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Abstract: This paper describes the development and 
evaluation of a range of metaheuristic search algorithms 
applied to the optimal design of two-dimensional layout 
problems, with the particular application on residential 
building construction. Results are presented to allow the 
performance of the different algorithms to be compared in the 
pareto-optimal solution space, with resulting solutions 
identified and analysed in the objective space. These results 
show that all of the algorithms investigated have the potential 
to be applied to optimise material layout and improve the 
design processes used during building construction. 
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1 Introduction 

The utilisation of computer-assisted processes in the civil 
construction industry results in ever increasingly rich sets of 
data being generated and stored in electronic formats. The 
availability of technical data, such as that of electronic 
drafting documents, offers the opportunity to integrate 
optimisation into the design, planning, and construction of 
the structure. 

This paper describes the development and evaluation of a 
generic framework for multiobjective optimisation on the 
design that involves two-dimensional physical objects, with 
the particular application on residential building 
construction. The underlying premise of the research is that 
the value and performance of a building, in a limited number 
of measurable criteria, can be improved from the original 
design by altering the design choices as permitted by the 
available data. However, while the multiobjective 
optimisation framework in this research specifically targets 
building construction objects, the methods and techniques 
utilised are not specific to these problems and therefore can 
be applied to similar problems in different contexts beyond 
what is covered in this paper. 

The optimisation of two-dimensional layout is a class of 
problems applicable to many industries. The problems call 
for the packing of non-overlapping shapes in an enclosed 
plane with the primary aim of minimizing the area outside the 
boundaries of the shapes, therefore maximizing the 
utilization of the material in the base sheet. Two-dimensional 
layout problem exists in several variants. To name a few there 
are the sheet layout problem, bin packing and strip packing 
problems, optimum floor plan problem, and cutting stock 
problem. However, none of the classically defined classes of 

layout optimisation embrace the potential for material reuse 
that is available in residential construction. 

This paper is structured as follows. Section 2 provides and 
overview of the background to this work, whilst Section 3 
provides and overview of layout optimisation problems 
common in residential construction. Section 4 describes a 
specific case problem for which results are presented in 
Section 5. These results and their implications are discussed 
in Section 5 and finally, Section 6 concludes the paper. 

2 Background & Related Work 

The research described in this paper seeks to utilise 
metaheuristic algorithms to solve multi-objective layout 
optimisation problems inherent in the design and 
construction of residential structures. Prior research has been 
done in various fields of two-dimensional layout optimisation 
problem as driven by the practical needs from the industry. 
There majority of such problems can be modelled in one of 
the four main variants: the sheet layout, the bin packing and 
strip packing, rectangular, floor planning and cutting stock 
problem. With the sheet layout, bin packing and strip packing 
versions being the most relevant to this research. 

Dyckhoff (1990) makes an attempt to provide a systematic 
classification of such optimisation problems. He uses the 
term cutting and packing (C & P) as a generic name for the 
problem and all its variants. He further postulates that there 
are four properties of each problem that determine to which 
class it belongs. The properties are the problem 
dimensionality, the kind of assignment, the assortment of the 
large objects (containers), and the assortment of the small 
items (pieces). The four properties are refined into finite set 
of sub-properties that relate to dimensionality, the type of 
assignment, the assortment of large objects and the 
assortment of small items (Dyckhoff, 1990). 

Wascher, Heike, and Schumann (2007) later proposes an 
updated classification system that is largely based on 
Dyckhoff's model. In the new topology system, the "kind of 
assignment" and "assortment of the small items" are no 
longer evaluated as separate items, but combined to 
determine a new property basic problem type. Further, 
Dyckhoff's "assortment of the large objects" is added to 
determine a new property intermediate problem type. Finally, 
the "problem dimensionality" contributes to establish the 
refined problem type. 

Wascher et al. (2007) however, agree with Dyckhoff (1990) 
that any variant of the C & P problem are composed of five 
sub-problem that must be resolved in order to achieve 
optimum result: 

1. The problem of selecting of the large objects 



   

2. The problem of selecting of the small items 

3. The problem of grouping the selected small items 

4. The problem of assigning the subsets of the small items 
to the large objects 

5. The layout problem regarding the arrangement of the 
small items on each of the selected large objects with 
respect to the geometric condition 

The two classification schemes outlined above have been 
used to guide a search of the literature for specific instances 
of layout optimisation approaches that can be used to inform 
a suitable approach for residential construction where the 
goals are to not only minimise waste but to do so be re-using 
the offcuts in the optimisation approach. The work of 
Adamowicz and Albano (1976), who investigated the layout 
of steel sheets in ship building, bears some resemblance to 
the problems examined in this paper however the use of 
material off cuts is not specifically investigated. In contrast, 
Sibley-Punnet and Bossomaier (2001) investigate the reuse 
off cuts from corrugated iron roofs using the high cost of 
delivering the roofing material to justify the computational 
effort required. However, the representation of the problem 
is only partially abstracted from the constraints of the 
material (Cranny, Bossomaier, & Sibley-Punnett, 1999) 
which limits the extent to which it can be generalised to a 
range of problems in residential construction. Sibley-Punnet 
and Bossomaier (2001) also utilised singly objective 
optimisation which is a limitation in terms of understanding 
the trade-offs between different possible design objectives. 

Whilst the literature related to material reuse is limited, there 
is a broad range of applications related to layout optimisation 
in general. Epstein, Imreh, and Levin (2010) report that 
algorithms used to solve layout problems fall into three 
classes, namely approximation algorithms, lower bounds 
algorithms, and exact algorithms. An example of an 
approximation algorithm is provided by Vassiliadis (2005) 
who creates a model of a 2D bin packing problem using a 
binary tree data structure and local search optimisation 
methods. He argues that a tree-representation in his design is 
capable of capturing any configuration and translations of the 
problem efficiently and offers strong base for the 
optimisation algorithms that follow. He further specifies 
simulated annealing and threshold accepting to implement 
the local search.  

Another example of a 2D bin packing approximation 
algorithm is provided by (Shigehiro, Koshiyama, & Masuda, 
2005), which is based on tabu search. In their algorithm, 
various close permutations of the rectangles formation are 
explored to find local optima while maintaining the list of 
previously known optimum solutions. Later Rao, 
Geevarghese, and Rajan (2010) propose another approach 
based on the combination of the Linear Programming 
relaxation and a greedy heuristic. 

Solutions based on lower bounds algorithm also have been 
proposed over the years, as reported by Lodi, Martello, and 
Vigo (2004) and Harren and Kern (2011). 

The characteristics of the exact algorithm is described by 
Labbé, Laporte, and Martello (1995). Exact algorithm 
solution for strip packing is proposed by Hifi (1998). First he 
decomposes the 2D strip packing problem into a series of 
two-dimensional constrained cutting stock problems, then 
branch-and-bound procedures are used to compute the final 
result. A more recent example is provided by Ĉoté, Gendreau, 
and Potvin (2014) who uses branch-and-cut technique to 
solve the two-dimensional orthogonal packing problem. 

Another important variant of the sheet nesting problem is the 
cutting stock problem, where a single stock sheet is to be cut 
into a series of rectangular pieces of predetermined sizes. The 
sizes are usually associated to values, from which the 
objective function of the optimisation is constructed. This 
type of problem is common in the iron and steel industries. 
Tokuyama and Ueno (1985) define that such application is 
characterised by varying criteria such as maximizing yield or 
increasing efficiency of production lines. The cutting stock 
problem is accompanied by an optimal stock selection 
problem, and as such bears some similarity to the issues 
encountered during  

Similar to bin packing and strip packing, typically the stock 
material in the cutting stock problems has a rectangular 
shape. In some cases however, the material can have an 
irregular outline as well as defective spots in the internal area. 
Georgis, Petrou, and Kittler (2000) define the generalized 
CSP and propose a solution to such problem based on 
simulated annealing technique. Whilst this bears some 
similarity to the voids encountered in residential 
construction, there is still a need to fully define the problems 
encountered during layout optimisation in residential 
construction. 

Such layout optimisation has been addressed to some degree 
in the existing literature. For example, Nimtawat, and 
Nanakorn (2010) investigate the combination of beams and 
slabs in the layout of reinforced concrete floors whereas 
Hong, Lee, Lee & Kim (2014) consider the optimisation of 
structural elements. There is a growing body of work that 
examines building envelopes as an optimisation problem 
(Echenagucia, Capozzoli, Cascone, & Sassone, 2015), 
including how the material usage can impact the energy 
efficiency of a building (Yang, Lin, Lin, & Tsai, 2017). 
Whilst material layout has received little interest in recent 
studies, there is a pressing need to consider the sustainability 
of construction projects and hence material reuse can be 
considered as one element of sustainable building design 
(Wang & Adeli, 2014) that is already under consideration in 
other industries (Snudden, Ward, & Potter, 2014). The need 
for so-called “waste avoidance” (Crossin, Hedayati, & Clune, 
2014) in residential construction has been identified  as a 
means to address the issue of building and construction waste 



   

materials continuing to be a major problem causing 
significant environmental impact (Zou, Hardy, & Yang, 
2015). 

3 Residential Construction Optimisation 

Successful application of optimisation on building designs 
requires a number of decisions made at various levels. For 
example, business stakeholders require the optimisation 
solution to yield appreciable return to their investment. 
Whereas from the technical perspective, the optimisation 
domain and scope need to be limited to those feasible with 
available technologies and computing resources. These 
requirements provide the grounds to the decision on which 
aspects of building design are to be optimised. 

Flat surfaces make prime candidate for the application of 
layout optimisation on house design. A polygon shaped area 
such as wall, or, or ceiling is to be tiled with covering sheet 
material such as drywall or plywood. With such tiling, it is 
required that the entire surface is covered with no gaps or 
overlaps. The panels are obtained from the supplier in fixed 
size rectangular sheets. Typically the individual panel is 
much smaller than the area to be covered. It is also anticipated 
that the enclosing area may have an irregular outline. To keep 
the construction expenses under control, the builder must 
arrange the panels in a way that keeps the cost variables low. 
Such parameters include the number of panels allocated, the 
amount of discarded off cuts, and the amount of effort 
required for moving and cutting the panels. 

The problem is demonstrated in Figure 1.  

 

Figure 1. Tiling a wall with fixed size panels 

This problem differs slightly from many layout optimisation 
problems where the challenge is to fit shapes within a 
container to minimise waste. In this example, the container 
must be completely filled using the minimum amount of 
panels. When the panel is homogenous, such as with sheet 
metal, it is desirable to reuse the off cuts to cover irregular 
regions at other places, as this has the potential to reduce the 
total number of sheets required.  

The multi-objective optimisation problem investigated in this 
research is a variant of the basic layout optimisation problem. 
These optimisation problems share a common characteristic 
of the application of scalar-based search methods on 
resolving layout optimisation tasks that involve vector 
objects. More specifically, the layout optimisation task in 
question is defined by the following input data: 

1. A range of standard rectangular sheets is provided to 
choose from 

2. A set of linear shapes of arbitrary outlines are to be cut 
out from the standard sheets 

The first input data is a set of standard rectangular sheets, 
which come in a variety of lengths and widths. For a given 
length and width, the sheets of the same size may be available 
in either fixed or unlimited numbers. One key task of the 
optimiser is to nominate the length and width from the 
available choices. Furthermore, in the case where a fixed 
number sheet is chosen and exhausted before all pieces are 
placed, the optimiser must be able to make another selection 
from the remaining available standard sheets. 

The second input data is a set of shapes that are to be 
individually cut from the standard sheets. The advantage of 
Building Information Modelling (Azhar, 2011) is that the 
geometric data of the building can automatically be extracted 
and utilised to create these shapes. By making the selection 
on a standard rectangular sheet length and width, the 
optimiser cuts the shapes into grids using the standard sheet 
as a template. Areas that are not completely covered by a 
standard sheet will constitute the arbitrary shapes input to the 
optimiser. 

Figure 2 shows an example of the visual representation of the 
input data for the case where the shapes are to be cut and 
calculated by the optimiser. In this example, a single target 
area is to be covered by standards sheets with a single choice 
of shape. The target area has an outline which includes 
convex and concave corners. Furthermore it also has a single 
void area that is not to be covered by the sheet material. With 
this input data defined, the optimiser is ready to calculate a 
solution. 



   

 

Figure 2. Layout optimisation problem 

Figure 3 shows a typical sheet placement solution generated 
by the optimiser.  

 

Figure 3. Sheet placement solution 

Each piece covering the target area has been labelled with a 
unique panel number. There are 19 pieces in this solution, 
five of which have the size of a complete standard sheet (Pa2, 
Pa3, Pa6, Pa7 & Pa10). Whereas the rest occupy less space than 
a standard sheet. Figure 4 presents a cutting solution for the 
problem. The pieces that do not fit a complete standard are 
placed together to minimise waste. Note there is a gap 
required between parallel edges of adjacent pieces (e.g. 
between Pa15 and Pa16), which the optimiser accepts as an 
input parameter. Due to this gap, pieces that seemingly able 
to fit in a single sheet (such as Pa1 and Pa8) are placed in 
different sheets. 

 

Figure 4. Layout cutting solution 

Previous work has utilised a metaheuristic algorithm (i.e. 
Genetic Algorithm) to solve a single-objective version of the 
layout optimisation problem described above (Connor & 
Siringoringo, 2007; Siringoringo, Connor, Clements, & 
Alexander, 2008). In this wok, the optimisation task was 
divided into two distinct sub-tasks. The first is to find the 
"optimum" selection of standard sheet and its grid cutting 
arrangement. Whereas the second is to optimise the 
placement of the cut out shapes as a standard bin packing 
problem. Also the optimisation was a single-objective 
variant, where the only objective was the minimisation of 
waste. 

The first sub-task was completed using a Genetic Algorithm. 
During the course of the research it was discovered that direct 
coding of the input parameters, such as the pieces translation 
and rotation, was not possible. There were two reasons direct 
coding scheme proved unsuitable for this class of problems. 
First, coding pieces translation and rotation information 
directly to the metaheuristic algorithm leads to the creation 
of large numbers of invalid solutions due to the violation of 
the no-overlap rule. Second, the information of which 
standard panel each piece should be mapped to cannot be 
effectively represented in the GA chromosomes. To address 
these issues, the concept of clusters was used. 

In the cluster-based solution, the GA chromosome is 
represented as an array of integers. Each element of the array 
represents a piece to be nested in the standard sheet. The 
integer value held by the element refers to the number of a 
logical cluster where the piece belongs to. The evaluation 
function groups the elements to the designated cluster, and 
attempts to put pieces corresponding to a cluster together in 
a single standard sheet using a deterministic method. A 
special provision was made to reallocate pieces that can no 
longer placed with others of the same cluster to other sheets. 

While the previous attempt succeeded in constructing a 
workable solution, it also has a few issues which restricts its 



   

use to the specific problem at hand, and prevents its 
application in a wider domain. For instance, the GA 
implementation was tightly integrated to the rest of the 
optimisation code, it is difficult to reuse the GA logic 
elsewhere. Similarly, it is difficult to replace the GA 
component of the solution with any other metaheuristic 
methods. 

The second issue was the difficulty in adapting the optimiser 
to multi-objective version, since the GA logic was controlled 
by a higher level process. Therefore, modifying the optimiser 
to become multi-objective requires the modification of the 
GA as well as its controlling process, with the associated 
refactoring of the parameters passed between the software 
components. 

The solution to these problems proposed in this paper are 
based on a model where the metaheuristic search controls the 
rest of the optimisation process. The optimisation problem is 
no longer broken into two separate tasks, the layout 
placement routines are configured so they serve as an 
evaluation function to the controlling metaheuristic search. 

The basic premise of this solution is that pieces are placed on 
standard sheets sequentially, with the optimiser allocating 
new sheets as needed. Optimisation is achieved through 
seeking the placement sequence which produces the best 
results. This way, the optimisation task is reduced to a 
combinatorial problem from the metaheuristic search 
perspective. The actual placement of the pieces is delegated 
to a deterministic method. This ensures the evaluation 
function calculates exactly the same result for the same input 
parameters. For the purpose of this research, the deterministic 
method uses a naïve "best fit" strategy in order to produce 
good layout solutions. Such strategy simply seeks to place the 
pieces together where waste is minimised, regardless to what 
objective parameters the higher level optimiser uses. 
However, there is an open opportunity for further improve 
the performance of the deterministic method. 

Reducing the search task to combinatorial problem makes it 
possible to use standards solutions to the classical Travelling 
Salesman Problem (TSP) and facilitates the ease of trialling 
different metaheuristics approaches without having to modify 
the problem representation. However, the model used does 
not fit the pure definition of TSP, because the value of an 
input sequence can only be calculated as a whole. Unlike in 
a standard TSP problem, in the layout optimisation the 
distance between nodes has no meaning, and hence no value 
can be purposefully assigned. 

However the problem is still representable by a fully 
connected graph G made by vertices V and edges E. 

G = (V, E) 

Since the distance between nodes is meaningless, for each 
edge in E, there is no associated parameter cij to expresses the 

cost of traversing the edge e  ∈ E which connects node i ∈ V 
and node j ∈ V . Only the total cost can be calculated at for 
the complete tour, through an embodied objective function. 
The absence of information on the traversing cost for 
individual edges does have an adverse impact on any 
algorithm that calculates partial cost when constructing a 
tour, such as the Ant Colony Optimisation (ACO) method. 
Such methods can be further modified to take this into 
account (Siringoringo, 2016). 

4 Case Problem 

As discussed earlier, a typical surface tile optimisation 
problem calls for the complete covering of a collection of 
arbitrary shaped areas by same-sized panels arranged in 
contiguous rows and columns. Parts of the surface area that 
do not occupy whole panels, called the off cuts, are to be laid 
out together in stock panels of the same standard size as 
densely as possible. A collection of stock panels of varying 
dimensions is provided to complete the input. One of the 
optimiser key tasks is to make the selection of one stock 
panel, which is to be applied consistently for the entire 
solution. In maintaining simplicity of the design and the 
practicality of its application, the mixing of different panel 
dimensions within a single solution is not to be considered, 
although this could be addressed in future work. 

The placement of offcut objects is further restricted by 
normal two-dimensional layout optimisation problem 
constraints. Firstly all of the objects must be completely 
enclosed by the plates. Secondly none of the objects can 
overlap. 

The particular problem of this class under consideration is the 
placing of dry wall panels on the interior of a residential 
dwelling. A typical single storey dwelling with four 
bedrooms has been used in this work, and a view of the 
dwelling layout is given in Figure 5. 

 

Figure 5. Residential dwelling 

The output of the optimisation comes in two forms: a visual 
presentation of the layout plan and a set of scalar parameters 
that indicate the quality of the solution. The graphical 
information is to be used at the construction site to perform 
the physical cutting and placement, whereas the scalar data is 
used by downstream processes in the company's information 
system. 



   

Closer examination reveals that this problem is composed of 
two subproblems which must be resolved sequentially, 
although each sub-problem still belongs to the same two-
dimensional layout optimization. For a given enclosed area 
and a given dimensions of rectangular panels, the 
requirement is twofold: 

1. Find the optimum arrangement of whole panels in 
which the covered area within the enclosure is 
maximized. The by-product of this process is a set of 
irregular shapes which represent the remaining exposed 
areas. 

2. Resolve how such irregular shapes can be nested within 
the minimum number of panels. Shapes that are bigger 
than the panel itself are cut at angles parallel with the 
rectangle's axes to allow such nesting. 

At the end of the calculation process, the desired output 
consists of numerical and graphical information: 

1. The total number of panels, consisting of panels to be 
fitted whole and the remainder to be cut to produce the 
irregular shapes. 

2. The nesting plan with which irregular shapes are cut 
from whole panels. 

3. The area overlay plan with which whole panels and 
irregular cuts are fitted to the enclosed area. 

It is important to note that although the two sub-problems are 
similar, they are resolved with mutually unrelated and 
potentially conflicting objectives. As an example, the lowest 
cost for the first sub-problem may be to cover as much area 
as possible with the least number of panels. However, the 
optimum solution to the second sub-problem may be the least 
amount of cutting. Hence a cheap solution in the first phase 
may lead to expensive penalties in the second. 

5 Results 

The geometry input data consists of the outline of the wall 
sections and a range of choices for the standard panel 
dimensions. No matching operations are required for the 
standard panel thickness or material grade. There are 13 
standard panels available to choose from. Because the 
standard panels are always rectangular, the same set of panels 
reoriented by 90 degrees are also added to make the total 
number of choices of 26. The small data set consists of wall 
sections from all the bedrooms, counting to 20 in total. 
Whereas the large data set consists of the 35 wall sections 
from the living room, the hallway, the kitchen, and all the 
bedrooms added together. A section of the extracted 
geometry is shown in Figure 6, which shows a single room 
only. 

 

Figure 6. Living room wall sections 

For the optimisation objective parameters, there two output 
variables to generate at each evaluation: 

1. Scrap Area (Minimisation) 

2. Shared Edge Length (Maximisation) 

The material used on tile layout problems, such as 
plasterboard, generates off-cuts that are typically of 
negligible economical value. As such, no secondary 
computation is performed to reclaim unused o 
cut material, which is simply considered scrap. Minimising 
the total area of scrap material is the first objective of the 
optimisation. 

Shared edge length is the total amount of cutting that results 
in creating new edges for two adjacent pieces. This is a 
maximisation parameter, where higher values mean less time 
and effort to carry out the physical act of cutting. 
Maximisation of parameters complicates the metaheuristic 
search's compare operations, making it necessary to reverse 
the parameter into a minimisation type. Shared edge is 
inverted to become a minimisation parameter by subtracting 
the value from a theoretical upper limit. However, there is no 
definite way to define the upper bound value prior to the 
optimisation. Because the shared edge length is a parameter 
dependent on other parameters, such as the total edge length 
of all the pieces, which is yet another output variable. 

This problem is solved using the empirical approach of 
recording the actual values for this parameter during a 
number of pilot runs. It became apparent that the value ranges 
from 576.08 to 696.58 on the data set. Because the values fall 
within relatively small bands for each cases, it was decided 
that an artificial ceilings can be created by adding the width 
to the highest known value of the range. At the end of the 
actual experiment runs, it was discovered that the value 
ranges are 556.38 to 706.96. 

A number of metaheuristic algorithms have been executed to 
solve a common single-house dry wall layout optimisation 
problem. For comparison purposes, a random walk search has 
also been executed, which allows the performance of the 
respective algorithms to be investigated based on 
performance in the pareto-optimal space utilising a number 
of measures. To ensure statistically reliable results, each 
algorithm is executed against the input data multiple times, 



   

in this case for a total of 20 repetitions and the following 
results are based on the average performance across these 
repetitions. 

Figure 7 presents the average performance of the algorithms 
on the spacing of solutions in the Pareto Front. The 
performance plot of the Random Walk is clearly separated 
from all other algorithms throughout the optimisation 
process. Whereas there are variations between the three 
metaheuristic algorithms at the initial generations, which 
become less significant as the search progresses. 

 

Figure 7. Convergence (Spacing) 

Despite the fluctuations, the Random Walk stays at higher 
spacing value compared to the other algorithms throughout 
the search. In contrast, the metaheuristic algorithms converge 
towards lower values with roughly the same pattern. Since 
lower spacing value is desirable, all the metaheuristic 
algorithms perform better than the Random Walk performs 
on this metric. 

The difference of the convergence pattern of the Random 
Walk can be explained by the absence of pressure towards 
promising solutions. As a result, non-dominated solutions are 
discovered randomly scattered along the Pareto set. Whereas 
the metaheuristic algorithms purposefully narrow the search 
process to evaluate more possible candidates for every 
objective, yielding more evenly spaced solutions. 

Figure 8 presents the average performance of the algorithms 
on the generational distance of solutions in the Pareto Front. 
All algorithms start at similar value range, except the Tabu 
Search which starts at significantly higher value, from which 
they continuously converge at a varying rate. 

Figure 8. Convergence (Generational Distance) 

The Random Walk search descends at a consistently lower 
gradient, and slows down the convergence earlier than the 
metaheuristic algorithms. Whereas the rest of the algorithms 
converge at similar rate, with the Tabu Search and Genetic 
Algorithm showing the most productive pattern. 

The convergence patterns show that the Random Walk search 
is markedly less effective in moving the Pareto Front towards 
better solutions. Whilst the Tabu Search and Genetic 
Algorihtm perform best amongst the metaheuristic 
algorithms. 

Figure 8 presents the average performance of the algorithms 
on the inverted generational distance of solutions in the 
Pareto Front. The performance plot of the Random Walk is 
clearly separated from all other algorithms throughout the 
optimisation process. Whereas there is relatively little 
variation between the three metaheuristic algorithms. 

Figure 8. Convergence (Inverted Generational Distance) 

The convergence plot of the algorithms follow a strongly 
similar pattern, with that of the Random Walk starting and 
staying at a consistent level higher than the other algorithms. 
Such patterns show that the Random Walk creates Pareto 
Fronts that are consistently dominated by those created by the 
metaheuristic algorithms. Whereas there is no appreciable 
difference among the metaheuristic algorithms on this aspect 
of performance. 

Figure 9 presents the average performance of the algorithms 
on the hyper volume of solutions in the Pareto Front. The 
initial values are varied among the algorithms, with the Ant 



   

Colony and Genetic Algorithm scoring the highest, whereas 
Tabu Search scores the lowest. 

Figure 9. Convergence (Hypervolume) 

Beyond the initial few generations, the performance plot of 
the Random Walk falls below all other algorithms throughout 
the optimisation process. In contrast, the three metaheuristic 
algorithms remain grouped together, with the Tabu Search 
and Genetic Algorithm achieving a slightly better result than 
the Ant Colony at the end of the search. 

Figure 10 presents the average contributions of the 
algorithms to the final set of solutions in the Pareto Front. All 
algorithms start with the same initial value of zero, from 
which the metaheuristic algorithms raise at markedly 
different rates.  

 

Figure 10. Convergence (Contribution) 

The Tabu Search contributes most and early, with the Genetic 
Algorithm following at significantly lower numbers later, and 
the Ant Colony contributing only marginally at the last few 
generations of the search. Whereas the Random Walk 
remains at zero throughout the process. Such results indicate 
that the metaheuristic algorithms are able to contribute non-
dominated solutions to the aggregated Pareto Front at every 
generation, with the Tabu Search being the most productive 
and the Ant Colony the least. The Random Walk on the other 
hand, fails to contribute non-dominated solutions during the 
entire search. 

Figure 11 shows a set of the non-dominated solutions in the 
normalised objective space.  

Figure 11. Pareto-optimal solutions 

The actual objective values of a selected few of these 
solutions are presented in Table 1, which shows the five 
candidates where the Euclidean distance to the origin is the 
least. 

 
 Scrap Area (m2) 

[Minimise] 
Shared Edges (m) 

[Maximise] 
1 14.490 474.489 
2 16.166 488.882 
3 17.734 512.118 
4 25.616 692.715 
5 38.216 699.166 

Table 1. Candidate solution objective values 

The solutions presented illustrate the true power of the 
multiobjective optimisation approach as they offer a set of 
solutions from which the designer could select the most 
appropriate. For a dry wall material such as GIB board, the 
designer may choose to trade off higher material waste 
against a reduction in labour achieved through a higher 
shared edge. However, for a more expensive material the 
designer would likely choose an alternative solution from the 
pareto-optimal set. 

There are two objective values to be measured. The material 
waste presents the amount of tiling material that cannot be 
reused and have to be discarded. Whereas the shared edge 
presents the length of the pieces that overlap with either the 
plate's boundary or other pieces' edges, indicating the effort 
required to perform the actual cutting.  

6 Discussion 

Analysing the results given in Section 5, it can be seen that 
there is a consistent pattern where the metaheuristic 
algorithms perform well, in comparison to the Random Walk. 
The metaheuristic algorithms perform particularly better than 
the Random Walk on the spacing convergence aspect. Which 



   

is consistent with its unbiased search pattern that does not 
necessarily produce evenly spread non-dominated solutions. 

The metaheuristic algorithms on the other hand, focus the 
search on specific areas only. This results in better non-
dominated solutions that are spread more evenly. For all other 
convergence measurements, the metaheuristic searches also 
perform better than the Random Walk. Although the 
discrepancy between these algorithms are generally small, 
suggesting that the representation of the problem is allowing 
different algorithms to perform to their full potential. 

The Genetic Algorithm and the Tabu Search perform at very 
similar levels where both achieve the best performance on 
certain metrics, with the Ant Colony following closely 
behind. On the Contribution aspect however, the Tabu Search 
performs well above others, contributing more non-
dominated solutions to the aggregate Pareto Front than 
others. 

The general observation from this experiment is that 
metaheuristic algorithms converge well on all aspects 
directly related to the quality of the non-dominated solutions. 
Which indicates that the metaheuristic algorithms respond 
well to the novel presentation of the geometry problem, and 
able to efficiently converge towards optimum solution set in 
a similar fashion they do on scalar problems.  

7 Conclusion 

This research in this paper has investigated the application of 
three different metaheuristic search algorithms to a layout 
optimisation problem typical of residential construction, 
namely the design of a drywall layout. This optimisation has 
been undertaken to both minimise the waste and optimise the 
cutting layout as a means to minimise the time and effort to 
carry out the physical act of cutting. All three algorithms 
investigated have the potential to explore the solution space 
and find candidate solutions that effectively trade-off these 
two conflicting objectives. 
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