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Abstract
Colorectal Cancer (CRC), a leading cause of cancer-related deaths, can be abated by timely polypectomy. Computer-aided
classification of polyps helps endoscopists to resect timely without submitting the sample for histology. Deep learning-based
algorithms are promoted for computer-aided colorectal polyp classification. However, the existing methods do not accommodate
any information on hyperparametric settings essential for model optimisation. Furthermore, unlike the polyp types, i.e., hyper-
plastic and adenomatous, the third type, serrated adenoma, is difficult to classify due to its hybrid nature. Moreover, automated
assessment of polyps is a challenging task due to the similarities in their patterns; therefore, the strength of individual weak
learners is combined to form a weighted ensemble model for an accurate classification model by establishing the optimised
hyperparameters. In contrast to existing studies on binary classification, multiclass classification require evaluation through
advanced measures. This study compared six existing Convolutional Neural Networks in addition to transfer learning and opted
for optimum performing architecture only for ensemble models. The performance evaluation on UCI and PICCOLO dataset of
the proposed method in terms of accuracy (96.3%, 81.2%), precision (95.5%, 82.4%), recall (97.2%, 81.1%), F1-score (96.3%,
81.3%) and model reliability using Cohen’s Kappa Coefficient (0.94, 0.62) shows the superiority over existing models. The
outcomes of experiments by other studies on the same dataset yielded 82.5% accuracy with 72.7% recall by SVM and 85.9%
accuracy with 87.6% recall by other deep learning methods. The proposed method demonstrates that a weighted ensemble of
optimised networks along with data augmentation significantly boosts the performance of deep learning-based CAD.
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1 Introduction

Cancer has become one of the vital reasons for the growing
mortality rate across the world over the past few decades.
Colorectal Cancer (CRC), in par- ticular, is a serious form of

cancer with high occurrence and mortality rates documented in
developed countries [1]. It is ranked second in terms of cancer-
related mortality and third in terms of CRC occurrences [2]. In
order to prevent colorectal cancer-related mortalities, accurate
detection and classification of polyps at a treatable stage are
critical for mitigating the risk of cancers. Consid- ering the
detection of colonic polyps, colonoscopy is regarded as the
standard updated in a number of reports [3–7]. In the initial
stage, most of the polyps have not undergone a malignant trans-
formation, i.e., they are not cancerous and, upon their removal,
the risk of cancer is reduced. However, these precan- cerous
polyps have the tendency to remain unidentified during colo-
noscopy and may possibly become malignant, i.e., cancerous,
becoming a major causality of mortality [5]. Identification of a
type of polyps that have malignant transfor- mation is very
crucial. Therefore, in addition to the detection, accurate polyp
classification is essential to diminish mortality due to colorectal
cancer as well. Machine learning along with medical image
processing has been employed for cancer detection and classi-
fication [8]. Advanced algorithms have been probed to carry out

Muhammad Usman and Wei Qi Yan contributed equally to this work.

* Farah Younas
kpj7505@autuni.ac.nz

Muhammad Usman
musman@aut.ac.nz

Wei Qi Yan
weiqi.yan@aut.ac.nz

1 Department of Computer Science and Software Engineering,
Auckland University of Technology, 55 Wellesley Street East,
Auckland CBD, Auckland 1010, New Zealand

2 Department of Computer Science, Shaheed Zulfikar Ali Bhutto
Institute of Science and Technology, Islamabad, Pakistan

Applied Intelligence
https://doi.org/10.1007/s10489-022-03689-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03689-9&domain=pdf
mailto:kpj7505@autuni.ac.nz


the Computer-Aided Diagnosis (CAD) for the accurate and
effective diagnosis in the medical domain [1]. In recent times,
Artificial Intelligence (AI) and Deep Learning (DL) have made
a major contribution in medical image analysis [9–11], and the
adenoma detection rate is enhanced significantly through artifi-
cially intelligent systems. This interpretation of medical images
through CAD has helped physicians to become secondary
readers in cancer diagnosis. Therefore, these artificially intelli-
gent models can be used to detect colorectal polyps by inter-
preting endoscopy images [12].

Previous CAD algorithms relied heavily on feature extrac-
tion, which hindered the advancement of visual object detec-
tion because of dependency on visual features [13]. In order to
overcome the limitations and uplift the efficiency of the CAD
algorithms, deep learning superseded feature extraction and
trans- formation in traditional machine learning by using
convolutional operations in hidden layers [14]. Moreover,
deep learning outperformed traditional machine learning and
human visual ability. For instance, in healthcare, deep learn-
ing has been utilised for automatic disease detection and pre-
diction for early diag- nosis [15].

Convolutional Neural Network (CNN) is a very powerful
technique in DL for medical image diagnosis. In contrast to
traditionally handcrafted feature extraction, CNN can extract
abstract and higher-level features effectively. In Endoscopic
Vision Challenge 2015, CNN feature extraction outperformed
man- ually extracted features. Therefore, CNN can learn rich
features from diverse images automatically and perform clas-
sification tasks effectively [12]. Deep CNN is mainly consid-
ered as the most suitable option for medical image classi-
fication. It has shown a lot of growth in cancer diagnosis using
histopathological images [16].

More recently, Deep Learning-based Computer-Aided
Diagnosis (DL-CAD) has been popularised as a comprehen-
sive method for cancer diagnosis [17]. However, practical
usages for endoscopy detection are still uncertain because
these are not reliable systems in practice [18]. Deep
learning-assisted colonoscopy is an attractive option to stan-
dardise endoscopy practice by elim- inating the missteps of
medics and assisting domain experts or specialists in enhanc-
ing the accuracy of diagnosis. Surprisingly, the focus of pre-
vious work was on polyp detection rather than the precise
classification of polyp types [19]. Accurate classification of
polyp types, a challenging yet important field, has not shown
much growth over the past few years [1].

The successful classification of polyps is resourceful for cli-
nicians in terms of time and effort. Automated classification
aims to differentiate gastrointesti- nal polyps which require a
biopsy from the ones that need to be resected directly. DL-CAD
serves the same purpose visually and virtually by classifying the
polyps into its classes. A virtual biopsy is a substitute for taking
the samples and submitting them for histopathology, where the
polyp type is identified through chromoendoscopy. A deep

learning-based virtual biopsy method is beneficial in terms of
selecting the polyps which need to be directly removed from the
colon, thus avoiding the time-consuming histopathological pro-
cedure. Unnecessary biopsies and complicated endoscopic pro-
cedures are prevented if polyps are accurately classified by a
reliable method. Moreover, a virtual biopsy is also of great
value in an actual clinical environment to decide the severity
of a patient’s colorectal lesions where the patient is suffering
from multiple lesions.

Besides the noteworthy benefits of deep learning methods,
one of the major requirements of deep learning is the avail-
ability of large medical datasets for automated model training.
Expensive data acquisition and annotation make the creation
of a large and well-annotated training dataset a cumbersome
task [2, 20]. In these scenarios, transfer learning along with
data augmentation is employed for utilising the power of pre-
trained models [1]. Transfer learning is considered appropriate
for training the model which does not have enough training
data. In transfer learning, deep neural networks have been
trained based on a large number of samples; the weights are
inherited for new tasks.

Therefore, in order to fulfil this requirement, instead of
designing a customised architecture of deep neural networks,
pre-trained architectures are utilised in our project. However,
there is a good number of pre-trained architectures avail- able
for transfer learning; still, there is a need to compare and
evaluate their performance to identify the one which consis-
tently provides better results. In this paper, we compared and
evaluated the existing transfer learning architec- tures for iden-
tifying the best one for colorectal classification.

However, the identification of accurate architecture for
deep learning is not a simple task as it requires extensive
experimentation by tuning the hyper- parameters of each net.
These hyperparameters include optimizers, learning rate, the
number of iterations, epochs, batches, and manymore aspects.
The related work presented by [15, 20] classifies colorectal
polyps by using deep learning algorithms, which does not yet
provide information on the optimum hyperparameter settings
to be chosen so as to produce highly accurate results.
Regarding deep learning architecture, it is important to find
out optimum set- tings of hyperparameters, so that accurate
results can be achieved.

Additionally, we cannot afford any medical risks or mis-
takes in medication due to automated diagnosis. In the case of
colorectal cancer, if polyps are mis- classified, the
polypectomy procedure will be delayed, or the physician
might decide not to carry on the resection at all, which might
be fatal for the patient. Therefore, it is necessary that in addi-
tion to accuracy measures, advanced eval- uation metrics such
as precision, recall and F1 score are considered to make sure
that the misclassification rate is as minimum as possible. It is
crucial to have high sensitivity and recall of the models. In
other words, tackling the type II classification error is
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necessary. A high sensitivity test has a zero false negative,
which means that all the negatives will be true negatives.
Hence, the high sensitivity of the test is effectively applied
to rule out the disease and accord- ingly act as a screening test
for a disease with low prevalence. Colonoscopy is a highly
sensitive test and therefore has been furnished as a screening
test for colon cancer. Thus, we focused on recall measures for
the performance eval- uation. If the malignant polyps are
misclassified, then false negative is high, which is risky.

Our focus is thus on the computer-aided (CA) method for
colorectal polyp classification in discriminating the polyps
that should go under histopathol- ogy from those which
should be removed directly. The goal of this paper is to clas-
sify colon polyps under narrowband imaging endoscopy into
three classes: Hyperplasic, adenoma, and serrated adenoma.
The first one is considered benign with little or zero ability to
transform it into colorectal cancer; the lat- ter two are thought
to have malignant transformation potential, where serrated
adenomas lack the classic adenoma villous structure and have
a mixed nature; therefore, it is difficult to be identified [17, 21,
22]. This work proposes a deep CNN based heterogeneous
weighted ensemble classification technique for the analysis
of endoscopy images of the colon. The class imbalance prob-
lem is handled by data augmentation technique, including
rotation, scaling, brightness and flipping of images which
are further classified into adenomatous, hyper- plastic and
serrated categories. In this regard, six CNN-based classifiers
are trained independently to capture the discriminating fea-
tures of polyps which are then combined to generate the final
decision. This novel method is based on transfer learning to
resolve the classification problems of these three classes and
achieve higher diagnostic accuracy with the best
hyperparameter setting, which is very beneficial from the cli-
nician’s viewpoint to identify the polyps that require
polypectomy. The main contributions of this paper are:

& A novel framework for transfer learning-based virtual
biopsy that classifies colorectal polyps captured under
NBI lightning. The framework tackles the problem of in-
sufficient images in the dataset through transfer learning
and image augmentation.

& The performance of six architectures in deep learning,
namely GoogLeNet,

& ResNet50, Inception-v3, Xception, DenseNet-201,
SqueezeNet, was evalu- ated and compared to identify
the most suitable deep neural network for colorectal polyp
classification.

& Establishing optimum hyperparameter settings for optimi-
sation of deep

& neural networks and making the results reproducible and
explainable.

& Classifying polyps into three classes: serrated polyps in
addition to hyper- plastic and adenomatous polyps which

lead to CRC through an alternate serrated pathway which
are difficult to be identified.

& Weighted average ensemble model to deal with complex
nature of polyps by improving the generalisation of the
classification system.

The structure of this paper is as follows. In Section 2, we
introduce the related work which is essential to understand our
research background and motivations. In Section 3, we ex-
pound the dataset for our experiments. In Section 4, we expli-
cate our proposed framework to classify colorectal polyps into
three classes, the architectures are associated with the training
process. Experimental results are demonstrated in Section 5.
Finally, in Section 6 we present the comparative analysis,
followed by the conclusion and future work in Section 7.

2 Related work

There are existing models proposed for automated classifica-
tion of colon polyps. Komeda et al. [17] have suggested a
model that determines polyps in two types, i.e., adenomatous
and non-adenomatous. The dataset includes 1,200 adenoma-
tous and 600 non-adenomatous images which were taken out
from a digital video of actual medical examinations. The data
was collected from the cases of colonoscopy, which was com-
pleted between January 2010 and December 2016. Computer
vision is a way that classifies objects; hence, it is used to
determine colon polyps as well. The work has combined the
benefits of both computer vision and convolutional neural
networks (CNNs) together for accurate classification. The pro-
posed model, which is CNN based on CAD, generates the
results based on real-time endoscopy images, nonetheless,
the accuracy is 0.751 which is based on 10-hold cross-valida-
tion test. The work does not classify the classes of polyps:
Serrated adenomas, adenomatous polyps, and hyperplastic.
Moreover, the proposed model might have performed better
with a big dataset. Hence, by using transfer learning and im-
age augmentation, the problem of insufficient data is catered
and resolved. Lastly, hyperparameter tuning also contributes
towards better outcomes with high accuracy. Even though the
accuracy is not satisfactory, the CNN-CAD method is still a
better choice as it simplifies the operations and classifications.

Another method classifies colon polyps as malignant and
non-malignant. Patino-Barrientos et al. put forward a deep
learning model based on Kudo’s classification schema [23].
The dataset consisting of 600 images was collected from 142
patients, which was further augmented to increase the number
of sam- ples. The problem was approached iteratively by first-
ly implementing a deep neural network, then compared the
results by applying VGG-16 net. Further- more, fine-tuning
was offered, and the results were comparable. The validation
parameters for evaluations are accuracy, precision, recall, and
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F1 score. After fine-tuning, the accuracy, precision, recall and
F1 score of the model was 83%, 81%, 86% and 83%, respec-
tively. Later, the model was compared with other classifiers
such as SVM and KNN. The outcomes of SVM and KNN
with 15 neighbours illustrated the same results, nevertheless,
the proposed model is proved to be a better way for the clas-
sification. However, the amount of data is insufficient, as deep
learning model is proposed which requires large dataset for
better performance. If the data is augmented, it is able to boost
the model and give much satisfactory results.

Furthermore, an AI-based detection and classification of
colorectal polyps are developed [24] which takes advantage
of deep neural networks. The algorithm is entitled as Single
Shot Multibox Detector (SSD), which classifies its classes
such as adenoma, hyperplastic polyp, sessile serrated adeno-
ma/polyp, cancer- ous and other polyps. In the work, the data
for model training was taken from 12,895 patients who under-
went colonoscopies. Moreover, 16,418 images were applied
to train the CNN algorithm, among which 3,021 images were
of polyp and 4,013 images of normal colorectal. The process-
ing time of CNN was 20ms per frame. The trained CNN
model detected 1,246 CP with sensitivity 92% and a positive
predictive value (PPV) 86%. The sensitivity and PPV were
90% and 83%, respectively, for the white light images, 97%
and 98% for the narrowband images. Among the correctly
detected polyps, 83% of the CP were accurately classified.
Furthermore, 97% of adenomas were precisely identified un-
der white light imaging. However, the optimized
hyperparameters are not employed for giving better results.
Lastly, the results unfold that the accuracy of detection and
classification is commendable and has great potential.

The model proposed by [25] is based on deep neural net-
works to classify colorectal polyps. The neural network archi-
tectures in this paper are recom- mended as RestNet which
comprise of 5 family members with 18, 34, 50, 101, and 152
layers, respectively. The suggested models classify four major
colorectal polyp types: Tubular adenoma, tubulovillous or vil-
lous adenoma, hyperplastic polyp, and sessile serrated adeno-
ma. The dataset was split into 3 subsets: 326 slides for train-
ing, 157 slides for testing, and 25 for validation. Furthermore,
238 slides were collected from 24 different institutes. The
deep learning algorithms were designed and trained for the
classification. The slides were segmented into patches by
using sliding windows, which were further clas- sified. In
addition, the thresholds were classified for each class by using
a grid search. The primary purpose was to evaluate the perfor-
mance of the model in comparison with the results annotated
by pathologists. In order to evalu- ate the performance, the
metrics include accuracy, sensitivity, and specificity. For the
internal dataset, the mean accuracy of the model was 93.5%
and that of pathologists was 91.4%. Furthermore, for the ex-
ternal dataset, the model achieved an accuracy 87.0% as com-
pared to the pathologists’ accuracy whichwas 86.6%. Amajor

limitation is the small dataset, which hinders the perfor- mance
of the model in practice. Since it is difficult to collect medical
data, transfer learning is one way of overcoming the limita-
tions, data augmentation can also be offered. In summary, the
difference between the outcomes of the proposed model and
that of local pathologists was minor, hence, the model is used
to assist doctors so as to improve the diagnosis of colorectal
polyps.

The method of [26] is based on deep learning, hence, an
automated method for image analysis that classifies colorectal
polyps. The model determines five types of colorectal polyps
such as hyperplastic, sessile serrated, traditional serrated, tu-
bular, and tubulovillous/villous. The dataset was collected
from the patients who were examined for colorectal cancer.
In this work, 458 whole- slide images were taken use for
training and 239 for testing purposes. There are 2,074 cropped
images in total. In order to characterize the polyps, vari- ous
deep neural networks were implemented and compared to find
the best approach for the problem. The standard architectures
such as AlexNet, VGG, GoogleNet, and ResNet were taken,
however, ResNet was observed with var- ious numbers of
hidden layers. Furthermore, ResNet-A ResNet-B, ResNet-C,
and ResNet-D were composed of 50, 101, 152, and 152
layers, respectively. Although ResNet-C and ResNet-D have
similar layers, they vary in the mapping such as identity map-
ping and projection mapping. Among the network architec-
tures, ResNet performed with the highest accuracy. The pa-
rameters for validation include accuracy, precision, recall, and
F1 score which yielded the results 93.0%, 89.7%, 88.3%, and
88.8%, respectively. Moreover, with hyper- parameter tuning
of the proposed model would have more weight.

Mesejo et al. [27] have developed a method that saves
clinician’s time by performing a virtual biopsy of gastrointes-
tinal lesions. The proposed system combines the algorithms in
machine learning and computer vision, classifies lesions, hy-
perplastic lesions, serrated adenomas, and adenomas. Firstly,
the digital images are taken as the input. Next, the color and
texture image fea- tures are extracted, respectively. Then, the
motion is used to reconstruct 3D lesion, the 3D shape features
are extracted. The image is then imported into a classifier for
prediction. In this paper, two classifiers were incorporated:
Random Forest and Random subspaces. Furthermore, SVM
was applied to comparisons with the ensemble leaners. The
dataset containing 76 colonoscopy videos was built by the
researchers for training. The results were compared with the
expert and beginner practitioners. The average accuracy of
random forest, random subspaces, and SVM was 0.78, 0.49,
and 0.29, respectively. In addition, another computer-aided
method [28] detects and classifies hyper- plastic and adeno-
matous colorectal polyps. In this work, CNNs are employed
for the detection and classification. Firstly, a convolutional
neural network is employed to detect the polyp. However,
the approach to solving the classifi- cation problem differs
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from the aforementioned paper [17]. Secondly, another CNN
is applied to classify the polyp. The CNN features are learned
from two publicly available datasets; ILSVRC and Place205,
which contain 1.2 million images and 2.5 million images,
respectively. The proposed method has attained an accuracy
of 85.9% which was higher in comparison with the result of
practi- tioners which was 74.3%. However, the optimized
hyperparameters would have contributed towards yielding
more substantial results. Lastly, the computer- aided methods
assist doctors to make better decisions in the diagnosis of
polyps at an early stage. The proposed method is able to di-
agnose colorectal with the minimum preprocessing proce-
dures compared to other methods.

Dataset used by following two studies [27, 28] is a publicly
available dataset which our study has also benefited from. In
addition to this data repository another dataset i.e., PICCOLO
dataset used in this study is also employed by few recent studies
for accomplishing colorectal polyp detection tasks. Work of
Pacal et al. [29] has optimized real-time detection architectures
YOLOv3 and YOLOv4 architectures for polyp detection.
CSPNet network was applied to head and neck structure of
YOLOv3 whereas for YOLOv4 it was applied on complete
structure. Moreover, to improve the performance SiLU activa-
tion function was used that outperformed other activation func-
tions. Results showed the success of proposed method with in-
creasing number of training images. Here, the model trained on
combination of SUN, CVC-ClinicDB and PICCOLO dataset
gave the best results, and it had the largest number of train- ing
images. Authors did not make any modifications in PICCOLO
dataset as it is already divided into train, test and validation sets.
However, our work has applied augmentation techniques on this
dataset to handle data imbalance. Data insufficiency is a major
problem in medical domain. Therefore, availabil- ity of publicly
accessible dataset is essential for development of detection and
classification system and to facilitate fair comparison of the de-
veloped systems. Consequently, through the biobank of the
Instituto de Investigacio’n Sani- taria Galicia Sur (IISGS)
(https://www.iisgaliciasur.es/home/biobank-iisgs) these datasets
are currently under the necessary procedure for public access.
The publication of dataset by Nogueira-Rodrı’guez et al. [30]
will enhance the availability of public datasets which has also
been expanded recently by with the addition of the PICCOLO
Dataset. Main aim of this study was to develop a deep learning
model for real-time polyp detection and the developed model
could be integrated into a CAD system in future. Due to a bal-
ance between prediction time and performance of YOLOv3, it
was employed by this study as the base architecture.

A deep learning model for the classification of polyps, ade-
nomatous polyps, and serrated polyps was put forth by
Zachariah et al. [31]. The objective of this project is to reduce
the cost and time of classifying the polyps, along with assisting
the doctor for a more accurate diagnosis. The dataset of 5,278
high-quality images was used for training and testing the

proposed model. The proposed CNN model consists of two
modules, namely the base module and head module. The base
module uses the Inception-ResNetv2 algorithm for automated
feature extraction. Alternatively, the head module of the algo-
rithm is engaged in transforming the extracted features to a
graded scale which can further be used for classification. The
colorectal polyps in this project are clas- sified into adenoma-
tous and serrated polyps. Furthermore, the model is also com-
pared under white light imaging and narrow banded imaging.
The results unfold that there was no significant difference in the
performance of the mod- els based on white light and narrow
banded imaging. The negative predictive value for the fresh
data was 97%, and overall surveillance concordance was 94%.

In another attempt to classify the polyps [32], five classes
were organised: Ade- nocarcinoma, adenoma, Crohn’s dis-
ease, ulcerative colitis, and normal images. The dataset com-
prising 3515 images was collected from Gill Hospital.
Further- more, the KVASIR dataset consisting of 4000 images
was also employed for validation of the proposed model. In
the model, the deep layers have their spa- tial information
preserved by using diluted convolution for better classification
of polyps. Additionally, the architecture ResNet-50 was taken
into account so as to avoid overfitting, whereby Drop Block
helps in the regularisation of the model. The performance
metrics include accuracy, recall, precision, and F1- score for
evaluations. The F1 score of the Colorectal dataset is 0.93 and
the F1-score of the KVASIR dataset is 0.88. Lastly, the results
of the proposed method are commendable; however, the mod-
el should have been compared with more architectures. A
network in network-based transfer learning model was pro-
posed for the improved classification of polyps. The dataset
consists of 1000 instances that were collected from Gachen
University Gil Hospital during the colonoscopy of patients.
The proposed method was compared to AlexNet along with
different databases; Alexnet, Alexnet + SOS, AlexNet +
ImageNet, AlexNet + Places, and the proposed method
NIN+ ImageNet. Primarily, the Network-in-Network is the
stacking of a multilayer perceptron consisting of multiple fully
connected layers. Hence, its performance is better than CNN.
The accuracy of the proposed method was 18.9%, more sig-
nificant than AlexNet-based models. The recall rate was 0.92
± 0.029, and the AUC was approximately 0.930 ± 0.020. The
performance measures depict the proposed model to be useful
to assist doctors in classifying normal and abnormal polyps
more accurately. However, other architectures such as
ResNet, DenseNet and many such forms should have been
compared with the proposed model. Lastly, the classification
of types of polyps can also be worked upon.

A stacking ensemble method for better performance of pol-
yp classification was proposed by Rahman et al. [33]. The
dataset was collected from the University of Alcala, consisting
of 26,512 images of four classes: Hyperplastic, serrates, ade-
noma, and non-polyp. Removing the reflections from images
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can hinder the performance of classification. Next, a frame
selection method is also used to reduce the processing time
of the model. Lastly, a stacked ensemble learn- ing was ap-
plied. The proposed method consists of three convolutional
neural network architectures: Xception, ResNet-101, and
VGG-19. The models are fine-tuned and then a softmax clas-
sifier was used for the probable outcome of each model.
Furthermore, two hidden layers of the neural network gave
the best result with 10 and 8 neurons, with ReLU optimizer
in the hidden layers. The performance metrics include accura-
cy, recall, precision, specificity and AUC with scores 98.53 ±
0.62%, 96.17 ± 0.87%, 92.09 ± 4.62%, 98.97 ± 0.36%, and
0.9912, respectively. Hence, the proposed method performed
better than single neural networks, however, more architecture
should have been experimented with, for better decision mak-
ing. Table 1 summarises the recent studies done in the area of
colorectal cancer diagnosis.

3 Dataset

3.1 UCI dataset

Availability of high-quality large polyp dataset is crucial for
developing an efficient deep learning architecture to success-
fully classify the colonoscopy images through an automated
solution. Generally, in order to develop a decent and high
performing deep learning model, large datasets such as
ImageNet, Microsoft COCO, including millions of hand an-
notated images with object classification: highlight and label-
ling are extensively used. However, creating such high-quality
large dataset in biomedical domain is a challeng ing and ex-
pensive task with regard to finance and expertise needed [20].
In past few years, public and private datasets for colonoscopic
polyp detec tion and classification are released but the size of
data available is not as large, therefore, several studies have
collected their own private dataset for the purpose. Dataset
used for polyp classification in this project is Gas- trointestinal
Lesions in Regular Colonoscopy Data Set publically avaiable
at available at http://www.depeca.uah.es/colonoscopy dataset/
, the dataset has also been used by other CAD researches
including Mesejo et al. [27]. The dataset includes 76 images,
consisting of 40 adenomatous polyps, 21 hyper- plastic le-
sions, and 15 serrated adenomas. The dataset was built by
76 short colonoscopy videos recorded by clinicians and vary-
ing lightning conditions. Wight Light (WL) and Narrow Band
Imaging (NBI) both are included in the data. However, all the
experiments were performed based on digital images extract-
ed from colonoscopy videos captured under NBI lightning
conditions as it is the advanced optical technique to differen-
tiate lesion types by providing extended details of vascular
patterns of WL colonoscopy [28]. The three input images
from each class are shown in Fig. 1

3.2 PICCOLO dataset

The PICCOLO dataset (PICCOLO RGB/NBI Image
Collection, 2021) was acquired from Hospital Universitario
Basurto, Spain. The dataset consists of clinical metadata and
the annotated frames of colonoscopy videos and is available at
https://www.biobancovasco.org/en/Sample-and-data-catalog/
Databases/PD178-PICCOLO-EN.html. The frames during
colonoscopy were captured through varying lightning
technologies: white light (WL) and narrow band imaging
(NBI). Metadata information of acquired data and annotation
procedure is described in the subsections below.

& Metadata completed by gastroenterologist includes num-
ber of polyps of interest, current polyp ID, polyp size
(mm), Paris classification, NICE classification, and pre-
liminary diagnosis.

& Metadata completed by pathologists includes final diag-
nosis and histological classification

A systematic procedure was established to acquire the an-
notated dataset. Colonoscopy video clips were processed for
extraction of individual frames. The frames excluded in process
based on their lack of sufficient information were frames out-
side the patient, blurry images, high occurrence of bubbles,
high existence of stool, transition frames between NBI andWI.

An analysis was performed based on the captured frames to
identify the type of lightning condition used to classify them
as polyp or non-polyp images. One frame per second was
manually annotated (i.e., one out of 25 frames). Frames were
collected and revised by a researcher to ensure the complete-
ness of dataset. Colonoscopic video frames were recorded at
Hospital Universitario Basurto, Spain between October 2017
and December 2019 using Olympus endoscopes (CF-H190L
and CF-HQ190L) [19]. The dataset contains 3,433 WL and
narrow band imaging NBI images from clinical colonoscopy
procedure videos in human patients. Total 46 patients were
examined, and 76 different lesions were included in the
dataset. Data was distributed into three sets having 2,203 im-
ages in training set, 897 in validation set and 333 in test set.
Details of frames in each set is given in Table 2. The dataset
contains three types of polyps: Adenoma, Hyperplasia, and
Adenocarcinoma. Figure 2 shows multiple samples of each
polyp class in dataset.

4 Computer-aided colorectal polyp
classification

The proposed framework for colorectal polyp classification is
shown in Fig. 3, and the description of each part is presented
underneath.
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4.1 Data oversampling and augmentation

The input data to the system is the collection of 76 colonos-
copy images from UCI Repository and 3433 images from
PICCOLO dataset, thus, they are insuf- ficient for model train-
ing in deep learning as a large dataset is important for classi-
fication; therefore, oversampling is done on the dataset. The
presence of imbalance in data was confirmed and label infor-
mation was extracted from the training dataset. The data was
split into 80% training set and 20% testing set. Group indexes
associated with the classes were obtained and variable labels
at each class were extracted from the training set. The minority
classes were oversampled compared to the number of images
in the majority class. Because the dataset for this project is
small and is not similar to the data of pre-trained model, de-
veloping an effective solution is challenging. If we go very
deep in the layers, the model easily overfits, the model might
not be trained effectively. In order to deal with this problem,
data augmentation was conducted for a successful transfer
learning.

4.2 Transfer learning and training process

CNNs are usually employed for the development of classi-
fication or localisation deep learning models. The classifi-
cation of objects for digital images is achieved in two dif-
ferent ways, either by implementing an off-the-shelf CNN
architecture or by designing a custom architecture where the
former approach is the basis of the new architecture. Deep
learning architectures are mostly suitable for classification
tasks; however, benefiting from off-the-shelf models can
significantly simplify the model development because they
are able to be modified and adapted according to the new
task [2]. Furthermore, this domain benefits from the com-
monly practised deep learning technique, transfer learn- ing,
where a model built for a particular task is used for another
custom task. In transfer learning, the model is trained based
on public datasets, and the initial weights of this model are
used for the task instead of assigning random weights as
done in a network designed from scratch. In the next step,
the last fully con- nected layer is usually responsible for
final classification, i.e., presenting the images of new clas-
sification to the network where weights of specific layers
are adjusted in the regular training process. In this paper, we
consider six CNN architectures: GoogLeNet, ResNet-50,
Inception-v3, Xception, DenseNet-201 and SqueezeNet.
The information about these architectures is shown in
Table 3. Each model has been independently trained with
the training data of the three classes.

4.3 Model tuning

Based on the classification task pre-trained model is fine-
tuned, fully connected and modified. Each model is

Fig. 1 The polyps’ samples from different classes of UCI dataset

Table 2 Frames in each of the sets according to clinical metadata

Category Items Train Set Validation Set Test Set

Image type WL 1382 558 192

NBI 821 340 141

Diagnosis Adenocarcinoma 172 166 127

Adenoma 1552 592 92

Hyperplasia 435 139 114

N/A 44 – –

F. Younas et al.



trained separately on oversampled and augmentedimages
according to the specified training options to classify the

images into the respective categories. Algorithm is given
below.

Algorithm of proposed framework

Inputs:
Training data Q = {q1, q2, ..., qn}.

Hyperparameter search space P = {p1, p2, ..., pn}.
Number of trials (X)
Number of classes (C)

Number of models to be used in the ensemble (N)
Tes�ng data Q’ = {q1’, q2’, ..., qn’}.
Training Process:

Generate the set of N random hyperparameter combina�ons from P.

Create N different networks pertaining to X combina�ons found in step 7.
Train each pre-trained network PTnet on X from step 8.

Choose the most efficient PTnets with specified accuracy threshold from step 9.
Perform grid search and assign suitable weights 
PTnet.
Perform the final training for the best-M networks selected from step 11 using en�re training 
dataset
Tes�ng Process:
Input tes�ng image q’ from the Q’

Generate output h(q’) predic�ons from each of the chosen PTnet from step 12.
Perform the final classifica�on by doing an ensemble of predic�ons from step 14.
Output:

Final classifica�on label h(q’) for a tes�ng image from Q’

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

4.4 Evaluation metrics

Recall rate is considered as the evaluation metric for the clas-
sification model. Colorectal polyp classification is a class im-
balance problem. Hence the perfor- mance of individual and
ensemble model is evaluated based on F1-score metric. F1-

score gives an equal weightage to both precision and recall
therefore it is considered ideal for unbiased performance eval-
uation metric for imbalance dataset. Dataset has a variety of
imbalance in data. The evaluation of imbal- anced data results
requires advanced metrics. Furthermore, this project aims at
three classes classification. Therefore, in addition to accuracy,

Fig. 2 Sample images of polyps from each class of PICCOLO Dataset

A deep ensemble learning method for colorectal polyp classification with optimized network parameters



recall, pre- cision, and F1-score, the proposed method was
evaluated by macro F1-score and weighted F1-score.

Micro f1-score and macro f1-score exemplify two ways of
confusion matrix interpretation in multi-class settings.
Confusion matrix of every class gi ∈ G = {1, ..., K} such that
the i-th matrix takes gi class as the positive class and rest of the
classes gj with j = i being the negative classes. Micro average
pools the performance over all the samples or in other words,
over the smallest possible unit to compute overall perfor-
mance. Micro-averaged F1-score is computed from micro-
averaged recall Rmicro and micro-averaged precision
Pmicro. The mathematical equation of these metrics are
shown in (1), (2), and (3).

Pmicro ¼ ∑jGj
i¼1TPi

∑jGj
i¼1TPi þ FPi

ð1Þ

Rmicro ¼ ∑jGj
i¼1TPi

∑jGj
i¼1TPi þ FNi

ð2Þ

F1micro ¼ 2
Pmicro*Rmicro
Pmicroþ Rmicro

ð3Þ

A large value of F1micro indicates a good overall perfor-
mance of the model. Micro-average was misled for

imbalanced data as it is not sensitive to the predictive perfor-
mance of specific class. However, macro-average takes the
averages over the individual class performance. Higher value
of F1macro rep- resents a good performance of individual
classes. Mathematical formulas are given in (4), (5), and (6).

Pmacro ¼ 1

jGj ∑
jGj
i¼1

TPi

TPi þ FPi
¼ ∑jGj

i¼1Pi

jGj ð4Þ

Rmacro ¼ 1

jGj ∑
jGj
i¼1

TPi

TPi þ FPi
¼ ∑jGj

i¼1Pi

jGj ð5Þ

F1macro ¼ 2
Pmacro*Rmacro
Pmacroþ Rmacro

ð6Þ

kappa kð Þ ¼ po− pe
1−pe

ð7Þ

Cohen’s Kappa Coefficient shows the performance evalu-
ation and reliability analysis in imbalanced class problem. In
(7), po represents the overall model accuracy and pe repre-
sents the model prediction and actual class value by chance
agreement. The co-efficient results are interpreted as follows:
≤ No-agreement when values 0, none to slight agreement for
0.01–0.20, fair agreement when 0.21–0.40, moderate agree-
ment is indicated by values between 0.41–0.60, substantial
agreement for 0.61–0.80, almost perfect agreement is present-
ed by 0.81–1.00 [34].

5 Experimental results

Colon cancer incidence rates are reduced if colorectal lesions
are identified at an early stage. These polyps are detected
efficiently with the help of high-quality endoscopes having
high magnification and improved image capturing capabili-
ties. Since these instruments are highly expensive and are
not always available; hence, it is important to develop a
computer-aided solution that can perform the classification
of the colonoscopy images at a reduced cost, thus making it

Table 3 Pre-trained CNN architecture details

Model(s) Depth Parameters (Millions) Image Input size

GoogLeNet 22 1.24 224×224

ResNet-50 50 25.6 224×224

Inception-v3 48 23.9 299×299

Xception 71 22.9 299×299

DenseNet-201 201 20.0 224×224

SqueezeNet 18 1.24 227×227

Fig. 3 An overview of the proposed weighted-average ensemble classifier

F. Younas et al.



affordable for the regions where these devices are neither eas-
ily available nor producing reliable results. Two sets of exper-
iments are conducted in this project, aiming to find out which
set of training hyperparameters produces the best results. All
the variations of the experimental setting implemented in this
paper are given in Table 4. The evaluation metrics to measure
the performance of models are accuracy, precision, recall, and
f1-score.

5.1 Performance on benchmark data

5.1.1 UCI dataset

This set of experiments was conducted on the benchmark data.
There are six contemporary CNN architectures for
accomplishing the experiments. The pur- pose of these exper-
iments is to find the most suitable hyperparameter settings
among the neural networks for the purpose of classifications.
At the first step, the dataset was segmented into a training and
a test set. Then the training set was passed to the pre-trained
network to find out the best possible opti- mizer for the given
dataset. Three optimizers selected are ADAM - Adaptive
Moment Estimation, SGDM - Stochastic Gradient Descent,
RMSprop - Root Mean Square Propagation.

The error rate of the deep neural network model during the
training phase can be reduced by optimisation algorithms.
Adam optimiser performs well with minimal tuning and has
shown its competence inmodel performance. This method has
been utilised in many applications for training neural net-
works. However, we have aimed to perform a comparative
analysis of various popular optimisers to identify the best fit
for this study in combination with other hyperparameters. As
our study is performed on a balanced dataset as well, the
SGDM optimiser is also considered as it performs better on
a larger dataset and can outperform ADAM’s performance

[35]. During the first phase of the experiment, six networks
were tested with these three optimizers one by one with a
learning rate of 0.001 and 50 epochs. In the next step, the
networks were tested for the same learning rate but by increas-
ing the number of epochs from 50 to 100. The results obtained
are shown in Table 5 and the relevant results are shown in
Figs. 4 and 5.

The first experiments were started with a learning rate of
0.001 and the performance is listed in Table 5. Later, the
bending ratio was increased to 0.005, and the number of
epochs was set to 50 and then 100 for the next phase of the
experiment. The results obtained for all the experiments show
that ADAM performs the best among the three optimizers by
giving consistently higher accuracy and recall of 86.67% and
86.63%, respectively, on all six models.

However, if we examine the results further, we observe that
optimizer RMSprop gives the worst results of 53.33% accu-
racy and 51.39% recall with most of the models and is clearly
not a good choice for further experimentation. It is evident
from the results that if we must choose the best optimizer
among the three tested options, ADAM is the most suitable
one as it has high sensitivity.

After establishing the most efficient optimizer, ADAM,
further experiments were conducted to select the number of
epochs that generate the best result. The numbers of epochs
chosen were 50 and 100 for learning rates 0.001 and 0.005
with the ADAM optimizer. The comparison of results shows
that 100 epochs produce better results with 86.67% accuracy
and 86.63% recall as com- pared to 50 epochs that give 80.0%
accuracy and 81.12% recall regardless of the learning rate
value. Now, the last parameter to be decided is the learning
rate. According to the selected optimizer and number of
epochs, results produced by both learning rates were com-
pared. The results presented in Table 6 shows that 0.001 learn-
ing rate produces better results in comparison to 0.005 learn-
ing rate

5.2 Performance on balanced data

The purpose of this experiment is to examine the performance
of the proposed models. One of the major issues that influence
the performance of a model is the imbalance between the
classes. The datasets utilised for this work were imbalanced,
which deteriorated the performance of this model. In order to
accomplish this problem, the imbalance was removed from
data by making the number of images in all the classes equal,
as shown in Table 7. After oversampling the data, each pre-
trained network was loaded and modified. In the next step, as
the images available in the dataset were limited, the data aug-
menter was defined for rotating and scaling to perform aug-
mentation before passing the data to the deep learning algo-
rithm. Similar settings were used in this experiment for a fair
selection of the best hyperparameters to identify the most

Table 4 Experimental settings

Networks Optimizers Learning Rates Epochs

GoogLeNet
ResNet-50
Inception-v3
Xception
DenseNet-201
SqueezeNet

ADAM 0.001 50

100

0.005 50

100

SGDM 0.001 50

100

0.005 50

100

RMSprop 0.001 50

100

0.005 50

100

A deep ensemble learning method for colorectal polyp classification with optimized network parameters



efficient deep learning architecture with the chosen settings. In
the experiments based on oversampled data, the same exper-
imental settings were applied to balanced dataset in previous
experiments; all the possible combinations of hyperparameter
settings were tested in this experiment as well. The three cho-
sen optimisers were tested based on augmented and
oversampled data to choose the best optimizer among
ADAM, SGDM and RMSprop. All the optimizers were tested
by changing other parameters, and the results were compared
to the best optimizer. After selecting the optimizer, the perfor-
mance based on various numbers of epochs is compared with
the experiment based on benchmark data. In the next step, the
chosen optimizer and the number of epochs is kept the same
for further experimentation, wherein the best learning rate was
chosen between 0.001 and 0.005. Once all the parameters
were selected based upon the results, the best architecture of
deep learning models is identified. The results are shown in
Figs. 6 and 7.

Experimental results show that the SGDM optimizer gen-
erates the highest value of all the evaluation metrics with

93.33% accuracy and 95.83% recall on all the settings except
0.001 learning rate and 50 epochs where ADAM performs
better than SGDM. The obtained results reflect that the most
efficient optimizer, SGDM keeps constituency for the rest of
the experimental settings. Further experiments were conduct-
ed to select the number of epochs that generate better results.
The number of epochs chosen was 50 and 100 for learning
rates 0.001 and 0.005 with the SGDM optimizer. The com-
parison of results in Table 8 indicates that 100 epochs produce
better results as compared to 50 epochs regardless of the value
of the learning rate.

Another important hyper-parameter to decide is the learn-
ing rate. According to the selected SGDM optimiser and num-
ber of epochs 100, the results produced by both learning rates
are compared. The results are shown in Table 9, which reveal
that a learning rate of 0.001 yields a better result. The results of
this experiment show that class imbalance affects the perfor-
mance of the deep learning models; however, if this problem
is handled prior to training the model, higher accuracy is
achieved. Therefore, handling the imbalance in data is

Table 5 Learning rate: 0.001 and 100 epochs

Model(s) ADAM SGDM RMSprop

Acc. Prec Recall F1-
score

Acc. Prec Recall F1-
score

Acc. Prec Recall F1-
score

GoogLeNet 86.7 87.6 86.6 87.1 73.3 75.4 77.2 76.3 60.0 61.2 66.5 63.8

ResNet-50 73.3 75.4 77.2 76.3 53.3 50.8 51.4 51.1 53.3 50.8 51.4 51.1

Inception-v3 60.0 61.2 66.5 63.8 60.0 61.2 66.5 63.7 60.0 61.2 66.5 63.7

Xception 53.3 50.8 51.3 51.1 53.3 50.8 51.3 51.1 53.3 50.8 51.3 51.1

DenseNet-201 60.0 61.2 66.5 63.8 66.6 77.7 65.2 70.9 60.0 61.2 66.5 63.8

SqueezeNet 60.0 61.2 66.5 63.75 60.0 61.2 66.5 63.7 53.3 50.8 51.3 51.1

Fig. 4 a Accuracy and b Precision Results with Optimizer: ADAM, Learning Rate 0.001 And 0.005, number of epochs 50 and 100

F. Younas et al.



beneficial in obtaining more accurate predictions. The results
are generated for two class and three class classification and
both experiments with experimental settings as shown in
Table 10. GoogLeNet performed the best on benchmark data
with 87.5% accuracy, 86.63% precision, 86.63% recall, and
87.12% F1-score with ADAM optimisers, learning rate 0.001
and 100 epochs.

On balanced datasets, ResNet-50 gives the most accurate
results with the same learning rate and the number of epochs
as of the benchmark data experiment; however, the optimiser
that performs better is SGDM yielding 93.33%, 33% preci-
sion, 95.83% recall and 94.56% F1-score.

One of the publications [27] has used the same benchmark
dataset for the classification of polyps, but the study classified
them into merely two classes, namely hyperplasic polyps and
adenomatous polyps. For a fair comparison of results, we have
also experimented with these two classes. All the experiments
were executed with the optimum hyperparameter settings;
however, the best results are included to make it easier.

According to the results shown in Table 10, ResNet-50
provided the most accurate results based on benchmark and
balanced datasets. ADAM and SGDM optimisers produced
similar and highest results with 0.001 learning rate and 100
epochs: 86.67% accuracy, 91.7% precision, 91.76% recall and

91.7% F1 score. However, the worst-performing CNN archi-
tectures for two- class classification are DenseNet201 for
benchmark data with 40% accuracy, 66.7% precision, 37%
recall, 47% F1 score and GoogLeNet for oversampled data
yielding 67% accuracy, 72.7% precision, 80% recall and
76.2% F1 score.

5.3 Ensemble learning of optimized networks

5.3.1 UCI dataset

Neural networks have a high level of variance and low bias. In
order to reduce the variance of the neural network, a better
approach is to train multiple models instead of a single model
to combine their predictions; this method is known as ensem-
ble learning. Combining the predictions of multiple models
adds a bias to the model, which in turn reduces the variance
of a single trained model. In addition to reducing the variance
of the model, this approach improves the model performance.
The results are predictions that are less sensitive to the spe-
cifics of the training data and training scheme.

Ensemble learning can be done with varying training data,
varying models, and varying model combinations where an
average of model predictions is calculated that can be

Fig. 5 a Recall and b F1-score Results with Optimizer: ADAM, Learning Rate 0.001 and 0.005, Number of Epochs 50 and 100

Table 6 Results with Optimizer:
ADAM, Learning Rate 0.001 and
0.005, Number of Epochs 100

Model(s) 0.001 0.005

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

GoogLeNet 86.7 86.6 86.6 87.1 75.4 75.4 77.2 76.3

ResNet-50 73.3 77.2 77.2 76.3 67.7 67.8 65.3 66.5

Inception-v3 60.0 66.5 66.5 63.7 55.1 55.2 54.1 54.6

Xception 53.3 51.3 51.4 51.1 57.2 57.2 54.2 55.6

DenseNet-201 60.0 66.5 66.5 63.8 61.2 61.1 63.5 62.3

SqueezeNet 60.0 66.1 66.5 63.5 73.3 73.4 72.2 72.8

A deep ensemble learning method for colorectal polyp classification with optimized network parameters



enhanced by weighing predictions of each model. The model
used in this study is the weighted average ensemble, also
known as model blending. [36]. It is difficult to classify
colorectal polyps due to their complex mucosal pattern.
Therefore, to effectively deal with the problem, we aimed
to improve the generalisation of the classification system by
benefiting from ensemble learning. The top two optimised
pre-trained networks, GoogLeNet and ResNet-50, are

selected based on a specified accuracy thresh- old. The
strength of deep learning networks with performance more
than the specified threshold is combined to improve the over-
all performance of the classification problem. Base-classifiers
are trained individually with the Ima- geNet database. As the
individual learners might have a limited capability to capture
data distribution, it is a good approach to combine the capa-
bilities of individual networks into an ensemble to generate
the outcome of the classifier. An averaging ensemble-based
classifier was developed to further enhance the performance
of the classifier by assigning carefully chosen weights to the
base-classifiers. A grid search was performed to select the
weight values in order to maximise the performance of the
ensemble model.

Table 7 Number of polyps per category

Adenomatous
Lesions

Hyperplastic
Lesions

Serrated
Lesions

Benchmark
Dataset

40 21 15

Balanced Dataset 40 36 33

Fig. 6 a Accuracy and b Precision Results with Optimizers: SGDM, Learning Rate 0.001 And 0.005, number of epochs 50 and 100

Fig. 7 a Recall and b F1-score Results with Optimizers: SGDM, Learning Rate 0.001 and 0.005, Number of Epochs 50 and 100

F. Younas et al.



5.3.2 PICCOLO dataset

A deep ensemble learning classifier is developed to effectively
deal with the complex structure of colorectal polyps. A virtual
biopsy is a sensitive and com- plex task that requires accurate
classification of polyps into their respective classes for oppor-
tune polypectomy. Therefore, for improved polyp classifica-
tion, the ensemble learning technique was developed.

In the case of the imbalanced dataset, the achieved macro-
F1 scores were just average, and weighted-average ensemble
models were 0.73 and 0.74 based on the test set. The results
show that average ensemble learning does not improve the
result in comparison to base-classifiers. However, the quanti-
tative evaluation of average and weighted average ensemble
classifiers suggests that assigning the suitable combination of
weights to the base-classifiers generates promising results and

performs better than a single base-learner and an aver- age
ensemble model. In addition, the balanced data performed a
lot better, yielding 0.76 and 0.79 based on the validation set
and 0.76 and 0.84 on the test set, respectively. The results are
shown in Tables 11 and 12. Macro and weighted F1-score
shows that the base-classifiers were able to learn the complex
representation of various polyp types.

The potential of multiple pre-trained CNNs with varying
architectural designs is evaluated for the colorectal polyp clas-
sification problem. The performances of these classifiers do not
produce exemplary results on colonoscopy images in contrast
to the proposed technique. However, the combined strength of
weak learners has shown a considerable improvement in the
results. Moreover, assigning the appropriate weights to the base
learners significantly improves the classification of images, as
shown in Figs. 8 and 9. F1 score-based result comparison on

Table 8 Learning rate: 0.001 and 100 epochs

Model(s) ADAM SGDM RMSprop

Acc. Prec Recall F1-
score

Acc. Prec Recall F1 score Acc. Prec Recall F1-
score

GoogLeNet 25.0 58.0 51.1 54.4 87.5 88.9 87.6 88.2 25 58.01 51.1 54.5

ResNet-50 53.3 48.6 48.6 48.6 93.3 93.3 95.8 94.6 60.0 60.0 63.8 61.8

Inception-v3 62.5 66.7 66.7 66.6 53.3 68.9 63.8 66.3 66.7 73.8 68.1 70.8

Xception 75.0 80.8 79.3 80.0 85.7 85.9 73.6 79.3 75.0 80.8 79.3 80.0

DenseNet-201 65.0 61.7 61.1 61.4 75.0 80.8 79.3 80.0 75.0 80.7 79.3 80.0

SqueezeNet 25.0 58.1 51.1 54.4 87.5 88.9 87.6 88.2 25.0 58.0 51.2 54.4

Table 9 Results with Optimizer:
SGDM, Number of Epochs 100 Model(s) 0.001 0.005

Acc. Precision Recall F1-score
Acc.

Acc. Precision Recall F1-score
Acc.

GoogLeNet 87.5 88.9 87.5 88.2 66.7 67.9 72.2 70.0

ResNet-50 93.3 93.3 95.8 94.6 87.5 89.6 88.6 89.1

Inception-v3 53.3 68.9 63.8 66.3 60.0 70.0 52.8 60.2

Xception 85.7 85.9 73.6 79.3 72.0 78.3 75.2 76.7

DenseNet-201 75.0 80.8 79.8 80.0 62.5 67.9 72.2 70.0

SqueezeNet 50.0 51.8 50.4 51.1 50.0 50.8 51.4 51.1

Table 10 Best hyperparameter settings

N Dataset Model Optimizer No of epochs Learning Rate Acc. Precision Recall F1-
score

2 classes Benchmark Dataset ResNet-50 ADAM 100 0.001 86.7 91.7 91.6 91.7

Balanced Dataset ResNet-50 SGDM 100 0.001 86.6 91.7 91.6 91.7

3 classes Benchmark Dataset GoogLeNet ADAM 100 0.001 87.5 86.6 86.3 87.1

Balanced Dataset ResNet-50 SGDM 100 0.001 93.3 93.3 95.8 94.6

A deep ensemble learning method for colorectal polyp classification with optimized network parameters



Table 11 Performance evaluation of Multi-class Imbalanced and Balanced dataset

Dataset Model(s) Data Type Accuracy Precision Recall F1-
score

Specificity Sensitivity TP TN FP

UCI Dataset GoogLeNet Imbalanced
Dataset

86.7 87.6 86.6 87.1 0.87 0.84 65 141 10

ResNet-50 73.3 75.4 77.2 76.3 0.71 0.78 56 132 24

Ensemble Learning 88.2 88.9 88.3 88.6 0.86 0.90 67 143 11

Weighted Average
Ensemble Learning

90.5 91.2 91.5 91.3 0.9 0.91 69 145 7

GoogLeNet Balanced Dataset 87.5 88.9 87.2 87.6 0.87 0.87 95 204 14

ResNet-50 92.7 91.8 93.5 92.7 0.92 0.93 101 210 9

Ensemble Learning 93.6 93.6 93.6 93.6 0.93 0.93 102 211 7

Weighted Average
Ensemble Learning

96.3 95.5 97.2 96.3 0.95 0.97 105 214 5

PICCOLO Dataset GoogLeNet Imbalanced
Dataset

73.1 75.2 72.4 73.2 0.75 0.71 255 593 84

Xception 72.3 75.2 71.2 73.4 0.75 0.71 265 598 86

ResNet-50 73.1 78.1 69.2 73.3 0.78 0.69 244 577 72

Ensemble Learning 73.2 78.4 69.1 73.4 0.78 0.69 235 558 68

Weighted Average
Ensemble Learning

74.4 78.2 71.3 74.2 0.78 0.71 244 572 70

GoogLeNet Balanced Dataset 72.1 73.3 71.1 72.4 0.73 0.71 240 573 90

Xception 72.4 71.1 73.2 72.3 0.71 0.73 239 572 98

ResNet-50 73.2 73.4 72.3 73.3 0.73 0.72 242 575 90

Ensemble Learning 77.3 79.1 74.2 77.1 0.79 0.74 253 591 66

Weighted Average
Ensemble Learning

81.2 82.4 81.1 81.3 0.82 0.81 270 603 61

Table 12 Performance of the Base-classifier and Proposed Ensemble Model on Imbalanced and Balanced Dataset

Dataset Model(s) Data Type Macro
Precision

Macro
Recall

Macro
F 1 -
score

Weighted
F1-score

Error Cohen’s Kappa
Coefficient

UCI Dataset GoogLeNet Imbalanced
Dataset

83.9 81.6 82.4 82.4 0.15 0.79

ResNet-50 72.5 73.1 71.1 74.5 0.26 0.58

Ensemble Learning 86.5 86.8 86.5 88.2 0.12 0.81

Weighted Average
Ensemble Learning

88.8 88.9 88.9 91.0 0.09 0.85

GoogLeNet Balanced Dataset 87.3 87.1 87.2 87.3 0.13 0.81

ResNet-50 93.3 93.3 95.8 94.6 0.07 0.89

Ensemble Learning 93.6 93.5 93.5 94.3 0.06 0.90

Weighted Average
Ensemble Learning

92.3 96.5 96.3 96.1 0.04 0.94

PICCOLO Dataset GoogLeNet Imbalanced
Dataset

72.2 72.1 72.3 73.1 0.27 0.59

Xception 70.1 71.3 71.2 71.1 0.28 0.55

ResNet-50 73.3 74.2 73.2 69.4 0.27 0.61

Ensemble Learning 73.1 73.4 73.2 73.3 0.27 0.61

Weighted Average
Ensemble Learning

75.2 75.1 74.4 75.4 0.26 0.62

GoogLeNet Balanced Dataset 72.3 72.1 72.3 72.2 0.28 0.59

Xception 71.1 71.3 71.3 71.1 0.28 0.55

ResNet-50 72.1 72.4 72.3 72.2 0.27 0.59

Ensemble Learning 76.2 76.1 76.1 77.1 0.23 0.65

Weighted Average
Ensemble Learning

81.3 81.4 84.2 84.3 0.19 0.68
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imbalanced and benchmark data is presented in Fig. 10. The
proposed method shows a 3% increase in the macro F1-score
on the test set for benchmark data. However, a 12% increase in
macro F1-score on the test set was noticed as compared to the
maximum value attained by the individual base-classifiers.

5.4 Precision-recall based analysis

In addition to sensitivity of model, it is extremely important to
analysis the precision of the proposed system. Precision rep-
resents the correctly identified positive cases out of all the
positive instance of the data. A small fraction of false positive
values can considerably affect the precision of the of the CAD

system if the data is imbalanced and decreases the F1-score. In
medical domain, where data is usually imbalanced, where
mostly cases belong to a larger class and less cases belong to
a smaller, yet usually more interesting class. As a result, such
systems misclassify the minority instances as majority class,
generating a high false negative rate [37]. In such systems, the
cost is usually high when a classifier misclassifies the positive
class examples and this misclassifica tion can affect the sys-
tem performance and have an adverse effect on diagnosis.
Therefore, the proposed system handled the class imbalance
to decrease the false positive and negative predictions. The
precision of the proposed system is 95.5 on UCI dataset for
balanced data which indicates a good capability of the system

Fig. 8 Comparison of results for Imbalanced and Balanced data using Weighted Ensemble Learning

Fig. 9 Comparison of macro results for Imbalanced and Balanced data using Weighted Ensemble Learning
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to identify positive cases shown in Fig. 11. Macro precision
and false positives comparison of proposed approach based on
both imbalanced and balanced PICCOLO dataset is presented
in Fig. 12. The precision of the proposed system on this
dataset is 0.81 for balanced data which indicates a good capa-
bility of the system to identify positive cases.

5.5 Reliability analysis

Figure 13 shows a comparison of imbalanced and balanced
data of error rate and kappa coefficient values of UCI dataset.
Kappa value for base-classifiers: GoogLeNet and ResNet-50
are 0.79 and 0.58 on benchmark data whereas 0.81 and 0.89
respectively. However, in terms of ensemble classifiers,

average ensem- ble generate 0.90 kappa value and weighted
ensemble further improves the result to 0.94.

Figure 14 shows a comparison of kappa coefficient and
error values of PICCOLO dataset. Kappa value for base-clas-
sifiers: GoogLeNet, Xception, ResNet-50 are 0.59, 0.55, 0.59.
However, in terms of ensemble classifiers, average ensemble
generate 0.61 kappa value and weighted ensemble further im-
proves the result to 0.62. Graph shows thatwith the increase in
kappa coefficient, error value of the model decreases in both
scenarios. This significant increase in the kappa coefficient
indicates a that proposed ensemble method has an acceptable
degree of reliability.

Figure 15 shows the ROC-AUC, 0.94 value that indicates
that proposed model has good degree of separability for
PICCOLO dataset and Fig. 16 shows the ROC-AUC, 0.89

Fig. 10 Performance of base-classifier and ensemble classifier on Balanced dataset

Fig. 11 a Macro Precision and b False Positive rate comparison of Imbalanced and Balanced UCI dataset

F. Younas et al.



Fig. 12 a Macro Precision and b False Positive rate comparison of Imbalanced and Balanced PICCOLO dataset

Fig. 13 Reliability comparison of proposed model using Cohen’s Kappa Coefficient on UCI Dataset

Fig. 14 Reliability comparison of proposed model using Cohen’s Kappa Coefficient on PICCOLO Dataset
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for two classes classification and 0.91 for three classes classi-
fication on UCI dataset obtained values that indicates that
proposed model has good degree of separability.

6 Comparison of models performance

The comparison with other methods has been very difficult as
this publicly available dataset is used by a limited number of
studies. Our work is com- pared with two studies that have
performed colorectal polyp classification on the same bench-
mark dataset. The comparison of results is shown in Table 13

Zhang et al. [28] proposed a CNN-based transfer learning
framework where features learned from the non-medical

dataset were utilised. They investi- gated two-class classifica-
tion; therefore, for comparison of the results with our ap-
proach, it is essential to examine our results from this point
of view as well. Therefore, with the established optimised
hyperparameter configuration obtained by our experiments,
colorectal polyps were classified into hyperplas-tic and ade-
nomatous polyps. Two class classification was performed by
the work that yielded 85.9% accuracy, 87.3% precision,
87.6% recall and 87.0% F1-scores. Our proposed weighted
average ensemble approach improved the performance of
the classifier by 2% on imbalanced data and 3% on balanced
data. Our framework outperformed their approach by produc-
ing 86.6% accu- racy, 91.7% precision, 91.7% recall and
91.7% F1-score with both benchmark and oversampled data.

Fig. 15 ROC curves on
PICCOLO dataset

Fig. 16 ROC of (a) Two classes classification (b) Three classes classification on UCI Dataset

F. Younas et al.
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The other comparative evaluation was accomplished [27]
where machine learning and computer vision algorithms were
combined together to develop a three-class classification
framework for implementing virtual biopsy by classifying co-
lorectal polyps into hyperplastic lesions, serrated adenomas,
and adenomas. Machine learning classifiers incorporated by
this research work were Random Forest (RF), Random
Subspace (RS) and Support Vector Machine (SVM). The re-
sults obtained by this approach were 82.46% accuracy,
72.74% sensitivity, 85.88% specificity. On comparing with
our results of three-class classification, it was observed that
the framework proposed by our study out- performs both tra-
ditional machine learning and deep learning approach by pro-
ducing 90.1% vs 96.3% accuracy and 91.5% vs 97.2% recall
on benchmark data and oversampled data, respectively.

This study experiments with various deep learning models
for the classification of colorectal polyps, such as GoogleNet,
ResNET-50, Ensemble Learning, and Weighted Average
Ensemble Learning. Subsequently, the results are compared
with the published studies in regard to the classification of
polyps using deep learning models. It can be observed that
the highest accuracy achieved is 82.8% by using the CNN
model proposed by Chen et al. [38]. Further, AlexNet is used
as a backbone in the transfer learning model proposed by Kim
et al. [39] in which the highest accuracy of 0.79 was achieved
with the variations of fully connected networks. However, this
study outperforms these recent investigations by achieving the
highest accuracy of 96.3 and 90.5 on both balanced and im-
balanced data using Weighted Average Ensemble Learning.

7 Conclusion and future work

In this paper, we present a framework designed for the classifi-
cation of col- orectal polyps with the minimum amount of pre-
processing. Early detection and classification of polyps mitigate
colorectal cancer-related deaths. Aimed at successful classifica-
tion, the large dataset is essential, whereas the benchmark
dataset in this project was very small. It was observed that if
the experiments are performed on the benchmark dataset, the
results obtained are not very accurate. However, transfer learn-
ing conducted on processed data significantly enhances the per-
formance of pre-trained CNN architectures. A comparative
analysis of several pre-trained CNN architectures was conduct-
ed to establish the best hyperparameter settings to obtain better
results of evaluationmetrics. Our results show that the proposed
method classifies polyps with 90.1% accuracy and 91.5% recall
on benchmark data. In addition, this dataset also has a high
degree of imbalance, as one type of polyps is more prevalent
than the rare types. Handling this class imbalance has shown a
significant improvement in results from 90.1% to 96.3% accu-
racy. The assessment of results shows that the proposed method
maintains a rea- sonable detection rate with a small deviation in

macro F1- score. Among the base classifiers, GoogLeNet pro-
duced the best results (0.82 macro f1-score) on benchmark data
with optimised hyperparameter configuration, whereas ResNet-
50 (0.93 macro f1-score) outperformed other networks when
tested on balanced data.

The improvement in macro F1-score (0.89) of the weighted
average ensemble from 0.86 of average ensemble classifier pro-
poses that the developed method is suitable for multi-class clas-
sification tasks on imbalanced data. The utilisation of the non-
biomedical ImageNet dataset to train the base-classifier also
assisted in tackling the training need of data-hungry deep learn-
ing architectures. The model also proved to be reliable after
being evaluated using Cohen’s Kappa Coefficient. Moreover,
the performance of the proposedmodel shows that it has attained
an accurate diagnosis. A higher recall rate indicates that the
sensitivity of the classification is high; it can classify all three
polyp types correctly, particularly the serrated adenoma and the
hybrid polyp, which are difficult to be classified. All the factors
are essential for accurate CAD. In addition, it benefits us greatly
in completing the virtual biopsy where endoscopists can decide
which polyps should be directly resected and which should be
sent for biopsy. The proposed architecture with the best
hyperparameter settings outperformed the previous methods,
which conducted the experiments on the same colonoscopy
dataset used in this paper. The promising results generated in
our experiments show that this proposedmethod is beneficial for
endoscopists for the identification of different types of polyps.

In future, training on a customised deep network could be
designed for accu- rate classification, though it requires a de-
cent number of images in the dataset and creating a labelled
large medical dataset is a challenging task. Another approach
would be to perform polyp detection prior to classification as
well as include white light images in addition to narrowband
imaging for efficient classification of diverse images.
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