracy in ratings. The evaluation of aspect ratings was made using only the known 

set of aspects and compared to 3 other unsupervised methods. Opinion Digger 

performs with an average ranking loss of only 0.49 which is the difference between 
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estimated and actual ratings. By incorporating new current information in the machine 

learning process, Opinion Digger increases the accuracy of the unsupervised machine-

learning method. 

2.3.6. Latent Aspect Rating Analysis  

This solution treats a special problem called Latent Aspect Rating Analysis with a 

model-based method. The model is called the Latent Rating Regression (LRR) model 

and was created by (Wang, Lu, & Zhai, 2010). It estimates ratings on different aspects 

in a review but also decides the emphasis of the author on each aspect. It uses a given 

set of aspects and the overall ratings of the review. It starts with an aspect-

segmentation step. By recursively associating words with aspects, it builds an aspect 

dictionary and links each phrase of a review to the corresponding aspect, then it applies 

the model. The assumption of reviewer’s rating behavior is as follows: to generate an 

opinionated review the reviewer first decides the aspects for reputation evaluation that 

she/he wants to comment on; and then for each aspect, the reviewer carefully chooses 

the words to express her/his opinions. The reviewer then forms a rating on each aspect 

based on the sentiments of words she/he used to discuss that aspect. Finally, the 

reviewer assigns an overall rating depending on a weighted sum of all the aspect 

ratings, where the weights reflect the relative emphasis she/he placed on each aspect. 

So, the overall rating is not directly decided by the words used in the review but rather 

by latent ratings on different aspects which are decided by the words.  

With a probabilistic regression approach, Latent Aspect Rating Analysis converts the 

model into a Bayesian regression problem, and then decides the aspect ratings and 

weight with consideration to the author’s intent. The overall rating r is assumed to be a 

sample drawn from a Gaussian distribution with variance delta square and mean the 

weighted sum of the aspect ratings S. S is the result of the weighted sum of the words 

W in the reviews. A multivariate Gaussian distribution is employed as the prior for 

aspect weight’s alpha. 

The experimentation shows an average performance compared to other unsupervised 

methods in aspect ratings. However, it achieves what it set out to achieve—to estimate 

an aspect’s weight (Collomb et al., 2014; Wang et al., 2010).  
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2.3.7. More approaches and tools  

In this section, we go on to introduce some more research and tools in the area of 

sentiment analysis. 

(Asghar et al., 2017) looked at enhancing the performance of sentiment analysis and 

resolving the issues of data sparseness and incorrect classification caused by the 

presence of noisy text, emoticons, modifiers and domain specific words (See Figure 3). 

The basic theme was to reduce noise from the review text by applying different pre-

processing steps and processes through a variety of classifiers. The proposed method 

was used to test the text from different online forums; the reviews compiled from these 

sources were used as input items. 

One simple way proposed to detect the polarity of a message is based on the 

emoticons it contains. Emoticons have become popular in recent years, to the extent 

that some (e.g. <3) are now included in English Oxford Dictionary. Emoticons are 

primarily face-based and represent happy or sad feelings, although a wide range of 

non-facial variations exist: for instance, <3 represents a heart and expresses love or 

affection. To extract polarity from emoticons, a set of common emoticons, which also 

includes popular variations that expresses positive, negative and neutral sentiments, 

are utilized (Gonçalves, Araújo, Benevenuto, & Cha, 2013). 

Linguistic Inquiry and Word Count (LIWC)is a text analysis tool that evaluates 

emotional, cognitive, and structural components of a given text based on the use of a 

dictionary containing words and their classified categories. In addition to detecting 

positive and negative effects in each text, LIWC provides other sets of sentiment 

categories. For example, the word “agree” belongs to the following word categories: 

assent, affective, positive emotion, positive feeling, and cognitive process (Gonçalves et 

al., 2013). 

Machine-learning-based methods are suitable for applications that need content-driven 

or adaptive polarity identification models. Several key classifiers for identifying polarity 

in online social network data have been proposed in the literature. A very 

comprehensive work developed SentiStrength which compared a wide range of 
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supervised and unsupervised classification methods, including simple logistic 

regression, SVM, J48 classification tree, JRip rule-based classifier, SVM regression, 

AdaBoost, Decision Table, Multilayer Perception, and Naive Bayes. It was shown that, 

SentiStrength implements the state-of-the-art machine learning method in the context of 

online social networks. SentiStrength version 2.0, is available at 

http://sentistrength.wlv.ac.uk/Download (Gonçalves et al., 2013). 

SentiWordNet is a tool that is widely used in opinion mining, and is based on an English 

lexical dictionary called WordNet. Wordnet groups adjectives, nouns, verbs and other 

grammatical classes of a word into synonym sets called synsets. SentiWordNet 

associates three scores—positive, negative, and objective (neutral)—with synsets from 

the WordNet dictionary to indicate the sentiment of the text. The scores, which are in 

the values of [0, 1] and add up to 1, are obtained using a semi-supervised machine 

learning method SentiWordNet was evaluated with a labeled lexicon dictionary. To 

assign polarity based on this method, the average scores of all associated synsets of a 

given text are considered, and the text is considered to be positive if the average score 

of the positive affect is greater than that of the negative affect. Scores from objective 

sentiment were not used in determining polarity. SentiWordNet version 3.0, which is 

available at http://sentiwordnet.isti.cnr.it/. WordNet is discussed in Chapter 3 and 

SentiWordNet in Chapter 4 (Gonçalves et al., 2013). 

SenticNet is a method of opinion mining and sentiment analysis that explores artificial 

intelligence and semantic Web techniques. SenticNet infers polarity of common sense 

concepts from natural language text at a semantic level (Gonçalves et al., 2013). 

The method uses NLP techniques to create a polarity for nearly 14,000 concepts. For 

example, to interpret a message “Boring, it’s Monday morning”, SenticNet first tries to 

identify concepts, which are “boring” and “Monday morning”. Then it assigns a polarity 

score to each concept, in this case, -0.383 for “boring”, and +0.228 for “Monday 

morning” (Gonçalves et al., 2013). The resulting sentiment score of SenticNet is an 

average of the polarity scores which is -0.077. The National Health Service in England 

used SenticNet to test and evaluate the polarity in opinions of patients about the health 

http://sentistrength.wlv.ac.uk/Download
http://sentiwordnet.isti.cnr.it/
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service. We use SenticNet version 2.0, which is available at http://sentic.net/ (Gonçalves 

et al., 2013). 

SASA is a method based on machine learning techniques such as SentiStrengh and 

was evaluated with 17,000 labeled tweets on the 2012 U.S. Elections. The open source 

tool was evaluated by the Amazon Mechanical Turk (AMT), where “turkers” were invited 

to label tweets as positive, negative, neutral, or undefined. The SASA python package 

version 0.1.3 is available at https://pypi.python.org/pypi/sasa/0.1.3 (Gonçalves et al., 

2013). 

Happiness Index is a sentiment scale that uses the popular Affective Norms for English 

Words (ANEW). ANEW is a collection of 1,034 words commonly used associated with 

their affective dimensions of valence, arousal, and dominance. Happiness Index was 

constructed based on the ANEW terms and has scores for a given text between 1 and 

9, indicating the amount of happiness existing in the text. The authors calculated the 

frequency that each word from the ANEW appears in the text and then computed a 

weighted average of the valence of the ANEW study words. The validation of the 

Happiness Index score is based on examples. ANEW was applied to a dataset of song 

lyrics, song titles, and blog sentences. It was found that the happiness score for song 

lyrics had declined from 1961 to 2007, while the same score for blog posts in the same 

period had increased (Gonçalves et al., 2013). To adapt Happiness Index for detecting 

polarity, any text that is classified with this method in the range of [1..5] is considered to 

be negative and in the range of [5..9] to be positive. 

PANAS-t is a psychometric scale proposed for detecting mood fluctuations of users on 

Twitter. The method consists of an adapted version of the Positive Affect Negative 

Affect Scale (PANAS), which is a method in psychology. PANAS-t is based on a large 

set of words associated with eleven moods: joviality, assurance, serenity, surprise, fear, 

sadness, guilt, hostility, shyness, fatigue, and attentiveness (Gonçalves et al., 2013). 

This method is used to track any increase or decrease in sentiments over time and to 

associate text to a sentiment, PANAS-t first utilizes a baseline or the normative values 

of each sentiment based on the entire data. Then the method computes the P(s) score 

for each sentiment s for a given time as values between [−1.0, 1.0] to indicate the 

https://pypi.python.org/pypi/sasa/0.1.3
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change. For example, if a given set of tweets contain P(“surprise”) as 0.250, then 

sentiments related to “surprise” increased by 25% compared to a typical day. Similarly, 

P(s) = −0.015 means that the sentiment s decreased by 1.5% compared to a typical day 

(Gonçalves et al., 2013).  

There are various other solutions in the market which offer a variety of opinion mining 

tools; most of them are custom made to analyze the sentiments from customer reviews 

about products and services by interpreting natural language. An example of a freely 

available application that simply analyzes terms can be found at http://twitrratr.com/ 

(Cieliebak, Dürr, & Uzdilli, 2013). 

Wordclouds are also becoming more and more used in making sense of large quantities 

of information in a snapshot and is a popular solution for word visualization. Such tools 

are also extremely simplified and only offer a visualization of the most commonly used 

terms, which gives an idea of what the document is about. Tools such as those 

available at www.wordle.com offer an appealing design solution that can serve as an 

entry level in the opinion mining market (Cieliebak et al., 2013).  

Another way of classifying or making sense of large amount of information is to rely on 

human effort using collective intelligence and or crowdsourcing, where people will not 

only filter but also signal the most important ones.  The website www.uservoice.com 

provides such a tool which allows users to send feedback and rate other users’ ideas, 

and this helps in creating new ideas (Cieliebak et al., 2013). 

There is a flourishing market of enterprise-level software for opinion mining with much 

more advanced features. These tools are largely in use by companies to monitor their 

reputation and the feedback about products on social media. In the government context, 

opinion mining has long been in used as an intelligence tool to detect hostile or negative 

communications. These tools rely on machine learning for finding and classifying 

relevant comments, using a combination of latent semantic analysis, support vector 

machines, "bag of words" and semantic orientation. These processes need significant 

human effort aided by machines; tools in the market rely on a combination of machine 

and human analysis, typically using machines to augment human capacity to classify, 
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code and label comments. Automated analysis is based on a combination of semantic 

and statistical analysis. Recently, because of the sheer increase in the quantity of 

datasets available, statistical analysis is becoming more important (Cieliebak et al., 

2013). 

Table 2 lists some of the commercially available sentiment analysis tools which can 

analyze arbitrary texts, with free API access and are available free of charge (Cieliebak 

et al., 2013).  

Table 2 Commercial Tools. (Source: Cieliebak et al., 2013) 

 

 

2.4 Sentiment analysis in the medical field 

As the goal of this thesis is to analyze sentiments expressed by patients of a medical 

centre, a review of existing research on sentiment analysis in the medical field was 

undertaken. Such literature can be grouped based on textual source (e.g. medical web 

content, biomedical literature and clinical notes), task (e.g. polarity analysis, outcome 

classification), method (e.g. rule-based, machine-learning based) and level (e.g. word 

level, sentence level).   

2.4.1 Sentiment analysis from the medical web 

Most research on sentiment analysis in the domain of medicine considers web data 

such as medical blogs or forums for mining or studying patient opinions or measuring 

quality. For example, a method was introduced that separates factual texts from 
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experiential texts to measure content quality and credibility in patient-generated content. 

As factual content is better than affective content since more information is given (in 

contrast to moods and feelings), a system has been developed using subjectivity words 

and a medical ontology to evaluate the factual content of medical social media. 

As in general sentiment analysis, existing approaches to sentiment analysis from 

medical web data are either machine-learning based or rule-based. Most of the work 

focuses on polarity classification.  

(Xia, Gentile, Munro, & Iria, 2009) introduced a multi-step approach to patient opinion 

classification. Their approach decides the topic and the polarity expressed towards it. 

An F-measure of around 0.67 was reported.  

(Sokolova, Matwin, Jafer, & Schramm, 2013) tested several classifiers including naive 

Bayes, decision trees and support vector machines for the sentiment classification of 

tweets. Texts were represented as bags of words. Two classification tasks were 

considered: three-class (positive, negative and neutral) and two-class (positive, 

negative). The best F-measure of 0.69 was achieved with an SVM classifier.  

The work by (Biyani et al., 2013) focused on determining the polarity of sentiments 

expressed by users in online health communities. More specifically, they performed 

sentiment classification of user posts in an online cancer support community (cancer 

survivors network) by exploiting domain-dependent and domain-independent sentiment 

features as the two complementary views of a post and exploiting them for post-

classification in a semi-supervised setting employing a co-training algorithm. This work 

was later extended with features derived from a dynamic sentiment lexicon, while the 

previous work used a general sentiment lexicon to extract features.  

(Smith & Lee, 2012) studied another aspect of sentiment in patient feedback, namely 

discourse functions such as expressiveness and persuasiveness. A classifier was 

evaluated based on a patient feedback corpus from NHS Choices. The results illustrate 

that the multinomial naive Bayes classifier with frequency-based features can achieve 

the best accuracy (83.53%). Further, the results showed that a classification model 

trained solely on an expressive corpus can be directly applied to the persuasive corpus 
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and achieve a performance comparable to the training based on the corpus with the 

same discourse function.  

(Sharif, Zaffar, Abbasi, & Zimbra, 2014) presented an interesting application of 

sentiment analysis with their extracts of semantic, sentiment and affect cues for 

detecting adverse drug events reported by patients in medical blogs. This approach can 

reflect the experiences of people when they discuss adverse drug reactions as well as 

the severity and emotional impact of their experiences.  

(Na et al., 2012) presented a rule-based linguistic approach for the sentiment 

classification of drug reviews. They used existing resources for sentiment analysis, 

namely SentiWordNet and the Subjectivity Lexicon, and came up with linguistic rules for 

classification. Their approach achieved an F-measure of 0.79. Additional work has 

tackled the detection and analysis of emotion in medical web documents.  

(Sokolova & Bobicev, 2013) considered the categories encouragement (e.g. hope, 

happiness), gratitude (e.g. thankfulness), confusion (e.g. worry, concern, doubt), facts, 

and facts + encouragement. They used the affective lexicon WordNetAffect for emotion 

analysis of forum entries. However, the f-score achieved, with a naive Bayes classifier, 

was 0.518.  

Also, it is interesting to note the work of (Melzi et al., 2014) who applied an SVM 

classifier on a feature set comprising unigrams, bigrams and specific attributes to 

classify sentences into one of six emotion categories. 

2.4.2 Sentiment analysis from biomedical literature 

In addition to medical social media data, biomedical literature has been analyzed with 

respect to the outcome of a medical treatment. In this context, sentiment refers to the 

outcome of a treatment or intervention. Four classes were considered in existing work: 

positive, negative, neutral outcome and no outcome. (Niu, Zhu, Li, & Hirst, 2005) used a 

supervised method to classify the (outcome) polarity at sentence level. Unigrams, 

bigrams, change phrases, negations and categories were employed as features. As per 

the results, the algorithm’s accuracy was improved by the usage of category information 
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and context information derived from a medical terminology ontology—the unified 

medical language system. 

(Sarker, Mollá-Aliod, & Paris, 2011) developed a new feature called the relative average 

negation count (RANC) to calculate polarity with respect to the number and position of 

the negations. This count suggests that a larger total number of negations reflects a 

negative outcome. The experimental corpus was collected from medical research 

papers, which are related to the practice of evidence-based medicine. An NGram 

feature set with RANC exploited by an SVM classifier achieved an accuracy of 74.9%. 

2.4.3 Sentiment analysis from other medical texts 

Researchers have focused medical texts to apply sentiment analysis methods to suicide 

notes which was a shared task in an i2b2 challenge. (Cambria, Benson, Eckl, & 

Hussain, 2012) introduced Sentic PROMs, where emotion analysis methods were 

integrated into a framework to measure healthcare quality. In a questionnaire, patients 

answered questions regarding their health status. From the free text entered, emotion 

terms such as “happy” and “sad” were detected using the semantic resources WordNet-

Affect and ConceptNet. The extractions were assigned to one of 24 affective clusters 

following the concept of hourglass of emotions. Performance was promising with an F-

score of 0.61 being achieved with an SVM classifier. This concept presents the affective 

common-sense knowledge in terms of a vector, which shows the location in the 

affective space. 

2.4.4 Summary of medical opinion mining approaches 

In summary, existing methods for sentiment analysis in the medical domain so far have 

focused on processing web content or biomedical literature. The clinical narratives 

which are used to record the activities and observations of physicians as well as patient 

records have not yet been analyzed in this context. In terms of methods, rule-based 

approaches are presented, but most papers report on machine-learning methods (SVM, 

naive Bayes, and regression tree) using features such as parts of speech and uni-band 

trigrams. Although general sentiment lexicons are exploited, experiments showed that 

they are not well suited for capturing the meanings in medical texts. In contrast to 
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“normal” sentiment analysis, additional domain-specific features have been explored in 

some approaches, mainly UMLS concepts reflecting medical conditions and treatments. 

The main tasks considered have been polarity classification, but new tasks are 

emerging including outcome classification, information content classification or emotion 

analysis. However, the existing work on medical sentiment analysis does not cover all 

facets of sentiment analysis described in Section 2. In summary, there is still a huge 

potential for future research. 

2.5 N-Grams 

N-grams is one of the most used techniques for solving the problem of language 

recognition that is used in information retrieval (Jacob and Gokhale, 2007). N-gram 

based techniques are used in NLP and its applications where they are used as features 

to create vector space and then classification algorithms are applied to this model. The 

values of these features are n-grams frequencies. Traditional N-grams can be a 

sequence of words in a text, POS tags, or any other elements as they appear one after 

the other. N-grams correspond to the number of elements in a sequence (Sidorov, 

Velasquez, Stamatatos, Gelbukh, & Chanona-Hernández, 2014). N-grams are 

substrings of a large string of length n which is split in to strings of fixed length. For 

example, the string “MALWARE”, can be segmented into several 4-grams: “MALW”, 

“ALWA”, “LWAR”, “WARE” and so on (Santos, Penya, Devesa, & Bringas, 2009). 

 

N-gram technique has been used for analysis for quite a long time in the field of NLP for 

tasks such as language modelling and speech recognition.  In 1994, character n-gram 

was used mainly for text categorization, but currently, common n-gram (CNG) analysis 

has been successfully applied to authorship attribution, detection of dementia and text 

clustering. 

2.5.1 How N-grams Work 

Text n-grams are used widely in NLP for text mining tasks. 

N-grams are co-occurring words in each window selected from a sentence and while 

computing n-gram we move forward on words. 
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Consider the following sentence "The cow jumps over the moon". To calculate bigram 

where N=2, N-gram for the sentence would be: 

• the cow 

• cow jumps 

• jumps over 

• over the 

• the moon 

For N=3, the n-grams would be:  

• the cow jumps 

• cow jumps over 

• jumps over the 

• over the moon 

So, bigram generated 5 n-grams whereas trigram generated 4 n-grams. For 

unigram, N=1 and this is essentially the individual words in a sentence. When N>3 this 

is usually referred to as four grams or five grams and so on.  

If X = Number of words in each sentence K, the number of n-grams for sentence K 

would be: 

𝑁𝑔𝑟𝑎𝑚𝑠𝐾 = 𝑋 − (𝑁 − 1) 

Equation 1 Calculating N-Gram (Source: Banerjee & Pedersen, 2003) 

It is essential to identify tokens in a sentence as N-grams are formed by connecting 

tokens (Banerjee & Pedersen, 2003). 

2.5.2 Use and application of N-grams 

N-grams are used for a variety of tasks such as developing a language model which 

can be unigram or bigram or trigram model. Microsoft and Google have developed web 

scale n-gram models which are used for a variety of tasks such as spelling correction, 

text summarization and word breaking.  

N-grams are also used in developing features for supervised machine learning 

classification algorithms such as SVMs, MaxEnt models, Naive Bayes, etc. The idea is 

to use tokens such as bigrams in the feature space instead of just unigrams. But the 
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use of bigrams and trigrams in feature space may not necessarily yield any significant 

improvement.  

N-gram methodologies are used a great deal in statistical modeling which is used for 

predicting the next word in any sentence. The language model predicts that the 

probability of the next word depends on last N-1 words.  

Shannon game is an application which tries to guess the next letter (Shannon, 1951). 

(Damashek, 1995) measured topical similarity in unrestricted text using n-grams while 

(Huang, Peng, Schuurmans, Cercone, & Robertson, 2003) identified boundaries of 

sessions using n-grams in a large collection of Livelink log data. (Cavnar & Trenkle, 

1994) researched electronic documents, and they calculated the frequency of n-grams 

in terms of textual errors, such as spelling and grammatical errors. (Roark, Saraclar, & 

Collins, 2007) used a discriminative n-gram approach for speech recognition. N-gram 

language modeling can be used for optical or speech character recognition, handwriting 

recognition, spelling correction and statistical machine translation. Spelling errors can 

be detected using character n-grams and is used in predicting topic continuations in 

search engine queries, more than word n-grams. 

(Mcnamee & Mayfield, 2004) used the character n-gram method for multilingual text 

retrieval. They aimed to show that the character n-gram tokenization can provide 

retrieval accuracy better than the other language specific approaches. (Liu & Kešelj, 

2007) studied automatic classification of web user navigation patterns, and they 

implemented the character n-gram method for capturing textual content of web pages. 

(Kanaris & Stamatatos, 2007) studied about webpage genre identification for improving 

the quality of search engines, and they applied the character n-gram method to identify 

of webpage genres. (Chau, Lu, Fang, & Yang, 2009) researched the character usage of 

Chinese search logs from Chinese search engines; since the character n-gram method 

is independent from language, they implemented this method to their study without any 

difficulty. (Vilares, Vilares, & Otero, 2011) used the classic stemming based methods 

and the character n-gram method for identifying spelling mistakes and make corrections 

in Spanish. They compared these methods and showed performance results in their 

study. In addition to these studies, (El-Nasan A. & M., 2002; Senda & Yamada, 2001) 
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used the character n-gram method in handwriting recognition (Gencosman, Ozmutlu, & 

Ozmutlu, 2014). 

Next, we look at code which can be used to generate N-grams. 

2.5.3 Pseudo-code to generate N-grams 

The following code may be used to generate N-gram(s); given length of n-gram to be 

generated and a sentence, a list is returned which will hold the list of n-grams 

generated. 

void GenerateNGrams(int N, String sent) { 

  String [] tokens = sent.split("\\s+"); //split sentence into tokens 

  List<string> ngramList = new List<string>(); 

  //GENERATE THE N-GRAMS 

  for (int k=0; k < (tokens.length - N+1); k++) { 

    String s=""; 

    int start=k; 

    int end=k+N; 

    for (int j=start; j<end; j++) { 

     s=s+""+tokens[j]; 

    } 

    //Add n-gram to a list 

    ngramList.add(s); 

  } 

} 

2.6 Gaps and Key Challenges 

Solutions for sentiment analysis are being developed, typically by reducing the amount 

of human effort needed to classify text. But there are challenges that have been 

identified and are applicable to this thesis. 

1. Detecting fake reviews and spam, which is done by identifying duplicates and outliers 

and the reputation of reviewers. 
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Fake reviews refer to fake or bogus reviews which misguide the users or customers by 

providing them ‘false’ positive or negative opinion about any object. Spam makes 

opinion or sentiment analysis useless in many areas and is a challenge faced by 

sentiment analysis and researchers (Chandni et al., 2015). 

2. The integration of opinion with behavior and implicit data, to validate and provide 

further analysis into the data beyond opinion expressed. 

3.  Availability of opinion mining software, currently can only be afforded by 

organizations and governments, but not by citizens. In other words, governments 

have the means today to monitor public opinion in ways that are not available to the 

average citizen. Citizens produce and publish content but are unable to analyze it.  

4. The usability and user-friendliness of tools need to be improved so as to be usable by 

citizens and not just by data analysts (Osimo & Mureddu, 2012). 

5. Language Problem: Researchers always face a challenge for building lexicons, 

corpora and dictionaries for any language although there are a number of resources 

available for English language. 

6. NLP processing needs more enhancement with respect to domain-dependent 

sentiment analysis and or context-based mining, which will give good results 

compared to domain independent corpus. But domain-dependent corpora are more 

difficult to build (Chandni et al., 2015). 

2.7 Summary 

This chapter presented a literature review of areas closely aligned with the topic of this 

thesis. It was found that current research focusses on: Reduction of human effort 

needed to analyze content; Semantic analysis through lexicon/corpus of words with 

known sentiment for sentiment classification; Identification of opinionated material to be 

analyzed; and Computer-generated reference corpuses in the healthcare field. We then 

looked at N-Grams, which is a technique widely used for text mining, the algorithm used 
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to calculate n-grams and the pseudo code which can be written in any programming 

language to generate n-grams.  

Current gaps in research and key challenges in the field were also presented. 
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Chapter 3: Data mining and NLP 

3.1 Introduction 

Literature on sentiment analysis was reviewed in the previous chapter where we also 

looked at the different tools and methods, and areas of application of sentiment 

analysis. This chapter focuses on data mining and the process and stages of knowledge 

discovery. Section 3.2 introduces data mining while in the next sections we discuss 

KDP, followed by stages of KDP. In Section 3.5, we discuss text mining where we look 

at the seven practice areas where text mining is applied and the interaction between 

these areas. After this, we discuss NLP and its components which is one of the key 

practice areas in the discussion of text mining. 

3.2 Data Mining 

Data mining is mainly used to make sense of huge volumes of unsupervised data in 

different domains. Data mining users are domain experts who own and collect data 

which means that they understand data and the processes that are used to generate it. 

Businesses routinely collect huge volumes of data and invest huge amount of time to 

make sense of that data. Business houses often use data mining to increase profit, gain 

competitive advantages and gain better insight of the domain to create novel 

approaches to problem solving. 

Data mining is mainly classified into three major activities: 

1. Making sense of data is the first key activity which varies depending on the user’s 

experience.  

2.  Knowledge derived should be useful, meaningful, valid and novel for the data owners 

to understand and create models that can be described in easy to understand terms, 

making this the second key activity which requires generated models to be valid. 

3. Finally discovered knowledge must be novel. We should understand that data mining 

is about analyzing large amounts of data and requires the use of data mining 
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techniques to analyze and reduce the data in terms of both dimensionality and 

quantity. 

Data mining mostly deals with unsupervised data as it is much easier and less costly to 

collect unsupervised data as with supervised data we need to have known inputs that 

correspond to known outputs which are determined by domain experts. This makes it 

important to understand the process that leads to new knowledge discovery, which is a 

sequence of steps to be followed to discover patterns in data. These steps can be 

discovered with the help of an open source or commercial software tool. Process 

models are used to formalize KDP and this helps institutions to understand, plan and 

execute KDP which in turn helps save time and cost. Steps in process model are non-

trivial and involve multiple iterations of interaction with data owners (Baitharu & Pani, 

2016). 

3.3 Knowledge Discovery Process (KDP) 

As previously mentioned in Chapter 1, Knowledge Discovery is the process of 

evaluating data from various sources and viewpoints and putting it together into useful 

information. KDP needs to be structured as a standardized process model for the 

following reasons: 

1. Product of data mining should be useful to the owners. Unstructured and blind 

application of data mining frequently results in meaningless knowledge which does 

not contribute to problem solving, ultimately leading to failure of a project. A well-

defined process would result in an understandable, novel and valid product. 

2. A logical, well-thought out structured approach to KDP can help any decision maker 

understand the importance and value as well as the mechanics behind KDP. There 

is huge untapped potential knowledge available in possibly valuable data which 

humans may fail to understand. Decision makers often do not want to put in the 

time and money on formal methods of knowledge extraction from data but often rely 

on domain experts for information. However, being the ultimate decision maker, 

they frequently end up trying to understand the technology applied to create 
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solutions. Logical and structured process models help resolve any doubts and 

questions they may have. 

3. A solid grounded framework is required for knowledge discovery projects and 

require significant project management effort, team work and careful scheduling and 

planning. 

4. Knowledge discovery projects should use well-defined models like waterfall or agile 

methodologies like software engineering does, which is a relatively new and 

dynamic field. 

5. Modern data miners need to learn accepted industry standards and standardization 

would help in creating news methods and procedures which will enable end users to 

deploy their projects easily and would directly lead to projects which are cheaper, 

faster, manageable and more reliable. Altogether, this would promote the creation 

of business terminologies which will result in greater acceptability and exposure for 

the field of knowledge discovery (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). 

3.4 Stages of KDP 

KDP depends heavily on techniques from statistics and machine learning and makes 

use of ideas from database query, machine learning, visualization and artificial 

intelligence areas, the focus being the creation of techniques for extracting knowledge. 

Figure 4.1 shows five important steps in KDP and these steps are explained 

subsequently. 

 

Figure 5 KDP Diagram (Source: (Fayyad et al., 1996) 

1.  Data selection: In this step, the task related to analysis task is selected from 

datasets or databases. 
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2.  Data preprocessing: Missing observations are replaced, extreme values, data noise 

and inconsistencies are removed. 

3.  Data transformation and reduction: In this step, data is converted into convenient 

structures. Here we try to find useful structures to implement data mining. 

4.  Data mining: We select suitable KDP or data mining algorithm to extract data 

patterns. 

5.  Interpretation or evaluation: Is used by user to understand and extract knowledge 

from the patterns mined, this interpretation is typically carried out by visualizing the 

models, patterns or the data for the models (Kurgan & Musilek, 2006; Reinartz, 

2002). 

After looking into data mining and KDP, next we look at text mining and text analytics to 

understand how data mining and NLP are used to extract, analyze and process 

structured and unstructured data. 

3.5 Text Mining 

Text mining and text analytics are terms used to describe a range of technologies for 

processing and analyzing semi or unstructured text data. We need to know both types 

of techniques so we can apply powerful algorithms to large document databases 

helping to convert them to structured and numerical formats, which can be used to 

classify documents. Text mining is emerging out of a group of related and distinct but 

related fields and due to the disparity and breadth of these distinct fields it becomes 

difficult to characterize what text mining is. This situation is further complicated by the 

fact that different areas of text mining are in different stages of maturity. There is a total 

of seven different text mining practices that we need to consider when talking about text 

mining (G. Miner, January 2012). Figure 6 shows the seven practice areas and these 

are explained in the section that follows. 
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Figure 6 Text Mining (Source: (G. Miner, January 2012) 

3.5.1 The Seven Practice Areas of Text Analytics   

Text mining has been divided into seven practice areas, based on the uniqueness of the 

characteristics of each of these areas. Though these practice areas are distinct they are 

interrelated as well, as explained here: 

1.  Search and Information Retrieval (IR): Storage and retrieval of text documents, 

including search engines and keyword search.  

2.  Document clustering: Grouping and categorizing terms, snippets, paragraphs, or 

documents, using data mining clustering methods.  

3.  Document classification: Grouping and categorizing snippets, paragraphs, or 

documents, using data mining classification methods based on models trained on 

labeled examples.  

4.  Web mining: Data and text mining on the Internet, with a specific focus on the scale 

and interconnectedness of the web.  
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5.  Information extraction (IE): Identification and extraction of relevant facts and 

relationships from unstructured text; the process of making structured data from 

unstructured and semi structured text.  

6.  NLP: Low-level language processing and understanding tasks (e.g., tagging part of 

speech); often used synonymously with computational linguistics.  

7.  Concept extraction: Grouping of words and phrases into semantically similar groups 

(G. Miner, January 2012). 

3.5.2 Interactions between Practice Area   

The seven practice areas of text analytics overlap considerably, since many practical 

text mining tasks sit at the intersection of multiple practice areas. A visualization of this 

overlap between practice areas is shown as a Venn diagram in Figure 7. For example, 

entity extraction draws from the practice areas of information extraction and text 

classification, and document similarity measurement draws from the practice areas of 

document clustering and information retrieval. (G. Miner, January 2012) 

 

Figure 7 Interactions between Practice Areas Source: (G. Miner, January 2012) 
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In the next section, we discuss NLP and its components which are important for 

document classification.  

3.6 NLP 

NLP is an area of research and application that explores how computers can be used to 

understand and manipulate natural language text or speech to do useful things. NLP 

researchers aim to gather knowledge on how human beings understand and use 

language so that appropriate tools and techniques can be developed to make computer 

systems understand and manipulate natural languages to perform the desired tasks. 

The foundations of NLP lie in several disciplines—computer and information sciences, 

linguistics, mathematics, electrical and electronic engineering, artificial intelligence and 

robotics, and psychology, to name a few (Chowdhury, 2003). 

 

Figure 8 Application of NLP (Source: Chowdhury, 2003) 

Some of the applications of NLP are: Spelling Correction; Search engines; Speech 

engines; Spam classifiers; News feeds; Machine translation; IBM Watson. The 

development of these areas is shown in Figure 8. NLP is one of the most niche areas 
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and requires a very specific skill set with understanding of the language and the tools to 

process the language efficiently (Hardeniya, Perkins, Chopra, Joshi, & Mathur, 2016). 

3.6.1 Parsing  

The process of parsing helps with automatic analysis of a sentence, or an entire 

discourse, that is viewed as a sequence of words which allows us to decide the 

syntactic structure of a sentence. The grammar for natural languages is ambiguous and 

typical sentences have multiple possible analyses. In fact, for a typical sentence there 

may be thousands of potential parses most of which will seem completely nonsensical 

to a human (Clark, Fox, & Lappin, 2010). Parsing needs a mathematical model of 

syntax of language of interest that is expected to be formal grammar, which consists of 

a collection of rules that specify elements of the language (words) and how they are 

used to create a sentence. Parsing is the core central component of an NLP tool and 

helps represent the structure of a sentence as a list or tree. Bottom-up, top-down, left-

corner, head-corner and statistical parsing are some of the strategies used to parse a 

sentence. Parsed information is passed to modules that implement pragmatic, semantic 

and discourse processing. Therefore, parsing is an important aspect in showing 

meaning and determining the structure of a sentence in language processing. 

3.6.2 Discourse  

Informal language does not consist of isolated pieces of sentences or text but of words 

which together form a unified whole which we call a discourse. As discussed, parsing 

passes useful information to the module that implements discourse processing, which 

tells us how these two components i.e. parsing and discourse, interact with each other.  

In this section we discuss discourse, discourse structure and related terms. 

Discourse is a piece of writing or serious speech on a subject or conversation or plain 

discussion between different people in a language. The text so produced is a set of 

coherent and cohesive sentences which helps achieve a communication goal. 

Coherence specifically has more to do with a meaningful relation between two words 

and how they combine to produce a meaningful discourse structure. The sequence of a 



Chapter 3: Data mining and NLP                                                                                

54 
 

discourse topic is typical of certain genre or document and accounts for the way texts 

are segmented and organized by topics (Eugenio, 2005). Interpretation, production and 

utterances of phrases whose meaning depends on the context of the discourse and the 

fact that a sequence of utterances conveys a meaning which is more than the sum of 

the individual utterances are two phenomena which are intrinsic to discourse 

processing. 

Discourse generation basically deals with generation of coherent text and discourse 

processing is the last stage in interpretation of a language after parsing and sematic 

analysis. Language generation begins with non-linguistic illustration of information, after 

which we can perform discourse processing which imposes order and structure over the 

set of messages. This is followed by linearization and planning, which includes 

sentence aggregation and relating individual terms to their entities of interest. The final 

step in discourse generation is linguistic realization proper, namely, applying the rules of 

grammar to produce a text that is syntactically and morphologically correct. 

Anaphora or co-reference, helps in setting up referential dependency between two or 

more expressions and refers to referentially dependent expressions in natural language 

which contribute their meaning to a sentence by helping identify another expression 

which provides them their semantic value. For example, consider the following 

statement: Mark felt that there was someone watching him. Knowing that ‘him’ refers to 

‘Mark’, the pronoun is an anaphor and ‘Mark’ is an antecedent. Both refer to the same 

person ‘Mark’. Co-Reference is often used to describe this relation between an 

antecedent and anaphor (Liddy, 1990).  

3.6.3 Text Categorization 

Text categorization has become increasingly important and deals with automated 

assignment of natural language texts to predefined categories. Text categorization has 

found primary application in assigning subject categories to documents to help 

information retrieval. NLP uses text categorization heavily for data extraction. 

Categorization is used to filter out unnecessary parts of the document or the whole 

document, which is unlikely to have the text or can also be used to route words to 
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category specific processing modules or create fillers for some fields. In general, text 

categorization tries to recreate human categorization judgement.  

One approach to building a text categorization system is to manually assign documents 

to certain categories and then use inductive learning to assign documents to categories 

automatically in future, based on the texts they have. Rules, or boolean expressions, 

can be created which capture certain combination of keywords that indicate a class. 

Class is more often a subject area such as coffee or person. Apart from manual 

classification or hand-crafted rules by domain experts which may exceed or rival the 

accuracy of automatic classication, there exists machine learning based text 

classification where the rules or decision criteria are more often learned from the 

training data. This approach is also known as statistical text classification if the learning 

method or algorithm used is statistical. Statistical approach require a large number of 

documents for each class and completely eliminates the need for manual classification 

(Lewis & Ringuette, 1994; Manning, Raghavan, & Schütze, 2008). Information about 

individual words is stored in a lexicon and computational lexical representation 

techniques have been created to model lexical knowledge. Computational lexicon helps 

perform mapping from phonology or orthography (the system of contrastive 

relationships among the speech sounds that constitute the fundamental components of 

a language) to some combination of semantic, syntactic and pragmatic information. It is 

used to deliver information to modules which is used to analyze or generate speech or 

text. Information contained in the computational lexicon depends on the system. For 

example, a lexicon for a Part of Speech (POS) tagger would be much simpler as 

compared to a lexicon for a natural language interface. Generally we think of commonly 

used approaches to lexical representation as forms of attribute-value representation, 

and in such formalism information is represented as pairing of attributes and associated 

values (Pustejovsky, 2005). 

As human beings cannot read, understand or synthesize megabytes or terabytes of 

data or text daily, researchers have explored various information management 

strategies and the most common of these are information filtering and Information 

Retrieval (IR). IR systems are harvesters that bring back useful information from vast 
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fields of raw information. Information is often available in journal articles or newspapers 

and IR systems can retrieve articles that are relevant to the search criteria.  

IE systems can transform huge amount of useful information into required text. IE 

begins with collecting texts and then transforming them into data that is readable and 

can be analyzed. It helps retrieve text fragments and extract information from these 

fragments and then puts them together into a coherent framework. Information retrieved 

is stored in traditional databases and then data can be retrieved using standard queries. 

Currently, IE systems are partly accurate and deal with specific types of texts. IE, from 

the perspective of NLP, is a set of tasks which are well defined, use real-world texts, 

poses difficult and interesting NLP problems and performance can be compared to 

human performance on the same task (Cowie & Lehnert, 1996).  

After discussing the different components of an NLP system, we move on to discuss 

Word Sense Disambiguation, beginning with a discussion about WordNet.  

3.7 WordNet in NLP 

WordNet lexicon database is used widely for information retrieval and translation which 

require WSD and is a tool that is widely used by the natural language community. 

WordNet, which started as a project in 1985, is a semantic dictionary designed to 

represent words and related concepts as an interrelated system which is consistent with 

the way any human would organise his own mental lexicons. WordNet is not a 

traditional dictionary or thesaurus, and is also different from most of the other lexicon 

dictionaries compiled before, but it combines the features of both dictionary and 

thesaurus (Kreutzer & Witte, 2013).  

There were three assumptions made at the initial stages of development, one was 

separability hypothesis, which says that every lexical component of any language can 

be isolated and studied separately from other components.  This idea seemed 

promising as a person’s vocabulary grows with time, and phonology and grammar do 

not change. The second was patterning, which suggested that people could not master 

all the lexical knowledge of any language by remembering every single word’s meaning 
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separately, but rather by understanding the patterns and relations between different 

words. The third assumption was comprehensive hypothesis which suggested a need 

for lexical storage like a human’s, and must understand the process of natural 

language. At the same time, computational linguists were looking for alternative theories 

to express word semantics which would not depend on the decomposition of the word. 

Thus, they came up with networks and diagrams to represent semantic relations 

between words. In the early days, WordNet was used to decide if relational semantics 

could be applied to large lexicons (Kreutzer & Witte, 2013). 

WordNet usage for WSD, to begin with, was limited by sparsity of its arcs. For example, 

the verb interest is connected to the adjective interesting and noun interest. But since a 

noun has more than one meaning or sense, not all of the synonyms are related to the 

adjective sense or verb sense and these must be entered manually. Adding more 

information about their meaning is useful for machine and human users. A user who 

wishes to better understand the definition or gloss can refer to the synsets (set of 

synonyms) for more information on verbs, adjectives, nouns and adverbs in that gloss. 

This work resulted in the creation of a semantically better annotated corpus, WordNet, 

that can be used to test and train natural language systems. (Boyd-Graber, Fellbaum, 

Osherson, & Schapire, 2006) tried to improve the density of WordNet and make it a 

more efficient tool for natural language by collecting more than 120,000 ratings from 

human annotators. The strength links in WordNet are weighted and directed which 

helps in expressing more discernable semantic relations. The WordNet lexicon has 

nouns, verbs, adjectives and adverbs. Lexical information is organized in terms of word 

meanings rather than word forms. (Navigli & Lapata, 2010) 

The corpus used for the initial development of WordNet was the Brown corpus. 

Adjective pairs were also incorporated along with various synonyms and antonym 

dictionaries. A year later, Fred Chang’s list of words were used and added as input. 

COMLEX lexicon which had 39,143 words were added as well. As the list of words grew 

it became necessary to divide the database. The division into database took the 

syntactic categories of the words into account and different files for verbs, nouns, 

adjectives and later adverbs. Later verbs and nouns were divided into different classes. 



Chapter 3: Data mining and NLP                                                                                

58 
 

The WordNet team created a lemmatization program which returned the base form of 

any word, as WordNet was not able to recognise plurals. In 1991, ConText was 

developed which pre-processed text by performing various NLP tasks and the output 

was stored in WordNet. In this way, semantic tagging was used to greatly improve the 

coverage for words and meanings appearing in WordNet (Kreutzer & Witte, 2013). 

The number of glosses in WordNet has grown steadily since 1989 when it had 37,409 

synsets and no glosses, until 1995 when it had 91,050 synsets and 75,389 glosses. The 

current number is 117597 synsets. The first version of WordNet that was publicly 

available was version 1.0 in 1991. However, WordNet is still being worked on. The 

current version, 2.1, is available for free download on the WordNet website 

http://wordnet.princeton.edu/.  

The structure of WordNet is based on the word as a basic unit and thus WordNet does 

not decompose words into smaller meaningful units. WordNet also does not contain 

units larger than words, such as scripts or frames, which have been proposed as 

building blocks for other lexicons. For example, a frame would be a lexicalized concept 

that is relevant to a certain type of situation. Frames include both verbs and nouns and 

their relations that hold true in the situation in question. Even if WordNet does not have 

a frame lexicon its relational semantics network still reflects some of the structure of 

frame semantics. For example, verbs like sell and buy are related in the WordNet 

lexicon to “commercial transaction”. 

The division of words into four separate nets, one for each open word class, also entails 

that WordNet has no information about the syntagmatic properties of words. Another 

characteristic of WordNet is that unlike other dictionaries it has short phrases, such as 

“bad person,” that are thought to be not para-phrasal by single words. These phrases 

are needed to fill lexical gaps by serving as connections between two words when there 

is no single word with the desired meaning to connect them. These gaps are not 

structural artefacts, but quite often, they are lexicalized in other languages, just not in 

English. 

http://wordnet.princeton.edu/
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Also, a distinction that has been made between meanings of words is the separation of 

meanings into the camps of lexical and encyclopedic knowledge. But this distinction 

was not incorporated into WordNet since WordNet does not try to include any of the 

latter, although the synonym set information provided by WordNet often goes beyond 

lexical meaning. Although initially the only information synsets were supposed to hold 

was pointers to other synsets, it was felt that a description of the current sense would 

help in distinguishing highly similar synsets for words that appear in many synsets. 

Later, this was found to be helpful in dealing with many technical concepts whose 

lexical definitions intermixed with encyclopedic knowledge. Thus, overall WordNet found 

the need to store more than only lexical meaning, even if it was meant only for 

reasoning and inference purposes (Kreutzer & Witte, 2013). 

3.7.1 How does WordNet work? 

Lexical data is arranged in terms of the word meanings rather than the word forms. 

Senses in WordNet database (http://wordnetweb.princeton.edu/perl/webwn) are 

represented by synonym sets or synsets with words in each synset sharing a common 

sense of the word. For example, consider the senses of verb drink: “consume liquids”, 

“consume alcohol” and “toast”; See Figure 9 for a representation of this information.  

Each word in a synset is associated with a part of speech which is denoted by a 

subscript where n stands for noun, v for verb, a for adjective, and r for adverb. Each 

synset is associated with a textual definition which explains the meaning of the word. 

The synsets are ranked as per the frequency of occurrence in the SemCor corpus which 

is a subset of Brown corpus with word senses. A superscript denotes the ranking of the 

sense of the word. For example, the 5th sense of the word drink in the figure above 

would be denoted as drinkv
5. The latest WordNet version 3.0 contains 155,000 words 

arranged in more than 117,000 synsets. Semantic and lexical relations are also 

encoded in WordNet. Lexical relations connect pairs of word senses, whereas, semantic 

relations relate synsets. Lexical relations in WordNet are nominalization (e.g., the noun 

drinkingn
1 is a nominalization of the verb drinkv

1), antonymny (e.g., colda
1 is an antonym 

of hota1), pertainymy (e.g., dentala1 pertains to toothn
1), and so on (Navigli & Lapata, 

2010).  
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Figure 9 WordNet Synsets (Source: http://wordnetweb.princeton.edu/perl/webwn) 

In this research, we use SentiWordNet, which was created from WordNet and contains 

all semantically similar synsets of WordNet, to help calculate the sentiment score of a 

sentence. This is discussed in Chapter 4. 

3.8 Word Sense Disambiguation (WSD) 

Humans use words that can be interpreted in many ways; such ambiguity is common 

and based on the context of the conversation or sentence. 

1. I like poaching 

2. I like poaching eggs 

The above sentences clearly have different meanings. A machine needs to break down 

sentences into textual information and create data structures which are analyzed to 

understand the meaning of the sentences. Demand for automatic methods of processing 

large amount of unstructured data such as web pages, data warehouses and corpora has 

increased in the last few decades. Traditional methods of information retrieval always fail 

when they are applied to such data as they do not extract relevant information and are 

not able to discard documents which fail to meet users’ queries. WSD is an intermediate 

task for text disambiguation that can be configured as a stand-alone module or integrated 

into a bigger application. (Navigli, 2009) 
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WSD helps with computational interpretation of meaning of words and it relies heavily on 

the approach to word sense representation, sense inventory granularity, unrestricted 

nature versus domain-orientated nature of words and the set of words to disambiguate 

the meaning. WSD can be summarized as a technique applied to a set of words to 

associate suitable sense using one or more knowledge sources such as a corpus, which 

can be annotated or unlabeled or more structured resources such as machine readable 

dictionaries or semantic networks (Navigli, 2009). 

However, WSD is a difficult task when you consider the computational limitations. 

Knowledge resources, information about words, senses and context in the target word 

were some of the areas which are considered important for NLP. Generalization was 

difficult back in the 70’s considering the limitation of computing power. Large scale lexical 

resources were released in the 80’s which helped in extracting knowledge using 

automatic methods. The 90’s saw the creation of periodic evaluation campaigns and 

employment of massive statistical methods which has continued to present days (Navigli, 

2009). 

Improved WSD systems were developed with the availability of annotated corpora. 

Supervised algorithms greatly outperform unsupervised algorithms but they often need 

huge amounts of annotated training data, and creating this data is labor intensive and 

an expensive task and must be repeated for new languages or domains. Given the data 

requirements for supervised classification and the current scarcity of suitable data for 

many text genres and languages, unsupervised approaches offer hope for large-scale 

sense disambiguation. Unsupervised approaches do not use labeled training data to 

perform sense disambiguation. Unsupervised approaches exploit the structure and 

relations per pre-existing sense of the repository or inventory to perform disambiguation 

task accurately. A restrictive view of “unsupervised” applies to methods for sense 

disambiguation, which tries to automatically find all senses of a word without labeled 

training data (Navigli & Lapata, 2010). Graph-based methods which represent a 

knowledge base in graphs have become a popular choice for domain-independent 

knowledge-based WSD systems and offer the advantage of scanning through the entire 

knowledge base during the disambiguation process.  
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There are three mainstream approaches to word sense disambiguation: 

1. Supervised WSD: this approach uses machine learning to understand a classifier 

for a target word from the labeled training data. Among supervised methods, 

memory based and SVM approaches have been proven to be best systems. 

2.  Knowledge-based WSD: these methods exploit knowledge resources such as 

dictionaries or thesauri to decide the senses of words in context. They have the 

advantage of a wider coverage, thanks to the use of large amounts of structured 

knowledge. The best knowledge-based systems in the literature, such as Degree or 

Personalized PageRank, exploit WordNet or other resources to build a semantic 

graph and exploit the structural properties of the graph to choose the proper senses 

of words in context.  

3.  Unsupervised WSD: these are Word Sense Induction techniques aimed at 

discovering senses automatically based on unlabeled corpora to offer a sense 

choice for a word in context. They do not exploit any manually sense-tagged 

corpus.   

The question of which approach is best in general, and for which application, is still very 

much open. In fact, until recently, the general belief was that supervised WSD 

performed better than knowledge-based WSD. However, recent results show that, in the 

presence of enough knowledge or within a domain, knowledge-rich systems can beat 

supervised approaches while offering, at the same time, much wider coverage (Navigli, 

2009). 

3.8.1 Performing WSD 

The main goal of sentiment analysis is to use automated methods to extract emotions 

from text or documents, while analyzing the overall sentiment of the document which 

needs us to extract information from the text. Sentiment lexicons are often employed to 

find the words used in the document which tells us about the sentiment of the word. 

WordNet is the foundation for SentiWordNet lexicon which uses a semi-supervised 

approach to constructing a vocabulary database which helps us find out the polarity of 
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the document. SentiWordNet can be considered as a general sentimental vocabulary 

database which helps us find sentimental words in a word of mouth document. Word 

sense identification affects sentiment analysis which is due to the fact that one word can 

have more than one meaning and the meanings expressed by words change, based on 

background and environment. Sentimental attitude changes when meaning of the word 

changes, which affects the overall sentiment analysis results. SentiWordNet provides us 

with meanings of a word which are considered as senses and each sense is assigned 

sentiment polarity score; sense 1 characterizes the sense used most often in general 

situations.  

Two approaches are used to select sentiment scores for words that have multiple 

meanings. The first is to pick sense 1 of the word to serve as the meaning of the word in 

the text, this method does not consider the domain knowledge and usually results in 

biased sentiment analysis results. For example, in the context of movie reviews, the 

word “suck” is most likely to mean “inappropriate or lousy”, and is used to express the 

opinion that the movie is very poor. The sentiment, in this case, is negative. However, in 

SentiWordNet, the meaning represented by sense 1 of the word is “a sucking action” 

and is classified as having neutral sentiment. If the sense 1 meaning is automatically 

selected, the sentiment would clearly be incorrect. The second method is to take the 

average of the sense scores for all meanings for words with multiple meanings, and use 

the average sentiment score to conduct analysis. However, this method does not take 

the effects of domain knowledge into consideration, and could also result in issues with 

the accuracy of sentiment analysis.  

(Hung & Chen, 2016) recognized that words used in different domains may have 

different senses, different sentiment values and even different sentiment orientations. 

Figure 9 shows the structure of their approach.  
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Figure 10 WSD Workflow (Source: Hung & Chen, 2016) 

 

Preprocessing of documents 

First, we remove all the non-necessary tags from document and then as words may 

have different meanings we use different parts of speech (POS) for a word. Third we 

can lemmatize the word to its base form using SentiWordNet or WordNet and then 

perform word cleansing by removing stop words.  

Tokenization 

Tokens are features of text and the basic unit for processing. Two approaches which 

stand out are word-based and phrase-based approaches. Word based tokenization, 

which is also known as unigram-based approach, treats each single word as a feature. 

After preprocessing a word of mouth text, we use term frequency to select other 

important features from the remaining word. Term frequency of a word basically implies 

that it is significant in relation to the text. If a word occurs multiple number of times in a 

document, it is an important concept to the document. Word-based tokenization does 

not understand the relationship between words. Phrase-based tokenization, also known 
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as bigram language model, helps decide the relationship between two words through 

calculation of the number of times any two words appear together in a text document 

(Hung & Chen, 2016). 

3.8.2 WSD using SentiWordNet 

SentiWordNet is based on WordNet, which shows possible senses for a word and lists 

each sense in order of usage frequency. A word may have different senses with 

different sentiment values or even different sentiment orientations. SentiWordNet can 

provide a word with a proper sentiment orientation and sentiment value, only if the 

sense of this word is clear. Thus, a WSD-based lexicon is domain oriented. A word may 

have several senses depending on the correct part of speech. The proper sense of a 

word can be found by comparing the target document with the glosses (definitions) of 

each sense of this word, defined in WordNet (Hung & Chen, 2016). 

 

3.9 Summary  

To summarize, we looked at data mining, KDP and the stages of KDP. Next, we 

considered text mining and the seven practice areas of text analytics and following this, 

we looked at NLP which is one of the seven practice areas. We then looked at the 

different components of NLP, followed by WordNet and finally WSD. Word sense 

disambiguation is one of the most important phases of sentiment analysis and can be 

performed in a supervised or unsupervised manner or by using knowledge-based ways 

of performing WSD. 
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Chapter 4: Analyzing Negative Sentiments  

4.1 Introduction  

Sentiment analysis is one of the major sub-problems in NLP and when applied to 

analyzing review comments, it helps in understanding the aspect or topic being 

reviewed, and whether the review are positive or negative. Data can be structured or 

unstructured; while structured data can be easily analyzed, analyzing unstructured data 

needs complex algorithms. Different levels of sentiment analysis can be performed. 

Document-level analysis looks at analyzing a document while sentence-level analysis 

helps analyze one sentence at a time and provides us with a summary of the sentence 

analyzed. Aspect-level analysis, analyzes the overall opinion on an entity and is the 

most basic form of sentiment analysis. Sentiment words have an important role in 

identifying the sentiments in a document which are combined to form a sentiment 

lexicon. Sentiment lexicons are used by complex algorithms to analyze the sentiments 

of a document which can be subjective or objective. Subjective sentences provide 

opinion about a person or subject and are easy to analyze whereas objective sentences 

express irony or negation and are more of a challenge to analyze (Medhat, Hassan, & 

Korashy, 2014).  

Supervised and unsupervised learning algorithms or techniques are two of the main 

techniques used for sentiment classification. Text classification based on classifiers are 

used for supervised learning which uses frequency and terms, phrases and words, 

sentiment shifters and part of speech, negation and so on, to analyze or classify a 

document. Unsupervised techniques use fixed syntactic patterns and POS tagging to 

identify the entity, aspects and opinions. Maintaining a sentiment word dictionary like 

SentiWordNet or WordNet, based on the weight of the opinions is another approach for 

unsupervised learning which helps in understanding the effect of negation or sentiment 

shifting words. (Medhat et al., 2014) 
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4.2 SentiWordNet 

SentiWordNet was created by automatic annotation of all semantically similar synsets of 

WordNet, based on the notion of negativity, positivity and neutrality. Each synset from 

WordNet is related to three numerical scores denoting sentiment, which indicates how 

negative (Neg), positive (Pos) or neutral ((Obj) for objective) the terms contained in the 

synset are. Different opinion-related properties are found for different senses of the 

same term. Each of the scores are in the range 0.0. to 1.0 and the sum of the three 

equals 1.0 for each synset. The scores show that the synset has each of the opinion-

related properties to some degree which gives us an idea about the sense of the 

corresponding term. For example, the synset for adjective estimableJ
1 in SentiWordNet 

1.0 for the sense “deserving of respect or high regard” has a Pos score of 0.75. Neg 

score of 0.0 and Obj score of 0.25, while the synset for adjective estimableJ
3 belonging 

to the sense “may be computed or estimated” has a Pos and Neg score of 0 but an Obj 

score of 1.0. SentiWordNet 3.0 can be freely downloaded from 

http://sentiwordnet.isti.cnr.it/ for non-profit research purposes (Baccianella, Esuli, & 

Sebastiani, 2010). 

4.3 Negation Identification and Calculation in Sentiment Analysis 

Sentiment analysis is used to find out positive and negative sentiments (feelings, 

opinions and emotions) in text which are based on the meaning of words used in 

different situations and scenarios. Different grammatical rules can be used to express 

similar feelings in written text which may have negations which can change the meaning 

of words. Therefore, it becomes necessary to identify negation and its scope within a 

sentence to correctly identify sentiments expressed (Asmi & Ishaya, 2012). 

 

Finding negation is a complex task and its complexity increases with use of different 

negation words.  Along with negation words such as nor, not, and so on, we must look 

out for prefixes, suffixes, diminishers and word intensifiers which can introduce negation 

in a sentence and there is a need for considerable effort to enlist such words. Negation 

sentences have been considered. The pseudo code that follows calculates negative 

polarity for a word that the word has a higher negative score (Asmi & Ishaya, 2012). 
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Table 3: Negation Identification (Source: Asmi & Ishaya, 2012) 

 

  

Table 3 can be used for identifying negation in ‘part of sentence’. Part of sentence is 
used to calculate the polarity of a sentence. A sentence can have either simple or 
complex part of sentence like Noun phrase which is a pronoun and a noun, or Verb 
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phrase which is a verb and a noun. The following details possible parts of sentence in a 
sentence; the subsequent example farther down the page works with an actual 
complete sentence. 

(Sentence 
(Noun Phrase (Pronoun, Noun)) 
(Adverbial Phrase (Adverb)) 
(Verb Phrase (Verb) 
(Sentence 

(Verb Phrase (Verb) 
(Noun Phrase (Noun)) 

) ) ) ) 

Sentiment polarity calculation has always been a nested process and this process helps 

us to calculate the sentiment of the inner most level first and then moves on to higher 

levels which is called as sentiment propagation. The process helps us to calculate the 

intensity and polarity of the phrases and words and negative polarity is also considered 

while calculating the sentiment. The following examples illustrate the process of polarity 

calculation (Asmi & Ishaya, 2012). 

‘They have not succeeded, and will never succeed, in breaking the will of this valiant people.’ 
 
(Sentence 

(Pronoun They) 
(Verb Phrase 

(Verb Phrase (have not) 
(Verb Phrase (Verb succeeded))) 
(and) 
(Verb Phrase (will) 

(Adverbial Phrase (Adverb never)) 
(Verb Phrase (succeed))) 
(Prepositional Phrase (in) 

(Sentence 
(Verb Phrase (breaking) 
(Noun Phrase 
(Noun Phrase (the will)) 

(Prepositional Phrase (of) 
(Noun Phrase (this valiant people))))))))) 

 
The negation word ‘not’ is affecting ‘succeeded’ (+) (which is a positive word) while 

never is affecting succeed (+). Both successes are in breaking (-) the will of people who 

are valiant (+) people. As they have not succeeded in doing something negative and the 

polarity of sentence is positive as shown in Figure 11. 
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Figure 11 Negation Identification and Calculation (Source: Asmi & Ishaya, 2012) 

4.4 Summary 

In this chapter, we looked at SentiWordNet for use in sentiment analysis. We also 

considered the effect of negative words and calculating negation in sentiment analysis. 
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Chapter 5: Methodology and Framework 

5.1 Introduction 

In this chapter, we start by first looking at evaluation measures used in NLP and the 

typical workflow of a sentiment analysis module. We then discuss Natural Language 

Toolkit (NLTK) which is a python module and then we go on to look at the different 

components of NLTK which can be used to process and analyze the sentiments 

expressed by a document. Finally, we discuss various classification algorithms that can 

be used in sentiment analysis classification. 

5.2 Evaluation 

Several different evaluation techniques are required to be used to verify whether the 

classification models produce the correct output. And this result is necessary to decide 

the accuracy of the model and the purposes it can be used for. Evaluating a tool is also 

considered to be an effective mechanism to make future improvements to a model 

(NLTK, 2017). 

5.2.1 The Test Set 

Evaluation techniques generally compute a score for a model by comparing the labels 

generated for input in a test set with the correct labels for that input. Test and training 

sets used need to have the same format, but they should be unique enough so that the 

classification model learns to generalize to new samples and will not give incorrect high 

scores. The least frequently occurring labels should occur at least 50 times in a test set 

for a classification task that has many labels or may include uncommon labels. If the 

test set has a number of labels which are closely related, then the size of the test set 

needs to be increased to make up for the lack of diversity which will produce skewed 

evaluation results. For example, consider the following code sample where we create 

test set and training set by randomly assigning sentences from the data source (brown 

corpus – category ‘news’). 

import random 
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from nltk.corpus import brown 

tagged_sents = list(brown.tagged_sents(categories='news')) 

random.shuffle(tagged_sents) 

size = int(len(tagged_sents) * 0.1) 

train_set, test_set = tagged_sents[size:], tagged_sents[:size] 

The above code sample lets us create test and training set which would be very similar 

and would generate results with high score. So, a better approach would be to create 

test and training set from different documents as follows  

file_ids = brown.fileids(categories='news') 

size = int(len(file_ids) * 0.1) 

train_set = brown.tagged_sents(file_ids[size:]) 

test_set = brown.tagged_sents(file_ids[:size]) 

 

A more stringent evaluation can be achieved by using test set from a document that is 

related to training set 

train_set = brown.tagged_sents(categories='news') 

test_set = brown.tagged_sents(categories='fiction') 

A classifier that performs well on this test set, can be confidently used to generalize well 

beyond the data that it was trained on. 

5.2.2 Accuracy 

Accuracy measures the percentage of inputs in the test set which have been labelled 

correctly by the classifier. For example, a gender name classifier which predicts the 

correct name for 60 times against a test set containing 80 names would have an 

accuracy of 75% (i.e. 60/80). 

nltk.classify.accuracy() is the function used to calculate the accuracy of a classifier on a 

test set: 

classifier = nltk.NaiveBayesClassifier.train(train_set)  

print 'Accuracy: %4.2f' % nltk.classify.accuracy(classifier, test_set)  

Accuracy: 0.75 

It is also important to take into consideration the frequencies of each class label in a test 

set. For example, consider a classifier that decides the correct sense of the word ‘bank’, 
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where different word senses may be: financial institution; earth mass or hill side; or a 

row of objects. If we evaluate this classifier on a financial news-wire text, we would find 

that bank is matched to financial-institution sense 19 out of 20 times with an accuracy of 

95%. Instead, if we used a more balanced corpus where the most frequent word sense 

has a frequency of 40%, then a high accuracy score would be a much more significant 

result.  

5.2.3 Precision and Recall 

Search related or IR task can provide us with misleading accuracy. A model which 

labels every document as irrelevant will give us an accuracy score of 100% as can be 

seen in Figure 9, as the number of irrelevant documents outweighs the ones that are 

relevant for the task. 

 

Figure 12 Precision and Recall (Source: NLTK, 2017) 

Hence it is necessary to use a different set of measures for search tasks, based on the 

number of items in each of the four categories as shown in Figure 9: 

• True positives: are relevant items that were correctly found as relevant. 

• True negatives: are irrelevant items that were correctly found as irrelevant. 

• False positives: are irrelevant items that were incorrectly found as relevant. 

• False negatives: are relevant items that were incorrectly found as irrelevant. 

We can define the following metrics based on the above four numbers: 
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• Precision, which shows how many of the items that were found were relevant, 

which is 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃). 

• Recall, which shows how many of the relevant items that were found, is 𝑇𝑃/(𝑇𝑃 +

𝐹𝑁). 

• The F-Score or F-Measure combines the precision and recall giving a single score 

and is defined as the harmonic mean of the precision and recall:  

(2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) 

Equation 2 F-Score or F-Measure Source: (NLTK, 2017) 

5.3 Typical workflow of sentiment analysis module 

Having looked at evaluation measures that we will use in this thesis, we go on to 

consider the typical workflow of a sentiment analysis module (Zhang & Desouza, 2014). 

Step 1. Set up input parameters & extract raw text data (online reviews, blogs, 

Tweets, or other documents). 

Step 2.  Process raw data: 

• Clean up text 

• Remove stop words 

• Stemming 

• Translate text into corpus matrices 

Step 3.  Conduct a few classifiers to calculate the polarity of the formatted data. 

Step 4.  Evaluate the accuracy and efficiency of each algorithm. 

Step 5.  Produce outputs e.g. sentiment scores, spreadsheets, graphs. 

5.4 Natural Language Toolkit (NLTK)  

NLTK is a python module which offers many NLP processing tasks along with data 

types, corpora and readers, tutorials, animated algorithms and problem sets. Data types 

in NLTK include tags, chunks, trees, token and feature structures. Implementation for 

stemmers, taggers, parsers, chunkers, classifiers, clusterers and tokenizers are offered 

in interface definitions and reference. Corpus readers and samples include Chunking 

corpus, Brown Corpus, Treebank, SentiWordNet and CMU Pronunciation Dictionary. 

NLTK is ideally suited for learning or conducting research in NLP and has been used 
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successfully in prototyping platforms, building research systems and teaching or 

individual study tool. Python as a programming language has a minimal learning curve 

compared to other languages in the market and it allows users to explore via its 

interactive interpreter. Code in python can be encapsulated and reused easily, it has an 

extensive library and offers tools for graphical and numerical processing. NLTK has 

grown significantly as each new processing task added requirements on input and 

output data. As the numbers of tasks multiply, data management becomes more and 

more difficult. For more information, including documentation, download pointers, and 

links to courses that have adopted NLTK, please see: http://nltk.sourceforge.net/  (Bird, 

2006). 

Next, we look at Natural Language Toolkit, a module which can be used to build a 

sentiment classifier and analyzer, and which was used in this research. 

5.5 NLTK Processing Tasks 

In this section, we look at some of the NLTK processing tasks that are used in every 

sentiment analysis process (Perkins, 2014). 

5.5.1 Tokenization and Stemming 

The following three lines of a program show how to import a tokenize package, define a 

text string and tokenize the string on whitespace to create a list of tokens. There are 

several other tokenizers which can be used. 

text = ’This is a test.’ 

list(tokenize.whitespace(text)) 

[’This’, ’is’, ’a’, ’test.’] 

Then we can stem the output from tokenizer as follows: 

text = ’stemming is exciting’ 

tokens = tokenize.whitespace(text) 

porter = stem.Porter() 

for token in tokens: 

print porter.stem(token) 

http://nltk.sourceforge.net/
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Output: stem word is excit 

The corpora included with NLTK come with corpus readers that understand the file 

structure of the corpus, and load the data into Python data structures. For example, the 

following code reads part of the Brown Corpus. It prints a list of tuples, where each tuple 

consists of a word and its tag. 

for sent in brown.Tagged(’a’): 

print sent 

[(’The’, ’at’), (’Fulton’, ’np-tl’), (’County’, ’nn-tl’), (’Grand’, ’jj-tl’), (’Jury’, ’nn-tl’), (’said’, ’vbd’), ...]  

NLTK also offers support for conditional frequency distributions, making it easy to count 

items of interest in specified contexts. Such information may be useful for studies in 

stylistics or in text categorization.  

5.5.2 Tagging 

The simplest possible tagger assigns the same tag to each token (Perkins, 2014): 

my_tagger = tag.Default(’nn’) 

list(my_tagger.tag(tokens)) 

[(’John’, ’nn’), (’saw’, ’nn’), (’3’, ’nn’), (’polar’, ’nn’), (’bears’, ’nn’), (’.’, ’nn’)] 

Simple tagger will tag only 10–20% of the tokens correctly. However, it is a reasonable 

tagger to use as a default if a more advanced tagger fails to determine a token’s tag. 

The regular expression tagger assigns a tag to a token per a series of string patterns. 

For instance, the following tagger assigns cd to cardinal numbers, nns (nouns) to words 

ending in the letter s, and nn (noun) to everything else: 

patterns = [ 

(r’\d+(.\d+)?$’, ’cd’),  

(r’\.*s$’, ’nns’), 

(r’.*’, ’nn’)] 

simple_tagger = tag.Regexp(patterns) 

list(simple_tagger.tag(tokens)) 

[(’John’, ’nn’), (’saw’, ’nn’), (’3’, ’cd’), (’polar’, ’nn’), (’bears’, ’nns’), (’.’, ’nn’)]  
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The tag.Unigram class implements a simple statistical tagging algorithm where it 

assigns the tag for every token. For example, it will assign the tag jj to any occurrence 

of the word frequent, since frequent is used as an adjective (e.g. a frequent word) more 

often than it is used as a verb (e.g. I frequent this cafe). Before a unigram tagger can be 

used, it must be trained on a corpus, as shown below for the first section of the Brown 

Corpus. 

unigram_tagger = tag.Unigram() 

unigram_tagger.train(brown(’a’)) 

Once a unigram tagger has been trained, it can be used to tag new text. Note that it 

assigns the default tag ‘None’ to any token that was not encountered during training.  

text = "John saw the books on the table" 

tokens = list(tokenize.whitespace(text)) 

list(unigram_tagger.tag(tokens)) 

[(’John’, ’np’), (’saw’, ’vbd’), (’the’, ’at’), (’books’, None), (’on’, ’in’), (’the’, ’at’), (’table’, None)] 

We can instruct the unigram tagger to ‘back off’ to our default simple_tagger when it 

cannot assign a tag itself. Now all the words are guaranteed to be tagged: 

unigram_tagger = tag.Unigram(backoff=simple_tagger) 

unigram_tagger.train(train_sents) 

list(unigram_tagger.tag(tokens)) 

[(’John’, ’np’), (’saw’, ’vbd’), (’the’, ’at’), (’books’, ’nns’), (’on’, ’in’), (’the’, ’at’), (’table’, ’nn’)] 

We can go on to define and train a bigram tagger, as shown below: 

bigram_tagger = tag.Bigram(backoff=unigram_tagger) 

bigram_tagger.train(brown.tagged(’a’)) 

We can easily evaluate this tagger against some gold-standard tagged text, using the 

tag.accuracy() function. NLTK also includes a Brill tagger and an HMMtagger. 
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5.5.3 Chunking and Parsing 

Chunking is a technique for shallow syntactic analysis of text. Chunk data can be 

loaded from files that use the common bracket or IOB notations. We can define a 

regular-expression based chunk parser for use in chunking tagged text. NLTK also 

supports simple cascading of chunk parsers. Corpus readers for chunked data in Penn 

Treebank and CoNLL-2000 are provided in NLTK, along with comprehensive support 

for evaluation and error analysis.  

 

NLTK offers several parsers for context-free phrase-structure grammars. Grammars can 

be defined using a series of productions as follows (Perkins, 2014):  

grammar = cfg.parse_grammar(’’’ 

S -> NP VP 
VP -> V NP | V NP PP 
V -> "saw" | "ate" 
NP -> "John" | Det N | Det N PP 
Det -> "a" | "an" | "the" | "my" 
N -> "dog" | "cat" | "ball" 
PP -> P NP 
P -> "on" | "by" | "with" 
’’’) 

Now we can tokenize and parse a sentence with a recursive descent parser. Note that 

we avoided left-recursive productions in the above grammar, so that this parser does 

not get into an infinite loop.  

text = "John saw a cat with my ball" 

sent = list(tokenize.whitespace(text)) 

rd = parse.RecursiveDescent(grammar) 

 

Now we apply it to our sentence, and iterate over all the parses that it generates.  

Observe that two parses are possible, due to prepositional phrase attachment 

ambiguity. 

for p in rd.get_parse_list(sent): 
print p 

(S: 
(NP: ’John’) 



Chapter 5: Methodology and Framework                                                                                

80 
 

(VP: 
(V: ’saw’) 
(NP: 
(Det: ’a’) 
(N: ’cat’) 
(PP: (P: ’with’) 
(NP: (Det: ’my’) (N: ’ball’)))))) 
(S: 
(NP: ’John’) 
(VP: 
(V: ’saw’) 
(NP: (Det: ’a’) (N: ’cat’)) 
(PP: (P: ’with’) 
(NP: (Det: ’my’) (N: ’ball’))))) 

The same sentence can be parsed using a grammar with left-recursive productions, so 

long as we use a chart parser. We can invoke NLTK’s chart parser with a bottom-up 

rule-invocation strategy with chart.ChartParse(grammar, chart.BU STRATEGY). Tracing can 

be turned on to display each step of the process. NLTK also supports probabilistic 

context free grammars, and offers a Viterbi-style PCFG parser, together with a suite of 

bottom-up probabilistic chart parsers. 

5.6 Classification Algorithms 

Classification is the process to find the properties that help us find the group to which 

each word or case belongs. There are two methods of finding the semantic orientation 

which helps find the polarity of the sentence: supervised and unsupervised classification 

techniques. For this thesis, we will be experimenting or creating our own corpus from 

the training document which will help us classify the test document. Hence, a 

supervised classification algorithm seems fit for this thesis. Most common among the 

supervised algorithm for sentiment analysis is the Naïve Bayes and Support Vector 

machine. Naïve Bayes is the simplest yet effective supervised classification algorithm 

and is most widely used (Perkins, 2014).  
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5.6.1 Naïve Bayes Algorithm  

Naive Bayes classification technique is based on Bayesian theorem and is particularly 

suited when the dimensionality of inputs is high. Let R = {R1, R2, R3,….Rn} denotes the 

set of training opinions, where each opinion is labeled with one of the cording in C = {P, 

N, O}. Given some new opinion, the aim is to estimate the probability of each code. 

Using Bayes formula, 

𝑝 (
𝑐

𝑟
) =

𝑝 (
𝑟
𝑐) 𝑝(𝑐)

𝑝(𝑟)
 

Equation 3 Bayes Formula Bayes Formula (Source: (Medagoda et al., 2015) 

We are interested in the relative order of codes for a given opinion R, if p(r) is 

independent of codes, then we can consider 

𝑝 (
𝑐

𝑟
) = 𝑝 (

𝑟

𝑐
) 𝑝(𝑐) 

If F is the ordered sequence of the features that compose the opinion R then F= {w1, 

w2, w3, w4} Where, w1 and w3 are adjective positive score and w2 and w4 are 

adjective negative score 

𝑝 (
𝑐

𝑟
) = 𝑝 (

𝑟

𝑐
) 𝑝(𝑐) = 𝑝(𝑐) ∏ 𝑝(𝑤𝑘/𝑐)

𝑝

𝑘=1

 

And classify r into the most possible code c using 

arg
max

𝑐
𝑝(

𝑐

𝑟
) 

(Medagoda et al., 2015) 

5.6.2 Support Vector Machine (SVM)  

SVM is the best binary classification method and a non-probabilistic classification 

technique that looks for a hyperplane with the maximum margin between the positive 

and negative examples of the training opinions. Support Vector Machines are based on 

the concept of decision planes that define decision boundaries. A decision plane is one 

that forms a separation between a set of objects, which have different class 

memberships (Medagoda et al., 2015).  
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Decision planes are the classifiers either a line or a curve. A simple classifier may use 

liner decision planes rather than more complex structures. Classification tasks based on 

drawing separating lines to distinguish between objects of different class memberships 

are known as hyperplane classifiers. SVM is primarily a classification method that 

performs classification tasks by constructing hyperplanes in a multidimensional space 

that separates cases of different class labels. SVM supports both regression and 

classification tasks and it can handle multiple continuous and categorical variables 

(Medagoda et al., 2015).  

To construct an optimal hyperplane, SVM employs an iterative training algorithm; this is 

used to minimize an error function. According to the form of the error function, SVM 

models can be classified into distinct groups. In the simplest SVM, training involves the 

minimization of the error function (Medagoda et al., 2015). 

1

2
 𝑤𝑇 𝑤 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=0

 

Equation 4 SVM Error Function Source: (Medagoda et al., 2015) 

Subject to the constrains 

𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 −  𝜉𝑖 𝑎𝑛𝑑 𝜉𝑖  ≥ 0, 𝑖 = 1, … , 𝑁 

Where C is the capacity constant w is the vector of coefficients, b, a constant and ξ are 

parameters for handling non-separable data (inputs). The index i labels the N training 

cases. Note that y (∈±1) is the class label and 𝑥𝑖 is the independent variables. The 

kernel φ is used to transform data from the input (independent) to the feature space. It 

should be noted that the larger the C, the more the error is penalized. Thus, C should 

be chosen with care to avoid over fitting. It is suggested in that SVM does not depend 

on the dimensionality of the problem when compared with other machine learning 

methods. The success of SVM in text categorization lies in its automatic capacity tuning 

by minimizing, i.e. the extraction of a small number of support vectors from the training 

data that are relevant for the classification (Medagoda et al., 2015).  
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5.6.3 Decision Tree Classification Algorithm 

Decision tree is a graph with branches that represent every possible outcome of a 

decision. The rules produced by a decision tree model are human readable and are 

easily interpretable. The classification task using decision tree technique can be 

performed without complicated computations and the technique can be used for both 

continuous and categorical variables. In this work, a decision tree model 

was tested to classify comments broken down to Positive, Negative or Neutral and then 

the rules generated by the decision trees were investigated (Medagoda et al., 2015).  

5.6.4 Decision Tree Algorithm – J48 

J48 is a univariate decision tree classification method which creates trees based on the 

information gain. It tests whether all cases belong to the same class; if true then the tree 

is a leaf and is labeled as a class. Next for each attribute calculate the information gain. 

The information gain can be calculated as (Medagoda et al., 2015) 

𝐺𝑎𝑖𝑛(𝑝, 𝑗) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑝 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (
𝑖

𝑝
)) 

Equation 5 J48 Information Gain Source: (Medagoda et al., 2015) 

Where, 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (
𝑗

𝑝
) =  

𝑝𝑗

𝑝
 log 𝑝𝑗/𝑝 

Finally, find the best fitting attribute based on the current selection criteria. Once the 

initial tree is constructed using the entropy then pruning is carried out to remove the 

5.7 Summary 

In this chapter, we discussed the evaluation methods that can be applied to a 

classification model and a typical sentiment analysis workflow. Then we looked at 

Natural Language Toolkit, a python module, which is widely used for studies and 

research in sentiment analysis and its classification algorithms, after which we looked at 

some of the supervised algorithms available in NLTK which we use in this research. 
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Chapter 6: Results 

6.1 Introduction 

In this chapter, we discuss the custom tool framework and compare with some of the 

commercially available tools from Microsoft, IBM and Google and then finally how to 

start up the tool to create custom corpus and obtain the results. The tool we create will 

be used to study the different components involved in the process of sentiment analysis 

and this will help us understand the rigorous process of creating a commercially viable 

tool, while addressing outliers and overfitting. 

6.2 Framework  

To create a workable solution, we use a lexicon-based method which is based on 

SentiWordNet and we use aspect level sentiment analysis to obtain positive and 

negative features of any given text or we can train and test using a classification 

algorithm. The main aim is to find and extract the features to be analyzed and calculate 

its polarity. The steps we perform are discussed in the following subsections. The code 

used to perform the experiments in presented in the Appendix. 

6.2.1 Data Collection  

Designing a dataset is the first step in opinion mining where opinions are collected from 

various sources like reviews, blogs etc. of a domain. For the thesis, we use secondary 

data—an excel spreadsheet provided by the Health Centre, which has review 

comments from patients about doctors, along with other demographic information like 

patient and doctor gender, and so on. Review comments from patients are in column 

#23 of the spreadsheet and the first row contains the header for the column. 

Therefore, data collection for this thesis is effectively done by Health Centre by means 

of an online review or by asking patients to submit paper forms at the Health Centre 

reception. 
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6.2.2 Data Preprocessing 

Dataset is cleaned and preprocessed and some common steps include removing non-

textual contents and HTML tags and removing information about the reviews that are 

not needed for sentiment analysis, such as review dates and reviewers’ names.   

At this stage, for the tool created, headers for the columns are ignored as they do not 

convey any sentiment which would add up to the sentiment polarity of the document. 

We make sure that stop words are removed and the correct column which contains 

patient reviews is chosen for calculating sentiment of the document. 

6.2.3 Feature Extraction 

Identification and selection of features is perhaps the most important task of opinion 

mining. There can be more than one name for the same aspect, for example “story of 

the book is good” or someone else may use “the storyline of the book is fantastic”, 

where story and storyline have the same meaning.  

This stage of the framework is taken care of by the tool, where the tool is trained by a 

movie review corpus and a custom corpus in turn, which will train the tool in 

identification and selection of the features. 

6.2.4 POS Tagging  

POS tagger parses a sentence or document and tags each term with its part of speech. 

For POS tagging we used the Stanford POS tagger. This tagger is used to split text data 

into sentences and to produce the part-of-speech tag for each word (whether the word 

is a noun, verb, adjective, etc.). The following shows a sentence that is parsed and POS 

tags applied.   

“The feel of the phone is the best of the series.”    

When we apply the POS-tagger, it generates the following parts of speech for the 
sentence.   

“The_DT feel_NN of_IN the_DT phone_NN is_VBZ the_DT best_JJS of_IN the_DT 

series_NN.”   
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This would be one of the most important stages of the tool, where the test set is 

tokenized and POS tagged for sentiment analysis. NLTK module for tokenizing and 

POS tagging is used to perform this part of the framework. See Appendix. 

6.2.5 Calculate Sentiment Polarity 

At this stage, we calculate the sentiment polarity using SentiWordNet which is a lexical 

resource used for opinion mining. We can also train and test using classification 

algorithms. SentiWordNet synset has three scores: Positive, negative and objective, 

which tells us how positive or negative or objective the term in the synset is. Each of the 

three is assigned a score from 0.0 to 1.0 and their sum is 1.0 for each synset and the 

entries contain the parts of speech category of the displayed entry, its positivity, its 

negativity, and the list of synonyms. The word presented in the form of lemma #sense-

number, where the first sense corresponds to the most frequent use of the word and the 

different word senses can have different polarities. 

In the second approach, we use SentiWordNet to check the polarity of the test 

sentences and create a custom corpus which we use for sentiment analysis prediction. 

This, we estimate, will help achieve better accuracy in analyzing the sentiments. 
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Figure 13 Sentiment Analysis using SentiWordNet (Source: (Amiri & Chua, 2012) 

6.3 Project Setup Instructions  

1. Install latest Python from https://www.python.org/ and NPM (install Nodejs which 

installs NPM on your machine) 

2. Install NLTK and dependencies from NLTK website (http://www.nltk.org/install.html) 

3. Install FLASK and FLASK CORS latest version 

(http://flask.pocoo.org/docs/0.10/installation/) 

4.  Create a folder structure as shown below.  

Note that the data set is contained in gmc II pq dataset.csv file. 
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Runserver.py is used to run flask server and access methods as services such as 

reading csv files, tokens, tagging, classification and ascertaining document sentiment. 

Currently all services are programmed to be accessed as ‘GET’ methods. 

_init_.py file inside the ‘FilesToHost’ folder is first executed when Flask server is started. 

 

Start the ‘Flask’ server by navigating to the folder where we have RunServer.py file and 

open command prompt and type in python.exe runserver.py 

File paths may change based on the location of files on your machine. 

Once the server starts we will see the following message on the command prompt. 

 

To access any ‘GET’ service type in http://127.0.0.1:5000/readcsv/gmc II pq dataset 

ALL CASES 18.11.2009 CW.csv in your favorite browser and if the service works you 

would see the comments in the file as shown:` 
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Creating the Custom Corpus 

We create two folders first programmatically  

 

We then feed the program with sample csv files containing our test data, created from 

the dataset, which can be used to train the classifier and create a corpus which can be 

used for future analysis. The Appendix contains the code used to create the custom 

corpus. 
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6.4 Results 

After multiple runs on the test data set, we achieved the following result sets. 

1. Using Naive Bayes Classifier: The following result was obtained after creating a 

custom corpus and running the tool to analyze sentiments on the questionnaire using 

Naive Bayes Classifier. 

1st run 

Document sentiment Positive 

Accuracy 0.935 

positive precision 0.959 

positive recall 0.958 

negative precision 0.847 

negative recall 0.850 

 

2nd run 

Document sentiment Positive 

Accuracy 0.939 

positive precision 0.942 

positive recall 0.982 
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negative precision 0.924 

negative recall 0.785 

As we can see, we get a very high precision and high recall, which tells us that the 

classifier used is very good. Training set used trained the classifier which helped us 

classify the document with good accuracy. We can say this is almost an ideal test result 

one should expect in almost all situations to ensure document is classified correctly and 

proper results are obtained. 

 

2. Using SentiwordNet: The tool was programmed to run and analyze the 

questionnaire directly using SentiwordNet and after multiple runs the document was 

analyzed as positive. SentiwordNet has positive and negative index values for a word 

which we use to categorize every word used in the document and calculate the 

overall sentiment of the document. 

 

3. Using movie review corpus: In this test run we use movie review corpus, which is 

widely used to classify natural languages and is a huge collection of natural language 

sentences. 

1st run 

Document sentiment Positive 

Accuracy 0.967 

positive precision 0.938 

positive recall 1.0 

negative precision 1.0 

negative recall 

 

0.935 

2nd run 

Document sentiment Positive 

Accuracy  0.967 

positive precision 0.938 
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positive recall 1.0 

negative precision 1.0 

negative recall 0.935 

 

Comparing this run to the previous runs with custom corpus, we obtain good results. This  

tells us that, we were able to create a good quality custom corpus which gives us precision 

and recall as close to a research quality corpus. 

4. Using Support Vector Machine: The document was classified as negative using 

Support Vector Machine with Linear Support Classification variation after both creating 

a custom corpus, and using movie review and running the tool to analyze sentiments. 

SVC and NuSVC can also be used as variations with SVM. 

We were not able to evaluate the results on using SVM; we could not obtain the accuracy, 

precision and recall as it requires usage of sci-kit, which would push the timelines for this 

research. This can however be undertaken as a separate research topic. 

In conclusion, with the direct use of SentiWordNet, the document is classified as a positive 

document. However, when using corpora, we get a contrasting result. When executing 

the application using Bayes and custom corpus the document is classified as positive. 

When using SVM with both the custom corpus and movie corpus, the document is 

classified as negative. 

6.5 Summary  

In this chapter, we looked at the framework which we used in the creation of sentiment 

analysis tools. We then looked at the steps to set up the project and finally presented 

the results obtained. 

The results obtained show us that while we could classify the document as a positive or 

a negative document, we would have obtained better results if we had the time to fine 

tune the application and use expert help in creating the training and test sets. However, 

the results obtained are promising within the time constraints of this research.   
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Chapter 7: Review, limitations, and future research 

7.1 Introduction 

In this Chapter, we discuss the results obtained and the implications, followed by the 

limitations of the tool and the changes that it needs to be a commercial viable tool. 

Finally, we consider about the future work or research that can be carried out to take 

this research further, or generally further the research in this area. 

7.2 Research Review and Summary 

This thesis set out to investigate the question: 

1. How can an effective sentiment analysis tool be built to analyze free text 

comments in questionnaires? 

And a supplementary question: 

2. Will a corpus created from the data be useful in analyzing sentiment expressed in 

the data? 

We built a basic sentiment analysis tool which can use SentiWordNet or custom corpus 

or movie reviews corpus to analyze sentiments in free text responses.  

The software tool at this stage needs fine tuning in the following areas: 

1. Improve and increase the size of custom corpus by using more test to obtain good 

precision and recall. 

2. This would also provide us better precision and recall scores. 

3. Consider the demographic information available and create graphs or visual 

representation for different parameters like gender, age of the patient and doctors. 

Throughout the thesis, we have tried to study, research and understand different 

components that we need to create a simple but effective sentiment analysis and 

classification tool.  
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Literature review was conducted to understand sentiment analysis and its process and 

sentiment analysis methods and tools. In this Chapter, we looked at sentiment analysis 

from the medical web, biomedical literature and other medical texts, which shows us 

that SVM classifier is widely used for classification of medical field data (refer Section 

2.4). For the tool, we created a classifier using Naive Bayes and SVM. Though at this 

stage the tool requires further improvement, we were able to successfully create a tool 

which would tell us the overall sentiment conveyed by the patient review document 

(response). Further this tool can also be used as a data mining tool that would help us 

filter data by patient or doctor’s age or sex. 

Next, we briefly looked at N-Gram which is another effective approach to study 

sentiments. Although we did not directly use N-grams in our research, this can be an 

alternative we can add to the tool giving the user a choice of different approaches. 

After discussing the fundamental concepts needed to understand the different 

processes in sentiment analysis in chapter 3, we look at SentiWordNet, which is mainly 

used to calculate sentiment polarity (positive, negative or neutral). We use 

SentiWordNet to create our custom corpus to help us obtain better precision with 

classification tasks. We also used SentiWordNet to create an alternative approach to 

analyze document sentiments and we achieved a positive result. After SentiWordNet, it 

was necessary to study negation identification in sentiment analysis, which is one of the 

most complex tasks. Pseudocode provided was used in the tool to consider negative 

words so that their polarity of the negative word can be reversed. Code used in this 

research is presented in the Appendix. 

In Chapter 5, we discussed about NLTK which is one of the widely used NLP toolkit. We 

look at the different processing task and classification algorithms which we applied in 

our tool. We presented a framework and project setup instructions, which can be used 

to effectively create a custom NLP tool. 

To summarize, following are the major steps involved in sentiment analysis:  

1. Data Collection 

2. Data Preprocessing 
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3. Feature Extraction 

4. POS Tagging 

5. Calculate Sentiment Polarity  

While the tool developed needs more training and testing before it can be a practical 

solution for future work, we have successfully developed a platform which can be used 

for generating custom corpus and provide anyone with an understanding to help them 

start to develop commercial sentiment analysis tools. 

7.3 Limitations 

The tool developed as a part of this thesis, provides us with ample opportunities to learn 

about the process of developing a commercially feasible sentiment analysis tool but 

when compared to Microsoft, IBM or Google sentiment analysis API’s or tools in the 

market, it has limitations which can be tackled or can be overcome over a period of 

time. 

1. NLTK, python module used for creating the tool, as mentioned in (Bird, 2006), is 

ideally suited for learning or conducting research in NLP and has been used 

successfully in prototyping platforms, building research systems and teaching or 

individual study tool. 

However, to build a commercial tool we cannot wholly rely on NLTK module to 

provide us with solutions to perform different processes. A mix of system and 

programming languages need to be used to create a platform which can hopefully 

provide better results. 

2.  We have not included any mechanism to detect fake or duplicate review or to check 

the reputation of the reviewer. 

3. As previously stated, we could not obtain the accuracy, precision and recall scores 

when using SVM, due to the time constraints, as it requires usage of sci-kit. 
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4. As mentioned in Section 2.8, NLP needs more enhancement with respect to domain-

dependent sentiment analysis, which would need considerable changes to the 

underlying NLTK module used. 

5. SentiWordNet, although a good general-purpose lexicon database for use in 

sentiment analysis in English, researchers face a challenge in building lexicons, 

corpora and dictionaries for any other language.   

7.4 Future Work or Research 

The tool developed reads patient review comments about doctors which can be 

extended to comments collected from social media and other sources about the doctor 

or hospital.  

1. We have created a corpus which is used to further classify the document; this can be 

extended to create an elaborate domain dependent lexicon database which will help 

classify negative sentiments in future. 

2. Visualization is of one of the main aspect of any data mining program. Popular 

libraries like D3.js can be used to present data extracted in form of graphs. 

3. It would be interesting to use sci-kit with NLTK in order to experiment with SVM.  

4. Different algorithms along with their variations can be studied to improve the 

performance and accuracy of the results obtained. In this thesis, we have mostly 

looked at using supervised algorithms like Native Bayes or SVM. Future work can be 

done on usage of unsupervised classification algorithms. 

5. Different stages of data mining or NLP can be studied and improved by using 

different algorithms than the ones used by default in NLTK. 

6. As mentioned above different components can be studied and improved, and this can 

be done by using more efficient programming languages which can be used to 

replace NLTK module or create tools which would give results faster or help create 

better solution. 
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7. API solutions offered by Microsoft, IBM and Google, which can be good substitute for 

NLTK to understand the sentiments expressed by reviewers. 
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Appendix 

1. First we read the entire csv and then read a particular column which contains user 

comments and excludes first row and cells which have no comments.  In a csv, 

columns with no comments have ‘999’ 

from FilesToHost import app 
import nltk 
import json 
import numpy 
import csv 
@app.route("/readcsv/<csvfilename>") 
def readcsv(csvfilename): 
 returnlist=[]  
 with open(csvfilename, newline='') as csvfile: 
  dataReader = csv.reader(csvfile, delimiter=',', quotechar='|') 
  for row in dataReader:   
   commentobj = row[23] 
   if (commentobj == "999" or commentobj == "comments"): 
    commentobj = 'na' 
   else: 
    returnlist.append(commentobj)      
  return json.dumps(returnlist) 
 

2. Tokenization 

The following code helps us to tokenize the data. 

from FilesToHost import app 
import nltk 
import json 
import numpy 
@app.route("/tokenize/<word>") 
def tokenize(word):          
 return json.dumps(Tokenizer(commentobj)) 
def Tokenizer(tokens): 
 return nltk.word_tokenize(tokens) 
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3. Fetch Stopwords  

In the following code we remove all the stopwords by importing all the stopwords 

from nltk corpus. We can add our own list of stopwords in the following code. 

from FilesToHost import app 
import nltk 
import json 
import numpy 
from nltk.corpus import stopwords 
stopwordlist = stopwords.words('english') 
@app.route("/stopwords") 
def stopwords():      
 return json.dumps(stopwordlist) 
 

4. POS Tagging  

In the following code we POS tag the sentence by using nltk’s pos_tag method. 

from FilesToHost import app 
import nltk 
import json 
import numpy 
@app.route("/postag/<sentence>") 
def PosTaggingCsv (sentence): 
 return json.dumps(nltk.pos_tag(sentence.split()))  
 

5. Positive sentiment 

In the following code we obtain the positive score of the word using SentiWordNet. 

We iterate over the list of word we obtain after tokenizing them and then we pass it to 

SentiWordNet and positive score is fetched by calling pos_score() method. 

from FilesToHost import app 
import json 
import nltk 
from nltk.corpus import sentiwordnet as swn 
@app.route("/sentiwordnetpos/<word>/<pos>") 
def sentiwordnetpos(word, pos): 
 returnlist=[] 
 posscore=0 
 test = list(swn.senti_synsets(word)) 
 for iterating_var in test: 
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  posscore += iterating_var.pos_score()  
 return json.dumps(posscore) 
 

6. Negative sentiment 

In the following code we obtain the negative score of the word using SentiWordNet. 

We iterate over the list of word we obtain after tokenizing them and then we pass it to 

SentiWordNet and negative score is fetched by calling neg_score() method. 

from FilesToHost import app 
import json 
import nltk 
from nltk.corpus import sentiwordnet as swn 
@app.route("/sentiwordnetneg/<word>/<pos>") 
def sentiwordnetneg(word, pos): 
 returnlist=[] 
 negscore=0 
 test = list(swn.senti_synsets(word)) 
 for iterating_var in test: 
  negscore += iterating_var.neg_score()  
 return json.dumps(negscore) 
 

7. Creating custom corpus 

As a part of creating a customized solution to study the process of Sentiment 

analysis, a python program was written which could create custom corpus for any 

dataset. This program would go through the entire dataset and would then classify 

the sentences as positive or negative and this can be used in future to obtain better 

results. 

from FilesToHost import app 

import json 
import nltk 
from nltk.corpus import sentiwordnet as swn 
from nltk.sentiment.util import * 
from nltk.classify import NaiveBayesClassifier 
import datetime 
import time 
@app.route("/createpersonalcorpus/<sentence>") 
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def createpersonalcorpus(sentence):   
 posscore=0 
 negscore=0 
 totalscore=0  
 personalCorpusDir = "D:\\College 
Studies\\MasterThesis\\SentimentAnalyzer\\FlaskSample\\Corpus\\"   
 #get negated words 
 negatedwords = negation(sentence) 
 #print(negatedwords)  
 #tokenize 
 tokens = Tokenizer(sentence)  
 #cleantokens 
 cleanedTokens = CleanTokens(tokens)  
  
 #postag 
 postaggedsentence = PosTag (cleanedTokens)   
   
 #get sentiword net score for each word in the pos tagged array 
 for items in postaggedsentence:    
  mappedValue = MapValue(items[1])   
  if (mappedValue != ''): 
   sentiword = list(swn.senti_synsets(items[0], mappedValue)) 
   for word in sentiword:        
    posscore += word.pos_score()   
    negscore += word.neg_score() * -1 
    totalscore = totalscore + posscore + negscore   
 ts = time.time() 
 dt = datetime.datetime.fromtimestamp(Fayyad et al.).strftime('%Y-%m-%d-%H-
%M-%S')  
  
 #after calculating scores write sentences 
 if totalscore >= 0: 
  fo = open(personalCorpusDir + "pos\\" + "pos"+ dt +".txt", "a+") 
  fo.write(sentence + "\n"); 
  fo.close() 
 else: 
  fo = open(personalCorpusDir + "neg\\" + "neg"+ dt +".txt", "a+") 
  fo.write(sentence + "\n"); 
  fo.close() 
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 return json.dumps(totalscore) 
   
def Tokenizer(sentence): 
 return nltk.word_tokenize(sentence) 
  
def CleanTokens(tokens): 
 returnlist=[] 
 donothin = '' 
 for token in tokens:      
  if (token == '.' or token == '``'): 
   donothin = 'need to check this again' 
  else:    
   returnlist.append(token) 
 return returnlist 
  
def negation(sentence):  
 sent = sentence.split()  
 return mark_negation(sent) 
  
def PosTag (tokens):  
 return nltk.pos_tag(tokens, 'universal') 
  
def MapValue(val): 
 if val == 'NOUN': 
  return 'n' 
 elif val == 'ADJ': 
  return 'a' 
 elif val == 'VERB': 
  return 'v' 
 elif val == 'ADV': 
  return 'r' 
 else: 
  return ''   
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8. Sentiment analysis using Movie Review 

 

from FilesToHost import app 
 

import nltk.classify.util 

import json 

import csv 

from nltk import precision 

from nltk import recall 

import collections 

import nltk.classify.util, nltk.metrics 

from nltk.classify import NaiveBayesClassifier 

from nltk.corpus import movie_reviews as mr 

 

from nltk.corpus import stopwords 

stopwordlist = stopwords.words('english') 

 

@app.route("/sentimentanalyzedoc") 

def sentimentanalyzedoc(): 

 return sentiment_analyze(word_feats) 

 

def sentiment_analyze(featx): 

 negids = mr.fileids('neg')  

 posids = mr.fileids('pos') 

  

 posfeats = [(featx(mr.words(fileids=[f])), 'pos') for f in posids]  

 negfeats = [(featx(mr.words(fileids=[f])), 'neg') for f in negids]  

  

 trainfeats = negfeats + posfeats 

  

 classifier = NaiveBayesClassifier.train(trainfeats) 

  

 tokenizeddoc = word_feats(TokenizeDoc())  

 observed = classifier.classify(tokenizeddoc) 

 print ('doc sentiment: ' + observed) 

  

 testsets = collections.defaultdict(set) 

 refsets = collections.defaultdict(set)  

 for i, (feats, label) in enumerate(trainfeats):   

  refsets[label].add(i) 

  observed = classifier.classify(feats)   

  testsets[observed].add(i) 
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 print ('accuracy:', nltk.classify.util.accuracy(classifier, trainfeats)) 

 print ('pos precision:', precision(refsets['pos'], testsets['pos'])) 

 print ('pos recall:', recall(refsets['pos'], testsets['pos'])) 

 print ('neg precision:', precision(refsets['neg'], testsets['neg'])) 

 print ('neg recall:', recall(refsets['neg'], testsets['neg'])) 

 print ('most important information:', classifier.show_most_informative_features()) 

  

 return json.dumps('nothing') 

 

def word_feats(words): 

 return dict([(word, True) for word in words]) 

  

def TokenizeDoc(): 

 returnlist=[] 

 donothing = '' 

 with open('D:\\College Studies\\MasterThesis\\SentimentAnalyzer\\gmc II pq 

dataset ALL CASES 18.11.2009.csv', newline='') as csvfile: 

  dataReader = csv.reader(csvfile, delimiter=',', quotechar='|') 

  for row in dataReader:   

   commentobj = row[23] 

   if (commentobj == "999" or commentobj == "comments"): 

    commentobj = 'na' 

   else: 

    tokenized = Tokenizer(commentobj)     

    for token in tokenized: 

     tempObj = token.split(',')      

     if (tempObj[0] == '.' or tempObj[0] == '``' or 

tempObj[0].lower() in stopwordlist): 

      donothin = 'need to check this again'  

     

     else: 

      returnlist = returnlist + tempObj   

   

 return returnlist 

  

def Tokenizer(tokens): 

 return nltk.word_tokenize(tokens) 

 

 

 

10. Sentiment analysis using custom corpus 

from FilesToHost import app 

import json 
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import csv 
import collections 
import nltk.classify.util, nltk.metrics 
from nltk.classify import NaiveBayesClassifier 
from nltk import precision 
from nltk import recall 
import os 
from nltk.corpus.reader.plaintext import PlaintextCorpusReader 
from nltk.corpus import CategorizedPlaintextCorpusReader 
 
@app.route("/finalclassification") 
def finalclassification():  
 mydir = 'D:\\College 
Studies\\MasterThesis\\SentimentAnalyzer\\FlaskSample\\Corpus\\' 
 mr = CategorizedPlaintextCorpusReader(mydir, r'(?!G. Miner).*\.txt', 
cat_pattern=r'(neg|pos)/.*', encoding='ascii')  
 posids = mr.fileids('pos') 
 negids = mr.fileids('neg')  
 posfeats = [(ConvertToDictionary(mr.words(fileids=[f])), 'pos') for f in posids]  
 negfeats = [(ConvertToDictionary(mr.words(fileids=[f])), 'neg') for f in negids]  
 trainsets = posfeats + negfeats 
 classifier = GetClassifier(trainsets)   
 filepath = 'D:\\College 
Studies\\MasterThesis\\SentimentAnalyzer\\FlaskSample\\gmc II pq dataset ALL CASES 
18.11.2009.csv' 
 tokenizeddoc = ConvertToDictionary(TokenizeDoc(filepath))  
 observed = classifier.classify(tokenizeddoc)  
 print ('doc sentiment: ' + observed)  
 testsets = collections.defaultdict(set) 
 refsets = collections.defaultdict(set)  
 for i, (feats, label) in enumerate(trainsets):   
  refsets[label].add(i) 
  observed = classifier.classify(feats)   
  testsets[observed].add(i) 
 print ('accuracy:', nltk.classify.util.accuracy(classifier, trainsets)) 
 print ('pos precision:', precision(refsets['pos'], testsets['pos'])) 
 print ('pos recall:', recall(refsets['pos'], testsets['pos'])) 
 print ('neg precision:', precision(refsets['neg'], testsets['neg'])) 
 print ('neg recall:', recall(refsets['neg'], testsets['neg'])) 
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 print ('most important information:', 
classifier.show_most_informative_features()) 
  
 return json.dumps(observed) 
  
def GetClassifier (trainSets):  
 return NaiveBayesClassifier.train(trainSets) 
  
def ConvertToDictionary(words): 
 return dict([(word, True) for word in words]) 
  
def TokenizeDoc(filepath): 
 returnlist=[] 
 donothing = '' 
 with open(filepath, newline='') as csvfile: 
  dataReader = csv.reader(csvfile, delimiter=',', quotechar='|') 
  for row in dataReader:   
   commentobj = row[23] 
   if (commentobj == "999" or commentobj == "comments"): 
    commentobj = 'na' 
   else: 
    tokenized = Tokenizer(commentobj)     
    for token in tokenized: 
     tempObj = token.split(',')      
     if (tempObj[0] == '.' or tempObj[0] == '``'): 
      donothin = 'need to check this again'  
     
     else: 
      returnlist = returnlist + tempObj   
   
 return returnlist 
  
def Tokenizer(tokens): 
 return nltk.word_tokenize(tokens) 
 

We then use Javascript Ajax to call these services and use HTML to view the data 

<!DOCTYPE html> 
<html> 
<head> 
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 <title>Doctor Review</title> 
</head> 
<body> 
<p> View Results</p> 
 
<input type="file" name="filename" id="filename">     
<br/> 
<br/> 
 
<select id="doctorFilter"> 
 <option selected></option> 
 <option selected>All</option> 
</select> 
<select id="patientFilter"> 
 <option selected></option> 
 <option selected>All</option> 
</select> 
<br/> 
<br/> 
 
<input type="hidden" id="csvSentences" value=""/> 
 
<input type="hidden" id="commentArr" value=""/> 
<input type="hidden" id="negatedArr" value=""/> 
<input type="hidden" id="posTaggedArr" value=""/> 
<input type="hidden" id="negatedWordArr" value=""/> 
<input type="hidden" id="totalPosScore" value=""/> 
<input type="hidden" id="totalNegScore" value=""/> 
<input type="hidden" id="totalDocScore" value=""/> 
<input type="hidden" id="csv" value=""/> 
 
<div id="score"></div> 
<div id="div1"></div> 
 
<input type="button" id="posTag" value="Get Pos Tagged"/> 
<input type="button" id="getNegatedWords" value="Get Negated Words"/> 
<input type="button" id="getPosScore" value="Get Positive Score"/> 
<input type="button" id="getNegScore" value="Get Negative Score"/> 
<input type="button" id="getDocScore" value="Get Document Score"/> 
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<br /> 
<br /> 
<input type="button" id="createCorpus" value="Create Corpus"/> 
<input type="button" id="classifyDocument" value="Classify"/> 
 
<script src="https://code.jquery.com/jquery-2.2.3.min.js"></script> 
<script> 
$(function() { 
 var stopwordsArr = ""; 
 var commentArr = []; 
 var posTagged = []; 
 var negationDetected = []; 
 var allDocIdArr = []; 
 var allPatientIdArr = []; 
 var csvData = []; 
  
 $("#filename").change(function(e) { 
  var ext = $("input#filename").val().split(".").pop().toLowerCase();   
    
  if (e.target.files != undefined) { 
   var reader = new FileReader(); 
   reader.onload = function(e) { 
    var csvval=e.target.result.split("\n");     
     
    var csvCounter = 1; 
    var prevDocId = 0; 
    var prevPatientId = 0; 
     
    for (var i=1; i < csvval.length; i++)  
    { 
     csvCounter ++;    
     if (csvval[i].split(",")[24] != '999' && 
csvval[i].split(",")[24] != undefined) 
     { 
      if (csvval[i].split(",")[0] != undefined) 
      { 
       if (prevDocId != 
parseInt(csvval[i].split(",")[0])) 
       {    
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        var tempDocId = 
csvval[i].split(",")[0] 
        
        var options = "<option>" + 
parseInt(tempDocId) + "</option>"; 
       
 $('#doctorFilter').append(options); 
       } 
        
       prevDocId = 
parseInt(csvval[i].split(",")[0]); 
      }  
       
      if (csvval[i].split(",")[1] != undefined) 
      { 
       if (prevPatientId != 
parseInt(csvval[i].split(",")[1])) 
       {      
  
        var options = "<option>" + 
parseInt(csvval[i].split(",")[1]) + "</option>"; 
       
 $('#patientFilter').append(options); 
       } 
        
       prevPatientId = 
parseInt(csvval[i].split(",")[1]); 
      }      
      
      
      var tempData = csvval[i].split(",")[24]; 
       
      if ($('#csvSentences').val() == "") 
      { 
       $('#csvSentences').val(tempData); 
      } 
      else 
      { 
       var stored = $('#csvSentences').val(); 
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       $('#csvSentences').val(stored + "," + 
tempData); 
      }       
       
      csvData.push(csvval[i].split(",")[0] + ";" + 
csvval[i].split(",")[1] + ";" + tempData);        
   
       
      //tokenize and add to array 
      $.ajax({  
      type: "GET", 
      url: 
"http://localhost:5000/removestopword/"+ tempData,    
      async: true, 
      cache: false,  
      processData: false, 
      success: function(data, textStatus, xhr) {  
       
 commentArr.push(JSON.parse(data));  
         
       }}); 
        
      $.ajax({  
      type: "GET", 
      url: "http://localhost:5000/negation/"+ 
tempData,    
      async: true, 
      cache: false,  
      processData: false, 
      success: function(data, textStatus, xhr) {  
       
 negationDetected.push(JSON.parse(data));      
    
       }});      
       
     } 
    } 
     
    $('#csv').val(csvData);  
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    var interval = setInterval(function(){ 
     if(csvCounter == csvval.length){ 
      clearInterval(interval); 
      var negText = []; 
      for(var i=0; i < negationDetected.length; i++) 
      { 
       for(var j=0; j < 
negationDetected[i].length; j++){ 
       
 negText.push(negationDetected[i][j].replace(".", "")) 
       } 
      }  
      $('#negatedArr').val(""); 
      $('#negatedArr').val(negText); 
       
      var allText = ""; 
      for(var j=0; j < commentArr.length; j++) 
      { 
       if (allText == "") { 
        allText = commentArr[j]; 
       } 
       else{ 
        allText = allText + "," + 
commentArr[j]; 
       }      
  
      } 
      $('#commentArr').val(""); 
      $('#commentArr').val(allText); 
     } 
    }, 2000); 
   }; 
   reader.readAsText(e.target.files.item(0));    
  } 
  return false;  
 });   
 
 $('#posTag').click(function(){ 
   $.ajax({  
    type: "GET", 
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    url: "http://localhost:5000/postag/"+ $('#commentArr').val(), 
   
    async: true, 
    cache: false,  
    processData: false, 
    success: function(data, textStatus, xhr) {  
      $('#posTaggedArr').val(""); 
      posTagged.push(data); 
      $('#posTaggedArr').val(posTagged); 
    } 
   });       
 }); 
  
 $('#patientFilter').change(function(){ 
  var commentArr = [];   
  var negationDetected = []; 
  var counter = 0; 
  var selectedText = $( "select#patientFilter option:selected" ).text(); 
   
  var csvData = $('#csv').val().split(",");   
   
  for(var count = 0; count < csvData.length; count++) 
  { 
   var csvRow = csvData[count].split(";"); 
   counter++; 
   if (csvRow[1] == selectedText) 
   {     
    var tempData = csvRow[2];      
      
     
    //tokenize and add to array 
    $.ajax({  
    type: "GET", 
    url: "http://localhost:5000/removestopword/"+ tempData, 
   
    async: true, 
    cache: false,  
    processData: false, 
    success: function(data, textStatus, xhr) {  
      commentArr.push(JSON.parse(data));  
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     }}); 
      
    $.ajax({  
    type: "GET", 
    url: "http://localhost:5000/negation/"+ tempData,  
  
    async: true, 
    cache: false,  
    processData: false, 
    success: function(data, textStatus, xhr) {  
      negationDetected.push(JSON.parse(data)); 
         
     }}); 
   } 
  } 
   
  var interval = setInterval(function(){ 
   if(counter == csvData.length){ 
    clearInterval(interval); 
    var negText = []; 
    for(var i=0; i < negationDetected.length; i++) 
    { 
     for(var j=0; j < negationDetected[i].length; j++){ 
     
 negText.push(negationDetected[i][j].replace(".", "")) 
     } 
    }  
    $('#negatedArr').val(""); 
    $('#negatedArr').val(negText); 
     
    var allText = ""; 
    for(var j=0; j < commentArr.length; j++) 
    { 
     if (allText == "") { 
      allText = commentArr[j]; 
     } 
     else{ 
      allText = allText + "," + commentArr[j]; 
     }        
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    } 
    $('#commentArr').val(""); 
    $('#commentArr').val(allText); 
   } 
  }, 2000); 
 }); 
  
 $('#doctorFilter').change(function(){ 
  var commentArr = [];   
  var negationDetected = []; 
  var counter = 0; 
  var selectedText = $( "select#doctorFilter option:selected" ).text(); 
   
  var csvData = $('#csv').val().split(",");   
   
  for(var count = 0; count < csvData.length; count++) 
  { 
   var csvRow = csvData[count].split(";"); 
   counter++; 
   if (csvRow[0] == selectedText) 
   { 
     
    var tempData = csvRow[2];      
      
     
    //tokenize and add to array 
    $.ajax({  
    type: "GET", 
    url: "http://localhost:5000/removestopword/"+ tempData, 
   
    async: true, 
    cache: false,  
    processData: false, 
    success: function(data, textStatus, xhr) {  
      commentArr.push(JSON.parse(data));  
       
     }}); 
      
    $.ajax({  
    type: "GET", 
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    url: "http://localhost:5000/negation/"+ tempData,  
  
    async: true, 
    cache: false,  
    processData: false, 
    success: function(data, textStatus, xhr) {  
      negationDetected.push(JSON.parse(data)); 
         
     }}); 
   } 
  } 
   
  var interval = setInterval(function(){ 
   if(counter == csvData.length){ 
    clearInterval(interval); 
    var negText = []; 
    for(var i=0; i < negationDetected.length; i++) 
    { 
     for(var j=0; j < negationDetected[i].length; j++){ 
     
 negText.push(negationDetected[i][j].replace(".", "")) 
     } 
    }  
    $('#negatedArr').val(""); 
    $('#negatedArr').val(negText); 
     
    var allText = ""; 
    for(var j=0; j < commentArr.length; j++) 
    { 
     if (allText == "") { 
      allText = commentArr[j]; 
     } 
     else{ 
      allText = allText + "," + commentArr[j]; 
     }        
    } 
    $('#commentArr').val(""); 
    $('#commentArr').val(allText); 
   } 
  }, 2000); 
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 }); 
  
 $('#getPosScore').click(function(){ 
  var parsed = JSON.parse($('#posTaggedArr').val()); 
  var posScoreArr = [];   
   
  for(var count=0; count < parsed.length; count++){ 
   var mapped = Map(parsed[count][1]); 
   parsed[count][1] = mapped;  
    
   if (parsed[count][1] != undefined && (parsed[count][0].indexOf("'") 
< 0)) 
   {          
    $.ajax({  
     type: "GET", 
     url: "http://localhost:5000/sentiwordnetpos/"+ 
parsed[count][0] + "/" + parsed[count][1],    
     async: false, 
     cache: false,  
     processData: false, 
     success: function(data, textStatus, xhr) { 
       posScoreArr.push(parseFloat(data)); 
      }}); 
   } 
  } 
  $('#totalPosScore').val("");  
  $('#totalPosScore').val(posScoreArr);   
 }); 
  
 $('#getNegScore').click(function(){ 
  var parsed = JSON.parse($('#posTaggedArr').val());   
  var negScore = 0; 
  var negScoreArr = []; 
   
  for(var count=0; count < parsed.length; count++){ 
   var mapped = Map(parsed[count][1]); 
   parsed[count][1] = mapped;  
    
   if (parsed[count][1] != undefined && (parsed[count][0].indexOf("'") 
< 0)) 
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   {          
    $.ajax({  
     type: "GET", 
     url: "http://localhost:5000/sentiwordnetneg/"+ 
parsed[count][0] + "/" + parsed[count][1],    
     async: false, 
     cache: false,  
     processData: false, 
     success: function(data, textStatus, xhr) { 
       negScore = parseFloat(data) * -1; 
       negScoreArr.push(negScore); 
      }}); 
   }  
  } 
  $('#totalNegScore').val(""); 
  $('#totalNegScore').val(negScoreArr);  
 }); 
  
  
 $('#getDocScore').click(function(){   
  var parsed = JSON.parse($('#posTaggedArr').val());  
   
  var docScore = 0; 
  var counter = 0; 
  var posScore = 0; 
  var negScore = 0; 
   
  var posScoreArr = $('#totalPosScore').val().split(','); 
  var negScoreArr = $('#totalNegScore').val().split(',');     
  var negatedWordArr = $('#negatedWordArr').val().split(',');   
   
  for(var count=0; count < negatedWordArr.length; count++) 
  {    
   //reverse negated words 
   if (negatedWordArr[count] != "")  
   { 
    if (posScoreArr[count] > 0) 
    { 
     negScore = (1 - parseFloat(posScoreArr[count])) * 
(parseFloat(posScoreArr[count]) * -1);      
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    } 
    else if (negScore < 0) 
    { 
     posScore = (1 - parseFloat(negScoreArr[count])) * 
(parseFloat(negScoreArr[count]) * -1);      
    } 
   } 
   else 
   { 
    posScore = parseFloat(posScoreArr[count]); 
    negScore = parseFloat(negScoreArr[count]); 
   } 
             
  
   docScore = docScore +  posScore + negScore;  
  }   
   
  if (docScore > 0){ 
   $('#div1').html("The document has positive reviews overall"); 
   $('#score').html("Overall doc score: " + docScore); 
  } 
  else{ 
   $('#div1').html("The document has negative reviews overall"); 
   $('#score').html("Overall doc score: " + docScore); 
  } 
 }); 
  
 $('#createCorpus').click(function(){ 
  var csvsentences = $('#csvSentences').val().split(','); 
   
  for(var count = 0; count < csvsentences.length; count++){ 
   $.ajax({  
    type: "GET", 
    url: "http://localhost:5000/createpersonalcorpus/"+ 
csvsentences[count],    
    async: false, 
    cache: false,  
    processData: false, 
    success: function(data, textStatus, xhr) { 
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     }}); 
  }   
 }); 
  
 $('#classifyDocument').click(function(){ 
  var csvsentences = $('#csvSentences').val().split(','); 
   
  for(var count = 0; count < csvsentences.length; count++){ 
   $.ajax({  
    type: "GET", 
    url: "http://localhost:5000/finalclassification",    
    async: false, 
    cache: false,  
    processData: false, 
    success: function(data, textStatus, xhr) { 
       
     }}); 
  }   
 }); 
  
 $('#getNegatedWords').click(function(){ 
  var parsed = JSON.parse($('#posTaggedArr').val()); 
   
  var counter = 0; 
  var negatedWordArr = []; 
  var negatedWord = ""; 
  var negText = $('#negatedArr').val().split(','); 
   
  for(var count=0; count < parsed.length; count++){ 
   var mapped = Map(parsed[count][1]); 
   parsed[count][1] = mapped;      
  
    
   if((parsed[count][0].indexOf("'") > 0 || 
parsed[count][0].indexOf("'") < 0)){ 
     
    if (parsed[count][1] != undefined && negText[counter] != 
undefined){           
     if (negText[counter].indexOf("_NEG") >=0) 
     { 
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 negatedWordArr.push(negText[counter].substr(0, 
negText[counter].indexOf("_NEG"))); 
     } 
     else  
     { 
      negatedWordArr.push(""); 
     }      
    } 
    counter++;        
  
   } 
  } 
  $('#negatedWordArr').val(""); 
  $('#negatedWordArr').val(negatedWordArr);   
 }); 
}); 
function Map(param) 
{ 
 switch(param) 
 { 
  case 'NOUN': 
   return 'n'; 
  case 'ADJ': 
   return 'a'; 
  case 'VERB': 
   return 'v'; 
  case 'ADV': 
   return 'r'; 
 } 
  

} 

 

</script> 

</body> 

</html> 

 


