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Chapter1
I N T RO D U C T I O N

The human brain is a highly complex and dense network consisting of approximately

100 billion (1011) interconnected elementary processing units called neurons. These

neurons can communicate with each other through the exchange of short electrical

pulses, which are also referred to as spikes. Motivated by the desire to better under-

stand the truly remarkable information processing capabilities of the brain, numerous

biologically plausible mathematical models have been developed in recent decades.

Traditional artificial neural networks (ANN) assume that the neural code used for an

information exchange between neurons is based on their average rate of spike emis-

sion. This is modelled as a propagation of continuous variables from one processing

unit to the next. Increasing evidence from recent neuro-biological experiments sug-

gests that the exact timing of spikes plays a key role in the neural information pro-

cessing,cf. e.g.the early seminal work by Wiersma (1951) and by Segundo, Moore,

Stensaas, and Bullock (1963), but also the more recent discussion about spike and

rate codes in Gerstner (1999).

Due to the decreasing costs of computational resources, more complex and bio-

logically plausible connectionist models have been developed, namely spiking neural

networks (SNN),cf. e.g.(Maass, 1999) for an introduction and (Gerstner & Kistler,

2002b) for a comprehensive standard text on the subject. These models use trains of

spikes as internal information representation rather thancontinuous variables. Maass

argues that SNNs have at least similar computational power to the traditional ANN,

such as the multi-layer perceptron (MLP) derivatives developed by Rumelhart, Hin-

ton, and Williams (1986). Nowadays many studies attempt to use spiking neural

networks for practical applications, some of them demonstrating very promising re-

sults in solving complex real world problems. Substantial progress has been made

in areas such as speech recognition (Verstraeten, Schrauwen, & Stroobandt, 2005),

learning rules (Bohte, Kok, & Poutré, 2002), associative memory (Knoblauch, 2005),

and function approximation (Iannella & Kindermann, 2005),to name just a few.

1
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An evolvingspiking neural network (eSNN) architecture was proposed in(Wysoski,

Benuskova, & Kasabov, 2006a). The eSNN belongs to the family of Evolving Con-

nectionist Systems (ECoS), which was first introduced in (Kasabov, 1998a) and

(Kasabov, 1998b). ECoS based methods represent a class of constructive ANN algo-

rithms that modify both the structure and connection weights of the network as part of

the training process. Due to the evolving nature of the network and the employed fast

one-pass learning algorithm, the method is able to accumulate information as it be-

comes available, without the requirement of retraining thenetwork with previously

presented training data. ECoS methods have a long history andnumerous variants

and applications were developed, including fuzzy neural networks (Kasabov, 1998c),

self-organising maps (Deng & Kasabov, 2000) and dynamically evolving fuzzy sys-

tems (Kasabov & Song, 2002). Additional information about ECoS can be found in

the comprehensive text book by Kasabov (2007). The review presented in (Watts,

2009) summarises the latest developments in the ECoS relatedresearch areas.

The eSNN proposed in (Wysoski et al., 2006a) was initially designed as a vi-

sual pattern recognition system. The classification methodis built upon a simplified

integrate-and-fire neural model first proposed in (Thorpe, 1997), which was devel-

oped to mimic the information processing of the human eye. Applied to a face recog-

nition task, eSNN was reported to have a competitive performance when compared to

a number of common pattern recognition methods in the field (Wysoski, Benuskova,

& Kasabov, 2006b).

Numerous other studies have investigated the eSNN classifier recently and the

method is well established in the scientific community. The generic nature of the

eSNN allows its application to a variety of classification problems. In (Wysoski,

Benuskova, & Kasabov, 2007), eSNN was applied to a text-independent speaker au-

thentication problem and tested on the speech part of the VidTIMIT audio-visual

database obtained from (Sanderson & Paliwal, 2003). The visual part of the same

database was later used to study the characteristics of another extension of eSNN.

In (Wysoski, Benuskova, & Kasabov, 2008b) a fast and adaptivemulti-view pattern

recognition system was proposed, where training samples are presented in an on-line

fashion to an eSNN, which in turn is trained to learn different views of the presented

object. Using a voting mechanism, the system accumulates information over several

views of the test object for the recognition of the test samples. The classification

result corresponds to the class label that has received the most votes.

Recently an audio-visual pattern recognition system was proposed in (Wysoski,

Benuskova, & Kasabov, 2008a), in which the auditory and visual system developed

in (Wysoski et al., 2007) and (Wysoski et al., 2008b) respectively were combined
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into an integrated architecture that provides a reliable person authentication based on

a short video clip. Other applications were presented in (Soltic, Wysoski, & Kasabov,

2008) where eSNN was used to classify data consisting of water and wine samples

collected and presented in (de Sousa & Riul Jr., 2002) and (Riulet al., 2004). A com-

prehensive discussion of most results on previous eSNN related work can be found in

the two PhD dissertations of (Wysoski, 2008) and (Soltic, 2009), respectively. These

studies also pointed to the need of optimisation algorithmsfor the identification of

adequate feature subsets and eSNN related parameters.

1.1 A I M O F T H E S T U DY

In order to further improve upon the classification accuracyof eSNN, this thesis pro-

poses a novel framework that allows the application of eSNN to feature selection

problems. The extension follows the well known wrapper approach first introduced

in (Kohavi & Sommerfield, 1995) and comprehensively discussed in (Kohavi & John,

1997). The wrapper approach combines a classification method with a generic op-

timisation algorithm, for which Evolutionary Algorithms (EA) are commonly used.

The optimisation task for the EA consists in the identification of an optimal feature

subset, which maximises the classification accuracy determined by the classifier.

In all of the previous studies on eSNN the neural and learningparameters of the

method were manually fine-tuned in order to achieve satisfying classification results.

The method involves numerous parameters and finding an appropriate configuration

can quickly become a challenging task. Hence, anintegratedwrapper approach is

proposed here, in which an appropriate feature subset is evolved during an evolu-

tionary process, whilesimultaneouslythe neural and learning-related parameters of

eSNN are optimised.

We note that the connection weights of the neural network arenot subject to the

evolutionary optimisation. Instead, the weights are obtained through the use of an

efficient one-pass learning algorithm that was developed aspart of the eSNN archi-

tecture.

Self-adapting parameters promote the straight forward application of eSNN to

other problem domains, since only limited expert knowledgeis required to config-

ure the method for a specific task. Furthermore, an improvement of the classification

performance is expected, since the method can rely on an optimised set of parame-

ters. More specifically, the framework is able to effectively avoid poor classification

results that are often the consequence of the choice of inappropriate parameter con-
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Figure 1.1: Schematic illustration of the historical evolution of the evolving spiking neural
network (eSNN) architecture. Based on eSNN a number of applications were
developed, especially in the context of visual, auditory and taste recognition
problems. This thesis proposes an integrated feature and parameter optimisation
method following the wrapper approach with eSNN in its core.

figurations by the experimenter. This characteristic becomes particularly handy, if the

method is used for the purpose of data mining andknowledge discoveryin an area

that is not related to SNN. In the context of an increasing amount of interdisciplinary

research, self-adaptation is a highly desired property of any method.

The integration of the proposed extension of eSNN in the context of current re-

search in this area, along with the historical evolution of eSNN based systems, is

outlined in Figure 1.1. As described above, the developmentof eSNN was motivated

and influenced by a number of previous studies in the area of spiking neural models,

neural encoding and evolving connectionist systems.

For the proposed extension of eSNN the need for state-of-the-art optimisation

methods arises. The simultaneous exploration of two different search spaces is re-

quired: While the feature search space is represented by a string of concatenated bits,

where each bit encodes the presence/absence of the corresponding feature, the pa-

rameter space of eSNN is a continuous one. The situation is illustrated in Figure 1.2.
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Figure 1.2: Structure of the proposed extension of the eSNN classificationmethod. A spe-
cialised evolutionary algorithm evolves a combined solution consisting of a bi-
nary and a real-valued sub-component, which represent a feature subset (FSS)
for a data sample and a parameter configuration for an eSNN classifier respec-
tively. The quality of this combined solution is evaluated by determining the
classification accuracy of eSNN on a set of test samples. The study develops a
heterogeneous evolutionary optimisation method (cf. the dashed rectangle in the
figure).

Given a specific data set, samples are selected and for each ofthem a feature sub-

set is extracted using a bit mask in which each bit representsa single feature. The

quality of this feature subset is then evaluated by the eSNN classification method,

which is configured using a specific parameter set,i.e. a vector of real values. The

quality measure for both the bit mask and the parameter configuration is used as the

fitness criterion for an evolutionary algorithm, which in turn proposes a new candi-

date solution. This solution consists of a binary and a continuous sub-component,

that represent a bit mask and a parameter set respectively. The process iterates until

a termination criterion is met.

Thus, the aim of this study is to develop an extension of eSNN for the domain of

feature selection by means of a heterogeneous optimisationmethod. The optimisation

algorithm has to be developed and studied with the specific focus on a state-of-the-

art performancein terms of convergence speed and solution quality, a competitive

robustnessin noisy search spaces, and asmall set of parametersin order to promote

its straight forward application to a given problem. Furthermore, the proposed al-

gorithm should not rely on any eSNN specific characteristicsthat may prevent its

application to more general optimisation problems. This property allows an efficient
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mechanism for replacing the classification method with moreadvanced techniques

that may be developed in future.

An additional goal of the thesis is theintegrationof the developed method into

the context of current research on evolutionary computation and a comprehensive

experimental elaboration on its similarities and differences when compared to similar

algorithms in the field.

Finally, the thesis aims tocomparethe extended eSNN based feature selection

method to some already established algorithms in this research area. In order to

emphasise on theknowledge discoveryaspect of the method, a real-world case study

on an ecological modelling problem is undertaken. Dr. Sue Worner from the Centre

for Bioprotection at Lincoln University, Christchurch, New Zealand, was invited as

an advisor and scientific expert in this research area.

1.2 R E S E A R C H O B J E C T I V E S

Considering the fact that an original andgenericoptimisation method is required

for the proposed feature selection framework, the task is split into the separate de-

velopment of a novelbinary and a novelcontinuous optimisation algorithm. Both

methods may be applied independently to either combinatorial or numerical opti-

misation problems. The appropriate combination of the two optimisers results in a

hybrid algorithm, which is finally employed in the desired extension of eSNN to the

feature selection domain.

Based on the above considerations, the following list of research objectives is de-

rived.

1. Development of a binary and a continuous optimisation method that can be

hybridised to form a heterogeneous optimisation algorithm. This would allow

the extension of an eSNN classifier towards an integrated feature and parameter

optimisation framework following the wrapper approach.

2. Comprehensive experimental analysis of the optimisationmethods in terms of

their suitability for real-world applications with explicit focus on robustness,

performance and scalability.

3. Integration of the proposed methods into the corresponding research commu-

nity through experimental comparison to related algorithms in the field.

4. Comparison of the developed eSNN based feature selection framework to other

feature selection methods.
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5. Demonstration of the applicability of the developed framework for real-world

problems through a case study from ecological modelling.

1.3 T H E S I S S T RU C T U R E

The structure of the thesis follows the research objectivespresented in the previous

section and is outlined below.

C H A P T E R 2 This chapter reviews current developments in the area of spiking

neural networks by providing background information on biological neurons and

their mathematical models, along with neural encoding strategies, learning algo-

rithms and applications. A specific emphasis is put on the functioning of the eSNN

classification method and the principles of various eSNN based applications. Fur-

thermore, the chapter addresses open problems of eSNN and provides an overview

of previously proposed heterogeneous optimisation algorithms.

C H A P T E R 3 In line with the presented research objectives, a novel probabilis-

tic binary optimisation method is developed. It improves upon an earlier proposed

quantum-inspired evolutionary algorithm (QEA) introduced in (Han & Kim, 2002).

Due to its significantly different behaviour the method is introduced as the Versatile

QEA (vQEA). The method is compared to the original QEA and a traditional genetic

algorithm on a variety of benchmark problems.

C H A P T E R 4 This chapter integrates vQEA proposed in chapter 3 into there-

search field of evolutionary computation by systematicallyestablishing vQEA as an

original algorithm belonging to the family of Estimation ofDistribution Algorithms

(EDA). The characteristics and specifics of vQEA are highlighted and the method

is compared to a number of similar EDA using several benchmark problems. This

chapter also addresses the questionwhyvQEA performs well.

C H A P T E R 5 The capability of an optimisation method to handle noisy orinac-

curate information obtained from the fitness criterion is generally regarded as a very

important pre-condition for a successful application of the method to real world stud-

ies. Thus, the robustness of vQEA to noise in comparison to several different EDAs

is extensively investigated in this chapter.
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C H A P T E R 6 A continuous version of vQEA is proposed and investigated on a

state-of-the-art benchmark suite and compared to five contemporary, highly compet-

itive numerical optimisers. Specific characteristics and the robustness of the method

are studied. Furthermore, guidelines for the configurationof parameters are derived.

C H A P T E R 7 A hybrid version of the two previous algorithms is presented. The

suitability of this heterogeneous optimiser is demonstrated on a benchmark problem

and compared to a variety of related evolutionary algorithms. Guidelines for the con-

figuration of parameters are derived. Similarities and differences to co-evolutionary

methods are discussed.

C H A P T E R 8 Using the novel heterogeneous optimiser, the eSNN architecture is

extended towards the domain of feature selection and parameter optimisation follow-

ing the wrapper approach. An experimental comparison between the proposed and

traditional methods is undertaken. Key principles of the eSNN based feature selection

are discussed.

C H A P T E R 9 As a demonstration of the inherent suitability of the extended eSNN

architecture, the method is applied on a ecological modelling problem. The experi-

mental results are validated by Dr. Sue Worner, who is an ecological expert from the

Centre for Bioprotection at Lincoln University, Christchurch, New Zealand.

C H A P T E R 10 Conclusions are drawn and future directions for research are given.
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Chapter2
S P I K I N G N E U R A L N E T W O R K S – A R E V I E W

The next few sections review recent developments in the areaof spiking neurons

and summarise the main contributions to the research field. First some background

information about the functioning of biological neurons isgiven. Then the most im-

portant mathematical neural models are discussed, along with neural encoding tech-

niques, learning algorithms and applications of spiking neurons. The functioning of

the eSNN classification method is presented in detail and theprinciples of numerous

eSNN based applications are highlighted and discussed. Furthermore, the chapter

addresses a number of open problems of the eSNN method. Finally, an overview of

previously proposed heterogeneous optimisation algorithms is provided.

2.1 B I O L O G I C A L N E U RO N S, E L E M E N TA RY N OT I O N S A N D C O N C E P T S

The brain is arguably the most complex organ of the human body. It contains approx-

imately1011 neurons, which are the elementary processing units of the brain. These

neurons are interconnected and form a complex and very denseneural network. On

average one cm3 of brain matter contains104 cell bodies and several kilometres of

“wire”, i.e. connections between neurons in the form of branching cell extensions.

Like most cells in the human body, neurons maintain a certainion concentration

across their cell membrane. Therefore the membrane contains ion pumps which ac-

tively transport sodium ions from the intra-cellular to theextra-cellular liquid. Potas-

sium ions are pumped in the opposite direction from the outside to the inside of the

cell. Additional to the ion pumps, a number of specialised proteins, so called ion

channels, are embedded in the membrane. They allow a slow inward flow of sodium

ions into the cell, while potassium ions leak outwards into the extra-cellular liquid.

Thus, the ion streams at the channels have opposite directions to the ion pumps. Fur-

thermore, since both ion streams differ in their strengths,an electrical potential exists

11
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Figure 2.1: Schematic illustration of a typical neuron in the human brain. The mainpart
of the neuron is the soma containing the genetic information, the dendrites and
the axon, which are responsible for the reception and emission of electrical sig-
nals. Signal transmission occurs at the synapse between two neurons, see text
for detailed explanations. The figure is in the public domain and available at
http://wikipedia.org.

across the cell membrane. The inside of the cell is negatively charged in relation the

extra-cellular liquid. The membrane is polarised which is the resting condition of the

neuron.

A large variety of neural shapes and sizes exist in the brain.A typical neuron is

illustrated in Figure 2.1. The central part of the neuron is called the soma, in which

the nucleus is located. It contains the genetic informationof the cell,i.e. the DNA,

from which genes are expressed and proteins constructed that are important for the

functioning of the cell. The cell body has a number of cellular branch-like extensions

known as dendrites. Dendrites are specialised forreceivingelectrical signals from

other neurons that are connected to them. These signals are short pulses of electrical

activity, also known as spikes or action potentials. If a neuron is stimulated by the

spike activity of surrounding neurons and the excitation isstrong enough, the cell

triggers a spike. The spike is propagated via the axon, a longthin wire-like extension

of the cell body, to the axonal terminals. These terminals inturn are connected to

the dendrites of surrounding neurons and allow the transferof information from one
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neuron to the other. Thus an axon is responsible forsendinginformation to other

neurons connected to it. An axon may be covered by myelin sheaths that allow a

faster propagation of electrical signals. These sheaths act as insulators and prevent

the dissipation of the depolarisation wave caused by an electrical spike triggered in

the soma.

Information exchange between two neurons occurs at a synapse which is a spe-

cialised structure that links two neurons together. A synapse is illustrated in the

upper middle part of Figure 2.1. The sending neuron is calledpre-synaptic neuron,

while the neuron receiving the signal is called post-synaptic. Sending information

involves the generation of an action potential in the soma ofthe pre-synaptic cell. As

described above, this potential is propagated through the axon of the neuron to the

axonal terminals. These terminals contain the synapses in which neurotransmitter

chemicals are stored. Whenever a spike is propagated throughthe axon, a portion

of these neurotransmitters is released into a small gap between the two neurons also

known as the synaptic cleft. The neurotransmitter diffusesinto the cleft and interacts

with specialised receptor proteins of the post-synaptic neuron. The activation of these

receptors causes the sodium ion channels to open, which in turn results in the flow

of sodium ions from the extra-cellular liquid into the post-synaptic cell. The ionic

concentration across the membrane equalises rapidly and the membrane depolarises.

Immediately after the depolarisation the potassium channels open. As a consequence

potassium ions stream outside the cell, which causes the re-polarisation of the mem-

brane. The process of de- and re-polarisation,i.e. the action potential, lasts only

around 2ms, which explains the name spike or pulse.

A synaptic transmission can be either excitatory or inhibitory depending on the

type of the transmitting synapse. Different neurotransmitters and receptors are in-

volved in excitatory and inhibitory synaptic transmissions respectively. Excitatory

synapses release a transmitter called L-glutamate and increase the likelihood of the

post-synaptic neuron triggering an action potential following stimulation. On the

other hand, inhibitory synapses on the other hand, release aneurotransmitter called

GABA and decrease the likelihood of a post-synaptic potential.

The efficacy of a synapse,i.e. the strength of the post-synaptic response due to the

neurotransmitter release in the synapse, is not fixed. The increase or decrease of the

efficacy of a synapse is calledsynaptic plasticityand it enables the brain to learn and

to memorise. Several different possibilities exist to accomplish synaptic plasticity.

One way is to change the time period of receptor activity in the post-synaptic neuron.

Longer periods of receptor activity cause the ion channels to remain open for a longer

time, which in turn results in a larger amount of ions flowing into the post-synaptic
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cell. Thus, the post-synaptic response increases. Short periods of receptor activity

have the opposite effect.

Another way to change the synaptic efficacy is to increase or decrease the number

of receptors, which would have a direct impact on the number of opened ion channels

and as a consequence on the post-synaptic potential. The third possibility is a change

of the amount of neurotransmitter chemicals released into the synaptic cleft. Here

larger/smaller amounts would increase/decrease the synaptic efficacy.

Comprehensive information and details about the structure,functions, chemistry

and physiology of neurons can be found in the standard text book on the matter

by Kandel (2000).

2.2 M O D E L S O F S P I K I N G N E U RO N S

The remarkable information processing capabilities of thebrain have inspired nu-

merous mathematical abstractions of biological neurons. Spiking neurons represent

the third generation of neural models, incorporating the concepts of time, neural and

synaptic state explicitly into the model (Maass, 1997). Earlier artificial neural net-

works were described in terms of mean firing rates and used continuous signals for

transmitting information between neurons. Real neurons, however, communicate by

short pulses of electrical activity. In order to simulate and describe biologically plau-

sible neurons in a mathematical and formal way, several different models have been

proposed in the recent past. Figure 2.2 illustrates schematically the mathematical

abstraction of a biological neuron.

Neural modelling can be described on several levels of abstraction. On the micro-

scopic level, the neuron model is described by the flow of ionsthrough the channels

of the membrane. This flow may, among other things, depend on the presence or ab-

sence of various chemical messenger molecules. Models at this level of abstraction

include the Hodgkin-Huxley model (Hodgkin & Huxley, 1952) and the compartment

models that describe separate segments of a neuron by a set ofionic equations.

On the other hand, the macroscopic level treats a neuron as a homogeneous unit,

receiving and emitting spikes according to some defined internal dynamics. The

underlying principles of how a spike is generated and carried through the synapse,

dendrite and cell body is not relevant. These models are typically known under the

term integrate-and-fire models.

In the next sections the major neural models are discussed and their functions are

explained. Since the macroscopic neuronal models are more relevant for this thesis,
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Figure 2.2: A schematic illustration of a mathematical neuronal model. The model receives
electrical stimulation in form of spikes through a number of connected pre-
synaptic neurons. The efficacy of a synapse is modelled in the form of synaptic
weights. Most models focus on the dynamics of the post-synaptic potential only.
Output spikes are propagated via the axon to connected post-synaptic neurons.

the focus of the survey is put on these models. The only microscopic model presented

here is the Hodgkin-Huxley model, due to its high significance for the research area

of neuroscience.

2.2.1 Hodgkin-Huxley Model

This model dates back to the work of Alan Lloyd Hodgkin and Andrew Huxley in

1952 where they performed experiments on the giant axon of a squid (Hodgkin &

Huxley, 1952). Due to the significance of their contributionto neuroscience, both

received the 1963 Nobel Price in Physiology and Medicine. The model is a detailed

description of the influences of the conductance of ion channels on the spike activity

of the axon. The diameter of the squid’s giant axon is approximately 0.5mm and is

visible to the naked eye. Since electrodes had to be insertedinto the axon, its large

size was a big advantage for biological analysis at that time.

Hodgkin and Huxley discovered three different ion currentsin a neuron: a sodium,

potassium and a leak current. Voltage-dependent ion channels control the flow of

ions through the cell membrane. Due to an active transport mechanism, the ion con-

centration within the cell differs from that in the extra-cellular liquid, resulting in

an electrical potential across the cell membrane. In the mathematical model such a

membrane is described as an electrical circuit consisting of a capacitor, resistors and

batteries that model the ion channels,cf. Figure 2.3. The currentI at a timet splits
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Figure 2.3: The schematic illustration of the Hodgkin-Huxley model in the form of an elec-
trical circuit according to (Hodgkin & Huxley, 1952). The model represents the
biophysical properties of the cell membrane of a neuron. The semipermeable cell
membrane separates the interior of the cell from the extra-cellular liquid and thus
acts as a capacitor. Ion movements through the cell membrane (in both directions)
are modelled in the form of (constant and variable) resistors. In the diagram the
conductance of the resistorsGx = 1/Rx is shown. Three ionic currents exist: A
sodium current (Na ions), potassium current (K ions) and a small leakage current
(L) that is primarily carried by chloride ions.

into the current stored in the capacitor and the additional currents passing through

each of the ion channels:

I(t) = Icap(t) +
∑

k

Ik(t) (2.1)

where the sum runs over all ion channels.

SubstitutingIcap(t) = Cdu/dt by applying the definition of the capacitanceC =

Q/u, whereQ is the charge andu the voltage across the capacitor leads to

C
du

dt
= −

∑

k

Ik(t) + I(t) (2.2)

As mentioned earlier, in the Hodgkin-Huxley model three ionchannels are modelled:

A sodium current, potassium current and a small leakage current that is primarily
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x
Vx Gx

(in mV) (in mS/cm2)

Na 115 120

K −12 36

L 10.6 0.3

x αx(u) βx(u)

n 0.1−0.01u
exp(1−0.1u)−1 0.125 exp(− u

80
)

m 2.5−0.1u
exp(2.5−0.1u)−1 4 exp(− u

18
)

h 0.07 exp(− u
20

) 1
exp(3−0.1u)+1

Table 2.1: Parameters of the Hodgkin-Huxley model. The membrane capacitance isC =
µF/cm2. The voltage scale is shifted in order to have a resting potential of zero.

carried by chloride ions. Hence the sum in Equation 2.2 consists of three different

components that are formulated as

∑

k

Ik(t) = GNam
3h(u− VNa) + GKn4(u− VK) + GL(u− VL) (2.3)

whereVNa, VK andVL are constants called reverse potentials. VariablesGNa and

GK describe the maximum conductance of the sodium and potassium channel re-

spectively, while the leakage channel is voltage-independent with a conductance of

GL. The variablesm, n andh are gating variables whose dynamics are described by

differential equations of the form

m

dt
= αm(u)(1−m)− βm(u)m (2.4)

n

dt
= αn(u)(1− n)− βn(u)n (2.5)

h

dt
= αh(u)(1− h)− βh(u)h (2.6)

(2.7)

wherem andh control the sodium channel and variablen the potassium channel.

Functionsαx and βx, wherex ∈ {m,n, h}, represent empirical functions of the

voltage across the capacitoru, that need to be adjusted in order to simulate a specific

neuron. Using a well parametrised set of the above equations, Hodgkin and Huxley

were able to describe a significant amount of data collected from experiments with the

giant axon of a squid. The discovered parameters of the modelare given in Table 2.1

The dynamics of the Hodgkin-Huxley model are presented in Figure 2.4. For the

simulation, the parameter values from Table 2.1 are utilised. The membrane is stim-

ulated by a constant input currentI0 = 7µA, switched on at timet = 10ms for a

duration of 70ms. The current is switched off at timet = 80ms. Fort < 10ms,
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Figure 2.4: Evolution of the membrane potentialu for a content input currentI0 using the
Hodgkin-Huxley model. The current is switched on at timet = 10ms for a
duration of 70ms,cf. lower diagram. The stimulus is strong enough to generate
a spike train across the cell membrane (upper diagram). As soon as the input
current vanishes (I = 0), the electrical potential returns to its resting potential
(u = 0).

no input stimulus occurs and the potential across the membrane stays at the resting

potential. For10 ≤ t ≤ 80 the current is strong enough to generate a sequence of

spikes across the cell membrane. At timet > 80ms and input currentI = 0, the

electrical potential returns to its resting potential.

Additional reading on the Hodgkin-Huxley model can be foundin the excellent

review of Nelson and Rinzel (1995), which also summarises thehistorical develop-

ments of the model. A guideline for computer simulations of the model using the

simulation platform GENESIS1 can be found in (Bower & Beeman, 1995).

2.2.2 Leaky Integrate-and-Fire Model (LIF)

The Hodgkin-Huxley model can reproduce electrophysiological measurements very

accurately. Nevertheless, the model is computationally costly and simpler, more phe-

nomenological models are required for the simulation of larger networks of spiking

neurons. The leaky integrate-and-fire neuron (LIF) may be the best known model for

1 Acronym forGEneralNEural SImulationSystem
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Figure 2.5: The schematic illustration of the leaky integrate and fire model in the form of an
electrical circuit. The model consists of a capacitorC in parallel with a resistor
R, driven by a currentI = I(R) + Icap.

simulating spiking networks efficiently. The model has a long history and was first

proposed by Louis Lapicque in 1907, long before the actual mechanisms of action

potential generation were known (Lapicque, 1907). Discussions of this work can be

found in (Abbott, 1999) and in (Brunel & Rossum, 2007). However, it was Bruce

Knight who introduced the term “Integrate-and-Fire” in (Knight, 1972). He called

these models “forgetful”, but the term “leaky” quickly became more popular.

Similar to the Hodgkin-Huxley model, the LIF model is based on the idea of an

electrical circuit,cf. Figure 2.5. The circuit contains a capacitor with capacitanceC

and a resistor with a resistanceR, where bothC andR are assumed to be constant.

The currentI(t) splits into two currents:

I(t) = IR + Icap (2.8)

whereIcap charges the capacitor andIR passes through the resistor. Substituting

Icap = C du/dt using the definition for capacity, andIR = u/R using Ohm’s law,

whereu is the voltage across the resistor, one obtains:

I(t) =
u(t)

R
+ C

du

dt
(2.9)

Replacingτm = RC yields the standard form of the model:

τm

du

dt
= −u(t) + R I(t) (2.10)

The constantτm is called the membrane time constant of the neuron. Whenever the

membrane potentialu reaches a thresholdϑ, the neuron fires a spike and its potential

is reset to a resting potentialur. It is noteworthy that the shape of the spike itself
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Figure 2.6: The figure shows the evolution of the potentialu for a constant input currentI0

using the leaky integrate-and-fire model. The membrane potentialu is given in
units of the thresholdϑ. The current is switched on at timet = 10ms for a
duration of 70ms,cf. lower diagram. The stimulus is strong enough to generate
a sequence of spike trains,cf. straight dark arrows. As soon as the input current
vanishes, the potential returns to its resting potential.

is not explicitly described in the traditional LIF model. Only the firing times are

considered to be relevant. Nevertheless, it is possible to include the shape of spikes

as well,cf. e.g. (Meffin, Burkitt, & Grayden, 2004).

A LIF neuron can be stimulated by either an external currentIext or by the synaptic

input currentIsyn from pre-synaptic neurons. The external currentI(t) = Iext(t) may

be constant or represented by a function of timet. Figure 2.6 presents the dynamics

of a LIF neuron stimulated by an input currentI0 = 1.2. The current is strong enough

to increase the potentialu until the thresholdϑ is reached. As a consequence, a spike

is triggered and the potential resets tour = 0. After the reset, the integration process

starts again. Att = 80ms, the current is switched off and the potential returns to its

resting potential due to leakage.

If a LIF neuron is part of a network of neurons, it is usually stimulated by the

activity of its pre-synaptic neurons. The resulting synaptic input current of a neuron
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Figure 2.7: The dynamics of the leaky integrate-and-fire model. The potential u increases
due to the effect of pre-synaptic input spikes. If the membrane potential crosses a
thresholdϑ, a spike is triggered,cf. straight dark arrows. The shape of this action
potential is not explicitly described by the model, only the time of the event is of
relevance. The synapse may have either an inhibitory or an excitatory effect on
the post-synaptic potential that is determined by the sign of the synaptic weights.

i is the weighted sum over all spikes generated by pre-synaptic neuronsj with firing

timest
(f)
j :

I(t) = Isyni
(t) =

∑

j

wij

∑

f

α(t− t
(f)
j ) (2.11)

The weightswij reflect the efficacy of the synapse from neuronj to neuroni. Nega-

tive weights correspond to inhibitory synapses, while positive weights correspond to

excitatory synapses. The time course of the post-synaptic currentα(·) can be defined

in various ways. In the simplest form it is modelled by Dirac pulseδ(x), which has

a non-zero function value forx = 0 and zero for all others. Thus the input current

caused by a pre-synaptic neuron decreases/increases the potential u in a step-wise

manner. More realistic models often employ different functions usually in the form

x exp (−x), which is typically referred to as anα function.

In Figure 2.7, a LIF neuron is stimulated by a spike train froma single pre-synaptic

neuron. The post-synaptic current is modelled in the form ofa Dirac pulse as de-

scribed above. This results in a step-wise increase of the post-synaptic potential. If
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the potential reaches the thresholdϑ, a spike is triggered and the potential resets. Due

to its simplicity, many LIF neurons can be connected to form large networks, while

still allowing an efficient simulation.

Extensive additional information about the LIF model can befound in the excellent

text book by Gerstner and Kistler (2002b) and in the two recent reviews by Anthony

N. Burkitt, (Burkitt, 2006a) and (Burkitt, 2006b).

2.2.3 Izhikevich Model

Another neural model was proposed by Izhikevich (2003). It is based on the the-

ory of dynamical systems. The model claims to be as biologically plausible as the

Hodgkin-Huxley model while offering the computational complexity of LIF models.

Depending on its parameter configuration, the model reproduces different spiking and

bursting behaviours of cortical neurons. Its dynamics are governed by two variables:

dv

dt
= 0.04v2 + 5v + 140− u + I (2.12)

du

dt
= a(bv − u) (2.13)

wherev represents the membrane potential of the neuron andu is a membrane re-

covery variable, which provides negative feedback forv. If the membrane potential

reaches a thresholdϑ = 30mV, a spike is triggered and a reset ofv andu occurs:

if v ≥ 30mV, then

{

v ← c

u ← u + d
(2.14)

Variablesa, b, c, d are parameters of the model. Depending on their setting, a large

variety of neural characteristics can be modelled. Each parameter has an associated

interpretation: Parametera represents the decay rate of the membrane potential,b is

the sensitivity of the membrane recovery, andc andd reset thev andu respectively.

In Figure 2.8, the meaning of the parameters is graphically explained along with

their effect on the dynamics of the model. For example, if we want to produce a

regular spiking neuron, we would seta = 0.02, b = 0.25, c = −65 andd = 8. The

figure was generated by a freely available simulation tool provided by Eugene M.

Izhikevich on his website2.

More information on this model can be found in the recently published textbook

on dynamical systems in neuroscience (Izhikevich, 2006). There are also a number

2 http://www.izhikevich.com
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Figure 2.8: The dynamics of the Izhikevich model. Depending on the settings of the pa-
rametersa, b, c and d, different neuron characteristics are modelled. The
electronic version of the figure and reproduction permissions are available at
http://www.izhikevich.com.

of articles on the topic,cf. e.g.the work on the suitability of mathematical models for

simulation of cortical neurons (Izhikevich, 2004), and thelarge-scale simulation of

a mammalian thalamocortical system (Izhikevich & Edelman,2008), which involves

one million neurons and almost half a billion synapses.
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2.2.4 Spike Response Model (SRM)

The Spike Response Model (SRM) is a generalisation of the LIF model and was

introduced by Gerstner and Kistler (2002b). In this model, the state of a neuron is

characterised by a single variableu. A number of different kernel functions describe

the impact of pre-synaptic spikes and external stimulationonu, but also the shape of

the actual spike and its after-potential. Whenever the stateu reaches a thresholdϑ

from below,i.e. u(t) = ϑ anddu(t)/dt > 0, a spike is triggered. In contrast to the

LIF model, the thresholdϑ in SRM is not required to be fixed, but may depend on the

last firing timet̂i of neuroni. For example, the threshold might be increased after the

neuron has spiked (also known as the refractory period) to avoid triggering another

spike during that time.

Let ui(t) be the state variable that describes neuroni at timet andt̂i is the last time

when the neuron emitted a spike, then the evolution ofui(t) can be formulated as:

ui(t) = η(t− t̂i) +
∑

j

wij

∑

f

ǫij(t− t̂i, t− t
(f)
j )

+

∫ ∞

0

κ(t− t̂i, s)Iext(t− s)ds (2.15)

wheret
(f)
j are the firing times of pre-synaptic neuronsj, while wij represents the

synaptic efficacy between neuronj andi.

Functionsη, ǫ andκ are response kernels. The first kernel,η, is the reset kernel.

It describes the dynamics of an action potential and becomesnon-zero each time a

neuron fires. This kernel models the reset of the stateu and its after-potential. A

typical implementation is:

η(t− t̂i) = η0

(

K1 exp

(

−t− t̂i
τm

)

(2.16)

− K2

(

exp

(

−t− t̂i
τm

)

− exp

(

−t− t̂i
τs

)))

Θ(t− t̂i)

whereη0 = ϑ equals the firing threshold of the neuron. The first term in Equa-

tion 2.16 models the positive pulse with a decay rateτm and the second one is the

negative spike after-potential with a decay rateτs, while K1 andK2 act as scaling

factors. FunctionΘ(·) is a step function known as the Heaviside function:

Θ(s) =

{

0 if s < 0

1 if s ≥ 0
(2.17)
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Figure 2.9: Shape of the response kernelsη andǫ. In the left diagram, a spike is triggered
at timet = t(f) = 0, which results in the activation of theη kernel. The shape
of the spike and its after potential are modelled by this kernel function. In the
right diagram, the neuron receives an input spike at timet = 0 which results in
the activation of theǫ kernel. If no further stimulus is received, the potentialu
returns to its resting potential.

which ensures that the effect of theη kernel is zero if the neuron has not emitted a

spike,i.e. t < t̂. The shape of this kernel is presented in the left diagram of Figure 2.9.

For the figure,K1 = 1, K2 = 5, τs = 0.005 andτm = 0.01 were used.

The second kernel determines the time course of a post-synaptic potential when-

ever the neuron receives an input spike. The kernel depends on the last firing time of

the neuront− t̂ and on the firing timest− t
(f)
j of the pre-synaptic neuronsj. Due to

the first dependence the post-synaptic neuron may respond differently to input spikes

received immediately after a post-synaptic spike. A typical implementation of this

kernel ise.g.

ǫ(t− t̂, t− t
(f)
j ) =

(

exp

(

−
t− t

(f)
j

τm

)

− exp

(

−
t− t

(f)
j

τs

))

Θ(t− t
(f)
j ) (2.18)

whereΘ(·) once more corresponds to the Heaviside function, the two exponential

functions model a positive and a negative pulse with the corresponding decay rates,

andt
(f)
j is the spike time of a pre-synaptic neuronj. In Equation 2.18, the first de-

pendency ofǫ is neglected, which corresponds to a special case of the model, namely

the simplified SRM. This simplified version of SRM is discussed in the next section.

The time course of theǫ kernel of Equation 2.18 is presented in the right diagram of

Figure 2.9. For the figureτs = 0.005 andτm = 0.01 were used. The implementations

for the response kernelsη andǫ are adopted from the study on spike timing dependent

plasticity in (Masquelier, Guyonneau, & Thorpe, 2008).
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The third kernel functionκ represents the linear response of the membrane to an

input currentIext. It depends on the last firing time of the neuront − t̂ and the time

prior to t. It is used to model the time course ofu due to external stimuli to the

neuron.

A comprehensive discussion of the spike response model and its derivates can be

found in the excellent textbook by Gerstner and Kistler (2002b) and also in (Maass

& Bishop, 1999).

Simplified Model (SRM0)

In a simplified version of SRM, the kernelsǫ andκ are replaced:

ǫ0(s) = ǫij(∞, s) (2.19)

κ0(s) = κij(∞, s) (2.20)

which makes the kernels independent of the indexj of pre-synaptic neurons and also

of the last firing timêti of the post-synaptic neuron. Using simple implementations

of these kernel functions reduces the computational cost significantly. Hence, this

model has been used to analyse the computational power of spiking neurons (Maass,

1994, 1999), of network synchronisation (Gerstner, Hemmen, & Cowan, 1996) and

collective phenomena of coupled networks (Kistler, Seitz,& Hemmen, 1998).

The dynamics of the SRM0 model are presented in Figure 2.10. For the diagram,

the ǫ andη kernels are defined by Equation 2.18 and 2.16, respectively.The neu-

ron receives a pre-synaptic stimulus in the form of several spikes which impact the

potentialu according to the response kernelǫ. Due to the pre-synaptic activity, an

action potential is triggered at timet = 77.9ms which results in the activation of the

η kernel and the modelling of the spike shape and the after-potential. The figure only

presents excitatory synaptic activity.

2.2.5 Thorpe Model

A simplified LIF model was formally proposed in (Thorpe & Gautrais, 1998). How-

ever, the general idea of the model can be traced back to publications as early as

1990,cf. (Thorpe, 1990). This model lacks the post-synaptic potential leakage. The

spike response of a neuron depends only on the arrival time ofpre-synaptic spikes.

The importance of early spikes is boosted and affects the post-synaptic potential more

strongly than later spikes. This concept is very interesting due to the fact that the brain
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Figure 2.10: The dynamics of the spike response model (SRM). In the post-synaptic neuron,
spikes change the membrane potential described by the kernel functionǫ. If the
membrane potential crosses a thresholdϑ, a spike is triggered. The shape of this
action potential is modelled by the functionη.

is able to compute even complex tasks quickly and reliably. For example, the human

brain requires for the processing of visual data only approximately 150ms (Thorpe,

Fize, & Marlot, 1996), see also a similar study on rapid visual categorisation of natu-

ral and artificial objects (Van Rullen & Thorpe, 2001). Since it is known that this type

of computation is partly sequential and several parts of thebrain involving millions

of neurons participate in the computation, it has been argued in (Thorpe & Gautrais,

1996) and (Thorpe, 1997) that each neuron has time and energyto emit only very

few spikes that can actually contribute to the processing ofthe input. As a conse-

quence, few spikes per neuron are biologically sufficient tosolve a highly complex

recognition task in real time.

Similar to other models, the dynamics of the Thorpe model aredescribed by the

evolution of the post-synaptic potentialui(t) of a neuroni:

ui(t) =







0 if fired
∑

j|f(j)<t

wji m
order(j)
i else (2.21)
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Figure 2.11: Evolution of the post-synaptic potential (PSP) of the Thorpe neuronal model for
a given input stimulus. If the potential reaches thresholdϑ, a spike is triggered
and the PSP is set to 0 for the rest of the simulation, even if the neuron is still
stimulated by incoming spike trains.

wherewji is the weight of a pre-synaptic neuronj, f(j) is the firing time ofj, and0 <

mi < 1 is a parameter of the model, namely the modulation factor. Functionorder(j)

represents the rank of the spike emitted by neuronj. For example, a rankorder(j) =

0 would be assigned if neuronj is the first among all pre-synaptic neurons ofi that

emits a spike. In a similar fashion, the spikes of all pre-synaptic neurons are ranked

and then used in the computation ofui. A neuroni fires a spike when its potential

reaches a certain thresholdϑ. After emitting a spike, the potential resets toui = 0.

Each neuron is allowed to emit only a single spike at most. Thethresholdϑ = c umax

is set to a fraction0 < c < 1 of the maximum potentialumax reachable for a neuron.

Figure 2.11 presents the change of the post-synaptic potential for the Thorpe neural

model if a series of input spikes stimulates the neuron through different synapses.

These simplifications allow a very fast real-time simulation of large networks. Due

to its low computational costs this model was mainly used forstudying image and

speech recognition methods involving thousands of connected neurons (cf. e.g. (De-

lorme & Thorpe, 2003) and (Thorpe, Guyonneau, Guilbaud, Allegraud, & VanRullen,

2004)). Many studies have investigated the Thorpe model,e.g. for face recogni-

tion (Van Rullen, Gautrais, Delorme, & Thorpe, 1998) and (Delorme, Perrinet, &

Thorpe, 2001). Additional studies utilising this model arepresented in section 2.6,
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where principles and applications of the evolving spiking neural network architecture

are discussed.

2.3 N E U R A L E N C O D I N G

This section addresses a fundamental question in neuroscience: What is the code used

by neurons to transmit information? Is it possible for an external observer to read and

understand the message of neural activity? Traditionally,there are two main theories

about neural encoding – pulse codes and rate codes. Both theories are discussed

below.

2.3.1 Rate codes

The first theory assumes that the mean firing rate of a neuron carries the most, maybe

even all the information of a transmission. These codes are referred to as rate codes

and have inspired the classical perceptron approaches. Themean firing ratev is

usually understood as the ratio of the average number of spikesnsp observed over a

specific time intervalT , andT itself:

v =
nsp

T
(2.22)

This concept has been especially successful in the context of sensory or motor neural

system,cf. e.g. the pioneering work by Adrian on the direct relationship between

the firing rate of stretch receptor neurons and the applied force in the muscles of frog

legs (Adrian, 1926). Nevertheless, the idea of a mean firing rate has been repeatedly

criticised,cf. e.g. (Rieke, Warland, Steveninck, & Bialek, 1999). The main argument

is the comparably slow transmission of information from oneneuron to another, since

each neuron has to integrate the spike activity of pre-synaptic neurons at least over

a time T . Especially, the extremely short response times of the brain for certain

stimuli, can not be explained by the temporal averaging of spikes. For example,

in (Thorpe et al., 1996) it was shown that the human brain can recognise a visual

stimulus in approximately 150ms. It is known that a moderatenumber of neural

layers are involved in the processing of visual stimuli. If every layer had to wait

a periodT to receive the information from the previous layer, the recognition time

would be much longer.
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Figure 2.12: A neuron receives input spikes from a population of pre-synaptic neurons pro-
ducing a certain activityA. The activity is defined as the fraction of neurons
being active within a short interval[t, t + ∆t], divided by the population size
N and the time period∆t. The figure was redrawn from a diagram presented
in (Gerstner & Kistler, 2002b).

However, there is also another interpretation for the concept of the mean firing rate.

It is defined as the average spike activity over a population of neurons. The principle

of this interpretation is explained in Figure 2.12. A post-synaptic neuron receives

stimulating inputs in the form of spikes emitted by a population of pre-synaptic neu-

rons. This population produces a certain spike activityA which is defined as the

fraction of neurons being active within a short interval[t, t + ∆t]:

A =
1

∆t

nact(t, t + ∆t)

N
(2.23)

wherenact(t, t + ∆t) denotes the number of active neurons in interval[t, t + ∆t],

andN is the total number neuron in the population. The activity ofa population

may vary rapidly and thus allow fast responses of the neuronsto changing stimuli,cf.

(Gerstner, 2000) and (Brunel, Chance, Fourcaud, & Abbott, 2001).

2.3.2 Pulse codes

The second type of neural encoding is referred to as a spike orpulse code. These

codes assume the precise spike time as the carrier of information between neurons.

Experimental evidence for temporal correlations between spikes was given through

computer simulations,cf. e.g.the work in (Lestienne, 1995) where integrate-and-fire

models are investigated, but also through biological experiments,cf. the electrophys-

iological recordings and staining procedures in (Nawrot, Schnepel, Aertsen, & Bouc-

sein, 2009). See also thein vivomeasurements described in (Villa, Tetko, Hyland, &
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Najem, 1999) in which spatio-temporal patterns of neuronalactivity are analysed in

order to predict the behaviour responses of rats.

A pulse code based on the timing of the first spike after a reference signal, was

discussed in (Thorpe et al., 1996). This encoding is called time-to-first-spike and is

inspired by the visual processing of the human eye. It was argued that each neuron

has time to emit only few spikes that can contribute to the overall processing of a

stimulus. Indeed, it was also shown in (Tovee, Rolls, Treves,& Bellis, 1993) that

a new stimulus is processed in the first 20 to 50ms after its onset. Thus, earlier

spikes carry most information about the stimulus. A specificneural model, namely

the Thorpe model that boosts the importance of early spikes,was discussed already

in section 2.2.5.

Other pulse codes consider correlation and synchrony to be important. Neurons

that represent a similar concept, object or label are “labeled” by firing synchronously

(Malsburg, 1981). More generally, any precise spatio-temporal pulse pattern could

be potentially meaningful and encode a particular information. Neurons that fire with

a certain relative time delay may signify a certain stimulus.

As a practical example, the so-called rank order populationencoding is presented

in section 2.6.1. Additional information about neural encoding in general can be

found in the book by (Rieke et al., 1999).

2.4 L E A R N I N G I N S N N

This section presents some typical learning methods in the context of spiking neu-

rons. A variety of problems impair the development of learning procedures for SNN.

The explicit time dependence results in asynchronous information processing that

commonly requires complex software and/or hardware implementations to simulate

these neural networks. Additional difficulties are added bythe fact that recurrent net-

work topologies are commonly used in SNN and thus the formulation of a straight-

forward learning method, such as back-propagation for MLP,is not possible.

Similar to traditional neural networks, three different learning paradigms can be

distinguished in SNN, which are referred to as unsupervised, reinforcement and su-

pervised learning. Reinforcement learning in SNN is probably the least common

among the three. Some algorithms have been successfully applied in robotic appli-

cations,cf. e.g. (Florian, 2005), but were also theoretically analysed in (Florian,

2007), (Seung, 2003) and (Xie & Seung, 2004). Unsupervised learning in the form

of Hebbian learning is the most biologically realistic learning scenario. The so-called
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spike-timing dependent plasticity(STDP) belongs to this category and is discussed in

the next section. Supervised techniques impose a certain input-output mapping on

the network which is essential for practical applications of SNN. Two methods are

discussed in greater detail in the next sections. The learning algorithm employed in

the eSNN architecture is discussed separately in section 2.6.2. An excellent compar-

ison of supervised learning methods developed for SNN can befound in (Kasinski &

Ponulak, 2006).

2.4.1 STDP – Spike-timing dependent plasticity

Spike-timing dependent plasticity is inspired by the experiments of Donald O. Hebb

published in his famous book “The Organisation of Behaviour”(Hebb, 1949). His

essential postulate is often referred to as Hebb’s Law:

When an axon of cell A is near enough to excite cell B and repeatedly

or persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency, as one of

the cells firing B, is increased.

First experimental evidence that supports Hebb’s postulate was given20 years later

in (Bliss & Lomo, 1973) and (Bliss & Gardner-Medwin, 1973). Today, it is known

that the change of synaptic efficacy in the brain is correlated to the timing of pre- and

post-synaptic activity of a neuron (Bell, Han, Sugawara, & Grant, 1997; Markram,

Lubke, Frotscher, & Sakmann, 1997; Bi & Poo, 1998). Whenever the efficacy of a

synapse is strengthened or weakened, we speak of long-term potentiation (LTP) or

long-term depression (LTD), respectively. STDP is described by a functionW (tpre−
tpost) that determines the fractional change of the synaptic weight in dependence of

the difference between the arrival timetpre of a pre-synaptic spike and the timetpost

of an action potential emitted by the neuron. FunctionW is also known as the STDP

window. Typical approximations ofW aree.g. :

W (tpre − tpost) =

{

A+ exp( tpre−tpost

τ+
) if tpre < tpost

A− exp(− tpre−tpost

τ+
) if tpre > tpost

(2.24)

where parametersτ+ and τ− determine the temporal range of the pre- and post-

synaptic time interval, whileA+ andA− denote the maximum fractions of synaptic

modification, iftpre − tpost is close to zero. Figure 2.13 presents the STDP window

W according to Equation 2.24.
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Figure 2.13: STDP learning windowW as function of the time differencetpre− tpost of pre-
and post-synaptic spike times. The presented function is based on Equation2.24
using the following parameter setting:A+ = 0.9, A− = −0.75, τ+ = 20 and
τ− = 5.

The parameters forA+, A−, τ+ andτ− are adjusted according to the particular neu-

ron to be modelled. The windowW is usually temporally asymmetric,i.e. A+ 6= A−

andτ+ 6= τ−. However, there are also some exceptions,e.g.synapses of layer4 spiny

stellate neurons in the rat barrel cortex appear to have a symmetric window (Egger,

Feldmeyer, & Sakmann, 1999).

A study investigated the dynamics of synaptic pruning as a consequence of the

STDP learning rule (Iglesias, Eriksson, Grize, Tomassini,& Villa, 2005). Synaptic

pruning is a general feature of mammalian brain maturation and refines the embry-

onic nervous system by removing inappropriate synaptic connections between neu-

rons, while preserving appropriate ones. Later studies extended this work by includ-

ing apoptosis (genetically programmed cell death) into theanalysis (Iglesias & Villa,

2006), and the identification of spatio-temporal patterns in the pruned network indi-

cating the emergence of cell assemblies (Iglesias & Villa, 2007).
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More information on STDP can be found in the excellent reviewon the matter

by (Bi & Poo, 2001) and also (Kempter, Gerstner, & van Hemmen, 1999; Gerstner &

Kistler, 2002a; Kistler, 2002).

2.4.2 Spike-Prop

Traditional neural networks, like the multi-layer perceptron, usually employ some

form of gradient based descent,i.e. error back-propagation, to modify synaptic

weights in order to impose a certain input-output mapping onthe network. However,

the topological recurrence of SNN and their explicit time dependence do not allow a

straightforward evaluation of the gradient in the network.Special assumptions need

to be made to develop a version of back-propagation appropriate for spiking neurons.

In (Bohte, Kok, & Poutŕe, 2000) and (Bohte et al., 2002) a back-propagation algo-

rithm called Spike-Prop is proposed, which is suitable for training SNN. It is derived

from the spike-response model discussed in section 2.2.4. The aim of the method is

to learn a set of desired firing timestdj of all output neuronsj for a given input pattern

presented to the network. Spike-Prop minimises the errorE defined as the squared

difference between all network output timestout
j and desired output timestdj :

E =
1

2

∑

j

(
tout
j − tdj

)2
(2.25)

The error is minimised with respect to the weightswk
ij of each synaptic input:

∆wk
ij = −η

dE

dwk
ij

(2.26)

with η defining the learning rate of the update step.

A limitation of the algorithm is given by the requirement that each neuron is al-

lowed to fire only once, which is similar to the limitations ofthe Thorpe neural model

presented in section 2.2.5. This simplification allows the error function defined in

Equation 2.25 to depend entirely on the difference between actual and desired spike

time. Thus, only time-to-first-spike encoding is suitable in combination with Spike-

Prop.

The algorithm was modified in a number of studies. In (Xin & Embrechts, 2001)

a momentum term was included in the update of the weights, while (Schrauwen &

van Campenhout, 2004) extended the method to learn additional neural parameters,
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Figure 2.14: Principle of the Liquid State Machine (LSM). The liquid transformsinputsu
into a liquid statex which in turn is mapped by a (linear) readout functionf
into the outputv of the network. Figure redrawn from (Natschläger, Maass, &
Markram, 2002).

such as synaptic delays, time constants and neuron thresholds. An extension towards

recurrent network topologies was presented in (Tiňo & Mills, 2006).

2.4.3 Liquid State Machine

A very different approach to neural learning was proposed with the Liquid State Ma-

chine (LSM) introduced in (Maass, Natschläger, & Markram, 2002). The method

is a specific form of reservoir computing (Verstraeten, Schrauwen, D’Haene, &

Stroobandt, 2007), that constructs a recurrent network of spiking neurons, for which

all parameters of the network,i.e. synaptic weights, connectivity, delays, neural pa-

rameters, are randomly chosen and fixed during simulation. Such a network is also

referred to as aliquid. If excited by an input stimulus, the liquid exhibits very com-

plex non-linear dynamics that are expected to reflect the inherent information of the

presented stimulus. The response of the network can be interpreted by a learning

algorithm.

Figure 2.14 illustrates the principle of the LSM approach. As a first step in the gen-

eral implementation of the LSM a suitable liquid is chosen. This step determines for

example, the employed neural model along with its parameterconfiguration, as well

as the connectivity strategy of the neurons, network size and other network-related

parameters. After creating the liquid, so-called liquid statesx(t) can be recorded at

various time points in response to numerous different (training) inputsu(t). Finally,

a supervised learning algorithm is applied to a set of training examples of the form



36 S P I K I N G N E U R A L N E T W O R K S – A R E V I E W

Figure 2.15: Schematic illustration of the Remote Supervised Method (ReSuMe). The synap-
tic change depends on the correlation of spike activities between input, teaching
and learning neurons. Spikes emitted by neuron inputnin

k (i) followed by a
spike of the teacher neuronnd(i) leads to an increase of synaptic weightwki.
The value ofwki is decreased, ifnin

k (i) spikes before the learning neuronnl
i

is activated. The amplitude of the synaptic change is determined by two func-
tionsW d(sd) andW l(sl), wheresd is the temporal difference between the spike
times of teacher neuron and input neuron, whilesl describes the difference be-
tween the spike times of learning neuron and input neuron. Figure redrawn
from (Ponulak, 2005).

(x(t), v(t)) to train a readout functionf , such that the actual outputsf(x(t)) are close

to v(t).

It was argued in (Natschläger et al., 2002) that the LSM has universal computa-

tional power. A very appealing feature of the applied training method,i.e. the readout

function, is its simplicity, since only a single layer of weights is actually modified,

for which a linear training method is sufficient.

A specific implementation of the readout, the so-called Remote Supervised Method

(ReSuMe) introduced in (Ponulak, 2005), is presented here. The goal of ReSuMe is to

impose a desired input-output spike pattern on a SNN,i.e. produce target spike trains

in response to a certain input stimulus. The method is based on the already presented

STDP learning window,cf. section 2.4.1 for details, in which two opposite update

rules for the synaptic weights are balanced. Additional teacher neurons are defined

for each synapse which remotely supervise the evolution of its synaptic weight. The

teacher neuron is not explicitly connected to the network, but generates a reference

spike signal which is used to update the connection weight ina STDP-like fashion.

The post-synaptic neuron, whose activity is influenced by the weight update, is called

the learning neuron.



2.5 A P P L I C AT I O N S O F S N N 37

Figure 2.15 illustrates the principle of ReSuMe. Letnl
i denote the learning neuron

which receives spike sequences from pre-synaptic neuronnin
k (i), the corresponding

synaptic weight beingwki and neuronnd(i) being the teacher for weightwki. If input

neuronnin
k (i) emits a spike which is followed by a spike of the teacher neuron nd(i),

the synaptic weightwki is increased. On the other hand, ifnin
k (i) spikes before the

learning neuronnl
i is activated, the synaptic weight is decreased. The amplitude of

the synaptic change is determined by two functionsW d(sd) andW l(sl), wheresd is

the temporal difference between the spike times of teacher neuron and input neuron,

while sl describes the difference between the spike times of learning neuron and input

neuron. Thus, the precise time difference of spiking activity defines the strength of

the synaptic change.

A few studies on LSM can be found,cf. e.g. the overview paper in (Natschläger,

Markram, & Maass, 2003) and the specific case study for isolated word recognition

in (Verstraeten et al., 2005). More information on ReSuMe is available in (Kasinski

& Ponulak, 2005; Ponulak & Kasinski, 2006; Ponulak, 2008).

2.5 A P P L I C AT I O N S O F S N N

Traditionally, SNN have been applied in the area of neuroscience to better understand

brain functions and principles, the work by Hodgkin and Huxley (Hodgkin & Huxley,

1952) being among the pioneering studies in the field. A number of main directions

for understanding the functioning of the nervous system aregiven in (Carnevale &

Hines, 2006). Here it is argued that a comprehensive knowledge about the anatomy of

individual neurons and classes of cells, pathways, nuclei and higher levels of organ-

isation is very important, along with detailed informationabout the pharmacology

of ion channels, transmitters, modulators and receptors. Furthermore, it is crucial

to understand the biochemistry and molecular biology of enzymes, growth factors,

and genes that participate in brain development and maintenance, perception and

behaviour, learning and diseases. A range of software systems for analysing bio-

logically plausible neural models exist, NEURON3 and GENESIS4 being the most

prominent ones. Modelling and simulation are fundamental for the understanding of

neural processes.

A number of large-scale studies have been recently undertaken to understand the

complex behaviour of ensembles of spiking neurons,cf. e.g. (Glackin, McGinnity,

3 Available at http://www.neuron.yale.edu/neuron
4 Available at http://genesis-sim.org
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Maguire, Wu, & Belatreche, 2005; Izhikevich & Edelman, 2008). The review pre-

sented in (Maguire et al., 2007) discusses challenges for implementations of spiking

neural networks on FPGAs in the context of large-scale experiments.

SNN are also applied in many real-world applications. Notable progress has been

made in areas like speech recognition (Verstraeten et al., 2005), learning rules (Bo-

hte et al., 2002), associative memory (Knoblauch, 2005), and function approxima-

tion (Iannella & Kindermann, 2005). Other applications include biologically more

realistic controllers for autonomous robots,cf. (Floreano & Mattiussi, 2001; Flore-

ano, Epars, Zufferey, & Mattiussi, 2006) and also (Wang, Hou, Zou, Tan, & Cheng,

2008) for some interesting examples in this research area.

In the next section we focus on a few applications of the evolving spiking neural

network architecture, which is the main focus of this thesis.

2.6 E VO LV I N G S P I K I N G N E U R A L N E T W O R K A R C H I T E C T U R E

Based on Kasabov (2006), an evolving spiking neural network architecture (eSNN)

was proposed in (Wysoski et al., 2006a) which was initially designed as a visual

pattern recognition system. Other studies have utilised eSNN as a general classifica-

tion method,e.g. in the context of classifying water and wine samples (Solticet al.,

2008). The method is based on the already discussed Thorpe neural model, in which

the importance of early spikes (after the onset of a certain stimulus) is boosted,cf.

section 2.2.5. Synaptic plasticity is employed by a fast supervised one-pass learning

algorithm that is explained as part of this section.

In order to classify real-valued data sets, each data sample, i.e. a vector of real-

valued elements, is mapped into a sequence of spikes using a certain neural encoding

technique. In the context of eSNN, the so-called rank order population encoding

is employed, but other encoding may be suitable as well. The topology of eSNN

is strictly feed-forward and organised in several layers. Weight modification only

occurs on the connections between the neurons of the output layer and the neurons of

either hidden layer or the input layer.

In the next section, the encoding principle used in eSNN is presented, followed

by the description of the one-pass learning method and the overall functioning of the

eSNN method. Finally, a variety of applications based on theeSNN architecture is

reviewed and summarised. A number of open problems that havenot been solved in

the existing literature, have motivated this PhD study and are outlined at the end of

this review.
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2.6.1 Rank order population encoding

Rank order population encoding is an extension of the rank order encoding intro-

duced in (Thorpe & Gautrais, 1998). It allows the mapping of vectors of real-valued

elements into a sequence of spikes. An implementation basedon arrays of recep-

tive fields is firstly described in (Bohte et al., 2002). Receptive fields allow the

encoding of continuous values by using a collection of neurons with overlapping

sensitivity profiles. Each input variable is encoded independently by a group ofM

one-dimensional receptive fields. For a variablen an interval[In
min, I

n
max] is defined.

The Gaussian receptive field of neuroni is given by its centreµi

µi = In
min +

2i− 3

2
· I

n
max − In

min

M − 2
(2.27)

and widthσ:

σ =
1

β
· I

n
max − In

min

M − 2
(2.28)

with 1 ≤ β ≤ 2. Parameterβ directly controls the width of each Gaussian receptive

field. Figure 2.16 depicts an example encoding of a single variable. For the diagram,

β = 2 was used, the input interval[In
min, I

n
max] was set to[−1.5, 1.5], andM = 5

receptive fields were used.

More information on rank order coding strategies can be found in (Perrinet, De-

lorme, Samuelides, & Thorpe, 2001) and the accompanying article (Delorme et al.,

2001). Very interesting is also the review on rapid spike-based processing strategies

in the context of image recognition presented in (Thorpe, Delorme, & Rullen, 2001),

where most work on the Thorpe neural model and rank order coding is summarised.

Rank order coding was also explored for speech recognition problems (Loiselle,

Rouat, Pressnitzer, & Thorpe, 2005) and is a core part of the eSNN architecture.

2.6.2 One-pass learning

The aim of the learning method is to create output neurons, each of them labeled

with a certain class labell ∈ L. The number and value of class labels depends on

the classification problem to solve,i.e. L corresponds to the set of class labels of

the given data set. After presenting a certain input sample to the network, the corre-

sponding spike train is propagated through the SNN which mayresult in the firing of

certain output neurons. It is also possible that no output neuron is activated and the
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Figure 2.16: Population encoding based on Gaussian receptive fields. For an input value
v = 0.75 (thick straight line in top figure) the intersection points with each
Gaussian is computed (triangles), which are in turn translated into spike time
delays (lower left figure).

Algorithm 1 Training an evolving spiking neural network (eSNN)
Require: ml, sl, cl for a class labell ∈ L

1: initialise neuron repositoryRl = {}
2: for all samplesX(i) belonging to classl do
3: w

(i)
j ← (ml)

order(j), ∀ j | j pre-synaptic neuron ofi

4: u
(i)
max ←

∑

j w
(i)
j (ml)

order(j)

5: ϑ(i) ← clu
(i)
max

6: if min(d(w(i), w(k))) < sl, w(k) ∈ Rl then
7: w(k) ← mergew(i)andw(k) according to Equation 2.32
8: ϑ(k) ← mergeϑ(i)andϑ(k) according to Equation 2.33
9: else

10: Rl ← Rl ∪ {w(i)}
11: end if
12: end for

network remains silent. In this case, the classification result is undetermined. If one

or more output neurons have emitted a spike, the neuron with the shortest response

time among all activated output neurons is determined,i.e. the output neuron with

the earliest spike time. The label of this neuron representsthe classification result for

the presented input sample.
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The learning algorithm successively creates a repository of trained output neurons

during the presentation of training samples. For each classlabel l ∈ L an individual

repository is evolved. The procedure is described in detailin Algorithm 1. For each

training samplei with class labell ∈ L a new output neuron is created and fully

connected to the previous layer of neurons resulting in a real-valued weight vector

w(i), with w
(i)
j ∈ R denoting the connection between the pre-synaptic neuronj and

the created neuroni. In the next step, the input spikes are propagated through the

network and the value of weightw(i)
j is computed according to theorder of spike

transmission through a synapsej, cf. line 3 in Algorithm 1:

w
(i)
j = (ml)

order(j), ∀ j | j pre-synaptic neuron ofi (2.29)

Parameterml is the modulation factor of the Thorpe neural model. Differently la-

beled output neurons may have different modulation factorsml. Functionorder(j)

represents the rank of the spike emitted by neuronj. For example, a rankorder(j) =

0 would be assigned, if neuronj is the first among all pre-synaptic neurons ofi that

emits a spike. In a similar fashion the spikes of all pre-synaptic neurons are ranked

and then used in the computation of the weights.

The firing thresholdϑ(i) of the created neuroni is defined as the fractioncl ∈ R,

0 < cl < 1, of the maximal possible potentialu
(i)
max, cf. lines 4 and 5 in Algorithm 1:

ϑ(i) = clu
(i)
max (2.30)

u(i)
max =

∑

j

w
(i)
j (ml)

order(j) (2.31)

The fractioncl is a parameter of the model and for each class labell ∈ L a different

fraction can be specified.

The weight vector of the trained neuron is then compared to the ones of neurons

that are already stored neurons in the repository,cf. line 6 in Algorithm 1. If the

minimal Euclidean distance between the weight vectors of the neuroni and an ex-

isting neuronk is smaller than a specified similarity thresholdsl, the two neurons

are considered too “similar” and both the firing thresholds and the weight vectors are

merged according to:

w
(k)
j ←

w
(i)
j + Nw

(k)
j

1 + N
, ∀j | j pre-synaptic neuron ofi (2.32)

ϑ(k) ← ϑ(i) + Nϑ(k)

1 + N
(2.33)
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Figure 2.17: Schematic illustration of the evolving spiking neural network architecture
(eSNN). Real-valued vector elements are mapped into the time domain using
rank order population encoding based on Gaussian receptive fields. As a con-
sequence of this transformation input neurons emit spikes at pre-defined firing
times, invoking the one-pass learning algorithm of the eSNN. The learning it-
eratively creates repositories of output neurons, one repository foreach class.
Here a two-class problem is presented. Due to the evolving nature of the net-
work, it is possible to accumulate knowledge as it becomes available, without
the requirement of re-training with already learnt samples.

IntegerN denotes the number of samples previously used to update neuron k. The

merging is implemented as the (running) average of the connection weights, and the

(running) average of the two firing thresholds. After the merging, the trained neuron

i is discarded and the next sample processed. If no other neuron in the repository is

similar to the trained neuroni, the neuroni is added to the repository as a new output

neuron.

Figure 2.17 depicts the eSNN architecture. Due to the incremental evolution of out-

put neurons, it is possible to accumulate knowledge as it becomes available. Hence,

a trained network is able to learn new data without the need ofre-training on already

learnt samples. Real-world applications of the eSNN architecture are discussed in the

next section.

2.6.3 Applications

The eSNN architecture is used in a variety of applications that are described and

summarised here.
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Visual pattern recognition

Among the earliest application of the eSNN is the visual pattern recognition system

presented in (Wysoski et al., 2006a) which extends the work of (Delorme, Gautrais,

VanRullen, & Thorpe, 1999; Delorme & Thorpe, 2001) by including the on-line

learning technique described above. In (Wysoski et al., 2006a) and (Wysoski et al.,

2006b) the method was studied on an image data set consistingof 400 faces of 40

different persons. The task here was to predict the class labels of presented images

correctly. The system was trained on a subset of the data and then tested on the

remaining samples of the data. Classification results were similar to (Delorme et al.,

1999; Delorme & Thorpe, 2001) with the additional advantages of the novel on-line

learning method.

In a later study another processing layer was added to the system which allows ef-

ficient multi-view visual pattern recognition (Wysoski et al., 2008b). The additional

layer accumulates information over several different views of an image in order to

reach a final decision about the associated class label of theframes. Thus, it is possi-

ble to perform an efficient on-line person authentication through the presentation of

a short video clip to the system, although the audio information was ignored in this

study.

The main principle of this image recognition method is briefly outlined here. The

neural network is composed of four layers of Thorpe neurons,each of them grouping

a set of neurons into several two-dimensional maps, so-called neural maps. Infor-

mation in this network is propagated in a feed-forward manner, i.e. no recurrent

connections exist. An input frame in form of a grey-scale image is fed into the first

neural layer (L1), each pixel of the image corresponding to one neuron in a neural

map ofL1. Several neural maps may exist in this layer. The map consists of “On”

and “Off” neurons that are responsible for the enhancement of the high contrast parts

of the image. Each map is configured differently and thus is sensitive to different

grey scales in the image. The output of this layer is transformed into the spike do-

main using rank order encoding as described in (Thorpe & Gautrais, 1998). As a

consequence of this encoding, pixels with higher contrast are prioritised in the neural

processing.

The second layer, denotedL2, consists of orientation maps. Each map is selective

for different directions,e.g. 0◦, 45◦, . . . , 315◦, and is implemented by appropriately

parametrised Gabor functions. It is noted that the first two layers are passive filters

that are not subject to any learning process. In the third layer,L3, the learning occurs

using the one-pass learning method described in section 2.6.2. Here neural maps
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are created and merged according to the rules of the learningalgorithm. Finally, the

fourth layer,L4, consists of a single neuron for each output class, which accumulates

opinions about the class label of a certain sequence of inputframes. The weights

betweenL3 andL4 are fixed to a constant value, usually1, and are not subject to

learning. The firstL4 neuron that is activated by the presented stimuli determines

the classification result for the input. After the activation of anL4 neuron the system

stops.

Experimental evidence about the suitability of this pattern recognition system is

provided in (Wysoski et al., 2008b) along with a comparison to other typical classifi-

cation methods.

Auditory pattern recognition

A similar network, but in an entirely different context, wasinvestigated in (Wysoski

et al., 2007), where a text-independent speaker authentication system is presented.

The classification task in this work consisted of the correctlabelling of audio streams

presented to the system.

Speech signals are split into temporal frames, each containing a signal segment

over a short time period. The frames are first pre-processed using the Mel Frequency

Cepstrum Coefficients (MFCC) (Rabiner & Juang, 1993) and then usedto invoke

the eSNN. The MFCC frame is transformed into the spike domain using rank order

encoding (Thorpe & Gautrais, 1998) and the resulting stimulus is propagated to the

first layer of neurons. This layer, denotedL1, contains two neural ensembles repre-

senting the speaker and the background model, respectively. While the former model

is trained on the voice of a certain speaker, the latter one istrained on the background

noise of the audio stream. This system also collects opinions about the class label of

the presented sequence of input frames, which is implemented by the second layer

of the network. LayerL2 consists of only two neurons, each of which accumulates

information about whether a given frame corresponds to a certain speaker or to the

background noise. Whenever anL2 neuron is activated, the simulation of the network

stops and the classification output is presented.

Audio-visual pattern recognition

The two recognition systems presented above were successfully combined, forming

an audio-visual pattern recognition method. Both systems are trained individually,

but their output is propagated to an additional supra-modallayer. The supra-modal

layer integrates incoming sensory information from individual modalities and cross-
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modal connections enable the influence of one modality upon the other. A detailed

discussion of this system along with experimental evidenceis given in (Wysoski et

al., 2008a) and in the PhD dissertation of Simei Wysoski in (Wysoski, 2008).

Taste recognition

The last application of eSNN being discussed here investigates the use of a SNN for

taste recognition in a gustatory model. The classification performance of eSNN was

experimentally explored based on water and wine samples collected from (de Sousa

& Riul Jr., 2002) and (Riul et al., 2004). The topology of the model consists of two

layers. The first layer receives an input stimulus obtained from the mapping of a

real-valued data sample into spike trains using a rank orderpopulation encoding,cf.

section 2.6.1. The weights from the first neural layer are subject to training according

to the already discussed one-pass learning method. Finally, the output of the second

neural layer determines the class label of the presented input stimulus.

The method was investigated in a number of scenarios, where the size of the data

sets and the number of class labels was varied. Generally, eSNN reported promising

results on both large and small data sets, which has motivated an FPGA hardware

implementation of the system (Zuppicich & Soltic, 2009).

2.6.4 Open problems

The eSNN architecture requires the appropriate setting of anumber of neural and

learning parameters in order to achieve satisfying classification results. Their config-

uration can quickly become a challenging task, since it usually requires comprehen-

sive knowledge about the influence of each parameter. Some parameters might be

linked to each other and should not be chosen independently.For example, modify-

ing the modulation factor of the Thorpe neural model should also involve the careful

choice of the firing threshold. A small modulation factor increases the sensitivity of

the neuron to the input significantly, thus the threshold hasto be adapted accordingly

to prevent the neuron from becoming over-specialised for a certain input. The situa-

tion becomes even more complicated in the context of many class labels, since then

the number of parameters increases linearly with the numberof classes.

All the above presented applications require a careful manual tuning of the eSNN

parameters. The problem of this approach was explicitly recognised and mentioned

in a number of studies,e.g. in (Wysoski et al., 2008a; Wysoski, 2008; Soltic et

al., 2008), suggesting an automatic optimisation of the involved parameters. Self-
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adapting parameters require less expert knowledge in orderto configure eSNN for

a specific task, which promotes its straightforward application to other problem do-

mains.

Another issue with the eSNN classification method is the lackof an explicit feature

selection mechanism, although such an extension might not be crucial for the appli-

cations presented above. For example, the taste recognition system involves only

a limited number of features,i.e. seven taste sensors, which are all assumed to be

relevant for the given classification task. For the visual pattern recognition systems

on the other hand, a certain feature selection was implemented through the contrast

detection of the “on”/“off”-neurons and the orientation maps in the first and second

neural layer of the network respectively. Although this principle works well in the

context of a visual stimulus, it is not suitable for many other problem domains. Thus,

a general feature selection component as part of the eSNN method might be beneficial

when applying the method to many other problems.

2.7 S U RV E Y I N G H E T E RO G E N E O U S O P T I M I S AT I O N M E T H O D S

Both issues described above have motivated the work presented in this thesis, which

involves the development of an integrated feature and parameter optimisation com-

ponent for eSNN. As outlined in the introductory chapter, such an automatic optimi-

sation requires the application of a generic heterogeneousoptimisation method. A

specialised EA evolves a combined solution consisting of a binary and a real-valued

sub-component, which represent a feature subset and an eSNNparameter configu-

ration respectively. In this section a survey of previouslyproposed heterogeneous

algorithms is presented, with the aim to determine which EA is most suitable for the

intended extension.

The concept of a simultaneous exploration of heterogeneoussearch spaces is not

new. Numerous studies have discussed such schemes, especially in the context of

the simultaneous evolution of the weight matrix and topology of neural networks.

Among the earliest contributions to this area is the work by (Hintz & Spofford, 1990).

A genetic algorithm is used that operates on a binary chromosome, which is seman-

tically structured in sub-components in order to allow the encoding of connectivity

and connection weights in a single bit string. Promising results have been reported

on a9 × 9 bit character recognition problem. A similar approach was investigated
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in (Maniezzo, 1994), where an algorithm called ANNA ELEONORA5 is presented.

Here the presence or absence of a connection between two neurons is encoded by a

connectivity bit, followed by a number of additional bits representing the correspond-

ing connection weight. Due to the binary representation of the weights, a conversion

from bit strings into real values is required. The granularity of the weights,i.e. the

number of bits used for encoding a single weight, is adapted as part of the evolu-

tionary process. Since the interpretation of the bits in thechromosome is not homo-

geneous, a set of complex crossover and mutation operators is defined. The method

was later further developed in (Leung, Lam, Ling, & Tam, 2003), in which the binary

chromosome was replaced by a continuous one. Although the real value representa-

tion seems appropriate for the evolution of connection weights, it is less suitable for

the representation of the connectivity bit. Similar genetic approaches were discussed

in (White & Ligomenides, 1993), (Alba, Montes, & Troya, 1993)and (Oliker, Furst,

& Maimon, 1993).

All of the above studies employ evolutionary algorithms to explore a heteroge-

neous search space using either a binary or a continuous representation of the chro-

mosome. As a consequence these methods are not optimally adapted for the explo-

ration of either the continuous or the binary sub-componentof a candidate solution.

In (Valko, Marques, & Castelani, 2005) this issue was explicitly addressed by propos-

ing a method called FeaSANNT (Feature Selection and Artificial Neural Network

Training). FeaSANNT is a genetic algorithm using a binary representation for the

evolution of appropriate feature subsets and a continuous representation for the opti-

misation of the weight matrix of the neural net. The method isdiscussed in greater

detail in (Castellani & Marques, 2008). For each representation individual genetic

operators are implemented. A standard two-point crossoveralong with bit-flip mu-

tation is used for the binary landscape, while uniform random mutations and Lamar-

ckian learning using back-propagation are applied to the variables of the continuous

solution part. A practical application of FeaSANNT on a woodveneer classification

problem can be found in (Castellani & Rowlands, 2009). Furtherefforts have been

made to also evolve the network topology,cf. (Castellani, 2006), which required the

definition of additional operators, such as node deletion and insertion according to

some user-specified probability parameters.

Very recent studies follow similar trends. The chromosome in (Rivero, Dorado,

Ferńandez-Blanco, & Pazos, 2009) consists of the concatenation of three parts: A

connectivity bit encoding the presence or absence of a connection, a real-valued

5 Abbreviation forArtificial NeuralNetworksAdaptation:EvolutionaryLearningof NeuralOptimal
RunningAbilities
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weight, and another bit representing the presence or absence of a particular hidden

neuron. A genetic algorithm is used but the actual genetic operators are unfortu-

nately not reported in the article. A modified version of a Particle Swarm Optimiser

is proposed in (Garro, Sossa, & Vazquez, 2009) that also evolves the neural transfer

function in addition to topology and connection weights.

The methods discussed above are all designed with the clear aim to apply them in

the context of topology and weight optimisation of neural networks, which prevents

their straightforward application in a different context.For example, most of them

employ network specific genetic operators like back-propagation to drive the search,

which may not be available if the context of the problem changes.

Only very few general mixed-variable algorithms exist. Arguably among the most

promising algorithms on heterogeneous optimisation is theMixed Bayesian Optimi-

sation Algorithm (MBOA) introduced in (Ocenasek & Schwarz, 2002). In MBOA,

a set of decision trees that are iteratively constructed andadapted during the evolu-

tionary process, explore the search space in a probabilistic fashion. New solution

candidates are sampled according to the current state of thetrees. Although MBOA

was not extensively investigated on heterogeneous problems, promising results have

been obtained on binary benchmark problems. The continuousoptimisation perfor-

mance of MBOA, on the other hand, is less competitive as experimentally demon-

strated in (Kern et al., 2004). Furthermore, the method involves a significant compu-

tational overhead, which has motivated a multi-threaded implementation on parallel

hardware (Ocenasek, 2002).

Other directions have suggested the use of different EA variants. A heterogeneous

version of an Ant Colony Optimisation (ACO) algorithm was proposed in (Socha,

2004). Due to the lack of comparison algorithms, the authorshave experimentally

investigated the performance of the method using a number ofcontinuous bench-

mark functions. Thus, the suitability of this ACO on mixed-variable problems is less

clear. However, it is interesting to note that the principleidea of ACO is also based

on a probabilistic exploration of the search space, as shownin (Cord́on, Ferńandez

de Viana, Herrera, & Moreno, 2000) and (Monmarché, Ramat, Dromel, Slimane,

& Venturini, 1999). This is very similar to the above-mentioned MBOA, despite

the very different metaphor employed in ACO. While ACO assumes apopulation

of “ants”, each of them iteratively constructing a solutionaccording to discrete or

continuous probability distributions, MBOA emphasises on an entirely mathematical

description of its working.

A so-called Bell-Curve Genetic Algorithm (BCGA) is discussed in(Kincaid, Grif-

fith, Sykes, & Sobieszczanski-Sobieski, 2004), which is an optimisation heuristic
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similar to Evolutionary Strategies (ES) (Schwefel, 1981).Here the term bell-curve

refers to the Gaussian probability density function, whichis employed to sample new

solution candidates. The analysis of BCGA on a very specialised problem domain,

i.e. hub structures found in buildings, complicates a comparison of this approach to

other methods and allows only speculations about its suitability in different problem

scenarios.

2.7.1 What EA to choose?

When summarising the presented survey on mixed-variable optimisation methods,

several conclusions can be made. First of all, the exploration of heterogeneous

search spaces is feasible and was implemented in numerous algorithms. However,

few of them are suitable for an application to general heterogeneous optimisation

problems. Either the representation of the search space is non-optimal,i.e. binary-

only or continuous-only representations, or the optimisation algorithm is too problem

specific,e.g. its application aims explicitly towards topology and weight optimisa-

tion of neural networks. Furthermore, although some general purpose mixed-variable

optimisers have been developed recently, none of them was studied thoroughly on

heterogeneous problems. Thus, it is argued in this thesis, that a novel generic op-

timisation technique is required, that is applicable to general, domain-independent

problems.

As mentioned earlier, the most promising mixed-variable algorithms employ a

probabilistic model to explore the search space, although each method was proposed

with an entirely different metaphor in mind. Taking this observation into account,

a new optimisation method is proposed in the next chapter that is also based on the

evolution of probabilistic models to identify promising areas in the solution space of

a problem.





Chapter3
O P T I M I S I N G B I NA RY S E A R C H S PAC E S – A V E R S AT I L E

Q UA N T U M - I N S P I R E D E VO L U T I O NA RY A L G O R I T H M

Quantum-Inspired Evolutionary Algorithms (QEA) apply Quantum Computing Prin-

ciples to enhance classical Evolutionary Algorithms (EA).In the last ten years of

QEA research, investigators demonstrated promising benefits compared to classical

EA on solving complex benchmark problems in the fields of combinatorial (Han &

Kim, 2002), numerical (Han & Kim, 2004; da Cruz, Vellasco, & Pacheco, 2006) and

multi-objective optimisation (Talbi, Draa, & Batouche, 2006). Others addressed real

world problems including disk allocation (Kima, Hwang, Han, Kim, & Park, 2003),

face detection (Jang, Han, & Kim, 2004), rigid image registration (Draa, Batouche,

& Talbi, 2004a), training of multi-layer perceptrons (Venayagamoorthy & Singhal,

2005), signal processing (F. Liu, Li, Liang, & Hu, 2006) and clustering of gene ex-

pression data (W. Zhou, Zhou, Huang, & Wang, 2005). However,despite this work,

ambiguity in the definition of QEA hampered its understanding and integration into

the theory of Evolutionary Computation.

Arguably, the most illustrative example of QEA is the algorithm first proposed

by Han and Kim (2002), in which they used some major principles of Quantum Com-

puting such as the quantum and collapsed bit, the linear superposition of states and

the quantum rotation gate. This algorithm has been investigated both experimentally

and theoretically in numerous studies. Classical optimisation benchmarks were con-

sidered by Han and Kim (2002), while Kima et al. (2003) and Jang et al. (2004)

applied QEA to some real world problems. Han and Kim (2003) suggested some

practical guidelines on configuring QEA, analysing the roleand impact of the in-

volved parameters on the functioning of the method. An alternative update operator,

namely theHǫ gate, was considered in (Han & Kim, 2004). Han and Kim (2006) pre-

sented a proof of convergence towards the global optimum on aone dimensional One

Max problem. Han (2003) comprehensively discussed and studied QEA, presenting

most of the prior work.

51
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Nevertheless, some specific characteristics of QEA remain unexamined. Sec-

tion 3.1 briefly outlines some basic quantum principles thathave inspired QEA, and

formulates a revised description of its features. Exploring the dynamics of QEA

reveals a clear trend in promoting the phenomenon of hitch-hiking. Section 3.2 intro-

duces a novel algorithm called Versatile Quantum-inspiredEvolutionary Algorithm

(vQEA), in which a simple but critical mechanism is proposedto avoid problems en-

countered in the original QEA. With vQEA, the information about the search space

collected during evolution is continuously renewed and shared among the whole pop-

ulation rather than being kept at the individual level. In section 3.3, vQEA is tested

on different benchmark problems and compared to classical versions of EA, namely

a genetic algorithm (GA) (Goldberg, 1989) and the original QEA. Finally, section 3.4

discusses vQEA in the light of Estimation of Distribution Algorithms (EDA).

3.1 P R I N C I P L E S O F Q UA N T U M- I N S P I R E D E VO L U T I O NA RY A L G O R I T H M S

A quantum bit orQbit (Hey, 1999) is the smallest unit of information in a quantum

computer. AQbit is defined by its state|Ψ〉:

|Ψ〉 = α |0〉+ β |1〉 (3.1)

whereα andβ are complex numbers defining probabilities at which the correspond-

ing state is likely to appear when aQbit is collapsed, i.e. read or measured. Here the

probability of aQbit to collapse to state “0” and “1” is|α|2 and|β|2 respectively1. In a

more geometrical aspect, aQbit state can also be defined byθ such thatcos(θ) = |α|
andsin(θ) = |β|.

In order to modify the probability amplitudesα andβ, quantum gatescan be ap-

plied. We note that several quantum gates have been proposedsuch as (controlled)

NOT -gate, rotation gate and Hadamard gate, see (Hey, 1999) for details.

3.1.1 Description of the QEA

In this section we propose a revised description of the QEA, originally published in

(Han & Kim, 2002). See (Han, 2003) for a comprehensive definition. QEA is a

generational, population-based search method whose behaviour can be decomposed

in three different and interacting levels,cf. Figure 3.1.

1 Normalisation of the states to unity guarantees|α|2 + |β|2 = 1 at any time.
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Figure 3.1: Description of QEA with three levels

Q UA N T U M I N D I V I D UA L S The lowest level corresponds toquantum individu-

als2 . A Qindividual i at generationt contains aQbit string Qi(t) and two binary

2 Note that the original notation of Han and Kim has been slightly revised here. An individual here is
composed of aQbit string and two binary strings rather than theQbit string only. The revised notation
of QEA allows a more structured and compact description of the method.
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stringsCi(t) andAi(t). More preciselyQi corresponds to a string of N concatenated

Qbits:

Qi = Q1
i Q

2
i . . . QN

i =

[

α1
i α2

i . . . αN
i

β1
i β2

i . . . βN
i

]

(3.2)

For the purpose of fitness evaluation eachQi is first sampled (or collapsed) to form

a bit stringCi. EachQbit in Qi is sampled according to a probability defined by

|βj
i |2, so thatCi represents a configuration in the search space and its quality can

be classically determined using a fitness functionf . In the sense of EA,Qi is the

genotype whileCi is the phenotype of a given individual. We will show later that in

the sense of EDAs,Qi defines a probabilistic model

Pi =
[
|β1

i |2 . . . |βN
i |2
]

while Ci is a realisation of this model.

A solutionAi is attached to each individuali acting as an attractor forQi. Every

generation,Ci andAi are compared in terms of both fitness and bit values. IfAi is

better thanCi (i.e. f(Ai) > f(Ci) in a maximisation problem) and if their bit values

differ, a quantum gate operator is applied on the corresponding Qbits of Qi. Thus

the probabilistic modelPi defined byQi is moved slightly towards the attractorAi.

The attractorAi is replaced byCi wheneverCi is better in terms of fitness. More

specifically, iff(Ai) ≤ f(Ci) (assuming a maximisation problem), no update of the

probabilistic model occurs, but the attractorAi is replaced byCi.

In classical EA, variation operators like crossover or mutation operations are used

to explore the search space. The quantum analogue for these operators is called a

quantum gate. In this study, the rotation gate is used to modify theQbits. Thej th

Qbit at generationt of Qi is updated as follows:

[

αj
i (t + 1)

βj
i (t + 1)

]

=

[

cos(∆θ) − sin(∆θ)

sin(∆θ) cos(∆θ)

][

αj
i (t)

βj
i (t)

]

(3.3)

where the constant∆θ is a rotation angle designed in compliance with the application

problem (Han & Kim, 2003). We note that the sign of∆θ determines the direction of

rotation (clockwise for negative values). In this study theapplication of the rotation

gate operator is limited in order to keepθ in the range[0, π/2].
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Q UA N T U M G RO U P S The second level corresponds toquantum groups. The

population is divided intog Qgroups each containingk Qindividuals with the abil-

ity to synchronise their attractors. The best attractor (interms of fitness) of a group,

denotedBgroup, is stored at every generation and is periodically distributed to the

group attractors. The parameterSlocal controls the frequency of local synchronisation

events.

Q UA N T U M P O P U L AT I O N The set of allp = g × k Qindividuals forms the

quantum populationand defines the topmost level of QEA. As for theQgroups, the

individuals of theQpopulation can synchronise their attractors, too. The bestattrac-

tor (in terms of fitness) among allQgroups, notedBglobal, is stored every generation

and is periodically distributed to the group attractors. The frequency of global syn-

chronisation events is controlled by a parameterSglobal. We note that in the initial

population all theQbits are fixed with|α|2 = |β|2 = 0.5, such that the two states “0”

and “1” are equi-probable in collapsed individuals.

3.1.2 QEA on the One Max problem

The One Max problem consists of maximising the number of onesof a bit string

and the global optimum is denoted as1λ. In this section the behaviour of QEA

on the One Max problem is studied forλ = 100. For that purpose new tools for

monitoring the dynamics of bothQindividuals andQbits are used. The setting of the

evolutionary parameters is similar to the settings proposed in (Han & Kim, 2002),

with a population of 10 individuals, 5 groups,∆θ = 0.01π, Slocal = 1 andSglobal =

100.

Figure 3.2 presents the evolution of the 100Qbits ofQindividual Q4, on the One

Max problem. Each pointQj
4(t) corresponds to a givenQbit j and a given generation

t. The colour indicates the value of the corresponding|β|2: From black for|β|2 = 0

to white for |β|2 = 1.0. Thus, aQindividual with allQbits being|β|2 ≃ 1 (and as a

consequence|α|2 ≃ 0) is likely to collapse into the global optimum1λ. We note that

the evolutionary process starts by construction with initial values|β|2 = 0.5. Most of

theQbits evolve toward the optimum as the color changes to white.Nevertheless we

can clearly see that someQbits are rotated towards the wrong direction as some very

dark points appear. The vast majority of them, finally moves toward the expected

value with|β|2 close to 1, but one of them, namelyQ75
4 , has converged to|β|2 ≈ 0.

For this run, QEA was not able to find the global optimum in 500 generations.
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Figure 3.2: Typical evolution of aQbit string using QEA on the One Max problem. The
shades indicate the value of|β|2 for each of the 100Qbits at a given generation.
The global optimum of the problem is a bit string in which all bits are “1”. Thus,
ideally all qbits should converge towards1, but in this run qbitQ75

4 has converged
early towards0 instead.

To understand the inappropriate behaviour ofQ75
4 , we have plotted its evolution,

i.e. values of|α|2 (dotted line) and|β|2 (solid line), as well as the states of the

corresponding collapsed bitC75
4 and attractor bitA75

4 , cf. Figure 3.3. We see that|β|2
converges towards0 from the first generations driving the state of the collapsedbit to

0. We also note that the state of the attractor bit demonstrates very few variations and

is nearly always0, except for a very short period before generation50. An attractor

is always chosen according to its fitness. So the attractorA4 is always better than the

collapsed bit stringC4 even if the value of its75th bit is not well adapted.

3.1.3 Hitch-hiking and the irreversible choice

A quantum individuali explores a search space through sampling (collapsing) its

Qbit stringQi. If the individual has identified a promising solution, it ischosen as

an attractor and the exploration will concentrate on this new area. Generally, there

are only two ways to update an attractorAi. First, a better solutionCi is sampled,

and as a consequence it replaces the current attractor or, alternatively, the attractor is

replaced due to a synchronisation event. In this case, the new attractor was sampled
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Figure 3.3: The evolution of the components of a problematicQindividual with QEA on the
One Max problem:Qbit state (top), collapsed bit (middle) and attractor bit (bot-
tom).

from theQbit string of a different individual. That means that in all generations in

which no attractor update occurs, theQbits ofQi are moved slightly towardsAi. As

a consequence,Qi may prematurely converge towardsAi, i.e. if there is no better

solution found in time. Then the individuali is trapped, due to its inability to sample

new solutions fromQi. The only opportunity for the individual to escape from this

attractor is a synchronisation phase which replaces its attractor with a different one

produced elsewhere. Otherwise, it is possible that the choice of a very good but not

optimal attractor is irreversible.

The issue of QEA described here is similar to a well-known problem occurring

in classical genetic algorithms (CGA). The so calledhitch-hikingphenomenon was

first described as a serious bottleneck for CGA in (Forrest & Mitchell, 1992). Hitch-

hiking corresponds to the increase in frequency of a “bad” allele at a given locus in the

population due to the presence of nearby highly fit alleles onthe same chromosomes

(Futuyma, 1998). As a consequence, the potentially better alleles at the same locus

(as the hitch-hiking allele) tend to disappear in the population and there is no way

for the evolutionary process to retrieve them. In CGA, randommutation and uniform

crossover are two known remedies against hitch-hiking. ForQEA no such counter-

measure exists.
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3.2 V E R S AT I L E Q UA N T U M - I N S P I R E D E VO L U T I O NA RY A L G O R I T H M

In this section an improved version of QEA is introduced called the Versatile Quantum-

inspired Evolutionary Algorithm (vQEA). It aims to avoid the issues reported above.

This algorithm was published in (Defoin-Platel, Schliebs,& Kasabov, 2007).

3.2.1 Description of vQEA

In order to prevent the case of irreversible choice and the hitch-hiking phenomenon,

the strategy for updating attractors is modified. We introduce a new parameter that

is used to modify the strategy:Elitism. In the original QEA, the update procedure

(called “attractor update” in Figure 3.1) applies elitism:an attractorAi is only re-

placed byCi, if Ci is better. With vQEA this parameter is simply switched off.

Therefore, the attractors are replaced at every generationwithout considering their

fitness and thus attractors demonstrate a high degree of volatility. Moreover, to en-

sure the convergence of vQEA, the global synchronisation isalso performed every

generation in such a way that all the attractors are identical, i.e. the attractor at gen-

erationt + 1 corresponds to the best solution found at generationt.

We note that, with such a setting, the group sizen and local synchronisation pa-

rametersSlocal do not affect the algorithm anymore. With vQEA, the information

about the search space collected during evolution is not kept at the individual level,

but continuously renewed and shared among the whole population3. Nevertheless,

the concept of quantum groups, which is similar to demes in classical EA, is inter-

esting and thus it is not intended to remove it. In this study,however, we avoid the

tuning ofn andSlocal and concentrate on the effects of removing elitism from QEA.

Thus the simplified sequential procedure of vQEA is detailedin Algorithm 2. Notice

the non-elitist attractor update in line 9, which is the key change of vQEA over QEA.

3.2.2 vQEA on the One Max problem

Similar to QEA above, the behaviour of vQEA on the One Max problem is studied

for λ = 100. The settings of the evolutionary parameters in vQEA are kept almost

identical to QEA, in order to allow fair comparison between the two. A population

of ten individuals is chosen, rotation angle set to∆θ = 0.01π, of course no elitism

3 It is worth noting that an extra long-term memory mechanismhas been added to store the best col-
lapsed individual ever found, but this mechanism has no impact on the algorithm
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Algorithm 2 Versatile Quantum-inspired Evolutionary Algorithm
1: t⇐ 0
2: initialise allQi(t)
3: while not termination conditiondo
4: for all individualsi do
5: collapse theQbits ofQi(t) to form a solutionCi(t)
6: evaluate solutionCi(t)
7: end for
8: Bglobal(t)⇐ best solution among allCi(t)
9: global synchronisation:

non-elitist replacement of attractors:Ai(t)⇐ Bglobal(t), ∀i
10: update allQi(t) to Qi(t + 1) using aQGate
11: t⇐ t + 1
12: end while

is used and global synchronisation occurs every generation, i.e. Sglobal = 1, render-

ing the parameter for local synchronisationSlocal across the groups redundant, since

Blocal = Bglobal.

In Figure 3.4, the evolution of two illustrativeQbits for QEA (dashed line) and

vQEA (solid line) are plotted. The figure reports the value ofθ(t) in the polar co-

ordinates system. The radius is given byt and the angle corresponds toθ such that

cos(θ) = |α| andsin(θ) = |β|. For both algorithms, a successful run is presented,

since for both cases the angleθ finally reaches an expected value close to90◦, i.e. β

close to 1.0. It is clear that QEA and vQEA display very different behaviour. QEA

tends to make strong decisions and when a certain attractor is chosen, it is followed

for several generations. In fact, this constancy is relatedto the strategy adopted for

updating the attractors based on elitism. Conversely, for vQEA the trajectory ofθ(t)

shows jitter during the first200 generations. Nevertheless, the overall evolution is

much smoother compared to the original QEA.

To illustrate this situation, we have also computed for bothalgorithms the average

total number of different attractors used per individual during one run of 500 gen-

erations on the One Max problem. We found 25.5 for QEA and morethan 372 for

vQEA, meaning that the “life time” of an attractor is approximately19.6 generations

for QEA and only1.34 generation for vQEA.

Figure 3.5 presents the typical evolution of the100 Qbits using vQEA on the One

Max problem. We can see a phase of more than100 generations where the states of

theQbits remain undecided. Then all theQbits evolve slowly towards the optimum

and the colours change to white. In contrast to the evolutionof Qbits in QEA, no

hitch-hiking phenomenon is visible using vQEA on this problem. This fact is clearly
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Figure 3.4: Typical evolution of a Quantum bit (value ofθ(t)) for QEA (dashed line) and
vQEA (solid line) on the One Max problem. Due to elitism in QEA attractors
are less frequently replaced compared to vQEA, and as a consequenceaQbit is
updated towards the same attractor for many generations. In vQEA on the other
hand, an attractor is exchanged much more frequently, which results in a globally
smoother exploration of the search space.

demonstrated by comparing the two Figures 3.2 and 3.5. More specifically, no dark

colours appear in Figure 3.5. We note that for this run vQEA was able to find the

global optimum in340 generations.

To understand the characteristic evolution ofQbits in vQEA better, the evolution

of Qbit Q23
4 , i.e. values of|α|2 (dotted line) and|β|2 (solid line), as well as the

states of the corresponding collapsed bitC23
4 and attractor bitA23

4 are presented in

Figure 3.6. We see that|β|2 moves slowly but continuously towards1, which is

the desired behaviour. In the early stage of evolution the attractor bit reports many

changes of its state, while in later generations the frequency of change decreases and

finally the attractor bit converges to1.

3.3 E X P E R I M E N T S

In this section, vQEA is tested and compared to a classical genetic algorithm (CGA) (Gold-

berg, 1989) and to the original QEA on two benchmark problems. For both problems,

the fitness of the average best solution found in 30 runs is presented. We use a sta-



3.3 E X P E R I M E N T S 61

0 20 40 60 80
Qbit

0

100

200

300

400
G

e
n
e
ra

ti
o
n

Evolution of Qbits, Individual #4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.5: Typical evolution of aQbit string using vQEA on the One Max problem. The
shades indicate the value of|β|2 of each of theλ = 100 Qbits at a given genera-
tion. All Qbits gradually evolve towards the global optimum1λ of the problem,
i.e. no hitch-hiking phenomenon occurs.
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Figure 3.6: Typical evolution of a Quantum bit, Collapsed bit and Attractor bitwith vQEA
on the One Max problem

tistical unpaired, two-tailedt-test with 95% confidence to determine if results are

significantly different.
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λ = N = 500, 1000 generations
CGA QEA vQEA

2963.5 (19.7) 3013.5 (18.9) 3058.0 (15.9)

Table 3.1: Average profit of the best solution found on the01-knapsack problem for all tested
algorithms. Each profit was obtained in 30 independent runs; brackets indicate the
standard deviation.

3.3.1 Optimisation of a01-knapsack problem

The 01-knapsack problem is a classical NP-hard benchmark problemin which the

most valuable subset amongN items that have different profits and volumes needs

to be identified. This subset also must fit in a knapsack of limited capacity. Han and

Kim (2003) evaluated CGA and QEA already on a01-knapsack problem. Hence,

we adopt here exactly the same settings for the evolutionaryparameters of CGA and

QEA, respectively. We note that these settings were obtained from a comprehensive

parameter study and were shown to be suitable for the problemat hand. Additionally,

we use the same01-knapsack problem definition as described in (Han & Kim, 2003).

It is worth mentioning that the population size in CGA is equalto 100 and only 10 in

both QEA and vQEA. For vQEA elitism was switched off andSglobal set to one. All

three algorithms were allowed to evolve over 1000 generations and for each algorithm

30 independent runs were performed and then averaged.

The results are reported in Table 3.1 forN=500 items. Our implementation of

CGA and QEA found solutions comparable to (Han & Kim, 2003). QEA significantly

outperforms CGA, but the best results are reported by vQEA. The improvement of

vQEA over QEA is very similar to the improvement of QEA over CGA.

In Figure 3.7, the evolution of the average best profit is presented for the three

tested algorithms. We see that during the first generations CGA reports the best profit,

but is outperformed by vQEA after306 generations and later also by QEA after gen-

eration454. As indicated by the error bars in the figure, all algorithms achieve signif-

icantly different final profits at the end of the optimisationprocess, alsocf. Table 3.1.

It is noteworthy, that CGA was allowed to use10 times more fitness evaluations, due

to its larger population size. More specifically, in each generation100 individuals

were evaluated in the case of CGA, compared to only10 individuals/evaluations for

each of the QEA methods. Hence, both versions of QEA require less computational

resources than CGA, and simultaneously deliver better optimisation results.
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Figure 3.7: Average profit of the best solution found on a01-knapsack problem of size
N=500. Both QEA methods demonstrate superior optimisation performance
compared to CGA, and vQEA being significantly faster than QEA.

3.3.2 Optimisation of NK-landscapes problems

In (Kauffman, 1993) a synthetic benchmark problem was developed, namely the

NK-landscapes, which allows the explicit modelling of linkage between variables.

Here the quality of a solution depends not only on the state ofits N variables, but also

on theK interactions between them. The problem requires the setting of two parame-

ters:N determines the size of the search space andK controls the number of variable

links. With increasingK, the number of local optima also increases. SettingK = 0

results in a single global optimum, while2
N

N+1
local optima exist forK = N − 1.

NK-landscapes have been used in theoretical biology,e.g. to study gene networks,

the evolution of proteins or immune systems. The NK-landscapes define also a family

of combinatorial optimisation problems that are now widelyused as benchmarks for

EA. According to (Weinberger, 1996), the model allows the generation of a “tunable

rugged” fitness landscape.

In this study, theK interactions between theN variables are chosen randomly and

the corresponding problem has been proved to be NP-completefor K ≥ 1 (Wein-

berger, 1996). The performances of the three algorithms arestudied for problems of

increasing size withN =256,N =512,N =1024,N =2048 andN =4096 and of

increasing difficulty withK varying from0 to 8. To allow a statistical analysis of the



64 O P T I M I S I N G B I NA RY S E A R C H S PAC E S

results, each algorithm was evaluated in30 independent runs. Each run corresponds

to 10, 000 generations.

Han and Kim (2004) introduced a modified rotation gate operator, namely theHǫ

gate, which prevents the convergence of the probability amplitudes|α|2 and|β|2 of a

Qbit towards0 or 1. Instead, the authors suggested to use a minimum and maximum

value for the amplitudes,ǫ and1− ǫ, respectively, whereǫ ∈ R is a parameter of the

operator. An experimental analysis of theHǫ gate revealed a superior optimisation

performance especially on multi-modal problems.

Preliminary experiments using vQEA on the NK-landscapes benchmark confirmed

the advantages of theHǫ gate as reported in (Han & Kim, 2004). Hence, we introduce

it here as the default operator for vQEA. Parameterǫ is set tosin2(2 × ∆θ) which

stops the amplitude update two rotation steps before their convergence towards0 or

1. A default learning rate∆θ = 0.01π is assumed.

The average fitness of the best solutions found withK = 0 and 8 are plotted in

Figure 3.8 (error bars indicate standard deviation). ForK = 0 andN = 256 the

problem is very easy and can be solved by all three algorithms. With the increase of

N , the performance of CGA and QEA decreases and both methods aresignificantly

outperformed by vQEA. Moreover, the average fitness of the solutions found with

vQEA is almost unaffected byN . ForK = 8, all three algorithms perform equally

well for N = 256 andN = 512, but for largerN a similar trend as observed for

K = 0 is reported. From these results it is claimed that vQEA is a highly scalable

algorithm even for difficult problems.

In Figure 3.9 the final fitness of all tested methods is presented relative to the

obtained fitness of CGA,i.e. the performance of CGA is used as a reference. In this

diagram the problem size isN = 4096 and the fitness for different values ofK is

shown. It is clear vQEA outperforms CGA by14% regardless of the difficulty of

the problem. Conversely, for QEA, this ratio varies from 8% for K = 0 to 5% for

K = 8. We note also that the standard deviation reported in Table 3.1 for vQEA is

the smallest, indicating that most of the 30 runs have found similarly good solutions.

For further inter-comparisons, the overall numerical results obtained with CGA, QEA

and vQEA are reported in Tables 3.2 and 3.3.

Figure 3.10 presents two isofitness clouds. In these clouds,each point(genA, genB)

corresponds to the average number of generations needed by two different algorithms

A andB, in order to reach the same fitness value. For example: The point (100, 200)

would indicate, that algorithmA required 100 generation to achieve the same fitness

level as algorithmB in generation 200.
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Figure 3.8: Average fitness of the best solution found on NK-landscapes with K = 0 and
K = 8. On larger sized problems (N ≥ 1024) vQEA demonstrates a significant
improvement over CGA and the original QEA.

We introduce this kind of representation to allow practicalcomparisons of compu-

tational resources required by algorithms reporting different best fitness values and

different convergence speeds. In our case, the isofitness clouds have been computed

from all the experiments on the NK-landscapes reported above. The underlying as-

sumption is that the resources needed for computing one generation are the same for

all tested algorithms, which is partly false. Indeed, when CGA and QEA (or CGA
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Figure 3.9: Relative fitness of the best solution found on NK-landscapeswith N=4096. Here
the performance of CGA is used as a reference and the bars show the relative
improvement of the methods over CGA. Error bars indicate standard deviation.
On average QEA reports a 8% to 5% advantage in terms of fitness compared to
CGA. For vQEA this improvement is around 14%.

and vQEA) are compared, the size of the populations are significantly different, re-

spectively 100 and 10 individuals and so a generation is processed faster with QEA

or vQEA than with CGA.

Figure 3.10a compares CGA and QEA. Notice that most of the points fall be-

low the liney = x showing that QEA was faster than CGA. The biggest difference

in convergence speed is reported for points at the bottom right corner of the figure

meaning that CGA required10, 000 generations to discover solutions of similar qual-

ity as those found by QEA at generation≈ 1, 000. However, we note that for the

early generations,i.e. before1000, some points indicate that CGA was the first to

reach a given fitness level. After studying the data, we have found that those points

correspond to the easiest problems with small values ofN (256 and 512) andK = 0.

Figure 3.10b displays the isofitness cloud obtained for QEAvs vQEA. It is clearly

demonstrated that vQEA is almost always faster than QEA independent of the size

and the difficulty of the problem. We also see that after generation 4,000, the “slope”

of the cloud is nearly equal to 0. This means that the QEA needsa very high number

(asymptotically an infinite number) of generations to find solutions as good as the

solutions found by vQEA in less than 2,000 generations.
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CGA QEA vQEA
K N = 256

0 0.655(σ=0.000) 0.655(σ=0.000) 0.655(σ=0.000)

1 0.677(σ=0.000) 0.677(σ=0.000) 0.677(σ=0.000)

2 0.679(σ=0.003) 0.680(σ=0.001) 0.680(σ=0.000)

3 0.682(σ=0.010) 0.679(σ=0.009) 0.674(σ=0.005)

4 0.690(σ=0.007) 0.694(σ=0.004) 0.695(σ=0.002)

5 0.689(σ=0.007) 0.691(σ=0.008) 0.683(σ=0.006)

6 0.686(σ=0.009) 0.692(σ=0.003) 0.691(σ=0.004)

7 0.690(σ=0.011) 0.691(σ=0.007) 0.695(σ=0.009)

8 0.683(σ=0.009) 0.688(σ=0.006) 0.680(σ=0.007)

K N = 512

0 0.657(σ=0.000) 0.658(σ=0.000) 0.658(σ=0.000)

1 0.681(σ=0.000) 0.682(σ=0.000) 0.682(σ=0.000)

2 0.671(σ=0.002) 0.673(σ=0.001) 0.673(σ=0.000)

3 0.673(σ=0.005) 0.676(σ=0.003) 0.678(σ=0.000)

4 0.681(σ=0.003) 0.683(σ=0.000) 0.683(σ=0.000)

5 0.679(σ=0.006) 0.684(σ=0.001) 0.685(σ=0.000)

6 0.687(σ=0.011) 0.692(σ=0.006) 0.687(σ=0.006)

7 0.678(σ=0.003) 0.680(σ=0.003) 0.680(σ=0.004)

8 0.688(σ=0.011) 0.693(σ=0.009) 0.690(σ=0.009)

K N = 1024

0 0.642(σ=0.001) 0.662(σ=0.000) 0.664(σ=0.000)

1 0.648(σ=0.001) 0.665(σ=0.002) 0.669(σ=0.002)

2 0.643(σ=0.001) 0.660(σ=0.001) 0.665(σ=0.000)

3 0.649(σ=0.002) 0.667(σ=0.002) 0.672(σ=0.002)

4 0.653(σ=0.003) 0.673(σ=0.003) 0.679(σ=0.000)

5 0.658(σ=0.003) 0.675(σ=0.002) 0.681(σ=0.001)

6 0.653(σ=0.002) 0.667(σ=0.003) 0.674(σ=0.003)

7 0.654(σ=0.004) 0.670(σ=0.003) 0.676(σ=0.003)

8 0.651(σ=0.003) 0.667(σ=0.003) 0.675(σ=0.004)

Table 3.2: Average profit of the best solution found on the NK-landscapes problem after
10, 000 generations for N=256, 512, and 1024. In brackets the standard devia-
tion is shown.

3.4 D I S C U S S I O N

According to (M̈uhlenbein & Paass, 1996), algorithms using a probabilisticmodel

to explore a search space are called Estimation of Distribution Algorithms (EDA).

Thus, it is argued here that in QEA theQindividuals act as probabilistic models and

so, as has already been claimed in (S. Zhou & Sun, 2005b) and (Han & Kim, 2006),
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CGA QEA vQEA
K N = 2048

0 0.613(σ=0.001) 0.650(σ=0.002) 0.665(σ=0.000)

1 0.612(σ=0.001) 0.645(σ=0.004) 0.665(σ=0.000)

2 0.617(σ=0.001) 0.649(σ=0.004) 0.671(σ=0.001)

3 0.617(σ=0.002) 0.650(σ=0.004) 0.673(σ=0.000)

4 0.623(σ=0.001) 0.655(σ=0.004) 0.678(σ=0.000)

5 0.617(σ=0.002) 0.647(σ=0.004) 0.671(σ=0.000)

6 0.624(σ=0.002) 0.653(σ=0.005) 0.678(σ=0.001)

7 0.623(σ=0.004) 0.653(σ=0.004) 0.678(σ=0.001)

8 0.620(σ=0.004) 0.647(σ=0.004) 0.675(σ=0.002)

K N = 4096

0 0.581(σ=0.001) 0.625(σ=0.002) 0.662(σ=0.000)

1 0.586(σ=0.001) 0.629(σ=0.003) 0.669(σ=0.000)

2 0.585(σ=0.001) 0.623(σ=0.004) 0.667(σ=0.000)

3 0.587(σ=0.001) 0.624(σ=0.005) 0.669(σ=0.001)

4 0.587(σ=0.001) 0.619(σ=0.006) 0.669(σ=0.001)

5 0.587(σ=0.001) 0.619(σ=0.005) 0.669(σ=0.001)

6 0.589(σ=0.001) 0.619(σ=0.004) 0.672(σ=0.002)

7 0.589(σ=0.003) 0.621(σ=0.006) 0.671(σ=0.002)

8 0.590(σ=0.003) 0.621(σ=0.004) 0.673(σ=0.001)

Table 3.3: Average profit of the best solution found on the NK-landscapes problem after
10, 000 generations for N=2048 and 4096. In brackets the standard deviation is
shown.

QEA is a new EDA approach. In this section, the role of elitismin EDA is briefly

discussed.

In CGA, elitism has been introduced as a protection mechanismto counteract the

disruptive effects of genetic operators such as the uniformcrossover. In some EDA,

the probabilistic models can undergo perturbations to explore the search space, but

these perturbations do not have strong consequences and elitism is not necessary.

Moreover, with some other EDA, the probabilistic models arecompletely recon-

structed every generation and elitism is not used. Nevertheless, Ahn, Kim, and Ra-

makrishna (2003a) report an interesting counter example where an EDA is presented

and better results are reported with elitism but in that casealso a uniform crossover is

applied to the bit strings. Thus, so long as no disruptive operators are employed, there

is no need for an EDA or a quantum inspired algorithm to have recourse to elitism.
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Figure 3.10: Isofitness clouds comparing the required computational costsbetween the al-
gorithms. A point in these diagrams corresponds to the generations neededfor
an algorithmA to achieve the same fitness level of an algorithmB. CGA uses
more computational resources than QEA, while QEA requires more resources
than vQEA.

3.5 C O N C L U S I O N

The Quantum-Inspired Evolutionary Algorithm (QEA) introduced in (Han & Kim,

2002) and studied here is elitist. The exploration of the search space is driven by
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attractors corresponding to the best solution found so far at either the individual,

local or global level. If a non-optimal solution is propagated to the global level, this

solution starts to attract the entire population. In that case, to avoid being trapped, the

algorithm has to discover a better solution before converging to this global attractor.

Hence, the choice of a sub-optimal attractor may become irreversible.

To counteract this issue, the Versatile Quantum-Inspired Evolutionary Algorithm

(vQEA) is proposed. In vQEA elitism is removed and the searchat time t + 1 is

driven by the best solution found at timet. Simply removing elitism has strong

consequences. With vQEA, the information about the search space collected during

evolution is not kept at the individual level but continuously renewed and shared

among the whole population. In terms of both speed and accuracy vQEA performs

better than QEA on different benchmark problems.

The dynamics of QEA and vQEA are very distinct. The short-term behaviour of

QEA is almost always constant because preferential search directions are chosen and

followed during several generations. Conversely, the short-term behaviour in vQEA

is much more unsettled and the search directions are reevaluated every generation.

Thus the eventual decision errors do not have long-term consequences. vQEA is

continuously adapting the search according to local information while the quantum

individuals act as memory buffers to keep track of the searchhistory. This leads to a

much smoother and more efficient long-term exploration of the search space.

In this study, since all the attractors are synchronised at every generation, the local

level with theQgroups are redundant. Nevertheless, the concept of groups is very

interesting, since it is similar to demes in classical EA. Further studies may address

the setting of both local and global synchronisation.



Chapter4
Q UA N T U M - I N S P I R E D E VO L U T I O NA RY A L G O R I T H M : A

M U LT I - M O D E L E DA

Numerous natural and physical real world processes have recently inspired re-

searchers in various domains of Artificial Intelligence, such as neuro-computing,

Artificial Evolution, Ant Colony Optimisation or Simulated Annealing, to name a

few. The use of metaphoric comparisons is a clear trend for search and optimisa-

tion algorithms. Nevertheless, metaphors can not last longwithout strong theoretical

justification.

Quantum physics and quantum computing principles have alsobeen widely seen

as a source of inspiration, for example in Neural Networks (Menneer & Narayanan,

1995), Genetic Algorithms (Narayanan & Moore, 1996), Differential Evolution (Draa,

Batouche, & Talbi, 2004b), Artificial Immune Systems (Li & Jiao, 2005) and Particle

Swarm Optimisation (J. Liu, Sun, & Xu, 2006). In the field of Evolutionary Com-

putation, the introduction of the Quantum-Inspired Evolutionary Algorithms (QEA)

by Han and Kim might be the most successful application of thequantum metaphor

(Han & Kim, 2002, 2003; Han, 2003). It has been earlier alluded that QEA is related

to Estimation of Distribution Algorithms (EDA) (S. Zhou & Sun, 2005b; Han & Kim,

2006). The first aim of this chapter is to integrate QEA in a systematic way into the

class of EDA as an original algorithm.

EDA have shown their ability to avoid the disruptive effectsof genetic operators in

Evolutionary Algorithms (EA), namely crossover and mutation, by iteratively evolv-

ing a probabilistic model to explore the search space. Threedifferent classes of EDA

have been proposed to categorise these algorithms according to the modelling of in-

teraction between variables of optimisation problems (Pelikan, Goldberg, & Lobo,

1999). See also (Larrañaga, Etxeberria, Lozano, & Peña, 1999) for an overview of

proposed EDA for each class.

Early EDA assume independent relationships between parameters for a given prob-

lem and thus the probability distribution of solutions can be factored as a product of

71
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independent uni-variate probabilities. This class of EDA includes the well-known

Probabilistic Incremental Learning (PBIL) (Baluja, 1994), the compact Genetic Al-

gorithm (cGA) (Harik, Lobo, & Goldberg, 1999) and the Uni-variate Marginal Dis-

tribution Algorithm (UMDA) (Mühlenbein & Paass, 1996), to name a few.

Recent developments in the field of EDA take possible interactions between vari-

ables explicitly into account. Modelling bi-variate dependencies represents the sec-

ond class of EDA and is implemented bye.g. the Mutual Information Maximisation

for Input Clustering (MIMIC) algorithm (Bonet, Isbell, & Viola, 1997), the COMIT

algorithm (Combining Optimisers with Mutual Information Trees) (Baluja & Davies,

1997, 1998) and the Bi-variate Marginal Distribution Algorithm (BMDA) (Pelikan &

Mühlenbein, 1999).

The third class of EDA can model multivariate variable interactions. Examples of

algorithms of this class are the Factorised Distribution Algorithm (FDA) (Mühlenbein,

Mahnig, & Rodriguez, 1999), the Extended Compact Genetic Algorithm (EcGA)

(Harik, 1999) and the Bayesian Optimisation Algorithm (BOA) (Pelikan, Goldberg,

& Cantú-paz, 2000).

It is worth noting that the second and third classes of EDA require complex learn-

ing algorithms and significant additional computational resources in order to handle

variable interactions. It has been pointed out,e.g. in (Johnson & Shapiro, 2001),

that under certain conditions the benefit of this overhead might still be unclear. As a

consequence the first class of EDA, although being simple, should not be discredited

a priori. In this chapter, the common points and specifics of QEA compared to other

EDA are highlighted. In a similar way, other methods have also been shown to belong

to EDA. For example, Cord́on et al. (2000) and Monmarché et al. (1999) show how

EDA and the Ant Colony Optimisation (ACO) algorithm (Dorigo, Maniezzo, & Col-

orni, 1996) are actually very similar and differ mainly in the way their probabilistic

model is updated.

The use of a probabilistic model is the key concept of any EDA.The QEA follows

the same strategy to guide its search in a given space of solutions. Moreover, in QEA

multiple probabilistic models are created and incrementally modified. The idea of

using multiple interacting models in EDA is not new. Probably initiated in (Zhang,

Sun, Tsang, & Ford, 2002), this idea is now very popular (Ahn,Kim, & Ramakrishna,

2003b; Ahn, Goldberg, & Ramakrishna, 2003; delaOssa, Gámez, & Puerta, 2006;

Madera, Alba, & Ochoa, 2006; S. Zhou & Sun, 2005a).

We can identify at least two reasons why the multi-model approach might be use-

ful for optimisation problems. First, simple EDA such as UMDA and PBIL cannot

solve complicated problems as shown in (González, Lozano, & Larrãnaga, 2000)
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and (Zhang, 2004). Second, even advanced EDA using a complex– but still single

– probabilistic model may not work well in practise (Zhang, Sun, & Tsang, 2005).

In QEA, the interaction of the probabilistic models is unique. It is this interaction

that provides the search with an adaptive learning speed anda buffer against poten-

tial decision errors. An explicit aim of this chapter is to confirm that several models

together perform better than only one and then to explain why. This study was pub-

lished in (Defoin-Platel, Schliebs, & Kasabov, 2009).

We start this analysis by investigating the key components of QEA in the light of

EDA. Therefore the probabilistic model, selection and sampling procedures, learning

strategies and population structure used in a QEA are compared to some classical

EDA. In an extensive experimental study the behaviour and performance of QEA

in terms of fitness, scalability, diversity loss and robustness against noise is investi-

gated. In the final part the role of multiple probabilistic models is discussed and some

potential advantages are highlighted.

4.1 V Q E A I S A N E DA

According to (M̈uhlenbein & Paass, 1996), the algorithms that use a probabilistic

model of promising solutions to guide further exploration of the search space are

called Estimation of Distribution Algorithms (EDAs). We have seen in chapter 3 that

eachQindividual defines a probability vector and so, as it has already been claimed in

(S. Zhou & Sun, 2005b) and (Han & Kim, 2006), vQEA is a new algorithm belonging

to the class of EDAs. A generic description of EDAs is proposed in Algorithm 3.

Algorithm 3 Estimation of Distribution Algorithm (EDAs)
1: t⇐ 0
2: initialise the probabilistic modelP(t)
3: while not termination conditiondo
4: sampleM new solutions fromP(t) into D(t)
5: evaluate the elements ofD(t)
6: selectL ≤M solutions fromD(t) into Ds(t) using a selection method
7: learn the probabilistic modelP(t + 1) from Ds(t) and eventually fromP(t)
8: t⇐ t + 1
9: end while

In this section an extensive study of the features of vQEA is proposed. The com-

mon points and specifics of vQEA compared to other EDAs are highlighted.
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4.1.1 Probabilistic model

The complexity of the probabilistic model, denotedP in Algorithm 3, varies largely

among EDAs. In (Pelikan et al., 1999) a survey on EDAs reportsthree different

classes based on the level of interactions between the variables that their models can

represent. In the version of vQEA discussed in this study, binary states are superposed

and the eventual interactions between variables are not explicitly taken into account.

At theQindividual level the probabilistic model

Pi =
[
|β1

i |2 . . . |βN
i |2
]

(4.1)

is a vector of probabilities, since each|βj
i |2 value is used independently for sam-

pling. Therefore, vQEA belongs to the first family of EDAs that assumes inde-

pendent variables and for which the probabilistic model is avector of probabilities,

such as population-based incremental learning (PBIL) (Baluja, 1994), compact GA

(cGA) (Harik et al., 1999) and uni-variate marginal distribution algorithm (UMDA)

(Mühlenbein & Paass, 1996). All these algorithms are described in detail in Ap-

pendix A. This family of EDA – although simple – should not be discrediteda priori

since the benefit of searching complex variable interactions could be still unclear un-

der particular circumstances (Johnson & Shapiro, 2001). Wewill see in section 4.3

how thep individuals of theQpopulation interact to form a multi-model EDA, with

P = {P1, . . . ,Pp}.

In EDAs, the probabilistic modelP is iteratively updated to account for the fitness

of the lastL solutions selected inDs. Nevertheless, the state space on which PBIL,

UMDA, cGA and vQEA act, is different. In PBIL an elementPj of the probability

vector has an arbitrary precision∆P and so the number of possible values forPj is

infinite. Conversely, in cGA this number is finite and the precision∆P is constant.

The so-calledvirtual population sizeparametern determines the accuracy of the

model since the update steps have a constant size∆P = 1/n. With UMDA the

accuracy ofPj depends directly on the numberL of solutions selected to compute

the next probability. However, the update steps are not constant and depend on the

variance of the empirical frequency at locusj.

For vQEA, the situation is even more complex. At the level of aQbit Qj
i , the

application of the rotation gate operator according to∆θ can only produce a finite

numberπ
2
× 1

∆θ
of positions for the angleθj

i ∈ [0, π/2] and so for the probabilityPj
i =
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Figure 4.1: Theoretical variations of the probabilistic model in PBIL, cGA and vQEA

|βj
i |2 = sin2(θj

i ). The size of the update steps is constant in angle but subsequently

varies forPj
i . More formally we have:

∆P(θj
i ) = sin2(θj

i + ∆θ)− sin2(θj
i )

= 2cos(θj
i )sin(θj

i )×∆θ
(4.2)

It is worth noticing that, according to equation (4.2), the more aQbit is converged

(with θj
i → π

2
or θj

i → 0), the smaller the update step. This phenomenon can be seen

as a form of deceleration of the algorithm before convergence.

We can see in Figure 4.1 how an element of the probability vector is affected by

several successive applications of the update operators for PBIL, cGA and vQEA. We

note that this diagram does not reflect the real behaviour of the algorithms. This is

a theoretical situation where the conditional aspects of the update are not taken into

account and hence all models are updated at every generation. The initial probability

is set to0.5 and the update direction is toward ’1’ for each operator. Thelearning rate

of PBIL is fixed toRl = 0.1, the virtual population size of cGA ton = 50 and for

vQEA the parameter∆θ is equal to 1
50

π
2

and only oneQindividual is used. With such

a setting, both cGA and vQEA require25 update steps to converge.

When considering the population level of vQEA, a set ofp probability vectors

interact in a complex way (cf. section 4.3). The accuracy of the overall modelP =
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{P1, . . . ,Pp} can be investigated by looking at the variations of the mean model at

locusj, notedPj, such that

Pj =
1

p

p
∑

i=1

|βj
i |2 (4.3)

In vQEA the update of eachθj
i and subsequently of each|βj

i |2 is conditional and is

performed independently among the population. Therefore the number of positions

for the average angleθj ∈ [0, π/2] is π
2
× 1

∆θ
× 1

p
.

4.1.2 Sampling and selection

The classical EDAs are distinguished also by the number of solutions M (cf. line

4 in Algorithm 3) sampled at every generation to form the setD. Both PBIL and

UMDA require a comparably large number of samples in order toexplore the search

space effectively. For example, in (Shapiro, 2005), the author claimed thatM should

be large compared to the square root of the problem size N for UMDA to find the

optimum on a One Max problem. Conversely, cGA works with onlyM = 2 bit

strings produced per generation. In vQEA all theQindividuals collapse during one

generation and so for eachQi this phase corresponds to the sampling of only one

solution from the corresponding modelPi.

After sampling and evaluation ofD, the next step in EDAs consists in selecting

L solutions intoDs. This subset will be further used during the learning phase.

Again various selection schemes exist in EDAs. For example,PBIL selects only the

best (and sometimes together with the worst) element ofD 1. In cGA a tournament

determines a winner and a loser solution whereas in UMDA a truncation selection is

often employed (M̈uhlenbein, 1997) where theγ best solutions are selected (typically

γ = 50%). We note that other models can be used as well, such as proportional or

tournament selection (Zhang & M̈uhlenbein, 2004).

At first glance, the selection process of vQEA may appear not so distinctive: as in

a tournament each attractorAi(t) is basically compared in terms of fitness to the last

collapsed stringCi(t). Nevertheless these tournaments are not symmetric. A learning

phase occurs only if an attractor wins a tournament, otherwise no solution is selected

and there is no learning step in this generation.

1 A similar approach has been explored in the Best-Worst Ant System algorithm (Cord́on et al., 2000),
which also belongs to the class of EDAs.
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It is noteworthy thatCi(t+1) is sampled fromPi(t+1) andAi(t+1) fromPi(t). If

the fitness ofAi(t) is not strictly better than the fitness ofCi(t) then the probabilistic

modelPi(t) stays unchanged,i.e.Pi(t+1) = Pi(t). In this case,Ci(t+1) andAi(t+

1) are sampled from the same probabilistic model. Therefore, from an evolutionary

point of view, we can consider that both belong to the same generation. On the other

hand, if the fitness ofAi(t) is strictly better than the one ofCi(t),Pi(t) is updated and

Pi(t+1) 6= Pi(t). In this case, the selection process involvesCi(t+1) andAi(t+1)

that are issued from generationst + 1 andt, respectively. In other words, vQEA is a

form of steady-stateEDA where “parents” and “offspring” may compete against each

other. This feature of vQEA is an important specific since most of the other EDAs are

“generational”. However, notable exceptions where elitism is implemented in EDAs

exist, for example (Ahn, Kim, & Ramakrishna, 2003b) and (Ahn &Ramakrishna,

2003) where inter-generational competition exists. Larrañaga and Lozano (2002)

also apply some steady-state EDAs in the continuous field.

4.1.3 Learning and replacement

Step 7 in Algorithm 3 is a learning phase where the probabilistic modelP(t + 1) is

built to account for the solutions previously selected inDs(t). With UMDA, P(t+1)

is fully determined using only the setDs(t) whereas with PBIL and cGA, bothDs(t)

andP(t) are involved and the learning is incremental. In cGA, the learning is also

conditional since the update of the model occurs only at the positions where the win-

ner and the loser bit strings differ. In the original versionof PBIL the learning is

unconditional but we note that some extensions of the basic algorithm have been pro-

posed where the bits of the best and worst solutions are also compared to determine

the update (Baluja, 1994).

Besides the update operator itself (i.e. the rotation gate) the learning process in

vQEA is exactly the same as the one employed in cGA. If an attractor Ai wins a

tournament then the binary stringsCi andAi are systematically compared and the

modelPi is updated towardAi only whereCi andAi differ.

Figure 4.2 shows how an element of the probability vector is affected by the learn-

ing process for PBIL, cGA and vQEA when solving a one bit One Maxproblem. We

note that UMDA is not studied here because it instantaneously convergences after

the first iteration on this problem. Contrary to Figure 4.1, wecan see the real algo-

rithms working here with the action of the conditional learning for cGA and both the

asymmetric selection and conditional learning for vQEA. The curves correspond to
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Figure 4.2: Actual variations of the probabilistic model in PBIL, cGA and vQEA

the evolution of one probability averaged among 30 independent runs of 200 gen-

erations. The learning rate of PBIL is fixed toRl = 0.1 andM = 2 solutions are

sampled from the model, the virtual population size of cGA isn = 50 and for vQEA

the parameter∆θ = 1
50

π
2

and only oneQindividual is used. With such a setting, the

convergence of PBIL is the fastest primarily because the learning is unconditional.

The actual shape is not so different from the theoretical shape depicted in Figure 4.1.

In fact, with only two samples per generation according to this setting of PBIL, the

probability of learning a ’0’ is not null (e.g. 0.25 at the beginning of the run) so the

model is sometimes updated toward the wrong direction, slightly slowing down the

actual convergence speed. When solving a one bit One Max, conditional learning

prevents the models of cGA and vQEA from moving toward the wrong direction and

also significantly decrease their convergence speed. In addition, the asymmetric se-

lection makes vQEA slower than cGA. Indeed, the probabilityof updating the single

dimension modelP on this particular problem is2P(1− P) for cGA andP(1− P)

for vQEA.

Most of the time in vQEA, at generationt + 1 eachQindividual attractorAi(t +

1) corresponds to the last sampled solutionCi(t). Nevertheless, according to the

structure of theQpopulation and the local and global synchronisation periods, several

Qindividuals can also share a common attractor during one generation.
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4.1.4 Population structure

Because of the numerous aforementioned specifics of vQEA compared to other EDAs,

it is clear that even when considering only a singleQindividual, vQEA is an original

EDA. Nevertheless, what makes vQEA unique is that it was designed as a coarse-

grained algorithm with a complex structured population ofQindividuals. The sit-

uation can be easily compared to multiple demes in EA where sub-populations are

artificially separated to promote speciation and where migration allows to share in-

formation between demes. We note several interesting attempts of multi-population

EDAs (Ahn, Kim, & Ramakrishna, 2003b; Ahn, Goldberg, & Ramakrishna, 2003;

delaOssa et al., 2006; Madera et al., 2006).

In vQEA, the structure of the population is fully determinedby the numberg and

the sizek of theQgroups together with the so-called local and global synchronisation

periods, denotedSlocal andSglobal respectively2. Actually there is not a single fixed

topology but rather three superimposed levels of organisations appearing iteratively

according to the synchronisation periods. As an example, when a global synchroni-

sation occurs at timet, the best attractor among theQpopulation is selected and then

used at timet + 1 by thep = g × k Qindividuals. Therefore, at that particular time,

the group structure of theQgroups does not matter. The situation is the same for the

Qindividuals in aQgroup that are to some extent connected but only during a local

synchronisation event.

In this study we are interested in three different structures: aQpopulation contain-

ing only one singleQindividual, aQpopulation containing a singleQgroup consist-

ing of severalQindividuals and finally the most complex one, aQpopulation con-

taining severalQgroups of severalQindividuals each.

4.2 E X P E R I M E N T S

In this section, PBIL, cGA, UMDA and vQEA are experimentally compared to each

other. Besides the fitness performance comparison, we are also interested in the

diversity loss, the scalability and the robustness of each algorithm. However, the

performance and the overall behaviour of PBIL, cGA and UMDA strongly depend

on the setting of their parameters and the optimal setting varies as a function of the

problem to solve. It is not the purpose of this study to find themost appropriate

setting for each algorithm and then to state that one algorithm is better than another.

2 The reader is referred to chapter 3 for a detailed discussion of all parameters used in vQEA.
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Algorithm Setting Name

sGA M = 100, uniform crossover sGA
Pcross = 1, Pmut = 0.01

PBIL M = 10, Rl = 0.1, Rm = 0.02, Rs = 0.05 PBIL

cGA n =
√

π

2

√
N log N cGA

UMDA M = 500, truncationγ = 50% UMDA

vQEA

g = 1, k = 1, ∆θ = π/100 vQEA1,1

g = 1, k = 10, ∆θ = π/100 vQEA1,10

Sglobal = 1
g = 5, k = 2, ∆θ = π/100 vQEA5,2

Slocal = 1, Sglobal = 100

Table 4.1: Parameters settings for all tested algorithms

4.2.1 Experimental setting

We adopted different policies to set the parameters and thisis shown in Table 4.1.

For vQEA, three settings are investigated: a singleQindividual (vQEA1,1), one group

of 10 fully synchronisedQindividuals (vQEA1,10) and5 groups of2 Qindividuals

synchronised every100 generation (vQEA5,2). The defaultHǫ gate as described in

chapter 3 is used. ForPBIL, we decided to fixM to 10 in such a way that the

number of solutions sampled and evaluated in one generationis equivalent to both

vQEA1,10 andvQEA5,2. Actually, according to (Shapiro, 2005), this setting is suitable

for low-dimensional problems (N∼ 100). For cGA, the virtual population size is

adapted according to the problem size N following the recommendation reported in

(Sastry, Goldberg, & Llora, 2007) whereas forUMDA a fixed setting suitable for high-

dimensional problems is used.

The experimental results presented hereafter are obtainedby averaging 30 indepen-

dent runs consisting of105 fitness evaluations for each algorithm and problem tested.

We use a statistical unpaired, two-tailedt-test with95% confidence to determine if

results are significantly different.

4.2.2 Diversity loss

The drift phenomenon in EA refers to the loss of genetic diversity due to finite pop-

ulation sampling. In (Shapiro, 2005), the loss of diversityis studied in the context of

EDAs: It is shown that without selection,i.e. on a flat landscape, the variance of the

probabilistic model iteratively decays to zero and consequently the model converges
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towards a fixed configuration. Most EDAs do not compensate forthis and the lost

diversity cannot be restored. Moreover, it is also shown that, for a non flat problem,

the random drift may counteract the effects of selection. Therefore, the parameters

of the algorithms have to be tuned properly so that selectionis the main force driving

the search.

In this section, an empirical comparison of the loss of diversity of cGA, PBIL,

UMDA and vQEA using the settings reported in Table 4.1 is performed on different

benchmark problems. Following (Shapiro, 2005), to estimate the diversity of the bit

strings sampled by an EDA at generationt, we compute the variancev as:

v(t) =
N∑

j

Pj(t)(1− Pj(t)) (4.4)

wherePj(t) is thej th element of the probabilistic modelP at generationt. In the

case of vQEA, the average modelP(t) over thep Qindividuals (cf. Eq. 4.3) is used

instead. The maximum diversity corresponds tov0 = N/4 andv(t) = 0 indicates

that the models have converged.

We have seen in section 4.1.2 that the selection process determining the learn-

ing phase of vQEA is asymmetric since the update of a modelPi occurs only if

f(Ai) > f(Ci). On a flat landscape this situation is impossible, thereforePi can

not vary and vQEA can not loose diversity,i.e. v(t) = v0. We note that this is the

optimal behaviour for an EDA since if no information is provided each solution of

the search space keeps an equal probability of being sampled. The previous remark

also stands for the so-called needle-in-the-haystack problem. Nevertheless, the drift

phenomenon exists in vQEA as well and can be monitored if we add noise to the flat

landscape. We assume a random noise such that the fitness is either0 or 1 with an

equal probability.

Here we analyse the average empirical variancev(t) as a function of the number of

fitness evaluations for a noisy flat landscape; two NK-landscapes3 with K equals0

and8; and a One Max problem. The size of these four problems is fixedto N = 2048

variables.

In the noisy flat landscape problem only random drift can cause the convergence

of an algorithm,cf. Figure 4.3. PBIL is the algorithm that is the most prone to

loose diversity, withv(t) = v0/2 after only 720 evaluations, probably because the

setting of the learning rate is not suitable for high dimensional problems. We see

3 According to (Weinberger, 1996), the K interactions between the N parts of the systems are chosen
randomly and the corresponding problem has been proved to beNP-complete forK ≥ 1.
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Figure 4.3: Loss of diversity on noisy flat landscape

also the effect of the mutation operator ofPBIL that perturbs the probabilistic model

and guarantees a residual level of diversity around1/2 N Rm Rs(1 − Rs), (cf. Ap-

pendix A for a detailed description of the mutation operatorin PBIL ). With L=250

for UMDA andn=305 forcGA, the average loss of diversity of both algorithms ap-

pears surprisingly almost identical and is also very slow compared toPBIL with

v(t) = v0/2 after around 85,000 evaluations. When comparing the loss of diversity

of vQEA1,10 andvQEA1,1, we found that the shapes of the two curves are identical

and that only their convergence speeds differ. Actually, the loss is exactly ten times

faster forvQEA1,1 than forvQEA1,10, with v(t) = v0/2 after2, 400 and24, 000 for

vQEA1,1 andvQEA1,10 respectively.vQEA5,2 reports the smallest loss of diversity

since after105 fitness evaluations we still havev(t) > v0/2.

From (Shapiro, 2006), we know that the mathematical expression of the loss of

diversity of UMDA on a flat landscape is :

vUMDA (t) =
N
4

(1− 1/L)t (4.5)

We claim that this expression stands also for the noisy flat landscape as defined above.

An attempt was made to fit the variancev(t) of vQEA by varyingL in Equation 4.5

for N=2048. It was clear that the loss of diversity of vQEA does not follow the same

model as UMDA. Nevertheless, the most appropriate values found for L were 65,

160 and 350, forvQEA1,1, vQEA1,10 andvQEA5,2 respectively.
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Figure 4.4: Loss of diversity on NK-landscapes with N=2048

On NK-landscapes, the loss of diversity is due to selection only and the global

optimum is unique. ForK = 0, theN variables can be optimised independently so

this problem is considered easy to solve. Figure 4.4b shows that the loss of diversity

is faster than on the noisy flat landscape for each algorithm tested. The convergence

of the probabilistic models towards the global optimum is responsible for this loss
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Figure 4.5: Loss of diversity on One Max

and, except forPBIL, the variancev(t) falls down to zero within the105 evaluations.

Apart fromvQEA5,2, the introduction of interactions between the variables (with K =

8) does not seem to affect the way the algorithms converge. Although, we will see in

section 4.3.3 that the ten probability vectors ofvQEA5,2 are all almost converged as

well.

When we rank the algorithms according to the number of evaluations t at which

v(t) = v0/2, the noisy flat landscape and NK-landscapes have identical ranking. This

is no longer the case on the One Max, in particular forcGA , cf. Figure 4.5. This

problem has no local optima but a single global optimum. Additionally, some neutral

dimensions exist, since different solutions may have equalfitness values. Hence,

both selection and random drift are responsible for the lossof diversity here. As a

consequence, the convergence speed of the algorithms is higher on the One Max than

on the previously studied problems. Nevertheless, the diversity loss forcGA is slower

than on NK-landscapes with K=0. Thus, we can reasonably assume that the neutrality

of the problem is responsible for this behaviour and for the poor performance ofcGA

reported in the next section.
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4.2.3 Scalability

In this section, we investigate the impact of the problem size on the number of fitness

evaluations required to find a global optimal solution. For this experiment, we choose

the One Max problem as the global optimum is unique and known in advance. Each

of the algorithms is applied on the One Max problem withN varying from50 to

2, 000 bits. The parameter settings reported in Table 4.1 were keptunchanged for all

the algorithms.

Figure 4.6 shows the number of fitness evaluations as a function of the problem

size N on One Max. For each algorithm, the filled symbol indicates that the global

optimum was found in every single run being performed. If only some of the runs

were successful, an empty symbol is used instead, and if none, the symbol is not

plotted.

For small problem sizes, all of the algorithms except ofcGA were always able to

find the best solution. It is noted that, for almost every problem size,cGA was un-

able to find the global optimum in all of the runs. The number ofevaluations grows

exponentially forPBIL when facing a problem size ofN > 700. It has to be noted

that we have chosenM = 10 individuals forPBIL to give an equal number of eval-

uations per generation compared tovQEA1,10. For small problem sizes, this setting

seems to be very suitable,e.g. for N < 600 the average fitness evaluations required

are the lowest among all other algorithms. We tried other settings for PBIL, but none

of them scaled well. For example, usingM = 25 individuals PBIL performed poorly

for small problem sizes, but forN = 1000 all 30 runs converged to the global opti-

mum, which required on average30, 138 (σ = 4139.4) evaluations. In a similar way,

the performance ofUMDA clearly depends on the problem size. Setting the population

sizeM to 500 is known to be suitable for high dimensional problems and theresults

vary as expected; for small size problems the number of fitness evaluations required

is nearly double the other algorithms but forN = 2000, only vQEA1,10 outperforms

UMDA. vQEA1,10 shows an almost linear increase of fitness evaluations whileconsis-

tently finding the optimal solution up to a problem size of1600. At least in this study,

vQEA1,10 demonstrates a high scalability. Furthermore, this singleparameter setting

appeared to be suitable for a large variety of problem sizes.No comparably robust

setting was found for any of the other presented algorithms.
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Figure 4.6: Number of evaluations as a function of N on the One Max problem
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4.2.4 Fitness

In chapter 3, vQEA was already compared to a standard GeneticAlgorithm (sGA)

on NK-landscapes and was shown to be superior in terms of bothspeed and the
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quality of the solution found. In this section, we want to investigate the performance

of PBIL, cGA and UMDA on the same optimisation problem. The quality of the

results is presented in relation to a sGA. More precisely, the average fitness of the

best solutions reached by an algorithmA is notedf ∗
A and the relative performance of

A is defined as the ratiof ∗
A/f∗

sGA.

In Figure 4.7, the relative performance is presented forN = 2048. It is clearly

shown that each EDA outperforms sGA significantly. For smallK (and therefore no

or low level of interaction between theN variables),PBIL falls behindUMDA, cGA

andvQEA1,10 while the latter three do not show significant differences compared to

each other. Nevertheless, it has to be noted thatvQEA1,10 shows the lowest variance in

the quality of the best solution found among all the other algorithms. WithK ≥ 10,

the performance ofUMDA andcGA drops significantly due to the impact of the higher

number of local optima in the fitness landscape. On the other hand,vQEA1,10 stays

rather unaffected by the problem difficulty, consistently reporting between8 to 9%

higher fitness than a sGA.

Figure 4.8 shows the average best relative fitness of severalproblem sizesN for

fixed K = 8. For larger problem sizes (N ≥ 1024) each algorithm performs signif-

icantly better than asGA . Again,vQEA1,10 shows the lowest variation in the final
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Figure 4.9: Robustness as a function of the noise rate on One Max, N=256

fitness. There are no significant fitness differences for the problem sizesN = 512

andN = 1024. For N ≥ 2048, PBIL falls behind and, forN = 4096, vQEA1,10

delivers the highest solution quality, performing slightly better than each of the other

tested algorithms.

4.2.5 Robustness

Noise is known to be an important factor that influences Evolutionary Algorithms.

Thus, the convergence robustness against fitness noise of PBIL, cGA, UMDA and

vQEA is studied here. We assume a multiplicative Gaussian noise and we define the

noisy fitness functionF as :

F (x) = f(x) · N (1, σ2) (4.6)

with x an element of the solution space andσ2 the noise variance. We also define the

robustnessR(σ2) of an algorithm as the ratio between the average best fitness found

when noise is applied (σ2 > 0) and the average best fitness found without noise

(σ2 = 0). Experiments were performed on One Max withN = 256 andσ ∈ [0, 1.5]

and the results are presented in Figure 4.9.
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For all algorithms, we know by construction thatR(0) = 1.0 and we see clearly

that this robustness is strongly impacted by the increase ofthe noise variance. Nev-

ertheless, we distinguish two groups of algorithms. The first includesPBIL, cGA

andvQEA1,1 and the second group is made ofUMDA, vQEA1,10 andvQEA5,2. In the

first group, as noise is introduced, the robustness decreases quickly even for small

noise variance. For larger values of noise, the robustness is close to 55% which

is comparable to the performance of a random search on a One Max problem. In

the second group, the robustness decreases comparatively slowly and is still around

70% for σ2 = 2.25, wherevQEA1,10 outperforms all the other algorithms tested with

R(2.25) = 74%.

We note thatcGA andvQEA1,1 sample respectively two and one solutions per gen-

eration to update the probability vectors while withPBIL only the best among ten so-

lutions is used. In the presence of noise, this low number of samples processed leads

to decision errors. Indeed, a classical remedy known to counteract the effect of noise

in EA is to perform multiple evaluations of the fitness. WithUMDA M = 500, solu-

tions are analysed before a learning phase occurs. This large number of evaluations

before a model update is probably responsible for the convergence towards an aver-

age good solution. Population based search algorithms are also known to be robust

because of their self-averaging nature. We claim that in vQEA theQpopulation acts

as a buffer against decision errors becauseQindividuals are able to share informa-

tion about the search space. Since invQEA1,10, allQindividuals are embedded in the

sameQgroup and thus follow the same attractor (Slocal = 1), the information share

is maximised and thereforevQEA1,10 is the most robust of the algorithms tested here.

Moreover, we know from (Goldberg, 2002) that the interactions between variables

may be seen as a form of fitness noise by the algorithms which could also explain the

good results reported in the previous section forvQEA1,10 on NK-landscapes for high

degrees of apostasies (K ≥ 10).

4.3 RO L E O F M U LT I P L E M O D E L S

In this section, we concentrate our investigation on the role of the multiple proba-

bilistic modelP = {P1, . . . ,Pp} in vQEA.
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Figure 4.10: Fitness evolution of single and multiple models vQEA on NK-landscapes

4.3.1 Do multiple models perform better than a single one?

vQEA has been originally introduced as a coarse-grained evolutionary algorithm

with several interactingQindividuals. Nevertheless, we are not aware of any seri-

ous demonstration of the superiority of using aQpopulation compared to using only

a singleQindividual. A fair comparison betweenvQEA1,1 andvQEA1,10 (i.e. not

based on an equivalent number of generations but on an equivalent number of fitness

evaluations) is performed on One Max and NK-landscapes problems. For all the ex-

periments carried out, the fitness of the best solution foundwith vQEA1,10 is better or

equal to the best solution produced withvQEA1,1. As an illustration, in Figure 4.10,

the average evolution of the best fitness found on NK-landscapes withN = 256 and

K = 16 is plotted forvQEA1,1 andvQEA1,10 as a function of the number of eval-

uations. The setting of the parameters is given in Table 4.1.For both settings, the

fitness improves quickly after few evaluations, whilevQEA1,1 keeps a similar trend

until it prematurely convergences.vQEA1,10 reports a more step-wise increase and

finally reaches a higher fitness level.

In vQEA1,10, tenQindividuals synchronise their attractors at every generation t us-

ing the best solution sampled at generationt − 1. This setting implies that the ten

corresponding probability vectorsP1, . . . ,P10 are all following a unique attractor and

therefore the same direction in the search space. If we assume that each modelPi(t)
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is not so different from the mean modelP(t), having several models instead of only

one may appear redundanta priori. Nevertheless, the benefit of using multiple mod-

els is clear when demonstrated experimentally. Hence, we investigate two different

hypothesis to explain the better results obtained withvQEA1,10.

In the first hypothesis, we assume thatvQEA1,10 benefits from the fact that the

search direction is chosen after sampling ten solutions,i.e. one per model. For that

reason, we propose to produce ten solutions from the single probabilistic model and

then to use the best among them as the next attractor. This algorithm is denoted

vQEA1,1-c10 in Figure 4.10. We see thatvQEA1,1-c10 is outperformed byvQEA1,1 and

vQEA1,10 in terms of speed and average fitness of the best solution found.

In the second hypothesis, we assume thatvQEA1,10 benefits from a slower conver-

gence speed. We note that invQEA1,10, it may happen that only one vectorPi out

of any ten is updated during one generationt. In that case, the average modelP(t)

moves very slowly towards the attractor and the update stepscorrespond to∆θ/10.

Therefore, we propose to evaluate the performance of a singleQindividual vQEA

with a ten times smaller update step∆θ = 1/10 × π/100. As expected with this

setting, the algorithm denotedvQEA1,1-s in Figure 4.10 reports a slower convergence

speed and outperformsvQEA1,1 in terms of fitness. The fitness increases slowly in

a step-wise manner similar tovQEA1,10 but finally reaches a significantly smaller

fitness value.

We have gone to great effort to reproduce results similar tovQEA1,10 using one

probabilistic model only but have not been successful. Therefore, we claim that, even

when they are fully synchronised (and so almost equal), the multiple probabilistic

models perform better.

4.3.2 Adaptive learning speed

The interplay of the fully synchronised multiple models maylead to an adaptive

learning speed. To illustrate this we plot the evolution of the mean modelP(t) when

solving a one bit One Max problem forvQEA1,1, vQEA1,1-s andvQEA1,10, see Figure

4.11. For that specific experiment the initial probability is set tosin2(∆θ) ∼ 0. The

only difference betweenvQEA1,1 andvQEA1,1-s is the setting of∆θ and consequently

their convergence speeds. We see that for these two settings, the evolution of the

probability looks like anarctan function. In particular, the shape of the two curves

is identical when the probability leaves0 or when it reaches1. On the contrary,

for vQEA1,10, an asymmetric behaviour is observed: the average probability leaves0
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much more quickly than it reaches1. More precisely, the average probability evolves

in a way similar tovQEA1,1 when moving away from0 and then similar tovQEA1,1-s

when approaching1. This is a very desired behaviour as we expect that the algorithm

dedicates more effort to exploring the promising areas of the search space.
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Figure 4.11: Actual variations of the mean probabilistic model observed in different configu-
rations of vQEA

This phenomenon can easily be explained when considering the set of ten vectors

{P1, . . . ,P10}. At the beginning of this experiment, almost every producedsolution

Ci is ’0’. When by chance a ’1’ is sampled, it becomes the next attractor for the

Qpopulation and so there is a high probability that the ten models are updated at

the same time. Therefore, the learning speed ofP(t) can be high,i.e. depending

on ∆θ. Afterwards, the number of models updated during one generation starts to

decrease. The extreme case is when only one model is updated.This results in a

much more slower learning speed forP(t), i.e. corresponding to1/10 × ∆θ. The

situation can be seen as a voting mechanism controlling the overall learning speed.

When theQindividuals all agree that a certain direction in the searchspace is not

appropriate their models all move away and subsequently theaverage model moves

quickly. Conversely, when they disagree, the mean model moves very slowly, giving

more accuracy and therefore more time to the algorithm to seek the right decision.

This adaptive learning speed might also be responsible for the quality of the results

reported for vQEA in terms of robustness to fitness noise (cf. section 4.2.5).
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Figure 4.12: Fitness evolution of mean and multiple models vQEA on NK-landscapes

4.3.3 Do multiple models perform better than a mean model?

In the two previous sections, it was assumed that invQEA1,10 the modelsP1, . . . ,P10

are almost identical at timet and therefore equivalent to the mean modelP(t). Sub-

sequently, it was assumed that the distribution of solutions in the set{C1, . . . , C10}
sampled from the ten models at timet was to some extent equivalent to the distribu-

tion obtained when sampling ten solutions fromP(t). We now evaluate the validity

of this assumption forvQEA1,10 but also forvQEA5,2.

For that purpose, we introduce two variants, denotedvQEA1,10-m andvQEA5,2-m,

where the mean model is used for sampling. More precisely, the overall structure

and settings of the algorithm are kept unchanged except thata mean modelP(t) is

computed every generation and then used to produce the individual solutionsCi(t).

In particular, it is noteworthy that the adaptive learning speed described earlier works

for these two variants as well. Therefore, any noticeable variation in the performance

of the algorithm is only caused by the use of the mean model. InFigure 4.12, the

average evolution of the best fitness found on NK-landscapeswith N=256 and K=16

is plotted as a function of the number of evaluations.

We note that the two curves obtained forvQEA1,10 andvQEA1,10-m are very sim-

ilar and their average final fitness values are statisticallyidentical. Notwithstanding

the slightly faster convergence ofvQEA1,10 compared tovQEA1,10-m, the assump-
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tion made in the previous section seems to hold on this problem: sampling ten fully

synchronised modelsPi is indeed comparable to sampling the corresponding mean

modelP. The situation is clearly not the same forvQEA5,2. While vQEA5,2 is the

best setting of vQEA tested on this problem,vQEA5,2-m reports extremely poor re-

sults. Therefore, it is claimed that when they are not fully synchronised the multiple

probabilistic models can perform better than the mean model.

In vQEA5,2, fiveQgroups each containing two fully synchronisedQindividuals are

evolved and the best attractor among the groups is shared, according to the parameter

Sglobal, every 100th generation. However, in vQEA the attractors are systematically

replaced at every generation, so that a given synchronisation can affect the evolu-

tion of theQgroups during a single generation only. As a consequence, the groups

can evolve separately towards different regions of the search space. WithK = 16

epistatic links in the problem, the interactions between the 256 variables are impor-

tant and the problem is not easy to solve. WithvQEA5,2 eachQgroup can specialise

on different patterns of bits and the multiple models of vQEAallow sampling a more

complex distribution of solutions than with a single probability vector.

4.3.4 Measuring diversity

In order to measure the diversity of the solutions sampled bythe multiple models

in vQEA, the variancev(t), as defined in Equation 4.4, is not necessarily adapted.

Actually, in section 4.2.2, the variance was computed usingthe mean modelP(t)

but clearly this procedure does not consider the conditional probabilities and is not

sufficient to represent interactions among variables. Thus, the more the vectors

P1, . . . ,Pp differ at time t the less the variancev(t) is suitable. Hence, we pro-

pose another approach where two metrics are used to represent the diversity of the

solutions produced at timet: the convergence of theQpopulation denotedConv(t),

and the pairwise distance between theQindividuals denotedDist(t).

The convergence of aQpopulation reflects how theN Qbits have converged in the

whole population. We defineConvj, theQbit convergence at locusj,

Convj =
2

p

p
∑

i

∣
∣Pj

i −
1

2

∣
∣ (4.7)
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and so the convergence of theQpopulation corresponds to the meanQbit conver-

gence overN Qbits such that :

Conv =
1

N

N∑

j

Convj (4.8)

The pairwise distance between theQindividuals reflects how their probabilistic

models differ. To represent the distanceDisti,k between two probability vectorsPi

andPk, we propose to simply compute:

Disti,k =
1

N

N∑

j

∣
∣Pj

i − Pj
k

∣
∣ (4.9)

Following (Wineberg & Oppacher, 2003), this metric can be easily interpreted as the

proportion of mutational changes required to transform a set of solutions sampled

fromPi to a set of solutions sampled formPk. Hence, the pairwise distance between

p Qindividuals corresponds to:

Dist =
2

p(p− 1)

p
∑

i=1

p
∑

k=i+1

Disti,k (4.10)

The evolution ofConv(t) together withDist(t) on NK-landscapes with N=2048 for

K=0 and K=8 was computed. The setting ofvQEA5,2 was described in Table 4.1,i.e.

fiveQgroups of two synchronisedQindividuals are evolved and the best attractor is

shared according toSglobal. Furthermore, the influence of the global synchronisation

periodSglobal was also investigated. The results averaged over30 independent runs

of 105 evaluations are plotted in Figure 4.13.

For every curve, a common trend is reported. After the initialisation phase, each

Qindividual defines a probability vectorPi whose elements are all set to1/2 and

thereforeConv(0) and Dist(0) are both equal to0. At that particular time, the

diversity of the solutions sampled is maximum. Then, under the effects of selec-

tion (together with drift on neutral problems), theQpopulation starts to converge

with Conv(t) > 0 and the probabilistic models become more and more different

until Dist(t) reaches a maximum. Finally, the pairwise distance decreases while

theQpopulation keeps converging continuously. As expected,Sglobal determines the

amplitude of the peak of maximum distance between the multiple models. With

Sglobal=1, the models are fully synchronised (as invQEA1,10). For bothK = 0 and

K = 8, the maximum value forDist(t) with Sglobal = 1, is approximately7%. This
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Figure 4.13: Pairwise Distance betweenQindividualsvsConvergence of theQpopulation on
NK-landscapes . Results are shown from a single typical run.

very low value means that the multiple models represent subspaces (hypercubes) that

differ by 7% of their bits. With higher values forSglobal, theQgroups are more likely

to evolve towards different regions of the search space and the maximum value for

Dist(t) increases.
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When the multiple models are not fully synchronised,i.e. Sglobal > 1, we note

major discrepancies between the caseK = 0 andK = 8, cf. Figures 4.13a and 4.13b

respectively: ForK = 0, the maximum value forDist(t) is around25% when the

attractors are never synchronised (Sglobal = ∞), i.e. when the fiveQgroups evolve

separately. After105 evaluations, we haveConv(t) = 1 andDist(t) = 0, even for

Sglobal = ∞. In this situation, the fiveQgroups have converged towards the same

solution of the search space. We observe also a saw-tooth shape of the curves where

each tooth corresponds to an episode of synchronisation of the attractors. Given that

K = 0, there is no local optima, so the information carried by the attractors is not

contradictory and is therefore exchanged smoothly betweentheQgroups.

ForK = 8, the maximum value forDist(t) is around40% for Sglobal =∞. After

105 evaluations,Dist(t) is not equal to zero and forSglobal = 50, Sglobal = 100 and

Sglobal = 500 theQpopulation has not converged. The saw-tooth shape disappears

and instead the curves are very rugged, in particular withSglobal = 50. With K = 8,

the information carried by attractors can be contradictoryand therefore not easily ex-

changed between theQgroups, tending to slow down the convergence speed of the

Qpopulation. Nevertheless, as long as the best performance in terms of fitness is ob-

tained forSglobal = 100, some information is exchanged through the synchronisation

process. Thus, multiple models in vQEA allow a more diverse exploration of the

search space than with only a single model.

4.4 C O N C L U S I O N

Behind the quantum metaphor, vQEA is an original approach that belongs to the

class of EDAs. It clearly shares some common features with several simple EDAs

such as PBIL and cGA, but its performance is more similar to UMDA, particularly

with regard to the loss of diversity, the scalability and therobustness to fitness noise.

Therefore, vQEA should benefit from prior work on simple EDAswhere interactions

between variables are not taken into account.

The main differentiating feature of the vQEA is the multi-model approach. In this

chapter, the advantages of manipulating several probability vectors instead of only

one were empirically demonstrated. First, vQEA is an effective algorithm that works

with fairly generic settings of the control parameters for acollection of benchmark

problems of various sizes, with different levels of interactions between variables and

numbers of neutral dimensions. Note that no particular efforts have been dedicated

to finding the best possible settings of vQEA, but rather a setting directly borrowed
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from previous work on QEA was used, even though the behaviourof QEA is quite

dissimilar to vQEA, and it was investigated on a very different test problem.

Second, theQpopulation buffers against a finite number of decision errors making

vQEA robust against fitness noise.

Finally, we have shown that vQEA can perform better than other simple EDAs

when links are introduced between variables. These interesting results about the

multi-model approach in vQEA can be explained by the adaptive learning speed and

a more diverse sampling of the search space compared to otherEDAs with a single

probability vector. Future work might compare the mechanisms of existing multi-

model EDAs approaches (Zhang et al., 2002; Ahn, Kim, & Ramakrishna, 2003b;

Ahn, Goldberg, & Ramakrishna, 2003; delaOssa et al., 2006; Madera et al., 2006; S.

Zhou & Sun, 2005a) to the one used in vQEA and evaluate their relative performance

empirically.

The way theQpopulation is structured,i.e. number and size of theQgroups to-

gether with the local and global synchronisation periods, directly controls the adap-

tive learning speed and the diversity of the solutions sampled by vQEA. To properly

choose this structure, we suggest the following approach. First of all, theQindividuals

should be fully synchronised in aQgroup (withSlocal = 1) of sizek in such a way

that k determines the variation of the learning speed from∆θ/k to ∆θ. Second,

severalQgroups should be introduced as long as the problem is known toreport a

significant number of local optima or similarly a significantlevel of dependency be-

tween the variables. Then the global synchronisation period controlling the diversity

of the sampled solutions can be set inversely to the size of the problem.

Despite the scalability of vQEA, the generic setting proposed in this study is prob-

ably not optimal and therefore a general expression should be proposed. In particular,

the optimal setting of∆θ according the size of the problem is still unknown and inas-

much as∆θ gives the fastest learning speed, its setting should be investigated, at least

empirically, for example on a simple One Max problem.

We have seen that one of the strengths of vQEA comes from the specialisation

of Qgroups on diverse sub-spaces. Actually, only the stochastic behaviour of the

Qindividuals driven by fitness selection makes theQgroups converge towards dif-

ferent regions of the search space. So far, even with a very low synchronisation fre-

quency, we can not guarantee the diversity of the sampling for every problem. This

question should be explored so that extra mechanisms for ensuring specialisation can

eventually be added.

The impact of the synchronisation events on the probabilistic models has been

shown to be rather limited. Nevertheless, the synchronisation of attractors defini-
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tively helps the multipleQindividuals to optimise non-decomposable problems. So

far, the extent to which these problems can be solved using vQEA remains unclear.

From the experiments presented in this study, one may conclude that the performance

of vQEA is somewhere in between the one reported by the simpleand the complex

EDAs. Therefore, the efficiency of vQEA in terms of exchange of information and

mixing building blocks should be addressed in future work, for example using a flex-

ible benchmark such as the Random Additively Decomposable Problems (Pelikan,

Sastry, Butz, & Goldberg, 2006), in which the variable interactions can be explicitly

controlled and also the global optimum is known.





Chapter5
E X P L O R I N G N O I S Y S E A R C H S PAC E S W I T H V Q E A

Noise is a typical property of most real world problems. Thus, the capability of

an optimisation method to handle noisy or inaccurate information obtained from the

fitness criterion is generally regarded as a very important pre-condition for a success-

ful application of the method for real world applications. In chapter 4, vQEA has

demonstrated promising results especially on problems with higher epistasis. The

relationship between epistasis and fitness noise has been claimed many times in lit-

erature and epistasis may be interpreted as a certain form ofnoise (Goldberg, 2002).

Due to this connection, we discuss the robustness of vQEA in this chapter.

The analysis of EAs optimising noisy fitness functions is thefocus of many cur-

rent research papers. The main effects of fitness noise are described as the decrease

of convergence velocity and a residual location error of theoptimum in the search

space (Beyer, 2000). Noise can also introduce false optima inthe fitness function,

a phenomenon first described as noise-induced multi-modality in (Sendhoff, Beyer,

& Olhofer, 2002) and studied comprehensively in (Beyer & Sendhoff, 2006). An

excellent survey of recent developments in the field of noise-related optimisation can

be found in (Jin & Branke, 2005).

One known remedy against fitness noise is the explicit and implicit averaging (Fitz-

patrick & Grefenstette, 1988). The general idea of explicitaveraging is to estimate

the quality of a given solution by explicitly computing the average of several (noisy)

fitness evaluations. Early studies have proposed the use of an adaptive scheme,e.g.

in (Aizawa & Wah, 1993) and (Aizawa & Wah, 1994) for the genetic algorithm, in

which the sample number increases in later generations of the evolutionary process.

The implicit averaging suggests an increase of the population size of the used EA.

The effects of noise on the evaluation of a certain solution are then likely to be com-

pensated through the evaluation of a similar solution. It was shown in (Miller &

Goldberg, 1996) that noise has no effect on proportional selection if the population

size is infinite. Another possibility to cope with fitness noise is to modify of the selec-

101
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tion process. In (Markon, Arnold, Back, Beielstein, & Beyer, 2001), a threshold for

comparing the quality of two solutions in an Evolutionary Strategy was introduced

where an offspring individual has to demonstrate a considerably better fitness in or-

der to replace its parents. An optimal normalised thresholdwas found on the noisy

sphere problem. In this study we want to investigate whetherthe multiple probabilis-

tic model used in vQEA is beneficial in the context of noisy search spaces.

Many studies address additive noise of constant strength,i.e. all solutions in the

search space are equally impacted by noise. For real world problems the assumption

of constant noise levels is not necessarily true and indeed one can imagine many ap-

plications in which the noise is directly related to an area in the search space and thus

not constant. More specifically, some solutions may suffer more due to noise than

others. One example is the measurement error of physical devices metering proper-

ties like temperature or light intensity. This error is generally given as a proportion

of the actual measurement. An error of±5% results in a low absolute noise level for

low-valued measurements and a higher one for high-valued measurements. A theo-

retical analysis on proportional noise was undertaken by (Arnold & Beyer, 2003) to

compare Evolutionary Strategies to direct search methods.In their model, the noise

was considered to be proportional to the fitness function. In(Di Pietro, While, &

Barone, 2004), the use ofnoise landscapeswas suggested. These define the noise

level as dependent on the given fitness landscape. Differentnoise levels can be as-

sociated with any solution in the search domain. In this chapter, a general model

based on noise landscapes is proposed and used to experimentally analyse the impact

of noise on vQEA and to compare its performance to three classical EDA, namely

UMDA, cGA and PBIL, as previously discussed in chapter 4.

The rest of the chapter is organised as follows: In section 5.1 we present the noise

model used, followed by the experimental analysis in section 5.2. The benchmark

problems along with their motivation and suitability are discussed and the obtained

results are presented, followed by the discussion and conclusion of this chapter.

5.1 N O I S E M O D E L

Similar to the noise landscapes suggested in (Di Pietro et al., 2004) and the propor-

tional noise in (Arnold & Beyer, 2003), a general noise model is presented, allowing

the application of any noise level to any solution in the search domain.
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Let x be a solution in the search space andf(x) a fitness function measuring the

quality ofx. The following noise model is defined:

F (x) := f(x) + σm δ(x) N (0, 1) (5.1)

whereδ(x) : x 7→ [0, 1] is a function describing the proportion of the maximum noise

strengthσm at each point in the search domain so that the productσm δ(x) defines

the noise variance associated with a given solutionx. N (0, 1) is a normal distributed

random variable. We note that, in this model, the noise depends on the location in

search space. Therefore the level of noise may be different at any point in the search

space. Nevertheless, it is also possible to model constant additive Gaussian noise by

settingδ(x) = c, c ∈ [0, 1].

In this study several functionsδ(x) are investigated:

1. Constant noise – The noise level is constant at every point in the fitness land-

scape:

δ(x) = c, c ∈ [0, 1] (5.2)

2. Linear Noise – The noise level depends on the fitness landscape,i.e. the noise

increases/decreases linearly in areas of higher fitness levels:

δ(x) = af(x) + b (5.3)

wherea, b ∈ R. It is worth noting that this noise type is also called multiplica-

tive noise.

3. Cosine Noise – The noise level varies periodically over thefitness landscape:

δ(x) = 0.5 cos(ω π f(x)) + 0.5 + b (5.4)

whereω > 0 controls the periodicity andb the minimum noise strength.

5.2 E X P E R I M E N T S

In this study we experimentally compare the behaviour of cGA(Harik et al., 1999),

PBIL (Baluja, 1994) and UMDA (M̈uhlenbein & Paass, 1996) to several configura-

tions of vQEA. The experiments are performed on three benchmark problems each



104 E X P L O R I N G N O I S Y S E A R C H S PAC E S W I T H V Q E A

having different characteristics. The first is the simple bit counting problem (One

Max) consisting in maximising the number of ones of a bit string. Here the fitness is

normalised to be in the interval[0, 1] by dividing the fitness by the problem sizeN .

More formally, the problem is described as finding a bit vector x = {x1, x2, . . . , xN},
with xi ∈ {0, 1}, that maximises the equationfom(x) = 1

N

∑N

i=1 xi. One Max

has only a single optimum but also some neutral dimensions, since two different

bit strings may have the same fitness value. The phenomenon ofgenetic drift is more

likely to impact the search causing a faster loss of diversity.

The other two problems belong to the family of NK-landscapesfirst introduced

in (Kauffman, 1993). NK-landscapes are stochastically generated fitness functions

parametrised byN indicating the number of variables (problem size), andK which

defines the number of interactions between these variables.NK-landscapes do not

have any neutral dimensions, so all solutions in the search space have a unique fitness

value being in the interval[0, 1]. ForK ≥ 1 the optimisation problem is NP-complete

as shown in (Weinberger, 1996). ForK = 0 this fitness function has only a single

optimum. IncreasingK results in an increasingly rugged fitness landscape with many

local optima (i.e. 2N

N+1
optima forK=N − 1). We choseK = 0 andK = 4 with

N = 256 as two representatives for this study.

5.2.1 Settings

Four different noise landscapes are considered. As the fitness functions for all of

the problems are normalised to the same interval, we can use the same noise model

parameters for each problem.

• Constant Noise– This noise model assumes the same noise strengthσm for any

solution in the search space. Therefore we chose according to equation (5.2)

c = 1.

• Positive Linear Noiseassumes a linearly increasing noise strength for better

solutions, more precisely the better the solution the higher the noise. It is note-

worthy that this type of noise is also referred to as multiplicative noise. We

chosea = 1 andb = 0 as parameters for equation (5.3).

• Negative Linear Noiseassumes a linearly decreasing noise strength for better

solutions, more precisely the better the solution the lowerthe noise. We chose

a = −2 andb = 2 as parameters for equation (5.3).
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Figure 5.1: Expected value ofF (x) as a function of the (noise free) fitness functionf(x)
used in the One Max problem of sizeN = 256. The error bars (in light col or)
represent the standard deviation of 10,000 samples drawn fromF (x) for each of
the possible 256 fitness valuesf(x).

• Cosine Noise– In this model the noise strength changes with a certain fre-

quencyω. We parametrised equation (5.4) withω = 30 with minimum noise

strengthb = 0.

In Figure 5.1, the expected valuesE(F (x)) were computed for distinct fitness

valuesf(x) of a normalised One Max problem of sizeN = 256. EachE(F (x)) is

obtained by averaging 10,000 samples drawn fromF (x) for each of the possible 256

fitness valuesf(x). The impact of the different noise types on the fitness landscape

is clearly visible in the figure.

All experiments were performed using varying maximum noise, i.e. σm =

0, 0.2, 0.4, . . . , 2. For each experiment,50 runs were performed and the results aver-

aged.

In each run, the best solution (in terms ofF (x)) of the last generation is chosen as

a representative for the best solution found in an algorithm. It is noteworthy that the

global best solution found during the entire run (in terms ofF (x)) usually can not

be used as a representative since in some noise landscapes the noise strength is the
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highest at an early stage of the run. Therefore, the global best solution would most

likely represent the solution with the highest noise level although the algorithm might

have converged to a different area in the search space.

It is well known that search algorithms should be carefully tuned according to the

level of noise of the problem to solve (Goldberg, Deb, & Clark,1991). Therefore,

a comprehensive parameter study was undertaken in which different configurations

of the algorithms were tested, in order to identify the best settings for each noise

landscape on all three benchmark problems. ForPBIL, 60 different combinations of

population size and learning rate were considered. The virtual population size incGA

was explored in28 different settings. AsUMDA requires only the proper adaption of

the population size, ten different sizes were investigatedhere. vQEA is a coarse-

grained algorithm allowing a complex structure for the population ofQindividuals.

Four structural settings were investigated: a singleQindividual (vQEA1,1), one group

of ten fully synchronisedQindividuals (vQEA1,10), five groups of twoQindividuals

(vQEA5,2) and ten groups of oneQindividual (vQEA10,1). All structures employ the

defaultHǫ gate as described in chapter 3. For each structure, the rotation angle∆θ

and the global synchronisation periodSglobal were explored, totalling84 different

configurations. All algorithms were allowed to perform105 fitness evaluations. The

complete parameter study is presented in Appendix C. As a result of this analysis, all

tested algorithms are optimally configured for the presented problems. The settings

for all methods are summarised in Table 5.1.

5.2.2 Results

Figure 5.2 shows the results for the different noise landscapes for the NK-landscapes

andK = 0. As expected, the performance of all algorithms is impactedby increasing

levels of noise leading to an asymptotic convergence of the fitness towards a mini-

mum comparable to the performance of a random search.

In the case of constant noise, all of the algorithms have similar performance, with

the exception ofPBIL. For a positive linear noise landscape,vQEA1,10 is signifi-

cantly more robust than any other tested algorithm, followed by vQEA5,2 , vQEA1,1

andUMDA, which deliver both almost identical results.PBIL demonstrates an in-

teresting behaviour for noise levels aboveσm > 1 as the robustness decreases sig-

nificantly more slowly than in other methods. This effect is caused by the mutation

operator resulting in the inability of the probability vector to converge to some so-

lution. In the positive linear noise landscape, the level ofnoise is correlated to the
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OneMax

constant linear inverse linear cosine
PBIL M = 10 M = 100 M = 10 M = 10

Rl = Rs = 0.05 Rl = Rs = 0.05 Rl = Rs = 0.25 Rl = Rs = 0.01

cGA n = 250 n = 250 n = 200 n = 190

UMDA M = 500 M = 500 M = 500 M = 500

vQEA1,10 ∆θ = 0.005π ∆θ = 0.005π ∆θ = 0.03π ∆θ = 0.0025π
Sglob = 1 Sglob = 1 Sglob = 1 Sglob = 1

vQEA1,1 ∆θ = 0.0025π ∆θ = 0.0025π ∆θ = 0.0025π ∆θ = 0.0025π
Sglob = 1 Sglob = 1 Sglob = 1 Sglob = 1

vQEA10,1 ∆θ = 0.005π ∆θ = 0.005π ∆θ = 0.02π ∆θ = 0.01π
Sglob = 10 Sglob = 5 Sglob = 25 Sglob = 25

vQEA5,2 ∆θ = 0.01π ∆θ = 0.01π ∆θ = 0.01π ∆θ = 0.005π
Sglob = 25 Sglob = 10 Sglob = 50 Sglob = 25

NK-landscapes,K = 0

constant linear inverse linear cosine
PBIL M = 10 M = 100 M = 50 M = 10

Rl = Rs = 0.01 Rl = Rs = 0.05 Rl = Rs = 0.25 Rl = Rs = 0.25

cGA n = 190 n = 190 n = 190 n = 190

UMDA M = 500 M = 500 M = 400 M = 500

vQEA1,10 ∆θ = 0.005π ∆θ = 0.005π ∆θ = 0.01π ∆θ = 0.01π
Sglob = 1 Sglob = 1 Sglob = 1 Sglob = 1

vQEA1,1 ∆θ = 0.0025π ∆θ = 0.0025π ∆θ = 0.0025π ∆θ = 0.0025π
Sglob = 1 Sglob = 1 Sglob = 1 Sglob = 1

vQEA10,1 ∆θ = 0.01π ∆θ = 0.01π ∆θ = 0.01π ∆θ = 0.005π
Sglob = 10 Sglob = 10 Sglob = 100 Sglob = 300

vQEA5,2 ∆θ = 0.01π ∆θ = 0.01π ∆θ = 0.01π ∆θ = 0.03π
Sglob = 10 Sglob = 10 Sglob = 75 Sglob = 300

NK-landscapes,K = 4

constant linear inverse linear cosine
PBIL M = 50 M = 70 M = 10 M = 10

Rl = Rs = 0.05 Rl = Rs = 0.05 Rl = Rs = 0.01 Rl = Rs = 0.01

cGA n = 220 n = 180 n = 160 n = 180

UMDA M = 300 M = 500 M = 500 M = 500

vQEA1,10 ∆θ = 0.01π ∆θ = 0.005π ∆θ = 0.02π ∆θ = 0.0025π
Sglob = 1 Sglob = 1 Sglob = 1 Sglob = 1

vQEA1,1 ∆θ = 0.005π ∆θ = 0.0025π ∆θ = 0.0025π ∆θ = 0.0025π
Sglob = 1 Sglob = 1 Sglob = 1 Sglob = 1

vQEA10,1 ∆θ = 0.01π ∆θ = 0.01π ∆θ = 0.03π ∆θ = 0.0025π
Sglob = 50 Sglob = 10 Sglob = 50 Sglob = 10

vQEA5,2 ∆θ = 0.03π ∆θ = 0.01π ∆θ = 0.02π ∆θ = 0.0025π
Sglob = 10 Sglob = 10 Sglob = 50 Sglob = 10

Table 5.1: Parameter settings
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Figure 5.2: Robustness on NK-landscapes problem,K=0
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fitness landscape, since an increased real fitness corresponds at the same time to

an increased noise level. Being guided by a solution with the highest noisy fitness

F (x) in every generation,PBIL is strongly attracted by areas with high noise levels.

vQEA1,10 behaves in a very similar way and climbs the noise landscape efficiently. In

the case of the positive linear noise landscape this strategy results in an advantage al-

though following the highest noise in the search space mightnot appear advantageous

in general.

This assumption is supported by analysing the results for the negative linear noise

landscape. Climbing the noise landscape results here in a decrease of fitness and is

hence misleading. Indeed, the previously bestvQEA1,10 delivers the worst perfor-

mance on this problem. The algorithm efficiently maximisesF (x) and hence min-

imisesf(x) at the same time. The best performance is reported byvQEA1,1 followed

by UMDA andvQEA10,1.

The cosine shaped noise landscape belongs to the category ofmisleading noise as

well. Here the noise level is periodically changing with an increasing fitness level

resulting in the maximum noise strength for many different solutions in the search

space. These locally highest noise levels are known as noiseoptima. Several noise

optima exist. Here the averaging strategy implemented byUMDA delivers a superior

result, followed byvQEA1,1, cGA andvQEA10,1. Once morePBIL andvQEA1,10

are quickly trapped on noise induced maxima and are unable toescape. Both deliver

the worst robustness in this experiment. ForUMDA, the performance decreases in a

step-wise manner which is due to the convergence of the probability vector to two

different adjacent noise optima.

When comparing the results obtained on NK-landscapes to the ones obtained on

the One Max problem, one can identify some small differencesbetween the two,cf.

Figure 5.3. Nevertheless, the rank of each algorithm remains generally the same.

Again vQEA1,10 appears to be the most robust method on the positive linear noise

landscape. The difference ofvQEA1,10 to all other algorithms is even greater com-

pared to theNK-landscapes. Also, all other versions of vQEA demonstrate good

performance among all tested methods.vQEA1,1 andUMDA report almost identical

fitness evolutions on this problem. The performance difference of the algorithms on

the negative linear landscape is more pronounced in One Max compared to theNK-

landscapes.UMDA demonstrates a superior behaviour over all considered algorithms.

Being the best version among vQEA,vQEA1,1 also significantly outperformscGA.

Similar to the results obtained on theNK-landscapes,PBIL andvQEA1,10 represent

the least robust algorithms on this noise landscape.
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Figure 5.3: Robustness on One Max problem
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Figure 5.4: Robustness on NK-landscapes problem,K=4



112 E X P L O R I N G N O I S Y S E A R C H S PAC E S W I T H V Q E A

Adding linkage to the NK-landscapes withK = 4 impacts the robustness of the

algorithms significantly,cf. Figure 5.4. In general, the variability of the results is

much higher than on the easier problems. On the constant noise landscape, all meth-

ods are more or less indistinguishable in their performance. Similar to the previous

resultsvQEA1,10 performs very well in case of the positive linear noise compared to

the other algorithms. On the negative linear landscape,vQEA1,1 is the highest ranked

method, closely followed byUMDA andvQEA10,1. UMDA is still the most appropri-

ate method for the cosine shaped landscape. Nevertheless, its performance is clearly

strongly impacted by the increased difficulty of the problem. For higher noise levels,

no significant difference to the other methods is observed.

5.3 D I S C U S S I O N

In this section we investigate why some of the algorithms perform better than others

and what the differences between the vQEA configurations are. We focus on classical

aspects like the selective pressure and the way the fitness landscape is explored.

5.3.1 Robustness and selective pressure

At time t, search algorithms first collect information about the problem by sampling

solutionsxt in the search space, then they select promising solutionsst and move

towards them. In the presence of misleading noise, the two main factors determining

the performance of algorithms are: i) the way solutionsst are selected,i.e. the se-

lective pressure ii) the way the solutionsst are utilised to further explore the search

space. Therefore, we compare the selective pressure of the algorithms tested in this

study. The selection intensityI is computed by a very informative metric of the

selective pressure (M̈uhlenbein, 1997), as follows:

I =
f(S)− f(X)

σ(X)
(5.5)

with X being a set of 500 solutions sampled by a given algorithm during a run1, S

is the set of the solutions selected fromX, f(X) andf(S) are the average fitness of

respectivelyX andS, andσ(X) is the standard deviation of the fitness of the sampled

solutionsX. We note that a high value ofI corresponds to a high selective pressure.

1 From each algorithm,500 succeeding solutions were taken after the evolution of 10,000 fitness evalu-
ations.
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Figure 5.5: The average final fitness of all algorithms relative to the selection intensity. Each
point in this diagram represents the average selection intensity obtained in 30
independent runs, and the corresponding average fitness achievedon the One Max
problem using the deceptive negative linear noise landscape with noise strength
σm = 1. It is demonstrated that for higher selective pressures the performance
decreases on deceptive landscapes. All points were fitted using linear regression
(dashed line) in order to indicate the trend.

In Figure 5.5, the average final fitness of each algorithm is presented as a function

of the average selection intensityI on the One Max problem. The average fitness

values are obtained from the negative linear noise landscape with σm = 1, while

the values for the selection intensity are obtained by averaging the intensities of 30

independent runs on the One Max for each algorithm. On this noise landscape, the

noise is deceptive and a low selective pressure is beneficialfor an algorithm. We

clearly see that the algorithms reporting the highest selective pressure,i.e. PBIL and

vQEA1,10 also report the lowest average fitness on this problem. Amongall methods

they are biased to follow the misleading information on thisproblem the most. On

the other hand,vQEA1,1 has the lowest selective pressure and reports the best perfor-

mance. For the other algorithms, the situation is less clear. Some of them have a very

similar selective pressure while reporting very differentperformance. In particular,

according to the intensity selection,cGA selects solutions in a similar way compared

to vQEA1,1, but seems to be less able to exploit these solutions in a beneficial way.
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UMDA has a comparably high selective pressure, but can exploit the selected solutions

much better than for examplecGA.

5.3.2 Exploration of the noise landscape

To better understand the behaviour of the algorithms in the presence of noise, we

investigate the way a noisy search space is explored. Therefore, the cosine noise

landscape on the One Max problem is considered here, becausethe achieved aver-

age fitness for noise strengthsσm = 1 shows a large difference between the tested

algorithms.

In Figure 5.6, the darker grey points of coordinates(f(s), F (s)) correspond to

the (real and noisy) fitness of solutionss ∈ st that have been selected and then

used by the EDA to update their probabilistic models during arun. The number of

solutions inst is different among the algorithms tested here. To follow thedynamics

of the exploration, we grouped 250 succeeding selected solutionss together in setsS

and plotted the averaged pair(f̄(S), F̄ (S)). Those points define the trajectory of an

algorithm through the noise landscape,cf. black points in Figure 5.6.

To properly explore a noise landscape, an algorithm has to estimate the real fitness

f of a given solutionx. One way of achieving this is first to measure the noisy

fitness more than once,e.g. F1(x), . . . , Fn(x), and then to integrate the information

collected, for example by averaging them1
n

∑

i Fi(x) ∼ f(x), cf. (Fitzpatrick &

Grefenstette, 1988).

The performance of the different algorithms can be partly explained from the po-

sition of the selected solutionsst in the noise landscape. The exploration realised by

PBIL is clearly too biased towards large values ofF . Thus, the estimation off is

very poor and the algorithm is stuck in the first encountered noise-induced optimum.

The situation is very similar forvQEA1,10. We note that for these two algorithmsst

correspond only to the fittest solution (according toF ) sampled at timet. As seen

previously, this selection scheme is responsible for a highselection pressure and is

an inappropriate strategy for exploring a misleading noiselandscape. In the case of

vQEA1,1 andcGA, the selected solutionsst cover a wider range ofF values around

the real fitnessf and consequently the corresponding estimation off is better. As re-

ported by the trajectories in the noise landscape, both algorithms avoid being trapped

in the first noise optimum and to some extent they are able to follow the real fitness

f . We note that, for these two algorithms,st corresponds to the winner, according to

F , of a tournament of size two.
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Figure 5.6: Exploration of the cosine noise landscape on the One Max problem. The choice of
a too aggressive selection strategy (PBIL, vQEA1,10) leads to an effective climb-
ing of the noise landscape only.vQEA1,1, cGA andUMDA are more successful due
to a lower selective pressure in the selection scheme. The true fitness landscape
can be explored effectively by averaging the fitness of a larger numberof noisy
solutions.
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With regard toUMDA, the selected solutionsst cover only the upper part of the

noise landscape. This strategy should lead to a poor estimation of the real fitnessf .

However, the trajectory reveals a very good approximation of f . In UMDA, half of

the solutionsxt sampled at timet are selected inst and then averaged to compute the

probability model att+1. In this study, UMDA benefits from the fact that the noise is

normally distributed. Thus, the distribution of theF (st) values is a truncated normal

distribution for which the meanF (st) is close to the real fitnessf(st). This would

not be the case with a uniform distribution. We note that thisstrategy is also not

optimal when interactions between the variables exist as reported for NK-landscapes

with K = 4, since averaging the selected solutions erases the patterns of interactions.

5.4 C O N C L U S I O N

In this chapter the behaviour and the robustness of vQEA on several benchmark prob-

lems using different noise landscapes was analysed. At least on the tested bench-

marks the results demonstrate a significant benefit for vQEA,especially when facing

noise that is positively correlated to the fitness landscape, also called multiplicative

noise. Multiplicative noise is often found in real world problems. It was shown that

the selective pressure during the evolutionary process canbe controlled by varying

the population structure in vQEA. Small population sizes incombination with few

global synchronisation events decrease the selective pressure, while a fully synchro-

nised population structure increases it. This knowledge isvery important for fine-

tuning parameters for the algorithm on noisy problems. For different noise types,

different strategies are necessary and the population structure needs to be adapted to

the actual problem to solve. This requiresa priori knowledge about the kind of noise

in the search domain, which is sometimes unavailable. Hencean evolving selec-

tion scheme would be preferable and might result in an all-round version of vQEA.

This concept could be implemented using a heterogeneous population structure. This

would allow vQEA to switch between the strategies and choosethe most appropriate

configuration automatically.



Chapter6
O P T I M I S I N G C O N T I N U O U S S E A R C H S PAC E S – A

C O N T I N U O U S H I E R A R C H I C A L M O D E L E DA

Many real world problems require the optimisation of continuous search spaces. Al-

though binary optimisation methods can be applied to this task, the use of a binary

representation for a real-valued search space is not satisfactory since it introduces

some critical issues into the optimisation process. Among the earliest studies point-

ing out the advantage of continuous over binary representations in a GA was given in

(Janikow & Michalewicz, 1991). Each element of a continuoussolution needs to be

encoded by a number of bits. For the mapping of bit strings into a real value, addi-

tional computational overhead is necessary. Furthermore,a granularity is introduced

into a continuous search space. Since a single continuous variable is represented by

many bits, a binary optimisation method has to operate on more variables than a con-

tinuous optimiser. In other words, the one-gene-one-variable correspondence is lost

in a binary representation. Thus, scaling problems can be expected, especially in the

context of high-dimensional problems or whenever a need fora very precise optimisa-

tion of real-valued search variables arises. See (Janikow &Michalewicz, 1991) for an

experimental comparison of the time performance of binary and real-coded GA. Fur-

thermore, neighbouring solutions in the continuous domainmight not be neighbours

in their binary representation, a phenomenon known as Hamming cliffs (Goldberg,

1990). Exploring the local neighbourhood of a solution may require the optimiser

to flip many bits at the same time that will encourage premature convergence and

promote the phenomenon of hitch-hiking.

In the previous chapters, vQEA has demonstrated interesting characteristics and

experimental results. The multiple probabilistic model and the hierarchical popula-

tion structure allow an implicit adaptive learning rate which makes the method robust

to its parameter configuration. Furthermore, the multi-model approach allows a finite

number of decision errors resulting in competitive robustness against fitness noise. It

was demonstrated that vQEA performs better in terms of speedand solution quality

117
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than other first-level EDA, especially when links are introduced between variables

(epistasis). Using several probabilistic models also allows a more diverse exploration

of the search space than just using a single one.

In the following sections, the binary vQEA is extended towards the area of numeri-

cal optimisation. TheQbits used in vQEA are replaced by a continuous probabilistic

model and as a result the quantum metaphor is no longer suitable. Thus, the novel

numerical optimiser is introduced as thecontinuous hierarchical model EDA(cHM-

EDA). Since all key characteristics of vQEA are still present in cHM-EDA, similar

advantages of this method in comparison to other continuousevolutionary methods

are expected.

The chapter is organised in the following way. First the components of cHM-EDA

are described and its functioning explained. Then its performance is investigated on a

recently introduced state-of-the-art benchmark suite (Suganthan et al., 2005), which

allows a direct comparison of results to other numerical optimisation methods in the

field. The effects of the multiple probabilistic model on scalability and learning rate

are experimentally demonstrated and discussed in separatesections. We also high-

light briefly the robustness of cHM-EDA in the context of noisy fitness optimisation.

6.1 C O N T I N U O U S H I E R A R C H I C A L M O D E L E DA

The probabilistic model in vQEA is based on a Bernoulli randomvariable for each

bit which is referred to as aQbit according to the quantum computing metaphor.

Sampling from such a string ofQbits results in the creation of a bit string which

in turn can be evaluated by the corresponding fitness function. Since we want to

consider continuous search spaces now, we have to replace the Bernoulli distribution

by a continuous one such that it becomes possible to sample real values instead of

discrete ones. A number of approaches to employ and model such distributions have

been studied in literature about continuous EDA. The majority of approaches favour

Gaussian distributions as the probabilistic model, some notable exceptions beinge.g.

(Servet, Trav́e-Massuỳes, & Stern, 1998), where an interval representation for the

PBIL was proposed, and (Yuan & Gallagher, 2003), where the authors present an

improvement of the Gaussian based continuous PBIL, introduced as PBILc in (Sebag

& Ducoulombier, 1998), by implementing a histogram model.

We consider a continuous EDA based on Gaussian distributions here. For each

dimensionj of the continuous search space and for each probabilistic model i, a ran-

dom variable following a Gaussian distribution is evolved.Therefore, the distribution
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is fully described by two parameters: the meanµ
(j)
i and the standard deviationσ(j)

i .

In each generation, samples are drawn forming real-valued vectors whose quality can

be evaluated by the fitness measure. An update rule is then applied to updateµ(j)
i and

σ
(j)
i to concentrate the search in promising areas of the search space, making higher

quality solutions more likely to be sampled in the next generation. We will first de-

scribe the basic structure of the algorithm in detail, followed by the presentation of

the chosen update rule.

6.1.1 Model and population structure

The overall structure of the proposed cHM-EDA is similar to vQEA. Like vQEA, the

continuous version is also a population-based search method. Its behaviour can be

decomposed in three different interacting levels as depicted in Figure 6.1.

I N D I V I D UA L S The lowest (inner) level corresponds toindividuals. An individ-

ual i at generationt contains a probabilistic modelPi(t) and two real-valued strings

Ri(t) andAi(t). More precisely,Pi corresponds to a string ofN pairs of values

(µ
(j)
i , σ

(j)
i ):

Pi = P 1
i . . . PN

i =

[

µ
(1)
i . . . µ

(N)
i

σ
(1)
i . . . σ

(N)
i

]

(6.1)

The pair(µ(j)
i , σ

(j)
i ) corresponds to the parameters of the distribution of thejth

variable of theith probabilistic model. Each variable inPi is sampled according to

µ
(j)
i andσ

(j)
i , so thatRi represents a configuration in the search space whose quality

can be determined using a fitness functionf . In most continuous optimisation prob-

lems, the variables have a specific domain of definition. Without loss of generality,

we assume eachr(j)
i ∈ Ri to be defined in to the interval[−1, 1]. As a consequence,

eachr
(j)
i ∈ Ri follows a truncated normal distributionin the range[−1, 1]. Trun-

cated normals can be sampled using a simple numerical procedure and the technique

is widely adopted in pseudo-random number generation, seee.g.(Geweke, 1991) for

an efficient implementation.

To each individuali a solutionAi is attached acting as an attractor forPi. Every

generation,Ri andAi are compared in terms of their fitness. IfAi is better than

Ri (i.e. f(Ai) > f(Ri) assuming a maximisation problem), an update operation is

applied on the corresponding modelPi. The update will move the mean values of

the probabilistic modelPi slightly towards the attractorAi. The choice of a suitable
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Figure 6.1: Three interacting levels can be distinguished in the continuous multi-model EDA:
The individual, group and population level.

model update operation is critical for the working of the algorithm. We will elaborate

the details of the probabilistic model update in section 6.1.2.
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The update policy of an attractorAi can follow two distinctive strategies. In the

original QEA (Han & Kim, 2002) anelitist update strategy was used, in which the

attractorAi is replaced byRi only if Ri is better thanAi in terms of fitness. Due to

thenon-elitistupdate strategy used in vQEAAi is replaced at every generation. The

choice of the update policy has great consequences for the algorithm and changes

its behaviour completely. Since no experimental conditioncould be identified that

favoured the elitist attractor update policy, we concentrate on the non-elitist version

during the course of this chapter.

G RO U P S The second (middle) level corresponds togroups. The population is di-

vided intog groups each containingk individuals having the ability of synchronising

their attractors. For that purpose, the best attractor (in terms of fitness) of a group,

denotedBgroup, is stored at every generation and is periodically distributed to the

group attractors. This phase of local synchronisation is controlled by the parameter

Slocal.

P O P U L AT I O N The set of allp = g × k individuals forms thepopulationand

defines the topmost (outer) level of the multi-model approach. As for the groups, the

individuals of the population can synchronise their attractors, too. For that purpose,

the best attractor (in terms of fitness) among all groups denotedBglobal, is stored every

generation and is periodically distributed to the group attractors. This phase of global

synchronisation is controlled by the parameterSglobal.

6.1.2 Model Update

The update of the probabilistic model is particularly interesting, since it governs how

the search space is explored by the algorithm. Among the firstcontinuous EDA pro-

posed in literature is the continuous version of PBIL (PBILc) (Sebag & Ducoulom-

bier, 1998), which uses independent Gaussian distributions for each variable of the

problem. Several variants for updating the mean and standard deviation of each Gaus-

sian distribution were presented and tested on a number of benchmark problems. The

study in (Yuan & Gallagher, 2003) revealed a number of problems of the method and

as a result an entirely different probabilistic model was proposed. In (Gallagher &

Frean, 2005), a new update rule is investigated and comparedto the generalised mean

shift clustering framework. A general framework on continuous EDA, namely Iter-

ated Density Estimation Evolutionary Algorithm (IDEA), was proposed in (Bosman
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& Thierens, 2000), and the similarity to the EDA by Mühlenbein et al. (1999) was

noted.

The common principle of all these continuous EDA is based on the sampling of a

larger population. According to the fitness of the sampled individuals, the probabilis-

tic model is updated. High quality solutions have a strongerimpact on the update

that drives the model towards promising areas in the search space. In cHM-EDA, the

situation is very different, since only asinglesolution (for each probabilistic model)

is sampled in every iteration. Hence, the model update cannot rely on the density of a

population, but instead has to use a single attractor to perform the desired update. A

very interesting continuous extension of the compact Genetic Algorithm (cGA) was

developed in (Mininno, Cupertino, & Naso, 2008), which samples only two solutions

in each iteration. Depending on the fitness, a winner and a loser solution is deter-

mined and the model is then shifted towards the winner solution. In (Mininno et al.,

2008), the performance of this real-coded cGA was investigated by carrying out some

very small-scale experiments. Comparisons with the standard genetic algorithm and

the binary cGA did not show a significant advantage of this method. Nevertheless, it

is very interesting to note that a probabilistic update based on only a single attractor

(or winner solution) is feasible and is used in some methods.

We formulate here an appropriate update rule for the probabilistic models. Updat-

ing the meanµ(j) in the Gaussian variablej is straightforward. We adopt a mean shift

towards the value of the current attractora(j) at locationj, which is quite similar to

the mean update used in some methods mentioned above. Depending on the distance

d(j)(t) = a(j)(t) − µ(j)(t), a shift∆µ(j)(t) at generationt is defined as a sigmoid

function:

∆µ(j)(t) =
2

1 + e−5d(j)(t)
− 1 (6.2)

which is then used to perform the update:

µ(j)(t + 1) = µ(j)(t) + θµ∆µ(j)(t) (6.3)

In Equation (6.3) a parameterθµ is introduced, which we will refer to as the learning

rate of the mean. We note thatθµ corresponds to the maximum mean shift in a single

generation.

Figure 6.2 visualises the effect of the update operation. Inthe diagram, the mean

value was initialised toµ(j)(0) = −1 and then updated100 times towards the at-

tractora(j)(t) = 1,∀t < 100. We note the deceleration in the update ofµ(j) when
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Figure 6.2: Theoretical variations of the mean valueµ(j) obtained through the succes-

sive application of the update operator used in cHM-EDA. The mean was ini-
tialised to µ(j)(0) = −1 and then updated for100 generations towards at-
tractor a(j)(t) = 1,∀t < 100. Then the attractor was exchanged to become
a(j)(t) = −1,∀t ≥ 100 and the mean was updated for further100 genera-
tions. The update is asymmetrical since an attractor is approached slowly, but
left quickly.

approaching the attractor. After generationt ≥ 100, the attractor is set toa(j)(t) =

−1,∀t ≥ 100, which results in the update ofµ(j) in the opposite direction. We see

that the update is not symmetrical:µ(j) converges slowly towards an attractor but

departs from it quickly.

Updating the standard deviationσ(j) is more difficult. If σ(j) is decreasing too

quickly, the algorithm is prone to converge prematurely, while too slow a decrease

might cause its non-convergence. Furthermore, an uncontrolled increase ofσ(j) may

also result in divergence. In that case, the resulting Gaussian distribution increasingly

resembles a uniform one (in the interval[−1, 1]) and the algorithm performs a random

walk in the search space. A small standard deviation allows alocal search on a more

specific area in the fitness landscape while a large deviationallows a stronger explo-

ration of the search space. It is not trivial to answer at which time during the evo-

lutionary run the algorithm should stop the exploration andstart a localised search.

Furthermore, this decision has to be made once more on the basis of a single attract-

ing solution only.
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Figure 6.3: Theoretical variations of the standard deviationσ(j) obtained through the succes-
sive application of the update operator used in cHM-EDA. The standard devia-
tion was initialised toσ(j)(0) = 1 and then decreased for100 generation using
Eq. 6.4. After100 generation the standards deviation was increased for another
100 generations. The update operator is symmetrical.

For the update of the standard deviationσ(j)(t), the hypothesis is thatσ(j)(t) should

decrease wheneverµ(j)(t) represents a “promising” area in the fitness landscape. We

assumeµ(j)(t) to be “fit” when |d(j)(t)| < σ(j)(t) at generationt. Thus, if the attrac-

tor a(j)(t) is close toµ(j)(t) (within the boundaries defined byσ(j)(t)), the standard

deviationσ(j)(t) decreases. It is noteworthy that solutions fulfilling this condition are

more likely to be sampled than other solutions, which means that on averageσ(j)(t)

will decrease. Attractors that are more distant toµ(j)(t) and thus|d(j)(t)| ≥ σ(j)(t),

will cause an increase ofσ(j)(t), since it can be assumed thatµ(j)(t) does not repre-

sent a promising area in the landscape.

We define the standard deviation update at generationt as:

σ(j)(t + 1) :=

{

σ(j)(t)× (1− θσ) if |d(j)(t)| < σ(j)(t)

σ(j)(t)× (1− θσ)−1 otherwise
(6.4)

In Equation (6.4) a parameterθσ is introduced, which we will refer to as the learning

rate of the standard deviation. In order to avoid divergent behaviour of the algorithm,

i.e. σ(j)(t) increases indefinitely, the domain ofσ(j)(t) is restricted by defining upper

and lower bounds, such thatσmin ≤ σ(j)(t) ≤ σmax.
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Figure 6.3 visualises the effect of the update operation. Inthe diagram, the stan-

dard deviation was initialised toσ(j)(0) = 1 and decreased during 100 update steps

using Eq. 6.4. Again, we note the deceleration in the update steps when approaching

σ(j)(t) = 0 and thus convergence. After generationt ≥ 100, the standard deviation

σ(j)(t) increases for another 100 update steps. We see that this update operator is

symmetrical.

In Figure 6.4, the principle of the two defined update operators is summarised.

Distant attractors (relative to the current mean of the Gaussian distribution) result

in a large mean shift while at the same time the standard deviation increases,cf.

Figure 6.4a. For close attractors, the mean shift is small and the standard deviation

decreases,cf. Figure 6.4b.

It is important to note that the probabilistic update operator described above is

similar to the rotation gate used in vQEA. As shown in chapter4, the size of an

update step using the rotation gate depends on the convergence of the probabilistic

model. This phenomenon was described as a form of deceleration of the algorithm

before convergence. As seen above, the shape of the theoretical variations of the

update operations demonstrate a similar strategy in cHM-EDA, since here also the

size of the update steps decreases with increasing convergence of the algorithm.

6.2 P E R F O R M A N C E A NA LY S I S

Among the most interesting aspects of a new algorithm is its optimisation perfor-

mance compared against other algorithms in the field. In thissection, the performance

of the cHM-EDA is experimentally evaluated and compared to some state-of-the-art

evolutionary methods.

The experimental methodology of evaluating evolutionary algorithms was repeat-

edly criticised in numerous publications,cf. e.g. (Hooker, 1995), (Whitley, Rana,

Dzubera, & Mathias, 1996), (Eiben & Jelasity, 2002) and also(Gent et al., 1997).

The criticisms aimed mainly at the “random” selection of benchmark functions and

the lack of a clear motivation for this choice. Another issuefor inter-comparisons

arose due to the use of different measures to evaluate the performance of an algo-

rithm (Eiben & Jelasity, 2002). Commonly used performance measures are i) the

average success rate (SR),i.e. the average number of trials in which an algorithm

was able to successfully solve the given problem, and ii) themean best fitness (MBF)

value obtained after the termination of the algorithm. Both measures are meaning-

ful but can report very different outcomes. For instance, itis possible to have a low
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(b) Update operation for close attractors

Figure 6.4: Update operation as used in cHM-EDA for a single Gaussian distribution. For
each update step, the distanced(t) = a(t) − µ(t) between the attractora(t) and
the meanµ(t) of the Gaussian distribution is computed at generationt. (a) If
d(t) ≥ σ(t), the attractor is considered distant. It is assumed thatµ(t) does
not represent a promising area in the search space. In this case the meanµ(t)
is strongly shifted towards the attractor (thick/green horizontal arrow) while at
the same time the standard deviationσ(t) is increased to broaden the search.
(b) On the other hand, if the attractor is inside the boundaries defined byσ(t), i.e.
|d(t)| < σ(t), thenµ(t) is already in a promising area of the search space. The
algorithm starts to localise the search by shiftingµ(t) only slightly towards the
direction of the attractor, while decreasingσ(t) at the same time.

SR and at the same time a high MBF1 and vice versa2. Different measures allow

1 The algorithm gets consistently close to the optimum, but rarely converges at the actual optimum.
2 Most trials are successful, but a few report a very poor finalfitness.
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more detailed insights into the tested algorithm and so multiple measures should be

included in the performance analysis.

Most of these issues are explicitly addressed by contemporary benchmark suites.

For the special session at the Congress on Evolutionary Computation (CEC) in 2005,

an annual major event for the research field, a novel benchmark suite was proposed

(Suganthan et al., 2005). The suite consists of 25 benchmarkfunctions covering a va-

riety of different problem characteristics. The functionsrange from simple separable

uni-modal problems, over non-separable, non-linear, non-symmetrical, rotated and

scalable functions, to complex hybrid composition functions in which several differ-

ent function properties are mixed together. Furthermore, some noisy benchmarks are

considered.

The suite was proposed as part of a competition on real-parameter optimisation

at the CEC’05. An explicit design goal of the suite was the possibility of inter-

comparisons between different methods. Thus, guidelines for statistical analysis and

presentation of results are given as part of the benchmark specification. Very in-

teresting is the fact that, as a result of the competition many algorithms have been

compared on the same benchmark functions. Hence future algorithms can be easily

compared to many existing methods and their performance evaluated.

Before studying cHM-EDA on the CEC’05 benchmark suite, the impact of the

parameters on the optimisation performance is highlighted. Afterwards cHM-EDA

is applied on the 25 test functions of the suite and compared to some state-of-the-art

methods in the field of evolutionary computation.

6.2.1 Guidelines for configuring cHM-EDA

In order to get a better understanding of the meaning of the two learning ratesθµ and

θσ, the impact of these parameters on the performance of cHM-EDA is studied in this

section. This information becomes very important when configuring the algorithm

for a specific problem. The explicit goal is to derive some practical rules of thumb

for a proper configuration of cHM-EDA, especially when some properties about the

given search problem are knowna priori.

Setup

In this analysis, a cHM-EDA with ten individuals that are fully synchronised in ev-

ery generation is chosen as a specific population structure.This structure is directly

adopted from previous experiments on vQEA, but might not be necessarily optimal
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for cHM-EDA. Nevertheless, we restrict the analysis here tothis simple configura-

tion only and leave the analysis of more complex population hierarchies for future

research.

A series of experiments is executed which show the achieved final fitness of the

algorithm as a function of the two learning ratesθµ and θσ. Since each problem

has its own specific characteristics three different benchmark problems are chosen as

representatives for potential optimisation problems. These three functions are taken

from the CEC’05 test suite which is also used in the comprehensive benchmark study

in the next section.

Among the most studied numerical benchmark functions is certainly the sphere

function. Because of its uni-modal nature and its separability (i.e. no epistasis), it

is supposed to be easy for any optimisation method. The function is named F1 in

the test suite and a shifted version is used. The second function investigated here

is the shifted Rosenbrock function (F6 in the test suite). It is multi-modal and non-

separable and thus much more difficult to solve. The global optimum is inside a

narrow flat valley. Finding the valley is comparatively easy, but converging towards

the actual optimum is difficult. Finally a composed functionis considered, namely

F17, which is likely to reflect real-world scenarios the best. The number of local

optima is large and different function properties are mixedtogether. Additionally,

some additive Gaussian noise is involved in the function evaluation, which further

complicates the problem.

The values for the mean shiftθµ are varied in the range[0.01, 0.4], while for the

standard deviation updateθσ values in the range[0.001, 0.2] are considered. For each

configuration, ten runs are performed and the obtained final fitness is averaged. All

configurations are applied to the three problems using threedifferent problem sizes

N = 10, N = 30, andN = 50. Consistent with the guidelines of the CEC’05 test

suite, the algorithm was allowed to perform10×N fitness evaluations.

Results

Figure 6.5 presents the results obtained on the sphere benchmark problem F1. The

diagram shows a contour plot in which the two axes represent the two learning rates

θµ andθσ respectively while the colour reflects the solution qualityobtained after the

optimisation process. The darker the colour, the closer thealgorithm has converged

towards the global optimum of the function. Note the logarithmic scale of the colour

axis.
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Figure 6.5: Impact of different parameter configurations on the performance of benchmark

function F1

We clearly see that for this simple problem many configurations are suitable, espe-

cially for small problem sizes. We also note immediately that the setting of the mean

shift θµ is almost irrelevant to solving the problem. A larger rate becomes more bene-

ficial when the problem size increases which can be explainedby the uni-modality of

the function,i.e. since there is only a single optimum with a clear gradient pointing

towards it, the “pace” of the algorithm can be fast without the risk to “skip” some

optima. The only critical choice to make in this problem is the proper configura-
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Figure 6.6: Impact of different parameter configurations on the performance of benchmark
function F6

tion of the standard deviation shiftθσ. For higher dimensions, the rate needs to be

small enough to avoid premature convergence of the algorithm towards non-optimal

solutions.

Increasing the difficulty of the problem increases the importance of the standard

deviation shiftθσ even more. In Figure 6.6, the results for the Rosenbrock function

are presented. The meaning of the colours and axes in the diagram are the same as

before. Once more we note the comparatively low influence of the mean shiftθµ.
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Figure 6.7: Impact of different parameter configurations on the performance of benchmark

function F17

We also note that maintaining diversity is very important onthis problem and this is

expressed by the very small learning rates forθσ. This observation might be due to

the flat areas in the landscape. On flat landscapes the optimisation progress is slow

and the algorithm requires more iterations to follow the gradient. Furthermore, the

mean shift rateθµ should be large in order to compensate for the slow optimisation

progress.
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Nevertheless, a largeθµ rate is not always helpful as demonstrated by the results

on function F17 presented in Figure 6.7. This function has a large number of local

optima. Here smaller update steps (i.e. smaller mean shiftsθµ) allow better com-

pensation for decision errors. If the algorithm has identified a promising area in the

search space and adjusted theµ values of the corresponding Gaussian distributions,

the means are less prone to be shifted far away during single update steps due to a

sudden attraction by a very distant attractor. Again, we notice the strong dependence

of the performance onθσ.

Rules of thumb

A general observation of the presented results above is the comparably low impor-

tance of the mean shift rateθµ. If no information about the search space is given

an appropriate default value iŝθµ = 0.05. This setting allows the optimisation of

simple uni-modal functions but also more complex problems within the given limit

of fitness evaluations. It is explicitly noted that a larger learning rate may signifi-

cantly reduce the number of required evaluations on easy problems. The mean shift

should be larger when the landscape is known to be flat. Smaller rates are preferred

on functions having many local optima.

The standard deviation rateθσ is generally the critical parameter in cHM-EDA.

It should always be adjusted according to the dimensionality N of the problem. A

reasonable choice for a default value isθ̂σ = 1
10×N

. On flat problems and problems

with many optima this value should be decreased.

As a summary the following guidelines are presented:

I. If nothing is known about the fitness landscape, chose the default values for

cHM-EDA: θµ = θ̂µ = 0.05 andθσ = θ̂σ = 1
10N

, whereN is the problem size

II. If the landscape is known to be flat, increase the mean shift up toθµ = 5× θ̂µ =

0.25 and decrease the standard deviation rate toθσ = 1

2×θ̂σ
= 1

20×N

III. If the landscape has a large number of local optima, decrease the mean shift to

θµ = 1
5
θ̂µ = 0.01 and decrease the standard deviation rate toθσ = 1

2×θ̂σ
= 1

20×N

The standard deviation rateθσ as a function of the problem sizeN is presented in

Figure 6.8 for guideline I and guidelines II and III respectively.

It is not claimed that the above guidelines represent the most suitable configuration

for all possible problems, but they can serve as a basis for further fine-tuning of the

settings for a particular problem. The above findings are used to configure cHM-EDA

to optimise the functions of the CEC’05 test suite for cHM-EDA.
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Figure 6.8: The standard deviation rateθσ as a function of the problem sizeN .

6.2.2 Benchmark analysis

In this section cHM-EDA is applied on the 25 functions of the CEC’05 benchmark

suite. First, the experimental setup is explained, followed by the presentation of

results and a comparison to some state-of-the-art methods in the field of evolutionary

computation.

Setup

Three guidelines for configuring cHM-EDA have been experimentally derived in the

previous section. cHM-EDA can be properly configured using these findings for the

functions of the CEC’05 test suite. In Table 6.1, all25 functions of the suite are

associated with one of the three rules. The characteristicsof each function are well

known and described in the specification of the test suite.

Guideline Function

I F1, F2, F4, F7, F11 – F14
II F3, F5, F6, F8
III F9, F10, F15 – F25

Table 6.1: Configuration of cHM-EDA for the functions of the CEC’05 testsuite
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Algorithm Description and Reference

CMA-ES
The quasi parameter freeLocal Restart Covariance Matrix
Adaptation Evolution Strategyas described
in (Auger & Hansen, 2005)

MVG-EDA
TheMulti-Variate Gaussian Model EDAintroduced in
(Yuan & Gallagher, 2005) uses covariance sampling
similar to the CMA-ES

D/E
The “classical”Differential Evolutionalgorithm using a
DE/rand/1/bin scheme as described in (Storn & Price, 1997).
Results obtained from (R̈onkkönen, Kukkonen, & Price, 2005).

CoEvo
Co-evolutionary Strategythat co-evolves a population of
solutions and a population of mutation steps used for
exploration of the search space (Posik, 2005)

Hybrid GA
Hybrid Real-coded Genetic Algorithmwith female and male
differentiation that combines a local and a global search
strategy (Garćıa-Mart́ınez & Lozano, 2005)

Table 6.2: Algorithms used for comparison to cHM-EDA on the CEC’05 benchmark suite

Additional attempts have been made to further improve the performance on the

uni-modal functions F1 to F5, resulting in the following exception for F2: theθµ rate

was set to0.1, while theθσ rate was kept unchanged according to guideline I.

Functions F7 and F25 represent problems without boundariesfor the search space.

Here the algorithm starts with an initial population specified in a certain range, but

the optimum is outside of this initialisation range. For these functions, cHM-EDA

uses (non-truncated) Gaussian distributions which allowsthe method to explore an

unbounded search space.

All benchmark requirements and related settings are strictly adopted from the

benchmark specification. We refer to (Suganthan et al., 2005) for a comprehensive

list of all details.

In order to allow some performance comparison, the mean bestfitness errors of

recently published algorithms are taken into consideration. As discussed earlier, this

single performance measure alone is not enough for a comprehensive comparison

of methods. Nevertheless, it should provide the reader witha general overview of

the obtained results. The considered algorithms are brieflydescribed in Table 6.2.

All methods have participated at the CEC’05 competition. Theyhave demonstrated

a highly competitive performance on the benchmark functions and are among the

leading algorithms in the field of numerical optimisation. The benchmark results are

directly available from the references given in the table.
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Results

The test suite proposes guidelines for presentation of results and recommends a spe-

cific formatting of retrieved statistical information. Thecomplete outcome of the

results in the required format is presented in Appendix B of the thesis. To give a gen-

eral overview of the obtained results some summarising figures are presented here.

Each function is tested using three different problem sizesN = 10, N = 30,

N = 50. For N = 10 the mean best fitness error,i.e. the difference between the

obtained final fitness to the globally optimal fitness value, is presented in Figure 6.9.

The diagram shows the results of cHM-EDA and the comparison algorithms given in

Table 6.2. For most problems, all methods report similar performance, function F3

being a notable exception. F3 is a uni-modal, shifted and rotated, high conditioned

elliptic function that could not be properly solved by cHM-EDA. Algorithms like the

hybrid GA, MVG-EDA and to some extent also D/E report similardifficulties here,

but demonstrate better results compared to cHM-EDA. On functions F10 and F11,

cHM-EDA is very competitive, F11 being solved consistentlyin most of the runs.

More specifically, the success rate is92% on F11, meaning that23 out of 25 runs

solved the problem with the required accuracy3. On the noisy function F4, the CMA-

ES is outperformed by a surprisingly clear margin by all other methods. In (Auger &

Hansen, 2005), this observation is explained by an initial step-size that is too small

and by the failure of the method to enlarge it due to the effects of strong noise.

The difference between the tested methods becomes more obvious when the prob-

lem size increases toN = 30, cf. Figure 6.10. On the uni-modal functions F1 to

F5, the Co-evolutionary Strategy (CoEvo) is significantly less competitive than other

methods. Also, the performance of D/E is clearly affected bythe dimensionality in-

crease. It is known that function F7 becomes easier to solve with increasing problem

sizes. All methods except CoEvo demonstrate an improved performance compared

to N = 10 on this function. On the more complex problems F12 to F25 all methods

report very similar performance with cHM-EDA having slightadvantages on func-

tions F16 and F17. Similar toN = 10, cHM-EDA shows better performance on F10

and F11, compared to all other methods.

A figure was also prepared for problem sizeN = 50. Since the CEC’05 competi-

tion included only problem sizes up toN = 30, not all algorithms have been tested

on this problem size. Only the results of the CMA-ES are available for a compar-

ison. Both methods are impacted by the higher dimensional search space. While

3 This is an example for a high success rate, but a comparatively low mean fitness due to very few
suboptimal runs.
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Figure 6.9: Comparison of the mean fitness error of contemporary state-of-art methods on the
CEC’05 benchmark functions of problem sizeN = 10.
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Figure 6.10: Comparison of the mean fitness error of contemporary state-of-art methods on
the CEC’05 benchmark functions of problem sizeN = 30.

CMA-ES is consistently better on the uni-modal problems F1 toF3 and the multi-

modal Rosenbrock function (F6), cHM-EDA reports superior results on functions F9

to F12, F16 and F17. The success rate on F11 is still 76% compared to 0% in the

case of CMA-ES.
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Figure 6.11: Comparison of the mean fitness error of contemporary state-of-art methods on
the CEC’05 benchmark functions of problem sizeN = 50.

Conclusions

In this section, some interesting characteristics of cHM-EDA were demonstrated.

The standard deviation rateθσ is the most critical parameter in the method and needs

to be adjusted in dependence with the problem size while the mean shift rateθµ can be

left constant for most problems. Three guidelines for configuring the algorithm were

derived from the experimental observations and were demonstrated to work well in

practise. Only function F2 benefits from a slightly different setting.

The overall performance of cHM-EDA is very competitive on most test functions.

It becomes highly competitive on difficult multi-modal problems such as F9 to F12,

F16 and F17, especially when the problem size increases. Clearly some problems

arise with functions containing flat areas, or functions that require different learning

rates depending on the stage of the evolutionary process. This observation was made

on the functions F3 and F6, but also F2, which could only be solved after carefully

fine-tuning the learning parameters. Here, an adaptive learning rate for the criticalθσ

parameter might be beneficial for cHM-EDA, since excellent results are reported by

CMA-ES which employs a mechanism to adapt the learning rate during the search.

On the complex hybrid problems, only some small differencesbetween the tested

methods could be observed.



138 O P T I M I S I N G C O N T I N U O U S S E A R C H S PAC E S

6.3 A NA LY S I S O F T H E M U LT I -M O D E L

Similar to vQEA, the most important property of cHM-EDA is its multiple probabilis-

tic model. In this section some potential advantages of thismulti-model approach are

highlighted, especially the adequate estimation of multi-modal fitness landscapes, the

scalability of the method and its robustness against fitnessnoise.

6.3.1 Estimating multi-modal fitness landscapes

Single model EDAs, such ase.g. the PBILc, explore the search space using a single

Gaussian distribution per variable. Hence the density estimation of promising areas

in a multi-modal fitness landscape is limited. Only a single area in the search space

can be explored at a certain generation since the Gaussian probability density func-

tion is uni-modal. Due to the use of more than one Gaussian distribution, cHM-EDA

is supposed to be able to concentrate the search on many promising areas simultane-

ously. The models can independently explore several local optima in the landscape

and “communicate” their findings about the corresponding solution quality during

synchronisation events.

The ability of cHM-EDA to estimate non-trivial, complex fitness landscapes is ex-

perimentally demonstrated here. A simple multi-modal fitness function is defined

and explored by a number of probabilistic models (individuals). The state of each

model is then investigated after the evolution of a number ofpredefined generations.

Two strategies are considered: one way of studying the stateof all models is by sam-

pling the corresponding distribution of each model and generating histograms of the

samples. The second possibility is to explicitly compute the accumulated Gaussian

probability density functions of all models. The accumulated Gaussian probability

density function is given by

φacc(x) =
1

N

N∑

i=1

φtrunc
i (x) (6.5)

with fi(x) being the probability density function of the truncation normal distribution

with boundsa = −1 andb = 1 of individual i:

φtrunc
i (x) =

1
σi

φ(x−µi

σi
)

Φ( b−µi

σi
)Φ(a−µi

σi
)

(6.6)
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whereφ(·) is the probability density function of the standard normal distribution,

Φ(·) its cumulative distribution function. It is noteworthy that both approaches should

report equivalent results, as long the number of samples generated for the histograms

is large and the histogram bins have high enough resolution.

For the sake of simplicity, a one-dimensional bi-modal fitness function is used:

f(x) = −x4 + x2 +
x

4
+

1

4
(6.7)

wherex ∈ R and−1 ≤ x ≤ 1. The functionf has two local optima of different

quality and is plotted as an overlay in Figure 6.12. As a result of the one-dimensional

search space, allµi andσi in Eq. 6.6 are scalars.

The landscape of this fitness function is explored using20 models, each of them

organised in its own group. The20 groups are synchronised every50 generations and

in total1000 generations are allowed. Every50th generation5000 samples are drawn

from each model and a histogram of all20 × 5000 samples is computed. Addition-

ally, the accumulated Gaussian density functions are computed using Eq. 6.5. Small

learning rates were used in this experiment to allow a very slow convergence.

A number of runs with varying initial random seeds were performed and a typi-

cal run is presented in Figure 6.12. After initialisation (generation0) the mixture of

Gaussian distributions resembles a uniform distribution.We see that after50 gen-

erations many models have shifted their mean values towardsthe global optimum,

but also the local optimum is represented as seen in generation 100 to 250. In later

generations most models have converged towards the global optimum.

Conclusions

The experimental results suggest that cHM-EDA allows the estimation of multi-

modal fitness landscapes. Due to their independent evolution, the probabilistic mod-

els can indeed simultaneously explore different areas in the search space. Individual

models can be attracted by different local optima and, in case of a small enough global

synchronisation rate, also converge towards them. This property of cHM-EDA is a

key difference to the single model EDA.

6.3.2 Scalability

In this section, the scalability of cHM-EDA is investigated. For this analysis we

compare four different population structures on the shifted sphere function, which
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Figure 6.12: Histogram of sampled solution of all participating probabilistic models. The
fitness function is overlaid (dashed line) in order to allow a direct comparison of
the solution quality obtained by the model.

is functionF1 of the CEC’05 benchmark suite. The following four structures were

chosen:1-1 (one group having a single individual),1-5 (one group having five in-

dividuals),1-10 and1-20 (one group having ten and 20 individuals, respectively).

Each of these configurations was applied on the sphere function with varying prob-

lem dimensionsN ∈ {5, 10, . . . , 100}. For each dimension and each of the four

configurations 25 independent runs were performed and the average number of fit-

ness evaluations required to solve the problem was determined. The problem was



6.3 A NA LY S I S O F T H E M U LT I - M O D E L 141

Population Structure Experiment I Experiment II

1-1
θµ = 0.1 θµ = 0.1
θσ = 0.00425 θσ = 0.003

1-5
θµ = 0.1 θµ = 0.1
θσ = 0.015 θσ = 0.0135

1-10
θµ = 0.1 θµ = 0.1
θσ = 0.0275 θσ = 0.02

1-20
θµ = 0.1 θµ = 0.1
θσ = 0.05 θσ = 0.025

Table 6.3: Experimental setup of cHM-EDA for the two experiments on scalability

considered to be solved if the difference between global optimum and achieved fit-

ness value was below an error thresholdǫ = 10−8. Each configuration was allowed

to perform a maximum of105 fitness evaluations (FES).

For each structure, the learning ratesθµ andθσ have to be adjusted. As pointed

out earlier,θµ is less significant on this benchmark function. Hence, it wasfixed

to θµ = 0.1 for all four hierarchies. The learning rateθσ is more critical and was

determined for each population structure individually.

Two different experiments are conducted here. In the first experiment, the rates

θσ of all four structures are configured to solve the problem of size N = 30 with

the given accuracy using asimilar amount of FES. Hence, none of the four settings

has a performance advantage over the others onN = 30. It is then investigated

how well these configurations perform on higher-dimensional problems,i.e. which

configuration scales the best.

For the second experiment, themost scalablesetting for the structures on all prob-

lem sizes is determined,i.e. all four settings can consistently solve the problem on

all/most sizes. Then the settings are compared according tothe required number of

FES to find the optimum. More specifically, for each population structure the largest

θσ is identified, such that the sphere problem of sizeN = 90 was solved by all 25

runs. That means the application of such a configuration on problem sizesN > 90

results in the failure of at least some runs to converge towards the global optimum.

On the other hand, all four population structures can solve problem sizesN ≤ 90.

Hence, the chosenθσ is the most scalable setting that allows the successful optimi-

sation of all/most problem sizes. The parameter settings for both experiments are

presented in Table 6.3.

Figure 6.13 presents the outcome of the first experiment. In the diagram a filled

symbol indicates that all 25 runs have identified the global optimum. If some runs
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Figure 6.13: The required average number of fitness evaluations (obtained in 25 runs) as a
function of the problem size of the sphere benchmark according to scalability
experiment I. All four population structures use a single setting for all problem
sizes. In the diagram, a filled symbol indicates that all 25 runs have identified
the global optimum while an empty symbol is used when some runs were unsuc-
cessful and the symbol is not shown if no run has found the optimum. Structure
1-5 is in this experiment the most scalable setting, followed by1-10.

were unsuccessful, an empty symbol is used instead and the symbol is not shown if

no run has found the optimum. According to the experimental setup all four settings

achieve a similar performance on problem sizeN = 30. On smaller sizes the results

are also very similar to each other. With increasing problemsizes all configurations

become increasingly unsuitable to solve the problem. AtN = 40, population struc-

ture1-1 is the first that does not solve the problem in all runs (note the empty symbol)

and can not solve it at all forN > 55. Structure1-20shows a similar trend and is not

able to cope with problems larger thanN > 50. Structure1-5 and1-10are clearly

more scalable on this benchmark function, being able to solve most of the problem

sizes with the fixed setting.

The results on the second experiment are presented in Figure6.14. The interpre-

tation of the symbols is the same as above. We note that all configurations can solve

the problem successfully up to sizeN = 90 as defined in the experimental setup.

Larger problem sizesN > 90 cause the failure of at least some runs to identify the

global optimum (note the empty symbols for sizes95 and100). Also, in this sce-

nario, the two multi-model structures1-5 and1-10are the most appropriate choice.
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Figure 6.14: The required average number of fitness evaluations (obtained in 25 runs) as a
function of the problem size of the sphere benchmark according to scalabil-
ity experiment II. On all problem sizes, the population structures1-5 and1-10
dominate the other two investigated structures. Structure1-5requires on average
≈ 57.7% less FES than structure1-1.

Structure1-5 is particularly successful and requires on average≈ 57.7% fewer FES

than structure1-1 to solve the problem.

Conclusions

From experiment I, it is concluded that cHM-EDA is capable ofsolving a number of

problem sizes using a single fixed setting for the learning rates. Assuming an appro-

priate population size, a multiple probabilistic model cansolve more problem sizes

than a single model. It was also demonstrated that the population size clearly impacts

the scalability of the algorithm. For low-dimensional problems, a small number of

individuals is sufficient; in fact, five to ten individuals represent the most scalable

settings for the investigated problem sizes.

If cHM-EDA is configured to solve a large number of problem sizes, a multiple

model is also beneficial. More specifically, multiple modelsrequire significantly

fewer FES to solve the problem than a single model. This observation was made in

experiment II. Once more it is noted that a small population size is more suitable, at

least on the range of investigated problem sizes, compared to a larger population.
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From the experimental setup of experiment II, it is observedthat the learning rates

θσ increase with the number of models used. The single model configuration1-1

requires a4.5 times smaller learning rate than structure1-5, which in turn is≈ 1.5

times smaller than structure1-10. Due to the direct relationship between learning rate

and convergence speed this observation seems very interesting and will be further

investigated in the next section.

6.3.3 Learning rates

We have seen from the previous experiments that using several probabilistic models

instead of a single one in cHM-EDA is beneficial in terms of either scalability or

number of required FES to solve a problem. In the latter case,it was observed that

the learning rateθσ could be larger if multiple models were used. Due to the direct

relationship between learning rate and convergence speed this observation is the focus

of this section. It is hypothesised that multiple models allow faster learning rates and

as a result can speed up the optimisation process.

In the following experiment four population structures arechosen:1-1 (one group

having a single individual),1-5 (one group having five individuals),1-10 and1-20

(one group having ten and 20 individuals, respectively). Once more the simplest

test function, namely the sphere function F1, from the CEC’05 benchmark suite is

used for this analysis and a number of different problem sizes N = 10, . . . , 100 are

considered. The idea of the experimental setup is to identify the optimal (i.e. fastest

possible) learning rates for each of the four structures in order to solve the sphere

function of a specific problem sizeN in a minimal number of FES. The obtained

learning rates and the corresponding required FES can then be compared among the

different population structures.

Since the learning rate of the mean shiftθµ is of low importance on this problem it

was fixed to0.1 for all configurations. For each problem size, and for each ofthe four

structures, the largest possible rate for the standard deviation shiftθσ is determined

that consistently solves the function in 25 independent runs4. The required setting

was obtained through systematic trial and error.

In Figure 6.15, the learning rateθσ and the corresponding required number of FES

to solve the problem are presented as functions of the problem sizeN for each of

the four population structures. Regardless of the problem size, the single model1-1

4 A run is considered successful if the distance between optimal fitness and achieved fitness is smaller
thanǫ = 10−8
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Figure 6.15: The learning rateθσ and the corresponding average number of required FES as
a function of the problem sizeN for four different population structures. The
optimal learning rate for multiple models is larger compared to the single model
(top figure). Thus to a certain extent increasing the number of models allows
also faster optimisation (structure1-5and1-10), cf. bottom figure.

reports clearly the smallest learning rate among all testedconfigurations. We also

note that the larger the population size the greater the optimal learning rate becomes.

Similarly to earlier experiments, it is observed that population structures1-5 and1-

10are better suited on the sphere function than1-1and1-20, the latter two requiring

significantly more FES than the first two.

In the context of fully synchronised probabilistic models in cHM-EDA, multiple

models allow a greater learning rate compared to a single model. Thus, increasing the

number of models allows to a certain extent a faster optimisation of the considered

problem. Nevertheless, if too many models are used, the number of FES increases

despite the fast learning rate. On the sphere function, the optimal number of models

appear to be five to ten.
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Population Structure Configuration

1-1
θµ = 0.1
θσ = 0.003

1-5
θµ = 0.1
θσ = 0.0135

1-10
θµ = 0.1
θσ = 0.02

1-20
θµ = 0.1
θσ = 0.025

Table 6.4: Experimental setup of cHM-EDA for the experiments on robustness to fitness noise

6.3.4 Robustness

It was earlier pointed out that the capability of a method to handle noisy and inac-

curate information is an essential pre-condition to solve real-world problems. In this

section, cHM-EDA is tested on a noisy function from the CEC’05 benchmark suite

and several different population structures are compared to each other. We are espe-

cially interested whether the use of several probabilisticmodels is beneficial in the

context of fitness noise.

The CEC’05 suite contains two noisy test functions: the noisy version of Schwe-

fel’s problem 1.2, namely F4, and a noisy hybrid compositionfunction, namely F17.

The latter is a multi-modal function with a large number of local optima and a mix-

ture of many different function properties. Since only the effects of noise are under

scrutiny here, F17 is less suitable for this analysis. Function F4 on the other hand is

uni-modal, scalable and comparatively easy to solve. As seen in the benchmark study,

most algorithms can solve this function at least for small problem sizes. Hence, we

focus the experimental analysis on this function usingN = 10 dimensions.

Once more four population structures are chosen:1-1 (one group having a single

individual),1-5 (one group having five individuals),1-10and1-20(one group having

ten and 20 individuals, respectively). The configuration ofthese structures is directly

adopted from an earlier experiment on scalability (cf. section 6.3.2) and are sum-

marised in Table 6.4. It is noted that the presented learningrates are slow enough

to consistently solve the sphere function of sizeN = 90. The rates are deliberately

chosen to be small in order to compensate for the effects of noise.
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Figure 6.16: The average final fitness errors of four different population structures as a func-
tion of the noise strengthσm. Due to the non-deceptive nature of the applied
fitness noise, a higher selective pressure is beneficial on this problem. All con-
figurations use a single group of fully synchronised individuals. Thus larger
population sizes allow higher selective pressure and thus better robustness to the
fitness noise.

Function F4 is given as:

F4(x) := (
N∑

i=1

(
i∑

j=1

z)2)× (1 + σm|N (0, 1)|) + fbias (6.8)

wherefbias is a scalar constant fitness bias,z = x − o, x = (x1, . . . , xN) ando the

location of the global optimum. Parameterσm indicates the strength of the applied

noise. We immediately note that this noise is a multiplicative fitness noise since the

effect of the noise decreases for solutions closer to the optimum and increases for

more distant ones. At the optimum, the noise is zero.

In the benchmark suite,σm is fixed to0.4. In this study values forσm vary in the

range[0, 2.5]. For eachσm and for each of the four configurations,50 runs are per-

formed and the evolution of the fitness errorǫ = F4(x)−fbias is recorded. According

to the guidelines of the CEC’05 suite, an error ofǫ < 10−6 indicates a successful run.

The final fitness error of a single run is computed as the average of the last1, 000

fitness values obtained during the evolutionary process. Since an algorithm has not

necessarily found the global optimum, but has converged towards some different
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point in the landscape, the average of several fitness evaluations is a fair estimate

of the achieved real (non-noisy) fitness. In Figure 6.16, theaverage final fitness er-

rors are presented as a function of the noise strengthσm. All configurations are able

to solve the problem consistently if no noise is present,i.e. σm = 0. As soon as noise

is introduced, the performance of structure1-1 is greatly impacted and the method

quickly becomes unable to optimise the landscape at all. Themulti-model structures

are clearly more resistive to the disruptive effects of increasing noise strengths. Here

the large population size of1-20 is the most robust among the tested configurations.

The large variations of the performance between different noise levels is due to a low

final fitness of single runs and the logarithmic scale of the figure, which emphasise

these small absolute differences.

Similar to the vQEA, cHM-EDA also demonstrates good robustness to multiplica-

tive fitness noise. Increasing the number of probabilistic models also improves the

robustness of the method to noise on the used test function. Since the noise is not mis-

leading or deceptive, a high selective pressure is beneficial and consequently larger

population sizes in a single fully synchronised group are very successful on this prob-

lem.

6.4 C O N C L U S I O N

In this chapter, vQEA was extended towards continuous search spaces by replacing

theQbit with a probabilistic model based on Gaussian distributions. All key charac-

teristics of vQEA, namely a multiple probabilistic model, ahierarchical population

structure and a convergence dependent learning rule are also part of its extension. The

method was named continuous hierarchical model EDA, since the quantum metaphor

has become inappropriate in the context of the Gaussian distributions.

The overall performance of cHM-EDA is very competitive especially on difficult,

high-dimensional problems. Thus, it is claimed that the method may be a good can-

didate for handling real world problems. Issues may arise whenever the search space

contains flat areas. Here some adaptive update strategies for the learning rate of the

standard deviation, ase.g.employed in the CMA-ES, might be beneficial.

Along with the benchmark experiments, some practical guidelines for parameter

configuration were presented. The standard deviation rateθσ is the critical parameter

in cHM-EDA, while the mean shiftθµ can be left constant for most problems. The

derived guidelines work well on the 25 test functions of the CEC’05 benchmark suite.
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To a certain degree, the multiple probabilistic model allows the simultaneous ex-

ploration of several promising areas in the search space. This characteristic is a key

difference of cHM-EDA to single model EDA. Compared to a single model cHM-

EDA, the multi-model cHM-EDA offers either a higher scalability of a fixed parame-

ter setting or a faster convergence speed towards the optimum due to the use of faster

learning rates. Furthermore, multiple models increase therobustness of the method

in the context of multiplicative fitness noise.

Future directions may involve the exploration of differentpopulation structures.

Another interesting idea is the use different learning rates among the groups since

some groups move fast in order to quickly identify promisingareas in the search

space, while other groups move more slowly and maintain enough diversity to per-

form a localised search in the promising areas spotted by thefaster groups. An in-

teresting concept is also a restart strategy as implementede.g. in some evolutionary

strategies with the aim to overcome flat areas in the search space.





Chapter7
O P T I M I S I N G H E T E RO G E N E O U S S E A R C H S PAC E S : A

H Y B R I D V Q E A / C H M - E DA M O D E L

The proposed vQEA and cHM-EDA share the same algorithmic structure and a com-

bination of the two methods is straightforward and a naturalextension towards a

heterogeneous optimisation method. Both vQEA and cHM-EDA were shown to be

highly competitive methods on their own and it is expected that their combined ap-

plication in a hybrid algorithm would be beneficial.

The probabilistic model of this combined approach is a concatenation of a string of

Qbits and the string of Gaussian distributions as defined for the cHM-EDA. Since the

probabilistic model of this algorithm is heterogeneous, the new method is introduced

as theheterogeneous hierarchical model EDA(hHM-EDA).

Optimising heterogeneous search spaces using probabilistic methods is not new.

The Mixed Bayesian Optimisation Algorithm (MBOA) was introduced in (Ocenasek

& Schwarz, 2002) as a continuous-discrete optimisation method. Similarly to hHM-

EDA, it belongs to the family of EDA and employs specialised probabilistic models

to explore the binary and real-valued part of a solution efficiently. Nevertheless,

some distinct differences between the two methods exist, which are highlighted and

discussed in greater detail as part of this chapter.

The chapter is organised as follows. First, the novel hHM-EDA is presented and its

functioning explained, followed by a comparison of the method to MBOA. Similari-

ties and specifics according to the used probabilistic model, model update, sampling,

selection and replacement strategies of both methods are explained. Since all the

components of hHM-EDA have been individually discussed in the previous chapters,

we focus here on the interaction between the combined probabilistic models. Once

more the explicit aim is to develop some robust guidelines todetermine suitable pa-

rameter configurations for the method. The performance of hHM-EDA is compared

to a number of binary-only and continuous-only optimisation methods, but also to

the continuous-discrete MBOA.

151
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7.1 T H E H E T E RO G E N E O U S H I E R A R C H I C A L M O D E L E DA

The overall structure of the proposed hHM-EDA is almost identical to vQEA and

cHM-EDA. Its behaviour can be decomposed in three differentinteracting levels, see

Figure 7.1.

I N D I V I D UA L S The lowest level corresponds toindividuals. An individual i at

generationt contains a heterogeneous probabilistic modelHi(t) and two compound

solutionsSi(t) andAi(t). More precisely,Hi corresponds to a string ofN pairs of

models(Q(j)
i , P

(j)
i ):

Hi = H1
i . . . HN

i =

[

Q
(1)
i . . . Q

(N)
i

P
(1)
i . . . P

(N)
i

]

(7.1)

wherePi denotes the continuous representation of the search space in the form of a

string of Gaussian distributions:

Pi = P 1
i . . . PN

i =

[

µ
(1)
i . . . µ

(N)
i

σ
(1)
i . . . σ

(N)
i

]

(7.2)

andQi the binary representation in form of a concatenation ofQbits:

Qi = Q1
i . . . QN

i =

[

α1
i . . . αN

i

β1
i . . . βN

i

]

(7.3)

The pair(µ(j)
i , σ

(j)
i ) corresponds to the parameters of the distribution of thejth

variable of theith probabilistic model, and(α(j)
i , β

(j)
i ) correspond to the probability

amplitudes of thejth Qbit of theith probabilistic model.

Each variable inPi and Qi is sampled according to(µ(j)
i , σ

(j)
i ) and (α

(j)
i , β

(j)
i )

respectively, forming a compound solutionSi = (Ci, Ri), whereCi is a bit vector

andRi a real-valued vector of sizeN . Hence,Si(t) represents a configuration in the

search space whose quality can be determined using a fitness functionf .

Similarly to cHM-EDA, we assume without loss of generality eachr
(j)
i ∈ Ri to be

defined in the range[−1, 1]. As a consequence, eachr
(j)
i ∈ Ri follows a truncated

normal distributionin the range[−1, 1]. Truncated normals can be sampled using a

simple numerical procedure and the technique is widely adopted in pseudo-random

number generation, seee.g.(Geweke, 1991) for an efficient implementation.
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Figure 7.1: Three interacting levels can be distinguished in hHM-EDA: The individual, group
and population level.

To each individuali, a solutionAi consisting of a binary and a continuous sub-

component is attached acting as an attractor forHi. Every generationSi(t) andAi

are compared in terms of their fitness. IfAi is better thanSi(t), an update operation is

applied on the corresponding modelHi. Each representation uses its corresponding
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update operator to drive the probabilistic model. The binary probabilistic modelQi is

updated using the rotation gate as employed in vQEA, and the continuous modelPi is

modified by the mean and standard deviation shift as introduced for cHM-EDA. Thus

the hybrid algorithm requires the setting of three learningrates for the model update:

the learning rate∆θ used in the rotation gate to update aQbit, and the two learning

ratesθµ andθσ to update the Gaussian mean and standard deviation respectively.

Similarly to vQEA and cHM-EDA, the update policy of an attractor Ai can fol-

low either an elitist or a non-elitist strategy. The choice of the update policy has

great consequences for the algorithm and changes its behaviour completely. Since

no experimental condition could be identified that favouredthe elitist attractor up-

date policy for vQEA and cHM-EDA, we concentrate on the non-elitist version in

hHM-EDA.

G RO U P S The second level corresponds togroups. The population is divided into

g groups each containingk individuals having the ability of synchronising their at-

tractors. For that purpose, the best attractor (in terms of fitness) of a group, denoted

Bgroup, is stored at every generation and is periodically distributed to the group at-

tractors. This phase of local synchronisation is controlled by the parameterSlocal.

P O P U L AT I O N The set of allp = g × k individuals forms thepopulationand

defines the topmost level of the multi-model approach. As forthe groups, the indi-

viduals of the population can synchronise their attractors, too. For that purpose, the

best attractor (in terms of fitness) among all groups, denoted Bglobal, is stored every

generation and is periodically distributed to the group attractors. This phase of global

synchronisation is controlled by the parameterSglobal.

7.2 M B OA

Similarly to hHM-EDA, MBOA also belongs to the class of EDA andcan be for-

mulated for continuous and discrete search spaces. Thus, wediscuss this method

here in greater detail. According to the classification of EDA given in (Pelikan et al.,

1999), MBOA belongs to the third class of EDA which means it is able to explicitly

model multi-variate interactions. The algorithm is based on decision trees (Friedman

& Goldszmidt, 1998) that have been successfully employed already in the hierarchi-

cal Bayesian Optimisation Algorithm (hBOA) (Pelikan, Goldberg, & Sastry, 2000).

Indeed, it was shown in (Ocenasek & Schwarz, 2002) that MBOA isbackward-
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compatible to hBOA and achieves very similar performance on several deceptive

binary benchmark functions.

7.2.1 Principle

MBOA attempts to learn a probability distributionP (X) that is approximated by the

product of conditional probability distributions for eachsearch variableXi, 1 ≤ i ≤
N , given a set of influencing variablesΠi:

P (X) = P (X1, . . . , XN) =
N∏

i=1

P (Xi|Πi) (7.4)

The method is initialised through generating a base population of n random indi-

viduals. Then a number ofτ×n promising individuals is selected using a tournament

selection, forming a populationD. Parameterτ ∈ R is typically set to0.5. Based on

D, the probabilistic model of MBOA is rebuilt every generation. The model consists

of a set ofN decision trees, one for each search variableXi. Each tree defines the

conditional distributionsP (Xi|Πi), whereΠi denotes the set of variables that impact

the outcomeXi. The nodes in thei-th decision tree are formed by the variables in

Πi. The i-th tree is recursively constructed by cutting the domain ofthe variables

Πij ∈ Πi into parts, whereXi is assumed to be mutually independent. In the contin-

uous domain, real-valued split boundaries are defined whichcreate intervals for the

variablesΠij. The leafs of the tree are modelled by a uni-variate density function us-

ing Gaussian kernels. Thus, the search space is partitionedinto subspaces, in which

the search variables can be identified by a simple localised search. The Gaussian

kernels are used to explore each partition locally.

An offspring population is sampled from the constructedN decision trees, which

in turn is used to replace part of the base population. In order to preserve diversity

in the population, a restricted tournament replacement is employed as introduced

in (Pelikan & Goldberg, 2001).

In Figure 7.2, an example for a learnt model in MBOA is presented for a two-

dimensional problem consisting of the two search variablesX1 andX2. Using Equa-

tion 7.4, the joint probability distributionP (X1, X2) is factorised intoP (X1, X2) =

P (X1)P (X2|X1). Given the density functionp1(x1) for the distributionP (X1), a
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Figure 7.2: Illustration of a trained model in MBOA for a two-dimensional problem. The
joint probability distributionP (X1, X2) is factorised using Equation 7.4 into
P (X1, X2) = P (X1)P (X2|X1). The density functionp1(x1) corresponds to
the distributionP (X1). ValueS ∈ R is a continuous split boundary, that par-
titions X1 into two parts. For each part a different local distribution is de-
fined to sampleX2. Thus, the density ofP (X2|X1) is given byp2(x2|x1) with
p2(x2|x1) = p′2(x2), if x1 < S andp2(x2|x1) = p′′2(x2), if x1 ≥ S. p′2(x2) and
p′′2(x2) can be modelled by Gaussian kernels.

decision tree for variableX2 is learnt. The tree partitionsX1 into two parts, based on

a continuous split boundaryS ∈ R. Thus, the density ofP (X2|X1) is given by

p2(x2|x1) =

{

p′2(x2) if x1 < S

p′′2(x2) if x1 ≥ S
(7.5)

The densitiesp′2(x2) andp′′2(x2) can be modelled by a single Gaussian probability

density function, but also a mixture of Gaussian kernels or linear regression models

could be employed (Ocenasek & Schwarz, 2002).

Additional information about MBOA can be found in (Kern et al., 2004) and

in (Ocenasek & Schwarz, 2002), in which also the actual construction of the de-

cision trees and the computation of the split boundaries areexplained in detail. A

complete study on MBOA is presented in the PhD dissertation ofOcenasek (2002).
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7.2.2 Comparison to hHM-EDA

Although both MBOA and hHM-EDA belong to the family of EDA, themethods dif-

fer significantly from each other. Here the differences in the employed probabilistic

model, the model update, the sampling and replacement strategies and the structure

of the population of individuals are discussed.

The probabilistic model used in MBOA is based onN decision trees (one for each

search variable), which are rebuilt in every generation of the evolutionary process.

Generating these trees is a very complex and expensive operation. Indeed, it was

shown in (Ocenasek & Pelikan, 2004), that the model construction easily becomes

the most costly operation of the method: experimenting withspin glass benchmarks,

MBOA spent nearly95% of the execution time on building the decision trees. This

situation motivated an implementation of the method on parallel hardware (Ocenasek

& Pelikan, 2004). As a consequence, the capability of modelling complex variable

dependencies comes at the price of a significant computational overhead. Further-

more, for many practical applications this overhead might not even result in any ad-

vantage compared to much simpler methods,cf. e.g.the work of (Johnson & Shapiro,

2001) on comparing different evolutionary algorithms on feature selection problems.

For hHM-EDA, on the other hand, a much simpler model is used. It belongs to

the first class of EDA according to the classification scheme given in (Pelikan et al.,

1999) and is based on a number of independent Gaussian and Bernoulli distributions

(i.e. string ofQbits). Since each individual maintains its own probabilistic model,

hHM-EDA is a multi-model EDA which is in contrast to MBOA. The advantages

of this unique approach have been discussed at length in the corresponding chapters

about vQEA and cHM-EDA respectively. The computational overhead of hHM-EDA

according to model management is small and most of the resources are devoted to the

evaluation of the fitness function.

The model update in MBOA consists of a complete reconstruction of all N deci-

sion trees, while the model in hHM-EDA is updated incrementally and thus evolves

during the optimisation process. The current state of the model is a direct result of

earlier updates introducing a memory about information of previously visited areas

in the search landscape. Compared to MBOA, the model update in hHM-EDA is fast

and inexpensive, despite the fact that a multiple probabilistic model is maintained.

In order to sample a population of individuals, MBOA traverses down the decision

trees for all search variables and samples the distributionspecified at the leaf of the

tree. A comparatively large number of individuals is generated, which replace part of
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the population created in the previous generation. As mentioned earlier, a restricted

tournament replacement is used. Sampling the model in hHM-EDA is straightfor-

ward since the distributions are independent. Unlike MBOA, hHM-EDA samples

only a single solution from each model.

Finally, hHM-EDA maintains a structured population which allows an information

exchange between the individual models while for MBOA no suchstructure exists.

7.2.3 Conclusion

Both MBOA and hHM-EDA are EDA and explore the search space probabilistically.

Nevertheless, their characteristics and thus potential applications are very different.

MBOA is an advanced and complex algorithm which is specialised to deal with the

strong variable interactions inherent in some optimisation problems. The computa-

tional overhead of MBOA is significant and the execution time spent on constructing

the decision trees may easily rival the time required for thefitness evaluations. Only

if the fitness function is expensive itself, the overhead becomes negligible. Thus,

MBOA seems suitable for problems with costly fitness functions that also require

the discovery of variable linkage in order to be solved properly. For such problems,

parallel hardware becomes a necessary requirement.

The proposed hHM-EDA, on the other hand, is a much more light-weight algo-

rithm and its computational overhead is negligible for mostproblems. The multiple

probabilistic model is an original mechanism capable of compensating for a limited

number of decision errors due to variable linkage. Thus, hHM-EDA is a flexible, less

specialised tool, suitable for a variety of optimisation problems.

7.3 P E R F O R M A N C E A NA LY S I S

In this section, the performance of hHM-EDA is evaluated. Results are compared

to a selection of contemporary continuous-only and binary-only optimisation meth-

ods, along with the already discussed MBOA. For the binary-only optimisers three

first-level binary EDA are considered that have been discussed already in chapter 4,

namely UMDA (Mühlenbein & Paass, 1996), PBIL (Baluja, 1994) and cGA (Harik et

al., 1999). Using binary representations to explore continuous search spaces is a typ-

ical scenario in the context of traditional genetic algorithms,cf. e.g. the early work

in (Michalewicz & Janikow, 1991) and also (Maniezzo, 1994),in which a binary
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GA was applied on a heterogeneous optimisation problem. Bit strings of pre-defined

length are mapped into real values by a Gray encoding.

Using a continuous representation to explore a binary landscape, on the other hand,

is less common. An example can be found in (Leung et al., 2003)where a real-

coded GA evolves the topology and the weight matrix of a neural network. Since a

continuous representation is used, real valuesx ∈ R of the chromosome are converted

into bits using a simple mapping:

δ(x) =

{

0 if x < 0

1 else
(7.6)

This mapping enables a numerical optimiser to explore a binary search space. Due to

the excellent performance reported in the previous chapter, the CMA-ES and cHM-

EDA are used for the performance analysis presented here.

7.3.1 Benchmark problem

Due to the lack of a suitable benchmark suite for heterogeneous optimisation prob-

lems, a simple benchmark is proposed here. A minimisation problem is considered

that contains two equally sized search landscapes: a binaryand a continuous one.

The dimensionality (number of variables) of each landscapeis denoted byN . Target

vectors representing the global optimum of the problem are specified for each land-

scape: a binary vectorB∗ = (b∗1, . . . , b
∗
N) and a continuous vectorR∗ = (r∗1, . . . , r

∗
N).

A solution for this problem is denoted asS = (B,R), whereB = (b1, . . . , bN) and

R = (r1, . . . , rN) represent the binary and the real part of the problem respectively.

The goal is to evolve a solutionS, such that it becomes equivalent to the target solu-

tion S∗ = (B∗, R∗). More specifically, the fitness function in this problem is defined

as the Euclidean distance between the real partR of a solutionS to the real partR∗

of the target solutionS∗. The binary partB of the solution acts as a mask in the

computation of the distance: only if bitbi = 1, does the corresponding real valueri

contribute to the computation of the difference. Furthermore, if bi 6= b∗i a penalty is

added to the overall fitness of the solution. The complete fitness function is described

in detail in Algorithm 4. The global optimum is reached if thefitness becomesf = 0.

The problem is designed to resemble a typical wrapper-basedfeature selection

scenario. The feature space is represented by the binary solution sub-component

while the parameter space of the classification method is reflected by the real-valued

sub-component. If a certain bit (feature)bi ∈ B is wrongly selected,i.e. bi 6= b∗i , the
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Algorithm 4 Computes the fitnessf of the solutionS = (B,R)

Require: B = (b1, . . . , bN) andR = (r1, . . . , rN)
1: f ⇐ 0
2: for i = 1 to N do
3: if bi = 1 andb∗i = 1 then
4: d⇐ (r∗i − ri)

2

5: else if bi 6= b∗i then
6: d⇐ (r∗i )

2

7: else
8: d⇐ 0
9: end if

10: f ⇐ f + d
11: end for

solutionS = (B,R) receives a penalty(r∗i )
2. Thus, different bits (features) may have

a different significance, since different fitness penaltiesare associated with them. On

the other hand, if the bit (feature) is correctly selected,i.e. bi = b∗i = 1, the size of the

fitness penalty depends on the quality of the variable (parameter of the classifier)ri

of the real solution partR. Thus, even if the optimisation method correctly selects a

certain feature, the fitness penalty may be large if the classification method is poorly

parametrised. Both solution sub-components need toco-operatein order to minimise

the fitness penalties.

In the following experiment, the target solutionS∗ = (B∗, R∗) was chosen in

dependence of the problem sizeN :

B∗ = (

×N
2

︷ ︸︸ ︷

1, . . . , 1,

×N
2

︷ ︸︸ ︷

0, . . . , 0)

R∗ = (

×N
2

, equi−distant
︷ ︸︸ ︷
pmax, . . . , pmin, pmax, . . . , pmin

︸ ︷︷ ︸

×N
2

, equi−distant

)

(7.7)

The parameterspmin andpmax denote the minimum and maximum fitness penalty

assigned to a certain bit. Penalties are equi-distantly distributed over the firstN
2

and lastN
2

elements of the real-valued solution sub-component. In theexperiments

discussed later in this chapter,pmin = 0.5 andpmax = 1 are chosen.

It is noteworthy that, using this configuration, only the first N
2

real-valued elements

ri ∈ R have to be optimised by the algorithm. The otherN
2

elements become ir-

relevant in the fitness computation, if the algorithm has evolved zeroes at the lastN
2

positions of the binary vector.
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Since different fitness penalties are assigned to each binary element, all bits corre-

spond to a different marginal fitness contribution. In the GAdomain, such a situation

is also referred to assalientbuilding blocks (Thierens, Goldberg, & Pereira, 1998).

Due to the difference of significance, the convergence behaviour of the binary prob-

abilistic model is directly affected. More specifically, a sequential convergence of

variables is expected, starting with the ones with the highest salience and finishing

with the ones with the lowest salience. This sequential convergence phenomenon is

calleddomino convergenceand was first mentioned in (Rudnick, 1992).

7.3.2 Configuring hHM-EDA

Similarly to the parameter analysis in chapter 6, we focus here on a specific popula-

tion structure. The structure consisting of ten individuals that are fully synchronised

in every generation is directly adopted from previous experiments on vQEA and

cHM-EDA. Although this setting has generally reported goodoptimisation perfor-

mance, it is noted that this structure might not be necessarily optimal for hHM-EDA.

Nevertheless, we restrict the analysis here to this simple configuration only and leave

the exploration of more complex population hierarchies forfuture research.

Learning ratesθµ andθσ

The first series of experiments investigates the hypothesisthat the three guidelines de-

veloped for cHM-EDA in chapter 6, section 6.2.1, are also working in the context of

hHM-EDA. For this analysis, the learning rate of the rotation gate is fixed to specific

values∆θ ∈ {0.0005π, 0.001π, 0.005π}. For each∆θ, the parametersθµ andθσ are

varied and the success rate of hHM-EDA is computed based on25 independent runs

on the proposed heterogeneous benchmark problem. A run is considered successful

if the final achieved fitness value is lower than10−5. The success rate is defined as

the ratio between the successful and total number of runs. Different problem sizes

N are investigated and a maximum number ofN × 4 × 103 FES is allowed for the

optimiser.

Figure 7.3 presents the success rate of hHM-EDA in dependence of the two learn-

ing ratesθµ andθσ for the problem sizesN = 25, N = 50, N = 100 and∆θ =

0.001π. The darker the colour in these diagrams, the higher the success rate of the

particular parameter setting. It is clearly demonstrated that a variety of settings are

suitable for solving the problem. We also note that the setting of the mean shiftθµ

has only a low impact on the performance of the algorithm. It is also only slightly
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Figure 7.3: The success rate of hHM-EDA in dependence of the two learning ratesθµ andθσ.
The parameter∆θ of the rotation gate was fixed to0.001π. Different problem
sizes of the benchmark are presented. The diagrams show the average of 25
independent runs. The low impact of the learning rateθµ of the mean shift is
clearly demonstrated. The learning rateθµ is dependent on the problem sizeN .

affected by the increase of the problem sizeN . The learning rateθσ, on the other

hand, is a critical parameter that strongly depends on the problem size. The larger the

sizeN , the smallerθσ has to be set in order to achieve optimal performance. Very
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similar results are reported for∆θ = 0.0005π and∆θ = 0.005π1. Almost identical

observations have been made using cHM-EDA in chapter 6, section 6.2.1.

From these experimental results it is concluded that the three guidelines derived for

cHM-EDA are also suitable for configuring hHM-EDA. Fine-tuning the mean shift

θµ is of low importance while the standard deviation shiftθσ should be adjusted in

dependence with the problem size.

Learning rate∆θ

Since the mean shift rateθµ has only a low impact on the performance of hHM-EDA,

we now focus on the relationship between the learning rate∆θ of the binary model

and the standard deviation shiftθσ. For this analysisθµ is fixed toθ̂µ = 0.05, which

was earlier introduced as the default value for this parameter. Due to the explicit

linkage between the binary and continuous search variables, several local optima

exist in the fitness landscape of the heterogeneous benchmark problem. A known

remedy against premature convergence of QEA and vQEA towards local optima in

multi-modal landscapes is the use of a modified rotation gateoperator, which was

introduced as theHǫ gate in (Han & Kim, 2004). For vQEA theHǫ gate was already

utilised in the performance and noise analysis presented inchapters 3, 4 and 5. In

the following experiments, the two configurationsǫ = 0 and ǫ = sin2(0.02π) are

investigated, where forǫ = 0 theHǫ gate equals to the standard rotation gate, while

ǫ = sin2(0.02π) was introduced as an appropriate default configuration forHǫ in

chapter 3.

Figure 7.4 presents the average success rate showing the interdependence of∆θ

andθσ obtained from25 independent runs of hHM-EDA on the benchmark problem

for a problem sizeN = 100. The darker the colour in these diagrams, the higher the

success rate of the particular parameter setting.

In the case of the standard rotation gate,cf. Figure 7.4a, a certain correlation be-

tween∆θ andθσ is observed. Clearly the best performance is reported when small

values for both learning rates are used. If∆θ is increased,θσ also needs to increase

(and vice versa) in order to maintain a non-zero success rate. Particularly a combina-

tion of a small (large)∆θ and a large (small)θσ is not suitable for the algorithm.

In the case of theHǫ gate, a similar correlation is noted, but additionally another

effect impacts the performance of the method,cf. Figure 7.4b. Very surprising is

the low sensitivity of the algorithm to the learning rate of the binary model. Almost

1 Due to the similarities of the figures, the results for∆θ = 0.0005π and∆θ = 0.005π are not presented
here.
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(a) Standard rotation gate (ǫ = 0)

0
.0

0
0

5

0
.0

0
1

0
.0

0
1

5

0
.0

0
2

0
.0

0
2

5

0
.0

0
3

7
5

0
.0

0
5

0
.0

0
7

5

0
.0

1|}0.0001~0.001~0.0025~0.005~0.0075~0.01~0.015~0.02~0.025~
��

0.00

0.15

0.30

0.45

0.60

0.75

0.90

S
u
cc

e
ss

 R
a
te

(b) Hǫ gate,ǫ = sin2(0.02π)

Figure 7.4: The success rate of hHM-EDA in dependence of the two learning rates∆θ and
θσ. The learning rateθµ was fixed to the default valuêθµ = 0.05. In (a) the
standard rotation gate was used, which allows the convergence of the probability
amplitudesα andβ to 0 or 1. Using theHǫ gate in(b) prevents the complete
convergence of the amplitudes, which decreases the sensitivity of hHM-EDA to
the parameter∆θ. Almost any∆θ is suitable, as long as the standard deviation
shift θσ is small enough.

any∆θ is suitable, as long as the standard deviation shiftθσ is small enough. The

Hǫ operator prevents the convergence of the binary probabilistic model towards1 or

0, and instead defines for the two values|α|2 and |β|2 of a Qbit a minimal and a

maximal probability,i.e. ǫ and1 − ǫ respectively. Due to the residual probabilities

ǫ and1 − ǫ a certain mechanism is employed by the algorithm that is similar to the
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bit-flip mutations used in a GA. With low probabilities, a certainQbit may collapse

towards1 (or 0), although its amplitudes have evolved close towards0 (or 1). Thus, at

least for some problems, premature convergence of a specificbit due to hitch-hiking

phenomena may be compensated through the use of theHǫ gate.

In the context of the heterogeneous benchmark problem, theHǫ gate is highly

advantageous and counteracts hitch-hiking efficiently, since larger learning rates∆θ

not only increase the risk of hitch-hiking effects, but at the same time also increase

the impact of the mutations on the probabilistic model. If a certain bit-flip mutation

is evaluated to be positive,i.e. the fitness of the mutated solution improves, the

correspondingQbit is updated towards the mutated bit value. Larger learning rates

result in larger model shifts, which in turn increase the probability of mutations for

theQbit in the next generation. Thus, in succeeding generationsthe state of aQbit

may completely invert due to the impact of earlier mutations.

Since the mutations occur with low probabilities only and are entirely random for

each bit, many generations are required to mutate the non-optimal bits in the binary

sub-component of a solution. If a certainQbit Q
(j)
i is non-optimally converged, the

corresponding continuous modelP
(j)
i has to maintain enough diversity,i.e. the stan-

dard deviationsσ(j)
i need to stay reasonably large, until the desired mutation occurs,

in order to be able to optimise the continuous search variable rj after the bitbj is

mutated. This is due to the fact that the continuous variablerj only contributes to

the fitness computation if the corresponding bitbj = b∗j = 1. In any other caserj

is irrelevant in the fitness evaluation and its value is subject to genetic drift, since no

selective pressure is provided by the fitness function. Thus, the described mutation

mechanism works well only for small learning ratesθσ, which prevents the premature

convergence ofσ(j)
i due to drift before a positive mutation at bitbj occurs.

Conclusion

The most critical parameter in hHM-EDA is the learning rateθσ of the standard devi-

ation shift that should be adjusted according to the number of variables in the problem

to solve. Similar to cHM-EDA, the mean shiftθµ is of low importance and can be

fixed to standard values for most problems. Consequently, thethree guidelines de-

rived for configuring cHM-EDA are also suitable for hHM-EDA.Furthermore, con-

figuring the learning rate∆θ for updating the binary probabilistic model is straight-

forward if theHǫ gate is used. An appropriate value for the parameterǫ was presented

in the undertaken experiments.
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7.3.3 Benchmark analysis

In this section, hHM-EDA is applied to the proposed heterogeneous benchmark prob-

lem. In order to allow a comparison of results, a number of binary and continuous-

only optimisation algorithms, namely UMDA, PBIL, cGA, vQEA,cHM-EDA and

CMA-ES, are applied on the same benchmark. Additionally, we investigate the per-

formance of MBOA as discussed above. In all experiments a problem sizeN = 100

is used which should present a certain challenge for the tested algorithms. Each

method is allowed to perform a maximum number ofN × 4 × 103 = 4 × 105 FES.

The search space was limited to the range[−1, 1] for each search variable.

Two configurations of hHM-EDA are considered that are directly adopted from the

analysis discussed in section 7.3.2. The first setting follows guideline I which results

in the settingθµ = θ̂µ = 0.05 andθσ = θ̂σ = 1
10×N

= 0.001. The only difference

of the second setting is a slightly faster rateθσ = 0.0015. Both configurations use a

small value,∆θ = 0.001π, for theHǫ gate to update the binary probabilistic model,

that was shown to be efficient in the previous analysis.

Optimal configurations for all tested methods were obtainedthrough a compre-

hensive parameter analysis. In the case of UMDA, the choice of an appropriate

population sizen is critical. Different sizes in the range[200, 2500] were inves-

tigated. The default ratio of50% for the truncation selection is used. PBIL also

requires the setting of a population size which was variedn ∈ [50, 300]. Addi-

tional parameters are the learning rateRl and the mutation shiftRs. Similarly to the

noise analysis in chapter 5, we assumeRl = Rs. Values were variedRl, Rs ∈
{0.001, 0.005, 0.01, 0.05, 0.1, 0.2}. In total, 36 different parameter configurations

were investigated for PBIL.

The only parameter of cGA is the virtual population sizen that was opti-

mised in the range[150, 1250]. For vQEA, a single group of ten fully synchro-

nised individuals is tested while the learning rate of aHǫ gate2 is varied∆θ ∈
{0.001, 0.0025, 0.005, 0.0075, 0.01}. All binary methods use12 bits to encode a sin-

gle real value. A Gray encoding was used for the conversion ofbit strings into a

continuous value.

The CMA-ES employs special mechanisms that adapt most of its parameters au-

tomatically. According to (Auger & Hansen, 2005), only the initial starting points

and the initial standard deviation of the method needs to be specified for a given

problem. We adopt the strategy given in (Auger & Hansen, 2005) and set the initial

2 Defaultǫ = sin2(0.02π) was used.
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standard deviation to10−2(B − A)/2, with [A,B]N = [−1, 1]N being the search in-

terval of the benchmark. The initial starting points were uniformly sampled in the

range[−0.1, 0.1]N , which is slightly different from (Auger & Hansen, 2005), but

in favour for the method3. No further parameter fine-tuning was attempted for this

method. The Java implementation provided by Nikolaus Hansen4 was used in the

experiments.

For cHM-EDA, the default value forθµ = θ̂µ is used and onlyθσ ∈
{0.00025, . . . , 0.0015} is varied, which allows a direct comparison to hHM-EDA.

The only difference between cHM-EDA and hHM-EDA is the different probabilis-

tic model for the binary solution sub-component of the latter one. All continuous

methods use Equation 7.6 to explore the binary solution sub-component.

MBOA only requires the proper setting of its population sizen. Sizes are varied

n ∈ {50, 100, 125, 150, 200, 250, 300}. These values correspond to the size of the

base population in MBOA. Every generation,τ ×N new offspring are generated and

evaluated, thus each generation requires the computation of τ × N FES instead of

N . Parameterτ ∈ R was set to0.5 as recommended as the default in (Kern et al.,

2004). An official implementation of the method in the programming language C++

is provided by Jiri Ocenasek5.

Results

The results of the parameter analysis can be found in Tables 7.1 and 7.2. For each

setting of a method, the best, median, worst and mean performance along with the

standard deviation obtained from25 independent runs is presented in the columns.

Additionally, the success rate as defined in section 7.3.2 isgiven. The most suitable

configuration in terms of success rate is highlighted. In thecases where the success

rate is not discriminative enough, the mean fitness and number of required FES are

considered, in order to determine the most suitable setting.

hHM-EDA, vQEA, UMDA, cHM-EDA and MBOA all report a success rate of

100%. With cGA,76% of the runs were successful, while not a single run reached the

required fitness threshold using PBIL. It is also noted that the binary methods require

a rather large population size due to the mapping of100×12 bits into100 real values.

Because of this mapping, the overall precision of the optimisation is also affected.

In the case of cHM-EDA, hHM-EDA, CMA-ES and MBOA, the optimisation was

3 In (Auger & Hansen, 2005) the initial starting points were uniformly drawn from[A,B]N .
4 Available at http://www.lri.fr/˜hansen
5 Available at http://jiri.ocenasek.com
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Method Setting best med worst mean stdev
success

rate

hHM-EDA
θ=0.001, θσ=0.001 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 100%
θ=0.001, θσ=0.0015 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 100%

vQEA

θ=0.001 1.41e − 04 2.38e − 04 2.82e − 04 2.30e − 04 3.42e − 05 0%
θ=0.0025 9.84e − 06 1.72e − 05 2.91e − 05 1.73e − 05 5.49e − 06 8%
θ=0.005 2.89e − 06 5.41e − 06 9.08e − 06 5.52e − 06 1.50e − 06 100%
θ=0.0075 2.41e − 06 3.40e − 06 5.30e − 06 3.71e − 06 9.42e − 07 100%
θ=0.01 2.07e − 06 3.83e − 06 5.15e − 06 3.67e − 06 7.78e − 07 100%

UMDA

n=200 1.17e + 00 1.55e + 00 3.85e + 00 1.84e + 00 6.82e − 01 0%
n=300 5.84e − 02 6.98e − 01 2.02e + 00 7.93e − 01 5.23e − 01 0%
n=400 1.84e − 02 8.69e − 02 1.06e + 00 2.66e − 01 3.05e − 01 0%
n=500 7.66e − 04 1.64e − 02 7.59e − 01 1.46e − 01 2.30e − 01 0%
n=600 9.22e − 05 5.72e − 03 7.81e − 01 4.37e − 02 1.51e − 01 0%
n=700 6.04e − 04 5.08e − 03 4.28e − 01 3.89e − 02 1.03e − 01 0%
n=800 3.28e − 05 1.14e − 03 2.50e − 01 1.32e − 02 4.87e − 02 0%
n=900 1.15e − 05 1.79e − 04 5.64e − 03 8.31e − 04 1.28e − 03 0%
n=1500 1.21e − 06 2.76e − 06 2.54e − 04 2.50e − 05 5.46e − 05 72%
n=2000 1.21e − 06 1.30e − 06 3.33e − 05 3.72e − 06 6.84e − 06 92%
n=2500 1.21e − 06 1.21e − 06 4.68e − 06 1.50e − 06 7.49e − 07 100%

cGA

n=150 3.72e − 01 1.30e + 00 3.12e + 00 1.41e + 00 6.70e − 01 0%
n=250 1.79e − 02 3.33e − 01 1.43e + 00 4.27e − 01 4.22e − 01 0%
n=350 2.82e − 04 1.33e − 02 5.32e − 01 1.13e − 01 1.56e − 01 0%
n=450 2.06e − 04 3.83e − 03 3.82e − 01 4.12e − 02 1.02e − 01 0%
n=550 1.94e − 05 4.62e − 04 5.74e − 01 3.46e − 02 1.20e − 01 0%
n=750 1.91e − 06 5.94e − 05 1.01e − 03 2.09e − 04 2.92e − 04 20%
n=850 1.42e − 06 5.53e − 06 2.92e − 01 1.17e − 02 5.73e − 02 72%
n=900 1.21e − 06 4.15e − 06 3.09e − 05 7.26e − 06 7.79e − 06 76%
n=950 1.64e − 06 6.63e − 06 4.11e − 05 1.02e − 05 9.14e − 06 60%
n=1000 5.70e − 06 1.10e − 05 5.56e − 05 1.43e − 05 1.03e − 05 36%
n=1250 1.33e − 04 1.81e − 04 3.34e − 04 1.88e − 04 4.27e − 05 0%

cHM-EDA

θσ=0.00025, θµ=θ̂ 2.02e − 03 2.37e − 03 2.72e − 03 2.35e − 03 1.79e − 04 0%
θσ=0.0005, θµ=θ̂ 2.44e − 07 3.13e − 07 3.45e − 07 3.07e − 07 2.61e − 08 100%
θσ=0.00075, θµ=θ̂ 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 100%
θσ=0.001, θµ=θ̂ 0.00e + 00 0.00e + 00 6.83e − 01 2.73e − 02 1.34e − 01 96%
θσ=0.0015, θµ=θ̂ 0.00e + 00 0.00e + 00 5.55e − 01 4.56e − 02 1.31e − 01 88%

CMA-ES 0.00e + 00 7.34e − 06 4.40e − 01 2.89e − 02 1.00e − 01 52%

MBOA

N=50 4.66e + 00 8.11e + 00 1.32e + 01 8.20e + 00 1.83e + 00 0%
N=100 0.00e + 00 0.00e + 00 1.38e + 00 2.61e − 01 3.59e − 01 56%
N=125 0.00e + 00 0.00e + 00 5.70e − 01 6.22e − 02 1.50e − 01 84%
N=150 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 100%
N=200 3.93e − 07 9.61e − 06 2.24e − 04 2.80e − 05 4.91e − 05 52%
N=250 3.56e − 04 1.37e − 03 4.47e − 03 1.43e − 03 9.20e − 04 0%
N=300 2.74e − 03 1.08e − 02 1.64e − 02 1.05e − 02 3.71e − 03 0%

Table 7.1: Results of the parameter analysis for hHM-EDA, vQEA, UMDA, cGA, cHM-
EDA, CMA-ES and MBOA. Shown is the best, median and worst run obtained
from 25 independent runs. Additionally the mean and standard deviation ofthe
runs, along with the success rate is presented (see text for a definition of the suc-
cess rate). The most suitable setting in terms of success rate for each methodis
highlighted.

stopped when the fitness value dropped below10−10. In the tables, this situation is

indicated by the value0.00e + 00.

In Figure 7.5, the fitness evolution of the median run is presented. We note the

logarithmic scale of the fitness axis. The proposed hHM-EDA is clearly the fastest

optimiser among the tested algorithms on this benchmark, requiring only12300 FES

to achieve the desired solution accuracy ofǫ = 10−5 and21700 FES to drop below a
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Method Setting best med worst mean stdev
success

rate

PBIL

n=50, Rl=Rs=0.001 6.46e + 00 7.53e + 00 8.58e + 00 7.52e + 00 5.29e − 01 0%
n=50, Rl=Rs=0.005 1.17e − 02 1.81e − 02 2.56e − 02 1.81e − 02 3.17e − 03 0%
n=50, Rl=Rs=0.01 2.64e − 03 3.45e − 03 5.62e − 03 3.61e − 03 7.13e − 04 0%
n=50, Rl=Rs=0.05 1.80e − 03 2.45e − 03 3.29e − 03 2.50e − 03 4.21e − 04 0%
n=50, Rl=Rs=0.1 2.37e − 03 3.93e − 03 5.09e − 03 3.89e − 03 6.35e − 04 0%
n=50, Rl=Rs=0.2 5.06e − 03 9.15e − 03 1.33e − 02 9.07e − 03 1.64e − 03 0%
n=100, Rl=Rs=0.001 1.43e + 01 1.63e + 01 1.74e + 01 1.62e + 01 8.38e − 01 0%
n=100, Rl=Rs=0.005 1.14e − 01 1.49e − 01 1.66e − 01 1.46e − 01 1.25e − 02 0%
n=100, Rl=Rs=0.01 3.90e − 03 5.84e − 03 7.59e − 03 5.87e − 03 9.03e − 04 0%
n=100, Rl=Rs=0.05 3.57e − 04 5.30e − 04 7.53e − 04 5.28e − 04 9.72e − 05 0%
n=100, Rl=Rs=0.1 5.43e − 04 7.14e − 04 1.06e − 03 7.44e − 04 1.50e − 04 0%
n=100, Rl=Rs=0.2 8.41e − 04 1.46e − 03 2.30e − 03 1.54e − 03 3.36e − 04 0%
n=150, Rl=Rs=0.001 1.90e + 01 2.06e + 01 2.23e + 01 2.07e + 01 7.96e − 01 0%
n=150, Rl=Rs=0.005 4.76e − 01 6.14e − 01 7.37e − 01 6.09e − 01 6.72e − 02 0%
n=150, Rl=Rs=0.01 1.75e − 02 2.52e − 02 2.94e − 02 2.39e − 02 3.64e − 03 0%
n=150, Rl=Rs=0.05 2.06e − 04 2.99e − 04 4.70e − 04 3.19e − 04 6.61e − 05 0%
n=150, Rl=Rs=0.1 2.26e − 04 3.47e − 04 4.52e − 04 3.42e − 04 5.27e − 05 0%
n=150, Rl=Rs=0.2 3.96e − 04 7.32e − 04 1.07e − 03 7.29e − 04 1.72e − 04 0%
n=200, Rl=Rs=0.001 1.86e + 01 2.30e + 01 2.40e + 01 2.25e + 01 1.23e + 00 0%
n=200, Rl=Rs=0.005 1.50e + 00 1.80e + 00 2.08e + 00 1.80e + 00 1.64e − 01 0%
n=200, Rl=Rs=0.01 5.61e − 02 7.43e − 02 9.62e − 02 7.51e − 02 1.12e − 02 0%
n=200, Rl=Rs=0.05 2.07e − 04 3.02e − 04 6.24e − 04 3.23e − 04 1.08e − 04 0%
n=200, Rl=Rs=0.1 1.44e − 04 2.60e − 04 1.11e − 02 6.80e − 04 2.13e − 03 0%
n=200, Rl=Rs=0.2 1.81e − 04 4.16e − 04 4.14e − 01 1.70e − 02 8.09e − 02 0%
n=250, Rl=Rs=0.001 2.06e + 01 2.41e + 01 2.57e + 01 2.41e + 01 1.11e + 00 0%
n=250, Rl=Rs=0.005 3.01e + 00 3.51e + 00 4.37e + 00 3.56e + 00 3.08e − 01 0%
n=250, Rl=Rs=0.01 1.61e − 01 1.90e − 01 2.39e − 01 1.90e − 01 1.97e − 02 0%
n=250, Rl=Rs=0.05 1.74e − 04 3.82e − 04 1.16e − 03 4.22e − 04 1.82e − 04 0%
n=250, Rl=Rs=0.1 9.19e − 05 2.52e − 04 6.13e − 04 2.68e − 04 1.19e − 04 0%
n=250, Rl=Rs=0.2 1.24e − 04 3.23e − 04 3.75e − 01 1.55e − 02 7.34e − 02 0%
n=300, Rl=Rs=0.001 2.39e + 01 2.54e + 01 2.67e + 01 2.54e + 01 6.77e − 01 0%
n=300, Rl=Rs=0.005 5.10e + 00 5.61e + 00 6.77e + 00 5.72e + 00 3.98e − 01 0%
n=300, Rl=Rs=0.01 3.19e − 01 4.16e − 01 5.03e − 01 4.13e − 01 4.53e − 02 0%
n=300, Rl=Rs=0.05 2.73e − 04 8.23e − 04 2.46e − 02 1.79e − 03 4.67e − 03 0%
n=300, Rl=Rs=0.1 1.17e − 04 3.25e − 04 2.56e − 02 1.73e − 03 5.19e − 03 0%
n=300, Rl=Rs=0.2 9.08e − 05 3.68e − 04 9.24e − 01 3.75e − 02 1.81e − 01 0%

Table 7.2: Results of the parameter analysis for PBIL. Shown is the best, median and worst
run obtained from 25 independent runs. Additionally the mean and standard devi-
ation of the runs, along with the success rate is presented (see text for a definition
of the success rate). The most suitable setting in terms of success rate for PBIL is
highlighted.

precision of10−10. The fitness is exponentially minimised resulting in a linear curve

on the logarithmic scale of the ordinate.

Particularly interesting is the fitness evolution of PBIL, since a number of stepwise

fitness improvements are observed. This behaviour is causedby mutations having a

positive impact on the fitness of a solution. Mutations become very important in the

later stages of the optimisation process when the probabilistic model has almost con-

verged towards a specific solution candidate in the search space. Mutating a wrongly

evolved bit in the binary solution sub-component can resultin an especially signifi-

cant fitness improvement of the overall solution. Since a comparably large mutation

shift Rs = 0.1 is used, an improvement due to mutation can be efficiently exploited

by PBIL.
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Figure 7.5: Evolution of the median fitness for all tested algorithms on the heterogeneous
benchmark problem. Results are obtained from 25 independent runs. Due to the
mapping from bit values to the continuous domain, the binary methods allow a
minimal solution quality of≈ 10−6 only. As the continuous optimisers are more
precise, the evolution was stopped when the fitness value dropped below10−10.

The step-wise fitness evolution of CMA-ES, on the other hand, has an entirely

different reason. It reflects the local restarts of the method after getting stuck on some

non-optimal solution during the evolutionary process. In the presented median run,

CMA-ES performed four independent restarts, the first finishing after88, 483 FES,

the second after190, 799 FES, the third after327, 562 FES, while the fourth restart

exhausted the maximum number of FES and achieved the best results. That means,

if the initial population of CMA-ES represents a solution close to the optimum, the

method can converge towards it very quickly. Indeed, the fastest run of CMA-ES

required only three restarts and a total of294, 065 FES to achieve the precision of

10−10.

All 25 runs of cHM-EDA solved the problem reliably in the given maximum num-

ber of FES. Since the learning rateθσ = 0.00075 for cHM-EDA is two times smaller
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(a) Evolution of binary solution sub-component
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Figure 7.6: Evolution of binary and continuous solution sub-component using hHM-EDA.
Results are averaged from 25 independent runs. Dark colours in(a) correspond
to an average bit status of 0, white colours a status of 1. The domino conver-
gence effect due to different salience of the bits is clearly visible in the figure.
Simultaneously the continuous search space is optimised,cf. (b). Only the first
50 variables are subject to optimisation, if the binary solution was identified cor-
rectly. The irrelevant variables are subject to genetic drift and converge randomly.

than in hHM-EDA, the latter is also significantly faster. Theoverall fitness evolution

of the method is very similar to hHM-EDA.

MBOA, on the other hand, reports a very different convergencebehaviour. The

optimisation performance is comparatively fast in early stages of the run, but slows
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down significantly after≈ 0.5× 105 FES, increases again after≈ 1.5× 105 FES and

finally converges towards the optimum at an exponential rate. It was also noted that

MBOA is able to explore the binary search space very efficiently. The binary model

of the presented median run, for example, converged after only 17, 100 FES, while

the remaining232, 800 FES were used to optimise the continuous model.

This observation suggests a very competitive performance of MBOA on binary

optimisation problems, but a comparably slow convergence rate on numerical prob-

lems. In (Kern et al., 2004), very similar results are reported. Here, several con-

tinuous EA,i.e. the Cumulative Step Size Adaptation Evolutionary Strategy (CSA-

ES), CMA-ES, the Iterated Density Estimation Evolutionary Algorithm (IDEA) and

MBOA were experimentally compared to each other using well-known numerical

benchmark problems. Especially on simple uni-modal, separable problems, MBOA

was shown to be less competitive than the considered ES. Furthermore, it has been

demonstrated in (Kern et al., 2004), that although good results could be obtained on

separable multi-modal functions, MBOA was not able to optimise any of the tested

non-separable functions at all.

Similar to MBOA, also hHM-EDA follows a step-wise optimisation strategy of its

two models. The optimal binary solution sub-component is discovered after47, 000

FES and the optimisation of the continuous component was finished after170, 000

additional FES. The evolution of the mean generational bestsolutions of the binary

and the real solution sub-components are presented in Figure 7.6. Results are aver-

aged from the25 runs of hHM-EDA. The colour in Figure 7.6a reflects the average

bit status of each of the100 bits at a specific generation, where dark colours denote a

status of0, and white colours a status of1. The domino convergence due to the dif-

ferent salience of the bits is clearly visible in the figure. Bits corresponding to larger

fitness penalties converge earlier during the evolutionaryprocess.

Simultaneously the continuous search space is explored,cf. Figure 7.6b. If the

binary sub-component was successfully optimised, only thefirst N
2

= 50 real-valued

elementsri ∈ R are considered for further optimisation. The last50 variables are

subject to genetic drift and converge randomly.

Computational cost

The tested methods are also compared according to their computational cost. The

binary-only algorithms are generally fast, since the computational overhead for man-

aging the simple probabilistic model is low. For vQEA, a multi-model has to be main-

tained and updated which slightly increases the computational requirements com-
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Method Time in sec
Relative to
hHM-EDA

hHM-EDA 8.5 (0.0) 1.0
cHM-EDA 12.0 (0.0) 1.4
vQEA 38.6 (0.9) 4.5
PBIL 18.4 (0.1) 2.2
cGA 26.5 (0.1) 3.1
UMDA 19.8 (0.0) 2.3
CMA-ES 157.5 (5.1) 18.5
MBOA 2740.3 (12.0) 322.6

Table 7.3: Execution time of the tested methods when applied on the heterogeneous bench-
mark problem of sizeN = 100. In brackets the standard deviation is given. The
third column presents the required time in relation to the execution time of hHM-
EDA. For example, CMA-ES required≈ 18.5 more time than hHM-EDA.

pared to PBIL, UMDA and cGA. Also, cHM-EDA and hHM-EDA are fast, since

their algorithmic structure and the employed models are very similar to vQEA.

The more costly methods are clearly CMA-ES and MBOA. In terms ofCMA-ES,

a covariance matrix is generated based on the population of the current generation.

Also, the sampling of new solutions according to this covariance matrix adds com-

plexity to the algorithm. MBOA is the most costly among the tested methods here.

As discussed earlier, its computational overhead is large and it requires significantly

more resources than any of the other methods.

In order to demonstrate the computational cost of all the methods, the execution

time for each of them is recorded. It is explicitly noted thatthe execution time is not

a very reliable metric to compare algorithms to each other since it has a number of

problems. The results depend not only on the used hardware, but also on the used

programming language, the programmer’s capabilities to optimise the code and the

included software libraries. For example, MBOA is based on a C++ implementation,

while all other methods are implemented in Java. Nevertheless, such a comparison

can be very informative, if the limitations are known and discussed properly.

All methods apply the same configurations as used in the benchmark analysis.

Only the stopping criterion was slightly modified: the algorithms perform the maxi-

mum number of FES and are not allowed to stop earlier, even if the success criterion is

reached. Thus, all methods evaluate the fitness functionN×4×103 = 4×105 times.

The execution time was averaged over five runs. All experiments are performed on

the same machine, which is an Intel Core2 Duo CPU, 3.00GHz, 4GB RAM, running

a 64Bit Ubuntu Linux. The C++ code of MBOA was compiled using GCC 4.3.3 and

the highest optimisation level.
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Table 7.3 presents the measured CPU time for each method required to finish a

single run. As expected, all binary methods are approximately equal in their com-

putational demands, vQEA being slightly slower due to the additional probabilistic

models. Also cHM-EDA and hHM-EDA report a fast execution time. The very

good results of hHM-EDA are attributed to the conditional model update. Only if

the sampled solution is worse than the current attractor does an update occur. Since

the algorithm converges before the maximum number of FES is reached, no model

update occurs in later stages of the run since the attractor and sampled solution are

always identical. This situation results in an impressive execution time. If hHM-EDA

is configured with a slower learning rateθσ in order to prevent the early convergence

of the method, the execution time of the algorithm is close tothe one for cHM-EDA.

CMA-ES and MBOA require on average≈ 157 and≈ 2740 seconds, respectively,

to finish the run. Compared to hHM-EDA, these methods are approximately18 and

322 times slower than hHM-EDA.

7.3.4 Conclusion

In this section, the performance of hHM-EDA was experimentally compared to a

number of binary and continuous optimisers, along with the heterogeneous method

MBOA. Due to the lack of a suitable benchmark suite for mixed problems, a simple

test function was proposed that has similarities with the wrapper-based feature selec-

tion technique. The complexity of all the methods was discussed and compared in

the light of their execution time.

Considering the obtained results on the proposed benchmark,hHM-EDA is clearly

a highly competitive algorithm among the presented methods. However, a more de-

tailed analysis on a wider range of test functions will have to be performed to provide

further statistical evidence for this claim. Nevertheless, the obtained results have

demonstrated a promising proof of concept. The hHM-EDA is a light-weight, fast

and reliable optimiser with a negligible computational overhead. Practical guidelines

have been presented that allow an easy and intuitive configuration of the method.

7.4 S E PA R AT I O N F RO M C O O P E R AT I V E C O-E VO L U T I O N

The simultaneous evolution of two solution parts in hHM-EDAseems very similar

to the principle employed in a cooperative co-evolutionaryalgorithm. Nevertheless,

there is a distinct difference between the two, which is discussed in this section.
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Although a variety of co-evolutionary methods exist, a generalised cooperative co-

evolutionary architecture (CCA) has been introduced only recently in (Potter & Jong,

2000). The co-evolutionary model defines different species, each of them evolving

specific parts of a solution, also referred to as sub-components. A complete solution

for the problem is formed by combining all the sub-components together. A single

fitness criterion evaluates the quality of the complete solution. The evolution of each

species proceeds more or less independently from other species. Thus, different rep-

resentations for each sub-component and even different evolutionary algorithms can

work together in this approach.

In principle, the two probabilistic models of hHM-EDA couldbe interpreted as

two distinctive species. Each of them represents a separatesub-component of a com-

pound solution and both employ entirely different update operations to drive their

probabilistic model. Despite their independent evolution, both representations share

a single fitness function and both parts need to collaborate in order to maximise their

fitness.

The difference between hHM-EDA and CCA becomes obvious when comparing

the actual process of the fitness evaluation of the two. The generalised CCA ac-

cording to (Potter & Jong, 2000) is shown in Figure 7.7. Here two species are co-

evolved and the two diagrams show the fitness evaluation fromthe perspective of

either species I or II. In order to evaluate the individuals of species I, a representative

of species II is chosen. This representative is then combined with all individuals of

species I and the fitness evaluation occurs. In the opposite fashion, the individuals of

the second species are evaluated.

In the case of hHM-EDA, the situation is completely different. Here each individ-

ual consists of two parts and thus represents already a complete solution. In contrast

to CCA, no representative is chosen from the other models and thus the metaphor of

two species is not suitable for hHM-EDA. Figure 7.8 shows theevaluation process of

an individual in hHM-EDA.

7.5 C O N C L U S I O N

In this chapter, the two probabilistic models used in vQEA and cHM-EDA were

combined forming a new original algorithm that was introduced as the heterogeneous

hierarchical model EDA. Due to the lack of proper benchmark problems, a proof of

concept in the form of a synthetic test problem was demonstrated. The benchmark

shares similarities with a typical wrapper-based feature selection scenario.
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(a) Evaluating species I

(b) Evaluating species II

Figure 7.7: The fitness evaluation process employed in the cooperative co-evolutionary archi-
tecture from the perspective of species I (top figure) and species II (bottom figure)
respectively.

Figure 7.8: The fitness evaluation process employed in the hHM-EDA. All individuals belong
to a single species, but each consists of two different sub-components (binary
and real). Both sub-components together form a complete solution that is then
evaluated by the fitness criterion.

Experimental analysis of eight different optimisation techniques was provided and

discussed. In comparison to binary-only and continuous-only optimisation algo-

rithms, hHM-EDA is highly competitive. Even the much more complex continuous-

discrete optimiser MBOA required slightly more FES than hHM-EDA to solve the
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benchmark reliably. However, the analysis of more test functions is required to pro-

vide strong statistical evidence to this claim. Differences and similarities between the

MBOA and hHM-EDA were highlighted and discussed.

In terms of complexity, hHM-EDA requires very little algorithmic overhead, espe-

cially in comparison to MBOA and CMA-ES. Overall, hHM-EDA is a light-weight,

fast and reliable optimisation method that requires the configuration of only very few

parameters.

As part of the important integration of hHM-EDA into the current research field on

evolutionary computation, the similarities and differences to the generalised cooper-

ative co-evolutionary architecture were discussed. The co-evolving species in CCA

are sequentially evaluated by choosing representatives from other species which is in

contrast to the fitness evaluation in hHM-EDA. Thus, the interpretation of the two

probabilistic models as separate species (in the sense of CCA)is not suitable for the

hHM-EDA. Future research might elaborate further on the difference between the

approaches and conduct detailed experimental comparisonsof their characteristics.





Chapter8
I N T E G R AT E D F E AT U R E A N D PA R A M E T E R O P T I M I S AT I O N

F O R A N E VO LV I N G S P I K I N G N E U R A L N E T W O R K

This chapter presents the proposed extension of eSNN towardthe feature subset se-

lection (FSS) domain. All required methods for this extension, i.e. the binary and

continuous optimisation algorithms and their hybridisation, were developed and com-

prehensively tested in the prior chapters. It was shown thatboth the binary and the

continuous optimiser as well as the hybrid version are highly competitive and repre-

sent current state-of-the-art in the field of optimisation.The combination of hHM-

EDA and eSNN forms an integrated feature and parameter optimisation framework

based on the eSNN classification method. Due to the implementation of feature se-

lection, the extension is expected to improve classification accuracy, while the simul-

taneous optimisation of the eSNN configuration avoids poor parameter choices and

promotes the straightforward application of the method to aspecific problem domain.

As described earlier, the continuous representation in hHM-EDA is used to op-

timise the parameter space of eSNN, while the binary representation explores the

feature space of the given data set. A bit state of “0” or “ 1” indicates the absence

or presence of the corresponding feature. According to the quantum metaphor of the

binary part of hHM-EDA inherited from vQEA, the feature space is explored prob-

abilistically using asuperposition of feature subsets. Due to this interpretation, the

novel eSNN based feature selection framework is namedQuantum-inspired Spiking

Neural Network(QiSNN) framework.

In order to test the functioning of the novel QiSNN framework, the method is

experimentally compared to two traditional FSS algorithms. The first is the classi-

cal multi-layer perceptron (MLP), and the second is the Naı̈ve Bayesian Classifier

(NBC). These methods are used in a wrapper-based fashion similar to the proposed

QiSNN framework. vQEA is employed as the selection algorithm, while either MLP

or NBC are used to evaluate a given feature subset.

179
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Additionally, we analyse the QiSNN classification performance by exchanging the

hHM-EDA for vQEA. This allows a direct comparison of the binary and heteroge-

neous optimisation performance in the eSNN classification context. The binary-only

nature of vQEA requires the conversion of bit strings into real values involving a

number of general issues, such as the introduction of granularity into a continuous

search space, but also additional computational overhead and encoding issues. Thus,

the hHM-EDA is expected to be beneficial in such a scenario.

Altogether, four methods are experimentally compared in this chapter: i) the pro-

posed QiSNN using hHM-EDA specialised on the exploration ofheterogeneous search

spaces; ii) QiSNN using the the binary-only optimisation algorithm vQEA; iii) a

wrapper approach using MLP as the classifier and vQEA for feature selection; and

iv) a wrapper approach using NBC as the classifier and vQEA for feature selection.

The analysis of QiSNN is undertaken using synthetic data sets. Such an approach

has several advantages. First, the global optimum is knowna priori and the func-

tioning of the algorithm can be easily validated. Second, the characteristics of the

data set are known and all parameters, such as noise and redundancy of features,

can be fully controlled by the experimenter. Finally, benchmarks commonly allow

inter-comparisons between methods developed in other studies.

The following sections introduce the novel QiSNN frameworkalong with its com-

ponents. Then, QiSNN is experimentally investigated and compared to the above

mentioned algorithms in terms of classification and featureselection performance

and computational cost. Finally, we discuss the quality of obtained results followed

by the conclusion of this chapter.

8.1 Q UA N T U M - I N S P I R E D S P I K I N G N E U R A L N E T W O R K F R A M E W O R K

The proposed QiSNN framework follows the wrapper approach introduced in (Ko-

havi & Sommerfield, 1995). Kohavi and John (1997) discussed the method in detail.

The wrapper methodology is a type of “black box” approach. Inits core, it contains a

general optimisation algorithm interacting with an induction or classification method.

The optimisation task consists in a reliable identificationof an optimal feature sub-

set that maximises the classification accuracy determined by the inductor. Thus, the

classification method provides a quality measure for a presented feature subset and

hence, acts as the fitness function for a general evolutionary algorithm.

Due to the black box character of the classification method and the interacting op-

timisation algorithm, the wrapper methodology offers a simple, but powerful, feature
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selection technique that has become popular in many research areas and domains.

See for example, the review on feature selection algorithmsin bioinformatics (Saeys,

Inza, & Larrãnaga, 2007), and the medical case study on the survival of cirrhotic pa-

tients presented in (Inza, Merino, et al., 2001) and (Blanco,Inza, Merino, Quiroga,

& Larrañaga, 2005). See also (Álvarez et al., 2006), where the wrapper technique for

selecting feature subsets for a emotion recognition systembased on spoken language

was used.

The wrapper approach in the context of EDAs is particularly popular. The

study presented in (Inza, Larrañaga, & Sierra, 2001) and the excellent textbook

by (Larrãnaga & Lozano, 2002) on the matter are worth mentioning here.

The QiSNN framework employs hHM-EDA as the feature selecting optimisation

algorithm, while the eSNN classification method representsthe inductor. Since hHM-

EDA belongs to the class of EDA itself, the QiSNN approach is related to the EDA

studies mentioned above. An alternative also investigatedin this chapter is the use of

vQEA instead of hHM-EDA as the optimiser.

8.1.1 Integrated feature and parameter optimisation

QiSNN integrates the feature and parameter optimisation into a single framework.

Section 2.7 of chapter 2 has reviewed similar approaches in this context. Valko et

al. (2005) identified the fitness function as a crucial step for the successful appli-

cation of such an integrated approach. It was argued that in the early phase of the

optimisation, the parameters are selected randomly. As a result it is very likely that

a setting is selected for which the classifier is unable to respond to any input pre-

sented. For such settings the fitness value is zero which results in flat areas in the

fitness landscape. Hence, a configuration that will allow thenetwork to fire (even

if not always correctly) represents a local attractor in thesearch space that could be

difficult to escape in later iterations of the search. (Valkoet al., 2005) used a linear

combination of several sub-criteria to avoid this problem.Nevertheless, we cannot

confirm that the use of much simpler fitness functions leads toany problems in our

experiments. Using the classification accuracy on testing samples seemed to work

well as it is presented in this thesis and in earlier papers. All parameters of eSNN,

namely modulation factorml, similarity thresholdsl, potential fractioncl, ∀l ∈ L,

were included in the search space of the optimisation method.

In the context of vQEA, a conversion of bit strings into real values is required.

A similar scenario was presented in the previous chapter. This study uses a small
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number of Gray-coded bits to approximate parameter configurations of the eSNN

method.

8.1.2 Description of QiSNN

The proposed QiSNN framework is shown in Figure 8.1. The upper part of the di-

agram represents the eSNN classification method as comprehensively explained in

chapter 2. Note the added binary mask in the second step of theprocess. This mask,

along with a specific configuration of neural and learning parameters, is passed to

eSNN from the optimisation method depicted in the lower partof the figure.

The binary mask describes the features to be selected from a real-valued input data

vector. Then, the selected features are transformed into a train of spikes using the

rank order population encoding technique (see chapter 2 fordetails). Following the

one-pass learning procedure, the connection weights of eSNN are trained according

to the given parameter set.

The learning process includes the presentation of all training samples. After the

learning, the classification accuracy is determined on a setof test samples. This

accuracy provides a quality measure of the feature subset and the used parameter

configuration. This quality feedback is passed to the employed optimisation algo-

rithm, i.e. either hHM-EDA or vQEA. Based on the quality, the optimiser adapts the

search strategy and passes new feature subsets and configurations to eSNN for evalu-

ation. The whole process iterates until a termination criterion is met,i.e. a predefined

classification accuracy is reached or the maximum number of iterations is exhausted.

8.2 DATA

QiSNN is investigated on the basis of two benchmarks, namelythe two-spiral prob-

lem and the hypercube data set. A description of the generation and characteristics

of the data is presented here.

8.2.1 Two spirals

The first benchmark is known as the two-spiral-problem. Thisproblem is composed

of two-dimensional data forming two intertwined spirals and was first introduced

in (Lang & Witbrock, 1988). It requires the learning of a highly non-linear separation

of the input space. The data was frequently used as a benchmark for neural networks
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Figure 8.1: The QiSNN framework of tightly coupled feature selection and parameter optimi-
sation of eSNN, integrated with the data. As a first step a feature subset is selected
from a real-valued data sample using a bit string acting as a feature mask, where
a “1”/“0” in this mask indicates selected/non-selected features of the data vector.
Selected vector elements are then mapped into the time domain using a number of
Gaussian receptive fields. Based on this transformation input neurons of a eSNN
emit spikes at pre-defined firing times, invoking the one-pass learning algorithm
of the eSNN. The learning iteratively creates repositories of output neurons, one
repository for each class. Here a two-class problem is presented. Based on a set
of training samples the eSNN is trained and its quality is determined based on the
classification accuracy on a set of testing samples. The classification accuracy is
then used as the fitness criterion of the optimisation method. Based on the fitness
the search strategy is adapted and a new solution is proposed. The solutionin-
cludes two parts: A binary feature mask and a set of real-valued parameters for
eSNN. The whole process iterates until a termination criterion is met,i.e. a pre-
defined classification accuracy is reached or the maximum number of iterations
is exhausted.

including the analysis of the eSNN method itself (Wysoski, 2008). Since the data

contains only two relevant dimensions, we have extended it by adding redundant and

random information. The importance of the redundant features is varied: features

range from mere copies of the original two spirals to completely random ones. The

available information in a feature decreases when strongernoise is applied. The

design of the data set is particularly important since it is expected that the eSNN

is capable of rejecting features according to their inherent information, i.e. the less

information a feature carries, the earlier ESNN should be able to exclude the feature
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during the evolutionary process. We briefly summarise the data generation below.

The situation is similar to the salience of different searchvariables. See chapter 7 for

a comprehensive discussion of this phenomenon,

Data points belonging to two intertwined Archimedean spirals (also known as the

arithmetic spiral) were generated and labelled accordingly. The irrelevant dimensions

consist of random values chosen from a uniform distribution, covering the entire input

space in the range[−1, 1] of the data set. The redundant dimensions are represented

by copies of the original spiral pointsp = (x, y)T , which were perturbed by a Gaus-

sian noise using standard deviationσ = s|p|, with |p| being the absolute value of

vectorp ands – a parameter controlling the noise strength. The noise increases lin-

early for points that are more distant from the spiral origin(0, 0)T . A noisy valuep′i
is then defined as the outcome of thepi-centred Gaussian distributed random variable

N (pi, σ
2), usingσ as defined above.

Our final data set contained seven redundant two-dimensional spiral points(x′
i, y

′
i)

T

and for each a different noise strength parameters ∈ {0.2, 0.3, . . . , 0.8} was used,

totalling 14 redundant features. Four additional random featuresr1, . . . , r4 were in-

cluded. Together with the two relevant features of the spirals (x andy), the data set

contained20 features. Figure 8.2 presents the400 generated samples of the resulting

data set for the seven values ofs and the original and fully random versions.

8.2.2 Hypercube

The second benchmark is the uniform hypercube data set, to our best knowledge first

introduced in (Estevez, Tesmer, Perez, & Zurada, 2009). Theproblem consists of

two classes of400 samples. For each sample, a five-dimensional vector(r1, . . . , r5)

is drawn from a uniform distribution. A given pattern belongs to class1 if ri < αγi−1

for i = 1, . . . 5 and to class2 otherwise. The parameters were chosen to beγ = 0.8

andα = 0.5.

This data set was created with different ratios of relevant,redundant and random

features in order to cover some typical scenarios in the context of feature selection

problems. More relevant features (five) were included than used for the spiral data

(two). The number of redundant and random features was chosen to be five and30 re-

spectively, compared to14 and seven in the spiral data set. In total,400 samples with

40 features each were used in this data set. The redundant features are linear com-

binations of the relevant features perturbed by additive Gaussian noise of increasing
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Figure 8.2: The different features of the generated synthetic two-spiral data set for investigat-
ing eSNN in the context of a FSS problem. The colours/symbols represent the
class label of a given data point. Each figure shows two features (x- andy-axis).
All features are combined to form the complete experimental data set. The quality
of the redundant features is decreasing as stronger noise is applied. Additionally,
four random features are included in the data set (only two of them are shown in
the bottom right diagram).

level. The data set was balanced. Estevez et al. (2009), provide a detailed explanation

of the data generation.
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8.3 P E R F O R M A N C E A NA LY S I S

This section investigates the classification and feature selection performance of the

proposed QiSNN. Four methods are included in the analysis: the proposed QiSNN

using either hHM-EDA or vQEA for the feature and parameter optimisation problem,

a wrapper approach using MLP as the classifier and vQEA for feature selection, and a

wrapper approach using NBC as the classifier and vQEA for feature selection. First,

the experimental setup is described, followed by the presentation and discussion of

the results.

8.3.1 Setup

Both optimisation algorithms,i.e. hHM-EDA and vQEA, use a population structure

of ten individuals organised in a single group that is globally synchronised every gen-

eration. This setting was reported to be generally suitablefor a number of benchmark

problems.

In the case of the spiral data set, the learning rate for the binary rotation gate was

set toθ = π/50. Due to the advantages discovered in chapter 7, theHǫ gate in its

default setting,i.e. ǫ = sin2(0.02π), was used for hHM-EDA and vQEA. In terms

of hHM-EDA, the rate of the mean and standard deviation shiftwere chosen to be

θµ = 0.1 andθσ = 0.025 respectively. We note that these learning rates are slightly

faster than the default settings of the methods. This is due to the fact that QiSNN

requires only six parameters for a two-class problem, and asa consequence, faster

learning rates are possible.

A total of 400 generations were performed. Due to the larger problem size,500

generations were computed for the hypercube problem, usingθ = π/50 for the binary

learning rate andθµ = 0.1 andθσ = 0.05 for the continuous update operators.

vQEA requires the conversion of bit strings into real values. Four bits per variable

offer sufficient flexibility for the parameter space. For theconversion itself a Gray

code was used.

A fair comparison between methods requires the appropriateconfiguration of each

classifier used in this study. NBC has no parameters and so no parameter tuning was

necessary for this method.

The MLP, on the other hand, involves numerous tunable variables, the most criti-

cal ones being the number of hidden neurons, the learning rate, and the momentum

term. These parameters were varied in order to determine thebest combination. Al-
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Figure 8.3: The figure shows the accuracy levels achieved by32 different configurations of
a multi-layer perceptron on the two-spiral data set. Each point representsthe av-
erage of the accuracies obtained in a10-fold cross-validation experiment. Error
bars indicate the standard deviation. All configurations use neurons with sigmoid
transfer functions trained in500 epochs. The lower curve (green triangles) repre-
sents the accuracy of the MLP when all20 features are included in the data set,
the upper curve (black squares) the accuracy when only the relevantfeatures are
used. The circles (red) indicate the final configuration chosen for the experiments
performed in this study. They yield a satisfying compromise between computa-
tional cost and classification quality.

together32 different settings were tested. For each setting, two separate 10-fold

cross-validation runs were performed. For the first run, a subset of the data including

the relevant features only, was used, while the for the second run all features were

involved.

The results on the spiral data set for these two runs and for each of the32 parameter

configurations are presented in Figure 8.3. We note the clearbenefit of feature selec-

tion for this data set. Only if the MLP is trained on relevant information, does the

classification accuracy increase significantly. Thus, appropriate feature selection im-

proves the performance of MLP, which is the key principle exploited in the wrapper

approach.
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Parameter Name Value

no. hidden neurons N = 20
activation function sigmoid
learning rate η = 0.8
momentum term α = 0.8
training epochs 500

Table 8.1: Appropriate Parameter configuration for the MLP model, used for comparison
with the proposed new method

The chosen setting for the experiments described below is based on a trade-off

between computational cost and classification accuracy. The severe additional cost

of more hidden neurons is not worth the slight increase of accuracy reported in Fig-

ure 8.3. Table 8.1 presents the parameter settings obtainedfrom the parameter study.

Using10-fold cross-validation, the chosen configuration of MLP achieved a satisfy-

ing accuracy of0.849 (standard deviation0.0634) on the spiral data set containing

the two relevant features only. When applied to the full data set using all20 features,

the same configuration resulted in an accuracy of0.611 (0.0608).

Finding an appropriate setting for the spiral problem appeared to be more difficult

compared to the hypercube data set. For this data, changes inthe configuration had

only small impact on the performance of the classifier. Thus,the same parameter

setting for both problems was used. The standard error back-propagation learning

algorithm (Rumelhart et al., 1986) was employed to train the connection weights of

the network. The weights were initialised to small values inthe range[−0.25, 0.25]

randomly chosen according to a uniform distribution.

Most of the parameters of QiSNN are optimised during the evolutionary process.

For each classl ∈ L, the modulation factorml, the similarity thresholdsl, and the

proportion factorcl are optimised. Since both problems contain two classes, sixpa-

rameters are involved in the QiSNN framework. In terms of thepopulation encoding,

the number of receptive fields needs especially careful consideration since it affects

the resolution for distinguishing between different inputvariables. After some pre-

liminary experiments,20 receptive fields in case of the spiral data and five receptive

fields for the hypercube were used. The Gaussian centres wereuniformly distributed

over the search interval and the variance was set toβ = 1.5.

In order to guarantee statistical significance,30 independent runs for each investi-

gated classification method were performed. In every generation, all samples of the

data set were randomly shuffled and divided into training andtesting samples, ac-
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cording to a train-to-test ratio of75%. For the computation of the classification error,

we determined the ratio between correctly classified samples and the total number of

testing samples.

8.3.2 Results

We discuss the results on the two-spiral problem first, followed by the results on the

hypercube data.

Spiral data

Figure 8.4 presents the evolution of the average best feature subset in every genera-

tion using the two versions of QiSNN, MLP and NBC respectively. The colour of a

point in these diagrams reflects how often a specific feature was selected at a certain

generation: the lighter the colour, the more often the corresponding feature was se-

lected. It can clearly be seen that, independent of the algorithm used, a large number

of features have been discarded during the evolutionary process. Furthermore, all al-

gorithms clearly identify the featuresx andy to be relevant. All methods except the

proposed QiSNN using hHM-EDA select some redundant and/or irrelevant features

as well.

Particularly interesting is the order in which the featureshave been removed by

each algorithm. Both versions of QiSNN (Figure 8.4a and 8.4c)rejected the four

random featuresr1, . . . , r4 containing no information almost immediately (in fewer

than20 generations). The redundant featuresx′
i, y′

i were then rejected one after the

other, according to the strength of the inherent noise: the higher the noise, the earlier

a feature is identified as irrelevant. We note the excellent performance of QiSNN

using hHM-EDA which is clearly able to reject all redundant features in most of the

runs. Figure 8.5 compares the evolution of the number of selected features during

each generation. While both QiSNN based methods clearly select fewer features

than their classical competitors at any stage of the optimisation, the binary optimised

QiSNN is outperformed by the heterogeneous version.

It is also interesting to compare the evolution of the classification error for each

algorithm,cf. Figure 8.6. The gradient in the fitness landscape defined by eSNN

appears to be much steeper compared to other algorithms, ranging from completely

unfit solutions at the beginning of the evolutionary run toward high quality solutions

in later generations. MLP and NBC display a flatter fitness evolution. It is noted

that the eSNN starts with no optimisation of its parameters,while MLP and NBC
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(c) QiSNN (binary) using vQEA
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Figure 8.4: Evolution of feature subsets on the spiral data set. The two relevant features were
identified by all methods, indicated by the bright colour of the first two columnsin
the diagrams. Only the QiSNN using hHM-EDA is able to determine the optimal
feature subset consistently.

are properly configured as part of the experimental setup. The fitness gradient may

be partially responsible for eSNN turning into a very good quality measure for the

feature subsets.

According to the presented results for QiSNN, a strong correlation between clas-

sification accuracy and number of features appears advantageous in the context of

a feature selection task. Figure 8.7 presents this relationship for each of the inves-

tigated induction methods. Each point in the diagram corresponds to a tuple (ac-

curacy, number of features) obtained from the generationalbest individual of every

generation. The colour indicates the generation itself. The lighter the colour, the

later the generation in which a given tuple was obtained. In the case of QiSNN (cf.

Figure 8.7a), a strong relationship between number of features and accuracy can be

observed. Even for small decreases of the number of features, significant accuracy
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Figure 8.5: Evolution of number of features in the spiral data set. All methodsare clearly
capable of reducing the number of features. The two versions of QiSNN exclude
more features than the classical methods.
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Figure 8.6: Evolution of the average accuracy of the generational bestsolution on the spiral
data set. QiSNN reports excellent classification results, the proposed QiSNN
using hHM-EDA being faster than all other tested algorithms.

improvements are reported. The strong correlation betweennumber of features and

classification accuracy introduces a gradient and partially reducesneutrality in the
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(c) QiSNN (binary) using vQEA
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Figure 8.7: The classification accuracy as a function of the number of features for all tested
classifiers on the spiral data set. The different gray levels correspond to the gen-
eration in which a given data point was obtained. The lighter the colour, the later
the generation. For the eSNN-based classifiers the accuracy is highly dependent
on the number of features, which is in contrast to MLP and NBC.

fitness landscape. Removing a redundant or irrelevant feature from the selected sub-

set corresponds to a fitness gain for QiSNN, which may not necessarily be true for

the other two tested methods. If the feature removal does notlead to a certain fitness

gain, and thus two solutions may have the same fitness value, the fitness landscape

has a neutral dimension at the corresponding parameter. Dueto genetic drift, the neu-

tral parameter converges randomly, which means a random selection or non-selection

of the encoded feature. In the fitness landscape defined by eSNN, neutral dimensions

are replaced by a fitness gradient, which allows the identification and exclusion of

low quality features from the current subset. As a result, the fitness landscape can be

easily climbed by the optimisation algorithm, leading to faster and more consistent

convergence towards the optimal feature subset.
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Figure 8.8: Evolution of parameters in the QiSNN framework on the spiral dataset. Three
parameter pairs are optimised during the evolutionary process. Due to the con-
tinuous representation of the parameter space, a smoother exploration is possible
(upper figure) compared to the binary optimisation (bottom figure).

Figure 8.8 presents the evolution of the eSNN parameters forthe two versions of

QiSNN. Although both methods have evolved similar final parameter configurations,

the exploration using the continuous representation is much smoother compared to

the binary one and allows a finer parameter tuning. Due to the balanced nature of the
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Figure 8.9: Evolution of feature subsets on the hypercube data set. Results on the synthetic
hypercube data set averaged over30 independent optimisation runs. The five
relevant features were identified by all methods, indicated by the bright colour of
the first columns in the diagram.

data set, the parameter setting for the two classes have evolved to be approximately

identical,i.e. c1 ≈ c2, m1 ≈ m2 ands1 ≈ s2.

Hypercube

A similar analysis was done for the second benchmark data set. We note that this

data set was very easy to solve by any of the tested algorithms. Even without feature

selection, MLP and NBC reported very high classification accuracy. Nevertheless,

the results are presented here since they show the proper functioning of all tested

methods on an additional independent benchmark problem. Figures 8.9-8.13 depict

the results on the hypercube problem.

In Figure 8.9, the evolution of the average selected featuresubset is shown. Similar

to the figures presented on the spiral data above, different levels of greyness reflect

how often a specific feature was selected at a certain generation. In these diagrams,

the first five features correspond to the relevant features, followed by30 irrelevant and

finally by the five redundant features. All methods clearly identify the five relevant
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Figure 8.10: Evolution of the number of features in the hypercube data set.All methods are
clearly capable to reduce the number of features. The two versions of QiSNN
exclude significantly more features than the classical methods.

0 100 200 300 400 500
Generation

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

QiSNN
QiSNN  (binary)
NBC
MLP

Figure 8.11: Evolution of the average accuracy of the generational best solution on the hy-
percube data set. All methods report excellent classification results.

variables. Nevertheless, all methods also select some irrelevant/redundant ones. In

Figure 8.10, the evolution of the average number of selectedfeatures is presented.

Both QiSNN methods were capable of decreasing the number of features faster than
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(c) QiSNN (binary) using vQEA
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Figure 8.12: The classification accuracy as a function of the number of features for all tested
classifiers on the hypercube data set. The different gray levels correspond to
the generation in which a given data point was obtained. The lighter the colour,
the later the generation. For the eSNN-based classifiers the accuracy is highly
dependent on the number of features, which is in contrast to MLP and NBC.

NBC and MLP,cf. Figure 8.10. As depicted in Figure 8.11, NBC and MLP report

close to optimal classification accuracy without removing all irrelevant and redundant

features. Without the presence of any selective pressure, some features converge

randomly due to genetic drift, which has resulted in the selection of some irrelevant

features. Since in QiSNN an appropriate parameter setting needs to be evolved during

the run, its classification performance is worse than MLP andNBC at the early stage

of the evolutionary process. In later generations, the accuracy increases quickly and

reaches levels similar to those in the traditional algorithms. Once more, we note

the faster convergence of the proposed QiSNN using the heterogeneous optimisation

method compared to the binary optimised QiSNN.
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Figure 8.13: Evolution of parameters in the QiSNN framework on the hypercube data set.
Three parameter pairs are optimised during the evolutionary process. Dueto
the continuous representation of the parameter space, a smoother exploration is
possible (upper figure) compared to the binary optimisation (bottom figure).

The previously observed strong correlation between classification accuracy and

number of features in QiSNN is also clearly demonstrated on the hypercube data.

Figure 8.12 presents this relationship for each of the investigated induction meth-

ods. Finally, we want to comment on the parameter evolution obtained from the two

QiSNN. Similarly to the case on the spiral data, the continuous parameter optimisa-
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tion is much smoother, compared to the binary optimisation.Both optimisers report

similar final parameter configurations for the similarity threshold and the modulation

factor, only the proportion factorcl shows a slightly different evolution between the

methods.

Complexity

We also want to discuss the computational complexity for each of the algorithms

presented here. The fitness evaluation of a feature subset isclearly the most costly

part in the wrapper. Depending on the data set, an MLP requires the construction of

a rather large neural network, followed by the training of each data sample for500

epochs using a costly back-propagation procedure and is thus by far the most com-

plex method in this study. The eSNN classifier implements a fast one-pass learning,

but additional overhead is required for transforming each data sample into a spike

sequence and computing the spike propagation in the network. Due to the simple

topology of the network, an efficient network simulation is possible. The NBC re-

quires the lowest computational resources, each training sample is investigated only

once and only minimal overhead is necessary, allowing very fast classification.

8.4 PA R A M E T E R E VO L U T I O N

The previous experiments revealed that the simultaneous optimisation of feature sub-

sets and eSNN parameters is effectively achieved by hHM-EDA. In this section, we

focus on the analysis of the parameter evolution in greater detail.

First of all, the interpretation of the eSNN parameters is highlighted. For each class

label, three eSNN related variables exist, namely the modulation factorm, the firing

threshold fractionc, and the similarity thresholds. See also chapter 2, section 2.6 for

a comprehensive description of these variables.

The modulation factorm reflects how strongly a neuron is affected by the temporal

order of spike arrival times. In the extreme case ofm = 0, none of the pre-synaptic

spikes contributes to the computation of the post-synapticpotential. For the other

extreme,m = 1, all pre-synaptic spikes have the same importance and contribute to

the computation of the post-synaptic potential equally. Between these two extremes,

0 < m < 1, the temporal order of spike arrival times is important: theearlier a spike

is received by a neuron after the stimulation onset, the stronger its contribution to the

post-synaptic potential change.
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The modulation also directly controls the maximum stimulation umax of a neuron,

sinceumax =
∑

j wj(m)order(j), where the sum runs over all pre-synaptic neurons,

cf. Algorithm 1 on page 40. In fact, the term
∑

x mx corresponds to ageometrical

serieswhich converges according to:

∞∑

x=0

mx =
1

1−m
(8.1)

Since a connection weight always satisfieswj ≤ 1, the term 1
1−m

in Equation 8.1

represents an upper bound forumax.

The firing thresholdϑ is defined as a fractionc of the maximum post-synaptic

potential, i.e. ϑ = cumax. Parameter0 < c < 1 describes the sensitivity of the

neuron for pre-synaptic spike activity. The smaller the value ofc, the lower the firing

thresholdϑ and the earlier the post-synaptic response of the neuron occurs.

The similarity thresholds, on the other hand, is not a neural parameter, but in-

stead a parameter of the one-pass learning algorithm in eSNN. The learning algo-

rithm evolves repositoriesRl of neurons – one for each class labell. The number of

neurons inRl depends on the value ofs, and larger (smaller)s correspond to fewer

(more) neurons. Each evolved output neuron is sensitive to aspecific input pattern

and hence represents a certain area or cluster in the data space. Since parameters

controls the number of neurons in a repository, it indirectly controls the size of the

cluster represented by a certain output neuron. The smallerthe values is, the more

training samples may activate a specific output neuron and asa consequence, the

larger the cluster represented by this neuron becomes. In the extreme case ofs = 1,

for each training sample an individual output neuron is trained, while fors = 0, all

training samples are mapped to a single output neuron.

8.4.1 Setup

For a controlled experimental analysis of the parameter evolution in QiSNN, we study

each parameter separately. More specifically, in each experiment, a single parameter

is selected for investigation and is then subjected to the optimisation through hHM-

EDA. The remaining parameters, on the other hand, are fixed toreasonable default

values. For example, selecting the modulation factorm for analysis results in the

simultaneous optimisation ofm and the feature subsets, while the values for the sim-

ilarity thresholds and the firing threshold fractionc are fixed to predefined constants

ŝ andĉ, respectively.
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The following constants are chosen:̂m = 0.85, ŝ = 0.2 and ĉ = 0.75. These

values are directly adopted from the experimental results obtained on the spiral data

set in the previous section. Since three different parameters exist in QiSNN, three ex-

periments were undertaken. For each experiment,30 independent runs are performed

and results averaged. The spiral data set is used for studying the parameter evolution,

since it is clearly a more challenging benchmark than the hypercube data set.

8.4.2 Results

The next sections discuss the results obtained from the described experimental setup.

Evolution of neuron repositories

First, we demonstrate that the size of the neuron repositoryis indeed dependent on the

similarity thresholds as it was claimed in the previous section. Figure 8.14 shows the

number of neurons in the repositoryRl in dependence ofsl. A point in the diagram

corresponds to a tuple(sl, |Rl|), where|Rl| is the number of neurons inRl. The

tuple is extracted from the generational best solution obtained in each of the400

performed generations. The number of neurons inRl also depends on the size of

the corresponding feature subset. For larger subsets, the similarity between samples

decreases on average, since a sample contains more elementsthat may differ from

the elements of other data samples. This dependence is reflected by the colour of a

point in Figure 8.14. The lighter the colour, the more features are selected by the

corresponding solution.

The figure reveals an interesting pattern on how the neuron number evolves during

the optimisation process. In the early stage of the optimisation, on average,10 out

of 20 possible features are selected. Note the light colour in Figure 8.14 for values

of sl ≈ 0.5, l ∈ {1, 2}. At this stage of the evolution, for most training samples an

individual output neuron is created and stored in the repository. Parameters does not

impact the learning process much, since the input samples are very different to each

other due to their comparatively high dimensionality. In the course of the optimisa-

tion process, the number of features decreases, which in turn increases the similarity

between different samples on average. Due to this increasing similarity, more output

neurons are merged and the number of neurons per repository decreases. At this stage

of the evolution, most random and redundant features are already excluded from the

optimisation. Note the dark coloured points for|Rl| ≈ 100.
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Figure 8.14: The number of neurons in the evolving neuron repositoryRl in dependence
of the similarity thresholdsl. A point in the diagram corresponds to a tuple
(sl, |Rl|), where|Rl| is the number of neurons inRl. The colour of a point
corresponds to the number of selected features. The lighter the colour, themore
features are selected by corresponding solution.

In order to further increase the classification accuracy, anincrease of the neuron

number inRl seems beneficial. As stated above, more output neurons correspond

to a finer clustering of the data space. Since the spiral data represents a highly non-

separable classification problem, reducing the cluster size is meaningful. In the fig-

ure, this situation is reflected by a clear trend ofsl towards small values.

We conclude that, due to the dependence of|Rl| on sl, the neuron number|Rl|
increases proportionally with decreasingsl. Furthermore, if the number of selected

features is large, the value ofsl is of low importance, since training samples differ

from each other mainly due to their comparatively large dimensionality.

Evolution of the similarity thresholds

Figure 8.15 shows the results obtained from the three experiments described in the

experimental setup above. A point in these diagrams corresponds to a tuple(f, xl),

wheref denotes a fitness value andx ∈ {s,m, c} denotes the parameter that is opti-

mised through hHM-EDA. The tuple is extracted from the generational best solution.

Similarly to Figure 8.14, each point is coloured in dependence of the number of fea-

tures selected by this solution. The lighter the colour, themore features are selected.

The independent evolution of the parameters shows some interesting patterns. In

Figure 8.15a, the generational best fitness in dependence ofthe similarity threshold

sl is presented. We have concluded earlier that the value ofsl is less important, if

the selected feature subset contains many irrelevant and/or redundant features. We

observe in the early stage of optimisation, that on averages ≈ 0.5, which is the ex-
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(c) Fitness of the generational best solution in dependenceof cl

Figure 8.15: The fitness in dependence of the parameterxl with x ∈ {s, m, c}. A point in
these diagrams represents a tuple(f, xl) extracted from the generational best
individual. The colour of a point corresponds to the number of selected features.
The lighter the colour, the more features are selected by corresponding solution.
For each experiment a single parameter is subjected to the optimisation process,
while the remaining parameters are fixed to reasonable default values.
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pected value of a uniform random variable sampled in the range [0, 1]. Parametersl is

optimised by hHM-EDA in exactly this range. The classification accuracy improves

mainly due to the selection of appropriate feature subsets.Note that, according to the

experimental setup, only the features and the variablesl are subject to optimisation.

Hence, only the number of features and the value ofsl determine the classification

accuracy of a solution.

The importance ofsl is boosted in later stages of the optimisation process. A

clear trend ofsl towards smaller values is noted after the removal of most redundant

and irrelevant features. We conclude, thatsl is a low salient search variable and its

importance depends mainly on the number and quality of selected features.

Evolution of the modulation factorm

The modulation factor is optimised in the range[0.5, 1]. The random sampling of

the parameter results in an average value ofm ≈ 0.75 at the first generations of

the evolutionary process,cf. Figure 8.15b. Nevertheless, even at this early stage of

the optimisation, a clear trend is noted. The modulation factor increases towards a

value ofm ≈ 0.85. At this stage, a high-quality feature subset has also evolved. We

observe a decrease of the significance ofm, since most values in the range[0.8, 0.85]

report excellent classification results.

We conclude, that the modulation factorm is significant especially in early stages

of the optimisation. After a high-quality feature subset isidentified, the precise mod-

ulation is less important and a certain range of values is suitable.

Evolution of the firing threshold fractionc

Similarly to the modulation factorm, the firing threshold fractionc is optimised in

the range[0.5, 1]. From Figure 8.15c, it is immediately noted that, initiallyc follows

a clear trend towards small values. The classification accuracy improves mainly due

to the optimisation of this parameter. An accuracy of≈ 0.5 is achieved even without

the identification of any high-quality feature subset. Notethe light coloured tuples at

fitness levelsf < 0.5.

This observation is explained by the fact, that smaller firing thresholds allow the

network torespondto any presented input, even if this response is not necessarily

correct. As explained in chapter 2, section 2.6.2, it is possible that the eSNN classifier

remains silent,i.e. no output neuron is activated after the presentation of an input

sample. This case is considered as a mis-classification. Thus, since a small threshold

allows the eSNN to respond to a presented input, this configuration turns the eSNN
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into a random classifier. A random classification reports on average an accuracy of

≈ 0.5 and thus, small values represent an attractor in the search space ofc.

In later generations of the evolution, suitable feature subsets are identified which

results in classification accuracies higher than0.5. At this stage, larger firing thresh-

olds are beneficial, since they allow a more precise control over the activation of

certain output neurons. We observe a changing trend in the evolution of c after the

accuracy level has reachedf ≈ 0.7. At the final stages of the optimisation process,

fractionsc ≈ 0.65 are suitable to achieve excellent classification results.

We conclude, that the firing threshold fractionc is a high salience search variable.

Small valuesc represent a strong attractor, since they allow the transformation of

eSNN into a random classifier.

8.5 RO L E O F N E U R A L E N C O D I N G

In this section, we investigate the impact of the encoding parameters on the classi-

fication performance of eSNN. As explained in chapter 2, the so-called rank order

population encoding is employed in the context of eSNN. Thisencoding requires the

setting of two parameters. ParameterM controls the number of Gaussian receptive

fields, while parameterβ controls the width (variance) of each Gaussian. We immedi-

ately notice that these variables directly affect the network size, since a larger number

of receptive fields increases the number of input neurons of the network. As a con-

sequence, also the learning process is affected and thus potentially the classification

performance.

There is another important aspect of the neural encoding that is highlighted here.

The encoding describes a mapping from alower dimensionalreal valued input vec-

tor space to ahigher dimensionalvector space of spike times. This transformation

has the potential to simplify the classification task. In fact, a similar concept is the

working principle of numerous other classification methods, e.g.Support Vector Ma-

chines and the principle of the Echo State Machines and the Liquid State Machines

(LSM) (Maass et al., 2002). For example, the LSM also employsspiking neurons for

solving classification or time series prediction problems.The idea is to transform a

sequence of input spikes into multiple spike trains throughthe excitation of a large

static recurrent SNN. The response from this static networkis then interpreted by a

readout function. This readout function can be memory-lessand even linear, since it

is expected that the mapping step has transformed the problem into a linear separable

one.
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Indeed, it was demonstrated in (Soltic et al., 2008) that an appropriate configura-

tion of the rank order population encoding can significantlysimplify the classification

problem. A visualisation of the obtained encoded spike trains revealed distinct pat-

terns for samples belonging to a certain class. It was also concluded that the parame-

ter configuration of the encoding method is critical for the functioning of eSNN and

that too few or too many receptive fields deteriorate the classification performance.

In order to analyse the relationship between the encoding parameters and the clas-

sification behaviour of eSNN we investigate the following experimental setup. For

all experiments the spiral data set is used and only the two relevant dimensionsx and

y are considered. More specifically, the feature selection mechanism of QiSNN is

switched off for this study. Only the parameters of eSNN (modulation factor, simi-

larity threshold and firing threshold) are optimised. The parameter configuration for

M andβ is varied according toM ∈ {10, 20, 30, 50} andβ ∈ {1, 1.5, 2} totalling in

twelve different experiments. The optimisation process isallowed to run400 gener-

ations.

From each of the twelve experiments a typical evolved eSNN isobtained which

is considered to be optimally configured and trained. Each eSNN is then tested on

100, 000 test samples(xi, yi) which are equally distributed in the data space with

−1 ≤ xi ≤ 1 and−1 ≤ yi ≤ 1 for 1 ≤ i ≤ 100, 000. For all samples, the

classification output of the evolved eSNN is determined and visualised in Figure 8.16.

Each diagram shows the results for one of the twelve performed experiments.

The axes in the diagrams represent the two dimensions (features) of the classifica-

tion problem,x andy. The colour of a point reflects the classification output of the

corresponding eSNN: white points belong to samples which are classified as spiral A,

while black points represent samples classified as spiral B. The gray coloured points

represent data samples for which no label could be determined, i.e. none of the output

neurons of the trained eSNN emitted a spike and the network remained silent for the

presented input.

It is clearly demonstrated that the configuration of the encoding parameters is

critical for the functioning of eSNN, which is coherent withthe findings presented

in (Soltic et al., 2008). The number of receptive fields affects the ability of eSNN

of distinguishing between different input vectors. Thus, parameterM determines

the resolutionof the data space representable by eSNN. If the resolution isnot fine-

grained enough, the data space can not be optimally partitioned by eSNN and the

classification performance decreases,cf. the three diagrams whereM = 10. On

the other hand, if the resolution is too fine, the output neurons become increasingly

specialised to the presented training samples, which in turn decreases the generalisa-
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Figure 8.16: Output patterns of trained eSNN using different configurations of the rank order
population encoding. The axes represent the two features of the two-spiral data
set. White (black) coloured points belong to test samples which are classified
as spiral A (B). The gray coloured points represent data samples whicheSNN
could not classify.

tion ability of eSNN. The diagrams whereM = 50 illustrate an example for the loss

of generalisation. We notice the significant increase of gray areas,i.e. unclassified

samples, in these figures. The output neurons are strongly specialised and are only

sensitive to the data points learnt from the training samples. The ability of eSNN to
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interpolate data points between training samples is significantly reduced (notice the

gray “gaps” between the two spirals).

The generalisation ability of the output neurons is also strongly affected by the

configuration of parameterβ. Largerβ values increase the specialisation of the neu-

rons. The importance ofβ increases with the number of receptive fields. ForM = 10

fields, the value of parameterβ is almost irrelevant, while the impact of the variable

is clearly visible forM = 50.

8.6 C O N C L U S I O N

This chapter proposed an integrated feature and parameter optimisation framework

based on the combination of the heterogeneous optimisationalgorithm hHM-EDA

and the eSNN classification method. According to the quantummetaphor of the

binary part of hHM-EDA inherited from vQEA, the feature space is explored prob-

abilistically using a superposition of feature subsets. Due to this interpretation, the

novel eSNN based feature selection method was named Quantum-inspired Spiking

Neural Network (QiSNN) framework.

The classification and feature selection performance of themethod was demon-

strated on two synthetic benchmark problems. QiSNN reported excellent results in

comparison to traditional wrapper-based feature selection methods. This observation

was partly explained by the removed neutrality in the fitnesslandscape represented

by the eSNN classifier.

The benefit of the novel heterogeneous optimiser hHM-EDA wasclearly demon-

strated. In comparison to the binary representation of vQEA, hHM-EDA allows a

faster, smoother and more reliable exploration of the mixedvariable search space.

The performance difference between vQEA and hMH-EDA is expected to increase

with larger problem sizes. However, additional analysis isrequired to provide statis-

tical evidence for this claim.

The analysis of the parameter evolution in QiSNN revealed some interesting char-

acteristics. The features are clearly the most important parameters in the optimisation

process and are commonly optimised first. In general, the eSNN parameters strongly

depend on the quality of the selected feature subset. The similarity threshold is of

low significance, if inadequate feature subsets are selected, which occurs mainly in

the early stage of the optimisation. The modulation factor is important in early gen-

erations and becomes less significant after high-quality feature subsets are identified.
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It was also noted that the firing threshold fraction is a very critical parameter, since it

has the ability to turn eSNN into a random classifier.

The self-adapting nature of QiSNN due to the simultaneous evolution of network

parameters and feature subsets represents a highly desirable characteristic in the con-

text of machine learning and knowledge discovery. It promotes a straight-forward

application of the framework to specific problem domains without the requirement of

expert knowledge in the area of spiking neurons.

The configuration of the neural encoding method is very important for the func-

tioning of the eSNN classifier. It was argued that an appropriate encoding mechanism

can simplify the classification task. The parameters involved in the rank order pop-

ulation encoding affect both the separation resolution andthe generalisation ability

of eSNN. A careful fine-tuning of these parameters in dependence of the data set to

be classified can significantly improve the classification performance of eSNN. Thus,

besides numerous potential applications for real-world classification problems, future

research may include the optimisation of additional variables of the system,e.g. the

parameters of the employed rank order population encoding method.



Chapter9
A P P L I C AT I O N O F Q I S N N – A C A S E S T U DY O N

E C O L O G I C A L M O D E L L I N G

This chapter presents the findings of a case study where the QiSNN framework is

applied on a real world data set in the context of an ecological modelling problem.

For many invertebrate species little is known about their response to environmental

variables over large spatial scales. That knowledge is important since it can help

to identify critical locations in which a species that has the potential to cause great

environmental harm might establish a new damaging population. The usual approach

to determine the importance of a range of environmental variables that explain the

global distribution of a species is to train or fit a model to its known distribution

using environmental parameters measured in areas where thespecies is present and

where it is absent.

In this study, meteorological data that comprised68 monthly and seasonal temper-

ature, rainfall and soil moisture variables for206 global geographic sites were com-

piled from published records. These variables were correlated to global locations

where the Mediterranean fruit-fly (Ceratitis capitata), a serious invasive species and

fruit pest, was recorded at the time of the study, as either present or absent (CABI,

2003). The data set is balanced meaning that it has an equal number of samples for

each of the two classes. Motivated by inadequate results (Worner, Lankin, Sama-

rasinghe, & Teulon, 2002; Cocu, Harrington, Rounsevell, Worner, & Hulle, 2005;

Watts & Worner, 2006) using a different method, namely the multi-layer perceptron

(MLP), this study aims to identify important features relevant for predicting the pres-

ence/absence of this insect species. The obtained results may also be of importance

to evaluate the risk of invasion of certain species into specific geographical regions.

In the following sections, first the experimental setup is explained, followed by

an analysis and discussion of the obtained results. Since this study is undertaken in

collaboration with Dr Sue Worner from the Centre for Bio-protection at Lincoln Uni-

209
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versity, Christchurch, New Zealand, the results are also analysed from an ecological

point of view.

9.1 E X P E R I M E N TA L S E T U P

In the previous chapter, QiSNN reported promising results on synthetically designed

benchmark data. In this case study, QiSNN is investigated ina real world scenario.

Similarly to the experiments presented in chapter 8, two optimisation methods for

QiSNN are considered: the binary-only optimisation algorithm vQEA and the het-

erogeneous optimiser hHM-EDA. For a better recognition of these two setups, we

refer to them as the heterogeneous and the binary QiSNN, respectively, for the rest of

this chapter.

In order to allow a comparison of results, we apply a traditional classification

method on the same data set by exchanging the eSNN classifier for the classical

näıve Bayesian classifier (NBC). A similar scenario was discussedin the previous

chapter: vQEA is used to evolve an appropriate feature subset while the quality of a

subset is determined through training a NBC (instead of an eSNN) and reporting its

classification accuracy. Based on this evaluation, new feature subsets are selected.

We note that this problem represents a combinatorial optimisation task for which

the binary nature of vQEA is well suited. Apart from the discretisation of the data

set, which is a requirement for NBC, the method does not requirethe setting of any

other parameters thus no parameter optimisation is needed here.

A number of careful parameter choices have to be made. For alloptimisation meth-

ods, a population structure of ten individuals organised ina single group is chosen,

which is globally synchronised every generation. The parameters for the mean and

standard deviation shift in the heterogeneous QiSNN were set to θ
(H)
µ = 0.1 and

θ
(H)
σ = 0.02 respectively, the learning rate for the binary model wasθ(H) = π/100.

In the binary QiSNN, the learning rate was set toθ(B) = π/200, while in combination

with the NBC a rateθ(NBC) = π/100 worked favourably.

QiSNN automatically adapts its parameters during the evolutionary process. Since

the classification task is a two-class problem, six parameters are involved in the opti-

misation. In the heterogeneous QiSNN this search space is explored by the continu-

ous solution part of the optimiser. The binary vQEA, on the other hand, requires the

conversion of bit strings into real values. In the experiments, four bits per variable

were enough to offer sufficient flexibility for the parameterspace. For the conversion

itself, a Gray code was used.
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In terms of the population encoding for eSNN, especially thenumber of receptive

fields needs careful consideration since it affects the resolution for distinguishing

between different input variables. After some preliminaryexperiments10 receptive

fields were chosen, the centres uniformly distributed over the interval[0, 1], and the

variance controlling parameterβ = 1.5.

In every generation, the206 samples of the data set were randomly shuffled and

divided into a training and testing set, according to a ratioof 75% (154 training and

52 testing samples). The chromosome of each individual in the population was trans-

lated into the corresponding parameter and feature space, resulting in the generation

of a fully parametrised, but untrained, eSNN or NBC and a feature subset1. The cre-

ated eSNN or NBC of each individual was then independently trained and tested on

the appropriate data subsets. For the computation of the classification error, we deter-

mined the ratio between correctly classified samples and thetotal number of testing

samples.

Each of the three setups were allowed to evolve over a total number of4000 gener-

ations. In order to guarantee statistical relevance,30 independent runs using different

random seeds were performed for each setup.

9.2 E X P E R I M E N TA L R E S U LT S

In Figure 9.1, the evolution of the average best feature subset in every generation is

presented using eSNN and NBC as classifiers. The colour of a point in this diagram

reflects how often a specific feature was selected at a certaingeneration. The lighter

the colour, the more often the corresponding feature was selected at the given genera-

tion. It can clearly be seen that a large number of features have been excluded during

the evolutionary process. Many features have been identified to be irrelevant by all

algorithms, although also some significant differences between the evolved feature

subsets is noticed. Figure 9.1 clearly shows the similarityof the feature subsets ob-

tained by both versions of QiSNN. Nevertheless, the heterogeneous version reports

greater consistency in the feature rejection. Also, the latter one selected significantly

fewer features than the binary QiSNN and NBC,cf. Figure 9.2: on average14 fea-

tures were selected using binary QiSNN, ten in case of the heterogeneous QiSNN

and18 using NBC. We will analyse these features from an ecological point of view

in the next section. The trend in Figure 9.2 suggests the evolution for the NBC is

incomplete. Compared to the binary QiSNN, the heterogeneousversion addition-

1 In case of the NBC, only a feature space exists, since no parameters have to be tuned.
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Figure 9.1: Evolution of the feature subsets on the ecological data set. Thelighter the colour
of a point in the diagram, the more often a specific feature was selected at the
given generation. Each point is the average of30 independent runs.

ally rejected the following features: temp1, temp3, TAut2,TSpr1, Tannual, rain10,

RSumR2, PEAnnual. The overall classification accuracy was similar among all tested

algorithms.

The eSNN classifier appears to be rather consistent in excluding features, since

most of the30 independent runs have agreed at least about the irrelevant features,

hence many black columns appear in the diagram. The situation is different for fea-

tures that have been identified as relevant in most of the runs. In a small number of

runs, exactly these features were considered to be irrelevant, as reflected by the light

grey columns in Figure 9.1. For these features, several hypothesis can be derived.

We emphasise that the features for which the classifiers are undecided may be not

important, but also not misleading during the evolutionarysearch. Hence, they are

randomly included in the final feature subset by any of the runs performed. It is also

likely that some features are equally relevant (i.e. redundant features), so at least one

of them will be selected as a representative of these features by the algorithm. Dif-

ferent runs will most likely select a different feature, thus the final subset is varying.
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Figure 9.2: The evolution of average feature numbers on the ecological data set. All meth-
ods are clearly capable of reducing the number of features. The two versions of
QiSNN exclude significantly more features than NBC.

Furthermore, it is possible that some features are present conditional to the pres-

ence/absence of others. Hence, the average evolved featuresubset can not be con-

sistent in all runs and the ecological analysis of the feature subset should include all

features that have been selected more frequently than a certain percentage in all runs

performed.

In the case of NBC, an opposite situation can be observed. Some features are

clearly found to be relevant in all30 runs, which is in contrast to the results obtained

by QiSNN. However, for many other features, no definite decision can be made,

since some of the runs reported a given feature to be relevant, but at the same time

an almost equal number of runs reported the exact opposite. The explanations given

earlier about redundant and conditional features are true for NBC as well.

It has to be noted that there is a difference in the way NBC and eSNN classify a

test sample. NBCalwaysreports an answer (either class0 or class1). As a result,

the classification accuracy of NBC is never lower than approximately 50% which

corresponds to a random classification. QiSNN, on the other hand, is also able todeny

classification (either class0, class1 or undecided). The latter case is considered to be

a mis-classification of the presented sample. Thus, QiSNN has a third classification
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Figure 9.3: The evolution of accuracy on the ecological data set. All methodsreport similar
classification performance after the evolution of 4000 generations.

option, i.e. remaining silent, and as a consequence, a random classification would

result in an accuracy of33%, compared to50% for NBC.

Furthermore, QiSNN starts the evolution with an non-optimised parameter config-

uration. Thus, the likelihood of mis-classification is large in the early stage of the

optimisation. In later generations, this situation changes since QiSNN discovers a

working parameter configuration. At this stage of the run, the accuracies of both

algorithms can be compared fairly.

This situation is clearly demonstrated in Figure 9.3 which presents the evolution of

the average accuracy over4000 generations. After500 generation, QiSNN achieves

accuracy levels that are similar to NBC. The average accuracy of the best individ-

ual in the population after the evolution was constantly above 80% for both tested

classifiers, NBC displaying a slightly higher variance during the evolutionary run

compared to QiSNN.

It is interesting to see how strongly the classification accuracy depends on the

feature number for each of the tested algorithms. In Figure 9.4, this dependence

is investigated for the eSNN and NBC classifiers. Since the binary and heteroge-

neous QiSNN show a similar behaviour here, we chose the heterogeneous QiSNN

as the representative for both QiSNN. Each point in the diagram corresponds to a

tuple (accuracy, feature number) obtained from the generational best individual of
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Figure 9.4: The diagrams show the accuracy as a function of the feature number for eSNN (a)
and Näıve Bayesian classifier (b). The different grey levels correspond to the
generation in which a given data point was obtained. The lighter the colour the
later the generation. For eSNN the accuracy is highly dependent on the feature
number, which is in strong contrast to NBC.

every generation. The colour indicates the generation itself; the lighter the colour,

the later the generation in which a given tuple was obtained.In the case of eSNN

(cf. Figure 9.4a), a strong relationship between feature numberand accuracy can be

observed. Even for small decreases of the feature number significant accuracy im-

provements are reported. Since the evolutionary search is driven by the classification

accuracy only, solutions having a small number of features represent a strong attrac-

tor in the search space. In the case of NBC, smaller feature subsets are also rewarded

by higher classification accuracy. Nevertheless, this award is less obvious compared

to the one observed in eSNN,cf. Figure 9.4b. Thus, the fitness landscape (in terms of

feature number) represented by NBC appears to be flatter than the one represented by

eSNN. It is noteworthy that flat fitness landscapes are an undesired property of any

fitness function in an evolutionary algorithm.

Figure 9.5 presents the evolution of the parameters of the eSNN architecture. All

three pairs display a steady trend and evolve constantly towards a certain optimum,

not reporting too much variability. We take this as an indicator that these parameters

were indeed carefully controlled by the corresponding optimisation algorithm.

9.3 I N T E R P R E TAT I O N F RO M E C O L O G I C A L P O I N T O F V I E W

Using the heterogeneous QiSNN, on average only10 features were selected in a

particular evolutionary run. However, since the evolved feature subsets were not
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Figure 9.5: Evolution of parameters in the QiSNN framework on the ecologicaldata set.
Three parameter pairs are optimised during the evolutionary process. Dueto
the continuous representation of the parameter space, the enhanced QiSNN (up-
per figure) reports a smoother exploration compared to the binary optimisation
(bottom figure).
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identical in all of the runs and the presence/absence of features is also expected to be

conditional on the presence/absence of other features, we have decided to include into

the ecological analysis all features that have been selected by at least20% of the30

independent runs. Thus, in the case of QiSNN the analysis indicates25 variables that

were considered as being involved in the determination of the classification outcome

after the evolution of4000 generations.

Table 9.1 summarises the final feature subsets obtained by each of the classification

methods. A feature is marked as rejected when at least20% of all performed runs

have discarded this feature at the end of the evolutionary run. If a feature was selected

in 80% or more of all runs, it is marked as selected. The remaining features have

been labelled as “undecided” in the table. As mentioned earlier, the table reflects the

fact that eSNN is more consistent in rejecting features thanNBC. For this reason,

we concentrate our ecological analysis on the results obtained by QiSNN only. The

features included in this analysis are presented by the two columns (“Undecided” and

“Select”) corresponding to the eSNN method in Table 9.1.

Winter (TWIN2, TWIN3, TWINTER) and early spring (TSPR1) temperatures,

and early summer rainfall (RSUMR1) were particularly strong features along with

the degree-days (DD5 and DD15). Degree-days are the accumulated number of de-

grees of temperature above a threshold temperature (5◦ and15◦ in this case) over time

(in this data set over the whole year). It would be expected that the latter two vari-

ables would be closely correlated. These results correspond to another analysis where

more conventional statistical and machine learning methods were used to identify the

contribution of environmental variables toC. capitatapresence or absence (Worner,

Leday, & Ikeda, 2008). While there is no indication from this analysis whether the

features have a negative or positive effect on the distribution of the species, it is

known thatC. capitatais limited by the severity of temperatures in the winter and

early spring and extremes of wet or dry conditions in the summer (Vera, Rodriguez,

Segura, Cladera, & Sutherst, 2002).

The accuracy of the resulting model on the test set, however,is not only higher

than that for the model using the full feature set, but also higher than that found

by (Worner et al., 2008) using a range of conventional models. The clear potential

for further improvement of classification accuracy with model refinement, as well as

automatic optimisation of parameters, makes this an extremely useful approach for

the analysis and modelling of complex, noisy ecological data.
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Feature eSNN NBC Agreement
Reject Undecided Select Reject Undecided Select

Temp1 yes yes
Temp2 yes yes
Temp3 yes yes U
Temp4 yes yes
Temp5 yes yes
Temp6 yes yes R
Temp7 yes yes
Temp8 yes yes R
Temp9 yes yes R
Temp10 yes yes
Temp11 yes yes R
Temp12 yes yes R
TSum1 yes yes R
TSum2 yes yes R
TSum3 yes yes
TAut1 yes yes
TAut2 yes yes U
TAut3 yes yes R
TWin1 yes yes
TWin2 yes yes U
TWin3 yes yes S
TSpr1 yes yes
TSpr2 yes yes
TSpr3 yes yes R
TSummer yes yes R
TWinter yes yes
Tannual yes yes
Rain1 yes yes R
Rain2 yes yes
Rain3 yes yes
Rain4 yes yes
Rain5 yes yes R
Rain6 yes yes R
Rain7 yes yes R
Rain8 yes yes
Rain9 yes yes
Rain10 yes yes
Rain11 yes yes
Rain12 yes yes R
RSumR1 yes yes
RSumR2 yes yes R
RSumR3 yes yes R
RAutr1 yes yes U
RAutr2 yes yes
RAutr3 yes yes
RWinr1 yes yes
RWinr2 yes yes R
RWinr3 yes yes R
RSprr1 yes yes
RSprr2 yes yes
RSprr3 yes yes
Rannual yes yes R
PEannual yes yes
AEannual yes yes R
Mi yes yes
ADayLen yes yes R
AD50mm yes yes
AS50mm yes yes
AD150mm yes yes
AS150mm yes yes
AD300mm yes yes
AS300mm yes yes R
AD700mm yes yes R
AS700mm yes yes R
Im300 yes yes
DD5 yes yes S
DD15 yes yes
Thornthw yes yes R

Total (%) 63.2 32.3 4.4 57.4 29.4 13.2 47.0

Table 9.1: Final feature subsets obtained from the ecological experiments. U=Undecided,
R=Rejected, S=Selected

9.4 C O N C L U S I O N

In this chapter, the QiSNN feature selection framework was applied on a real world

problem in the context of an ecological modelling problem. Results have been com-

pared to the traditional Naı̈ve Bayesian Classifier (NBC). Although no significant
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difference in terms of accuracy between the two classification methods was obtained,

some important experimental observations were made. While NBC represented a

rather flat fitness landscape for the evolutionary algorithm, in which lower numbers

of features receive only little fitness rewards, the eSNN used in QiSNN reported a

clear correlation between classification accuracy and feature number. As a result,

eSNN was capable of decreasing the feature number not only faster than NBC, but

was also more consistent in excluding features from the optimisation process. NBC

on the other hand appeared to be more consistent in selectingfeatures, while being

less consistent in rejecting them. The obtained feature subsets were analysed by an

ecological expert and found to be coherent with current knowledge in this area. In

a previous analysis, in which conventional statistical methods were applied on this

data set without performing any feature selection beforehand, a worse classification

accuracy was reported.





Chapter10

C O N C L U S I O N A N D F U T U R E D I R E C T I O N S

This chapter summarises the achievements of the presented research and provides

several directions for future work.

10.1 S U M M A RY O F AC H I E V E M E N T S

This thesis proposed an integrated feature and parameter optimisation framework

built upon the evolving spiking neural network architecture. The framework com-

bines an evolutionary optimisation algorithm with an eSNN based classification

method following the wrapper approach. Due to the quantum computing metaphor of

the employed binary optimisation algorithm, the novel technique was introduced as

the Quantum-inspired Spiking Neural Network (QiSNN) framework. The evolution-

ary process evolves an appropriate feature subset while simultaneously optimising

the neural and learning related parameters of the eSNN. The synaptic weights of the

neural network are not subject to evolution, but are trainedby a fast one-pass learning

algorithm instead. The QiSNN framework and part of its analysis was initially pub-

lished in (Schliebs, Defoin-Platel, & Kasabov, 2009) and later extended in (Schliebs,

Defoin-Platel, Worner, & Kasabov, 2009a).

The QiSNN framework offers a number of advantages compared to the individual

application of the eSNN classifier. First, the parameters ofeSNN are self-adapting

promoting the straight-forward application of the method to a specific problem do-

main. This characteristic is highly desirable for any machine learning and knowledge

discovery method, especially in the context of an increasing amount of interdisci-

plinary research. As a consequence the framework effectively avoids a poor classi-

fication performance caused by the choice of inappropriate parameter configurations

by the experimenter. Second, feature selection can significantly improve the classi-

221
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fication accuracy of eSNN and enhances the suitability of themethod for real-world

problems.

The novel method was experimentally investigated on a number of data sets in-

cluding both synthetic and real world problems. It was shownthat the eSNN classi-

fier responds very sensitively to redundant and irrelevant features. It is noteworthy

that irrelevant features may decrease the performance of the method significantly.

As a consequence, feature selection is very important for eSNN. The sensitivity of

eSNN to noise is effectively exploited by the evolutionary optimisation algorithm.

Relevant, redundant and irrelevant features were reliably detected in the investigated

benchmark problems.

In a case study, the QiSNN framework was applied to an ecological modelling

problem. Results were compared to the traditional Naı̈ve Bayesian Classifier (NBC).

QiSNN decreased the number of features faster and more consistently than NBC.

The obtained feature subsets were analysed by an ecologicalexpert and found to be

coherent with current knowledge in this area. The case studywas recently published

in (Schliebs, Defoin-Platel, Worner, & Kasabov, 2009b) and(Schliebs, Defoin-Platel,

Worner, & Kasabov, 2009a). In a previous analysis, in which conventional statisti-

cal methods were applied on this data set without performingany feature selection

beforehand, a worse classification accuracy was reported.

For the simultaneous evolution of feature subsets and eSNN parameter configura-

tions a specialised evolutionary algorithm was developed that allows the simultane-

ous exploration of a binary and a continuous search space. This method is a novel

and original contribution to the field of evolutionary computation. The algorithm

hybridises two additional evolutionary methods and was introduced as the heteroge-

neous Hierarchical Model Estimation of Distribution Algorithm (hHM-EDA).

In its core, hHM-EDA combines the novel Versatile Quantum-inspired Evolution-

ary Algorithm (vQEA), and the novel continuous Hierarchical Model Estimation

of Distribution Algorithm (cHM-EDA). hHM-EDA was experimentally investigated

and its competitive performance was demonstrated when compared to eight different

optimisation techniques. Furthermore, guidelines for theconfiguration of hHM-EDA

were developed and tested as part of the analysis. In terms ofcomputational cost,

hHM-EDA requires very little algorithmic overhead in contrast to a number of other

tested algorithms. Overall, hHM-EDA is a light-weight, fast and reliable optimisation

method that is easy to configure and flexible to use. However, the analysis of more

test functions is suggested to provide additional statistical evidence to this claim.

The binary representation employed in hHM-EDA is explored by vQEA that was

introduced as an improvement over the Quantum-inspired Evolutionary Algorithm
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(QEA) previously proposed in (Han & Kim, 2002). An extensiveexperimental anal-

ysis demonstrated that apart from the quantum metaphor, vQEA is an original ap-

proach belonging to the class of EDA. The main differentiating feature of vQEA to

other EDA approaches is a multiple probabilistic model thatis organised in a struc-

tured population of individuals. The advantages of manipulating several probability

vectors instead of only one were empirically demonstrated.vQEA is an effective

optimiser that works with fairly generic settings of its control parameters for a col-

lection of benchmark problems of various sizes, with different levels of interactions

between variables and numbers of neutral dimensions. Multiple probability vectors

compensate for a finite number of decision errors while the population structure al-

lows an adaptive learning speed and directly controls the diversity of the solutions

sampled by vQEA. As part of the thesis, vQEA was first published in (Defoin-Platel

et al., 2007) followed by a comprehensive analysis in (Defoin-Platel et al., 2009).

The behaviour and the robustness of vQEA was analysed on several benchmark

problems using different noise landscapes. The study revealed a significant benefit

of vQEA in comparison to other EDA approaches. It was shown that the selective

pressure during the evolutionary process can be controlledby varying the population

structure. Small population sizes in combination with few global synchronisation

events decrease the selective pressure, while a fully synchronised population structure

increases it. This knowledge may prove very important for the additional fine-tuning

of parameters on noisy problems.

The continuous representation employed in hHM-EDA is explored by cHM-EDA

that was developed as an extension of vQEA towards numericaloptimisation. The

probabilistic model of vQEA,i.e. theQbit, was replaced with Gaussian distributions.

All key characteristics of vQEA, namely a multiple probabilistic model, a hierarchi-

cal population structure and a convergence dependent learning rule, are also part of

its extension. The method was named continuous hierarchical model EDA, since the

quantum metaphor has become inappropriate in the context ofthe Gaussian distribu-

tions.

cHM-EDA was investigated on a state-of-the-art benchmark suite consisting of

25 different test functions covering a variety of different problem characteristics.

The functions range from simple separable uni-modal problems, over non-separable,

non-linear, non-symmetrical, rotated and scalable functions, to complex hybrid com-

position functions in which several different function properties are mixed together.

Additionally, some noisy benchmarks were considered. The overall performance of

cHM-EDA is very competitive, especially on difficult, high dimensional problems.

Issues arise when the search space contains flat areas. Here an adaptive learning rate
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for the standard deviation update of the model, ase.g. employed in some other evo-

lutionary techniques, might be beneficial. Along with the benchmark experiments,

some practical guidelines for parameter configuration werepresented. Furthermore,

the scalability, robustness and convergence speed of cHM-EDA were investigated.

10.2 F U T U R E D I R E C T I O N S

This thesis has contributed to two research areas: QiSNN is anovel method in the

field of neural information processing, while the three developed optimisation al-

gorithms belong to the field of evolutionary computation. The developed methods

reported promising results and future work is planned to further investigate their

characteristics and compare their performance to related methods. Additionally, a

number of potential applications are possible.

In the next sections, future work on QiSNN is presented, followed by plans for

future work on vQEA, cHM-EDA and hHM-EDA.

10.2.1 QiSNN

Here we discuss possible future directions for the QiSNN framework.

Analysis

A detailed analysis of the characteristics of QiSNN in real-world scenarios is sug-

gested. It was already shown in the course of this thesis thatthe involved optimi-

sation methods are able to handle fitness noise satisfyinglywell. However, another

important property of real-world data is theimbalance of data sets. Experimental

analysis is required to investigate the behaviour of QiSNN in such a context. Further-

more, some traditional classification benchmarks based on real-world data sets may

be investigated in a future study.

Applications

The QiSNN framework was designed for a straightforward application in different

problem domains. The thesis has undertaken already a real-world case study in

the context of an ecological modelling problem. Future studies on similar data are

planned. Additionalecological datamay be provided by the Centre for Bioprotection

at Lincoln University, Christchurch, New Zealand. Potential other applications may
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involve the analysis ofbio-medical problems, such as gene expression analysis and

the prediction of diseases based on clinical data.

For many data sets, the feature space is very large and involves the optimisation

of thousands of different features. In this situation the need for more powerful com-

putational resources arises. The implementation of adistributed version of QiSNN

is required which allows the efficient simulation of SNN on a computer cluster. An-

other possibility is the use of state-of-the-art computer systems, such as theBlueFern

supercomputer1 that was made available to New Zealand scientists recently.This

machine is currently the only IBM Blue Gene computer installedin the Southern

Hemisphere. The system employs1024 dual-core CPUs per rack resulting in a total

of 4096 cores and a theoretical peak performance of11.2 Tera-flops. Comprehen-

sive large-scale simulations of SNN may provide an invaluable tool for the future

analysis of brain-like neural information processing. Applying supercomputers to

neuroscientific problems is a current trend,cf. e.g.the Blue Brain Project (Markram,

2006) which is an attempt to reverse engineer a mammalian brain through extensive

computer simulations.

Neural models

Recently, numerous studies have suggested a novel paradigm for developing more

realistic neural models. In (Kasabov, 2008) the potential of a probabilistic spik-

ing neural model was discussed. The principle was further elaborated in (Kasabov,

2010). In these articles it is argued that most current neural models are determin-

istic which is in contrast to biological neurons. Stochastic elements may enhance

the information processing capabilities of spiking neurons. The integration of such a

novel neural model into the QiSNN framework would be straightforward since only

the deterministic Thorpe neuron would need to be replaced. Due to its relevance for

QiSNN, the concept of this probabilistic approach is brieflyoutlined here.

The probabilistic neural model as presented in (Kasabov, 2010) is schematically

shown in Figure 10.1. The potentialui represents the state of a neuroni. A neuron

i is stimulated by the spike activity of pre-synaptic neuronsj. Additional to the

synaptic connection weightswj,i, the probabilistic model has three novel parameters.

Parameterpc
j,i represents the probability that a spike from neuronj will reachi, ps

j,i is

the probability that synapse(j, i) contributes to potentialui, andpi is the probability

that neuroni emits an output spike. The overall potentialui of the neuron can be

1 More information about BlueFern is available at http://www.bluefern.canterbury.ac.nz
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Figure 10.1: A probabilistic spiking neural model according to (Kasabov,2010). pc
j,i repre-

sents the probability that a spike from neuronj will reach i, ps
j,i is the proba-

bility that synapse(j, i) contributes to potentialui, andpi is the probability that
neuroni emits an output spike. See also Equation 10.1. Figure was redrawn
from (Kasabov, 2010).

describede.g. by means of the spike response model (Gerstner & Kistler, 2002b)

which was described in detail in chapter 2:

ui(t) = η(t− t̂i) +
∑

j

wij

∑

f

Random

variables
︷ ︸︸ ︷

C × S ×ǫij(t− t
(f)
j ) (10.1)

whereC = 1 with probabilitypc
j,i, S = 1 with probabilityps

j,i andpi is sampled in

dependence of the timet and the state of potentialu. The kernel functionsη andǫ

follow the interpretation of the spike response model,cf. chapter 2 for details. Note

that, if all probabilities are set to1, the model resembles the traditional spike response

model.

Kasabov (2010) argues that an integrated probabilistic SNNsimilar to QiSNN may

be very suitable for classification and feature selection problems. Especially in the

context of many practical real-world problems involving large amounts of noise, a

non-deterministic neuron may demonstrate some interesting characteristics.

Optimisation of additional parameters

Although most parameters in the QiSNN framework are optimised through the evolu-

tionary process of hHM-EDA, additional parameters may be included in this optimi-

sation,e.g. the parameters of theneural encoding method. The employed rank-order

population encoding (explained in chapter 2, section 2.6.1) requires the setting of the

number of Gaussian receptive fields and the parameterβ which controls the standard
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deviation of the Gaussian. Both parameters are critical for the functioning of QiSNN.

Furthermore, other neural encoding techniques may be considered.

10.2.2 Optimisation algorithms

This thesis has developed three novel optimisation methodsthat allow the simulta-

neous evolution of a suitable feature subset and a corresponding parameter set for

eSNN. However, due to their generic nature, these methods are also applicable to a

variety of general optimisation problems. Several future directions for each of the

optimisation techniques are summarised here.

hHM-EDA

Evolutionary algorithms are a powerful optimisation tool and many studies have em-

ployed them to enhance neural information processing. In the context of neuroscience

these algorithms may be used toreverse engineerbiological neurons. The technique

allows the derivation of novel mathematical neural models whose parameters are

adjusted through the use of an evolutionary algorithm in order to fit the model be-

haviour to some measured biological recordings. Similar approaches are very com-

mon in bioinformatical problems such as the reverse engineering of gene regulatory

networks. Due to its flexibility, robustness and competitive performance, hHM-EDA

seems very suitable for this task.

A concrete example for an application of hHM-EDA is the optimisation of the com-

putational neuro-genetic modelling (CNGM) presented in (Benuskova & Kasabov,

2007). Here, a gene regulatory network (GRN) affects the spike activity of a SNN.

Both the GRN and the SNN have parameters that need to be optimised in order to

fit the CNGM to a given data set. Benuskova, Jain, Wysoski, and Kasabov (2006)

presented a manually fine-tuned CNGM that is capable of reproducing experimental

data on long-term potentiation (LTP) occurring in the rat hippocampal dentate gy-

ros. Using hHM-EDA the optimisation process could be automated and the model

accuracy increased.

Although the idea of a mixed variable optimisation algorithm is not new, hHM-

EDA has only very few competitors at the moment. However, very recent develop-

ments in this area have proposed numerous interesting heterogeneous optimisation

methods. Seee.g. the work on genetic algorithms presented in (Rivero et al., 2009)

and on a modified version of the Particle Swarm Optimiser (Garro et al., 2009), but

also the study on the mixed Ant Colony Optimiser discussed in (Socha, 2004). In or-
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der to compare these method and hHM-EDA efficiently with eachother, novel mixed-

variable test functions and benchmarks are required. Aheterogeneous benchmark

suitewith standardised guidelines for presenting results similar to the one proposed

in (Suganthan et al., 2005) appears highly suitable for sucha comparison study. The

suite may include practical real-world scenarios, such as the wrapper-based feature

selection or the topology and parameter evolution of neuralnetworks. The com-

parison of different algorithms could also motivate an international competition on

heterogeneous optimisation problems.

The introduced generalised cooperative co-evolutionary architecture (CCA) (Potter

& Jong, 2000) offers an interesting scheme for hybridising different evolutionary

algorithms. Although it was shown in chapter 7 that the proposed hHM-EDA is not

a CGA, cHM-EDA and vQEA could be hybridised following the CGA scheme. This

cooperative co-evolutionary hHM-EDAmight demonstrate interesting properties and

should be experimentally compared to the hHM-EDA developedin this thesis.

cHM-EDA

The proposed cHM-EDA has reported very promising results onthe CEC’05 bench-

mark suite. Its performance is generally on par with many highly advanced optimi-

sation algorithms in the field and outperforms numerous methods especially in the

context of difficult multi-modal problems. Future improvements include the devel-

opment ofadaptive learning rates. Many state-of-the-art algorithms implement such

a mechanism,e.g.the CMA-ES presented in (Auger & Hansen, 2005). Self-adapting

parameters represent a highly desired property of evolutionary algorithms.

Local restart strategiesmay further improve the optimisation performance of cHM-

EDA, especially in the context of large-scale global optimisation problems. When-

ever the algorithm is converged to a certain solution or the fitness improves only

slowly, the algorithm is reinitialised and starts the search in a different region of the

search space. This strategy is efficiently implementede.g. in the Hybrid Real-coded

Genetic Algorithm (Garćıa-Mart́ınez & Lozano, 2005) and the CMA-ES (Auger &

Hansen, 2005). The recently developed benchmark suite presented in (Tang et al.,

2007) was specifically designed to compare the properties and performance of dif-

ferent optimisation methods in a high-dimensional optimisation scenario. Since the

suite was proposed as part of the special session at the Congress on Evolutionary

Computation (CEC) in 2007, an annual major event for the research field, many algo-

rithms have been compared on these test functions. Thus, theanalysis of cHM-EDA
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based on this benchmark suite allows the inter-comparison of numerous large-scale

optimisation methods to cHM-EDA.

The probabilistic multi-model approach may be also interesting for multi-objective

optimisation. Since each model evolves individually, different areas inthe search

space are explored simultaneously. Experimental evidencewas provided in chap-

ter 6. A mechanism that allows the individual models to mergeand split according to

already visited solutions, might result in a powerful optimisation tool to solve multi-

objective problems. The suitability of EDAs for this problem class was previously

discussed in (Lozano, Larrañaga, Inza, & Bengoetxea, 2006).

vQEA

The proposed vQEA was extensively studied in this thesis. Future analysis may fur-

ther focus on the importance ofdifferent population structures. It was demonstrated

in chapter 5 that the population structure is very importantin the context of a noisy

and inaccurate fitness evaluation. An adaptive mechanism that automatically adjusts

the number of individuals in each group might be beneficial.

Furthermore, the possibility ofheterogeneous groupsshould be explored. Here,

each group maintains its own learning rate. Hence, different groups explore the

search space with different learning speeds. The fast groups generally converge

quickly, but allow the efficient identification of promisingareas in the search space.

The slower groups, on the other hand, maintain diversity in order to perform a local

search in these promising areas. Such a mechanism would explicitly introduce dif-

ferent search strategies into vQEA. Similar strategies arealso employed in other al-

gorithms,e.g.the genetic algorithm presented in (Garcı́a-Mart́ınez & Lozano, 2005).

In principle, this strategy would be suitable for cHM-EDA and hHM-EDA as well.

10.3 C O N C L U D I N G R E M A R K S

The thesis has embraced two major areas in the field of computational intelligence –

the area of neural information processing and the area of evolutionary computation.

For both areas, some very recent and exciting directions were explored. Arguably,

the development of practical applications based on spikingneurons is currently a hot

topic in the research community and numerous specialised conferences, workshops

and journals have emerged recently. In light of this trend, the proposed QiSNN frame-

work contributes to the family of contemporary evolving connectionist systems. The

integrated feature and parameter optimisation significantly improves the eSNN clas-
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sification capabilities and promotes the intuitive and straightforward application of

the method in other problem domains.

Evolutionary computation is a traditional companion of neural information pro-

cessing and both fields have greatly benefited from each other. Among the most ad-

vanced and current evolutionary algorithms are the probabilistic approaches, namely

EDAs, which have attracted a large and highly productive research community during

the last decade. The three novel EDAs developed in the courseof the thesis employ

multiple probabilistic models to explore the search space which adds an interesting

new flavor to the EDA paradigm. The methods represent an original contribution to

the field and very promising results have been obtained from an extensive experimen-

tal analysis.

The fruitful hybridisation of spiking neurons with evolutionary algorithms in ei-

ther engineering or neuroscientific applications is very exciting and provides many

interesting future directions for research.
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F O R M A L D E S C R I P T I O N O F U S E D E DA

A number of classical EDA were implemented and investigatedduring the prepara-

tion of this study. The descriptions of these methods are given below in the format

typically used in this field. Additionally, a formalised description of vQEA is pre-

sented.

Algorithm 5 vQEA – Versatile Quantum-inspired Evolutionary Algorithm
1: initialize eachQi

2: initialize eachAi

3: while not termination conditiondo
4: for all i ∈ [1, p] do
5: sample1 new solutionCi from Qi

6: evaluateCi

7: if f(Ai) better than f(Ci) then
8: learnmodel

(
Ai, Ci, Qi

)

9: end if
10: Ai ← Ci

11: end for
12: check local and global synchronization
13: end while
14:

15: function learnmodel
(
Ai, Ci, Qi

)

16: for all j ∈ [1, N ] do
17: if Aj

i 6= Cj
i then

18: if Aj
i = 1 then

19: Qj
i ← rotateQj

i towardsAj
i using∆θ

20: else
21: Qj

i ← rotateQj
i towardsAj

i using−∆θ
22: end if
23: end if
24: end for
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Algorithm 6 PBIL – Probabilistic Incremental Learning
1: initialize the probabilistic modelP
2: while not termination conditiondo
3: sampleM new solutions fromP into D
4: evaluate the elements ofD
5: selectbest from D
6: for all j ∈ [1, N ] do
7: Pj ← Pj × (1.0−Rl) + bestj ×Rl

8: if rand(0, 1] < Rm then
9: Pj ← Pj × (1.0−Rs) + rand(0.0 or 1.0)×Rs

10: end if
11: end for
12: end while

Algorithm 7 cGA – Compact Genetic Algorithm
1: initialize the probabilistic modelP
2: while not termination conditiondo
3: sample2 new solutions fromP into D
4: evaluate the elements ofD
5: selectwinner andlooser from D
6: learnmodel

(
winner, looser, P

)

7: end while
8:

9: function learnmodel
(
winner, looser, P

)

10: for all j ∈ [1, N ] do
11: if winnerj 6= looserj then
12: if winnerj = 1 then
13: Pj ← Pj + 1/n
14: else
15: Pj ← Pj − 1/n
16: end if
17: end if
18: end for

Algorithm 8 UMDA – Uni-variate Marginal Distribution Algorithm
1: initialize the probabilistic modelP
2: while not termination conditiondo
3: sampleM new solutions fromP into D
4: evaluate the elements ofD
5: selectL = α ∗M solutions fromD into Ds

6: for all j ∈ [1, N ] do
7: Pj ← compute marginal frequency at locusi in Ds

8: end for
9: end while
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C O M P L E T E S TAT I S T I C S O N C E C ’ 0 5 B E N C H M A R K

The CEC-2005 benchmark initiative proposed in (Suganthan et al., 2005) suggests

specific guidelines for the presentation of results, which allows a direct comparison

of different optimization techniques. The obtained results on the 25 benchmark func-

tions were prepared following these requirements in detail. In the Tables B.1, B.2 and

B.3 the objective function errors after103, 104, 105, andN × 104 FES are presented.

Table B.4, B.5 and B.6 present the number of required FES to reacha given fixed ac-

curacy level for all successfully solved functions, together with the success rate and

the success performance as defined in (Suganthan et al., 2005). Figure B.1 presents

the convergence graphs of the objective function errors. Table B.7 summarises the

time complexity for the algorithm.
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FESProb 1 2 3 4 5 6 7 8 9 10 11 12

1e3

min 1.54e+3 3.04e+3 1.32e+7 6.26e+3 9.25e+3 7.00e+7 9.35e+1 2.05e+1 6.02e+1 8.49e+1 1.03e+1 2.25e+4
7th 3.47e+3 6.17e+3 3.80e+7 1.10e+4 1.04e+4 3.05e+8 1.40e+2 2.06e+1 7.83e+1 1.01e+2 1.16e+1 3.66e+4
med 4.42e+3 7.22e+3 5.13e+7 1.25e+4 1.13e+4 5.48e+8 2.19e+2 2.07e+1 8.52e+1 1.14e+2 1.20e+1 4.92e+4
19th 5.25e+3 9.67e+3 7.51e+7 1.43e+4 1.22e+4 7.49e+8 2.61e+2 2.08e+1 9.12e+1 1.25e+2 1.23e+1 6.39e+4
max 7.05e+3 1.14e+4 9.29e+7 1.76e+4 1.38e+4 1.16e+9 3.49e+2 2.09e+1 1.01e+2 1.35e+2 1.28e+1 8.46e+4
mean 4.35e+3 7.50e+3 5.41e+7 1.23e+4 1.14e+4 5.66e+8 2.12e+2 2.07e+1 8.32e+1 1.12e+2 1.18e+1 5.14e+4
std 1.83e+3 2.88e+3 2.79e+7 3.75e+3 1.53e+3 3.74e+8 8.97e+1 1.39e–1 1.37e+1 1.78e+1 8.58e–1 2.15e+4

1e4

min 1.69e–2 6.43e–1 1.22e+6 1.46e+2 9.19e+2 2.36e+4 5.29e–1 2.03e+1 2.50e+1 1.72e+1 1.04e+0 5.90e+0
7th 2.87e–2 1.29e+0 2.26e+6 2.45e+2 1.07e+3 4.42e+4 6.01e–1 2.04e+1 3.06e+1 2.98e+1 1.34e+0 1.70e+1
med 3.70e–2 1.42e+0 2.60e+6 3.03e+2 1.17e+3 6.50e+4 7.02e–1 2.05e+1 3.43e+1 3.26e+1 1.43e+0 3.47e+1
19th 4.23e–2 1.82e+0 3.29e+6 4.10e+2 1.26e+3 7.94e+4 7.38e–1 2.06e+1 3.51e+1 3.90e+1 1.49e+0 9.53e+1
max 5.37e–2 2.76e+0 4.80e+6 5.14e+2 1.57e+3 1.38e+5 7.97e–1 2.06e+1 3.95e+1 4.06e+1 2.93e+0 7.43e+2
mean 3.57e–2 1.59e+0 2.83e+6 3.24e+2 1.20e+3 7.00e+4 6.73e–1 2.05e+1 3.29e+1 3.18e+1 1.65e+0 1.79e+2
std 1.24e–2 6.99e–1 1.19e+6 1.28e+2 2.18e+2 3.88e+4 9.62e–2 1.07e–1 4.85e+0 8.32e+0 6.59e–1 2.84e+2

1e5

min 0.00e+0 0.00e+0 6.53e+3 1.00e–10 8.34e–8 1.24e–2 0.00e+0 2.02e+1 0.00e+0 0.00e+0 0.00e+0 2.29e–2
7th 0.00e+0 0.00e+0 2.83e+4 4.00e–10 1.35e–7 2.43e–2 0.00e+0 2.03e+1 9.95e–1 0.00e+0 0.00e+0 3.48e+0
med 0.00e+0 0.00e+0 5.80e+4 5.00e–10 1.41e–7 3.48e–2 0.00e+0 2.03e+1 9.95e–1 9.95e–1 0.00e+0 1.52e+1
19th 0.00e+0 0.00e+0 1.11e+5 7.00e–10 1.61e–7 5.80e–2 9.86e–3 2.04e+1 2.98e+0 9.95e–1 0.00e+0 4.11e+1
max 0.00e+0 0.00e+0 2.02e+5 1.00e–9 1.90e–7 4.01e+0 1.72e–2 2.04e+1 4.97e+0 1.99e+0 1.50e+0 7.12e+2
mean 0.00e+0 0.00e+0 8.12e+4 5.40e–10 1.42e–7 8.28e–1 5.42e–3 2.03e+1 1.99e+0 7.96e–1 3.00e–1 1.54e+2
std 0.00e+0 0.00e+0 6.98e+4 3.01e–10 3.51e–8 1.59e+0 7.03e–3 8.08e–2 1.78e+0 7.45e–1 6.00e–1 2.79e+2

FESProb 13 14 15 16 17 18 19 20 21 22 23 24 25

1e3

min 5.74e+0 4.01e+0 5.05e+2 3.22e+2 3.36e+2 1.16e+3 1.15e+3 1.15e+3 1.23e+3 1.01e+3 1.33e+3 1.20e+3 1.51e+3
7th 9.35e+0 4.21e+0 7.27e+2 3.77e+2 4.45e+2 1.18e+3 1.17e+3 1.17e+3 1.36e+3 1.10e+3 1.37e+3 1.33e+3 1.62e+3
med 9.86e+0 4.27e+0 7.52e+2 4.33e+2 4.73e+2 1.21e+3 1.20e+3 1.20e+3 1.40e+3 1.13e+3 1.39e+3 1.37e+3 1.64e+3
19th 1.10e+1 4.40e+0 8.35e+2 4.60e+2 5.05e+2 1.23e+3 1.23e+3 1.23e+3 1.41e+3 1.15e+3 1.40e+3 1.39e+3 1.68e+3
max 1.34e+1 4.45e+0 9.42e+2 4.87e+2 5.86e+2 1.27e+3 1.27e+3 1.27e+3 1.44e+3 1.30e+3 1.41e+3 1.40e+3 1.75e+3
mean 9.87e+0 4.27e+0 7.52e+2 4.16e+2 4.69e+2 1.21e+3 1.20e+3 1.20e+3 1.37e+3 1.14e+3 1.38e+3 1.34e+3 1.64e+3
std 2.50e+0 1.55e–1 1.45e+2 5.92e+1 8.16e+1 3.96e+1 4.34e+1 4.34e+1 7.50e+1 9.56e+1 3.05e+1 7.37e+1 7.64e+1

1e4

min 8.30e–1 1.92e+0 2.70e+2 1.52e+2 1.36e+2 8.17e+2 8.09e+2 8.21e+2 9.27e+2 7.77e+2 9.71e+2 2.15e+2 1.17e+3
7th 1.29e+0 2.50e+0 5.13e+2 1.60e+2 1.81e+2 9.83e+2 9.90e+2 9.85e+2 1.01e+3 7.86e+2 1.04e+3 2.26e+2 1.20e+3
med 1.40e+0 2.73e+0 5.28e+2 1.71e+2 1.85e+2 9.97e+2 1.00e+3 1.00e+3 1.03e+3 7.89e+2 1.07e+3 2.31e+2 1.21e+3
19th 1.58e+0 2.91e+0 5.45e+2 1.77e+2 1.96e+2 1.02e+3 1.02e+3 1.01e+3 1.05e+3 8.00e+2 1.09e+3 2.35e+2 1.24e+3
max 1.91e+0 3.41e+0 5.63e+2 1.86e+2 2.10e+2 1.05e+3 1.03e+3 1.03e+3 1.11e+3 8.17e+2 1.21e+3 2.45e+2 1.27e+3
mean 1.40e+0 2.69e+0 4.84e+2 1.69e+2 1.82e+2 9.73e+2 9.72e+2 9.71e+2 1.03e+3 7.94e+2 1.08e+3 2.31e+2 1.22e+3
std 3.56e–1 4.88e–1 1.08e+2 1.20e+1 2.51e+1 8.09e+1 8.29e+1 7.65e+1 5.99e+1 1.36e+1 7.65e+1 1.01e+1 3.56e+1

1e5

min 5.69e–1 7.09e–1 0.00e+0 8.44e+1 8.54e+1 8.00e+2 8.00e+2 8.00e+2 8.00e+2 7.30e+2 9.71e+2 2.00e+2 1.03e+3
7th 8.07e–1 1.92e+0 4.00e+2 9.06e+1 9.14e+1 9.40e+2 9.39e+2 9.40e+2 8.00e+2 7.36e+2 9.71e+2 2.00e+2 1.11e+3
med 8.61e–1 2.24e+0 4.00e+2 9.14e+1 9.27e+1 9.48e+2 9.46e+2 9.47e+2 8.00e+2 7.44e+2 9.71e+2 2.00e+2 1.12e+3
19th 1.01e+0 2.70e+0 4.00e+2 9.47e+1 9.49e+1 9.58e+2 9.58e+2 9.58e+2 8.00e+2 7.51e+2 9.71e+2 2.00e+2 1.14e+3
max 1.75e+0 3.14e+0 4.00e+2 9.72e+1 9.86e+1 1.01e+3 1.01e+3 1.01e+3 8.00e+2 8.00e+2 1.20e+3 2.00e+2 1.17e+3
mean 1.00e+0 2.14e+0 3.20e+2 9.17e+1 9.26e+1 9.31e+2 9.31e+2 9.31e+2 8.00e+2 7.52e+2 1.02e+3 2.00e+2 1.11e+3
std 4.00e–1 8.28e–1 1.60e+2 4.33e+0 4.35e+0 7.00e+1 7.04e+1 7.04e+1 0.00e+0 2.50e+1 9.27e+1 0.00e+0 4.50e+1

Table B.1: Function error obtained after103, 104 and105 function evaluations (FES) on the
25 test problems in dimensionN = 10. Given are the minimum, 7th, median,
19th, and maximum value from 25 runs, together with the mean and standard
deviation.
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FESProb 1 2 3 4 5 6 7 8 9 10 11 12

1e3

min 4.03e+4 6.12e+4 4.23e+8 6.03e+4 2.81e+4 1.96e+10 3.14e+3 2.11e+1 4.04e+2 5.37e+2 4.27e+1 1.34e+6
7th 5.42e+4 8.49e+4 9.77e+8 1.02e+5 3.19e+4 3.33e+10 3.71e+3 2.12e+1 4.28e+2 6.56e+2 4.48e+1 1.58e+6
med 5.92e+4 9.25e+4 1.18e+9 1.09e+5 3.37e+4 3.58e+10 4.05e+3 2.12e+1 4.43e+2 6.97e+2 4.57e+1 1.71e+6
19th 6.54e+4 1.02e+5 1.35e+9 1.17e+5 3.58e+4 4.49e+10 4.75e+3 2.13e+1 4.49e+2 7.39e+2 4.69e+1 1.87e+6
max 7.57e+4 1.16e+5 1.67e+9 1.54e+5 3.82e+4 4.95e+10 4.95e+3 2.13e+1 4.87e+2 7.62e+2 4.83e+1 1.99e+6
mean 5.90e+4 9.15e+4 1.12e+9 1.09e+5 3.36e+4 3.66e+10 4.12e+3 2.12e+1 4.42e+2 6.78e+2 4.57e+1 1.70e+6
std 1.18e+4 1.85e+4 4.17e+8 3.01e+4 3.44e+3 1.04e+10 6.68e+2 8.15e–2 2.74e+1 7.95e+1 1.91e+0 2.27e+5

1e4

min 1.78e+3 1.62e+4 2.00e+8 5.22e+4 1.75e+4 2.15e+9 4.77e+1 2.10e+1 2.46e+2 3.14e+2 3.99e+1 1.86e+5
7th 2.56e+3 2.48e+4 3.49e+8 5.76e+4 1.96e+4 2.84e+9 5.42e+1 2.11e+1 2.68e+2 3.37e+2 4.20e+1 3.21e+5
med 2.75e+3 2.69e+4 3.92e+8 6.71e+4 2.08e+4 3.24e+9 5.97e+1 2.11e+1 2.77e+2 3.45e+2 4.30e+1 3.31e+5
19th 2.90e+3 2.93e+4 4.54e+8 6.89e+4 2.16e+4 4.19e+9 6.42e+1 2.11e+1 2.79e+2 3.50e+2 4.38e+1 3.60e+5
max 3.04e+3 3.31e+4 5.58e+8 7.65e+4 2.30e+4 4.91e+9 7.04e+1 2.12e+1 2.88e+2 3.64e+2 4.51e+1 4.23e+5
mean 2.61e+3 2.61e+4 3.90e+8 6.45e+4 2.05e+4 3.47e+9 5.92e+1 2.11e+1 2.71e+2 3.42e+2 4.28e+1 3.24e+5
std 4.42e+2 5.63e+3 1.18e+8 8.57e+3 1.87e+3 9.75e+8 7.86e+0 7.03e–2 1.43e+1 1.66e+1 1.76e+0 7.76e+4

1e5

min 3.00e–10 1.39e–5 6.01e+5 1.84e+2 3.49e+2 3.23e+2 1.51e–8 2.09e+1 4.98e+0 2.01e+0 1.30e–2 2.63e+2
7th 4.00e–10 2.85e–5 1.56e+6 2.64e+2 3.94e+2 4.51e+2 2.42e–8 2.10e+1 6.97e+0 4.99e+0 1.39e–2 1.10e+3
med 4.00e–10 3.25e–5 1.70e+6 3.15e+2 4.23e+2 5.06e+2 2.59e–8 2.10e+1 6.97e+0 5.99e+0 1.45e–2 2.99e+3
19th 4.00e–10 4.63e–5 2.08e+6 3.53e+2 4.57e+2 5.90e+2 3.03e–8 2.10e+1 8.96e+0 6.98e+0 1.51e–2 4.60e+3
max 5.00e–10 6.36e–5 2.82e+6 4.53e+2 4.89e+2 9.63e+2 3.37e–8 2.11e+1 1.10e+1 1.10e+1 5.16e+0 1.51e+4
mean 4.00e–10 3.69e–5 1.75e+6 3.14e+2 4.22e+2 5.67e+2 2.58e–8 2.10e+1 7.77e+0 6.19e+0 1.04e+0 4.82e+3
std 6.32e–11 1.68e–5 7.23e+5 8.97e+1 4.88e+1 2.16e+2 6.32e–9 5.65e–2 2.03e+0 2.91e+0 2.06e+0 5.37e+3

FESProb 13 14 15 16 17 18 19 20 21 22 23 24 25

1e3

min 1.23e+2 1.39e+1 1.05e+3 7.80e+2 8.58e+2 1.18e+3 1.18e+3 1.18e+3 1.37e+3 1.41e+3 1.37e+3 1.37e+3 1.69e+3
7th 2.21e+2 1.41e+1 1.11e+3 9.01e+2 1.07e+3 1.31e+3 1.31e+3 1.31e+3 1.44e+3 1.58e+3 1.44e+3 1.46e+3 1.76e+3
med 2.96e+2 1.42e+1 1.17e+3 9.85e+2 1.11e+3 1.33e+3 1.32e+3 1.32e+3 1.45e+3 1.61e+3 1.45e+3 1.49e+3 1.77e+3
19th 3.56e+2 1.43e+1 1.19e+3 1.03e+3 1.14e+3 1.34e+3 1.34e+3 1.34e+3 1.47e+3 1.68e+3 1.47e+3 1.49e+3 1.81e+3
max 5.18e+2 1.44e+1 1.22e+3 1.10e+3 1.28e+3 1.38e+3 1.38e+3 1.38e+3 1.54e+3 1.72e+3 1.53e+3 1.52e+3 1.86e+3
mean 3.03e+2 1.42e+1 1.15e+3 9.58e+2 1.09e+3 1.31e+3 1.31e+3 1.31e+3 1.45e+3 1.60e+3 1.45e+3 1.47e+3 1.78e+3
std 1.33e+2 1.83e–1 6.22e+1 1.10e+2 1.36e+2 6.95e+1 6.81e+1 6.81e+1 5.45e+1 1.10e+2 5.12e+1 5.19e+1 5.71e+1

1e4

min 1.93e+1 1.30e+1 8.39e+2 3.46e+2 3.82e+2 1.06e+3 1.07e+3 1.07e+3 1.20e+3 1.21e+3 1.21e+3 1.17e+3 1.34e+3
7th 2.15e+1 1.36e+1 8.81e+2 3.88e+2 4.40e+2 1.07e+3 1.08e+3 1.08e+3 1.23e+3 1.26e+3 1.23e+3 1.25e+3 1.35e+3
med 2.30e+1 1.37e+1 8.88e+2 4.02e+2 4.66e+2 1.08e+3 1.08e+3 1.08e+3 1.23e+3 1.28e+3 1.24e+3 1.26e+3 1.35e+3
19th 2.36e+1 1.38e+1 8.96e+2 4.17e+2 4.89e+2 1.09e+3 1.09e+3 1.09e+3 1.24e+3 1.29e+3 1.24e+3 1.27e+3 1.36e+3
max 2.47e+1 1.39e+1 9.17e+2 4.58e+2 6.84e+2 1.11e+3 1.12e+3 1.11e+3 1.26e+3 1.32e+3 1.25e+3 1.29e+3 1.37e+3
mean 2.24e+1 1.36e+1 8.84e+2 4.02e+2 4.92e+2 1.08e+3 1.09e+3 1.09e+3 1.23e+3 1.27e+3 1.24e+3 1.25e+3 1.35e+3
std 1.88e+0 3.25e–1 2.58e+1 3.64e+1 1.02e+2 1.66e+1 1.70e+1 1.40e+1 1.95e+1 3.85e+1 1.29e+1 4.19e+1 1.08e+1

1e5

min 2.33e+0 9.99e+0 3.04e+2 7.96e+0 1.20e+1 9.06e+2 9.06e+2 9.04e+2 5.00e+2 8.75e+2 5.34e+2 2.00e+2 2.00e+2
7th 2.81e+0 1.10e+1 3.05e+2 1.36e+1 1.98e+1 9.08e+2 9.07e+2 9.06e+2 5.00e+2 8.86e+2 5.34e+2 2.00e+2 2.00e+2
med 3.13e+0 1.13e+1 3.05e+2 1.60e+1 2.34e+1 9.09e+2 9.08e+2 9.07e+2 5.00e+2 8.91e+2 5.34e+2 2.00e+2 2.00e+2
19th 3.40e+0 1.18e+1 3.05e+2 1.82e+1 2.83e+1 9.09e+2 9.09e+2 9.09e+2 5.00e+2 8.94e+2 5.34e+2 2.00e+2 2.00e+2
max 4.30e+0 1.26e+1 3.05e+2 2.55e+1 5.42e+2 9.10e+2 9.10e+2 9.09e+2 5.00e+2 9.00e+2 5.34e+2 2.00e+2 2.00e+2
mean 3.19e+0 1.13e+1 3.05e+2 1.63e+1 1.25e+2 9.08e+2 9.08e+2 9.07e+2 5.00e+2 8.89e+2 5.34e+2 2.00e+2 2.00e+2
std 6.57e–1 8.62e–1 3.87e–1 5.76e+0 2.09e+2 1.51e+0 1.57e+0 1.87e+0 7.21e–5 8.57e+0 2.87e–4 1.31e–4 8.39e–5

Table B.2: Function error on the test problems for dimensionN = 30. See description given
in Table B.1 for detailed description of the table content.
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FESProb 1 2 3 4 5 6 7 8 9 10 11 12

1e3

min 1.06e+5 1.81e+5 1.81e+9 2.08e+5 3.71e+4 6.06e+10 6.80e+3 2.12e+1 7.39e+2 1.19e+3 7.57e+1 5.81e+6
7th 1.33e+5 2.18e+5 3.87e+9 2.95e+5 4.41e+4 8.34e+10 7.97e+3 2.13e+1 8.63e+2 1.35e+3 8.01e+1 7.15e+6
med 1.43e+5 2.66e+5 4.30e+9 3.37e+5 4.52e+4 9.44e+10 8.36e+3 2.13e+1 8.87e+2 1.43e+3 8.16e+1 7.56e+6
19th 1.48e+5 2.96e+5 5.11e+9 3.60e+5 4.66e+4 9.93e+10 8.79e+3 2.14e+1 9.02e+2 1.48e+3 8.22e+1 7.81e+6
max 1.58e+5 3.47e+5 5.89e+9 4.16e+5 4.97e+4 1.27e+11 1.00e+4 2.14e+1 9.23e+2 1.55e+3 8.48e+1 8.69e+6
mean 1.37e+5 2.61e+5 4.20e+9 3.23e+5 4.46e+4 9.29e+10 8.39e+3 2.13e+1 8.63e+2 1.40e+3 8.09e+1 7.41e+6
std 1.78e+4 5.79e+4 1.38e+9 6.98e+4 4.17e+3 2.15e+10 1.05e+3 5.99e–2 6.48e+1 1.23e+2 3.01e+0 9.43e+5

1e4

min 2.37e+4 1.00e+5 1.32e+9 1.60e+5 3.10e+4 2.60e+10 3.87e+2 2.12e+1 6.20e+2 7.99e+2 7.28e+1 2.17e+6
7th 2.64e+4 1.17e+5 1.89e+9 1.82e+5 3.58e+4 3.23e+10 4.73e+2 2.12e+1 6.49e+2 8.99e+2 7.76e+1 2.92e+6
med 2.81e+4 1.25e+5 2.12e+9 1.94e+5 3.72e+4 3.59e+10 5.22e+2 2.13e+1 6.61e+2 9.19e+2 7.86e+1 3.26e+6
19th 2.89e+4 1.36e+5 2.37e+9 2.14e+5 3.82e+4 4.09e+10 5.65e+2 2.13e+1 6.70e+2 9.41e+2 7.92e+1 3.36e+6
max 3.14e+4 1.54e+5 2.77e+9 2.31e+5 3.96e+4 4.25e+10 6.31e+2 2.14e+1 6.84e+2 9.71e+2 8.09e+1 3.51e+6
mean 2.77e+4 1.27e+5 2.09e+9 1.96e+5 3.63e+4 3.55e+10 5.16e+2 2.13e+1 6.57e+2 9.06e+2 7.78e+1 3.04e+6
std 2.56e+3 1.80e+4 4.85e+8 2.49e+4 2.96e+3 5.98e+9 8.26e+1 6.53e–2 2.16e+1 5.85e+1 2.71e+0 4.77e+5

1e5

min 1.81e–3 2.92e+0 2.78e+7 1.38e+4 4.81e+3 1.63e+6 1.39e–2 2.11e+1 2.44e+1 5.22e+1 1.31e+0 1.34e+3
7th 2.26e–3 5.87e+0 3.47e+7 1.99e+4 5.49e+3 2.89e+6 1.73e–2 2.12e+1 2.92e+1 5.64e+1 1.44e+0 7.35e+3
med 2.38e–3 6.84e+0 3.93e+7 2.26e+4 5.80e+3 3.06e+6 1.84e–2 2.12e+1 3.27e+1 5.82e+1 1.49e+0 1.03e+4
19th 2.57e–3 9.62e+0 4.28e+7 2.67e+4 6.26e+3 3.36e+6 2.00e–2 2.12e+1 3.35e+1 6.10e+1 1.58e+0 1.89e+4
max 3.05e–3 1.40e+1 5.28e+7 3.50e+4 6.91e+3 3.86e+6 2.30e–2 2.12e+1 3.77e+1 6.77e+1 5.51e+0 2.40e+4
mean 2.41e–3 7.85e+0 3.95e+7 2.36e+4 5.85e+3 2.96e+6 1.85e–2 2.12e+1 3.15e+1 5.91e+1 2.26e+0 1.24e+4
std 4.03e–4 3.76e+0 8.34e+6 7.08e+3 7.07e+2 7.42e+5 3.00e–3 5.11e–2 4.46e+0 5.14e+0 1.62e+0 8.12e+3

FESProb 13 14 15 16 17 18 19 20 21 22 23 24 25

1e3

min 7.75e+2 2.36e+1 1.16e+3 1.05e+3 1.10e+3 1.36e+3 1.36e+3 1.36e+3 1.47e+3 1.55e+3 1.51e+3 1.54e+3 1.88e+3
7th 1.07e+3 2.39e+1 1.24e+3 1.12e+3 1.21e+3 1.41e+3 1.42e+3 1.42e+3 1.53e+3 1.71e+3 1.53e+3 1.60e+3 1.95e+3
med 1.36e+3 2.40e+1 1.29e+3 1.18e+3 1.25e+3 1.43e+3 1.43e+3 1.43e+3 1.54e+3 1.76e+3 1.55e+3 1.62e+3 1.97e+3
19th 1.67e+3 2.41e+1 1.31e+3 1.21e+3 1.33e+3 1.44e+3 1.45e+3 1.45e+3 1.56e+3 1.80e+3 1.57e+3 1.63e+3 1.99e+3
max 1.97e+3 2.42e+1 1.38e+3 1.26e+3 1.41e+3 1.46e+3 1.47e+3 1.47e+3 1.59e+3 1.86e+3 1.58e+3 1.66e+3 2.03e+3
mean 1.37e+3 2.40e+1 1.28e+3 1.17e+3 1.26e+3 1.42e+3 1.43e+3 1.43e+3 1.54e+3 1.74e+3 1.55e+3 1.61e+3 1.96e+3
std 4.22e+2 2.09e–1 7.30e+1 7.18e+1 1.06e+2 3.32e+1 3.78e+1 3.77e+1 3.85e+1 1.07e+2 2.48e+1 4.19e+1 5.08e+1

1e4

min 7.29e+1 2.30e+1 8.79e+2 5.50e+2 6.21e+2 1.23e+3 1.24e+3 1.24e+3 1.35e+3 1.31e+3 1.34e+3 1.39e+3 1.46e+3
7th 8.31e+1 2.35e+1 1.05e+3 6.45e+2 7.68e+2 1.26e+3 1.25e+3 1.26e+3 1.36e+3 1.41e+3 1.36e+3 1.43e+3 1.47e+3
med 8.76e+1 2.36e+1 1.08e+3 6.71e+2 8.10e+2 1.27e+3 1.27e+3 1.27e+3 1.37e+3 1.43e+3 1.37e+3 1.45e+3 1.48e+3
19th 1.01e+2 2.37e+1 1.10e+3 6.99e+2 8.34e+2 1.28e+3 1.29e+3 1.28e+3 1.38e+3 1.46e+3 1.38e+3 1.45e+3 1.49e+3
max 1.10e+2 2.38e+1 1.12e+3 7.34e+2 8.65e+2 1.29e+3 1.30e+3 1.30e+3 1.39e+3 1.49e+3 1.40e+3 1.46e+3 1.52e+3
mean 9.10e+1 2.35e+1 1.04e+3 6.60e+2 7.80e+2 1.26e+3 1.27e+3 1.27e+3 1.37e+3 1.42e+3 1.37e+3 1.44e+3 1.48e+3
std 1.33e+1 2.82e–1 8.61e+1 6.23e+1 8.56e+1 2.19e+1 2.44e+1 2.32e+1 1.52e+1 6.21e+1 1.96e+1 2.58e+1 2.09e+1

1e5

min 4.28e+0 1.82e+1 2.53e+2 3.41e+1 5.75e+1 9.22e+2 9.23e+2 9.23e+2 5.01e+2 9.39e+2 5.39e+2 2.02e+2 2.01e+2
7th 5.01e+0 1.99e+1 3.53e+2 3.95e+1 6.65e+1 9.24e+2 9.25e+2 9.25e+2 5.01e+2 9.45e+2 5.40e+2 2.02e+2 2.01e+2
med 5.60e+0 2.06e+1 3.56e+2 4.17e+1 7.02e+1 9.25e+2 9.26e+2 9.25e+2 5.01e+2 9.49e+2 5.40e+2 2.03e+2 2.01e+2
19th 6.16e+0 2.13e+1 4.05e+2 4.45e+1 7.22e+1 9.26e+2 9.26e+2 9.26e+2 5.01e+2 9.52e+2 5.40e+2 2.03e+2 2.01e+2
max 7.42e+0 2.21e+1 4.06e+2 5.63e+1 8.04e+1 9.29e+2 9.28e+2 9.27e+2 5.01e+2 9.54e+2 5.40e+2 2.03e+2 2.01e+2
mean 5.69e+0 2.04e+1 3.55e+2 4.32e+1 6.93e+1 9.25e+2 9.26e+2 9.25e+2 5.01e+2 9.48e+2 5.40e+2 2.02e+2 2.01e+2
std 1.07e+0 1.32e+0 5.58e+1 7.37e+0 7.47e+0 2.07e+0 1.74e+0 1.46e+0 1.49e–1 5.21e+0 3.17e–1 2.45e–1 2.30e–1

Table B.3: Function error on the test problems for dimensionN = 50. See description given
in Table B.1 for detailed description of the table content.
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Prob min 7th median 19th max mean std
Success Success

Rate Performance
1 1.77e + 03 1.81e + 03 1.82e + 03 1.83e + 03 1.85e + 03 1.82e + 03 1.92e + 01 100 1.82e + 03
2 2.46e + 03 2.51e + 03 2.56e + 03 2.58e + 03 2.64e + 03 2.55e + 03 4.51e + 01 100 2.55e + 03
4 7.12e + 03 7.41e + 03 7.48e + 03 7.51e + 03 7.59e + 03 7.45e + 03 1.01e + 02 100 7.45e + 03
5 9.07e + 03 9.15e + 03 9.25e + 03 9.27e + 03 9.34e + 03 9.22e + 03 7.28e + 01 100 9.22e + 03
7 1.41e + 03 1.44e + 03 1.48e + 03 1.79e + 03 - 1.51e + 03 1.33e + 02 84 1.80e + 03
9 2.32e + 03 2.65e + 03 - - - 2.48e + 03 1.09e + 02 28 8.87e + 03
10 2.39e + 03 2.63e + 03 - - - 2.60e + 03 9.27e + 01 40 6.50e + 03
11 2.44e + 03 2.48e + 03 2.50e + 03 2.54e + 03 - 2.50e + 03 3.98e + 01 92 2.72e + 03
15 2.76e + 03 - - - - 2.76e + 03 0.00e + 00 4 6.90e + 04

Table B.4: The table presents the number of FES to achieve a fixed accuracy level for dimen-
sionN = 10. The results obtained in 25 runs were sorted according to required
FES. Given are the minimum, 7th, median, 19th, and maximum number of FES
from these runs, together with the mean and standard deviation, the success rate
(in %) and success performance as specified in (Suganthan et al., 2005).

Prob min 7th median 19th max mean std
Success Success

Rate Performance
1 7.49e + 03 7.61e + 03 7.63e + 03 7.66e + 03 7.69e + 03 7.63e + 03 4.13e + 01 100 7.63e + 03
2 1.13e + 04 1.14e + 04 1.15e + 04 1.16e + 04 1.19e + 04 1.15e + 04 1.61e + 02 100 1.15e + 04
7 5.52e + 03 5.61e + 03 5.64e + 03 5.67e + 03 5.71e + 03 5.63e + 03 4.73e + 01 100 5.63e + 03
11 1.02e + 04 1.03e + 04 1.04e + 04 1.04e + 04 - 1.04e + 04 6.07e + 01 92 1.13e + 04

Table B.5: The table presents the number of FES to achieve a fixed accuracy level for dimen-
sionN = 30. See the caption of Table B.4 for detailed description of the table
content.

Prob min 7th median 19th max mean std
Success Success

Rate Performance
1 1.42e + 04 1.44e + 04 1.44e + 04 1.44e + 04 1.44e + 04 1.44e + 04 5.37e + 01 100 1.44e + 04
2 2.19e + 04 2.29e + 04 2.36e + 04 2.65e + 04 - 2.36e + 04 1.34e + 03 76 3.11e + 04
7 1.02e + 04 1.03e + 04 1.04e + 04 1.04e + 04 1.06e + 04 1.04e + 04 8.66e + 01 100 1.04e + 04
11 1.94e + 04 1.97e + 04 1.97e + 04 1.98e + 04 - 1.97e + 04 9.69e + 01 76 2.59e + 04

Table B.6: The table presents the number of FES to achieve a fixed accuracy level for dimen-
sionN = 50. See the caption of Table B.4 for detailed description of the table
content.

T0 T1 T̂2 (T̂2− T1)/T0
N = 10

0.152
0.520 2.239 11.311

N = 30 1.976 4.217 14.742
N = 50 3.580 6.479 19.074

Table B.7: Measured CPU time in seconds according to (Suganthan et al., 2005) using Java
1.6, Ubuntu Linux 9.04 64bit, Intel Core2 Duo 3GHz, 4GB RAM.
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(a) Convergence Graphs for Problem 1-5
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(b) Convergence Graphs for Problem 6-10
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(c) Convergence Graphs for Problem 11-15
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Figure B.1: The figure presents the evolution of the objective function error value as a func-
tion of the FES for 25 benchmark functions in dimensionN = 30. Shown is the
median value of 25 performed runs.



AppendixC
C O N F I G U R I N G F I R S T- L E V E L E DA S F O R N O I S Y F I T N E S S

F U N C T I O N S

Maximum noise strength was set toσm = {0, 0.5, 1.5} as the representatives for

each noise type. In PBIL the population sizeM ∈ {10, 20, . . . , 100} and the learn-

ing rateRl = {0.01, 0.05, 0.1, 0.15, 0.2, 0.25} were varied. We set the mutation

probability to Rm = 0.02 and the mutation shift toRs = Rl, which is the de-

fault setting for this algorithm. The only parameter for cGAis the virtual popu-

lation sizen, which we set ton = {80, 90, . . . , 350}. For UMDA we tested dif-

ferent values for the population sizeM ∈ {100, 200, . . . , 1000}, while truncation

selection with rate 50% was used. vQEA is a coarse-grained algorithm allowing a

complex structure for the population ofQindividuals. Four structural settings were

investigated: a singleQindividual (vQEA1,1), one group of ten fully synchronised

Qindividuals (vQEA1,10), five groups of twoQindividuals synchronised everyi-th

generation (vQEA5,2) and ten groups of oneQindividual synchronised everyj-th gen-

eration (vQEA10,1). For all vQEA configurations the learning rate has to be set,which

we chose out of∆θ ∈ {0.0025, 0.005, 0.01, 0.15, 0.02, 0.03}. Additionally the local

and global synchronisation period has to be determined. Forthe local synchroni-

sation period we used alwaysSloc = 1, which is the default setting and has been

identified to work best. The global synchronisation period was varied according to

Sglob ∈ {5, 10, 25, 50, 75, 100, 150, 200, 300}.
Each setting of all the algorithms was applied to each benchmark and each noise

landscape. To satisfy statistical requirements 30 runs were performed for each con-

figuration. Table C.1 presents the identified optimal settings found.
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OneMax

constant linear inverse linear cosine
PBIL M = 10 M = 100 M = 10 M = 10

Rl = Rs = 0.01 Rl = Rs = 0.05 Rl = Rs = 0.25 Rl = Rs = 0.01

cGA n = 200 n = 250 n = 200 n = 190

UMDA M = 500 M = 500 M = 500 M = 500

vQEA1,10 ∆θ = 0.005π ∆θ = 0.005π ∆θ = 0.03π ∆θ = 0.0025π
Sglob = 1 Sglob = 1 Sglob = 1 Sglob = 1

vQEA1,1 ∆θ = 0.0025π ∆θ = 0.0025π ∆θ = 0.0025π ∆θ = 0.0025π
Sglob = 1 Sglob = 1 Sglob = 1 Sglob = 1

vQEA10,1 ∆θ = 0.005π ∆θ = 0.005π ∆θ = 0.02π ∆θ = 0.01π
Sglob = 10 Sglob = 5 Sglob = 25 Sglob = 25

vQEA5,2 ∆θ = 0.01π ∆θ = 0.01π ∆θ = 0.01π ∆θ = 0.005π
Sglob = 25 Sglob = 10 Sglob = 50 Sglob = 25

NK-landscapes,K = 0

constant linear inverse linear cosine
PBIL M = 10 M = 100 M = 50 M = 10

Rl = Rs = 0.01 Rl = Rs = 0.05 Rl = Rs = 0.25 Rl = Rs = 0.25

cGA n = 190 n = 190 n = 190 n = 190

UMDA M = 500 M = 500 M = 400 M = 500

vQEA1,10 ∆θ = 0.005π ∆θ = 0.005π ∆θ = 0.01π ∆θ = 0.01π
Sglob = 1 Sglob = 1 Sglob = 1 Sglob = 1

vQEA1,1 ∆θ = 0.0025π ∆θ = 0.0025π ∆θ = 0.0025π ∆θ = 0.0025π
Sglob = 1 Sglob = 1 Sglob = 1 Sglob = 1

vQEA10,1 ∆θ = 0.01π ∆θ = 0.01π ∆θ = 0.01π ∆θ = 0.005π
Sglob = 10 Sglob = 10 Sglob = 100 Sglob = 300

vQEA5,2 ∆θ = 0.01π ∆θ = 0.01π ∆θ = 0.01π ∆θ = 0.03π
Sglob = 10 Sglob = 10 Sglob = 75 Sglob = 300

NK-landscapes,K = 4

constant linear inverse linear cosine
PBIL M = 50 M = 70 M = 10 M = 10

Rl = Rs = 0.05 Rl = Rs = 0.05 Rl = Rs = 0.01 Rl = Rs = 0.01

cGA n = 220 n = 180 n = 160 n = 180

UMDA M = 300 M = 500 M = 500 M = 500

vQEA1,10 ∆θ = 0.01π ∆θ = 0.005π ∆θ = 0.02π ∆θ = 0.0025π
Sglob = 1 Sglob = 1 Sglob = 1 Sglob = 1

vQEA1,1 ∆θ = 0.005π ∆θ = 0.0025π ∆θ = 0.0025π ∆θ = 0.0025π
Sglob = 1 Sglob = 1 Sglob = 1 Sglob = 1

vQEA10,1 ∆θ = 0.01π ∆θ = 0.01π ∆θ = 0.03π ∆θ = 0.0025π
Sglob = 50 Sglob = 10 Sglob = 50 Sglob = 10

vQEA5,2 ∆θ = 0.03π ∆θ = 0.01π ∆θ = 0.02π ∆θ = 0.0025π
Sglob = 10 Sglob = 10 Sglob = 50 Sglob = 10

Table C.1: Parameter settings
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Figure C.1: Results on the OneMax problem with constant noise
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Figure C.2: Results on the OneMax problem with linear noise



C O N FI G U R I N G FI R S T-L E V E L E DA S F O R N O I S Y FI T N E S S F U N C T I O N S 243

 10 20 30 40 50 60 70 80 90 100

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.988
 0.99

 0.992
 0.994
 0.996
 0.998

 1

Fitness

PBIL, σm=0

Population Size
Learning Rate

Fitness

 0.988
 0.99
 0.992
 0.994
 0.996
 0.998
 1

 10 20 30 40 50 60 70 80 90 100

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.41
 0.42
 0.43
 0.44
 0.45
 0.46
 0.47
 0.48
 0.49
 0.5

 0.51

Fitness

PBIL, σm=0.5

Population Size
Learning Rate

Fitness

 0.41
 0.42
 0.43
 0.44
 0.45
 0.46
 0.47
 0.48
 0.49
 0.5
 0.51

 10 20 30 40 50 60 70 80 90 100

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.36
 0.38
 0.4

 0.42
 0.44
 0.46
 0.48
 0.5

Fitness

PBIL, σm=1.5

Population Size
Learning Rate

Fitness

 0.36
 0.38
 0.4
 0.42
 0.44
 0.46
 0.48
 0.5

 0
 50

 100
 150

 200
 250

 300

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03

 0.99972
 0.99974
 0.99976
 0.99978
 0.9998

 0.99982
 0.99984
 0.99986
 0.99988

Fitness

vQEA10,1, σm=0

Synchronization Period
Learning Rate

Fitness

 0.99972
 0.99974
 0.99976
 0.99978
 0.9998
 0.99982
 0.99984
 0.99986
 0.99988

 0
 50

 100
 150

 200
 250

 300

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03

 0.56
 0.58
 0.6

 0.62
 0.64
 0.66
 0.68
 0.7

Fitness

vQEA10,1, σm=0.5

Synchronization Period
Learning Rate

Fitness

 0.56
 0.58
 0.6
 0.62
 0.64
 0.66
 0.68
 0.7

 0
 50

 100
 150

 200
 250

 300

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03

 0.5
 0.505 0.51
 0.515 0.52
 0.525
 0.53

 0.535
 0.54

 0.545
 0.55

 0.555

Fitness

vQEA10,1, σm=1.5

Synchronization Period
Learning Rate

Fitness

 0.5
 0.505
 0.51
 0.515
 0.52
 0.525
 0.53
 0.535
 0.54
 0.545
 0.55
 0.555

 0
 50

 100
 150

 200
 250

 300

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03

 0.9996
 0.99965
 0.9997

 0.99975
 0.9998

 0.99985
 0.9999

Fitness

vQEA5,2, σm=0

Synchronization Period
Learning Rate

Fitness

 0.9996
 0.99965
 0.9997
 0.99975
 0.9998
 0.99985
 0.9999

 0
 50

 100
 150

 200
 250

 300

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03

 0.56
 0.58
 0.6

 0.62
 0.64
 0.66
 0.68

Fitness

vQEA5,2, σm=0.5

Synchronization Period
Learning Rate

Fitness

 0.56
 0.58
 0.6
 0.62
 0.64
 0.66
 0.68

 0
 50

 100
 150

 200
 250

 300

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03

 0.475
 0.48

 0.485
 0.49

 0.495
 0.5

 0.505
 0.51

 0.515

Fitness

vQEA5,2, σm=1.5

Synchronization Period
Learning Rate

Fitness

 0.475
 0.48
 0.485
 0.49
 0.495
 0.5
 0.505
 0.51
 0.515

80 100 120 140 160 180 200 220 240 260 280 300 320 340
Population Size

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Impact of population size on average fitness (cGA)

°=0°=0.5°=1.5

100 200 300 400 500 600 700 800 900 1000
Population Size

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Fi
tn

e
ss

Impact of population size on average fitness (UMDA)±=0±=0.5±=1.5

0.005 0.010 0.015 0.020 0.025 0.030 0.035
Learning Rate

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Impact of learning rate on average fitness (vQEA_1.1)

²=0²=0.5²=1.5

0.005 0.010 0.015 0.020 0.025 0.030 0.035
Learning Rate

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Impact of learning rate on average fitness (vQEA_1.10)³=0³=0.5³=1.5

Figure C.3: Results on the OneMax problem with inverse linear noise
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Figure C.4: Results on the OneMax problem with cosine noise
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Figure C.5: Results on the K=0 problem with constant noise
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Figure C.6: Results on the K=0 problem with linear noise
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Figure C.7: Results on the K=0 problem with inverse linear noise
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Figure C.8: Results on the K=0 problem with cosine noise
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Figure C.9: Results on the K=4 problem with constant noise
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Figure C.10: Results on the K=4 problem with linear noise
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Figure C.11: Results on the K=4 problem with inverse linear noise
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Figure C.12: Results on the K=4 problem with cosine noise
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Gonźalez, C., Lozano, J. A., & Larrãnaga, P. (2000). Analyzing the PBIL algorithm

by means of discrete dynamical systems.Complex Systems, 12, 465–479.

Han, K.-H. (2003).Quantum-inspired evolutionary algorithm. Unpublished doctoral

dissertation, Korea Advanced Institute of Science and Technology (KAIST).

Han, K.-H., & Kim, J.-H. (2002, December). Quantum-inspired evolutionary algo-

rithm for a class of combinatorial optimization.IEEE Transactions on Evolu-

tionary Computation, 6(6), 580-593.

Han, K.-H., & Kim, J.-H. (2003). On setting the parameters ofquantum-inspired

evolutionary algorithm for practical application. InCongress on Evolutionary

Computation. CEC ’03(Vol. 1, p. 178-194). Canberra, Australia: IEEE Press.

Han, K.-H., & Kim, J.-H. (2004). Quantum-inspired evolutionary algorithms with a

new termination criterion, Hǫ gate, and two phase scheme.IEEE Transactions

on Evolutionary Computation, 8(2), 156-169.

Han, K.-H., & Kim, J.-H. (2006). On the analysis of the quantum-inspired evolu-

tionary algorithm with a single individual. InIEEE Congress on Evolutionary

Computation, CEC’06(p. 16-21). Vancouver, Canada: IEEE Press.



260 References

Harik, G. R. (1999).Linkage learning via probabilistic modeling in the ECGA(Tech.

Rep. No. 99010). IlliGAL, University of Illinois at Urbana-Champaign.

Harik, G. R., Lobo, F. G., & Goldberg, D. E. (1999, November). The compact genetic

algorithm. IEEE Transactions on Evolutionary Computation, 3(4), 287-297.

Hebb, D. O. (Ed.). (1949).The organization of behavior. New York: Wiley.

Hey, T. (1999, 06). Quantum computing: an introduction.Computing & Control

Engineering Journal, 10, 105-112.

Hintz, K., & Spofford, J. (1990, Sep). Evolving a neural network. In 5th IEEE

International Symposium on Intelligent Control(p. 479-484 vol.1).

Hodgkin, A. L., & Huxley, A. F. (1952, August). A quantitative description of

membrane current and its application to conduction and excitation in nerve.

Journal of Physiology, 117(4), 500–544.

Hooker, J. (1995). Testing heuristics: We have it all wrong.Journal of Heuristics, 1,

33–42.

Iannella, N., & Kindermann, L. (2005). Finding iterative roots with a spiking neural

network. Information Processing Letters, 95(6), 545-551.

Iglesias, J., Eriksson, J., Grize, F., Tomassini, M., & Villa, A. E. (2005). Dynamics of

pruning in simulated large-scale spiking neural networks.Biosystems, 79(1-3),

11 - 20.

Iglesias, J., & Villa, A. E. (2007). Effect of stimulus-driven pruning on the detection

of spatiotemporal patterns of activity in large neural networks. Biosystems,

89(1-3), 287 - 293.

Iglesias, J., & Villa, A. E. P. (2006). Neuronal cell death and synaptic pruning

driven by spike-timing dependent plasticity. In S. D. Kollias, A. Stafylopatis,

W. Duch, & E. Oja (Eds.),International Conference on Artificial Neural Net-

works(p. 953-962). Heidelberg Germany: Springer.
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Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without

stable states: A new framework for neural computation basedon perturbations.

Neural Computation, 14(11), 2531-2560.

Madera, J., Alba, E., & Ochoa, A. (2006). A parallel island model for estimation

of distribution algorithms. In P. L. E. J.A. Lozano (Ed.),Towards a New Evo-

lutionary Computation. Advances in the Estimation of Distribution Algorithms

(Vol. 192, pp. 159–186). New York: Springer Berlin / Heidelberg.

Maguire, L. P., McGinnity, T. M., Glackin, B., Ghani, A., Belatreche, A., & Harkin, J.

(2007). Challenges for large-scale implementations of spiking neural networks

on FPGAs.Neurocomput., 71(1-3), 13–29.

Malsburg, C. von der. (1981).The correlation theory of brain function(Tech. Rep.

No. Internal Report 81-2). G̈ottingen, Germany: MPI f̈ur Biophysikalische

Chemie.

Maniezzo, V. (1994, Jan). Genetic evolution of the topologyand weight distribution

of neural networks.IEEE Transactions on Neural Networks, 5(1), 39-53.

Markon, S., Arnold, D., Back, T., Beielstein, T., & Beyer, H.-G.(2001). Thresholding

– a selection operator for noisy ES. InCongress on Evolutionary Computation,

CEC’01 (Vol. 1, p. 465-472).

Markram, H. (2006). The blue brain project.Nature Rev. Neurosci., 7, 153-160.

Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science,

275(5297), 213-215.

Masquelier, T., Guyonneau, R., & Thorpe, S. J. (2008, 01). Spike timing dependent

plasticity finds the start of repeating patterns in continuous spike trains.PLoS

ONE, 3(1), e1377.

Meffin, H., Burkitt, A., & Grayden, D. (2004). An analytical model for the “Large,

Fluctuating Synaptic Conductance State” typical of neocortical neurons in

vivo. Journal of Computational Neuroscience, 16, 159-175(17).

Menneer, T., & Narayanan, A. (1995).Quantum-inspired neural networks(Tech.

Rep. No. R329). Exeter, UK: Department of Computer Science, University of

Exeter.

Michalewicz, Z., & Janikow, C. Z. (1991). Genetic algorithmsfor numerical opti-

mization.Statistics and Computing, 1(2), 75-91.



References 265

Miller, B. L., & Goldberg, D. E. (1996). Genetic algorithms, selection schemes, and

the varying effects of noise.Evol. Comput., 4(2), 113–131.

Mininno, E., Cupertino, F., & Naso, D. (2008, April). Real-valued compact genetic

algorithms for embedded microcontroller optimization.IEEE Transactions on

Evolutionary Computation, 12(2), 203-219.

Monmarch́e, N., Ramat, E., Dromel, G., Slimane, M., & Venturini, G. (1999, Jan).

On the similarities between AS, BSC and PBIL: toward the birth of a new meta-

heuristic(Rapport interne No. 215). E3i Tours: Laboratoire d’Informatique de

l’Université de Tours.
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