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INTRODUCTION

The human brain is a highly complex and dense network camgist approximately
100 billion (10*!) interconnected elementary processing units called msurbhese
neurons can communicate with each other through the exehainghort electrical
pulses, which are also referred to as spikes. Motivated &ylésire to better under-
stand the truly remarkable information processing cafiggdslof the brain, numerous
biologically plausible mathematical models have been ldpesl in recent decades.
Traditional artificial neural networks (ANN) assume that tleural code used for an
information exchange between neurons is based on theiageeate of spike emis-
sion. This is modelled as a propagation of continuous veesatbom one processing
unit to the next. Increasing evidence from recent neurdéebioal experiments sug-
gests that the exact timing of spikes plays a key role in thealenformation pro-
cessinggf. e.g.the early seminal work by Wiersma (1951) and by Segundo, Bloor
Stensaas, and Bullock (1963), but also the more recent discuabout spike and
rate codes in Gerstner (1999).

Due to the decreasing costs of computational resources ownplex and bio-
logically plausible connectionist models have been deedonamely spiking neural
networks (SNN)cf. e.g.(Maass, 1999) for an introduction and (Gerstner & Kistler,
2002b) for a comprehensive standard text on the subjecselim@dels use trains of
spikes as internal information representation rather tdosntinuous variables. Maass
argues that SNNs have at least similar computational pooviret traditional ANN,
such as the multi-layer perceptron (MLP) derivatives dewetl by Rumelhart, Hin-
ton, and Williams (1986). Nowadays many studies attemptsi spiking neural
networks for practical applications, some of them demattisiy very promising re-
sults in solving complex real world problems. Substantialgoess has been made
in areas such as speech recognition (Verstraeten, Schma@stroobandt, 2005),
learning rules (Bohte, Kok, & Pour 2002), associative memory (Knoblauch, 2005),
and function approximation (lannella & Kindermann, 20@6)name just a few.
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An evolvingspiking neural network (eSNN) architecture was propos€diysoski,
Benuskova, & Kasabov, 2006a). The eSNN belongs to the farhigvolving Con-
nectionist Systems (ECoS), which was first introduced in &bas, 1998a) and
(Kasabov, 1998b). ECoS based methods represent a classstfumine ANN algo-
rithms that modify both the structure and connection weigiithe network as part of
the training process. Due to the evolving nature of the ndtaod the employed fast
one-pass learning algorithm, the method is able to accumuiformation as it be-
comes available, without the requirement of retrainingrtevork with previously
presented training data. ECoS methods have a long historypameérous variants
and applications were developed, including fuzzy neuroeks (Kasabov, 1998c¢),
self-organising maps (Deng & Kasabov, 2000) and dynanyieadblving fuzzy sys-
tems (Kasabov & Song, 2002). Additional information aboQoiS can be found in
the comprehensive text book by Kasabov (2007). The reviesgnted in (Watts,
2009) summarises the latest developments in the ECoS reksdedrch areas.

The eSNN proposed in (Wysoski et al., 2006a) was initiallgigieed as a vi-
sual pattern recognition system. The classification meihodilt upon a simplified
integrate-and-fire neural model first proposed in (Thor@97), which was devel-
oped to mimic the information processing of the human eyelidd to a face recog-
nition task, eSNN was reported to have a competitive perdmicae when compared to
a number of common pattern recognition methods in the fielgs@&ki, Benuskova,
& Kasabov, 2006b).

Numerous other studies have investigated the eSNN clasesitently and the
method is well established in the scientific community. Tleaegic nature of the
eSNN allows its application to a variety of classificatiomigems. In (Wysoski,
Benuskova, & Kasabov, 2007), eSNN was applied to a text-iexeépnt speaker au-
thentication problem and tested on the speech part of th&IMd™ audio-visual
database obtained from (Sanderson & Paliwal, 2003). Thealisart of the same
database was later used to study the characteristics dienettension of eSNN.
In (Wysoski, Benuskova, & Kasabov, 2008b) a fast and adaptiki-view pattern
recognition system was proposed, where training sampéegrasented in an on-line
fashion to an eSNN, which in turn is trained to learn différ@ews of the presented
object. Using a voting mechanism, the system accumulatesmnation over several
views of the test object for the recognition of the test sa®splThe classification
result corresponds to the class label that has receiveddsevotes.

Recently an audio-visual pattern recognition system wapgsed in (Wysoski,
Benuskova, & Kasabov, 2008a), in which the auditory and Visystem developed
in (Wysoski et al., 2007) and (Wysoski et al., 2008b) redpelst were combined
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into an integrated architecture that provides a reliablegreauthentication based on
a short video clip. Other applications were presented itti(S®Vysoski, & Kasabov,
2008) where eSNN was used to classify data consisting ofrvaaig wine samples
collected and presented in (de Sousa & Riul Jr., 2002) and &rall, 2004). A com-
prehensive discussion of most results on previous eSNkeckelgork can be found in
the two PhD dissertations of (Wysoski, 2008) and (Solti@®0respectively. These
studies also pointed to the need of optimisation algoritfonghe identification of
adequate feature subsets and eSNN related parameters.

1.1 AIM OF THE STUDY

In order to further improve upon the classification accur@aySNN, this thesis pro-
poses a novel framework that allows the application of eShifeature selection
problems. The extension follows the well known wrapper apph first introduced
in (Kohavi & Sommerfield, 1995) and comprehensively disedsa (Kohavi & John,
1997). The wrapper approach combines a classification rdetlith a generic op-
timisation algorithm, for which Evolutionary Algorithm&A) are commonly used.
The optimisation task for the EA consists in the identificatof an optimal feature
subset, which maximises the classification accuracy datedby the classifier.

In all of the previous studies on eSNN the neural and learpargmeters of the
method were manually fine-tuned in order to achieve satigfglassification results.
The method involves numerous parameters and finding an pigi® configuration
can quickly become a challenging task. Hencejraegratedwrapper approach is
proposed here, in which an appropriate feature subset Isesl/oluring an evolu-
tionary process, whilsimultaneouslyhe neural and learning-related parameters of
eSNN are optimised.

We note that the connection weights of the neural networknateubject to the
evolutionary optimisation. Instead, the weights are alagdithrough the use of an
efficient one-pass learning algorithm that was developguhasof the eSNN archi-
tecture.

Self-adapting parameters promote the straight forwardicgimn of eSNN to
other problem domains, since only limited expert knowledgeequired to config-
ure the method for a specific task. Furthermore, an improneofehe classification
performance is expected, since the method can rely on amigptil set of parame-
ters. More specifically, the framework is able to effectyvaloid poor classification
results that are often the consequence of the choice of ioppate parameter con-
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Figure 1.1: Schematic illustration of the historical evolution of the evolving sgikiaural
network (eSNN) architecture. Based on eSNN a number of applicatiorss we
developed, especially in the context of visual, auditory and taste recagnitio
problems. This thesis proposes an integrated feature and parameter dftimisa
method following the wrapper approach with eSNN in its core.

figurations by the experimenter. This characteristic bezoparticularly handy;, if the
method is used for the purpose of data mining &ndwledge discovery an area
that is not related to SNN. In the context of an increasingamhof interdisciplinary
research, self-adaptation is a highly desired propertypfmaethod.

The integration of the proposed extension of eSNN in theesdrdf current re-
search in this area, along with the historical evolution 8N& based systems, is
outlined in Figure 1.1. As described above, the developrme@BENN was motivated
and influenced by a number of previous studies in the areaikihgmeural models,
neural encoding and evolving connectionist systems.

For the proposed extension of eSNN the need for state-edtheptimisation
methods arises. The simultaneous exploration of two @ffesearch spaces is re-
quired: While the feature search space is represented bing sfrconcatenated bits,
where each bit encodes the presence/absence of the comaspdeature, the pa-
rameter space of eSNN is a continuous one. The situatioligsrated in Figure 1.2.
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cialised evolutionary algorithm evolves a combined solution consisting of a bi-

nary and a real-valued sub-component, which represent a featosetqlSS)
for a data sample and a parameter configuration for an eSNN classifiecres

tively. The quality of this combined solution is evaluated by determining the

classification accuracy of eSNN on a set of test samples. The studipps\ae
heterogeneous evolutionary optimisation methddtbe dashed rectangle in the
figure).

Given a specific data set, samples are selected and for edbbrofa feature sub-
set is extracted using a bit mask in which each bit represestagle feature. The
quality of this feature subset is then evaluated by the eSldBkification method,
which is configured using a specific parameter set,a vector of real values. The
quality measure for both the bit mask and the parameter agmatign is used as the
fitness criterion for an evolutionary algorithm, which inriiproposes a new candi-
date solution. This solution consists of a binary and a oowtius sub-component,
that represent a bit mask and a parameter set respectivedyprbcess iterates until
a termination criterion is met.

Thus, the aim of this study is to develop an extension of eSd{NHe domain of
feature selection by means of a heterogeneous optimisagtimod. The optimisation
algorithm has to be developed and studied with the specifigS@n a state-of-the-
art performancen terms of convergence speed and solution quality, a cdtiveet
robustnessn noisy search spaces, andraall set of parameteiia order to promote
its straight forward application to a given problem. Furthere, the proposed al-
gorithm should not rely on any eSNN specific characteridtied may prevent its
application to more general optimisation problems. Thapprty allows an efficient
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mechanism for replacing the classification method with nmamheanced techniques
that may be developed in future.

An additional goal of the thesis is thetegration of the developed method into
the context of current research on evolutionary computaéind a comprehensive
experimental elaboration on its similarities and differeawhen compared to similar
algorithms in the field.

Finally, the thesis aims tcomparethe extended eSNN based feature selection
method to some already established algorithms in this relsesrea. In order to
emphasise on thienowledge discovergspect of the method, a real-world case study
on an ecological modelling problem is undertaken. Dr. Suenéfofrom the Centre
for Bioprotection at Lincoln University, Christchurch, Neve&and, was invited as
an advisor and scientific expert in this research area.

1.2 RESEARCH OBJECTIVES

Considering the fact that an original agénericoptimisation method is required
for the proposed feature selection framework, the tasklisigfo the separate de-
velopment of a novebinary and a novekcontinuous optimisation algorithmBoth
methods may be applied independently to either combiratori numerical opti-
misation problems. The appropriate combination of the twtnaisers results in a
hybrid algorithm, which is finally employed in the desiredension of eSNN to the
feature selection domain.

Based on the above considerations, the following list ofaegeobjectives is de-
rived.

1. Development of a binary and a continuous optimisationhogtthat can be
hybridised to form a heterogeneous optimisation algoritfitms would allow
the extension of an eSNN classifier towards an integratédrieand parameter
optimisation framework following the wrapper approach.

2. Comprehensive experimental analysis of the optimisatiethods in terms of
their suitability for real-world applications with explidocus on robustness,
performance and scalability.

3. Integration of the proposed methods into the correspgndisearch commu-
nity through experimental comparison to related algorghmthe field.

4. Comparison of the developed eSNN based feature selecdimeork to other
feature selection methods.
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5. Demonstration of the applicability of the developed feavork for real-world
problems through a case study from ecological modelling.

1.3 THESIS STRUCTURE

The structure of the thesis follows the research objectivesented in the previous
section and is outlined below.

CHAPTER 2  This chapter reviews current developments in the areaikingp
neural networks by providing background information onldigcal neurons and
their mathematical models, along with neural encodingtesgias, learning algo-
rithms and applications. A specific emphasis is put on thetfaning of the eSNN
classification method and the principles of various eSNNe@agpplications. Fur-
thermore, the chapter addresses open problems of eSNN avidgs an overview
of previously proposed heterogeneous optimisation glyos.

CHAPTER 3 In line with the presented research objectives, a novedghilis-
tic binary optimisation method is developed. It improvesm@n earlier proposed
quantum-inspired evolutionary algorithm (QEA) introddda (Han & Kim, 2002).
Due to its significantly different behaviour the method isaduced as the Versatile
QEA (VQEA). The method is compared to the original QEA andaditional genetic
algorithm on a variety of benchmark problems.

CHAPTER 4  This chapter integrates VQEA proposed in chapter 3 intor¢he
search field of evolutionary computation by systematicadiiablishing vVQEA as an
original algorithm belonging to the family of Estimation Dfstribution Algorithms
(EDA). The characteristics and specifics of VQEA are hidtikgl and the method
is compared to a number of similar EDA using several benckmesblems. This
chapter also addresses the questitiy VQEA performs well.

CHAPTER 5  The capability of an optimisation method to handle noisynac-
curate information obtained from the fitness criterion iseyally regarded as a very
important pre-condition for a successful application @f thethod to real world stud-
ies. Thus, the robustness of VQEA to noise in comparisonverakdifferent EDAs
is extensively investigated in this chapter.

v
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CHAPTER 6 A continuous version of VQEA is proposed and investigated o
state-of-the-art benchmark suite and compared to five ogoaeary, highly compet-
itive numerical optimisers. Specific characteristics drarbbustness of the method
are studied. Furthermore, guidelines for the configuratigparameters are derived.

CHAPTER 7 A hybrid version of the two previous algorithms is presdntéhe
suitability of this heterogeneous optimiser is demonsttain a benchmark problem
and compared to a variety of related evolutionary algorgh@uidelines for the con-
figuration of parameters are derived. Similarities andegdhces to co-evolutionary
methods are discussed.

CHAPTER 8 Using the novel heterogeneous optimiser, the eSNN aothreis
extended towards the domain of feature selection and paesamgimisation follow-
ing the wrapper approach. An experimental comparison kextviee proposed and
traditional methods is undertaken. Key principles of thelE®ased feature selection
are discussed.

CHAPTER 9 Asademonstration of the inherent suitability of the eghe SNN

architecture, the method is applied on a ecological mauglbiroblem. The experi-
mental results are validated by Dr. Sue Worner, who is arogocal expert from the
Centre for Bioprotection at Lincoln University, Christchuy®ew Zealand.

CHAPTER 10 Conclusions are drawn and future directions for reseaectieen.
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e M. Defoin Platel, S. Schliebs, N. Kasabov, Quantum-InspiEsolutionary
Algorithm: A Multi-model EDA, IEEE Transactions on Evolaiary Compu-
tation, vol 13, issue 6, pp.1218 - 1232, 2009
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SPIKING NEURAL NETWORKS - A REVIEW

The next few sections review recent developments in the afrespiking neurons
and summarise the main contributions to the research fietdt $6me background
information about the functioning of biological neurongyigen. Then the most im-
portant mathematical neural models are discussed, alahgwural encoding tech-
nigues, learning algorithms and applications of spikingroas. The functioning of
the eSNN classification method is presented in detail angriheiples of numerous
eSNN based applications are highlighted and discussedhdfarore, the chapter
addresses a number of open problems of the eSNN methodlyFarabverview of
previously proposed heterogeneous optimisation algostts provided.

2.1 BIOLOGICAL NEURONS, ELEMENTARY NOTIONS AND CONCEPTS

The brain is arguably the most complex organ of the human.dodgntains approx-
imately 10'* neurons, which are the elementary processing units of thie.bfhese
neurons are interconnected and form a complex and very aensal network. On
average one cfof brain matter contains0* cell bodies and several kilometres of
“wire”, i.e. connections between neurons in the form of branching cédinskons.

Like most cells in the human body, neurons maintain a certairconcentration
across their cell membrane. Therefore the membrane cantampumps which ac-
tively transport sodium ions from the intra-cellular to #hdra-cellular liquid. Potas-
sium ions are pumped in the opposite direction from the dat& the inside of the
cell. Additional to the ion pumps, a number of specialiseotgins, so called ion
channels, are embedded in the membrane. They allow a sloardnflow of sodium
ions into the cell, while potassium ions leak outwards i@ ¢xtra-cellular liquid.
Thus, the ion streams at the channels have opposite dinedbahe ion pumps. Fur-
thermore, since both ion streams differ in their strengihslectrical potential exists

11
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Figure 2.1: Schematic illustration of a typical neuron in the human brain. The paain
of the neuron is the soma containing the genetic information, the dendrites and
the axon, which are responsible for the reception and emission of elésigea
nals. Signal transmission occurs at the synapse between two newengxs
for detailed explanations. The figure is in the public domain and available at
http://wikipedia.org.

across the cell membrane. The inside of the cell is neggtclerged in relation the
extra-cellular liquid. The membrane is polarised whicthisitesting condition of the
neuron.

A large variety of neural shapes and sizes exist in the braitypical neuron is
illustrated in Figure 2.1. The central part of the neuronalbec! the soma, in which
the nucleus is located. It contains the genetic informadibtine cell,i.e. the DNA,
from which genes are expressed and proteins constructedri@amportant for the
functioning of the cell. The cell body has a number of celllaanch-like extensions
known as dendrites. Dendrites are specialiseddoeivingelectrical signals from
other neurons that are connected to them. These signalb@tepsises of electrical
activity, also known as spikes or action potentials. If arnaus stimulated by the
spike activity of surrounding neurons and the excitatiostisng enough, the cell
triggers a spike. The spike is propagated via the axon, atlingvire-like extension
of the cell body, to the axonal terminals. These terminalgiin are connected to
the dendrites of surrounding neurons and allow the tramgferformation from one
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neuron to the other. Thus an axon is responsibles@rdinginformation to other
neurons connected to it. An axon may be covered by myelintsbehat allow a
faster propagation of electrical signals. These sheathasaimsulators and prevent
the dissipation of the depolarisation wave caused by arriglakcspike triggered in
the soma.

Information exchange between two neurons occurs at a sgnaph is a spe-
cialised structure that links two neurons together. A sgeais illustrated in the
upper middle part of Figure 2.1. The sending neuron is calledsynaptic neuron,
while the neuron receiving the signal is called post-syicapgbending information
involves the generation of an action potential in the sont@®@pre-synaptic cell. As
described above, this potential is propagated throughxba af the neuron to the
axonal terminals. These terminals contain the synapsesichweurotransmitter
chemicals are stored. Whenever a spike is propagated thtbegdxon, a portion
of these neurotransmitters is released into a small gapeeetthe two neurons also
known as the synaptic cleft. The neurotransmitter diffuststhe cleft and interacts
with specialised receptor proteins of the post-synapticore The activation of these
receptors causes the sodium ion channels to open, whichinrregults in the flow
of sodium ions from the extra-cellular liquid into the paestaptic cell. The ionic
concentration across the membrane equalises rapidly andeimbrane depolarises.
Immediately after the depolarisation the potassium chigropen. As a consequence
potassium ions stream outside the cell, which causes tphelagisation of the mem-
brane. The process of de- and re-polarisatian, the action potential, lasts only
around 2ms, which explains the name spike or pulse.

A synaptic transmission can be either excitatory or inbilyitdepending on the
type of the transmitting synapse. Different neurotrantarstand receptors are in-
volved in excitatory and inhibitory synaptic transmissaespectively. Excitatory
synapses release a transmitter called L-glutamate aneaserthe likelihood of the
post-synaptic neuron triggering an action potential fwitgy stimulation. On the
other hand, inhibitory synapses on the other hand, releasei@transmitter called
GABA and decrease the likelihood of a post-synaptic poaénti

The efficacy of a synapsee. the strength of the post-synaptic response due to the
neurotransmitter release in the synapse, is not fixed. Tdrease or decrease of the
efficacy of a synapse is callegnaptic plasticityand it enables the brain to learn and
to memorise. Several different possibilities exist to awpbsh synaptic plasticity.
One way is to change the time period of receptor activity engbst-synaptic neuron.
Longer periods of receptor activity cause the ion chanmelsrhain open for a longer
time, which in turn results in a larger amount of ions flowingpi the post-synaptic
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cell. Thus, the post-synaptic response increases. Shiodpgeof receptor activity
have the opposite effect.

Another way to change the synaptic efficacy is to increaseorese the number
of receptors, which would have a direct impact on the numbepened ion channels
and as a consequence on the post-synaptic potential. Tdetssibility is a change
of the amount of neurotransmitter chemicals released mosynaptic cleft. Here
larger/smaller amounts would increase/decrease the Symdifcacy.

Comprehensive information and details about the structuretions, chemistry
and physiology of neurons can be found in the standard tesk lom the matter
by Kandel (2000).

2.2 MODELS OF SPIKING NEURONS

The remarkable information processing capabilities ofliren have inspired nu-
merous mathematical abstractions of biological neuropskii® neurons represent
the third generation of neural models, incorporating thecepts of time, neural and
synaptic state explicitly into the model (Maass, 1997).liEaartificial neural net-
works were described in terms of mean firing rates and usetihcaus signals for
transmitting information between neurons. Real neuronsgehier, communicate by
short pulses of electrical activity. In order to simulatel @escribe biologically plau-
sible neurons in a mathematical and formal way, severadmifft models have been
proposed in the recent past. Figure 2.2 illustrates scheafigtthe mathematical
abstraction of a biological neuron.

Neural modelling can be described on several levels of attgbn. On the micro-
scopic level, the neuron model is described by the flow of thnsugh the channels
of the membrane. This flow may, among other things, depenti@presence or ab-
sence of various chemical messenger molecules. Modelssdetel of abstraction
include the Hodgkin-Huxley model (Hodgkin & Huxley, 1952)dathe compartment
models that describe separate segments of a neuron by aigetcodquations.

On the other hand, the macroscopic level treats a neuron ashageneous unit,
receiving and emitting spikes according to some definednatedynamics. The
underlying principles of how a spike is generated and cauteough the synapse,
dendrite and cell body is not relevant. These models arediipiknown under the
term integrate-and-fire models.

In the next sections the major neural models are discusskthair functions are
explained. Since the macroscopic neuronal models are rateeant for this thesis,
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Figure 2.2: A schematic illustration of a mathematical neuronal model. The madVes
electrical stimulation in form of spikes through a number of connected pre-
synaptic neurons. The efficacy of a synapse is modelled in the forrmapsg
weights. Most models focus on the dynamics of the post-synaptic poteniyal on
Output spikes are propagated via the axon to connected post-synaptinge

the focus of the survey is put on these models. The only ntogs model presented
here is the Hodgkin-Huxley model, due to its high signifieafar the research area
of neuroscience.

2.2.1 Hodgkin-Huxley Model

This model dates back to the work of Alan Lloyd Hodgkin and Aevd Huxley in
1952 where they performed experiments on the giant axon gl fHodgkin &
Huxley, 1952). Due to the significance of their contributionneuroscience, both
received the 1963 Nobel Price in Physiology and Medicinee odel is a detailed
description of the influences of the conductance of ion chon the spike activity
of the axon. The diameter of the squid’s giant axon is appnately 0.5mm and is
visible to the naked eye. Since electrodes had to be insgrtedhe axon, its large
size was a big advantage for biological analysis at that.time

Hodgkin and Huxley discovered three different ion curremis neuron: a sodium,
potassium and a leak current. \Voltage-dependent ion clecnatrol the flow of
ions through the cell membrane. Due to an active transpochareésm, the ion con-
centration within the cell differs from that in the extralfatar liquid, resulting in
an electrical potential across the cell membrane. In thdemaatical model such a
membrane is described as an electrical circuit consistimgoapacitor, resistors and
batteries that model the ion channalf, Figure 2.3. The current at a timet splits
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Figure 2.3: The schematic illustration of the Hodgkin-Huxley model in the fdremcelec-
trical circuit according to (Hodgkin & Huxley, 1952). The model représehe
biophysical properties of the cell membrane of a neuron. The semipelerczdb
membrane separates the interior of the cell from the extra-cellular liquid asd th
acts as a capacitor. lon movements through the cell membrane (in both disgction
are modelled in the form of (constant and variable) resistors. In theatatite
conductance of the resistafs, = 1/R, is shown. Three ionic currents exist: A
sodium current (Na ions), potassium current (K ions) and a small ¢eagarrent
(L) that is primarily carried by chloride ions.

into the current stored in the capacitor and the additionalents passing through
each of the ion channels:

I(t) = Leaplt) + ) Ii(t) (2.1)

where the sum runs over all ion channels.

Substitutinglcap(t) = Cdu/dt by applying the definition of the capacitanCe=
Q/u, where() is the charge and the voltage across the capacitor leads to

C% =— g Ii(t) + I(t) (2.2)

As mentioned earlier, in the Hodgkin-Huxley model threecbannels are modelled:
A sodium current, potassium current and a small leakageeuthat is primarily
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Va G,
* | (inmv) | (in mS/ent) ! % (u) Polu)
Na| 115 120 N | soticonT | 0.125exp(—g)
K | —12 36 M| eeonT | 4ep(—15)
L 10.6 0.3 h 0.07 eXp(_Qu_o) exp(3—%).1u)+1

Table 2.1: Parameters of the Hodgkin-Huxley model. The membrane capeacitafi =
uFlc?. The voltage scale is shifted in order to have a resting potential of zero.

carried by chloride ions. Hence the sum in Equation 2.2 ctagif three different
components that are formulated as

Z I(t) = Gnam®h(u — Viva) + Grn'(u = Vi) + Gr(u — V) (2.3)
P

whereVy,, Vi andV}, are constants called reverse potentials. Variablgs and

G i describe the maximum conductance of the sodium and potassiannel re-
spectively, while the leakage channel is voltage-indepahdith a conductance of

G . The variablesn, n andh are gating variables whose dynamics are described by
differential equations of the form

o= an(w)(l=m) = Bu(w)m (2.4)

i an(u)(1 —n) = Bu(u)n (2.5)

h

5 = an(@)(I—h) = Buu)h (2.6)
2.7)

wherem and h control the sodium channel and variableéhe potassium channel.
Functionsa, and 3., wherez € {m,n,h}, represent empirical functions of the
voltage across the capacitorthat need to be adjusted in order to simulate a specific
neuron. Using a well parametrised set of the above equatitodgkin and Huxley
were able to describe a significant amount of data collected éxperiments with the
giant axon of a squid. The discovered parameters of the namdeajiven in Table 2.1

The dynamics of the Hodgkin-Huxley model are presented guté 2.4. For the
simulation, the parameter values from Table 2.1 are udilidhe membrane is stim-
ulated by a constant input curreft = 7uA, switched on at timé = 10ms for a
duration of 70ms. The current is switched off at time= 80ms. Fort < 10ms,
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Figure 2.4: Evolution of the membrane potentiafor a content input currenfy using the
Hodgkin-Huxley model. The current is switched on at time= 10ms for a
duration of 70mscf. lower diagram. The stimulus is strong enough to generate
a spike train across the cell membrane (upper diagram). As soon as the inpu
current vanishes/(= 0), the electrical potential returns to its resting potential
(u = 0).

no input stimulus occurs and the potential across the mamlstays at the resting
potential. Forl0 < ¢ < 80 the current is strong enough to generate a sequence of
spikes across the cell membrane. At time- 80ms and input currenf = 0, the
electrical potential returns to its resting potential.

Additional reading on the Hodgkin-Huxley model can be foumdhe excellent
review of Nelson and Rinzel (1995), which also summarisedisi@rical develop-
ments of the model. A guideline for computer simulationshe tmodel using the
simulation platform GENESFScan be found in (Bower & Beeman, 1995).

2.2.2 Leaky Integrate-and-Fire Model (LIF)

The Hodgkin-Huxley model can reproduce electrophysi@algmeasurements very
accurately. Nevertheless, the model is computationalylgand simpler, more phe-
nomenological models are required for the simulation ajéametworks of spiking

neurons. The leaky integrate-and-fire neuron (LIF) may bé#st known model for

1 Acronym forGEneralNEural Sl mulationSystem
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Figure 2.5: The schematic illustration of the leaky integrate and fire model irothedf an
electrical circuit. The model consists of a capacitom parallel with a resistor
R, driven by a currenf = I(R) + Icap

simulating spiking networks efficiently. The model has agdmstory and was first
proposed by Louis Lapicque in 1907, long before the actualhaeisms of action
potential generation were known (Lapicque, 1907). Disoussof this work can be
found in (Abbott, 1999) and in (Brunel & Rossum, 2007). Howeviewas Bruce
Knight who introduced the term “Integrate-and-Fire” in (ght, 1972). He called
these models “forgetful”, but the term “leaky” quickly beca more popular.

Similar to the Hodgkin-Huxley model, the LIF model is basedtbe idea of an
electrical circuit,cf. Figure 2.5. The circuit contains a capacitor with capacedi
and a resistor with a resistanég where both”' and R are assumed to be constant.
The current/ (¢) splits into two currents:

I(t) = I + Ieap (2.8)

where I¢5, charges the capacitor angh passes through the resistor. Substituting
Icap = C du/dt using the definition for capacity, ang = «/R using Ohm'’s law,
whereu is the voltage across the resistor, one obtains:

—= +C— (2.9)

Replacingr,, = RC' yields the standard form of the model:

o = —u(t) + RI(1) (2.10)

The constant,, is called the membrane time constant of the neuron. Whenkeer t
membrane potential reaches a thresholt] the neuron fires a spike and its potential
IS reset to a resting potential.. It is noteworthy that the shape of the spike itself
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Figure 2.6: The figure shows the evolution of the potentifébr a constant input currert
using the leaky integrate-and-fire model. The membrane potentsagiven in
units of the threshold). The current is switched on at time= 10ms for a
duration of 70msgf. lower diagram. The stimulus is strong enough to generate
a sequence of spike traind, straight dark arrows. As soon as the input current
vanishes, the potential returns to its resting potential.

is not explicitly described in the traditional LIF model. ®rihe firing times are
considered to be relevant. Nevertheless, it is possibledode the shape of spikes
as well,cf. e.g. (Meffin, Burkitt, & Grayden, 2004).

A LIF neuron can be stimulated by either an external curfgnor by the synaptic
input current/,,,, from pre-synaptic neurons. The external curtgin} = I...(t) may
be constant or represented by a function of timEigure 2.6 presents the dynamics
of a LIF neuron stimulated by an input currdpt= 1.2. The current is strong enough
to increase the potentialuntil the threshold) is reached. As a consequence, a spike
is triggered and the potential resetafo= 0. After the reset, the integration process
starts again. At = 80ms, the current is switched off and the potential returnssto i
resting potential due to leakage.

If a LIF neuron is part of a network of neurons, it is usuallymstlated by the
activity of its pre-synaptic neurons. The resulting syrm@piput current of a neuron
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Figure 2.7: The dynamics of the leaky integrate-and-fire model. The pdtentiereases
due to the effect of pre-synaptic input spikes. If the membrane poterisdes a
thresholdy, a spike is triggeredsf. straight dark arrows. The shape of this action
potential is not explicitly described by the model, only the time of the event is of
relevance. The synapse may have either an inhibitory or an excitatest eff
the post-synaptic potential that is determined by the sign of the synaptic weights

i is the weighted sum over all spikes generated by pre-synaptironsg with firing
timestg.f ):

1(t) = Lyn,(8) = D wyy y_alt —t;7) (2.12)
J !

The weightsw;; reflect the efficacy of the synapse from neuydo neuroni. Nega-
tive weights correspond to inhibitory synapses, while pasiweights correspond to
excitatory synapses. The time course of the post-synaptieta(-) can be defined
in various ways. In the simplest form it is modelled by Diradsed(z), which has
a non-zero function value far = 0 and zero for all others. Thus the input current
caused by a pre-synaptic neuron decreases/increasestédmtigda, in a step-wise
manner. More realistic models often employ different fumts usually in the form
xexp (—z), which is typically referred to as amfunction.

In Figure 2.7, a LIF neuron is stimulated by a spike train fipsingle pre-synaptic
neuron. The post-synaptic current is modelled in the forma @firac pulse as de-
scribed above. This results in a step-wise increase of teegymaptic potential. If
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the potential reaches the threshdld spike is triggered and the potential resets. Due
to its simplicity, many LIF neurons can be connected to foangé networks, while
still allowing an efficient simulation.

Extensive additional information about the LIF model carficasd in the excellent
text book by Gerstner and Kistler (2002b) and in the two reoceviews by Anthony
N. Burkitt, (Burkitt, 2006a) and (Burkitt, 2006b).

2.2.3 lzhikevich Model

Another neural model was proposed by Izhikevich (2003).s Ibased on the the-
ory of dynamical systems. The model claims to be as bioldigipdausible as the
Hodgkin-Huxley model while offering the computational golexity of LIF models.
Depending on its parameter configuration, the model remresldifferent spiking and
bursting behaviours of cortical neurons. Its dynamics areged by two variables:

d
d—;’ = 0.040% + 50+ 140 —u + I (2.12)
d
d—? = a(bv —u) (2.13)

wherewv represents the membrane potential of the neuromaisda membrane re-
covery variable, which provides negative feedback:fotf the membrane potential
reaches a thresholtl= 30mV, a spike is triggered and a resettoindu occurs:

if v > 30mV, then{ vl (2.14)

u «— u-+d

Variablesa, b, ¢, d are parameters of the model. Depending on their settingga la
variety of neural characteristics can be modelled. Eachrpater has an associated
interpretation: Parameterrepresents the decay rate of the membrane potehisl,
the sensitivity of the membrane recovery, arehdd reset they andu respectively.

In Figure 2.8, the meaning of the parameters is graphicaibjatned along with
their effect on the dynamics of the model. For example, if wanimo produce a
regular spiking neuron, we would set= 0.02, b = 0.25, ¢ = —65 andd = 8. The
figure was generated by a freely available simulation toovisied by Eugene M.
Izhikevich on his websife

More information on this model can be found in the recentlpled textbook
on dynamical systems in neuroscience (Izhikevich, 2006erd@ are also a number

2 http://lwww.izhikevich.com
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Figure 2.8: The dynamics of the Izhikevich model. Depending on the settintige ga-
rametersa, b, ¢ and d, different neuron characteristics are modelled. The

electronic version of the figure and reproduction permissions are aeagdb
http://www.izhikevich.com.

of articles on the topig;f. e.g.the work on the suitability of mathematical models for
simulation of cortical neurons (Izhikevich, 2004), and thige-scale simulation of
a mammalian thalamocortical system (Izhikevich & Edeln#2008), which involves
one million neurons and almost half a billion synapses.
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2.2.4 Spike Response Model (SRM)

The Spike Response Model (SRM) is a generalisation of the LIBahand was
introduced by Gerstner and Kistler (2002b). In this mode#, $tate of a neuron is
characterised by a single variahle A number of different kernel functions describe
the impact of pre-synaptic spikes and external stimulation, but also the shape of
the actual spike and its after-potential. Whenever the statmches a threshold
from below,i.e. u(t) = ¥ anddu(t)/dt > 0, a spike is triggered. In contrast to the
LIF model, the threshold in SRM is not required to be fixed, but may depend on the
last firing timet; of neuroni. For example, the threshold might be increased after the
neuron has spiked (also known as the refractory period) aaéviggering another
spike during that time.

Letu;(t) be the state variable that describes neurattimet andi, is the last time
when the neuron emitted a spike, then the evolution; @) can be formulated as:

wit) = nt—i)+ > wy Y eyt — it — 1)
J

f
+/ Kk(t — i, 8) Loy (t — 5)ds (2.15)
0

wheret!”) are the firing times of pre-synaptic neurojswhile w;; represents the
synaptic efficacy between neurgm@ands.

Functionsn, € andx are response kernels. The first kernglis the reset kernel.
It describes the dynamics of an action potential and becaomeszero each time a
neuron fires. This kernel models the reset of the siaémd its after-potential. A
typical implementation is:

Tm

K, (exp <_t;m£i) —exp (-t ;t)» ot — 1)

wheren, = 9 equals the firing threshold of the neuron. The first term in&qu
tion 2.16 models the positive pulse with a decay rateand the second one is the
negative spike after-potential with a decay ratewhile K; and K, act as scaling
factors. Functior®(-) is a step function known as the Heaviside function:

0 if s<0
O(s) = 217
(5) {1 if s> 0 (2.17)

n(t—1t) = no (Klexp (—t_t") (2.16)
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Figure 2.9: Shape of the response kernglnde. In the left diagram, a spike is triggered
at timet = ¢(/) = 0, which results in the activation of thekernel. The shape
of the spike and its after potential are modelled by this kernel function. In the
right diagram, the neuron receives an input spike at time0 which results in
the activation of the kernel. If no further stimulus is received, the potential
returns to its resting potential.

which ensures that the effect of thekernel is zero if the neuron has not emitted a
spike,i.e.t < t. The shape of this kernel is presented in the left diagranigefre 2.9.
For the figure K, = 1, K5 = 5, 7, = 0.005 andr,,, = 0.01 were used.

The second kernel determines the time course of a post-8gmtential when-
ever the neuron receives an input spike. The kernel depentisedast firing time of
the neurort — ¢ and on the firing times — tg.f) of the pre-synaptic neurons Due to
the first dependence the post-synaptic neuron may resptiacedily to input spikes
received immediately after a post-synaptic spike. A typicglementation of this
kernel ise.qg.

A t—t) t—t{)
e(t—i,t—t)) = (exp (— J ) — exp (— J )) o(t—t7) (2.18)
Tm 7—5

where©(-) once more corresponds to the Heaviside function, the tworexptial
functions model a positive and a negative pulse with theesponding decay rates,
andt§f) is the spike time of a pre-synaptic neurpnin Equation 2.18, the first de-
pendency ot is neglected, which corresponds to a special case of thelpmadeely

the simplified SRM. This simplified version of SRM is discussethie next section.
The time course of thekernel of Equation 2.18 is presented in the right diagram of
Figure 2.9. For the figure, = 0.005 andr,,, = 0.01 were used. The implementations
for the response kernejsande are adopted from the study on spike timing dependent
plasticity in (Masquelier, Guyonneau, & Thorpe, 2008).
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The third kernel function: represents the linear response of the membrane to an
input currentl,,.. It depends on the last firing time of the neuron ¢ and the time
prior to ¢t. It is used to model the time course ofdue to external stimuli to the
neuron.

A comprehensive discussion of the spike response modeltsuderivates can be
found in the excellent textbook by Gerstner and Kistler @f)0and also in (Maass
& Bishop, 1999).

Simplified Model (SRM
In a simplified version of SRM, the kerneland«x are replaced:

60(8) = Gij(OO,S> (219)
Ko(s) = R;j(00,s) (2.20)

which makes the kernels independent of the indlekpre-synaptic neurons and also
of the last firing timef; of the post-synaptic neuron. Using simple implementations
of these kernel functions reduces the computational cgsifgiantly. Hence, this
model has been used to analyse the computational powerkiigmpieurons (Maass,
1994, 1999), of network synchronisation (Gerstner, Hemrmde@owan, 1996) and
collective phenomena of coupled networks (Kistler, S&tHemmen, 1998).

The dynamics of the SRMmodel are presented in Figure 2.10. For the diagram,
the e andn kernels are defined by Equation 2.18 and 2.16, respectividlg neu-
ron receives a pre-synaptic stimulus in the form of seveydes which impact the
potentialu according to the response kerrelDue to the pre-synaptic activity, an
action potential is triggered at timie= 77.9ms which results in the activation of the
n kernel and the modelling of the spike shape and the aftesrpial. The figure only
presents excitatory synaptic activity.

2.2.5 Thorpe Model

A simplified LIF model was formally proposed in (Thorpe & Geais, 1998). How-
ever, the general idea of the model can be traced back tocatiblns as early as
1990,cf. (Thorpe, 1990). This model lacks the post-synaptic patéldgakage. The
spike response of a neuron depends only on the arrival tinpeesgynaptic spikes.
The importance of early spikes is boosted and affects thegyosptic potential more
strongly than later spikes. This concept is very intergdtine to the fact that the brain
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Figure 2.10: The dynamics of the spike response model (SRM). In thespoaptic neuron,
spikes change the membrane potential described by the kernel fuactfahe
membrane potential crosses a threshigld spike is triggered. The shape of this
action potential is modelled by the functign

Is able to compute even complex tasks quickly and relialdy.example, the human
brain requires for the processing of visual data only appnately 150ms (Thorpe,
Fize, & Marlot, 1996), see also a similar study on rapid visadegorisation of natu-
ral and artificial objects (Van Rullen & Thorpe, 2001). Sinide known that this type
of computation is partly sequential and several parts obtiagn involving millions
of neurons participate in the computation, it has been arguéThorpe & Gautrais,
1996) and (Thorpe, 1997) that each neuron has time and etegyit only very
few spikes that can actually contribute to the processinth@efinput. As a conse-
guence, few spikes per neuron are biologically sufficierddlve a highly complex
recognition task in real time.

Similar to other models, the dynamics of the Thorpe modeldaseribed by the
evolution of the post-synaptic potential(t) of a neuron:

0 if fired
ui(t) = > wy m 0 else (2.21)

ilfrG)<t

27



28 SPIKING NEURAL NETWORKS — A REVIEW

Spikes

semus|| (11T | N T

timet

Figure 2.11: Evolution of the post-synaptic potential (PSP) of the Thagpeomal model for
a given input stimulus. If the potential reaches threshiyld spike is triggered
and the PSP is set to O for the rest of the simulation, even if the neuron is still
stimulated by incoming spike trains.

wherew,; is the weight of a pre-synaptic neurgnf () is the firing time ofj, and0 <
m; < 1is a parameter of the model, namely the modulation factarckonorder(j)
represents the rank of the spike emitted by neyrdfor example, a rankrder(j) =

0 would be assigned if neurghis the first among all pre-synaptic neurons: dfiat
emits a spike. In a similar fashion, the spikes of all preagtit neurons are ranked
and then used in the computationw@gf A neuron: fires a spike when its potential
reaches a certain threshald After emitting a spike, the potential resetsuto= 0.
Each neuron is allowed to emit only a single spike at most.threshold} = ¢ w4,

is set to a fractio) < ¢ < 1 of the maximum potential,,,.. reachable for a neuron.
Figure 2.11 presents the change of the post-synaptic mpaitémtthe Thorpe neural
model if a series of input spikes stimulates the neuron tjnalifferent synapses.

These simplifications allow a very fast real-time simulati large networks. Due
to its low computational costs this model was mainly usedstadying image and
speech recognition methods involving thousands of coedewturonsdf. e.g. (De-
lorme & Thorpe, 2003) and (Thorpe, Guyonneau, Guilbaudgxhud, & VanRullen,
2004)). Many studies have investigated the Thorpe maalgl, for face recogni-
tion (Van Rullen, Gautrais, Delorme, & Thorpe, 1998) and (ibele, Perrinet, &
Thorpe, 2001). Additional studies utilising this model aresented in section 2.6,
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where principles and applications of the evolving spikiegral network architecture
are discussed.

2.3 NEURAL ENCODING

This section addresses a fundamental question in neunascig/hat is the code used
by neurons to transmit information? Is it possible for areexal observer to read and
understand the message of neural activity? Traditiondlére are two main theories
about neural encoding — pulse codes and rate codes. Bothabeoe discussed
below.

2.3.1 Rate codes

The first theory assumes that the mean firing rate of a neuroie€the most, maybe
even all the information of a transmission. These codesedegred to as rate codes
and have inspired the classical perceptron approaches.mBa@ firing ratev is
usually understood as the ratio of the average number oéspik observed over a
specific time interval’, andT itself:

Ngp
= 2.22
v="2 (2.22)

This concept has been especially successful in the coriteghsory or motor neural
system,cf. e.g. the pioneering work by Adrian on the direct relationshipwesn
the firing rate of stretch receptor neurons and the appliexfim the muscles of frog
legs (Adrian, 1926). Nevertheless, the idea of a mean fiatg lhas been repeatedly
criticised,cf. e.g. (Rieke, Warland, Steveninck, & Bialek, 1999). The main argoime
is the comparably slow transmission of information from aearon to another, since
each neuron has to integrate the spike activity of pre-fymapurons at least over
a timeT. Especially, the extremely short response times of thendi@i certain
stimuli, can not be explained by the temporal averaging desp For example,
in (Thorpe et al., 1996) it was shown that the human brain eangnise a visual
stimulus in approximately 150ms. It is known that a moderaimber of neural
layers are involved in the processing of visual stimuli. V&g layer had to wait
a periodT to receive the information from the previous layer, the gggtion time
would be much longer.

29
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Figure 2.12: A neuron receives input spikes from a population ospraptic neurons pro-
ducing a certain activityd. The activity is defined as the fraction of neurons
being active within a short intervat, ¢ + At], divided by the population size
N and the time period\t¢. The figure was redrawn from a diagram presented
in (Gerstner & Kistler, 2002b).

However, there is also another interpretation for the cphokthe mean firing rate.
It is defined as the average spike activity over a populatforearons. The principle
of this interpretation is explained in Figure 2.12. A pogh&ptic neuron receives
stimulating inputs in the form of spikes emitted by a popolabf pre-synaptic neu-
rons. This population produces a certain spike activityvhich is defined as the
fraction of neurons being active within a short interjgat + At]:

1 nact(t, t+ At)

A:
At N

(2.23)

wheren,.(t,t + At) denotes the number of active neurons in intefval + At],

and N is the total number neuron in the population. The activityagiopulation
may vary rapidly and thus allow fast responses of the neumalsanging stimulicf.

(Gerstner, 2000) and (Brunel, Chance, Fourcaud, & Abbott1 200

2.3.2 Pulse codes

The second type of neural encoding is referred to as a spikellee code. These
codes assume the precise spike time as the carrier of inflemiaetween neurons.
Experimental evidence for temporal correlations betweggkes was given through
computer simulationgf. e.g.the work in (Lestienne, 1995) where integrate-and-fire
models are investigated, but also through biological erpants,cf. the electrophys-
iological recordings and staining procedures in (Nawrohr&pel, Aertsen, & Bouc-
sein, 2009). See also thevivo measurements described in (Villa, Tetko, Hyland, &



2.4 LEARNING IN SNN 31

Najem, 1999) in which spatio-temporal patterns of neuracélity are analysed in
order to predict the behaviour responses of rats.

A pulse code based on the timing of the first spike after a eefss signal, was
discussed in (Thorpe et al., 1996). This encoding is caited-to-first-spike and is
inspired by the visual processing of the human eye. It waseatghat each neuron
has time to emit only few spikes that can contribute to theal@rocessing of a
stimulus. Indeed, it was also shown in (Tovee, Rolls, TregeBellis, 1993) that
a new stimulus is processed in the first 20 to 50ms after iteton¥hus, earlier
spikes carry most information about the stimulus. A speci@aral model, namely
the Thorpe model that boosts the importance of early spikas,discussed already
in section 2.2.5.

Other pulse codes consider correlation and synchrony tonperiant. Neurons
that represent a similar concept, object or label are “Edidby firing synchronously
(Malsburg, 1981). More generally, any precise spatio-t@malppulse pattern could
be potentially meaningful and encode a particular inforomatNeurons that fire with
a certain relative time delay may signify a certain stimulus

As a practical example, the so-called rank order populaimoding is presented
in section 2.6.1. Additional information about neural etiog in general can be
found in the book by (Rieke et al., 1999).

2.4 LEARNING IN SNN

This section presents some typical learning methods in dinéegt of spiking neu-
rons. A variety of problems impair the development of leagnprocedures for SNN.
The explicit time dependence results in asynchronous nméition processing that
commonly requires complex software and/or hardware implgations to simulate
these neural networks. Additional difficulties are addedh&yfact that recurrent net-
work topologies are commonly used in SNN and thus the fortimdaof a straight-
forward learning method, such as back-propagation for NE_Rpt possible.

Similar to traditional neural networks, three differenarieing paradigms can be
distinguished in SNN, which are referred to as unsuperyisgdforcement and su-
pervised learning. Reinforcement learning in SNN is propdbé least common
among the three. Some algorithms have been successfuligdop robotic appli-
cations,cf. e.g. (Florian, 2005), but were also theoretically analysed ilori&n,
2007), (Seung, 2003) and (Xie & Seung, 2004). Unsupervisaching in the form
of Hebbian learning is the most biologically realistic le@g scenario. The so-called
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spike-timing dependent plastict$TDP) belongs to this category and is discussed in
the next section. Supervised techniques impose a certairt-output mapping on
the network which is essential for practical applicatioh$SBN. Two methods are
discussed in greater detail in the next sections. The legraligorithm employed in
the eSNN architecture is discussed separately in sectfoB. 2An excellent compar-
ison of supervised learning methods developed for SNN cdauel in (Kasinski &
Ponulak, 2006).

2.4.1 STDP - Spike-timing dependent plasticity

Spike-timing dependent plasticity is inspired by the ekpents of Donald O. Hebb
published in his famous book “The Organisation of Behavidttébb, 1949). His
essential postulate is often referred to as Hebb’s Law:

When an axon of cell A is near enough to excite cell B and repgate
or persistently takes part in firing it, some growth procesmetabolic
change takes place in one or both cells such that A's effigjescone of
the cells firing B, is increased.

First experimental evidence that supports Hebb’s pogtwas giver20 years later
in (Bliss & Lomo, 1973) and (Bliss & Gardner-Medwin, 1973). &ydit is known
that the change of synaptic efficacy in the brain is corrdltdehe timing of pre- and
post-synaptic activity of a neuron (Bell, Han, Sugawara, &i@y 1997; Markram,
Lubke, Frotscher, & Sakmann, 1997; Bi & Poo, 1998). Whenewerefficacy of a
synapse is strengthened or weakened, we speak of long-tentjation (LTP) or
long-term depression (LTD), respectively. STDP is destiby a functiorV' (¢,,.. —
tpost) that determines the fractional change of the synaptic wemtiependence of
the difference between the arrival timg. of a pre-synaptic spike and the timg,;
of an action potential emitted by the neuron. Funciibns also known as the STDP
window. Typical approximations df aree.g.:

tpre—tpos H
A+ exp(”T—f’f) if tpre < tpost

2.24
A_ eXp(—%%:”m) if thre > tpost ( )

W(tpre - tpost) - {
where parameters, and r_ determine the temporal range of the pre- and post-
synaptic time interval, whilel, and A_ denote the maximum fractions of synaptic
modification, ift,,. — t,.s: IS close to zero. Figure 2.13 presents the STDP window
W according to Equation 2.24.
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Figure 2.13: STDP learning windoW as function of the time differendg,.. — ¢,,.: of pre-
and post-synaptic spike times. The presented function is based on Ecuadon
using the following parameter settingt, = 0.9, A_ = —0.75, 7. = 20 and
T_ = 5.

The parametersfof,, A_, 7, and7_ are adjusted according to the particular neu-

ron to be modelled. The windoW is usually temporally asymmetrice. A, # A_
andr, # 7_. However, there are also some excepti@ng,synapses of layer spiny
stellate neurons in the rat barrel cortex appear to have axgynt window (Egger,
Feldmeyer, & Sakmann, 1999).

A study investigated the dynamics of synaptic pruning asrsequence of the
STDP learning rule (lglesias, Eriksson, Grize, TomaséinVilla, 2005). Synaptic
pruning is a general feature of mammalian brain maturatr@hrafines the embry-
onic nervous system by removing inappropriate synaptiaeotions between neu-
rons, while preserving appropriate ones. Later studiesnebed this work by includ-
ing apoptosis (genetically programmed cell death) intcaieysis (Iglesias & Villa,
2006), and the identification of spatio-temporal pattemthe pruned network indi-
cating the emergence of cell assemblies (Iglesias & Vil 7).

33
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More information on STDP can be found in the excellent revaawthe matter
by (Bi & Poo, 2001) and also (Kempter, Gerstner, & van Hemm#®&891 Gerstner &
Kistler, 2002a; Kistler, 2002).

2.4.2 Spike-Prop

Traditional neural networks, like the multi-layer peragpt, usually employ some
form of gradient based descente. error back-propagation, to modify synaptic
weights in order to impose a certain input-output mappinghemetwork. However,
the topological recurrence of SNN and their explicit tim@eledence do not allow a
straightforward evaluation of the gradient in the netwdkecial assumptions need
to be made to develop a version of back-propagation aptedior spiking neurons.

In (Bohte, Kok, & Poute, 2000) and (Bohte et al., 2002) a back-propagation algo-
rithm called Spike-Prop is proposed, which is suitable faining SNN. It is derived
from the spike-response model discussed in section 2.2d .aim of the method is
to learn a set of desired firing timé5sof all output neurong for a given input pattern
presented to the network. Spike-Prop minimises the drrdefined as the squared
difference between all network output timg%' and desired output timeﬁ:

1
B=23 (5 —t)) (2.25)
J

The error is minimised with respect to the weight$ of each synaptic input:

dE

k
dwy;

)

(2.26)

with n defining the learning rate of the update step.

A limitation of the algorithm is given by the requirement tlech neuron is al-
lowed to fire only once, which is similar to the limitationstbé Thorpe neural model
presented in section 2.2.5. This simplification allows th@refunction defined in
Equation 2.25 to depend entirely on the difference betwetarahand desired spike
time. Thus, only time-to-first-spike encoding is suitalsleeombination with Spike-
Prop.

The algorithm was modified in a number of studies. In (Xin & Eedhts, 2001)

a momentum term was included in the update of the weightdewBchrauwen &
van Campenhout, 2004) extended the method to learn additiengal parameters,
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into the output of the network. Figure redrawn from (Natséger, Maass, &
Markram, 2002).
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such as synaptic delays, time constants and neuron thdsskhat extension towards
recurrent network topologies was presented im@1& Mills, 2006).

2.4.3 Liquid State Machine

A very different approach to neural learning was proposet thie Liquid State Ma-
chine (LSM) introduced in (Maass, Natsager, & Markram, 2002). The method
is a specific form of reservoir computing (Verstraeten, Saolwen, D’Haene, &
Stroobandt, 2007), that constructs a recurrent networpi&frgy neurons, for which
all parameters of the networke. synaptic weights, connectivity, delays, neural pa-
rameters, are randomly chosen and fixed during simulatioich & network is also
referred to as #quid. If excited by an input stimulus, the liquid exhibits veryngo
plex non-linear dynamics that are expected to reflect theret information of the
presented stimulus. The response of the network can beiated by a learning
algorithm.

Figure 2.14 illustrates the principle of the LSM approachk.aXirst step in the gen-
eral implementation of the LSM a suitable liquid is chosehisTstep determines for
example, the employed neural model along with its paranoetefiguration, as well
as the connectivity strategy of the neurons, network sizeaher network-related
parameters. After creating the liquid, so-called liquigtssx(¢) can be recorded at
various time points in response to numerous differentr(ing) inputsu(t). Finally,

a supervised learning algorithm is applied to a set of tngir@xamples of the form
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Figure 2.15: Schematic illustration of the Remote Supervised Method (ReSuikkesynap-
tic change depends on the correlation of spike activities between inputingac
and learning neurons. Spikes emitted by neuron ingiti) followed by a
spike of the teacher neurotf (i) leads to an increase of synaptic weighy;.
The value ofwy,; is decreased, ifii"(i) spikes before the learning neurah
is activated. The amplitude of the synaptic change is determined by two func-
tionsW?(s?) andW!(s'), wheres? is the temporal difference between the spike
times of teacher neuron and input neuron, whiléescribes the difference be-
tween the spike times of learning neuron and input neuron. Figure radraw
from (Ponulak, 2005).

(x(t),v(t)) to train a readout functiofi, such that the actual outpufz(¢)) are close
to v(t).

It was argued in (Natschger et al., 2002) that the LSM has universal computa-
tional power. A very appealing feature of the applied tragninethodi.e. the readout
function, is its simplicity, since only a single layer of wéis is actually modified,
for which a linear training method is sufficient.

A specific implementation of the readout, the so-called RerBoipervised Method
(ReSuMe) introduced in (Ponulak, 2005), is presented hdre gbal of ReSuMe is to
impose a desired input-output spike pattern on a SNproduce target spike trains
in response to a certain input stimulus. The method is bas¢leoalready presented
STDP learning windowgf. section 2.4.1 for details, in which two opposite update
rules for the synaptic weights are balanced. Additionattieaneurons are defined
for each synapse which remotely supervise the evolutiots@yinaptic weight. The
teacher neuron is not explicitly connected to the netwoukt,generates a reference
spike signal which is used to update the connection weight 3T DP-like fashion.
The post-synaptic neuron, whose activity is influenced byahight update, is called
the learning neuron.
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Figure 2.15 illustrates the principle of ReSuMe. kétenote the learning neuron
which receives spike sequences from pre-synaptic newjftdn), the corresponding
synaptic weight being,; and neurom?(i) being the teacher for weighty;. If input
neuronni™ (i) emits a spike which is followed by a spike of the teacher neufd:),
the synaptic weightv;; is increased. On the other handpif: (i) spikes before the
learning neurom! is activated, the synaptic weight is decreased. The andglitf
the synaptic change is determined by two functiting s?) andW'(s'), wheres? is
the temporal difference between the spike times of teaot@rom and input neuron,
while s describes the difference between the spike times of legménron and input
neuron. Thus, the precise time difference of spiking astigefines the strength of
the synaptic change.

A few studies on LSM can be foundf. e.g.the overview paper in (Natsciger,
Markram, & Maass, 2003) and the specific case study for isdlaiord recognition
in (\Verstraeten et al., 2005). More information on ReSuMevalable in (Kasinski
& Ponulak, 2005; Ponulak & Kasinski, 2006; Ponulak, 2008).

2.5 APPLICATIONS OF SNN

Traditionally, SNN have been applied in the area of neusrsm® to better understand
brain functions and principles, the work by Hodgkin and HyxHodgkin & Huxley,
1952) being among the pioneering studies in the field. A nurabenain directions
for understanding the functioning of the nervous systemgaren in (Carnevale &
Hines, 2006). Here itis argued that a comprehensive kn@glatiout the anatomy of
individual neurons and classes of cells, pathways, nuakiregher levels of organ-
isation is very important, along with detailed informatiabhout the pharmacology
of ion channels, transmitters, modulators and receptotsth&more, it is crucial
to understand the biochemistry and molecular biology ofyeres, growth factors,
and genes that participate in brain development and mainten perception and
behaviour, learning and diseases. A range of software regsfer analysing bio-
logically plausible neural models exist, NEUR®BNd GENESI$ being the most
prominent ones. Modelling and simulation are fundamermtattfe understanding of
neural processes.

A number of large-scale studies have been recently undertekunderstand the
complex behaviour of ensembles of spiking neurafsge.g. (Glackin, McGinnity,

3 Available at http://www.neuron.yale.edu/neuron
4 Available at http://genesis-sim.org
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Maguire, Wu, & Belatreche, 2005; Izhikevich & Edelman, 2Q08jhe review pre-
sented in (Maguire et al., 2007) discusses challenges folemmentations of spiking
neural networks on FPGAs in the context of large-scale exaats.

SNN are also applied in many real-world applications. Ni&abogress has been
made in areas like speech recognition (Verstraeten et@5)2 learning rules (Bo-
hte et al., 2002), associative memory (Knoblauch, 2005}, fanction approxima-
tion (lannella & Kindermann, 2005). Other applicationslimte biologically more
realistic controllers for autonomous robot$, (Floreano & Mattiussi, 2001; Flore-
ano, Epars, Zufferey, & Mattiussi, 2006) and also (Wang, Hfau, Tan, & Cheng,
2008) for some interesting examples in this research area.

In the next section we focus on a few applications of the euglgpiking neural
network architecture, which is the main focus of this thesis

2.6 EVOLVING SPIKING NEURAL NETWORK ARCHITECTURE

Based on Kasabov (2006), an evolving spiking neural netwoskitecture (eSNN)
was proposed in (Wysoski et al., 2006a) which was initialjsigned as a visual
pattern recognition system. Other studies have utilisé&iNe&s a general classifica-
tion method.e.g. in the context of classifying water and wine samples (Seitial.,
2008). The method is based on the already discussed Thoupa nsodel, in which
the importance of early spikes (after the onset of a certimutus) is boostedgf.
section 2.2.5. Synaptic plasticity is employed by a fasesuged one-pass learning
algorithm that is explained as part of this section.

In order to classify real-valued data sets, each data samgplea vector of real-
valued elements, is mapped into a sequence of spikes usergganmeural encoding
technique. In the context of eSNN, the so-called rank oragufation encoding
is employed, but other encoding may be suitable as well. ®peldogy of eSNN
is strictly feed-forward and organised in several layerseight modification only
occurs on the connections between the neurons of the oatyertdnd the neurons of
either hidden layer or the input layer.

In the next section, the encoding principle used in eSNN és@nted, followed
by the description of the one-pass learning method and thathvunctioning of the
eSNN method. Finally, a variety of applications based onetBBIN architecture is
reviewed and summarised. A number of open problems thatinatveeen solved in
the existing literature, have motivated this PhD study amdoaitlined at the end of
this review.
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2.6.1 Rank order population encoding

Rank order population encoding is an extension of the rankroedcoding intro-
duced in (Thorpe & Gautrais, 1998). It allows the mappingexdters of real-valued
elements into a sequence of spikes. An implementation baisexdrays of recep-
tive fields is firstly described in (Bohte et al., 2002). Reocapfields allow the
encoding of continuous values by using a collection of nesir@ith overlapping
sensitivity profiles. Each input variable is encoded indejemtly by a group of\/

one-dimensional receptive fields. For a variablen interval[7”. 1" |is defined.

min’ T max

The Gaussian receptive field of neurois given by its centre;

2-3 1. — 1"

i = Dy + = - A (2.27)
and widtho:
A
o= 5 . —mﬂ — 2’””‘ (2.28)

with 1 < § < 2. Parametep directly controls the width of each Gaussian receptive
field. Figure 2.16 depicts an example encoding of a singlabke. For the diagram,

f = 2 was used, the input interval”. . I 1 was set td—1.5,1.5], andM = 5
receptive fields were used.

ax]

More information on rank order coding strategies can be daan(Perrinet, De-
lorme, Samuelides, & Thorpe, 2001) and the accompanyingjeafDelorme et al.,
2001). Very interesting is also the review on rapid spikedubprocessing strategies
in the context of image recognition presented in (ThorpdoiDee, & Rullen, 2001),
where most work on the Thorpe neural model and rank ordengddisummarised.
Rank order coding was also explored for speech recognitiobl@ms (Loiselle,
Rouat, Pressnitzer, & Thorpe, 2005) and is a core part of thiNeSchitecture.

2.6.2 One-pass learning

The aim of the learning method is to create output neuronsh) edthem labeled
with a certain class labél€ L. The number and value of class labels depends on
the classification problem to solvee. L corresponds to the set of class labels of
the given data set. After presenting a certain input sanapllee network, the corre-
sponding spike train is propagated through the SNN which resylt in the firing of
certain output neurons. It is also possible that no outputoreis activated and the



40

SPIKING NEURAL NETWORKS — A REVIEW

Input Interval
-2 -1 0 1

1.0r
c 0.8} - \ , \ ’ \\ 7 N Vi
Qo
pr]
s 0.6F > /N Vas /\/

x 0.4 4 \ / \ ’ N / N
w

T
Py 1N _ A~

0.2 s Ndo N2 N
~IN

0.0=—= = = E— =

1.0 - -_—
0.8f
0.6f
0.4 - -

Firing Time

0.2
0.0

Receptive Fields
Input Value

0

2

Neuron ID

Figure 2.16: Population encoding based on Gaussian receptive fietdsanFHnput value
v = 0.75 (thick straight line in top figure) the intersection points with each
Gaussian is computed (triangles), which are in turn translated into spike time
delays (lower left figure).

Algorithm 1 Training an evolving spiking neural network (eSNN)
Require: my, s;, ¢; for a class label € L

1: initialise neuron repository; = {}

2: for all samplesX® belonging to clasédo

3: w]@ — (my)erderd) -V 5 | j pre-synaptic neuron of

4: ugi)ax — Zj U)J(Z) (ml>orde7‘(j)

5. 90 — clu%)ax

6: if min(d(w®, w®)) < s, wh € R, then

7: w® — mergew®andw® according to Equation 2.32
8: 9 — mergey®andy®) according to Equation 2.33
9: €lse

10: R« R U {w®}

11: endif

12: end for

network remains silent. In this case, the classificationltés undetermined. If one

or more output neurons have emitted a spike, the neuron hatlshortest response
time among all activated output neurons is determined,the output neuron with

the earliest spike time. The label of this neuron repregéetslassification result for

the presented input sample.
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The learning algorithm successively creates a repositbinamed output neurons
during the presentation of training samples. For each tdsd/ € L an individual
repository is evolved. The procedure is described in detaMlgorithm 1. For each
training sample with class label € L a new output neuron is created and fully
connected to the previous layer of neurons resulting in bvadaed weight vector
w®, with wj(.i) € R denoting the connection between the pre-synaptic nejieord
the created neuron In the next step, the input spikes are propagated through th
network and the value of Weighdz](i) is computed according to therder of spike
transmission through a synapgef. line 3 in Algorithm 1:

w\’ = (my)r®r@ v j | j pre-synaptic neuron of (2.29)
Parametern, is the modulation factor of the Thorpe neural model. Diffehe la-
beled output neurons may have different modulation facgtgrsFunctionorder(y)
represents the rank of the spike emitted by neyrdfor example, a rankrder(j) =
0 would be assigned, if neurgpis the first among all pre-synaptic neurons ofat
emits a spike. In a similar fashion the spikes of all pre-gjicaneurons are ranked
and then used in the computation of the weights.

The firing threshold)® of the created neuroiis defined as the fraction € R,
0 < ¢ < 1, of the maximal possible potentiaﬁzm, cf. lines 4 and 5 in Algorithm 1:

9D = cul?) (2.30)

u(z) _ Z w](l) (ml)order(j) (231)
J

The fractionc; is a parameter of the model and for each class lakel a different
fraction can be specified.

The weight vector of the trained neuron is then compareddamties of neurons
that are already stored neurons in the repositciyline 6 in Algorithm 1. If the
minimal Euclidean distance between the weight vectors efrtauron; and an ex-
isting neuronk is smaller than a specified similarity threshaid the two neurons
are considered too “similar” and both the firing thresholdd ene weight vectors are
merged according to:

(4) (k)

(k) w;’ + Nw; . .
w; 1IN V7 | j pre-synaptic neuron of (2.32)
@) 4 N9k
9k v + N9 (2.33)

1+ N
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Figure 2.17: Schematic illustration of the evolving spiking neural networki@cture
(eSNN). Real-valued vector elements are mapped into the time domain using
rank order population encoding based on Gaussian receptive fiela. cAn-
sequence of this transformation input neurons emit spikes at pre-didifimg
times, invoking the one-pass learning algorithm of the eSNN. The learning it-
eratively creates repositories of output neurons, one repositorgafcn class.
Here a two-class problem is presented. Due to the evolving nature of the ne
work, it is possible to accumulate knowledge as it becomes available, without
the requirement of re-training with already learnt samples.

Integer NV denotes the number of samples previously used to updatemguiThe
merging is implemented as the (running) average of the adiumeweights, and the
(running) average of the two firing thresholds. After the gnag, the trained neuron

i is discarded and the next sample processed. If no other m@utbe repository is
similar to the trained neurai) the neuron is added to the repository as a new output
neuron.

Figure 2.17 depicts the eSNN architecture. Due to the inerd¢ah evolution of out-
put neurons, it is possible to accumulate knowledge as irbes available. Hence,
a trained network is able to learn new data without the need-tfaining on already
learnt samples. Real-world applications of the eSNN archite are discussed in the
next section.

2.6.3 Applications

The eSNN architecture is used in a variety of applicatiorsd #re described and
summarised here.
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Visual pattern recognition

Among the earliest application of the eSNN is the visualgrattecognition system
presented in (Wysoski et al., 2006a) which extends the wb(Relorme, Gautrais,
VanRullen, & Thorpe, 1999; Delorme & Thorpe, 2001) by inchglithe on-line
learning technique described above. In (Wysoski et al.6ap@nd (Wysoski et al.,
2006b) the method was studied on an image data set consi§t#@0 faces of 40
different persons. The task here was to predict the clagddall presented images
correctly. The system was trained on a subset of the datalemdtésted on the
remaining samples of the data. Classification results werg#ssito (Delorme et al.,
1999; Delorme & Thorpe, 2001) with the additional advansagethe novel on-line
learning method.

In a later study another processing layer was added to thersyghich allows ef-
ficient multi-view visual pattern recognition (Wysoski ét, 008b). The additional
layer accumulates information over several different we an image in order to
reach a final decision about the associated class label ffaimes. Thus, it is possi-
ble to perform an efficient on-line person authenticatioodigh the presentation of
a short video clip to the system, although the audio infoiromatvas ignored in this
study.

The main principle of this image recognition method is byieflitined here. The
neural network is composed of four layers of Thorpe neureash of them grouping
a set of neurons into several two-dimensional maps, sedaéural maps. Infor-
mation in this network is propagated in a feed-forward manine. no recurrent
connections exist. An input frame in form of a grey-scalegm# fed into the first
neural layer {.,), each pixel of the image corresponding to one neuron in @aheu
map of ;. Several neural maps may exist in this layer. The map cansfstOn”
and “Off” neurons that are responsible for the enhancem@hediigh contrast parts
of the image. Each map is configured differently and thus msisge to different
grey scales in the image. The output of this layer is tramséat into the spike do-
main using rank order encoding as described in (Thorpe & @&,t1998). As a
consequence of this encoding, pixels with higher contnaspeoritised in the neural
processing.

The second layer, denotéd, consists of orientation maps. Each map is selective
for different directionsge.g. 0°,45°,...,315°, and is implemented by appropriately
parametrised Gabor functions. It is noted that the first ay@ts are passive filters
that are not subject to any learning process. In the thirer|dy, the learning occurs
using the one-pass learning method described in sectio. 2Here neural maps
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are created and merged according to the rules of the leaatgogithm. Finally, the
fourth layer,L,, consists of a single neuron for each output class, whichraatates
opinions about the class label of a certain sequence of iinaotes. The weights
betweenl; and L, are fixed to a constant value, usuallyand are not subject to
learning. The firstL, neuron that is activated by the presented stimuli detersnine
the classification result for the input. After the activataf an L, neuron the system
stops.

Experimental evidence about the suitability of this pattexcognition system is
provided in (Wysoski et al., 2008b) along with a comparismother typical classifi-
cation methods.

Auditory pattern recognition

A similar network, but in an entirely different context, wiasestigated in (Wysoski
et al., 2007), where a text-independent speaker authénticgystem is presented.
The classification task in this work consisted of the coriaoelling of audio streams
presented to the system.

Speech signals are split into temporal frames, each congaa signal segment
over a short time period. The frames are first pre-processied the Mel Frequency
Cepstrum Coefficients (MFCC) (Rabiner & Juang, 1993) and then tssét/oke
the eSNN. The MFCC frame is transformed into the spike domsimgurank order
encoding (Thorpe & Gautrais, 1998) and the resulting stimig propagated to the
first layer of neurons. This layer, denotégl, contains two neural ensembles repre-
senting the speaker and the background model, respectivéije the former model
is trained on the voice of a certain speaker, the latter otrairsed on the background
noise of the audio stream. This system also collects opsrédnout the class label of
the presented sequence of input frames, which is implerdénteéhe second layer
of the network. Layell, consists of only two neurons, each of which accumulates
information about whether a given frame corresponds to &@icespeaker or to the
background noise. Whenever &pneuron is activated, the simulation of the network
stops and the classification output is presented.

Audio-visual pattern recognition

The two recognition systems presented above were suctigssimbined, forming
an audio-visual pattern recognition method. Both systeragrained individually,
but their output is propagated to an additional supra-mtagar. The supra-modal
layer integrates incoming sensory information from indiwal modalities and cross-
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modal connections enable the influence of one modality uperother. A detailed
discussion of this system along with experimental evideaggven in (Wysoski et
al., 2008a) and in the PhD dissertation of Simei Wysoski igggki, 2008).

Taste recognition

The last application of eSNN being discussed here invassgae use of a SNN for
taste recognition in a gustatory model. The classificaterfigpmance of eSNN was
experimentally explored based on water and wine samplésctedl from (de Sousa
& Riul Jr., 2002) and (Riul et al., 2004). The topology of the rabdonsists of two
layers. The first layer receives an input stimulus obtaimedhfthe mapping of a
real-valued data sample into spike trains using a rank grdpulation encoding:f.
section 2.6.1. The weights from the first neural layer ar¢esaitbo training according
to the already discussed one-pass learning method. Fittadyputput of the second
neural layer determines the class label of the presented stipnulus.

The method was investigated in a number of scenarios, whersize of the data
sets and the number of class labels was varied. General\ é§ported promising
results on both large and small data sets, which has maliate=PGA hardware
implementation of the system (Zuppicich & Soltic, 2009).

2.6.4 Open problems

The eSNN architecture requires the appropriate settingrafraber of neural and
learning parameters in order to achieve satisfying classifin results. Their config-
uration can quickly become a challenging task, since it lisuequires comprehen-
sive knowledge about the influence of each parameter. Sonaenpéers might be
linked to each other and should not be chosen independéttyexample, modify-

ing the modulation factor of the Thorpe neural model shoidd avolve the careful

choice of the firing threshold. A small modulation factorreases the sensitivity of
the neuron to the input significantly, thus the thresholdtbdme adapted accordingly
to prevent the neuron from becoming over-specialised fartam input. The situa-

tion becomes even more complicated in the context of margsdébels, since then
the number of parameters increases linearly with the numhbaasses.

All the above presented applications require a careful rmbtoming of the eSNN
parameters. The problem of this approach was explicitlpgased and mentioned
in a number of studiese.g. in (Wysoski et al., 2008a; Wysoski, 2008; Soltic et
al., 2008), suggesting an automatic optimisation of thelired parameters. Self-
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adapting parameters require less expert knowledge in ¢odeonfigure eSNN for
a specific task, which promotes its straightforward apgibeeto other problem do-
mains.

Another issue with the eSNN classification method is the td@n explicit feature
selection mechanism, although such an extension mightenotuxial for the appli-
cations presented above. For example, the taste recagsgstem involves only

a limited number of features,e. seven taste sensors, which are all assumed to be

relevant for the given classification task. For the visudtgva recognition systems
on the other hand, a certain feature selection was impledehtough the contrast
detection of the “on”/“off”-neurons and the orientation psan the first and second
neural layer of the network respectively. Although thispiple works well in the
context of a visual stimulus, it is not suitable for many etheblem domains. Thus,
a general feature selection component as part of the eSNihochatight be beneficial
when applying the method to many other problems.

2.7 SURVEYING HETEROGENEOUS OPTIMISATION METHODS

Both issues described above have motivated the work presentieis thesis, which
involves the development of an integrated feature and patemoptimisation com-
ponent for eSNN. As outlined in the introductory chapteghsan automatic optimi-
sation requires the application of a generic heterogeneptisiisation method. A
specialised EA evolves a combined solution consisting aharlg and a real-valued
sub-component, which represent a feature subset and an p8idheter configu-
ration respectively. In this section a survey of previoystgposed heterogeneous
algorithms is presented, with the aim to determine which £#&ost suitable for the
intended extension.

The concept of a simultaneous exploration of heterogensearch spaces is not
new. Numerous studies have discussed such schemes, #gpadiae context of
the simultaneous evolution of the weight matrix and topglofy neural networks.
Among the earliest contributions to this area is the workHin{z & Spofford, 1990).
A genetic algorithm is used that operates on a binary chromeswhich is seman-
tically structured in sub-components in order to allow theaging of connectivity
and connection weights in a single bit string. Promisingiitsshave been reported
on a9 x 9 bit character recognition problem. A similar approach wagstigated
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in (Maniezzo, 1994), where an algorithm called ANNA ELEONCH# presented.
Here the presence or absence of a connection between twonsasrencoded by a
connectivity bit, followed by a number of additional bitpresenting the correspond-
ing connection weight. Due to the binary representatiomefteights, a conversion
from bit strings into real values is required. The grantyaoif the weightsj.e. the
number of bits used for encoding a single weight, is adapsegaat of the evolu-
tionary process. Since the interpretation of the bits indim®mosome is not homo-
geneous, a set of complex crossover and mutation operatdefined. The method
was later further developed in (Leung, Lam, Ling, & Tam, 20@3which the binary
chromosome was replaced by a continuous one. Although #i@akie representa-
tion seems appropriate for the evolution of connection Wisigit is less suitable for
the representation of the connectivity bit. Similar gemapproaches were discussed
in (White & Ligomenides, 1993), (Alba, Montes, & Troya, 1998)d (Oliker, Furst,
& Maimon, 1993).

All of the above studies employ evolutionary algorithms kplere a heteroge-
neous search space using either a binary or a continuoussesgation of the chro-
mosome. As a consequence these methods are not optimaiieddar the explo-
ration of either the continuous or the binary sub-compowoéatcandidate solution.
In (Valko, Marques, & Castelani, 2005) this issue was exiyieiddressed by propos-
ing a method called FeaSANNT (Feature Selection and Adifisieural Network
Training). FeaSANNT is a genetic algorithm using a binanyresentation for the
evolution of appropriate feature subsets and a continuguresentation for the opti-
misation of the weight matrix of the neural net. The methodisgussed in greater
detail in (Castellani & Marques, 2008). For each represemtandividual genetic
operators are implemented. A standard two-point crossalesg with bit-flip mu-
tation is used for the binary landscape, while uniform randoutations and Lamar-
ckian learning using back-propagation are applied to tmebkes of the continuous
solution part. A practical application of FeaSANNT on a waetheer classification
problem can be found in (Castellani & Rowlands, 2009). Furdffarts have been
made to also evolve the network topologf, (Castellani, 2006), which required the
definition of additional operators, such as node deletiahiagsertion according to
some user-specified probability parameters.

Very recent studies follow similar trends. The chromosoméRivero, Dorado,
Ferrandez-Blanco, & Pazos, 2009) consists of the concatenafithree parts: A
connectivity bit encoding the presence or absence of a cbione a real-valued

Abbreviation forArtificial Neural Networks Adaptation: Evolutionary L earning of Neural Optimal
RunningAbilities
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weight, and another bit representing the presence or absdre particular hidden
neuron. A genetic algorithm is used but the actual geneteraiprs are unfortu-
nately not reported in the article. A modified version of atielr Swarm Optimiser
is proposed in (Garro, Sossa, & Vazquez, 2009) that alsovwesdhe neural transfer
function in addition to topology and connection weights.

The methods discussed above are all designed with the diedo apply them in
the context of topology and weight optimisation of neuraivgeks, which prevents
their straightforward application in a different conteXor example, most of them
employ network specific genetic operators like back-pragiag to drive the search,
which may not be available if the context of the problem clesng

Only very few general mixed-variable algorithms exist. dagly among the most
promising algorithms on heterogeneous optimisation ished Bayesian Optimi-
sation Algorithm (MBOA) introduced in (Ocenasek & Schwar@02). In MBOA,
a set of decision trees that are iteratively constructedaataghted during the evolu-
tionary process, explore the search space in a probabifesthion. New solution
candidates are sampled according to the current state tfetbe Although MBOA
was not extensively investigated on heterogeneous prahleramising results have
been obtained on binary benchmark problems. The continoptisiisation perfor-
mance of MBOA, on the other hand, is less competitive as exyggrially demon-
strated in (Kern et al., 2004). Furthermore, the methodlu@sa significant compu-
tational overhead, which has motivated a multi-threadgalementation on parallel
hardware (Ocenasek, 2002).

Other directions have suggested the use of different EAangsi A heterogeneous
version of an Ant Colony Optimisation (ACO) algorithm was poepd in (Socha,
2004). Due to the lack of comparison algorithms, the authare experimentally
investigated the performance of the method using a numbeomiinuous bench-
mark functions. Thus, the suitability of this ACO on mixediahle problems is less
clear. However, it is interesting to note that the principlea of ACO is also based
on a probabilistic exploration of the search space, as shoW@ordn, Ferrandez
de Viana, Herrera, & Moreno, 2000) and (MonmarctiRamat, Dromel, Slimane,
& Venturini, 1999). This is very similar to the above-mem@al MBOA, despite
the very different metaphor employed in ACO. While ACO assumesjulation
of “ants”, each of them iteratively constructing a solutiaccording to discrete or
continuous probability distributions, MBOA emphasises nreatirely mathematical
description of its working.

A so-called Bell-Curve Genetic Algorithm (BCGA) is discusse@dimcaid, Grif-
fith, Sykes, & Sobieszczanski-Sobieski, 2004), which is ptincisation heuristic
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similar to Evolutionary Strategies (ES) (Schwefel, 198dgre the term bell-curve
refers to the Gaussian probability density function, whecdmployed to sample new
solution candidates. The analysis of BCGA on a very speca@liseblem domain,
i.e. hub structures found in buildings, complicates a compar@fahis approach to
other methods and allows only speculations about its Siiijain different problem
scenarios.

2.7.1 What EA to choose?

When summarising the presented survey on mixed-variabiengaition methods,
several conclusions can be made. First of all, the exptoradif heterogeneous
search spaces is feasible and was implemented in numeuistiains. However,
few of them are suitable for an application to general hegeneous optimisation
problems. Either the representation of the search spaa®ptimal,i.e. binary-
only or continuous-only representations, or the optinmsedlgorithm is too problem
specific,e.qg. its application aims explicitly towards topology and weigiptimisa-
tion of neural networks. Furthermore, although some gépergose mixed-variable
optimisers have been developed recently, none of them wasedtthoroughly on
heterogeneous problems. Thus, it is argued in this thdsas,at novel generic op-
timisation technique is required, that is applicable toegah domain-independent
problems.

As mentioned earlier, the most promising mixed-variablgoathms employ a
probabilistic model to explore the search space, althoagh enethod was proposed
with an entirely different metaphor in mind. Taking this eb&tion into account,
a new optimisation method is proposed in the next chaptenghaso based on the
evolution of probabilistic models to identify promisingeas in the solution space of
a problem.






OPTIMISING BINARY SEARCH SPACES - A VERSATILE
QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM

Quantum-Inspired Evolutionary Algorithms (QEA) apply @aam Computing Prin-
ciples to enhance classical Evolutionary Algorithms (EW)the last ten years of
QEA research, investigators demonstrated promising derefinpared to classical
EA on solving complex benchmark problems in the fields of coatorial (Han &
Kim, 2002), numerical (Han & Kim, 2004, da Cruz, Vellasco, &HRaco, 2006) and
multi-objective optimisation (Talbi, Draa, & Batouche, )0Others addressed real
world problems including disk allocation (Kima, Hwang, Haim, & Park, 2003),
face detection (Jang, Han, & Kim, 2004), rigid image registmn (Draa, Batouche,
& Talbi, 2004a), training of multi-layer perceptrons (Vgagamoorthy & Singhal,
2005), signal processing (F. Liu, Li, Liang, & Hu, 2006) ardstering of gene ex-
pression data (W. Zhou, Zhou, Huang, & Wang, 2005). Howelespite this work,
ambiguity in the definition of QEA hampered its understagdand integration into
the theory of Evolutionary Computation.

Arguably, the most illustrative example of QEA is the algjom first proposed
by Han and Kim (2002), in which they used some major prinaipieQuantum Com-
puting such as the quantum and collapsed bit, the lineargagiion of states and
the quantum rotation gate. This algorithm has been invagtiboth experimentally
and theoretically in numerous studies. Classical optinaedienchmarks were con-
sidered by Han and Kim (2002), while Kima et al. (2003) andgJanhal. (2004)
applied QEA to some real world problems. Han and Kim (2003)gested some
practical guidelines on configuring QEA, analysing the rae impact of the in-
volved parameters on the functioning of the method. An a#teve update operator,
namely theH, gate, was considered in (Han & Kim, 2004). Han and Kim (2006) p
sented a proof of convergence towards the global optimumamealimensional One
Max problem. Han (2003) comprehensively discussed andest@EA, presenting
most of the prior work.
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Nevertheless, some specific characteristics of QEA remagxamined. Sec-
tion 3.1 briefly outlines some basic quantum principles baate inspired QEA, and
formulates a revised description of its features. Expbpiine dynamics of QEA
reveals a clear trend in promoting the phenomenon of hitkimdn Section 3.2 intro-
duces a novel algorithm called Versatile Quantum-inspiedlutionary Algorithm
(VQEA), in which a simple but critical mechanism is proposedvoid problems en-
countered in the original QEA. With vQEA, the informationcaib the search space
collected during evolution is continuously renewed andethamong the whole pop-
ulation rather than being kept at the individual level. Iotg® 3.3, VQEA is tested
on different benchmark problems and compared to classaralons of EA, namely
a genetic algorithm (GA) (Goldberg, 1989) and the originBKQFinally, section 3.4
discusses VQEA in the light of Estimation of Distributiongétithms (EDA).

3.1 PRINCIPLES OF QUANTUMINSPIRED EVOLUTIONARY ALGORITHMS

A quantum bit or@bit (Hey, 1999) is the smallest unit of information in a quant
computer. AQbit is defined by its statgl):

W) = [0) + B ]1) (3.1)

wherea andg are complex numbers defining probabilities at which theespond-
ing state is likely to appear when@bit is collapsedi.e. read or measured. Here the
probability of aQbit to collapse to state “0” and “1” igv|? and| 3| respectively. In a
more geometrical aspect@bit state can also be defined Bguch thatos(0) = |«|
andsin(0) = |3|.

In order to modify the probability amplitudesand 3, quantum gatesan be ap-
plied. We note that several quantum gates have been progastdas (controlled)
NOT-gate, rotation gate and Hadamard gate, see (Hey, 1999%failsl

3.1.1 Description of the QEA

In this section we propose a revised description of the QEWjrally published in
(Han & Kim, 2002). See (Han, 2003) for a comprehensive déimit QEA is a
generational, population-based search method whose ibeh@an be decomposed
in three different and interacting levets, Figure 3.1.

1 Normalisation of the states to unity guarantges + 3| = 1 at any time.
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Figure 3.1: Description of QEA with three levels

QUANTUM INDIVIDUALS

The lowest level corresponds giantum individu-

als’ . A Qindividual i at generatiort contains aQbit string Q;(t) and two binary

2 Note that the original notation of Han and Kim has been fijgtevised here. An individual here is
composed of &bit string and two binary strings rather than @bit string only. The revised notation

of QEA allows a more structured

and compact description @htlethod.
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stringsC;(t) and A;(t). More preciselyQ; corresponds to a string of N concatenated
Obits:

1 2 N
Qi:@icz?...@i”:lgj P ;] (3:2)

For the purpose of fithess evaluation egghs first sampled (or collapsed) to form
a bit stringC;. EachQbit in ); is sampled according to a probability defined by
|ﬁ{|2, so thatC; represents a configuration in the search space and itsyguaatit
be classically determined using a fitness functfonin the sense of EAQ; is the
genotype while”; is the phenotype of a given individual. We will show latertthma
the sense of EDAg); defines a probabilistic model

Pi= (161716 F]

while C; is a realisation of this model.

A solution A4; is attached to each individuakcting as an attractor fap;. Every
generation(”; and A; are compared in terms of both fithess and bit values; lis
better tharC; (i.e. f(A;) > f(C;) in a maximisation problem) and if their bit values
differ, a quantum gate operator is applied on the correspgn@bits of ();. Thus
the probabilistic modeP; defined by(Q); is moved slightly towards the attractdr,.
The attractorA; is replaced byC; wheneverC; is better in terms of fithess. More
specifically, if f(A;) < f(C;) (assuming a maximisation problem), no update of the
probabilistic model occurs, but the attractbris replaced by’;.

In classical EA, variation operators like crossover or miataoperations are used
to explore the search space. The quantum analogue for tipesators is called a
quantum gate. In this study, the rotation gate is used to fydiaé Obits. The;"
Obit at generation of (); is updated as follows:

cos(A0) — sin(A6)
sin(Af) cos(A0)

af(t%—l)
Bl(t+1)

ol (t)
B(t) ] 59

where the constand is a rotation angle designed in compliance with the appboat
problem (Han & Kim, 2003). We note that the sign®# determines the direction of
rotation (clockwise for negative values). In this study dpplication of the rotation
gate operator is limited in order to ke@pn the rangg0, = /2].



3.1 PRINCIPLES OF QUANTUMINSPIRED EVOLUTIONARY ALGORITHMS 55

QUANTUM GROUPS The second level corresponds qoantum groups The
population is divided intgy Qgroups each containing Qindividuals with the abil-
ity to synchronise their attractors. The best attractotdrms of fithess) of a group,
denotedB,,,.,, is stored at every generation and is periodically disteduo the
group attractors. The parameftgs,.,; controls the frequency of local synchronisation
events.

QUANTUM POPULATION The set of allp = ¢ x k£ Qindividuals forms the
guantum populatiomnd defines the topmost level of QEA. As for t@groups, the
individuals of theQpopulation can synchronise their attractors, too. The &iistc-
tor (in terms of fitness) among allgroups, noted3 .4, IS stored every generation
and is periodically distributed to the group attractorse Tiequency of global syn-
chronisation events is controlled by a parameigs,,;. We note that in the initial
population all thedbits are fixed witha|? = |3]? = 0.5, such that the two states “0”
and “1” are equi-probable in collapsed individuals.

3.1.2 QEA on the One Max problem

The One Max problem consists of maximising the number of afes bit string
and the global optimum is denoted &5 In this section the behaviour of QEA
on the One Max problem is studied far= 100. For that purpose new tools for
monitoring the dynamics of bot@individuals andQbits are used. The setting of the
evolutionary parameters is similar to the settings propasgHan & Kim, 2002),
with a population of 10 individuals, 5 groupaf = 0.017, Sipcar = 1 @NASgiopar =
100.

Figure 3.2 presents the evolution of the 1@QBits of Qindividual @4, on the One
Max problem. Each poin®’,(¢) corresponds to a give@bit j and a given generation
t. The colour indicates the value of the correspondi#|g: From black for|3|> = 0
to white for|3]?> = 1.0. Thus, aQindividual with all Qbits being|3|> ~ 1 (and as a
consequencgy|? ~ 0) is likely to collapse into the global optimuirt. We note that
the evolutionary process starts by construction withahitalues 3> = 0.5. Most of
the Obits evolve toward the optimum as the color changes to whigvertheless we
can clearly see that songbits are rotated towards the wrong direction as some very
dark points appear. The vast majority of them, finally mowesgard the expected
value with|3|? close to 1, but one of them, namely/°, has converged tp3|*> ~ 0.
For this run, QEA was not able to find the global optimum in 5é0eyations.
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Evolution of Qbits, Individual #4
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Figure 3.2: Typical evolution of &bit string using QEA on the One Max problem. The
shades indicate the value |gf|* for each of the 10@bits at a given generation.
The global optimum of the problem is a bit string in which all bits are “1”. Thus,
ideally all gbits should converge towartisbut in this run gbitQ7°> has converged
early towardd) instead.

To understand the inappropriate behaviourXdf, we have plotted its evolution,
i.e. values of|a|? (dotted line) and3|? (solid line), as well as the states of the
corresponding collapsed kit® and attractor bitd7>, cf. Figure 3.3. We see that|?
converges towardsfrom the first generations driving the state of the collagsietb
0. We also note that the state of the attractor bit demonstrese few variations and
is nearly alway9), except for a very short period before generaibn An attractor
is always chosen according to its fitness. So the attratios always better than the
collapsed bit string’, even if the value of it§5" bit is not well adapted.

3.1.3 Hitch-hiking and the irreversible choice

A quantum individual explores a search space through sampling (collapsing) its
Obit string Q;. If the individual has identified a promising solution, itdeosen as

an attractor and the exploration will concentrate on this aeca. Generally, there
are only two ways to update an attractdy. First, a better solutiod’; is sampled,
and as a consequence it replaces the current attractotesnatlvely, the attractor is
replaced due to a synchronisation event. In this case, theatteactor was sampled
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Figure 3.3: The evolution of the components of a problem@ticdividual with QEA on the
One Max problem©Qbit state (top), collapsed bit (middle) and attractor bit (bot-
tom).

from the Obit string of a different individual. That means that in afirgerations in
which no attractor update occurs, t@bits of (); are moved slightly towardd,;. As

a consequence); may prematurely converge towards, i.e. if there is no better
solution found in time. Then the individuals trapped, due to its inability to sample
new solutions from?);. The only opportunity for the individual to escape from this
attractor is a synchronisation phase which replaces ttacatir with a different one
produced elsewhere. Otherwise, it is possible that thecehafi a very good but not
optimal attractor is irreversible.

The issue of QEA described here is similar to a well-knowrbfam occurring
in classical genetic algorithms (CGA). The so calletth-hikingphenomenon was
first described as a serious bottleneck for CGA in (Forrest &Mll, 1992). Hitch-
hiking corresponds to the increase in frequency of a “baddlaht a given locus in the
population due to the presence of nearby highly fit allelethersame chromosomes
(Futuyma, 1998). As a consequence, the potentially beltedes at the same locus
(as the hitch-hiking allele) tend to disappear in the pojpteand there is no way
for the evolutionary process to retrieve them. In CGA, randoamtation and uniform
crossover are two known remedies against hitch-hiking. @A no such counter-
measure exists.
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3.2 VERSATILE QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM

In this section an improved version of QEA is introducedaxhthe Versatile Quantum-
inspired Evolutionary Algorithm (VQEA). It aims to avoiddhssues reported above.
This algorithm was published in (Defoin-Platel, Schliek¥asabov, 2007).

3.2.1 Description of vVQEA

In order to prevent the case of irreversible choice and ttehiking phenomenon,
the strategy for updating attractors is modified. We intaeda new parameter that
is used to modify the strateg¥Elitism. In the original QEA, the update procedure
(called “attractor update” in Figure 3.1) applies elitisan attractorA; is only re-
placed byC;, if C; is better. With VQEA this parameter is simply switched off.
Therefore, the attractors are replaced at every genenaditbiout considering their
fitness and thus attractors demonstrate a high degree dilityplavioreover, to en-
sure the convergence of VQEA, the global synchronisatialsis performed every
generation in such a way that all the attractors are iddniieathe attractor at gen-
erationt + 1 corresponds to the best solution found at generation

We note that, with such a setting, the group sizeand local synchronisation pa-
rametersS;..,; do not affect the algorithm anymore. With vQEA, the inforroat
about the search space collected during evolution is ndt&ee individual level,
but continuously renewed and shared among the whole pamiatNevertheless,
the concept of quantum groups, which is similar to demesassital EA, is inter-
esting and thus it is not intended to remove it. In this stimbyyever, we avoid the
tuning ofn andS,,..,; and concentrate on the effects of removing elitism from QEA.
Thus the simplified sequential procedure of VQEA is detaiedlgorithm 2. Notice
the non-elitist attractor update in line 9, which is the kbgrge of VQEA over QEA.

3.2.2 VQEA on the One Max problem

Similar to QEA above, the behaviour of vVQEA on the One Max f@obis studied
for A = 100. The settings of the evolutionary parameters in VQEA are &bpost
identical to QEA, in order to allow fair comparison betwebr two. A population
of ten individuals is chosen, rotation angle set¥6é = 0.01x, of course no elitism

It is worth noting that an extra long-term memory mechaniss been added to store the best col-
lapsed individual ever found, but this mechanism has no anpathe algorithm
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Algorithm 2 Versatile Quantum-inspired Evolutionary Algorithm
1.t<=0
2: initialise all Q;(t)
3: while not termination conditionlo
for all individualsi do
collapse thedbits of Q;(t) to form a solutionC;(t)
evaluate solutiord; ()
end for
Byiobai(t) <= best solution among afl;(¢)
global synchronisation:
non-elitist replacement of attractord;(t) < Biopa(t), Vi
10: update allQ;(t) to Q;(t + 1) using aQGate
11 t<=t+1
12: end while

© N g

is used and global synchronisation occurs every generaters,,,, = 1, render-
ing the parameter for local synchronisatiéy,.,; across the groups redundant, since
Biocal = Bgiobal-

In Figure 3.4, the evolution of two illustrativ@bits for QEA (dashed line) and
VQEA (solid line) are plotted. The figure reports the valu@ @ in the polar co-
ordinates system. The radius is giventbgnd the angle correspondsisuch that
cos(0) = |a] andsin(f) = |3|. For both algorithms, a successful run is presented,
since for both cases the angldinally reaches an expected value closéd, i.e. 5
close to 1.0. Itis clear that QEA and VQEA display very diéietr behaviour. QEA
tends to make strong decisions and when a certain attracthiosen, it is followed
for several generations. In fact, this constancy is reltdetie strategy adopted for
updating the attractors based on elitism. Conversely, f@&Ahe trajectory ob(¢)
shows jitter during the firs200 generations. Nevertheless, the overall evolution is
much smoother compared to the original QEA.

To illustrate this situation, we have also computed for gorithms the average
total number of different attractors used per individuatinig one run of 500 gen-
erations on the One Max problem. We found 25.5 for QEA and rttwaia 372 for
VQEA, meaning that the “life time” of an attractor is appnmetely19.6 generations
for QEA and onlyl.34 generation for vQEA.

Figure 3.5 presents the typical evolution of #t® Obits using vQEA on the One
Max problem. We can see a phase of more th@hgenerations where the states of
the Qbits remain undecided. Then all tligbits evolve slowly towards the optimum
and the colours change to white. In contrast to the evolutio@bits in QEA, no
hitch-hiking phenomenon is visible using VQEA on this psohl This fact is clearly
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90°

Figure 3.4: Typical evolution of a Quantum bit (value &f)) for QEA (dashed line) and
VQEA (solid line) on the One Max problem. Due to elitism in QEA attractors
are less frequently replaced compared to VQEA, and as a consequéiieis
updated towards the same attractor for many generations. In vVQEA on #re oth
hand, an attractor is exchanged much more frequently, which results iballglo
smoother exploration of the search space.

demonstrated by comparing the two Figures 3.2 and 3.5. Mmeifgcally, no dark
colours appear in Figure 3.5. We note that for this run vQEA wahle to find the
global optimum in340 generations.

To understand the characteristic evolutiondifits in VQEA better, the evolution
of Obit Q%, i.e. values of|a|? (dotted line) and3|? (solid line), as well as the
states of the corresponding collapsed®@jt and attractor bitd* are presented in
Figure 3.6. We see thatt|> moves slowly but continuously towards which is
the desired behaviour. In the early stage of evolution ttractor bit reports many
changes of its state, while in later generations the frequehchange decreases and
finally the attractor bit converges 10

3.3 EXPERIMENTS

In this section, VQEA is tested and compared to a classicedtgealgorithm (CGA) (Gold-
berg, 1989) and to the original QEA on two benchmark probldfos both problems,
the fitness of the average best solution found in 30 runs septed. We use a sta-
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Evolution of Qbits, Individual #4
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Figure 3.5: Typical evolution of &bit string using VQEA on the One Max problem. The
shades indicate the value [gf|?> of each of the\ = 100 Qbits at a given genera-
tion. All Qbits gradually evolve towards the global optimurhof the problem,
i.e. no hitch-hiking phenomenon occurs.
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Figure 3.6: Typical evolution of a Quantum bit, Collapsed bit and Attractowliit vVOQEA
on the One Max problem

tistical unpaired, two-tailed-test with95% confidence to determine if results are
significantly different.
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A = N =500, 1000 generations
CGA | QEA | VQEA
1 2963.5 (19.7) | 3013.5 (18.9) | 3058.0 (15.9) |

Table 3.1: Average profit of the best solution found on(hd&napsack problem for all tested
algorithms. Each profit was obtained in 30 independent runs; brackixtsia the
standard deviation.

3.3.1 Optimisation of a)1-knapsack problem

The 01-knapsack problem is a classical NP-hard benchmark probiemhich the
most valuable subset amonig items that have different profits and volumes needs
to be identified. This subset also must fit in a knapsack otdichcapacity. Han and
Kim (2003) evaluated CGA and QEA already or) Bknapsack problem. Hence,
we adopt here exactly the same settings for the evolutiopargmeters of CGA and
QEA, respectively. We note that these settings were olddoen a comprehensive
parameter study and were shown to be suitable for the prohidsand. Additionally,
we use the sam@l -knapsack problem definition as described in (Han & Kim, 2003
It is worth mentioning that the population size in CGA is equal 00 and only 10 in
both QEA and vQEA. For VQEA elitism was switched off afigl.; set to one. All
three algorithms were allowed to evolve over 1000 generatamd for each algorithm
30 independent runs were performed and then averaged.

The results are reported in Table 3.1 =500 items. Our implementation of
CGA and QEA found solutions comparable to (Han & Kim, 2003) AG#gnificantly
outperforms CGA, but the best results are reported by VQEA. ilfprovement of
VQEA over QEA is very similar to the improvement of QEA over CGA

In Figure 3.7, the evolution of the average best profit is gmésd for the three
tested algorithms. We see that during the first generations €@orts the best profit,
but is outperformed by VQEA aft&06 generations and later also by QEA after gen-
eration454. As indicated by the error bars in the figure, all algorithroisiave signif-
icantly different final profits at the end of the optimisatjmmocess, alsof. Table 3.1.

It is noteworthy, that CGA was allowed to usétimes more fitness evaluations, due
to its larger population size. More specifically, in eachegation 100 individuals
were evaluated in the case of CGA, compared to dafalindividuals/evaluations for
each of the QEA methods. Hence, both versions of QEA reges® ¢omputational
resources than CGA, and simultaneously deliver better ogdimon results.



3.3 EXPERIMENTS 63

3100
3000
E
e
a- 2900
@
<]
[an]
[
[@)]
O 2800
(]
>
<
2700 ‘ : : : : : : -
] : : : : : : : e QEA
| . . . . . . . A CGA
2600 ; ; ; ; ; ; ; ‘ i
0 100 200 300 400 500 600 700 800 900 1000

Generation

Figure 3.7: Average profit of the best solution found omlaknapsack problem of size
N=500. Both QEA methods demonstrate superior optimisation performance
compared to CGA, and VQEA being significantly faster than QEA.

3.3.2 Optimisation of NK-landscapes problems

In (Kauffman, 1993) a synthetic benchmark problem was aped, namely the
N K-landscapes, which allows the explicit modelling of linkdgetween variables.
Here the quality of a solution depends not only on the staitis 6f variables, but also
on theK interactions between them. The problem requires the geaifitwo parame-
ters: N determines the size of the search spacefdmantrols the number of variable
links. With increasingk’, the number of local optima also increases. Setfing: 0
results in a single global optimum, whibé% local optima exist forkKk = N — 1.
NK-landscapes have been used in theoretical biolegy,to study gene networks,
the evolution of proteins or immune systems. The NK-landssalefine also a family
of combinatorial optimisation problems that are now widetged as benchmarks for
EA. According to (Weinberger, 1996), the model allows theeagation of a “tunable
rugged” fitness landscape.

In this study, theX interactions between th¥ variables are chosen randomly and
the corresponding problem has been proved to be NP-comiplefe > 1 (Wein-
berger, 1996). The performances of the three algorithmstacked for problems of
increasing size withv' =256, N =512, N =1024,N =2048 andN =4096 and of
increasing difficulty with/K varying from0 to 8. To allow a statistical analysis of the
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results, each algorithm was evaluatedinindependent runs. Each run corresponds
to 10,000 generations.

Han and Kim (2004) introduced a modified rotation gate operaiamely thef,
gate, which prevents the convergence of the probabilityliandes|a|* and|3|* of a
Obit towards0 or 1. Instead, the authors suggested to use a minimum and maximum
value for the amplitudes,and1 — ¢, respectively, where € R is a parameter of the
operator. An experimental analysis of the gate revealed a superior optimisation
performance especially on multi-modal problems.

Preliminary experiments using VQEA on the NK-landscapesbmark confirmed
the advantages of thié, gate as reported in (Han & Kim, 2004). Hence, we introduce
it here as the default operator for VQEA. Parametar set tosin?(2 x Af) which
stops the amplitude update two rotation steps before th@wvergence towards or
1. A default learning raté\d = 0.017 is assumed.

The average fitness of the best solutions found with= 0 and 8 are plotted in
Figure 3.8 (error bars indicate standard deviation). ko= 0 and N = 256 the
problem is very easy and can be solved by all three algorithiith the increase of
N, the performance of CGA and QEA decreases and both methodgyargcantly
outperformed by VQEA. Moreover, the average fitness of theatisns found with
VQEA is almost unaffected byv. For K = 8, all three algorithms perform equally
well for N = 256 and N = 512, but for largerN a similar trend as observed for
K = 0is reported. From these results it is claimed that VQEA isghllgiscalable
algorithm even for difficult problems.

In Figure 3.9 the final fitness of all tested methods is presen¢lative to the
obtained fithess of CGA,e. the performance of CGA is used as a reference. In this
diagram the problem size I = 4096 and the fitness for different values &f is
shown. It is clear vVQEA outperforms CGA hyt% regardless of the difficulty of
the problem. Conversely, for QEA, this ratio varies from 8% f = 0 to 5% for
K = 8. We note also that the standard deviation reported in Taliléd VQEA is
the smallest, indicating that most of the 30 runs have foumdagly good solutions.
For further inter-comparisons, the overall numerical itssabtained with CGA, QEA
and VQEA are reported in Tables 3.2 and 3.3.

Figure 3.10 presents two isofitness clouds. In these cl@ads, pointgen 4, geng)
corresponds to the average number of generations needed lfterent algorithms
A andB, in order to reach the same fitness value. For example: T {60, 200)
would indicate, that algorithm required 100 generation to achieve the same fitness
level as algorithnB in generation 200.
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Figure 3.8: Average fitness of the best solution found on NK-landsceyité X' = 0 and
K = 8. On larger sized problemsV( > 1024) vQEA demonstrates a significant
improvement over CGA and the original QEA.

We introduce this kind of representation to allow practa@hparisons of compu-
tational resources required by algorithms reporting diff: best fithess values and
different convergence speeds. In our case, the isofithead€have been computed
from all the experiments on the NK-landscapes reported@b®te underlying as-
sumption is that the resources needed for computing one@ereare the same for
all tested algorithms, which is partly false. Indeed, whenAC{ad QEA (or CGA
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Figure 3.9: Relative fitness of the best solution found on NK-landsoajblesV=4096. Here
the performance of CGA is used as a reference and the bars showatieere
improvement of the methods over CGA. Error bars indicate standard deviatio
On average QEA reports a 8% to 5% advantage in terms of fitness compared to
CGA. For vQEA this improvement is around 14%.

and vQEA) are compared, the size of the populations arefsigntly different, re-
spectively 100 and 10 individuals and so a generation isgqased faster with QEA
or VQEA than with CGA.

Figure 3.10a compares CGA and QEA. Notice that most of thetpdall be-
low the liney = = showing that QEA was faster than CGA. The biggest difference
in convergence speed is reported for points at the bottoht dgrner of the figure
meaning that CGA requireth, 000 generations to discover solutions of similar qual-
ity as those found by QEA at generatien 1,000. However, we note that for the
early generationg,e. before1000, some points indicate that CGA was the first to
reach a given fitness level. After studying the data, we haued that those points
correspond to the easiest problems with small value¥ (256 and 512) an&™ = 0.
Figure 3.10b displays the isofitness cloud obtained for QEXQEA. It is clearly
demonstrated that VQEA is almost always faster than QEApeddent of the size
and the difficulty of the problem. We also see that after gatinen 4,000, the “slope”
of the cloud is nearly equal to 0. This means that the QEA nae@sy high number
(asymptotically an infinite number) of generations to fintlgons as good as the
solutions found by VQEA in less than 2,000 generations.
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CGA | QEA | VQEA

K N = 256

0 0655(0 0000) 0.655(0:0_000) 0.655(0:0.000)
1 0677(0 0.000) 0.677(020,000) 0.677((7:0.000)
2 | 0.679(—0.003) | 0.680(s—0.001) | 0.680(s—0.000)
3 | 0.682(,—0.010) | 0.679(6=0.009) | 0.674(5=0.005)
4 | 0.690(,—0.007) | 0.694(c=0.004) | 0.695(5—0.002)
5 0689(0 0007) 0.691(010_008) 0.683((;:0.006)
6 | 0.686(5—0.009) | 0.692(5—0.003) | 0.691(5—0.004)
7 | 0.690(—0.011) | 0.691(s—0.007) | 0.695(s—0.009)
8 | 0.683(,—0.009) | 0.688(5—0.006) | 0.680(,—0.007)
K | N =512

0 | 0.657(5—0.000) | 0.658(5—0.000) | 0-658(5—0.000)
1 | 0.681(6=0.000) | 0.682(5—0.000) | 0.682(5—0.000)
2 | 0.671(5—0.002) | 0.673(6=0.001) | 0.673(5=0.000)
3 | 0.673(5=0.005) | 0.676(5—0.003) | 0-678(5=0.000)
4 0681(0 0003) 0683(0 0000) 0683(0 0000)
5 | 0.679—0.006) | 0-684(s—0.001) | 0.685(s—0.000)
6 | 0.687,—0.011) | 0.692(6—0.006) | 0-687(5=0.006)
71 0.678(5=0.003) | 0.680(5=0.003) | 0.680(5=0.004)
8 | 0.688(,—0.011) | 0.693(6=0.009) | 0-690(5—0.009)
K | N = 1024

0 | 0.642(,—0.001) | 0.662(5—0.000) | 0.664(5—0.000)
1 | 0.648(5=0.001) | 0.665(5—0.002) | 0.669(5—0.002)
2 | 0.643(5—0.001) | 0.660(5—0.001) | 0.665(5=0.000)
3 | 0.649(5—0.002) | 0.667(5—0.002) | 0.672(5—0.002)
4 | 0.653(5=0.003) | 0.673(6c=0.003) | 0-679(5=0.000)
5 | 0.658(5=0.003) | 0.675(5=0.002) | 0.681(5—0.001)
6 | 0.653(5=0.002) | 0.667(5—0.003) | 0.674(s=0.003)
7 1 0.654(,—0.004) | 0.670(5—0.003) | 0.676(5=0.003)
8 | 0.651(,—0.003) | 0.667(5—0.003) | 0.675(5=0.004)

Table 3.2: Average profit of the best solution found on the NK-landssgpoblem after
10,000 generations for N=256, 512, and 1024. In brackets the standard-dev
tion is shown.

3.4 DISCUSSION

According to (Mihlenbein & Paass, 1996), algorithms using a probabilistclel
to explore a search space are called Estimation of Distoibuslgorithms (EDA).
Thus, it is argued here that in QEA tli@ndividuals act as probabilistic models and
so, as has already been claimed in (S. Zhou & Sun, 2005b) asnl &Kim, 2006),
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CGA | QEA | VQEA

K N = 2048

0 [ 0.613(5=0.001) | 0-650(5=0.002) | 0-665(5—0.000)
1 | 0.612(5—0.001) | 0.645(5—0.004) | 0.665(5—0.000)
2 | 0.617(5=0001) | 0-649(,—0.001) | 0-671(5—0.001)
3 0.617(020,002) 0.650(020,004) 0.673(020_000)
4 | 0.623(5—0.001) | 0.655(6=0.004) | 0.678(5—0.000)
5 | 0.617(5=0.002) | 0-647(5=0.000) | 0.671(5—0.000)
6 | 0.624(,—0.002) | 0.653(5=0.005) | 0.6785=0.001)
7 0.623(010_004) 0.653(010.004) 0.678(010.001)
8 0.620(020_004) 0.647(020.004) 0.675(020_002)

K | N = 4096

0 | 0.581(5=0.001) | 0.625(5—0.002) | 0.662(5—0.000)
1 0.586(010_001) 0.629(010.003) 0.669(010.000)
2 0.585(020,001) 0.623(020.004) 0.667(020_000)
3 | 0.587(5=0.001) | 0.624(5—0.005) | 0.669(5—0.001)
4 | 0.587(,—0.001) | 0-619(5=0.006) | 0.669(5—0.001)
5 | 0.587(5=0.001) | 0.619(5—0.005) | 0.6695=0.001)
6 0.589(0:0_001) 0.619(U:0.004) 0.672(010_002)
7 0.589(010_003) 0.621(010.006) 0.671(010_002)
8 | 0.590(5—0.003) | 0.621(,—0.004) | 0.673(5—0.001)

Table 3.3: Average profit of the best solution found on the NK-landssgpoblem after
10,000 generations for N=2048 and 4096. In brackets the standard deviation is
shown.

QEA is a new EDA approach. In this section, the role of elitisniEDA is briefly
discussed.

In CGA, elitism has been introduced as a protection mechatastounteract the
disruptive effects of genetic operators such as the unifmossover. In some EDA,
the probabilistic models can undergo perturbations toaepthe search space, but
these perturbations do not have strong consequences éisthal not necessary.
Moreover, with some other EDA, the probabilistic models eoepletely recon-
structed every generation and elitism is not used. NeviedkeAhn, Kim, and Ra-
makrishna (2003a) report an interesting counter exampérevéin EDA is presented
and better results are reported with elitism but in that eds@a uniform crossover is
applied to the bit strings. Thus, so long as no disruptiveatpes are employed, there
is no need for an EDA or a quantum inspired algorithm to hageuese to elitism.
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Figure 3.10: Isofitness clouds comparing the required computational loesteen the al-
gorithms. A point in these diagrams corresponds to the generations nieeded
an algorithmA to achieve the same fitness level of an algoritBmCGA uses
more computational resources than QEA, while QEA requires more resourc
than vQEA.

3.5 CONCLUSION

The Quantum-Inspired Evolutionary Algorithm (QEA) intrezed in (Han & Kim,
2002) and studied here is elitist. The exploration of thedeapace is driven by
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attractors corresponding to the best solution found so tfaither the individual,
local or global level. If a non-optimal solution is propaggto the global level, this
solution starts to attract the entire population. In thaec#o avoid being trapped, the
algorithm has to discover a better solution before conwergp this global attractor.
Hence, the choice of a sub-optimal attractor may becomeeirséble.

To counteract this issue, the Versatile Quantum-InspiraaltEionary Algorithm
(VQEA) is proposed. In vQEA elitism is removed and the seaftchmet + 1 is
driven by the best solution found at tinte Simply removing elitism has strong
consequences. With vQEA, the information about the segrabescollected during
evolution is not kept at the individual level but continugusenewed and shared
among the whole population. In terms of both speed and acgwm@EA performs
better than QEA on different benchmark problems.

The dynamics of QEA and vVQEA are very distinct. The shomat&ehaviour of
QEA is almost always constant because preferential se@ettidns are chosen and
followed during several generations. Conversely, the steonh behaviour in VQEA
is much more unsettled and the search directions are rededl@very generation.
Thus the eventual decision errors do not have long-termesprences. VQEA is
continuously adapting the search according to local in&drom while the quantum
individuals act as memory buffers to keep track of the sehistory. This leads to a
much smoother and more efficient long-term exploration efdbarch space.

In this study, since all the attractors are synchronisegetyegeneration, the local
level with the Qgroups are redundant. Nevertheless, the concept of greumey
interesting, since it is similar to demes in classical EAither studies may address
the setting of both local and global synchronisation.



QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM: A
MULTI-MODEL EDA

Numerous natural and physical real world processes havwentigcinspired re-
searchers in various domains of Artificial Intelligenceclhswas neuro-computing,
Artificial Evolution, Ant Colony Optimisation or Simulatednhealing, to name a
few. The use of metaphoric comparisons is a clear trend farcheand optimisa-
tion algorithms. Nevertheless, metaphors can not last\atigout strong theoretical
justification.

Quantum physics and quantum computing principles havelsso widely seen
as a source of inspiration, for example in Neural Networkgriheer & Narayanan,
1995), Genetic Algorithms (Narayanan & Moore, 1996), Diietial Evolution (Draa,
Batouche, & Talbi, 2004b), Artificial Imnmune Systems (Li & dj&005) and Particle
Swarm Optimisation (J. Liu, Sun, & Xu, 2006). In the field ofdiwtionary Com-
putation, the introduction of the Quantum-Inspired Eviolnary Algorithms (QEA)
by Han and Kim might be the most successful application ofjrentum metaphor
(Han & Kim, 2002, 2003; Han, 2003). It has been earlier altuttat QEA is related
to Estimation of Distribution Algorithms (EDA) (S. Zhou & 8u2005b; Han & Kim,
2006). The first aim of this chapter is to integrate QEA in aesysmtic way into the
class of EDA as an original algorithm.

EDA have shown their ability to avoid the disruptive effectgenetic operators in
Evolutionary Algorithms (EA), namely crossover and mutatiby iteratively evolv-
ing a probabilistic model to explore the search space. Tdifesxent classes of EDA
have been proposed to categorise these algorithms acgdodihe modelling of in-
teraction between variables of optimisation problemsikBe| Goldberg, & Lobo,
1999). See also (Lariimga, Etxeberria, Lozano, & Ra, 1999) for an overview of
proposed EDA for each class.

Early EDA assume independent relationships between paeasifer a given prob-
lem and thus the probability distribution of solutions canfactored as a product of
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independent uni-variate probabilities. This class of EDaludes the well-known
Probabilistic Incremental Learning (PBIL) (Baluja, 1994)e ttompact Genetic Al-
gorithm (cGA) (Harik, Lobo, & Goldberg, 1999) and the Uniriade Marginal Dis-
tribution Algorithm (UMDA) (Miihlenbein & Paass, 1996), to name a few.

Recent developments in the field of EDA take possible intevastbetween vari-
ables explicitly into account. Modelling bi-variate depencies represents the sec-
ond class of EDA and is implemented byg. the Mutual Information Maximisation
for Input Clustering (MIMIC) algorithm (Bonet, Isbell, & Violgl997), the COMIT
algorithm (Combining Optimisers with Mutual Informationels) (Baluja & Davies,
1997, 1998) and the Bi-variate Marginal Distribution Algbm (BMDA) (Pelikan &
Muhlenbein, 1999).

The third class of EDA can model multivariate variable iatgions. Examples of
algorithms of this class are the Factorised Distributiogakithm (FDA) (Miihlenbein,
Mahnig, & Rodriguez, 1999), the Extended Compact Genetic higm (ECGA)
(Harik, 1999) and the Bayesian Optimisation Algorithm (BORE(ikan, Goldberg,
& Cantl-paz, 2000).

It is worth noting that the second and third classes of EDAliregcomplex learn-
ing algorithms and significant additional computationalo@ces in order to handle
variable interactions. It has been pointed aig. in (Johnson & Shapiro, 2001),
that under certain conditions the benefit of this overheaghtrstill be unclear. As a
consequence the first class of EDA, although being simptayldmot be discredited
a priori. In this chapter, the common points and specifics of QEA caoatpto other
EDA are highlighted. In a similar way, other methods have hksen shown to belong
to EDA. For example, Coih et al. (2000) and Monmareétet al. (1999) show how
EDA and the Ant Colony Optimisation (ACO) algorithm (Dorigoakiezzo, & Col-
orni, 1996) are actually very similar and differ mainly irettwvay their probabilistic
model is updated.

The use of a probabilistic model is the key concept of any EDi#e QEA follows
the same strategy to guide its search in a given space of@®utMoreover, in QEA
multiple probabilistic models are created and increméntabdified. The idea of
using multiple interacting models in EDA is not new. Prolyaibitiated in (Zhang,
Sun, Tsang, & Ford, 2002), this idea is now very popular (A&im, & Ramakrishna,
2003b; Ahn, Goldberg, & Ramakrishna, 2003; delaOssan€z, & Puerta, 2006;
Madera, Alba, & Ochoa, 2006; S. Zhou & Sun, 2005a).

We can identify at least two reasons why the multi-model apgih might be use-
ful for optimisation problems. First, simple EDA such as UMBnd PBIL cannot
solve complicated problems as shown in (Galez, Lozano, & Larrdaga, 2000)
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and (Zhang, 2004). Second, even advanced EDA using a compdek still single
— probabilistic model may not work well in practise (ZhangnS& Tsang, 2005).
In QEA, the interaction of the probabilistic models is urequt is this interaction
that provides the search with an adaptive learning speed dmdfer against poten-
tial decision errors. An explicit aim of this chapter is tanéiom that several models
together perform better than only one and then to explain whys study was pub-
lished in (Defoin-Platel, Schliebs, & Kasabov, 2009).

We start this analysis by investigating the key componeh@EA in the light of
EDA. Therefore the probabilistic model, selection and damgprocedures, learning
strategies and population structure used in a QEA are cadparsome classical
EDA. In an extensive experimental study the behaviour amtbpeance of QEA
in terms of fitness, scalability, diversity loss and robesgiagainst noise is investi-
gated. In the final part the role of multiple probabilisticaeds is discussed and some
potential advantages are highlighted.

4.1 VQEA IS AN EDA

According to (Mihlenbein & Paass, 1996), the algorithms that use a pros@tbil
model of promising solutions to guide further exploratidnttte search space are
called Estimation of Distribution Algorithms (EDAS). WeVeseen in chapter 3 that
eachQindividual defines a probability vector and so, as it hasaalydbeen claimed in
(S. Zhou & Sun, 2005b) and (Han & Kim, 2006), vQEA is a new ailipon belonging
to the class of EDAs. A generic description of EDAs is progbiseAlgorithm 3.

Algorithm 3 Estimation of Distribution Algorithm (EDAS)
1.t<=0
2: initialise the probabilistic modéeP ()
3: while not termination conditiomo
4. sampleM new solutions fronP(¢) into D(t)
5. evaluate the elements &f(t)
6: selectL < M solutions fromD(t) into D,(t) using a selection method
7
8
9:

learn the probabilistic modé? (¢ + 1) from Dy(¢) and eventually fronP(t)
t<=t+1
end while

In this section an extensive study of the features of vVQEA@ppsed. The com-
mon points and specifics of VQEA compared to other EDAs arkliligted.
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4.1.1 Probabilistic model

The complexity of the probabilistic model, denot&dn Algorithm 3, varies largely
among EDAs. In (Pelikan et al., 1999) a survey on EDAs repitntse different
classes based on the level of interactions between theblesithat their models can
represent. In the version of VQEA discussed in this stuahgiyistates are superposed
and the eventual interactions between variables are nétgyptaken into account.
At the Qindividual level the probabilistic model

P;= (1612 18N (4.1)

is a vector of probabilities, since eatj;d3147‘|2 value is used independently for sam-
pling. Therefore, VQEA belongs to the first family of EDAs thessumes inde-
pendent variables and for which the probabilistic model veetor of probabilities,
such as population-based incremental learning (PBIL) (Ball$94), compact GA
(cGA) (Harik et al., 1999) and uni-variate marginal distition algorithm (UMDA)
(Mihlenbein & Paass, 1996). All these algorithms are desgtnbealetail in Ap-
pendix A. This family of EDA — although simple — should not hsadediteda priori
since the benefit of searching complex variable interastamuld be still unclear un-
der particular circumstances (Johnson & Shapiro, 2001) wiWesee in section 4.3
how thep individuals of theQpopulation interact to form a multi-model EDA, with
P={Pi,...., Py}

In EDAs, the probabilistic modéP is iteratively updated to account for the fitness
of the lastL solutions selected i,. Nevertheless, the state space on which PBIL,
UMDA, cGA and VQEA act, is different. In PBIL an elemeRt of the probability
vector has an arbitrary precisiak? and so the number of possible values fris
infinite. Conversely, in cGA this number is finite and the psem AP is constant.
The so-calledvirtual population sizeparametem determines the accuracy of the
model since the update steps have a constants2e= 1/n. With UMDA the
accuracy ofP? depends directly on the numbérof solutions selected to compute
the next probability. However, the update steps are nottaahand depend on the
variance of the empirical frequency at locus

For VQEA, the situation is even more complex. At the level ahit Qf the
application of the rotation gate operator according\tb can only produce a finite
numbers x ﬁ of positions for the angléf € [0, 7/2] and so for the probabilit%j =
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Theoretical variations of probabilistic models
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Figure 4.1: Theoretical variations of the probabilistic model in PBIL, cGA @QEA

137> = sin®(6#7). The size of the update steps is constant in angle but substiyu
varies forP’. More formally we have:

AP()) = sin(07 + A0) — sin*(6?)

. . (4.2)
= 2cos(6])sin(0]) x Af

It is worth noticing that, according to equation (4.2), thermaQbit is converged
(with 93 — 5 or 6! — 0), the smaller the update step. This phenomenon can be seen
as a form of deceleration of the algorithm before convergenc

We can see in Figure 4.1 how an element of the probabilityorastaffected by
several successive applications of the update operatoP8ih, cGA and VQEA. We
note that this diagram does not reflect the real behaviounefitgorithms. This is
a theoretical situation where the conditional aspects ®uibdate are not taken into
account and hence all models are updated at every generatiennitial probability
Is set to0.5 and the update direction is toward '1’ for each operator. [Eaening rate
of PBIL is fixed to R, = 0.1, the virtual population size of cGA to = 50 and for
VQEA the parametefd is equal to%g and only oneQindividual is used. With such
a setting, both cGA and vQEA requi2é update steps to converge.

When considering the population level of vVQEA, a setpgbrobability vectors
interact in a complex wayc{. section 4.3). The accuracy of the overall mogek
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{P1,...,P,} can be investigated by looking at the variations of the meadehat
locusj, notedPJ, such that

— 1
i=1

In VQEA the update of eao@{ and subsequently of ea¢/ﬁf\2 is conditional and is
performed independently among the population. Therefoeenumber of positions

for the average ang € [0,7/2]is § x &5 x .

4.1.2 Sampling and selection

The classical EDAs are distinguished also by the number lotisas M (cf. line

4 in Algorithm 3) sampled at every generation to form the BetBoth PBIL and
UMDA require a comparably large number of samples in ordexjaore the search
space effectively. For example, in (Shapiro, 2005), the@utlaimed thaf\/ should

be large compared to the square root of the problem size N kDA to find the
optimum on a One Max problem. Conversely, cGA works with oilly = 2 bit
strings produced per generation. In VQEA all @adividuals collapse during one
generation and so for ead); this phase corresponds to the sampling of only one
solution from the corresponding mode).

After sampling and evaluation db, the next step in EDAs consists in selecting
L solutions intoD,. This subset will be further used during the learning phase.
Again various selection schemes exist in EDAs. For exanijiBl. selects only the
best (and sometimes together with the worst) elemer? &f In cGA a tournament
determines a winner and a loser solution whereas in UMDA rctition selection is
often employed (Mhlenbein, 1997) where thebest solutions are selected (typically
~ = 50%). We note that other models can be used as well, such as timydror
tournament selection (Zhang & dhlenbein, 2004).

At first glance, the selection process of VQEA may appear mdiginctive: as in
a tournament each attractdg(t) is basically compared in terms of fitness to the last
collapsed string@’;(¢). Nevertheless these tournaments are not symmetric. Aitgarn
phase occurs only if an attractor wins a tournament, ottserwo solution is selected
and there is no learning step in this generation.

1 A similar approach has been explored in the Best-Worst ArteSn algorithm (Cordn et al., 2000),

which also belongs to the class of EDAs.
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It is noteworthy that;(t+1) is sampled fronP;(¢+1) and A, (t+1) from P;(¢). If
the fitness of4;(¢) is not strictly better than the fithess ©f(¢) then the probabilistic
modelP;(t) stays unchangede. P;(t+1) = P;(t). Inthis case(;(t+1) and A; (t+
1) are sampled from the same probabilistic model. Therefooen fan evolutionary
point of view, we can consider that both belong to the samemgion. On the other
hand, if the fitness afi;(¢) is strictly better than the one 6f;(¢), P;(t) is updated and
P;(t+1) # P;(t). In this case, the selection process involggg + 1) and A;(t + 1)
that are issued from generations 1 andt, respectively. In other words, VQEA is a
form of steady-stat&DA where “parents” and “offspring” may compete againsteac
other. This feature of VQEA is an important specific sincetmbthe other EDAs are
“generational”. However, notable exceptions where @litis implemented in EDAs
exist, for example (Ahn, Kim, & Ramakrishna, 2003b) and (AhrR&makrishna,
2003) where inter-generational competition exists. Lizaga and Lozano (2002)
also apply some steady-state EDAs in the continuous field.

4.1.3 Learning and replacement

Step 7 in Algorithm 3 is a learning phase where the probaigilimodelP(t + 1) is
built to account for the solutions previously selectedit). With UMDA, P(t+1)

is fully determined using only the sék,(¢) whereas with PBIL and cGA, botb,(t)
andP(t) are involved and the learning is incremental. In cGA, therlze is also
conditional since the update of the model occurs only at ts#tipns where the win-
ner and the loser bit strings differ. In the original versminPBIL the learning is
unconditional but we note that some extensions of the bégacithm have been pro-
posed where the bits of the best and worst solutions are alspared to determine
the update (Baluja, 1994).

Besides the update operator itsele( the rotation gate) the learning process in
VQEA is exactly the same as the one employed in cGA. If andtra; wins a
tournament then the binary strings and A; are systematically compared and the
modelP; is updated toward!; only whereC; and A; differ.

Figure 4.2 shows how an element of the probability vectoffexted by the learn-
ing process for PBIL, cGA and VQEA when solving a one bit One dablem. We
note that UMDA is not studied here because it instantangarmivergences after
the first iteration on this problem. Contrary to Figure 4.1,ca@ see the real algo-
rithms working here with the action of the conditional leagfor cGA and both the
asymmetric selection and conditional learning for vQEAeTurves correspond to
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Actual variations of probabilistic models
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Figure 4.2: Actual variations of the probabilistic model in PBIL, cGA and ¥QE

the evolution of one probability averaged among 30 indepehduns of 200 gen-
erations. The learning rate of PBIL is fixed #&) = 0.1 and M = 2 solutions are
sampled from the model, the virtual population size of cGA is 50 and for vVQEA
the parameteAd = 5—10§ and only oneQindividual is used. With such a setting, the
convergence of PBIL is the fastest primarily because theniegris unconditional.
The actual shape is not so different from the theoreticgyshkepicted in Figure 4.1.
In fact, with only two samples per generation according tse setting of PBIL, the
probability of learning a0’ is not null (e.g. 0.25 at the beginning of the run) so the
model is sometimes updated toward the wrong directionhtjiglowing down the
actual convergence speed. When solving a one bit One Max|tmoral learning
prevents the models of cGA and vVQEA from moving toward thengrdirection and
also significantly decrease their convergence speed. Iti@idhe asymmetric se-
lection makes VQEA slower than cGA. Indeed, the probabdftypdating the single
dimension modeP on this particular problem igP(1 — P) for cGA andP(1 — P)

for vQEA.

Most of the time in VQEA, at generatiant- 1 eachQindividual attractorA, (¢ +
1) corresponds to the last sampled soluti@iit). Nevertheless, according to the
structure of thepopulation and the local and global synchronisation pariedveral
Qindividuals can also share a common attractor during onergéion.
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4.1.4 Population structure

Because of the numerous aforementioned specifics of vVQEAamdpo other EDAS,
it is clear that even when considering only a sin@i@dividual, vQEA is an original
EDA. Nevertheless, what makes vVQEA unique is that it wasgthesl as a coarse-
grained algorithm with a complex structured populationdhdividuals. The sit-
uation can be easily compared to multiple demes in EA whelbepspulations are
artificially separated to promote speciation and where atiign allows to share in-
formation between demes. We note several interesting ptseafi multi-population
EDAs (Ahn, Kim, & Ramakrishna, 2003b; Ahn, Goldberg, & Ramahria, 2003;
delaOssa et al., 2006; Madera et al., 2006).

In VQEA, the structure of the population is fully determin®dthe number and
the sizek of the Qgroups together with the so-called local and global synaisegion
periods, denoted,.,; andSypa respectively. Actually there is not a single fixed
topology but rather three superimposed levels of organisatappearing iteratively
according to the synchronisation periods. As an examplenvehglobal synchroni-
sation occurs at timg the best attractor among tii#population is selected and then
used at time¢ + 1 by thep = ¢ x k Qindividuals. Therefore, at that particular time,
the group structure of th@groups does not matter. The situation is the same for the
Qindividuals in aQgroup that are to some extent connected but only during & loca
synchronisation event.

In this study we are interested in three different structuagpopulation contain-
ing only one singlelindividual, aQpopulation containing a singl@group consist-
ing of severalQindividuals and finally the most complex one Gpopulation con-
taining severalgroups of severalindividuals each.

4.2 EXPERIMENTS

In this section, PBIL, cGA, UMDA and vQEA are experimentaltyngpared to each
other. Besides the fitness performance comparison, we averdéyested in the
diversity loss, the scalability and the robustness of edgbrighm. However, the
performance and the overall behaviour of PBIL, cGA and UMDrstjly depend
on the setting of their parameters and the optimal settingsas a function of the
problem to solve. It is not the purpose of this study to find ni@st appropriate
setting for each algorithm and then to state that one algaris better than another.

2 The reader is referred to chapter 3 for a detailed discussiall parameters used in VQEA.
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| Algorithm | Setting | Name |
sGA M = 100, uniform crossover sGA
Pcross =1, Pmut = 0.01
PBIL M=10,R, =01, R,, =0.02, R, = 0.05 | PBI L

cGA n= \/TE\/Nlog N cGA
UMDA | M = 500, truncatiorny = 50% UMDA
g=1,k=1,A0 =7/100 VQEA, ;
g=1,k=10, A0 =x/100 VQEA,
VQEA Sglobal = 1
g=>5k=2,A0=m/100 VQEA; ,

Slocal =1, Sglgbal = 100

Table 4.1: Parameters settings for all tested algorithms

4.2.1 Experimental setting

We adopted different policies to set the parameters andglgbown in Table 4.1.
For vQEA, three settings are investigated: a sir@iedividual (vQEA, ;), one group
of 10 fully synchronisedlindividuals ¢ QEA, ;o) and5 groups of2 Qindividuals
synchronised every00 generation\(QEA; ;). The defaultf, gate as described in
chapter 3 is used. Fd?BI L, we decided to fix}/ to 10 in such a way that the
number of solutions sampled and evaluated in one generatiequivalent to both
VQEA, ;o andvQEA; ». Actually, according to (Shapiro, 2005), this setting igatle
for low-dimensional problems (N- 100). For cGA, the virtual population size is
adapted according to the problem size N following the recemmfation reported in
(Sastry, Goldberg, & Llora, 2007) whereas VDA a fixed setting suitable for high-
dimensional problems is used.

The experimental results presented hereafter are obtaynaeeraging 30 indepen-
dent runs consisting df)® fitness evaluations for each algorithm and problem tested.
We use a statistical unpaired, two-tailetest with95% confidence to determine if
results are significantly different.

4.2.2 Diversity loss

The drift phenomenon in EA refers to the loss of genetic dikgidue to finite pop-
ulation sampling. In (Shapiro, 2005), the loss of divergtgtudied in the context of
EDAs: It is shown that without selectione. on a flat landscape, the variance of the
probabilistic model iteratively decays to zero and consetjy the model converges
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towards a fixed configuration. Most EDAs do not compensatehigrand the lost
diversity cannot be restored. Moreover, it is also showh fioa a non flat problem,
the random drift may counteract the effects of selectioner@éfore, the parameters
of the algorithms have to be tuned properly so that seleditite main force driving
the search.

In this section, an empirical comparison of the loss of diitgrof cGA, PBIL,
UMDA and vQEA using the settings reported in Table 4.1 is genied on different
benchmark problems. Following (Shapiro, 2005), to estntla¢ diversity of the bit
strings sampled by an EDA at generatipmve compute the varianceas:

o(t) = Z PI(t)(1 —P(t)) (4.4)

whereP’(t) is the ;! element of the probabilistic modét at generatiort. In the

case of VQEA, the average modeit) over thep Qindividuals ¢f. Eq. 4.3) is used
instead. The maximum diversity correspondsigo= N/4 andv(t) = 0 indicates
that the models have converged.

We have seen in section 4.1.2 that the selection procesardeieg the learn-
ing phase of VQEA is asymmetric since the update of a m@yedccurs only if
f(A;) > f(C;). On a flat landscape this situation is impossible, therefgrean
not vary and vQEA can not loose diversity. v(t) = vo. We note that this is the
optimal behaviour for an EDA since if no information is prded each solution of
the search space keeps an equal probability of being samplhedprevious remark
also stands for the so-called needle-in-the-haystackigmobNevertheless, the drift
phenomenon exists in VQEA as well and can be monitored if wienadse to the flat
landscape. We assume a random noise such that the fitnetseigedr 1 with an
equal probability.

Here we analyse the average empirical variar{¢gas a function of the number of
fitness evaluations for a noisy flat landscape; two NK-laades® with K equals0
ands; and a One Max problem. The size of these four problems is fxéd = 2048
variables.

In the noisy flat landscape problem only random drift can edhs convergence
of an algorithm,cf. Figure 4.3. PBI L is the algorithm that is the most prone to
loose diversity, withu(t) = vy /2 after only 720 evaluations, probably because the
setting of the learning rate is not suitable for high dimenai problems. We see

According to (Weinberger, 1996), the K interactions bewéhe N parts of the systems are chosen
randomly and the corresponding problem has been provedhbeomplete for< > 1.
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Diversity loss on Noisy Flat Landscape N=2048
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Figure 4.3: Loss of diversity on noisy flat landscape

also the effect of the mutation operatorRRBI L that perturbs the probabilistic model
and guarantees a residual level of diversity arouf@iN R,,, Rs(1 — Ry), (cf. Ap-
pendix A for a detailed description of the mutation operatdPBIL ). With L=250
for UMDA andn=305 forcGA, the average loss of diversity of both algorithms ap-
pears surprisingly almost identical and is also very slompared toPBI L with
v(t) = vy /2 after around 85,000 evaluations. When comparing the losssefgity
of vQEA, ;o andvQEA, ;, we found that the shapes of the two curves are identical
and that only their convergence speeds differ. Actually,|tss is exactly ten times
faster forvQEA, ; than forvQEA, o, with v(t) = v,/2 after2,400 and24, 000 for
VQEA, ; andvQEA, j, respectively. vQEA; , reports the smallest loss of diversity
since afterl0° fitness evaluations we still havét) > v,/2.

From (Shapiro, 2006), we know that the mathematical expess the loss of
diversity of UMDA on a flat landscape is :

vumpa (1) = ;(1 - 1/L)t (4.5)

We claim that this expression stands also for the noisy fteldaape as defined above.
An attempt was made to fit the varianeg) of vVQEA by varyingL in Equation 4.5
for N=2048. It was clear that the loss of diversity of VQEA damt follow the same
model as UMDA. Nevertheless, the most appropriate valuesddor L were 65,
160 and 350, fov QEA, ;, VQEA, 1, andv QEA; , respectively.
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Diversity loss on NK-Landcapes N=2048, K=0
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Figure 4.4: Loss of diversity on NK-landscapes with N=2048

On N K-landscapes, the loss of diversity is due to selection onty the global
optimum is unique. FoK = 0, the N variables can be optimised independently so
this problem is considered easy to solve. Figure 4.4b shioaishie loss of diversity
is faster than on the noisy flat landscape for each algori#sted. The convergence
of the probabilistic models towards the global optimum ispansible for this loss
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Diversity loss on One Max N=2048
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Figure 4.5: Loss of diversity on One Max

and, except foPBI L, the variance(t) falls down to zero within the(° evaluations.
Apart fromv QEA; ,, the introduction of interactions between the variablagh(\W =

8) does not seem to affect the way the algorithms convergéoAth, we will see in
section 4.3.3 that the ten probability vectorsv@EA; , are all almost converged as
well.

When we rank the algorithms according to the number of evalusit at which
v(t) = vo/2, the noisy flat landscape and NK-landscapes have idenéioking. This
is no longer the case on the One Max, Iin particulard@A , cf. Figure 4.5. This
problem has no local optima but a single global optimum. Addally, some neutral
dimensions exist, since different solutions may have efjtradss values. Hence,
both selection and random drift are responsible for the ¢dstiversity here. As a
consequence, the convergence speed of the algorithmdsrtug the One Max than
on the previously studied problems. Nevertheless, thesltydoss forc GA is slower
than on NK-landscapes with K=0. Thus, we can reasonablynasthat the neutrality
of the problem is responsible for this behaviour and for therperformance of GA
reported in the next section.
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4.2.3 Scalability

In this section, we investigate the impact of the problera siz the number of fithess
evaluations required to find a global optimal solution. Fig experiment, we choose
the One Max problem as the global optimum is unique and knovadvance. Each
of the algorithms is applied on the One Max problem wihvarying from50 to
2,000 bits. The parameter settings reported in Table 4.1 wereweagtanged for all
the algorithms.

Figure 4.6 shows the number of fitness evaluations as a &mofithe problem
size N on One Max. For each algorithm, the filled symbol ingisahat the global
optimum was found in every single run being performed. liyostme of the runs
were successful, an empty symbol is used instead, and if, ibaesymbol is not
plotted.

For small problem sizes, all of the algorithms except GA were always able to
find the best solution. It is noted that, for almost every peobsize,c GA was un-
able to find the global optimum in all of the runs. The numbeewadluations grows
exponentially folPBI L when facing a problem size of > 700. It has to be noted
that we have chosel = 10 individuals forPBI L to give an equal number of eval-
uations per generation comparedvtQEA, ;,. For small problem sizes, this setting
seems to be very suitable,g. for N < 600 the average fitness evaluations required
are the lowest among all other algorithms. We tried othdirggt for PBIL, but none
of them scaled well. For example, usingl = 25 individuals PBIL performed poorly
for small problem sizes, but fa¥ = 1000 all 30 runs converged to the global opti-
mum, which required on averagé, 138 (o = 4139.4) evaluations. In a similar way,
the performance dfIVDA clearly depends on the problem size. Setting the population
size M to 500 is known to be suitable for high dimensional problems andéisalts
vary as expected; for small size problems the number of Bteealuations required
is nearly double the other algorithms but f§r= 2000, only vQEA, ;, outperforms
UMDA. vQEA, ;o shows an almost linear increase of fitness evaluations whiisis-
tently finding the optimal solution up to a problem size 660. At least in this study,
VQEA, ;, demonstrates a high scalability. Furthermore, this sipglameter setting
appeared to be suitable for a large variety of problem sikEscomparably robust
setting was found for any of the other presented algorithms.
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Figure 4.6: Number of evaluations as a function of N on the One Max problem
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4.2.4 Fitness

In chapter 3, VQEA was already compared to a standard Geflgtazithm (sGA)
on NK-landscapes and was shown to be superior in terms of §#kd and the
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Figure 4.8: Performance on NK-landscapes K=8

quality of the solution found. In this section, we want togstigate the performance
of PBIL, cGA and UMDA on the same optimisation problem. Thelgyaf the
results is presented in relation to a SGA. More precisely,average fitness of the
best solutions reached by an algorithns notedf’; and the relative performance of
Ais defined as the ratig / f 4-

In Figure 4.7, the relative performance is presentedNor= 2048. It is clearly
shown that each EDA outperforms sGA significantly. For smAalland therefore no
or low level of interaction between th€ variables)PBI L falls behindUVDA, c GA
andvQEA, ;o while the latter three do not show significant differencespared to
each other. Nevertheless, it has to be notedv&A, ;, shows the lowest variance in
the quality of the best solution found among all the otheoatgms. With K" > 10,
the performance dfIVDA andc GA drops significantly due to the impact of the higher
number of local optima in the fitness landscape. On the othed v QEA, ,, stays
rather unaffected by the problem difficulty, consistendparting betwee to 9%
higher fitness than a sGA.

Figure 4.8 shows the average best relative fithess of sepeyhlem sizesV for
fixed K = 8. For larger problem sizes\{ > 1024) each algorithm performs signif-
icantly better than @ GA . Again, vCQEA, ;, shows the lowest variation in the final

87
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Figure 4.9: Robustness as a function of the noise rate on One Max, N=256

fithess. There are no significant fitness differences for tbbelpm sizesV = 512
and N = 1024. For N > 2048, PBI L falls behind and, forV = 4096, v QEA, 1o
delivers the highest solution quality, performing slighiketter than each of the other
tested algorithms.

4.2.5 Robustness

Noise is known to be an important factor that influences Biamhary Algorithms.
Thus, the convergence robustness against fithess noise bf &8A, UMDA and
VQEA is studied here. We assume a multiplicative Gaussi@gerand we define the
noisy fitness functiorf as :

F(z) = f(x)-N(1,0%) (4.6)

with = an element of the solution space arfcthe noise variance. We also define the
robustnes® (%) of an algorithm as the ratio between the average best fitoessl f
when noise is applieds¢ > 0) and the average best fithess found without noise
(02 = 0). Experiments were performed on One Max with= 256 ando € [0, 1.5]

and the results are presented in Figure 4.9.
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For all algorithms, we know by construction tH&{0) = 1.0 and we see clearly
that this robustness is strongly impacted by the increasieeofoise variance. Nev-
ertheless, we distinguish two groups of algorithms. The fivsludesPBI L, cGA
andvQEA, ; and the second group is madeWWDA, vQEA, ;o andvQEA; ,. In the
first group, as noise is introduced, the robustness deaepsekly even for small
noise variance. For larger values of noise, the robustrestose to 55% which
is comparable to the performance of a random search on a OrepMalem. In
the second group, the robustness decreases comparatoxely and is still around
70% for o = 2.25, wherev QEA, ,, outperforms all the other algorithms tested with
R(2.25) = 74%.

We note that GA andv QEA, ; sample respectively two and one solutions per gen-
eration to update the probability vectors while witBl L only the best among ten so-
lutions is used. In the presence of noise, this low numbeawides processed leads
to decision errors. Indeed, a classical remedy known totevact the effect of noise
in EA is to perform multiple evaluations of the fithess. WWNDA M = 500, solu-
tions are analysed before a learning phase occurs. This tangber of evaluations
before a model update is probably responsible for the cgevee towards an aver-
age good solution. Population based search algorithmslsze&kaown to be robust
because of their self-averaging nature. We claim that inA@te Qpopulation acts
as a buffer against decision errors beca@sedividuals are able to share informa-
tion about the search space. Since QEA, j, all Qindividuals are embedded in the
same@group and thus follow the same attract6f,(,; = 1), the information share
is maximised and thereforeQEA, |, is the most robust of the algorithms tested here.
Moreover, we know from (Goldberg, 2002) that the interatdidetween variables
may be seen as a form of fitness noise by the algorithms whidl edso explain the
good results reported in the previous sectiorMQEA, ;, on NK-landscapes for high
degrees of apostasies’ (> 10).

4.3 ROLE OF MULTIPLE MODELS

In this section, we concentrate our investigation on the odlthe multiple proba-
bilistic modelP = {P,...,P,} in vVQEA.
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Evolution of Fitness on NK-Landscapes N=256, K=16
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Figure 4.10: Fitness evolution of single and multiple models vVQEA on NK-lapdsca

4.3.1 Do multiple models perform better than a single one?

VQEA has been originally introduced as a coarse-grainetlgopary algorithm
with several interactingindividuals. Nevertheless, we are not aware of any seri-
ous demonstration of the superiority of usin@population compared to using only
a single Qindividual. A fair comparison betweenQEA, ; andvQEA, , (i.e. not
based on an equivalent number of generations but on an égptivaimber of fitness
evaluations) is performed on One Max and NK-landscapedgm For all the ex-
periments carried out, the fitness of the best solution fautitlv QEA, ;, is better or
equal to the best solution produced WIREA, ;. As an illustration, in Figure 4.10,
the average evolution of the best fitness found on NK-larpssavith NV = 256 and
K = 16 is plotted forvQEA, ; andvQEA, ;, as a function of the number of eval-
uations. The setting of the parameters is given in Table Bdt.both settings, the
fitness improves quickly after few evaluations, Whil@EA, ; keeps a similar trend
until it prematurely convergences.QEA, ;, reports a more step-wise increase and
finally reaches a higher fitness level.

InvQEA, ,,, tenQindividuals synchronise their attractors at every gemnematus-
ing the best solution sampled at generation 1. This setting implies that the ten
corresponding probability vectord, . . . , P are all following a unique attractor and
therefore the same direction in the search space. If we asthaheach modép;(t)
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is not so different from the mean modelt), having several models instead of only
one may appear redundamnpriori. Nevertheless, the benefit of using multiple mod-
els is clear when demonstrated experimentally. Hence, vesimgate two different
hypothesis to explain the better results obtained wifEA, ;,.

In the first hypothesis, we assume thalEA, ,, benefits from the fact that the
search direction is chosen after sampling ten solutibespne per model. For that
reason, we propose to produce ten solutions from the simgleapilistic model and
then to use the best among them as the next attractor. Thositalp is denoted
VQEA, 1.c10in Figure 4.10. We see thatQEA, ;.10 is outperformed by QEA, ; and
VQEA, ,, in terms of speed and average fitness of the best solutiomifoun

In the second hypothesis, we assume W@EA, ,, benefits from a slower conver-
gence speed. We note thatuiQEA, ,,, it may happen that only one vect®; out
of any ten is updated during one generationn that case, the average mod&(t)
moves very slowly towards the attractor and the update stepespond ta\d/10.
Therefore, we propose to evaluate the performance of aes@gidividual vVQEA
with a ten times smaller update st&y = 1/10 x 7/100. As expected with this
setting, the algorithm denotedEA, ;. in Figure 4.10 reports a slower convergence
speed and outperformaQEA, ; in terms of fitness. The fithess increases slowly in
a step-wise manner similar wQEA, ;, but finally reaches a significantly smaller
fitness value.

We have gone to great effort to reproduce results similar@QgA, ;, using one
probabilistic model only but have not been successful. &loee, we claim that, even
when they are fully synchronised (and so almost equal), thiipre probabilistic
models perform better.

4.3.2 Adaptive learning speed

The interplay of the fully synchronised multiple models magd to an adaptive
learning speed. To illustrate this we plot the evolutionhef mean modeP(¢) when
solving a one bit One Max problem foIQEA, ;, vQEA, ;. andvQEA ,,, see Figure
4.11. For that specific experiment the initial probabiliyset tosin?(Ad) ~ 0. The
only difference betweenQEA, ; andvQEA, | s is the setting oA and consequently
their convergence speeds. We see that for these two settirggvolution of the
probability looks like amrctan function. In particular, the shape of the two curves
is identical when the probability leavéisor when it reacheg. On the contrary,
for vQEA, 10, an asymmetric behaviour is observed: the average pratydbaves)
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much more quickly than it reachésMore precisely, the average probability evolves
in a way similar tov QEA, ; when moving away frond and then similar to QEA, ;.
when approaching. This is a very desired behaviour as we expect that the #hgori
dedicates more effort to exploring the promising areas ®ftarch space.

Actual variations of multiple probabilistic models

Probability

-—— VQEAl’l 1
vQEAlyl_S
VQEA; 10

15000 17500 20000
Iteration

Figure 4.11: Actual variations of the mean probabilistic model observedfarelift configu-
rations of vVQEA

This phenomenon can easily be explained when considerengetof ten vectors
{P1,..., P} Atthe beginning of this experiment, almost every produseldtion
C; is '0’. When by chance al’ is sampled, it becomes the next attractor for the
Opopulation and so there is a high probability that the ten ef®dre updated at
the same time. Therefore, the learning spee®(f) can be highj.e. depending
on Af. Afterwards, the number of models updated during one géparatarts to
decrease. The extreme case is when only one model is updakesi results in a
much more slower learning speed B(t), i.e. corresponding td /10 x Ad. The
situation can be seen as a voting mechanism controlling\beath learning speed.
When theQindividuals all agree that a certain direction in the seapace is not
appropriate their models all move away and subsequentlgubemge model moves
quickly. Conversely, when they disagree, the mean model snwee®y slowly, giving
more accuracy and therefore more time to the algorithm tk geeright decision.
This adaptive learning speed might also be responsiblentogtiality of the results
reported for vVQEA in terms of robustness to fithess nageséction 4.2.5).
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Evolution of Fitness on NK-Landscapes N=256, K=16
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Figure 4.12: Fitness evolution of mean and multiple models vQEA on NK-landscap

4.3.3 Do multiple models perform better than a mean model?

In the two previous sections, it was assumed thatQgA, ,, the modelsP;, ..., P
are almost identical at timeand therefore equivalent to the mean moBét). Sub-
sequently, it was assumed that the distribution of solstiorthe set{C', ..., C1}

sampled from the ten models at tim&as to some extent equivalent to the distribu-
tion obtained when sampling ten solutions fr@ni). We now evaluate the validity
of this assumption fov QEA, ;, but also forv QEA; ».

For that purpose, we introduce two variants, denat@A, ., andvQEA; 5.,
where the mean model is used for sampling. More precisedyptterall structure
and settings of the algorithm are kept unchanged excepathaan modeP(t) is
computed every generation and then used to produce thedndhsolutionsC;(t).

In particular, it is noteworthy that the adaptive learnipgead described earlier works
for these two variants as well. Therefore, any noticeabiiatian in the performance
of the algorithm is only caused by the use of the mean modeFidare 4.12, the
average evolution of the best fitness found on NK-landscatedN=256 and K=16
is plotted as a function of the number of evaluations.

We note that the two curves obtained f0QEA, ;, andv QEA, ;o., are very sim-
ilar and their average final fithess values are statisticdéptical. Notwithstanding
the slightly faster convergence ofQEA, ;, compared tov QEA, ;o.m, the assump-
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tion made in the previous section seems to hold on this pmob&ampling ten fully
synchronised modelB; is indeed comparable to sampling the corresponding mean
modelP. The situation is clearly not the same foQEA; .. While vQEA; , is the
best setting of VQEA tested on this problewQEA; . ,, reports extremely poor re-
sults. Therefore, it is claimed that when they are not fuigchronised the multiple
probabilistic models can perform better than the mean model

In v QEA; », five Qgroups each containing two fully synchronis@ihdividuals are
evolved and the best attractor among the groups is shareat,datg to the parameter
Sgiobal, EVErY 108" generation. However, in VQEA the attractors are systemiftic
replaced at every generation, so that a given synchroomsatn affect the evolu-
tion of the Qgroups during a single generation only. As a consequeneegribups
can evolve separately towards different regions of thecbespace. Withk' = 16
epistatic links in the problem, the interactions betweer2fit variables are impor-
tant and the problem is not easy to solve. WItREA; , eachQgroup can specialise
on different patterns of bits and the multiple models of vQ&law sampling a more
complex distribution of solutions than with a single prottigbvector.

4.3.4 Measuring diversity

In order to measure the diversity of the solutions sampledhkymultiple models

in VQEA, the variance(t), as defined in Equation 4.4, is not necessarily adapted.
Actually, in section 4.2.2, the variance was computed ugiregmean modeP(t)

but clearly this procedure does not consider the conditipr@babilities and is not
sufficient to represent interactions among variables. [Tkhes more the vectors
Py, ..., P, differ at timet the less the variance(t) is suitable. Hence, we pro-
pose another approach where two metrics are used to reptasetiversity of the
solutions produced at time the convergence of th@population denoted'onuv(t),

and the pairwise distance between iadividuals denotedist(t).

The convergence of @population reflects how th& Obits have converged in the
whole population. We defin€onv’, the Qbit convergence at locus

p
Conv! = Z%Z }Pf — %‘ (4.7)
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and so the convergence of tiigpopulation corresponds to the me@bit conver-
gence ovetNV Obits such that :

N
1 )
Conv = N E Conv? (4.8)
j

The pairwise distance between thendividuals reflects how their probabilistic
models differ. To represent the distanbest; ;, between two probability vectorB;
and?P;, we propose to simply compute:

N
Disty = - [P~ Pl (4.9)
J

Following (Wineberg & Oppacher, 2003), this metric can bgilganterpreted as the
proportion of mutational changes required to transformtaogsolutions sampled
from P; to a set of solutions sampled forR,.. Hence, the pairwise distance between
p Qindividuals corresponds to:

p p

Dist = p(%—l) ; g;l Dist; (4.10)
The evolution ofC'onw(t) together withDist(t) on NK-landscapes with N=2048 for
K=0 and K=8 was computed. The settingulEA; , was described in Table 4.ie.
five Qgroups of two synchronise@individuals are evolved and the best attractor is
shared according t8,,.,. Furthermore, the influence of the global synchronisation
period S, Was also investigated. The results averaged 8vendependent runs
of 10° evaluations are plotted in Figure 4.13.

For every curve, a common trend is reported. After the ilstdion phase, each
Qindividual defines a probability vectd?; whose elements are all set t¢2 and
thereforeConv(0) and Dist(0) are both equal td). At that particular time, the
diversity of the solutions sampled is maximum. Then, under déffects of selec-
tion (together with drift on neutral problems), tigpopulation starts to converge
with Conv(t) > 0 and the probabilistic models become more and more different
until Dist(t) reaches a maximum. Finally, the pairwise distance decseabde
the Opopulation keeps converging continuously. As expected,,; determines the
amplitude of the peak of maximum distance between the nbaltipodels. With
Sqiobar=1, the models are fully synchronised (asviQEA, ;,). For bothK = 0 and
K = 8, the maximum value foDist(t) with Sy = 1, is approximatelyr%. This
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Figure 4.13: Pairwise Distance betwe@imdividualsvs Convergence of th@population on
NK-landscapes . Results are shown from a single typical run.

very low value means that the multiple models represenfmdes (hypercubes) that
differ by 7% of their bits. With higher values fo$ ..., the Qgroups are more likely
to evolve towards different regions of the search space lamdniaximum value for

VQEA on NK-Landscapes with N=2048, K=0
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When the multiple models are not fully synchronised, Sy > 1, we note
major discrepancies between the caSe- 0 and K = 8, cf. Figures 4.13a and 4.13b
respectively: Fork' = 0, the maximum value foDist(t) is around25% when the
attractors are never synchroniset};{,.; = o), i.e. when the fiveQgroups evolve
separately. Afteil0° evaluations, we hav€onv(t) = 1 and Dist(t) = 0, even for
Sgiobar = 00. INn this situation, the fivedgroups have converged towards the same
solution of the search space. We observe also a saw-togbe sifidghe curves where
each tooth corresponds to an episode of synchronisatidreddttractors. Given that
K = 0, there is no local optima, so the information carried by ttismators is not
contradictory and is therefore exchanged smoothly betwez@groups.

For K = 8, the maximum value foDist(t) is aroundd0% for Syppa = 0. After
10° evaluations Dist(t) is not equal to zero and fd,;,pa = 50, Sy = 100 and
Sqiobar = 500 the Qpopulation has not converged. The saw-tooth shape diseppea
and instead the curves are very rugged, in particular §jth,; = 50. With K =8,
the information carried by attractors can be contradictony therefore not easily ex-
changed between th@groups, tending to slow down the convergence speed of the
Opopulation. Nevertheless, as long as the best performarteems of fithess is ob-
tained forS,;,,; = 100, some information is exchanged through the synchronisatio
process. Thus, multiple models in vVQEA allow a more diverggagation of the
search space than with only a single model.

4.4 CONCLUSION

Behind the quantum metaphor, VQEA is an original approachlibbbngs to the
class of EDAs. It clearly shares some common features witeraésimple EDAs
such as PBIL and cGA, but its performance is more similar to WVparticularly
with regard to the loss of diversity, the scalability and tbleustness to fithess noise.
Therefore, VQEA should benefit from prior work on simple EDiisere interactions
between variables are not taken into account.

The main differentiating feature of the VQEA is the multi-tiebapproach. In this
chapter, the advantages of manipulating several probalbictors instead of only
one were empirically demonstrated. First, VQEA is an effeclgorithm that works
with fairly generic settings of the control parameters faradlection of benchmark
problems of various sizes, with different levels of intdraigcs between variables and
numbers of neutral dimensions. Note that no particulartsffbave been dedicated
to finding the best possible settings of VQEA, but rather argedirectly borrowed
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from previous work on QEA was used, even though the behadbQEA is quite
dissimilar to VQEA, and it was investigated on a very diffareest problem.

Second, th&@population buffers against a finite number of decision armaking
VQEA robust against fithess noise.

Finally, we have shown that vVQEA can perform better than rosaple EDAs
when links are introduced between variables. These integesesults about the
multi-model approach in VQEA can be explained by the adepéarning speed and
a more diverse sampling of the search space compared toE@D#s with a single
probability vector. Future work might compare the mechasiof existing multi-
model EDAs approaches (Zhang et al., 2002; Ahn, Kim, & Ranshki, 2003b;
Ahn, Goldberg, & Ramakrishna, 2003; delaOssa et al., 200@tevéaet al., 2006; S.
Zhou & Sun, 2005a) to the one used in VQEA and evaluate thatire performance
empirically.

The way theQpopulation is structured,e. number and size of th@groups to-
gether with the local and global synchronisation periodgatly controls the adap-
tive learning speed and the diversity of the solutions sathply VQEA. To properly
choose this structure, we suggest the following approaicst df all, theQindividuals
should be fully synchronised in @group (withS;,.., = 1) of sizek in such a way
that £ determines the variation of the learning speed frafyk to Ad. Second,
several@Qgroups should be introduced as long as the problem is knowepirt a
significant number of local optima or similarly a significaevel of dependency be-
tween the variables. Then the global synchronisation gexamtrolling the diversity
of the sampled solutions can be set inversely to the sizeegbtbblem.

Despite the scalability of VQEA, the generic setting pragub this study is prob-
ably not optimal and therefore a general expression shauptdposed. In particular,
the optimal setting oAA@ according the size of the problem is still unknown and inas-
much asAd gives the fastest learning speed, its setting should bstigated, at least
empirically, for example on a simple One Max problem.

We have seen that one of the strengths of VQEA comes from thaadisation
of 9groups on diverse sub-spaces. Actually, only the stochasthaviour of the
Qindividuals driven by fitness selection makes tBgroups converge towards dif-
ferent regions of the search space. So far, even with a vergyochronisation fre-
guency, we can not guarantee the diversity of the samplingery problem. This
guestion should be explored so that extra mechanisms fariagspecialisation can
eventually be added.

The impact of the synchronisation events on the probaigilisbdels has been
shown to be rather limited. Nevertheless, the synchrapisaif attractors defini-
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tively helps the multipleQindividuals to optimise non-decomposable problems. So
far, the extent to which these problems can be solved usirigAvf@mains unclear.
From the experiments presented in this study, one may cdathat the performance
of VQEA is somewhere in between the one reported by the siamdethe complex
EDAs. Therefore, the efficiency of vVQEA in terms of exchanf@etormation and
mixing building blocks should be addressed in future wook gixample using a flex-
ible benchmark such as the Random Additively Decomposaldblé&mns (Pelikan,
Sastry, Butz, & Goldberg, 2006), in which the variable intdi@ans can be explicitly
controlled and also the global optimum is known.






EXPLORING NOISY SEARCH SPACES WITH VQEA

Noise is a typical property of most real world problems. Thile capability of
an optimisation method to handle noisy or inaccurate inédgrom obtained from the
fitness criterion is generally regarded as a very importegycpndition for a success-
ful application of the method for real world applications dhapter 4, vVQEA has
demonstrated promising results especially on problemis iigher epistasis. The
relationship between epistasis and fithess noise has baemed many times in lit-
erature and epistasis may be interpreted as a certain fonois¢ (Goldberg, 2002).
Due to this connection, we discuss the robustness of vQEWschapter.

The analysis of EAs optimising noisy fitness functions isfiheus of many cur-
rent research papers. The main effects of fitness noise aceiloed as the decrease
of convergence velocity and a residual location error ofadpmum in the search
space (Beyer, 2000). Noise can also introduce false optinteifitness function,
a phenomenon first described as noise-induced multi-ntgdal(Sendhoff, Beyer,
& Olhofer, 2002) and studied comprehensively in (Beyer & Swrif] 2006). An
excellent survey of recent developments in the field of noéd&ted optimisation can
be found in (Jin & Branke, 2005).

One known remedy against fitness noise is the explicit antdéihaveraging (Fitz-
patrick & Grefenstette, 1988). The general idea of exphgigraging is to estimate
the quality of a given solution by explicitly computing theedage of several (noisy)
fitness evaluations. Early studies have proposed the use adaptive scheme,g.
in (Aizawa & Wah, 1993) and (Aizawa & Wah, 1994) for the geoetigorithm, in
which the sample number increases in later generationseatblutionary process.
The implicit averaging suggests an increase of the populatize of the used EA.
The effects of noise on the evaluation of a certain solutiertlaen likely to be com-
pensated through the evaluation of a similar solution. I$ whown in (Miller &
Goldberg, 1996) that noise has no effect on proportionacsieln if the population
size is infinite. Another possibility to cope with fithess smis to modify of the selec-

101
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tion process. In (Markon, Arnold, Back, Beielstein, & BeyerQ2}) a threshold for
comparing the quality of two solutions in an Evolutionarya®gy was introduced
where an offspring individual has to demonstrate a conaligrbetter fitness in or-
der to replace its parents. An optimal normalised threshald found on the noisy
sphere problem. In this study we want to investigate whetieemultiple probabilis-
tic model used in VQEA is beneficial in the context of noisyreRa&paces.

Many studies address additive noise of constant stremngthall solutions in the
search space are equally impacted by noise. For real wasltlgmns the assumption
of constant noise levels is not necessarily true and indaectan imagine many ap-
plications in which the noise is directly related to an arethe search space and thus
not constant. More specifically, some solutions may sufferendue to noise than
others. One example is the measurement error of physicalesemetering proper-
ties like temperature or light intensity. This error is gexlly given as a proportion
of the actual measurement. An error#$% results in a low absolute noise level for
low-valued measurements and a higher one for high-valuetsutements. A theo-
retical analysis on proportional noise was undertaken bndl & Beyer, 2003) to
compare Evolutionary Strategies to direct search methiod$heir model, the noise
was considered to be proportional to the fithess function(DinPietro, While, &
Barone, 2004), the use obise landscapewas suggested. These define the noise
level as dependent on the given fitness landscape. Diffex@sé levels can be as-
sociated with any solution in the search domain. In this tdra@ general model
based on noise landscapes is proposed and used to expaillgnanalyse the impact
of noise on VQEA and to compare its performance to threeicksSEDA, namely
UMDA, cGA and PBIL, as previously discussed in chapter 4.

The rest of the chapter is organised as follows: In sectibw& present the noise
model used, followed by the experimental analysis in sacii@. The benchmark
problems along with their motivation and suitability arsdissed and the obtained
results are presented, followed by the discussion and gsiocl of this chapter.

5.1 NOISE MODEL

Similar to the noise landscapes suggested in (Di Pietro.,e2@0D4) and the propor-
tional noise in (Arnold & Beyer, 2003), a general noise modgiresented, allowing
the application of any noise level to any solution in the skeaomain.
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Let « be a solution in the search space giid) a fitness function measuring the
quality of z. The following noise model is defined:

F(z) = f(x) 4+ om 6(x) N(0,1) (5.1)

whered(z) : = — [0, 1] is a function describing the proportion of the maximum noise
strengtho,,, at each point in the search domain so that the prodyjcé(z) defines
the noise variance associated with a given solutioN (0, 1) is a normal distributed
random variable. We note that, in this model, the noise dépen the location in
search space. Therefore the level of noise may be diffetertyapoint in the search
space. Nevertheless, it is also possible to model constiaitivee Gaussian noise by
settingd(z) = ¢, ¢ € [0, 1].

In this study several functiongz) are investigated:

1. Constant noise — The noise level is constant at every poithiei fithness land-
scape:

dz)=¢, ce€|0,1] (5.2)

2. Linear Noise — The noise level depends on the fitness lapdgce. the noise
increases/decreases linearly in areas of higher fitnesksiev

d(z)=af(x)+0b (5.3)

wherea, b € R. It is worth noting that this noise type is also called muitia-
tive noise.

3. Cosine Noise — The noise level varies periodically oveffithess landscape:
d(z) =0.5cos(wm f(x)) +05+0b (5.4)
wherew > 0 controls the periodicity antithe minimum noise strength.
5.2 EXPERIMENTS
In this study we experimentally compare the behaviour of {8Arik et al., 1999),

PBIL (Baluja, 1994) and UMDA (Nihlenbein & Paass, 1996) to several configura-
tions of VQEA. The experiments are performed on three beackmproblems each
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having different characteristics. The first is the simpledasiunting problem (One
Max) consisting in maximising the number of ones of a bitgjriHere the fitness is
normalised to be in the intervé), 1] by dividing the fithess by the problem si2é
More formally, the problem is described as finding a bit veete- {z, z5,..., 25},
with z; € {0, 1}, that maximises the equatiofyn(z) = ]%,vazl z;. One Max
has only a single optimum but also some neutral dimensianse swo different
bit strings may have the same fitness value. The phenomerganefic drift is more
likely to impact the search causing a faster loss of diversit

The other two problems belong to the family of NK-landscafwes introduced
in (Kauffman, 1993). NK-landscapes are stochasticallyegated fitness functions
parametrised by indicating the number of variables (problem size), @&hdavhich
defines the number of interactions between these variabl&slandscapes do not
have any neutral dimensions, so all solutions in the seq@teshave a unique fitness
value being in the interval, 1]. For K > 1 the optimisation problem is NP-complete
as shown in (Weinberger, 1996). Far = 0 this fitness function has only a single
optimum. Increasings results in an increasingly rugged fitness landscape wittyman

oN

local optima (.e. 7 optima for K=N — 1). We chosek = 0 and X' = 4 with

N = 256 as two representatives for this study.

5.2.1 Settings

Four different noise landscapes are considered. As theséithenctions for all of
the problems are normalised to the same interval, we carhesgaime noise model
parameters for each problem.

e Constant Noise This noise model assumes the same noise strengtor any
solution in the search space. Therefore we chose accordiaguation (5.2)

c=1.

e Positive Linear Noiseassumes a linearly increasing noise strength for better
solutions, more precisely the better the solution the higlenoise. It is note-
worthy that this type of noise is also referred to as multgtive noise. We
chosen = 1 andb = 0 as parameters for equation (5.3).

e Negative Linear Noisassumes a linearly decreasing noise strength for better
solutions, more precisely the better the solution the Ialwvemoise. We chose
a = —2 andb = 2 as parameters for equation (5.3).
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Figure 5.1: Expected value df(x) as a function of the (noise free) fitness functiffx)
used in the One Max problem of si2é = 256. The error bars (in light col or)
represent the standard deviation of 10,000 samples drawnHramfor each of
the possible 256 fitness valugér).

e Cosine Noise- In this model the noise strength changes with a certain fre-
guencyw. We parametrised equation (5.4) with= 30 with minimum noise
strengthh = 0.

In Figure 5.1, the expected valué¥ F'(x)) were computed for distinct fithess
valuesf(x) of a normalised One Max problem of si2é = 256. EachE(F(x)) is
obtained by averaging 10,000 samples drawn f#of) for each of the possible 256
fitness valued'(z). The impact of the different noise types on the fitness laayoksc
is clearly visible in the figure.

All experiments were performed using varying maximum npise. o,, =
0,0.2,0.4,...,2. For each experimenif runs were performed and the results aver-
aged.

In each run, the best solution (in termsofz)) of the last generation is chosen as
a representative for the best solution found in an algorithins noteworthy that the
global best solution found during the entire run (in termg¢#)) usually can not
be used as a representative since in some noise landscapesish strength is the
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highest at an early stage of the run. Therefore, the glokstldmution would most
likely represent the solution with the highest noise leWaugh the algorithm might
have converged to a different area in the search space.

It is well known that search algorithms should be carefullyetd according to the
level of noise of the problem to solve (Goldberg, Deb, & Clak®91). Therefore,
a comprehensive parameter study was undertaken in whifgretit configurations
of the algorithms were tested, in order to identify the bedtirsgs for each noise
landscape on all three benchmark problems.FRirL, 60 different combinations of
population size and learning rate were considered. Thealipopulation size is GA
was explored ir28 different settings. A&JVDA requires only the proper adaption of
the population size, ten different sizes were investigéei. VQEA is a coarse-
grained algorithm allowing a complex structure for the dapan of Qindividuals.
Four structural settings were investigated: a sir@iedividual (vQEA, ;), one group
of ten fully synchronised®individuals ¢ QEA, ,,), five groups of twoQindividuals
(vQEA; ») and ten groups of on@individual (vQEA, ;). All structures employ the
default H, gate as described in chapter 3. For each structure, théoroeigleAd
and the global synchronisation perisy;...; were explored, totalling4 different
configurations. All algorithms were allowed to perfoiri fitness evaluations. The
complete parameter study is presented in Appendix C. As & adghis analysis, all
tested algorithms are optimally configured for the presepteblems. The settings
for all methods are summarised in Table 5.1.

5.2.2 Results

Figure 5.2 shows the results for the different noise langiss#or the NK-landscapes
andK = 0. As expected, the performance of all algorithms is impabteishcreasing
levels of noise leading to an asymptotic convergence of theds towards a mini-
mum comparable to the performance of a random search.

In the case of constant noise, all of the algorithms havelairperformance, with
the exception oPBI L. For a positive linear noise landscapeEA, ,, is signifi-
cantly more robust than any other tested algorithm, follble v QEA; , , VQEA, ;
and UVDA, which deliver both almost identical result®Bl L demonstrates an in-
teresting behaviour for noise levels abavg > 1 as the robustness decreases sig-
nificantly more slowly than in other methods. This effectasised by the mutation
operator resulting in the inability of the probability vecto converge to some so-
lution. In the positive linear noise landscape, the levehaise is correlated to the
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OneMax

constant linear inverse linear cosine
PBIL M =10 M =100 M =10 M =10

Ri=R;=005| Ri=R;=005| Rj=R;=025| R =R;=0.01
cGA n = 250 n = 250 n = 200 n =190
UMDA M = 500 M =500 M =500 M =500
VQEA 10 A6 = 0.0057 A6 = 0.0057 A6 =0.037 Af = 0.00257

Sglob =1 Sglob =1 Sglob =1 Sglob =1
VQEA; 1 A6 = 0.00257 Af = 0.00257 Af = 0.00257 Af = 0.00257

Sglob =1 Sglob =1 Sglob =1 Sglob =1
VQEA;p,1 | Af = 0.0057 A6 = 0.0057 A6 = 0.027 Af =0.017

Sglob =10 Sglob =5 Sglob =25 Sglob =25
VQEA; - Af = 0.017 A6 =0.01l7 A =0.017 Af = 0.0057

Sgiob = 25 Sgiop = 10 Sgiop = 50 Sglob = 25

NK-landscapesk = 0

constant linear inverse linear cosine
PBIL M =10 M =100 M =50 M =10

R =R;=001 | Rf=R;=005| Rj=Rs=025| Rj=Rs=0.25
cGA n = 190 n = 190 n = 190 n = 190
UMDA M = 500 M = 500 M = 400 M = 500
VQEA; 10 | A0 = 0.0057 A6 = 0.0057 A6 =0.017 A6 =0.017

Sglob =1 Sglob =1 Sglob =1 Sglob =1
VQEA ; A6 = 0.00257 A6 = 0.00257 A6 = 0.00257 Af = 0.00257

Sglob =1 Sglob =1 Sglob =1 Sglob =1
VQEAp1 | A0 =0.017 A6 =0.017 A6 =0.017 A6 = 0.0057

Sglab =10 Sglob =10 Sglob =100 Sglob = 300
VQEA; - A6 =0.017 A6 =0.017 A6 =0.017 Af =0.037

Sgiob = 10 Sgtor = 10 Sgiop = 75 Sgiob = 300

NK-landscapesk = 4

constant linear inverse linear cosine
PBIL M =50 M =170 M =10 M =10

R =R;=005| Ri=R;=005| Rj=Rs;=0.01 | Rj=Rs,=0.01
cGA n = 220 n = 180 n = 160 n = 180
UMDA M = 300 M = 500 M = 500 M = 500
VQEA; 19 | A0 =0.017 A6 = 0.0057 A6 = 0.027 A6 = 0.00257

Sglab =1 Sglob =1 Sglob =1 Sglob =1
VQEA ; A0 = 0.0057 A6 = 0.00257 A6 = 0.00257 Af = 0.00257

Sglob =1 Sglob =1 Sglob =1 Sglob =1
VQEAo1 | Af =0.017 A6 = 0.017 Af =0.037 Af = 0.00257

Sgiob = 50 Sgiop = 10 Sgiob = 50 Sgiop = 10
VQEAs;2 | A0 =0.037 A6 =0.017 A6 = 0.027 A6 = 0.00257

Sglob =10 Sglob =10 Sglob =50 Sglob =10

Table 5.1: Parameter settings
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Figure 5.2: Robustness on NK-landscapes problEs)
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fithess landscape, since an increased real fithess corcespbrihe same time to
an increased noise level. Being guided by a solution with tgbdst noisy fithess

F(z) in every generatior?BI L is strongly attracted by areas with high noise levels.

VQEA, ;o behaves in a very similar way and climbs the noise landscfipeatly. In
the case of the positive linear noise landscape this syragsglts in an advantage al-
though following the highest noise in the search space nmighéppear advantageous
in general.

This assumption is supported by analysing the results tondgative linear noise
landscape. Climbing the noise landscape results here inraatecof fithess and is
hence misleading. Indeed, the previously beQEA, ;, delivers the worst perfor-
mance on this problem. The algorithm efficiently maximi$&s) and hence min-
imisesf(x) at the same time. The best performance is reportedJgA, ; followed
by UVDA andv QEA, ;.

The cosine shaped noise landscape belongs to the categwoigleading noise as
well. Here the noise level is periodically changing with anreasing fithess level
resulting in the maximum noise strength for many differesitisons in the search
space. These locally highest noise levels are known as npis®a. Several noise
optima exist. Here the averaging strategy implementedMyA delivers a superior
result, followed byvQEA, ;, cGA andvQEA,,;. Once morePBIl L andvQEA, ;
are quickly trapped on noise induced maxima and are unaldedape. Both deliver
the worst robustness in this experiment. EMDA, the performance decreases in a
step-wise manner which is due to the convergence of the pildipavector to two
different adjacent noise optima.

When comparing the results obtained on NK-landscapes torte obtained on
the One Max problem, one can identify some small differeteteeen the twocf.
Figure 5.3. Nevertheless, the rank of each algorithm resngenerally the same.
Again vQEA, ;, appears to be the most robust method on the positive lindéae no
landscape. The difference 8EA, ;, to all other algorithms is even greater com-
pared to theV K-landscapes. Also, all other versions of VQEA demonstratelg
performance among all tested methog€EA, ; and UVDA report almost identical
fitness evolutions on this problem. The performance diffeeeof the algorithms on
the negative linear landscape is more pronounced in One Biapared to theV K -
landscapedJVDA demonstrates a superior behaviour over all considereditigts.
Being the best version among VQEAQEA, ; also significantly outperformsGA.
Similar to the results obtained on thek -landscapes?Bl L andv QEA, ;, represent
the least robust algorithms on this noise landscape.

109



110 EXPLORING NOISY SEARCH SPACES WITH VQEA
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Figure 5.3: Robustness on One Max problem
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Adding linkage to the NK-landscapes wifki = 4 impacts the robustness of the
algorithms significantlycf. Figure 5.4. In general, the variability of the results is
much higher than on the easier problems. On the constard lamdscape, all meth-
ods are more or less indistinguishable in their performa&imilar to the previous
resultsv QEA, ,, performs very well in case of the positive linear noise coragdo
the other algorithms. On the negative linear landscaQEA, , is the highest ranked
method, closely followed bYIVDA andv QEA,, ;. UVDA is still the most appropri-
ate method for the cosine shaped landscape. Neverthdtepsriormance is clearly
strongly impacted by the increased difficulty of the prohlémr higher noise levels,
no significant difference to the other methods is observed.

5.3 DISCUSSION

In this section we investigate why some of the algorithmd$quar better than others
and what the differences between the vVQEA configurations/slefocus on classical
aspects like the selective pressure and the way the fitnedsdape is explored.

5.3.1 Robustness and selective pressure

At time t, search algorithms first collect information about the peobby sampling
solutionsz; in the search space, then they select promising solutipasd move
towards them. In the presence of misleading noise, the two faetors determining
the performance of algorithms are: i) the way solutienare selected,e. the se-
lective pressure ii) the way the solutionsare utilised to further explore the search
space. Therefore, we compare the selective pressure ofgbigtlams tested in this
study. The selection intensityy is computed by a very informative metric of the
selective pressure (tvhlenbein, 1997), as follows:

_ f(8) - fX)
=18 (5.5)

with X being a set of 500 solutions sampled by a given algorithmnduai rud, S

is the set of the solutions selected from f(X) and f(.S) are the average fitness of
respectivelyX andsS, ando (X)) is the standard deviation of the fithess of the sampled
solutionsX. We note that a high value dfcorresponds to a high selective pressure.

From each algorithn§00 succeeding solutions were taken after the evolution oft®finess evalu-
ations.
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Figure 5.5: The average final fithess of all algorithms relative to the seldatiensity. Each
point in this diagram represents the average selection intensity obtained in 30
independent runs, and the corresponding average fitness acbietleOne Max
problem using the deceptive negative linear noise landscape with nasgttr
om = 1. It is demonstrated that for higher selective pressures the perfoemanc
decreases on deceptive landscapes. All points were fitted using legrassion
(dashed line) in order to indicate the trend.

In Figure 5.5, the average final fitness of each algorithmesgmted as a function
of the average selection intensifyon the One Max problem. The average fitness
values are obtained from the negative linear noise lan@seaih 0, = 1, while
the values for the selection intensity are obtained by ayegathe intensities of 30
independent runs on the One Max for each algorithm. On thiserandscape, the
noise is deceptive and a low selective pressure is benefarian algorithm. We
clearly see that the algorithms reporting the highest setepressure,e. PBI L and
VQEA, ;, also report the lowest average fitness on this problem. Anadimgethods
they are biased to follow the misleading information on ivisblem the most. On
the other handy QEA, ; has the lowest selective pressure and reports the bestperfo
mance. For the other algorithms, the situation is less.c&ane of them have a very
similar selective pressure while reporting very differpetformance. In particular,
according to the intensity selectionGA selects solutions in a similar way compared
to VQEA, ;, but seems to be less able to exploit these solutions in dibihevay.
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UMDA has a comparably high selective pressure, but can expéostetected solutions
much better than for examp&GA.

5.3.2 Exploration of the noise landscape

To better understand the behaviour of the algorithms in tlesgnce of noise, we
investigate the way a noisy search space is explored. Tdrerethe cosine noise
landscape on the One Max problem is considered here, betaisehieved aver-
age fitness for noise strengths, = 1 shows a large difference between the tested
algorithms.

In Figure 5.6, the darker grey points of coordinatgs$s), F'(s)) correspond to
the (real and noisy) fithess of solutiorse s; that have been selected and then
used by the EDA to update their probabilistic models durinmgra The number of
solutions ins; is different among the algorithms tested here. To followdizreamics
of the exploration, we grouped 250 succeeding selectedaods together in sets
and plotted the averaged paif(.S), F'(S)). Those points define the trajectory of an
algorithm through the noise landscapé black points in Figure 5.6.

To properly explore a noise landscape, an algorithm hadito&e the real fithess
f of a given solutionz. One way of achieving this is first to measure the noisy
fitness more than once,g. Fi(z), ..., F,,(z), and then to integrate the information
collected, for example by averaging the};‘rEiFi(x) ~ f(x), cf. (Fitzpatrick &
Grefenstette, 1988).

The performance of the different algorithms can be partjglared from the po-
sition of the selected solutions in the noise landscape. The exploration realised by
PBI L is clearly too biased towards large valuesraf Thus, the estimation of is
very poor and the algorithm is stuck in the first encounter@darinduced optimum.
The situation is very similar fov QEA, ;,. We note that for these two algorithras
correspond only to the fittest solution (accordingftpsampled at timeé. As seen
previously, this selection scheme is responsible for a bajhaction pressure and is
an inappropriate strategy for exploring a misleading ntaselscape. In the case of
VQEA, ; andcGA, the selected solutions cover a wider range of' values around
the real fithesg and consequently the corresponding estimatiofiisfbetter. As re-
ported by the trajectories in the noise landscape, bothigtigas avoid being trapped
in the first noise optimum and to some extent they are ablellmrfdhe real fithess
f. We note that, for these two algorithms,corresponds to the winner, according to
F, of a tournament of size two.
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Figure 5.6: Exploration of the cosine noise landscape on the One Mabeprolbhe choice of
atoo aggressive selection strate@Bl L, vQEA, ;o) leads to an effective climb-
ing of the noise landscape onlyQEA, ;, c GA andUVDA are more successful due
to a lower selective pressure in the selection scheme. The true fithessdpads

can be explored effectively by averaging the fitness of a larger nuoflbesisy

solutions.
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With regard toUVDA, the selected solutions cover only the upper part of the
noise landscape. This strategy should lead to a poor estimatt the real fithesg.
However, the trajectory reveals a very good approximatiofi.dn UMDA, half of
the solutionse; sampled at time are selected iR; and then averaged to compute the
probability model at+ 1. In this study, UMDA benefits from the fact that the noise is
normally distributed. Thus, the distribution of th&s,) values is a truncated normal
distribution for which the meai'(s,) is close to the real fitnesf(s,). This would
not be the case with a uniform distribution. We note that #tiategy is also not
optimal when interactions between the variables existasrted for NK-landscapes
with K = 4, since averaging the selected solutions erases the satteinteractions.

5.4 CONCLUSION

In this chapter the behaviour and the robustness of vVQEAweTakbenchmark prob-
lems using different noise landscapes was analysed. At ¢eathe tested bench-
marks the results demonstrate a significant benefit for v@specially when facing
noise that is positively correlated to the fitness landscalse called multiplicative
noise. Multiplicative noise is often found in real world ptems. It was shown that
the selective pressure during the evolutionary proces$easontrolled by varying
the population structure in vVQEA. Small population sizesambination with few
global synchronisation events decrease the selectiveymeswhile a fully synchro-
nised population structure increases it. This knowledgeery important for fine-
tuning parameters for the algorithm on noisy problems. Fiferént noise types,
different strategies are necessary and the populatioatsteineeds to be adapted to
the actual problem to solve. This requigepriori knowledge about the kind of noise
in the search domain, which is sometimes unavailable. Hancevolving selec-
tion scheme would be preferable and might result in an alkdoversion of VQEA.
This concept could be implemented using a heterogeneousaimm structure. This
would allow VQEA to switch between the strategies and chttosenost appropriate
configuration automatically.



OPTIMISING CONTINUOUS SEARCH SPACES - A
CONTINUOUS HIERARCHICAL MODEL EDA

Many real world problems require the optimisation of contins search spaces. Al-
though binary optimisation methods can be applied to tigk, tdhe use of a binary
representation for a real-valued search space is notaatsy since it introduces
some critical issues into the optimisation process. Amdegearliest studies point-
ing out the advantage of continuous over binary representin a GA was given in
(Janikow & Michalewicz, 1991). Each element of a continusakition needs to be
encoded by a number of bits. For the mapping of bit strings énteal value, addi-
tional computational overhead is necessary. Furthernaogeanularity is introduced
into a continuous search space. Since a single continuoiableais represented by
many bits, a binary optimisation method has to operate orvariables than a con-
tinuous optimiser. In other words, the one-gene-one-bfgiaorrespondence is lost
in a binary representation. Thus, scaling problems can peat&d, especially in the
context of high-dimensional problems or whenever a need fery precise optimisa-
tion of real-valued search variables arises. See (Janiktichalewicz, 1991) for an
experimental comparison of the time performance of binad/real-coded GA. Fur-
thermore, neighbouring solutions in the continuous domaght not be neighbours
in their binary representation, a phenomenon known as Haguliffs (Goldberg,
1990). Exploring the local neighbourhood of a solution maguire the optimiser
to flip many bits at the same time that will encourage preneatanvergence and
promote the phenomenon of hitch-hiking.

In the previous chapters, VQEA has demonstrated integestiaracteristics and
experimental results. The multiple probabilistic moded &ime hierarchical popula-
tion structure allow an implicit adaptive learning rate alhmakes the method robust
to its parameter configuration. Furthermore, the multi-ed@gproach allows a finite
number of decision errors resulting in competitive robastagainst fitness noise. It
was demonstrated that vVQEA performs better in terms of spaddolution quality
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than other first-level EDA, especially when links are intiodd between variables
(epistasis). Using several probabilistic models alsonadla more diverse exploration
of the search space than just using a single one.

In the following sections, the binary vVQEA is extended tadgahe area of numeri-
cal optimisation. The&bits used in VQEA are replaced by a continuous probabilistic
model and as a result the quantum metaphor is no longer kuitdhus, the novel
numerical optimiser is introduced as tbentinuous hierarchical model EDEHM-
EDA). Since all key characteristics of VQEA are still presencHM-EDA, similar
advantages of this method in comparison to other continesakitionary methods
are expected.

The chapter is organised in the following way. First the comgnts of cHM-EDA
are described and its functioning explained. Then its perémce is investigated on a
recently introduced state-of-the-art benchmark suitggé&than et al., 2005), which
allows a direct comparison of results to other numericahoigation methods in the
field. The effects of the multiple probabilistic model on lsd®lity and learning rate
are experimentally demonstrated and discussed in seaetiens. We also high-
light briefly the robustness of cHM-EDA in the context of npfgness optimisation.

6.1 CONTINUOUS HIERARCHICAL MODEL EDA

The probabilistic model in VQEA is based on a Bernoulli rand@ariable for each
bit which is referred to as &bit according to the quantum computing metaphor.
Sampling from such a string aPbits results in the creation of a bit string which
in turn can be evaluated by the corresponding fithess fumcti®ince we want to
consider continuous search spaces now, we have to rep8sthoulli distribution

by a continuous one such that it becomes possible to samglleatkles instead of
discrete ones. A number of approaches to employ and modeldsicibutions have
been studied in literature about continuous EDA. The migjafi approaches favour
Gaussian distributions as the probabilistic model, sontabte exceptions beingg.
(Servet, Trag-Massugs, & Stern, 1998), where an interval representation for the
PBIL was proposed, and (Yuan & Gallagher, 2003), where thbaastpresent an
improvement of the Gaussian based continuous PBIL, intredlas PBIL in (Sebag

& Ducoulombier, 1998), by implementing a histogram model.

We consider a continuous EDA based on Gaussian distrimitiene. For each
dimension; of the continuous search space and for each probabilistiehica ran-
dom variable following a Gaussian distribution is evolvétierefore, the distribution
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is fully described by two parameters: the meéﬁ and the standard deviati@xﬁj).
In each generation, samples are drawn forming real-valaetbxs whose quality can
be evaluated by the fitness measure. An update rule is thdzim;hnp)updatmgj ) and
aﬁj) to concentrate the search in promising areas of the seaace smaking higher
quality solutions more likely to be sampled in the next gatien. We will first de-
scribe the basic structure of the algorithm in detail, fokal by the presentation of
the chosen update rule.

6.1.1 Model and population structure

The overall structure of the proposed cHM-EDA is similar @BA. Like VQEA, the
continuous version is also a population-based search mhetl® behaviour can be
decomposed in three different interacting levels as degiict Figure 6.1.

INDIVIDUALS  The lowest (inner) level correspondsitwlividuals An individ-
ual: at generatiort contains a probabilistic modé};(¢) and two real-valued strings
R;(t) and A;(t). More precisely,P; corresponds to a string d¥ pairs of values

o)

1 . e )
F=F .. PF = SO (6.1)
The pair(ul(.j),af)) corresponds to the parameters of the distribution of;jthe

variable of thei®® probabilistic model. Each variable iR is sampled according to
ugj) andai(j), so thatR; represents a configuration in the search space whose quality
can be determined using a fitness functjforin most continuous optimisation prob-
lems, the variables have a specific domain of definition. @itHoss of generality,
we assume eaofjj) € R; to be defined in to the intervé-1, 1]. As a consequence,
eachrgj) € R, follows atruncated normal distributiorin the range—1, 1]. Trun-
cated normals can be sampled using a simple numerical proeadd the technique
is widely adopted in pseudo-random number generatione seéGeweke, 1991) for
an efficient implementation.

To each individuak a solutionA; is attached acting as an attractor fgr Every
generation,?; and A; are compared in terms of their fitness. Af is better than
R; (i.e. f(A;) > f(R;) assuming a maximisation problem), an update operation is
applied on the corresponding modél The update will move the mean values of
the probabilistic modeP; slightly towards the attractof;. The choice of a suitable
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Figure 6.1: Three interacting levels can be distinguished in the continuous mul&HBDA:
The individual, group and population level.

model update operation is critical for the working of theaalthm. We will elaborate
the details of the probabilistic model update in section®.1
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The update policy of an attractoet; can follow two distinctive strategies. In the
original QEA (Han & Kim, 2002) arelitist update strategy was used, in which the
attractorA; is replaced byRr; only if R; is better thar4; in terms of fithess. Due to
thenon-elitistupdate strategy used in VQEA is replaced at every generation. The
choice of the update policy has great consequences for gfoeithin and changes
its behaviour completely. Since no experimental conditonld be identified that
favoured the elitist attractor update policy, we concdeton the non-elitist version
during the course of this chapter.

GROUPS The second (middle) level correspondggtoups The population is di-
vided intog groups each containingindividuals having the ability of synchronising
their attractors. For that purpose, the best attractorefims of fitness) of a group,
denotedB,,,.,, is stored at every generation and is periodically distaduo the
group attractors. This phase of local synchronisation rgrotled by the parameter
Slocal-

POPULATION The set of allp = ¢ x k individuals forms thepopulationand
defines the topmost (outer) level of the multi-model appnods for the groups, the
individuals of the population can synchronise their attves; too. For that purpose,
the best attractor (in terms of fithess) among all groups @ei18),;,,.;, is stored every
generation and is periodically distributed to the groupaators. This phase of global
synchronisation is controlled by the parameigp..

6.1.2 Model Update

The update of the probabilistic model is particularly ietmg, since it governs how
the search space is explored by the algorithm. Among thectirginuous EDA pro-

posed in literature is the continuous version of PBIL (PBI{Sebag & Ducoulom-

bier, 1998), which uses independent Gaussian distribsifioneach variable of the
problem. Several variants for updating the mean and stdmtsiation of each Gaus-
sian distribution were presented and tested on a numbenchbeark problems. The
study in (Yuan & Gallagher, 2003) revealed a number of pnoislef the method and
as a result an entirely different probabilistic model waspmsed. In (Gallagher &
Frean, 2005), a new update rule is investigated and compatbd generalised mean
shift clustering framework. A general framework on conting EDA, namely Iter-

ated Density Estimation Evolutionary Algorithm (IDEA), siaroposed in (Bosman
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& Thierens, 2000), and the similarity to the EDA byliMlenbein et al. (1999) was
noted.

The common principle of all these continuous EDA is basechersampling of a
larger population. According to the fitness of the sampleliduals, the probabilis-
tic model is updated. High quality solutions have a stroriggract on the update
that drives the model towards promising areas in the seg@ates In cHM-EDA, the
situation is very different, since onlysanglesolution (for each probabilistic model)
is sampled in every iteration. Hence, the model update daphoon the density of a
population, but instead has to use a single attractor toparthe desired update. A
very interesting continuous extension of the compact Gewdgorithm (cGA) was
developed in (Mininno, Cupertino, & Naso, 2008), which saespmnly two solutions
in each iteration. Depending on the fitness, a winner andex kaslution is deter-
mined and the model is then shifted towards the winner soiutin (Mininno et al.,
2008), the performance of this real-coded cGA was invetsajby carrying out some
very small-scale experiments. Comparisons with the stainglametic algorithm and
the binary cGA did not show a significant advantage of thishoet Nevertheless, it
is very interesting to note that a probabilistic update Haseonly a single attractor
(or winner solution) is feasible and is used in some methods.

We formulate here an appropriate update rule for the prdibabimodels. Updat-
ing the mean:”) in the Gaussian variablgs straightforward. We adopt a mean shift
towards the value of the current attracté? at locationj, which is quite similar to
the mean update used in some methods mentioned above. Degpendhe distance
d9(t) = aW(t) — p9(t), a shift Aul(t) at generatiort is defined as a sigmoid
function:

: 2
which is then used to perform the update:
p It +1) = pD () + 0,AuY9 (t) (6.3)

In Equation (6.3) a parametéy is introduced, which we will refer to as the learning
rate of the mean. We note thgt corresponds to the maximum mean shift in a single
generation.

Figure 6.2 visualises the effect of the update operatiorihéndiagram, the mean
value was initialised tq.)(0) = —1 and then updated00 times towards the at-
tractora)(t) = 1,¥t < 100. We note the deceleration in the updateu6? when
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Figure 6.2: Theoretical variations of the mean vajfé obtained through the succes-
sive application of the update operator used in cHM-EDA. The mean was ini-
tialised to ,,N)(O) = —1 and then updated fot00 generations towards at-
tractora)(t) = 1,¥t < 100. Then the attractor was exchanged to become
aW(t) = —1,vt > 100 and the mean was updated for furthi€l0 genera-
tions. The update is asymmetrical since an attractor is approached slowly, bu
left quickly.

approaching the attractor. After generatiolr 100, the attractor is set tol)(t) =
—1,¥t > 100, which results in the update ¢f?) in the opposite direction. We see
that the update is not symmetrical{’) converges slowly towards an attractor but
departs from it quickly.

Updating the standard deviatiert’) is more difficult. If ¢¥) is decreasing too
quickly, the algorithm is prone to converge prematurelyjlevtoo slow a decrease
might cause its non-convergence. Furthermore, an undtatiacrease o) may
also resultin divergence. In that case, the resulting Gawsisstribution increasingly
resembles a uniform one (in the inter{iall, 1]) and the algorithm performs a random
walk in the search space. A small standard deviation allolwsal search on a more
specific area in the fitness landscape while a large deviatiows a stronger explo-
ration of the search space. It is not trivial to answer at Whime during the evo-
lutionary run the algorithm should stop the exploration atait a localised search.
Furthermore, this decision has to be made once more on tieedjassingle attract-
ing solution only.
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Figure 6.3: Theoretical variations of the standard deviatiéhobtained through the succes-
sive application of the update operator used in cHM-EDA. The standara-d
tion was initialised tar)(0) = 1 and then decreased fo60 generation using

Eq. 6.4. After100 generation the standards deviation was increased for another

100 generations. The update operator is symmetrical.

For the update of the standard deviatidfi (¢), the hypothesis is that’) (¢) should

decrease whenevef’) (t) represents a “promising” area in the fitness landscape. We

assume:) (t) to be “fit" when|d\¥)(t)| < oU)(t) at generatior. Thus, if the attrac-
tor aV)(t) is close tou)(t) (within the boundaries defined lay?)(t)), the standard
deviationo7) (t) decreases. It is noteworthy that solutions fulfilling thasdition are
more likely to be sampled than other solutions, which mehasdn average) ()
will decrease. Attractors that are more distanutd(t) and thugd") (¢)| > oU)(t),
will cause an increase of7)(t), since it can be assumed th&t)(¢) does not repre-
sent a promising area in the landscape.

We define the standard deviation update at generatsn

() x (1—0,)  if [dD@)] < oW (t)

: 6.4
oW (t) x (1—6,)"" otherwise ©4)

oDt +1):= {
In Equation (6.4) a parametéy is introduced, which we will refer to as the learning
rate of the standard deviation. In order to avoid divergehtayiour of the algorithm,
i.e. V) (t) increases indefinitely, the domain®f) (t) is restricted by defining upper
and lower bounds, such that,, < 0 (t) < yax.
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Figure 6.3 visualises the effect of the update operatiorthéndiagram, the stan-
dard deviation was initialised t6()(0) = 1 and decreased during 100 update steps
using Eq. 6.4. Again, we note the deceleration in the updafssvhen approaching
oV (t) = 0 and thus convergence. After generatior 100, the standard deviation
oU)(t) increases for another 100 update steps. We see that thiseuplerator is
symmetrical.

In Figure 6.4, the principle of the two defined update opesai® summarised.
Distant attractors (relative to the current mean of the Giansdistribution) result
in a large mean shift while at the same time the standard ti@viancreasescf.
Figure 6.4a. For close attractors, the mean shift is smallthe standard deviation
decrease<f. Figure 6.4b.

It is important to note that the probabilistic update oparatescribed above is
similar to the rotation gate used in VQEA. As shown in chagtethe size of an
update step using the rotation gate depends on the coneergénhe probabilistic
model. This phenomenon was described as a form of deceleratithe algorithm
before convergence. As seen above, the shape of the tloabnadriations of the
update operations demonstrate a similar strategy in cHMs;Ehce here also the
size of the update steps decreases with increasing comeergé the algorithm.

6.2 PERFORMANCE ANALYSIS

Among the most interesting aspects of a new algorithm is ptarosation perfor-
mance compared against other algorithms in the field. Irségtion, the performance
of the cHM-EDA is experimentally evaluated and comparemdine state-of-the-art
evolutionary methods.

The experimental methodology of evaluating evolutiondgpathms was repeat-
edly criticised in numerous publicationsf. e.g. (Hooker, 1995), (Whitley, Rana,
Dzubera, & Mathias, 1996), (Eiben & Jelasity, 2002) and &Gent et al., 1997).
The criticisms aimed mainly at the “random” selection of ttemark functions and
the lack of a clear motivation for this choice. Another issorinter-comparisons
arose due to the use of different measures to evaluate tf@mpance of an algo-
rithm (Eiben & Jelasity, 2002). Commonly used performancasuees are i) the
average success rate (Sk¢. the average number of trials in which an algorithm
was able to successfully solve the given problem, and iijriean best fithess (MBF)
value obtained after the termination of the algorithm. Bo#masures are meaning-
ful but can report very different outcomes. For instances possible to have a low
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u(0) S alt)

(a) Update operation for distant attractors

./M(t‘H)

pt)  ut+1) a(t)
(b) Update operation for close attractors

Figure 6.4: Update operation as used in cHM-EDA for a single Gaussisibdigon. For
each update step, the distanté) = a(t) — u(t) between the attractai(¢) and
the meanu(t) of the Gaussian distribution is computed at generatio(a) If
d(t) > o(t), the attractor is considered distant. It is assumed ffiat does
not represent a promising area in the search space. In this case the.fmgan
is strongly shifted towards the attractor (thick/green horizontal arrowevett
the same time the standard deviatioft) is increased to broaden the search.
(b) On the other hand, if the attractor is inside the boundaries definedtbyi.e.
|d(t)] < o(t), thenu(t) is already in a promising area of the search space. The
algorithm starts to localise the search by shiftpa@) only slightly towards the
direction of the attractor, while decreasingf) at the same time.

SR and at the same time a high MB&nd vice versa Different measures allow

1 The algorithm gets consistently close to the optimum, &rely converges at the actual optimum.
2 Most trials are successful, but a few report a very poor fitradss.
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more detailed insights into the tested algorithm and soiplelmeasures should be
included in the performance analysis.

Most of these issues are explicitly addressed by contempbenchmark suites.
For the special session at the Congress on Evolutionary Catnpu{CEC) in 2005,
an annual major event for the research field, a novel bendhsugte was proposed
(Suganthan et al., 2005). The suite consists of 25 benchimackions covering a va-
riety of different problem characteristics. The functiosasge from simple separable
uni-modal problems, over non-separable, non-linear, syanmetrical, rotated and
scalable functions, to complex hybrid composition funasian which several differ-
ent function properties are mixed together. Furthermansesnoisy benchmarks are
considered.

The suite was proposed as part of a competition on real-paesoptimisation
at the CEC’05. An explicit design goal of the suite was the pmltyi of inter-
comparisons between different methods. Thus, guidelimestétistical analysis and
presentation of results are given as part of the benchmag&ifggation. Very in-
teresting is the fact that, as a result of the competitionyragorithms have been
compared on the same benchmark functions. Hence futureithlys can be easily
compared to many existing methods and their performandaateal.

Before studying cHM-EDA on the CEC’05 benchmark suite, the ichpd the
parameters on the optimisation performance is highlightsfterwards cHM-EDA
is applied on the 25 test functions of the suite and comparsdine state-of-the-art
methods in the field of evolutionary computation.

6.2.1 Guidelines for configuring cHM-EDA

In order to get a better understanding of the meaning of tedéarning rateg,, and
0., the impact of these parameters on the performance of cH¥-EBtudied in this
section. This information becomes very important when goming the algorithm
for a specific problem. The explicit goal is to derive somecpcal rules of thumb
for a proper configuration of cHM-EDA, especially when someperties about the
given search problem are knowarpriori.

Setup

In this analysis, a cHM-EDA with ten individuals that areljusynchronised in ev-
ery generation is chosen as a specific population structums. structure is directly
adopted from previous experiments on VQEA, but might notdeessarily optimal
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for cHM-EDA. Nevertheless, we restrict the analysis herénts simple configura-
tion only and leave the analysis of more complex populatignanchies for future
research.

A series of experiments is executed which show the achievad fitness of the
algorithm as a function of the two learning rat¢sandé,. Since each problem
has its own specific characteristics three different beragkmproblems are chosen as
representatives for potential optimisation problems. sEhihree functions are taken
from the CEC’05 test suite which is also used in the comprekef&nchmark study
in the next section.

Among the most studied numerical benchmark functions itatdy the sphere
function. Because of its uni-modal nature and its sepatglfile. no epistasis), it
is supposed to be easy for any optimisation method. Theiamet named F1 in
the test suite and a shifted version is used. The secondidanicivestigated here
is the shifted Rosenbrock function (F6 in the test suite)s hulti-modal and non-
separable and thus much more difficult to solve. The glob&hmpn is inside a
narrow flat valley. Finding the valley is comparatively edayt converging towards
the actual optimum is difficult. Finally a composed functisrconsidered, namely
F17, which is likely to reflect real-world scenarios the beshe number of local
optima is large and different function properties are mit@gether. Additionally,
some additive Gaussian noise is involved in the functioduaten, which further
complicates the problem.

The values for the mean shi, are varied in the rang@.01, 0.4, while for the
standard deviation updafie values in the rang@.001, 0.2 are considered. For each
configuration, ten runs are performed and the obtained fimads is averaged. All
configurations are applied to the three problems using ttifésrent problem sizes
N =10, N = 30, andN = 50. Consistent with the guidelines of the CEC’05 test
suite, the algorithm was allowed to perforith x NV fithess evaluations.

Results

Figure 6.5 presents the results obtained on the sphere ipamnktproblem F1. The
diagram shows a contour plot in which the two axes representwo learning rates
¢,, andd, respectively while the colour reflects the solution quadifained after the
optimisation process. The darker the colour, the closealperithm has converged
towards the global optimum of the function. Note the lodamic scale of the colour
axis.
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Figure 6.5: Impact of different parameter configurations on the padoce of benchmark
function F1

We clearly see that for this simple problem many configuretiare suitable, espe-
cially for small problem sizes. We also note immediatelyt tha setting of the mean
shift 6, is almost irrelevant to solving the problem. A larger ratedraes more bene-
ficial when the problem size increases which can be expldgede uni-modality of
the function,i.e. since there is only a single optimum with a clear gradienhog
towards it, the “pace” of the algorithm can be fast withouwg tisk to “skip” some
optima. The only critical choice to make in this problem ig fproper configura-
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Figure 6.6: Impact of different parameter configurations on the padoce of benchmark
function F6

tion of the standard deviation shiff. For higher dimensions, the rate needs to be
small enough to avoid premature convergence of the algoritiwards non-optimal
solutions.

Increasing the difficulty of the problem increases the ingoaore of the standard
deviation shiftd, even more. In Figure 6.6, the results for the Rosenbrock immct
are presented. The meaning of the colours and axes in theathagye the same as
before. Once more we note the comparatively low influencénefrhean shift,,.
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Figure 6.7: Impact of different parameter configurations on the padaoce of benchmark
function F17

We also note that maintaining diversity is very importantiois problem and this is
expressed by the very small learning rateséar This observation might be due to
the flat areas in the landscape. On flat landscapes the ogtiomgrogress is slow
and the algorithm requires more iterations to follow thedggat. Furthermore, the
mean shift raté),, should be large in order to compensate for the slow optimoisat
progress.
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Nevertheless, a largg, rate is not always helpful as demonstrated by the results
on function F17 presented in Figure 6.7. This function haargel number of local
optima. Here smaller update step®.(smaller mean shiftg,) allow better com-
pensation for decision errors. If the algorithm has idesdifa promising area in the
search space and adjusted thealues of the corresponding Gaussian distributions,
the means are less prone to be shifted far away during sipglate steps due to a
sudden attraction by a very distant attractor. Again, wécedhe strong dependence
of the performance o6, .

Rules of thumb

A general observation of the presented results above isaimparably low impor-
tance of the mean shift ratg,. If no information about the search space is given
an appropriate default value 0,3 = 0.05. This setting allows the optimisation of
simple uni-modal functions but also more complex problentgiwthe given limit
of fitness evaluations. It is explicitly noted that a largearhing rate may signifi-
cantly reduce the number of required evaluations on eadylgnts. The mean shift
should be larger when the landscape is known to be flat. Smaties are preferred
on functions having many local optima.

The standard deviation ratk is generally the critical parameter in cHM-EDA.
It should always be adjusted according to the dimensignalitof the problem. A
reasonable choice for a default valudjs= mﬁ On flat problems and problems

with many optima this value should be decreased.
As a summary the following guidelines are presented:

[. If nothing is known about the fitness landscape, chose #fault values for

cHM-EDA: ¢, = 0, = 0.05 andf, = 0, = 1, whereN is the problem size

II. If the landscape is known to be flat, increase the meanspifod,, = 5x 6, =
0.25 and decrease the standard deviation rate te ﬁ =1

T 20xN

[ll. If the landscape has a large number of local optima, el@se the mean shift to

0, = 10, = 0.01 and decrease the standard deviation rafe te i = TN

The standard deviation rate as a function of the problem siz€ is presented in
Figure 6.8 for guideline | and guidelines Il and IIl respeely.

Itis not claimed that the above guidelines represent the suisble configuration
for all possible problems, but they can serve as a basis ftrdufine-tuning of the
settings for a particular problem. The above findings ard tseonfigure cHM-EDA
to optimise the functions of the CEC’05 test suite for cHM-EDA.
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6.2.2 Benchmark analysis

In this section cHM-EDA is applied on the 25 functions of the@# benchmark
suite. First, the experimental setup is explained, folldviby the presentation of
results and a comparison to some state-of-the-art methdts field of evolutionary
computation.

Setup

Three guidelines for configuring cHM-EDA have been experitalty derived in the

previous section. cHM-EDA can be properly configured usivese findings for the
functions of the CEC’05 test suite. In Table 6.1, 28l functions of the suite are
associated with one of the three rules. The characteristieach function are well
known and described in the specification of the test suite.

Guideline\ Function

I F1, F2,F4,F7,F11 -F14
I F3, F5, F6, F8
1] F9, F10, F15 - F25

Table 6.1: Configuration of cHM-EDA for the functions of the CEC’05 wste
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Algorithm \ Description and Reference

The quasi parameter fré@mcal Restart Covariance Matrix
CMA-ES | Adaptation Evolution Strategys described
in (Auger & Hansen, 2005)

The Multi-Variate Gaussian Model ED&troduced in
MVG-EDA | (Yuan & Gallagher, 2005) uses covariance sampling
similar to the CMA-ES

The “classical’Differential Evolutionalgorithm using a
D/E DE/rand/1/bin scheme as described in (Storn & Price, 1997).
Results obtained from @hkkdonen, Kukkonen, & Price, 2005).

Co-evolutionary Strategtghat co-evolves a population of
CoEvo | solutions and a population of mutation steps used for
exploration of the search space (Posik, 2005)

Hybrid Real-coded Genetic Algorithwith female and male
Hybrid GA | differentiation that combines a local and a global search
strategy (Gana-Marfnez & Lozano, 2005)

Table 6.2: Algorithms used for comparison to cHM-EDA on the CEC’05 berack suite

Additional attempts have been made to further improve théopeance on the
uni-modal functions F1 to F5, resulting in the following egption for F2: the, rate
was set td).1, while thed, rate was kept unchanged according to guideline I.

Functions F7 and F25 represent problems without boundfani¢ise search space.
Here the algorithm starts with an initial population spexdfin a certain range, but
the optimum is outside of this initialisation range. Forg@dunctions, cHM-EDA
uses (non-truncated) Gaussian distributions which alliv@smethod to explore an
unbounded search space.

All benchmark requirements and related settings are Istraddopted from the
benchmark specification. We refer to (Suganthan et al., Pfad5 comprehensive
list of all details.

In order to allow some performance comparison, the meanfibesss errors of
recently published algorithms are taken into considematfs discussed earlier, this
single performance measure alone is not enough for a compsele comparison
of methods. Nevertheless, it should provide the reader aviieneral overview of
the obtained results. The considered algorithms are briefberibed in Table 6.2.
All methods have participated at the CEC’05 competition. Thaye demonstrated
a highly competitive performance on the benchmark funstiand are among the
leading algorithms in the field of numerical optimisatiomelbenchmark results are
directly available from the references given in the table.
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Results

The test suite proposes guidelines for presentation oftsesnd recommends a spe-
cific formatting of retrieved statistical information. Tlemplete outcome of the
results in the required format is presented in Appendix Biefthesis. To give a gen-
eral overview of the obtained results some summarisingdgare presented here.

Each function is tested using three different problem si¥es- 10, N = 30,

N = 50. For N = 10 the mean best fitness erroe. the difference between the
obtained final fitness to the globally optimal fithess valagriesented in Figure 6.9.
The diagram shows the results of cHM-EDA and the compariggorighms given in
Table 6.2. For most problems, all methods report similafguerance, function F3
being a notable exception. F3 is a uni-modal, shifted anatedt high conditioned
elliptic function that could not be properly solved by cHMDA. Algorithms like the
hybrid GA, MVG-EDA and to some extent also D/E report similéfficulties here,
but demonstrate better results compared to cHM-EDA. Ontions F10 and F11,
cHM-EDA is very competitive, F11 being solved consistentlynost of the runs.
More specifically, the success rate9iz)o on F11, meaning that3 out of 25 runs
solved the problem with the required accurad®n the noisy function F4, the CMA-
ES is outperformed by a surprisingly clear margin by all othethods. In (Auger &
Hansen, 2005), this observation is explained by an initeggppsize that is too small
and by the failure of the method to enlarge it due to the effetstrong noise.

The difference between the tested methods becomes momuslhwhen the prob-
lem size increases ty = 30, cf. Figure 6.10. On the uni-modal functions F1 to
F5, the Co-evolutionary Strategy (CoEvo) is significantl\slesmpetitive than other
methods. Also, the performance of D/E is clearly affectedni®ydimensionality in-
crease. Itis known that function F7 becomes easier to salveincreasing problem
sizes. All methods except CoEvo demonstrate an improveaimeaince compared
to N = 10 on this function. On the more complex problems F12 to F25 alhods
report very similar performance with cHM-EDA having sligidvantages on func-
tions F16 and F17. Similar ty = 10, cHM-EDA shows better performance on F10
and F11, compared to all other methods.

A figure was also prepared for problem si¥e= 50. Since the CEC’05 competi-
tion included only problem sizes up 6 = 30, not all algorithms have been tested
on this problem size. Only the results of the CMA-ES are alségldor a compar-
ison. Both methods are impacted by the higher dimensionatisegpace. While

This is an example for a high success rate, but a compdsatame mean fitness due to very few
suboptimal runs.
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Figure 6.9: Comparison of the mean fitness error of contemporary staigfoethods on the
CEC’05 benchmark functions of problem sixe= 10.
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Figure 6.10: Comparison of the mean fitness error of contemporary $tateroethods on
the CEC’05 benchmark functions of problem si¥e= 30.

CMA-ES is consistently better on the uni-modal problems FE3cand the multi-
modal Rosenbrock function (F6), cHM-EDA reports superisuits on functions F9
to F12, F16 and F17. The success rate on F11 is still 76% cadpgar0% in the
case of CMA-ES.
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Figure 6.11: Comparison of the mean fitness error of contemporary gtaté+roethods on
the CEC’05 benchmark functions of problem si¥e= 50.

Conclusions

In this section, some interesting characteristics of cHDMAEvere demonstrated.
The standard deviation rafg is the most critical parameter in the method and needs
to be adjusted in dependence with the problem size while garshift raté,, can be

left constant for most problems. Three guidelines for canfigy the algorithm were
derived from the experimental observations and were detradad to work well in
practise. Only function F2 benefits from a slightly differsetting.

The overall performance of cHM-EDA is very competitive onsttest functions.
It becomes highly competitive on difficult multi-modal ptelns such as F9 to F12,
F16 and F17, especially when the problem size increases.rlifCkmame problems
arise with functions containing flat areas, or functiong tieguire different learning
rates depending on the stage of the evolutionary process.oblervation was made
on the functions F3 and F6, but also F2, which could only beesbhfter carefully
fine-tuning the learning parameters. Here, an adaptiveilegrate for the criticad,,
parameter might be beneficial for cHM-EDA, since excellesiits are reported by
CMA-ES which employs a mechanism to adapt the learning rat@glthe search.
On the complex hybrid problems, only some small differeroetsveen the tested
methods could be observed.
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6.3 ANALYSIS OF THE MULTI-MODEL

Similar to vQEA, the most important property of cHM-EDA is multiple probabilis-
tic model. In this section some potential advantages ofithiki-model approach are
highlighted, especially the adequate estimation of nalidal fitness landscapes, the
scalability of the method and its robustness against fitheiss.

6.3.1 Estimating multi-modal fithess landscapes

Single model EDAs, such asg. the PBIL., explore the search space using a single
Gaussian distribution per variable. Hence the densitynegton of promising areas
in a multi-modal fitness landscape is limited. Only a singkaan the search space
can be explored at a certain generation since the Gaussaalplity density func-
tion is uni-modal. Due to the use of more than one Gaussianhilison, cHM-EDA

is supposed to be able to concentrate the search on manygimgrareas simultane-
ously. The models can independently explore several Iqui@ia in the landscape
and “communicate” their findings about the correspondingtsm quality during
synchronisation events.

The ability of cHM-EDA to estimate non-trivial, complex féas landscapes is ex-
perimentally demonstrated here. A simple multi-modal &smé&unction is defined
and explored by a number of probabilistic models (individuaThe state of each
model is then investigated after the evolution of a numberetlefined generations.
Two strategies are considered: one way of studying the statémodels is by sam-
pling the corresponding distribution of each model and geimeg histograms of the
samples. The second possibility is to explicitly compute dlscumulated Gaussian
probability density functions of all models. The accumethGaussian probability
density function is given by

N
acc _ i trunc
0"(a) = & Z G (6.5)
with f;(z) being the probability density function of the truncatiorrmal distribution
with boundse = —1 andb = 1 of individual i:

AT ) (6.6)

¢ ") = D () (e
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where¢(-) is the probability density function of the standard normikribution,
®(-) its cumulative distribution function. Itis noteworthy th#oth approaches should
report equivalent results, as long the number of samplesrgtad for the histograms
is large and the histogram bins have high enough resolution.

For the sake of simplicity, a one-dimensional bi-modal 8s&inction is used:

flo) = —at + 22 + % + i (6.7)

wherex € R and—1 < z < 1. The functionf has two local optima of different
quality and is plotted as an overlay in Figure 6.12. As a tediihe one-dimensional
search space, all; ando; in Eq. 6.6 are scalars.

The landscape of this fithess function is explored ugihgnodels, each of them
organised in its own group. T2 groups are synchronised evéiygenerations and
in total 1000 generations are allowed. Evesg*" generatiorb000 samples are drawn
from each model and a histogram of 2l x 5000 samples is computed. Addition-
ally, the accumulated Gaussian density functions are ctedpusing Eq. 6.5. Small
learning rates were used in this experiment to allow a veny slonvergence.

A number of runs with varying initial random seeds were penied and a typi-
cal run is presented in Figure 6.12. After initialisatiori¢gratior0) the mixture of
Gaussian distributions resembles a uniform distributidve see that afte50 gen-
erations many models have shifted their mean values towhedglobal optimum,
but also the local optimum is represented as seen in geoerdtd to 250. In later
generations most models have converged towards the glpbaium.

Conclusions

The experimental results suggest that cHM-EDA allows thenadion of multi-
modal fitness landscapes. Due to their independent evojutie probabilistic mod-
els can indeed simultaneously explore different areasdrséarch space. Individual
models can be attracted by different local optima and, ie oda small enough global
synchronisation rate, also converge towards them. Thiggotp of cHM-EDA is a
key difference to the single model EDA.

6.3.2 Scalability

In this section, the scalability of cHM-EDA is investigatedror this analysis we
compare four different population structures on the stiifphere function, which



140 OPTIMISING CONTINUOUS SEARCH SPACES

Generation 0 Generation 50

2.0 S~—10.7 2.0 =—10.7
— acc L A e acc PS +
;zc& S’ vos ¢ . o6
| == 4

L5 v 105
> 4
£ Lo J 104
3 Ra R4 1035

8 0.7 8 0.7
7 0.6 7 0.6
6r 0.5 6 0.5
> 5} > 5
= 0.4 = 0.4 —
54 = §¢ =
85l 0.3 85 0.3
q
2ta 0.2 2 0.2
1f. 0.1 1 0.1
—01.0 -0.5 0.0 0.5 1.8'0 —01.0 -0.5 0.0 0.5 1.8'0
x X
Generation 200 Generation 250
8 T T . 8 T T T 07
7 | — gJé(l(}(? 7 | — (‘?(LCC " 06
| - . ' | - . '
6 . 6 . 0.5
L V4 - L 4
z > R 2 v 0.4 _
c 4+ 04 c 41 ’ B
@ T, % o e, . 03%=
a 31 ¢ q..'O o 31 ¢ q._‘o
2fe oba 0.2
1 |
1k 1t 0.1
O|'. ‘ ; ‘ QL. ‘- ‘ .0
-1.0 -05 0.0 0.5 -1.0 -0.5 0.0 0.5 8
X T

Figure 6.12: Histogram of sampled solution of all participating probabilistic tsod€he
fitness function is overlaid (dashed line) in order to allow a direct compad&o
the solution quality obtained by the model.

is function F'1 of the CEC’05 benchmark suite. The following four structuresav
chosen:1-1 (one group having a single individual};5 (one group having five in-
dividuals), 1-10 and 1-20 (one group having ten and 20 individuals, respectively).
Each of these configurations was applied on the sphere umatith varying prob-
lem dimensionsV € {5,10,...,100}. For each dimension and each of the four
configurations 25 independent runs were performed and tage number of fit-
ness evaluations required to solve the problem was detedniiihe problem was
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Population Structur¢ Experiment | | Experiment I

11 0,=0.1 0,=0.1
0, = 0.00425 | 6, = 0.003
15 95 i 8 (1)15 Zi, i 8 (1)135
1-10 95 z 8 (1)275 zi z 8 (1)2
1-20 zi z 8 (1)5 ZZ i 8 (1)25

Table 6.3: Experimental setup of cHM-EDA for the two experiments on sitiyab

considered to be solved if the difference between globahaph and achieved fit-
ness value was below an error threshold 10~8. Each configuration was allowed
to perform a maximum of 0° fitness evaluations (FES).

For each structure, the learning ratgsandd, have to be adjusted. As pointed
out earlier,d,, is less significant on this benchmark function. Hence, it Vised
to 0, = 0.1 for all four hierarchies. The learning ra#g is more critical and was
determined for each population structure individually.

Two different experiments are conducted here. In the firpegarment, the rates
6, of all four structures are configured to solve the probleminé & = 30 with
the given accuracy usingsamilar amount of FES. Hence, none of the four settings
has a performance advantage over the other&voa- 30. It is then investigated
how well these configurations perform on higher-dimendignablems,i.e. which
configuration scales the best.

For the second experiment, thest scalableetting for the structures on all prob-
lem sizes is determinedg. all four settings can consistently solve the problem on
all/most sizes. Then the settings are compared accorditigeteequired number of
FES to find the optimum. More specifically, for each populastructure the largest
0, is identified, such that the sphere problem of sikze= 90 was solved by all 25
runs. That means the application of such a configuration obl@m sizesV > 90
results in the failure of at least some runs to converge tdsvilre global optimum.
On the other hand, all four population structures can sofedlpm sizesV < 90.
Hence, the chosef), is the most scalable setting that allows the successfuinopti
sation of all/most problem sizes. The parameter setting®dth experiments are
presented in Table 6.3.

Figure 6.13 presents the outcome of the first experimenthdrdiagram a filled
symbol indicates that all 25 runs have identified the glolpinoum. If some runs
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Figure 6.13: The required average number of fithess evaluations (ethta25 runs) as a
function of the problem size of the sphere benchmark according to ditslab
experiment I. All four population structures use a single setting for ablpra
sizes. In the diagram, a filled symbol indicates that all 25 runs have identified
the global optimum while an empty symbol is used when some runs were unsuc-
cessful and the symbol is not shown if no run has found the optimum. Steuctu
1-5is in this experiment the most scalable setting, followed 0.

were unsuccessful, an empty symbol is used instead and thigosys not shown if
no run has found the optimum. According to the experimemlsall four settings
achieve a similar performance on problem size= 30. On smaller sizes the results
are also very similar to each other. With increasing probéeras all configurations
become increasingly unsuitable to solve the problemNAt 40, population struc-
turel-1is the first that does not solve the problem in all runs (nagestinpty symbol)
and can not solve it at all faV > 55. Structurel-20shows a similar trend and is not
able to cope with problems larger thah > 50. Structurel-5and1-10are clearly
more scalable on this benchmark function, being able toeswlost of the problem
sizes with the fixed setting.

The results on the second experiment are presented in Féglde The interpre-
tation of the symbols is the same as above. We note that dibewations can solve
the problem successfully up to sizé = 90 as defined in the experimental setup.
Larger problem size®/ > 90 cause the failure of at least some runs to identify the
global optimum (note the empty symbols for sizgsand 100). Also, in this sce-
nario, the two multi-model structurds5 and1-10are the most appropriate choice.
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Figure 6.14: The required average number of fitness evaluations (ettmil5 runs) as a
function of the problem size of the sphere benchmark according to dealab
ity experiment 1. On all problem sizes, the population structdrésand1-10
dominate the other two investigated structures. Struditfeequires on average
~ 57.7% less FES than structufiel.

Structurel-5is particularly successful and requires on averager.7% fewer FES
than structurd.-1to solve the problem.

Conclusions

From experiment |, it is concluded that cHM-EDA is capablsalving a number of
problem sizes using a single fixed setting for the learnitgstaAssuming an appro-
priate population size, a multiple probabilistic model satve more problem sizes
than a single model. It was also demonstrated that the pimulsize clearly impacts
the scalability of the algorithm. For low-dimensional pieins, a small number of
individuals is sufficient; in fact, five to ten individualspresent the most scalable
settings for the investigated problem sizes.

If cHM-EDA is configured to solve a large number of problemesiza multiple
model is also beneficial. More specifically, multiple modedguire significantly
fewer FES to solve the problem than a single model. This @aten was made in
experiment Il. Once more it is noted that a small populatiaa & more suitable, at
least on the range of investigated problem sizes, comparadbirger population.
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From the experimental setup of experiment Il it is obsetthead the learning rates
0, increase with the number of models used. The single moddigtoation 1-1
requires al.5 times smaller learning rate than structdr®, which in turn is~ 1.5
times smaller than structude10. Due to the direct relationship between learning rate
and convergence speed this observation seems very imegrestd will be further
investigated in the next section.

6.3.3 Learning rates

We have seen from the previous experiments that using $ewetzabilistic models
instead of a single one in cHM-EDA is beneficial in terms oheitscalability or
number of required FES to solve a problem. In the latter dasegs observed that
the learning raté, could be larger if multiple models were used. Due to the direc
relationship between learning rate and convergence shesaoliservation is the focus
of this section. It is hypothesised that multiple modelswalfaster learning rates and
as a result can speed up the optimisation process.

In the following experiment four population structures en@sen:1-1 (one group
having a single individual)1-5 (one group having five individuals)-10 and 1-20
(one group having ten and 20 individuals, respectively).c&more the simplest
test function, namely the sphere function F1, from the CEC'&bdchmark suite is
used for this analysis and a number of different problemssive= 10,...,100 are
considered. The idea of the experimental setup is to idethtd optimal {.e. fastest
possible) learning rates for each of the four structuresrdeioto solve the sphere
function of a specific problem siz& in a minimal number of FES. The obtained
learning rates and the corresponding required FES can #eonrapared among the
different population structures.

Since the learning rate of the mean shjftis of low importance on this problem it
was fixed td).1 for all configurations. For each problem size, and for each®four
structures, the largest possible rate for the standardhtienishiftd, is determined
that consistently solves the function in 25 independengtuiihe required setting
was obtained through systematic trial and error.

In Figure 6.15, the learning rae and the corresponding required number of FES
to solve the problem are presented as functions of the problee N for each of
the four population structures. Regardless of the probles e single model-1

4 Arun is considered successful if the distance betweemapfitness and achieved fithess is smaller

thane = 108
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Figure 6.15: The learning rats and the corresponding average number of required FES as
a function of the problem siz& for four different population structures. The
optimal learning rate for multiple models is larger compared to the single model
(top figure). Thus to a certain extent increasing the number of models allows
also faster optimisation (structute5 and1-10), cf. bottom figure.

reports clearly the smallest learning rate among all testedigurations. We also
note that the larger the population size the greater thengptearning rate becomes.
Similarly to earlier experiments, it is observed that pagioh structured-5and1-
10are better suited on the sphere function thahand1-20, the latter two requiring
significantly more FES than the first two.

In the context of fully synchronised probabilistic modeiscHM-EDA, multiple
models allow a greater learning rate compared to a singlematius, increasing the
number of models allows to a certain extent a faster optitoisaf the considered
problem. Nevertheless, if too many models are used, the auofFES increases
despite the fast learning rate. On the sphere function, pkienal number of models
appear to be five to ten.
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Population Structur¢ Configuration

1-1 gi i 8:(1)03
1-5 gi _ 8:(1)135
1-10 gi i 8:(1)2
1-20 Z; i 8:(1)25

Table 6.4: Experimental setup of cHM-EDA for the experiments on robastioditness noise

6.3.4 Robustness

It was earlier pointed out that the capability of a method aodie noisy and inac-
curate information is an essential pre-condition to sodad-world problems. In this
section, cHM-EDA is tested on a noisy function from the CEC’@n¢hmark suite
and several different population structures are compareach other. We are espe-
cially interested whether the use of several probabilistarels is beneficial in the
context of fithess noise.

The CEC’05 suite contains two noisy test functions: the noexgion of Schwe-
fel's problem 1.2, namely F4, and a noisy hybrid composifiorction, namely F17.
The latter is a multi-modal function with a large number afdboptima and a mix-
ture of many different function properties. Since only tlffe&s of noise are under
scrutiny here, F17 is less suitable for this analysis. Fand¥4 on the other hand is
uni-modal, scalable and comparatively easy to solve. Asisethe benchmark study,
most algorithms can solve this function at least for smalbpgm sizes. Hence, we
focus the experimental analysis on this function usihg- 10 dimensions.

Once more four population structures are chosefi:(one group having a single
individual), 1-5 (one group having five individuals);10and1-20(one group having
ten and 20 individuals, respectively). The configuratiotheke structures is directly
adopted from an earlier experiment on scalabilitf, (section 6.3.2) and are sum-
marised in Table 6.4. It is noted that the presented learrates are slow enough
to consistently solve the sphere function of sive= 90. The rates are deliberately
chosen to be small in order to compensate for the effectsiséno
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Figure 6.16: The average final fithess errors of four differentfadjon structures as a func-
tion of the noise strength,,,. Due to the non-deceptive nature of the applied
fitness noise, a higher selective pressure is beneficial on this problkcorm
figurations use a single group of fully synchronised individuals. Thrgeta
population sizes allow higher selective pressure and thus better rofsistrtbe
fithess noise.

Function F4 is given as:

%

Fi(x) == (Y- 2)*) x (140N (0, 1)]) + foias (6.8)
i=1 j=1
where f;, IS a scalar constant fithess bias= = — o, © = (x1,...,2zy) ando the

location of the global optimum. Parametey, indicates the strength of the applied
noise. We immediately note that this noise is a multipheafitness noise since the
effect of the noise decreases for solutions closer to thenopt and increases for
more distant ones. At the optimum, the noise is zero.

In the benchmark suite,, is fixed t00.4. In this study values fos,, vary in the
range(0, 2.5]. For eachy,, and for each of the four configuratiorig) runs are per-
formed and the evolution of the fithess er¢ce Fy(x) — fyiqs IS recorded. According
to the guidelines of the CEC’05 suite, an erroeaf 10~% indicates a successful run.

The final fitness error of a single run is computed as the aesvhthe lastl, 000

fithess values obtained during the evolutionary processceSan algorithm has not
necessarily found the global optimum, but has convergeardsvsome different
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point in the landscape, the average of several fithess di@igas a fair estimate
of the achieved real (non-noisy) fitness. In Figure 6.16 average final fithess er-
rors are presented as a function of the noise stremgthAll configurations are able
to solve the problem consistently if no noise is preseatg,, = 0. As Soon as noise
is introduced, the performance of structdrd is greatly impacted and the method
quickly becomes unable to optimise the landscape at all.nfillé-model structures
are clearly more resistive to the disruptive effects of@asing noise strengths. Here
the large population size df20is the most robust among the tested configurations.
The large variations of the performance between differergenlevels is due to a low
final fitness of single runs and the logarithmic scale of thergwhich emphasise
these small absolute differences.

Similar to the VQEA, cHM-EDA also demonstrates good robessto multiplica-
tive fitness noise. Increasing the number of probabilistoxiats also improves the
robustness of the method to noise on the used test functioce $e noise is not mis-
leading or deceptive, a high selective pressure is benkedicthconsequently larger
population sizes in a single fully synchronised group arg saccessful on this prob-
lem.

6.4 CONCLUSION

In this chapter, VQEA was extended towards continuous kespaces by replacing
the Obit with a probabilistic model based on Gaussian distrdngi All key charac-

teristics of VQEA, namely a multiple probabilistic modelhi@rarchical population

structure and a convergence dependent learning rule arpaatisof its extension. The
method was named continuous hierarchical model EDA, simeg@antum metaphor
has become inappropriate in the context of the Gaussiarbdisbns.

The overall performance of cHM-EDA is very competitive esp#y on difficult,
high-dimensional problems. Thus, it is claimed that thehomdtmay be a good can-
didate for handling real world problems. Issues may arisengkier the search space
contains flat areas. Here some adaptive update strategitgeftearning rate of the
standard deviation, asg.employed in the CMA-ES, might be beneficial.

Along with the benchmark experiments, some practical dunds for parameter
configuration were presented. The standard deviatiorfsatethe critical parameter
in cHM-EDA, while the mean shif,, can be left constant for most problems. The
derived guidelines work well on the 25 test functions of thedIIb benchmark suite.
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To a certain degree, the multiple probabilistic model aidive simultaneous ex-
ploration of several promising areas in the search spacis. cHaracteristic is a key
difference of cHM-EDA to single model EDA. Compared to a senglodel cHM-
EDA, the multi-model cHM-EDA offers either a higher scalékiof a fixed parame-
ter setting or a faster convergence speed towards the aptuhe to the use of faster
learning rates. Furthermore, multiple models increasedbastness of the method
in the context of multiplicative fithess noise.

Future directions may involve the exploration of differguipulation structures.
Another interesting idea is the use different learninggammong the groups since
some groups move fast in order to quickly identify promisargas in the search
space, while other groups move more slowly and maintain gmaliversity to per-
form a localised search in the promising areas spotted byaster groups. An in-
teresting concept is also a restart strategy as implemengeth some evolutionary
strategies with the aim to overcome flat areas in the seaatesp






OPTIMISING HETEROGENEOUS SEARCH SPACES: A
HYBRID VQEA/CHM-EDA MODEL

The proposed VQEA and cHM-EDA share the same algorithmictre and a com-
bination of the two methods is straightforward and a natesaénsion towards a
heterogeneous optimisation method. Both vVQEA and cHM-EDAevglown to be
highly competitive methods on their own and it is expectet their combined ap-
plication in a hybrid algorithm would be beneficial.

The probabilistic model of this combined approach is a ctaration of a string of
Obits and the string of Gaussian distributions as definedii®ctHM-EDA. Since the
probabilistic model of this algorithm is heterogeneous,ribw method is introduced
as theheterogeneous hierarchical model EQAHM-EDA).

Optimising heterogeneous search spaces using probahitisthods is not new.
The Mixed Bayesian Optimisation Algorithm (MBOA) was intrashd in (Ocenasek
& Schwarz, 2002) as a continuous-discrete optimisatiornotetSimilarly to hHM-
EDA, it belongs to the family of EDA and employs specialisediabilistic models
to explore the binary and real-valued part of a solution ieffity. Nevertheless,
some distinct differences between the two methods existhwdre highlighted and
discussed in greater detail as part of this chapter.

The chapter is organised as follows. First, the novel hHHVAEDpresented and its
functioning explained, followed by a comparison of the noeltho MBOA. Similari-
ties and specifics according to the used probabilistic maodetiel update, sampling,
selection and replacement strategies of both methods ataiesd. Since all the
components of hHM-EDA have been individually discussedheégrevious chapters,
we focus here on the interaction between the combined pilcdisbmodels. Once
more the explicit aim is to develop some robust guidelinedetiermine suitable pa-
rameter configurations for the method. The performance &fi##DA is compared
to a number of binary-only and continuous-only optimisatinethods, but also to
the continuous-discrete MBOA.
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7.1 THE HETEROGENEOUS HIERARCHICAL MODEL EDA

The overall structure of the proposed hHM-EDA is almost taeh to VQEA and
cHM-EDA. Its behaviour can be decomposed in three diffeirgetacting levels, see
Figure 7.1.

INDIVIDUALS  The lowest level corresponds tadividuals An individual i at
generationt contains a heterogeneous probabilistic mddgl) and two compound
solutionssS;(t) and A;(t). More preciselyH; corresponds to a string df pairs of
models(QY, PY):

QY QY
Y .. p™

A A

Hi="H}... HY = (7.1)

where P; denotes the continuous representation of the search spéoe form of a
string of Gaussian distributions:

P, =P ... PN=

2 7

(1) (N)
W ] 72

Y

andQ), the binary representation in form of a concatenatio@bits:

1 N
Qi:@i...cz?:[gj - ;] (7.3)

The pair(uz(j),az.(j)) corresponds to the parameters of the distribution ofjthe

variable of thei'* probabilistic model, anda”’, 5') correspond to the probability
amplitudes of thg'" QObit of the:*® probabilistic model.

Each variable inP, and Q; is sampled according t&\”, ")) and (o, 8%)
respectively, forming a compound solutiéh = (C;, R;), whereC; is a bit vector
andR; a real-valued vector of siz&¥. Hence,S;(t) represents a configuration in the

search space whose quality can be determined using a fitnestsoh f .

Similarly to cHM-EDA, we assume without loss of generali@cbr?) € R; to be
defined in the rangé-1, 1]. As a consequence, eacﬁ) € R, follows atruncated
normal distributionin the rangg—1, 1]. Truncated normals can be sampled using a
simple numerical procedure and the technique is widely tdbm pseudo-random
number generation, seeg. (Geweke, 1991) for an efficient implementation.
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Figure 7.1: Three interacting levels can be distinguished in hHM-EDA: Tdtigigdual, group
and population level.

To each individual, a solutionA; consisting of a binary and a continuous sub-
component is attached acting as an attractofHar Every generatiord;(¢) and A;

are compared in terms of their fitness Alfis better tharb,(¢), an update operation is
applied on the corresponding mod¢|. Each representation uses its corresponding
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update operator to drive the probabilistic model. The himpaobabilistic model); is
updated using the rotation gate as employed in VQEA, andathignzious modep; is
modified by the mean and standard deviation shift as intredlfar cHM-EDA. Thus
the hybrid algorithm requires the setting of three learmatgs for the model update:
the learning raté\d used in the rotation gate to updat®ait, and the two learning
ratesd,, andd,, to update the Gaussian mean and standard deviation reshgcti

Similarly to vQEA and cHM-EDA, the update policy of an attt@cA; can fol-
low either an elitist or a non-elitist strategy. The choideh® update policy has
great consequences for the algorithm and changes its loelmasompletely. Since
no experimental condition could be identified that favoutteel elitist attractor up-
date policy for vVQEA and cHM-EDA, we concentrate on the nétise version in
hHM-EDA.

GROUPS The second level correspondsgmups The population is divided into
g groups each containing individuals having the ability of synchronising their at-
tractors. For that purpose, the best attractor (in termgre#ds) of a group, denoted
By.oup, 1s stored at every generation and is periodically distaduo the group at-
tractors. This phase of local synchronisation is contdbllg the paramete$,..;.

POPULATION The set of allp = ¢ x k individuals forms thepopulationand
defines the topmost level of the multi-model approach. AdHergroups, the indi-
viduals of the population can synchronise their attractims. For that purpose, the
best attractor (in terms of fitness) among all groups, dehBig,,.;, is stored every
generation and is periodically distributed to the groupatbrs. This phase of global
synchronisation is controlled by the parameigp.;.

7.2 MBOA

Similarly to hHM-EDA, MBOA also belongs to the class of EDA acdn be for-
mulated for continuous and discrete search spaces. Thudjseess this method
here in greater detail. According to the classification o&Ejven in (Pelikan et al.,
1999), MBOA belongs to the third class of EDA which means itikedo explicitly
model multi-variate interactions. The algorithm is basedlecision trees (Friedman
& Goldszmidt, 1998) that have been successfully employeshél in the hierarchi-
cal Bayesian Optimisation Algorithm (hBOA) (Pelikan, Goldipe& Sastry, 2000).
Indeed, it was shown in (Ocenasek & Schwarz, 2002) that MBOAaiskward-
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compatible to hBOA and achieves very similar performance exeral deceptive
binary benchmark functions.

7.2.1 Principle

MBOA attempts to learn a probability distributid X ) that is approximated by the
product of conditional probability distributions for easbarch variable;, 1 < i <
N, given a set of influencing variablék:

P(X)=P(Xy,...,Xy) = [ [ P(X:/TL) (7.4)

=1

The method is initialised through generating a base popualatf » random indi-
viduals. Then a number afx n promising individuals is selected using a tournament
selection, forming a populatioR. Parameter < R is typically set t0).5. Based on
D, the probabilistic model of MBOA is rebuilt every generatidine model consists
of a set of N decision trees, one for each search variab)e Each tree defines the
conditional distributions?(.X;|I1;), wherell; denotes the set of variables that impact
the outcomeX;. The nodes in theé-th decision tree are formed by the variables in
IT;. Thei-th tree is recursively constructed by cutting the domairnhef variables
I1;; € 1II; into parts, whereX; is assumed to be mutually independent. In the contin-
uous domain, real-valued split boundaries are defined winehte intervals for the
variabledl];;. The leafs of the tree are modelled by a uni-variate densitgtfon us-
ing Gaussian kernels. Thus, the search space is partitioteedubspaces, in which
the search variables can be identified by a simple localisadch. The Gaussian
kernels are used to explore each partition locally.

An offspring population is sampled from the constructédlecision trees, which
in turn is used to replace part of the base population. Inraaereserve diversity
in the population, a restricted tournament replacementripl@yed as introduced
in (Pelikan & Goldberg, 2001).

In Figure 7.2, an example for a learnt model in MBOA is preserite a two-
dimensional problem consisting of the two search varialfleand X,. Using Equa-
tion 7.4, the joint probability distributio® (X, X5) is factorised intaP(X;, X3) =
P(X;)P(X5|X;). Given the density functiop, (z;) for the distributionP(X;), a
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Figure 7.2: lllustration of a trained model in MBOA for a two-dimensional pgob The
joint probability distributionP(X;, X5) is factorised using Equation 7.4 into
P(X1,X5) = P(X1)P(X2|X1). The density functiorp;(x;) corresponds to
the distributionP(X). ValueS € R is a continuous split boundary, that par-
titions X into two parts. For each part a different local distribution is de-
fined to sampleXs. Thus, the density oP(X5| X ) is given byps(x2|x1) with
p2(z2|z1) = phxe), if 21 < S andpa(za|z1) = pi(z2), if 21 > S. ph(z2) and
ph(x2) can be modelled by Gaussian kernels.

decision tree for variablé(, is learnt. The tree partition¥; into two parts, based on
a continuous split boundary € R. Thus, the density oP(X,|X) is given by

(22]1) ph(xe) if 3 < S
To|T1) =
Paitzity py(za) if &y > 8

The densitieg),(xz2) andp)(z2) can be modelled by a single Gaussian probability
density function, but also a mixture of Gaussian kernelsnaar regression models
could be employed (Ocenasek & Schwarz, 2002).

(7.5)

Additional information about MBOA can be found in (Kern et,&004) and
in (Ocenasek & Schwarz, 2002), in which also the actual coosbn of the de-
cision trees and the computation of the split boundarieseaptained in detail. A
complete study on MBOA is presented in the PhD dissertatidDaginasek (2002).
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7.2.2 Comparison to hHM-EDA

Although both MBOA and hHM-EDA belong to the family of EDA, tineethods dif-
fer significantly from each other. Here the differences m ¢émployed probabilistic
model, the model update, the sampling and replacemenégieatand the structure
of the population of individuals are discussed.

The probabilistic model used in MBOA is based Srdecision trees (one for each
search variable), which are rebuilt in every generatiorhef évolutionary process.
Generating these trees is a very complex and expensivetmperdndeed, it was
shown in (Ocenasek & Pelikan, 2004), that the model construeasily becomes
the most costly operation of the method: experimenting gim glass benchmarks,

MBOA spent nearlyp5% of the execution time on building the decision trees. This

situation motivated an implementation of the method onlftaardware (Ocenasek
& Pelikan, 2004). As a consequence, the capability of modgktomplex variable

dependencies comes at the price of a significant compughtaverhead. Further-
more, for many practical applications this overhead migittaven result in any ad-
vantage compared to much simpler methafise.g.the work of (Johnson & Shapiro,
2001) on comparing different evolutionary algorithms oatéee selection problems.

For hHM-EDA, on the other hand, a much simpler model is usedbelongs to
the first class of EDA according to the classification scheimergin (Pelikan et al.,
1999) and is based on a number of independent Gaussian anouBiedistributions
(i.e. string of Qbits). Since each individual maintains its own probabdishodel,
hHM-EDA is a multi-model EDA which is in contrast to MBOA. Theheantages
of this unique approach have been discussed at length irothesponding chapters
about vVQEA and cHM-EDA respectively. The computationalrbead of hnHM-EDA
according to model management is small and most of the ressare devoted to the
evaluation of the fitness function.

The model update in MBOA consists of a complete reconstmcifall N deci-
sion trees, while the model in hHM-EDA is updated incremiytnd thus evolves
during the optimisation process. The current state of thdahis a direct result of
earlier updates introducing a memory about informationref/jpusly visited areas
in the search landscape. Compared to MBOA, the model updatéNrEDA is fast
and inexpensive, despite the fact that a multiple probstlmlimodel is maintained.

In order to sample a population of individuals, MBOA traverdewn the decision
trees for all search variables and samples the distribspecified at the leaf of the
tree. A comparatively large number of individuals is geteatawhich replace part of
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the population created in the previous generation. As roeatl earlier, a restricted
tournament replacement is used. Sampling the model in hHM-E straightfor-
ward since the distributions are independent. Unlike MBOAMAEDA samples
only a single solution from each model.

Finally, hHHM-EDA maintains a structured population whidloas an information
exchange between the individual models while for MBOA no sstehicture exists.

7.2.3 Conclusion

Both MBOA and hHM-EDA are EDA and explore the search space (mittcally.
Nevertheless, their characteristics and thus potentiaicgtions are very different.
MBOA is an advanced and complex algorithm which is specidlisedeal with the
strong variable interactions inherent in some optimisapmblems. The computa-
tional overhead of MBOA is significant and the execution tinpperg on constructing
the decision trees may easily rival the time required forfitmess evaluations. Only
if the fitness function is expensive itself, the overheadobees negligible. Thus,
MBOA seems suitable for problems with costly fithess fundcitimat also require
the discovery of variable linkage in order to be solved priypd-or such problems,
parallel hardware becomes a necessary requirement.

The proposed hHM-EDA, on the other hand, is a much more lgight algo-
rithm and its computational overhead is negligible for mustblems. The multiple
probabilistic model is an original mechanism capable of gensating for a limited
number of decision errors due to variable linkage. Thus, REIDA is a flexible, less
specialised tool, suitable for a variety of optimisatioolgems.

7.3 PERFORMANCE ANALYSIS

In this section, the performance of hHM-EDA is evaluated. UResare compared

to a selection of contemporary continuous-only and birary optimisation meth-
ods, along with the already discussed MBOA. For the binaly-optimisers three
first-level binary EDA are considered that have been digmisfready in chapter 4,
namely UMDA (Mihlenbein & Paass, 1996), PBIL (Baluja, 1994) and cGA (Harik et
al., 1999). Using binary representations to explore cowitirs search spaces is a typ-
ical scenario in the context of traditional genetic aldumns,cf. e.g.the early work

in (Michalewicz & Janikow, 1991) and also (Maniezzo, 199)which a binary
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GA was applied on a heterogeneous optimisation problem tiigs of pre-defined
length are mapped into real values by a Gray encoding.

Using a continuous representation to explore a binary lzaqks on the other hand,
is less common. An example can be found in (Leung et al., 200®e a real-
coded GA evolves the topology and the weight matrix of a newetwork. Since a
continuous representation is used, real valuesR of the chromosome are converted
into bits using a simple mapping:

5(35):{0 if 2 <0 7.6)

1 else
This mapping enables a numerical optimiser to explore apis@arch space. Due to
the excellent performance reported in the previous chaihtetCMA-ES and cHM-
EDA are used for the performance analysis presented here.

7.3.1 Benchmark problem

Due to the lack of a suitable benchmark suite for heterogeneptimisation prob-
lems, a simple benchmark is proposed here. A minimisatioblpm is considered
that contains two equally sized search landscapes: a baratya continuous one.
The dimensionality (number of variables) of each landséapenoted byV. Target
vectors representing the global optimum of the problem peeified for each land-
scape: a binary vectds* = (b7,. .., by ) and a continuous vectat* = (r7,...,r%y).
A solution for this problem is denoted &= (B, R), whereB = (b;,...,by) and
R = (r,...,rN) represent the binary and the real part of the problem reispct
The goal is to evolve a solutiasi, such that it becomes equivalent to the target solu-
tion S* = (B*, R*). More specifically, the fitness function in this problem iiked
as the Euclidean distance between the real faot a solutionS to the real part?*
of the target solutiors™. The binary partB of the solution acts as a mask in the
computation of the distance: only if bif = 1, does the corresponding real valye
contribute to the computation of the difference. Furthemend b; # b a penalty is
added to the overall fitness of the solution. The completedgriunction is described
in detail in Algorithm 4. The global optimum is reached if fitaess becomeg = 0.
The problem is designed to resemble a typical wrapper-béessdre selection
scenario. The feature space is represented by the binamicsoksub-component
while the parameter space of the classification method isatefll by the real-valued
sub-component. If a certain bit (featutg)c B is wrongly selected,e. b; # b}, the
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Algorithm 4 Computes the fithess of the solutionS = (B, R)
Require: B = (by,...,by)andR = (ry,...,7n)

1. f<0

2. fori=1to N do

3: ifb; =1andb;f =1then

4: d < (rf —r;)?
5. eseif b; # bf then
6: d < (r})?

7. dse

8: d<0

9: endif

10 f<f+d

11: end for

solutionS = (B, R) receives a penalty;)2. Thus, different bits (features) may have
a different significance, since different fithess penakliiesassociated with them. On
the other hand, if the bit (feature) is correctly selectedp; = b} = 1, the size of the
fithess penalty depends on the quality of the variable (pat@nof the classifier);
of the real solution pariz. Thus, even if the optimisation method correctly selects a
certain feature, the fitness penalty may be large if the ifieason method is poorly
parametrised. Both solution sub-components need+operaten order to minimise
the fithess penalties.

In the following experiment, the target solutigff = (B*, R*) was chosen in
dependence of the problem sixe

7.7)

X %, equi—distant

« P
R = (pmaza -« oy Pmin, Pmazy - - - 7pmzn)
N—_—— —

X %, equi—distant

The parameters,,;, andp,,., denote the minimum and maximum fithess penalty
assigned to a certain bit. Penalties are equi-distantliiloised over the first—gf
and Iast% elements of the real-valued solution sub-component. Irekperiments
discussed later in this chaptgf,;, = 0.5 andp,,., = 1 are chosen.

It is noteworthy that, using this configuration, only thetfi@gsreal-valued elements
r; € R have to be optimised by the algorithm. The ott%érelements become ir-
relevant in the fitness computation, if the algorithm hadvebzeroes at the lag}
positions of the binary vector.
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Since different fithess penalties are assigned to eachybéh@ment, all bits corre-
spond to a different marginal fitness contribution. In the @#nain, such a situation
Is also referred to asalientbuilding blocks (Thierens, Goldberg, & Pereira, 1998).
Due to the difference of significance, the convergence hebraof the binary prob-
abilistic model is directly affected. More specifically, @gsiential convergence of
variables is expected, starting with the ones with the hagbalience and finishing
with the ones with the lowest salience. This sequential emyence phenomenon is
calleddomino convergencand was first mentioned in (Rudnick, 1992).

7.3.2 Configuring hHM-EDA

Similarly to the parameter analysis in chapter 6, we focus be a specific popula-
tion structure. The structure consisting of ten individudlat are fully synchronised
in every generation is directly adopted from previous expents on VQEA and
cHM-EDA. Although this setting has generally reported gamdimisation perfor-
mance, it is noted that this structure might not be necdgsgriimal for h(HM-EDA.
Nevertheless, we restrict the analysis here to this singoiéguration only and leave
the exploration of more complex population hierarchiedtditure research.

Learning rated),, andd,

The first series of experiments investigates the hypothiegithe three guidelines de-
veloped for cHM-EDA in chapter 6, section 6.2.1, are alsokivay in the context of
hHM-EDA. For this analysis, the learning rate of the rotatgate is fixed to specific
valuesA# € {0.00057,0.0017,0.0057}. For eachAd, the parameter§, and6,, are
varied and the success rate of hHHM-EDA is computed based amdependent runs
on the proposed heterogeneous benchmark problem. A rumssdewed successful
if the final achieved fitness value is lower thaiT®. The success rate is defined as
the ratio between the successful and total number of runfferBit problem sizes
N are investigated and a maximum numbe\ofx 4 x 10° FES is allowed for the
optimiser.

Figure 7.3 presents the success rate of hHM-EDA in depeedafitbe two learn-
ing ratesf,, and{, for the problem sizesv = 25, N = 50, N = 100 andAf =
0.0017. The darker the colour in these diagrams, the higher theesgsoate of the
particular parameter setting. It is clearly demonstrated & variety of settings are
suitable for solving the problem. We also note that the sgttif the mean shift,,
has only a low impact on the performance of the algorithms klso only slightly
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Figure 7.3: The success rate of h(HM-EDA in dependence of the twahgarates),, andd,, .
The parametend of the rotation gate was fixed @001x. Different problem
sizes of the benchmark are presented. The diagrams show the avér2e o
independent runs. The low impact of the learning i3teof the mean shift is
clearly demonstrated. The learning réfgeis dependent on the problem sixe

affected by the increase of the problem si¥e The learning raté,, on the other
hand, is a critical parameter that strongly depends on thiglgym size. The larger the
size N, the smalle®, has to be set in order to achieve optimal performance. Very



7.3 PERFORMANCE ANALYSIS 163

similar results are reported faxf = 0.00057 andAd = 0.0057%. Almost identical
observations have been made using cHM-EDA in chapter Gpseg2.1.

From these experimental results it is concluded that theetbuidelines derived for
cHM-EDA are also suitable for configuring hHM-EDA. Fine-tog the mean shift
6, is of low importance while the standard deviation shiftshould be adjusted in
dependence with the problem size.

Learning rateA#

Since the mean shift ratg, has only a low impact on the performance of h(HM-EDA,
we now focus on the relationship between the learning Adtef the binary model
and the standard deviation shiff. For this analysig,, is fixed tod, = 0.05, which
was earlier introduced as the default value for this paramddue to the explicit
linkage between the binary and continuous search variab®ral local optima
exist in the fithess landscape of the heterogeneous benktpraslem. A known
remedy against premature convergence of QEA and VQEA t@aAaodl optima in
multi-modal landscapes is the use of a modified rotation gpaFator, which was
introduced as thé/, gate in (Han & Kim, 2004). For vQEA th&, gate was already
utilised in the performance and noise analysis presentetiapters 3, 4 and 5. In
the following experiments, the two configurations= 0 ande = sin?(0.027) are
investigated, where far = 0 the H, gate equals to the standard rotation gate, while
e = sin?(0.027) was introduced as an appropriate default configurationfoin
chapter 3.

Figure 7.4 presents the average success rate showing éndependence akd
andd, obtained fron25 independent runs of hHM-EDA on the benchmark problem
for a problem sizéV = 100. The darker the colour in these diagrams, the higher the
success rate of the particular parameter setting.

In the case of the standard rotation gate,Figure 7.4a, a certain correlation be-
tweenA# andd, is observed. Clearly the best performance is reported wheai sm
values for both learning rates are usedAH is increasedd, also needs to increase
(and vice versa) in order to maintain a non-zero successPatéicularly a combina-
tion of a small (large)Ad and a large (smalb), is not suitable for the algorithm.

In the case of théd, gate, a similar correlation is noted, but additionally &eot
effect impacts the performance of the methofi, Figure 7.4b. Very surprising is
the low sensitivity of the algorithm to the learning rate lo¢ tbinary model. Almost

Due to the similarities of the figures, the resultsAgr = 0.00057 andA# = 0.0057 are not presented
here.
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Figure 7.4: The success rate of hHM-EDA in dependence of the twoitearatesAé and
0,. The learning ratd,, was fixed to the default valuéu = 0.05. In (a) the
standard rotation gate was used, which allows the convergence of theydity
amplitudesa and 5 to 0 or 1. Using theH, gate in(b) prevents the complete
convergence of the amplitudes, which decreases the sensitivity of hBiMt&
the parameteAd. Almost anyAd is suitable, as long as the standard deviation
shift 6, is small enough.

any Ad is suitable, as long as the standard deviation $hifts small enough. The
H,. operator prevents the convergence of the binary probabifrsodel towardd or

0, and instead defines for the two values$® and |3|? of a Qbit a minimal and a
maximal probability,j.e. e and1 — e respectively. Due to the residual probabilities
e and1 — ¢ a certain mechanism is employed by the algorithm that islaimo the
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bit-flip mutations used in a GA. With low probabilities, a z@n Qbit may collapse
towardsl (or 0), although its amplitudes have evolved close towar(ts 1). Thus, at
least for some problems, premature convergence of a spbitiice to hitch-hiking
phenomena may be compensated through the use &f thate.

In the context of the heterogeneous benchmark problem/fithgate is highly
advantageous and counteracts hitch-hiking efficienthgesiarger learning rates6
not only increase the risk of hitch-hiking effects, but & #ame time also increase
the impact of the mutations on the probabilistic model. Ieaa&in bit-flip mutation
is evaluated to be positive.e. the fitness of the mutated solution improves, the
correspondingbit is updated towards the mutated bit value. Larger legrnates
result in larger model shifts, which in turn increase thebatality of mutations for
the Qbit in the next generation. Thus, in succeeding generatioastate of abit
may completely invert due to the impact of earlier mutations

Since the mutations occur with low probabilities only and entirely random for
each bit, many generations are required to mutate the nomalgits in the binary
sub-component of a solution. If a certaiibit ng) is non-optimally converged, the
corresponding continuous modEjj) has to maintain enough diversitye. the stan-
dard deviation$r§j) need to stay reasonably large, until the desired mutatioarsc
in order to be able to optimise the continuous search variabfter the bitb; is
mutated. This is due to the fact that the continuous variaplenly contributes to
the fitness computation if the correspondingtpit= b; = 1. In any other case;
is irrelevant in the fitness evaluation and its value is sttt genetic drift, since no
selective pressure is provided by the fitness function. Ttnesdescribed mutation
mechanism works well only for small learning rateswhich prevents the premature
convergence oa‘ri(j) due to drift before a positive mutation at bjtoccurs.

Conclusion

The most critical parameter in hHM-EDA is the learning r@tef the standard devi-
ation shift that should be adjusted according to the numbear@ables in the problem
to solve. Similar to cHM-EDA, the mean shfff, is of low importance and can be
fixed to standard values for most problems. Consequentlthtiee guidelines de-
rived for configuring cHM-EDA are also suitable for hLHM-EDRBurthermore, con-
figuring the learning raté\@ for updating the binary probabilistic model is straight-
forward if the H, gate is used. An appropriate value for the parametexs presented
in the undertaken experiments.
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7.3.3 Benchmark analysis

In this section, hHM-EDA is applied to the proposed hetenageis benchmark prob-
lem. In order to allow a comparison of results, a number oatyirand continuous-
only optimisation algorithms, namely UMDA, PBIL, cGA, vVQEAHM-EDA and
CMA-ES, are applied on the same benchmark. Additionally, nwwestigate the per-
formance of MBOA as discussed above. In all experiments a@mobizeN = 100

is used which should present a certain challenge for thedesigorithms. Each
method is allowed to perform a maximum numbenofx 4 x 10® = 4 x 10° FES.
The search space was limited to the rahgg, 1] for each search variable.

Two configurations of h(HM-EDA are considered that are diyeatiopted from the
analysis discussed in section 7.3.2. The first settingvalguideline | which results
in the settingd,, = 0, = 0.05 andd, = 0, = .+ = 0.001. The only difference
of the second setting is a slightly faster réfe= 0.0015. Both configurations use a
small value, A¢ = 0.001w, for the H. gate to update the binary probabilistic model,
that was shown to be efficient in the previous analysis.

Optimal configurations for all tested methods were obtaithedugh a compre-
hensive parameter analysis. In the case of UMDA, the chaoicenocappropriate
population sizen is critical. Different sizes in the rang@00, 2500] were inves-
tigated. The default ratio 030% for the truncation selection is used. PBIL also
requires the setting of a population size which was varied [50,300]. Addi-
tional parameters are the learning rateand the mutation shifR,. Similarly to the
noise analysis in chapter 5, we assufe= R,. Values were varied?;, R, €
{0.001,0.005,0.01,0.05,0.1,0.2}. In total, 36 different parameter configurations
were investigated for PBIL.

The only parameter of cGA is the virtual population sizethat was opti-
mised in the rangel50, 1250]. For VQEA, a single group of ten fully synchro-
nised individuals is tested while the learning rate offa gate is varied A9 <
{0.001, 0.0025, 0.005,0.0075,0.01}. All binary methods usé2 bits to encode a sin-
gle real value. A Gray encoding was used for the conversiobitatrings into a
continuous value.

The CMA-ES employs special mechanisms that adapt most o&ranpeters au-
tomatically. According to (Auger & Hansen, 2005), only timiial starting points
and the initial standard deviation of the method needs topeeied for a given
problem. We adopt the strategy given in (Auger & Hansen, 2@08 set the initial

2 Defaulte = sin?(0.027) was used.
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standard deviation to0~2(B — A)/2, with [4, B]Y = [-1,1]" being the search in-
terval of the benchmark. The initial starting points weré&anmly sampled in the
range[—0.1,0.1], which is slightly different from (Auger & Hansen, 2005),tbu
in favour for the methotl No further parameter fine-tuning was attempted for this
method. The Java implementation provided by Nikolaus Hathemas used in the
experiments.

For cHM-EDA, the default value fo, = 6, is used and onlyd, ¢
{0.00025, ...,0.0015} is varied, which allows a direct comparison to hHM-EDA.
The only difference between cHM-EDA and hHM-EDA is the di#éfet probabilis-
tic model for the binary solution sub-component of the lattee. All continuous
methods use Equation 7.6 to explore the binary solutioncsubponent.

MBOA only requires the proper setting of its population sizeSizes are varied
n € {50,100, 125,150,200, 250,300}. These values correspond to the size of the
base population in MBOA. Every generatiang N new offspring are generated and
evaluated, thus each generation requires the computationxoN FES instead of
N. Parameter € R was set td).5 as recommended as the default in (Kern et al.,
2004). An official implementation of the method in the progmaing language C++
is provided by Jiri Ocenaseék

Results

The results of the parameter analysis can be found in Tableard 7.2. For each
setting of a method, the best, median, worst and mean peafarenalong with the
standard deviation obtained fro® independent runs is presented in the columns.
Additionally, the success rate as defined in section 7.3g&&n. The most suitable
configuration in terms of success rate is highlighted. Incdkses where the success
rate is not discriminative enough, the mean fitness and nuoflrequired FES are
considered, in order to determine the most suitable setting

hHM-EDA, vVQEA, UMDA, cHM-EDA and MBOA all report a success eabf
100%. With cGA,76% of the runs were successful, while not a single run reached th
required fitness threshold using PBIL. It is also noted thatiihary methods require
a rather large population size due to the mappint)ofx 12 bits into 100 real values.
Because of this mapping, the overall precision of the opttios is also affected.
In the case of cHM-EDA, hHM-EDA, CMA-ES and MBOA, the optimigat was

3 In (Auger & Hansen, 2005) the initial starting points wergfarmly drawn from[A, B}V,
4 Available at http://www.Iri.fr/"hansen
5 Available at http://jiri.ocenasek.com



168 OPTIMISING HETEROGENEOUS SEARCH SPACES

Method Setting best med worst mean stdev SL;;(;:SS
hHM-EDA 0=0.001, 6,=0.001 |0.00e + 00 | 0.00e + 00 | 0.00e 4 00 | 0.00e 4+ 00 | 0.00e 4+ 00 | 100%
0=0.001, 6,=0.0015 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 100%
6=0.001 1.41e — 04| 2.38¢ — 04 | 2.82¢ — 04 | 2.30e — 04 | 3.42e¢ — 05 0%
0=0.0025 9.84¢ — 06| 1.72e — 05 | 2.91e — 05 | 1.73e — 05 | 5.49¢ — 06 | 8%
VQEA 6=0.005 2.89¢ — 06 | 5.41e — 06 | 9.08e — 06 | 5.52e — 06 | 1.50e — 06 | 100%
0=0.0075 2.41e — 06 | 3.40e — 06 | 5.30e — 06 | 3.71le — 06 | 9.42e — 07 | 100%
6=0.01 2.07e —06 3.83e —06 5.15e —06 3.67e —06 7.78¢ —07 100%
n=200 1.17e +00 | 1.55e + 00 | 3.85e 400 | 1.84e + 00 | 6.82e — 01 | 0%
n=300 5.84¢ — 02| 6.98¢ — 01 | 2.02¢ + 00 | 7.93e — 01 | 5.23¢e — 01 | 0%
n=400 1.84e — 02| 8.69e — 02 | 1.06e + 00 | 2.66e — 01 | 3.05e — 01 0%
n=500 7.66e — 04| 1.64e — 02 | 7.59¢ — 01 | 1.46e — 01 | 2.30e — 01 | 0%
n=600 9.22e — 05| 5.72e — 03 | 7.81e — 01 | 4.37e — 02 | 1.51e — 01 0%
UMDA n=700 6.04e — 04 | 5.08e — 03 | 4.28e — 01 | 3.89¢ — 02 | 1.03e — 01 0%
n=800 3.28¢ — 05| 1.14e — 03 | 2.50e — 01 | 1.32e — 02 | 4.87e — 02 | 0%
n=900 1.15e — 05| 1.79¢ — 04 | 5.64e — 03 | 8.31e — 04 | 1.28¢ — 03 0%
n=1500 1.21e — 06 | 2.76e — 06 | 2.54e — 04 | 2.50e — 05 | 5.46e — 05 | 72%
n=2000 1.21e — 06 | 1.30e — 06 | 3.33e — 05 | 3.72e — 06 | 6.84e — 06 | 92%
n=2500 1.2le — 06 1.21e — 06 4.68¢— 06 1.50e —06 7.49¢—07 100%
n=150 3.72¢ — 01| 1.30e + 00 | 3.12¢ + 00 | 1.41e + 00 | 6.70e — 01 | 0%
n=250 1.79e — 02| 3.33e — 01 | 1.43e + 00 | 4.27e — 01 | 4.22¢ — 01 0%
n=350 2.82¢ — 04| 1.33¢ — 02 | 5.32¢ — 01 | 1.13e — 01 | 1.56e — 01 | 0%
n=450 2.06e — 04 | 3.83e — 03 | 3.82e — 01 | 4.12e — 02 | 1.02e — 01 0%
n=550 1.94e — 05| 4.62¢ — 04 | 5.74e — 01 | 3.46e — 02 | 1.20e — 01 0%
cGA n=750 1.91e — 06 | 5.94e — 05 | 1.01e — 03 | 2.09¢ — 04 | 2.92e — 04 | 20%
n=850 1.42e — 06 | 5.53e — 06 | 2.92e — 01 | 1.17e — 02 | 5.73e — 02 | 72%
n=900 1.21e — 06 4.15¢ — 06 3.09¢ — 05 7.26e —06 7.79¢ —06 76%
n=950 1.64e — 06 | 6.63e — 06 | 4.11e — 05 | 1.02e — 05 | 9.14e — 06 | 60%
n=1000 5.70e — 06 | 1.10e — 05 | 5.56e — 05 | 1.43e — 05 | 1.03e — 05 | 36%
n=1250 1.33¢e — 04| 1.81e — 04 | 3.34e — 04 | 1.88e — 04 | 4.27¢ — 05 0%

05=0.00025, 6,=0 |2.02¢ — 03] 2.37¢ — 03 | 2.72¢ — 03 | 2.35¢ — 03 | 1.79¢ — 04 | 0%
05=0.0005, 0,=0 | 2.44e — 07 | 3.13¢ — 07 | 3.45¢ — 07 | 3.07e — 07 | 2.61e — 08 | 100%
CHM-EDA | 9,=0.00075,0,=0  0.00e +00 0.00e+00 0.00e+00 0.00e+ 00 0.00e+00 100%

0,=0.001, 49,l=é 0.00e + 00 | 0.00e + 00 | 6.83e — 01 | 2.73e — 02 | 1.34e — 01 | 96%
05=0.0015, Q‘L:é 0.00e + 00 | 0.00e + 00 | 5.55e — 01 | 4.56e — 02 | 1.31e — 01 | 88%
CMA-ES 0.00e + 00 7.34e —06 4.40e —01 2.89¢ —02 1.00e —01 52%
N=50 4.66e + 00 | 8.11e + 00 | 1.32e + 01 | 8.20e + 00 | 1.83e + 00 | 0%
N=100 0.00e + 00 | 0.00e + 00 | 1.38e + 00 | 2.61e — 01 | 3.59e — 01 | 56%
N=125 0.00e + 00 | 0.00e + 00 | 5.70e — 01 | 6.22¢e — 02 | 1.50e — 01 | 84%
MBOA N=150 0.00e 400 0.00e + 00 0.00e 400 0.00e+ 00 0.00e+ 00 100%
N=200 3.93e — 07| 9.61e — 06 | 2.24e — 04 | 2.80e — 05 | 4.91e — 05 | 52%
N=250 3.56e — 04| 1.37e — 03 | 4.47e — 03 | 1.43e — 03 | 9.20e — 04 | 0%
N=300 2.74e — 03| 1.08e — 02 | 1.64e — 02 | 1.05e — 02 | 3.71le — 03 | 0%

Table 7.1: Results of the parameter analysis for hHM-EDA, vQEA, UMDBA¢ cHM-
EDA, CMA-ES and MBOA. Shown is the best, median and worst run obtained
from 25 independent runs. Additionally the mean and standard deviatithre of
runs, along with the success rate is presented (see text for a definitiom sfich
cess rate). The most suitable setting in terms of success rate for each rigsethod
highlighted.

stopped when the fitness value dropped beléw'’. In the tables, this situation is
indicated by the valug.00e + 00.

In Figure 7.5, the fitness evolution of the median run is presg& We note the
logarithmic scale of the fithess axis. The proposed hHM-EBAlearly the fastest
optimiser among the tested algorithms on this benchmagiijneag only 12300 FES
to achieve the desired solution accuracy ef 10~° and21700 FES to drop below a
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Method

Setting

best

med

worst

mean

stdev

success
rate

PBIL

Table 7.2: Results of the parameter analysis for PBIL. Shown is the bestamead worst
run obtained from 25 independent runs. Additionally the mean and sthddai-
ation of the runs, along with the success rate is presented (see textdfniéiah
of the success rate). The most suitable setting in terms of success raidlfas P
highlighted.

precision ofl0~!°. The fitness is exponentially minimised resulting in a lineave

n=50, R;=R,=0.001
n=50, R;=R,=0.005
n=50, R;=R4=0.01
n=50, R;=Rs=0.05
n=50, Rj=R,=0.1
n=50, B;=R,=0.2
n=100, R;=Rs=0.001
n=100, R;=R+=0.005
n=100, R;=Rs=0.01
n=100, R;=Rs=0.05
n=100, R;=R,=0.1
n=100, R;=Rs=0.2
n=150, R;=Rs=0.001
n=150, R;=R+=0.005
n=150, R;=R+=0.01
n=150, R;=Rs=0.05
n=150, R;=Rs=0.1
n=150, R;=Rs=0.2
n=200, R;=Rs=0.001
n=200, R;=Rs=0.005
n=200, R;=Rs=0.01
n=200, R;=R+=0.05
n=200, R;=Rs=0.1
n=200, R;=Rs=0.2
n=250, R;=Rs=0.001
n=250, R;=Rs=0.005
n=250, R;=Rs=0.01
n=250, R;=Rs=0.05
n=250, R;=R=0.1
n=250, R;=Rs=0.2
n=300, R;=Rs=0.001
n=300, R;=R,=0.005
n=300, R;=Rs=0.01
n=300, R;=Rs=0.05
n=300, R;=R,s=0.1
n=300, R;=Rs=0.2

6.46e + 00
1.17e — 02
2.64e — 03
1.80e — 03
2.37e — 03
5.06e — 03
1.43e 4+ 01
1.14e — 01
3.90e — 03
3.57e — 04
5.43e — 04
8.41e — 04
1.90e + 01
4.76e — 01
1.75e — 02
2.06e — 04
2.26e — 04
3.96e — 04
1.86e + 01
1.50e 4+ 00
5.61le — 02
2.07e — 04
1.44e — 04
1.81e — 04
2.06e + 01
3.0le 4+ 00
1.61le — 01
1.74e — 04
9.19¢ — 05
1.24e — 04
2.39e + 01
5.10e + 00
3.19¢ — 01
2.73e — 04
1.17e — 04
9.08e — 05

7.53e + 00
1.81e — 02
3.45e — 03
2.45e — 03
3.93e — 03
9.15e — 03
1.63e + 01
1.49e — 01
5.84e — 03
5.30e — 04
7.14e — 04
1.46e — 03
2.06e + 01
6.14e — 01
2.52e — 02
2.99¢ — 04
3.47e — 04
7.32e — 04
2.30e + 01
1.80e 4+ 00
7.43e — 02
3.02e — 04
2.60e — 04
4.16e — 04
2.41e + 01
3.51e 4+ 00
1.90e — 01
3.82e — 04
2.52e¢ — 04
3.23e — 04
2.54e + 01
5.61e + 00
4.16e — 01
8.23e — 04
3.25e — 04
3.68¢ — 04

on the logarithmic scale of the ordinate.

Particularly interesting is the fitness evolution of PBIllnea a number of stepwise
fitness improvements are observed. This behaviour is cansetutations having a
positive impact on the fitness of a solution. Mutations bee®ery important in the
later stages of the optimisation process when the proktbitfnodel has almost con-
verged towards a specific solution candidate in the seaatesplutating a wrongly
evolved bit in the binary solution sub-component can rasudin especially signifi-
cant fitness improvement of the overall solution. Since apamably large mutation
shift R, = 0.1 is used, an improvement due to mutation can be efficientlyoeeol

by PBIL.

8.58e 4 00
2.56e — 02
5.62e — 03
3.29¢ — 03
5.09¢ — 03
1.33e — 02
1.74e 4+ 01
1.66e — 01
7.59e — 03
7.53e — 04
1.06e — 03
2.30e — 03
2.23e + 01
7.37e — 01
2.94e — 02
4.70e — 04
4.52e — 04
1.07e — 03
2.40e + 01
2.08e + 00
9.62e — 02
6.24e — 04
1.11e — 02
4.14e — 01
2.57e + 01
4.37e 4+ 00
2.39e — 01
1.16e — 03
6.13e — 04
3.75e — 01
2.67e + 01
6.77e + 00
5.03e — 01
2.46e — 02
2.56e — 02
9.24e — 01

7.52e 4+ 00
1.81e — 02
3.61e — 03
2.50e — 03
3.89¢ — 03
9.07¢ — 03
1.62e 4+ 01
1.46e — 01
5.87¢ — 03
5.28¢ — 04
7.44e — 04
1.54e — 03
2.07e¢ + 01
6.09¢ — 01
2.39e — 02
3.19¢ — 04
3.42¢ — 04
7.29¢ — 04
2.25e + 01
1.80e + 00
7.51e — 02
3.23e — 04
6.80e — 04
1.70e — 02
2.41e + 01
3.56e + 00
1.90e — 01
4.22e — 04
2.68e — 04
1.55e — 02
2.54e 4+ 01
5.72e 4+ 00
4.13e — 01
1.79¢ — 03
1.73e — 03
3.75e — 02

5.29¢ — 01
3.17¢ — 03
7.13e — 04
4.21e — 04
6.35¢ — 04
1.64e — 03
8.38¢ — 01
1.25¢ — 02
9.03¢ — 04
9.72¢ — 05
1.50e — 04
3.36e — 04
7.96e — 01
6.72¢ — 02
3.64e — 03
6.61e — 05
5.27¢ — 05
1.72e — 04
1.23e + 00
1.64e — 01
1.12e — 02
1.08e — 04
2.13e — 03
8.09¢ — 02
1.11e 4+ 00
3.08¢ — 01
1.97e — 02
1.82¢ — 04
1.19¢ — 04
7.34e — 02
6.77e — 01
3.98¢ — 01
4.53e — 02
4.67¢ — 03
5.19¢ — 03
1.81e — 01
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Figure 7.5: Evolution of the median fitness for all tested algorithms on the lgeteeous
benchmark problem. Results are obtained from 25 independent ruestoDiue
mapping from bit values to the continuous domain, the binary methods allow a
minimal solution quality otz 10~ only. As the continuous optimisers are more
precise, the evolution was stopped when the fitness value dropped hEtdv

The step-wise fitness evolution of CMA-ES, on the other hard, dn entirely
different reason. It reflects the local restarts of the metfeer getting stuck on some
non-optimal solution during the evolutionary process. e presented median run,
CMA-ES performed four independent restarts, the first fimghafter88, 483 FES,
the second aftet90, 799 FES, the third afteB27, 562 FES, while the fourth restart
exhausted the maximum number of FES and achieved the be#isreEhat means,
if the initial population of CMA-ES represents a solutionsgao the optimum, the
method can converge towards it very quickly. Indeed, theesagun of CMA-ES
required only three restarts and a total26ft, 065 FES to achieve the precision of
10719,

All 25 runs of cHM-EDA solved the problem reliably in the given ntayim num-
ber of FES. Since the learning rate = 0.00075 for cHM-EDA is two times smaller
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(b) Evolution of continuous solution sub-component

Figure 7.6: Evolution of binary and continuous solution sub-componeang dgHM-EDA.
Results are averaged from 25 independent runs. Dark coloy# aorrespond
to an average bit status of 0, white colours a status of 1. The domino eonver
gence effect due to different salience of the bits is clearly visible in thedigu
Simultaneously the continuous search space is optim&ed). Only the first
50 variables are subject to optimisation, if the binary solution was identified cor
rectly. The irrelevant variables are subject to genetic drift and cgevandomly.

than in hHM-EDA, the latter is also significantly faster. Tdweerall fitness evolution
of the method is very similar to hHM-EDA.

MBOA, on the other hand, reports a very different convergdretgaviour. The
optimisation performance is comparatively fast in earfgss of the run, but slows



172 OPTIMISING HETEROGENEOUS SEARCH SPACES

down significantly after: 0.5 x 10° FES, increases again afterl.5 x 10° FES and
finally converges towards the optimum at an exponential dateas also noted that
MBOA is able to explore the binary search space very effiggefithe binary model
of the presented median run, for example, converged afigriain100 FES, while
the remainin@32, 800 FES were used to optimise the continuous model.

This observation suggests a very competitive performamddBOA on binary
optimisation problems, but a comparably slow convergeate on numerical prob-
lems. In (Kern et al., 2004), very similar results are report Here, several con-
tinuous EA,i.e. the Cumulative Step Size Adaptation Evolutionary Stratég$A-
ES), CMA-ES, the Iterated Density Estimation Evolutionatga@kithm (IDEA) and
MBOA were experimentally compared to each other using wedivkn numerical
benchmark problems. Especially on simple uni-modal, sgpamproblems, MBOA
was shown to be less competitive than the considered EShdfarore, it has been
demonstrated in (Kern et al., 2004), that although gooditeesauld be obtained on
separable multi-modal functions, MBOA was not able to opterany of the tested
non-separable functions at all.

Similar to MBOA, also hHM-EDA follows a step-wise optimisai strategy of its
two models. The optimal binary solution sub-component ssalvered afted7, 000
FES and the optimisation of the continuous component washiai afterl 70, 000
additional FES. The evolution of the mean generational sasttions of the binary
and the real solution sub-components are presented iné=igar Results are aver-
aged from the5 runs of hHM-EDA. The colour in Figure 7.6a reflects the averag
bit status of each of th&)0 bits at a specific generation, where dark colours denote a
status of0, and white colours a status df The domino convergence due to the dif-
ferent salience of the bits is clearly visible in the figuretsRiorresponding to larger
fitness penalties converge earlier during the evolutiopaogess.

Simultaneously the continuous search space is explafedsigure 7.6b. If the
binary sub-component was successfully optimised, onI)fithe% = 50 real-valued
elements; € R are considered for further optimisation. The |a8tvariables are
subject to genetic drift and converge randomly.

Computational cost

The tested methods are also compared according to theirwtatignal cost. The
binary-only algorithms are generally fast, since the cotatonal overhead for man-
aging the simple probabilistic model is low. For vVQEA, a matibdel has to be main-
tained and updated which slightly increases the compualticequirements com-
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o Relative to
Method Time in sec hHM-EDA
hHM-EDA 8.5 (0.0) 1.0
cHM-EDA 12.0 (0.0) 14
VQEA 38.6 (0.9) 4.5
PBIL 18.4 (0.1) 2.2
cGA 26.5 (0.1) 3.1
UMDA 19.8 (0.0) 2.3
CMA-ES 157.5 (5.1) 18.5
MBOA 2740.3 (12.0) 322.6

Table 7.3: Execution time of the tested methods when applied on the heterogdreswh-

mark problem of sizéV = 100. In brackets the standard deviation is given. The
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third column presents the required time in relation to the execution time of hHM-

EDA. For example, CMA-ES required 18.5 more time than hHM-EDA.

pared to PBIL, UMDA and cGA. Also, cHM-EDA and hHM-EDA are fasince
their algorithmic structure and the employed models arg senilar to vQEA.

The more costly methods are clearly CMA-ES and MBOA. In termSMfA-ES,
a covariance matrix is generated based on the populatiameafurrent generation.
Also, the sampling of new solutions according to this caace matrix adds com-
plexity to the algorithm. MBOA is the most costly among thet¢dsmethods here.
As discussed earlier, its computational overhead is langetaequires significantly
more resources than any of the other methods.

In order to demonstrate the computational cost of all thehous, the execution
time for each of them is recorded. It is explicitly noted ttie execution time is not
a very reliable metric to compare algorithms to each otharesit has a number of
problems. The results depend not only on the used hardwar&ldo on the used
programming language, the programmer’s capabilities toroge the code and the
included software libraries. For example, MBOA is based on & @¥plementation,
while all other methods are implemented in Java. Neversiselguch a comparison
can be very informative, if the limitations are known anccdssed properly.

All methods apply the same configurations as used in the bemthanalysis.
Only the stopping criterion was slightly modified: the aligfoms perform the maxi-
mum number of FES and are not allowed to stop earlier, evee gticcess criterion is
reached. Thus, all methods evaluate the fitness funéfient x 103 = 4 x 10° times.
The execution time was averaged over five runs. All expertmare performed on
the same machine, which is an Intel Core2 Duo CPU, 3.00GHz, 4GB RéAnning
a 64Bit Ubuntu Linux. The C++ code of MBOA was compiled using GC&3land
the highest optimisation level.
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Table 7.3 presents the measured CPU time for each methodeddoifinish a
single run. As expected, all binary methods are approxima&tgual in their com-
putational demands, VQEA being slightly slower due to théitaahal probabilistic
models. Also cHM-EDA and hHM-EDA report a fast execution éimThe very
good results of hHM-EDA are attributed to the conditionaldebupdate. Only if
the sampled solution is worse than the current attractos daeupdate occur. Since
the algorithm converges before the maximum number of FE8ashed, no model
update occurs in later stages of the run since the attrantbsampled solution are
always identical. This situation results in an impresskecetion time. If hHHM-EDA
is configured with a slower learning rag in order to prevent the early convergence
of the method, the execution time of the algorithm is closiéoone for cHM-EDA.

CMA-ES and MBOA require on average 157 and~ 2740 seconds, respectively,
to finish the run. Compared to hHM-EDA, these methods are appedely 18 and
322 times slower than hHM-EDA.

7.3.4 Conclusion

In this section, the performance of hHM-EDA was experimiyteompared to a
number of binary and continuous optimisers, along with teetogeneous method
MBOA. Due to the lack of a suitable benchmark suite for mixeabpgms, a simple
test function was proposed that has similarities with thapper-based feature selec-
tion technique. The complexity of all the methods was disedsand compared in
the light of their execution time.

Considering the obtained results on the proposed benchimtdi;EDA is clearly
a highly competitive algorithm among the presented methbidsvever, a more de-
tailed analysis on a wider range of test functions will havbe performed to provide
further statistical evidence for this claim. Neverthelab® obtained results have
demonstrated a promising proof of concept. The hHM-EDA igyhtiweight, fast
and reliable optimiser with a negligible computationalhhead. Practical guidelines
have been presented that allow an easy and intuitive coafigarof the method.

7.4 SEPARATION FROM COOPERATIVE COEVOLUTION

The simultaneous evolution of two solution parts in hHM-EB&ems very similar
to the principle employed in a cooperative co-evolutioragorithm. Nevertheless,
there is a distinct difference between the two, which isused in this section.
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Although a variety of co-evolutionary methods exist, a galiged cooperative co-
evolutionary architecture (CCA) has been introduced onlgm#yg in (Potter & Jong,
2000). The co-evolutionary model defines different spe@ash of them evolving
specific parts of a solution, also referred to as sub-compusné complete solution
for the problem is formed by combining all the sub-composdagether. A single
fitness criterion evaluates the quality of the completetswiu The evolution of each
species proceeds more or less independently from otheiespd8dus, different rep-
resentations for each sub-component and even differehitentary algorithms can
work together in this approach.

In principle, the two probabilistic models of hHHM-EDA coulik interpreted as
two distinctive species. Each of them represents a separateomponent of a com-
pound solution and both employ entirely different updaterapons to drive their
probabilistic model. Despite their independent evolutiooth representations share
a single fitness function and both parts need to collabonateder to maximise their
fitness.

The difference between hHM-EDA and CCA becomes obvious whempeong
the actual process of the fithess evaluation of the two. Timergéised CCA ac-
cording to (Potter & Jong, 2000) is shown in Figure 7.7. Heve species are co-
evolved and the two diagrams show the fithess evaluation frarperspective of
either species | or II. In order to evaluate the individudlspeecies I, a representative
of species Il is chosen. This representative is then condbwith all individuals of
species | and the fitness evaluation occurs. In the opp@stedn, the individuals of
the second species are evaluated.

In the case of hHM-EDA, the situation is completely diffetredere each individ-
ual consists of two parts and thus represents already a eterglution. In contrast
to CCA, no representative is chosen from the other models arsitiie metaphor of
two species is not suitable for hHHM-EDA. Figure 7.8 showsaveduation process of
an individual in hHM-EDA.

7.5 CONCLUSION

In this chapter, the two probabilistic models used in VQEA ahiM-EDA were
combined forming a new original algorithm that was introeld@s the heterogeneous
hierarchical model EDA. Due to the lack of proper benchmadbfems, a proof of
concept in the form of a synthetic test problem was dematestrarhe benchmark
shares similarities with a typical wrapper-based featatection scenario.
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Figure 7.7: The fitness evaluation process employed in the cooperat@xmbtdionary archi-
tecture from the perspective of species | (top figure) and speciesttbfn figure)

respectively.
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Figure 7.8: The fitness evaluation process employed in the hHM-EDA. Allishahls belong
to a single species, but each consists of two different sub-comporiEnssy
and real). Both sub-components together form a complete solution that is then
evaluated by the fitness criterion.

Experimental analysis of eight different optimisationteigjues was provided and
discussed. In comparison to binary-only and continuoug-optimisation algo-
rithms, hHM-EDA is highly competitive. Even the much morergaex continuous-
discrete optimiser MBOA required slightly more FES than hHEA to solve the
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benchmark reliably. However, the analysis of more testtions is required to pro-
vide strong statistical evidence to this claim. Differesiaad similarities between the
MBOA and hHM-EDA were highlighted and discussed.

In terms of complexity, h(HM-EDA requires very little algtrmic overhead, espe-
cially in comparison to MBOA and CMA-ES. Overall, hLHM-EDA is ight-weight,
fast and reliable optimisation method that requires thdigaration of only very few
parameters.

As part of the important integration of hHM-EDA into the ceint research field on
evolutionary computation, the similarities and differeado the generalised cooper-
ative co-evolutionary architecture were discussed. Thewodving species in CCA
are sequentially evaluated by choosing representatioes dther species which is in
contrast to the fitness evaluation in hHM-EDA. Thus, therjretation of the two
probabilistic models as separate species (in the sense of {S@AJ suitable for the
hHM-EDA. Future research might elaborate further on théedéhce between the
approaches and conduct detailed experimental compariahnsir characteristics.






INTEGRATED FEATURE AND PARAMETER OPTIMISATION
FOR AN EVOLVING SPIKING NEURAL NETWORK

This chapter presents the proposed extension of eSNN tawarigature subset se-
lection (FSS) domain. All required methods for this extensi.e. the binary and
continuous optimisation algorithms and their hybridigatiwere developed and com-
prehensively tested in the prior chapters. It was shownlib#t the binary and the
continuous optimiser as well as the hybrid version are gigbmpetitive and repre-
sent current state-of-the-art in the field of optimisatidie combination of hHM-
EDA and eSNN forms an integrated feature and parameter atilon framework
based on the eSNN classification method. Due to the implatientof feature se-
lection, the extension is expected to improve classificadiccuracy, while the simul-
taneous optimisation of the eSNN configuration avoids p@oameter choices and
promotes the straightforward application of the methodspexific problem domain.

As described earlier, the continuous representation in HEDA is used to op-
timise the parameter space of eSNN, while the binary reptasen explores the
feature space of the given data set. A bit state(3fdr “1” indicates the absence
or presence of the corresponding feature. According to tla@iym metaphor of the
binary part of hHM-EDA inherited from vQEA, the feature spas explored prob-
abilistically using asuperposition of feature subsetdue to this interpretation, the
novel eSNN based feature selection framework is na@eantum-inspired Spiking
Neural Networl{QiSNN) framework.

In order to test the functioning of the novel QiSNN framewoitke method is
experimentally compared to two traditional FSS algorithrike first is the classi-
cal multi-layer perceptron (MLP), and the second is thévB@Bayesian Classifier
(NBC). These methods are used in a wrapper-based fashiomsitmithe proposed
QISNN framework. vQEA is employed as the selection alganitivhile either MLP
or NBC are used to evaluate a given feature subset.

179
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Additionally, we analyse the QiSNN classification perforro@ by exchanging the
hHM-EDA for vVQEA. This allows a direct comparison of the hipand heteroge-
neous optimisation performance in the eSNN classificatmmext. The binary-only
nature of VQEA requires the conversion of bit strings intal nalues involving a
number of general issues, such as the introduction of gaaitwinto a continuous
search space, but also additional computational overhedércoding issues. Thus,
the hHM-EDA is expected to be beneficial in such a scenario.

Altogether, four methods are experimentally compared ism ¢hapter: i) the pro-
posed QiSNN using hHM-EDA specialised on the exploratiometérogeneous search
spaces; ii) QiSNN using the the binary-only optimisatiogagithm vQEA; iii) a
wrapper approach using MLP as the classifier and VQEA foufeatelection; and
iv) a wrapper approach using NBC as the classifier and vQEAefature selection.

The analysis of QiISNN is undertaken using synthetic dat §ich an approach
has several advantages. First, the global optimum is kreowriori and the func-
tioning of the algorithm can be easily validated. Second,dharacteristics of the
data set are known and all parameters, such as noise anddegaiynof features,
can be fully controlled by the experimenter. Finally, bemeinks commonly allow
inter-comparisons between methods developed in otheiestud

The following sections introduce the novel QiISNN framewaldng with its com-
ponents. Then, QiSNN is experimentally investigated andpared to the above
mentioned algorithms in terms of classification and feasekection performance
and computational cost. Finally, we discuss the qualityliéimed results followed
by the conclusion of this chapter.

8.1 QUANTUM-INSPIRED SPIKING NEURAL NETWORK FRAMEWORK

The proposed QiSNN framework follows the wrapper approatioduced in (Ko-
havi & Sommerfield, 1995). Kohavi and John (1997) discuskedrtethod in detail.
The wrapper methodology is a type of “black box” approacthitdicore, it contains a
general optimisation algorithm interacting with an indawtor classification method.
The optimisation task consists in a reliable identificatddran optimal feature sub-
set that maximises the classification accuracy determigetebinductor. Thus, the
classification method provides a quality measure for a ptesgefeature subset and
hence, acts as the fitness function for a general evolufalgorithm.

Due to the black box character of the classification methabtla interacting op-
timisation algorithm, the wrapper methodology offers aganbut powerful, feature
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selection technique that has become popular in many rdseaeas and domains.
See for example, the review on feature selection algoriinrb®informatics (Saeys,
Inza, & Larréhaga, 2007), and the medical case study on the survivalrbiotic pa-
tients presented in (Inza, Merino, et al., 2001) and (Blahtzg, Merino, Quiroga,

& Larraflaga, 2005). See alsAlfarez et al., 2006), where the wrapper technique for
selecting feature subsets for a emotion recognition sybesad on spoken language
was used.

The wrapper approach in the context of EDAs is particularbpyar. The
study presented in (Inza, Laffraga, & Sierra, 2001) and the excellent textbook
by (Larréiaga & Lozano, 2002) on the matter are worth mentioning here.

The QiSNN framework employs hHM-EDA as the feature selgctiptimisation
algorithm, while the eSNN classification method represtér@snductor. Since hHM-
EDA belongs to the class of EDA itself, the QiISNN approachelated to the EDA
studies mentioned above. An alternative also investigatéus chapter is the use of
VQEA instead of hHM-EDA as the optimiser.

8.1.1 Integrated feature and parameter optimisation

QISNN integrates the feature and parameter optimisatitmarsingle framework.
Section 2.7 of chapter 2 has reviewed similar approachesisncontext. Valko et
al. (2005) identified the fitness function as a crucial stepttie successful appli-
cation of such an integrated approach. It was argued thaueirearly phase of the
optimisation, the parameters are selected randomly. Asudtrigis very likely that
a setting is selected for which the classifier is unable tpaed to any input pre-
sented. For such settings the fitness value is zero whiclitgasulat areas in the
fitness landscape. Hence, a configuration that will allowrtbivork to fire (even
if not always correctly) represents a local attractor ingharch space that could be
difficult to escape in later iterations of the search. (Vadkal., 2005) used a linear
combination of several sub-criteria to avoid this probleievertheless, we cannot
confirm that the use of much simpler fitness functions leadsyoproblems in our
experiments. Using the classification accuracy on testmgpées seemed to work
well as it is presented in this thesis and in earlier papetspaameters of eSNN,
namely modulation factom;,, similarity thresholds;, potential fractiorn;, Vi € L,
were included in the search space of the optimisation method

In the context of VQEA, a conversion of bit strings into realues is required.
A similar scenario was presented in the previous chapters Jtady uses a small
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number of Gray-coded bits to approximate parameter cordiguns of the eSNN
method.

8.1.2 Description of QiISNN

The proposed QiSNN framework is shown in Figure 8.1. The uppet of the di-
agram represents the eSNN classification method as conmsielly explained in
chapter 2. Note the added binary mask in the second step pfdlcess. This mask,
along with a specific configuration of neural and learningapagters, is passed to
eSNN from the optimisation method depicted in the lower péthe figure.

The binary mask describes the features to be selected freal-aalued input data
vector. Then, the selected features are transformed intairadf spikes using the
rank order population encoding technique (see chapter @dtails). Following the
one-pass learning procedure, the connection weights oNe&H trained according
to the given parameter set.

The learning process includes the presentation of allitrgisamples. After the
learning, the classification accuracy is determined on aké&tst samples. This
accuracy provides a quality measure of the feature subskthenused parameter
configuration. This quality feedback is passed to the emgaagptimisation algo-
rithm, i.e. either hLHM-EDA or vVQEA. Based on the quality, the optimiseajpis the
search strategy and passes new feature subsets and cdidiggit@aeSNN for evalu-
ation. The whole process iterates until a termination gateis met,i.e. a predefined
classification accuracy is reached or the maximum numbeeations is exhausted.

8.2 DATA

QISNN is investigated on the basis of two benchmarks, nathelywo-spiral prob-
lem and the hypercube data set. A description of the geoeratid characteristics
of the data is presented here.

8.2.1 Two spirals

The first benchmark is known as the two-spiral-problem. Pinisblem is composed
of two-dimensional data forming two intertwined spiralsdanas first introduced
in (Lang & Witbrock, 1988). It requires the learning of a highon-linear separation
of the input space. The data was frequently used as a benkHonareural networks
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Figure 8.1: The QiSNN framework of tightly coupled feature selection arahpeter optimi-
sation of eSNN, integrated with the data. As a first step a feature subsktdsesl
from a real-valued data sample using a bit string acting as a feature maesie wh
a “1”/*0” in this mask indicates selected/non-selected features of the detarve
Selected vector elements are then mapped into the time domain using a number of
Gaussian receptive fields. Based on this transformation input neurarsSNN
emit spikes at pre-defined firing times, invoking the one-pass learningthlmo
of the eSNN. The learning iteratively creates repositories of outpubnsupne
repository for each class. Here a two-class problem is presentedd Basa set
of training samples the eSNN is trained and its quality is determined based on the
classification accuracy on a set of testing samples. The classificatioraagcs
then used as the fitness criterion of the optimisation method. Based on the fitness
the search strategy is adapted and a new solution is proposed. The sivlution
cludes two parts: A binary feature mask and a set of real-valued parani@te
eSNN. The whole process iterates until a termination criterion is ineeta pre-
defined classification accuracy is reached or the maximum number of iteration
is exhausted.

including the analysis of the eSNN method itself (WysoskiQ&). Since the data
contains only two relevant dimensions, we have extendegladdling redundant and
random information. The importance of the redundant festus varied: features
range from mere copies of the original two spirals to conghyetandom ones. The
available information in a feature decreases when strongese is applied. The
design of the data set is particularly important since itxpeeted that the eSNN
is capable of rejecting features according to their inhigirgormation,i.e. the less

information a feature carries, the earlier ESNN should be thexclude the feature
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during the evolutionary process. We briefly summarise tha daneration below.
The situation is similar to the salience of different searahables. See chapter 7 for
a comprehensive discussion of this phenomenon,

Data points belonging to two intertwined Archimedean dpifalso known as the
arithmetic spiral) were generated and labelled accordifidie irrelevant dimensions
consist of random values chosen from a uniform distribytowering the entire input
space in the range-1, 1] of the data set. The redundant dimensions are represented
by copies of the original spiral points= (z, y)*, which were perturbed by a Gaus-
sian noise using standard deviatien= s|p|, with |p| being the absolute value of
vectorp ands — a parameter controlling the noise strength. The noiseasas lin-
early for points that are more distant from the spiral orig@iro)”. A noisy valuep,
is then defined as the outcome of fhecentred Gaussian distributed random variable
N (pi, 0?), usingo as defined above.

Our final data set contained seven redundant two-dimerisipital points(z}, y)”
and for each a different noise strength parameter {0.2,0.3,...,0.8} was used,
totalling 14 redundant features. Four additional random features ., r, were in-
cluded. Together with the two relevant features of the $p{raandy), the data set
contained0 features. Figure 8.2 presents #¥ generated samples of the resulting
data set for the seven valuessadind the original and fully random versions.

8.2.2 Hypercube

The second benchmark is the uniform hypercube data sety tuestiknowledge first
introduced in (Estevez, Tesmer, Perez, & Zurada, 2009). pfbblem consists of
two classes of00 samples. For each sample, a five-dimensional vecetor. ., r5)
is drawn from a uniform distribution. A given pattern belsrg class if r; < ay*!
fori = 1,...5 and to clas® otherwise. The parameters were chosen to be (.8
anda = 0.5.

This data set was created with different ratios of releveedundant and random
features in order to cover some typical scenarios in theesbmif feature selection
problems. More relevant features (five) were included thsgduor the spiral data
(two). The number of redundant and random features was ohoge five and0 re-
spectively, compared tbt and seven in the spiral data set. In tot@k) samples with
40 features each were used in this data set. The redundantdsatre linear com-
binations of the relevant features perturbed by additivassSian noise of increasing
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ing eSNN in the context of a FSS problem. The colours/symbols represent th

class label of a given data point. Each figure shows two featurean@dy-axis).
All features are combined to form the complete experimental data set. Tlity qua
of the redundant features is decreasing as stronger noise is apptiditioAally,
four random features are included in the data set (only two of them awvensin

the bottom right diagram).

level. The data set was balanced. Estevez et al. (2009)derawdetailed explanation

of the data generation.
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8.3 PERFORMANCE ANALYSIS

This section investigates the classification and featuexgen performance of the
proposed QiSNN. Four methods are included in the analysesptoposed QiSNN
using either hHM-EDA or vQEA for the feature and parametdimisation problem,

awrapper approach using MLP as the classifier and vVQEA foufeaelection, and a
wrapper approach using NBC as the classifier and vQEA for featelection. First,

the experimental setup is described, followed by the ptasen and discussion of
the results.

8.3.1 Setup

Both optimisation algorithms,e. hHM-EDA and vQEA, use a population structure
of ten individuals organised in a single group that is glbsynchronised every gen-
eration. This setting was reported to be generally suitila number of benchmark
problems.

In the case of the spiral data set, the learning rate for tharpirotation gate was
set tod = 7/50. Due to the advantages discovered in chapter 7 /thgate in its
default settingj.e. ¢ = sin?(0.027), was used for hHM-EDA and VQEA. In terms
of hHM-EDA, the rate of the mean and standard deviation sifite chosen to be
0, = 0.1 andd, = 0.025 respectively. We note that these learning rates are gfightl
faster than the default settings of the methods. This is dubkd fact that QISNN
requires only six parameters for a two-class problem, anal @ensequence, faster
learning rates are possible.

A total of 400 generations were performed. Due to the larger problem Sixg,
generations were computed for the hypercube problem, ésing /50 for the binary
learning rate and,, = 0.1 andd, = 0.05 for the continuous update operators.

VQEA requires the conversion of bit strings into real valuesur bits per variable
offer sufficient flexibility for the parameter space. For tenversion itself a Gray
code was used.

A fair comparison between methods requires the appropgratéguration of each
classifier used in this study. NBC has no parameters and sorampéer tuning was
necessary for this method.

The MLP, on the other hand, involves numerous tunable vi@salthe most criti-
cal ones being the number of hidden neurons, the learnieg aad the momentum
term. These parameters were varied in order to determinieetstecombination. Al-
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Figure 8.3: The figure shows the accuracy levels achievetlgifferent configurations of
a multi-layer perceptron on the two-spiral data set. Each point reprdberas-

erage of the accuracies obtained i(afold cross-validation experiment. Error

bars indicate the standard deviation. All configurations use neuronsigfittoi

transfer functions trained 500 epochs. The lower curve (green triangles) repre-
sents the accuracy of the MLP when 2l features are included in the data set,

the upper curve (black squares) the accuracy when only the releantes are
used. The circles (red) indicate the final configuration chosen forherienents
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performed in this study. They yield a satisfying compromise between computa-

tional cost and classification quality.

together32 different settings were tested. For each setting, two sepa6-fold
cross-validation runs were performed. For the first run lsstiof the data including
the relevant features only, was used, while the for the scon all features were
involved.

The results on the spiral data set for these two runs and ébr@&fahe32 parameter
configurations are presented in Figure 8.3. We note the blaefit of feature selec-
tion for this data set. Only if the MLP is trained on relevamiormation, does the
classification accuracy increase significantly. Thus, appate feature selection im-
proves the performance of MLP, which is the key principleleited in the wrapper
approach.
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Parameter Name \ Value

no. hidden neurons N = 20
activation function | sigmoid
learning rate n =038
momentum term | o = 0.8
training epochs 500

Table 8.1: Appropriate Parameter configuration for the MLP model, useddimparison
with the proposed new method

The chosen setting for the experiments described belowssdan a trade-off
between computational cost and classification accuracg sEuere additional cost
of more hidden neurons is not worth the slight increase ofi@@y reported in Fig-
ure 8.3. Table 8.1 presents the parameter settings obtoradhe parameter study.
Using 10-fold cross-validation, the chosen configuration of MLPiaehd a satisfy-
ing accuracy 0f).849 (standard deviation.0634) on the spiral data set containing
the two relevant features only. When applied to the full dataising all20 features,
the same configuration resulted in an accurady.@f1 (0.0608).

Finding an appropriate setting for the spiral problem apgpedéo be more difficult
compared to the hypercube data set. For this data, changjes aonfiguration had
only small impact on the performance of the classifier. Thius,same parameter
setting for both problems was used. The standard error paggagation learning
algorithm (Rumelhart et al., 1986) was employed to train thenection weights of
the network. The weights were initialised to small valuethia rangg—0.25, 0.25]
randomly chosen according to a uniform distribution.

Most of the parameters of QiISNN are optimised during thewdianary process.
For each clas$ € L, the modulation factom,, the similarity threshold;, and the
proportion factorc; are optimised. Since both problems contain two classegasix
rameters are involved in the QISNN framework. In terms ofgbpulation encoding,
the number of receptive fields needs especially carefulideration since it affects
the resolution for distinguishing between different inpatiables. After some pre-
liminary experiments20 receptive fields in case of the spiral data and five receptive
fields for the hypercube were used. The Gaussian centresunvidoemly distributed
over the search interval and the variance was sgt+01.5.

In order to guarantee statistical significan®@jndependent runs for each investi-
gated classification method were performed. In every géineraall samples of the
data set were randomly shuffled and divided into training tsting samples, ac-
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cording to a train-to-test ratio 6%. For the computation of the classification error,
we determined the ratio between correctly classified sasvgid the total number of
testing samples.

8.3.2 Results

We discuss the results on the two-spiral problem first, fadid by the results on the
hypercube data.

Spiral data

Figure 8.4 presents the evolution of the average best featyset in every genera-
tion using the two versions of QiISNN, MLP and NBC respectivéle colour of a
point in these diagrams reflects how often a specific feataeselected at a certain
generation: the lighter the colour, the more often the spoeding feature was se-
lected. It can clearly be seen that, independent of the ithgoiused, a large number
of features have been discarded during the evolutionamggss Furthermore, all al-
gorithms clearly identify the featurasandy to be relevant. All methods except the
proposed QiSNN using hHM-EDA select some redundant andilevant features
as well.

Particularly interesting is the order in which the featuhese been removed by
each algorithm. Both versions of QiSNN (Figure 8.4a and 8rémcted the four
random features,, ..., r, containing no information almost immediately (in fewer
than20 generations). The redundant featurésy; were then rejected one after the
other, according to the strength of the inherent noise: idjedn the noise, the earlier
a feature is identified as irrelevant. We note the excellemtopmance of QiISNN
using hHM-EDA which is clearly able to reject all redundaeaifures in most of the
runs. Figure 8.5 compares the evolution of the number ottsdefeatures during
each generation. While both QiISNN based methods clearlgtstdeer features
than their classical competitors at any stage of the opditiois, the binary optimised
QISNN is outperformed by the heterogeneous version.

It is also interesting to compare the evolution of the classion error for each
algorithm, cf. Figure 8.6. The gradient in the fitness landscape defined b\NeS
appears to be much steeper compared to other algorithnggngainom completely
unfit solutions at the beginning of the evolutionary run taMaigh quality solutions
in later generations. MLP and NBC display a flatter fitnesswdiah. It is noted
that the eSNN starts with no optimisation of its parametessle MLP and NBC
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Figure 8.4: Evolution of feature subsets on the spiral data set. The twamntfeatures were
identified by all methods, indicated by the bright colour of the first two coluimns
the diagrams. Only the QiSNN using hHM-EDA is able to determine the optimal
feature subset consistently.

are properly configured as part of the experimental setug. fitiness gradient may
be partially responsible for eSNN turning into a very goo@ldgy measure for the
feature subsets.

According to the presented results for QiSNN, a strong tation between clas-
sification accuracy and number of features appears adwemiagn the context of
a feature selection task. Figure 8.7 presents this rekttiprfor each of the inves-
tigated induction methods. Each point in the diagram cpoeds to a tuple (ac-
curacy, number of features) obtained from the generatibest individual of every
generation. The colour indicates the generation itselfe Tighter the colour, the
later the generation in which a given tuple was obtainedhéndase of QiSNNdf.
Figure 8.7a), a strong relationship between number of featand accuracy can be
observed. Even for small decreases of the number of featsigrgficant accuracy
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data set. QiSNN reports excellent classification results, the proposed\QiSN
using hHM-EDA being faster than all other tested algorithms.

improvements are reported. The strong correlation betweenber of features and
classification accuracy introduces a gradient and partrallucesneutrality in the
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Figure 8.7: The classification accuracy as a function of the number nfrésafor all tested
classifiers on the spiral data set. The different gray levels corregpahe gen-
eration in which a given data point was obtained. The lighter the colour, tifre la
the generation. For the eSNN-based classifiers the accuracy is higldpdknt
on the number of features, which is in contrast to MLP and NBC.

fitness landscape. Removing a redundant or irrelevant f2&im the selected sub-
set corresponds to a fithess gain for QiISNN, which may notssecidy be true for
the other two tested methods. If the feature removal doekeadtto a certain fitness
gain, and thus two solutions may have the same fitness véledithess landscape
has a neutral dimension at the corresponding parametertd@emnetic drift, the neu-
tral parameter converges randomly, which means a rande@uotsel or non-selection
of the encoded feature. In the fitness landscape defined b g&Nitral dimensions
are replaced by a fithess gradient, which allows the ideatibo and exclusion of
low quality features from the current subset. As a resudtfitimess landscape can be
easily climbed by the optimisation algorithm, leading tetéa and more consistent
convergence towards the optimal feature subset.
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Figure 8.8: Evolution of parameters in the QiSNN framework on the spiralskdtaThree
parameter pairs are optimised during the evolutionary process. Due torthe co
tinuous representation of the parameter space, a smoother exploratiasiisi@o
(upper figure) compared to the binary optimisation (bottom figure).

Figure 8.8 presents the evolution of the eSNN parameterhéotwo versions of
QISNN. Although both methods have evolved similar final pagter configurations,
the exploration using the continuous representation ishnsmeoother compared to
the binary one and allows a finer parameter tuning. Due todlenbed nature of the
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QiSNN

QiSNN (binary)
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Figure 8.9: Evolution of feature subsets on the hypercube data setltfR@suhe synthetic
hypercube data set averaged ogérindependent optimisation runs. The five
relevant features were identified by all methods, indicated by the bridicof
the first columns in the diagram.

data set, the parameter setting for the two classes haveeevtdl be approximately

|dent|cal,|e C1 R Coy M = My andSl ~ S9.

Hypercube

A similar analysis was done for the second benchmark dataWWetnote that this
data set was very easy to solve by any of the tested algoritBwen without feature
selection, MLP and NBC reported very high classification aacyr Nevertheless,
the results are presented here since they show the propetidiing of all tested
methods on an additional independent benchmark problegurés 8.9-8.13 depict
the results on the hypercube problem.

In Figure 8.9, the evolution of the average selected featuipset is shown. Similar
to the figures presented on the spiral data above, diffeesetd of greyness reflect
how often a specific feature was selected at a certain gémerah these diagrams,
the first five features correspond to the relevant featuodieyfed by30 irrelevant and
finally by the five redundant features. All methods clearlgntify the five relevant
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Figure 8.10: Evolution of the number of features in the hypercube datdlbethethods are
clearly capable to reduce the number of features. The two versions diNQIS
exclude significantly more features than the classical methods.
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Figure 8.11: Evolution of the average accuracy of the generationakbkgion on the hy-
percube data set. All methods report excellent classification results.

variables. Nevertheless, all methods also select sonleviat/redundant ones. In
Figure 8.10, the evolution of the average number of selefgatlires is presented.
Both QiISNN methods were capable of decreasing the numbeatfries faster than
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Figure 8.12: The classification accuracy as a function of the numbeatirés for all tested
classifiers on the hypercube data set. The different gray levelsspaoimd to
the generation in which a given data point was obtained. The lighter thercolou
the later the generation. For the eSNN-based classifiers the accuraghlis h
dependent on the number of features, which is in contrast to MLP and NBC

NBC and MLP,cf. Figure 8.10. As depicted in Figure 8.11, NBC and MLP report
close to optimal classification accuracy without removithgielevant and redundant
features. Without the presence of any selective pressaree $eatures converge
randomly due to genetic drift, which has resulted in thetada of some irrelevant
features. Since in QiISNN an appropriate parameter setéagsito be evolved during
the run, its classification performance is worse than MLPNBGQ at the early stage
of the evolutionary process. In later generations, the raoguncreases quickly and
reaches levels similar to those in the traditional algongh Once more, we note
the faster convergence of the proposed QiISNN using thedggreous optimisation
method compared to the binary optimised QiSNN.
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Figure 8.13: Evolution of parameters in the QiSNN framework on the hypercdata set.
Three parameter pairs are optimised during the evolutionary processtoDue
the continuous representation of the parameter space, a smoother txplisra
possible (upper figure) compared to the binary optimisation (bottom figure).

The previously observed strong correlation between dleason accuracy and
number of features in QiISNN is also clearly demonstratedhenhtypercube data.
Figure 8.12 presents this relationship for each of the inyated induction meth-
ods. Finally, we want to comment on the parameter evolutlmiained from the two
QiISNN. Similarly to the case on the spiral data, the contirsugarameter optimisa-
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tion is much smoother, compared to the binary optimisati®woth optimisers report
similar final parameter configurations for the similarityetshold and the modulation
factor, only the proportion factar, shows a slightly different evolution between the
methods.

Complexity

We also want to discuss the computational complexity fotheaicthe algorithms
presented here. The fitness evaluation of a feature subsleiaidy the most costly
part in the wrapper. Depending on the data set, an MLP regjitheeconstruction of
a rather large neural network, followed by the training aftedata sample fo500
epochs using a costly back-propagation procedure and sshipdar the most com-
plex method in this study. The eSNN classifier implementsadae-pass learning,
but additional overhead is required for transforming eaata dample into a spike
sequence and computing the spike propagation in the netwidde to the simple
topology of the network, an efficient network simulation @spible. The NBC re-
quires the lowest computational resources, each trairdngpke is investigated only
once and only minimal overhead is necessary, allowing \&sydlassification.

8.4 PARAMETER EVOLUTION

The previous experiments revealed that the simultanediraigption of feature sub-
sets and eSNN parameters is effectively achieved by hHM-BbB#Ahis section, we
focus on the analysis of the parameter evolution in greagtild

First of all, the interpretation of the eSNN parametersghhghted. For each class
label, three eSNN related variables exist, namely the nadidul factorm, the firing
threshold fractiorr, and the similarity thresholsl See also chapter 2, section 2.6 for
a comprehensive description of these variables.

The modulation factom reflects how strongly a neuron is affected by the temporal
order of spike arrival times. In the extreme caserof= 0, none of the pre-synaptic
spikes contributes to the computation of the post-syngpitential. For the other
extreme;n = 1, all pre-synaptic spikes have the same importance andilcot&rto
the computation of the post-synaptic potential equallywigein these two extremes,

0 < m < 1, the temporal order of spike arrival times is important: ¢aelier a spike
is received by a neuron after the stimulation onset, thegenits contribution to the
post-synaptic potential change.
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The modulation also directly controls the maximum stimolat.,,... of a neuron,
SINCUmaz = ), w;(m)°r®r@) where the sum runs over all pre-synaptic neurons,
cf. Algorithm 1 on page 40. In fact, the ter;n,, m® corresponds to geometrical
serieswhich converges according to:

> omt o= L (8.1)
x=0

1—m

Since a connection weight always satisfies < 1, the termﬁ in Equation 8.1
represents an upper bound gy,

The firing threshold? is defined as a fraction of the maximum post-synaptic
potential,i.e. ¥ = cu,,.,,. Parametef < ¢ < 1 describes the sensitivity of the
neuron for pre-synaptic spike activity. The smaller thaigadfc, the lower the firing
thresholdy and the earlier the post-synaptic response of the neuramrsicc

The similarity thresholds, on the other hand, is not a neural parameter, but in-
stead a parameter of the one-pass learning algorithm in eSN&llearning algo-
rithm evolves repositorie®,; of neurons — one for each class lahel'he number of
neurons ink,; depends on the value of and larger (smallery correspond to fewer
(more) neurons. Each evolved output neuron is sensitivesjzeaific input pattern
and hence represents a certain area or cluster in the date. spance parameter
controls the number of neurons in a repository, it indisecthntrols the size of the
cluster represented by a certain output neuron. The snib#eralues is, the more
training samples may activate a specific output neuron aral @nsequence, the
larger the cluster represented by this neuron becomeselexineme case of = 1,
for each training sample an individual output neuron isnedi while fors = 0, all
training samples are mapped to a single output neuron.

8.4.1 Setup

For a controlled experimental analysis of the parametduéwea in QiISNN, we study
each parameter separately. More specifically, in each Empet, a single parameter

is selected for investigation and is then subjected to thienogation through hHM-
EDA. The remaining parameters, on the other hand, are fixeglatgonable default
values. For example, selecting the modulation fagtofor analysis results in the
simultaneous optimisation of and the feature subsets, while the values for the sim-
ilarity thresholds and the firing threshold fractionare fixed to predefined constants
s andc, respectively.
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The following constants are choseri: = 0.85, s = 0.2 and¢ = 0.75. These
values are directly adopted from the experimental resiitaioed on the spiral data
set in the previous section. Since three different pararsetast in QiISNN, three ex-
periments were undertaken. For each experin##ntjdependent runs are performed
and results averaged. The spiral data set is used for stythg@parameter evolution,
since it is clearly a more challenging benchmark than theergibe data set.

8.4.2 Results

The next sections discuss the results obtained from theidedexperimental setup.

Evolution of neuron repositories

First, we demonstrate that the size of the neuron reposgangeed dependent on the
similarity thresholds as it was claimed in the previous section. Figure 8.14 shbw/s t
number of neurons in the repositoRy in dependence of;. A point in the diagram
corresponds to a tuplés;, |R;|), where|R,| is the number of neurons iR,. The
tuple is extracted from the generational best solutioninbthin each of thel00
performed generations. The number of neurong&jralso depends on the size of
the corresponding feature subset. For larger subsetsintilargy between samples
decreases on average, since a sample contains more eldéhantsay differ from
the elements of other data samples. This dependence isedfleg the colour of a
point in Figure 8.14. The lighter the colour, the more feasuare selected by the
corresponding solution.

The figure reveals an interesting pattern on how the neurorbruevolves during
the optimisation process. In the early stage of the optitisisaon averagel0 out
of 20 possible features are selected. Note the light colour inr€i@.14 for values
of s; = 0.5, 1 € {1,2}. At this stage of the evolution, for most training samples an
individual output neuron is created and stored in the réposiParametes does not
impact the learning process much, since the input sampéegeay different to each
other due to their comparatively high dimensionality. Ie ttourse of the optimisa-
tion process, the number of features decreases, whichrinrtareases the similarity
between different samples on average. Due to this incrgasinilarity, more output
neurons are merged and the number of neurons per repostomyates. At this stage
of the evolution, most random and redundant features asadyjrexcluded from the
optimisation. Note the dark coloured points f&| ~ 100.
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Figure 8.14: The number of neurons in the evolving neuron reposirin dependence
of the similarity threshold;. A point in the diagram corresponds to a tuple
(s1,|Ri|), where|R;| is the number of neurons iR;. The colour of a point
corresponds to the number of selected features. The lighter the coloarptee
features are selected by corresponding solution.

In order to further increase the classification accuracynarease of the neuron
number inR; seems beneficial. As stated above, more output neuronssporre
to a finer clustering of the data space. Since the spiral @gt@sents a highly non-
separable classification problem, reducing the clusterisimeaningful. In the fig-
ure, this situation is reflected by a clear trendsafowards small values.

We conclude that, due to the dependencé/f on s;, the neuron numbeR,|
increases proportionally with decreasisyg Furthermore, if the number of selected
features is large, the value ef is of low importance, since training samples differ
from each other mainly due to their comparatively large disienality.

Evolution of the similarity thresholsl

Figure 8.15 shows the results obtained from the three exgeits described in the
experimental setup above. A point in these diagrams cavrelspto a tuplé f, x;),
wheref denotes a fitness value and= {s, m, ¢} denotes the parameter that is opti-
mised through hHM-EDA. The tuple is extracted from the gatienal best solution.
Similarly to Figure 8.14, each point is coloured in deperngenf the number of fea-
tures selected by this solution. The lighter the colourttoge features are selected.
The independent evolution of the parameters shows sonrestitey patterns. In
Figure 8.15a, the generational best fitness in dependertbe similarity threshold
s; Is presented. We have concluded earlier that the valug igfless important, if
the selected feature subset contains many irrelevant mretlandant features. We
observe in the early stage of optimisation, that on avesage0.5, which is the ex-

201
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Figure 8.15: The fitness in dependence of the paramgteith = € {s,m,c}. A pointin
these diagrams represents a tufez;) extracted from the generational best
individual. The colour of a point corresponds to the number of seleetadrfes.
The lighter the colour, the more features are selected by corresporudinigps.
For each experiment a single parameter is subjected to the optimisation process
while the remaining parameters are fixed to reasonable default values.
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pected value of a uniform random variable sampled in thegfind]. Parametes; is
optimised by hHM-EDA in exactly this range. The classifioataccuracy improves
mainly due to the selection of appropriate feature subs&ite that, according to the
experimental setup, only the features and the variafdee subject to optimisation.
Hence, only the number of features and the valueg, afetermine the classification
accuracy of a solution.

The importance of; is boosted in later stages of the optimisation process. A
clear trend ofs; towards smaller values is noted after the removal of mostnednt
and irrelevant features. We conclude, thats a low salient search variable and its
importance depends mainly on the number and quality of sldeatures.

Evolution of the modulation facton

The modulation factor is optimised in the range5, 1]. The random sampling of
the parameter results in an average valuenok: 0.75 at the first generations of
the evolutionary processf. Figure 8.15b. Nevertheless, even at this early stage of
the optimisation, a clear trend is noted. The modulatiotofaimcreases towards a
value ofm ~ 0.85. At this stage, a high-quality feature subset has also edolWe
observe a decrease of the significancepkince most values in the ranes, 0.85]
report excellent classification results.

We conclude, that the modulation facteris significant especially in early stages
of the optimisation. After a high-quality feature subseatientified, the precise mod-
ulation is less important and a certain range of values talsia.

Evolution of the firing threshold fraction

Similarly to the modulation factom, the firing threshold fractiom is optimised in
the rangg0.5, 1]. From Figure 8.15c, it is immediately noted that, initiatljollows
a clear trend towards small values. The classification acgumproves mainly due
to the optimisation of this parameter. An accuracy0d.5 is achieved even without
the identification of any high-quality feature subset. Nb&light coloured tuples at
fitness levels < 0.5.

This observation is explained by the fact, that smaller ditinresholds allow the
network torespondto any presented input, even if this response is not nedlyssar
correct. As explained in chapter 2, section 2.6.2, it is {pbsshat the eSNN classifier
remains silentj.e. no output neuron is activated after the presentation of patin
sample. This case is considered as a mis-classificatiors, Bimce a small threshold
allows the eSNN to respond to a presented input, this corafiigur turns the eSNN
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into a random classifier. A random classification reports\@rage an accuracy of
~ 0.5 and thus, small values represent an attractor in the sepade ®fc.

In later generations of the evolution, suitable featuresstdbare identified which
results in classification accuracies higher than At this stage, larger firing thresh-
olds are beneficial, since they allow a more precise contret the activation of
certain output neurons. We observe a changing trend in thietean of ¢ after the
accuracy level has reach¢gd~ 0.7. At the final stages of the optimisation process,
fractionsc ~ 0.65 are suitable to achieve excellent classification results.

We conclude, that the firing threshold fractiors a high salience search variable.
Small valuesc represent a strong attractor, since they allow the tramsfton of
eSNN into a random classifier.

8.5 ROLE OF NEURAL ENCODING

In this section, we investigate the impact of the encodingqup&ters on the classi-
fication performance of eSNN. As explained in chapter 2, thealled rank order
population encoding is employed in the context of eSNN. Ehisoding requires the
setting of two parameters. Paramelércontrols the number of Gaussian receptive
fields, while paramete? controls the width (variance) of each Gaussian. We immedi-
ately notice that these variables directly affect the netvge, since a larger number
of receptive fields increases the number of input neuronsehetwork. As a con-
sequence, also the learning process is affected and thestdly the classification
performance.

There is another important aspect of the neural encodirtgghmghlighted here.
The encoding describes a mapping fronowaer dimensionateal valued input vec-
tor space to digher dimensionaVector space of spike times. This transformation
has the potential to simplify the classification task. Intfacsimilar concept is the
working principle of numerous other classification metheadg. Support Vector Ma-
chines and the principle of the Echo State Machines and thpad.iState Machines
(LSM) (Maass et al., 2002). For example, the LSM also empépyking neurons for
solving classification or time series prediction problemke idea is to transform a
sequence of input spikes into multiple spike trains throtighexcitation of a large
static recurrent SNN. The response from this static netwsotken interpreted by a
readout function. This readout function can be memory-deskeven linear, since it
is expected that the mapping step has transformed the pnobte a linear separable
one.
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Indeed, it was demonstrated in (Soltic et al., 2008) that@rapriate configura-
tion of the rank order population encoding can significasittyplify the classification
problem. A visualisation of the obtained encoded spikengraevealed distinct pat-
terns for samples belonging to a certain class. It was alsoleded that the parame-
ter configuration of the encoding method is critical for thadtioning of eSNN and
that too few or too many receptive fields deteriorate thesdiaation performance.

In order to analyse the relationship between the encodirenpeters and the clas-
sification behaviour of eSNN we investigate the followingpesmental setup. For
all experiments the spiral data set is used and only the tlggalt dimensions and
y are considered. More specifically, the feature selectioohaweism of QiSNN is
switched off for this study. Only the parameters of eSNN (olation factor, simi-
larity threshold and firing threshold) are optimised. Theapageter configuration for
M andg is varied according td/ € {10,20,30,50} andg € {1, 1.5, 2} totalling in
twelve different experiments. The optimisation processl®ved to rurd00 gener-
ations.

From each of the twelve experiments a typical evolved eSNbdbtained which
is considered to be optimally configured and trained. EadiiNefs then tested on
100,000 test samplesz;,y;) which are equally distributed in the data space with
-1 <z <land-1 <y, < 1for1l < i < 100,000. For all samples, the
classification output of the evolved eSNN is determined aswhlised in Figure 8.16.
Each diagram shows the results for one of the twelve perfoemperiments.

The axes in the diagrams represent the two dimensions (&satof the classifica-
tion problem,z andy. The colour of a point reflects the classification output @f th
corresponding eSNN: white points belong to samples whieltlassified as spiral A,
while black points represent samples classified as spirahB.gfay coloured points
represent data samples for which no label could be detedyiieenone of the output
neurons of the trained eSNN emitted a spike and the netwankired silent for the
presented input.

It is clearly demonstrated that the configuration of the ey parameters is
critical for the functioning of eSNN, which is coherent withe findings presented
in (Soltic et al., 2008). The number of receptive fields afebe ability of eSNN
of distinguishing between different input vectors. Thuargmeter)M determines
theresolutionof the data space representable by eSNN. If the resolutinatifine-
grained enough, the data space can not be optimally paseiicoy eSNN and the
classification performance decreasefs, the three diagrams whet® = 10. On
the other hand, if the resolution is too fine, the output nesiteecome increasingly
specialised to the presented training samples, which indecreases the generalisa-



206

INTEGRATED FEATURE AND PARAMETER OPTIMISATION FOR AN ESNN

M=10, =1 M=10, =15

M=20, f=2

M=30, f=2

Figure 8.16: Output patterns of trained eSNN using different configursof the rank order
population encoding. The axes represent the two features of the tved-dgta
set. White (black) coloured points belong to test samples which are classified
as spiral A (B). The gray coloured points represent data samples \wBisiN
could not classify.

tion ability of eSNN. The diagrams whefd = 50 illustrate an example for the loss
of generalisation. We notice the significant increase of gn@as,.e. unclassified
samples, in these figures. The output neurons are strongtyadised and are only
sensitive to the data points learnt from the training sasplde ability of eSNN to



8.6 CONCLUSION 207

interpolate data points between training samples is sggmfly reduced (notice the
gray “gaps” between the two spirals).

The generalisation ability of the output neurons is alsorgjly affected by the
configuration of parametet. Larger values increase the specialisation of the neu-
rons. The importance ¢f increases with the number of receptive fields. Fbe= 10
fields, the value of parametgris almost irrelevant, while the impact of the variable
is clearly visible forM = 50.

8.6 CONCLUSION

This chapter proposed an integrated feature and parangierigation framework
based on the combination of the heterogeneous optimisatgorithm hHM-EDA
and the eSNN classification method. According to the quantetaphor of the
binary part of hHM-EDA inherited from vQEA, the feature spas explored prob-
abilistically using a superposition of feature subsetse Buthis interpretation, the
novel eSNN based feature selection method was named Quamspimed Spiking
Neural Network (QiSNN) framework.

The classification and feature selection performance ohththod was demon-
strated on two synthetic benchmark problems. QiSNN redaieellent results in
comparison to traditional wrapper-based feature selectiethods. This observation
was partly explained by the removed neutrality in the fitassiscape represented
by the eSNN classifier.

The benefit of the novel heterogeneous optimiser hHM-EDA elearly demon-
strated. In comparison to the binary representation of vQEAMV-EDA allows a
faster, smoother and more reliable exploration of the myauable search space.
The performance difference between VQEA and hMH-EDA is etgi&to increase
with larger problem sizes. However, additional analysi®guired to provide statis-
tical evidence for this claim.

The analysis of the parameter evolution in QiISNN revealedesmteresting char-
acteristics. The features are clearly the most importaratrpaters in the optimisation
process and are commonly optimised first. In general, the\efgameters strongly
depend on the quality of the selected feature subset. Th&astynthreshold is of
low significance, if inadequate feature subsets are seleatieich occurs mainly in
the early stage of the optimisation. The modulation factomportant in early gen-
erations and becomes less significant after high-qualitufe subsets are identified.
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It was also noted that the firing threshold fraction is a veityoal parameter, since it
has the ability to turn eSNN into a random classifier.

The self-adapting nature of QiISNN due to the simultaneootugen of network
parameters and feature subsets represents a highly desinabacteristic in the con-
text of machine learning and knowledge discovery. It praaa straight-forward
application of the framework to specific problem domainswaitt the requirement of
expert knowledge in the area of spiking neurons.

The configuration of the neural encoding method is very ingrdrfor the func-
tioning of the eSNN classifier. It was argued that an appad@encoding mechanism
can simplify the classification task. The parameters irelin the rank order pop-
ulation encoding affect both the separation resolutiontaedyeneralisation ability
of eSNN. A careful fine-tuning of these parameters in depecel®f the data set to
be classified can significantly improve the classificatioriggenance of eSNN. Thus,
besides numerous potential applications for real-woddsification problems, future
research may include the optimisation of additional vdesalof the systene.g. the
parameters of the employed rank order population encodetywn.



APPLICATION OF QISNN - A CASE STUDY ON
ECOLOGICAL MODELLING

This chapter presents the findings of a case study where tBRNDframework is
applied on a real world data set in the context of an ecolbgnalelling problem.
For many invertebrate species little is known about thespoase to environmental
variables over large spatial scales. That knowledge is itapbsince it can help
to identify critical locations in which a species that has ffotential to cause great
environmental harm might establish a new damaging pojpmaiihe usual approach
to determine the importance of a range of environmentabistets that explain the
global distribution of a species is to train or fit a model t® khown distribution
using environmental parameters measured in areas whespdles is present and
where it is absent.

In this study, meteorological data that compris&anonthly and seasonal temper-
ature, rainfall and soil moisture variables 816 global geographic sites were com-
piled from published records. These variables were cdaeléo global locations
where the Mediterranean fruit-fiCeratitis capitatg, a serious invasive species and
fruit pest, was recorded at the time of the study, as eithesgnt or absent (CABI,
2003). The data set is balanced meaning that it has an egodienof samples for
each of the two classes. Motivated by inadequate resultsn@oLankin, Sama-
rasinghe, & Teulon, 2002; Cocu, Harrington, Rounsevell, \Wor& Hulle, 2005;
Watts & Worner, 2006) using a different method, namely thétirlayer perceptron
(MLP), this study aims to identify important features relet/for predicting the pres-
ence/absence of this insect species. The obtained resajtaliso be of importance
to evaluate the risk of invasion of certain species into gigegeographical regions.

In the following sections, first the experimental setup iplaked, followed by
an analysis and discussion of the obtained results. Sineastiy is undertaken in
collaboration with Dr Sue Worner from the Centre for Bio-patien at Lincoln Uni-
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versity, Christchurch, New Zealand, the results are alstyaed from an ecological
point of view.

9.1 EXPERIMENTAL SETUP

In the previous chapter, QiISNN reported promising resuitsymthetically designed
benchmark data. In this case study, QiSNN is investigatedrgal world scenario.
Similarly to the experiments presented in chapter 8, twenapation methods for
QiISNN are considered: the binary-only optimisation altjon vVQEA and the het-
erogeneous optimiser hHM-EDA. For a better recognitionhafse two setups, we
refer to them as the heterogeneous and the binary QiSNNecwagly, for the rest of
this chapter.

In order to allow a comparison of results, we apply a traddioclassification
method on the same data set by exchanging the eSNN classifigne classical
naive Bayesian classifier (NBC). A similar scenario was discussdbe previous
chapter: VQEA is used to evolve an appropriate feature suddske the quality of a
subset is determined through training a NBC (instead of anNd&idd reporting its
classification accuracy. Based on this evaluation, new featubsets are selected.

We note that this problem represents a combinatorial opéitidn task for which
the binary nature of vQEA is well suited. Apart from the dedcsation of the data
set, which is a requirement for NBC, the method does not redu@setting of any
other parameters thus no parameter optimisation is neezted h

A number of careful parameter choices have to be made. Foptithisation meth-
ods, a population structure of ten individuals organised gingle group is chosen,
which is globally synchronised every generation. The patans for the mean and
standard deviation shift in the heterogeneous QiSNN wareos@SH) = 0.1 and
") = 0.02 respectively, the learning rate for the binary model W8 = 7/100.
In the binary QiSNN, the learning rate was seft® = /200, while in combination
with the NBC a rat&V5¢) = /100 worked favourably.

QiISNN automatically adapts its parameters during the éaolary process. Since
the classification task is a two-class problem, six parareete involved in the opti-
misation. In the heterogeneous QiSNN this search spacelerexl by the continu-
ous solution part of the optimiser. The binary VQEA, on theeothand, requires the
conversion of bit strings into real values. In the experitagfour bits per variable
were enough to offer sufficient flexibility for the parametpace. For the conversion
itself, a Gray code was used.
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In terms of the population encoding for eSNN, especiallyrthmber of receptive
fields needs careful consideration since it affects thelu@ea for distinguishing
between different input variables. After some preliminarperiments 0 receptive
fields were chosen, the centres uniformly distributed olerititerval[0, 1], and the
variance controlling parametgr= 1.5.

In every generation, the06 samples of the data set were randomly shuffled and
divided into a training and testing set, according to a rafig5% (154 training and
52 testing samples). The chromosome of each individual in tpaifation was trans-
lated into the corresponding parameter and feature spesdiing in the generation
of a fully parametrised, but untrained, eSNN or NBC and a feasubsét The cre-
ated eSNN or NBC of each individual was then independentlgechand tested on
the appropriate data subsets. For the computation of thsifitation error, we deter-
mined the ratio between correctly classified samples antbthenumber of testing
samples.

Each of the three setups were allowed to evolve over a torabeu 0f4000 gener-
ations. In order to guarantee statistical relevafgéeéndependent runs using different
random seeds were performed for each setup.

9.2 EXPERIMENTAL RESULTS

In Figure 9.1, the evolution of the average best featureetubhsevery generation is
presented using eSNN and NBC as classifiers. The colour ofra ipainis diagram
reflects how often a specific feature was selected at a cgygmiaration. The lighter
the colour, the more often the corresponding feature wastss at the given genera-
tion. It can clearly be seen that a large number of features been excluded during
the evolutionary process. Many features have been idehtiide irrelevant by all
algorithms, although also some significant differencesvbeh the evolved feature
subsets is noticed. Figure 9.1 clearly shows the similafitthe feature subsets ob-
tained by both versions of QiISNN. Nevertheless, the he@regus version reports
greater consistency in the feature rejection. Also, tHedamne selected significantly
fewer features than the binary QiSNN and NB(, Figure 9.2: on averagel fea-
tures were selected using binary QiSNN, ten in case of therbgtneous QiISNN
and18 using NBC. We will analyse these features from an ecologicaitfd view

in the next section. The trend in Figure 9.2 suggests theugwal for the NBC is
incomplete. Compared to the binary QiSNN, the heterogeneerson addition-

1 In case of the NBC, only a feature space exists, since nonedeas have to be tuned.
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Figure 9.1: Evolution of the feature subsets on the ecological data seligiiter the colour
of a point in the diagram, the more often a specific feature was selected at the
given generation. Each point is the averag8mindependent runs.

ally rejected the following features: templ, temp3, TAUESprl, Tannual, rainl0,
RSumR2, PEAnnual. The overall classification accuracy wasesiamong all tested
algorithms.

The eSNN classifier appears to be rather consistent in drgudatures, since
most of the30 independent runs have agreed at least about the irrelevatirés,
hence many black columns appear in the diagram. The situatidifferent for fea-
tures that have been identified as relevant in most of the g small number of
runs, exactly these features were considered to be irrglexa reflected by the light
grey columns in Figure 9.1. For these features, severalthgpis can be derived.
We emphasise that the features for which the classifiersradeaided may be not
important, but also not misleading during the evolutionsearch. Hence, they are
randomly included in the final feature subset by any of the pgrformed. It is also
likely that some features are equally relevard. fedundant features), so at least one
of them will be selected as a representative of these feahyé¢he algorithm. Dif-
ferent runs will most likely select a different feature, shthe final subset is varying.
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Figure 9.2: The evolution of average feature numbers on the ecologitakdt. All meth-
ods are clearly capable of reducing the number of features. The twimmerof
QIiSNN exclude significantly more features than NBC.

Furthermore, it is possible that some features are presawaitonal to the pres-
ence/absence of others. Hence, the average evolved feafoset can not be con-
sistent in all runs and the ecological analysis of the feasubset should include all
features that have been selected more frequently thanarcpdrcentage in all runs
performed.

In the case of NBC, an opposite situation can be observed. Seaterés are
clearly found to be relevant in &b runs, which is in contrast to the results obtained
by QiISNN. However, for many other features, no definite denian be made,
since some of the runs reported a given feature to be relebanat the same time
an almost equal number of runs reported the exact oppodite eXplanations given
earlier about redundant and conditional features are t(uRBC as well.

It has to be noted that there is a difference in the way NBC amtNeSassify a
test sample. NBG@lwaysreports an answer (either clag®r classl). As a result,
the classification accuracy of NBC is never lower than appnaxely 50% which
corresponds to a random classification. QiSNN, on the ottyed Hs also able tdeny
classification (either clags classl or undecidedl The latter case is considered to be
a mis-classification of the presented sample. Thus, QiSNN\aHh&ird classification
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Figure 9.3: The evolution of accuracy on the ecological data set. All metepdst similar
classification performance after the evolution of 4000 generations.

option, i.e. remaining silent, and as a consequence, a random classificabuld
result in an accuracy df3%, compared t&0% for NBC.

Furthermore, QiSNN starts the evolution with an non-opdi parameter config-
uration. Thus, the likelihood of mis-classification is lamp the early stage of the
optimisation. In later generations, this situation chang@ce QiSNN discovers a
working parameter configuration. At this stage of the rum @lccuracies of both
algorithms can be compared fairly.

This situation is clearly demonstrated in Figure 9.3 whigtspnts the evolution of
the average accuracy ov#00 generations. Afteb00 generation, QiISNN achieves
accuracy levels that are similar to NBC. The average accurhtlyedbest individ-
ual in the population after the evolution was constantlyvat®)% for both tested
classifiers, NBC displaying a slightly higher variance dgrthe evolutionary run
compared to QiISNN.

It is interesting to see how strongly the classification aacy depends on the
feature number for each of the tested algorithms. In Figude this dependence
is investigated for the eSNN and NBC classifiers. Since tharliand heteroge-
neous QiISNN show a similar behaviour here, we chose thedgsreous QiSNN
as the representative for both QiISNN. Each point in the diagcorresponds to a
tuple (accuracy, feature number) obtained from the geioaatbest individual of
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Figure 9.4: The diagrams show the accuracy as a function of the featomgen for eSNN (a)
and Ndve Bayesian classifier (b). The different grey levels correspondeo th
generation in which a given data point was obtained. The lighter the coleur th
later the generation. For eSNN the accuracy is highly dependent onatieee
number, which is in strong contrast to NBC.

every generation. The colour indicates the generatiolf;itde lighter the colour,
the later the generation in which a given tuple was obtainadhe case of eSNN
(cf. Figure 9.4a), a strong relationship between feature numbgrccuracy can be
observed. Even for small decreases of the feature numbefisamt accuracy im-
provements are reported. Since the evolutionary searafvendby the classification
accuracy only, solutions having a small number of featuepsasent a strong attrac-
tor in the search space. In the case of NBC, smaller featuretue also rewarded
by higher classification accuracy. Nevertheless, this dvgaless obvious compared
to the one observed in eSNbI, Figure 9.4b. Thus, the fitness landscape (in terms of
feature number) represented by NBC appears to be flattertibame represented by
eSNN. It is noteworthy that flat fitness landscapes are ansimedeproperty of any
fitness function in an evolutionary algorithm.

Figure 9.5 presents the evolution of the parameters of thdNe& chitecture. All
three pairs display a steady trend and evolve constantlgridsva certain optimum,
not reporting too much variability. We take this as an intbcghat these parameters
were indeed carefully controlled by the correspondingrojsation algorithm.

9.3 INTERPRETATION FROM ECOLOGICAL POINT OF VIEW

Using the heterogeneous QiSNN, on average dflyeatures were selected in a
particular evolutionary run. However, since the evolvedtiiee subsets were not
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Figure 9.5: Evolution of parameters in the QiSNN framework on the ecologata set.
Three parameter pairs are optimised during the evolutionary process.toDue
the continuous representation of the parameter space, the enhanced @isN
per figure) reports a smoother exploration compared to the binary optimisation
(bottom figure).
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identical in all of the runs and the presence/absence airfesis also expected to be
conditional on the presence/absence of other featuresaveedecided to include into
the ecological analysis all features that have been sddgtat leas20% of the 30
independent runs. Thus, in the case of QiSNN the analysisates25 variables that
were considered as being involved in the determinationettassification outcome
after the evolution o000 generations.

Table 9.1 summarises the final feature subsets obtainecthyéthe classification
methods. A feature is marked as rejected when at &gstof all performed runs
have discarded this feature at the end of the evolutionarylfa feature was selected
in 80% or more of all runs, it is marked as selected. The remainiatufes have
been labelled as “undecided” in the table. As mentionedezatthe table reflects the
fact that eSNN is more consistent in rejecting features tHB. For this reason,
we concentrate our ecological analysis on the results médaby QISNN only. The
features included in this analysis are presented by the tlvorns (“Undecided” and
“Select”) corresponding to the eSNN method in Table 9.1.

Winter (TWIN2, TWIN3, TWINTER) and early spring (TSPR1) temperat,
and early summer rainfall (RSUMR1) were particularly stroagtfires along with
the degree-days (DD5 and DD15). Degree-days are the acateduiumber of de-
grees of temperature above a threshold temperaitisn@15° in this case) over time
(in this data set over the whole year). It would be expectedl ttine latter two vari-
ables would be closely correlated. These results corresjpcemother analysis where
more conventional statistical and machine learning metheate used to identify the
contribution of environmental variables @ capitatapresence or absence (Worner,
Leday, & Ikeda, 2008). While there is no indication from thiglysis whether the
features have a negative or positive effect on the disiohubf the species, it is
known thatC. capitatais limited by the severity of temperatures in the winter and
early spring and extremes of wet or dry conditions in the semfvera, Rodriguez,
Segura, Cladera, & Sutherst, 2002).

The accuracy of the resulting model on the test set, howevaot only higher
than that for the model using the full feature set, but algghéi than that found
by (Worner et al., 2008) using a range of conventional mod€le clear potential
for further improvement of classification accuracy with rabefinement, as well as
automatic optimisation of parameters, makes this an exdikenseful approach for
the analysis and modelling of complex, noisy ecologicahdat
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Feature eSNN NBC Agreement
Reject Undecided Select| Reject Undecided Selec

Templ yes yes

Temp2 yes yes

Temp3 yes yes U
Temp4 yes yes

Temp5 yes yes

Temp6 yes yes R
Temp?7 yes yes

Temp8 yes yes R
Temp9 yes yes R
Templ0 yes yes

Templl yes yes R
Templ2 yes yes R
TSuml yes yes R
TSum2 yes yes R
TSum3 yes yes

TAutl yes yes

TAut2 yes yes U
TAut3 yes yes R
TWinl yes yes

TWin2 yes yes u
TWin3 yes yes S
TSprl yes yes

TSpr2 yes yes

TSpr3 yes yes R
TSummer yes yes R
TWinter yes yes

Tannual yes yes

Rainl yes yes R
Rain2 yes yes

Rain3 yes yes

Rain4 yes yes

Rain5 yes yes R
Rain6 yes yes R
Rain7 yes yes R
Rain8 yes yes

Rain9 yes yes

Rain10 yes yes

Rain1l yes yes

Rain12 yes yes R
RSumR1 yes yes

RSumR2 yes yes R
RSumR3 yes yes R
RAutrl yes yes U
RAutr2 yes yes

RAutr3 yes yes

RWinrl yes yes

RWinr2 yes yes R
RWinr3 yes yes R
RSprrl yes yes

RSprr2 yes yes

RSprr3 yes yes

Rannual yes yes R
PEannual yes yes

AEannual yes yes R
Mi yes yes

ADayLen yes yes R
AD50mm yes yes

AS50mm yes yes

AD150mm yes yes

AS150mm yes yes

AD300mm yes yes

AS300mm yes yes R
AD700mm yes yes R
AS700mm yes yes R
Im300 yes yes

DD5 yes yes S
DD15 yes yes

Thornthw yes yes R
[ Total (%) || 632 323 44 [[ 574 29.4 132 [[ 470 |

Table 9.1: Final feature subsets obtained from the ecological experimertgndecided,
R=Rejected, S=Selected

9.4 CONCLUSION

In this chapter, the QISNN feature selection framework wasdiad on a real world
problem in the context of an ecological modelling problemsi®es have been com-
pared to the traditional Nee Bayesian Classifier (NBC). Although no significant
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difference in terms of accuracy between the two classiboatiethods was obtained,
some important experimental observations were made. WHIE kepresented a
rather flat fitness landscape for the evolutionary algorjtimmvhich lower numbers

of features receive only little fithess rewards, the eSNNIUBeQiSNN reported a

clear correlation between classification accuracy andufeatumber. As a result,
eSNN was capable of decreasing the feature number not astigr fdnan NBC, but

was also more consistent in excluding features from theropdtion process. NBC

on the other hand appeared to be more consistent in seldetihges, while being

less consistent in rejecting them. The obtained featursetalwere analysed by an
ecological expert and found to be coherent with current kedge in this area. In

a previous analysis, in which conventional statisticalhmds were applied on this
data set without performing any feature selection befardha worse classification
accuracy was reported.
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CONCLUSION AND FUTURE DIRECTIONS

This chapter summarises the achievements of the presesgedrch and provides
several directions for future work.

10.1 SUMMARY OF ACHIEVEMENTS

This thesis proposed an integrated feature and parametienisgtion framework
built upon the evolving spiking neural network architeetuiThe framework com-
bines an evolutionary optimisation algorithm with an eSNakdd classification
method following the wrapper approach. Due to the quantumpeding metaphor of
the employed binary optimisation algorithm, the novel teghe was introduced as
the Quantum-inspired Spiking Neural Network (QiSNN) fravoek. The evolution-
ary process evolves an appropriate feature subset whilgltsineously optimising
the neural and learning related parameters of the eSNN. yirtegsc weights of the
neural network are not subject to evolution, but are tralmed fast one-pass learning
algorithm instead. The QISNN framework and part of its asiglyvas initially pub-
lished in (Schliebs, Defoin-Platel, & Kasabov, 2009) artdd@xtended in (Schliebs,
Defoin-Platel, Worner, & Kasabov, 2009a).

The QiSNN framework offers a number of advantages comparétetindividual
application of the eSNN classifier. First, the parametersSMIN are self-adapting
promoting the straight-forward application of the methodatspecific problem do-
main. This characteristic is highly desirable for any maeHearning and knowledge
discovery method, especially in the context of an increasimount of interdisci-
plinary research. As a consequence the framework effégtaxmids a poor classi-
fication performance caused by the choice of inappropriatarpeter configurations
by the experimenter. Second, feature selection can signtficimprove the classi-
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fication accuracy of eSNN and enhances the suitability ofrieéhod for real-world
problems.

The novel method was experimentally investigated on a nuobdata sets in-
cluding both synthetic and real world problems. It was shdwat the eSNN classi-
fier responds very sensitively to redundant and irreleveatuires. It is noteworthy
that irrelevant features may decrease the performanceeofnithod significantly.
As a consequence, feature selection is very important fdiNeS he sensitivity of
eSNN to noise is effectively exploited by the evolutionaptimisation algorithm.
Relevant, redundant and irrelevant features were reliadtiyatied in the investigated
benchmark problems.

In a case study, the QiISNN framework was applied to an ecwddgnodelling
problem. Results were compared to the traditiondavB&ayesian Classifier (NBC).
QiISNN decreased the number of features faster and morestemity than NBC.
The obtained feature subsets were analysed by an ecolegisait and found to be
coherent with current knowledge in this area. The case stiadyrecently published
in (Schliebs, Defoin-Platel, Worner, & Kasabov, 2009b) &chliebs, Defoin-Platel,
Worner, & Kasabov, 2009a). In a previous analysis, in whichventional statisti-
cal methods were applied on this data set without perforrmmgfeature selection
beforehand, a worse classification accuracy was reported.

For the simultaneous evolution of feature subsets and eSiahpeter configura-
tions a specialised evolutionary algorithm was developeadtl &llows the simultane-
ous exploration of a binary and a continuous search space. niéthod is a novel
and original contribution to the field of evolutionary contgtion. The algorithm
hybridises two additional evolutionary methods and wathiced as the heteroge-
neous Hierarchical Model Estimation of Distribution Algbm (hHM-EDA).

In its core, hHM-EDA combines the novel Versatile Quantursgired Evolution-
ary Algorithm (VQEA), and the novel continuous Hierarchidéodel Estimation
of Distribution Algorithm (cHM-EDA). hHM-EDA was experim#ally investigated
and its competitive performance was demonstrated when amdo eight different
optimisation techniques. Furthermore, guidelines forciriguration of hHM-EDA
were developed and tested as part of the analysis. In terrosnoputational cost,
hHM-EDA requires very little algorithmic overhead in caast to a number of other
tested algorithms. Overall, h(HM-EDA is a light-weight, fagd reliable optimisation
method that is easy to configure and flexible to use. Howekeranhalysis of more
test functions is suggested to provide additional staisBvidence to this claim.

The binary representation employed in hHM-EDA is explorgd/QEA that was
introduced as an improvement over the Quantum-inspireduigsoary Algorithm
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(QEA) previously proposed in (Han & Kim, 2002). An extensesgerimental anal-
ysis demonstrated that apart from the quantum metaphorAv®E&n original ap-

proach belonging to the class of EDA. The main differemigiieature of vVQEA to
other EDA approaches is a multiple probabilistic model thatrganised in a struc-
tured population of individuals. The advantages of mamifid) several probability
vectors instead of only one were empirically demonstrateQEA is an effective

optimiser that works with fairly generic settings of its tah parameters for a col-
lection of benchmark problems of various sizes, with défdrlevels of interactions
between variables and numbers of neutral dimensions. Meilgrobability vectors
compensate for a finite number of decision errors while thgufadion structure al-
lows an adaptive learning speed and directly controls thersity of the solutions
sampled by VQEA. As part of the thesis, VQEA was first publising(Defoin-Platel

et al., 2007) followed by a comprehensive analysis in (Deféliatel et al., 2009).

The behaviour and the robustness of VQEA was analysed omasédenchmark
problems using different noise landscapes. The study ledeasignificant benefit
of VQEA in comparison to other EDA approaches. It was shovat the selective
pressure during the evolutionary process can be contrbited@rying the population
structure. Small population sizes in combination with felbgl synchronisation
events decrease the selective pressure, while a fully synided population structure
increases it. This knowledge may prove very important fergtiditional fine-tuning
of parameters on noisy problems.

The continuous representation employed in hHM-EDA is esqiddy cHM-EDA
that was developed as an extension of VQEA towards numeptahisation. The
probabilistic model of VQEAI.e. the Obit, was replaced with Gaussian distributions.
All key characteristics of VQEA, namely a multiple probaiic model, a hierarchi-
cal population structure and a convergence dependenirgaie, are also part of
its extension. The method was named continuous hieraitehimdel EDA, since the
guantum metaphor has become inappropriate in the contéxé @aussian distribu-
tions.

cHM-EDA was investigated on a state-of-the-art benchmarte sconsisting of
25 different test functions covering a variety of differenoplem characteristics.
The functions range from simple separable uni-modal prob)J@ver non-separable,
non-linear, non-symmetrical, rotated and scalable fonstito complex hybrid com-
position functions in which several different function pesties are mixed together.
Additionally, some noisy benchmarks were considered. Mezadl performance of
cHM-EDA is very competitive, especially on difficult, highndensional problems.
Issues arise when the search space contains flat areas.r+aive learning rate
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for the standard deviation update of the modele &semployed in some other evo-
lutionary techniques, might be beneficial. Along with thextiemark experiments,
some practical guidelines for parameter configuration wweesented. Furthermore,
the scalability, robustness and convergence speed of cBKkere investigated.

10.2 FUTURE DIRECTIONS

This thesis has contributed to two research areas: QiSNN®val method in the
field of neural information processing, while the three dieped optimisation al-
gorithms belong to the field of evolutionary computation.eTdeveloped methods
reported promising results and future work is planned tohkirinvestigate their
characteristics and compare their performance to relaiftiods. Additionally, a
number of potential applications are possible.

In the next sections, future work on QiSNN is presentedpfedid by plans for
future work on vQEA, cHM-EDA and hHM-EDA.

10.2.1 QiSNN

Here we discuss possible future directions for the QiSNhé&aork.

Analysis

A detailed analysis of the characteristics of QiSNN in neaHd scenarios is sug-
gested. It was already shown in the course of this thesisthieainvolved optimi-
sation methods are able to handle fithess noise satisfyimgly However, another
important property of real-world data is tlmbalance of data setsExperimental
analysis is required to investigate the behaviour of QiShIBLich a context. Further-
more, some traditional classification benchmarks base@arworld data sets may
be investigated in a future study.

Applications

The QISNN framework was designed for a straightforward igppbn in different
problem domains. The thesis has undertaken already a wrld-wase study in
the context of an ecological modelling problem. Future ssidn similar data are
planned. Additionaécological datanay be provided by the Centre for Bioprotection
at Lincoln University, Christchurch, New Zealand. Potdmiher applications may
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involve the analysis obio-medical problemssuch as gene expression analysis and
the prediction of diseases based on clinical data.

For many data sets, the feature space is very large and ewthe optimisation
of thousands of different features. In this situation thech®r more powerful com-
putational resources arises. The implementation distiibuted version of QiISNN
is required which allows the efficient simulation of SNN oncarputer cluster. An-
other possibility is the use of state-of-the-art compuystems, such as thiidueFern
supercomputérthat was made available to New Zealand scientists receifftiys
machine is currently the only IBM Blue Gene computer instailedhe Southern
Hemisphere. The system emplopy®4 dual-core CPUs per rack resulting in a total
of 4096 cores and a theoretical peak performancé Io? Tera-flops. Comprehen-
sive large-scale simulations of SNN may provide an invadkriabol for the future
analysis of brain-like neural information processing. Apmpg supercomputers to
neuroscientific problems is a current trentl,e.g.the Blue Brain Project (Markram,
2006) which is an attempt to reverse engineer a mammalian ttmaugh extensive
computer simulations.

Neural models

Recently, numerous studies have suggested a novel paradiggeveloping more
realistic neural models. In (Kasabov, 2008) the potentfah probabilistic spik-
ing neural model was discussed. The principle was furtheyaghted in (Kasabov,
2010). In these articles it is argued that most current nencalels are determin-
istic which is in contrast to biological neurons. Stochasfiements may enhance
the information processing capabilities of spiking newrobhe integration of such a
novel neural model into the QiSNN framework would be strfigfvard since only
the deterministic Thorpe neuron would need to be replacee. tD its relevance for
QISNN, the concept of this probabilistic approach is brieflglined here.

The probabilistic neural model as presented in (Kasabo¥QPB& schematically
shown in Figure 10.1. The potentia) represents the state of a neurioA neuron
i is stimulated by the spike activity of pre-synaptic neurgnsAdditional to the
synaptic connection weights; ;, the probabilistic model has three novel parameters.
Parametep( ; represents the probability that a spike from neuievill reachz, p; ; is
the probability that synapdg, i) contributes to potential;, andp; is the probability
that neuroni emits an output spike. The overall potentialof the neuron can be

1 More information about BlueFern is available at http:/fmbluefern.canterbury.ac.nz
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Figure 10.1: A probabilistic spiking neural model according to (KasaB6%0). p; ; repre-
sents the probability that a spike from neurpwill reachz, p;; is the proba-
bility that synapsé€, i) contributes to potential;, andp; is the probability that
neuron: emits an output spike. See also Equation 10.1. Figure was redrawn
from (Kasabov, 2010).

describede.g. by means of the spike response model (Gerstner & Kistler2@p0
which was described in detail in chapter 2:

Random

variables

A —~
J !

whereC' = 1 with probability p¢ ;, S = 1 with probability p?,; andp; is sampled in
dependence of the timeand the state of potential The kernel functiong ande
follow the interpretation of the spike response modeélchapter 2 for details. Note
that, if all probabilities are set th the model resembles the traditional spike response
model.

Kasabov (2010) argues that an integrated probabilistic SiNlar to QISNN may
be very suitable for classification and feature selectimbl@ms. Especially in the
context of many practical real-world problems involvingga amounts of noise, a
non-deterministic neuron may demonstrate some integeshiaracteristics.

Optimisation of additional parameters

Although most parameters in the QiISNN framework are opgahitirough the evolu-
tionary process of hHM-EDA, additional parameters may loduighed in this optimi-

sation,e.g.the parameters of theeural encoding method’he employed rank-order
population encoding (explained in chapter 2, section 21@duires the setting of the
number of Gaussian receptive fields and the paramketdrich controls the standard



10.2 FUTURE DIRECTIONS 227

deviation of the Gaussian. Both parameters are criticah®fianctioning of QiSNN.
Furthermore, other neural encoding techniques may be cenesl.

10.2.2 Optimisation algorithms

This thesis has developed three novel optimisation methwtsallow the simulta-
neous evolution of a suitable feature subset and a corrdsppparameter set for
eSNN. However, due to their generic nature, these meth@&dalso applicable to a
variety of general optimisation problems. Several futuredaions for each of the
optimisation techniques are summarised here.

hHM-EDA

Evolutionary algorithms are a powerful optimisation tontlanany studies have em-
ployed them to enhance neural information processing.diedimtext of neuroscience
these algorithms may be usedréverse enginedpiological neurons. The technique
allows the derivation of novel mathematical neural model®se parameters are
adjusted through the use of an evolutionary algorithm ireotd fit the model be-
haviour to some measured biological recordings. Simil@regches are very com-
mon in bioinformatical problems such as the reverse engimgef gene regulatory
networks. Due to its flexibility, robustness and competitperformance, hHM-EDA
seems very suitable for this task.

A concrete example for an application of hHM-EDA is the opsation of the com-
putational neuro-genetic modelling (CNGM) presented in (B&ova & Kasabov,
2007). Here, a gene regulatory network (GRN) affects theespdtivity of a SNN.
Both the GRN and the SNN have parameters that need to be oplimiseder to
fit the CNGM to a given data set. Benuskova, Jain, Wysoski, arshBav (2006)
presented a manually fine-tuned CNGM that is capable of rejoind experimental
data on long-term potentiation (LTP) occurring in the ragiggucampal dentate gy-
ros. Using hHM-EDA the optimisation process could be autech@and the model
accuracy increased.

Although the idea of a mixed variable optimisation alganitis not new, hHM-
EDA has only very few competitors at the moment. Howevery vecent develop-
ments in this area have proposed numerous interestingolgetaeous optimisation
methods. See.g. the work on genetic algorithms presented in (Rivero et abD920
and on a modified version of the Particle Swarm Optimiser (&at al., 2009), but
also the study on the mixed Ant Colony Optimiser discusse&atla, 2004). In or-
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der to compare these method and hHM-EDA efficiently with ezbler, novel mixed-
variable test functions and benchmarks are requireche&rogeneous benchmark
suitewith standardised guidelines for presenting results simd the one proposed
in (Suganthan et al., 2005) appears highly suitable for suobmparison study. The
suite may include practical real-world scenarios, sucthasarapper-based feature
selection or the topology and parameter evolution of nenedvorks. The com-
parison of different algorithms could also motivate an fin&ional competition on
heterogeneous optimisation problems.

The introduced generalised cooperative co-evolutionanyitecture (CCA) (Potter
& Jong, 2000) offers an interesting scheme for hybridisimfégent evolutionary
algorithms. Although it was shown in chapter 7 that the psgabhHM-EDA is not
a CGA, cHM-EDA and vQEA could be hybridised following the CGAeme. This
cooperative co-evolutionary hHM-EDAight demonstrate interesting properties and
should be experimentally compared to the hHM-EDA develapédtis thesis.

cHM-EDA

The proposed cHM-EDA has reported very promising resultthherCEC’05 bench-
mark suite. Its performance is generally on par with manylyigdvanced optimi-
sation algorithms in the field and outperforms numerous oustespecially in the
context of difficult multi-modal problems. Future improvents include the devel-
opment ofadaptive learning ratesMany state-of-the-art algorithms implement such
a mechanisng.g.the CMA-ES presented in (Auger & Hansen, 2005). Self-adgptin
parameters represent a highly desired property of evolatioalgorithms.

Local restart strategiemay further improve the optimisation performance of cHM-
EDA, especially in the context of large-scale global opsiation problems. When-
ever the algorithm is converged to a certain solution or timedis improves only
slowly, the algorithm is reinitialised and starts the skarnca different region of the
search space. This strategy is efficiently implemertedin the Hybrid Real-coded
Genetic Algorithm (Gana-Marinez & Lozano, 2005) and the CMA-ES (Auger &
Hansen, 2005). The recently developed benchmark suitemtexsin (Tang et al.,
2007) was specifically designed to compare the propertidgparformance of dif-
ferent optimisation methods in a high-dimensional optatia scenario. Since the
suite was proposed as part of the special session at the GsngmneEvolutionary
Computation (CEC) in 2007, an annual major event for the rekdeeid, many algo-
rithms have been compared on these test functions. Thuantigsis of cHM-EDA
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based on this benchmark suite allows the inter-compari$onmerous large-scale
optimisation methods to cHM-EDA.

The probabilistic multi-model approach may be also intimggor multi-objective
optimisation Since each model evolves individually, different areashim search
space are explored simultaneously. Experimental evideraseprovided in chap-
ter 6. A mechanism that allows the individual models to menge split according to
already visited solutions, might result in a powerful opsiation tool to solve multi-
objective problems. The suitability of EDAs for this probeclass was previously
discussed in (Lozano, Laifiaga, Inza, & Bengoetxea, 2006).

VQEA

The proposed VQEA was extensively studied in this thesiturElanalysis may fur-
ther focus on the importance different population structuredt was demonstrated
in chapter 5 that the population structure is very importarthe context of a noisy
and inaccurate fitness evaluation. An adaptive mechaniatrattiomatically adjusts
the number of individuals in each group might be beneficial.

Furthermore, the possibility dieterogeneous grougshould be explored. Here,
each group maintains its own learning rate. Hence, diftegeaups explore the
search space with different learning speeds. The fast grgeperally converge
quickly, but allow the efficient identification of promisirggeas in the search space.
The slower groups, on the other hand, maintain diversityrdento perform a local
search in these promising areas. Such a mechanism woulididyphtroduce dif-
ferent search strategies into VQEA. Similar strategiesals@ employed in other al-
gorithms,e.g.the genetic algorithm presented in (Gardlarinez & Lozano, 2005).
In principle, this strategy would be suitable for cHM-EDAdENHM-EDA as well.

10.3 CONCLUDING REMARKS

The thesis has embraced two major areas in the field of comtnqmehintelligence —
the area of neural information processing and the area dfittmoary computation.
For both areas, some very recent and exciting directiong eeplored. Arguably,
the development of practical applications based on spikéwgons is currently a hot
topic in the research community and numerous specialisefitnces, workshops
and journals have emerged recently. In light of this trehe pgroposed QiSNN frame-
work contributes to the family of contemporary evolving nentionist systems. The
integrated feature and parameter optimisation signifigamiproves the eSNN clas-
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sification capabilities and promotes the intuitive andigtrdiorward application of
the method in other problem domains.

Evolutionary computation is a traditional companion of raunformation pro-
cessing and both fields have greatly benefited from each. cdlmeong the most ad-
vanced and current evolutionary algorithms are the prdiséibiapproaches, namely
EDAs, which have attracted a large and highly productiveassh community during
the last decade. The three novel EDAs developed in the cofitbe thesis employ
multiple probabilistic models to explore the search spab&lvadds an interesting
new flavor to the EDA paradigm. The methods represent annaligiontribution to
the field and very promising results have been obtained froexgensive experimen-
tal analysis.

The fruitful hybridisation of spiking neurons with evolatiary algorithms in ei-
ther engineering or neuroscientific applications is vergitexg and provides many
interesting future directions for research.



Appendix

FORMAL DESCRIPTION OF USED EDA

A number of classical EDA were implemented and investigaatihg the prepara-
tion of this study. The descriptions of these methods arergbelow in the format
typically used in this field. Additionally, a formalised aegption of VQEA is pre-
sented.

Algorithm 5 vQEA — Versatile Quantum-inspired Evolutionary Algorithm

1: initialize eachQ);

2: initialize eachA;

3: while not termination conditionlo

4. foralliell,p]do

5: samplel new solutionC; from Q);
6 evaluate(;

7 if f(A;) better than f(C;) then
8 learnmodel(4;, C;, Q)

9: end if
10: A; — C;
11: end for

12:  check local and global synchronization
13: end while

14:

15: function learnmodel(4;, C;, ;)

16: for all j € [1, N] do

17:  if AJ # CJ then

18: if A7 =1 then

19: Q! — rotateQ’ towardsA? usingAd
20: else

21 Q! — rotateQ’ towardsA’ using—A#
22: end if

23:  endif

24: end for
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Algorithm 6 PBIL — Probabilistic Incremental Learning

1: initialize the probabilistic modeP
2: while not termination conditiowlo
3: sampleM new solutions fron into D

4:  evaluate the elements of

5. selectbest from D

6: forall j €[l,N]do

7: P — Pix (1.0 — R;) + best! x R

8: if rand(0,1] < R,, then

o: Pi — PI x (1.0 = Rs) + rand(0.0 or 1.0) x R
10: end if

11:  end for

12: end while

Algorithm 7 cGA — Compact Genetic Algorithm

1: initialize the probabilistic modep

2: while not termination conditiowlo
sample2 new solutions fromP into D
4: evaluate the elements 6of

5.  selectwinner andlooser from D

6: learnmodel (wmner, looser, 73)
.

8

9

. end while

: function learnmodel (winner, looser, P)
10: for all j € [1, N] do

11:  if winner? # looser’ then
12: if winner? = 1 then

13: Pi—Pi+1/n

14: else

15: Pl — Pl —1/n

16: end if

17:  end if

18: end for

Algorithm 8 UMDA — Uni-variate Marginal Distribution Algorithm

1: initialize the probabilistic modeP

2: while not termination conditionlo

3: sampleM new solutions fron into D

4.  evaluate the elements of

5. selectL = o = M solutions fromD into D,

6: forall j €[l,N]do

7: PJ « compute marginal frequency at locum D,
8: end for

9: end while




Appendix

COMPLETE STATISTICS ON CEC’'05 BENCHMARK

The CEC-2005 benchmark initiative proposed in (Suganthah,e2@05) suggests
specific guidelines for the presentation of results, whitbwe a direct comparison
of different optimization techniques. The obtained resatt the 25 benchmark func-
tions were prepared following these requirements in ddtathe Tables B.1, B.2 and
B.3 the objective function errors aftéd®, 10%, 105, and N x 10* FES are presented.
Table B.4, B.5 and B.6 present the number of required FES to eegoten fixed ac-
curacy level for all successfully solved functions, togetvith the success rate and
the success performance as defined in (Suganthan et al). Zt@&re B.1 presents
the convergence graphs of the objective function errorlelB.7 summarises the
time complexity for the algorithm.
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FESProb 1 2

3 4

5

6 7 8

9

10 11

12

min |1.54e+3
7th 13.47e+3
med [4.42e+3
19th |5.25e+3
max |7.05e+3

1le3

3.04e+3
6.17e+3
7.22e+3
9.67e+3
1.14e+4

1.32e+7
3.80e+7
5.13e+7
7.51e+7
9.29e+7

6.26e+3
1.10e+4
1.25e+4
1.43e+4
1.76e+4

9.25e+3
1.04e+4
1.13e+4
1.22e+4
1.38e+4

7.00e+7
3.05e+8
5.48e+8
7.49e+8
1.16e+9

9.35é5k21
1.40&6221
2.19&7221
2.616821
3.496R21

6.02e+1
7.83e+1
8.52e+1
9.12e+1
1.01le+2

8.49e+1
1.01le+2
1.14e+2
1.25e+2
1.35e+2

1.03e+1
1.16e+1
1.20e+1
1.23e+1
1.28e+1

2.25e+4
3.66e+4
4.92e+4
6.39e+4
8.46e+4

mean 4.35e+3
std |1.83e+3

7.50e+3
2.88e+3

5.41e+7
2.79e+7

1.23e+4
3.75e+3

1.14e+4
1.53e+3

5.66e+8
3.74e+8

2128221
8.9768%e-11

8.32e+1
1.37e+1

1.12e+2
1.78e+1

1.18e+1
8.58e—

5.14e+4
1 2.15e+4

min |1.69e-2
7t 12.87e-2
med |3.70e-2
19th |4.23e-2
max |5.37e-2

le4

6.43e-1
1.29e+0
1.42e+0
1.82e+0
2.76e+0

1.22e+6
2.26e+6
2.60e+6
3.29e+6
4.80e+6

1.46e+2
2.45e+2
3.03e+2
4.10e+2
5.14e+2

9.19e+2
1.07e+3
1.17e+3
1.26e+3
1.57e+3

2.36e+4
4.42e+4
6.50e+4
7.94e+4
1.38e+5

5.2963e+4
6.0184k+A
7.0285e+4
7.38606k+A
7.9786k+A

2.50e+1
3.06e+1
3.43e+1l
3.51le+l
3.95e+1

1.72e+1
2.98e+1
3.26e+1
3.90e+1
4.06e+1

1.04e+0
1.34e+0
1.43e+0
1.49e+0
2.93e+0

5.90e+0
1.70e+1
3.47e+1
9.53e+1
7.43e+2

mean 3.57e-2
std |1.24e-2

1.59e+0
6.99e-1

2.83e+6
1.19e+6

3.24e+2
1.28e+2

1.20e+3
2.18e+2

7.00e+4
3.88e+4

6.73O®5+L
9.62872-1.

3.29e+1
4.85e+0

3.18e+1
8.32e+0

1.65e+0
6.59e—

1.79e+2
1 2.84e+2

min |0.00e+0
7t 10.00e+0
med [0.00e+0
19t [0.00e+0
max |0.00e+0

1lej

0.00e+0
0.00e+0
0.00e+0
0.00e+0
0.00e+0

6.53e+3
2.83et+4
5.80e+4
1.11e+5
2.02e+5

1.00e-10
4.00e-10
5.00e-10
7.00e-10
1.00e-9

8.34e-8
1.35e-7
1.41e-7
1.61e-7
1.90e-7

1.24e-2
2.43e-2
3.48e-2
5.80e-2
4.01e+0

0.00€2e+1
0.00€8e+1
0.00e38e+1
9.86648+2
1.72042+A

0.00e+0
9.95e-1
9.95e-1
2.98e+0
4.97e+0

0.00e+0

9.95e-1
9.95e-1
1.99e+0

0.00e+0
0.00e+0 0.00e+0
0.00e+0
0.00e+0
1.50e+0

2.29e-2
3.48e+0
1.52e+1
4.11e+1
7.12e+2

mean 0.00e+0
std |0.00e+0

0.00e+0
0.00e+0

8.12e+4
6.98e+4

5.40e-10
3.01le-10

1.42e-7
3.51e-8

8.28e-1
1.59e+0

5.42638+2
7.03082-2

1.99e+0
1.78e+0

7.96e-1

3.00e-
7.45e-1 6.00e—

1 1.54e+2
1 2.79e+2

Prob 13 14

15 16

17

18 19 20

21

22 23

24 25

5.74e+0
9.35e+0
9.86e+0
19th |1.10e+1
max |1.34e+1

4.01e+0
4.21e+0
4.27e+0
4.40e+0
4.45e+0

min
7th
med
1le3

5.05e+2
7.27e+2
7.52e+2
8.35e+2
9.42e+2 4.87e+2

3.22e+2
3.77e+2
4.33e+2
4.60e+2

3.36e+2
4.45e+2
4.73e+2
5.05e+2
5.86e+2

1.16e+3
1.18e+3
1.21e+3
1.23e+3
1.27e+3

1.15e5243
11766243
1.20e26:43
1.23e8e43
1.27eH2H3

1.23e+3
1.36e+3
1.40e+3
1.41e+3
1.44e+3

1.01le+3
1.10e+3
1.13e+3
1.15e+3
1.30e+3

1.33e+3
1.37e+3
1.39e+3
1.40e+3
1.41e+3

1.20e+3 1.51e+3
1.33e+3 1.62e+3
1.37e+3 1.64e+3
1.39e+3 1.68e+3
1.40e+3 1.75e+3

4.27e+0
1.55e-1

mean 9.87e+0
std |2.50e+0

7.52e+2 4.16e+2
1.45e+2 5.92e+1

4.69e+2
8.16e+1

1.21e+3
3.96e+1

1.20e6e43
4.3484b

1.37e+3
7.50e+1

1.14e+3
9.56e+1

1.38e+3
3.05e+1

1.34e+3 1.64e+3
7.37e+1 7.64e+l

min |8.30e-1
7th11.29e+0
med |1.40e+0
19" |1.58e+0
max |1.91e+0

1.92e+0
2.50e+0
2.73e+0
2.91e+0
3.41e+0

le4

2.70e+2 1.52e+2
5.13e+2 1.60e+2
5.28e+2 1.71le+2
5.45e+2 1.77e+2
5.63e+2 1.86e+2

1.36e+2
1.81e+2
1.85e+2
1.96e+2
2.10e+2

8.17e+2
9.83e+2
9.97e+2
1.02e+3
1.05e+3

8.09ex2-8
9.90e86522
1.00€ER+3
1.02e2+3
1.0368243

9.27e+2
1.01e+3
1.03e+3
1.05e+3
1.11e+3

7.77e+2
7.86e+2
7.89e+2
8.00e+2
8.17e+2

9.71le+2
1.04e+3
1.07e+3
1.09e+3
1.21e+3

2.15e+2 1.17e+3
2.26e+2 1.20e+3
2.31e+2 1.21e+3
2.35e+2 1.24e+3
2.45e+2 1.27e+3

2.69e+0
4.88e-1

mean 1.40e+0
std |3.56e-1

4.84e+2 1.69e+2
1.08e+2 1.20e+1

1.82e+2
2.51e+l

9.73e+2
8.09e+1

9.72eM2-P
8.2966k+1

1.03e+3
5.99e+1

7.94e+2
1.36e+1

1.08e+3
7.65e+1

2.31e+2 1.22e+3
1.01e+1 3.56e+1

min |5.69e-1
7th 18.07e-1
med [8.61e-1
19t [1.01e+0
max |1.75e+0

7.09e-1
1.92e+0
2.24e+0
2.70e+0
3.14e+0

lej

0.00e+0 8.44e+1
4.00e+2 9.06e+1
4.00e+2 9.14e+1
4.00e+2 9.47e+1
4.00e+2 9.72e+1

8.54e+1
9.14e+1
9.27e+1
9.49e+1
9.86e+1

8.00e+2
9.40e+2
9.48e+2
9.58e+2
1.01e+3

8.000R@
9.39eHRP
9.46eH242
9.58&822
1.01e42+3

8.00e+2
8.00e+2
8.00e+2
8.00e+2
8.00e+2

7.30e+2
7.36e+2
7.44e+2
7.51e+2
8.00e+2

9.71e+2
9.71e+2
9.71e+2
9.71e+2
1.20e+3

2.00e+2 1.03e+3
2.00e+2 1.11e+3
2.00e+2 1.12e+3
2.00e+2 1.14e+3
2.00e+2 1.17e+3

2.14e+0
8.28e-1

mean 1.00e+0
std |4.00e-1

3.20e+2 9.17e+1

9.26e+1

9.31e+2 9.31H22

1.60e+2 4.33e+0 4.35e+0 7.00e+1 7.04&4k+1

8.00e+2
0.00e+0

7.52e+2
2.50e+1

1.02e+3
9.27e+1

2.00e+2 1.11e+3
0.00e+0 4.50e+1

Table B.1: Function error obtained afte)®, 10* and10® function evaluations (FES) on the
25 test problems in dimensiaN = 10. Given are the minimum, 7, median,
19", and maximum value from 25 runs, together with the mean and standard

deviation.
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Prob

1 2

3 4

5

6 7

8 9

10 11

12

1le3

min
7th
med
19th
max

4.03e+4 6.12e+4
5.42e+4 8.49%e+4
5.92e+4 9.25e+4
6.54e+4 1.02e+5
7.57e+4 1.16e+5

4.23e+8 6.03e+4
9.77e+8 1.02e+5
1.18e+9 1.09e+5
1.35e+9 1.17e+5
1.67e+9 1.54e+5

2.81e+4 1.96e+10
3.19e+4 3.33e+10
3.37e+4 3.58e+10
3.58e+4 4.49e+10
3.82e+4 4.95e+10

3.14a42+92 4.04e+2 5.37e+2 4.27e+l 1.34e+6
3.71a229 4.28e+2 6.56e+2 4.48e+1 1.58e+6
4.05¢2821 4.43e+2 6.97e+2 4.57e+l 1.71e+6
4. 756802 4.49e+2 7.39e+2 4.69e+l 1.87e+6
49568821 4.87e+2 7.62e+2 4.83e+1 1.99e+6

mear|
std

5.90e+4 9.15e+4
1.18e+4 1.85e+4

1.12e+9 1.09e+5
4.17e+8 3.0le+4

3.36e+4 3.66e+10
3.44e+3 1.04e+10

4.126Pe9 4.42e+2 6.78e+2 4.57e+1l 1.70e+6
6.68et5e-& 2.74e+l 7.95e+1 1.91e+0 2.27e+5

le4

min
7th
med
lgth
max

1.78e+3 1.62e+4
2.56e+3 2.48e+4
2.75e+3 2.69e+4
2.90e+3 2.93e+4
3.04e+3 3.31le+4

2.00e+8 5.22e+4
3.49e+8 5.76e+4
3.92e+8 6.71le+4
4.54e+8 6.8%9e+4
5.58e+8 7.65e+4

1.75e+4 2.15e+9
1.96e+4 2.84e+9
2.08e+4 3.24e+9
2.16e+4 4.19e+9
2.30e+4 4.91e+9

477tk 2.46e+2 3.14e+2 3.99e+l 1.86e+5
5.42edB21 2.68e+2 3.37e+2 4.20e+1 3.21e+5
5.97edbPl 2.77e+2 3.45e+2 4.30e+1l 3.3le+5
6.42eb21 2.79e+2 3.50e+2 4.38e+1 3.60e+5
7.04et2b2l 2.88e+2 3.64e+2 4.51e+l 4.23e+5

mean
std

2.61le+3 2.6le+4
4.42e+2 5.63e+3

3.90e+8 6.45e+4
1.18e+8 8.57e+3

2.05e+4 3.47e+9
1.87e+3 9.75e+8

5.92eidb?l 2.71e+2 3.42e+2 4.28e+1 3.24e+5
7.86872 1.43e+l 1.66e+1 1.76e+0 7.76e+4

1lej

min
7th
med
19th
max

3.00e-10 1.39e-5
4.00e-10 2.85e-5
4.00e-10 3.25e-5
4.00e-10 4.63e-5
5.00e-10 6.36e-5

6.01e+5 1.84e+2
1.56e+6 2.64e+2
1.70e+6 3.15e+2
2.08e+6 3.53e+2
2.82e+6 4.53e+2

3.49e+2 3.23e+2
3.94e+2 4.51e+2
4.23e+2 5.06e+2
4.57e+2 5.90e+2
4.89e+2 9.63e+2

1.51€98+1 4.98e+0 2.01e+0 1.30e-2 2.63e+2
2.42408+1 6.97e+0 4.99e+0 1.39e-2 1.10e+3
2.50408+1 6.97e+0 5.99e+0 1.45e-2 2.99e+3
3.03408+1 8.96e+0 6.98e+0 1.51e-2 4.60e+3
3.37418+1 1.10e+1 1.10e+1 5.16e+0 1.51e+4

mear|
std

4.00e-10 3.69e-5
6.32e-11 1.68e-5

1.75e+6 3.14e+2
7.23e+5 8.97e+1

4.22e+2 5.67e+2
4.88e+1 2.16e+2

2.58408+1 7.77e+0 6.19e+0 1.04e+0 4.82e+3

6.3265¢-2 2.03e+0 2.91e+0

2.06e+0 5.37e+3

FES

Prob

13 14

15 16

17

18 19

20 21

22 23

24 25

le3

min
7th
med
19th
max

1.23e+2 1.39e+1 1.05e+3 7.80e+2
2.21e+2 1.41e+1 1.11e+3 9.01e+2
2.96e+2 1.42e+1 1.17e+3 9.85e+2
3.56e+2 1.43e+1 1.19e+3 1.03e+3
5.18e+2 1.44e+1 1.22e+3 1.10e+3

8.58e+2
1.07e+3
1.11e+3
1.14e+3
1.28e+3

1.18e+3 1.18et8e#3 1.37e+3
1.31e+3 1.31e34243 1.44e+3
1.33e+3 1.32682243 1.45e+3
1.34e+3 1.3434243 1.47e+3
1.38e+3 1.38688243 1.54e+3

1.41e+3 1.37e+3
1.58e+3 1.44e+3
1.61e+3 1.45e+3
1.68e+3 1.47e+3
1.72e+3 1.53e+3

1.37e+3 1.69e+3
1.46e+3 1.76e+3
1.49e+3 1.77e+3
1.49e+3 1.81e+3
1.52e+3 1.86e+3

mear
std

3.03e+2 1.42e+1 1.15e+3 9.58e+2
1.33e+2 1.83e-1 6.22e+1 1.10e+2

1.09e+3
1.36e+2

1.31e+3 1.31e3243 1.45e+3
6.95e+1 6.81Ak4# 5.45e+1

1.60e+3 1.45e+3
1.10e+2 5.12e+1

1.47e+31.78e+3
5.19e+15.71e+1

le4

min
7th
med
lgth
max

1.93e+1 1.30e+1 8.39e+2 3.46e+2
2.15e+1 1.36e+1 8.81e+2 3.88e+2
2.30e+1 1.37e+1 8.88e+2 4.02e+2
2.36e+1 1.38e+1 8.96e+2 4.17e+2
2.47e+1 1.39e+1 9.17e+2 4.58e+2

3.82e+2
4.40e+2
4.66e+2
4.89e+2
6.84e+2

1.06e+3 1.07&7243 1.20e+3
1.07e+3 1.0868:43 1.23e+3
1.08e+3 1.08882#3 1.23e+3
1.09e+3 1.098%:43 1.24e+3
1.11e+3 1.12et4243 1.26e+3

1.21e+3 1.21e+3
1.26e+3 1.23e+3
1.28e+3 1.24e+3
1.29e+3 1.24e+3
1.32e+3 1.25e+3

1.17e+3 1.34e+3
1.25e+3 1.35e+3
1.26e+3 1.35e+3
1.27e+3 1.36e+3
1.29e+3 1.37e+3

mear|
std

2.24e+1 1.36e+1 8.84e+2 4.02e+2
1.88e+0 3.25e—-1 2.58e+1 3.64e+1

4.92e+2
1.02e+2

1.08e+3 1.09:43 1.23e+3
1.66e+1 1.70et0b+1l 1.95e+1

1.27e+3 1.24e+3
3.85e+1 1.29e+1

1.25e+3 1.35e+3
4.19e+1 1.08e+1

lej

min
7th
med
19th
max

2.33e+0 9.99e+0 3.04e+2 7.96e+0
2.81e+0 1.10e+1 3.05e+2 1.36e+1
3.13e+0 1.13e+1 3.05e+2 1.60e+1
3.40e+0 1.18e+1 3.05e+2 1.82e+1
4.30e+0 1.26e+1 3.05e+2 2.55e+1

1.20e+1
1.98e+1
2.34e+1
2.83e+1
5.42e+2

9.06e+2 9.06é¥2®2 5.00e+2
9.08e+2 9.07&62®2 5.00e+2
9.09e+2 9.08&242 5.00e+2
9.09e+2 9.096392®2 5.00e+2
9.10e+2 9.105€22 5.00e+2

8.75e+2 5.34e+2
8.86e+2 5.34e+2
8.91e+2 5.34e+2
8.94e+2 5.34e+2
9.00e+2 5.34e+2

2.00e+2 2.00e+2
2.00e+2 2.00e+2
2.00e+2 2.00e+2
2.00e+2 2.00e+2
2.00e+2 2.00e+2

mear
std

3.19e+0 1.13e+1 3.05e+2 1.63e+1
6.57e-1 8.62e-1 3.87e-1 5.76e+0 2.09e+2 1.51e+0 1.57&¥e+D 7.21e-5

1.25e+2

9.08e+2 9.08®H22 5.00e+2

8.89e+2 5.34e+2
8.57e+0 2.87e—4

2.00e+2 2.00e+2
1.31e-4 8.39e-5

Table B.2: Function error on the test problems for dimengos 30. See description given
in Table B.1 for detailed description of the table content.
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Prob 1

2

3 4

5

6

7 8 9

10 11

12

1le3

min |1.06e+5
7th 11.33e+5
med |1.43e+5
19th |1.48e+5
max |1.58e+5

1.81e+5
2.18e+5
2.66e+5
2.96e+5
3.47e+5

1.81e+9 2.08e+5
3.87e+9 2.95e+5
4.30e+9 3.37e+5
5.11e+9 3.60e+5
5.89e+9 4.16e+5

3.71e+4
4.41e+4
4.52e+4
4.66e+4
4.97e+4

6.06e+10
8.34e+10
9.44e+10
9.93e+10
1.27e+11

6.80e2821
7.97682
8.36e8221
8.79e¢4e2
1.00e4621

7.39e+2
8.63e+2
8.87e+2
9.02e+2
9.23e+2

1.19e+3
1.35e+3
1.43e+3
1.48e+3
1.55e+3

7.57e+1
8.0le+1
8.16e+1
8.22e+1
8.48e+1

5.81e+6
7.15e+6
7.56e+6
7.81e+6
8.69e+6

mean 1.37e+5
std |1.78e+4

2.61e+5
5.79e+4

4.20e+9 3.23e+5
1.38e+9 6.98e+4

4.46e+4
4.17e+3

9.29e+10
2.15e+10

8.39e8e 21
1.059-2

8.63e+2
6.48e+1

1.40e+3
1.23e+2

8.09e+1
3.01le+0 9.43e+5

7.41e+6

le4

min [2.37e+4
7th |2.64e+4
2.8le+4
2.89e+4
3.14e+4

med
19th
max

1.00e+5
1.17e+5
1.25e+5
1.36e+5
1.54e+5

1.32e+9 1.60e+5
1.89e+9 1.82e+5
2.12e+9 1.94e+5
2.37e+9 2.14e+5
2.77e+9 2.3le+5

3.10e+4
3.58e+4
3.72e+4
3.82e+4
3.96e+4

2.60e+10
3.23e+10
3.59e+10
4.09e+10
4.25e+10

3.87¢2221
4.7362221
5.22a8221
5.658221
6.31a422

6.20e+2
6.49e+2
6.61e+2
6.70e+2
6.84e+2

7.99e+2
8.99e+2
9.19e+2
9.41e+2
9.71e+2

7.28e+1
7.76e+1
7.86e+1
7.92e+1
8.09e+1

2.17e+6
2.92e+6
3.26e+6
3.36e+6
3.51e+6

2.77e+4
2.56e+3

mean
std

1.27e+5
1.80e+4

2.09e+9 1.96e+5
4.85e+8 2.49e+4

3.63e+4
2.96e+3

3.55e+10
5.98e+9

5.1668221
8.268e-&

6.57e+2
2.16e+1

9.06e+2
5.85e+1

7.78e+1
2.71e+0

3.04e+6
4.77e+5

lej

1.81e-3
2.26e-3
2.38e-3
2.57e-3
3.05e-3

min
7th
med
19th
max

2.92e+0
5.87e+0
6.84e+0
9.62e+0
1.40e+1

2.78e+7 1.38e+4
3.47e+7 1.99e+4
3.93e+7 2.26e+4
4.28e+7 2.67e+4
5.28e+7 3.50e+4

4.81e+3
5.49e+3
5.80e+3
6.26e+3
6.91e+3

1.63e+6
2.89e+6
3.06e+6
3.36e+6
3.86e+6

1.39¢42+A
1.73d22+A
1.84a22+A
2.00622+
2.306-22+

2.44e+1
2.92e+1
3.27e+1
3.35e+1
3.77e+1

5.22e+1
5.64e+1
5.82e+1
6.10e+1
6.77e+1

1.31e+0
1.44e+0
1.49e+0
1.58e+0
5.51e+0

1.34e+3
7.35e+3
1.03e+4
1.8%e+4
2.40e+4

2.41e-3
4.03e-4

mear|
std

7.85e+0
3.76e+0

3.95e+7 2.36e+4
8.34e+6 7.08e+3

5.85e+3
7.07e+2

2.96e+6
7.42e+5

1.85d22+A
3.00e12-2

3.15e+1
4.46e+0 5.14e+0 1.62e+0

5.91e+l

2.26e+0

1.24e+4
8.12e+3

FES

Prob

13

14

15 16

17

18

19 20 21

22 23

24 25

1le3

min
7th
med
19th
max

7.75e+2
1.07e+3
1.36e+3
1.67e+3
1.97e+3

2.36e+1
2.3%e+1
2.40e+1
2.41e+l
2.42e+1

1.16e+3
1.24e+3
1.29e+3
1.31e+3
1.38e+3 1.26e+3

1.05e+3
1.12e+3
1.18e+3
1.21e+3

1.10e+3
1.21e+3
1.25e+3
1.33e+3
1.41e+3

1.36e+3
1.41e+3
1.43e+3
1.44e+3
1.46e+3

1.36636243
1.42e02243
1.43et8243
1.45e45243
1.47ek243

1.47e+3
1.53e+3
1.54e+3
1.56e+3
1.59e+3

1.55e+3 1.51e+3
1.71e+3 1.53e+3
1.76e+3 1.55e+3
1.80e+3 1.57e+3
1.86e+3 1.58e+3

1.54e+3 1.88e+3
1.60e+3 1.95e+3
1.62e+3 1.97e+3
1.63e+3 1.99e+3
1.66e+3 2.03e+3

mean
std

1.37e+3
4.22e+2

2.40e+1
2.09e-1

1.28e+3 1.17e+3
7.30e+1 7.18e+1

1.26e+3
1.06e+2

1.42e+3
3.32e+1

1.43e48243
3.78&47EAl

1.54e+3
3.85e+1

1.74e+3 1.55e+3
1.07e+2 2.48e+1

1.61e+3 1.96e+3
4.19e+1 5.08e+1

min
7th
med
leq 19th
max

7.29e+1
8.31e+1
8.76e+1
1.01e+2
1.10e+2

2.30e+1
2.35e+1
2.36e+1
2.37e+1l
2.38e+1

8.79e+2 5.50e+2
1.05e+3 6.45e+2
1.08e+3 6.71le+2
1.10e+3 6.99e+2
1.12e+3 7.34e+2

6.21e+2
7.68e+2
8.10e+2
8.34e+2
8.65e+2

1.23e+3
1.26e+3
1.27e+3
1.28e+3
1.29e+3

1.2484243
1.25&6243
1.27eH2H3
1.29e8243
1.30e3643

1.35e+3
1.36e+3
1.37e+3
1.38e+3
1.39e+3

1.31e+3 1.34e+3
1.41e+3 1.36e+3
1.43e+3 1.37e+3
1.46e+3 1.38e+3
1.49e+3 1.40e+3

1.39e+3 1.46e+3
1.43e+3 1.47e+3
1.45e+3 1.48e+3
1.45e+3 1.49e+3
1.46e+3 1.52e+3

mear|
std

9.10e+1
1.33e+1

2.35e+1
2.82e-1

1.04e+3 6.60e+2
8.61le+l 6.23e+1

7.80e+2
8.56e+1

1.26e+3
2.19e+1

1.27&H243
2,442

1.37e+3
1.52e+1

1.42e+3 1.37e+3
6.21e+l 1.96e+1

1.44e+3 1.48e+3
2.58e+1 2.09e+1

1lej

min
7th
med
19th
max

4.28e+0
5.01le+0
5.60e+0
6.16e+0
7.42e+0

1.82e+1
1.99e+1
2.06e+1
2.13e+1
2.21e+1

2.53e+2 3.41e+l
3.53e+2 3.95e+1
3.56e+2 4.17e+1
4.05e+2 4.45e+1
4.06e+2 5.63e+1

5.75e+1
6.65e+1
7.02e+1
7.22e+1
8.04e+1

9.22e+2
9.24e+2
9.25e+2
9.26e+2
9.29e+2

9.23€822
9.25e@62P
9.268252-2
9.26&262-2
9.28@72-XP

5.01le+2
5.0le+2
5.01le+2
5.01le+2
5.01le+2

9.39e+2 5.39e+2
9.45e+2 5.40e+2
9.49e+2 5.40e+2
9.52e+2 5.40e+2
9.54e+2 5.40e+2

2.02e+2 2.01e+2
2.02e+2 2.01e+2
2.03e+2 2.01e+2
2.03e+2 2.01e+2
2.03e+2 2.01e+2

mean
std

5.69e+0
1.07e+0

2.04e+1
1.32e+0

3.55e+2 4.32e+1
5.58e+1 7.37e+0

6.93e+1
7.47e+0

9.25e+2
2.07e+0

9.2626-P
1.74e48240

5.01le+2
1.49e-1

9.48e+2 5.40e+2
5.21e+0 3.17e-1

2.02e+2 2.01e+2
2.45e-1 2.30e-1

Table B.3: Function error on the test problems for dimensios 50. See description given
in Table B.1 for detailed description of the table content.
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Prob|  min 7th median 19th max mean stg | Success  success
Rate  Performance
1 [1.77e+03 1.81le+ 03 1.82e+ 03 1.83e+ 03 1.85e+ 03|1.82¢ + 03 1.92e + 01 100 1.82e+03
2 |2.46e+ 03 2.51e+ 03 2.56e + 03 2.58e + 03 2.64e 4+ 03 | 2.55e + 03 4.51e 4+ 01 100 2.55e+ 03
4 |7.12e+03 7.4le+ 03 7.48e+ 03 7.51le+ 03 7.59e 4 03 |7.45e+ 03 1.0le+4 02| 100 7.45e+ 03
5 [9.07e + 03 9.15e + 03 9.25e + 03 9.27e 403 9.34e 4 03| 9.22e + 03 7.28e 4 01 100 9.22¢+ 03
7 |1.4le+03 1.44e+ 03 1.48e+ 03 1.79e¢ + 03 - 1.51e 4+ 03 1.33e + 02 84 1.80e + 03
9 |2.32¢+ 03 2.65¢ + 03 - - - 2.48¢ + 03 1.09¢e + 02 28 8.87e 4+ 03
10 | 2.39e + 03 2.63e + 03 - - - 2.60e 4+ 03 9.27e + 01 40 6.50e + 03
11 |2.44e+ 03 2.48e¢ + 03 2.50e + 03 2.54e + 03 - 2.50e 4+ 03 3.98e 4- 01 92 2.72e + 03
15 | 2.76e 4 03 - - - - 2.76e 4+ 03 0.00e 4 00 4 6.90e + 04

Table B.4: The table presents the number of FES to achieve a fixed agctewaldor dimen-
sion N = 10. The results obtained in 25 runs were sorted according to required
FES. Given are the minimum!7 median, 19", and maximum number of FES
from these runs, together with the mean and standard deviation, the Suatmes
(in %) and success performance as specified in (Suganthan et al), 2005

Success  Success
Rate  Performance

1 [7.49¢+ 03 7.6le+ 03 7.63¢e+ 03 7.66e+ 03 7.69¢+ 03|7.63¢e +03 4.13e+01| 100 7.63e¢ + 03

2 |1.13¢+04 1.14e+04 1.15e+ 04 1.16e+ 04 1.19¢ +04|1.15e+ 04 1.61e + 02 100 1.15e + 04

7 |5.52e+ 03 5.6le + 03 5.64e + 03 5.67e + 03 5.71e + 03| 5.63e +03 4.73e+ 01| 100 5.63e¢ + 03

11 |1.02¢ + 04 1.03¢ + 04 1.04e + 04 1.04e + 04 - 1.04e + 04 6.07¢ + 01 92 1.13e + 04

Prob min 7th median 19th max mean std

Table B.5: The table presents the number of FES to achieve a fixed agtaweldfor dimen-
sion N = 30. See the caption of Table B.4 for detailed description of the table

content.
Prob min 7th median 19th max mean std Success  Success
Rate  Performance
1 [1.42e+04 1.44e+ 04 1.44e+04 1.44e+ 04 1.44e+ 04 |1.44e+ 04 5.37e + 01 100 1.44e + 04
2 |2.19¢e +04 2.29¢ + 04 2.36e + 04 2.65e + 04 - 2.36e + 04 1.34e + 03 76 3.11le + 04
7 |1.02¢4+04 1.03e+04 1.04e+ 04 1.04e+ 04 1.06e + 04| 1.04e + 04 8.66e + 01 100 1.04e 4+ 04
11 [1.94e+ 04 1.97e+ 04 1.97¢ + 04 1.98e + 04 - 1.97e 4+ 04 9.69¢ + 01 76 2.59¢e + 04

Table B.6: The table presents the number of FES to achieve a fixed agtewaldor dimen-
sion N = 50. See the caption of Table B.4 for detailed description of the table

content.
TO | T1 | T2 [(T2-T1)/T0
N =10 0.520] 2.239 11.311
N =30 0.152| 1.976| 4.217 14.742
N =50 3.580| 6.479 19.074

Table B.7: Measured CPU time in seconds according to (Suganthan etGl), &ng Java
1.6, Ubuntu Linux 9.04 64bit, Intel Core2 Duo 3GHz, 4GB RAM.
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Figure B.1: The figure presents the evolution of the objective functiar galue as a func-

tion of the FES for 25 benchmark functions in dimensién= 30. Shown is the
median value of 25 performed runs.



CONFIGURING FIRST-LEVEL EDAS FOR NOISY FITNESS
FUNCTIONS

Maximum noise strength was set &g, = {0,0.5,1.5} as the representatives for
each noise type. In PBIL the population size € {10, 20,...,100} and the learn-
ing rate R, = {0.01,0.05,0.1,0.15,0.2,0.25} were varied. We set the mutation
probability to R,, = 0.02 and the mutation shift td?, = R;, which is the de-
fault setting for this algorithm. The only parameter for c@Athe virtual popu-
lation sizen, which we set ton = {80,90,...,350}. For UMDA we tested dif-
ferent values for the population siZd € {100, 200, ...,1000}, while truncation
selection with rate 50% was used. VQEA is a coarse-grairgatitim allowing a
complex structure for the population gfindividuals. Four structural settings were
investigated: a singl@individual (vQEA, ;), one group of ten fully synchronised
Qindividuals {QEA, ), five groups of twoQindividuals synchronised everyth
generation({QEA; ) and ten groups of on@individual synchronised everjth gen-
eration  QEA,, ;). For all VQEA configurations the learning rate has to bevgkich
we chose out ofA@ € {0.0025,0.005,0.01,0.15,0.02,0.03}. Additionally the local
and global synchronisation period has to be determined. thetocal synchroni-
sation period we used alway$,. = 1, which is the default setting and has been
identified to work best. The global synchronisation pericaswaried according to
Sqiob € {5, 10,25, 50, 75,100, 150, 200, 300}.

Each setting of all the algorithms was applied to each beackm@nd each noise
landscape. To satisfy statistical requirements 30 rung werformed for each con-
figuration. Table C.1 presents the identified optimal sestiiogind.
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CONFIGURING FIRSFLEVEL EDAS FOR NOISY FITNESS FUNCTIONS

OneMax
constant linear inverse linear cosine
PBIL M =10 M =100 M =10 M =10
Ri=R;=001 | Rf=R;=005| Rj=R;=025| R = R; =0.01
cGA n = 200 n = 250 n = 200 n = 190
UMDA M = 500 M = 500 M = 500 M = 500
VQEA 10 A6O = 0.0057 A6O = 0.0057 AO = 0.037 A6 = 0.00257
Sglob =1 Sglob =1 Sglob =1 Sglob =1
VQEA ; AfO = 0.00257 AfO = 0.00257 AfO = 0.00257 Af = 0.00257
Sglob =1 Sglob =1 Sglob =1 Sglob =1
VQEAo1 | Af = 0.0057 A6O = 0.0057 A6 =0.027 A6 =0.017
Sglob =10 Sglob =95 Sglob =25 Sglob =25
VQEA; > Af =0.01nr AO =0.01xr Af =0.01xr AfO = 0.0057
Sglob = 25 Sgiop = 10 Sgiob = 50 Sglob = 25
] NK-landscapesk = 0
constant linear inverse linear cosine
PBIL M =10 M =100 M =50 M =10
R =R;,=001 | Rf=R;=005| Rj=Rs=025| Rj=Rs=0.25
cGA n = 190 n =190 n =190 n =190
UMDA M = 500 M = 500 M = 400 M = 500
VQEA; 10 | A8 = 0.0057 A6 = 0.0057 A6 =0.01x A6 =0.017
Sglob =1 Sglob =1 Sglob =1 Sglob =1
VQEA ; A6 = 0.00257 A6 = 0.00257 A6 = 0.00257 Af = 0.00257
Sglob =1 Sglob =1 Sglob =1 Sglob =1
VQEA o1 | A0 =0.017 A6 =0.01xr A6 =0.017 A6 = 0.0057
Sgiop = 10 Sgiob = 10 Sgiob = 100 Sgiob = 300
VQEA; - A6 =0.017 Af =0.01xr Af =0.017 A6 =0.037
Sglob = 10 Sglob = 10 Sglob = 75 Sgiob = 300
] NK-landscapesk = 4
constant linear inverse linear cosine
PBIL M =50 M =170 M =10 M =10
R =R;=005| Rf=R;=005| Rj=Rs=0.01 | R =Rs,=0.01
cGA n = 220 n = 180 n = 160 n = 180
UMDA M = 300 M = 500 M = 500 M = 500
VQEA; 10 | A =0.017 A6 = 0.0057 A6 = 0.027 A6 = 0.00257
Sglob =1 Sglob =1 Sglob =1 Sglob =1
VQEA ; A6O = 0.0057 AfO = 0.00257 AfO = 0.00257 A6 = 0.00257
Sglob =1 Sglob =1 Sglob =1 Sglob =1
VQEAio,1 | Af =0.017 AO =0.01xr Af = 0.037 AfO = 0.00257
Sgiob = 50 Sgiop = 10 Sgiob = 50 Sgiop = 10
VQEA; - A6 =0.037 A6 =0.01x A6 =0.027 A6 = 0.00257
Sglob =10 Sglob =10 Sglob =50 Sglob =10

Table C.1: Parameter settings
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Figure C.1: Results on the OneMax problem with constant noise
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Figure C.2: Results on the OneMax problem with linear noise
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Figure C.3: Results on the OneMax problem with inverse linear noise
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Figure C.4: Results on the OneMax problem with cosine noise
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Figure C.5: Results on the K=0 problem with constant noise
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Figure C.6: Results on the K=0 problem with linear noise
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Figure C.7: Results on the K=0 problem with inverse linear noise
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Figure C.9: Results on the K=4 problem with constant noise
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