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ABSTRACT 

Research into bicycle dynamics has been evolving for many years, yet many questions still need to be 

resolved. This field has proved to be a fertile area for scientific discovery encompassing the disciplines 

of: design, control, rigid body dynamics, computer simulation and practical experimentation. In this 

thesis, first the literature in the field of bicycle rigid body dynamics, control and design was examined in 

detail to find out what was known and what was yet to be discovered.  

The main hypothesis of this thesis was to determine to what extent mathematical modelling could 

influence the dynamics of the bicycle and improve handling performance. Hence a main objective was 

to develop valid and effective design tools that bicycle manufacturers could use to optimise their 

designs.  

To do this equations of motion for a bicycle were developed and solved using Simulink in a Matlab 

environment and appropriate physical parameters were used to find the dynamic response of the bicycle 

in terms of yaw and roll. Using this model it was possible to investigate and understand the following 

issues: 

• the dynamic responses of the bicycle and how they relate to the rider 

• which terms in the equations are critical to the design process 

• the effectiveness of the model in determining bicycle performance 

• how the bicycle can be optimised in terms of specific performance criteria? 

A design methodology was developed that designers could use to guide their bicycle design decisions. 

The proposed design methodology consists of four Design Charts covering: 

1. Steering geometry (head tube angle, rake and trail)  

2. Wheel properties (diameter and moment of inertia) 

3. Frame geometry (vertical and longitudinal position of the mass and wheelbase) 

4. Mass and roil inertia (bicycle mass and moment of inertia of the rear assembly) 

The validity of these Design Charts was confirmed by comparing them to historical design practice and 

then to elite riders and bicycles from the 2013 Tour de France bicycle race. This comparison showed 

that these bicycle designs conformed to the Charts, indicating the Charts’ relevance and usefulness. 

The Charts also display appropriate design envelopes for designers’ guidance. 
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NOMENCLATURE 

This nomenclature section defines all the variables, notations and terms used in this thesis 

Table 1 List of variables 

Symbol Meaning Units 

a linear acceleration m/s2 

a horizontal distance from centre of front wheel to centre of mass m 

b horizontal distance from centre of rear wheel to centre of mass m 

c clearance distance between seat tube centreline and outside of rear wheel mm 

d1 crank sideways offset mm 

d2 crank length mm 

d3 shoe extension mm 

D wheel diameter m (or mm) 

F force N 

FS frame size cm or mm 

g acceleration due to gravity = 9.81m/s2 m/s2 

G  linear momentum kgm/s 

G  
change in linear momentum kgm/s2 

h vertical distance from ground to centre of mass m 

h1 distance vertically from rear wheel hub to B mm 

h2 distance vertically from ground level to B mm 

h3 distance vertically from ground level to C mm 

h4 distance vertically from wheel hubs to C (bottom bracket drop) mm 

H angular momentum kgm2/s 

𝐻̇𝐻 change in angular momentum kgm2/s2 

H vertical distance from ground to centre of front wheel hub m 

i distance from A to D mm 

I mass moment of inertia (also MOI) kgm2 

IS inseam leg measurement of the rider mm 
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IXA moment of inertia of assembly A about X axis (roll) kgm2 

IZA moment of inertia of assembly A about Z axis (yaw) kgm2 

IXB moment of inertia of assembly B about X axis (roll) kgm2 

IXF moment of inertia of front wheel about X axis (roll) kgm2 

IYF moment of inertia of front wheel about Y axis (rotational) kgm2 

IZF moment of inertia of front wheel about Z axis (yaw) kgm2 

IXR moment of inertia of rear wheel about X axis (roll) kgm2 

IYR moment of inertia of rear wheel about Y axis (rotational) kgm2 

IZR moment of inertia of rear wheel about Z axis (yaw) kgm2 

IXW moment of inertia of wheel about X axis (roll) kgm2 

IYW moment of inertia of wheel about Y axis (rotational) kgm2 

IZW moment of inertia of wheel about Z axis (yaw) kgm2 

j distance from J to K measured parallel to seat tube mm 

k radius of gyration mm 

k distance from K to centre of mass measured perpendicular to seat tube mm 

L bicycle wheelbase m 

L1 distance horizontally from rear wheel hub to A mm 

L2 distance horizontally from A to centre of mass mm 

L3 distance horizontally from rear wheel hub to C mm 

L4 distance horizontally from rear wheel hub to D mm 

L5 distance horizontally from C to D mm 

m mass kg 

M mass of the bicycle and rider kg 

MOI mass moment of inertia (also I) kgm2 

O distance from A to bottom bracket spindle centreline measured parallel to 

seat tube 

mm 

P depth of wheel rim m (or mm) 

r radius of the bicycle wheel m (or mm) 

r1 clearance radius of rear wheel mm 
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r2 adjusted radius of front wheel allowing for bottom bracket drop (h4) mm 

r3 reduced radius of front wheel allowing for crank sideways offset (d1) mm 

R radius of the corner m 

STA  seat tube angle also called γ (gamma) degrees 

t wall thickness of wheel rim m 

t period of oscillation sec/cycle 

T torque Nm 

v  linear speed of the bicycle (velocity) m/s 

TFrame or 𝑇𝑇𝑓𝑓 

the torque one assembly exerts on the other assembly corrected for the 

head tube angle 

i.e. the torque assembly A exerts on assembly B is equal in magnitude 

but opposite in direction to the torque assembly B exerts on A  

Nm 

TSteer or 𝑇𝑇𝑆𝑆 

the steering torque input by rider, corrected for the head tube angle 

Nm 

𝑣̇𝑣 change in velocity m/s2 

w width of wheel rim m (or mm) 
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Table 2 List of variables (Greek symbols) 

Greek Symbol Meaning Units 

β (beta) rake of front forks, also called offset m 

γ (gamma) seat tube angle (also abbreviated as STA) degrees 

Г (GAMMA) torsional damping constant Js 

Δ (DELTA) front wheel trail also called projected or conventional 

trail 

m 

Δe (DELTA e) front wheel effective trail also called mechanical or 

normal trail 

m 

λ (lamda) roll angle of bicycle (also called lean angle) radians 

Ρ (rho) material density kg/m3 

σ (sigma) yaw angle of bicycle front wheel (also called steer 

angle) 

radians 

Σ (SIGMA) angle between seat tube centreline and line AD degrees 

Φ (PHI) head tube angle of front wheel (also abbreviated as 

HTA), also called steering tube angle, steering head 

angle or rake angle  

radians 

ω X  (omega X) angular speed about X (roll) rads/s 

ω Y  (omega Y) angular speed about Y (pitch of the bicycle or 

rotation in the case of wheels) 

rads/s 

ω Z  (omega Z) angular speed of the wheels about Z (yaw) rads/s 
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Table 3 Notation used 

Symbol Meaning Units 

A the front wheel, front forks, handlebars assembly  

A Intersection of seat tube centreline with ground  

B the frame, seat and seat post, rear wheel, transmission, rider assembly  

B intersection of seat tube centreline with vertical line passing through rear 

wheel hub centreline 

 

BM  refers to the benchmark bicycle with all parameters defined  

C the % change in impulse response settling time for each 1% change in a 

parameter 

 

C bottom bracket spindle centreline position  

COG centre of gravity position  

COM centre of mass position  

D Intersection of ground and a vertical line tangential to rear of front wheel  

K position located along the seat post between the bottom bracket and the 

top of the seat post, used to define the centre of mass position 

 

R2 coefficient of determination, which describes the strength of the linear 

relationship between two variables 

ratio 

S the 2% settling time of the impulse response second 

u the Jones stability criterion, used to define the steering stability of 

individual bicycles 

ratio 

X horizontal longitudinal axis as defined by the International Standard ISO 

8855 (1) 1 

 

Y horizontal transverse axis as defined by ISO 8855  

Z vertical axis as defined by ISO 8855  

 

  

1 See corresponding reference number in the Bibliography Section 
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GLOSSARY 

This glossary section defines important terms used in this thesis 

Table 4 Definitions of terms 

Item 

 

Meaning 

accuracy this is how close the recorded value of a sensor is to the true value 

asymptotically stable the output approaches desired value in an asymptotic manner 

asymptotically 

unstable 

the output departs from desired value in an asymptotic manner 

benchmark bicycle the benchmark bicycle has specific parameters defined and is used as a 

point to compare other bicycles to 

bifilar pendulum a special type of pendulum with two suspension cords, used to find 

moments of inertia of bodies 

bounce linear motion along axis Z 

capsize loss of stability due to excessive roll, resulting in the bicycle falling over 

sideways 

castor action the self-centring ability of a front wheel that gives fore and aft stability, due 

to the trail of the front wheel 

castor torque the torque that causes a front steering wheel to self-centre due to 

geometry of its steering axis, see castor action 

centre of gravity the point about which gravity can be said to act on a body 

centre of mass the point about which mass can be said to concentrated in a body 

centrifugal effect the effect on a body moving in a circular path which causes it to deviate in 

a radial outward direction, acting in manner opposite but equal to the 

centripetal effect 

centripetal force a force acting on a body which causes it to move along a curved path 

chain stays two identical tubes which connect the bottom bracket to the rear dropouts 

(which support the rear wheel) 

compound pendulum a type of pendulum about which the mass cannot be said to be 

concentrated at a single point (unlike the point mass of a simple 

pendulum) 
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Coriolis effect the Coriolis effect on a moving body in a rotating reference frame causes it 

to deviate perpendicular to its velocity vector 

counter-steer the bicycle turning manoeuvre where the bike initially turns slightly away 

from the intended turn direction before coming back and following the 

correct path 

damping the ability of a system to suppress vibrations by dissipating energy 

design chart a chart indicating the relationships between important design parameters 

and bicycling handling performance (defined by the 2% settling time) 

directional stability the degree with which a vehicle proceeds along a straight course despite 

external disturbing forces 

down tube the bicycle frame tube that connects the head tube to the bottom bracket 

effective trail the distance between the vertical projection of the front wheel centre and 

the projection of the front fork steering axis, measured perpendicular to the 

steering axis 

Euler equations the general momentum equations of rigid body motion can be simplified to 

the Euler equations when the reference axes X-Y-Z coincide with the 

principal axes 

ETRTO  European Tyre and Rim Technical Organisation, responsible for defining 

bicycle tyre sizes in Europe, also widely used internationally 

frequency response an analysis of the output responses of a system measured across a range 

of inputs with different frequencies 

frame size traditionally measured parallel to the seat tube being the distance from the 

centre of the bottom bracket to centre of top tube (assuming the top tube is 

horizontal and not inclined) 

front fork the curved tubular assembly that the bicycle front wheel is directly fitted to, 

attached to a steerer tube and handle bars, it is free to rotate  

gravitational torque torque due to the pull of earth’s gravity 

gyroscopic effect the effect that occurs when the axis about which a body is rotating is itself 

rotated about another axis 

gyroscopic torque torque due to the gyroscopic effect 

head tube the part of the bicycle frame that the steering tube fits within 

head tube angle the angle the bicycle head tube makes with the horizontal plane, generally 

for bicycles it lies between 70 and 75 degrees, also see rake angle 
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heave linear motion about the Z axis 

hip steer a bicycle turning manoeuvre made by a rider, riding without using their 

hands where the bike turns in the same direction that the rider’s hips are 

moved in 

holonomic systems systems whose equations of constraint contain only co-ordinates, or co-

ordinates and time 

hub a rotating assembly at the centre of each wheel, it contains a wheel axle 

and bearings and the hub flanges that the wheel spokes fit into 

impulse input an input that has infinite magnitude over zero time (mathematically 

possible, but not physically achievable) in practice an impulse of 

sufficiently large magnitude and of a very short time duration is considered 

to be an impulse response, also see unit impulse 

inseam the inside length of a person’s leg measured when standing, used to 

determine the correct size of bicycle 

iso-handling lines lines of constant 2% settling time displayed on the design charts 

ISO International Organization for Standardization, the body responsible for the 

international system of measurements and standards 

Jones torque the torque that causes a front steering wheel turn into a leaned corner, 

named after Jones the first researcher to describe it, see also trail steer (2)  

Jones stability 

criterion 

the term used by Jones to define the steering stability of individual 

bicycles, also called the Jones stability parameter (with the symbol u) 

kink torque a torque that causes the bike to roll and is due a Coriolis effect caused by 

to the difference in paths followed by different parts of the bike according 

to their longitudinal position i.e. the difference between the circular paths 

of the front wheel, the centre of mass and the rear wheel  

lean angle see roll angle 

linearity error also called an angularity error, there should be a linear relationship 

between a set of true readings and the corresponding sensor readings, if 

there isn’t, then a linearity error exists 

mass the quantity of matter in a body 

moments of inertia also called products of inertia and equal to the sum of Σ𝑚𝑚𝑟𝑟2 taken over all 

particles of a body, where ‘m’ is mass and ‘r’ is the radius from a specified 

centre 
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nonholonomic 

systems 

systems whose equations of constraint contain velocities 

offset a term only used in motorcycling terminology, the perpendicular distance 

from front wheel hub centre to front fork’s steering axis, see also rake 

period the time an oscillating body takes to complete one cycle of oscillation 

(periodic motion) 

perturbation a small disturbance external to the studied system 

pitch angular motion about Y 

precision this is the agreement amongst a set of sensor readings 

principal axes the axes of a body about which the principal moments of inertia occur, see 

the Euler equations 

principal moments of 

inertia 

the maximum, minimum and intermediate values for the moments of 

inertia for the particular origin chosen 

projected trail see trail 

radius of gyration the position about which the mass of a rotating body can be thought of as 

being concentrated 

rake a term only used in motorcycling terminology, the perpendicular distance 

from front wheel hub centre to front fork’s steering axis, see also offset 

rake angle the angle the head tube makes with the vertical plane, only used in 

motorcycling terminology, see also head tube angle 

ramp input an input that increases at a constant rate with respect to time 

reach horizontal distance from centre of bottom bracket to centre of head tube 

(measured at its top end) 

roll angular motion about X axis 

seat stays two identical tubes which connect the seat tube to the rear dropouts (which 

support the rear wheel) 

seat tube the near vertical bicycle frame tube directly beneath the bicycle’s seat 

self-stability the ability of a system to maintain a stable state without active control 

action 

sensitivity this is the smallest input value to which a sensor can respond, or the ratio 

between a change in a parameter’s value and the resulting change in a 

system’s output 
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settling time the time taken for a system to reach a certain percentage (usually 5% or 

2%) of a desired value after a defined step or impulse input 

side slip linear motion about Z axis 

six degrees of 

freedom 

the three linear degrees of freedom about axes X, Y & Z and the three 

rotational degrees of freedom in the a, b & c directions 

stack vertical distance from centre of bottom bracket to centre of head tube 

(measured at its top end) 

span error occurs when the sensor doesn’t change value at the correct rate, i.e. a one 

degree change in true temperature value should show as a one degree 

change in sensor reading, also called a range error 

speed wobble oscillations of a vehicle front wheel about the steering axis 

steering angle the angle the bicycle front steering wheel makes with the longitudinal 

centreline of the frame and rear wheel, it is measured in the vertical plane, 

see also yaw angle 

steering geometry relevant dimensions and angles of the front steering wheel assembly 

namely, the steering tube angle, rake, trail and wheel diameter 

steering response the nature of the dynamic output of a bicycle in response to a steering 

input 

steering torque the input torque provided by the rider to control and steer a bicycle 

steerer tube the tube attached to the top of the bicycle front forks which is aligned by 

headset bearings and mated within the head tube, also called steering 

tube 

step input an input that increases instantaneously from a constant value to another 

constant value 

stiffness the ability of a system to resist deflection or displacement 

surge linear motion about X axis 

sway linear motion about Y axis, see also side slip 

TdF the Tour de France race which is the pre-eminent international bicycle 

race and one of the three grand tours of road racing 

trail the distance between the vertical projection of the front wheel centre and 

the projection of the front fork steering axis measured horizontally along 

the road, see also projected trail 
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trail steer the torque that causes a front steering wheel turn into a leaned corner, see 

also Jones torque (2)  

top tube the near horizontal bicycle frame tube at the top of the frame and below 

the rider 

UCI Union Cycliste International is the international body authorised to 

regulate, control and run the majority of cycle sports (3) 

unit impulse an impulse where the area A under the graph is equal to 1 is called the 

unit impulse function and is written as 𝛿𝛿(𝑡𝑡) 

weave yaw oscillations of the rider and rear frame of the bicycle (assembly B) 

wheel base horizontal distance between the centres of the bicycle’s front and rear 

wheels 

wobble oscillations of a vehicle front wheel about the steering axis 

yaw angular motion about Z axis 

yaw angle the angle the bicycle front steering wheel makes with the longitudinal 

centreline of the frame and rear wheel, see also steering angle 

zero error sensor’s reading should return to zero when the input is zero, if it doesn’t a 

zero error is present 

 

  

25 



 

1. RATIONALE AND SIGNIFICANCE OF THE STUDY 

This Chapter outlines the main hypothesis of this investigation and summarises the methods used 

and the results achieved. 

1.1. HYPOTHESIS 

The main hypothesis of this thesis is to determine to what extent mathematical modelling can 

influence the dynamics of bicycle design characteristics and also improve handling performance for 

the rider. The objective is to develop effective and valid design tools that bicycle manufacturers can 

make use of to optimise their designs. At the moment manufactures rely heavily on past experience 

and empirical techniques and as far as is known there are no scientifically rigorous design 

methodologies. Existing literature does contain some techniques and advice, but their use would 

be problematic in many respects. 

Of particular interest is the question of how and why a bicycle’s steering remains stable. This needs 

further understanding and analysis (4, 5)2. This investigation examines the effects of different 

steering geometries, on steering response, system stability and frequency response of bicycles.  

Research into bicycle dynamics has been evolving for many years, but even so many questions still 

need to be resolved (5-9). “The bicycle has been in existence for over a century but yet many 

mysteries surround the bicycle. Upon reflection, the bicycle is a deceptive object as it looks simple 

and yet it isn’t (5).” 

“While 150 years of evolution have turned the standard, two wheeled velocipede into a thing of 

beauty, we still don’t understand exactly how it works. We have the equations, it’s just we don’t 

know what they mean. Why does the bicycle steer the proper amounts at the proper times to assure 

self-stability? We have found no simple physical explanation (9).” 

Some key questions on quantifying bicycle performance are still unanswered. What effect and 

importance do the different design parameters such as head tube angle, trial, and wheelbase have? 

How can a designer systematically assess bicycle performance and base design decisions on 

scientific theories as opposed to the empirical methods currently used?  

Wilson says “unfortunately the equations purporting to describe bicycle motion and self-stability are 

difficult and have not been validated experimentally, so design guidance remains highly empirical” 

(10).  

“You can't possibly get a good technology going without an enormous number of failures. It's a 

universal rule. If you look at bicycles, there were thousands of weird models built and tried before 

they found the one that really worked. You could never design a bicycle theoretically. Even now, 

after we've been building them for 100 years, it's very difficult to understand just why a bicycle works 

- it's even difficult to formulate it as a mathematical problem. But just by trial and error, we found out 

2 See corresponding reference number in the Bibliography Section 
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how to do it, and the error was essential. The same is true of airplanes.” Freeman Dyson, British 

Physicist and author (11) 

How can we assess various bicycles and understand how and why they are different from each 

other? This research develops general design principles and methodologies that will show how the 

handling performance of bicycles can be described and optimised. 

An important issue is to determine what sort of handling performance is desirable. Too much 

directional stability in a bicycle is as much a problem as too little and while the beginner wants a 

stable, insensitive bicycle, the more expert rider wants a sensitive bicycle that can respond quickly 

when taking rapid evasive action to avoid a hazard. 

While it is clear that certain myths about bicycle motion still persist and more work needs to be done 

at least some key questions about bicycle dynamics and control have been answered and valid 

equations to describe bicycle motion have been independently formulated by several researchers 

(12-15). 

One surprising myth is that many people suppose that bicycles are inherently unstable and must 

have active rider control to remain upright. In fact it can be shown that riderless bicycles moving 

above a critical speed have a large amount of self-stability. They can remain upright and will travel 

in an approximately straight line for a considerable distance before their speed drops below a critical 

value and they capsize. They can even recover from large yaw and roll disturbances and make 

corrective actions and still continue upright (16).  

Another myth is that it is commonly assumed that a front wheel castor is essential for bicycle 

stability. In fact bicycles with zero trail and even 90 degree head angles though not ideal, are quite 

rideable and the very first bicycle, the Hobbyhorse of 1817 was one such bicycle (6).  

The incorrect notion that bicycles depend on gyroscopic effects in order to be rideable still persists 

(17). This is despite numerous researchers showing both experimentally and mathematically that 

gyroscopic action, while it exists, is completely unnecessary for stability and the best known 

demonstration of this was Jones’ zero-gyroscopic bicycle (2). Despite the bicycle’s self-stability they 

are challenging for beginners to learn to ride. The often heard advice from parents to children “to 

ride faster” (in order to reach a critical velocity) is correct in one sense but also unhelpful as novices 

don’t understand counter-steering. The necessary counter-steering action is counter intuitive and 

not is immediately mastered. Riding a bicycle is a complex task “all in all ‘as easy as riding a bike’ 

is turning out to be a rather misleading saying. “I have a colleague who studies how pilots control 

aircraft and he says riding a bike is much more complex” says Mont Hubbard. “We’re trying to 

answer an important question, how complicated a system can a human deal with (18)?” What can 

a thorough review of the literature tell us about such issues? 

1.2. REVIEW OF LITERATURE 

A review was made of the current state of knowledge including the development of equations of 

motion for bicycles, stability and sensitivity analysis and the current design tools. The field happily 
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remains a rich area for scientific discovery encompassing the disciplines of: design, control theory, 

rigid body dynamics and practical experimentation. Over 70 major papers about bicycle motion have 

been written and it has attracted some famous names: Rankine, Whipple, Timoshenko and F. Klein 

to name a few and it remains a challenging problem to study. At the undergraduate level it is perhaps 

too challenging, unless many simplifying assumptions are used which may compromise the validity 

of the analysis. This thesis makes suggestions as to what sorts of assumptions are sensible for 

different applications. Chapter Two examines in more detail the literature in this field and identifies 

what has been done and what remains to be done. 

1.3. MATHEMATICAL MODELLING 

In this investigation the physical laws of nature were applied to a bicycle to obtain a mathematical 

formulation for the complete dynamic model. Simulink computer software was then used to solve 

the resulting multibody dynamic equations of motion and this is described in Chapters Three and 

Four. The Simulink model ran many simulations using different combinations of system parameters 

and physical scenarios to investigate the dynamic responses. This model can simulate different 

bicycle designs, allowing different steering geometries (and other terms) to be quantified in terms 

of performance. This model was validated in Chapter Four from data available in the literature and 

from an experimental investigation conducted using a specially adapted bicycle fitted with 

measurement sensors to record yaw and roll angles. 

Design parameters were examined in detail in Chapters Five where their actual importance was 

determined by systematically changing each parameter one at a time while keeping all others 

constant. Large variations in roll and yaw responses showed how sensitive bicycles are to small 

changes of key parameters such as the head tube angles and rake dimensions. At higher speeds 

the observed steering responses support the common observation that bicycles are more stable 

and easier to ride at higher velocities. These simulations showed the importance of correctly 

selecting the bicycle’s parameters in order to optimise handling performance. 

1.4. DESIGN METHODLOGY 

Designers need to be able to use a design methodology based on scientific theories as opposed to 

the current empirical methods. This is so their design decisions can be based on a clear 

understanding of how sensitive the bicycle is to changes key parameters. According to Meijaard et 

al “Through trial and error, bicycles had evolved by 1890 to be stable enough to survive to the 

present day with essentially no modification. Because bicycle design has been based on tinkering 

rather than equations, there has been little scrutiny of bicycle analyses” (14). 

This research was used to develop in Chapter Six, several design methodologies that indicate how 

the handling performance of bicycles can be optimised. The design methodologies considered 

included: design criteria, design tables, handling equation (from simplified equations of motion) and 

design charts. After consideration of a range of requirements this thesis recommends the use of 

four Design Charts associated with: the steering geometry, wheel properties, frame geometry and 
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the mass/roll inertia. Used together these four Design Charts provide a designer with a robust 

methodology to select the best combinations of parameters for a desired purpose.  

The Design Charts were validated in Chapter Seven by comparing them to bicycles designed 

according to historical design practice and secondly to riders and bicycles from the 2013 Tour de 

France bicycle race. These comparisons showed that the Charts’ are relevant and useful and can 

offer designers valuable guidance. 
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2. LITERATURE SURVEY 

2.1. INTRODUCTION 

This Chapter examines in detail the literature in the field of bicycle dynamic motion, it reviews what 

is known and what is yet to be discovered. Many papers about bicycle dynamics have been written 

and the topic has interested some famous names such as: Rankine, Whipple, F. Klein, and 

Timoshenko, but it still remains challenging. Why does such a supposedly simple object as a bicycle 

remain a puzzle in terms of its dynamics and stability? 

Richard E. Klein when discussing the complexity of bicycle dynamics wrote “issues complicating 

the bicycle include the nonholomonic (or velocity) constraints, the algebraically coupled higher 

derivative terms, the vague nature of the lateral tyre road forces which are so hard to quantify and 

the often misunderstood role of gyroscopic effects (5).” 

Later Moon wrote in his text on multibody dynamics: “in spite of the ubiquitous nature of the bicycle 

and the recent improvements in the so called mountain bicycle, very little hard dynamic knowledge 

is known about this system apart from empirical trials and observations (19).” 

This agrees with the author’s view that little qualitative work has been done to guide the bicycle 

designer in making good design decisions. But while it is clear that misconceptions about bicycle 

motion persist, many questions about bicycle dynamics and control have been answered in the past 

twenty years, using equations independently formulated that describe the important external and 

internal torques acting on a bicycle (13, 14). For example it has been established by several 

researchers that the inverted pendulum model gives a good explanation of bicycle stability in terms 

of the sideways capsize (20). Also many researchers have shown conclusively that gyroscopic 

effects cannot account for the stability of bicycles and clear explanations for the increased stability 

or rideability of bicycles at higher speeds have been proposed (2, 5, 20, 21).  

This survey has been arranged into themes covering the following eight areas: early explanations 

for bicycle motion, development of the equations of motion, bicycle myths, experimental work, 

multibody dynamics, control engineering approaches, computer modelling of bicycles and 

chronological reviews of paper. The decision to use these themes was made because it was felt to 

be more relevant to discussing this dynamic problem than the more common chronological 

approach. 

2.2. EARLY EXPLANATIONS OF BICYCLE MOTION 

One of the earliest explanations for the stability of a bicycle in motion was proposed in 1869 by 

Rankine who argued that centrifugal forces resulted in sufficient torque to balance the gravitational 

overturning moment. He then described the inverted pendulum model for balance and the motion 

of a bicycle attempting to follow a straight course as “the plain wavy line represents the actual track 

of the centre of mass.” This was the first time that this fundamentally important concept was 

described. He then gave a description of counter-steering stating “it is obvious, that the first thing to 
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be done is to incline the fore-wheel in the direction opposite to that of the intended curvature, in 

order that the base point may be displaced and give rise to centripetal force. The effect of this is to 

deflect the base-track away from the intended centre of curvature (22).” 

Later towards the end of the nineteenth century, Bourlet wrote one of the earliest books on the 

design and analysis of bicycles and followed this up with a paper outlining a mathematical study of 

bicycle motion (23, 24). Bourlet described equations for a bicycle with a vertical steering axis and 

no trail. Much later Meijaard et al reviewed Bourlet’s work as part of their history of bicycle steer 

and dynamic equations (14). They found that when linearized Bourlet’s non-linear roll equations 

were correct except for omitting the front wheel gyroscopic term associated with the steer rate. 

Sharp’s book “Bicycles and Tricycles, An Elementary Treatise On Their Design And Construction” 

was an interesting and detailed description of early bicycle development up to the end of the 19th 

Century (7). This book discussed the science relevant to bicycles such as: statics, dynamics, 

material properties and system behaviour. He described basic bicycle stability equations that used 

centrifugal forces in the way proposed by Rankine in 1869. The author then examined bicycle 

stability, steering action, motion over rough surfaces and resistance to motion. The text included a 

detailed description of the development of bicycles from the first Hobbyhorse of 1817 up to the end 

of the 19th century, including the Rover Safety bicycle of 1885. The last section of this book 

examined specific technical developments in the areas of: gearing, tyres, pedals, brakes and 

frames. 

In 1899 Whipple wrote a paper on bicycle dynamics in which he briefly discussed Bourlet’s and 

McGraw’s independent papers on bicycle stability (15, 23). Note that McGraw’s paper published in 

the journal “Engineer” on 09 Dec 1898 has not been obtained and is not referenced. Whipple stated 

“no satisfactory explanation on mathematical lines has been given of the practicality and ease of 

riding a bicycle.” He then developed non-linear equations of motion for a bicycle assuming that: the 

roll angles were small, the bicycle consisted of only two rigid bodies, the motion was steady and 

that any turns have large radii. From his nonlinear equations he developed linear equations of 

motion for a bicycle. These were analysed to find unstable roots and he identified four critical 

velocities which required different control input modes on the part of the rider in order to maintain 

stability. The highest critical velocity was v1 (5.5 m/s), then v2 (4.6 m/s), v3 (3.8 m/s) and finally v4 

(3.3 m/s). Between v1 and v2 the bicycle was only stable by turning the front wheel into the roll or 

by moving the body away from the roll. Between v2 and v3 stability was achieved by moving the 

body into the roll. Below v2 the bicycle was unstable if ridden with the hands off (i.e. a steering input 

is required for stability). Finally below the lowest critical velocity was v4 (3.3 m/s) the rider must use 

a combination of body motion and steering input to remain upright. Meijaard et al recently reviewed 

Whipple’s paper as part of their history of bicycle equations (14). They found that except for small 

errors, Whipple’s non-linear governing equations were nearly correct. 
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2.3. DEVELOPMENT OF EQUATIONS OF MOTION 

Little more was done in regards to bicycle dynamics until Timoshenko and Young included a short 

analysis in their classic engineering text “Advanced Dynamics” in 1948 (20). Their bicycle analysis 

produced equations of motion that could cope with large angles of yaw and roll and their work is 

much cited by researchers in this field. They described a model for balancing a bicycle similar to 

that of balancing an inverted pendulum in that the rider must steer the bicycle to make use of 

centrifugal forces to position the centre of mass over the tyres and so correct any capsize tendency. 

Their equations clearly showed that in order for the bicycle to remain upright the rider must steer 

the front wheel into the direction of any roll, exactly as proposed by Rankine, Sharp and Whipple. 

This model for stability is still thought to be valid as a simple analysis of straight-line travel. Their 

equations did not include many of the real life complications of bicycles such as the steering 

geometry variables that later researchers have added. 

Psiaki wrote about the dynamics of bicycle and derived full non-linear equations for its motion (25). 

He conducted computer numerical analysis (using Fortran IV) and examined the effects on stability 

in a straight line using different design parameters. Secondly he solved the characteristic equation 

for the case of a steady turn. He studied stability by varying the following parameters: head tube 

angle, trail, wheelbase, height and longitudinal position of mass, speed and several moments of 

inertia, one at a time. Meijaard et al have compared Psiaki’s eigenvalues in a forward speed range 

with their model and have stated that his results agreed with theirs within plotting accuracy (14). 

Lowell and McKell used Timoshenko and Young’s analysis as a starting basis for their investigation 

(20, 21). They simplified the equations by only considering small angles of yaw and roll and by 

modelling the steering geometry of their bicycle as a simple trailing castor wheel. They derived 

simplified equations for bicycle yaw and roll angles which were solved using a fourth order Runga-

Kutta method to obtain numerical solutions, plotting angular responses against time. No damping 

term is included in their model and only the front wheel gyroscopic term due to yaw is included. The 

gyroscopic torque on the front wheel due to roll and the gyroscopic torque on the rear frame and 

rider due to cornering are neglected, potentially serious omissions which will be discussed later. As 

their results didn’t demonstrate counter-steering action or self-righting stability it is believed that 

their analysis is incorrect. Meijaard et al concludes “when our equations are simplified to correspond 

to their model the equations do not agree... it is incorrect (14).” 

Hand presented new equations of motion for a bicycle with a model consisting of four rigid bodies 

(26). He used Lagrangian equations to develop linearized equations of motion for hands off riding 

i.e. with no steering input from the rider. He then applied the Routh Stability Criterion to establish 

stable and unstable combinations of design parameters. A PC based Fortran programme was 

developed to apply the Routh Stability Criterion stability to specific designs. According to Meijaard 

et al, Hand's equations agreed with their bench marked equations but Hand's Fortran program for 

calculating stability eigenvalues had errors (14). 
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Franke, Suhr and Rieß developed a general bicycle model with the following simplifying 

assumptions: a rigid bicycle frame, no tyre slip or friction, thin disc wheels, a level road and no wind 

(27). Their model allowed for the steering geometry of rake and trail and it had five rigid bodies; the 

frame, the rear wheel, the rider, the handlebar/front fork assembly and the front wheel. They 

investigated stable and unstable riding conditions and the ability of the bicycle to stabilise itself and 

their model only examined hands off riding with a zero input steering torque. The momentum 

approach was used to develop final equations of motion consisting of second derivatives for velocity, 

yaw and roll and these equations were solved by computer using the Runga-Kutta procedure which 

produced eigenvalues for the system. They concluded that gyroscopic wheel effects were essential 

for inherent stability though it is clear from other researchers’ work that this is not the case. They 

also said that steering stability increased linearly with trail but it is known from the literature that too 

large a trail can cause an over correction of the front wheel and so can reduce stability (28). 

Fajans described the equations of motion for bicycles and motorcycles and explained the 

phenomena of counter-steer and hip steer (12). A counter-steer manoeuvre (first described by 

Rankine) is when the steering wheel is initially turned away from the desired direction of turn causing 

the bicycle to lean into the corner (22). The three equations of motion Fajans developed describe 

the dynamic motion of the bicycle for specific steering inputs and were derived from the works of 

Timoshenko & Young and later Lowell & McKell. These equations were dynamically unstable unless 

a small damping term was added. In practice this damping is due to the front tyre and the rider’s 

arms (12, 29) The author then discussed the limitations of these equations because of the 

unaccounted for effects of tyre deformation, head tube angles and friction. 

Fajans examined in: a road racing bicycle and a large motorcycle. With the exception of the driving 

power, motorcycle dynamics share many similarities with bicycle dynamics, therefore some studies 

of motorcycles are of relevance to this investigation. Input values for steering torque and various 

physical parameters such as mass and wheelbase length were selected and used to obtain the 

dynamic outputs of yaw and roll. The author concluded that gyroscopic effects only have a small 

part to play in assisting cornering and are not required for system stability. A no hands turn using 

hip steer was investigated and the oscillations that occur for “no hands” riding were modelled. These 

oscillations were usually suppressed by the mass and damping provided by the rider’s arms. 

Jackson and Dragovan also developed equations of motion that were derived from Timoshenko & 

Young and Lowell & McKell (20, 21, 30). Their model allowed for more realistic steering geometries 

than other available models, for example Fajans (12). They stated they undertook experimental 

work that measured the motion of a bicycle, but their theoretical and experimental results were not 

included in the paper. Like many others they concluded that gyroscopic terms were unimportant for 

stability (12). 

Fajans’ equations were modified by Prince (the author of this thesis) by adding terms to account for 

changes in steering geometry due to head tube angle and front fork rake (31, 32). Two approaches 

were adopted to validate this modified model. First a simplified Simulink model was prepared that 

used exactly the same assumptions as Fajans: i.e. no Coriolis terms and the same head tube angle 
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and rake values. This model showed nearly identical results to Fajans in terms of: yaw vs. time and 

roll vs. time with identical time lags, rise times, amplitudes, overshoots, and oscillations. Next an 

experiment was carried out to measure the actual steering and roll angles of a moving bicycle. A 

bicycle was fitted with transducers to measure yaw and roll angles and a data logger recorded the 

results. The results of both validation procedures confirmed key parts of the theory and helped 

validate the model. The final complex Simulink model produced more realistic results and displayed 

more system stability than the Fajans model. As stated by many others the gyroscopic terms were 

shown to be insignificant and could not account for bicycle stability. 

Meijaard, Papadopoulos, Ruina and Schwab developed linearized equations of motion for a rigid 

four body bicycle system (rear wheel, rear frame & rider, front fork and front wheel) including the 

use of realistic front wheel geometry (14). Their model used three degrees of freedom (roll, steer 

and forward velocity) and includes 25 parameters. They validated their theoretical approach using 

two different computer simulations: Spacar (in Fortran 77) and Autosim. The eigenvalues obtained 

from the linearized stability analysis of their bicycle model showed regions of stability and instability 

for different forward speeds and also the nature of any instability present e.g. capsize, wobble or 

weave. Capsize was defined as the bicycle toppling over, wobble is a high frequency vibration of 

the front wheel only and weave is a medium frequency rolling and yawing of the rear assembly of 

the bicycle (33). The authors spent some effort solving their final equations (using two different 

methods) and checking the results against previous researchers’ work, eventually finding close 

agreement by both their methods. They reviewed the work of many previous researchers in the field 

and compared their approach to these researchers in a detailed supplementary appendix. They 

also compared their results to what had been achieved experimentally by Kooijman et al (34). As a 

result they were confident that their equations could be used as a benchmark against which other 

studies could be compared and verified. They aided such a benchmarking process by providing 

eigenvalues to an accuracy of 15 significant figures.  

2.4. BICYCLE MYTHS 

One of the most persistent myths about bicycle stability is the importance of gyroscopic effects. 

When discussing bicycle stability R. E. Klein mentions “the often misunderstood role of gyroscopic 

effects (5). Two Germans, mathematician F. Klein (famous for describing the Klein bottle) and 

physicist Sommerfeld wrote a four part treatise “On the Theory of Gyroscopes” which was published 

between 1897 and 1910. A review of this paper by Meijaard et al concludes that its general 

statement in reference to bicycles “gyroscopic effects ...are indispensable for self-stability” is not 

correct (16).  

As recently as 1998 researchers have incorrectly explained the dynamic motion of bicycles and 

their stability by using the gyroscopic effects of their wheels (17, 27, 35). One example of such an 

incorrect explanation was made by Higbie who described the cornering motion of a motorcycles, 

particularly the counter-steer manoeuvre, entirely by using gyroscopic action (35). No other torques, 

internal or external, were mentioned by this author except for a brief mention of the effect of 
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gravitational torque on front wheel yaw. This was a simplistic and incomplete discussion and 

repeated the myth of the importance of the gyroscopic term. 

Later on, Cox described the cornering motion of a motorcycles particularly the counter-steer 

manoeuvre, as being due to two effects, firstly the conical shape of the tyre caused the bicycle to 

roll around a central point and secondly the gyroscopic action of the wheels due to gravitational 

torque (17). Cox added the angular momentum vector from the steering torque to the angular 

momentum of the wheel and argued that this caused the bicycle to lean over. It is believed that this 

is not the correct way to apply gyroscopic theory to this physical problem. In addition it has been 

verified by computer modelling that the steering torque can be very small (e.g. in order of 0.5 Nm 

for a bicycle) and so would not cause the bicycle to lean over as was claimed (31). Cox correctly 

described the effect of gyroscopic torque on the front wheel but includes no other internal or external 

torques such as the inertia torque or castor torque.  

Overall the role of gyroscopic effects in bicycle stability are often misunderstood and overstated 

(17). Such claims about the importance of gyroscopic effects have been shown by many other 

researchers to be incorrect both by mathematical modelling and by the use of experimental zero 

gyroscopic bicycles. It is very clear that gyroscopic forces are not essential for self-stability nor do 

they allow bicycles to be ridden (2, 36, 37). Jones was the first to demonstrate the unimportance of 

gyroscopic effects and R. E. Klein has further confirmed these findings experimentally several times 

(2, 4). 

2.5. EXPERIMENTAL WORK 

Surprisingly few experimental investigations of bicycles have been described in the open literature. 

One of the most cited was performed by Jones who examined the basic question of why is it possible 

to ride a bicycle and keep it upright and why it seems easier to balance it when riding at higher 

speeds (2). Jones demonstrated the relative unimportance of gyroscopic effects with his famous 

experiment (2, 38). He built a special bicycle that had a second wheel fitted alongside the front 

wheel. This wheel didn’t touch the ground and was linked by gears to the front wheel so that it 

rotated at the same speed but in the opposite direction. As this second wheel was nearly identical 

to the original wheel almost all of the gyroscopic effects were cancelled out. Jones found that it was 

a simple matter to ride this zero gyroscopic bicycle and that it did not feel substantially different from 

an unmodified bicycle. Jones could successfully ride it without his hands on the steering handlebars, 

showing conclusively that gyroscopic effects are not required for the ride stability of bicycles. 

Jones then considered the well-known observation that the front wheel of a bicycle turns into the 

direction of any roll (i.e. into the corner). He explained that this occurs because as the front wheel 

turns (due to a twisting gravitational torque) the bicycle lowers its centre of mass and so lowers its 

potential energy. Calculations were made to find this change in the height the mass for different roll 

and steering angles. These calculations showed that when the steering wheel is pointing straight 

ahead the twisting gravitational torque increases linearly for increased roll angles. It was concluded 

that as the roll angle increases the bicycle provides a greater twisting torque that steers the wheel 
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into the corner. This effect helps to counteract the leaning over of the bicycle due to the inverted 

pendulum effect. He also found that different steering geometries have different rates of increase in 

this twisting torque and he used these results to plot a graph indicating stable and unstable 

geometries. A stability criterion was proposed that is discussed in Chapter Six, Jones tested his 

ideas by purposely building another experimental bicycle designed to be unstable and as predicted 

he found that it was unstable. Finally Jones built a bicycle to investigate whether front wheels can 

self-centre. He concluded that far from self-centring the rest of the bicycle swung in behind the new 

altered track of the front wheel and continued on a new stable course. The experimental work of 

Jones has been widely referred to by many later researchers (12, 21, 39, 40). 

Kirshner examined Jones’ paper but disagreed with some of his conclusions (39). The Jones 

stability criterion was shown to be approximately equal to the trail of the bicycle allowing for the 

steer angle and roll angle. Kirshner disagreed as to the cause of the apparent self-centring effect 

Jones observed in his final experiment and concluded that Jones’ theory for bicycle stability was 

not valid. Kirshner then concluded that gyroscopic effect of the front wheel does contribute to bicycle 

stability but did not provide any positive analysis to justify this claim other than to say “we attempt 

to verify a nongyroscopic theory of bicycle stability and fail.” Given the widespread experimental 

and theoretical support for Jones’ conclusion about the unimportance of the gyroscopic effect it is 

hard to agree with Krishner. 

Le Hénaff spent the first part of his paper discussing the history of research into bicycle stability 

including references to Jones’ work (40). He discussed the Jones stability criterion and plotted 

dynamic stability curves of the “height of wheel hub / wheel radius” versus lean angle for different 

speeds (2). He concluded that these curves explain why a bicycle is more stable at higher speeds 

because they show that a smaller steering angle is required to generate the required stabilising 

centrifugal force. He also concluded that though gyroscopic forces on the wheel are “negligible and 

unable by themselves to account for equilibrium” they do enable a bicycle to be ridden hands off. 

Hunt inspired by Jones’ zero gyroscopic experiment, also showed that cancelling the gyroscopic 

component of the bicycle’s front wheel made no difference to the rideability of the bicycle (36). Hunt 

fitted a second wheel to the front forks alongside the front wheel, arranged to spin in the opposite 

direction, hence cancelling the gyroscopic couple. Care was taken to align the gyroscopic vectors 

and to make sure that the gyroscopic torques were inline. A brass adaptor was made to perfectly 

align the front and counter rotating wheels. Extra weight was added to ensure that the moment of 

inertia of the counter rotating wheel was close to that of the front wheel. The second wheel was 

spun by hand at the desired speed and direction before starting to ride the bicycle. Hunt described 

the experiment and concluded that the addition of this reverse spinning wheel made no difference 

to the bicycle’s rideability. He described in brief terms: balancing stability, steering and countering-

steering and the only calculations given were basic but clearly showed that the magnitude of any 

gyroscopic couple was insignificant compared to the gravitational couple. 

R.E. Klein is an Engineering Professor at the University of Illinois who has used the study of bicycles 

to teach students about dynamic systems. He has developed student projects that designed and 
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built interesting and unique bicycles that examined various dynamic issues. These have included 

numerous zero-gyroscopic bicycles, naive bicycles (with a 90o head tube angle and no trail), easy 

to ride bicycles for beginners, rear steered bicycles and exaggerated gyroscopic bicycles (4, 5, 13, 

37). Klein’s work is covered in more detail in a later section in this Chapter on control engineering 

approaches. 

Foale and Willoughby’s well known book “Motorcycle Chassis Design: the Theory and the Practice” 

discussed experimental and empirical work on the subject of motorcycle design and handling 

performance (41). The book described in great detail many practical aspects of motorcycle chassis 

design with the use of: diagrams, photos and experimental work, though no mathematical analysis 

is provided. Front wheel speed wobbles were discussed as to the likely causes and solutions, but 

only in practical terms not in theoretical ones. One chapter discussed an experiment involving the 

radical modification of the front wheel geometry of a motorcycle and the effects on handling 

performance. They asked why the then current motorcycles used head tube angles of between 60o 

and 65o. They concluded that it is a combination of convenience of construction, lack of imagination 

and fear of customer resistance. Using a BMW R75/5 motorcycle (circa 1970) they increased its 

head tube angle from 63o to 75o and then to 90o and also adjusted the rake from 49 mm to 0 mm 

and then to –49 mm so that the trail remained at a value of 89 mm for all three cases. Considerable 

road testing was done (over 3000 km) with five different riders and qualitative analysis was made 

of the riders’ descriptive feedback though no quantitative analysis was made. The modified 

geometry showed increased stability but also insensitivity to and better damping of outside 

perturbations. The front fork suspension was also more effective but fork juddering occurred under 

heavy braking. The authors concluded that steering geometries other than those arrived at by rule 

of thumb and accepted practice may have advantages. 

Lignoski completed an interesting experiment to determine whether the bicycle steering angle is 

proportional to the lean angle (42). This is a common assumption made by researchers to simplify 

their equations of motion (21, 43). Lignoski used Lowell and McKell’s equations and treated the 

motion of a bicycle as a damped simple harmonic oscillator and the gyroscopic torque of the front 

and rear wheels due to rolling and due to cornering were not included in his model. Though the 

equations are overly simplified, the experiment and its purpose is interesting. It consisted of rigidly 

mounting a video camera to a post attached to a bicycle and videoing the bicycle and surrounding 

walls as the bicycle was ridden. From the video recording produced, the lean angle was determined 

from the difference between the camera’s frame of reference and vertical lines marked on nearby 

walls. In a similar way the steering angle was calculated from the video by comparing the projected 

length of the handlebars to the projected length of the handlebars at several known angles. The 

resulting experiment recorded only one very short run of two seconds in duration and Lignoski had 

problems getting accurate results as lots of practical problems were experienced including signal 

noise which increased the uncertainty of the results. Lignoski’s experiment, while ingenuous, 

appears inconclusive but he reached the tentative conclusion that steering angles were proportional 

to lean angles, with the constant of proportionality equal to 2.40 +/- 0.15. 
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Kooijman et al completed an experimental validation for a numerical model of an uncontrolled 

bicycle (34). Many theoretical models simplify the bicycle problem by ignoring effects such as frame 

and wheel flexibility, the play in bearings, tyre effects and wheel slip. This practical research 

examined whether these simplifications are valid, an important consideration. Their model had three 

stated degrees of freedom (roll of rear frame, steering angle of front wheel and rotation of rear 

wheel) and produced linearized equations of motion for the upright steady motion of a bicycle with 

only small outside perturbations. Their experiment consisted of a fully instrumented bicycle which 

recorded roll, yaw, steering angle and rear wheel rotation. The bicycle had no rider but was pushed 

along a dry level floor by a person running alongside it. A total of 76 experimental runs were made 

with a maximum run length of 40 metres. From the recorded results the bicycle’s eigenvalues were 

found from the plotted data and these experimental eigenvalues compared well to the theoretical 

values. They concluded that the theoretical model was valid when compared to the experimental 

results and that the assumptions made to simplify the model were reasonable. 

Further experiments by Koojiman et al involved an instrumented rider and bicycle on a road and 

later on a treadmill and concluded that the rider steers and stabilises the bicycle mainly by steering 

inputs via the arms and with very little upper body lean or knee movement (44). Only at very low 

speeds (1.4 m/s) was any lateral knee movement observed at all. The steering inputs were 

performed at a similar frequency to the pedalling frequency and their amplitude increased as forward 

speed decreased. 

Moore et al also wished to test the hypotheses that riders principally use direct steering input for 

control and make little use of upper body movements to control the bicycle (45). To examine this 

question they used a motion capture technique to examine three different riders riding a bicycle on 

a large rolling road. The experiments examined a cyclist riding at steady speeds ranging from 2 to 

30 km/hr. Matlab was used to analyse the riders’ movements from the data collected by the motion 

capture cameras. The motions of different parts of the rider were examined using frequency analysis 

to determine whether they were contributing to steering control. They concluded that steering 

control was mainly done by the arms through the handlebars but at low speeds some steering 

control was exerted by a lateral knee motion, agreeing with Koojiman (44). No upper body lateral 

motion was observed contributing to steering control thereby proving their hypotheses. 

Moore and Hubbard looked at the importance of front wheel diameter, head tube angle, trail and 

wheelbase on the self-stability of a bicycle (46). They used a mathematical model that they 

benchmarked to work of Meijaard et al [18]. They considered bicycle self-stability and assumed the 

rider to be a rigid body with no piloting or control action and investigated a narrow speed range of 

12.9 - 17.6 km/hr and two instability modes, capsize and weave (but not the wobble mode). They 

found the stable speed range between the two modes (capsize and weave) for four main parameters 

(wheel diameter, head tube angle, trail and wheelbase). An interesting and unexpected result 

obtained was that the stable speed range was close to the minimum value when the front wheel 

diameter was 700 mm (which is very close to a standard road bicycle 700C wheel diameter). They 

found for such a 700 mm wheel the stable speed range was between 4 and 5.5 m/s. In fact common 
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empirical observations show that the stable speed range is much wider than this. They say “a more 

robust assessment of handling qualities is needed.”  

Later Moore et al conducted a series of interesting experiments to determine a range of physical 

parameters for the bicycle rider system including: mass, centres of mass, moments of inertia of the 

bicycle components (frame, front fork and wheels) and the rider properties (47). They used a 

combination of experimental measurement and the use of previously published data to determine 

these values. Comments were made about the practical difficulty of measuring the bicycle’s physical 

parameters. For example the centres of mass of the bicycle are given as +/- 20mm accuracy which 

could be considered a significant error. Unfortunately the bicycle chosen for measurement was not 

a high performance bicycle. Therefore the results in this paper are not especially helpful for 

evaluating high performance handling, though the methods for obtaining them are interesting. 

In addition to these studies of the bicycle system, experimental investigations of the human rider 

are of interest as about 80% of the mass of the bicycle rider system is contributed by the rider. One 

US Air Force sponsored study undertaken by Hanavan developed a mathematical model to 

calculate the properties of humans of different builds (48). More details of this and similar work are 

given in Chapter Five when discussing the formulation of key bicycle design parameters. 

2.6. BICYCLE MULTI BODY DYNAMICS 

Wilson’s book “Bicycling Science Ergonomics and Mechanics” has become a standard reference 

for those interested in bicycles. The first edition co-authored with Whitt, covered general aspects of 

ergonomics and human power generation as applied to bicycles and other pedal powered vehicles 

(6). The coverage of bicycle mechanics included: resistance to motion (e.g. wind, rolling and friction 

resistance), braking, balancing and steering stability. Other topics included: bicycle frame materials, 

human powered vehicles (HPV) and future HPV developments. The section on balancing and 

steering briefly discusses many previously mentioned researchers (2, 15, 20, 49). It defined various 

terms and steering geometry parameters and gave formulae from both Davison and Bourlet that 

calculate a front wheel geometry which neither rises or falls when the front wheel is turned though 

no justification was provided as to why this geometry would be useful for stability (50, 51). The 

second edition, written only by Wilson, describes in detail Jones’ paper and Lynch’s computer 

simulation of bicycle motion (49). The third edition by Wilson (with contributions from Papadopoulos) 

discusses stability theories in more detail with good descriptions of: inverted pendulums, Jones’ 

experiments, counter-steering and a short discussion of the work of Papadopoulos (52). Front wheel 

wobble (shimmy) is discussed in detail with references to Den Hartog (29).  

Doebellin’s text “System Modelling and Response: Theoretical and Experimental Approaches” 

contained a section that discussed the stability of four wheeled vehicles (53). The author described 

in detail how to build several different dynamic models of four wheeled vehicles from the general 

equations of motion. Care was taken to include such things as: tyre effects, inertia effects caused 

by roll (including suspension effects) and the effect of a shifting payload. The final developed models 

were analysed for steering response and instability using a CSMP (Continuous System Modelling 
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Programme) simulation. This work has relevance to this investigation as it clearly showed how 

equations of motion for multi body systems, like cars and bicycles, can be derived from fundamental 

first principles. 

Cocco’s book “Motorcycles Design and Technology: How and Why” included diagrams and 

equations to illustrate the principles of motorcycling design, riding techniques and handling 

performance and was based on the work of both R. S. Sharp and Prof Cossalter (8, 54), (55). The 

author examined the effects of changes to motorcycle design on performance. Specifically this book 

considered: balancing on two wheels, cornering, accelerating, braking, vibration, aerodynamics, 

engines, frame and suspension design. The approach taken by this author was to discuss the 

concepts with diagrams and terms at a basic level. Though the treatment uses many simplifying 

assumptions the anecdotal information was interesting. The descriptive section which discussed 

front wheel design, steering geometry, speed wobbles and weaves was relevant to this 

investigation. Basic formulae were given (sometimes without proof or references) which enable 

useful effects to be found such as the frequency of a high speed wobble and the amount of fork 

drop that occurs when turning the front wheel. 

2.7. CONTROL ENGINEERING APPROACHES 

Other researchers have looked at bicycles from a control engineering perspective with an emphasis 

on stability and rideability. Some such as R. E. Klein have treated the bicycle as an interesting 

engineering system worthy of study using the control engineering approach (4). Others such as 

Suryanarayanan et al, have designed bicycle autopilot controllers, (56). Another group have made 

use of control theory to investigate bicycle instability and to determine measures of rideability, such 

as Seffen (28). 

According to R. E. Klein, “the bicycle is not a trivial topic, as one might suppose at first glance, but 

it is a rather formidable subject worthy of study“ (5). His paper discussed new ways to teach the 

concepts of dynamic systems using bicycle motion as a practical everyday problem to study. This 

approach to teaching undergraduate students used theory lectures and computer simulation 

techniques to cover the necessary control theory. Klein’s paper concentrated on the effectiveness 

of this teaching approach and recommended it because it stimulated student interest in the field of 

control. Different aspects of bicycle motion are mentioned to give examples of how this teaching 

method worked in the classroom. Laboratories were also used to help students build up proficiency 

in the use of Fortran simulation e.g. modelling a bicycle counter-steering manoeuvre. Finally the 

students were required to write an original essay on a selected aspect of bicycle motion such as the 

relative importance of gyroscopic effects when riding a bicycle. Students also completed the 

construction and testing of various experimental bicycles of their own design e.g. rear steered, zero 

gyroscopic, and bicycles with accentuated gyroscopic effects. This construction assignment allowed 

students to test out original ideas that they had first generated from theory and computer simulation. 

Another paper by Klein expanded on the use of bicycle motion to teach the concepts of dynamic 

systems (4). The paper described three basic transfer functions that could be used to build up a 
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model of bicycle dynamics, namely: the relationship of the steering angle to lean angle, an inverted 

pendulum model for balance and a steering control law for rider feedback. These were combined 

into a matrix algebra form to obtain three transfer functions. Block diagrams of the transfer functions 

were obtained and a computer simulation was undertaken. His simulation showed the response of 

a bicycle to an impulse force on the steering wheel, where a clear countering-steering action 

occurred before turning in the opposite direction. 

Motorcycles share many similarities with bicycles and Cossalter et al described a detailed 

mathematical model for the steady state turning of two wheeled motorcycles (55). Steady state 

turning assumes that both the roll angle and the steering angle remain nearly constant and is simpler 

dynamically than counter-steering manoeuvres. Their model was complex and allowed for: four 

distinct rigid bodies, tyre effects, aerodynamic effects and pitching. The mathematical model used 

the standard equations of motion to describe the cornering manoeuvre and the final model was 

solved using an iterative computer process. The authors concluded that the rider controls the 

motorcycle largely with steering torque but also with changes in body position and vehicle speed. 

The steering torque required for a steady state turn depends on several terms of large magnitude 

both with positive and negative values. They concluded that tyre forces due to side slip and roll 

stiffness had a small effect on the steering torque, but that the tyre twisting torque made a large 

negative contribution especially at large roll angles. They found that fork design was critical to the 

required steering torque and that increasing the trail decreased the steering torque as did 

decreasing the steering head angle. 

Meijaard and Popov also developed a complex model for a motorcycle including: tyre forces, 

aerodynamic forces, suspension, power train and proportional-integral rider control action. Their 

results described the interaction of many of these components for example aerodynamic forces 

tend to damp the wobble mode but accentuate the weave mode (57). 

Getz and Marsden described the design and simulation of a bicycle controller which uses front 

wheel steering and rear wheel torque control (i.e. speed control) to maintain bicycle stability (58). 

Lagrangian equations of motion were developed for a simple bicycle model which had a 

perpendicular steering axis, no front wheel trail and simplified inertia and mass effects. The testing 

of the controller indicated that a large gain was necessary due to the large time derivatives. A series 

of bicycle simulations were run which showed that their controller could stabilise a bicycle after a 

perturbation or a steering input. Importantly, counter-steering behaviour was observed in their 

simulation results. 

Seffen et al investigated the controllability of two wheeled vehicles when upright and running in a 

straight line (28). Their paper examined how a rider can remain upright by steering into the roll. A 

thorough review of the current state of knowledge examined instabilities such as capsize, weave 

and wobble. They concluded by describing a conventional model for a bicycle first described by 

Sharp (8). Their equations were derived from Lagrange and were used to produce four 2nd order 

differential equations of motion. These were recast as a set of coupled first order equations using 

the state space method with Matlab. A bicycle rideability index was developed which was used to 
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examine the effect of changing the: front wheel trail, moments of inertia and head tube angle had 

on controllability and this index is explained further in Chapter Six. 

Suryanarayanan et al examined the system dynamics involved in the directional control of a two 

wheeled human powered vehicle (HPV) (56). HPVs are specialist bicycles designed to break 

specific straight line speed records such as the one hour HPV record (currently set at 91.55 km) 

and are regulated by either the World Human Powered Vehicle Association (WHPVA) or the 

International Human Powered Vehicle Association (IHPVA) (59). Typically HPVs place the rider in 

a prone position within a fairing to minimise aerodynamic drag. Manoeuvrability and handling are 

much less important than the ultimate top speed. But the very high speeds attained mean that high 

speed instabilities such as weave and wobble can be a problem. 

Their objective was to design an autopilot for a HPV capable of speeds of 100-160 km/hr. Previous 

HPVs had experienced control problems at high speed due to their human pilots’ limitations, 

principally their slow speed of response. These researchers concluded that using a steering wheel 

trail value similar to a conventional bicycle makes a HPV unstable in cross winds. They concluded 

that a lateral crosswind would induce a torque that would cause the front steering wheel to turn 

away from the wind leading to increased yaw and instability. Ideally a bicycle should lean into the 

wind and the front wheel should yaw into this roll. The rider can then easily balance the force of the 

crosswind on the bicycle by adjusting how much front wheel yaw is needed and hence maintain 

upright balance and steer a straight course. A HPV with an aerodynamic body fairing could use 

increased fin area at the rear of the bicycle in order to make the bicycle yaw into the wind. This 

places the aerodynamic centre of pressure aft of the centre of the tyre grip. However they concluded 

that this would only be effective within a limited speed range. Presumably this is because the 

aerodynamic forces on the fairing vary according to velocity squared so are subject to large 

variations. The authors speculate that by reducing or eliminating front wheel steering trail crosswind 

vulnerability would be reduced. However this would cause other directional stability problems due 

to the lack of feedback and would warrant automatic control. The authors mathematically modelled 

a bicycle using kinematic equations based on an inverted pendulum model. They then examined 

the yaw and roll dynamics for three different HPV designs; a conventional front wheel steered HPV 

with trail, a conventional front wheel steered HPV without trail and finally an unconventional rear 

wheel steered HPV. From the results of this modelling the authors designed a steering controller 

for a front wheel steered HPV suitable for a 16-160 km/hr speed range. They concluded that an 

automatic steering controller was feasible and that the front wheel steering configuration gave the 

best performance but they gave no details of the results of the different steering geometries. They 

also proved that the rear wheel steered bicycle was unstable under most conditions because it has 

an odd number of real unstable poles. 

Chen et al produced bicycle equations with nine degrees of freedom (six for the rear frame and 

rider, two more rotational ones around both wheels and a ninth around the steering axis) using 

Lagrangian equations and the energy approach (60). They developed balancing and path tracking 

strategies for the bicycle using steering controllers with both PID and fuzzy logic control action and 
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details were given of the control schemes and rules table. Outputs using control action showed the 

bicycle roll angle, X & Y coordinate position and speed against time, but surprisingly not the yaw 

angle. It was stated that the bicycle path followed showed the model displayed counter-steering 

action but the scale of their graph makes this hard to discern. The controllers were successful in 

maintaining balance and following a desired path but the second controller was more able to 

accurately follow the desired path as it took the yaw angle of the bicycle into account. 

A long article by Astrom et al examined in depth the issues of bicycle stability from a control 

engineering perspective (13). The authors have all used bicycles to teach undergraduate students 

control engineering in a way that combines theory with hands on experiments. The article discussed 

rider control, proportionality constants, transfer delays and gyroscopic effects. They developed 

several increasingly more realistic mathematical bicycle models including one that allowed for front 

wheel steering angle and trail, but neglected the stabilizing effects of the front fork and any 

gyroscopic effects. An early model demonstrated that bicycles are unstable without rider feedback 

or damping. This simple model was a naive bicycle that used a steering angle of 90o just like the 

Fajans model discussed earlier (12). A piloting model was developed that assumed the rider was a 

proportional controller who balanced the bicycle by applying a steering torque proportional to the 

roll angle as proposed by Lignoski (42). They say that in practice riders also use lean actions, though 

results from Moore’s experiments indicate otherwise (45).  

Another of their bicycle models examined rear wheel steering and demonstrated why rear wheel 

steered bicycles are so difficult for riders to control. By examining the model carefully eventually a 

successful rear wheel steered bicycle was built by their students which could be ridden in some 

circumstances, demonstrating the value of a control engineering approach. This bicycle had the 

rider placed very high and very far forward, significantly changing the mass position. Also the bicycle 

needed to be ridden at some speed just as their equations had shown. This was presented as an 

interesting and instructive mathematical control problem. They discussed a series of bicycles built 

as student projects including zero gyroscopic bikes which again proved experimentally that a bicycle 

can be successfully ridden without gyroscopic assistance. Another section of this paper examined 

the difficulty of teaching young children to ride bicycles and trialled various modified bicycles 

designed to make learning easier.  

Sharma and Umashankar designed a controller for a bicycle system that stabilises the roll of a 

bicycle by steering the bicycle into the roll using equations developed from Lowell and McKell (21, 

43). Their aim was to see if a fuzzy controller could control an unstable system like a bicycle. Their 

controller used fifty fuzzy logic rules to determine the required control action for stabilisation. The 

computer simulation of their controller displayed only marginal stability and showed steady (not 

decaying) and substantial oscillations of the yaw and roll angles. Three separate very low speed 

values were used to test the controller (5.4 km/hr, 7.2 km/hr and 9 km/hr) and such low speeds 

were likely to be a hard test for a controller to achieve system stability. Their equations did not 

contain a front wheel twisting gravitational torque term and appear to repeat the errors of Lowell 
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and McKell (21). As their results didn’t display any counter-steering action and it is thought that their 

investigation contains significant errors. 

Ringwood and Feng wrote an interesting paper examining front wheel instability at high speeds 

(61). They used the bicycle equations of Astrom et al and spent some time obtaining experimentally 

the values for the position of centre of mass from actual road bicycles. Their model didn’t include 

frame compliance, the mass of the front fork or any rider intervention such as feedback. They 

described the pole variations for different riding conditions and made suggestions regarding stability 

and this is discussed later in Chapter Six.  

2.8. COMPUTER MODELLING 

Lynch and Roland’s aim was to simulate the motion of a bicycle using a computer and to use the 

results to generate realistic computer graphics of bicycle motion, an early example of computer 

animation (49). It was intended that the simulation and graphics could be used to assist in the design 

and development of new bicycle designs particularly with regard to stability and manoeuvrability. 

This study was one of the few financed by a bicycle company (the Schwinn Bicycle Company USA). 

They derived non-linear equations for a bicycle model which consisted of three rigid masses and 

ten degrees of freedom (six for the rear frame, two more rotational ones around both wheels, a ninth 

around the steering axis and the tenth for the rider about the roll axis) though they state there are 

only eight. It included 44 input parameters including: dimensions, masses, moments of inertia, 

gyroscopic effects, tyre side forces (slip and inclination) and tyre radial and lateral stiffness effects. 

Only basic details are given in this paper of their equations and no analysis of results is given. Their 

equations of motion contained several algebraic and typographical errors according to Meijaard et 

al. for example the side-slip angle of the front wheel did not contain the steering rate angle and this 

will have led to significant errors (14). 

Their equations of motion were solved by computer using the Runga-Kutta procedure and were 

then used to generate a bicycle graphic animation. The paper showed the results of a bicycle 

undertaking a slalom manoeuvre and it was stated that the simulation compared well to full scale 

experimental results and this is shown in a series of figures and photos but no more details or 

quantification was provided. The authors stated that the limitations of the then available computers 

(1972) restricted the application of this model due to the high costs of producing a simulation. They 

stated that one useful outcome was that the generated graphic allowed nontechnical people to more 

easily understand the bicycle dynamics by observing the computer graphic of the bicycle’s motion. 

Donida et al developed a specific motorcycle computer model using ten packages from the Modelica 

Multibody software library (62). The equations of motion used in the model were based on both 

Cossalter’s and Sharp’s equations (8, 55). It is unclear from this paper how much these authors 

independently developed and how much was already available from the existing Motorcycle 

Dynamics library. Ten Modelica packages were used, namely: an eleven degrees of freedom (which 

are not defined in the paper) motorcycle package and other packages for: the chassis, suspension, 

rear swinging arm, wheels, tyre road interaction, braking systems, aerodynamics, road environment 
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and the driver. These ten packages were parametric, allowing a manufacturer to perform virtual 

prototyping of a proposed motorcycle design. This approach could be adapted and used for bicycle 

design. 

2.9. CHRONOLOGICAL REVIEWS 

At least two major papers chronologically reviewing studies into bicycle motion have been written. 

Sharp’s earlier paper was a chronological review of research into bicycle dynamics covering over a 

hundred years up until 1985 (8). It looks at forty five papers by researchers in this field including the 

author’s other publications. It summarised the main contributions and conclusions of each paper 

but didn’t present any numerical results or conclusions on bicycle stability or performance. It stated 

that at the time of writing (1985) a good understanding of bicycle dynamics had been achieved but 

that some important aspects were still not understood. The following areas that needed better 

understanding were mentioned: the rider bicycle interaction, the structural properties of the rider 

and frame flexibility. 

More recently Meijaard et al reviewed the work of many researchers and over 70 papers in this field 

from 1866 till 2006 and compared historical equations and models to their own work in a detailed 

supplementary appendix (63). They conclude “Although many reports, theses and papers have 

models at least almost as general as Whipple’s model, and many of these are largely correct, as 

yet there is no consensus that any peer-reviewed paper in English has correct equations.” As 

already mentioned they stated that their other work can be used to benchmark other researchers’ 

bicycle models (14). 

2.10. REMARKS 

This literature survey concludes that there has been intensive research on bicycle dynamics and 

stability including the development of suitable equations of motion that can describe bicycle motion. 

Work on how various control methodologies can be made to pilot bicycles have been completed 

and some have had apparent success when applied to the experimental area. However the 

literature lacks information about how this available research can be used to develop proper design 

methodologies. Designers lack clear guidelines on how to improve and optimise their designs and 

so still rely on empirical observations and trial and error. Some of the studies into bicycle instability 

and the sensitivity of the bicycle to changes in key parameters are contradictory and need resolving. 

This is a major area of interest which will be examined further in this thesis. As most of today’s 

evaluations of bicycle performance are subjective and not quantified, another objective is to develop 

methodologies that will define bicycle handling performance.  

The following main points are raised: 

1. The equations are complicated with some terms being important while others much less so. To 

make a suitable design methodology it is appropriate that only the critical terms be considered 
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2. The literature includes many examples of dynamic equations for the bicycle but these are not 

well correlated to design parameters. 

3. The dynamic analysis of motion has not been looked at in detail in relation to bicycle design 

2.11. INVESTIGATION OBJECTIVES 

Considering the above remarks the main objectives of this work may be summarised as follows: 

1. Investigate the possibility of developing a set of simplified yet still relatively accurate equations 

of motion with the flexibility to use in developing design methodologies. This is achieved by 

formulating an appropriate dynamic model which will be used to: 

a. look at the dynamic responses of the bicycle and to see how they relate to the rider 

b. investigate which terms in these equations are critical for the design process 

c. determine the effectiveness of the model in determining bicycle performance 

d. see if the bicycle can be optimised in terms of specific performance criteria 

e. simulate the above equations and validate them and then determine the realistic 

behaviour of the bicycle when using practical design parameters 

2. Investigate the bicycle’s performance in terms of its sensitivity to design parameters changes: 

a. first by formulating appropriate values for these design parameters which can then 

be used to develop an appropriate sensitivity methodology 

b. using this sensitivity methodology to identify critical design parameters and quantify 

their effects 

c. and determining which ones must be considered and which ones can be ignored 

so that the dynamic equations can be simplified while still maintaining a model that 

can accurately simulate bicycle behaviour 

3. Develop a scientifically based design methodology which designers can use as a standard 

method, this includes: 

a. evaluation of alternative design methodologies including: criteria, tables, equations 

and charts 

b. developing and making appropriate recommendations for a suitable standardised 

design methodology  

c. and collecting design specifications from highly regarded bicycles for validation of 

this recommended design methodology 
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2.12. CLOSURE 

In this Chapter a comprehensive literature survey has been completed which concluded with 

important remarks used to develop the objectives of this research. Chapter Three will continue this 

investigation by developing equations of motion for a bicycle that can be solved using a Simulink 

computer model. This model will be able to simulate different bicycle designs allowing key design 

parameters to be quantified in terms of their effect on handling performance. This analysis will then 

be used to develop a suitable design methodology. 
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3. BICYCLE MODEL FORMULATION 

3.1. INTRODUCTION 

This Chapter explains the theory behind the bicycle dynamic model used in this work. The 

assumptions used in the model are explained and justified. Finally it describes how the equations 

of motion for the model were developed, formulated and solved. One important feature of the 

proposed model is it can isolate and examine individual terms and design parameters allowing 

quantitative comparisons to be made. It is possible to easily adjust these individual terms in the 

model in order to undertake an evaluation of the significance of each torque term and a sensitivity 

study.  

3.2. MODEL FORMULATION 

A bicycle is a surprisingly complex problem which exhibits both yaw and significant roll, both of 

which are interrelated. It consists of at least six rigid bodies, see Figure 1: 

1. front wheel 

2. rear wheel 

3. front fork and handlebar 

4. main frame 

5. lower part of rider 

6. upper part of rider 

However simplifying it down into two bodies is a common approach in the literature and this Chapter 

assumes the bicycle can be modelled as two bodies or assemblies A and B, see Figure 2 and Table 

13 (12, 21, 37). 

1. Assembly “A” consists of the front wheel, the front forks and the handlebars. These all turn and 

move together with one exception, the front wheel is free to rotate about its axle.  

2. The other assembly “B” consists of the main triangular frame, the rear wheel and the rider. The 

frame and the rear wheel move together as one, except the rear wheel is free to rotate about 

its axle (12, 21, 30). 

Assemblies A and B are linked by the steerer and head tubes acting as a hinge that is free to move 

about an axis defined by the head tube angle. Despite the rider not being a fixed body, it is common 

practice to treat the rider as a rigid body fixed to the rear frame and the justification for this was 

established experimentally by Kooijman et al (12, 21, 30, 44). 
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Figure 1 A six part bicycle rider model 

2 Rear wheel 1 Front wheel 

3 Front forks 4 Main frame 

5 Lower part of rider 

6 Upper part of rider 
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Figure 2 Bicycle terms for the selected model, see Table 5 
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Table 5 Bicycle model definitions, see Figure 2 

 Symbol Term Definition 

1.  L wheelbase 

2.  a horizontal distance from front wheel contact point to centre of mass 

3.  b horizontal distance from rear wheel contact point to centre of mass 

4.  h vertical distance from road surface to centre of mass 

5.  ϕ  head tube angle (phi) 

6.  β  fork rake also called offset (beta) 

7.  ∆  front wheel trail (delta) 

8.  FS frame size 

9.  STA seat tube angle 

 

3.3. MODEL ASSUMPTIONS 

Due to the complexity of the bicycle rigid body model it is necessary to establish the following 

simplifying assumptions. 

1. the bicycle consists of two rigid bodies assemblies A and B with the principal axes of inertia 

for each body lying along vertical and horizontal planes, see Figure 2 

2. the rider is part of assembly B and is assumed to be rigid, therefore its centre of mass is 

fixed and all the mass of the system (both A and B) is concentrated at this point for the 

purposes of gravitational and centripetal effects 

3. The three axes coordinate system for the bicycle model (Figure 3) conforms to the ISO 

standard 8855:2011 “Road vehicles -- Vehicle dynamics and road-holding ability – 

Vocabulary.” This standard from the International Organization for Standardization defines 

the principal terms used for road vehicle dynamics (1). These terms apply to passenger 

cars, buses and commercial vehicles but have been used in the literature for bicycle 

applications (37). The three axes coordinate system ha sits origin at the rear tyre contact 

point and moves with the bicycle. 

4. the Coriolis effects of the front and rear assemblies (A and B) are included 

5. the bicycle frame, front forks and both wheels are all rigid structures and do not distort in 

shape 

6. all aerodynamic forces on the bicycle and rider are ignored 

7. the road is smooth, level and uncambered 
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8. the bicycle is travelling at a constant speed, it is not pitching or bouncing and both the roll 

and steering angles are small i.e. less than 10 degrees 

9. the tyres are thin and do not distort or slip sideways when cornering or slip in the direction 

of travel 

10. all moments are assumed to be pure couples including steering torque which is applied by 

the rider and the bicycle is capable of undertaking a counter-steer cornering manoeuvre 

11. the front tyre, rear tyre and centre of mass turn through the same radius when cornering 

12. the radius of cornering is much larger than the bicycle wheelbase 

13. realistic steering geometry can be used i.e. the fork rake and head tube angle can be varied 

to model realistic bicycles 

Most of the above assumptions are self-explanatory, however some need clarification.The second 

assumption is that the human rider is a rigid body attached solidly to the rear frame (all of which is 

called assembly B). Kooijman et al have demonstrated that the rider steers and stabilises the bicycle 

mainly by steering inputs with very little upper body lean (44). Therefore no pedalling action and no 

counterbalancing using the rider’s torso (called hip flick by Fajans) was considered in this model 

and the only piloting aspect of the human rider is that of a simple steering torque action (12). 

To explain assumption six, the intention was to investigate the characteristics of the bicycle rider 

system and so it was not necessary to complicate the problem by considering external forces such 

as aerodynamic forces. 

Regarding assumption nine, many researchers of road bicycles have assumed that the wheels to 

be thin discs and have ignored tyre effects (12-14, 21). Furthermore, after Koojiman et al ran an 

instrumented bicycle on a rolling road they concluded when referring to their maths model that “the 

most dubious assumption that was validated in this model was the replacement of the tyres by knife 

edge wheels rolling without slipping” (14, 34). On the other hand it is common for complex tyre 

models to be used when modelling motorcycles (33, 55, 62). Given that road bicycle tyres are much 

smaller in width (20 mm vs. 180 mm) and operate at higher inflation pressures than motorcycles (7 

bar vs. 2 bar) it is reasonable to expect that they distort less and therefore could be modelled as 

thin discs. Experimental work by Dressel and Rahman found that the tyre relaxation length of a 

bicycle was only between 40 and 60 mm and this compares to the much larger tyre relaxation length 

of motorcycles which are between 100 and 500 mm (64). The tyre relaxation length is a measure 

of delay between when the front wheel is turned and when the tyre cornering force reaches a steady 

state value. The shorter this length, the shorter the delay and the more like a thin disc the wheel 

behaves. 

However, previous work has indicated that the model requires some dampening for stability (12). 

Thus in this current work this tyre damping effect is included by adding a dampening term to the 

model. 

52 



 

Longitudinal wheel slip (in the direction of travel) has been ignored as it is assumed that such slip 

only occurs when braking or accelerating (65). Sideways tyre friction is present in the model and is 

essential in order for the bicycle to corner and to be stable. However, the current model ignores tyre 

rolling resistance as it is assumed that the speed is constant. 

 

 

  

Figure 3 Bicycle axes for the selected model, positive directions shown, per ISO 8855 (1) 
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3.4. BICYCLE EQUATIONS OF MOTION 

3.4.1. BASIC LAWS 

In order to develop the equations of motion needed to solve the rigid body dynamics of the bicycle 

we begin with the Newton Laws of Motion and the General Equations of Motion and then by applying 

simplifying assumptions developed a suitable mathematical model for the bicycle. 

For simplicity many of the parameters in this Section are defined in Table 5 and the remainder are 

explained in the Nomenclature and Glossary Sections (see also Table 6, Table 7 and Table 8). It is 

possible to apply the general momentum equations of motion in order to fully describe any three 

dimensional dynamic motion of a rigid body such as a bicycle (53, 66). For linear motion the 

equations of motion can be written in the three axes Cartesian coordinate system as (66): 

Σ𝐹𝐹𝑋𝑋 = 𝑚𝑚𝑋𝑋𝑋𝑋𝑣̇𝑣𝑋𝑋 + �𝐼𝐼𝑍𝑍𝑍𝑍 − 𝐼𝐼𝑦𝑦𝑦𝑦�𝜔𝜔𝑌𝑌𝜔𝜔𝑍𝑍 

(1) 

Σ𝐹𝐹𝑌𝑌 = 𝑚𝑚𝑌𝑌𝑌𝑌𝑣̇𝑣𝑌𝑌 + �𝐼𝐼𝑍𝑍𝑍𝑍 − 𝐼𝐼𝑦𝑦𝑦𝑦�𝜔𝜔𝑌𝑌𝜔𝜔𝑍𝑍 

(2) 

Σ𝐹𝐹𝑍𝑍 = 𝑚𝑚𝑍𝑍𝑍𝑍𝑣̇𝑣𝑍𝑍 + �𝐼𝐼𝑍𝑍𝑍𝑍 − 𝐼𝐼𝑦𝑦𝑦𝑦�𝜔𝜔𝑌𝑌𝜔𝜔𝑍𝑍 

(3) 

Where F is force, m is mass, I is mass moment of inertia and ω is angular velocity and the Cartesian 

coordinate X, Y and Z system conforms to Figure 3, where X is the longitudinal direction, Y is the 

transverse and Z is the vertical direction. Similarly for the angular motion of a constant mass body 

the Momentum Equation applies: 

Σ𝑇𝑇 = 𝐻̇𝐻 

(4) 

Where T is the torque and 𝐻̇𝐻 is the change in angular momentum. Now the general equations of 

motion for rigid body motion in the three axis Cartesian coordinate system (see Figure 3) attached 

to the body can be written: 

Σ𝑇𝑇𝑋𝑋 = 𝐻̇𝐻𝑋𝑋 − 𝐻𝐻𝑌𝑌𝜔𝜔𝑍𝑍 + 𝐻𝐻𝑍𝑍𝜔𝜔𝑌𝑌 

(5) 

Σ𝑇𝑇𝑌𝑌 = 𝐻̇𝐻𝑌𝑌 − 𝐻𝐻𝑍𝑍𝜔𝜔𝑋𝑋 + 𝐻𝐻𝑋𝑋𝜔𝜔𝑍𝑍 

(6) 

Σ𝑇𝑇𝑍𝑍 = 𝐻̇𝐻𝑍𝑍 − 𝐻𝐻𝑋𝑋𝜔𝜔𝑌𝑌 + 𝐻𝐻𝑌𝑌𝜔𝜔𝑋𝑋 

(7) 
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Where the three components of angular momentum are: 

𝐻̇𝐻𝑋𝑋 = 𝐼𝐼𝑋𝑋𝑋𝑋𝜔̇𝜔𝑋𝑋 − 𝐼𝐼𝑌𝑌𝑌𝑌𝜔̇𝜔𝑌𝑌 − 𝐼𝐼𝑍𝑍𝑍𝑍𝜔̇𝜔𝑍𝑍 

(8) 

𝐻̇𝐻𝑌𝑌 = −𝐼𝐼𝑋𝑋𝑋𝑋𝜔̇𝜔𝑋𝑋 − 𝐼𝐼𝑌𝑌𝑌𝑌𝜔̇𝜔𝑌𝑌 − 𝐼𝐼𝑌𝑌𝑌𝑌𝜔̇𝜔𝑍𝑍 

(9) 

𝐻̇𝐻𝑍𝑍 = −𝐼𝐼𝑍𝑍𝑍𝑍𝜔̇𝜔𝑋𝑋 − 𝐼𝐼𝑌𝑌𝑌𝑌𝜔̇𝜔𝑌𝑌 + 𝐼𝐼𝑍𝑍𝑍𝑍𝜔̇𝜔𝑍𝑍 

(10) 

These equations state that the sum of the torques equal the change in angular momentum for 

bodies of constant mass.  

3.4.2. THE EULER EQUATIONS OF MOTION 

The principal axes of inertia of a body are defined as those about which the maximum values for 

the mass moments of inertia occur. For symmetrical bodies the principal axes occur on planes of 

symmetry (53, 66). In the case of body like a cylinder, as the body is symmetrical about the X, Y 

and Z axes they are all principal axes. And as the origin of the reference axes X, Y and Z coincide 

with the centre of mass, then the inertia tensors IXY, IYZ and IXZ all equal zero and the General 

Equations of Motion simplify to the Euler Equations of Motion. 

So if the bicycle model can be assumed to be symmetrical about X, Y and Z the three momentum 

equations of motion, (8 to (10 may be simplified into the Euler equations, but is this a reasonable 

proposition? 

• Considering the rider alone (which is the dominant mass in the system) Hanavan records 

values for the inertia tensors as follows; IXZ = -1.7218 kgm2, IXY = IYZ = 0 kgm.2  

• Similarly Meijaard et al records the following values the inertia tensors for their equivalent 

of assembly B, as IXZ = 2.4 kgm2, IXY = IYZ = 0 kgm.2 (14, 48).  

• Therefore in both these cases two of the three tensors equal zero and the third tensor IXZ 

has a value of about 25% of the principal moment of inertia IXX.  

• Also the bicycle by itself (without a rider) is symmetrical about the longitudinal X axis and is 

approximately symmetrical about the vertical Z located through the centre of mass.  

Therefore the assumption to use Euler Equations for the bicycle model can be justified and this 

greatly simplifies the equations of motion. Also it is common practice in the study of automobile 

vehicle dynamics to assume that the Euler equations apply (53). 

The Euler Equation of Motion about the X axis is: 

Σ𝑇𝑇𝑋𝑋 = 𝐼𝐼𝑋𝑋𝑋𝑋𝜔̇𝜔𝑋𝑋 + 𝐼𝐼𝑍𝑍𝑍𝑍𝜔𝜔𝑌𝑌𝜔𝜔𝑍𝑍 − 𝐼𝐼𝑌𝑌𝑌𝑌𝜔𝜔𝑌𝑌𝜔𝜔𝑍𝑍 

(11) 
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The first right hand term is the inertia torque, the second the gyroscopic torque and the third is 

torque due to Coriolis acceleration. 

Similarly the Euler Equations of Motion about the Y and Z axes are: 

Σ𝑇𝑇𝑌𝑌 = 𝐼𝐼𝑌𝑌𝑌𝑌𝜔̇𝜔𝑌𝑌 + 𝐼𝐼𝑋𝑋𝑋𝑋𝜔𝜔𝑋𝑋𝜔𝜔𝑍𝑍 − 𝐼𝐼𝑍𝑍𝑍𝑍𝜔𝜔𝑋𝑋𝜔𝜔𝑍𝑍 

(12) 

Σ𝑇𝑇𝑍𝑍 = 𝐼𝐼𝑍𝑍𝑍𝑍𝜔̇𝜔𝑍𝑍 + 𝐼𝐼𝑌𝑌𝑌𝑌𝜔𝜔𝑌𝑌𝜔𝜔𝑋𝑋 − 𝐼𝐼𝑋𝑋𝑋𝑋𝜔𝜔𝑌𝑌𝜔𝜔𝑋𝑋 

(13) 

3.4.3.  GOVERNING EQUATION DEVELOPMENT 

It is possible to deal with the six equations of motion previously detailed [i.e. equations (1) to (3) 

and (11) to (13)] however in this research our interest is focused on yawing and rolling of the bicycle. 

Therefore the following simplifications can be made: 

1. Forces and linear motion in the X axis are neglected as the bicycle is assumed to be 

travelling at a constant forward linear speed with no acceleration or braking. Therefore, 

there are no linear accelerations along the X axis and this eliminates equation (1) 

2. Forces and linear motion in the Y axis are also neglected as the tyres are assumed to have 

no side slip angle (so that the radius of cornering is equal to the wheelbase/steering angle 

R = L/σ, see Figure 4). Therefore, there are no linear accelerations along the Y axis so this 

eliminates equation (2) 

3. Forces and linear motions in the Z axis are neglected as the road is assumed to be level 

and smooth, so there is no bouncing. Therefore, there are no linear accelerations along the 

Z axis eliminating equation (3) 

4. All rotations about the Y axis are neglected (except for the gyroscopic torque due to the 

spinning of each wheel) as the road is assumed to be smooth and level therefore the bicycle 

is not pitching and this eliminates Euler equation (12). Note that the gyroscopic torque of 

each rotating wheel is accounted for by taking them about the central axis of each wheel 

and treating them as pure couples.  

Thus the governing equations of motion to consider for the bicycle model are: 

1. The sum of moments about the horizontal axis (X) for assembly A (producing rolling), refer 

to Euler equation (11) and Figure 3 

2. The sum of moments about the horizontal axis (X) for assembly B (producing rolling), refer 

to Euler equation (11) and Figure 3 

3. And the sum of moments about the vertical axis (Z) for assembly A (producing yawing), 

refer to Euler equation (13) and Figure 3 
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Figure 4 Cornering bicycle geometry indicated the relationships between L, σ and R 
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Now that the assumptions and definitions have been dealt with, the equations of motion for a bicycle 

dynamic model can be formulated. All the torque terms in the following equations are defined in 

Table 6, Table 7 and Table 8. Their derivations are available in the literature along with suitable 

freebody diagrams of the model (12, 21, 30). The first equation considers yawing moments about 

the vertical Z axis for the front assembly A (see Figure 2) and results in: 

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔/𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 −𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 −𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑           

(14) 

 

Incorporating the bicycle X, Y, Z axes from Figure 3 this equation is expanded out to: 

𝐼𝐼𝑍𝑍𝑍𝑍 𝜔̇𝜔𝑍𝑍𝑍𝑍+𝐼𝐼𝑌𝑌𝑌𝑌 𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑋𝑋𝑋𝑋 − 𝐼𝐼𝑋𝑋𝑋𝑋 𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑋𝑋𝑋𝑋 = 𝑇𝑇𝑆𝑆  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑀𝑀𝑀𝑀
𝑏𝑏
𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Δ𝑒𝑒 𝜆𝜆 − 𝑀𝑀

𝑏𝑏𝑣𝑣2

𝐿𝐿2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Δ𝑒𝑒 𝜎𝜎 + 𝑇𝑇𝑓𝑓 cos𝜙𝜙 − Γ𝜎̇𝜎      

(15) 

And is further expanded to: 

𝐼𝐼𝑍𝑍𝑍𝑍 𝑠𝑠𝑠𝑠𝑠𝑠∅𝜎̈𝜎+𝐼𝐼𝑌𝑌𝑌𝑌 
𝑣𝑣
𝑟𝑟
𝜆̇𝜆 − 𝐼𝐼𝑋𝑋𝑋𝑋 

𝑣𝑣
𝑟𝑟
𝜆̇𝜆 = 𝑇𝑇𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑀𝑀𝑀𝑀

𝑏𝑏
𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Δ𝑒𝑒 𝜆𝜆 − 𝑀𝑀

𝑏𝑏𝑣𝑣2

𝐿𝐿2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Δ𝑒𝑒 𝜎𝜎 + 𝑇𝑇𝑓𝑓 cos𝜙𝜙 − Γ𝜎̇𝜎 

(16) 

Then rearranged to make TS sinϕ the subject: 

𝑇𝑇𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  = 𝐼𝐼𝑍𝑍𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠∅𝜎̈𝜎+𝐼𝐼𝑌𝑌𝑌𝑌 
𝑣𝑣
𝑟𝑟
𝜆̇𝜆 − 𝐼𝐼𝑋𝑋𝑋𝑋 

𝑣𝑣
𝑟𝑟
𝜆̇𝜆 + 𝑀𝑀𝑀𝑀

𝑏𝑏
𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Δ𝑒𝑒 𝜆𝜆 + 𝑀𝑀

𝑏𝑏𝑣𝑣2

𝐿𝐿2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Δ𝑒𝑒 𝜎𝜎 − 𝑇𝑇𝑓𝑓 cos𝜙𝜙 + Γ𝜎̇𝜎       

(17) 

Further simplification gives the first equation of motion: 

𝑇𝑇𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  = 𝐼𝐼𝑍𝑍𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠∅𝜎̈𝜎 + �𝐼𝐼𝑌𝑌𝑌𝑌 
𝑣𝑣
𝑟𝑟
− 𝐼𝐼𝑋𝑋𝑋𝑋 

𝑣𝑣
𝑟𝑟
� 𝜆̇𝜆 + 𝑀𝑀𝑀𝑀

𝑏𝑏
𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Δ𝑒𝑒 𝜆𝜆 + 𝑀𝑀

𝑏𝑏𝑣𝑣2

𝐿𝐿2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Δ𝑒𝑒 𝜎𝜎 − 𝑇𝑇𝑓𝑓 cos𝜙𝜙 + Γ𝜎̇𝜎 

(18) 

 

The second equation considers rolling moments about the horizontal X axis for the front assembly 

A and results in: 

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 −𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔/𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑇𝑇𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽       

(19) 

This is expanded out to: 

𝐼𝐼𝑋𝑋𝑋𝑋 𝜔̇𝜔𝑋𝑋𝑋𝑋 + 𝐼𝐼𝑍𝑍𝑍𝑍𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑍𝑍𝑍𝑍 − 𝐼𝐼𝑌𝑌𝑌𝑌𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑍𝑍𝑍𝑍

= 𝑇𝑇𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +
𝐼𝐼𝑌𝑌𝑌𝑌𝑣𝑣2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑟𝑟𝑟𝑟
𝜎𝜎 − 𝑇𝑇𝑆𝑆 cos𝜙𝜙 +𝑀𝑀

𝑏𝑏𝑣𝑣2

𝐿𝐿2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐Δ𝑒𝑒𝜎𝜎 + 𝑀𝑀𝑀𝑀

𝑏𝑏
𝐿𝐿
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐Δ𝑒𝑒𝜆𝜆 

(20)  
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Using the bicycle X, Y, Z axes this equation is expanded out to: 

𝐼𝐼𝑋𝑋𝑋𝑋 𝜆̈𝜆 + 𝐼𝐼𝑍𝑍𝑍𝑍
𝑣𝑣
𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜎̇𝜎 − 𝐼𝐼𝑌𝑌𝑌𝑌

𝑣𝑣
𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜎̇𝜎

= 𝑇𝑇𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +
𝐼𝐼𝑌𝑌𝑌𝑌𝑣𝑣2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑟𝑟𝑟𝑟
𝜎𝜎 − 𝑇𝑇𝑠𝑠 cos𝜙𝜙 +𝑀𝑀

𝑏𝑏𝑣𝑣2

𝐿𝐿2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐Δ𝑒𝑒𝜎𝜎 + 𝑀𝑀𝑀𝑀

𝑏𝑏
𝐿𝐿
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐Δ𝑒𝑒𝜆𝜆 

(21) 

This is rearranged to make Tf sinϕ the subject: 

𝑇𝑇𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐼𝐼𝑋𝑋𝑋𝑋𝜆̈𝜆 + 𝐼𝐼𝑍𝑍𝑍𝑍
𝑣𝑣
𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜎̇𝜎 − 𝐼𝐼𝑌𝑌𝑌𝑌

𝑣𝑣
𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜎̇𝜎 −

𝐼𝐼𝑌𝑌𝑌𝑌𝑣𝑣2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑟𝑟𝑟𝑟

𝜎𝜎 + 𝑇𝑇𝑠𝑠 cos𝜙𝜙 −𝑀𝑀
𝑏𝑏𝑣𝑣2

𝐿𝐿2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐Δ𝑒𝑒𝜎𝜎

− 𝑀𝑀𝑀𝑀
𝑏𝑏
𝐿𝐿
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐Δ𝑒𝑒𝜆𝜆 

(22) 

Simplification gives the second equation of motion: 

𝑇𝑇𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐼𝐼𝑋𝑋𝑋𝑋𝜆̈𝜆 − 𝑀𝑀𝑀𝑀
𝑏𝑏
𝐿𝐿
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐Δ𝑒𝑒𝜆𝜆 + �𝐼𝐼𝑍𝑍𝑍𝑍

𝑣𝑣
𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐼𝐼𝑌𝑌𝑌𝑌

𝑣𝑣
𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� 𝜎̇𝜎 − �

𝐼𝐼𝑌𝑌𝑌𝑌𝑣𝑣2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑟𝑟𝑟𝑟

+ 𝑀𝑀
𝑏𝑏𝑣𝑣2

𝐿𝐿2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐Δ𝑒𝑒� 𝜎𝜎

+ 𝑇𝑇𝑠𝑠 cos𝜙𝜙 

(23) 

Finally the third equation considers rolling moments about the horizontal X axis for the rear 

assembly B (see Figure 2) resulting in: 

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 −𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 +𝑇𝑇𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 

(24) 

Applying the bicycle X, Y, Z axes this equation is expanded out to: 

𝐼𝐼𝑋𝑋𝑋𝑋 𝜔̇𝜔𝑋𝑋𝑋𝑋 + 𝐼𝐼𝑍𝑍𝑍𝑍𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑍𝑍𝑍𝑍 − 𝐼𝐼𝑌𝑌𝑌𝑌𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑍𝑍𝑍𝑍 = −𝑇𝑇𝑓𝑓 sin𝜙𝜙 +
𝑀𝑀𝑣𝑣2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ

𝐿𝐿
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑀𝑀𝑀𝑀ℎ sin 𝜆𝜆 +

𝑀𝑀ℎ𝑏𝑏𝑏𝑏
𝐿𝐿

𝜎̇𝜎 

(25) 

And is further expanded to become the third equation of motion: 

𝐼𝐼𝑋𝑋𝑋𝑋 𝜆̈𝜆 + 𝐼𝐼𝑍𝑍𝑍𝑍
𝑣𝑣
𝑟𝑟
𝜎𝜎 − 𝐼𝐼𝑌𝑌𝑌𝑌

𝑣𝑣2

𝑟𝑟𝑟𝑟
𝜎𝜎 = −𝑇𝑇𝑓𝑓 sin𝜙𝜙 + 𝑀𝑀𝑣𝑣2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ

𝐿𝐿
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +𝑀𝑀𝑀𝑀ℎ sin 𝜆𝜆+Mhbv

L
σ̇ 

(26) 

 

Equations (18), (23) and (26) have σ (sigma, yaw) and λ (lamda, roll) as the main outputs and TS 

(steering torque) as the main input. Because Tf (frame torque) is the torque of interaction between 

assemblies A and B it can be eliminated in these preceding equations.  
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Now equations (18), (22) and (26) are similar to those developed by Fajans but have additional 

terms added (12). These additional terms allow for the Coriolis effect, the steering head tube angle 

and trail, as one of main objectives of this work was to investigate the significance of these additional 

terms. All of the torques in these three equations are self-explanatory except for the kink torque in 

equation (26) i.e. 𝑀𝑀ℎ𝑏𝑏𝑏𝑏
𝐿𝐿

𝜎̇𝜎. As the second term on the left hand side of equation (26) i.e. 𝐼𝐼𝑍𝑍𝑍𝑍
𝑣𝑣
𝑟𝑟
𝜎𝜎, only 

accounts for the Coriolis Effect of the rear wheel, the kink torque term is required to allow for the 

remainder of the Coriolis torque on the assembly B, see Figure 5. If the front wheel is turned 

abruptly, both wheel contact points follow arcs, however, while the rear wheel trajectory smoothly 

transitions into a curved path the front wheel trajectory has a kink. Likewise the trajectory of the 

point halfway between the wheels has a similar kink and this results in the kink torque term. Of 

course the centre of mass doesn’t turn straight away, it continues in a straight line and in comparison 

to the point half way between the wheels appears to be kicked out. For an abrupt change in the 

steering angle this kink requires an impulsive force which is different from the steady state 

centrifugal forces as these forces are not subject to such a kink. Fajans described the kink torque 

as being “valid in a reference frame rotating at the instantaneous angular frequency V/R = (V/L) x 

σ” (12).  

 

Table 6 Terms in equation (14) 

Term Expanded term Physical meaning 

TInertia 𝐼𝐼𝑍𝑍𝑍𝑍𝜔̇𝜔𝑍𝑍𝑍𝑍 Inertia torque due to the yawing of A 

TGyro/roll 𝐼𝐼𝑌𝑌𝑌𝑌𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑋𝑋𝑋𝑋 Gyroscopic torque due to the rolling of A 

TCoriolis 𝐼𝐼𝑋𝑋𝑋𝑋𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑋𝑋𝑋𝑋 Coriolis torque of A 

TSteer 𝑇𝑇𝑆𝑆 sin𝜙𝜙 Steering torque input by rider, corrected for the head tube angle 

TJones 𝑀𝑀𝑀𝑀
𝐵𝐵
𝐿𝐿

sin𝜙𝜙Δ𝑒𝑒𝜆𝜆 Jones torque or trail steer, causes the wheel to lean into the corner 

TCastor 𝑀𝑀
𝑏𝑏𝑣𝑣2

𝐿𝐿2
sin𝜙𝜙Δ𝑒𝑒𝜎𝜎 Castor torque due to trail, tends to straight the wheel up 

TFrame 𝑇𝑇𝑓𝑓 cos𝜙𝜙 Torque of assembly B on A, corrected for the head tube angle 

TDamping Γ𝜎̇𝜎 Damping torque (if this term is zero the bicycle may be unstable) 
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Table 7 Terms in equation (19) 

Term Expanded term Physical meaning 

TInertia 𝐼𝐼𝑋𝑋𝑋𝑋𝜔̇𝜔𝑋𝑋𝑋𝑋 Inertia torque of the front wheel due to rolling of A 

TCoriolis 𝐼𝐼𝑍𝑍𝑍𝑍𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑍𝑍𝑍𝑍 Coriolis Torque of A 

TGyro/yaw 𝐼𝐼𝑌𝑌𝑌𝑌𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑍𝑍𝑍𝑍 Gyroscopic torque of front wheel due to yawing of A 

TFrame 𝑇𝑇𝑓𝑓 sin𝜙𝜙 Torque Assembly B exerts on A corrected for the head tube angle 

TGyro/cornering IYF
v2 sinϕ

rL
σ Gyroscopic torque of front wheel due to cornering 

TSteer 𝑇𝑇𝑆𝑆 cos𝜙𝜙 Steering Torque corrected for the head tube angle 

TCastor 𝑀𝑀
𝑏𝑏𝑣𝑣2

𝐿𝐿2
cos𝜙𝜙Δ𝑒𝑒𝜎𝜎 Castor torque corrected for the head tube angle 

TJones 𝑀𝑀𝑀𝑀
𝑏𝑏
𝐿𝐿

cos𝜙𝜙Δ𝑒𝑒𝜆𝜆 Jones torque corrected for the head tube angle 

 

 

Table 8 Terms in equation (24) 

Term Expanded Term  Physical Meaning 

TInertia 𝐼𝐼𝑋𝑋𝑋𝑋𝜔̇𝜔𝑋𝑋𝑋𝑋 Inertia torque of frame , rider and rear wheel due to rolling of B 

TCoriolis 𝐼𝐼𝑍𝑍𝑍𝑍𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑍𝑍𝑍𝑍 Coriolis Torque of the rear wheel 

TGyro/cornering 𝐼𝐼𝑌𝑌𝑌𝑌𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑍𝑍𝑍𝑍 Gyroscopic torque of rear wheel due to cornering 

TFrame 𝑇𝑇𝑓𝑓 sin𝜙𝜙 Torque Assembly A exerts on Assembly B corrected for the head 
tube angle 

TCentrifugal 𝑀𝑀
𝑣𝑣2ℎ sin𝜙𝜙

𝐿𝐿
cos 𝜆𝜆𝜆𝜆 Centrifugal torque 

TGravity 𝑀𝑀𝑀𝑀ℎ sin 𝜆𝜆 Gravitational torque 

TKink 
𝑀𝑀ℎ𝑏𝑏𝑏𝑏
𝐿𝐿

𝜎̇𝜎 Kink torque (Coriolis torque of assembly B less rear wheel) 
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Front wheel Rear wheel 

Direction of 
travel 

Centre of 
corner 

Radius of 
corner R 

Yaw angle σ 

Yaw angle  
σ 

a) Rear wheel trajectory 

b) Centre of mass trajectory 

c) Front wheel trajectory 

Kink in trajectory 

Figure 5 The kink torque results from three different trajectories a), b) and c) 
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3.5. SIMULINK EQUATIONS 

There are many approaches that could be used to solve equations such as equations (18), (23) and 

(26), however we chose to use Simulink in a Matlab environment because by using this software it 

was easier correlate between individual equation terms, the bicycle design parameters and the 

performance in terms of handling. 

In this Chapter the three bicycle equations of motion (18), (23) and (26) are used to formulate a 

mathematical model for dynamic motion which will be solved using Simulink. This section describes 

the development of these Simulink equations into a model that can accurately simulate bicycle 

dynamic behaviour.  

Different inputs such as riding conditions and bicycle geometry were used in the model to quantify 

the effect they have on the dynamic behaviour. An important feature of this model was the ability to 

use different steering geometries in order to achieve optimum steering performance and it will be 

necessary to change design parameters to investigate their individual effect on the model. Also it 

was important to be able to isolate individual torque terms to determine their significance and to see 

which ones could be disregarded, so further simplifying the equations for other purposes. 

The three governing equations of motion must first be rearranged so that they can be solved with 

Simulink to first find the rate of change of yaw (𝜎̈𝜎) and of roll (𝜆̈𝜆) of a bicycle and then plot the angles 

of front wheel yaw (σ) and bicycle roll (λ) against time, see Figure 3. 

(14) considered the yawing moments about the vertical Z axis for the front assembly A and after 

considering the bicycle’s physical parameters it reduces to equation (18). Now this equation by 

using the terms A1, A2…An (see Table 9) can be reduced further to: 

𝐴𝐴3𝜎̈𝜎 = 𝑇𝑇𝑠𝑠 sin𝜙𝜙 − 𝐴𝐴1𝜆̇𝜆 − 𝐴𝐴2𝜆𝜆 − 𝐴𝐴4𝜎̇𝜎 − 𝐴𝐴5𝜎𝜎 + 𝐴𝐴6 

(27) 

It is then rearranged to make 𝜎̈𝜎 the subject: 

 

𝜎̈𝜎 =
𝑇𝑇𝑆𝑆 sin𝜙𝜙
𝐴𝐴3

−
𝐴𝐴1𝜆̇𝜆
𝐴𝐴3

−
𝐴𝐴2𝜆𝜆
𝐴𝐴3

−
𝐴𝐴4𝜎̇𝜎
𝐴𝐴3

−
𝐴𝐴5𝜎𝜎
𝐴𝐴3

+
𝐴𝐴6
𝐴𝐴3

 

(28) 
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Similarly equations (19) and (22) which allow for the roll of assembly A about X, reduce to: 

𝑇𝑇𝑓𝑓 sin𝜙𝜙 = 𝐵𝐵1𝜆̈𝜆 − 𝐵𝐵2𝜆𝜆 + 𝐵𝐵3𝜎̇𝜎 + 𝐵𝐵4𝜎𝜎 + 𝑇𝑇𝑠𝑠 cos𝜙𝜙 

(29) 

Where terms B1, B2…Bn have been substituted (see Table 9) 

Next equations (24) and (26) which allow for the roll of assembly B about X, can be reduced by 

using terms C1, C2…Cn (see Table 9) to: 

𝑇𝑇𝑓𝑓 sin𝜙𝜙 = −𝐶𝐶1 𝜆̈𝜆 − 𝐶𝐶2𝜎𝜎 + 𝐶𝐶3 sin 𝜆𝜆 + 𝐶𝐶4𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐶𝐶5𝜎̇𝜎 + 𝐶𝐶6𝜎𝜎 

(30) 

Equating equations (29) and (30) gives: 

𝐵𝐵1𝜆̈𝜆 − 𝐵𝐵2𝜆𝜆 + 𝐵𝐵3𝜎̇𝜎 + 𝐵𝐵4𝜎𝜎 + 𝑇𝑇𝑠𝑠 cos𝜙𝜙 = −𝐶𝐶1 𝜆̈𝜆 − 𝐶𝐶2𝜎𝜎 + 𝐶𝐶3 sin 𝜆𝜆 + 𝐶𝐶4𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐶𝐶5𝜎̇𝜎 + 𝐶𝐶6𝜎𝜎 

(31) 

Which is rearranged to make 𝜆̈𝜆 the subject giving: 

𝜆̈𝜆 =
−𝐶𝐶2𝜎𝜎

(𝐵𝐵1 + 𝐶𝐶1) +
𝐵𝐵2𝜆𝜆

(𝐵𝐵1 + 𝐶𝐶1) +
𝐶𝐶3 sin 𝜆𝜆

(𝐵𝐵1 + 𝐶𝐶1) +
(𝐶𝐶5 − 𝐵𝐵3)𝜎̇𝜎
(𝐵𝐵1 + 𝐶𝐶1) +

(𝐶𝐶6 − 𝐵𝐵4)𝜎𝜎
(𝐵𝐵1 + 𝐶𝐶1) +

𝐶𝐶4 cos 𝜆𝜆𝜆𝜆
(𝐵𝐵1 + 𝐶𝐶1) −

𝑇𝑇𝑠𝑠 cos𝜙𝜙
(𝐵𝐵1 + 𝐶𝐶1) 

(32) 

 

It is equations (28), (29) and (32) that Simulink will solve to find the dynamic behaviour of the bicycle.  

 

3.6. CLOSURE 

This Chapter has developed the three equations of motion that solve the rigid body dynamics for 

the bicycle, beginning with the Newton Laws of Motion and the General Equations of Motion. Euler 

equations were used in the bicycle model, which is reasonable as the bicycle is symmetrical about 

the X Z plane and is approximately symmetrical in the other planes. Suitable simplifying 

assumptions were made to develop a mathematical model for the bicycle leaving three equations 

left to be solved: one to consider yawing moments about the Z axis for the front assembly A, the 

second considering rolling moments about the X axis for front assembly A and the final third 

equation considering rolling moments about the X axis for rear assembly B. These equations were 

reframed into a suitable form for Simulink and in the next Chapter they will be solved.  
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Table 9 Coefficients An, Bn and Cn 

Coefficient Equal to 

A1 �IYF 
v
r
− IXF 

v
r
� 

A2 Mg
b
L

sinϕΔe  

A3 IZAsin∅ 

A4 Γ 

A5 Mbv2

L2
sinϕΔe 

A6 TS sinϕ 

  

B1 IXA 

B2 𝑀𝑀𝑀𝑀𝑀𝑀
𝐿𝐿

cos𝜙𝜙Δ𝑒𝑒 

B3 ��𝐼𝐼𝑍𝑍𝑍𝑍
𝑣𝑣
𝑟𝑟

sin𝜙𝜙� − �𝐼𝐼𝑌𝑌𝑌𝑌
𝑣𝑣
𝑟𝑟

sin𝜙𝜙�� 

B4 
−�

𝐼𝐼𝑋𝑋𝑋𝑋𝑣𝑣2 sin𝜙𝜙
𝑟𝑟𝑟𝑟

� − �𝑀𝑀
𝑏𝑏𝑣𝑣2

𝐿𝐿2
cos𝜙𝜙Δ𝑒𝑒� 

  

C1 𝐼𝐼𝑋𝑋𝑋𝑋 

C2 𝐼𝐼𝑍𝑍𝑍𝑍
𝑣𝑣
𝑟𝑟
 

C3 𝑀𝑀𝑀𝑀ℎ 

C4 𝑀𝑀𝑣𝑣2 sin𝜙𝜙ℎ
𝐿𝐿

 

C5 𝑀𝑀ℎ𝑏𝑏𝑏𝑏
𝐿𝐿

 

C6 
𝐼𝐼𝑌𝑌𝑌𝑌

𝑣𝑣2

𝑟𝑟𝑟𝑟
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4. SIMULATION AND VALIDATION 

4.1. INTRODUCTION AND OVERVIEW 

Now that the equations of motion for a bicycle have been developed and reframed into a suitable 

form they can be solved using Simulink in a Matlab environment. This Chapter describes how the 

model based on equations (18), (23) and (26) from Chapter Three is solved using Simulink. 

The Simulink model takes the input from the rider (the steering torque) and after applying 

appropriate variables and parameters (such as speed, bicycle total mass, wheelbase length, head 

tube angle, rake) it can find the dynamic response of the bicycle in terms of yaw and roll. An 

overview of the Simulink computer model is shown in Figure 6 and more detailed diagrams are 

described later in this Chapter (see also Appendix A). 

The models’ input variables and design parameters can be easily varied to determine their 

importance and simulate different manoeuvres, bicycles and riders. This is an important feature of 

the model as one of the main objectives of this research is to determine appropriate steering 

geometries in order to achieve optimum steering performance. In addition the damping term can be 

varied or disregarded to investigate its effect on stability and the results of this computer modelling 

will be shown in detail in Chapter Five. This Simulink model is made up of six distinct parts which 

are described below and are also shown in schematic form in Figure 7. 

1. Model inputs 

a. The variable inputs (3 in number) see Table 10 

1. Steering torque from the rider (using a Simulink subassembly) 

2. Bicycle velocity 

3. Damping torque 

b. The bicycle parameters (13 terms) shown Table 11 

2. Preliminary calculations of the: velocity, steering geometry and wheelbase terms 

3. Calculations of the intermediate constants An ,Bn & Cn which are shown Table 9 

4. Intermediate calculations to find terms for equations (28), (29) and (32) 

5. Final calculations of equations (28), (29) and (32) that produce the bicycle model outputs 

of yaw and roll 

6. Simulink bicycle model outputs plotting angles vs. time for: 

a. Yaw or σ 

b. Roll or λ 

c. Frame torque or TF 
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The six parts are clearly shown in Figure 7 and they will now be explained more fully in this Chapter 

along with more detailed diagrams, see also Appendix A. 

4.2. INPUT VARIABLE FORMULATION 

As already mentioned it has been known for two hundred years that small changes to a bicycle’s 

design have an enormous effect on performance (2, 6, 32, 61). But changes to these design 

parameters are still largely made on a trial and error basis. “Bicycles are subject to such complex 

and variable forces that the bicycle can really only be designed through trial and error and not just 

by computer modelling (67).“ Therefore appropriate parameter and variable values must be selected 

for use in the model in order for any simulations to be meaningful.  

The Simulink model has three variable inputs: steering torque, speed and damping, which are 

shown Table 10. The steering torque from the rider can be modelled as any type of common torque 

input (e.g. impulse, ramp and step) and Figure 8 shows a suitable torque consisting of two impulses 

(approximately so) the first initiates the turn while the second completes it and stabilises the bicycle 

in a new direction. A standard steering torque input used for many simulations consists of two small 

impulses of maximum magnitude + 0.45 Nm and - 0.414 Nm. These two values were found by trial 

and error to produce a reasonable cornering manoeuvre which returns the bicycle back to an upright 

position within a reasonable time frame (of 15 to 20 seconds) but of course other values could be 

used.  

A simple Simulink subassembly that can produce this standard steering torque is shown in Figure 

9. A second more adaptable subassembly was also developed to allow the steering torque to be 

easily adjusted in its amplitude and time lag values and details of this second assembly is shown in 

Appendix A. 

 

Table 10 Model variable inputs 

 Symbol Variable inputs definition Units 

1.  TSteer Steering torque (from the rider) Nm 

2.  v Velocity m/s 

3.  Γ Damping torque  Js 
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Bicycle Parameters & Variables 
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Figure 6 Overview of the Simulink Computer Simulation Model, showing the inputs and three outputs 
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Figure 7 Schematic breakdown of the Simulink Model, showing the main elements or parts 
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Figure 8 Bicycle handlebar steering torque input for the standard simulation 
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Figure 9 The steering torque subassembly that produces the standard steering torque shown in Figure 8 
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4.3. PARAMETER FORMULATION 

As stated earlier the Simulink model uses thirteen bicycle parameters (eleven if only counting one 

moment of inertia for the wheels) and three variable inputs to model bicycle behaviour (Table 10 and 

Table 11). These terms are very familiar to designers and are the ones used when developing designs. 

An additional five secondary parameters are listed in Table 12, but these are not required for the 

Simulink model due to redundancy. However these secondary parameters are widely used within the 

bicycling fraternity and so need to be discussed. 

Table 11 Bicycle parameters 

 Symbol Parameter definition Units 

1.  IXA Moment of inertia of assembly A about X axis (roll) kgm2 

2.  IXB Moment of inertia of assembly B about X axis (roll) kgm2 

3.  IZA Moment of inertia of assembly A about Z axis (yaw) kgm2 

4. & 5. IXW & IZW 1, 2 Moment of inertia of both wheels about X and Z axes kgm2 

6.  IYW 1, 2 Moment of inertia of both wheels about Y axis  

7.  L Bicycle wheelbase m 

8.  b Horizontal distance from the rear wheel hub to the centre 

f  

m 

9.  h Height of centre of mass m 

10.  D Diameter of the bicycle wheel m 

11.  M  Mass kg 

12.  Φ Head tube angle degrees 

13.  β  Fork rake (or offset) m 

Note 1 Due to symmetry the wheel moments of inertia have the following relationships: 

IXW = IZW and IYW = 2.IXW = 2.IYW 

Note 2 Because the wheels on most bicycles are identical front and rear, it is convenient to consider 

both wheels together in the Simulink model as IXW, IYW & IZW, while in the equations of motion the front 

and rear wheels have been separated out and are referred to as IXF, IYF, IZF and IXR, IYR, IZR  
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Table 12 Secondary parameters 

 Symbol Definition Units Comments 

1.  FS Frame size  m defines the correct size of the 

bicycle for the rider 

2.  STA (or γ) Seat tube angle  m related to the parameters b, h 

and L  

3.  Δ Trail m determined by Φ and β 

4.  Δe Effective trail m also determined by Φ and β 

5.  a Horizontal distance from 

front wheel hub to centre 

of mass 

m redundant dimension because, 

a = L – b 

 

4.3.1. FRAME SIZE 

Two of the parameters in Table 12 need further explanation, the frame size and seat tube angle. Frame 

size is needed because this is how bicycles are matched to people of different sizes. Frame size is 

traditionally measured parallel to the seat tube and is the distance from the centre of the bottom bracket 

to the centre of the top tube at its intersection with the seat tube as shown in Figure 11. The benchmark 

bicycle is based on a frame size of 550 mm and this was chosen because it is a common medium size 

for male riders and it is the correct size for a 1.84 m tall rider, a moderately tall male just below the 95th 

percentile (48). Many rule of thumb methods are used to determine the correct frame size for individual 

riders. One common and widely accepted method is to multiple the inside leg inseam measurement (in 

mm and shown in Figure 10) by 0.65 to give the correct frame size in mm (68-71). 

Frame size is not required in the Simulink model as it is redundant, because of the use of the model 

parameters for the wheelbase and mass position (i.e. L, b and h, see Figure 2). These three parameters 

are proportional to the frame size and thereby already allow for it.  

However it is no longer universal for all manufacturers to provide traditional frame size dimensions in 

their specifications. This is because many manufacturers have begun to make frames with a sloping 

top tube, angled downwards to the rear of the bicycle. This was first seen in the Giant TCR (Total 

Compact Road) bicycle of 1997 and this style of frame is shown in Figure 12 (72). This downward 

sloping top tube is used because of claimed advantages of reduced frame weight, improved handling 

and increased frame stiffness. It may also have a commercial advantage by allowing a manufacturer to 

cover the full range of rider sizes with a smaller number of bicycle models, hence reducing tooling, work 

in progress and stock costs. Unfortunately it is not possible to define these sloping frames using the 

traditional frame sizing system. The commonest alternative to the traditional method is to quote stack 

and reach dimensions, which are defined as follows: 
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• stack is the vertical distance from centre of the bottom bracket to centre of the head tube 

measured at its top end, see Figure 13 

• and reach is the horizontal distance from centre of the bottom bracket to centre of the head 

tube measured at its top end, see Figure 13 

This alternative sizing method is now used by many (but not all) manufacturers now that sloping frames 

have become common. But sizing methods are confusing to many riders and many are unsure as to 

which frame size they should purchase (73). Some sort of internationally recognised standardisation in 

frame sizing would appear desirable but this is outside the scope of this investigation. 

4.3.2. SEAT TUBE ANGLE 

The second parameter, seat tube angle, is the angle the seat tube makes relative to the horizontal plane 

see Figure 11. It is an important manufacturing parameter that enables easy fabrication of conventional 

frames and it also determines the seat and rider position. The seat tube angle is also a much discussed 

parameter within the bicycling fraternity and many claims are made as to its influence on handling and 

comfort, see later discussions in Chapter Seven (69, 74, 75). As with the frame size parameter, the 

Simulink model allows for the seat tube angle through the use of the terms “b” and “h” (that define the 

mass position). The seat tube angle can be related back to “b” and “h” by using a combination of 

trigonometry and empirically derived relationships and the full details of how this can be done is shown 

in the Appendix B. 
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measurement 

Figure 10 The cyclist’s inseam measurement used to determine the correct bicycle size 

Figure 11 Defining a bicycle’s frame size dimension and seat tube angle 
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Figure 12 Giant TCR bicycle frame of 1997 clearly showing the sloping top tube (76) 

 

 

 

 

  

reach 

stack 

Figure 13 Defining a bicycle’s stack and reach dimensions 
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4.4. BENCHMARK PARAMETERS 

It is necessary to select appropriate values for all 13 parameters and 3 variables, ones that will 

be representative of modern high performing road bicycles in order that realistic simulations can 

be made. Appropriate values are also needed in order for the sensitivity study to be undertaken. 

Of particular importance was the choosing of appropriate and representative values for a 

reference point, the benchmark bicycle. The benchmark values are not intended to be thought of 

as optimum values but rather should be typical of well-designed road bicycles, somewhere in the 

middle of the range of values. The benchmark bicycle will also be useful when examining the 

differences between individual bicycle designs (such as the Tour de France bicycles examined in 

Chapter Seven) as it can be a datum point. Also the four bicycle design charts developed and 

discussed later in Chapter Six, all use iso-handling lines referenced back to the benchmark 

bicycle’s iso-handling line.  

4.4.1. SUPPORTING EVIDENCE FOR PARAMETER SELECTION 

The following comments are supporting evidence as to why particular benchmark values were 

selected. 

• First a review of the literature was undertaken to find out what parameter values other 

researchers had used. Moore et al determined a range of values for physical bicycle 

parameters including: mass, the position of the mass, moments of inertia of bicycle 

components (frame, front fork, wheels and rider). They were found by experimental 

measurement and from previously published data. (47). The bicycle they chose to 

measure was a 2008 Batavus Browser and from the details given it is clear this is not a 

high performance bicycle. For example the total bicycle weight is given as 23.5 kg, which 

is very high when compared to a top road bicycle such as a Trek Madone 7.7 weighing 

only 6.54 kg (77). Also the Batavus also has a very long wheelbase (1.120 m) and a 

shallow head tube angle (68.5o). Similarly when measuring the human rider they have 

chosen a subject weighing 72 kg but give no indication of their height or body mass index, 

so it is hard to know how representative they are of the riding population. Therefore the 

results given in this paper need to be considered with these comments in mind. 

• Ringwood and Feng’s paper obtained experimentally values for the position of centres of 

mass of actual road bicycles e.g. Trek 5200, Trek 1000, Trek Madone, Klein and 

Litespeed (61). When finding the vertical centre of mass position they assumed that the 

bicycle rider system was a simple pendulum when it is actually a compound pendulum. 

As a consequence their estimate for the vertical position of the centre of mass has a 

significant error and places it about 160 mm too low.  

• Fajans’ paper on the motion of bicycles and motorcycles used several values for centres 

of mass and moments of inertia (12). He referenced some sources but said others were 

inferred, but did not include any details. Using these values in his derived equations 

Fajans examined in detail a road racing bicycle and a large motorcycle. 
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• Chen’s paper on bicycle balancing and path tracking strategies used parameter values 

which they found experimentally but no details of how this was done was given (60). The 

wheel masses are very high at 2.09 and 3.93 kg (front and rear respectively) and this was 

because the bicycle was not a high performance design and also a rotary encoder was 

attached to the front wheel. 

• Damavandi et al presented a short report that summaries seven methods for finding the 

moments of inertia of a human subject (78). This has relevance when determining 

moments of inertia and mass and its position of the bicycle rider system. This is a difficult 

theoretical and experimental problem due to the wide range of human body shapes and 

the difficulty of measuring and defining the human body. Their purpose was to find the 

most efficient way of determining an individual’s moments of inertia for clinical 

evaluations. The usual method is to estimate these values from anthropomorphic tables 

but this has problems because the tables do not accurately describe adolescent, obese 

or elderly populations. They did not describe the theory or procedures employed with any 

of the seven methods they listed. The report concluded that the inverse dynamic 

pendulum and the angular momentum methods gave results within the average of the 

others, but this was not quantified precisely. They recommended that these two methods 

could be used with confidence in the clinical environment to estimate the moments of 

inertia for individual subjects. 

• Dempster undertook a three year long United States Air Force sponsored investigation 

published in 1955, whose purpose was to determine the space requirements for seated 

male air crew (79). It was also hoped that the kinematic information would assist in 

designing ergonomic controls and cockpits so that under extreme conditions of flight, 

effective control would still be possible. Dempster undertook the detailed examination of 

eight male cadavers (all older males of slight build). This involved the examination of 

dissected body parts (torso, head, upper and lower limbs). He measured and recorded 

details of: dimensions, volumes, masses, centre of mass positions and moments of 

inertia. The centres of mass were found by the suspension method and moments of 

inertia by the compound pendulum method. The resulting data was arranged in tables of 

anthropomorphic data listed for each body segment but was not combined into a 

complete mathematical model of the human body. Therefore it cannot be used for this 

current study unless further work was done. His information could be used to construct a 

simple mathematical model of a person in any posture that could calculate mass, mass 

position and moments of inertia. But because the cadavers were older males (ranging 

from 52 to 83 years) and of slight build (50 to 70 kg) they are not representative of young, 

athletic male bicycle riders nor female riders. Therefore this information is considered to 

have limited use for this study other than as a comparison with other results. 

• Hanavan’s United States Air Force study developed a complete mathematical model that 

can find masses, centres of mass, products and moments of inertia for humans of 

different builds and in different postures (48). The study’s purpose was to determine the 

inertial properties for space crew to help design equipment for the weightless environment 
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of outer space (such as self-manoeuvring units for extra-vehicular work). His 

mathematical model breaks the body down into fifteen segments that are simplified as 

easily calculated hemispherical, cylindrical or conical shapes. These are then used to 

calculate the required properties for a complete human body. Importantly and usefully he 

summarised these human body properties into a design guide. His guide lists different 

combinations of standing and sitting positions (with limbs in various positions). In total the 

mass and inertial properties for 31 different body positions are included in his design 

guide. For each position full values for composite subjects of the 5th, 25th, 50th, 75th and 

95th percentile groups are given. Hanavan body position number 18 closely approaches 

that of a rider in the seated pedalling position and those results are used in this study, 

see Figure 14. The Hanavan model was validated by comparing it to existing data 

available from the previous research of Hansen and Cornog (not cited) that had measured 

66 subjects (US Air Force male flight crew of the 1950’s). The Hanavan mathematical 

model was found to be accurate within 18 mm for the position of the centre of mass and 

generally within 10% for the moments of inertia when compared with anthropomorphic 

data. Full details of the computer programme written in Fortran II & IV code are supplied 

in Hanavan’s report. 

4.4.2. BENCHMARK VALUES 

The choice of the benchmark values was made after considering experimental measurements 

and calculations, other researchers’ work and manufacturers’ published specifications about their 

own bicycles. For the developed Simulink model in this study, the benchmark parameter values 

selected are listed in Table 13. These selected benchmark parameter values are not proposed 

as highly precise values but they are believed to be sufficiently true and accurate for their purpose 

as defined by ISO standard 5725-1. Rounding has been used on the benchmark values, generally 

to 2 significant figures. According to ISO standard 5725-1, the international standard defining the 

vocabulary of metrology, the terms trueness and precision have a specific meaning when 

describing the accuracy of a measurement process (80). Precision refers to the closeness of 

agreement within series of individual measurements while trueness is the closeness of the 

average of a series of measurements to the true value.  Consequently accuracy refers to both 

trueness and precision and to be accurate a series of measurements must be sufficiently true and 

precise for the purpose. 

Justification for why these values were selected are summarised in Table 14 and Table 15 (parts 

I and II) and these two tables show a complete picture of the range of these values, so that 

decisions about future variations to the model can be made with knowledge and confidence. As 

already noted many researchers have used values which are not representative of high 

performing bicycles. This can be attributed to the fact that many of the bicycles used for 

experiments are of average or below average design and construction. Also some researchers 

deliberately exaggerated some values, for example wheel mass, in order to investigate the effect 

of individual terms such as gyroscopic effects (14). Typically values are overly heavy and in the 

case of dimensions such as wheel diameters and wheelbases are inaccurate.  
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Reflecting on this it was decided that it was necessary to apply rigour in order to obtain appropriate 

values for this study and a combination of experiments, calculations and extensive reference to 

the literature has allowed this to be achieved with some confidence. Engineering calculations 

were possible on some components, namely the moments of inertia of wheels, front forks, bicycle 

frame and rider, see Appendix C. These calculations had close agreement to the experimental 

values which allows confidence in advancing the selected values for the benchmark bicycle 

shown in Table 13. 

 

 

 

 

 

 

Figure 14 Hanavan’s Report lists the above position as # 18 (positive X Y Z directions indicated) 
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Table 13 Benchmark bicycle parameters and other terms 

 Symbol Parameter Definition BM 
Value  1 

Units Source 

1.  IXA Moment of inertia of assembly A 
about XA axis (roll) 0.2 kgm2 from calculation and comparison to 

Fajans (12) 
2.  IXB Moment of inertia of assembly B 

about XB axis (roll) 
100 kgm2 from calculation and comparison to 

Fajans (12) 
3.  IZA Moment of inertia of assembly A 

about ZA axis (yaw) 
0.08 kgm2 from calculation and comparison to 

Fajans (12) 
4.  IXW Moment of inertia of both wheels 

about X axis (roll) 0.05 kgm2 from experimental measurement, 
see Appendix C 

5.  IYW Moment of inertia of both wheels 
about Y axis (rotational) 0.10 kgm2 from experimental measurement, 

see Appendix C 
6.  IZW Moment of inertia of both wheels 

about Z axis (yaw) 0.05 kgm2 from experimental measurement, 
see Appendix C 

7.  L bicycle wheelbase 1.0 m selected from comparison to 
database, see Chapter Seven 

8.  b Horizontal distance from centre of 
rear wheel to centre of mass 0.33 m from calculation and comparison to 

Fajans & Ringwood (12) 
9.  h Height of centre of mass 1.1 m from calculation and comparison to 

Fajans & Ringwood (12) 
10.  D Diameter of the bicycle wheel 0.675 m from manufacturers’ data, see 

Appendix E 
11.  M  Mass 

80.0 kg 
based on a bicycle of 7kg and a 
rider of 73kg  
see Appendix F 

12.  Φ Head tube angle 73.0 degrees selected from comparison to 
database, see Appendix F 

13.  β  Fork rake 0.045 m selected from comparison to 
database, see Appendix F 

  Secondary Parameter 
Definition 

  
 

1.  FS Frame Size 0.55 m Not a model input but estimated 
from L and h 

2.  STA Seat tube angle 74.0 degrees Not a model input but estimated 
from L and h 

3.  Δ Trail 
0.05613 m 

Not a model input but calculated 
using the trail formula from the 
head tube angle and rake 

4.  Δe Effective trail 
0.05368 m 

Not a model input but calculated 
using the trail formula from the 
head tube angle and rake 

5.  a Horizontal distance from centre of 
front wheel to centre of mass 0.67 m Not a model input but calculated 

from L and b 
  Variable Definition    
1.  TSteer Steering torque  2 variable Nm from selection and comparison to 

Fajans (12) 
2.  v Velocity 

25 km/hr 

A selected value, but other values 
have been used in some 
simulations and this is made clear 
in the text 

3.  Γ Damping torque term 0.65 Js see Fajans (12) 

  Other Definition    
 g Acceleration due to gravity 9.81 m/s2 A constant at the standard value 

Note 1  BM or benchmark bicycle value 

Note 2  variable term which can be adjusted in the Simulink model as required 
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Table 14 Comparison of parameters from various sources, part I 

 Symbol Model Parameter Definition Values from references Minimum 
value 

Maximum 
value 

Experimentally 
derived values 
See Appendix C 

Calculated values 
See Appendix C 

Selected 
benchmark 

value 

Units 

1.  IXA MOI of A about XA axis (roll) 
wheel included 

0.0546 (14) no wheel included 
0.080 (37) no wheel included 
0.084 (12) 
0.086 (34) no wheel included 
0.345 (44) no wheel included 

0.0546 0.086 N/A 0.22506 
(0.0713 with no 
wheel included) 

0.200 kgm2 

2.  IXB MOI of B about XB axis (roll) 
wheel included 

163 (12) 
 

163 163 N/A 100 to 155 
depends on 
assumptions 

100 kgm2 

3.  IZA MOI of A about ZA axis (yaw) 
wheel included 

0.079 (12) 
0.0114 (14) no wheel included 
0.020 (37) no wheel included 
0.065 (34) no wheel included 

0.020 0.079 N/A 0.07578 0.080 kgm2 

4.  IXW & 
IZW 

MOI of front & rear wheel 
about X (roll) and Z (yaw) axes 

0.0458 (28) 
0.0475 (12) 
0.700 (37) 
0.078 & 0.081 (14) 
0.109 (60) 
0.060 & 0.140 (34) 

0.0458 0.109 0.0421 to 
0.05713 

0.0473 0.050 kgm2 

5.  IYW MOI of front & rear wheel 
about Y axis (rotational) 

0.095 (12) 
0.1034 (28) 
0.140 (37) 
0.156 & 0.162 (14) 
0.218 (60) 
0.120 & 0.280 (34) 

0.095 0.280 0.0845 to 0.1095 0.092 0.100 kgm2 

6.  L Bicycle wheelbase 2013 Tour de France bicycles all 
30 models see Appendix C 
0.990 average 

0.978 1.014 1.010 (Trek 1500) N/A 1.000 m 

7.  b Horizontal distance from 
centre of rear wheel to centre 
of mass 

0.300 (14) 
0.300 (34) 
0.330 (12, 21) 
0.430 (61) 
0.492 (37) 

0.300 0.492 N/A 0.310 0.330 m 
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Table 15 Comparison of parameters from various sources continued, part II 

 Symbol Model Parameter Definition Values from references Minimum 
value 

Maximum 
value 

Experimentally 
derived values 
See Appendix 

C 

Calculated values 
See Appendix C 

Selected 
benchmark 

value 

Units 

8.  h Height of centre of mass 0.867 (61) 
0.900 (14) 
1.08 (34) 
1.028 (37) 
1.25 (12) 
1.5 (21) 

0.867 1.500 1.030 1.090 1.100 m 

9.  D Diameter of the bicycle wheel 
700C x25 wheel 

0.67004 (81) 
0.67959 (64) 
(0.6748 average) 

0.67004 0.67959 
 

0.675 N/A 0.675 m 

10.  M  Mass 
made up of the bicycle and the 
rider 

27.9 bicycle only (34) 
81.6 bicycle & rider (21) 
87 bicycle & rider (14) 
88.5 bicycle & rider (37) 
100 bicycle & rider (12) 

81.6 100.0 N/A N/A 80 kg 

Bicycle only 6.8 kg min UCI weight 
(3) 

6.8 7.3 8.5 (Trek 1500) N/A 7.0 

Tour de France 2013 Riders 
Average weight 68.83 kg for all 
219 riders (82) 
See Appendix C 

56.0 84.0 N/A N/A 73.0 

11.  Φ Head tube angle 2013 Tour de France bicycles all 
30 models see Appendix C 
73.2 average 

71.9 74.0 N/A N/A 73.0 degrees 

12.  β  Fork rake 2013 Tour de France bicycles all 
30 models see Appendix C 
0.0449 average 

0.039 0.053 N/A N/A 0.045 m 

13.  Δe Effective trail 2013 Tour de France bicycles all 
30 models see Appendix C 
0.05515 average 

0.0447 0.06342 N/A N/A 0.05368 m 
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4.5. PRELIMINARY CALCULATIONS – PART A 

After the parameters and variables have been formulated, some preliminary calculations are 

required to find the first terms in the model. The purpose of this first step is to convert values 

such as velocity, wheel radius, head tube angle and wheelbase into the necessary terms and 

units before the first major step in the modelling process occurs (which is to find the constants: 

An, Bn, and Cn) see Figure 15. 

It would have been possible to have eliminated these preliminary calculations by using SI units 

for all parameters and variables. For example velocity could have been defined in metres/sec 

rather than km/hour and angles in radians not degrees. But by defining the parameters in 

common units, the simulation model is more easily used, as it allows quick comparisons 

between individual simulations to be made and allows manufacturers’ information about bicycle 

designs to be easily related to the model. 

In Figure 15 the top element of the model shows how the velocity terms of v, v2 and v/r (all in 

fundamental SI units) are calculated from an initial velocity input in units of km/hr. The middle 

element finds the wheel radius, effective trail and sinΦ and cosΦ terms from the steering 

geometry parameters. Finally the third element simply changes the wheelbase input into L2. 

The five parts of the Simulink model (parts A to E) are shown in Table 16 which summarises 

what each part’s purpose is and identifies the relevant figure number for each part. 

 

Table 16 Details of Simulink Parts A to E 

Model Part Purpose Figure number 

A Preliminary calculations of the velocity, steering 

geometry and wheelbase terms 
Figure 15 

B Finding the coefficients An, Bn and Cn  Figure 16 

C Finding the coefficients A1, A2, A3, A4 and A5 Figure 17 

D Finding the coefficients B2, B3 and B4 Figure 18 

E Finding the coefficients C2, C3, C4, C5 and C6 Figure 19 
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4.6. INTERMEDIATE CONSTANTS – PARTS B, C, D & E 

After the preliminary calculation steps have been completed the next step can proceed. This 

first major modelling step calculates the intermediate constants, An, Bn, and Cn which have been 

defined in Table 9 (and an overview of these steps is shown in Figure 16). These intermediate 

constants are required in order to solve the equations of motion. This step is further broken 

down into three subparts: C, D and E, details of which are shown in Figure 17, Figure 18 and 

Figure 19. Note that not all the An, Bn, and Cn constants have to be calculated as the following 

three constants are already known (A4 = Γ, B1 = IXA and C1 = IXB). 

In Figure 15 the top element (Part C) finds the coefficients A1, A2, A3 and A5 which will be 

used to help solve (28, Part C is shown in more detail in Figure 17. The middle element is Part 

D which calculates coefficients B2, B3 and B4 to solve equation (29) more details of which are 

shown in Figure 18. The final element of Figure 15 is Part E used to calculate coefficients C2, 

C3, C4, C5 and C6 which will be used to solve equation (32) and Part E is also shown Figure 

19.  

4.7. INTERMEDIATE CALCULATIONS – PARTS F, G & H 

Once the constants (An, Bn and Cn) have been found the intermediate calculations can 

proceed. There are three parts (F, G and H) to these intermediate calculations which are listed 

in Table 17. Each part takes one group of the intermediate constants, An or Bn, or Cn (plus any 

necessary initial terms) and calculates the further individual terms required for each of 

equations (28), (29) and (32) (see also Figure 20, Figure 21 and Figure 23).  

 

Table 17 Details of Parts F, G and H 

Model Part Purpose Figure 

F Finding the terms for (28 Figure 20 

G Finding the terms for (29 Figure 21 

H Finding the terms for (32 Figure 22 

 

In Figure 20 which shows Part F, coefficients A1, A2, A3, A4, A5 and A6 and other terms are used 

to produce the individual terms of equation (28). Next in Figure 21, Part G, coefficients B1, B2, 

B3 and B4 and other terms are used to produce the individual terms of equation (29). Finally in 

Figure 22, Part H, coefficients B1, B2, B3 and B4 and coefficients C1, C2, C3, C4, C5 and C6 plus 

other terms are used to produce the individual terms of equation (32). 
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4.8. FINAL CALCULATIONS – PARTS I, J & K 

The last step in the Simulink model is to take all the previously calculated terms and use them 

to find the bicycle dynamic response in terms of yaw and roll. The three parts that do this are I, 

J and K and their purposes are described in the (see also Table 18, Figure 23, Figure 24 and 

Figure 25). 

 

Table 18 Details of Parts I, J and K 

Model Part Purpose Figure 

I Finds the yaw angle of the front wheel (σ) Figure 23 

J Finds the frame torque (Tf sin Φ) Figure 24 

K Finds the roll angle (λ) Figure 25 

 

The final steps are shown in next three figures starting with Figure 23 (Part I) which using the 

terms from equation (28) finds the yaw angle of the front wheel. Then in Figure 24 (Part J) the 

frame torque is found from equation (29). The last Figure 25 (Part K) finds the roll angle using 

equation (32). 
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Figure 15 Part A, showing the initial calculations using Simulink 
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Figure 16 Part B, showing an overview of the Simulink calculations of coefficients An, Bn & Cn 
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Figure 17 Part C, showing Simulink calculations of coefficients A1, A2, A3 & A5 
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Figure 18 Part D, showing the Simulink calculations of coefficients B2, B3 & B4 
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Figure 19 Part E, showing the Simulink calculations of coefficients C2, C3, C4, C5 & C6 
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Figure 20 Simulink Part F, outlining the calculations of the terms required for equation (28) 
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Figure 21 Simulink Part G, outlining the calculations of the terms required for equation (29) 
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Figure 22 Simulink Part H, outlining the calculations of the terms required for equation (32) 
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Figure 23 Simulink Part I, calculation of yaw σ terms 

 

 

 

  

 

Figure 24 Simulink Part J, calculation of frame torque TF 
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Figure 25 Simulink Part K calculation of roll λ terms 
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4.9. SIMULINK OUTPUTS 

Once all the Simulink calculations have been completed, two final outputs are obtained: the 

front wheel yaw (σ) and bicycle roll (λ) with respect to time and these can be plotted on a 

Simulink Scope or saved to a Matlab workspace file for further analysis and processing. In 

Figure 26 a typical output of yaw and roll angles is shown plotted against time for the benchmark 

bicycle using a standard steering torque input (as per Figure 8).  

The counter-steer cornering manoeuvre was described in Chapter Two when discussing the 

literature (12, 41, 54). To review this manoeuvre, consider the situation where a bicycle is 

required to corner to the right, the rider first has to turn the front wheel very slightly to the left, 

which is opposite to the direction of the turn. This small movement of the wheel will initiate a 

very small turn to the left. As the bicycle starts this small left hand turn, the centrifugal force 

induced on the bicycle and rider mass causes the bicycle to roll to the right. Once this happens, 

both the Jones and castor torques combine to cause the front wheel to now turn rightwards into 

the roll. The bicycle will now turn right and complete the desired right hand turning manoeuvre 

(2, 12, 41, 54). Clear evidence of such a counter-steering action is evident at the start of the 

simulation in Figure 26, where for the first 2 seconds the front wheel has yawed in a positive 

direction (to the left) before the desired negative (or right hand) yaw occurs. 

Counter-steering is a counter-intuitive action and this may be one reason why it is hard for 

people to learn to ride bicycles, as it is not possible to corner a bicycle without initially turning 

the steering in the opposite direction. This action is something that most bicycle riders 

eventually will learn to do instinctively without consciously realising they are doing it. In fact it is 

common when discussing this topic even for experienced riders to claim that they do not 

countersteer when cornering. 

4.10. ADDITIONAL MODEL FEATURES 

Two additional features were added to the Simulink model which assisted the detailed analysis 

of various characteristics. 

1. Parameter gain blocks 

The physical parameters were linked via gain blocks to the model in order to allow easy 

adjustment of their values for both sensitivity and stability analysis. Details of these 

gain blocks are shown in Appendix A. The Simulink model is therefore able to be run 

using different physical parameters so that model assumptions could be very quickly 

changed as required. This capability enables: 

• The model to be more easily checked against other work in this area 

• A variety of different bicycle manoeuvres to be tested and evaluated 

• Different designs to be quickly compared 
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2. Torque term examination 

Additional elements were added to the model allowing individual torque terms to be 

isolated and examined (that is all 23 torques from each of the three equations of 

motion). This enabled suggestions to be made as to which terms could be neglected 

from the equations of motion without affecting the model’s accuracy. After considering 

this it was seen that at least 5 terms could ignored without affecting accuracy and it is 

possible that as many as 11 terms can be ignored for some applications. For more 

discussion on this topic see Section 5.3, also the details of these additional elements 

are shown in Appendix A.  

Now that the model has been formulated, it must be validated before further use and two 

approaches are used to do this: comparing to existing literature and experimental validation. 

Both of which will be discussed in the following two sections. 

 

 

Figure 26 A typical Simulink simulation with outputs of yaw (steering angle) and roll angles 
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4.11. VALIDATION WITH LITERATURE 

Now that a computer simulation model has been developed it needs to be validated and the 

theoretical approach chosen was to compare it with the literature. This was done by running a 

simplified Simulink model that used the same assumptions as Fajans, that is setting the new terms 

that allowed for Coriolis effects and the steering head tube angle to zero and using the same 

values for input torques, parameters and variables, see Table 19 (12). The key differences 

between Fajans and the more complex Simulink model are summarised as follows: 

1. The Fajans steering head tube angle is set at 90 degrees i.e. the axis is vertical, whereas 

in the benchmark model it is set at 73 degrees with typical ranges for road bicycles being 

between 71.5 to 76 degrees. Because of its simplified steering geometry the Fajans model 

cannot be used to optimise steering geometry, a critical area of bicycle design. 

2. Fajans uses a negative rake to provide the required trail, where in practice road bicycles 

have positive values of between 33 and 60 mm, see Chapter Seven. 

3. Fajans neglects all the Coriolis torque terms, whereas the complete Simulink model 

includes all Coriolis torque terms. 

Table 19 shows these assumptions for all three models and drawings of the steering geometries 

for a Fajans bicycle and a typical road bicycle are displayed Figure 28 and Figure 27. 

Table 19 Model Assumptions 

Assumptions The Fajans model 
Simplified 

Simulink model 
Complex Simulink 

model  

HTA degrees 90.0 89.91 73.0 

Rake mm -20.0 -19.42 45.0 

Trail mm 20.0 20.0 56.13 

Coriolis terms included no no yes 

Note 1, the model could not run with a 90 degree HTA angle, so 89.9 degrees was used instead 

as being the closest practical value 

 

A simulation using this simplified model was run and then compared with Fajans with the simplified 

model showing nearly identical output responses in terms of yaw and roll to Fajans, with very 

similar time lags, rise times, amplitudes, overshoots and oscillations, see Figure 29 (note that the 

simplified Simulink results are offset by 5 seconds to make the comparison clearer). The 

differences between them are quantified in Figure 30 where it can be seen that for most of the 

manoeuvre the yaw difference is within 2.5% (0.001/0.4) and the roll difference within 1% 

(0.002/0.2). This confirms agreement between this Simulink model’s basic assumptions and 

Fajans but doesn’t say anything about the validity of the added terms or other modifications. 

Simulink is a mature programme and it is reasonable to have a high degree of confidence in these 
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results. When using the default “adaptive step size” as was done in this case, the answer Simulink 

provides with such a comparison is as accurate as is practically possible. 

 

Figure 27 The benchmark bicycle’s steering geometry 

∅ = 73 
degrees 

𝛽𝛽 = 45 mm 

∆ = 56.13 mm 

∆𝑒𝑒 = 53.68 mm 

Figure 28 Fajans’ simple bicycle steering geometry 
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Figure 29 Comparison of the Simplified Simulink and Fajans models (with the Simulink results offset by 5 sec)  
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Figure 30 Difference between the yaw and roll angles of the Simplified Simulink and Fajans models 
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4.12. EXPERIMENTAL VALIDATION 

In addition to the theoretical validation the Simulink model was validated by comparing it to an 

experimental investigation (31). In this part of the investigation a bicycle was adapted for 

experimental work by being fitted with transducers to measure front wheel yaw (or steering angle) 

and roll angles while a data logger recorded the results. This experimental bicycle test rig could 

record yaw and roll angles against time for test runs of up to 30 seconds and this rig is illustrated 

in Figure 31, Figure 32 and Figure 33. 

The yaw angle was measured using a rotary electrical potentiometer with its input shaft directly 

attached to the steering stem by a simple coupling, see Figure 33. The potentiometer’s output was 

proportional to the front wheel’s yaw angle.  

The roll angle was measured using a custom made infra-red (IR) distance measuring sensor 

mounted on a short bracket at the rear of the bicycle, see Figure 32. A pulse of IR light was emitted 

from the sensor and travelled downwards and once it hit the road surface it was reflected back. 

The reflected IR light returned to the sensor at a different angle from the transmitted angle and 

this angle was proportional to the distance to the road surface, as in Figure 34. As the bicycle 

rolled, the IR sensor detected a change in the angle of the reflected light beam and this was used 

to determine the roll angle, shown in Figure 35. For more details of this experiment and the 

apparatus used see Appendix C. 

Using this bicycle different experimental scenarios were investigated under controlled conditions, 

first counter-steered cornering was considered which showed exactly the same characteristics for 

roll and yaw as predicted by the computer simulation. A counter-steered manoeuvre was always 

preceded by the tell-tale yaw of the front wheel in the opposite direction to the turn, followed by a 

quick yaw reversal as the turn continues. It can also be noted that the same effect occurs during 

the correcting part of the manoeuvre as the bicycle comes back to a straight course and this is 

clearly indicated in Figure 36 through to Figure 41. A total of 68 experimental runs were 

undertaken and the best and most representative runs are presented in this Chapter as a summary 

of the results. 

To get good experimental results, it was necessary to take care to ride the bicycle as smoothly 

and upright as possible, prior to making the turn. The turn should be a slow gentle sweeping 

manoeuvre through at least 180 degrees as smaller, tighter turns were hard to interpret amongst 

the background signals of normal riding. 

A second series of experiments involved testing on the road. From these tests it is apparent that 

constant steering corrections are required for balance when riding along the uneven surface of a 

typical road. As most road surfaces are highly irregular, changes in yaw and roll of the bicycle 

must cope with this irregularity, while the bicycle/rider system must obey the inverted pendulum 

rule in order to remain upright. The rider must constantly correct for changes in the bicycle’s roll 

angle by using the yaw of the front wheel to steer the wheels under the centre of mass, this is 
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particularly evident in Figure 40 and Figure 41. A careful comparison of these figures shows that 

the maximum positive values of roll match the maximum negative values of yaw and vice versa. 

 

 

Figure 31 Experimental bicycle setup used to validate Simulink model 

 

 

Figure 32 IR sensor and data logger used to measure the roll angle 
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Figure 33 Yaw angle sensor measuring front wheel yaw 
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In principle, this series of experiments illustrates trends (e.g. the counter-steering action) as it was 

very difficult to statistically correlate the data due to the irregular road surface and the large 

measurement noise and error signals that resulted. However, the results of the experiments and 

the comparison with other work indicate that the present computer model is acceptable to study 

bicycle dynamics [10].  

From the results obtained it was possible to comment on the validity of the Simulink model. Both 

the theoretical and experimental validation shows the expected dynamic responses to a steering 

input. One very interesting point is that the yaw angle shows the same type of counter-steer both 

at the start and the end of the cornering manoeuvre, as the model. The roll angle also varies at 

the same rate as yaw and mirrors the model’s response with regards to trends. It was not possible 

to quantify these responses with regards to the steering torque as the torque was not recorded. 

In fact the problem of recording steering torque is not a simple one, as the steering forces are very 

small compared to the vertical forces exerted on the handlebar by the rider. 

4.13. REMARKS 

This Chapter has described the structure and main elements of a Simulink model that can solve 

the equations of motion developed in Chapter Three. The model takes the rider’s steering torque 

input and after applying appropriate physical parameters (such as mass, wheelbase length, head 

tube angle, rake and trail distance) finds the yaw and roll responses of the bicycle.  

This Chapter also describes the validation of the model using both theoretical and experimental 

approaches. The theoretical approach to validate this model was to compare it with Fajans using 

identical parameters and variables and from the results obtained it can be seen that it showed 

nearly identical responses to Fajans.  

The Simulink model was also validated by comparing it to the results of the experimental 

investigation where a bicycle was fitted with transducers to measure yaw and roll angles recorded 

on a data logger. From the results obtained it was possible to comment on the validity of the 

Simulink model as the experiments showed the expected dynamic responses to a steering input.  

The model is now ready to be used for a detailed analysis of bicycle dynamic behaviour and this 

is described in the next Chapter. 

  

107 



 

 

 

Figure 36 Yaw (steer) angle output during an experimental counter-steer cornering manoeuvre 

 

Figure 37 Roll angle output during the same experimental counter-steer cornering manoeuvre  
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Figure 38 Yaw (steer) angle output for a second experimental counter-steer cornering manoeuvre 

 

Figure 39 Roll angle output during the second experimental counter-steer manoeuvre 
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Figure 40 Yaw (steer) angle output for part of a typical experimental road ride 

 

Figure 41 Roll angle output during the same experimental road ride 
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5. BICYCLE MODEL ANALYSIS 

5.1. INTRODUCTION 

This Chapter considers the bicycle design process and asks how it can be correlated with the 

model in Chapter Four? Given the large number of terms and parameters in the equations, what 

sort of simplifications and manipulations can be justified? Since a design process in most cases 

is based on approximations and empirical approaches it is logical to simplify the equations of 

motion to obtain a more practical and useful formulation. There is no sense in having long and 

overly complicated equations if the final design process later on requires significant simplifications 

and approximations. Furthermore as there are no unique values for the design parameters such 

approximations are normally acceptable. But before these simplifications can occur we need to 

determine how sensitive the analysis is to changes in these parameters. This Chapter uses the 

bicycle dynamic model developed and described in Chapters Three and Four to investigate and 

understand the following issues: 

1. the effectiveness of the model in determining bicycle dynamic behaviour 

2. the importance and significance of each torque term in the equations of motion 

3. the sensitivity of the bicycle’s performance to changes in design parameters 

We ask the following important questions. How can the bicycle be optimised in terms of specific 

performance criteria? Can the equations of motion be simplified by ignoring any of the torque 

terms? It is important to understand how sensitive the bicycle is to changes in assumptions and 

parameter values. Finally how stable is the bicycle dynamically and is it possible to identify and 

avoid unstable design regions? Such questions need to be systematically examined and to provide 

answers the Simulink model was used to conduct the following: 

1. Bicycle performance simulations 

The purpose of these simulations was to demonstrate the basic capabilities of the 

model and to see if it could effectively reproduce realistic bicycle dynamic behaviour, 

especially the reactions of the bicycle to changes in steering geometry, damping, 

speed and steering torque. 

2. Torque term evaluations 

The significance and importance of individual torque terms in the dynamic model was 

examined by analysing the results of Simulink trials. By focusing on individual torque 

terms it was possible to determine the significant and insignificant terms so that 

recommendations about simplifications to the equations of motion could be made. 
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3. Sensitivity study 

This study identified critical design parameters and quantified their effects on bicycle 

handling performance. It determined their minimum and maximum acceptable limits 

and examined their relative importance in terms of their overall effects. These results 

are later used in Chapter Six to develop practical design charts for designers.  

4. Stability study using the characteristic equation 

For completeness in this study the characteristic equation of the bicycle system was 

found as its roots determine the character of the time response and the natural 

transient response of the system, hence why it is called the characteristic equation. A 

necessary requirement for stability is for all of the roots of the characteristic equation 

to have negative real parts. Once the characteristic equation has been found the 

Routh Stability Criterion can be used to find out if it has any unstable roots without 

actually solving them and this procedure is shown in Appendix D. 

5.2. BICYCLE PERFORMANCE SIMULATIONS 

This section describes the results of a series of Simulink simulations that demonstrated the 

model’s basic capability. These simulations demonstrate the application of the model and 

reproduce realistic bicycle dynamic behaviour, especially the reactions of the bicycle to changes 

in key parameters. Does the model show the same sort of results as expected from the literature 

and previous experiments? This section examines the following two areas of interest in order to 

understand bicycle performance: 

 

1. the steering geometry terms (head tube angle, rake and trail) and the damping term 

2. and speed and steering torque 

 

5.2.1. STEERING GEOMETRY AND DAMPING  

First consider the effect of steering geometry and damping, how do they affect each other? It is 

well known that steering geometry is a critically important factor in bicycle design (10, 83). This 

geometry is defined by: the wheel radius, head tube angle and rake values, from which the trail 

(and effective trail) can be calculated using the four equations below [equations (33 to (36)] see 

also Table 20 and Figure 42. 
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Trail equation 

∆=
𝑟𝑟 − 𝛽𝛽

cos∅
tan∅

   

(33) 

Alternative trail equation 

∆=
𝑟𝑟 cos∅ − 𝛽𝛽

sin∅
 

(34) 

Effective trail equation 

∆𝑒𝑒= ∆ sin∅  

 (35) 

Alternative effective trail equation 

∆𝑒𝑒= 𝑟𝑟 cos∅ − 𝛽𝛽 

(36) 

 

 

Table 20 Steering geometry terms: 

Symbol Steering geometry definition Units 

Φ Head tube angle degrees 

β Fork rake (or offset) m 

r Wheel radius m 

Δ Trail m 

Δe Effective trail m 
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Figure 42 Bicycle steering geometry terms for the front wheel 
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In this section, five different steering geometry cases are examined and their dynamic responses 

are compared with one another (their specific geometries are shown in Table 21). 

Table 21 Steering geometry cases 

Case 
No 

Head 
tube 
angle 

degrees 

Rake 

mm 

Trail 

mm 

Comments Outcomes Relevant figures 

One 73 45 56.128 Benchmark 

bicycle1 

Stable even with no 

damping 

Figure 43, Figure 48, 

Figure 51, Figure 52 

and Figure 53 

Two 73 75 24.757 reduced trail Marginal, requires a 

precise steering 

input 

Figure 45 

Three 

 

73 15 87.499 Increased trail Highly unstable Figure 46 

Four 90 -20 20.000 Fajans bicycle Unstable at low 

damping values 

Figure 44 

Figure 47 

Five 89 -50 55.899 Fajans with 

increased trail 

Marginal stability 

with low damping 

Figure 49 

Figure 50 

Note 1 the benchmark bicycle has the standard geometry 

Unless otherwise noted the standard steering torque of +0.45/-0.414 Nm is used (see Figure 8 

 

First consider the effects of trail with the first three cases. 

• For case one (the benchmark bicycle) when using a standard steering torque, the bicycle 

successfully completed a counter-steered manoeuvre and exhibited acceptable 

behaviour, with a rapid steering response and small overshoots and this is displayed in 

Figure 43. This means that this bicycle is easy to precisely control and steer. As discussed 

in Chapter Three the Simulink model (i.e. case one) includes new terms often ignored by 

others. With these new terms the dynamic results differed to the Fajans model and others, 

though the fundamental aspects remained (12). Overall, case one shows a slower 

cornering response with greater time lags and slower rates of change than Fajans, see 

Figure 44. The graph shapes are more rounded and less angular, which is what would be 

intuitively expected and this shows the significance of using assumptions previously not 

considered, such as realistic steering geometry. 
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• For case two with a reduced trail, the bicycle now exhibits large yaw and roll overshoots, 

seen in Figure 45. To compensate for this a rider would need to be able to sensitively 

apply and control a very small steering torque in order that the response of the bicycle is 

kept to acceptable values of yaw and roll. Therefore this bicycle is harder to control and 

requires more skill due to its tendency to overshoot, but it may not be unstable. 

• In case three the bicycle uses a larger trail and this geometry proved to be unstable with 

exponentially increasing yaw and roll angles, see Figure 46. It would probably not be 

possible to control this bicycle even with very fine and skilful steering control actions. 

Now consider what effect damping has and how it interacts with the steering geometry. The 

damping term (Γ, units Js) was found by Fajans to be necessary to ensure stability and it is 

provided by the passive resistance and active responses of the rider’s arms (12). Also the 

hysteresis in the tyre contact patch and tyre wall provides an additional dampening effect (84). 

• For case four (the Fajans bicycle) with a damping term of 0.65 Js, this bicycle can 

successfully complete a counter-steered turn (see Figure 44) but as damping is reduced 

yaw and roll oscillations increase rapidly. As damping approaches 0.05 Js, these 

oscillations start to grow exponentially, showing the bicycle to be uncontrollable as shown 

by Figure 47.  

• Now consider the benchmark bicycle (case one) where it is interesting to see that for the 

same low damping term of 0.05 Js the bicycle was still completely stable, see Figure 48.  

• Finally for the case five bicycle (which is similar to Fajans but with an increased trail) even 

at quite low damping terms (0.05 Js) it was still stable and was only just starting to show 

signs of oscillation, see Figure 49. Finally by reducing damping to 0.005 Js this bicycle 

becomes unstable, see Figure 50. This damping value is an order of magnitude below the 

minimum requirement for case four, clearly showing the effect that trail has on stability 

and the importance of the interaction of the steering geometry and damping terms. 

These different simulations show the importance of selecting the correct steering geometry in 

order to achieve a satisfactory steering performance. Immediately we can see how a reduced trail 

increases overshoots (Figure 45) while an increased trail can result in instability (Figure 46). 

Perhaps cases three to five are still rideable with sufficient practice and skill but obviously the 

controlling steering torque would need to be finely adjusted. In conclusion a design can have too 

much trail as well as too little. These are important findings showing that if the correct geometry is 

selected, damping is not so critical to the stability of the system. Modern bicycle steering 

geometries reduce the need for damping, improve stability and reduce the dependence on precise, 

fine steering inputs to maintain control. 
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Figure 43 Simulink result for the benchmark bicycle on a standard run, case one 

 

 

Figure 44 Fajans model for a standard simulation 
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Figure 45 Case two simulation with reduced trail 

 

Figure 46 Case three simulation with increased trail 
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Figure 47 Case four simulation with low damping of Г = 0.05 Js 

 

Figure 48 Case one simulation with low damping of Г = 0.05 Js 
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Figure 49 Case five simulation with a low damping of Г = 0.05 Js 

 

 

 

Figure 50 Case five simulation with very low damping of Г = 0.005 Js 
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5.2.2. SPEED AND STEERING TORQUE 

It is commonly reported that bicycles are more stable at higher speeds (2, 5, 20, 21). But does the 

model developed show this behaviour? This investigation now considers the effect of speed and 

the associated steering torque required for control.  

• For case one with all terms in the model unchanged, except for speed, it was found that 

at 5 km/hr the bicycle became unstable when the steering torque remained at the standard 

value (+0.45 / -0.414 Nm) see Figure 51.  

• Only by reducing the steering torque down to +/- 0.0025 Nm (or 0.6% of the standard 

value) was it possible to control the case one bicycle at this lower speed, see Figure 52. 

This torque is equivalent to a couple comprising of two oppositely opposed 0.57 gram 

forces set 450 mm apart on the handlebars. Of course such a very small torque value 

would be difficult for a rider to apply and control but it is not impossible with practice. 

Therefore it is concluded that as the speed reduces the steering torque required to control 

the bicycle must also dramatically reduce.  

• Conversely as the speed increases above 25 km/hr the torque required to steer the bicycle 

around a corner increased. When speed increased to 85 km/hr (with all other terms 

unchanged) it was found that the bicycle became incredible stable in a straight line. The 

standard steering torque of +0.45 / -0.414 Nm, only produced very small yaw and roll 

responses of 0.060 (0.001 radians) and 3.20 (0.055 radians) respectively, in other words 

the steering input hardly produced a change in direction and this is shown Figure 53.  

This supports the common empirical observation that bicycles are more stable and easier to ride 

at higher speeds (2, 5, 20, 21). It also means that to undertake a large course variation at high 

speed a large steering torque is required. In addition outside perturbations have less effect on 

bicycles and will not affect their course as much and so the bicycle is more self-stable. 

An important objective for this study was to find ways to optimise bicycle steering geometry and 

to improve performance. After consideration of the five cases just examined it can be seen that 

careful selection of the steering geometry parameters is critical, also as they are interrelated wrong 

combinations can dramatically affect the steering response and stability. The advantage of the 

Simulink model is it allows different geometries to be checked for any potential stability problems 

before a design is built.  

By plotting the trail and the head tube angle onto a chart it will be possible to indicate unstable 

regions and such a chart could be used to design successful geometries and avoid mistakes. In 

Figure 54 such a chart is drawn and on it is displayed lines of constant rake. Cases one to five 

from Table 21 have been plotted on this chart. 

A region of stability is approximately indicated within the dotted line. At this stage the boundary 

between stable and unstable geometries is not precisely known. Obviously the negative trail region 

is completely unstable and has not been plotted. Though the exact boundaries between stable 
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and unstable regions are not yet known this will be explored by further investigations in Chapters 

Six and Seven. Out of interest the 1817 Hobbyhorse is also plotted, with a head tube angle of 90 

degree, 0 mm trail and 0 mm rake, it is marginally unstable according to the chart but in practice 

is still rideable. 

 

 

Figure 51 Case one low speed simulation v = 5 km/hr and TS ≈  +/- 0.45 Nm 

 

 

Figure 52 Case one low speed simulation v = 5 km/hr and TS ≈  +/- 0.0025 Nm 
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Figure 53 Case one high speed simulation v = 85 km/hr and TS ≈  +/- 0.45 Nm 
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Figure 54 Trail vs. head tube angle front wheel geometry chart (wheel dia. all 675 mm & rake lines at 5 mm intervals) 
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5.3.  SIGNIFICANCE OF TORQUE TERMS 

An evaluation of the significance of each torque term is important because the full equations of 

motion [equations (14, (19 and (24)] are complicated (having a total of 23 individual torque terms 

even after our simplifying assumptions) and it would be difficult to use these equations for design 

purposes without further simplification. Simplification is also justified because the design process 

itself is an approximation process that can tolerate small variations. So we need to find out which 

terms can be ignored without affecting the dynamic model results.  

In order to determine this the terms were isolated within the Simulink model without affecting its 

functionality and simulations were run so the magnitude of each torque could be compared and 

decisions made as to which are the most significant and which could be ignored from the model. 

If some torques can be ignored without adversely affecting the accuracy of the dynamic modelling 

this would simplify further analysis. Also a very simplified set of equations would enable more 

appropriate equations to be used for some purposes. For example undergraduate teaching, 

because though the problem of bicycle motion engages students, the current complicated 

equations interfere with many worthwhile educational outcomes. 

Each of the three fundamental equations of motion [i.e. equations (18, (23 and (26)] are now 

examined in turn and suggestions as to appropriate simplifications are made.  

5.3.1.  FIRST EQUATION – MOMENTS ABOUT THE YAW AXIS FOR A 

The first equation (18) considers the yawing about the vertical Z axis for the front assembly A. It 

has eight torques terms in total, two of which are new compared to the Fajans model (the Coriolis 

and frame torques) but which torques can be ignored? First the peak values for each individual 

torque term were found and torque with the largest peak value was identified. Then the peak 

values of each torque were compared to this maximum torque term. It was decided to consider 

excluding any torque which had a peak value of 10% or less of that of the maximum torque term’s 

peak value, unless there was a good reason to include it. This is an order of magnitude less than 

the maximum torque’s value. The suggestions as to which terms in equation (18) to ignore are 

shown in Table 22 and comments about this now follows: 

• the castor torque, Jones torque and the steering torque input from the rider are of major 

importance and are shown in Figure 55 

• the castor and Jones torques are by far the most significant terms in this equation and 

dominate the yaw of assembly A 

• the gyroscopic torque of the front wheel due to rolling, the Coriolis torque and the frame 

torque that B exerts on A are an order of magnitude less than the most important terms 

and have a minor effect, they are shown in Figure 56 

• the Coriolis and frame torque are new terms introduced into this model 
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• note that the gyroscopic term is almost counteracted by the Coriolis torque and this shows 

the unimportance of the gyroscopic effect, but as it is well known and so of interest it 

could be included in a study 

• the frame torque of B on A follows the same shape as the castor and Jones torques, but 

is smaller 

• all of these three minor torque terms could be ignored without compromising model 

accuracy 

• the least important terms are the inertia torque due to yawing of assembly A and the 

damping torque 

• these terms are two orders of magnitude smaller than the most important torques and are 

shown in Figure 57 

• the damping torque is small but should not be ignored because as shown in previous 

modelling it can have a significant effect on stability (at least for some steering 

geometries) 

• the inertia torque could be ignored but as it is well known and so of interest it may be 

included 

In conclusion, for equation (18) of the original eight torques, for the purposes of the 

characteristic equation, two could be ignored (Coriolis and frame torques) and for a more 

simplified set of equations a further two more could be ignored (the inertia and gyroscopic/roll 

torques). 

 

Figure 55 Major torque terms from equation (18) 
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Table 22 The terms from equation (18) and their significance 

 
Torque Expanded term Relevant 

figure 
number 

Description and comments Max torque 
value Nm (%) 

Assumptions Significance of 
the term 

1.  TInertia 𝐼𝐼𝑍𝑍𝑍𝑍𝜔̇𝜔𝑍𝑍𝑍𝑍 Figure 57 Inertia torque due to the yawing of A +/- 0.023 

(0.92%) 

very small and could be ignored but included 

as it is well known and so of interest 

negligible effect 

2.  TGyro/roll 𝐼𝐼𝑌𝑌𝑌𝑌𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑋𝑋𝑋𝑋 Figure 56 Gyroscopic torque due to the rolling of 

A 

+ 0.2 (8%) small and could be ignored but included as it 

is well known and so of interest 

minor effect 

3.  TCoriolis 𝐼𝐼𝑋𝑋𝑋𝑋𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑋𝑋𝑋𝑋 Figure 56 Coriolis torque of A + 0.09 (3.6%) can be ignored minor effect 

4.  TSteer 𝑇𝑇𝑆𝑆 sin𝜙𝜙 Figure 55 Steering torque input by rider, corrected 

for the head tube angle 

+ 0.45 (18%) must be included major effect 

5.  TJones 𝑀𝑀𝑀𝑀
𝐵𝐵
𝐿𝐿 sin𝜙𝜙Δ𝑒𝑒𝜆𝜆 Figure 55 Jones’ torque or trail steer, causes the 

wheel to lean into the corner 

+ 2.3 (92%) must be included 

 

major effect 

6.  TCastor 
𝑀𝑀
𝑏𝑏𝑣𝑣2

𝐿𝐿2 sin𝜙𝜙Δ𝑒𝑒𝜎𝜎 
Figure 55 Castor torque due to trail, tends to 

straight the wheel up 

- 2.5 (100%) the maximum torque and must of course be 

included 

major effect 

7.  TFrame 𝑇𝑇𝑓𝑓 cos𝜙𝜙 Figure 56 Torque of assembly B on A, corrected 

for the head tube angle 

+ 0.125 (5%) can be ignored minor effect 

8.  TDamping Γ𝜎̇𝜎 Figure 57 Damping torque (if this term is zero the 

bicycle may be unstable) 

+/- 0.018 

(0.72%) 

small but included as found to be essential 

for dynamic stability 

negligible effect 
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Figure 56 Minor torque terms from equation (18) 

 

Figure 57 Negligible torque terms from equation (18) 
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5.3.2. SECOND EQUATION - MOMENTS ABOUT THE ROLL AXIS FOR A 

The second equation considers the rolling moments about the horizontal X axis for the front 

assembly A [equation (23)] and has eight terms in total, four of which are new: the Coriolis, steer, 

castor and Jones torques (the last three were added to account for realistic steering geometry). 

The suggestions as to which terms in equation (23) to ignore are shown in Table 23, along with 

the following comments: 

• the major terms are: the gyroscopic torque of front wheel due to cornering, castor torque, 

Jones torque and the frame torque of B on A, shown in Figure 58  

• this is one case where a gyroscopic torque has a major effect, but on its own it still does 

not account for the stability of the bicycle 

• two of these terms, the castor torque and the Jones torque are new ones introduced due 

to considerations of steering geometry and they both oppose and more than counteract 

the gyroscopic term due to cornering 

• the next most important terms in order of magnitude are the minor torques of: steering 

torque and the inertia torque of assembly A due to rolling, see Figure 59 

• the steering torque is new and was introduced due to considerations of steering geometry 

• both these torques (steering torque and Inertia torque) could be ignored 

• the least important terms are: the Coriolis torque and gyroscopic torque of front wheel 

due to yawing (refer to Figure 60) and the Coriolis term is a new torque added to this 

model 

• again this shows the unimportance of the gyroscopic effect and both these terms are 

negligible in their effect and could be ignored 

In conclusion, for equation (23) of the original eight torques, for the application of the characteristic 

equation, two could be ignored (Coriolis and steer torques) and for a more simplified set of 

equations a further two more could be ignored (the inertia and gyroscopic/corner torques). 
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Table 23 The terms from equation (23) and their significance 

 
Torque Expanded term Relevant 

figure 
number 

Description and comments Max torque 
value Nm (%) 

Assumptions Significance of 
the term 

1.  TInertia 𝐼𝐼𝑋𝑋𝑋𝑋𝜔̇𝜔𝑋𝑋𝑋𝑋 Figure 59 Inertia torque of the front wheel due to 

rolling of A 

+/- 0.12 

(10.0%) 

small and could be ignored but included as 

it is well known and so of interest 

minor effect 

2.  TCoriolis 𝐼𝐼𝑍𝑍𝑍𝑍𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑍𝑍𝑍𝑍 Figure 60 Coriolis Torque of A +/- 0.035 

(2.92%) 

could be ignored negligible effect 

3.  TGyro/yaw 𝐼𝐼𝑌𝑌𝑌𝑌𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑍𝑍𝑍𝑍 Figure 60 Gyroscopic torque of front wheel due 

to yawing of A 

+ 0.07 (5.8%) small and could be ignored but included as 

it is well known and so of interest 

negligible effect 

4.  TFrame 𝑇𝑇𝑓𝑓 sin𝜙𝜙 Figure 58 Torque Assembly B exerts on A 

corrected for the head tube angle 

+ 0.4 (33.3%) must be included major effect 

5.  TGyro/cornering 
IYF

v2 sinϕ
rL σ 

Figure 58 Gyroscopic torque of front wheel due 

to cornering 

+ 1.2 (100%) maximum torque, unusually for a gyro term 

it has a major effect 

major effect 

6.  TSteer 𝑇𝑇𝑆𝑆 cos𝜙𝜙 Figure 59 Steering Torque corrected for the head 

tube angle 

+/- 0.13 

(10.8%) 

could be ignored minor effect 

7.  TCastor 
𝑀𝑀
𝑏𝑏𝑣𝑣2

𝐿𝐿2 cos𝜙𝜙Δ𝑒𝑒𝜎𝜎 
Figure 58 Castor torque corrected for the head 

tube angle 

- 0.75 (62.5%) must be included major effect 

8.  TJones 
𝑀𝑀𝑀𝑀

𝑏𝑏
𝐿𝐿 cos𝜙𝜙Δ𝑒𝑒𝜆𝜆 

Figure 58 Jones torque corrected for the head 

tube angle 
- 0.7 (58.3%) must be included major effect 
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Figure 58 Major torque terms from equation (23) 

 

Figure 59 Minor torque terms from equation (23) 
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Figure 60 Negligible torque terms from equation (23) 

5.3.3. EQUATION THREE - MOMENTS ABOUT THE ROLL AXIS FOR B 

Finally the third equation deals with the rolling moments about the horizontal X axis for the rear 

assembly B [equation (24)] and this third equation currently has seven terms, one of which is new, 

the Coriolis torque. The suggestions as to which terms to ignore are shown in Table 24 and other 

comments are shown below: 

• the most important terms in this equation in order of magnitude are: the centrifugal torque 

due to cornering and the gravitational torque due to rolling and these major torques are 

shown in Figure 61, these two torques must balance each other during the cornering 

manoeuvre to enable cornering to occur without capsizing or falling over occurring 

• the next most important terms in order of magnitude are: the inertia torque of assembly 

B due to rolling and the kink torque, see Figure 62, these are of an order magnitude less 

than the most important terms, however they are not insignificant and should be 

considered 

• the least important terms in order of magnitude are: frame torque of A on B, gyroscopic 

torque of the rear wheel due to cornering (yawing) and the Coriolis torque of assembly B 

• these three negligible torques are shown in for the standard simulation run in Figure 63 

• again the gyroscopic effect is unimportant 

• these are all very small terms that are four orders of magnitude smaller than the most 

important torques and can be ignored  

• the Coriolis term is the only new torque added to this model 
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In conclusion, for equation (24) of the original seven torques, for the purposes of the characteristic 

equation, one could be ignored (the Coriolis torque) and for a more simplified set of equations 

two more could be ignored (the frame torque and the gyroscopic torque of the rear wheel due to 

cornering). 

 

Figure 61 Major torque terms from equation (26) 

 

Figure 62 Minor torque terms from equation (26) 
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Table 24 The terms from equation (26) and their significance 

 
Torque Expanded term Relevant 

figure 
number 

Description and comments Max torque 
value Nm (%) 

Assumptions Significance of 
the term 

1.  TInertia 𝐼𝐼𝑋𝑋𝑋𝑋𝜔̇𝜔𝑋𝑋𝑋𝑋  

Figure 62 

Inertia torque of frame , rider and 

rear wheel due to rolling of B 

+/- 23.0 

(13.1%) 

must be included Minor effect 

2.  TCoriolis 𝐼𝐼𝑍𝑍𝑍𝑍𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑍𝑍𝑍𝑍 Figure 63 Coriolis Torque of the rear wheel +/- 0.10 

(0.06%) 

can be ignored Negligible effect 

3.  TGyro/cornering 𝐼𝐼𝑌𝑌𝑌𝑌𝜔𝜔𝑌𝑌𝑌𝑌𝜔𝜔𝑍𝑍𝑍𝑍 Figure 63 Gyroscopic torque of rear wheel due 

to cornering 

- 0.40 (0.23%) very small and could be ignored but 

included as it is well known and so of 

interest 

Negligible effect 

4.  TFrame 𝑇𝑇𝑓𝑓 sin𝜙𝜙 Figure 63 Torque Assembly A exerts on 
Assembly B corrected for the head 
tube angle 

+ 0.40 

(0.23%) 

could be ignored for some purposes Negligible effect 

5.  TCentrifugal 
𝑀𝑀
𝑣𝑣2ℎ sin𝜙𝜙

𝐿𝐿 cos 𝜆𝜆𝜆𝜆 
 

Figure 61 

Centrifugal torque - 175.0 

(100%) 

maximum torque Major effect 

6.  TGravity 𝑀𝑀𝑀𝑀ℎ sin 𝜆𝜆  

Figure 61 

Gravitational torque + 175.0 

(100%) 

maximum torque Major effect 

7.  TKink 𝑀𝑀ℎ𝑏𝑏𝑏𝑏
𝐿𝐿 𝜎̇𝜎  

Figure 62 

Kink torque (Coriolis torque of 
assembly B less rear wheel) 

+/- 10.0 

(5.7%) 

could be included Minor effect 
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Figure 63 Negligible torque terms from equation (26) 
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5.3.4. TORQUE SIGNIFICANCE REMARKS 

From this evaluation the following remarks are made: 

• a summary of the effects of all torques and suggestions as to which ones to ignore are 

included in Table 22, Table 23 and Table 24 

• the newly introduced torques for the Coriolis effects are all insignificant and could all be 

ignored without compromising the model 

• it can be seen that as stated by many previous researchers the gyroscopic terms are 

insignificant and cannot account for bicycle stability 

• most gyroscopic terms can be neglected from the equations except for the gyroscopic 

torque of front wheel due to cornering in equation (23) which is a major term 

• the influence of steering geometry can be seen as significant, particularly the major terms 

added in equation (18) of the Jones and castor torque allowing for the head tube angle 

and they have a significant effect on steering stability 

From the original set of 23 torques we can see that the Characteristic Equation could be reduced 

to 18 terms (dropping 5) to simplify finding its solution. A further more simplified set of equations 

suitable say for undergraduate teaching, could drop a total of 11 terms to end up with only 12 

torques, see Table 25 for details. Such simplified equations would be more manageable without 

compromising the ability of the equations to explain the dynamic behaviour effectively. 

Table 25 Summary of number of torque terms used 

Equations of 
motion 

All terms from 
original equations 

Terms used in 
characteristic 

equation 

Further simplified set 
of equations  1 

equation (14) 8 6 4 

equation (19) 8 6 4 

equation (24) 7 6 4 

Total 23 18 12 

Note 1 this simplified set of equations could be suitable for some design purposes such when 

only considering the effects of the most important design parameters 
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5.4. SENSITIVITY STUDY 

Now that the benchmark parameter values have been determined in Chapter Four, the Simulink 

modelling can proceed to the sensitivity study. The object of this study is to determine the 

significance of each parameter so that recommendations can be made about optimising bicycle 

designs. Which parameters are most important to the designer and how can their significance be 

quantified?  

In order to study parameter sensitivity it is necessary to be able to vary them one at a time without 

changing the other parameters in order to see their individual effect on the model’s dynamic 

responses. In practice changing one parameter would usually affect several others. For example 

fitting larger diameter wheels to an existing bicycle would immediately increase the height of the 

mass and moments of inertia. But it is possible to imagine a theoretical bicycle being fitted with 

larger diameter wheels which would not affect other parameters. This could be done by changing 

the frame geometry and wheel rim construction so as to ensure that all other parameters remain 

unaltered and this scenario is shown in Figure 64. Similarly for most of the remaining parameters 

it is possible to imagine (at least theoretically) a bicycle which only changes parameters one at a 

time. Hence the Simulink model was arranged so that each parameter could be individually 

isolated and incrementally changed to highlight their effect on bicycle performance and to indicate 

the bicycle’s sensitivity to them. 

In order to quantify sensitivity, an appropriate approach to measuring handling performance is 

needed. A key issue is to determine what sort of handling performance is desirable and then to 

define it. According to Minorsky “It is an old adage that a stable ship is hard to steer” (85). In other 

words too much directional stability in a ship (or a bicycle) is as much a problem as too little. A 

beginner wants a stable, insensitive bicycle that easily holds a straight course, but the expert rider 

wants a bicycle that can respond quickly to a steering input, for example when taking rapid evasive 

action to avoid a hazard. 

What is of interest in this study is the sort of handling expected of a top performing road racing 

bicycle as anticipated by top level riders. To the best of the author’s knowledge no quantitative 

research has been done to find out what sort of handling top riders expect. The only information 

on this topic at all is qualitative and is discussed in Chapter Seven and what this reveals is the 

desire for a bicycle with highly responsive handling consistent with stability, particularly at speed. 

Riders expect to be able to react quickly to avoid an obstacle, such as a rider in the peleton falling 

over in front of them (the peleton is a large group of riders) but also handling that is predictable to 

give them confidence to ride at speed around corners. Riding comfort and maximum directional 

stability are not attributes that are desired by this group of riders. 

The best way of measuring bicycle handling performance was determined to be an impulse 

response test. An impulse test closely resembles a realistic sudden input on the bicycle and is 

also a useful “test signal” for investigating unknown systems, since all frequencies are excited 

equally and the true nature of the system is revealed by the response (86). This is because the 
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intrinsic behaviour of a system can be discovered by abruptly disturbing the system when it is at 

rest with an impulse (87). Theoretically an impulse has infinite magnitude over zero time which 

while mathematically possible, is not physically achievable. In practice an impulse of sufficiently 

large magnitude and of a very short time duration can be considered to be an impulse response 

(88). “The impracticality of the impulse response differs only in degree, not kind, from that of as 

step response, they are both approximations to reality when used to model the behaviour of real 

systems (53).” 

The impulse response has value in terms of bicycles because most of the disturbances that occur 

when riding initiate from sudden external yaw perturbations to the front wheel. This can be due to 

changes in the road surface such as bumps and hollows etc. Roll perturbations also occur but 

these are less common in practice and are mainly due to side winds causing the bicycle to 

suddenly roll. As this model assumes there are no aerodynamic forces or windage it follows that 

there are no side winds, so it is reasonable in this model to ignore the roll response.  

An impulse where the area “A” under the graph is equal to “1” is called the unit impulse function 

and is written as 𝛿𝛿(𝑡𝑡), see Figure 65 (53). If the unit impulse is known, then the response to an 

impulse of any strength “A” is equal to "Aδ(t)” (53). So by subjecting the bicycle model to a unit 

impulse input and measuring the response, the true dynamic characteristics of the bicycle can be 

studied. For example it can indicate how quickly the front wheel will stabilise after a sudden 

external steering torque perturbation. This stabilisation is best indicated by the settling time as this 

shows how quickly the front wheel yaw decays back towards the steady state position. Settling 

time is defined as the time taken for the response to fall to a within either 5% or 2% of the initial 

peak response. The 2% settling time was chosen because although the relative difference 

between two bicycles will be the same whether using a 5% or a 2 % settling time, the lower value 

(2%) was preferred because it is closer to the eventual steady state position of a zero angle. 

Simulink can quickly find the front wheel yaw response (and its sensitivity) to an impulse by using 

Simulink’s linear analysis capability, which calculates and plots the unit impulse response and 

finds the 2% settling time. It was necessary to do this multiple times for all the eleven parameters 

investigated. 
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Different sized wheel 
diameters are fitted 

Altering the 
frame geometry 
to suit different 
wheel diameters 

Centre of mass 
position is unaltered 

Wheelbase is unaltered 

Figure 64 Illustrating how larger wheels could be fitted to the bicycle model without altering 

other parameters 
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time 

amplitude 

Area under the graph 

A = 1.0 unit 

Figure 65 The unit impulse function 
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5.4.1. WHEEL DIAMETER  

To undertake this sensitivity study, multiple Simulink trials for all eleven bicycle parameters were 

needed. But for reasons of brevity the methodology used will be described for one parameter only, 

wheel diameter. The remaining ten parameters were studied in the same way and the full results 

for all parameters are presented in this Chapter. 

When considering the wheel diameter first we must refer to the internationally accepted standard 

wheel and tyre system for road bicycles, designated as ISO 700C (6). The 700C designation 

means that the nominal wheel diameter is 700 mm (though the actual diameter is smaller than 

this). The benchmark bicycle uses an ISO 700C x 25 wheel and tyre where 25 refers to the tyre 

width (in this case of 25 mm). The 700C x 25 wheel was found by direct measurement to have an 

actual outside diameter of 675 mm, but small variations in diameters for between different tyres 

and different manufacturers do occur. Two manufacturers did record slightly different diameter 

values for a 700 C x 25 tyre (one slightly higher and the other lower) but when averaged out they 

are consistent with the experimentally measured value of 675 mm shown in Table 26. 

Now that the actual benchmark wheel diameter has been determined it is possible to vary 

diameters and record the different settling times that the Simulink model calculates. A series of 

unit impulse responses was found for a range of diameters from 697.5 mm (90% of the 

benchmark) up to 742.5 mm (110%).  

Simulink was used find the front wheel yaw response (and its sensitivity) to an impulse by using 

Simulink’s linear analysis capability, which calculates and plots the unit impulse response and 

finds the 2% (or other selected value) settling time. The linear analysis capability computes a linear 

system from the non-linear Simulink bicycle model and plots a linear unit impulse response 

between the specified input and output points. 

The 2% settling time was calculated and recorded for each change in diameter and these are 

shown in Table 27. The impulse response for the benchmark wheel (675 mm diameter) produced 

a 2% settling time of 10.1 seconds which is shown in Figure 66. The different diameters were 

referenced to the benchmark and the change in settling time across the range of diameters was 

plotted on a graph, see Figure 67. A line of best fit for the data points was plotted and its slope is 

an indication of model’s sensitivity to the parameter and is expressed as the % response change 

per 1% change of the parameter, making the analysis non-dimensional. For each 1% increase in 

wheel diameter it was found that the settling time increased on average by 5.75% (across a +/- 

10% range with a R2 value of 0.936) making this a significant parameter. This high sensitivity of 

the bicycle to changes in wheel diameter is an unexpected and interesting result. 
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Table 26 Typical road bicycle tyre values (64, 81) 

ISO/ETRTO 
Code 

Tyre width 
mm 

D 

Actual wheel 

diameter mm  1 

D/DBM 2 

700 X 18C 18 658.90 0.976 

700 X 19C 19 662.09 0.981 

700 X 20C 20 666.22 0.987 

700 X 23C 23 671.79 0.995 

700 X 25C 25 674.82 3 1.000  

700 X 28C 28 682.14 1.011 

700 X 30C 30 685.32 1.015 

700 X 32C 32 688.35 1.020 

700 X 35C 35 692.80 1.026 

700 X 37C 37 700.28 1.037 

700 X 38C 38 693.92 1.028 

700 X 40C 40 703.47 1.042 

ETRTO (European Tyre and Rim Technical Organisation) 

Note 1  these are the averaged results from two manufacturers see Appendix E (64, 81)  

Note 2  DBM = benchmark diameter 

Note 3  rounded up to 675.00 mm in this study 
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Figure 66 The front wheel yaw response (for the benchmark bicycle) to a unit impulse found 

using Simulink’s linear analysis capability 

  

Peak response value set at 100% 

2% settling time (=10.1 sec) 

Front wheel yaw response  
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Table 27 Wheel diameter settling times, used to plot Figure 67 

 
Wheel diameter % 

D  
Wheel dia. mm 

S  
2% settling time seconds 

 
S/SBM  1 

90 607.5 6.58 0.65 

91 614.3 6.83 0.68 

92 621.0 7.09 0.70 

93 627.8 7.37 0.73 

94 634.5 7.67 0.76 

95 641.3 7.99 0.79 

96 648.0 8.34 0.83 

97 654.8 8.72 0.86 

98 661.5 9.12 0.90 

99 668.3 9.57 0.95 

1002 675.0 10.10 1.00 

101 681.8 10.60 1.05 

102 688.5 11.20 1.11 

103 695.3 11.80 1.17 

104 702.0 12.50 1.24 

105 708.8 13.30 1.32 

106 715.5 14.20 1.41 

107 722.3 15.20 1.50 

108 729.0 16.30 1.61 

109 735.8 17.60 1.74 

110 742.5 19.10 1.89 

Note 1  S/SBM = 2% settling time/2% settling time of benchmark wheel 

Note 2  benchmark wheel diameter (675 mm = 100%) 
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Figure 67 The 2% settling times for wheels of different diameters (with line of best fit equation 

and R2 value)  
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5.4.2. REMAINING PARAMETERS 

This section now presents the full results of the sensitivity study for all eleven parameters. After 

the wheel diameter sensitivity was determined all the remaining ten parameters were analysed in 

the same way and full results are shown in Table 28 and Figure 67 through to Figure 77. 

Figure 77From these results several critical design parameters were identified and their effects 

quantified. The parameters have also been collated into four groups: 

1. Steering geometry parameters 

2. Wheel parameters 

3. Mass and wheelbase parameters 

4. All others 

Steering geometry parameters 

As expected and reported by many other researchers the parameters defining the steering 

geometry are important (head tube angle and rake) and the study of their effects was a major goal 

of this investigation (2, 13, 32, 55). It was found that: 

• For a 1% increase in head tube angle (Φ) the front wheel yaw 2% settling time decreased 

by a significant 5.93% (across a -2% to + 10% range with a determination coefficient R2 

value of 0.830) see Figure 68. 

• Similarly for a 1% increase in rake (β) it was found that the settling time decreased by a 

moderately significant 1.41% (across a +/- 10% range with a R2 value of 0.996) see Figure 

73.  

• This is perhaps an unexpectedly small value for rake but when the steering geometry 

equations are inspected more closely the reason is immediately apparent. A 10% change 

in head tube angle causes the effective trail to change by about 75% whereas a 10% 

change in rake only changes the effective trail by 8%. 

• As the effective trail (which is a function of wheel radius, head tube angle and rake) 

appears in four of the twenty three torque terms of the equations of motion it is no surprise 

the model is highly sensitive to changes in trail and the single parameter (head tube angle) 

that most affects it. 

Wheel properties parameters 

• As just determined the wheel diameter is a significant parameter, see Figure 67. A 1% 

increase in wheel diameter increased the settling time by a significant 5.75% (for a -10% 

to + 10% range and a R2 of 0.936) 

• A 1% increase in the wheel moment of inertia decreased the settling time by a moderately 

significant 2.02% (for a -10% to + 10% range and a R2 of 0.982) see Figure 70. 
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• Because of the symmetry of the wheels it was unnecessary to isolate the moments of 

inertia about X, Y and Z axes (and it is not physically or theoretically possible to do so). 

So all three moments of inertia are linked and vary together (IWX + IWZ = IWY, due to the 

parallel axis theorem). 

Mass position and wheelbase parameters 

An interesting result is the obvious interaction of the parameters defining the magnitude and 

position of the mass (M, b and h) and a fourth parameter defining the wheelbase (L).  

• For a 1% increase in the longitudinal position “b” of the mass the 2% settling time 

increased by a moderately significant 2.07% (for a -10% to + 10% range and a R2 of 

0.995) see Figure 69 

• A 1% increase in the magnitude of the mass the 2% settling time increased by a 

moderately significant 1.98% (for a -10% to + 10% range with a R2 of 0.994) see Figure 

71 

• A 1% increase in the wheelbase “L” the 2% settling time decreased by 1.57% (for a -10% 

to + 10% range with a R2 of 0.986) which is moderately significant, see Figure 72 

• Surprisingly a 1% increase in the height of the mass “h” the 2% settling time only increased 

by 0.27% (for a -10% to + 10% range with a R2 of 0.983) which is not significant, see 

Figure 74 

• The interaction between these parameters opens the possibility of tuning a rider’s position 

to optimise handling performance. For example, reducing a downhill mountain bicycle’s 

settling time could be achieved by reducing the mass and moving it lower and to the rear 

and increasing the wheelbase.  

• Note that the secondary parameters of frame size and seat tube angle can be linked to 

the parameters h, b and L, see Appendix B. 

Finally considering the remaining three parameters (all others) 

• For a 1% increase in the IXB parameter the 2% settling time decreased by a not significant 

0.11% (for a -10% to + 10% range and a R2 of 0.857) see Figure 75 

• For a 1% increase in the IZA parameter the 2% settling time increased by a not significant 

0.10% (for a -10% to + 10% range and a R2 of 0.857) see Figure 76 

• Finally for a 1% increase in the IXA parameter the 2% settling time increased by a not 

significant 0.06% (for a -10% to + 10% range and a R2 of 0.668) see Figure 77 

Full details of each parameter’s significance and the sensitivity of the bicycle model to any 

changes is shown in Table 28 where they are ranked in order of significance. 

For some parameters, stepping is evident in the graphs which occurs when several settling times 

apparently share the same value and then suddenly steps up to another value (see IXA, IXB, IZA 
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and h). This occurred because the Simulink analysis “only” gave settling time results within an 

accuracy of 1/100ths of a second and it was not possible to obtain a more precise result when the 

values were very low, as they were in these 4 cases. But as these are insignificant parameters it 

doesn’t affect the validity of the study.  

The only significant parameter which exhibits strong nonlinearity was the head tube angle (with 

an R2 = 0.830) and this is why its limits were set at between -2% to +10% which corresponded to 

the most linear part of its response. Three other insignificant parameters (IXA, IXB, and IZA) also had 

low R2 values recording 0.668, 0.857 and 0.857 respectively, but this is not of great interest.  
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Table 28 Sensitivity results 

Ranking Symbol Definition Benchmark 
Value/s 

Units C1 C/CHTA  2 R2 
Value  3 

Comments 4 

1.  Φ Head tube angle 73 degrees -5.93% 1.0000 0.830 significant term 

2.  D Diameter of the wheel 0.675 m +5.75% 0.9696 0.936 significant term 

3.  b Horizontal distance from rear 
wheel hub to centre of mass 

0.33 m +2.07% 0.3491 0.955 moderately significant 

4.  IW 5 MOI of wheels 0.05/010  kgm2 -2.02% 0.3406 0.982 moderately significant 

5.  M  Mass 80 kg +1.98% 0.3339 0.994 moderately significant 

6.  L Wheelbase 1 m -1.57% 0.2648 0.986 moderately significant 

7.  β  Rake 0.045 m -1.41% 0.2378 0.996 moderately significant 

8.  h Height of centre of mass 1.1 m +0.27% 0.0455 0.995 not significant 

9.  IXB MOI of B about X axis (roll) 100 kgm2 -0.11% 0.0185 0.857 not significant 

10.  IZA MOI of A about Z axis (yaw) 0.08 kgm2 +0.10% 0.0169 0.857 not significant 

11.  IXA MOI of A about X axis (roll) 0.2 kgm2 0.06% 0.0100 0.668 not significant 

The parameters are ranked in order of greatest sensitivity 

Note 1  C is the % change in the 2% settling time for each 1% increase of a parameter 

Note 2  C/CHTA is C referenced to the head tube angle parameter (absolute values) 

Note 3  R2 is the coefficient of determination, a measure of the strength of the linear relationship between two variables 

Note 4  significant is defined as a change in C greater than 3%, moderately significant means a change between 1 and 3% and not significant means less 

than a 1% change 

Note 5  due to symmetry, the wheel MOI have the following relationships, IX = IZ and IY = 2IX = 2IZ, therefore the wheels’ MOI has been included once  

and not three times 
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Figure 68 Settling time results for different head tube angles (with line of best fit equation, R2 

value) 

 

 

 

 

Figure 69 Settling time results for different distances “b” 
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Figure 70 Settling time results for different moments of inertia for the wheels 

 

 

Figure 71 Settling time results for different masses 
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Figure 72 Settling time results for different wheelbases 

 

 

 

Figure 73 Settling time results for different rakes 
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Figure 74 Settling time results for different distances “h” (note the stepping) 

 

 

 

Figure 75 Settling time results for different moments of inertia of B about the X axis (note 

stepping) 
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Figure 76 Settling time results for different moments of inertia of A about the Z axis (note 

stepping) 

 

 

Figure 77 Settling time results for different moments of inertia of A about the X axis (note 

stepping) 
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5.4.3. SENSITIVITY REMARKS 

This sensitivity study has quantified the effects of all eleven parameters and classified them as 

either significant, moderately significant or not significant and this quantification and classification 

is shown in Table 28. Significant parameters are defined as having a value of C of 3% or more (C 

is the % change in settling time for each 1% change in the parameter). Moderately significant 

parameters have a C of between 1% and 3%, and insignificant parameters have a C of less than 

1%. 

From this sensitivity study the significant parameters in order of most importance are: 

1. Head tube angle 

2. Wheel diameter 

The moderately significant parameters are: 

3. Mass horizontal distance from rear wheel hub “b” 

4. Wheel moment of inertia 

5. Mass 

6. Wheelbase 

7. Rake 

And the other parameters that are not significant are: 

8. Height of mass “h” 

9. Moment of inertia of B about X (roll) 

10. Moment of inertia of A about Z (yaw) 

11. Moment of inertia of A about X (roll) 

What this physically means is illustrated by the case of an existing bicycle with a handling 

problem. In such a case only a few options are practical, as all the design parameters are fixed 

except for those affected by wheel, tyre and front fork properties. So if new tyres are fitted it is 

possible to change the wheel diameter and perhaps wheel moments of inertia. If new wheels of 

a different construction are fitted this can affect the wheel’s moments of inertia. Finally if a new 

fork is fitted (a more expensive solution but possibly worth considering) it can change the rake 

value. So the wheel diameter, moments of inertia and possibly fork rake are the only possibilities 

to adjust. Small adjustments to the rider’s position (changing h and b) are also possible but they 

will be too small to have any significant effect. Therefore the following broad recommendations 

can be made to deal with a bicycle handling problem (first assuming that the bicycle is in good 

mechanical order).  

If a bicycle has been found to have sluggish steering (with a slow settling time) then: 

1. it would be worth trying a slightly smaller tyre to decrease the diameter 

2. alternatively increasing the wheel moments of inertia will help 
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But doing both at once though may cancel each other out, So careful wheel and tyre selection is 

necessary in order to have an positive combined effect.  

3. for example a sufficiently smaller diameter tyre and a new wheel with a heavier rim could 

reduce settling times, as wheel MOI’s vary by at least +/- 10% and typical road bicycle 

tyre diameters by +/- 12% this is possibly an effective solution, see Chapter Six for details 

on how this can be systematically done using the Design Charts 

4. a more radical (and expensive) solution would be to fit a new fork with less rake which 

increases trail, e.g.changing from a 40 mm to a 45 mm rake (a increase of 12.5%) reduces 

settling time by nearly 18% 

Conversly if there is too quick a steering response and we wish to increase the settling times, the 

advice is reversed, that is add a larger diameter tyre with a lighter rim wheel and decrease the 

fork rake. 

Completing this sensitivity study allows a scientifically based design methodology to be developed 

and this will be presented in the Chapter Six and this will make it possible to guide design 

decisions for new bicycles. It will give designers a practical means to determine what effect design 

changes have on bicycle handling.  

This study can also be used to make practical suggestions on how to troubleshoot and cure 

steering problems with existing bicycles. Individual bicycles and riders can be experimentally 

measured to find actual values of mass, wheelbase, moments of inertia, etc. Then the Simulink™ 

model could be used to investigate the stability or instability of each particular case and small 

changes in key individual parameters may give insights on how to cure an existing problem. 

For completeness in this sensitivity study the characteristic equation of the bicycle system was 

determined and the Routh Stability Criterion then used to find out if any unstable roots exist. 

Details of this procedure and the results are shown in Appendix D and they give the range of 

stability for the current system. 

5.5. REMARKS 

This chapter has examined the bicycle dynamic model and investigated: 

1. the effectiveness of the model in determining bicycle performance 

2. the significance of each torque term in the equations of motion 

3. the sensitivity of the bicycle’s performance to changes in design parameter 

From this work it was found that: 

1. Bicycle performance simulations demonstrated the capabilities of the model which was able 

to reproduce realistic bicycle dynamic behaviour. 

2. Torque term evaluation determined the significant and insignificant terms and 

recommendations about simplifications of the equations of motion were made. 
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3. The sensitivity study identified the critical design parameters and quantified their effects on 

bicycle handling performance. It determined their minimum and maximum acceptable limits 

and examined their relative importance in terms of their overall effects. These results will later 

be used in Chapter Six to develop practical design charts for designers.  

Now it remains to use the results of this Chapter, particularly the sensitivity study to develop a 

suitable design methodology for bicycles and the next Chapter continues this work.  
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6. BICYCLE DESIGN METHODOLOGY 

6.1. INTRODUCTION 

One objective of this investigation was to develop a suitable design methodology that 

manufacturers and designers could use to guide their bicycle design decisions. The current lack 

of a suitable methodology means that most manufacturers rely heavily on empirical rules of 

thumb, a practice which may stifle development. “Because bicycle design has been based on 

tinkering rather than equations, there has been little scrutiny of bicycle analyses (14).” 

Design methodologies are common in engineering and can be in the form of: criteria, tables, 

equations and charts, all of which can be used when designing products. All these methodologies 

consider critical design parameters and prescribe ways of adjusting them within acceptable limits. 

A variety of methodologies will be examined in this Chapter to consider their suitability for 

designing road bicycles. These methodologies will be based on the sensitivity study from Chapter 

Five which identified critical design parameters. These methodologies will be discussed, 

evaluated and then a recommendation will be made as to the best approach. 

As demonstrated in Chapter Five, bicycles are highly sensitive to changes in: the head tube angle, 

fork rake and the wheel diameter. Also significant is the wheel moment of inertia about the axis 

of rotation. The mass and its longitudinal position are moderately important but the mass height 

is less so. Designers need to consider these parameters when designing and comparing new 

designs and need to try to optimise their values for particular applications.  

6.2. CURRENT APPROACHES 

Most designers currently use a combination of experience and empirical evidence to design new 

bicycles. But the literature does have some suggestions as to how to approach this issue, mostly 

of a highly theoretical nature.  

Meijaard et al obtained eigenvalues from their modelling which they say can be used to check 

alternative designs and which indicate critical speeds for three modes of instability (front wheel 

wobble, rear end wobble and capsize). In our view the level of mathematical understanding 

required would limit how useful most designers would find this approach. 

Ringwood et al devised some design guidelines to indicate when an unstable condition is being 

approached particularly with regard to a front wheel high speed wobble (61). They suggested that 

stability decreased when any one of the following occurred: the bicycle frame got larger, the centre 

of mass moved to the rear, the centre of mass moved higher and the velocity increased. Their 

suggestion that stability decreased as velocity increased contradicts many popular observations 

but it is important to remember that the instability they investigated was a high speed front wheel 

wobble, so this may be a valid proposition. However the lack of an easy way to convert their work 

onto recommendations about appropriate parameter values means their approach is incomplete 

as a practical design tool. 
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Seffen et al proposed a bicycle rideability index which was used to quantify the effect of changing 

the front wheel parameters of trail, moment of inertia and head tube angle on controllability (28). 

Their index was plotted against velocity for different parameter values and compared with a 

benchmark bicycle to quantify how easy it would be to ride a specific bicycle. They found that for 

a given speed, as trail increases, rideability improved up to an optimum value and then 

deteriorated. Importantly they found that no single value of trail gave optimum rideability across 

all speeds. They also concluded that rideability improved as speed increased which contrasts 

with Ringwood. Their rideability index has no simple physical meaning as it is the square root of 

the ratio of the maximum and minimum singularity values of a complex matrix derived from the 

equations of motion. While their rideability index was useful from a theoretical engineering point 

of view, this measure of bicycle stability would not be a helpful aid for designers seeking to 

understand their designs or wishing to describe the attributes of their products to customers. The 

difficulty of explaining the mathematical concepts behind the rideability index and relating the 

index to observable physical effects limits its usefulness as a design tool. 

Jones is a much cited author in this field which is remarkable given the length of time since his 

article was written and its brevity (2). His practical experiments have obviously captured people’s 

attention in a way that a purely mathematical treatment would have failed to do. He proposed a 

steering stability parameter, based on the drop in height of the front wheel hub, the steering angle 

and the roll angle. Wilson’s second edition of his text “Bicycling Science Ergonomics and 

Mechanics” describes in detail Jones’ paper and calls his stability parameter, the Jones stability 

criterion or “u” (2, 10). He continues with a discussion about common steering geometries for a 

variety of bicycles and calculates “u” values for them. The third edition of this text discusses 

stability theories in more detail and contains good descriptions of: inverted pendulums, Jones’ 

experiments, counter-steering and the work of Papadopoulos et al (52). The Jones stability 

criterion is commented on as follows, “to sum up, Jones’ experiments were very revealing, but his 

premise was faulty. Nonetheless “u” can be recognized as a very important stability quantity 

among bicycles with two wheels of the same size (52).” Confusingly it then says the Jones stability 

criterion formula given in the second edition is wrong, but does not provide a clear correction (10). 

Despite this, some frame builders continue to find the ”u” equation from Wilson’s second edition 

useful. BikeCAD (a computer aided bicycle design programme) continues to calculate values for 

the Jones stability criterion despite the possible formula errors “some users of BikeCAD Pro have 

requested that it be left in as they have already developed a sense of what Jones stability values 

work for them.” (89). This statement shows the real need for some practical and scientific way of 

determining stability and quantifying handling performance.  
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6.3. ALTERNATIVE DESIGN METHODOLOGIES 

Several design methodologies are now considered and evaluated to determine their suitability for 

practical use. All these methodologies consider critical design parameters and describe ways of 

adjusting them and setting acceptable limits using practical and straightforward methods. The 

following alternative design methodologies were evaluated as to their suitability: 

1. Design Criteria 

2. Design Tables 

3. Design Equation 

4. Design Charts 

The final recommendation as to a preferred method is made later in this Chapter and is based on 

a number of practical factors, as each method has different advantages and disadvantages. Each 

alternative method is a stand-alone technique that could be used together with or independently 

of the others.  

6.3.1. DESIGN CRITERIA 

The first alternative we considered was a Design Criteria methodology, which is a method 

intended to provide designers with a summary of the empirical knowledge including acceptable 

values and limits for key design parameters. A designer would consult a series of Design Criteria 

and systematically adjust the key parameters until it was judged that an acceptable solution had 

been reached. The final judgement would be based on past experience and the degree of 

willingness to push close to or beyond any boundaries. 

The sensitivity study identified several key parameters which have significant effects on bicycle 

handling (e.g. head tube angle, rake, wheel diameter, wheel polar moment of inertia, wheelbase, 

mass and the mass position). The Design Criteria rules for setting values for these parameters 

were made after examining the database of Tour de France (TdF) road bicycles described in 

Appendix F. Where possible parameter recommendations are based on the equations for lines of 

best fit from the plotted values of these bicycles. The resulting Design Criteria methodology is 

shown in Table 29 and follows the procedural steps outlined in Table 30. 

The advantages of the Design Criteria approach include: 

• it codifies current knowledge and experience so that it can be retained and passed on 

• it can be adapted and changed to reflect empirical improvements 

• it is simple to follow and easy to explain 

• it is conservative, safe and unlikely to result in poor designs 
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However its disadvantages are: 

• it makes no allowance for the interaction of several parameters, a major limitation 

• it has no scientific or mathematical rationale beyond line fitting equations from the TdF 

bicycle database 

• it is silent on what happens if a design strays beyond the maximum or minimum limits 

• it can’t indicate likely or worthwhile areas for design innovation 

• it is by nature conservative so it must follow design trends rather that assist in innovation, 

therefore it may inhibit improvements and advances in design 
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Table 29 Bicycle Design Criteria 

Variable Definition Design Criterion Approaching the min value Approaching the max value 

FS Frame size  1 

 

 

𝐹𝐹𝐹𝐹 = 𝐼𝐼𝐼𝐼 × 0.65 ± 10 𝑚𝑚𝑚𝑚    (68, 69) 

• this is based on the size of the rider (an 

ergonomic rule (68)) 

• the normal advice if the ideal size is 

between two sizes is to select the smaller 

size (69) 

• a smaller, more compact and lighter 

bike results in more lively steering but 

with less directional stability  

• may cause problems achieving the 

correct ergonomic position, typically if 

the frame is too small the rider will be 

hunched over 

• a larger and heavier bike will be 

used and this will be more stable 

but is also more sluggish in its 

handling response 

L wheelbase L (mm) = 0.3077 FS (mm) + 822.5 (mm) 

+/- 20 mm 

• this is based empirically on 2013 TdF road 

bicycles, see Appendix F and Figure 124  

• quicker response possibly becoming 

unstable at some point 

• more stable but also a more 

sluggish response with larger 

overshoots and longer settling 

times 

D Wheel 

diameter 
• road bicycles are almost universally based 

on 700C wheels 

• note that different sized 700C tyres may 

have a noticeable effect see Appendix E 

and Table 26 (64, 69, 74, 81) 

• sluggish response with large overshoot 

and long settling time 

• quicker response becoming more 

unstable 

IYW Moment of 

inertia of both 

wheels about 

the axis of 

rotation 

• different wheel and tyre combinations have 

different handling effects 

• consult Table 26 for the MOI values for 

common wheels and tyres also Appendices 

C and E 

• Every 1% decrease in wheel MOI 

decreases the settling time by 5.75%  

• increases the speed of response 

making the bicycle less stable but more 

lively 

• every 1% increase in wheel MOI 

increases the settling time by 

5.75%  
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• the wheel’s MOI can be determined by a 

compound pendulum experiment 

• at some point instability will occur • reduces the speed of response 

making the bicycle more stable 

but less lively  

Delta 

Δ 

Trail Δ (mm) = - 0.035 FS (mm) + 76.3 (mm) 

+/- 10 mm 

• based on Appendix F, see Figure 126 

• quicker response becoming possibly 

unstable at some point 

• more stable but also more 

sluggish response with larger 

overshoots and longer settling 

times 

Beta 

β 

Fork rake (or 

offset) 

β (mm) = 45.3 mm +/- 3.5 mm 

min 40.0 mm max 53.0 mm 

• based on Appendix F and Table 72 

• sluggish response with larger 

overshoots and a longer settling time 

• quicker response but becoming 

more unstable 

Phi 

Φ 

Head tube 

angle 

Φ (o) = 0.074 FS (mm) + 68.8o 

+/- 1.5o 

• based on Appendix F and Figure 125 

• sluggish response with larger 

overshoots and a longer settling time 

• quicker response but becoming 

more unstable 

STA Seat tube 

angle  2 

STA (o) = 73.3o +/- 1.1o, 

min 69.2o mm max 75.5o 

• based on Appendix F see Table 72 

• sluggish response with large overshoot 

and long settling time 

• quicker response but becoming 

more unstable 

Note 1  Frame size (FS) is explained in Chapter Four 

 

Note 2  Seat tube angle (STA) is explained in Chapter Four 
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Table 30 Design Criteria Procedure 

Procedural step Comments 
1. Select the bicycle frame 

size (FS)  
• the bicycle’s basic size is set by the frame size (FS), see Appendix B 

• this is determined ergonomically from the rider’s inseam measurement, FS = IS x 0.65 (68, 69) 

• the correct FS allows the rider to pedal efficiently 

2. Determine the wheelbase 

(L)  
• the wheelbase (L) is determined empirically from Appendix F 

• a longer L increases stability but reduces the speed of response (75) 

• the wheelbase also influences the top tube length which has ergonomic & aerodynamic significance (69) 

3. Determine the head tube 

angle and rake 
• the two parameters of steering geometry: the head tube angle (HTA or Φ) and rake (β) determine the trail (Δ) which is a 

critical parameter 

4. Determine the seat tube 

angle 
• the seat tube angle (STA) completes the basic design of the frame geometry 

• a steeper seat tube angle increases steering liveliness but reduces rider comfort (75) 

5. Consider the wheel 

properties 

 

• the wheel diameter (D) of most road bicycles is set to the ISO 700C standard (nominally 700 mm) (74) 

• in practice different sized tyres vary the actual diameter (660 to 690 mm see Table 26) 

• the bicycle is surprisingly sensitive to different wheel diameters 

• the wheel’s moment of inertia about the rotational axis has been found to have some importance and can be determined by 

a compound pendulum experiment  
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6.3.2. DESIGN TABLES 

The purpose of a Design Table is to summarise design information into a tabular format (for example 

from a set of design criteria). Tables set out a series of recommendations in a codified way that are 

easy to interpret. They can be constructed in a similar way to the Design Criteria methodology by making 

use of empirical knowledge and experience. The difference is that the information is presented in its 

final form and doesn’t require any calculations or interpretation. 

An example of such a Design Table Series is shown in Appendix G, one Table of which is reproduced 

as Table 31. This Design Table Series covers a range of five frame sizes from 490 to 610 mm and the 

values listed in each Table (for target, minimum and maximum values) were found by using the Design 

Criteria rules set out in Table 29. To use this Series first use the rider’s inseam measurement to find 

the correct frame size and hence choose the correct Table. Then use the selected Table to make 

decisions about the wheelbase, fork rake, head tube angle and seat tube angle values. In Table 31 

below the parameter values for a 550 mm frame are shown and such a frame size is suitable for a rider 

with an inseam measurement of 846 mm. 

Table 31 Road Bicycle Design Table - 550 mm frame size 

Variable Definition Target value Min value Max value 

IS Rider inseam 

measurement 

 

846 823 869 

Δ Trail (critical) 57 mm 47 mm 67 mm 

L wheelbase 992 mm 972 mm 1012 mm 

beta Fork rake (or 

offset) 
45.5 mm 42.5 mm 53 mm 

phi Head tube 

angle 
73.0o 71.5o 74.5o 

STA Seat tube 

angle 
73.6o 71.5o 74.8o 

Assumptions • performance road bicycle 

• 550 mm frame size 

• based on 700C wheels  

• criteria based on Table 30 

 

If any of the assumptions in the Table are changed then amended tables would be needed. For instance 

if 650C wheels were used (instead of 700C) then changes to the head tube angle and rake 

recommendations would be required to compensate for this change.  
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The advantages of using Design Tables include: 

• they require minimal calculations as the target, minimum and maximum values are all given to 

the user 

• all the information for each parameter is listed so they are very clear and easy to use 

The disadvantages are: 

• just like the Design Criteria method they makes no allowance for the interaction of parameters 

which is a major limitation 

• they offers no guidance as to the likely effect on handling if certain limits are reached or 

exceeded 

Apart from these points they share all the advantages and disadvantages of the Design Criteria method 

that have been mentioned. 

6.3.3. DESIGN EQUATIONS 

An attempt was made to develop a closed form equation for quantifying handling performance but it 

was unhelpful. The equation was based on the results of the sensitivity study but after evaluation it was 

decided that this approach was unsuitable. A brief description is included for completeness in Appendix 

G. 

6.4. DESIGN CHARTS 

Design charts are commonly used by engineers and plot important parameters and indicate 

performance in some manner. For example a Pump Selection Design Chart plots pump head against 

flow rate and is used to select the best pump for a specific application. Once a pump selection has been 

made, the correct impellor size, power requirements, efficiencies and other parameters can be read 

directly from the Design Chart and its associated charts. Design Charts are constructed by first selecting 

the most appropriate parameters to combine on two (or more) axes and often include lines of constant 

parameter value drawn across them (e.g. lines of constant pump efficiency). 

After considering all the other proposed design methodologies it was decided to develop and 

recommend the Design Chart concept because of its clear advantages (i.e. ease of use, ability to 

consider multiple parameters and scientific basis). The advantages and disadvantages of Design 

Charts are listed below. 

Their advantages include: 

• they are scientifically based and justified 

• they are relatively easy to use with the minimum of calculations required 

• they enable a wide audience to understand the design process and its outcomes 

• they allow several parameters can be concurrently considered, so interactions can be studied 
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• a wider range of design decisions can be contemplated at once 

• scientifically based iso-handling lines can be plotted on the chart to indicate handling 

performance  

• the effect of moving a design in a particular direction on the chart is clearly shown i.e. it becomes 

more or less stable 

• it may be possible to develop 3-D or contour style Design Charts, allowing even more 

parameters to be concurrently assessed 

While their disadvantages include: 

• assumptions have to be clearly known and adhered to 

• design boundaries may be hard to define and so unsafe designs may be produced (so the 

design charts are not necessarily conservative) 

The use of Design Charts for bicycles will allow a wide range of people to participate in and understand 

the design process and its outcomes as these Charts can be easily interpreted and can provide 

quantifiable evaluation of individual bicycles such as a settling time value. Individual bicycles design 

specifications can be plotted onto the Charts and this can provide riders with an easy way to compare 

new designs to bicycles they are already familiar with. Bicycles close to boundaries or limits on the 

charts are inevitably in grey areas and further methods are needed to determine exactly where the 

boundaries are. The Charts will allow designers to understand and quantify in meaningful ways any 

design changes they are considering and they need not be used in conjunction with any of the other 

methodologies discussed (that is criteria or tables or equations). 

To produce relevant Design Charts, it was first necessary to examine the sensitivity study to see which 

parameters are the most important and also to consider which ones the cycling fraternity consider to be 

significant. From the results of the sensitivity study we can see in Table 32 that key parameters can be 

logically grouped together in terms of their interaction and overall significance (see also Table 28).  

The first group are the terms that define the steering geometry, that is the head tube angle and rake 

(the head tube angle is commonly known to be highly significant). These two terms give the important 

third term trail (again considered highly significant by manufacturers) from a simple geometrical 

relationship. The second group concern the wheel diameter and wheel moments of inertia which the 

sensitivity study show to be important. The third group relates to the important area of frame geometry 

and considers the vertical and longitudinal position of the mass (h and b) and the wheelbase. These 

terms can be used to indirectly define the seat tube angle which is held to be a very significant term by 

the bicycle fraternity (73). The last group covers the related terms of mass and the moment of inertia of 

the rear assembly B. These two parameters have the least significance of the terms we are considering. 

This leaves two remaining parameters out of the original eleven, the two moments of inertia for the front 

assembly A (about the yaw and roll axes) which have been shown to be insignificant and therefore are 

not incorporated into a Chart.  
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In summary the four proposed Design Charts cover the design areas of: 

1. Steering geometry (head tube angle, rake and trail) 

2. Wheel properties (wheel diameter and moment of inertia) 

3. Frame geometry (vertical and longitudinal position of the mass, wheelbase and seat tube angle) 

4. Mass and roll inertia (mass and moment of inertia of B) 

These four Design Charts are ranked above (from 1 to 4) according to their parameter sensitivity (as 

per Table 32) and they can be used together or independently as appropriate to the circumstances. But 

in the case of a new bicycle design probably the first two (steering geometry and wheel properties) 

would initially be heavily scrutinised. Followed by consideration of the frame geometry and mass and 

roll inertia Charts. 
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Table 32 Design Chart parameters 

Relevant 
design 
chart 

Symbol Parameter 
definition 

Benchmark 
value/s 

Units C 
% change  1 

Comments  2 

1. Steering 
Geometry 
Design 
Chart 

Φ head tube angle 73 degrees 5.93% significant 
term 

β  fork rake 0.045 m 1.41% moderately 
significant 

       
2. Wheel 
Properties 
Design 
Chart 

D diameter of the 
bicycle wheel 

0.675 m 5.75% significant 
term 

IW MOI of wheels 
about X, Y  
and Z  3 

0.10 kgm2 2.02% moderately 
significant 

       
3. Frame 
Geometry 
Design 
Chart  4 

b horizontal 
distance of rear 
wheel hub 
centre to the 
centre of mass 

0.330 m 2.07% moderately 
significant 

L bicycle 
wheelbase 

1.000 m 1.57% moderately 
significant 

h height of centre 
of mass 

1.100 m 0.27% not significant 

       
4. Mass 
and Roll 
Inertia 
Design 
Chart 

M  mass 80.0 kg 1.98% moderately 
significant 

IXB MOI of B about 
XB axis (roll) 

100.0 kgm2 0.11% not significant 

       
Parameters 
not 
considered 

IZA MOI of A about 
ZA axis (yaw) 

0.08 kgm2 0.10% not significant 

IXA MOI of A about 
XA axis (roll) 

0.20 kgm2 0.06% not significant 

Note 1  C = % change in the 2% settling time for each 1% increase in the parameter 

Note 2  definitions of the importance of each parameter 

significant is defined as a greater than 3% change for each 1% increase in the parameter (of C)  

moderately significant is between a 0.5% and 3% change of C 

not significant is less than a 0.5% change of C 

Note 3  due to symmetry of both wheels, IX = IY and IZ = 2IX = 2IY, therefore the wheel’s moment of 
inertia property has been included once not three times 

Note 4  this chart also includes the seat tube angle (STA) secondary parameter  
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6.4.1. DEVELOPMENT 

Once the main parameters for the Charts had been decided upon in Table 32, a decision must be made 

as to which one is the independent variable and which the dependent variable. For the Steering 

Geometry Design Chart the independent variable is the head tube angle (plotted on the x axis) and the 

dependent variable is trail (the Y axis). Consideration was given as to what other possible parameters 

could be displayed in order to make each Chart as useful as possible. In the case of the Frame 

Geometry Design Chart the independent variable is b and the dependent variable is h, also plotted are 

lines of constant wheelbase and seat tube angle. So the Frame Geometry Chart contains four 

parameters (b, h, L and STA) and additionally has two boundaries defined by the UCI 5 cm rule and the 

toe overlap limit. 

In Chapter Five the settling time of the unit impulse response was used as a measure of handling and 

this indicates how the bicycle will react to a sudden front wheel steering yaw perturbation. The unit 

impulse response of the benchmark bicycle was found to have a 2% settling time of 10.1 seconds which 

was equated to 100% and all other responses were referenced to this, making the study non-

dimensional. Given that this was the bicycle’s response to a unit impulse of infinite value across zero 

time, it is not surprising that the relatively long settling time of 10.1 seconds was obtained for the 

benchmark. In practice when using a jerk impulse of 0.5 Nm over 1.25 sec, a very similar 2% settling 

time of 10 seconds was obtained. But the analysis was not based on this jerk input because the torque 

was arbitrarily selected and it is felt that the Simulink unit impulse approach is more universal as well 

as being quicker to execute.  

Initially the 2% settling time was recorded in seconds for a range of discrete parameter points in the 

early versions of the Design Charts. But this produced iso-handling line values with values in seconds. 

Therefore it was necessary to non-dimensionalise Chart settling times to make them universally 

applicable. From these initial charts it was possible to interpolate between the known points of trail and 

head tube angles to find any desired settling time value and therefore it was possible to convert the 

settling times from seconds to any desired percentage of the benchmark bicycle. An iterative process 

was used to complete all the charts in this manner.  

This process resulted in the four Design Charts now presented, which display iso-handling lines 

expressed as percentages of the benchmark response (e.g. 70 % to 140%). This gives manufacturers 

a practical means to determine what effect a design change will have. In Chapter Seven different road 

bicycles will be plotted onto these Design Charts to compare current practice with Chart predictions 

about handling. 
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6.4.2.  STEERING GEOMETRY DESIGN CHART 

This first Chart examines the effect of different steering geometries on bicycle handling. The Chart plots 

the geometric relationships of head tube angle, trail and rake and the relevant steering geometry 

equations and definitions are now repeated (90).  

 

Tail equation 

∆= 𝑟𝑟 cos∅−𝛽𝛽
sin∅

  

(34) 

Effective trail equation 

∆𝑒𝑒= 𝑟𝑟 cos∅ − 𝛽𝛽   

(36) 

 

 

 

  

Figure 78 Bicycle steering geometry parameters defined 

∅ 𝛽𝛽 

∆ 

∆𝑒𝑒
 

𝑟𝑟 

171 
 



 

Somewhat similar charts to the proposed Steering Geometry Design Chart are available in the literature 

(2, 90, 91). For example, van der Plas includes several in his text “Bicycle Technology” see Figure 79 

(90). Van der Plas arranges the axes differently to show rake vs. trail for lines of constant head tube 

angle. Though he states that stability increases with trail, this is a simplification and is only true for a 

small range of trail, as above a certain trail value an instability mode appears (28). He discusses the 

significance of the effective trail versus trail claiming that the effective trail gives a more accurate 

indication of stability, but he does not quantify this in any way. 

As discussed earlier Jones devised a stability criterion and developed an interesting chart, see Figure 

81, showing the drop in height of the front fork due to changes in the steering angle and roll (note roll is 

referred to as lean and a different notation has been used in his graphs). His second chart shows the 

head tube angle vs. front projection, plotted on lines of constant stability, Figure 82. Where front 

projection is a modified rake term expressed as a fraction of the wheel radius and is shown in Figure 

80. The lines of constant stability are equal to dH2/dσdλ, (H = front fork height, σ = yaw angle and λ = 

roll angle) and are the rate at which the front wheel drops in height due to changes in yaw and roll 

angles (10). These lines are referred to as the Jones stability criterion (u) by Wilson in his second edition 

and are defined by a calculation, though the third edition states this earlier calculation was incorrect 

(10, 52, 92).  

Meijaard et al have cast doubt on Jones’ analysis of bicycle stability (16). They point out that Jones has 

ignored the effect of the mass of the front assembly. They claim this can be important and may either 

be a negative or positive torque depending on the lever arm of the assembly’s centre of mass. In their 

view a more important objection is that Jones assumes the torque on a leaning front wheel is the same 

whether the bicycle is stationary or moving. But the ground reaction forces on the wheel change 

direction when the bicycle starts to move forward and this will change the twisting torque, so the Jones 

Charts cannot be completely correct,. 

One significant practical problem with the Jones stability graph is that it is not expressed in terms of 

head tube angle, rake or trail. Rather it is based on the distance the front wheel fork drops in height due 

to the roll and steering angles. As Jones says “it turns out that defining the height of the fork points of a 

bicycle in terms of steering geometry and angles of lean and steer is a remarkably tricky little problem.” 

So either a computer solution is required (iteratively solving the simultaneous trigonometric equations) 

or an experimental procedure is called for to measure a bicycle’s fork point drop as the bicycle rolls and 

yaws. From practical experience we can state that such an experiment is not easy to perform with any 

accuracy without a custom built measuring rig being used. 
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Figure 79 van der Plas steering geometry charts for the front wheel 
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Figure 80 The front projection term defined by Jones 

Front 
projection 
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Figure 81 Front fork drop due to yaw and roll angle changes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 82 Head tube angle vs. front projection with Jones stability 

criterion lines 
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Moulton, a well-known but now retired frame builder (based in the UK and USA) has produced the 

interesting steering geometry chart shown in Figure 83. Moulton’s bicycles have been used in top 

international competitions including the Tour de France and the Olympics. A frequent writer with his 

own web blog about bicycles, he describes this chart in one of his 2010 entries (91). The axes 

orientation he chose are reversed from our proposed Design Chart. On his chart is displayed a line of 

“ideal handling” (this passes a point defined by a 73O head tube angle, a 35 mm rake giving a 67.3 mm 

trail). Interestingly his line is very close to the 140% iso-handling line on the proposed Design Chart. No 

supporting analysis or evidence as to the selection of this particular line is included other than 

mentioning his empirical observations about steering geometry. “In time I found there was an “optimum 

handling” line that I could draw on my graph, that would show me the fork rake needed for a given head 

angle (91).” 

 

 

Figure 83 Moulton’s proposed head tube angle vs. trail chart and ideal handling line 
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The proposed Steering Geometry Design Chart began as a chart showing trail vs. head tube angles 

plotted along lines of constant rake, similar to both the van der Plas and Moulton Charts, see Figure 79, 

Figure 83 and Figure 84 (90, 91). What is new about this Chart is the addition of a series of iso-handling 

lines (spaced at 10% intervals from 50 % to 150%). Each iso-handling lines connects points of constant 

settling time (based on the Simulink unit impulse response 2% settling time) and so indicates the 

bicycle’s handling performance. The Chart assumes that all other design parameters are constant (that 

is wheelbase, mass, position of mass, moments of inertia, speed and wheel diameter). The iso-handling 

lines only indicate equivalent performances, they don’t indicate any optimum design position. But they 

do allow easy and meaningful comparisons of individual bicycles and they can be used to compare 

design solutions quantitatively.  

It is possible to plot existing designs onto the Chart to gain an insight as to what the different regions of 

the Chart will mean in terms of performance and by plotting successful bicycle geometries a suitable 

design envelope can be proposed.  

The Chart in Figure 84 displays trail and head tube angle values that range from 0 to 120 mm and 62 

to 80 degrees respectively with rake dimensions ranging from 0 to 75 mm. Of course it is the 

combination and interaction of these three parameters which is interest and this is what this Chart 

clearly displays. 

Eleven iso-handling lines are drawn covering the area of interest, that is head tube angles between 69 

and 77 degrees and trail values between 20 and 70 mm. The iso-handling line that passes through the 

benchmark bicycle is labelled the 100% line and it connects geometry combinations which have the 

same settling time and the other iso-handling lines are referenced to this 100% line. The overall trend 

is that as the trail increases (and rake decreases) the settling times increase or in the terms of van der 

Plas, stability has increased. But is this always a good thing? Sometimes a certain amount of sensitivity 

in handling (or instability) is desirable. 
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Figure 84 Steering Geometry Design Chart with iso-handling and constant rake lines (675 mm wheel dia.) 
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Consider the five different bicycles in Table 33 all with different geometries. On the enlarged Steering 

Geometry Design Chart in Figure 85 these three bicycles (cases A, B and C) with different combinations 

of head tube angles and rake all lie along the 100% iso-handling line. Assuming all other parameters 

are the same (wheelbase, mass, speed, mass position and moments of inertia) they will all have the 

same 2% settling time.  

Consider a second scenario, where the benchmark bicycle’s geometry (case A) is changed slightly. 

First keep the head tube angle unchanged at 73 degrees but change the rake from 45 mm to 50 mm 

(thus causing the trail to decrease to 50.9 mm) this is case D in Table 33 and Figure 85. This new 

geometry moves from the 100% iso-handling line to approximately 85%, which is a 15% drop. Next, in 

case E, keep the rake unchanged but change the head tube angle from 73 to 73.5 degrees this causes 

the settling time to drop from the 100% line to just above 90%, a decrease of nearly 10%. In both cases 

D and E, the rider would experience a much quicker settling down after a disturbance, which is a good 

thing up to a point. But the downside is both bikes would be more sensitive to disturbances. What this 

physically means is that for the benchmark bicycle (case A) and cases B and C under a unit impulse 

they would all take 10.1 sec (100%) to settle down to 2% of the maximum response. But for case D, 

such a bicycle would take 8.585 sec (85%) to settle and for case E it would take 9.09 sec (90%) to settle 

down after a unit impulse. 

Chapter Seven will have a detailed discussion as to the application of this Chart to the elite road bicycles 

used in the Tour de France 2013 race.  

 

Table 33 Five bicycles plotted in Figure 85. 

Case Head tube 
angle 

degrees 

Rake mm Trail mm C 

2% settling 
time 

Marker 

A 73.0 45 56.130 100% diamond (benchmark) 

B 69.0 67 57.300 100% circle 

C 77.0 23 54.310 100% triangle 

D 73.0 50 50.900 85% cross 

E 73.5 45 53.039 90% square 

 

 

 

179 
 



 

 

Figure 85 Steering Geometry Design Chart with five bicycles (cases A to E) plotted from Table 33 
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6.4.3.  WHEEL PROPERTIES DESIGN CHART 

The second proposed Chart shows the effect and interaction of the two important wheel properties, 

namely diameter and the moment of inertia about the rotational or polar axis Y, see Figure 89. These 

two wheel properties have a significant effect on settling time with bicycles being surprisingly sensitive 

to different wheel diameters (every 1% increase increasing the settling time by 5.75%). Also the wheel’s 

moment of inertia about Y is important with every 1% increase, decreasing the settling time by 2.02%. 

However these effects tend to cancel each other out because increasing the wheel diameter usually 

increases its moment of inertia. So if the wheel diameter was increased but no change to its construction 

was made (i.e. materials, rim wall thickness and rim width to depth ratio all unchanged) the result may 

be that no change in handling occurs. The Wheel Properties Design Chart illustrates this interaction 

and gives guidance of how a handling may be improved by careful wheel selection. As far as is known, 

no similar chart to this has been proposed in the literature. 

The Wheel Properties Design Chart was prepared using equations relating wheel diameter to the polar 

moment of inertia and making basic assumptions about wheel construction and material. Again, iso-

handling lines of constant settling time are plotted and referenced to the benchmark wheel and they 

indicate equivalent performance, but they don’t indicate an optimum wheel design. This Chart assumes 

the head tube angle, trail, rake, mass (and its position) speed and all other moments of inertia are 

constant.  

To construct the Chart the following assumptions were made: 

1. The contribution of the rim to overall moment of inertia is assumed to be 50% (experimentally 

this has been shown to be between 45% and 50% of the total). Hence the contribution of the 

tyre to the moment of inertia is allowed for by using this ratio. The hub and spoke moments of 

inertia contribution are small, typically in the order of 0.5% of the total and hence they can be 

ignored (see Figure 86). 

2. The rim section is a hollow rectangular box of constant wall thickness (t) and material 

3. The ratio of the rim section depth (P) to rim width (w) is defined by the P/w ratio (Figure 87) and 

ranges from 0.5 to 2.5 are shown on the Chart 

4. The rim material and its density are known (e.g. 6106 series aluminium is a typical rim alloy 

with a density of 2700 kg/m2) 

5. The rim section width (w) is known, assumed to be 25 mm 

6. The rim wall thickness (t) is known, assumed to be 1 mm 

7. The tyre diameter (td) is known and the actual wheel diameter is given by: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1.8925 𝑋𝑋 𝑡𝑡𝑡𝑡 + 627.27  (mm)  

(37) 
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This equation was found from manufacturers’ supplied specifications (which are detailed in 

Appendix E) which were used to establish the relationship between the tyre width and the actual 

outside wheel diameter (as opposed to the nominal diameter). Tyre diameters of between 18 

mm and 35 mm only are used, see Figure 90. 

8. The wheel rim’s moment of inertia is calculated using the standard formula for a hollow annulus 

of known thickness, width and inside/outside diameters 

𝐼𝐼𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 1
2� 𝑀𝑀1(𝑅𝑅12 + 𝑟𝑟12) − 1

2� 𝑀𝑀2(𝑅𝑅2 2 + 𝑟𝑟2 2) 

(38) 

Where M = rim mass, R = outside radius, r = inside radius, subscript 1 refers to the outside 

rim shape and subscript 2 to the hollow inside rim, see Figure 88 

Using these eight assumptions the Design Chart in Figure 89 was drawn, showing the wheel polar 

moment of inertia vs. wheel diameter plotted along lines of constant P/w ratio. The position of the 

benchmark bicycle is indicated as is usual by a diamond marker. From this Chart it can be seen that for 

a wheel of constant outside diameter as the rim depth P gets larger the moment of inertia increases. 

Similarly for a constant P/w ratio as the outside diameter increases so does the moment of inertia. This 

Chart covers a far wider range of wheel diameters from 525 to 800 mm (a 275 mm range) than usually 

occurs in practice. For example road bicycle wheel diameters normally vary between 660 and 690 mm 

(see Table 34) so redrawing the Chart as per Figure 90 is useful. The values for any of these 

assumptions can be easily changed to create other Wheel Properties Design Charts if required. 
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Figure 86 Parts of the wheel that are used to determine its moment of inertia 
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Figure 88 Additional wheel rim definitions of R1, R2, r1 and r2 
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Figure 89 Wheel Properties Design Chart, wheel moment of inertia vs. diameter and rim shape P/w

0.00

0.05

0.10

0.15

0.20

0.25

0.525 0.575 0.625 0.675 0.725 0.775

W
he

el
 M

O
I a

bo
ut

 th
e 

po
la

r a
xi

s 
Y 

(k
gm

^2
)

wheel diameter D (m)

Wheel Properties Design Chart

2.50 P/w

2.00 

0.50  

1.00  

1.50 

184 
 



 

The Chart in Figure 90 plots several wheels that have been measured experimentally and their details 

are shown in Table 34. This Table and Chart clearly shows how the settling times vary from 75% to a 

maximum of 135% of the benchmark wheel, also that the wheel outside diameters range from 675 mm 

to 687.8 mm and the P/w ratio from approximately 0.50 to 2.5. 

 

 

Table 34 Tyre and wheel experimental values 

Wheel type 

Fr
on

t/R
ea

r Tyre MOI Y axis 
kgm2 

D  
Actual Wheel 

Outside 
Diameter mm 

C 
% 

settling 
time  1 

Approx 
P/w 

Ratio  2 

Mavic SUP Open Pro F 700C x 23 0.0871 675.00 135% 0.50 

Altx 2800 F 700C x 23 0.0845 675.00 125% 0.75 

Altx 2800 R 700C x 23 0.0979 675.00 105% 1.50 

Benchmark wheel F 700C x 25 0.1000 675.00 100% 1.50 

Airline Vuelta F 700C x 23 0.1006 675.00 100% 1.50 

Mavic SUP R 700C x 23 0.1017 675.00 95% 1.75 

Mavic Aksium R 700C x 23 0.1020 675.00 95% 1.75 

Shimano 105 R 700C x 23 0.1054 675.00 95% 2.00 

Mavic MA3 F 700C x 23 0.1077 675.00 90% 2.25 

Shimano 105 F 700C x 23 0.1095 675.00 85% 2.30 

Mavic MA3 F 700C x 28 0.1213 680.30 80% 2.50 

Mavic MA3 F 700C x 32 0.1304 687.80 75% 2.25 

Note 1  C given to the nearest 5% 

Note 2  P/w given to nearest 0.25 
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Figure 90 Wheel Properties Design Chart, plotting the wheels (experimental values) from Table 34, iso-handling lines shown 
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6.4.4. FRAME GEOMETRY DESIGN CHART 

The third proposed Design Chart examining frame geometry looks at a new aspect of design and as far 

as is known is entirely new and original. This Chart shows the effect of the mass position (vertically and 

longitudinally) and its interaction with the wheelbase and seat tube angle. The proposed Design Chart 

applies to road bicycles but could be adapted to apply to other types of bicycles such as mountain 

bicycles. 

In order to draw this Chart it was necessary to establish relationships between the mass position, the 

wheel base and the seat tube angle. This was done by using frame relationships derived from geometric 

and empirical relationships, and is fully explained in Appendices B and F. Many of the assumptions 

about these relationships were made using the benchmark bicycle as a starting point.  

The first important relationship to examine is between the mass position (b and h) and the seat tube 

angle. It has been frequently claimed that a steeper seat tube angle results in a bicycle that is more 

compact and lively (but also less stable) (69, 74). Next to consider is the relationship between these 

three parameters (b, h and STA) and the wheelbase. The Chart’s assumptions regarding seat tube 

angle, wheel base and mass position are as follows: 

1. A standard road bicycle 700C x 25 wheel is used (with an actual diameter of 675 mm) (74) 

2. The distance between the centreline of the seat tube and the outer circumference of the rear 

wheel is set at 32.5 mm and this allows for a suitable clearance between the seat tube and the 

tyre. Smaller values are sometimes used but can present construction and operational 

difficulties as road debris can become trapped between the seat tube and the tyre. 

3. In order to minimise the wheelbase the seat tube angle is the steepest angle that can be fitted 

against the rear wheel while still conforming to assumptions 1 & 2 (75) 

4. The bottom bracket drop is 67.5 mm, making the distance between the bottom bracket spindle 

and the road 270 mm (this is a standard value, see Appendix F) 

5. The centre of mass position is defined by the main parameters h and b (already defined) and 

the additional terms k and j, which are defined in Appendix B 

6. The ratio k/P is set at 0.2099, where P is the saddle height, this k/P value was selected to 

conform to the benchmark bicycle’s known centre of mass position 

7. And ratio j/P is 0.0912, again selected to conform to the benchmark bicycle’s known centre of 

mass position 

8. The relationship of wheelbase L (mm) to saddle height P (mm) is given by the empirical 

relationship, justified in Appendix B and F 

𝐿𝐿 = 0.3077 × 𝑃𝑃 + 822.5 ± 20  

(39) 
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The Frame Geometry Design Chart in Figure 91 shows the vertical mass position vs. horizontal mass 

position (h vs. b) plotted along lines of constant seat tube angle (STA) and constant wheelbase (L). 

Once again the position of the benchmark bicycle is indicated by a diamond marker and this Chart 

assumes that all other parameters are constant (head tube angle, rake, mass, moments of inertia, 

speed and wheel diameter). 

The next stage in developing the Frame Geometry Design Chart is to plot two important boundaries or 

limits. These limits not determined by the model dynamics but are nonetheless important design 

considerations and are: 

1. The Union Cycliste Internationale (UCI) 5 cm limit, which restricts the maximum seat tube angle 

that is permitted for any bicycle competing in UCI sanctioned races 

2. The toe overlap limit, which is an ergonomics consideration important for smaller riders  

6.4.4.1. UCI 5 CM LIMIT 

The Union Cycliste International (UCI) is the international body authorised to regulate, control and run 

the majority of cycle sports (3). The main exceptions to their authority being human powered vehicle 

record attempts (covered by two independent bodies, IHVPA and WHPVA (59, 93)) and triathlon events, 

covered by the International Triathlon Union (94). 

The UCI 5cm limit is determined by UCI Regulation 1.3.013 “Saddle Setback” which states that “the 

peak of the saddle should be a minimum of 5 cm to the rear of a vertical plane passing through the 

bottom bracket spindle” (95). In other words there is a maximum seat tube angle that must not be 

exceeded and this varies with the wheelbase and this is made clear by examining Figure 92. The 

intention of this regulation (and several other UCI rules) is to ensure that bicycles conform to a basic 

double triangle design and it prohibits what the UCI considers to be extreme designs, such as the one 

hour record and time trial bicycles of the 1990’s. 

The maximum seat tube angle given by this UCI Regulation can found from the following equation (see 

Appendix B). 

𝑆𝑆𝑆𝑆𝑆𝑆 = 90 −  sin−1 (5 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 ⁄                          (in centimetres and degrees) 

(40) 

This equation was used to plot the UCI 5 cm limit on the right hand side of the Design Chart Figure 94. 

The equation give the maximum seat tube angle for any given saddle height and then this is related to 

the position of the mass (h and b) using the relationships defined in Appendix B.  
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Figure 91 Frame Geometry Design Chart relating seat tube angle, wheelbase and mass position (distances b & h) 
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6.4.4.2. TOE OVERLAP LIMIT 

This second limit is an ergonomic consideration that is relevant to smaller riders. Toe overlap can be a 

significant problem for riders especially when frame sizes are below 52 cm and is commented in the 

literature (96, 97). When a pedal crank is in the 9 o’clock position a toe overlap exists if the front wheel 

overlaps the rider’s toe. When the handlebar is turned this will contact the shoe and can cause the rider 

to lose control and crash, shown in Figure 93. The degree of overlap that can be tolerated seems to 

vary between individuals with some claiming no overlap at all is tolerable and others saying up to 25 

mm is tolerable (96). 
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Figure 92 The UCI 5 cm rule defines the maximum seat tube angle permitted 
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Figure 93 A toe overlap between the front wheel and shoe can exist for small bicycle frames 
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The amount of toe overlap that exists is determined by the steepness of seat tube angle and by how 

short the wheelbase is. In order to plot this second limit the saddle height has to be related to the 

wheelbase, which means combining a parameter determined by ergonomics (saddle height) with one 

that is not (wheelbase). The best way to do this is to recognise that the rider’s inseam measurement 

determines saddle height and also determines the bicycle frame size, see Appendix B. Using the bicycle 

database (Appendix F) a relationship between the wheelbase and frame size was determined using the 

equation of the line of best fit. Combining these relationships makes it possible to determine the 

wheelbase (within a tolerance band) for a given saddle height. The equations and terms used to 

determine these values are given below in Table 35. 

 

Table 35 Terms for wheelbase and saddle height relationship 

Parameter Symbol Units 

Wheelbase L mm 

Frame size FS mm 

Saddle height P mm 

Rider inseam IS mm 

 

The relationships derived fully in Appendix B are summarised below: 

𝑃𝑃 = 0.885 × 𝐼𝐼𝐼𝐼 (68, 69) 

(41) 

𝐹𝐹𝐹𝐹 = 0.65 × 𝐼𝐼𝐼𝐼 (68, 69) 

(42) 

Therefore: 

𝐼𝐼𝐼𝐼 = 𝑃𝑃
0.885�  

(43) 

Substituting gives: 

𝐹𝐹𝐹𝐹 = 0.65 ×
𝑃𝑃

0.885
 

(44) 

This gives: 

𝐹𝐹𝐹𝐹 = 0.735 × 𝑃𝑃 

(45) 
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Considering the 2013 Tour de France road bicycles in Appendix F, the empirical relationship between 

frame size and wheelbase was found and this gives the following equation, see Figure 124 

𝐿𝐿 = 0.3077 × 𝐹𝐹𝐹𝐹 + 822.5 ± 20  𝑅𝑅2 = 0.652 

(39) 

For the benchmark bicycle with a 550 mm frame size this equation gives a wheelbase of 991.74 mm   

(-/+ 20 mm) or between 971.74 and 1011.74 mm) which is close to the chosen benchmark wheelbase 

of 1000 mm, see below. 

𝐿𝐿 = 0.3077 × 550 𝑚𝑚𝑚𝑚 + 822.5 𝑚𝑚𝑚𝑚 ± 20 𝑚𝑚𝑚𝑚 

𝐿𝐿 = 991.74 𝑚𝑚𝑚𝑚 ± 20 𝑚𝑚𝑚𝑚 

By substituting equation (45) for the saddle height P equation (39) becomes: 

𝐿𝐿 = 0.3077 × (0.735 × 𝑃𝑃) + 822.5 ± 20 

(46) 

Which gives the final equation necessary to find the toe overlap boundary: 

𝐿𝐿 = 0.226 × 𝑃𝑃 + 822.5 ± 20 

(47) 

To plot the toe limit line the following seven assumptions were used (explanations of these particular 

assumptions is given in Appendix B): 

1. Actual wheel diameter D is 675 mm 

2. Bottom bracket drop is 67.5 mm 

3. Clearance between seat tube centreline and rear wheel is 32.5 mm 

4. Crank length is 165 mm (measured experimentally) 

5. Shoe extension in front of the pedal spindle centreline is 120 mm (measured experimentally) 

6. Centreline of shoe is 130 mm from centreline of bicycle in a transverse direction (measured 

experimentally) 

7. Maximum permitted overlap between wheel and shoe is 10 mm (96) 

Using these equations and assumptions gives the toe overlap limit shown on the Design Chart in Figure 

94. This final version of the Frame Geometry Design Chart includes a series of iso-handling lines (from 

60 % to 160%) connecting points of constant 2% settling time. Again these iso-handling lines indicate 

equivalent settling times and show the important interacting effect of changing the position of the mass 

(h and b), the wheel base and the seat tube angle all on one Chart.  

It has been claimed for a long time that a steeper seat tube angle means the bicycle is more compact 

and lively (but also less stable) (68, 69, 74, 75). But this Frame Geometry Design Chart is indicating 

that as the seat tube angle gets steeper the settling time actually increases which appears contradictory. 
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Perhaps what the literature is referring to is that a more favourable front wheel/rear wheel weight 

distribution is achieved as the seat tube angle steepens and this would mean the bicycle would have a 

lower moment of inertia about the yaw axis and so would be more easily turned about this axis. This 

investigation did not examine this aspect of bicycle dynamics and so this needs more study. But in 

terms of the Simulink impulse response it is clear that steeper seat tube angles cause settling times to 

increase.  

This raises again the issue of what is desirable in terms of bicycle handling. Is it longitudinal stability 

meaning a high degree of self-stability and directional stability in a straight line? Or is it the speed of 

response and the ability to quickly take evasive action to avoid an obstacle? Is it predictability and the 

lack of unpleasant surprises such as sudden or increasing front wheel oscillations? Or is it a short 

settling time and the ability to settle down quickly after a disturbance? Finally is it a quick yaw response 

(the ability to corner) which is related to a low moment of inertia about the vertical axis road and the 

resistance of the tyres skidding sideways? It must inevitably involve a compromise of many of these 

attributes and of course will vary according to the type of bicycle and rider involved. This is an important 

area which needs close examination. 
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Figure 94 Frame Geometry Design Chart, indicating iso-handling lines, also UCI 5cm and toe overlap limits 
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6.4.5. MASS AND ROLL INERTIA DESIGN CHART 

The fourth and last Design Chart examines the relationship between the bicycle’s total mass (M), its 

vertical height (h) and the moment of inertia of rear assembly B about the roll axis (IXB). This Chart 

completes the proposed design methodology and examines the last moderately significant parameter, 

mass. The sensitivity study shows that while the bicycle’s mass is moderately significant, but both the 

mass vertical height and moment of inertia IXB are not significant, see Table 36. 

Table 36 Sensitivity of M, IXB and h 

Relevant 
design 
chart 

Symbol Parameter 
definition 

Benchmark 
value/s 

Units C% 
change  1 

Comments 

Mass and 
Roll Inertia 
Design 
Chart 

M Mass 80 kg +1.98% 
moderately 
significant 

h Height of centre 
of mass 1.1 m - 0.27% not significant 

IXB MOI of B about 
XB axis (roll) 100 kgm2 +0.11% not significant 

Note 1  C is the % change in the 2% settling time for each 1% increase in the parameter 

 

In order to draw this Chart it was necessary to find a way to easily calculate IXB. After investigation it 

was found that a reasonable approximation was to assume that IXB is equal to Mh2 and this is justified 

in the following calculations. Consider a bicycle with a mass of 80 kg with a vertical height h of 1.100 m 

(i.e. the benchmark bicycle) if it is assumed that IXB is equal to Mh2 we get: 

 

𝐼𝐼𝑋𝑋𝑋𝑋 = 𝑀𝑀ℎ2 

(48) 

𝐼𝐼𝑋𝑋𝑋𝑋 = 80(𝑘𝑘𝑘𝑘)1.1(𝑚𝑚)2  

𝐼𝐼𝑋𝑋𝑋𝑋 = 96.8 𝑘𝑘𝑘𝑘𝑘𝑘2 

 

A more complex calculation could assume that the parallel axis theorem applies and make use of the 

experimental values of Appendix C and Hanavan to give a second answer (48).  
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Table 37 Second moment of inertia values 

Symbol Parameter definition Value Units Source 

MRider Mass of rider 73.0 kg Chapter 4 

hRider Height of centre of mass of rider 1.100 m Chapter 4 

IXRider MOI rider about their centre of 
mass 8.0 kgm2 (48) 

MBicycle  Mass of bike (less forks & front 
wheel) 5.0 kg Chapter 4 

hBicycle Height of centre of mass of bike 
(less forks & front wheel) 0.600 m from experiments 

see Appendix C 

IXBicycle MOI of bike (less forks & front 
wheel) about centre of mass of B  2.0 kgm2 from experiments 

see Appendix C 
 

Using the values in Table 37 we get: 

𝐼𝐼𝑋𝑋𝑋𝑋 = 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

𝐼𝐼𝑋𝑋𝑋𝑋 = (𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑀𝑀ℎ2) + �𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑀𝑀ℎ2� 

(49) 

𝐼𝐼𝑋𝑋𝑋𝑋 = (8 + 73 × 1.12) + (2 + 5 × 0.62) 

𝐼𝐼𝑋𝑋𝑋𝑋 = 100.13 𝑘𝑘𝑘𝑘𝑘𝑘2 

 

This second answer of 100.13 kgm2 is within 3.5% of the first calculated result of 96.8 kgm2 and this 

shows that the use of Mh2 is an acceptable way to find IXB. 

The completed Mass and Roll Inertia Design Chart in Figure 95 shows lines of constant mass height 

(h) drawn on a Chart plotting IXB vs. mass. The iso-handling lines show the effect on handling caused 

by varying the mass and its height, clearly showing that while mass has a moderately significant effect 

on handling changing, height and moment of inertia have much less effect and are not significant. 

Different vertical positions of the mass can be due to factors such as: 

• changes in seat positions  

• different front steering stem lengths and heights 

• changes to the rider’s posture 

• the carrying of higher loads on the rider (such as water bottles, nutrition, back packs etc.) 
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Figure 95 Mass and Roll Inertia Design Chart, for lines of constant mass height (h) also iso-handling lines shown 
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6.5. DESIGN CHART REMARKS 

The four Design Charts described in this Chapter make use of the high level mathematical analysis of 

the Simulink model and present handling information (as iso-handling lines) in a way that is suitable for 

the bicycle fraternity to interpret. Use of these Design Charts allows bicycle designers to explore the 

implications of design choices with more confidence about the outcome than was previously possible. 

These Charts study the key parameters shown to be the important ones affecting dynamic responses. 

Below they are ranked from 1st to 4th according to their parameter sensitivity and they can be used 

independently of one another or together and cover the important design areas of: 

 

1. Steering geometry (head tube angle, rake and trail) 

2. Wheel properties (wheel diameter and moment of inertia) 

3. Frame geometry (vertical and longitudinal position of the mass and wheelbase) 

4. Mass and roil inertia (mass and moment of inertia of B) 

 

The main advantages of these design charts are: 

 

• they are scientifically based and justified 

• they are relatively easy to use with the minimum of calculations required 

• they enable a wider audience the ability to understand the design process and its outcomes 

• they allow several parameters can be concurrently considered, so interactions can be studied 

 

While their main disadvantages are: 

 

• assumptions have to be clearly known and adhered to 

• design boundaries may be hard to define and so unsafe designs may be produced (they are 

not necessarily conservative) 

The next Chapter will consider how modern road bicycles fit onto the Charts, as represented by bicycles 

from historical approaches and by the 2013 Tour de France race. This will validate the Charts and 

illustrate their application and value. 

Now that these Charts have been developed it is intended to seek comments from the bicycle fraternity 

including manufacturers to see how useful these design charts will in practice be to industry. Of course 

it is hoped they will prove of value and be easy to use and interpret.  
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7. DESIGN CHART VALIDATION 

7.1. INTRODUCTION 

This Chapter examines the validity of the four Design Charts proposed in Chapter Six. It was felt that 

the best way to do this was to apply the Charts to actual bicycle designs, first considering historical 

design practice and secondly by examining the bicycles that competed in the 2013 Tour de France 

(TdF) bicycle race.  

Historical design practice is of particular interest for the following reasons: 

• does the accepted “design lore of bicycles” say the same sorts of things about bicycles that the 

Charts indicate? 

• and is there evidence of the sort of design evolution occurring over time that is predicted by the 

Charts? 

And examining the 2013 Tour de France bicycles means that: 

• the predictions of the Design Charts can be compared to the decisions made by designers of 

the latest top level bicycles 

• the variations between different elite bicycle manufacturers can be examined with the Charts 

and any performance differences quantified 

• it should be possible to see how close individual designs get to the various Chart limits 

The specifications of the bicycles examined (both the historical and TdF bicycles) were obtained from 

cycling literature such as magazines, books, textbooks and websites. The sort of information required 

included details of wheelbase, wheel diameter, head tube angle, fork rake, frame size and seat tube 

angles. Information about two secondary parameters, frame size and seat tube angle were included, 

because even though they are not part of the Simulink mathematical model, they are commonly used 

within the industry.  

7.2. HISTORICAL DESIGN PRACTICE 

This section summarises the historical practices of manufacturers and designers regarding their bicycle 

design practice. By comparing their practices with the Design Charts, judgements can be made as to 

the validity of the Charts. How have bicycles changed over recent years and what have been the trends 

in design? Do the Charts and in particular their iso-handling lines make sense in terms of what the 

historical commentary says about bicycle performance? 

Most manufacturers rely heavily on past practises, for example when referring to some recent work 

done by Schwab to improve bicycle geometry the Dutch manufacturer Batavus was reported as saying 

“we had been using a trial and error system, this is the first chance we have had to do it a scientific way 

(9).” 
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To find out about historical practice, the available literature was reviewed, focussing on the comments 

from elite riders and manufacturers. After reviewing their ideas and recommendations the following 

general observations were noted: 

• while there was reasonable agreement on the head tubes angles (ranging between 71.5 and 

76 degrees) there were wider variations suggested for the rake and trail values (40 to 67 mm 

and 33 to 60 mm respectively) 

• reasonable agreement existed as a suitable seat tube angle range (between 71.5 to 76 

degrees) 

• but it is interesting that there was little acknowledgement of the UCI 5 cm or toe overlap limits 

by many sources 

• most sources were silent on a wheelbase recommendation, which is interesting given that the 

sensitivity study rates wheelbase as a moderately significant parameter 

Covering their views in more detail with regards to steering geometry, it is commonly believed that: 

• the head tube angle is an important angle that defines the steering geometry and most 

suggested it should be between 72 and 74.5 degrees (10, 83) 

• steeper head tube angles give faster handling (74, 75) 

• also different types of bicycles require different steering geometries: 

o racing bicycles (such as those used in the Tour de France) require steep head tube 

angles (74, 83, 90) 

o and racing bicycles dedicated for climbing steep roads can use even steeper head tube 

angles with less rake (74, 75) 

o criterium bicycles (used for specialised road racing on tight street circuits) require quick 

handling around tight road circuits and have very steep head tube angles of up to 75 

degrees with small fork rakes of 38 mm or less, resulting in trails of less than 50 mm 

(74) 

o time trial bicycles (used by individual riders racing against the clock) can make use of 

shallower head tube angles for more stability (74) 

o track bicycles (racing on banked, oval velodrome tracks) need slightly steeper head 

tube angles (98) 

o touring road bicycles (used for travelling over long distances on multiday camping trips) 

have the greatest need for stability and comfort and use shallower head tube angles 

(99) 

• An argument was made by some for neutral handling where the bicycle would be neither twitchy 

nor sluggish; rather it would handle in a stable way. It was claimed that this occurs with a 

combination of rake and head tube angle that yield a 60 mm trail (91, 98). 
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With regards to frame geometry (and the associated wheelbase and seat tube angle parameters) it is 

commonly believed that: 

• longer wheelbases and shallower seat tube angles are more comfortable (83, 90) 

• regards the desired weight distribution (which is affected by both the wheelbase and the seat 

tube angle) two sources recommend a 45/55 front to rear weight distribution for the best 

handling, but no justification for this was provided (75, 100).  

• but it is believed from: experimental work, Simulink model and Design Charts that this 45/55 

ratio is not physically possible for conventional road bicycles, for example the benchmark 

bicycle has a 33/67 distribution and to achieve a 45/55 distribution the centre of mass would 

need to move forward by 120 mm, a distance which would be impossible to achieve on the BM 

bicycle 

• steeper angles, shorter wheelbases and shorter fork rakes all make frames more rigid, stiffer 

and improve the ride and power transmission (75) 

• also steeper seat tubes tend to shorten the wheelbase and make the bicycle more responsive 

(69) 

• smaller frames need steeper seat tube angles to keep the wheelbase short (83)  

• it was claimed that shorter riders have a proportionally shorter upper bodies and so need to be 

placed further forward over their pedals by using steeper seat tube angles (69).  

• but the real reason may be that the almost universal use of stock 700C wheels which forces 

designers to squeeze everything together on a small bicycle in order to achieve an acceptably 

short wheelbase and top tube (101).  

• different types of bicycles have different frame geometry requirements: 

o track bicycles need steeper seat tube angles and shorter wheelbases (69, 74, 90) 

o racing bicycles require moderately short wheelbases and steep seat tube angles (74, 

83, 90) 

o touring road bicycles with a need for stability and comfort use shallower seat tube 

angles and longer wheelbases (74) 

Pedalling efficiency is said by some to be affected by the seat tube angle: 

o according to LeMond, seat tube angles of 74 degrees or less are required for efficient 

pedalling (69) 

o but Ballantine says seat tube angle is partly determined by the length of the rider’s 

thigh, so smaller bicycles have steeper seat tube angles (74) 
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o the Association of British Cycling Coaches (ABCC) gives the following formula to find 

the correct seat tube angle, to the nearest 0.5 degree (102) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  cos−1 (0.264×𝑡𝑡ℎ𝑖𝑖𝑖𝑖ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

  

(50) 

For a benchmark rider (with a 184 cm height) with a thigh length of 62.5 cm and a lower 

leg length of 55.6 cm this becomes: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  cos−1
(0.264 × 62.5)

55.6
=  72.75 𝑜𝑜𝑜𝑜 73 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Note that the benchmark bicycle has a seat tube angle of 74 degrees. This ABCC 

method is clearly anatomically based and is related to pedalling efficiency and not to 

any handling requirements. Pedalling efficiency is an interesting issue in its own right 

with many factors coming into play. To the author’s best knowledge no agreement 

exists as to how best to measure this efficiency. The best available guides are those of 

Hinault and LeMond but these are over 25 years old, it seems that coaching advice on 

this issue remains a closely guarded secret (68, 69). 

o Ricard et al compared the effect of different seat tube angles on triathletes’ 

performances and concluded that increasing the seat tube angle from 72 to 82 degrees 

did not improve cycling power output but did improve running times on the next leg of 

the race. They recommended a seat tube angle for triathlon bicycles of at least 76 

degrees (103). 

o other researchers have claimed that triathletes using higher seat tube angles up to 80 

degrees outperformed those with lower angles during the cycling leg of the race (104) 

o and this is supported by the design of Boardman’s Lotus 108 bicycle which had an 

effective seat tube angle of 80 degrees when used to break the One Hour Record in 

1996 by covering 56.375 km in 60 minutes (83) 

There is close agreement between these sources on the head tube angles and seat tube angles, but it 

surprising to see such a variation in the rake and trail values which have been shown to be so critical 

to the performance of the bicycle. The main recommendations for parameter values for road bicycles 

from these various sources are summarised in Table 38. By plotting these recommendations on the 

Steering Geometry and Frame Geometry Design Charts (see Figure 96 and Figure 97) it is possible to 

see what agreement exists between these sources and also to identify on these Charts what regions 

are regarded historically as desirable design envelopes.  

From the plotted regions on the Design Charts in Figure 96 and Figure 97 it is clear that the 

recommendations are varied and have an arbitrary appearance, but perhaps this is to be expected 

given their empirical origin. People will have had different experiences and opinions as designers and 

riders and will also have different subjective responses to the same bicycles.  
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Table 38 Historical design practice  1 

Head tube 
angle 

degrees 

Seat tube 
angle 

degrees 

Rake 

mm 

Trail 

mm 

Wheelbase 

mm 

Iso-handling 
line from 
Chart % 

Source 

72 to 74.5     N/A (68) 

72.5 to 74.5 71.5 to 74    N/A (69) 

73 to 76 72 to 76 40 to 45 43 to 54 980 65% to 100% (74) 

73 to 74  50 to 67 33 to 51  55% to 85% (52) 

72 to 74 72 47 to 50 45 to 60 1015 to 1065 70% to 110% (75) 

71.5 to 72.5 74 to 74.5    N/A (105) 

73.2  40 60  110% (98) 

71.5 to 76 71.5 to 76 40 to 67 33 to 60 980 to 1065 55% to 110% 
range of 

values 

Note 1   includes road, criterium, track, time trail and triathlon racing and touring bicycles 
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Figure 96 Steering Geometry Design Chart, indicating Table 38 recommendations, reference numbers are in brackets, see bibliography 
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Figure 97 Frame Geometry Design Chart, indicating Table 38 recommendations, reference numbers are in brackets, see bibliography 
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Finally by comparing three bicycles from different eras (1930, 1950 and 2013) it was interesting to see 

how frame geometry has changed over eighty years, see Table 39. Steeper angles are now used along 

with shorter wheelbases and a reduction in trail has also occurred. We can see that seat tube angles 

over this time have gone from 68 degrees to 73.5 degrees, a 5.5 degree increase. Trail dropped from 

70 mm to 47.15 mm and then rose to 59 23 mm (overall a 10.77 mm decrease). While the wheelbase 

has changed dramatically going from 1170 mm to 984 mm, a 186 mm reduction. 

According to the Design Charts this would mean a significant reduction on settling time (and an increase 

in responsiveness). Comparing the 1930 English custom racing bicycle to the 2013 Bianchi Oltre and 

just allowing for the steering geometry changes the Oltre has 39% less settling time (180% vs. 110%). 

But when looking at the frame geometry the Oltre has 100% more settling time (100% vs. 50%) 

according to the Charts. So the change in steering geometry is compensated somewhat by changes in 

frame geometry showing the effect of interaction. 

Kossack comments that what was once considered acceptable only for track bicycles has over time 

become acceptable for road bicycles and this is due to the big improvements in road surfaces. This has 

made the handling more responsive (75). 

Table 39 Comparison of bicycles from 1930 to 2013 (75, 106, 107) 

Bike Head 
tube 
angle 

degrees 

Seat tube 
angle 

degrees 

Rake 

mm 

Trail 

Mm 

 

Wheelbase 

mm 

1930 English custom 

racing bike 
68.0 68.0 64.0 70.0 1120 to 11703 

1950 Bianchi 54.5 cm 

frame  1 
72.0 72.5 52.5 47.15 1020 to 1050  3 

2013 Bianchi Oltre 55 

cm frame  2 
72.5 73.5 45.0 59.23 984 

Note 1  used by Coppi to win the 1950 Paris-Roubaix race 

Note 2  used in the 2013 TdF 

Note 3  different wheelbases were necessary as adjustments were used to tighten up the chain 
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7.3. TOUR DE FRANCE 2013 BICYCLES 

This next section considers the elite group of high performance road bicycles and riders that participated 

in the 2013 edition of the Tour de France (TdF) bicycle race which were chosen because: 

• they participated in the world’s most prestigious bicycle race and so they will have been 

designed with only the best performance in mind 

• the different bicycle manufacturers represented at the TdF supplied their best bicycle design 

from their product ranges, the designs which best showcased all their knowledge and 

experience at this influential event 

Validation of the Charts requires the parameter values of these elite bicycles to be compared using the 

Design Charts and this section asks the following questions: 

• how do the latest designs measure up with regard to the handling predictions of the Design 

Charts? 

• what are the differences in performance between the different manufacturers’ designs? 

• how close to the Design Chart limits do these bicycles get? 

The Tour de France (TdF) is the pre-eminent international cycle race and is one of the three grand tours 

of road racing, the others being the Giro d’Italia (Tour of Italy) and the Vuelta a Espana (Tour of Spain) 

(108). These three races represent the pinnacle of international road cycle racing with the elite of 

professional cyclists competing. The 100th anniversary edition of the Tour de France road cycling race 

began on 29 July 2013, when 219 riders from 22 professional teams started from Porto-Vecchio in 

Corsica and it finished 23 days and 3400 km later in Paris with169 finishers. 

The Tour is legendary for its gruelling, unforgiving nature and the toll it takes on the cyclists. “I had 

always heard the Tour de France was hard, but that’s when I realised it required an unimaginable level 

of strength, toughness and suffering” a quote from Tyler Hamilton (multiple TdF rider) referring to a 

typical hard day in a recent Tour (109). 

The 2013 TdF race was won by Chris Froome riding for the Sky Procycling Team and he averaged 40.6 

km/hr over 21 days of racing (110). The group of TdF bicycles examined includes nearly all 30 models 

ridden by all 22 participating TdF teams. The bicycles and their respective teams are listed in Table 40. 

By examining these bicycles it should be possible to see what range of parameter values are considered 

desirable by the world’s best manufacturers and riders. In order to do this it was first necessary to obtain 

a complete list of specifications for each model. Most of this information was obtained directly from 

manufacturers’ official websites or specialist sector sources and where specifications were missing, it 

was possible by using other known dimensions to determine them either by calculation or by completing 

full size drawings. 

It is variously estimated that there are about 1 billion bicycles in use in the world and about 20% of 

these could be classified as road bicycles. So the total market is large at about 200 million road bicycles, 

the balance being mainly mountain bicycles and hybrid bicycles.  
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Table 40 Tour de France 2013 teams and bicycles 

No Bicycle 
manufacturer 

Bicycle model  1 TdF Team 2013 

1 BH G6 Ultegra D12 Sojasun 

2 BH Ultralight Ultegra D12 Sojasun 

3 Bianchi Oltre Vacansoleil-DCM 

4 BMC Teammachine SLR01 BMC Racing Team 

5 BMC Timemachine TMR01 BMC Racing Team 

6 Cannondale Supersix Evo Cannondale 

7 Canyon Aeroad CF 9.0 Katusha Team 

8 Canyon Ultimate CF SLX Katusha Team 

9 Cervelo R5 Garmin Sharp 

10 Cervelo RCA Garmin Sharp 

11 Cervelo S5 Garmin Sharp 

12 Colnago C59 Team Europcar 

13 Felt F2  2 Team Argos-Shimano 

14 Focus Bikes Izalco Team SL Carbon AG2r La Mondiale 

15 Giant Propel Belkin Pro Cycling 

16 Giant TCR Advanced Belkin Pro Cycling 

17 Lapierre Ultimate di2 FDJ.FR 

18 Lapierre Xelius Efi 800 FDJ.FR 

19 Look 695 Aerolight Cofidis Solutions Credits 

20 Merida Sculptura SL 909 Lampre-Merida 

21 Orbea Orca Euskatel-Euskadi 

22 Pinarello Dogma 65.1 Think 2 Sky Procycling, Movistar 

23 Ridley Helium SL Lotto-Belisol 

24 Ridley Noah FAST Lotto-Belisol 

25 Scott Addict SL Orica-Greenedge 

26 Scott Foil 40 Orica-Greenedge 

27 Specialized Tarmac SL 4 Astana Pro team, Team Saxo-Tinkoff 3 & Omega 

Pharm-Quick Step 

28 Specialized Venge Team Saxo-Tinkoff & Omega Pharm-Quick Step 

29 Trek Domane 6.9 Radioshack-Leopard 

30 Trek Madone 7.9 Radioshack-Leopard 

Note 1  includes all 30 models ridden by all 22 TdF teams, excepting Note 2 

Note 2  the Felt F1 model used is not available commercially and the only information available was for 

the Felt F2 model, which was said to be very similar to the F1 

Note 3  Saxo Tinkoff changed their name to Tinkoff Saxo in 2014 

Sources (108, 110) 
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It seems that manufacturers are releasing less information about their bicycles’ geometry than was 

common in the past. From a review of internet discussion forums this is frustrating to many riders (who 

wish to compare bicycles in detail before making their purchases) and it is hard to know why 

manufacturers are doing this. 

In many cases manufacturers supplied two different models of their top bicycles for each TdF team.  

• a very lightweight bicycle for the mountain stages, which makes it easier to climb as mass 

dominates 

• and another more aerodynamic model for the individual time trial stages (where lone riders race 

against the clock) were aerodynamic drag dominates 

• each rider had at least three individual machines allocated to them and the TdF “road train” 

included over 650 bicycles (costing close to 10 million NZD) as well as team cars and buses 

7.3.1. MEDIUM SIZED BICYCLES 

This first part of the analysis considers only the medium size TdF bicycles from each manufacturer, 

where medium size is defined as being the bicycle from each manufacturer as close as possible to a 

traditionally measured 550 mm frame. These medium sized bicycles were looked at first because they 

avoid the extreme parameter values of the large or small frames.  

As there is no universal sizing system for bicycles and also because not all manufacturers supply the 

same sizes across their range, it was necessary to use a variety of ways to select a suitable medium 

sized bicycle from each manufacturer. Where conventional frame size information is provided by 

manufacturers it is used directly in this section. Where it was unavailable, best endeavours have been 

made to use other information (such as stack and reach dimensions) to choose equivalent sized 

bicycles from the manufacturers’ ranges to allow a fair comparison to be made. The process used for 

selection is as follows: 

• where a manufacturer defined their frame sizes (FS) in the traditional manner, a 550 mm bicycle 

was chosen or the next closest size (either a 540 or 560 mm) 

• where stack dimensions only were given (Figure 13) a stack dimension as close as possible to 

565 mm was chosen 

• in a few remaining cases a best judgement decision was made after comparing a number of 

dimensions, to choose the frame closest to the medium size 

After selection of this medium sized group, consideration was given was to how well they aligned with 

the Design Charts. First each bicycle was plotted onto the Steering Geometry Design Chart and this is 

shown in Figure 98. The plotted crosses indicate the 30 medium sized Tour de France 2013 bicycles 

(from Table 72 of Appendix F) with the diamond marker indicating the benchmark bicycle.  
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It can be seen that these bicycles lie closely along a line centred along the 45 mm rake line and it is 

noted that: 

• they are spread plus/minus 5 mm each side of the 45 mm rake line 

• the minimum trail of 44.7 mm (with a HTA 73.5 degrees) is for the Orbea Orca model 

• the maximum trail of 63.4 mm (with a HTA 72.5 degrees) is for the BMC Teammachine 

• the iso-handling lines range from 75% for the Orbea Orca to 125% for the BMC Teammachine 

• meaning a 67% increase in the settling time of the front wheel after a sudden disturbance for 

the BMC bicycle compared to the Orbea 

• this variation would make these two bicycles handle quite differently but obviously a 67% 

difference has been found to be acceptable even at this elite level.  

Consideration of this information helps to further define the approximate design envelope that was 

sketched earlier in Figure 54 and it is concluded that it is acceptable to have variations of settling time 

plus/minus 25% compared to the benchmark bicycle (or between 75% and 125%) a 67% difference 

overall between the slowest and fastest settling time. Interestingly this design envelope overlaps major 

parts of three separate envelopes proposed independently by Wilson, Ballantine and Kossack (and 

previously shown in Figure 96) which is strong additional evidence that this region of the Chart produces 

successful designs (52, 74, 75). It should be noted that the boundaries of this design envelope are not 

precise at all and further work is required to really understand what happens to handling when the 

boundaries are exceeded. For example, it may be possible to identify which regions contain specific 

modes of instability, but at the moment this is not known. 
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Figure 98 Steering Geometry Design Chart, indicating the 30 medium size bicycles models from the 2013 TdF (675 mm wheel dia), reference numbers are in 

brackets, see bibliography 
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7.3.2. THE FULL BICYCLE SIZE RANGE 

The second part of this section considers how TdF bicycle geometries change across the entire size 

range. How do manufacturers treat the geometries of their smallest bicycles compared to their largest 

and are there any common trends evident amongst the manufacturers? 

Eight 2013 TdF manufacturers provided enough information for this type of analysis to be done and 

their information is listed in Appendix F and this includes ten model ranges and 69 individual bicycle 

products. The remaining eleven TdF manufacturers were not included as their published specifications 

lacked the necessary details. 

We will first consider the following three manufacturers in detail before considering all the models 

together. 

1. Pinarello (a past and current winner of the TdF) is of interest because of some unique geometry 

2. next Orbea is examined, also possessing an alternative and unique geometry 

3. and finally Cannondale is considered as being representative of the majority of manufacturers 

Pinarello is one of the most prestigious names in bicycle manufacturing and racing and was founded in 

1952 and is based at Treviso in northern Italy. Famous for its success in racing, it has had the winning 

bicycle in 11 TdF races since 1988, including the 2013 Tdf where in addition to 1st place, Pinarello 

secured the 2nd and 8th places. 

Pinarello has 13 sizes in its top of the line Dogma TdF model, with sizes ranging from 420 mm to 620 

mm. Compare this to other manufacturers, most of whom only have 6 to 9 sizes in their ranges. Pinarello 

obviously places great importance in getting as perfect fit as possible for each rider by providing the 

greatest possible choice in sizes. They are also the only manufacturer who increases the front wheel 

trail value as frame sizes get larger while decreasing the head tube angle. All others do the opposite, 

that is they decrease trail for their larger frames, see Figure 99 and Table 41. The reason why Pinarello 

does this is not known and this means that the Pinarello larger sizes will have longer settling times. This 

is interesting because larger frames inherently have longer settling times due to their larger b and M 

values. 

The second manufacturer Orbea is based in Mallabia in the Basque part of Spain and was founded in 

1840, originally as a rifle and gun producer. Orbea began manufacturing bicycles in the 1930s and is 

part of the famous Mondragón Corporation, a workers’ co-operative run on unusual ownership lines. 

Orbea bicycles have had great success in road, mountain bicycle and triathlon racing and have won 

world championships and Olympic medals. Orbea has a similar geometry to the other manufacturers, 

in that as the frames get larger, the head tube angles get larger, the seat tube angles smaller and the 

trail gets smaller. But Orbea is unusual because their rake gets larger with larger frames unlike all other 

manufacturers in this group, see Figure 99 and Table 41. 

The third manufacturer Cannondale is the American division of Canadian Dorel Industries and was 

founded in 1971. Its bicycles are manufactured in China and Taiwan but its headquarters are in 
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Connecticut USA. Cannondale was a pioneer in introducing aluminium bicycle frames to the market but 

now makes many carbon fibre bicycles as well. They have been participating at the top level of road 

racing for many years and have been very successful. Their approach to frame geometry is 

representative of the majority of manufacturers at the top level. As Cannondale frames get larger, head 

tube angles get larger, seat tube angles get smaller and trail decreases, also Cannondale uses one 

rake dimension across its size range (which is not uncommon amongst manufacturers) see Figure 99 

and Table 41.  

The Steering Geometry Design Chart in Figure 100 plots individual bicycle types from all eight 2013 

TdF manufacturers (covering ten model ranges) to clearly show overall how geometries vary with frame 

size as shown in Table 41. Note that because Specialized’s “Tarmac” and “Venge” models have nearly 

identical geometry they were only plotted once per frame size (not twice). 

The large range of TdF parameter and iso-handling values shown in Table 42 that quite a difference 

exists as to what sort of handling is considered desirable and different strategies employed amongst 

these manufacturers. The settling times vary from 75% to 160% compared to the benchmark bicycle 

and quite a range in the critical trail parameter is apparent (from 44.696 mm to 70.733mm). 

It is interesting to compare this TdF group with the historical practise (discussed earlier in this Chapter) 

as they have many similarities and this is shown in Table 43. Considering two critical measures (trail 

and settling times) the TdF have a slightly wider range, which is interesting. Perhaps it would be 

expected that for such elite bicycles a tighter range would have occurred and there would be more 

agreement amongst the manufacturers than is actually evident. 

The strategies of these TdF manufacturers are summarised in Table 41 and it can be seen that six 

manufacturers (Cannondale, Focus, Look, Specialised, Trek and Trek) have the same broad strategy, 

as their frames get larger the following changes occur: 

• head tube angles get steeper 

• seat tube angles get shallower 

• trails decrease 

• and rakes either don’t change or get smaller 

• most manufacturers use one rake size though Specialized and Orbea use two and Trek and 

Felt use four rake sizes 

• where rake does change it remains the same across several frame sizes and then jumps to the 

next value rather than increasing progressively 

• perhaps manufacturers prefer to keep only a few standard fork rakes and choose to vary the 

geometry by adjusting the head tube angle to achieve the desire outcome 

  

214 
 



 

The main exceptions to this strategy are Orbea and Pinarello 

• for Orbea the rake gets larger (not smaller) as frames sizes increase 

• Pinarello’s larger frames have larger trails, a significant difference 

• also Pinarello head tube angles get smaller and seat tube angles get larger the opposite of all 

the seven others 

 

 

Table 41 Manufacturers’ trends as frame sizes increase 

Manufacturer Head tube 
angle 

Seat tube angle Rake Trail 

1. Pinarello gets smaller gets larger no change in size gets larger 

2. Orbea larger smaller larger, 2 sizes smaller 

3. Cannondale larger smaller no change Gets smaller 

4. Focus Bikes larger smaller no change smaller 

5. Look larger smaller no change smaller 

6. Specialized larger smaller smaller, 2 sizes smaller 

7. Trek larger smaller or same smaller, 4 sizes smaller 

8. Felt larger smaller smaller, 4 sizes smaller 

exceptions to the general trends are underlined  
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Figure 99 TdF Pinarello, Orbea & Cannondale steering geometries for different sized bicycle frames, wheel dia. 675 mm
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Table 42 Summary of values for the smallest and largest frames from all manufacturers 

Parameter Smallest frames Largest frames 

Min value Max value Min value Max value 

Conventional Frame Size cm 42.00 49.00 58.00 62.00 

Head Tube Angle degrees 70.30 74.40 72.00 74.00 

Seat Tube Angle degrees 69.15 75.5 73.50 74.0 

Rake mm  43.0 53.0 40.0 53.0 

Trail mm 49.587 70.733 44.696 64.448 

Settling times % 85 160 75 135 

 

 

 

 

Table 43 Comparison of the TdF 2013 bicycles to historical practice 

Parameter TdF bicycles 
2013 

Historical Practice 
(Table 38) 

Comments 

Head tube angle 

degree 
70.3 to 74.4 71.5 to 76 Tdf have lower min & max values 

Seat Tube Angle 

degree 
69.15 to 75.5 71.5 to 76 Tdf have a lower min value 

Rake mm 40 to 53 40 to 67 Tdf have a lower max value 

Trail mm 44.7 to 70.7 33 to 60 Tdf have higher min & max values  

Settling times % 75% to 160% 50% to 110% Tdf have higher min & max values 
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Figure 100 Steering Geometry Design Chart TdF bicycles, all sizes from selected manufacturers (675 mm wheel dia.) 
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Table 44 Parameters values for smallest and largest frames 

Company & Model Parameters 

 Frame Size cm Head Tube Angle 
degrees 

Seat Tube Angle 
degrees 

Rake mm Trail mm 

 smallest largest smallest largest smallest largest smallest largest smallest largest 

Pinarello Dogma 65.1 Think 2 42.0 62.0 74.40 72.00 69.15 73.40 43.0 43.0 49.587 64.448 

Orbea Orca 48.0 60.0 71.50 73.50 74.75 73.20 43.0 53.0 67.583 44.696 

Cannondale Supersix Evo 48.0 62.0 71.50 73.50 74.50 72.00 45.0 45.0 65.474 53.039 

Focus Bikes Izalco Team SL 

Carbon 
48.0 60.0 71.25 73.50 74.80 73.50 46.0 46.0 66.836 52.737 

Look 695 Aerolight  1 47.0 58.0 71.00 73.00 74.80 73.00 43.0 43.0 70.733 58.219 

Specialized Tarmac SL 4 & 

Venge 
49.0 60.0 72.25 74.00 75.50 72.50 45.0 43.0 60.785 52.044 

Trek Domane 6.9 44.0 62.0 70.30 72.10 73.30 73.30 53.0 48.0 64.548 58.568 

Trek Madone 7.9 47.0 62.0 71.20 73.90 74.60 72.50 45.0 40.0 67.358 55.781 

Felt F2 48.0 60.0 71.00 74.00 74.50 73.00 52.0 43.0 61.214 52.044 

Sources see Appendix F 
 
Note 1  Look specifies FS using a letter system (XS to XXL) a dimension in cm is estimated from other information 
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7.4. WHEEL PROPERTIES DESIGN CHART 

Unfortunately it wasn’t possible to see how the TdF bicycles conform to this Chart which considers the 

effect of the wheel diameter and polar moment of inertia on handling. This is because the necessary 

information (exact wheel diameters and moments of inertia for individual bicycles) was not available. 

Therefore it was not possible to define a TdF design envelope on this Chart and this thesis is left with 

the experimental work outlined in Chapter Six and Appendix C. This considered a small number of 

experimentally measured wheels and used them to outline an approximate design envelope. More 

detailed work in this area needs to be done. 

7.5. FRAME GEOMETRY DESIGN CHART 

Next for consideration is the Frame Geometry Design Chart and because this Chart includes the rider 

influenced parameters of b and h it was necessary to look at individual riders as well as specific bicycles. 

It was decided to focus only on the top ten finishers from the 2013 TdF and to use their publically 

available physical characteristics and bicycle choices to define a design/rider envelope (their details are 

shown in Table 45 and Appendix F). Using this information it was possible to calculate the additional 

parameters required for plotting onto the Chart. These calculated results are shown in Table 46 and are 

based on the following assumptions: 

1. inseam = height x 0.461 (based on the average anthropomorphic relationship for males (48)) 

2. saddle height = inseam x 0.885 (based on competitive coaching advice (68)) 

3. bicycle frame size = inseam x 0.65 (based on competitive coaching advice (68)) 

4. the wheelbase and seat tube angle are taken from each manufacturer’s specifications after the 

frame size is found as per step 3 

5. mass height h is calculated as per Appendix B 

6. mass distance from the rear wheel b is calculated as per Appendix B 

From the Design Chart in Figure 101 it can be seen that these ten TdF riders are strongly clustered 

towards the bottom of the Chart and are bunched near the toe overlap limit line, with one rider (Joaquin 

Rodriguez Oliver) right on this boundary. This implies that riders and designers are choosing to use 

bicycles that have as short a wheelbase and as shallow a seat tube angle as it is physically possible 

for them to ride without encroaching across the toe overlap limit. These bicycles will tend to be lively in 

their handling as they are between the 90% and 105% iso-handling lines. 
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The limits for this group of riders and their bicycles are: 

• seat tube angles are between 72.5 to 74 degrees (which are similar to Hinault and Ballantine’s 

recommendations in Table 38 (68, 74)) 

• wheelbases range from 980 to 1000 mm (similar to Ballantine’s recommendation in Table 38 

(74)) 

• and the iso-handling lines are 97% plus/minus 7.5% (90% to 105%) 

This tight clustering is at least partly due to the similar physical characteristics of these riders who are 

all of average height or below and have very low male body masses, (the average height and mass is 

177 cm and 63 kg respectively, see Table 45). 

7.6. MASS AND ROLL INERTIA DESIGN CHART 

The final part of this section looks at the Mass and Roll Inertia Design Chart and once again by 

considering the top ten individual riders from the 2013 TdF it was possible to define a design/rider 

envelope. These ten riders were plotted using the assumptions and equations from Appendices B and 

F plus these two following assumptions. 

1. the moment of inertia of assembly B about the roll axis X (IXB) is given by: 

𝐼𝐼𝑋𝑋𝑋𝑋 = (𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)ℎ 2   

(51) 

note that h is the calculated value from Table 46 and this method of calculating the IXB (as Mh2) 

has been shown in Chapter Six to within 3.5 % of the actual value 

2. the bike has a mass of 6.8 kg which equals the minimum weight allowed by UCI regulations (3) 

The completed Chart in Figure 102 shows a tight clustering of riders and bicycles 

• centred  about the line h = 1100mm plus/minus 50mm 

• along this line’s axis the rider and bike mass range from 64 to 76 kg (this includes the 6.8 kg 

mass of the bicycle) 

• this also means the iso-handling lines range from 70 to 95% (80% plus15% minus 10%) which 

in comparison to some other results is a tight cluster 

• this again highlights the fact that the riders are of slight weight and this combined with a low h 

value (1100 mm) and a low bicycle weight (6.8 kg) gives an acceptable handling performance, 

which tends to be on the responsive side 
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Table 45 Tour de France 2013 top ten individual finishers (published details) 

TdF 2013 
position 

Rider surname First name Team Bicycle manufacturer Rider height mm Rider mass kg 

1 Froome Chris Sky Procycling Pinarello 1860 69.0 

2 Quintana Rojas Nairo Movistar Team Pinarello 1660 57.3 

3 Rodriguez Oliver Joaquin Katusha Team Canyon 1690 57.0 

4 Contador Alberto Team Saxo-Tinkoff Specialized 1760 62.0 

5 Kreuziger Roman Team Saxo-Tinkoff Specialized 1830 65.0 

6 Mollema Bauke Belkin Pro Cycling Giant 1810 64.0 

7 Fuglsang Jakob Astana Pro team Specialized 1820 70.0 

8 Valverde Alejandro Movistar Team Pinarello 1780 61.0 

9 Navarro Daniel Cofidos Solutions Credits Look 1750 61.0 

10 Talansky Andrew Garmin Sharp Cervelo 1750 63.0 

average 1771 62.93 

standard deviation 59.41 4.09 

Source (108) 
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Table 46 Tour de France 2013 top ten individual finishers (calculated details) 

TdF 
2013 

position 

Surname Calculated 
Inseam 

mm 

Calculated 
saddle 

height mm 

Calculated 
frame size 

cm 

Wheelbase 
mm 

STA 
degrees 

Calculated 
"h" mm 

Calculated 
"b" mm 

Calculated IYB 
kgm2 

1 Froome 857.5 758.9 55.7 988.2 73.00 1109.0 318.0 93.225 

2 Quintana Rojas 765.3 677.3 49.7 970.0 74.00 1020.0 337.0 66.690 

3 Rodriguez Oliver 779.1 689.5 50.6 971.0 73.50 1019.0 332.0 66.247 

4 Contador 811.4 718.1 52.7 970.0 74.00 1064.0 333.0 77.888 

5 Kreuziger 843.6 746.6 54.8 978.0 73.50 1096.0 324.0 86.247 

6 Mollema 834.4 738.5 54.2 986.0 72.50 1086.0 315.0 83.501 

7 Fuglsang 839.0 742.5 54.5 978.0 73.50 1092.0 325.0 91.581 

8 Valverde 820.6 726.2 53.3 978.1 73.70 1084.0 328.0 79.669 

9 Navarro 806.8 714.0 52.4 979.5 74.00 1060.0 334.0 76.180 

10 Talansky 806.8 714.0 52.4 972.0 73.00 1059.0 323.0 78.279 

average 816.43 722.54 53.1 977.1 73.47 1068.90 326.90 79.95 

standard deviation 27.39 24.24 1.78 6.12 0.48 29.12 6.82 8.65 

Sources (108, 111-116) 
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Figure 101 Frame Geometry Design Chart, indicating the 2013 TdF top ten individual finishers 
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Figure 102 Mass and Roll Inertia Design Chart, indicating the 2013 TdF top ten individual finishers 
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7.7. REMARKS 

The use of these Design Charts with their iso-handling lines takes the high level mathematical 

approach of the Simulink model and presents it in a way that is very easy to interpret. These 

Charts allow designers to explore the implications of different design choices with more 

confidence about the outcome than previously possible. All 11 parameters are important and can’t 

be considered in isolation and these Charts are a way of combining up to 4 parameters so they 

can be considered together and displaying them in graphical way that is easy to follow. 

This Chapter has shown that the bicycle manufacturers, as evidenced by historical practices and 

by elite TDF riders and bicycles, conform to the Charts and this indicates their relevance and 

usefulness. The results indicate appropriate design envelopes for designers to consider. The next 

Chapter will conclude this investigation and make overall comments about important findings. 
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8. CONCLUSIONS AND RECOMMENDATIONS 

8.1. INTRODUCTION 

This Chapter concludes the investigation into determining to what extent mathematical modelling 

can influence the dynamics of bicycle design and improve handling. Comments will be made 

about the development of a dynamic bicycle model and the implications for design. A new design 

methodology has been developed and that includes four new Design Charts with design 

envelopes that can guide bicycle designers. 

8.2. COMMENTS ON OBJECTIVES 

The main hypothesis of this investigation was to determine if mathematical modelling could 

influence bicycle design characteristics and improve handling performance. A key objective was 

to develop effective and valid design tools that bicycle designers could use to optimise their 

designs. In summary the objectives outlined in Chapter One have been met and this will now be 

discussed. 

8.2.1. REVIEW OF LITERATURE 

One early objective was to review the literature to see what was known and what remained to be 

done. The literature survey in Chapter Two examined the extensive research on bicycle dynamics 

and stability and that includes the development of equations of motion to describe bicycle motion. 

But the literature lacked information about how this research could be used to develop proper 

design methodologies. Designers lacked clear guidelines on how to optimise their designs and 

still relied on empirical observations and trial and error. Some of the studies on instability and the 

sensitivity of bicycles to design parameter changes were contradictory and needed resolving. 

Most of the evaluations of bicycle handling performance were subjective and were not quantified. 

So one objective was to develop a methodology that would define bicycle handling performance. 

From the literature survey the following main points were noted: 

• the literature included many examples of dynamic equations for bicycles but these were 

not well correlated to design parameters 

• the equations are complicated with some parameters being important while others much 

less so 

• to develop a suitable design methodology it is essential that only the critical parameters 

be considered 

• the dynamic analysis of motion had not been looked at in relation to bicycle design 
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8.2.2. DYNAMIC BICYCLE MODEL 

Chapter Three explained a dynamic bicycle model and described how it was developed and 

formulated and it justified the simplifications used to produce an appropriate model that could be 

solved but was still realistic enough to be relevant. The governing equations of motion and the 

resulting mathematical model of bicycle dynamics were described in more detail in Chapter Four 

and was solved using Simulink in a Matlab environment. This Simulink model included realistic 

steering geometry and could take the rider’s steering input and after applying appropriate physical 

parameters (such as head tube angle, mass, wheelbase, etc.) it could find the dynamic response 

in terms of yaw and roll. Therefore it is capable of simulating bicycle motion, particularly counter-

steering manoeuvres accurately predicting the dynamic response of different bicycles for a range 

of manoeuvres. It is adaptable and capable of analysing a wide range of designs. The model was 

validated by comparison with existing theory and then with an experimental investigation.  

This Simulink bicycle model was used specifically to: 

• look at the dynamic responses of the bicycle and see how they related to the rider 

• investigate which design parameters in the equations were critical and which others less 

so 

• determine the effectiveness of the model in examining bicycle performance 

• determine the importance and significance of each torque term in the equations of motion  

• examine the model’s stability from its characteristic equation 

8.2.3. SENSITIVITY STUDY 

In Chapter Five a sensitivity study was undertaken to determine the Simulink model’s sensitivity 

to changes in the key design parameters. This study was used to determine the effect each 

parameter had on the dynamic response in order to: 

• to correlate the design parameters to the dynamic equations for the bicycle 

• and to determine which parameters must be considered and which ones can be ignored 

so that the dynamic equations can be simplified while still maintaining a model that can 

accurately simulate bicycle behaviour 

• develop a useful and valid design methodology to guide designers 

• and to see if the bicycle could be optimised in terms of specific performance criteria 

Before this study commenced it was necessary to obtain realistic, accurate benchmark values for 

each design parameters and this was done using experimental and theoretical methods. It was 

interesting to note that much of the literature used unsuitable values for these parameters which 

typically were derived from low performance bicycles. 

 

From this study it was found that the most significant parameters were (in order of importance): 

228 
 



 

1. Head tube angle 

2. Wheel diameter 

3. Horizontal position of mass 

4. Moment of inertia of wheels (about the X, Y and Z axes) 

5. Mass 

6. Wheelbase 

7. Rake 

The following four parameters that were found to be much less significant (in order of 

significance): 

8. Height of mass 

9. Moment of inertia of rear assembly B about roll axis 

10. Moment of inertia of front assembly A about yaw axis 

11. Moment of inertia of front assembly A about roll axis 

8.2.4. DESIGN METHODOLOGY  

One major aim of this investigation was to develop suitable design tools that manufacturers and 

designers could use to guide their bicycle design decisions. Designers need design 

methodologies based on scientific theories as opposed to the current empirical methods. Chapter 

Six developed a suitable design methodology based on the mathematical analysis of Chapters 

Three to Five.  

The results of the model simulations have shown the importance of geometry on stability 

(particularly the head tube angles and rake dimensions). These results enabled practical design 

suggestions to be made that were eventually summarised in a series of bicycle design charts. But 

several design methodologies were first considered and evaluated to determine their suitability 

for practical use, and these included: criteria, tables, equations and charts. After consideration it 

was decided to recommend and develop the Design Chart methodology because of its clear 

advantages which include:  

• it is scientifically based and justified 

• it is easy to use and it allows a wide audience an understanding of the design process  

• several parameters can be concurrently considered, so interactions can be studied and 

a wide range of design decisions can be contemplated at once 

• its iso-handling lines quantify handling performance and are scientifically rigorous 

The four Design Charts proposed in Chapter Six cover the design areas of: 

1. Steering geometry (head tube angle, rake and trail) 

2. Wheel properties (wheel diameter and moment of inertia) 
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3. Frame geometry (vertical and longitudinal position of the mass and wheelbase) 

4. Mass and roil inertia (mass and moment of inertia of the rear assembly) 

These four Design Charts can be used together in any order or separately. The results from the 

simulation study was analysed in order to see what combinations of key parameter values gave 

optimum performance in terms of handling. Handling performance was quantified by using an 

impulse response test and the 2% settling time for each design combination was recorded and 

compared to a benchmark bicycle. From these tests it was possible to plot non dimensional iso-

handling line on the Charts.  

8.2.5. DESIGN METHODOLOGY VALIDATION 

Chapter Seven considered the validity the proposed Design Charts from Chapter Six. This was 

done by first considering historical design practice and secondly the elite group of riders and 

bicycles that competed in the 2013 Tour de France bicycle race. This Chapter showed that 

successful bicycle designs conformed well to the Charts and this confirms the Charts’ relevance 

and usefulness. Individual bicycle designs can be plotted onto the Charts to determine their 

acceptability. These results helped to define appropriate design envelopes in the Charts for use 

as guidelines.  

8.3. RECOMMENDATIONS FOR FUTURE STUDY 

While this thesis has been successful in analysing bicycle motion in relation to design, a number 

of future developments could be considered. 

• More simulation trials could be made using different combinations of geometry to add 

more detail to the Bicycle Design Charts. 

• A steering feedback control loop could be added to the computer simulation model to 

check for the influence of rider feedback on instability.  

• To date, little experimental work has been performed in the field of bicycle dynamics and 

this is a rich field to investigate. 

o experimental self-stability trials could further validate the model and the Design 

Charts.  

o dynamic examination of experimental bicycles close to the extremes of the charts 

(e.g. close to the edges of the design envelopes) could give more insights as to 

dynamic behaviour 

o experimental measurement of design parameters would provide more precision 

to the charts and the design envelopes 

• It would be interesting to obtain more detailed information about elite riders and bicycles. 

For example exact mass positions, wheel diameters and moments of inertia. This would 

make it possible to further define the rider/design envelopes on these Charts. 
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8.4. CONCLUSIONS 

This investigation has successfully developed a computer model for bicycle motion which can be 

used to study bicycle performance and stability. Performance was examined in terms of handling 

and the settling time after a disturbance. A main contribution of this research is the inclusion of 

realistic steering geometry and other parameters into the computer simulation model. Previous 

research used simplified bicycle models and inappropriate parameter values that yielded little 

insight into parameter selection and design. This has enabled important conclusions and 

recommendations to be made resulting in a new and original bicycle design methodology. The 

conclusions about bicycle performance have been summarised into four bicycle Design Charts 

which can be used to help design bicycles of good handling performance.  
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APPENDICES  
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APPENDIX A – SIMULINK MODEL 

In this Appendix more complete details of the Simulink model are given than was provided in 

Chapter Four.  

 

Table 47 Details of Simulink figures 

Purpose 
 

Figure 

Standard Simulink model without added elements Figure 103 

The Fajans Simulink model Figure 104 

Simplified Simulink model to reproduce Fajans results Figure 105 

Complex Simulink model, all elements added Figure 106 

Steering torque subassembly, easily adjustable for different 

amplitude and time lag values 
Figure 107 
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Figure 103 The standard Simulink model, without added elements for detailed analysis  
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Figure 104 The Fajans Simulink model, capable of basic dynamic modelling of a simple bicycle  
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Figure 105 A simplified Simulink model able to reproduce Fajans’ results  
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Figure 106 A more complex Simulink model, with all elements added for analysis of torque terms and sensitivity of parameters  
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Figure 107 Simulink steering torque subassembly, capable of being adjusted for different amplitude and time lag values 

 

 

Produces a ramp of 
any defined gain & 
delay (in this case 

 

Squares off the ramp at a 
constant value 

 

Produces a negative ramp of 
the same gain (in this case 

1.11) 

 

Repeats the first jerk input at 
any gain and transport value 

238 
 



 

APPENDIX B – FRAME GEOMETRY RELATIONSHIPS 

This Appendix defines the relationships between the wheelbase, mass position (as defined by h 

and b), seat tube angle and saddle height parameters and these relationships were extensively 

used in Chapters Six and Seven to describe the development and validation of the Frame 

Geometry Design Chart (see relevant details in Table 48 and Figure 108 through to Figure 113). 

 

B-1 FRAME GEOMETRY GENERAL EQUATIONS 

The frame geometry general equations and basic procedure are now described (see Figure 108 
and Table 48). 

 

First find distance “h1”which is from the rear wheel centre to point B  

ℎ1 = 𝑟𝑟1 cos 𝛾𝛾�  

(52) 

Then distance “L1”which is from the rear wheel centre to point A 

𝐿𝐿1 = ℎ1 + 𝑟𝑟
tan 𝛾𝛾�  

(53) 

Next find the height of the bottom bracket “h3” 

ℎ3 = 𝑟𝑟 − ℎ4 

(54) 

Find distance “O” from point A to the bottom bracket 

𝑂𝑂 = ℎ3
sin 𝛾𝛾�  

(55) 

Find distance “Q” from point A to point K 

𝑄𝑄 = 𝑂𝑂 + 𝑃𝑃 + 𝑗𝑗 

(56) 

Now we can find the angle “σ” Sigma 

tan Σ = 𝑘𝑘
𝑄𝑄�  

(57) 
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This allows distance “i” to be found (from the bottom bracket to centre of mass or COM) 

𝑖𝑖 = 𝑄𝑄 cosΣ 

(58) 

Find intermediate horizontal distance “L2” 

𝐿𝐿2 = 𝑖𝑖 cos(Σ + 𝛾𝛾) 

(59) 

This allows the important dimension “b” to be found (the horizontal distance from the centre of the 

rear wheel to the centre of mass) 

𝑏𝑏 = 𝐿𝐿1 − 𝐿𝐿2 

(60) 

Also equation (60) can be expanded out to: 

𝑏𝑏 = �
(𝑟𝑟1 cos 𝛾𝛾⁄ ) + 𝑟𝑟

tan 𝛾𝛾
� − �

� ℎ3
sin 𝛾𝛾� + 𝑃𝑃 + 𝑗𝑗

tan 𝛾𝛾
� cos(Σ + 𝛾𝛾) 

(61) 

Finally distance “h” can be found (the vertical distance from the ground to the centre of mass) 

ℎ = 𝑖𝑖 sin(Σ + 𝛾𝛾) 

(62) 

And equation (62) can be expanded out to 

ℎ = �
� ℎ3

sin 𝛾𝛾� + 𝑃𝑃 + 𝑗𝑗

cos Σ
� sin(Σ + 𝛾𝛾) 

(63) 

The frame size, wheelbase and saddle height relationships used in Chapter Six are summarised 

as follows: 

Saddle height “P” equals: 

𝑃𝑃 = 0.885 × 𝐼𝐼𝐼𝐼  

(41) 

Frame size “FS” equals: 

𝐹𝐹𝐹𝐹 = 0.65 × 𝐼𝐼𝐼𝐼  

(42) 
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Therefore: 

𝐼𝐼𝐼𝐼 = 𝑃𝑃
0.885�  

(43) 

Substitution gives: 

𝐹𝐹𝐹𝐹 = �0.65
0.885� � × 𝑃𝑃 

(44) 

𝐹𝐹𝐹𝐹 = 0.735 × 𝑃𝑃 

(45) 

From 2013 Tour de France road bicycles (Appendix F) the empirical relationship between frame 

size and wheelbase was found and giving the following line of best fit, see Figure 124 

𝐿𝐿 = 0.3077 × 𝐹𝐹𝐹𝐹 + 822.5 ± 20 

(39) 

For the benchmark bicycle which has a frame size of 550 mm this equation gives a wheelbase of 

991.74 mm (-/+ 20 or between 971.74 and 1011.74 mm) which is close to the actual benchmark 

value used of 1000 mm 

𝐿𝐿 = 0.3077 × 550 𝑚𝑚𝑚𝑚 + 822.5 𝑚𝑚𝑚𝑚 ± 20 𝑚𝑚𝑚𝑚 

𝐿𝐿 = 991.74 𝑚𝑚𝑚𝑚 ± 20 𝑚𝑚𝑚𝑚 

By substituting “P” from equation (45) the wheelbase equation becomes: 

𝐿𝐿 = 0.3077 × (0.735 × 𝑃𝑃) + 822.5 ± 20 

(46) 

Which becomes the final equation necessary to find the toe overlap boundary: 

𝐿𝐿 = 0.226 × 𝑃𝑃 + 822.5 ± 20 

(47) 
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B-2 TOE LIMIT LINE RELATIONSHIPS 

This section of the Appendix uses the relationships between the wheelbase, mass position (as 

defined by h and b), seat tube angle and saddle height (P) parameters and to plot the toe limit 

line onto the Frame Geometry Design Chart, where the following assumptions were used: 

1. Wheel diameter is 675 mm (2r) 

2. Bottom bracket drop is 67.5 mm (h4) 

3. Clearance between seat tube centreline and rear wheel is 32.5 mm  

4. Centreline of shoe is 130 mm from centreline of bicycle in a transverse direction “d2” (this 

was measured experimentally) 

5. Crank length is 165 mm “d2” (measured experimentally) 

6. Shoe extension from pedal spindle centreline is 120 mm”d3” (measured experimentally) 

7. Maximum permitted overlap between wheel and shoe is an allowance of 10 mm, an 

assumption based on rider preference (96) 

 

The process using these equations to find the toe overlap limit line on the Frame Geometry Design 

Chart was: 

 

First find vertical distance “h1” which is from the rear wheel centre to point B  

ℎ1 = 𝑟𝑟1 cos 𝛾𝛾�  

(52) 

Then find intermediate horizontal distance “L3” from the rear wheel centre to the bottom bracket 

𝐿𝐿3 = (ℎ1 + ℎ4) tan 𝛾𝛾 

(64) 

Now we can find the angle “α” alpha 

𝛼𝛼 = sin−1 ℎ2 𝑟𝑟�  

(65) 

Find intermediate radius “r2”, which allows for the vertical drop of the shoe below the centre of the 

front wheel 

𝑟𝑟2 = 𝑟𝑟 cos𝛼𝛼 

(66) 
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Now we can find the angle “σ” sigma, which is the maximum amount of turn of the front wheel 

before contact with the shoe 

σ = sin−1  𝑑𝑑1 𝑟𝑟2⁄  

(67) 

Find the second intermediate radius “r3” which corrects the front wheel radius for turning through 

angle sigma 

𝑟𝑟3 = 𝑑𝑑1 tan𝜎𝜎⁄  

(68) 

Next find the intermediate horizontal distance “L4” (the distance from the bottom bracket centre to 

the tip of the shoe) this is the space required for the shoe 

𝐿𝐿4 = 𝑑𝑑2 + 𝑑𝑑3 + 𝐿𝐿3 

(69) 

Finally find final horizontal distance “L5” (from the centre of the rear wheel to the edge of the front 

wheel when turned and allowing for the drop of the bottom bracket) this is the clearance gap 

available 

𝐿𝐿5 = 𝐿𝐿 − 𝑟𝑟3 

(70) 

Comments on the toe overlap 

• if L4 (the space required) equals L5 (the gap available) then the tip of the shoe just touches 

the front wheel when it is turned through angle sigma 

• if L4 < L5 then there is a gap between the wheel and the shoe 

• if L4 < L5 then a toe overlap occurs 

• some sources say an overlap of up to 10 mm (the allowance) is tolerable (96) 

• and the Frame Geometry Design Chart of Chapter Six assumes the allowance is 10 mm,  

• so the toe overlap limit line in the Frame Geometry Design Chart in Chapter Six is when: 

 

𝐿𝐿4 = 𝐿𝐿5 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

(71) 

𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 10 𝑚𝑚𝑚𝑚 
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Table 48 Definitions of the terms required to calculate the seat tube angle and saddle height 

Symbol Parameter Units 

A Intersection of seat tube centreline with ground  

b Distance horizontally from rear wheel hub to centre of mass mm 

B Intersection of seat tube centreline with vertical line passing 

through rear wheel hub centreline 

 

c Clearance distance between seat tube centreline and outside 

of rear wheel 

mm 

C Point on the ground directly below the rear wheel hub’s centre  

COM Centre of mass  

d1 Crank sideways offset mm 

d2 Crank length mm 

d3 Shoe extension, from the centreline of the pedal spindle mm 

D Intersection of ground and a vertical line tangential to rear of 

front wheel 

 

h Distance vertically from ground to centre of mass mm 

h1 Distance vertically from rear wheel hub to B mm 

h2 Distance vertically from ground to B mm 

h3 Distance vertically from ground to bottom bracket spindle 

centreline 

mm 

h4 Distance vertically from wheel hub to bottom bracket spindle 

centreline (bottom bracket drop) 

mm 

i Distance from A to COM mm 

j Distance from J to K measured parallel to seat tube mm 

k Distance from K to COM measured perpendicular to seat 

tube 

mm 

L Wheelbase mm 

L1 Distance horizontally from rear wheel hub to A mm 

L2 Horizontal distance from A to COM mm 

L3 Distance horizontally from rear wheel hub to centre of bottom 

bracket 

mm 

L4 Distance horizontally from C to D mm 
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L5 Wheel base less r3 mm 

O Distance from A to bottom bracket spindle centreline 

measured parallel to seat tube 

mm 

P Saddle height (from bottom bracket spindle centreline to the 

top of the seat) 

mm 

r Actual radius of rear wheel mm 

r1 Clearance radius of rear wheel mm 

r2 Adjusted radius of front wheel allowing for bottom bracket 

drop (h4) 

mm 

r3 Reduced radius of front wheel allowing for crank sideways 

offset (d1) and rotation of the wheel 

mm 

STA Seat tube angle also (also called γ gamma) degrees 

Σ Angle between seat tube centreline and line A to COM 

(SIGMA) 

degrees 
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Figure 108 Defining the terms required to calculate the seat tube angle and saddle height from basic dimensions 
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Figure 109 Toe overlap definitions and terms, used to define the toe overlap limit on the Frame 

Geometry Chart 
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Figure 110 Top view of bicycle showing toe overlap and associated dimensions 
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Other useful terms are shown in Figure 112 and Figure 113 

 

 

 

 

 

  

Figure 112 Bicycle term definitions and assemblies A and B 
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Figure 113 Defining the bicycle frame size, saddle height and seat tube angle 
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APPENDIX C – EXPERIMENTAL DETERMINATION OF PARAMETERS 

The bicycle model needs appropriate parameter values to be determined in order for realistic 

dynamic simulations to occur and also in order for the sensitivity study to be undertaken. This 

Appendix discusses how these bicycle parameters were determined from: experiments, 

calculations and the literature. All the parameters, their definitions and values (as used in the 

Simulink model) are listed in Table 11 and Table 12. 

The literature publishes a range of parameter values for actual bicycles but it is clear that many 

of the bicycles studied were not representative of modern high performance road bicycles. 

Typically the values are overly heavy and in the case of dimensions such as wheel diameters and 

wheelbases often inaccurate. Therefore it was necessary to apply more rigour to parameter 

determination in order to obtain the values necessary for this study.  

It was convenient in this Appendix to group the parameters into three categories: 

1. those associated with the rider (the human parameters) 

2. the wheel parameters 

3. and the parameters associated with rest of the bicycle, that is the bicycle main frame and 

the front forks 

A combination of suitable methodologies was used to determine suitable parameter values and 

they enabled the determination to be achieved with some confidence. The following three 

methods were used: 

1. experimental methods 

2. engineering calculations 

3. and evaluation of the literature 

The following Table 49 lists which methods were used for each individual parameter, while Table 

50 provides more details on the techniques and typical accuracy. 
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Table 49 Methodologies employed to find each bicycle parameter 

Symbol Parameter definition Units Methodologies used 

human parameters 
M  mass of rider kg • experimental method using scales 

• reference to literature 
b horizontal distance from the 

rear wheel hub to the centre 
of rider mass 

m • experimental method using suspension 
technique 

• calculations 
• reference to literature 

h height of centre of rider mass m • experimental method using suspension 
technique 

• calculations 
• reference to literature 

- Rider height, inseam length, 
torso length, leg and arm 
lengths 

m • experimental method using rule and tape 

IX moment of inertia of rider 
about X axis (roll) 

kgm2 • calculations 
• reference to literature 

IZ moment of inertia of rider 
about Z axis (yaw) 

kgm2 • calculations 
• reference to literature 

wheel parameters 
Iw moment of inertia of wheels 

about X, Y and Z axes 
kgm2 • experimental method using compound 

pendulum 
• calculations 
• reference to literature 

D diameter of the bicycle wheel m • experimental method using rule 
• reference to literature 

parameters associated with rest of the bicycle 
IXA moment of inertia of 

assembly A (excluding rider) 
about X axis (roll) 

kgm2 • experimental method using compound & bifilar 
pendulum 

• reference to literature 
IXB moment of inertia of 

assembly B (excluding rider) 
about X axis (roll) 

kgm2 • experimental method using compound & bifilar 
pendulum 

• calculations 
• reference to literature 

IZA moment of inertia of 
assembly A (excluding rider) 
about Z axis (yaw) 

kgm2 • experimental method using compound & bifilar 
pendulum 

• reference to literature 
L bicycle wheelbase m • experimental method using tape 

• reference to literature 
b horizontal distance from the 

rear wheel hub to the centre 
of mass of bicycle 

m • experimental method using suspension 
technique 

• calculations 
• reference to literature 

h height of centre of mass of 
bicycle 

m • experimental method using suspension 
technique 

• calculations 
• reference to literature 

M  mass of bicycle kg • experimental method using scales 
• reference to literature 

Φ head tube angle degrees • experimental method using angle protractor 
• reference to literature 

β  fork rake (or offset) m • experimental method using rule and straight 
edge 

• reference to literature 
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Table 50 Details of techniques and accuracy 

Symbol Parameter 
definition 

Units Methodologies used 
and comments 

Reading accuracy  1 

human parameters 
M rider mass kg experimental scales +/-100 g 

- distances m experimental rule and 
tape 

+/-2.5 mm 

I moment of 
inertia of rider 

kgm2 not attempted not known  2 

wheel parameters 
I moment of 

inertia of 
wheel 

kgm2 digital stopwatch and 
engineering tape and rule 

estimated as  
+/- 0.05 kgm2   3 

D diameter of 
the bicycle 
wheel 

m experimental rule +/-0.5 mm 

parameters associated with rest of the bicycle 
I moment of 

inertia of 
bicycle and 
forks 

kgm2 digital stopwatch and 
engineering tape and rule 

estimated as  
+/- 0.05 kgm2   3 

L bicycle 
wheelbase 

m engineering tape +/-0.5 mm 

b hor. dist. from 
rear wheel 
hub to COM 

m engineering tape +/-0.5 mm 

h vert. dist. from 
road hub to 
COM 

m engineering tape +/-0.5 mm 

M mass kg experimental scales +/-100 g 

Φ head tube 
angle 

degrees experimental angle 
protractor 

+/-0.5O 

β  fork rake (or 
offset) 

m experimental rule and 
straight edge 

+/-0.5 mm 

FS frame size m experimental rule +/-0.5 mm 

STA seat tube 
angle 

degrees experimental angle 
protractor 

+/-0.5O 

Note 1  engineering shop quality equipment was used but none of it was calibrated or 
certified, therefore the reading accuracy figures quoted are typical engineering shop values 
(117) 
Note 2  Hanavan estimated his results as generally within 10% of anthropomorphic studies 
(48) 

Note 3  based on measuring the dimensions, mass and time is within 1% of the true value 
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C-1 HUMAN PARAMETERS 

The model requires values for various human body parameters namely: mass, mass position and 

moments of inertia and though human subjects are simple to measure in terms of mass and 

dimensions such as height, they are more problematic with regards to measuring moments of 

inertia, particularly when a subject is in a cycling posture.  

Some unsuccessful attempts were made to experimentally measure human moments of inertia 

using the bifiliar pendulum method. But it was found to be surprisingly difficult to obtain even 

approximate results due to the practical difficulties encountered and no useful results were 

obtained. It proved to be physically difficult to effectively suspend a person in the available 

workshop space due to a lack of headroom. In addition the slight changes in posture of a non-

rigid human subject meant a wide variation in the recorded period was observed. Trying to sit still 

in a position that approximates the position of a seated rider on a bicycle was not easy. 

Rather than spend more time trying to solve these problems it was decided after reviewing the 

available literature to rely on the exhaustive and authoritative work of Hanavan and others (48, 

79). These studies have examined a large group of subjects with a wide range of body shapes 

and weights (covering the 5th, 25th, 50th, 75th and 95th percentile groups) and have collated detailed 

tables for body heights, other dimensions, masses, COM positions and moments of inertia for 

many standard human postures, including several closely approximating a rider on a bicycle. One 

limitation of this study was that the subject population was exclusively male, so more work needs 

to be done to obtain accurate parameter values for female riders. We note one simple method 

found in the literature was claimed to be reasonably accurate for a standing subject. This was the 

Brenière method for calculating moments of inertia and uses the following two equations, where 

m is the subject’s mass and H is the subject’s height (118): 

 

𝐼𝐼𝑋𝑋 = 0.0572𝑚𝑚𝐻𝐻2 

(72) 

𝐼𝐼𝑌𝑌 = 0.0533𝑚𝑚𝐻𝐻2 

(73) 

 

Unfortunately this is no help for determining the moment of inertia for a rider on a bicycle because 

these formulas apply to only a standing person. 
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From this evaluation of the literature the human body parameter values used in this study are 

outlined in Table 51 and the values of particular interest for the benchmark bicycle are: 

 

• It is assumed to be for Hanavan position no 18 (approximating a sitting rider, see Figure 

14) 

• The rider is a 95% male 

• Height when standing = 1.857 m 

• Total Mass = 91.05 kg 

• Vertical position of COM measured from top of head = 0.686 m (or 1.171 m from 

ground) 

• IX  lateral axis= 9.84 kgm2 

• IY  transverse axis= 11.34 kgm2 

• IZ  longitudinal axis= 3.84 kgm2 
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Table 51 Physical properties of the human body 

Description Height when 
standing 

m 

Total Mass 
kg 

Vertical 
position of 

COG 
measured 

from top of 
head 

IZ 
Longitudi- 

nal 
kgm^2 

IY 
transverse 

 
kgm2 

IX 
lateral 
kgm^2 

Comments 

Standing upright 
arms by side 1.8 80 0.900 1.8 20 20 from simple measurements and calculations 

Standing upright 
arms by side 1.8 80 0.900 n/a 13.82 14.83 from the Brenière equations (118) 

Standing upright 
arms by side n/a n/a n/a 1 – 1.75 10 - 15 10 - 15 from a range of values listed (78) 

Standing upright 
arms by side 1.755 73.59 0.801 0.91 11.62 12.23 50% of males, Hanavan position no 1 (48) 

Standing upright 
arms by side 1.796 80.27 0.815 1.09 13.23 13.95 75% of males, Hanavan position no 1 (48) 

Standing upright 
arms by side 1.857 91.05 0.838 1.41 16.19 17.11 95% of males, Hanavan position no 1 (48) 

Sitting in riding 
position 1.755 73.59 0.660 2.66 8.19 7.05 50% of males, Hanavan position no 18 (48) 

Sitting in riding 
position 1.796 80.27 0.671 3.08 9.30 8.04 75% of males, Hanavan position no 18 (48) 

Sitting in riding 
position 1.857 91.05 0.686 3.84 11.34 9.84 95% of males, Hanavan position no 18 (48) 

range 1.755–1.857 73.59-91.05 N/A 0.91-3.84 9.3-20 7.05-20  

for details of Hanavan positions no 1 & 18, see Figure 10 and Figure 14 
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C-2 WHEEL PARAMETERS 

Pendulum experimental methods can be used to find the centres of gravity, radii of gyration and 

moments of inertia of complex bodies such as wheels and bicycle frames and two methods were 

used in this Appendix: the compound and the bifilar pendulum methods. 

Using the compound pendulum method, the component (whether it was a wheel or tyre or bicycle 

frame) was freely suspended from a low friction fulcrum. The distance from the fulcrum 

suspension point to the component’s centre of mass was accurately measured. Next the 

component was gently displaced from its equilibrium position about a horizontal axis. Care was 

taken to keep this displacement in plane and below a 6 degree half angle (in order to ensure at 

least three significant figures of accuracy). After release the component swung back and forth 

with a periodic motion, see Figure 114. The time taken for a fixed number of oscillations was 

accurately measured and this procedure was repeated at least three times. The times were 

averaged and the period was simply calculated. As the distance from the suspension point to the 

component’s centre of mass and its mass was known, the radius of gyration and moment of inertia 

were easily calculated using equation (74) through to equation (76) (see also Table 52). 

The results of all experiments, calculations and literature reviews regarding wheel properties are 

shown in Table 53 through to Table 55. From these tables the following comments and 

conclusions are made: 

 

Experimental front wheel results 

• average mass = 1.27 kg 

• average IY = 0.0912 kgm2 

• average IX/Z = 0.0449 kgm2 

Experimental rear wheel results 

• average mass = 1.635 kg 

• average IY = 0.1017 kgm2 

• average IX/Z = 0.0500 kgm2 

 

Experimental tyre and tube results 

• average mass = 0.407 kg 

• average IY = 0.0515 kgm2 

• average IX/Z = 0.02575 kgm 

Literature values 

• range of mass = 1.5 – 3.92 kg 

• range of IY = 0.120 – 0.408 kgm2 

• range of IX/Z = 0.060 – 0.204 kgm2 
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Overall comments: 

1. The experimental results show that the rear wheels are slightly heavier than the front wheels 

with slightly higher moment of inertia, but a reasonable approximation of values for both front 

and rear wheels is: 

a. mass = 1.4 kg 

b. IY = 0.100 kgm2 

c. IX/Z = 0.050 kgm2 

2. The experimental values of tyres/tubes show that they contribution between 45 to 55% of the 

total moment of inertia of the complete wheel system (rim, spokes, hub, tyre and tube) 

3. The values from the literature are without exception not appropriate for modern high 

performance road bicycles with the values being far too high for masses and moments of 

inertia (from 20 to 400% too high) 

 

Compound pendulum equations 

𝑡𝑡 = 2𝜋𝜋��𝑘𝑘𝑌𝑌 + ℎ2
𝑔𝑔ℎ� � 

(74) 

𝑘𝑘𝑌𝑌 = ��𝑔𝑔ℎ𝑡𝑡
2

4𝜋𝜋2� � − ℎ2 

(75) 

𝐼𝐼𝑌𝑌 = 𝑀𝑀𝑘𝑘𝑌𝑌2 

(76) 

Table 52 terms used in compound pendulum equations 

Symbol Term definition Units 

t period of oscillation sec/cycle 

kY radius of gyration about Y axis m 

h distance from suspension point to centre of 
mass 

m 

M mass of body (wheel) kg 

I wheels moment of inertia of body (wheel) about Y axis kgm2 
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Figure 114 A compound pendulum setup to determine the bicycle wheel’s moment of inertia 
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Table 53 Front wheel experimental results for mass and moments of inertia 

Wheel type 
 

Tyre type Mass 
kg 

IY 
Pitch/rotational 

kgm^2 

IX/IZ 
yaw/roll 
kgm^2 

Comments 

700C x 23 wheel 700Cx23 1.220 0.0918 0.0473 I values from a simple 
engineering calculation 

Mavic SUP Open Pro 
Suntour hub Hutchinson 700Cx23 1.424 0.0871 0.0492 from compound pendulum 

experiments 

Mavic MA3 
Campagnola Chorus hub Hutchinson 700Cx23 1.440 0.1077 0.0520 

from compound pendulum 
experiments 

Mavic MA3 
Campagnola Chorus hub none 0.958 0.0571 0.0286  1 

from compound pendulum 
experiments 

Shimano 105 rim & hub Hutchinson 700Cx23 1.397 0.1095 0.0506 
from compound pendulum 
experiments 

ALTX 2800 
A class Hub Michelin Dynamic 700Cx23 1.162 0.0845 0.0421 

from compound pendulum 
experiments 

Airline Vuelta 
Shimano Ultegra hub Clement Ultra performance 700Cx23 1.292 0.1006 0.0445 

from compound pendulum 
experiments 

average 1.2704 0.0912 0.0449 
 

Note 1  this value was not found experimentally but was calculated from IX = ½ IY 

All wheels are 700C 
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Table 54 Rear wheel experimental results for mass and moments of inertia 

Wheel type 
 

Gear cluster Tyre type Mass 
kg 

IY 
kgm^2 

pitch/rotational 

IX/IZ 
kgm^2 
yaw/roll 

Comments 

Mavic Aksium Race rim & 
hub No gears Hutchinson 700Cx23 1.494 0.1020 0.0489 

from compound 
pendulum experiments 

Mavic SUP 
Campagnola Chorus hub 

10 speed 
Campagnola 
Chorus cluster 

Hutchinson 700Cx23 1.766 0.1017 0.0499 
from compound 
pendulum experiments 

Mavic SUP 
Shimano Ultegra hub No gears Clement Ultra 

performance 700Cx23 1.536 0.1014 0.0507  1 
from compound 
pendulum experiments 

Shimano 105 rim & hub 9 speed Shimano 
cluster Hutchinson 700Cx23 1.894 0.1054 0.0527 

from compound 
pendulum experiments 

ALTX 2800 
A class Hub No gears or skewer Hutchinson 700Cx23 1.487 0.0979 0.0477 

from compound 
pendulum experiments 

average 1.635 0.1017 0.0500 
 

Note 1  this value was not found experimentally but was calculated from IX = ½ IY 

All wheels are 700C 
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Table 55 Tyre and tube only experimental results for mass and moments of inertia 

Tyre type Tyre condition Tube type Total 
Mass kg 

IY 
kgm^2 

pitch/rotational 

Comments 

700Cx23 n/a 700Cx23 0.359 0.0459 I values from a simple 
calculation 

Hutchinson 
700Cx23 new Continental Race 

700Cx18/25 0.496 0.0522 
from compound pendulum 
experiments 

WTB Carmino 
700Cx23 worn Continental Race 

700Cx18/25 0.406 0.0421 
from compound pendulum 
experiments 

Maxxis Detonator 
700Cx23 worn Continental Race 

700Cx18/25 0.377 0.0401 
from compound pendulum 
experiments 

Maxxis Detonator 
700Cx23 worn Continental Race 

700Cx18/25 0.379 0.0427 
from compound pendulum 
experiments 

Michelin Select 
700Cx28 worn Continental Race 

700Cx18/25 0.601 0.0642 
from compound pendulum 
experiments 

Michelin World 
Tour 
700Cx32 

new Continental Race  
700Cx18/25 0.674 0.0733 

from compound pendulum 
experiments 

average 0.4703 0.0515  

these results are for the tyres and tubes only and all are 700C, it excludes the wheel rim, hub and spokes 
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Table 56 Literature results for wheel mass and moments of inertia 

Wheel type Radius 
 

m 

Total 
Mass 

kg 

IY 
pitch/rotational 

kgm^2 

IX/IZ 
yaw/roll 
kgm^2 

Comments Source 

front wheel 0.350 3.00 0.280 0.140 Front wheel carrying measuring 
apparatus which increases weight (14) 

front wheel 0.342 2.02 0.162 0.081 heavy and small diameter (44) 

front wheel 0.325 2.09 0.218 0.109 heavy and very small diameter (60) 

       

front & rear wheels 0.350 1.50 0.140 0.070 small diameter (13) 

front & rear wheels n/a 2.15 0.134 0.046 heavy (28) 

front & rear wheels n/a n/a 0.095 n/a  (12) 

       

rear wheel 0.300 2.00 0.120 0.060 very small diameter (14) 

rear wheel 0.342 3.12 0.156 0.078 heavy and small diameter (44) 

rear wheel 0.325 3.92 0.408 0.204 very heavy and very small diameter (60) 
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C-3 BICYCLE (FRAME AND FORK) PARAMETERS 

The last group of parameters to be found were those associated with the bicycle frame and front 

forks. The suspension method was used to find the centre of mass of a bicycle (with and without 

wheels). Using this method the bicycle to be examined was freely suspended so that it could hang 

below a suspension point and find a stable equilibrium position. A plumb bob was hung from the 

suspension point and was allowed to settle beside the bicycle and the line of the plumb bob was 

marked. The bicycle was then suspended from a different suspension point and the procedure 

repeated. The intersection of the two marked lines indicated the centre of mass position of the 

bicycle on a two dimensional plane, see Figure 115 through to Figure 117. Additional suspension 

points can be used to improve accuracy or provide COM positions in other planes. 

 

 

  

Suspensio
n point 

Plumb bob 

Freely 
suspended 

bicycle frame 

Figure 115 Bicycle frame suspended in the first position 
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Figure 116 Bicycle frame suspended in the second position 

Freely suspended 
bicycle frame in a 
second position 
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Centre of 
mass at the 
intersection 

point 

First 
marked 

vertical line 

Figure 117 The location of the centre of mass is indicated by the intersection point 
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The bifilar pendulum method was used to find the moment of inertia of the bicycle and uses a 

similar procedure to the compound pendulum method. This time though the component (the 

bicycle frame) was freely suspended from two light and equal length cables. The length of each 

cable and the horizontal position of the bicycle frame’s centre of gravity (previously found) relative 

to each cable was measured. The bicycle frame was gently displaced from its equilibrium position, 

this time about a vertical axis and again the displacement is in plane and below a 6 degree half 

angle. After release the bicycle frame swung backwards and forwards in a periodic motion and 

the time taken for a number of oscillations was accurately measured (again this was repeated at 

least three times and the results averaged and the period calculated). Having measured the length 

of each cable, the distance from each cable to the component’s centre of gravity and the mass, 

the radius of gyration and moment of inertia are calculated using equation (77) through to equation 

(79). 

 

𝑡𝑡 = 2𝜋𝜋�𝐼𝐼𝐼𝐼 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�  

(77) 

𝐼𝐼 = �
𝑡𝑡

2𝜋𝜋
�
2 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝐿𝐿
 

(78) 

𝐼𝐼 = 𝑀𝑀𝑘𝑘2 

(79) 

 

Table 57 Bifilar pendulum terms  

Symbol Term definition Units 

t Period of oscillation sec/cycle 

k Radius of gyration about a vertical axis (Z) m 

L Distance from suspension points to centre of 
mass (length of each cord) 

m 

a Horizontal distance from left hand cord to the 
body’s centre of mass 

m 

b Horizontal distance from right hand cord to the 
body’s centre of mass 

m 

M Mass of body kg 

I Moment of inertia of body about a vertical (Z) 
axis 

kgm2 

note it is often possible to arrange values a and b so they are equal and this simplifies 
the experiment 
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It can be seen from these tables (Table 58 and Table 59 ) that more work needs to be done to 

obtain a greater range of experimental and calculated results, but they are better values than 

those of the literature (Table 60). The values in this table are incomplete and as is common in the 

literature, the wheel values are based on non-competitive bicycles that have less relevance to 

this study. 

 

Freely suspended 
oscillating body 
(bicycle frame) 

One of two 
suspension points 

One of two equal 
length cords 

L 

b 

a 

Figure 118 The bifilar pendulum experimental apparatus 
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Table 58 Bike and frame experimental results for mass and moments of inertia 

Bike type  Total Mass 
kg 

Horizontal 
position of 

COM 
from road 

m 

Vertical position of 
COM 

from centre of rear 
wheel 

m 

IY 
pitch 

kgm^2 

IX 
roll 

kgm^2 

IZ 
yaw 

kgm^2 

Comments 

De Rosa 
Endurance 

57cm 
1999 9.0 0.500 0.482 1.9741 0.521 1.2928 Complete bike with wheels 

Trek 1500 57cm 
2004 8.5 0.475 0.489 2.4387 1.9566 1.5146 Complete bike with wheels 

Trek 1500 
(frame/fork 
only) 

57cm 
2004 6.0 0.513 0.505 1.3501 0.5324 0.8898 

Frame with fork, groupset, 
handlebars etc. but without both 
wheels 

average 7.83 0.496  0.492 1.9210 1.0033 1.2324  
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Table 59 Front fork engineering calculations results for mass and moments of inertia 

Bike type 
for fork, stem, 
Handlebars & 

wheel (assembly 
A) 

Total 
Mass 

kg 

Horizontal 
position 
of COM 
from road 
m 

Vertical 
position 
of COM 
from 
centre of 
front 
wheel 
m 

IY 
pitch 

kgm^2 

IX 
roll 

kgm^2 

IZ 
yaw 

kgm^2 

Comments 

Generic type 2.200 0.444 0.106 n/a 0.2250 0.0758 values from a simple calculation 

De Rosa 
Endurance 
57cm 1999 year 

1.693 0.4495 0.053 n/a 0.6554 0.3851 
calculated using experimentally measure values for 

wheels and forks (but not the handlebar and stem) 

average 1.9465 0.44675 0.0795 n/a 0.4402 0.2305  
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Table 60 Literature results for bicycles, frames & subassemblies for mass and moments of inertia 

Assembly Total 
Mass 

kg 

IY 
pitch 

kgm^2 

IX 
roll 

kgm^2 

IZ 
yaw 

kgm^2 

Comments Source 

Front fork assembly n/a n/a 0.84 0.079  (12) 

Front fork assembly 4.0 0.06 0.0546 0.0114 excessively heavy (14) 

Front fork assembly 2.0 3.88 3.28 0.566  (13) 

Front fork assembly 4.3 n/a 0.345 0.065 excessively heavy (44) 

Front fork assembly 4.04 0.384 0.421 0.041 excessively heavy (60) 

       
Rear assembly only 
(no wheel or rider) 11.05 1.934 0.407 1.558 excessively heavy (60) 

       

Rear assembly & rider n/a n/a 163.0 n/a about roll axis at road level 
not about axis through COM (12) 

Rear assembly & rider 87.0 n/a n/a n/a moderately heavy (13) 

Rear assembly & rider 85.0 11.0 9.20 2.80 moderately heavy (14) 

Rear assembly & rider 116 n/a 16.784 6.035 excessively heavy (44) 
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C-4 EXPERIMENTAL BICYCLE APPARATUS DETAILS 

 

The test bicycle was equipped with in-house custom designed and built measurement devices. 

These transducer devices measured the values of the front wheel yaw angle (σ) relative to a 

longitudinal axis and the roll angle (λ) of the bicycle relative to a vertical axis, see Figure 31 to 

Figure 33. A detailed list of the equipment used to conduct the experimental investigation is listed 

in Table 61. 

Table 61 Experimental equipment list 

Description Purpose Identification Details 

Healing road bicycle  to mount the recording equipment 

on and to perform the required 

manoeuvres 

Serial Number 31320838 

Infra Red Distance Sensor measures the roll angle Sharp Corporation model 

GP2D12  

Rotary electrical 

Potentiometer 

measures the yaw angle model Alpha 2C A25K 

 

Data logger  records and stores the data Custom made at AUT 

Personal Computer (PC) processes the recorded data AUT Serial Number 34268 

CodeVision AVR software a C Language programming 

software package that receives 

data and saves it as a CSV file 

Version 1.23.8  

MATLAB software converts the CSV file into  a 

suitable format for detailed 

mathematical analysis 

Version 6.5.0 Release 13 

 

Roll angle sensor 

The roll angle was measured using an infra-red (IR) distance measuring sensor mounted on a 

short bracket at the rear of the bicycle, see Figure 34 and Figure 35. As the bicycle rolls the IR 

sensor detects a change in its distance from the ground and this is used to calculate the actual 

roll angle.  

The IR sensor is manufactured by the Elecom Group of the Sharp Corporation of Japan and is a 

GP2D12 model. This IR sensor generates a voltage output inversely proportional to the distance 

measured (or to the distance of a detected object). The GP2D12 sensor is tolerant of interference 
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from ambient light and differences in the color of objects being detected. For example it is possible 

to detect a black wall in full sunlight. 

The output voltage signal from the CCD array will vary depending upon the amount of surface 

exposed to the IR beam. This voltage signal is used to determine the angle of reflection and 

therefore the distance to the surface. The angle of reflection can be found using the tan 

relationship and this indicates a non-linear relationship. 

The graph shown in Figure 119 is of the output voltage vs. distance for the IR distance sensor 

and clearly shows that the output within the manufacturer’s stated range of 10 cm - 80 cm, is not 

linear but is approximately logarithmic. It is necessary to calibrate and linearise the sensor’s 

output using either a lookup table or a parametric function. 

The graph also shows that once the sensor moves inside a certain distance range (i.e. below 10 

cm); the output drops rapidly and starts to repeat values matching long range readings. The 

solution to this problem is to attach the sensor to the bicycle so that it will always be at least 10 

cm above the ground even when the bicycle rolls to the maximum angle of 10o. From Figure 119 

it is clear that the best resolution for this sensor is when the distance measured ranges between 

10 to 20 mm. This is because within this range the slope of the graph is steepest and is 

approximately linear.  

 

Roll Angle Calculations 

The IR distance sensor is located on a cantilevered bracket in a fixed position, making it possible 

to calculate the roll angle. The transverse position of the sensor (distance N) is fixed at 150 mm 

from the bicycle’s centreline while the vertical position (distance K) is fixed at 140 mm above the 

ground. These positions have been calculated to give the best performance in terms of the IR 

sensor’s performance. As the bicycle rolls, the IR sensor measures the change in distance to the 

ground (distance M), see Figure 34 and Figure 35. The roll angle λ is calculated from the following 

formula: 







 −

=λ −

N
MK1tan  

(80) 

From the values in Table 62, the worst IR sensor resolution is calculated as 0.357 degree per 

digital output value, [5 degrees ÷  (158-144) = 0.357]. The graph shown in Figure 120 represents 

the relation between the roll angle and the digital output and shows an approximately linear 

relation between them. Note that the maximum roll angle required to be measured was set at +/-

10° due to the limitations of the IR sensor. 
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Figure 119 Output voltage vs. distance for the IR distance sensor (model GP2D12) 
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Table 62 IR sensor roll output values vs. roll angle 

Roll angle of the 
bicycle 

(degrees) 

Sensor distance M 
(mm) 

Analogue output 
voltage (V) 

Digital output  1 

-10o 113.55 2.1577 158 

-5o 127.00 1.9662 144 

0o 140.00 1.8140 133 

5o 153.12 1.6900 124 

10o 166.45 1.5830 116 

Note 1   using 8 bit resolution and converted from the analogue voltage 
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Figure 120 IR sensor roll angle vs. digital output 
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Memory Capacity Calculations 

The sensor outputs are converted into a digital format by the microcontroller and stored in an 

external SRAM (static random access memory) ready for further processing. Since the memory 

used in this project is a 32K x 8 bits SRAM, it contains 32768 (32 x 1024) memory positions or 

spaces to store information. Both the roll and yaw angle values come in an 8-bit format and are 

stored in two different memory positions, therefore two memory positions are required every time 

a sample is made. So the maximum possible number of samples will be, 32768 ÷2 = 16384 

samples.  

The sampling rate is set at once per 10 ms and therefore 100 samples are made every second. 

This means that the maximum memory capacity is: 16384 samples ÷100 samples/sec = 163.84 

seconds and this means the data logger can record a maximum of 2.73 minutes of experimental 

run time. 

 

Yaw angle sensor 

The yaw angle was measured using a rotary electrical potentiometer, of model type Alpha 2C A25K. 

The measurement principle employed by a potentiometer is that a change in resistance occurs 

as the steering stem is rotated making it possible to get an output proportional to the yaw angle 

of the front wheel. The potentiometer was directly attached to the steering stem using a simple 

rubber coupling, see Figure 33. The potentiometer (with a range of 0-20 MΩ, MegaOhms) was 

arranged so that a 10 MΩ output equals the zero degrees yaw angle. This places the straight ahead 

position of the handlebars exactly halfway within the operating range. Therefore an output signal of 

between 0-10 MΩ indicates left hand turns while a 10-20 MΩ signal indicates right hand turns.  

 

Sensor calibration 

When describing the performance of any measurement sensor, three main terms are frequently 

used:  

• accuracy i.e. how close the recorded value is to the true value 

• sensitivity i.e. the smallest input to which the sensor can respond 

• precision i.e. the agreement amongst a set of readings 

In order to define a particular sensor in relation to these terms it is necessary to calibrate the 

sensor. Calibration will measure each particular type of error for the sensors and allow corrective 

adjustments to be made. The standard procedure to calibrate a sensor is to adjust linearity at 50 

% of the full scale range. Next, the span is adjusted at 90 % of the full scale range and finally any 

zero error is corrected at 10 % of the scale. The span and zero errors continue to be corrected 

until no further adjustment is needed. See the glossary for a definition of these calibration terms.  
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Calibration Procedure 

A calibration record plotting the sensor’s reading against the true value should be prepared for 

the sensor over its working range. The roll angle and yaw angle sensors were calibrated to give 

error free results and the calibration apparatus that was used included: 

1. engineer’s level 

2. steel rule 

3. plumb bob 

4. assorted engineering clamps 

5. flexible tape measure, twenty metres long 

Both sensors were first checked to make sure their sign values (plus or minus) were correct. 

These can be easily changed by changing sign terms in the Matlab programme that converts the 

CSV file into a series of angular readings in degrees. 

The IR sensor for measuring roll was checked for zero error. The bicycle was held firmly upright 

in a level position that was checked by both a level and plumb bob. The data logger was switched 

on and a recording was made of the roll angle. This was downloaded to a PC and processed by 

Matlab to give a sensor roll angle reading in degrees. If the sensor did not read zero the position 

of the roll angle transducer was moved to correct the signal. For example if the reading was 

greater than zero the sensor was moved down, if it was less then zero it was moved up. As a final 

check a rider was placed on the bicycle to compress the tyres to their operating condition and the 

zero test repeated. The pressure in the tyres drops slowly over time and so the sensor’s height 

drops which means the zero calibration should be repeated frequently. 

When checking the zero error of the yaw angle sensor, the bicycle was wheeled along a marked 

straight line with the handlebars locked in a fixed position. The handlebar position was adjusted 

until the bicycle would follow the straight marked line for at least twenty metres. This indicated 

that the steering handlebar was locked in the zero degrees position. Once this was done the data 

logger was switched on and a recording made of the yaw angle. Again this was downloaded to a 

PC and processed by Matlab to give yaw angle sensor reading in degrees. If the reading was not 

equal to zero the position of the yaw angle transducer was rotated to correct the signal. For a 

positive yaw angle error the potentiometer was rotated clockwise (when viewed from above), for 

a negative reading it was rotated anticlockwise. 

Due to the difficulty experienced in adjusting both sensors, the zero error was not able to be 

eliminated. This experience suggests that a priority for any future investigations would be to 

improve the ability of this equipment to be easily and accurately calibrated.  

Records of both sensor’s calibration results were made, these tables compare recorded values 

to actual values and are shown in Table 63 and Table 64. 
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Table 63 Record of the calibration data for the Roll Angle Sensor 

Actual angle 

(degrees) 

Sensor recorded angle 

(degrees) 

-10 -9 

-5 -4 

0 +1 

+5 +6 

+10 +11 

The roll angle sensor zero error = +1 

 

 

 

Table 64 Record of the calibration data for the Yaw Angle Sensor 

Actual angle 

(degrees) 

Sensor recorded angle 

(degrees) 

-30 -25 

-20 -15 

-10 -5 

0 +5 

+10 +15 

+20 +25 

+30 +35 

The yaw angle sensor zero error = +50 
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C-5 REMARKS 

The easiest components to experimentally check are the wheels and the tyres by using the 

compound and bifilar pendulum methods which were successfully used to find values of radii of 

gyration and moments of inertia. Overall the experimental values agreed closely with most of the 

literature and with basic engineering calculations. The experiments were also very repeatable 

with period time readings often agreeing to within 0.05 seconds. 

However the experiments are moderately sensitive to measurement error of the period or mass 

or dimensions. For example a 1% error in measuring the period of a bifilar pendulum leads to 

about a 2% error in the value of the moment of inertia.  

It was also found that different manufacturers’ wheels, rims, spoke arrangements and tyres can 

make a considerable change to the moments of inertia of up to +/- 15%. This is significant because 

as mentioned in Chapter 6 the wheel’s moment of inertia about the rotational axis (IZF) was found 

to have some importance, a 1% increase decreases the settling time by a moderately significant 

2% as noted in Chapter Five. Interestingly tyre contributes about 50% a wheel’s overall moments 

of inertia. Also it was observed that even for the small selection considered in Table 55, different 

manufacturers’ tyres can be over 100 grams lighter than others tyres and this will make a 

subsequent 20% reduction in the moment of inertia. This was for 700 x 23 tyres and 700C X 18/25 

tubes only.  

Engineering calculations were possible on some components, namely wheel moments of inertia, 

front forks, bicycle frame and these calculations had close agreement to the experimental values 

which allows some confidence in advancing the selected values for the benchmark bicycle. 

Using the methods outlined in this Appendix it was possible to select realistic parameter values 

for the model including the moments of inertia for the main subassemblies of the bicycle model. 

These values are now presented in the benchmark bicycle in Table 13. In addition a more 

complete picture of the normal range of values has been obtained so that decisions about future 

variations to the model can be made with knowledge and confidence. 
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APPENDIX D –STABILITY ANALYSIS 

This Appendix details the characteristic equation, applies the Routh Stability Criterion and 

performs a frequency analysis of the bicycle system. 

 

D-1 CHARACTERISTIC EQUATION 

For completeness in this Chapter the characteristic equation of the bicycle system was found as 

its roots determine the character of the time response of the system and they can be used to 

understand the natural transient response of the system. By equating the denominator of the 

system’s transfer function equation to zero the characteristic equation is obtained. The 

characteristic equation’s roots (poles) along with the roots of the numerator polynomial (zeros) 

are the critical frequencies of the system.  

A necessary requirement for stability is for all of the roots of the characteristic equation to have 

negative real parts. So once the characteristic equation has been found the Routh Stability 

Criterion can be used to find out if it has any unstable roots without actually solving them and this 

is shown in this Appendix. 

To find the characteristic equation from the current three equations of motion ((14, (19 and (24) it 

is helpful to ignore any terms which are very small. 

The first equation considers yawing moments about the vertical Z axis for the front assembly A, 

equation (14) and has 8 terms, but which ones can be ignored? It was previously decided when 

evaluating the significance of each torque term in section 5.3 to consider excluding any term 

which has a maximum value of 10% or less of the maximum value of the largest term, unless 

there is a good reason to include it. The subsequent torque term analysis concluded that two 

terms could be ignored in (14: the Coriolis torque and the frame torque. This gave a simplified 

version of equation (14) with only 6 terms, see below: 

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔/𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 −𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

(81) 

Using coefficients E1, E2…En this becomes (see Table 62 for the En definitions) 

(𝐸𝐸1 𝐷𝐷2+𝐸𝐸5 𝐷𝐷 + E4 )𝜎𝜎 + (𝐸𝐸2 𝐷𝐷 + E3)𝜆𝜆 = 𝑇𝑇𝑆𝑆 

(82) 

The second equation considers rolling moments about the horizontal X axis for the front assembly 

A ((19) and has 8 terms, The torque term analysis concluded that two terms could be ignored: the 

Coriolis torque and the steer torque. The simplified equation (19) with 6 terms, becomes: 

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔/𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑇𝑇𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

(83) 
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Using coefficients F1, F2…Fn it becomes (see Table 62 for the Fn definitions) 

𝑇𝑇𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = F1 𝐷𝐷2𝜆𝜆 − 𝐹𝐹5𝜆𝜆 − 𝐹𝐹2 𝐷𝐷𝐷𝐷 − F6𝜎𝜎 

(84) 

Finally the third equation deals with rolling moments about the horizontal X axis for the rear 

assembly B, equation (24) and this third equation had 7 terms. The torque term analysis 

concluded that one term could be ignored, the Coriolis torque, resulting in a simplified equation 

(24) with 6 terms, see: 

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚 + 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 +𝑇𝑇𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  

(85) 

Using coefficients G1, G2…Gn it becomes (see Table 62 for the Gn definitions) 

𝑇𝑇𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −𝐺𝐺1 
𝐷𝐷2𝜆𝜆 + 𝐺𝐺2𝐷𝐷𝐷𝐷 + 𝐺𝐺3𝜎𝜎 + 𝐺𝐺4𝜆𝜆 

(86) 

A total of 5 torque terms have been removed, resulting in reducing the original 23 terms down to 

18 in these simplified equations. These simplified equations will now be used to find the 

characteristic equation of the bicycle.  

Equating equations (84) and (86) we get: 

F1 𝐷𝐷2𝜆𝜆 − 𝐹𝐹5𝜆𝜆 − 𝐹𝐹2 𝐷𝐷𝐷𝐷 − F6𝜎𝜎 = −𝐺𝐺1 𝐷𝐷
2𝜆𝜆 + 𝐺𝐺2𝐷𝐷𝐷𝐷 + 𝐺𝐺3𝜎𝜎 + 𝐺𝐺4𝜆𝜆 

(87) 

Using coefficients M1, M2…Mn(see also Table 66) this becomes: 

M1 𝐷𝐷2𝜆𝜆 − 𝑀𝑀2𝜆𝜆 = 𝑀𝑀3  𝐷𝐷 + 𝑀𝑀4𝜎𝜎 

(88) 

Which is rearranged to: 

(M1 𝐷𝐷2 − 𝑀𝑀2)𝜆𝜆 = (𝑀𝑀3𝐷𝐷 + 𝑀𝑀4)𝜎𝜎 

(89) 

And 

(𝑀𝑀3𝐷𝐷 + 𝑀𝑀4)𝜎𝜎 − (M1 𝐷𝐷2 − 𝑀𝑀2)𝜆𝜆 = 0  

(90)  
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Or 

(𝑀𝑀3𝐷𝐷 + 𝑀𝑀4)𝜎𝜎 + (−M1 𝐷𝐷2 + 𝑀𝑀2)𝜆𝜆 = 0  

(91) 

Considering equations (82) and (91) these can be rewritten as: 

𝑈𝑈1𝜎𝜎 + 𝑈𝑈2𝜆𝜆 = 𝑇𝑇𝑆𝑆 

(92) 

𝑉𝑉1𝜎𝜎 + 𝑉𝑉2𝜆𝜆 = 0 

(93) 

Converting this to a matrix form using coefficients Un and Vn (see Table 66) we get: 

𝜎𝜎 + 𝑈𝑈2𝜆𝜆 = 𝑇𝑇𝑆𝑆 

(94) 

𝑉𝑉1𝜎𝜎 + 𝑉𝑉2𝜆𝜆 = 0 

(95) 

�𝑈𝑈1 𝑈𝑈2
𝑉𝑉1 𝑉𝑉 2

� �𝜎𝜎𝜆𝜆� = �𝑇𝑇𝑆𝑆0 � 

(96) 

�
(𝐸𝐸1𝐷𝐷2 − 𝐸𝐸5𝐷𝐷 + 𝐸𝐸4) (𝐸𝐸2𝐷𝐷 + 𝐸𝐸3)

(𝑀𝑀3𝐷𝐷 + 𝑀𝑀4) (𝑀𝑀2 −𝑀𝑀1𝐷𝐷2) � �𝜎𝜎𝜆𝜆� = �𝑇𝑇𝑆𝑆0 � 

(97) 

𝜎𝜎 =
�𝑇𝑇𝑆𝑆 𝑈𝑈2

0 𝑉𝑉 2
�

Δ
=

𝑉𝑉2𝑇𝑇𝑆𝑆
𝑈𝑈1𝑉𝑉2 − 𝑉𝑉1𝑈𝑈2

 

(98) 

𝜆𝜆 =
�𝑈𝑈1 𝑇𝑇𝑆𝑆
𝑉𝑉1 0 �

Δ
=

𝑉𝑉1𝑇𝑇𝑆𝑆
𝑈𝑈1𝑉𝑉2 − 𝑉𝑉1𝑈𝑈2

 

(99) 
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The determinant of �𝑈𝑈1 𝑈𝑈2
𝑉𝑉1 𝑉𝑉 2

� is equal to: 

Δ = 𝑈𝑈1𝑉𝑉2 − 𝑉𝑉1𝑈𝑈2 

(100) 

 

And is the characteristic equation of the system 

Δ = (𝐸𝐸1𝐷𝐷2 + 𝐸𝐸5𝐷𝐷 + 𝐸𝐸4)(𝑀𝑀2 −𝑀𝑀1𝐷𝐷2) − (𝑀𝑀3𝐷𝐷 + 𝑀𝑀4)(𝐸𝐸2𝐷𝐷 + 𝐸𝐸3) 

(101) 

The values for En and Mn are given in Table 65. 

 

Also  

Δ = −𝐸𝐸1𝑀𝑀1𝐷𝐷4 − 𝐸𝐸5𝑀𝑀1𝐷𝐷3 + [(𝐸𝐸1𝑀𝑀2)− (𝐸𝐸4𝑀𝑀1)− (𝐸𝐸2𝑀𝑀3)]𝐷𝐷2

+ [(𝐸𝐸5𝑀𝑀2)− (𝐸𝐸3𝑀𝑀3)− (𝐸𝐸2𝑀𝑀4)]𝐷𝐷 + 𝐸𝐸4𝑀𝑀2 − 𝐸𝐸3𝑀𝑀4 

(102) 

 

And 

Δ = �𝐼𝐼𝑍𝑍𝑍𝑍𝐷𝐷2 +
Γ

sin𝜙𝜙
𝐷𝐷 + 𝑀𝑀

bv2

L2
Δ𝑒𝑒� ��𝑀𝑀𝑀𝑀

𝑏𝑏
𝐿𝐿

cos∅∆𝑒𝑒 + 𝑀𝑀𝑀𝑀ℎ� − (𝐼𝐼𝑋𝑋𝑋𝑋 + 𝐼𝐼𝑋𝑋𝑋𝑋)𝐷𝐷2�
 

− ��𝐼𝐼𝑌𝑌𝑌𝑌
𝑣𝑣
𝑟𝑟

sin∅ +
𝑀𝑀ℎ𝑏𝑏𝑏𝑏
𝐿𝐿

�𝐷𝐷

+ ��𝐼𝐼𝑌𝑌𝑌𝑌
𝑣𝑣2

𝑟𝑟𝑟𝑟
sin∅ +

𝑀𝑀𝑀𝑀𝑣𝑣2

𝐿𝐿2
cos∅∆𝑒𝑒� + �

𝑀𝑀ℎ𝑣𝑣2

𝐿𝐿
sin∅ + 𝐼𝐼𝑌𝑌𝑌𝑌

𝑣𝑣2

𝑟𝑟𝑟𝑟
sin∅��� �𝐼𝐼𝑌𝑌𝑌𝑌

𝑣𝑣
𝑟𝑟 sin𝜙𝜙

𝐷𝐷

+ 𝑀𝑀𝑀𝑀
𝑏𝑏
𝐿𝐿
Δ𝑒𝑒� 

(103) 
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Table 65 Coefficients for En, Fn and Gn 

Coefficient Equal to 

E1 𝐼𝐼𝑍𝑍𝑍𝑍 

E2 𝐼𝐼𝑌𝑌𝑌𝑌
𝑣𝑣

𝑟𝑟 sin𝜙𝜙
 

E3 𝑀𝑀𝑀𝑀
𝑏𝑏
𝐿𝐿
Δ𝑒𝑒 

E4 
𝑀𝑀

bv2

L2
Δ𝑒𝑒 

E5 Γ
sin𝜙𝜙

 

  

F1 𝐼𝐼𝑋𝑋𝑋𝑋 

F2 𝐼𝐼𝑌𝑌𝑌𝑌
𝑣𝑣
𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠 𝜙𝜙 

F3 
𝐼𝐼𝑌𝑌𝑌𝑌

𝑣𝑣2

𝑟𝑟𝑟𝑟
sin𝜙𝜙 

F4 Mbv2

L2
cos𝜙𝜙Δ𝑒𝑒 

F5 Mgb
L

cos𝜙𝜙 Δ𝑒𝑒 

F6 
𝐹𝐹3 + 𝐹𝐹4 = 𝐼𝐼𝑌𝑌𝑌𝑌

𝑣𝑣2

𝑟𝑟𝑟𝑟
sin𝜙𝜙 +

Mbv2

L2
cos𝜙𝜙Δ𝑒𝑒 

  

G1 𝐼𝐼𝑋𝑋𝑋𝑋 

G2 𝑀𝑀ℎ𝑏𝑏𝑏𝑏
𝐿𝐿

 

G3 𝑀𝑀ℎ𝑣𝑣2

𝐿𝐿
sin∅ + 𝐼𝐼𝑌𝑌𝑌𝑌

𝑣𝑣2

𝑟𝑟𝑟𝑟
sin∅ 

G4 𝑀𝑀𝑀𝑀ℎ 
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Table 66 Coefficients for Mn, Un and Vn 

Coefficient Equal to 

M1 = 𝐹𝐹1 + 𝐺𝐺1 = 𝐼𝐼𝑋𝑋𝑋𝑋 + 𝐼𝐼𝑋𝑋𝑋𝑋 

M2 = 𝐹𝐹5 + 𝐺𝐺4 = 𝑀𝑀𝑀𝑀
𝑏𝑏
𝐿𝐿

cos∅∆𝑒𝑒 + 𝑀𝑀𝑀𝑀ℎ 

M3 = 𝐹𝐹2 + 𝐺𝐺2 = 𝐼𝐼𝑌𝑌𝑌𝑌
𝑣𝑣
𝑟𝑟

sin∅ +
𝑀𝑀ℎ𝑏𝑏𝑏𝑏
𝐿𝐿

 

M4 
= 𝐹𝐹6 + 𝐺𝐺3 = �𝐼𝐼𝑌𝑌𝑌𝑌

𝑣𝑣2

𝑟𝑟𝑟𝑟
sin∅ +

𝑀𝑀𝑀𝑀𝑣𝑣2

𝐿𝐿2
cos∅∆𝑒𝑒� + �

𝑀𝑀ℎ𝑣𝑣2

𝐿𝐿
sin∅ + 𝐼𝐼𝑌𝑌𝑌𝑌

𝑣𝑣2

𝑟𝑟𝑟𝑟
sin∅� 

  

U1 = (𝐸𝐸1𝐷𝐷2 + 𝐸𝐸5𝐷𝐷 + 𝐸𝐸4) 

U1 
= �𝐼𝐼𝑍𝑍𝑍𝑍𝐷𝐷2 +

Γ
sin𝜙𝜙

𝐷𝐷 + 𝑀𝑀
bv2

L2
Δ𝑒𝑒� 

U2 = (𝐸𝐸2𝐷𝐷 + 𝐸𝐸3) 

U2 = �𝐼𝐼𝑌𝑌𝑌𝑌
𝑣𝑣

𝑟𝑟 sin𝜙𝜙
𝐷𝐷 + 𝑀𝑀𝑀𝑀

𝑏𝑏
𝐿𝐿
Δ𝑒𝑒� 

  

V1 = (𝑀𝑀3𝐷𝐷 + 𝑀𝑀4) 

V1 
= ��𝐼𝐼𝑌𝑌𝑌𝑌

𝑣𝑣
𝑟𝑟

sin𝜙𝜙 +
𝑀𝑀ℎ𝑏𝑏𝑏𝑏
𝐿𝐿

�𝐷𝐷 + �𝐼𝐼𝑌𝑌𝑌𝑌
𝑣𝑣2

𝑟𝑟𝑟𝑟
sin∅ +

𝑀𝑀𝑀𝑀𝑣𝑣2

𝐿𝐿2
cos∅∆𝑒𝑒�

+ �
𝑀𝑀ℎ𝑣𝑣2

𝐿𝐿
sin∅ + 𝐼𝐼𝑌𝑌𝑌𝑌

𝑣𝑣2

𝑟𝑟𝑟𝑟
sin∅�� 

V2 = (−𝑀𝑀1𝐷𝐷2 + 𝑀𝑀2) = (𝑀𝑀2 −𝑀𝑀1𝐷𝐷2) 

V2 = �𝑀𝑀𝑀𝑀
𝑏𝑏
𝐿𝐿

cos∅∆𝑒𝑒 + 𝑀𝑀𝑀𝑀ℎ − (𝐼𝐼𝑋𝑋𝑋𝑋 + 𝐼𝐼𝑋𝑋𝑋𝑋)𝐷𝐷2� 
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D-2 ROUTH STABILITY CRITERION 

Once the characteristic equation was obtained the Routh Stability Criterion was used to find out 

if any unstable roots exist without actually solving them. For stability the coefficients in the first 

column of the Routh array must all be positive. If any coefficients are negative or zero then the 

system is not stable. The Routh Stability Criterion is now applied to this characteristic equation 

by using the parameters values from our benchmark bicycle (see Table 13). 

It is interesting to see that results from the Routh Stability Criterion confirms many of the results 

of the sensitivity study in Section 5.4. For example it shows that the bicycle stability is most 

sensitive to changes in the parameters of head tube angle and damping, less sensitive to wheel 

diameter and velocity changes and not sensitive to changes of mass, mass position (both vertical 

and horizontal) and wheelbase.  

 

Routh Stability Criterion Notation 

The notation used is taken from Ogata and is now described (88). The characteristic equation is 

currently in the form: 

Δ = −𝐸𝐸1𝑀𝑀1𝐷𝐷4 − 𝐸𝐸5𝑀𝑀1𝐷𝐷3 + [(𝐸𝐸1𝑀𝑀2) − (𝐸𝐸4𝑀𝑀1) − (𝐸𝐸2𝑀𝑀3)]𝐷𝐷2 + [(𝐸𝐸5𝑀𝑀2) − (𝐸𝐸3𝑀𝑀3) − (𝐸𝐸2𝑀𝑀4)]𝐷𝐷

+ 𝐸𝐸4𝑀𝑀2 − 𝐸𝐸3𝑀𝑀4 

(102) 

This is rearranged into the following format. 

 

0 = 𝑎𝑎0𝑠𝑠𝑛𝑛 + 𝑎𝑎1𝑠𝑠𝑛𝑛−1 + 𝑎𝑎2𝑠𝑠𝑛𝑛−2 + ⋯𝑎𝑎𝑛𝑛 

 

The coefficients of this polynomial are arranged in rows and columns in the following pattern 

conforming to Ogata’s notation. 

 

sn a0 a2 a4 a6 

sn-1 a1 a3 a5 a7 

sn-2 b1 b2 b3 b4 

sn-3 c1 c2 c3 c4 

sn-4 d1 d2 d3 d4 
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The coefficients b1, b2, b3...bn can be found as follows: 

 

𝑏𝑏1 =
𝑎𝑎1𝑎𝑎2 − 𝑎𝑎0𝑎𝑎3

𝑎𝑎1
 

 

𝑏𝑏2 =
𝑎𝑎1𝑎𝑎4 − 𝑎𝑎0𝑎𝑎5

𝑎𝑎1
 

 

𝑏𝑏3 =
𝑎𝑎1𝑎𝑎6 − 𝑎𝑎0𝑎𝑎7

𝑎𝑎1
 

 

Coefficients c1, c2, c3...cn are: 

 

𝑐𝑐1 =
𝑏𝑏1𝑎𝑎3 − 𝑎𝑎1𝑏𝑏2

𝑏𝑏1
 

𝑐𝑐2 =
𝑏𝑏1𝑎𝑎5 − 𝑎𝑎1𝑏𝑏3

𝑏𝑏1
 

𝑐𝑐3 =
𝑏𝑏1𝑎𝑎2 − 𝑎𝑎1𝑏𝑏4

𝑏𝑏1
 

And: 

𝑑𝑑1 =
𝑐𝑐1𝑏𝑏2 − 𝑏𝑏1𝑐𝑐2

𝑐𝑐1
 

𝑑𝑑2 =
𝑐𝑐1𝑏𝑏3 − 𝑏𝑏1𝑐𝑐3

𝑐𝑐1
 

And so on as required until all necessary coefficients have been found. 
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Using the benchmark parameter values for the bicycle as given in Table 13 the Routh Stability 

Criterion gives the array of coefficients in Table 67. 

 

Table 67 Routh array of coefficients 

 ao a2 a4 a6 

s4 -8.0 -7215.2 -55200.3 0.0 

 a1 a3 a5 a7 

s3 -68.1 -11073.3 0.0 0.0 

 b1 b2 b3  

s2 -5911.9 -55200.3 0.0  

 c1 c2 c3  

s1 -10437.4 0.0   

 d1 d2   

s0 -55200.3 0.0   

 

From the first column it can be seen that there are no sign changes so the bicycle is stable (self-

stable) under these benchmark conditions.  

But if the velocity falls from the benchmark value of 6.944 m/s (about 25 km/hr) to 2.2 m/s (7.92 

km/hr) the array changes to Table 68, there are two sign changes in the left-hand column 

indicating that the bicycle has become unstable. 

What about the effect of other key parameters such as: head tube angle, wheel diameter and 

wheel moment of inertia? By changing each one of these parameters (one at a time) until a sign 

change occurs we can see how sensitive the bicycle is to these parameters. It is interesting to 

compare this to the sensitivity study completed in Chapter Six and note the obvious similarities. 

The Routh Stability Criterion shows that the bicycle is sensitive to changes in head tube angle 

and rake, somewhat sensitive to wheel diameter and not sensitive to the other parameters. A full 

summary of the parameter changes required to make the bicycle unstable (according to Routh) 

are shown in Table 69. 
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Table 68 Routh array of coefficients, showing effect of a reduction in speed from 6.944 

m/s (about 25 km/hr) to 2.2 m/s (7.92 km/hr) 

 ao a2 a4 a6 

s4 -8.0 -661.8 -5136.8 0.0 

 a1 a3 a5 a7 

s3 -68.1 -588.1 0.0 0.0 

 b1 b2 b3  

s2 -592.6 -5136.8 0.0  

 c1 c2 c3  

s1 2.3 0.0   

 d1 d2   

s0 -5136.8 0.0   

 

Table 69 Summary of parameter changes required to cause instability, as indicated by 

the Routh Stability Criterion 

Parameter BM value Value when 
sign changes 

comments 

Head tube angle 73.0 O 81.5 o possible to be achieved 

Wheel diameter 0.675 m 0.37 m very small but possible 

Wheel moment of 

inertia Y 
0.10 kgm2 1.04 kgm2 not possible 

Mass 80.0 kg 1495.0 kg not possible 

Wheelbase 1.000 m 12.000 m not possible 

Rake 0.045 m 0.0938 m possible  1 

Height of mass 1.100 m 8.150 m not possible 

MOI XB 100 kgm2 13.5 kgm2 very small 

MOI ZA 0,08 kgm2 0.425 kgm2 large but possible 

MOI XA 0.2 kgm2 - no value caused instability 

Note 1  this rake produces a trail of 0.512 mm when HTA is 73 degrees 
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D-3 FREQUENCY ANALYSIS 

The computer model can also be evaluated using Simulink to determine the system 

characteristics using a detailed frequency analysis. The enabled the response of the output yaw 

angle to a steering torque input across a range of frequencies to be plotted on Bode diagrams of 

magnitude and phase and this is shown in Figure 122. 

The Bode diagram shows the typical -20dB/decade and -40dB/decade slopes of a 2nd order 

transfer function. A resonance peak of about 5 Hz is observed which is similar to the empirical 

observations of this researcher in the field where on two occasions very strong resonant 

oscillations of the front wheel occurred at speeds of 45 km/hr with a frequency in the order of 5 

cycles per second. Note that when the wheel circumference for a 675 mm diameter is divided by 

a speed of 12.5 m/s (45 km/hr) this gives a frequency of 5.894 Hz. So any excitation of the rotating 

front wheel at a speed of 45 km/hr would be close to the right frequency to cause a resonance 

condition. 

At lower frequencies (below 5 Hz) the 1st order part of the transfer equation dominates, while 

above the resonant frequency the 2nd order portion dominates. The time constant from the 1st 

order part of the transfer function is at approximately 66.67 seconds/cycle (1/T = 1.5 x 10-2 Hz). 

Finally the phase change diagram shows the expected phase shifts as the frequency changes. 
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Figure 122 Bode diagrams of magnitude and phase for the benchmark bicycle Simulink model 

1/time delay = 1.5X10-2 Hz 

Natural frequency 
= 5 Hz 
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APPENDIX E – WHEEL AND TYRE MANUFACTURER SPECIFICATIONS 

This Appendix summarises manufacturers’ specifications for road bicycle tyres based on the 700C 

standard wheel size. The specifications are used to establish relationships between the tyre width and 

actual outside wheel diameter (as opposed to the nominal diameter). 

 

Table 70 Typical road bicycle tyre properties 

ISO/ETRTO 
Code  1 

Tyre width 
mm 

D  2 
actual wheel diameter mm DN/DBM  3 

700 X 18C 18 658.90 0.976 

700 X 19C 19 662.09 0.981 

700 X 20C 20 666.22 0.987 

700 X 23C 23 671.79 0.995 

700 X 25C 25 674.82 1.000 

700 X 28C 28 682.14 1.011 

700 X 30C 30 685.32 1.015 

700 X 32C 32 688.35 1.020 

700 X 35C 35 692.80 1.026 

700 X 37C 37 700.28 1.037 

700 X 38C 38 693.92 1.028 

700 X 40C 40 703.47 1.042 

Note 1  ETRTO (European Tyre and Rim Technical Organisation) code = tyre size 

Note 2  actual diameter varies from the nominal 700mm value and actual BM wheel diameter  

Note 3  is the variation from the 675 mm benchmark wheel where DN = actual wheel diameter for 

indicated ETRTO code size and DBM = actual diameter for benchmark wheel 

These are the averaged results from two manufacturers (64, 81) 
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Figure 123 Relationship of tyre width and actual wheel diameter for 700C wheels, from  

Table 70 
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APPENDIX F – TOUR DE FRANCE 2013 BICYCLE SPECIFICATIONS 

 

This Appendix lists all the information from the 2013 Tour de France used in this Thesis including: the 

teams, the top 10 finishers and their bicycle models including their specifications. This information was 

made use of in Chapter Seven which validated the Design Charts described in Chapter Six. 

The Tour de France (TdF) is the pre-eminent international cycle race and is one of the three grand tours 

of road racing, the others being the Giro d’Italia (Tour of Italy) and the Vuelta a Espana (Tour of Spain) 

(108). These three races represent the pinnacle of international road cycle racing with the elite of 

professional cyclists competing. The 100th anniversary edition of the Tour de France road cycling race 

began on 29 July 2013, when 219 riders from 22 professional teams started from Porto-Vecchio in 

Corsica and it finished 23 days and 3400 km later in Paris with169 finishers. 

The 2013 TdF race was won by Chris Froome riding for the Sky Procycling Team and he averaged 40.6 

km/hr over 21 days of racing (110). The group of TdF bicycles examined includes nearly all 30 models 

ridden by all 22 participating TdF teams. The bicycles and their respective teams are listed in Table 71. 

By examining these bicycles it should be possible to see what range of parameter values are considered 

desirable by the world’s best manufacturers and riders. In order to do this it was first necessary to obtain 

a complete list of specifications for each model. Most of this information was obtained directly from 

manufacturers’ official websites or specialist sector sources and where specifications were missing, it 

was possible by using other known dimensions to determine them either by calculation or by completing 

full size drawings. 
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Table 71 Tour de France 2013 Teams and bicycles 

No Manufacturer Type TdF Team 

1 BH G6 Ultegra D12 Sojasun 

2 BH Ultralight Ultegra D12 Sojasun 

3 Bianchi Oltre Vacansoleil-DCM 

4 BMC Teammachine SLR01 BMC Racing Team 

5 BMC Timemachine TMR01 BMC Racing Team 

6 Cannondale Supersix Evo Cannondale 

7 Canyon Aeroad CF 9.0 Katusha Team 

8 Canyon Ultimate CF SLX Katusha Team 

9 Cervelo R5 Garmin Sharp 

10 Cervelo RCA Garmin Sharp 

11 Cervelo S5 Garmin Sharp 

12 Colnago C59 Team Europcar 

13 Felt F2  1 Team Argos-Shimano 

14 Focus Bikes Izalco Team SL Carbon AG2r La Mondiale 

15 Giant Propel Belkin Pro Cycling 

16 Giant TCR Advanced Belkin Pro Cycling 

17 Lapierre Ultimate di2 FDJ.FR 

18 Lapierre Xelius Efi 800 FDJ.FR 

19 Look 695 Aerolight Cofidis Solutions Credits 

20 Merida Sculptura SL 909 Lampre-Merida 

21 Orbea Orca Euskatel-Euskadi 

22 Pinarello Dogma 65.1 Think 2 Sky Procycling, Movistar 

23 Ridley Helium SL Lotto-Belisol 

24 Ridley Noah FAST Lotto-Belisol 

25 Scott Addict SL Orica-Greenedge 

26 Scott Foil 40 Orica-Greenedge 

27 Specialized Tarmac SL 4 Astana Pro team, Team Saxo-Tinkoff & Omega 
Pharm-Quick Step 

28 Specialized Venge Team Saxo-Tinkoff & Omega Pharm-Quick Step 

29 Trek Domane 6.9 Radioshack-Leopard 

30 Trek Madone 7.9 Radioshack-Leopard 

Note 1  the Felt F1 model used in the Tour is not available commercially and the only information 
available was for the Felt F2 model, said to be very similar to the F1 

includes all 31 models ridden by all 22 TdF teams, excepting for Note 1 

Sources (108, 110) 
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Table 72 Tour de France bicycles of 2013 medium sized frames only (nominal FS 55 cm) 
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1 BH G6 Ultegra D12 990 48 73 72.5 675   549 52.99 MD size 

2 BH Ultralight Ultegra D12 985 50 73 72.5 675   549 50.90 MD size 

3 Bianchi Oltre 984 45 72.5 73.5 675 55   59.23 55 FS 

4 BMC Teammachine SLR01 1014 41 72.5 73.5 675   565 63.42 55 FS 

5 BMC Timemachine TMR01 1005 46 72.5 74 675   560 58.18 54 FS 

6 Cannondale Supersix Evo 991 45 73 73.5 675 56 558 56.13 56 FS 

7 Canyon Aeroad CF 9.0 985 44 74 73 675   556 51.00   

8 Canyon Ultimate CF SLX 980.4 39 73.5 73.5 675 56 560 59.30 M (56) 

9 Cervelo R5 982 43 73.5 73 675 56 580 55.13 56 FS 

10 Cervelo RCA 982 43 73.5 73 675 56 580 55.13 56 FS 

11 Cervelo S5 982 43 73.5 73 675 56 580 55.13 56 FS 

12 Colnago C59 1008 43 73.3 72.75 675 56   56.36 56 FS 

13 Felt F2 983 43 73.5 73.5 675 56 548 55.13 56 FS 

14 Focus Bikes Izalco Team SL Carbon 978 46 73.5 73.5 680 56   52.74 56 FS 
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15 Giant Propel 1001 50 73 72.5 675 55.5   50.90 L/55.5 

16 Giant TCR Advanced 1001 50 73 72.5 675 55.5 569 50.90 L/55.6 

17 Lapierre Ultimate di2 990 45 73 73 675 55 570 56.13 L 

18 Lapierre Xelius Efi 800 990 45 73 73 675 55 570 56.13 L 

19 Look 695 Aerolight 979.5 43 73 74 676 56 559.5 58.22 M 

20 Merida Sculptura SL 909 985 45 73.5 73.5 675   565 53.04 54 

21 Orbea Orca 988 53 73.5 73.2 675   572 44.70 55 

22 Pinarello Dogma 65.1 Think 2 988 43 73.2 73 675 56   56.98 560 

23 Ridley Helium SL 990 46 73.5 73.5 675   575 52.00 M 

24 Ridley Noah FAST 990 46 73.5 73.5 675   575 52.00 M 

25 Scott Addict SL 994 44 73 73.3 675 56 568 57.17 L/56 

26 Scott Foil 40 994 44 73 73.3 675   569 57.17 L/56 

27 Specialized Tarmac SL 4 986 43 73.5 73.25 675 56 564 55.13 560 

28 Specialized Venge 986 43 73.5 73.25 675 56 566 55.13 561 

29 Trek Domane 6.9 1008 48 71.9 73.3 675 56 591 59.81 56 

30 Trek Madone 7.9 980 40 73.5 73.3 675 56 577 58.25 56 

  max 1014.0 53.0 74.0 74.0 680.0 56.0 591.0 63.42  

  min 978.0 39.0 71.9 72.5 675.0 55.0 548.0 44.70  

  average 990.0 44.9 73.2 73.2 675.2 55.8 567.0 55.15  

  standard deviation 9.40 3.09 0.43 0.40 0.92 0.38 10.70 3.64  

Sources (77, 106, 111-116, 119-130)  
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Table 73 Details of the entire size range for 8 selected manufacturers’ 2013 TdF bicycles 
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1 Cannondale Supersix Evo 48 961 45 71.50 74.50 675 48 513 65.474 

2 Cannondale Supersix Evo 50 967 45 72.00 74.50 675 50 519 62.345 

3 Cannondale Supersix Evo 52 973 45 72.50 74.00 675 52 526 59.230 

4 Cannondale Supersix Evo 54 975 45 73.00 73.50 675 54 544 56.128 

5 Cannondale Supersix Evo 56 991 45 73.00 73.50 675 56 558 56.128 

6 Cannondale Supersix Evo 58 996 45 73.50 73.00 675 58 577 53.039 

7 Cannondale Supersix Evo 60 1008 45 73.50 72.50 675 60 596 53.039 

8 Cannondale Supersix Evo 62 1012 45 73.50 72.00 675 62 620 53.039 

                        1 Felt F2  1 48 969 52 71.00 74.50 675   500 61.214 

2 Felt F2 51 971 50 72.00 74.00 675   514 57.087 
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3 Felt F2 54 974 45 73.00 73.00 675   526 56.128 

4 Felt F2 56 983 43 73.50 73.50 675 56 548 55.125 

5 Felt F2 58 1000 43 74.00 73.50 675   569 52.044 

6 Felt F2 60 1022 43 74.00 73.00 675   607 52.044 

                        1 Focus Bikes Izalco Team SL Carbon 48 975 46 71.25 74.80 680 48   66.836 

2 Focus Bikes Izalco Team SL Carbon 50 975 46 71.25 74.30 680 50   66.836 

3 Focus Bikes Izalco Team SL Carbon 52 978 46 72.00 74.00 680 52   62.105 

4 Focus Bikes Izalco Team SL Carbon 54 980 46 72.50 74.00 680 54   58.969 

5 Focus Bikes Izalco Team SL Carbon 56 978 46 73.50 73.50 680 56   52.737 

6 Focus Bikes Izalco Team SL Carbon 58 993 46 73.50 73.50 680 58   52.737 

7 Focus Bikes Izalco Team SL Carbon 60 1005 46 73.50 73.50 680 60   52.737 

                        1 Look 695 Aerolight XS 971.8 43 71.00 74.80 676     70.733 

2 Look 696 Aerolight S 977.2 43 72.00 74.50 676     64.448 

3 Look 697 Aerolight M 979.5 43 73.00 74.00 676 56 559.5 58.219 

4 Look 698 Aerolight L 992.4 43 73.00 73.80 676     58.219 

5 Look 699 Aerolight XL 1005.1 43 73.00 73.50 676     58.219 

6 Look 700 Aerolight XXL 1009.8 43 73.00 73.00 676     58.219 
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1 Orbea Orca 48 970 43 71.50 74.75 675   500 67.583 

2 Orbea Orca 51 970 43 72.10 73.50 675   530 63.822 

3 Orbea Orca 53 980 43 72.10 73.50 675   552 63.822 

4 Orbea Orca 55 988 53 73.50 73.20 675   572 44.696 

5 Orbea Orca 57 998 53 73.20 73.20 675   590 46.534 

6 Orbea Orca 60 1013 53 73.50 73.20 675   621 44.696 

                        1 Pinarello Dogma 65.1 Think 2 420 960.4 43 74.40 69.15 675 42   49.587 

2 Pinarello Dogma 65.1 Think 2 440 960.4 43 74.40 70.00 675 44   49.587 

3 Pinarello Dogma 65.1 Think 2 465 969.5 43 74.40 70.50 675 46   49.587 

4 Pinarello Dogma 65.1 Think 2 470 971.5 43 74.00 71.40 675 47   52.044 

5 Pinarello Dogma 65.1 Think 2 500 971.5 43 74.00 71.40 675 50   52.044 

6 Pinarello Dogma 65.1 Think 2 515 973.5 43 73.70 72.00 675 52   53.891 

7 Pinarello Dogma 65.1 Think 2 530 979.6 43 73.70 72.50 675 53   53.891 

8 Pinarello Dogma 65.1 Think 2 540 979.6 43 73.40 72.80 675 54   55.743 

9 Pinarello Dogma 65.1 Think 2 550 988.6 43 73.40 72.80 675 55   55.743 

10 Pinarello Dogma 65.1 Think 2 560 989.7 43 73.00 73.20 675 56   58.219 

11 Pinarello Dogma 65.1 Think 2 575 994.7 43 73.00 73.70 675 58   58.219 
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12 Pinarello Dogma 65.1 Think 2 595 1003.7 43 72.40 73.40 675 60   61.950 

13 Pinarello Dogma 65.1 Think 2 620 1031.9 43 72.00 73.40 675 62   64.448 

                        1 Specialized Tarmac SL 4 & Venge 490 970 45 72.25 75.50 675 49 504 60.785 

2 Specialized Tarmac SL 4 & Venge 520 970 45 73.00 74.00 675 52 526 56.128 

3 Specialized Tarmac SL 4 & Venge 540 978 45 73.00 73.50 675 54 543 56.128 

4 Specialized Tarmac SL 4 & Venge 560 986 43 73.50 73.25 675 56 564 55.125 

5 Specialized Tarmac SL 4 & Venge 580 1003 43 73.50 73.00 675 58 591 55.125 

6 Specialized Tarmac SL 4 & Venge 600 1013 43 74.00 72.50 675 60 612 52.044 

                        1 Trek Domane 6.9 44 983 53 70.30   675 44 510 64.548 

2 Trek Domane 6.9 47 986 53 71.00   675 47 527 60.157 

3 Trek Domane 6.9 50 996 53 71.10   675 50 546 59.532 

4 Trek Domane 6.9 52 1003 53 71.30   675 52 561 58.284 

5 Trek Domane 6.9 54 1010 53 71.30   675 54 575 58.284 

6 Trek Domane 6.9 56 1008 48 71.90 73.30 675 56 591 59.813 

7 Trek Domane 6.9 58 1022 48 72.00   675 58 611 59.190 

8 Trek Domane 6.9 60 1032 48 72.10   675 60 632 58.568 

9 Trek Domane 6.9 62 1042 48 72.10   675 62 656 58.568 
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1 Trek Madone 7.9 47 971 45 71.20 74.60 675 47 522 67.358 

2 Trek Madone 7.9 50 971 45 72.10 74.60 675 50 535 61.720 

3 Trek Madone 7.9 52 973 45 72.80 74.20 675 52 547 57.367 

4 Trek Madone 7.9 54 978 45 73.00 73.70 675 54 555 56.128 

5 Trek Madone 7.9 56 980 40 73.50 73.30 675 56 577 58.254 

6 Trek Madone 7.9 58 987 40 73.80 73.00 675 58 598 56.399 

7 Trek Madone 7.9 60 1000 40 73.90 72.80 675 60 615 55.781 

8 Trek Madone 7.9 62 1008 40 73.90 72.50 675 62 634 55.781 

Maximum 1042.0 53.0 74.40 75.50     

Minimum 960.4 40.0 70.30 69.15     

Average 988.2 45.3 72.76 73.30     

Standard deviation 18.66 3.51 1.01 1.13     

Note 1  the Felt F1 model used in the Tour is not available commercially and the only information available was for the Felt F2 model, said to be very similar to 

the F1 

Sources: (77, 111, 113, 115, 121, 123, 124, 128) 
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Figure 124 Relationship between wheelbase and frame size for thirty 2013 TdF bicycle models in Table 73 
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Figure 125 Relationship between head tube angle and frame size for thirty 2013 TdF bicycle models in Table 73 
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Figure 126 Relationship between trail and frame size for thirty 2013 TdF bicycle models in Table 73  
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Table 74 Tour de France 2013 top ten individual finishers and their recorded details 

Surname First name Team Bike type TdF 2013 
position 

Height mm Weight kg 

Froome Chris Sky Procycling Pinarello 1 1860 69.0 

Quintana Rojas Nairo Movistar Team Pinarello 2 1660 57.3 

Rodriguez Oliver Joaquin Katusha Team Canyon 3 1690 57.0 

Contador Alberto Team Tinkoff-Saxo Specialized 4 1760 62.0 

Kreuziger Roman Team Tinkoff-Saxo Specialized 5 1830 65.0 

Mollema Bauke Belkin Pro Cycling Giant 6 1810 64.0 

Fuglsang Jakob Astana Pro team Specialized 7 1820 70.0 

Valverde Alejandro Movistar Team Pinarello 8 1780 61.0 

Navarro Daniel Cofidos Solutions Credits Look 9 1750 61.0 

Talansky Andrew Garmin Sharp Cervelo 10 1750 63.0 

average 1771 62.93 

standard deviation 59.41 4.09 

Source (108) 
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Table 75 Tour de France 2013 top ten individual finishers and their calculated details 

Surname TdF 
2013 

position 

Calc. 
Inseam 

mm 

Calc. 
saddle 
height 

mm 

Calculated 
frame size 

cm 

Wheelbase 
mm 

STA 
degrees 

Calculated "h" 
mm 

Calculated 
"b" mm 

Calculated MOIYB 
kgm^2 

Froome 1 857.5 758.9 55.7 988.2 73.00 1109.0 318.0 93.225 

Quintana Rojas 2 765.3 677.3 49.7 970.0 74.00 1020.0 337.0 66.690 

Rodriguez Oliver 3 779.1 689.5 50.6 971.0 73.50 1019.0 332.0 66.247 

Contador 4 811.4 718.1 52.7 970.0 74.00 1064.0 333.0 77.888 

Kreuziger 5 843.6 746.6 54.8 978.0 73.50 1096.0 324.0 86.247 

Mollema 6 834.4 738.5 54.2 986.0 72.50 1086.0 315.0 83.501 

Fuglsang 7 839.0 742.5 54.5 978.0 73.50 1092.0 325.0 91.581 

Valverde 8 820.6 726.2 53.3 978.1 73.70 1084.0 328.0 79.669 

Navarro 9 806.8 714.0 52.4 979.5 74.00 1060.0 334.0 76.180 

Talansky 10 806.8 714.0 52.4 972.0 73.00 1059.0 323.0 78.279 

average 816.43 722.54 53.1 977.1 73.47 1068.90 326.90 79.95 

standard deviation 27.39 24.24 1.78 6.12 0.48 29.12 6.82 8.65 

Sources (108, 111-116) 
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The calculations in Table 75 are based on the following assumptions: 

1. Inseam = height X 0.461 (48) 

2. Saddle height = inseam X 0.885 (68) 

3. Bicycle frame size = inseam X 0.65 (68) 

4. Wheelbase is taken from manufacturers’ specifications after the frame size is calculated 

5. Seat Tube Angle is taken from manufacturers’ specifications 

6. h calculated as per Appendix B 

7. b calculated as per Appendix B 

8. IXB = (mass of rider + mass of bike) x h2 

9. mass of bike = 6.8 kg- (equals the UCI limit) 
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APPENDIX G – DESIGN TABLE SERIES & DESIGN EQUATION 

This Appendix details two additional design methodologies one based on the use of design tables 

and second on a design equation.  

G-1 DESIGN TABLE SERIES 

This Design Table Series summarises recommendations about bicycle design in a tabular format. 

1. this Road Bicycle Design Table Series consists of five tables prepared for frame sizes (FS) 

between 490 to 610 mm  

2. the recommendations are set out in a codified way for the designer to use 

3. the design criteria they are based on uses empirical knowledge and experience 

4. these five Tables are based on the same guidelines already detailed in Design Criteria Table 

30 from Chapter Six. 

5. the correct Design Table is found by using the inseam (IS) measurement (see Figure 127) to 

calculate the preferred frame size, see Table 76 and Figure 128 

Once the correct frame size has been found, choose its corresponding Design Table to make 

decisions about the following parameters, wheelbase, fork rake, head tube angle and seat tube 

angle, see Table 76 to Table 81. 

 

 

 

  

Inseam 
measurement 

Figure 127 Cyclist inseam dimension measured along the inside of the leg 
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Table 76 Frame size table – indicates the correct frame size for range of inseam measurements 

Ideal inseam (mm) Min to max inseam ranges (mm) Recommended Frame Size (mm) 

754 730 to 777 490 

800 778 to 822 520 

846 823 to 869 550 

892 870 to 914 580 

938 915 to 960 610 

 

 

 

 

Figure 128 Frame size (FS) vs. inseam (IS) with bands of inseam ranges, from Table 76 

 

The selection of the correct frame size is based on a factor of 0.65 as per the formula below: 
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Table 77 Design Table - for 490 mm frame size road bicycles 

Variable Definition Target value Min value Max value 

IS Rider inseam measurement 754 730 777 

Δ Trail (critical) 59 mm 49 mm 69 mm 

L wheelbase 973 mm 953 mm 993 mm 

beta Fork rake (or offset) 46 mm 43 mm 53 mm 

phi Head tube angle 72.5o 71.0o 74.0o 

STA Seat tube angle 74.3o 71.0o 75.5o 

Table assumptions  

• for performance road bicycles only 

• for 490 mm frame size only 

• based on 700c wheels 

 

Table 78 Design Table - for 520 mm frame size road bicycles 

Variable Definition Target value Min value Max value 

IS Rider inseam measurement 800 778 822 

Δ Trail (critical) 58 mm 48 mm 68 mm 

L wheelbase 983 mm 963 mm 1003 mm 

beta Fork rake (or offset) 46 mm 42 mm 53 mm 

phi Head tube angle 72.5o 71.0o 74.0o 

STA Seat tube angle 74o 71.2o 75.2o 

Table assumptions  

• for performance road bicycles only 

• for 520 mm frame size only 

• based on 700c wheels 
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Table 79 Design Table - for 550 mm frame size road bicycles 

Variable Definition Target value Min value Max value 

IS Rider inseam measurement 846 823 869 

Δ Trail (critical) 57 mm 47 mm 67 mm 

L wheelbase 992 mm 972 mm 1012 mm 

beta Fork rake (or offset) 45.5 mm 42.5 mm 53 mm 

phi Head tube angle 73.0o 71.5o 74.5o 

STA Seat tube angle 73.6o 71.5o 74.8o 

Table assumptions  

• for performance road bicycles only 

• for 550 mm frame size only 

• based on 700c wheels 

 

Table 80 Design Table - for 580 mm frame size road bicycles 

Variable Definition Target value Min value Max value 

IS Rider inseam measurement 892 870 914 

Δ Trail (critical) 56 mm 46 mm 66 mm 

L wheelbase 1001 mm 981 mm 1021 mm 

beta Fork rake (or offset) 45 mm 41 mm 53 mm 

phi Head tube angle 73.0o 71.5o 74.5o 

STA Seat tube angle 73.2o 74.4o 71.8o 

Table assumptions  

• for performance road bicycles only 

• for 580 mm frame size only 

• based on 700c wheels 
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Table 81 Design Table - for 610 mm frame size road bicycles 

Variable Definition Target value Min value Max value 

IS Rider inseam measurement 938 915 960 

L wheelbase 1010 mm 990 mm 1030 mm 

Δ Trail (critical) 55 mm 45 mm 65 mm 

beta Fork rake (or offset) 45 mm 40 mm 53 mm 

phi Head tube angle 73.5o 72.0o 75.0o 

STA Seat tube angle 72.8o 72.0o 74.0o 

Table assumptions  

• for performance road bicycles only 

• for 610 mm frame size only 

• based on 700c wheels 
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G-2 DESIGN EQUATION 

Consideration was given as to whether an overall design equation could be developed. After 

evaluation it was decided that this approach was unsuitable but a brief description is included in 

this Appendix for completeness. 

Mathematical equations such as those used to develop the Simulink model used in this 

investigation would of course provide the most accurate analysis. But a Simulink model is not 

considered to be a suitable design technique, rather it is a modelling method which requires 

experience on the part of the user and access to Matlab and Simulink. A major problem with 

Simulink models is they are hard to use, not easily interpreted and require training and 

experience. 

However once the sensitivity study in Chapter Five was completed it seemed worth considering 

if its results could be used to formulate a simple equation to predict the handling performance of 

any specific bicycle design. Such a design equation if successful, could potentially allow a 

designer to quickly evaluate the effect of changing one or more parameters. It was hoped that 

this could be better method than using Design Criteria or Design Tables as the interaction of 

several parameters could be examined. In addition it would not be based on equations and rules 

taken from past experience rather it would be based on dynamic responses.  

The design equation formulated from the sensitivity study is: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐶𝐶𝐷𝐷
∆𝐷𝐷𝑁𝑁
𝐷𝐷𝑂𝑂

+ 𝐶𝐶𝑏𝑏
∆𝑏𝑏𝑁𝑁
𝑏𝑏𝑂𝑂

+ 𝐶𝐶𝑀𝑀
∆𝑀𝑀𝑁𝑁

𝑀𝑀𝑂𝑂
+ 𝐶𝐶ℎ

∆ℎ𝑁𝑁
ℎ𝑂𝑂

+ 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼
∆𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁
𝐼𝐼𝐼𝐼𝐼𝐼𝑂𝑂

+ 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼
∆𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁
𝐼𝐼𝐼𝐼𝐼𝐼𝑂𝑂

+ 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼
∆𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁
𝐼𝐼𝐼𝐼𝐼𝐼𝑂𝑂

+ 𝐶𝐶𝛽𝛽
∆𝛽𝛽𝑁𝑁
𝛽𝛽𝑂𝑂

+ 𝐶𝐶𝐿𝐿
∆𝐿𝐿𝑁𝑁
𝐿𝐿𝑂𝑂

+ 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼
∆𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁
𝐼𝐼𝐼𝐼𝐼𝐼𝑂𝑂

+ 𝐶𝐶𝜙𝜙
∆𝜙𝜙𝑁𝑁
𝜙𝜙𝑂𝑂

 

(104) 

• where CD, Cb, CM etc. are coefficients taken from the sensitivity study of the Chapter Five, 

note that they are linear terms and therefore are only valid across a short range (Table 

28) 

• parameters D, b, M etc. are defined in Table 82  

• subscript N refers to the parameter value of the new bicycle design that is to be examined 

• and subscript O refers to the “old” parameter value of the benchmark bicycle (see Table 

82)  

Using the coefficients given in Table 28 this equation becomes: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 0.05753
∆𝐷𝐷𝑁𝑁
𝐷𝐷𝑂𝑂

+ 0.02072
∆𝑏𝑏𝑁𝑁
𝑏𝑏𝑂𝑂

+ 0.01976
∆𝑀𝑀𝑁𝑁

𝑀𝑀𝑂𝑂
+ 0.002698

∆ℎ𝑁𝑁
ℎ𝑂𝑂

+ 0.001038
∆𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁
𝐼𝐼𝐼𝐼𝐼𝐼𝑂𝑂

+ 0.00063
∆𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁
𝐼𝐼𝐼𝐼𝐼𝐼𝑂𝑂

+ (−0.001067)
∆𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁
𝐼𝐼𝐼𝐼𝐼𝐼𝑂𝑂

+ (−0.01412)
∆𝛽𝛽𝑁𝑁
𝛽𝛽𝑂𝑂

+ (−0.01565)
∆𝐿𝐿𝑁𝑁
𝐿𝐿𝑂𝑂

+ (−0.02021)
∆𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁
𝐼𝐼𝐼𝐼𝐼𝐼𝑂𝑂

+ (−0.05925)
∆𝜙𝜙𝑁𝑁
𝜙𝜙𝑂𝑂
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The equation’s output, the handling index, is a non-dimensionalised number (which is expressed 

as a ratio or percentage of the benchmark settling time) and this gives an overall handling score.  

Unfortunately after using this equation several times it was found to be a poor predictor of the 

Simulink results, even for very small parameter changes. But perhaps this should not be a 

surprise given the nonlinear dynamic behaviour of a bicycle.  

The results of four calculations using the equation are summarised in Table 79 , in which all three 

new designs (A, B and C) showed significant variances when compared to the results of Simulink 

simulations. The design equation’s calculation of the 2% settling time had an error of between 6 

to 40% over that of the value given by Simulink, unacceptable errors and therefore this approach 

was discontinued. 
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Table 82 Handling equation results for three new designs A, B & C 

 Parameter Units Benchmark 
bicycle 
values 

Design A Design B Design C 

D Diameter of the bicycle 

wheel 

m 0.675 0.670 0.674 0.670 

b Hori dist. C of rear 

wheel to COM 

m 0.330 0.320 0.329 0.330 

M  Mass kg 80.00 78.00 79.00 80.00 

h Height of centre of 

mass (COM) 

m 1.100 1.050 1.110 1.100 

IZA MOI of A about Z axis 

(yaw) 

kgm2 0.080 0.081 0.081 0.080 

IXA MOI of A about X axis 

(roll) 

kgm2 0.200 0.210 0.210 0.200 

IXB MOI of B about X axis 

(roll) 

kgm2 100.00 95.00 99.00 100.00 

β  fork rake m 0.045 0.043 0.044 0.045 

L bicycle wheelbase m 1.000 0.990 0.995 1.000 

IZW  MOI of wheels  kgm2 0.100 0.098 0.099 0.100 

Φ head tube angle degrees 73.00 73.50 73.75 76.00 

Handling Equation Score 0.000 -0.00079 -0.00033 -0.05426 

Predicted 2% Settling time sec 10.1 10.092 10.0967 9.5520 

Actual 2% Settling time from 

the Simulink simulation 

sec 10.1 8.95 9.47 6.81 

Variance between prediction 
and Simulink 

% 0%  1 +12.76% +6.62% +40.26% 

Note 1  this is a trivial result 
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