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I 
	

Abstract 
Financial institutions have adopted various automated banking systems using currency 

recognition as their main activity, which makes automated currency recognition of 

significant interest. However, after the review of the literature related to banknote 

recognition, it turns out that there has not been found any methods implemented or 

proposed for the recognition of the newly released banknotes. This thesis investigates 

various methods for achieving banknote real-time recognition using digital image 

processing. The new Series 7 New Zealand banknotes are considered as an example for 

intelligent banknote recognition in real time.  

 

Several experiments have been conducted in this study and two groups of training 

datasets are generated for comparison. One group is composed of banknote images 

produced by using scanners, and the other group is made up of banknote images 

captured by webcam. Various combinations of extracted features and classifiers have 

been analysed. The corresponding results are compared and the performance of each 

combined method is evaluated. Eventually, the PCA-based composite feature together 

with the BPNN is the combined method proposed in this thesis. The proposed method 

has demonstrated excellent performance and comparatively less time-consumption that 

makes it suitable for real-time applications. To the best of our knowledge, the composite 

feature containing both colour and texture elements, presented in this thesis has 

appeared in the field of banknote recognition for the first time. Our contribution is that 

this research project fills the vacancy of the real-time recognition of the newly released 

banknotes; and the proposed method paves the way for the future development of 

multi-currency real-time recognition. 

 

Keywords: Series 7 New Zealand paper currency, real-time banknote recognition, HSV 

colour quantisation, uniform LBP, the minimum distance classifier, back-propagation 

neural network, F-measure 
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Chapter 1 Introduction 

1.1 Background 

Currency started serving as a medium for exchanging goods and services thousands of 

years ago to replace the ancient barter system where any objects could be swapped if 

two traders agreed (Maestro, 1993). Even nowadays, currency, as a measurement unit in 

pricing a transaction, still plays an indispensable role in modern society. For example, it 

is used as a medium of payment in tackling debt, and as a store of value for savings 

(Bender, 2006). The monetary form has been extended to cash including coins and 

banknotes, cashless money like bank cheques, and even electronic data representing 

currency in bank accounts.  

 

Banknotes can be traced back to the year 1023 when they officially appeared in China 

for the first time in history, called “jiaozi”, and were later introduced by American 

colonists for systematic use in the western world (Bender, 2006; Maestro, 1993). In 

spite of its long history, the worldwide market for banknote printing is still fairly 

confidential, which is typically justified as the intention of protecting the secure 

surroundings for the production of this unique product. The printing apparatus and the 

security inks, as well as the completely automated machinery for excellent accuracy of 

banknote examination or the highly secure shredding equipment for used notes are not 

familiar to the general public.  

 

With little revelation of the techniques for the production of banknotes, nevertheless, 

there is an enormous amount of research starting to reveal the inside story of the 

banknote, especially in the field of banknote recognition. Nowadays, numerous paper 

currency recognition systems have been developed through secure analysis, and have 

had a wide range of applications, such as automated teller machines (ATMs), banknote 

sorting machines, self-service payment kiosks, and portable devices assisting the 

visually impaired with recognising banknotes. 
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Banknote recognition mainly concerns the process of identifying the denomination of a 

banknote, particularly when a single currency is to be studied (Vishnu & Omman, 2014). 

In essence, it is the process of classifying the banknote to one of the classes it belongs to 

(Sargano, Sarfraz, & Haq, 2014). Unlike coins minted by heavy metals, almost all the 

banknotes worldwide are produced to be as thin as ordinary paper (Tarnoff, 2011). The 

newly released Series 7 New Zealand banknotes are a typical example. They are printed 

on paper polymer, which is a type of polypropylene plastic, enabling them to be 

lightweight (Langwasser, 2014). If weighing coins could be a straightforward way to 

distinguish different denominations of coins, then apparently, weighing banknotes is not 

a feasible way to distinguish different denominations of banknotes, due to the intrinsic 

lightweight property of the raw material. Even so, many other distinctive characteristics 

of banknotes allow them to be validated and classified by various methods. Those 

features could be grouped together by their accessibility levels. Level 1 contains the 

features that can be detected by human sense, such as substrate fidelity, print fidelity, 

colour fidelity, acoustic fidelity, serial number, holograms, watermark, security thread, 

security fibre, tactile fidelity, colour-shifting ink, clear window or latent image; Level 2 

contains the features that can be detected by minor manipulation, such as micro-text or 

invisible glowing ink; Level 3 contains the features that could be detected by security 

analysis, such as magnetic ink, screen traps, manufacture anomalies, materials 

interaction, intricate patterns, intricate design, or fluorescence eminence (Chambers, 

2012).  

1.2 Fundamentals 

Traditionally, machine learning has been studied either in a supervised paradigm like 

classification and regression, or in an unsupervised paradigm such as clustering and 

outlier detection. Supervised learning presumes that the training set has been provided, 

composed of a set of examples that have been appropriately labelled with the correct 

output (Preston & Carvalko, 1972; Samarasinghe, 2006). Based on the training set, a 

supervised learning method generates a model seeking to meet the two targets which are 

performing as well as possible on the set of training data and generalising as well as 
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possible to new data (Marsland, 2015; Preston & Carvalko, 1972). It is also called 

learning from exemplars. On the contrary, in unsupervised learning, the correct output 

of training data are not provided, or there are no training data at all to speak of (Preston 

& Carvalko, 1972). Instead, the algorithm attempts to identify the similarities between 

the inputs, so that the inputs which have something in common are categorised together 

(Marsland, 2015). Semi-supervised learning initially emerged in the 1970s, when 

self-training, transduction, and Gaussian mixtures with the expectation-maximisation 

(EM) algorithm were developed (Zhu, 2011). An explosion of interest in 

semi-supervised learning occurred in the 1990s, with the development of new 

theoretical analyses, new algorithms like transductive Support Vector Machines (SVM) 

and co-training, and new applications in natural language processing and computer 

vision (Chapelle, Zien, & Schölkopf, 2006). It is a learning paradigm regarding the 

study of how computers learn in the presence of both labelled and unlabelled data. The 

purpose of semi-supervised learning is to explore how combining labelled and 

unlabelled data may change the learning behaviour, and to design algorithms which 

such a combination can benefit (Zhu & Goldberg, 2009). 

 

Banknote recognition is a typical case of pattern recognition. The definition of the term 

pattern recognition has provoked wide-ranging discussion in the literature. In general, 

pattern recognition is interpreted as a branch of machine learning focusing on the 

recognition of patterns and regularities in data, though it is sometimes described as 

being synonymous with machine learning (Bishop, 2006). Specifically, it refers to the 

act of taking in raw data and then taking action based on the category of the pattern 

(Duda, Hart, & Stork, 2012). It is worth noting that Bezdek (2013) defined pattern 

recognition in a quite simple, literal way – it is a search for the structure of data. Three 

key elements can be extracted from the definition. The first element is “the data”, which 

drawn from realistic scenes and to be processed with the techniques of pattern 

recognition may be quantitative, qualitative, or both. They can also be depicted as being 

numerical, linguistic, pictorial, and textual, or any combination thereof. Examples are 

banknotes, fingerprints, gestures, demographic features, medical records, chemical 
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constituents, market trends, and so forth. The second element is “the search”, which is 

concerned with the techniques used to process the data. Until now, statistical pattern 

recognition has been a powerful technique in the search. Notwithstanding, the type of 

search to be adopted relies on both the data and the structure supposed to be found. Data 

is assumed to carry information about the process of generating them. “The structure”, 

as the third element in the definition, then stands for the approach in which the 

information can be organised, and hence the relationships between the variables in the 

process can be recognised by the structure. The relationships can be either invertible 

association or noninvertible association. Basically, regarding the information, the data 

contains it, the search recognises it, and the structure represents it (Bezdek, 2013). 

 

Similar to machine learning, pattern recognition can also be categorised depending on 

the kind of learning method used to produce the output value. Accordingly, there are 

three types of pattern recognition, which are also commonly perceived as pattern 

classification, namely, supervised classification, unsupervised classification and 

semi-supervised classification (Guillaumin, Verbeek, & Schmid, 2010). The main 

difference among these three types lies in whether the categories of all the experimental 

samples are known beforehand. Supervised classification often needs a considerable 

number of samples to be provided whose categories are known in advance (Bow, 2002; 

Sethi & Jain, 2014). However, it seems difficult to achieve such an essential 

prerequisite in many practical situations, for example, the cases when the labelled data 

are expensive or scarce. Under the circumstances, semi-supervised classification could 

be useful by manipulating readily available unlabelled data or combining supervised 

classification with strategies known from unsupervised classification, to improve 

supervised classification tasks (Zhu & Goldberg, 2009). 

 

Generally speaking, syntactic pattern recognition (structural pattern recognition) 

approach and statistical pattern recognition are the two basic approaches to pattern 

recognition, though neural pattern recognition remains controversial. Neural pattern 

recognition (or neural network pattern classification) is occasionally claimed to be a 
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separate discipline, due to its rather different intellectual pedigree (De Sa, 2012; 

Schalkoff, 1992), while many researchers perceive it as a close descendant of statistical 

pattern recognition (Cherkassky, Friedman, & Wechsler, 2012; Jain, Duin, & Mao, 

2000). Statistical pattern recognition is a supervised approach to pattern recognition, as 

the classification of patterns in the training set is known beforehand (De Sa, 2012). It 

derives classifying functions primarily based on the probabilistic models of feature 

vector distributions in the classes (De Sa, 2012; Fukunaga, 2013). By analysing the set 

of training samples, the given statistical models or known discriminant function, based 

on a certain criterion, n-dimensional vector space is divided into several sections 

pertaining to the category. In this way, as long as the pattern recognition system figures 

out which section the object for testing is in, the category of the testing object is 

supposed to be confirmed.  

 

The variation in patterns within a category is partly caused by environmental noises and 

the sensors, such as the effects of stain, and the quality of paper or ink on the characters 

of the writing. Even if the person continuously writes the same character a few times in 

a row, the written characters would look similar but not be identical, which manifests as 

the random nature of the pattern itself. Accordingly, when using feature vectors to 

represent those written characters containing minor shape discrepancies, the points in 

the feature space corresponding to the feature vectors are distributed in a certain section, 

rather than converging. Then that certain section can represent the realisation of the set 

of the random vectors (Li, Liu, & Wang, 2014). For a predetermined distance in the 

feature space, theoretically, the closer the two points, the more likely that the 

corresponding patterns are similar. Ideally, the distance between the two patterns of 

different classes is greater than that of the same class. In addition, for the line segment 

connecting any two points of the same class, the patterns of all the points on the line 

segment should belong to the same class. Moreover, the point matching a pattern with a 

small distortion should be contiguous with that with no distortion. Under such ideal 

conditions, the feature space can be accurately divided into a range of parts about 

different classes. On the other hand, when these conditions are not met, its probability 
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of the class that each feature vector belongs to is estimated, thereby rating the class with 

the highest probability as the class that point belongs to. It is worth mentioning that a 

number of techniques can be used to approximate the ideal conditions. The distortion 

caused by environmental noises and the sensors can be partially eliminated through 

pre-processing. The distortion resulting from the random nature of the pattern itself, can 

be effectively controlled by feature extraction and selection. Therefore, in order to 

achieve a satisfactory distribution of patterns in the feature space, a statistical pattern 

recognition should at least include data collection, pre-processing, feature extraction and 

selection, classifiers. 

1.3 Objective of the thesis 

Automatic machines that are capable of recognising banknotes are widely used in 

automatic dispensers of a range of products, from beverages to tickets, as well as in 

many automatic banking operations. Hence, it is essential to have automated currency 

recognition to carry out successful financial transactions. In this thesis, banknotes are 

taken into consideration. After reviewing the literature about banknote recognition, it 

appears that there is little research on New Zealand banknote recognition, and no system 

found or method implemented or proposed for the newly released Series 7 New Zealand 

banknotes. Thus, the main purpose of this thesis is to seek out a solution for recognising 

the new Series 7 New Zealand banknotes, or more specifically, banknote denomination 

recognition. 

 

In 2014, the Reserve Bank of New Zealand selected the designs for Series 7 New 

Zealand banknotes and published them in November (Langwasser, 2014). The Canadian 

Banknote Company Ltd (CBN) won the contract for the design and printing of the new 

banknote series in an open tender process (Langwasser, 2014). Series 7 New Zealand 

banknotes were designed and printed to meet a variety of functional, cultural and 

aesthetic requirements. Compared with Series 6 banknotes, Series 7 banknotes contain 

features that are much easier for people to identify. Several features of Series 6 notes 

were enhanced and then embedded into Series 7 notes, and other characteristics of 
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Series 7 banknotes are new. An overview of the main security features is illustrated on 

the official website of the Reserve Bank of New Zealand, as shown in Figure 1.1 and 

Figure 1.2. 

 

	
Figure 1.1 The security features of a $10 New Zealand banknote – front (Reserve Bank 

of New Zealand) 
 

	
Figure 1.2 The security features of a $10 New Zealand banknote – back (Reserve Bank 

of New Zealand) 

1.4 Structure of the thesis 

The remainder of this thesis is organised as follows. Chapter 2 is a comprehensive 

literature review of paper currency recognition. Banknote recognition models are 

reviewed from the viewpoint of digital image processing, including single-currency 

recognition models and multi-currency recognition models. Digital image processing is 

then introduced, unfolding the elaboration on feature engineering, feature extraction 
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methods and feature vector dimensionality reduction methods. Among them, colour 

feature extraction and texture feature extraction are highlighted, and principal 

component analysis (PCA) and linear discriminant analysis (LDA) are examined as 

effective vector dimensionality reduction methods. The most frequently used classifiers 

in the reviewed models are also interpreted, including the minimum distance classifier 

(MDC) and back-propagation neural network (BPNN) classifier. Chapter 3 outlines the 

methodology used in this research, including describing the related study, bringing up 

the research questions along with the hypotheses, and elaborating on research design. 

Chapter 4 presents the implementation of the experiments, covering the procedures of 

generation of the dataset, pre-processing, feature extraction, dimensionality reduction, 

and classification. The outcome of the experiments is analysed in Chapter 5. Finally, 

Chapter 6 concludes this research, including its novelty, significance, limitations and 

future work. 
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Chapter 2 Literature review 

Paper currency recognition is a certain kind of application of pattern recognition. This 

chapter is organised to give an insight into the areas relevant to banknote recognition, 

primarily from the viewpoint of digital image processing and pattern recognition. In 

Section 2.1, an overview of digital image processing-based banknote recognition will be 

presented. In Section 2.2, feature engineering that has a dominant influence on the field 

of digital image processing will be clarified, followed by the interpretation of feature 

extraction on colour feature, texture feature and the composite feature in Section 2.2.2 

and the explication of dimensionality reduction methods - PCA and LDA in Section 

2.2.3. In Section 2.3, the MDC and BPNN classifiers that are the most widely used 

classifiers for banknote recognition will be elucidated in Section 2.3.1 and Section 2.3.2, 

respectively. 

2.1 Overview of DIP-based banknote recognition 

Since each kind of paper currency has unique features, to some extent, the method used 

for recognition is individual to each currency. Accordingly, some of the existing models 

for banknote recognition only target currency of a particular country. These are known 

as single-currency recognition models, such as the recognition model for Australian 

banknotes (Hinwood, Preston, Suaning, & Lovell, 2006), Bangladeshi banknotes 

(Jahangir & Chowdhury, 2007), Chinese banknotes (Zhang, Jiang, Duan, & Bian, 2003), 

Egyptian banknotes (Semary, Fadl, Essa, & Gad, 2015), Ethiopian banknotes (Zeggeye 

& Assabie, 2016), Euro banknotes (Lee, Jeon, & Kim, 2004), Indian banknotes (Kamal, 

Chawla, Goel, & Raman, 2015; Sawant & More, 2016; Vishnu & Omman, 2014), 

Mexican banknotes (García-Lamont, Cervantes, & López, 2012), New Zealand 

banknotes (Chambers, 2012; Yan & Chambers, 2013; Yan, Chambers, & Garhwal, 

2015), Pakistani banknotes (Ali & Manzoor, 2013; Sargano et al., 2014), Persian 

banknotes (Ahangaryan, Mohammadpour, & Kianisarkaleh, 2012), Saudi Arabian 

banknotes (Sarfraz, 2015), Sri Lankan banknotes (Gunaratna, Kodikara, & Premaratne, 

2008), and United States banknotes (Grijalva, Rodriguez, Larco, & Orozco, 2010). 
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There are also banknote recognition models aimed at the currency of more than one 

country, which are known as multi-currency recognition models (Khashman & 

Sekeroglu, 2005; Pham et al., 2016; Takeda, Nishikage, & Omatu, 1999; Takeda & 

Omatu, 1995; Youn, Choi, Baek, & Lee, 2015).  

 

These reviewed banknote recognition models can also be grouped by the involved 

classifiers. The majority of them have utilised the MDC, while others have adopted 

cross-correlation-based template matching classifier or correlation coefficient-based 

template matching classifier. 

 

• MDC 

A reliable prototype with the aid of a smartphone camera was developed to help 

visually impaired people recognise United States paper currency in circulation in 

Ecuador (Grijalva et al., 2010). Each frame was processed to output the audio message 

communicating the face value of the note in front of the camera. Eigenfaces based on 

the PCA combined with Mahalanobis distance-based MDC were employed in the 

system. The prototype demonstrated a recognition rate of 99.838% in ideal conditions, 

99.156% in indoor conditions and 95.223% in outdoor conditions, with a processing 

speed of no less than seven frames per second. Vishnu and Omman (2014) put forward 

a PCA-based framework for Indian banknote recognition in their paper published in 

2014. Five security features including centre number, shape, Reserve Bank of India 

(RBI) seal, latent image, and micro letter were used for their study. Principal 

components of the banknote features were extracted and the weight vector similarities 

were then computed using the Mahalanobis distance. The framework classified Indian 

currency notes with 96% accuracy in the experiments. Sawant and More (2016) carried 

out research into Indian paper currency recognition using Euclidean distance-based 

MDC. Four security features including dominant colour, aspect ratio, ID mark and 

latent image numbers were taken into consideration for banknote classification as per 

denomination. The Euclidean distance between the testing sample and the mean value 

for each class was computed and then the testing sample was allocated to the class with 
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the minimum distance. The proposed system demonstrated approximately 90% 

accuracy on Indian banknote recognition. 

 

• Other classifiers belonging to template matching 

A simple currency recognition system was developed for Egyptian banknotes (Semary 

et al., 2015). Digital image processing was applied to the system, including image 

foreground segmentation, histogram enhancement and Region of Interest (ROI) 

extraction. Meanwhile, cross-correlation-based template matching was used for 

classification according to the similarity between images in the database and the ROI 

part of the testing sample. The recognition accuracy of the proposed method reached 89% 

under the MATLAB system, with an average recognition time of 10s per banknote. A 

fast and efficient algorithm was proposed making use of banknote size information and 

multi-template correlation matching for multi-currency recognition (Youn et al., 2015). 

Multi-template correlation matching determined the discriminant areas of each banknote 

that are highly correlated among banknotes of the same type and poorly correlated 

among banknotes of different types. The correlation coefficient was chosen as the 

similarity metric. The proposed algorithm was tested on 55 banknotes with different 

denominations of USD, EUR, KRW, CNY and RUB. It turned out to have 100% 

classification accuracy for unspoiled note recognition and 99.8% classification accuracy 

for soiled notes, with the average processing time of 4.83ms per banknote. Zeggeye and 

Assabie (2016) described their design of automatic recognition of Ethiopian banknotes, 

where hardware and software solutions worked on taking images of an Ethiopian 

banknote from a scanner and camera as an input. Four characteristic features, i.e. the 

dominant colour, the distribution of the dominant colour, the hue value, and speeded up 

robust features (SURF) were extracted as the discriminative features of banknotes. 

Those features in combination with local feature descriptors were involved in a 

four-level classification process, as a classification task executed every time one of the 

four features was extracted. The correlation coefficient-based template matching was 

implemented for classification. Test results showed that the proposed design had an 

average recognition rate of 90.42% for genuine Ethiopian currency, with an average 
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processing time of 1.68 seconds per banknote.  

 

Apart from the group of template-matching classifiers, the group of artificial neural 

network (ANN) classifiers has also been widely adopted for paper currency recognition, 

such as BPNN, learning vector quantisation (LVQ) and radial basis function network 

(RBFN).  

 

• BPNN classifier 

The method of improving the recognition rate and the transaction speed of classifying 

Japanese as well as US banknotes was explored (Takeda & Omatu, 1995). The proposed 

BPNN consisted of three layers, with each layer containing 16, 16 and 12 nodes. They 

also introduced the random masks technique to reduce the scale of the network, and 

proved its effectiveness for time series data and Fourier power spectra directly serving 

as the inputs to the network. The recognition rate reached more than 92% and the 

recognition speed was no less than 3 notes per second, by using the proposed method. A 

few years later, another BPNN-based banking machine was developed using neural 

weights and mask sets optimised by the genetic algorithm, which is applicable to US 

dollars, British pounds, French francs, Spanish pesetas, Italian lira, Australian dollars, 

Korean won, Belgian francs, German marks and Japanese yen (Takeda et al., 1999). 

Fifty to 100 notes of each kind served as the training set, and over 20,000 notes worked 

as the testing set. The machine was verified to be able to recognise more than 97% of 

testing samples, and the recognition speed was enhanced by nearly 20% compared with 

the method proposed by Takeda and Omatu (1995). A study was conducted where a 

neural network-based approach for recognising Chinese paper currency RMB was 

analysed (Zhang et al., 2003). For each RMB image, linear transform and edge 

detection were used to obtain the image particularly representing the characteristic edge 

information, which was then divided into different areas as the input vectors to a 

three-layer BPNN for classification. The results showed that the recognition ratio to the 

new edition of 100 RMB, new edition of 50 RMB, old edition of 50 RMB, 20 RMB and 

new edition of 10 RMB were 95%, 99%, 99%, 92% and 98%. It was suggested that 
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distinctive point extraction algorithms for Euro banknotes should be applied to 

high-speed banknote-counting machines (Lee et al. 2004). BPNN was employed as the 

classifier to minimise the recognition error rate. Accordingly, five neural networks were 

trained, with one for inserting direction and the others for denomination recognition. 

The experimental results demonstrated a 100% recognition rate on 5, 10, 20, 50, 500 

euro and a 95% recognition rate on 100 and 200 euro. A three-layer neural network was 

trained using a back-propagation learning algorithm for the recognition of the two main 

currencies used in Cyprus, namely Turkish Lira and Cyprus Pound (Khashman & 

Sekeroglu, 2005). The BPNN was composed of 100 neurones in the input layer, 30 

neurones in the hidden layer and nine neurones in the combined output layer. Validation 

experiments confirmed the effectiveness of the algorithm by which an overall currency 

recognition ratio of 95% was obtained, with the average recognition time of 0.05 

seconds. In 2006, a novel device named MoneyTalker was invented for visually 

impaired people to recognise Australian banknotes (Hinwood et al., 2006). The device 

utilised the broad range of colours and patterns on Australian paper currency to 

distinguish different denominations. Different algorithms were applied to the 

classification stage, including BPNN. The device was proved to be capable of reaching 

a recognition rate of more than 99%, and the time cost of recognition was around 3.01 

seconds per note. In 2007, a neural network-based recognition scheme for Bangladeshi 

banknotes was proposed for the first time, when currency recognition smachines were 

not yet used in Bangladesh (Jahangir & Chowdhury, 2007). In the proposed scheme, 

Axis Symmetric Masks were implemented in the pre-processing step to decrease the 

network size and to ensure correct recognition in case of flipped banknotes. The final 

network was constructed by 20 input nodes, 15 hidden nodes and eight output nodes, 

and trained via a back-propagation approach. This scheme recognised eight 

denomination classes of Bangladeshi banknotes, including 1, 2, 5, 10, 20, 50, 100 and 

500 Taka, with an average accuracy of 98.57% and an average recognition time of 

6.87ms per note. In 2008, a three-layer BPNN-based currency recognition system was 

developed for Sri Lankan banknotes (Gunaratna et al., 2008). In the process of feature 

extraction, the Canny algorithm was used for edge detection, and linear transform was 
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used to remove noise interference. 100, 500, 1000 and 2000 rupee notes were involved 

in the testing phase of the experiments. As a consequence, the system achieved 100% 

accurate classifications for all denominations with an average recognition time of 

around 200ms per note, and had the proven ability to separate classes properly in 

various image conditions. In 2012, a new Persian banknote recognition system that 

employed a discrete wavelet transform and multi-layer perceptron (MLP) neural 

network was presented (Ahangaryan et al., 2012). The three-layer neural network was 

trained by 138 images of Persian banknotes. After a trial-and-error process, the 

well-trained BPNN contained 57 input neurones, three hidden neurones and four output 

neurones. Three hundred and twenty samples of Persian paper currency consisting of 50, 

100, 200, 500, 1000, 2000, 5000 and 10000 toman notes served as the testing set and 

were classified with a recognition rate of over 99%. An empirical approach was 

presented for Series 6 New Zealand paper currency security analysis, and a working 

prototype was developed in the MATLAB environment (Chambers, 2012). The research 

was intended to utilise digital image processing and classification to recognise the 

denomination of Series 6 New Zealand banknotes. A two-part feature vector composed 

of colour feature and texture feature was the input to the classifier, while the 

denomination of the testing banknote was the output. One hundred and sixty-seven 

banknote images were tested on the prototype. Finally, the feed-forward neural network 

classifier trained using Bayesian back-propagation regulation learning delivered the 

optimal performance at the accuracy of 98.6% (Yan & Chambers, 2013; Yan et al., 

2015). An intelligent recognition system for Pakistani banknotes was developed in 2014, 

using a three-layer BPNN for classification (Sargano et al., 2014). The extracted feature 

in the study included aspect ratio, a set of useful colour features, a binary pattern of 

lettering block for the banknote, a binary pattern of see-through block, and a binary 

pattern of identification marks block for the banknote. The system was tested on 175 

Pakistani banknotes and the results demonstrated a 100% recognition rate on properly 

captured images.  
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• Other ANN classifiers 

In 2012, an effective approach to recognise Mexican banknotes was proposed where the 

colour and texture features were concatenated as a composite feature to investigate, and 

LVQ networks were adopted for classification (García-Lamont et al., 2012). The five 

denominations frequently used in daily transactions in Mexico were considered in the 

research, including 20, 50, 100, 200 and 500 Pesos. A 98.95% recognition rate was 

obtained with an average processing time of 0.9641 seconds, when applying the 

proposed approach to Mexican banknotes with the usual damage. An automatic Saudi 

Arabian paper currency recognition system was introduced by Sarfraz (2015). A few 

interesting features of the banknote, including the height, width, the area without a mask, 

the area with the first mask, the area with the second mask, the Euler number, and the 

correlation with the template image, served as the input vectors of the RBFN classifier 

adopted in his research. An overall recognition rate of 91.51% was reached on a testing 

set composed of 110 banknote images, with an accuracy of 95.37%, 91.65%, 87.5% for 

the non-tilted images, noisy non-tilted images, and tilted images, respectively. The 

average time taken for each banknote to be recognised was about 3s. 

 

There are other kinds of classifiers occasionally appearing in banknote 

recognition-related literature, for example, SVM, K-nearest neighbours (KNN) and 

K-means. A modular approach was presented for the recognition of Indian paper 

currency (Kamal et al., 2015). Four distinct and unique features, i.e. central numeral, 

Ashoka emblem, colour band and identification mark, were extracted separately, and 

SVM was employed as the classifier. The proposed approach was evaluated on over 300 

Indian banknotes of different denominations with various physical conditions. It yielded 

the accuracy of 97.02% for central numeral detection, a 95.11% true positive rate and a 

0.09765% false positive rate for emblem recognition, and the accuracy of 100% for the 

recognition of colour matching in CIE LAB colour space and identification marks. Ali 

and Manzoor (2013) designed an application for Pakistani paper currency recognition 

under the programming tool of MATLAB. The extracted banknote features included 

Euler number, area, height, width and aspect ratio. A KNN classifier was adopted to 
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contribute to an average accuracy of 98.57%. A feasible solution was put forward for 

the selection of distinct regions for banknote recognition (Pham et al., 2016). With 

images captured by a one-dimensional visible light line sensor, similarity mapping was 

responsible for obtaining the distinct areas. PCA was applied to discriminant features 

for dimensionality reduction and the classifier based on the K-means algorithm made a 

final decision on the type of the paper currency. The prototype was equipped with an 

average recognition speed of 568 images/s, and a 100% recognition rate on the 

banknotes in the Angolan Kwanza and South African rand databases, a 99.994% 

recognition rate on the banknotes in United States dollar database, and a 99.675% 

recognition rate on the banknotes in the Malawian kwacha database.  

2.2 Digital image processing 

Pattern recognition has been applied to many scientific and technical disciplines, 

including computer vision. There is a wealth of literature about the applications using a 

combination of pattern recognition and computer vision. The combined use 

correspondingly prompts an increase in the popularity of one of the most active research 

areas, named digital image processing, which grew from electrical engineering as an 

extension of the signal processing branch (Umbaugh, 2005). Digital image processing 

deals with arrays of numbers obtained by spatially sampling points of a physical image, 

mainly concerning the extraction of data, measurements or information from an image 

by means of semiautomatic or automatic methods (Chakraborty, Nalawade, Manjre, 

Sarawgi, & Chaudhari, 2016; Pratt, 2013). It diverges from conventional pattern 

recognition. Normally, image processing is the procedure prior to recognition, providing 

a sophisticated representation of the key information lying in the image, so as to smooth 

the way for classifying the image to a certain number of categories in the recognition 

stage.  

2.2.1 Feature engineering 

Despite today’s advanced computer technologies, discovering knowledge from data is 
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still not a simple task because of the complicated characteristics of the data generated by 

a computer. In an attempt to find the best performance of the predictive model, not only 

does the best algorithm need to be selected, but also the information should be derived 

from the original dataset as much as possible. The question that arises is how to derive 

useful information from the dataset. The answer has been found in feature engineering 

whose objective is to optimise data for facilitating the next phase of analysis.  

 

Features can be any extractable measurement used, and they can be numerical, symbolic, 

or both (Schalkoff, 1992). For instance, the length, width and height (measured in 

metric units) of an object are examples of numerical features, whereas the shape of an 

object could be an example of the symbolic feature. They may be represented by 

continuous, discrete, or discrete-binary variables signifying the presence or absence of a 

particular feature. Feature engineering is a process of turning raw data into a set of 

useful features that describe the data accurately. In feature engineering, feature 

construction, feature extraction and feature selection are the commonly adopted 

techniques for data processing.  

 

Feature construction refers to the process of discovering missing information on the 

relationship between features as well as augmenting the space of features by creating or 

inferring additional features (Guyon & Elisseeff, 2006; Wnek & Michalski, as cited in 

Liu & Motoda, 1998). It usually expands the feature space. In comparison, feature 

extraction intends to derive informative features from an initial set of measured data by 

means of functional mapping (Wyse, Dubes, & Jain, as cited in Liu & Motoda, 1998). It 

often reduces the dimensionality of feature space. For instance, supposing the original 

dataset contains the features A1, A2, …, An. After applying feature construction to the 

dataset, m new features An+1, An+2, …, An+m are created and added to the original feature 

set as a whole for further analysis, whereas after feature extraction, features B1, B2, …, 

Bm (m<n) are obtained via Bi = Fi(A1, A2, …, An) where Fi denotes the mapping 

function.  
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On one hand, feature selection differs from feature construction and extraction in that it 

will not give rise to new features. Feature selection is defined as the process of selecting 

a subset of features for use from the original ones when the raw data contains many 

features that are either irrelevant or redundant (Cios, Swiniarski, Pedrycz, & Kurgan, 

2007). Even though the primary motivation of feature selection is to help select relevant 

features, it is also beneficial to other aspects, such as an increase in processing speed 

and decrease in storage requirements by general data reduction, performance 

improvement in predictive accuracy by feature set reduction, and data understanding 

from gaining knowledge about the process of generating or visualising the data (Guyon 

& Elisseeff, 2006; Liu & Motoda, 2007).  

 

On the other hand, feature construction, feature extraction and feature selection are not 

entirely independent issues. Perceiving features as the language used for representation, 

when the language is not enough to express the question, feature construction can enrich 

the language by creating compound features, while feature selection assists in 

simplifying the language in the situation where the language comprises more features 

than needed (Liu & Motoda, 1998). Plus, when some of the constructed features are of 

little use, feature selection can then remove those features. It is also very normal to 

combine feature selection and feature extraction in pattern recognition. Feature 

extraction usually demands a great deal of computational effort, and the extracted 

features resulting from applying a feature operator or algorithm to the input data may 

contain noises or errors (Bezdek, 2013). Consequently, several requirements are 

supposed to be taken into consideration at the very beginning of a pattern system design. 

For example, selecting and extracting features that are computationally feasible and are 

likely to contribute to the accuracy rating of a pattern recognition system, and reducing 

the problematic data to a reasonable amount of information in the procedures of feature 

selection and extraction, without the loss of valuable information (Schalkoff, 1992). 

Ultimately, the combined use of feature construction, feature construction and feature 

selection depends on the target – for a simpler description targeted at maintaining the 

topological structure of the data or for better classification aimed at boosting the 
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predictive ability (Liu & Motoda, 1998). 

2.2.2 Feature extraction methods 

Colour and texture are regarded as the prominent features of paper currency, and they 

often appear in the literature on banknote recognition. This section introduces the 

approaches to colour and texture feature extraction.  

 

• Colour feature extraction 

Colour feature can be used as part of a composite feature or even as a standalone feature 

for banknote recognition, where the banknotes apply a dominant colour for distinction 

(García-Lamont et al., 2012). The colour information of an image includes several 

specific aspects, such as the proportion of each colour and the spatial location of the 

colours. Among them, each of the aspects can be considered as a standalone colour 

feature. A colour histogram is a feasible feature extraction method since it can extract 

the statistics of each of the colours in an image, regardless of the spatial locations of the 

colours (Bharkad, 2013). 

 

A colour histogram is a graphical representation of the distribution of the composition 

of colours in an image (Lamsal & Shakya, 2015). It can be built for a variety of colour 

spaces, though most frequently it is used for three-dimensional colour spaces like RGB 

or HSV (Lamsal & Shakya, 2015). Taken RGB colour space as an example, red, green 

and blue are the three channels in the space, so red histogram, green histogram and blue 

histogram can be constructed separately based on each channel. However, since the 

number of each channel is finite, a single variable histogram integrating the three 

histograms is therefore normally used for convenience purposes (Smith & Chang, 1996). 

Accordingly, in the single-variable histogram, the values of the horizontal axis stand for 

different colours in an image and the corresponding value of the vertical axis represents 

the number of pixels of the particular colour in the image. The number of bars in the 

single variable histogram is consistent with the number of bins determined by how 

many small intervals the RGB colour space is divided into.  
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Among various colour spaces, HSV is frequently found in research involving digital 

image processing, as it is closer to the human conceptual understanding of colours and 

is able to separate chromatic and achromatic components (Bharkad, 2013). HSV stands 

for hue, saturation and value, and an HSV colour model utilises these three attributes to 

differentiate colours (Pathrabe & Karmore, 2011). The hue, also called the name of the 

colour, is the core attribute of a colour, such as red, green, yellow, and so forth, and its 

value ranges from 0 to 360° corresponding to different basic colours. The saturation 

refers to the purity of a colour with the value from zero to one; the higher the saturation 

value is, the purer the colour is. The value means the brightness of a colour, ranging 

from the value of zero indicating the black to the value of one indicating the white 

(Zeggeye & Assabie, 2016).  

 

• Texture feature extraction 

Local binary pattern (LBP) is a type of visual descriptor used for classification in 

computer vision, and in particular it is a classic tool for texture description. Ojala, 

Pietikainen and Harwood (1994) formally introduced the original LBP operator in 1994, 

borrowing from a model of texture analysis in which a texture image could be 

characterised by its texture spectrum. The foundation of LBP is that an image can be 

perceived to comprise micro-patterns. From that point, LBP is the first-order circular 

derivative of patterns produced through concatenating the binary gradient directions, 

while a histogram of the micro-patterns displays information on the distribution of 

edges and some other local features in an image (Nanni, Lumini, & Brahnam, 2012).  

 

Specifically, the original LBP operator uses the intensity value of a centre pixel as a 

threshold to convert each of the eight neighbouring pixels to a binary code ‘0’ or ‘1’. 

The eight codes will then form an ordered pattern based on the positions relative to the 

centre pixel. Mathematically, the LPB code for the pixel P can be defined as Equation 

2.1 and Equation 2.2. 

 

𝐿𝐵𝑃(𝑃) = 2!𝑠(𝑔! − 𝑔!)!
!!!                   (2.1) 
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𝑠 𝑡 = {!,!!!
!,!!!                          (2.2) 

 

where 𝑔! is the intensity value of the centre pixel P, 𝑔! is the intensity value of the 

i-th pixel in clockwise order at the eight neighbours of the pixel P, and 𝑠 ∙  represents 

the threshold function. Figure 2.1 illustrates an instance of this process in detail. 

 

	

Figure 2.1 An example of LBP operator 
 

One predominant feature of the LPB algorithm is that it is a grey-scale invariant texture 

primitive statistic because the operator calculates the relative difference, which can be 

inferred from Equation 2.1. In other words, it is robust to grey-scale changes as the 

operator itself is invariant against monotonic transformations of the intensity 

(García-Lamont et al., 2012). In addition, since the LPB operator can be carried out with 

several operations in a small neighbourhood and a lookup table, it is also famous for its 

computational simplicity so as to be utilised for real-time analysis (García-Lamont et al., 

2012; Nanni et al., 2012).  

 

However, the original LBP operator only covers the texture in every small area with a 

fixed radius, which is apparently not able to compute the textures on various sizes and 

frequencies. With regard to the textures at different scales, Pietikäinen, Ojala and Xu 

(2000) modified the original LBP operator, expanding a 3×3 neighbourhood to a 

neighbourhood of any size, known as a circular local binary pattern. It applies a circular 
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neighbourhood and bilinear interpolation at non-integer pixel coordinates to allow any 

radius and number of pixels in the neighbourhood. Later on, they defined the rotation 

invariant version of LBP, because the basic circular LBP operator is not rotation 

invariant, which is undesirable (Pietikäinen et al., 2000). Figure 2.2 displays the 36 

rotation-invariant binary patterns appearing in the eight pixels circularly symmetric 

neighbour set, with the first row containing the nine uniform patterns, where black and 

white circles correspond to bit values of 0 and 1 in the 8-bit LBP code, respectively. 

 

	
Figure 2.2 Thirty-six rotation-invariant binary patterns  

 

Another functional extension to the original LBP operator is the so-called uniform 

patterns, which are mainly used to reduce the dimensionality of a feature vector and can 

also be used along with rotation-invariant LBP (Ojala, Pietikainen, & Maenpaa, 2002). 

This extension was inspired by the fact that certain binary patterns appear more 

frequently in textural images than others. The term “uniform” denotes the uniform 

appearance of the local binary pattern. In other words, there are a limited number of 

discontinuities or transitions in the circular presentation of the pattern. A local binary 

pattern is perceived as uniform if it contains no more than two bitwise transitions from 

zero to one or one to zero. For instance, the patterns 11111111 (0 transition), 00000001 

(2 transitions) and 00000110 (2 transitions) are uniform, whereas the patterns 10000110 

(4 transitions) and 10101010 (8 transitions) are not uniform. All the uniform patterns 

based on a neighbour set of eight members on a circle with a radius of one pixel are 

listed in Figure 2.3. Ojala et al. (2002) assumed that uniform LBP is of great account in 
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the texture of an image, which was proved by experimental results that uniform patterns 

account for nearly 90% of all patterns based on a neighbour set of eight members on a 

circle with a radius of one pixel, and for approximately 70% based on a neighbour set of 

16 members on a circle with a radius of two pixels. 

 

	
Figure 2.3 Uniform LBP based on a neighbour set of eight members on a circle with a 

radius of one pixel 

2.2.3 Dimensionality reduction methods 

This section focuses on demonstrating how PCA and LDA, the two methods for 

reducing the dimensionality of a feature vector, work by deriving their foundations from 

the mathematics. The advantages and disadvantages of each method will be discussed 

afterwards. By addressing both aspects, a better understanding of different methods will 

be gained. 
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• PCA 

PCA is a useful statistical method in modern data analysis and is widely used in 

scientific disciplines. It is also known as the Hotelling transform or the Karhunen-Loève 

transform (Cios et al., 2007; Sonka, Hlavac, & Boyle, 2014). As observations are often 

described by intercorrelated variables with a little noise, PCA is often used to identify 

the most meaningful basis to re-express a given dataset so that hidden structure in the 

dataset is discovered and the noise in the dataset is filtered (Kurita, 2014). Specifically, 

PCA computes principal components which are a set of new orthogonal variables 

obtained through linear combinations of the original variables. The values of these new 

variables for the observations are referred to as factor scores, which can be illuminated 

as the projections of the observations onto the principal components (Kurita, 2014). The 

first principal component takes up most of the variability of the data, and each 

subsequent component takes up the remaining variability as much as possible (Sonka et 

al., 2014).  

 

Digital images are typically represented in a manner of the matrix in computer vision 

and are expressed by vectors when digital image processing is involved. For example, a 

square image with N by N will be expressed in a N×N matrix. The n-dimensional vector 

can then be transformed to a one-dimensional vector by placing the rows of pixels in the 

image one after the other in sequence, as shown in Equation 2.3: 

 
                 imageVec = {x1, x2, …, xN²}                    (2.3) 

 

where the first N elements starting from x1 to xN refer to the first row of the image, 

followed by the next n elements referring to the second row of the image, and so on. So 

if there are 20 sample images and each of them is represented by an image vector, the 

large image matrix for expressing those images will be like Equation 2.4: 
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imagesMatrix	=	

imageVec1
imageVec2
...
...
imageVec20

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2.4) 

 

In order to avoid the difficulty of computing high dimensional vectors, image space of a 

high dimensionality needs to be reduced to a subspace of a smaller dimensionality while 

retaining as much appropriate information from the original images as possible (Ye, Shi, 

& Shi, 2009). PCA is one of the right approaches to address the issue. In statistics, PCA 

is a practical method of simplifying a multi-dimensional dataset to be of a lower 

dimensionality for analysis or visualisation. Through optimal linear transformation, an 

observed space is divided into orthogonal subspaces with the largest variance (Cios et 

al., 2007). 

 

Several equations regarding the use of PCA for image classification have been 

introduced by researchers, such as Equation 2.5, Equation 2.6, and Equation 2.7. 

Suppose a scenario where a set of N images are distributed in an n-dimensional image 

space as {x1, x2, …, xN}, and also each image belongs to one of c classes {X1, X2, …, Xc}. 

The n-dimensional image space is then mapped onto an m-dimensional feature space, 

where normally m<<n. The new feature vector yi ∈ Rm will be defined by the linear 

transformation as shown in Equation 2.5: 

 

yi = WTxi      i = 1, 2, …, N                 (2.5) 

 

where W ∈ Rn×m is a matrix with orthonormal columns. 

 

If the total scatter matrix 𝑆!  is defined as Equation 2.6: 

 

𝑆! = 𝑥! − 𝜇!
!!! (𝑥! − 𝜇)!                 (2.6) 
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where N is the total number of training images and xi is the i-th feature vector of 

samples, and 𝜇 ∈ Rn represents the mean feature vector of all samples in the training set. 

Then after the linear transformation WT, the scatter of the transformed feature vectors 

{y1, y2,  …, yN} is WT𝑆!W.  

 

Finally, the PCA method tends to find a projection matrix Wopt to maximise the 

determinant of the total scatter matrix of the projected samples, based on Equation 2.7:  

 

Wopt = arg 𝑚𝑎𝑥! |𝑊!𝑆!𝑊| = [w1, w2, …, wm]                (2.7) 

 

where the project matrix {wi | i = 1, 2, …, m} is comprised of the set of n-dimensional 

eigenvectors of 𝑆! corresponding to m largest eigenvalues.  

 

However, when PCA is used for image compression, the transformation analysis would 

be slightly different from that of the previous scenario (Smith, 2002). For instance, there 

are 20 images as an original dataset, and each has N2 pixels. N2 20-dimensional vectors 

will be formed, with each vector comprising all the intensity values from the same pixel 

from each image. So if 20 eigenvectors are transformed to 16 eigenvectors through PCA, 

then the final dataset will have 16 dimensions, which has saved 20% of the space. In a 

word, for image compression, a vector represents each pixel, with each item in the 

vector being from a different image, whereas for pattern recognition, a vector represents 

an image, with each item in the vector being a different pixel from that image.  

 

Despite the distinct advantage of dimensionality reduction, applying PCA to images has 

a few disadvantages. Relationships of a given pixel to pixels in adjacent rows are not 

taken into consideration as a result of rearranging pixels column by column to a 

one-dimensional vector (Sonka et al., 2014). Besides, the data type that PCA can 

process must be vectors rather than image matrix (Liu & Motoda, 2007). Another 

drawback is in the global nature of the representation; little change or error in the input 

images affects the whole eigen-representation (Sonka et al., 2014). 
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• LDA 

LDA is another linear projection-based method to compress the information residing in 

a training dataset into a smaller dimensional space. It explores for those vectors in the 

underlying space that best discriminate among classes instead of those that best describe 

the data (Ye et al., 2009). With the mathematical explanation, given some independent 

features describing the dataset, LDA makes the linear transformation on them, which 

produces the largest mean differences between the desired classes (Rahman, Banik, & 

Naha, 2014). The formulation relevant to LDA will be further clarified in the manner of 

equations later in this section, including Equation 2.8, Equation 2.9, Equation 2.10, 

Equation 2.11 and Equation 2.12. 

 

Since LDA adjusts similarity by increasing inter-class dissimilarity as well as intra-class 

similarity, now defining the between-class scatter matrix as SB, the within-class scatter 

matrix as SW, and the total scatter matrix as ST: 

 

𝑆! =  𝑁! 𝜇! − 𝜇!
!!! (𝜇! − 𝜇)!                   (2.8) 

𝑆! =  (𝑥! −  𝜇!)(𝑥! −  𝜇!)!!!∈!!
!
!!!                 (2.9) 

ST = SB + SW                          (2.10) 

 

where 𝜇! is the mean vector of class Xi, and Ni is the number of samples in class Xi. If 

SW is non-singular, the optimal projection Wopt is chosen as the matrix with orthonormal 

columns that maximise the ratio of the determinant of the between-class scatter matrix 

of the projected samples to the determinant of the within-class scatter matrix of the 

projected samples. 

 

𝑊!"# = 𝑎𝑟𝑔 𝑚𝑎𝑥!
|!!!!!|
|!!!!!|

 = [w1, w2, w3, … wm]        (2.11) 

 

where the projection matrix{wi | i = 1, 2, 3, …, m} is the set of generalised eigenvectors 

of SB and SW corresponding to the m largest generalised eigenvalues { 𝜆!  | 𝑖 =

1, 2, 3,… ,𝑚}, as shown in Equation 2.12. 
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𝑆!wi  = 𝜆!𝑆!wi,  i=1, 2, 3,…, m              (2.12) 

 

It is worth noting that there are no more than c-1 nonzero generalised eigenvalues. 

Therefore, the maximum value of m is c-1, where c represents the number of classes in 

the dataset. 

 

Compared with PCA, LDA is less sensitive to large variations in lighting that include 

not only intensity but also the number and direction of light sources (Rahman et al., 

2014). The goal of PCA is to yield project directions that maximise the total scatter 

across all classes. To realise the target, PCA retains unwanted variations on account of 

illumination, as the variations between the images owing to lighting and viewing 

direction are most likely to be much greater than image variations due to changes in 

content identity (Duda et al., 2012). Thus, although PCA achieves larger total scatter, 

LDA can be optimal from the discrimination point of view by achieving greater 

between-class scatter. Figure 2.4 illustrates the kernel idea of PCA and LDA regarding 

dimensionality reduction, taking a two-dimensional dataset as an example. There are 

samples of two categories in the dataset, namely, the blue ones and the orange ones, and 

the blue line is the newly created coordinate axis. 

 

	

Figure 2.4 A comparison of mapping results between PCA and LDA 
 

Apparently, as shown in Figure 2.4, PCA maps the entire set of data to the coordinate 

axis that most conveniently represents the set of data. The mapping does not make use 
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of any known category information within the dataset. Accordingly, even though PCA 

facilitates the representation of data by reducing dimensionality as well as retaining the 

original information as much as possible, it might cause difficulty in classification. By 

contrast, LDA makes the best of the category information that is known beforehand in 

the dataset. It maps the dataset to another axis to make the data more easily 

distinguishable. However, LDA still has several limitations (Luo, Ding, & Huang, 2011; 

Wang & Tang, 2004). Firstly, as a linear analysis algorithm, image matrices must be 

transformed to vectors before LDA can deal with them. Secondly, LDA may over fit to 

training data thereby generalising poorly to new testing data. Thirdly, LDA is no longer 

a good option for data classification when the categories of the dataset heavily rely on 

variance instead of mean value. Fourthly, LDA can generate c-1-dimensional subspace 

at most, while c stands for the number of the categories of the dataset. Fifthly, LDA is 

not suitable for dimensionality reduction on the dataset with non-Gaussian distribution. 

Sixthly, small sample size problem results in the singularity of the within-class 

scattering matrix in LDA; hence, failing to obtain the optimal projection direction. 

2.3 Classification Algorithms 

Classifier design has always been of great interest to the pattern recognition community 

and there has been significant development in the past decades (Li et al., 2014). Since 

the primary task of classification is, in essence, to find the model that generated the 

patterns, classification techniques are unique to the type of candidate models (Duda et 

al., 2012). In digital image analysis, the classification procedure is to analyse the 

numerical properties of various image features and then categorise the data into one of 

the classes based on homogeneous characteristics.  

2.3.1 Minimum distance classifier  

The minimum distance-based classification algorithm is used to classify unknown 

image data to one of the target classes which has the greatest similarity, measuring the 

distances between the input feature vector and all the mean vectors of the target classes 
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(Althafiri, Sarfraz, & Alfarras, 2012). The distance is defined as an index of similarity, 

so the smaller the distance, the larger the similarity between the two classes of patterns.  

 

The MDC is easy to implement and computationally simple, and it is also capable of 

yielding accuracy comparable to other more computationally intensive algorithms like 

maximum likelihood (Althafiri et al., 2012). In practice, the MDC has a high 

performance on the condition that the distance between means is large in comparison 

with the randomness of each class with regard to its mean, which could be the limitation 

of this classifier (Choi, Lee, & Yoon, 2006; Duda et al., 2012). Three kinds of distance 

measures are usually adopted in the procedure of minimum distance classification, 

namely, Euclidean distance, Manhattan distance and Chebyshev distance.  

2.3.2 Back-propagation neural network classifier 

The first computational model for ANN was created by McCulloch and Pitts in 1943, 

based on mathematics and algorithms, and named threshold logic. It paved the way for 

an ANN study splitting into two approaches, with one approach focusing on biological 

processes in human brain and the other concentrating on the application of ANN to 

artificial intelligence. In ANN models, neural networks are built from many neurones 

that are grouped in layers, and neurones can be connected in different manners 

depending on the specific algorithm used (Jankowski & Grabczewski, 2006). Each 

neurone can produce a series of real-valued activations, whereby input neurones are 

activated via sensors recognising the environment, and other neurones are activated via 

weighted links from formerly active neurones (Schmidhuber, 2015). ANN is an 

adequate approach for pattern recognition by virtue of self-organisation, parallel 

processing and generalisation (Cristea, 2009; Sethi & Jain, 2014). However, processing 

overhead could be the main disadvantage of adopting ANN that needs to be taken into 

consideration (Vishnu & Omman, 2014). Moreover, a significant number of training 

samples are required for neural network methods to find the proper classification 

function, and the necessary characteristic quantity is excessive. All these factors 

indicate that complex calculation appears to be inevitable, and overfitting is likely to 
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come about (He, Zhang, Liang, Jin, & Li, 2015). 

 

It is worth mentioning that a key breakthrough in ANN was the back-propagation 

algorithm that initially appeared in 1974 (Werbos, as cited in Hinton, 2002). 

Nevertheless, its significance did not receive much attention until it was proved to be a 

noticeably faster learning algorithm than other earlier algorithms for working with 

multilayer networks (Rumelhart, Hinton, & Williams, 1985). Learning occurs in the 

perceptron by modifying connection weights after each piece of data is processed, based 

on the amount of error in the output compared with the expected result. Mean squared 

error (MSE) is the common algorithm to measure the error, which is defined as follows: 

 

𝐸 =  !
!

(ℎ 𝑥! − 𝑦!)!!
!!!                     (2.13) 

 

where 𝑦! is the expected output given 𝑥! as an input and ℎ 𝑥!  is the actual output of 

the neural network. 

 

The essential processes brought by the BPNN are the involvement of a differentiable 

transfer function at each node of the network and the adoption of error back-propagation 

to modify the internal network weights after each training session. The way the 

back-propagation method calculates the gradient of an objective function regarding the 

weights of a multilayer stack of modules is an application of the chain rule for 

derivatives (LeCun, Bengio, & Hinton, 2015). After the MSE is calculated, the gradient 

of the objective concerning the input of a module is computed by working backwards 

from the gradient regarding the input of the following module. By means of this mode 

of propagation throughout all modules, starting from the output to the input, step by step, 

once the gradients are calculated, it is simple to work out the gradients for the weights 

of each module.  

 

Figure 2.5 shows a standard BPNN composed of three layers of nodes. Each node in the 

input and hidden layer is connected to each node in the next layer, and there is no 
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connection between the nodes in the same layer. Each connection between the nodes has 

a weighting factor on it. The information flows only one way as per the direction arrow 

in Figure 2.5. In the beginning, all weighting factors are assigned randomly. At the end 

of each training session, the total errors of the outputs are computed, and this 

information is then transmitted back to the network using a back-propagation approach 

so as to update weighting factors. By means of repeating this process, an effective 

neural network can be obtained. The input layer consists of two nodes, excluding the 

bias node. There is no calculation in the input layer; x1 and x2 will be passed onto the 

hidden layer. The hidden layer has two nodes, excluding the bias node. The outputs of 

the nodes in the hidden layer depend on the value of the input nodes and the weighting 

factors attached to the connections. For example, the value of the highlighted node V is 

determined by x1, x2, w0, w1 and w2. The output layer is composed of two nodes and has 

no bias node. The number of output nodes should equal the number of the categories of 

experimental samples, corresponding to the output results. 

 

	

Figure 2.5 A schematic diagram of BPNN 
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Chapter 3 Methodology 

This chapter will present the methods involved in this thesis. In Section 3.1, the related 

work will be introduced with an emphasis on the study regarding Series 6 New Zealand 

banknote recognition that has provided direct inspiration for this thesis. In the next 

section, research questions will be raised with the hypotheses. Subsequently, Section 3.3 

is about research design, including five subsections. In Section 3.3.1, the experimental 

platform will be described, followed by Section 3.3.2 giving an account of the 

experimental samples. In Section 3.3.3, various combined methods for classification 

applied in this experimentation will be listed. In Section 3.3.4, the framework of the 

system will be illustrated by flowcharts indicating the workflow of the training 

procedure and testing procedure. Finally, the KPI for evaluating the performance of the 

combined methods will be explained in Section 3.3.5.  

3.1 Related work 

Visual features such as colour, shape and texture can be extracted by deploying digital 

image-processing techniques to characterise images. Each of the features is represented 

by one or more feature descriptors for classification. Colour and texture are the distinct 

features of a banknote that humans rely on to perceive it; such features are supposed to 

be applied in machine learning for developing an efficient banknote recognition system. 

Many studies on banknote recognition have been conducted using digital image 

processing to extract the colour or texture feature of banknotes. 

 

RGB is the colour space that is commonly selected to present the colour feature of 

banknotes for banknote recognition, since red, green and blue have unique distributions 

according to denomination of the banknote. Chae, Kim and Pan (2009) calculated the 

mean value of each of the three channels, and then the difference between red and green, 

red and blue, green and blue together served as the colour feature. Solymár, Stubendek, 

Radványi and Karacs (2011) employed the statistical properties of the colour of 

banknote in RGB and YcBcR colour space, including the mean, standard deviation, 
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median values and ratios of standard deviations of RGB values. García-Lamont et al. 

(2012) used the RGB model to express the colour feature of the banknote, which is 

based on a Cartesian coordinate system where the RGB colour space is represented by a 

cube. Correspondingly, the colours were described by the points located inside the cube, 

defined by vectors that extend from the origin. HSV colour space is also found in 

banknote recognition research to extract the colour feature of banknotes. An HSV 

colour model draws on the three attributes - hue, saturation, and value, to differentiate 

colours (Pathrabe & Karmore, 2011). Aasma and Asma (2016) regarded the mean value 

of the hue, the saturation, and the value as the predominant colour feature of the 

banknote. Murthy, Kurumathur and Reddy (2016), and Zeggeye and Assabie (2016) 

extracted the mean value of the hue as the colour feature of the paper currency. Plus, 

there are still other studies that only make use of the grey-level information of 

banknotes for colour feature extraction, instead of any colour space. In the research 

undertaken by Hassanpour, Yaseri, and Ardeshiri (2007), a grey-scale histogram with 

52 bins was computed to find the pletitude of different colours in the banknote image. 

In Chambers’ study (2012), a grey-scale histogram with 256 bins were used to 

characterise the colour feature of the banknote. 

 

A number of methods have been employed to analyse the texture of banknotes for 

banknote recognition, and grey-level co-occurrence matrix (GLCM) is one of them. It 

computes the statistical features based on the intensity of a grey-level image, indicating 

how often the intensity value i occurs horizontally adjacent to the intensity value j (Devi 

et al., 2016; Hlaing & Gopalakrishnan, 2016). Chambers (2012) selected the contrast, 

correlation, energy and homogeneity from the GLCM features to be part of the texture 

feature of banknotes, while Hlaing and Gopalakrishnan (2016) extracted the GLCM 

features including energy, homogeneity, correlation, contrast and entropy as the texture 

feature to differentiate various banknotes. Apart from GLCM, the LBP operator also 

examines the spatial relationship of pixels for texture analysis where the neighbouring 

pixels are converted to binary codes by using the grey-level value of the centre pixel as 

threshold (Devi et al., 2016). Usually the LBP feature works in conjunction with a 
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histogram to describe the texture of banknotes. Accordingly, the LBP histogram was 

adopted as the feature descriptor for the texture feature of banknotes in the research 

undertaken by Guo, Zhao and Cai (2010) and the study conducted by García-Lamont et 

al. (2012). Moreover, Hidden Markov Model (HMM) has been put forward for 

texture-based feature extraction for banknote recognition, where the texture of 

banknotes was modelled as a random process. Specifically, the transition matrix was 

quantised into 10 grey levels and finally the main diagonal values of the matrix were 

exploited to distinguish different denominations (Hassanpour et al., 2007; Hassanpour 

& Farahabadi, 2009). 

 

Despite there already being much research on banknote recognition, there is only one 

study regarding New Zealand banknotes, which is specifically about Series 6 New 

Zealand banknote recognition (Chambers, 2012). The Series 6 New Zealand banknotes 

are the most similar edition of notes to Series 7 New Zealand banknotes among all the 

paper currency worldwide, even though they have their unique characteristics, as shown 

in Figure 3.1 and Figure 3.2. Because of this, Chambers’ (2012) study is the most 

significant reference for this research. 

 

  
           (a) 5 NZD                             (b) 10 NZD 

 

  
           (c) 20 NZD                             (d) 50 NZD 
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(e) 100 NZD	

Figure 3.1 Series 7 New Zealand banknotes of all different denominations 
 

  

           (a) 5 NZD                             (b) 10 NZD 

 

  
           (c) 20 NZD                             (d) 50 NZD 

 

 

(e) 100 NZD	

Figure 3.2 Series 6 New Zealand banknotes of all different denominations 
 

According to the literature, banknote recognition systems based on digital image 

processing could be divided into two groups. One group focuses on analysing the 
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banknote as a whole image, and the other group targets at the analysis of specific areas 

of interest, known as ROI, such as an investigation exclusively into the serial number 

zone of notes. In Chamber’s (2012) study, the banknote image was analysed as a whole, 

using digital image processing and classification to recognise the denomination. Two 

dominant categories of the main features were used, namely, colour feature and texture 

feature. For extracting the colour feature, a grey-level histogram was generated using 

256 bins to describe the frequency of dark to light colour. From the histogram, six shape 

descriptor metrics were obtained, including kurtosis, central moment, mean, variance, 

standard deviation, and skew. Five texture features were extracted with the entropy 

level and the four features from the GLCM, namely, correlation, contrast, energy and 

homogeneity. The extracted colour feature and texture feature were concatenated as a 

composite feature, which was directly input as a scalar to a feed-forward neural network 

classifier trained by Bayesian regulation back-propagation. Finally, the banknote in 

question was classified into its respective denomination, along with a measurement of 

the similarity between the existing samples and the suspect banknote. 

3.2 Research questions and hypotheses 

This thesis is primarily concerned with an investigation into how to utilise digital 

image-processing techniques to facilitate banknote real-time recognition tasks. Feature 

extraction plays a decisive role in classification. The features derived from data can 

directly affect the performance of the classification model (Kwak & Choi, 2002). 

Accordingly, the assumption on the subtle relationship between feature extraction and 

classification was mentioned by Duda et al. (2012): if a perfect feature extractor 

produced a representation that would make the classifier of little account, and 

conversely, if an omnipotent classifier did not require a complicated feature extractor to 

help out. By reviewing the literature, it turns out that the ideal combination of feature 

extractor and classifier relies more on experimental study than theoretical speculation. 

Particularly, feature extraction is much more problematic and domain specific than 

classification, requiring knowledge of the domain, just as a great feature extractor for 

face recognition is probably applicable neither to the recognition of vehicle licence 
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plates nor to the recognition of hand gestures. Nonetheless, there is no doubt that the 

more representative the features are, the better the performance of the model would be, 

since the ultimate goal of feature engineering is to improve the performance of the 

model.  

 

With great interest stimulated by Chambers’ (2012) study on Series 6 New Zealand 

banknote recognition as well as the assumption of the subtle relationship between 

feature extraction and classification from Duda et al. (2012), this research attempts to 

answer the core question of how to achieve real-time recognition of the new Series 7 

New Zealand banknotes using digital image-processing techniques.  

 

Although the time taken for each note to be recognised is a factor to consider for 

real-time recognition, the recognition rate is still given the priority on the evaluation of 

recognition performance. Accordingly, three sub-questions about the recognition rate 

are derived from the core research question, which are regarding training set, features 

and classifiers, correspondingly. The hypotheses corresponding to the sub-questions are 

also formulated. 

 

1) Scanner and camera are the most commonly used hardware to generate images. So in 

which way should the training images be produced to yield better recognition results? 

 

Hypothesis 1.1: The banknote images captured by webcam are likely to have a lower 

resolution due to the low configuration of ordinary webcams in the current market. By 

contrast, the images produced by scanner are of high resolution, retaining much more 

original and detailed information on banknotes, which are therefore hypothesised to 

result in better recognition results. 

 

Hypothesis 1.2: The training set made up of the banknote images captured by webcam 

is hypothesised to produce better recognition results, as those training images are 

generated in the way that simulates the testing environment to the maximum extent. 
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2) Colour and texture are the most discriminative features of Series 7 New Zealand 

banknotes. So which feature is able to yield better recognition results for Series 7 New 

Zealand banknote real-time recognition - colour feature, texture feature or the composite 

feature containing both colour and texture features? 

 

Hypothesis 2.1: The colour feature, as the predominant feature of the banknote, is 

hypothesised to yield better recognition results, because the colour difference between 

the different denominations is dramatic. 

 

Hypothesis 2.2: The banknote of each denomination has a unique pattern, which is easy 

to distinguish, such as portraits of different key characters, different background designs, 

graphics of the various colour-changing birds, and so forth. So the texture feature is 

hypothesised to be the optimum feature that is able to produce better recognition results. 

 

Hypothesis 2.3: The combined use of the colour elements and texture elements is 

hypothesised to result in better recognition results than solely adopting either colour or 

texture feature, as each feature part in the composite feature is supposed to contribute to 

banknote real-time recognition. 

 

3) The MDC and the BPNN are often employed as effective classifiers to deal with 

banknote recognition. So which one of them is able to yield better results for Series 7 

New Zealand banknote real-time recognition?    

  

Hypothesis 3.1: BPNN classifiers require a large number of samples to train a superior 

network, and have the defect of being liable to stick to a local optimum. Unlike BPNN, 

the MDC has the capability to work well with a small sample size. Additionally, the 

MDC has been widely employed in a single-currency recognition model and has the 

proven ability to produce an excellent recognition rate. So the MDC is hypothesised to 

result in better recognition results. 



	

40 
	

 

Hypothesis 3.2: Among the classifiers occurring in banknote recognition literature, 

BPNN is a popular classifier frequently employed in both single-currency recognition 

models and multi-currency recognition models. Thus, the BPNN classifier is 

hypothesised to have excellent ability in banknote classification as per denomination, 

and is therefore capable of generating better recognition results.  

3.3 Research Design 

Paper currency recognition is a significant branch of pattern recognition. Being a typical 

case of pattern recognition, digital image processing-based banknote recognition is 

made up of a few steps; they are image acquisition, pre-processing, feature extraction, 

dimensionality reduction, and classification decision. Image acquisition is the action of 

obtaining an image with the help of hardware-based sources like a digital camera or 

scanning equipment. Then the simple pre-processing procedure is implemented on the 

obtained images. Once the image is pre-processed, a succession of complex 

image-processing methods, including feature extraction and dimensionality reduction, 

are applied to the images for further analysis. Finally, the classifier analyses the 

numerical properties of various image features and organises data into categories. 

3.3.1 Experimental platform 

MATLAB is chosen to be the platform to explore the automatic real-time banknote 

recognition for Series 7 New Zealand banknotes, taking advantage of its matrix-based 

language to naturally express computational mathematics, and its built-in graphics that 

make it convenient to visualise and gain insights from data. The research will be 

undertaken on MATLAB student version R2010a, operated on the Microsoft Windows 

7 64-bit operating system of a Lenovo Y430P laptop. The laptop embeds Intel(R) 

Core(TM) i7-4710MQ CPU @ 2.50GHZ processor, with 8GB RAM. It will use a 

Lenovo easy camera - the front-facing webcam of the laptop to demonstrate the 

real-time recognition.  
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3.3.2 Experimental samples 

The experimental samples are composed of all denominations of New Zealand 

banknotes including 5 NZD, 10 NZD, 20 NZD, 50 NZD, and 100 NZD, which are 

collected randomly in the circulation market. Three hundred banknote samples were 

collected in total, with 60 samples for each denomination. Two hundred and fifty of 

them served as the training samples, with 50 training samples for each denomination, 

while the rest 50 samples worked as testing samples, with 10 testing samples for each 

denomination.  

3.3.3 Combined methods 

In this thesis, the colour histogram works as the feature for the colour of banknotes, and 

the LBP histogram is the feature for the texture of banknotes. Since this thesis focuses 

on real-time recognition, effective dimensionality reduction algorithms - PCA and LDA, 

are utilised in experimentation to build up computing speed, thereby adapting to 

real-time recognition. Euclidean distance-based MDC and BPNN classifiers are 

employed respectively to classify the testing banknote into the correct category. The 

combinations of extracted features and classifiers investigated in this project are listed 

in Table 3.1.  
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Table 3.1 Different combinations of extracted features and classifiers 

Combination 

No. 
Features 

Dimensionality reduction 

methods 
Classifiers 

1 Colour PCA MDC 

2 LBP PCA MDC 

3 Colour+LBP PCA MDC 

4 Colour LDA MDC 

5 LBP LDA MDC 

6 Colour+LBP LDA MDC 

7 Colour PCA BPNN 

8 LBP PCA BPNN 

9 Colour+LBP PCA BPNN 

10 Colour LDA BPNN 

11 LBP LDA BPNN 

12 Colour+LBP LDA BPNN 

 

3.3.4 Flowcharts 

The flowcharts of the camera-based banknote real-time recognition are shown in Figure 

3.3, with the training procedure shown in Figure 3.3 (a) and the testing procedure shown 

in Figure 3.3 (b).
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(a) Flowchart of the training procedure
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(b) Flowchart of the testing procedure	
Figure 3.3 Flowcharts of the camera-based banknote real-time recognition 
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3.3.5 KPI 

The F-measure, originally derived from the field information retrieval, is nowadays 

routinely exploited as a performance metric for multi-class classification systems 

(Dittimi, Hmood, & Suen, 2017; Ni’am, Faisal, & Arif, 2014; Sokolova & Lapalme, 

2009). In classification, the precision of classification is defined as the number of true 

positives divided by the sum of true positives and false positives, which is expressed by 

Equation 3.1. The recall of classification is defined as the number of true positives 

divided by the total number of elements that belong to the positive classes, which is 

represented by Equation 3.2. The F-measure (F1 score) is defined as the harmonic mean 

of precision and recall, which is shown by Equation 3.3.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"!!"

                        (3.1) 

𝑅𝑒𝑐𝑎𝑙𝑙 = !"
!"!!"

                         (3.2)            

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×  !"#$%&%'(×!"#$%%
!"#$%&%'(!!"#$%%

               (3.3) 

 

where TP stands for true positives or hit, representing the number of items correctly 

labelled as belonging to the positive class; FP is false positive or false alarm, 

representing the number of items incorrectly labelled as belonging to the positive class; 

FN refers to false negatives or missing correct acceptance, representing the number of 

items that are not labelled as belonging to the positive class but should have been. 

Precision and recall reach their best value at 100% and worst at 0%, while F-measure 

reach its best value at one and worst at zero. For example, a 100% precision for 

classifiying $5 indicates that every item labelled as belonging to the category $5 does 

indeed belong to $5, and a 100% recall indicates that every item from the category $5 

was labelled as belonging to $5. 

 

A large number of banknote recognition-related studies employ the accuracy to measure 

the recognition rate of the proposed method, with the accuracy equal to correct 



	

46 
	

recognition times divided by the total of recognition times. However, the accuracy is not 

suitable for reflecting the performance of the various combined methods to be 

investigated in this research project. A typical example is the situation in which all 

testing banknotes of the different denominations are recognised as one particular 

denomination, for example, $5. In that situation, the accuracy of recognising $5 is 100%, 

which incorrectly reflects the performance of the combined method for recognising each 

denomination, whereas the F-measure of recognising $5 is approximately 0.3333, 

resulting from the precision being 20% and the recall being 100%. Clearly, F-measure is 

a more comprehensive KPI for this research. Thus, precision and recall, the two 

essential components of F-measure, will be calculated based on the experimental results; 

eventually, F-measure (F1 score) is adopted as the primary KPI to evaluate the various 

combined methods in this research. 

 

On the other hand, as this thesis pertains to real-time recognition, the recognition time is 

also taken into account in the assessment of recognition performance using the 

combined methods, especially in the situation where the methods are of the same 

F-measure. Specially, the recognition time is reflected by the time cost of recognition 

that counts from the camera capturing the testing banknote to outputting the recognition 

result to the screen. Nevertheless, F-measure is given priority in this research project, 

which is supposed to be more significant than the recognition time. 
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Chapter 4 Implementation 

This chapter will provide a more detailed description of the experiments. The figures 

with respect to the scanned banknote images will be inserted as examples in this chapter. 

including explanations on the generating of the training set, pre-processing procedure, 

the procedures of feature extraction including the extraction of the colour feature, the 

texture feature, and the composite feature containing colour and texture elements, the 

steps to reduce the dimensionality of the feature vector using PCA and LDA 

respectively, and the process of creating the classification model using the MDC and the 

BPNN, respectively. Section 4.2 will describe the details of the testing procedure.  

4.1 Training procedure 

4.1.1 Training set 

Training samples need to be converted into digital images for computers to deal with. 

Two hundred and fifty training samples, with 50 training samples for each 

denomination, are processed in different ways – via scanner or webcam. Accordingly, 

the training set is divided into two groups in this research project. One group is 

composed of the scanned banknote images at 300 dpi, and the other group consists of 

the images captured by webcam at 96 dpi. The two groups of training sets are separately 

used in this research project for comparision, as shown in Figure 4.1. 

 

  

  

(a) The banknote images of different denominations produced by scanner 
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(b) The banknote images of different denominations produced by webcam 

Figure 4.1 The comparison between the banknote images produced by scanner and the 

images produced by webcam 

4.1.2 Pre-processing 

All the original banknote images of different denominations, either taken by webcam or 

scanned by scanner, have an aspect ratio of 2:1. In order to reduce computation load as 

well as maintain the scale, the training images are resized to 400×200 in MATLAB.  

4.1.3 Feature extraction 

• Colour feature extraction 
The input image is converted from RGB to HSV mode in MATLAB. Considering that 

PCA, one of the dimensionality reduction algorithms to be used in the experiments, is 

sensitive to illumination, the value representing the brightness of a colour is discarded 

to ensure the stable condition of PCA. Then, the remaining components are quantised in 

accordance with human eyes’ sensitivity to different colours, dividing the hue into 16 

portions, and the saturation into four portions (Peng, Zhu, & Lin, 2012; Zhao, Yan, & 

Zhang, 2007). In this way, the colour histogram with 64 bins for each denomination is 

formed, as shown in Figure 4.2. 
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(a) 5 NZD                             (b) 10 NZD 

 

     
            (c) 20 NZD                            (d) 50 NZD 

 

	

(e) 100 NZD 
Figure 4.2 Colour histograms with 64 bins for the scanned banknote images 

	

It is observed that the adjacent columns have very similar colours in the colour 

histogram with 64 bins, where each of the 16 portions of the hue is combined with each 

of the four portions of the saturation. Therefore, we discarded the saturation as well to 

highlight the hue difference in the colour histograms. Finally, the colour histograms 

with 64 bins are transformed to the more distinguishable colour histograms with 16 bins, 

as displayed in Figure 4.3. 
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 (a) 5 NZD                         (b) 10 NZD 

 

     

 (c) 20 NZD                        (d) 50 NZD 

 

 
(e) 100 NZD 

Figure 4.3 Colour histograms with 16 bins for the scanned banknote images 
 

In training, the ColourHistogramMatrix is generated to store the extracted colour 

features of all training images. As there are 50 training samples for each of the five 

different denominations, and each training sample is represented by a colour histogram 

with 16 bins, the dimension of the ColourHistogramMatrix is 250×16. The first 50 

vectors are the colour histogram vectors for 5 NZD, followed by 50 colour histogram 
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vectors for 10 NZD, 50 colour histogram vectors for 20 NZD, 50 colour histogram 

vectors for 50 NZD, 50 colour histogram vectors for 100 NZD in sequence, as shown in 

Equation 4.1.  

 

ColourHistogramMatrix	=	

5NZDClrHstVec1
...
5NZDClrHstVec50
10NZDClrHstVec1
...
10NZDClrHstVec50
20NZDClrHstVec1
...
20NZDClrHstVec50
50NZDClrHstVec1
...
50NZDClrHstVec50
100NZDClrHstVec1
...
100NZDClrHstVec50

⎛
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⎟

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4.1) 

 

• Texture feature extraction 

The input image is converted to a grey-scale image in MATLAB. To enhance the 

contrast of the grey levels, the grey-scale image is passed through histogram 

equalisation in MATLAB. The default function transforms an intensity image to an 

image with 64 discrete grey levels. By histogram equalisation, the histogram of an 

image is equalised, and frequencies of intensity are uniformly distributed over the whole 

intensity range. A comparison of banknote images between before the use of histogram 

equalisation and after the use of histogram equalisation is displayed in Figure 4.4, 

giving a direct view on the usefulness of histogram equalisation for the extraction of the 

banknotes’ texture feature. 
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(a) 5 NZD 

 

 
(b)10 NZD 

 

 
(c) 20 NZD 

 

 
(d) 50 NZD 
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(e) 100 NZD 
Figure 4.4 A comparison of before and after use of histogram equalisation for the 

scanned banknote images 
 

The LBP operator is employed to extract the texture feature of banknotes in the 

experiments. If the LBP feature of the banknote is directly extracted as a whole, then 

there is only one LBP histogram that would be obtained. However, if the banknote is 

divided into several blocks, then the relative position of each block can be somehow 

recorded, and 32 LBP histograms would be obtained based on 32 blocks. In this way, 

each of the blocks can be compared with the corresponding block of the other banknotes 

via LBP histogram, thereby improving the recognition rate. Accordingly, before the 

implementation of the LBP algorithm, each banknote is partitioned into four rows and 

eight columns, generating 32 blocks with each size of 50×50, as shown in Figure 4.5. 

 

  

(a) 5 NZD                          (b) 10 NZD 

 

  

(c) 20 NZD                          (d) 50 NZD 
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(e) 100 NZD 
Figure 4.5 Thirty-two uniform blocks for the scanned banknote images 

 

The LBP operator is then implemented on each block in order. For each pixel in a block, 

its grey-scale value is compared with its eight neighbouring pixels in the order of the 

neighbouring pixels, i.e. the neighbouring pixel on its left-top, top, right-top, left, right, 

left-bottom, bottom and right-bottom. When the grey-scale value of the neighbouring 

pixel is greater than that of the central pixel, denote ‘1’, and otherwise, ‘0’. Following 

this rule, an 8-digit binary number composed of ‘0’ and (or) ‘1’ represents each pixel, 

forming the LBP code of each pixel. Different LBP codes correspond to certain 

micro-features; accordingly, the LPB features for the banknotes of various 

denominations are displayed in Figure 4.6.  

 

 
(a) 5 NZD 
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(b) 10 NZD 

 

 
(c) 20 NZD 

 

 
(d) 50 NZD 
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(e) 100 NZD 
Figure 4.6 LBP features for the scanned banknote images 

 

The so-called uniform pattern is then applied to optimise those local binary patterns for 

creating an efficient uniform LBP histogram. In the computation of the uniform LBP 

histogram, each uniform pattern is described by a separate bin in the histogram, and all 

non-uniform patterns are described by a single bin. As a result, the uniform LBP 

histogram contains 59 bins corresponding to 58 uniform patterns, plus one non-uniform 

pattern. Since each banknote comprises 32 blocks, and each block generates a uniform 

LBP histogram with 59 bins, the number of the columns of the block uniform LBP 

histogram for the whole banknote should be 59×32=1888. Figure 4.7 illustrates the 

block uniform LBP histograms for the banknotes of different denominations that are 

generated in such a way.  
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(a) The block uniform LBP histogram for 5 NZD 

 

 
(b) The block uniform LBP histogram for 10 NZD 
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(c) The block uniform LBP histogram for 20 NZD 

 

 

 
(d) The block uniform LBP histogram for 50 NZD 
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(e) The block uniform LBP histogram for 100 NZD 

Figure 4.7 Block uniform LBP histograms for the scanned banknote images  
 

In training, the LBPHistogramMatrix is generated to store the extracted LBP features of 

all training images. As there are 50 training samples for each of the five different 

denominations, and each training sample is represented by a block uniform LBP 

histogram with 1888 bins, the dimension of the LBPHistogramMatrix is 250×1188. The 

first 50 vectors are the block uniform LBP histogram vectors for 5 NZD, followed by 50 

block uniform LBP histogram vectors for 10 NZD, 50 block uniform LBP histogram 

vectors for 20 NZD, 50 block uniform LBP histogram vectors for 50 NZD, 50 block 

uniform LBP histogram vectors for 100 NZD in sequence, as shown in Equation 4.2.  
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LBPHistogramMatrix	=	

5NZDLBPHstVec1
...
5NZDLBPHstVec50
10NZDLBPHstVec1
...
10NZDLBPHstVec50
20NZDLBPHstVec1
...
20NZDLBPHstVec50
50NZDLBPHstVec1
...
50NZDLBPHstVec50
100NZDLBPHstVec1
...
100NZDLBPHstVec50
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	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4.2) 

 

• Composite feature extraction 

In this thesis, the colour and texture elements are also served together as a composite 

feature to study. Considering that dimensionality reduction methods will be employed 

after feature extraction, the appropriate selection for the dimensions of colour part and 

texture part is crucial to the dimensionality-reduced composite feature. Both the colour 

part and texture part utilise histograms as feature descriptors and, also, the colour 

histogram and LBP histogram for a 400×200 banknote are both based on the 

corresponding values of its 80,000 pixels. Based on this, for a banknote whose bin 

numbers in the colour histogram and in the LBP histogram differ greatly, the statistics 

reflected by the vertical axis of the two histograms will accordingly have a difference of 

magnitude. When dimensionality reduction methods are applied to the composite 

feature of this banknote, the obtained colour-LBP histogram will rely on the statistics of 

the histogram that has a larger magnitude, indicating that the composite feature will be 

more dependent on a certain feature. Thus, to balance the impact of the colour part and 

texture part on the composite feature, the colour histogram with 64 bins and the LBP 

histogram with 59 bins are concatenated to form the colour-LBP histogram with 123 

bins. Specifically, in the colour-LBP histogram, the colour part is based on the 16 
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portions of the hue and the four portions of the saturation of a banknote image in an 

HSV colour space. The 64 bins in the colour histogram are ordered as follows: H1S1, 

H1S2, H1S3, H1S4, H2S1, H2S2, H2S3, H2S4, …… H16S1, H16S2, H16S3, H16S4. Besides, 

unlike the way of solely extracting the LBP feature where the banknote image is 

partitioned into 32 blocks, for the LBP feature part of the composite feature, the 

banknote image is considered as a whole to extract the LBP feature. With the additional 

help of the uniform patterns, the uniform LBP histogram with 59 bins is generated as 

the representative of the LBP part in the colour-LBP histogram, as shown in Figure 4.8. 

 

     
(a) 5 NZD                           (b) 10NZD 

 

     
(c) 20 NZD                          (d) 50 NZD 
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(e) 100 NZD 

Figure 4.8 LBP histogram part in the colour-LBP histogram for the scanned 
banknote images 

	

In training, the Colour-LBPHistogram is generated to store the extracted composite 

features of all training images. As there are 50 training samples for each of the five 

different denominations, and each training sample is represented by a colour-LBP 

histogram with 123 bins, the dimension of the Colour-LBPHistogram is 250×123. The 

first 50 vectors are the colour-LBP histogram vectors for 5 NZD, followed by 50 

colour-LBP histogram vectors for 10 NZD, 50 colour-LBP histogram vectors for 20 

NZD, 50 colour-LBP histogram vectors for 50 NZD, 50 colour-LBP histogram vectors 

for 100 NZD in sequence, as shown in Equation 4.3.  

 

Colour-LBPHistogram	=	

5NZDClrHstVec1
...
5NZDClrHstVec50
10NZDClrHstVec1
...
10NZDClrHstVec50
20NZDClrHstVec1
...
20NZDClrHstVec50
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...
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4.1.4 Dimensionality reduction 

In training, PCA and LDA are separately implemented on the ColourHistogramMatrix, 

the LBPHistogramMatrix and the Colour-LBPHistogramMatrix mentioned above to 

reduce the dimensionality of the feature vectors. The following two paragraphs explain 

the process of ColourHistogramMatrix dimensionality reduction. As for the 

LBPHistogramMatrix and the Colour-LBPHistogramMatrix, the dimensionality 

reduction to them is done in the same way, so an explanation is omitted from this thesis. 

 

This paragraph is the explanation of how to utilise PCA to reduce the dimensionality of 

the colour feature vector. After the ColourHistogramMatrix is generated, the PCA 

algorithm is implemented on the ColourHistogramMatrix. More specifically, the 

covariance matrix of the ColourHistogramMatrix is first generated. Then, the 

eigenvectors and eigenvalues of the covariance matrix are calculated. By abandoning 

the insignificant eigenvectors whose eigenvalues are relatively small, a new eigenvector 

matrix with fewer rows is produced, and later used for projecting the original 

ColourHistogramMatrix. ColourHistogramMatrix multiplies by the new eigenvectors 

matrix, obtaining the projection vectors of the colour histograms in PCA space, namely, 

the PCA colour feature vectors of the training images.  

 

This paragraph explains how to utilise LDA to reduce the dimensionality of the colour 

feature vector. Firstly, calculating the mean of colour feature vector for each class 

defined as 𝜇! .  Then the mean vector for the whole ColourHistgoramMatrix is 

calculated and defined as 𝜇 . So, the between-class scatter is 𝑆! =  𝑁! 𝜇! −!
!!!

𝜇 (𝜇! − 𝜇)!, where 𝑁! = 50, representing the number of samples in each class, and C 

= 5, representing the number of classes. The next step is to calculate the within-class 

scatter 𝑆! . For each training sample, its colour feature vector 𝑥! minus the mean 

colour feature vector for each class 𝜇!, obtains the vector (𝑥! − 𝜇!). By multiplying the 

vector (𝑥! − 𝜇!) with its transposed vector (𝑥! −  𝜇!)! , a 16×16 square matrix is 

produced, corresponding to the particular training sample. The within-class scatter 𝑆! 
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is then obtained by summing up the 250 square matrices that correspond to the 250 

training samples. To express it in mathmatical way, the within-class scatter 𝑆! =

 (𝑥! −  𝜇!)(𝑥! −  𝜇!)!!!∈!!
!
!!! , where C = 5, representing the number of classes. 

The next step is to maximise the value of 𝑆!/𝑆!, attempting to increase the value of 𝑆! 

as well as decreasing the value of 𝑆!. By applying the Lagrange Multiplier, this attempt 

can be translated to calculate the eigenvalues and eigenvectors of the matrix produced 

by 𝑆!/𝑆! operation. The eigenvectors with high eigenvalues will be considered to be 

able to effectively classify different categories in LDA space. As a result, after applying 

dimensionality reduction to the colour feature vector using LDA, several eigenvectors 

corresponding to the highest eigenvalues are selected to form a new eigenvector matrix 

that is later used for projecting the original ColourHistogramMatrix to LDA space. 

ColourHistogramMatrix, multiplied by the new eigenvectors matrix, obtains the 

projection vectors of the colour histograms in LDA space, i.e. the LDA colour feature 

vectors of the training images.  

 

In terms of the criterion for deciding the extent of reduction on the dimensionality of the 

feature vector, in the experiments, the eigenvectors whose eigenvalues account for 95% 

of the total eigenvalues are retained after the procedure of dimensionality reduction. The 

corresponding dimensionality of features vectors after the implementation of PCA or 

LDA is shown in Table 4.1.  

 
Table 4.1 The dimensionality of feature vectors after dimensionality reduction 

Characterisation 
Dimensionality of the feature vector 

Scan Webcam 

Colour_PCA	 4 4 
LBP_PCA	 99 96 

Colour+LBP_PCA	 4 4 
Colour_LDA	 4 4 

LBP_LDA	 4 4 
Colour+LBP_LDA	 4 4 
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4.1.5 Classification model 

The MDC and BPNN classifiers are separately employed for creating the classification 

model. In terms of the MDC, the procedure it participates in at the training stage is 

calculating the mean vector for each class. Taken the colour feature as an example, in 

the training stage, after PCA is applied to the ColourHistogramMatrix, the final PCA 

matrix contains 250 PCA feature vectors, with 50 feature vectors for each denomination. 

Thus, the average of the 50 feature vectors for the same denomination is considered as 

the PCA colour feature for that particular denomination. Similarly, the final LDA colour 

feature matrix contains 250 LDA feature vectors, with 50 feature vectors for each 

denomination. Thus, the average value of the 50 feature vectors for the same 

denomination is considered as the LDA colour feature for that particular denomination.  

 

For the BPNN classifier used in the experiments, the MLP model and sigmoid transfer 

function that is typically used as the activation function in the hidden layer in a 

multilayer network are involved in the three-layer BPNN classifier. Sigmoid functions 

compress an infinite input range into a finite output range, featuring the slopes 

approaching zero when the inputs are getting large. When using the steepest descent to 

train a multilayer network with a sigmoid function, small alterations to the weights and 

biases can be caused by the gradients that have a very small magnitude, even if the 

weights and biases are far from their optimal values. To eliminate the negative influence 

of the magnitude of the partial derivatives, the resilient back-propagation algorithm 

(Rprop) is adopted in the experiments to train the network, as it determines the direction 

of the weight update by the sign of its derivative rather than the magnitude of the 

derivative. Moreover, the Rprop algorithm is much faster than the standard steepest 

descent algorithm, and it requires only a modest increase in memory requirements 

(Riedmiller & Braun, 1993), which are also the reasons for adopting the Rprop 

algorithm in the experiments. 

 

To be specific, when the network weights and biases are initialised, the network is ready 
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for training. The default performance function of a feed-forward network, MSE, is used 

as the network performance function in this thesis. The simplest optimisation algorithm 

- gradient descent - is used to update the network weights and biases in the direction 

where the performance function decreases most rapidly, the negative of the gradient. 

The batch training mode is implemented; all the inputs in the training set are applied to 

the network before the weights are updated. The trainrp() function is used in MATLAB 

as the network training function to update weights and biases in accordance with the 

Rprop algorithm. The training parameters include epochs, show, goal, time, min_grad, 

max_fail, delt_inc, delt_dec, delta0, and deltamax. Since the performance of the Rprop 

algorithm is not very sensitive to the training parameters, these parameters are left at the 

default. Training stops when the maximum number of epochs is reached or the 

maximum amount of time is exceeded or performance is minimised to the goal, or the 

performance gradient falls below min_grad, or validation performance has increased 

over max_fail times since the last time it decreased. The training window appearing 

during training displays the constantly updated progress. The final result will be 

displayed on the training window at the end of each training time. 

 

Since there are 12 combined methods where BPNN classifiers are involved, 12 different 

networks are correspondingly generated in the experiments. For the 12 networks, the 

number of nodes in the output layer is five, corresponding to the five different classes of 

output results – 5 NZD, 10 NZD, 20 NZD, 50 NZD and 100 NZD. However, the 

number of the input nodes and the hidden nodes varies depending on the properties of 

the combination. The number of input nodes is equal to the dimensions of the input 

feature vector in the network. Although hidden layers have no direct interaction with the 

external environment, the number of hidden nodes has a considerable impact on the 

final output. The trial and error method, coupled with the forward approach, is used to 

decide the number of nodes in the hidden layer. The trial and error method is 

characterised by continual attempts until success, and the forward approach starts with 

selecting a small number of hidden nodes and then increases the number of hidden 

nodes after testing the performance of the trained network (F. S. Panchal & M. Panchal, 
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2014). The experiments begin with two hidden nodes, followed by repeating the above 

procedure until the best possible performance is achieved.  

 

Because of the random setting of the initial weights and biases of the network, given a 

finite number of training times, the training results will not always be the same. At the 

end, the best parameters of each network are ascertained after proper training times, as 

shown in Table 4.2 and Table 4.3; the performance of those networks will undergo a 

final comparison with the other combined methods. 

 
Table 4.2 Parameters of the optimal networks when using the scanned banknote images 

for training 

Combination 
No. 

Number 
of input 
nodes 

Number 
of hidden 

nodes 

Number 
of output 

nodes 

Best validation 
performance 

7 4 4 5 1.4487e-3 at epoch 131 
8 99 4 5 2.6582e-2 at epoch 218 
9 4 5 5 1.9148e-3 at epoch 169 
10 4 4 5 7.7004e-4 at epoch 191 
11 4 4 5 7.0968e-3 at epoch 126 
12 4 5 5 4.2773e-4 at epoch 140 

 
Table 4.3 Parameters of the optimal networks when using the banknote images captured 

by webcam for training 

Combination 
No. 

Number 
of input 
nodes 

Number 
of hidden 

nodes 

Number 
of output 

nodes 

Best validation 
performance 

7 4 4 5 7.5475e-4 at epoch 554 
8 96 4 5 1.9531e-2 at epoch 217 
9 4 5 5 1.9297e-3 at epoch 164 
10 4 4 5 5.1783e-4 at epoch 137 
11 4 4 5 1.7356e-3at epoch 190 
12 4 5 5 1.70e-4 at epoch 192 

4.2 Testing procedure 

Each combined method is tested on a set of 50 banknotes, with 10 banknotes for each 

denomination. The testing condition is the indoor environment where the light produced 
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by ordinary incandescent bulbs is provided. In the testing stage, once the camera is 

activated, the 800×400 recognition window is highlighted by a yellow colour to make 

the testing banknote image distinguishable from the background, as shown in Figure 4.9. 

In the meanwhile, we place the banknote being tested in front of the camera, and 

smoothly rotate the testing banknote left and right without exceeding 15 degrees. The 

banknotes within the recognition window are captured as frames, and each frame serves 

as the testing image to be analysed. Subsequently, the testing image is processed in the 

same way as processing the training images, including pre-processing, feature extraction 

and dimensionality reduction. Finally, the processed banknote image being tested is 

then sent to the classification model generated in the training stage for denomination 

recognition. 

 

During testing, taking a 5 NZD testing banknote as an example, after 10 times of 

recognition of a 5 NZD testing note, a five-second intermission is given to place another 

5 NZD for testing within the recognition window. Thus, it is noteworthy that 50 testing 

samples eventually generate a total of 500 recognition results, with each testing sample 

generating 100 recognition results. The recognition result of each time is shown above 

the recognition window, highlighted by a red colour, as shown in Figure 4.9. 

 

	
Figure 4.9 Testing window in MATLAB 
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Chapter 5 Findings and discussion 

In this chapter, we will present the experimental results, and examine the initial 

hypothesis in light of the findings of this research. Similarities and differences between 

the current study and previous research in the field of paper currency recognition will be 

discussed and addressed. 

5.1 Experimental results 

The recognition results are displayed using a confusion matrix in MATLAB. The 

performance is based on the recognition results of 500 test images, with 100 test images 

for each class. As two training sets are involved in contrast experiments, two groups of 

recognition results are correspondingly generated at the end of the experiments. One 

group covers recognition results using the combined methods when the training set is 

composed of scanned banknote images, as shown in Appendix B. The other group 

covers recognition results using the combined methods when the training set comprises 

the banknote images captured by the webcam, as shown in Appendix C. The F-measure 

of each combined method for recognising each denomination in the two groups of 

training sets is shown in Table 5.1 and Table 5.2, respectively. The comparison of the 

average time cost of recognition using each combined method in the two groups of the 

training set is shown in Figure 5.1. Since each combined method costs almost the same 

period of time for recognition using either scanned banknote images for training or the 

banknote images captured by webcam for training, the mean time cost of recognition 

between the two groups of training sets is therefore exploited as the recognition time for 

the combined method, as shown in Figure 5.2. Four decimal places are reserved with the 

rounding calculation for the F-measure and the recognition time.  
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Table 5.1 The F-measure of each combined method for recognising each denomination 
when using scanned banknote images for training 

Combination 
No. 

Denomination class 
Average 

$5 $10 $20 $50 $100 

1	  0.9049	 1 	 0.8827	 1 	 1 	 0.9575 
2	 0 	 0.4750 	 0.8718 	 0 	 0.7609 	 0.4216 
3	 0.9901	 1 	 0.9899 	 1 	 1 	 0.9960 
4	 0.7663 	 1 	 0.6014 	 1 	 0.9796 	 0.8695 
5	 0.9529 	 1 	 0.9569 	 1 	 1 	 0.9820 
6	 0.6838 	 0.3471 	 1 	 0.9662 	 1 	 0.7994 
7	 0.9434 	 1 	 0.9362 	 1 	 1 	 0.9759 
8	 0.8889 	 0.8772 	 0.9091 	 0.8372 	 1 	 0.9025 
9	 0.9901 	 1 	 0.9899 	 1 	 1 	 0.9960 
10	 0.8967 	 1 	 0.8701 	 1 	 1 	 0.9534 
11	 1 	 0.9132 	 0.9071 	 1 	 1 	 0.9641 
12	 0.9390 	 0.9305 	 1 	 1 	 1 	 0.9739 

 
Table 5.2 The F-measure of each combined method for recognising each denomination 

when using the banknote images captured by webcam for training 

Combination 
No. 

Denomination class 
Average 

$5 $10 $20 $50 $100 

1	 1 	 0.9848 	 1 	 0.9852 	 1 	 0.9940 
2	 0.8729 	 0.9529 	 0.8170 	 0.9495 	 0.9744 	 0.9133 
3	 1 	 0.9899 	 1 	 0.9901 	 1 	 0.9960 
4	 0.9804 	 1 	 1 	 1 	 0.9796 	 0.9920 
5	 1 	 0.99804 	 1 	 1 	 0.9796 	 0.9920 
6	 1 	 1 	 0.8439 	 0.9756 	 0.9009 	 0.9441 
7	 0.9950 	 0.9899 	 0.9950 	 0.9901 	 1 	 0.9940 
8	 0.9100 	 0.9442 	 0.9189 	 0.8095 	 0.8368 	 0.8839 
9	 1 	 1	 0.9950 	 1 	 0.9950 	 0.9980 
10	 0.9804 	 0.9796 	 1 	 1 	 1 	 0.9920 
11	 1 	 0.9804 	 0.9796 	 1 	 1 	 0.9920 
12	 0.9901 	 0.9849 	 1 	 0.9950 	 1 	 0.9940 
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Figure 5.1 Comparison of the average time cost of recognition using each combined 
method in the two groups of training sets 

 
 

	
Figure 5.2 The average time cost of recognition using each combined method 
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5.2 Hypothesis validation 

A few findings are noticed from the experiments, which have verified several initial 

hypotheses. Finally, the core research question is answered. 

 

Ø Hypothesis 1.2 that the training set generated by webcam would yield better 

recognition results proves true by the experiments. 

 
Table 5.3 The comparison of the average F-measure between the training sets 

Combination No. 
Training sets 

Scan Webcam 

1	 0.9575 0.9940 
2	 0.4216 0.9133 
3	 0.9960 0.9960 
4	 0.8695 0.9920 
5	 0.9820 0.9920 
6	 0.7994 0.9441 
7 0.9759 0.9940 
8 0.9025 0.8839 
9 0.9960 0.9980 
10 0.9534 0.9920 
11 0.9641 0.9920 
12 0.9739 0.9940 

 

We have found that in the experiments, the training set composed of the banknote 

images captured by webcam performs better than the training set consisting of the 

scanned banknote images. The average F-measure of every combination is beyond 0.88 

when using the banknote images captured by webcam for training, while not all the 

combinations can achieve this when using the scanned banknote images for training. 

Additionally, the average F-measure of each combination when using the banknote 

images captured by webcam for training is higher than that when using the scanned 

banknote images for training, except for the Combination No.8 (LBP_PCA_BPNN) 

whose average F-measure is 0.8839 when using the banknote images captured by 

webcam for training but is 0.9025 when using the scanned banknote images for training.  
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From Figure 4.1 (the comparison between the banknote images produced by scanner 

and the images produced by webcam), we can observe the main differences between the 

two groups of training images; namely, the images produced by scanner have greater 

clarity than the images produced by webcam, and also the majority of the images 

produced by webcam have a little distortion. When using the banknote images produced 

by webcam for training, both the training images and the images for testing are 

produced in the situation where the banknote samples are placed within the recognition 

window. The obtained training images are therefore similar to the images for testing in 

terms of clarity and unintended distortion, which enhances the performance of each 

combination with those training images as the training set. Thus, for developing an 

efficient banknote real-time recognition system, it is better to produce the training 

images in nearly the same way as generating the images for testing. 

 

Ø Hypothesis 2.3 that the combined use of the colour elements and texture 

elements would result in better recognition results than solely adopting either 

colour or texture feature proves true by the experiments. 

 
Table 5.4 The comparison of the average F-measure between the extracted features 

Combinations 
Extracted features 

Colour LBP Colour+LBP 
PCA LDA PCA LDA PCA LDA 

Scan_ MDC	 0.9575 0.8695 0.4216 0.9820 0.9960 0.7994 
Scan_BPNN	 0.9759 0.9534 0.9025 0.9641 0.9960 0.9739 

Webcam_MDC 0.9940 0.9920 0.9133 0.9920 0.9960 0.9441 
Webcam_BPNN 0.9940 0.9920 0.8839 0.9920 0.9980 0.9940 

 

Firstly, we have found that the colour feature investigated in this thesis works better 

with PCA than with LDA. In both of the two groups of training sets, the Combination 

No.1 (Colour_PCA_MDC) outperforms the Combination No.4 (Colour_LDA_MDC), 

and the Combination No.7 (Colour_PCA_BPNN) performs better than the Combination 

No.10 (Colour_LDA_BPNN). Secondly, we have found that the LBP feature 

investigated in this thesis works better with LDA than PCA. In both of the two groups 
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of training sets, the Combination No.5 (LBP_LDA_MDC) outperforms the 

Combination No.2 (LBP_PCA_MDC), and the Combination No.11 (LBP_LDA_BPNN) 

outperforms the Combination No.8 (LBP_PCA_BPNN). Thirdly, we have found that 

the composite feature investigated in this research performs better with PCA than with 

LDA. In both of the two groups of the training sets, the Combination No.3 

(Colour+LBP_PCA_MDC) performs better than the Combination No.6 

(Colour+LBP_LDA_MDC), and the Combination No.9 (Colour+LBP_PCA_BPNN) 

outperforms the Combination No.12 (Colour+LBP_LDA_BPNN). Overall, the 

PCA-based composite feature is the most robust one in this thesis, as it succeeds in 

delivering an average F-measure of no less than 0.9960 in both of the two groups of 

training sets no matter working with the MDC or the BPNN.  

 

From Figure 4.3 (colour histograms with 16 bins for the scanned banknote images) and 

Appendix A (colour histograms with 16 bins for the banknote images captured by 

webcam), we can observe that the colour features of the banknotes are unevenly 

distributed in the colour histograms with 16 bins, and the colour histogram of each 

denomination varies greatly according to the dominant colour of banknote. For example, 

the colour histogram of 100 NZD has a very high value in the first bin, whereas the 

colour histograms of the other denominations all have a low value in the first bin. 

Accordingly, the first bin is helpful for classifying the 100 NZD from the others. Such 

distinguishable bins in the colour histogram have high covariance. Since PCA features 

are more reliable to the original features of high covariance, such distinguishable bins 

therefore enable the PCA-based colour feature to be an effective feature in this research. 

Correspondingly, the PCA-based colour feature reaches an average F-measure of 0.9940 

when using the banknote images captured by webcam for training. However, we notice 

that the average F-measure of the PCA-based colour feature drops when the training set 

is changed to the scanned banknote images. Specifically, it drops to 0.9575 with the 

MDC and to 0.9759 with the BPNN. The intrinsic cause of this phenomenon is the hue 

differences between the colour of the scanned banknote image and the colour of the 

banknote images captured by webcam. For example, the hue of the scanned 20 NZD 
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image is primarily concentrated in the sixth bin, the seventh bin, and the eighth bin, as 

shown in Figure 4.3. By contrast, when the banknotes are captured by webcam, the hue 

of 20 NZD image not only focuses on the sixth bin, the seventh bin, and the eighth bin, 

but also has the highest value in the fifth bin, as shown in Appendix A. Even though the 

colour feature is part of the composite feature, the PCA-based composite feature is still 

capable of maintaining an average F-measure of 0.9960 when using the scanned 

banknote images for training, which benefits from the contribution from the texture 

feature part of the composite feature. 

 

Ø Hypothesis 3.2 that the BPNN classifier would generate better recognition 

results proves true by the experiments. 

 
Table 5.5 The comparison of the average F-measure between the classifiers 

Combinations 
Classifiers 

MDC BPNN 

Scan_Colour_PCA	 0.9575 0.9759 
Scan_LBP_PCA	 0.4216 0.9025 

Scan_Colour+LBP_PCA 0.9960 0.9960 
Scan_Colour_LDA 0.8695 0.9534 

Scan_LBP_LDA 0.9820 0.9641 
Scan_Colour+LBP_LDA 0.7994 0.9739 
Webcam_Colour_PCA 0.9940 0.9940 

Webcam_LBP_PCA 0.9133 0.8839 
Webcam_Colour+LBP_PCA 0.9960 0.9980 

Webcam_Colour_LDA 0.9920 0.9920 
Webcam_LBP_LDA 0.9920 0.9920 

Webcam_Colour+LBP_LDA 0.9441 0.9940 

 

We have found that when using the scanned banknote images for training, the 

performance of the BPNN classifier is better than the MDC, except for the Combination 

No.11 (LBP_LDA_BPNN) whose average F-measure is lower than the Combination 

No.5 (LBP_LDA_MDC), and the Combination No.9 (Colour+LBP_PCA_BPNN) 

whose average F-measure is equal to the Combination No.3 (Colour+LBP_PCA_MDC). 

Specially, when using the scanned banknote images for training, the Combination No.7 
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(Colour_PCA_BPNN) outperforms the Combination No.1 (Colour_PCA_MDC); the 

Combination No.8 (LBP_PCA_BPNN) is superior to the Combination No.2 (LBP 

_PCA_MDC); the Combination No.10 (Colour_LDA_BPNN) is superior to the 

Combination No.4 (Colour_LDA_MDC); the Combination No.12 (Colour+LBP 

_LDA_BPNN) performs better than the Combination No.6 (Colour+LBP_LDA_MDC). 

In addition, we have found that when using the banknote images captured by webcam 

for training, the performance of the BPNN classifier is better than the MDC, except for 

the Combination No.8 (LBP_PCA_BPNN) whose average F-measure is lower than the 

Combination No.2 (LBP_PCA_MDC), the Combination No.7 (Colour_PCA_BPNN) 

whose average F-measure is equal to the Combination No.1 (Colour_PCA_MDC), the 

Combination No.10 (Colour_LDA_BPNN) whose average F-measure equals to the 

Combination No.4 (Colour_LDA_MDC), and the Combination No.11 (LBP_LDA 

_BPNN) whose F-measure is equal to the Combination No.5 (LBP_LDA_MDC). 

Specially, when using the banknote images captured by webcam for training, the 

Combination No.12 (Colour+LBP_LDA_BPNN) outperforms the Combination No.6 

(Colour+LBP_LDA_MDC); the Combination No.9 (Colour+LBP_PCA_BPNN) is 

superior to the Combination No.12 (Colour+LBP_PCA_MDC). Moreover, for the 

PCA-based LBP feature of the scanned banknotes, i.e. the Combination No.2 

(LBP_PCA_MDC) and the Combination No.8 (LBP_PCA_BPNN) in Table 5.1, the 

MDC cannot recognise 5 NZD or 50 NZD, while the BPNN is able to recognise all 

denominations with an average F-measure of 0.9025. Thus, overall, the BPNN classifier 

has better performance than the MDC in the experiments. 

 

The MDC has more influence on the elements of a feature vector that has a large 

magnitude in a change, which means the MDC is only good at dealing with certain 

features. By contrast, BPNN classifiers treat every element in an input feature vector 

without bias or favour, assigning each input node (element) a random weight initially, 

so each element has an equivalent degree of influence on the network. This 

enables BPNN to handle a variety of features. This is the reason why the BPNN 

outperforms the MDC in the experiments.  
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Ø The core research question – how to achieve real-time recognition of the new 

Series 7 New Zealand banknotes under camera using digital image processing? 

 

As far as the 24 contrast experiments in this research concerned, the training set 

composed of the banknote images captured by webcam results in better recognition 

results than the training set made up of the scanned banknote images. This suggests that 

the best way to produce training images is to simulate the testing environment as much 

as possible, for achieving real-time recognition. As for the 12 combined methods, the 

highest average F-measure is 0.9980 obtained by the Combination No.9 (Colour+LBP 

_PCA_BPNN) when using the banknote images captured by webcam for training. 

Moreover, the Combination No.9 (Colour+LBP_PCA_BPNN) is still able to achieve an 

average F-measure of 0.9960 when using the scanned banknote images for training. 

Thus, the Combination No.9 (Colour+LBP_PCA_BPNN) is the overall winner in this 

research, with the average time taken for each banknote to be recognised is 0.4249s.  

5.3 Discussion 

The most noteworthy finding in this research is the robustness of the PCA-based 

composite feature containing the colour and texture elements that works very well with 

either the MDC or the BPNN for Series 7 New Zealand banknote real-time recognition. 

This finding supports the opinion that a perfect feature extractor would produce a 

representation that makes the job of the classifier of little account (Duda et al., 2012). 

Thus, it is critical to extract proper features for developing an efficient banknote 

real-time recognition system. 

 

A histogram is a straightforward approach to represent image features. It is widely used 

as a solution to image classification problems, by virtue of its translation, rotation, and 

scaling invariant properties. As the most direct visual feature, colour has always been 

one of the main features extensively utilised in banknote classification, and especially, 

the most common representation of the colour feature is a colour histogram. A colour 

histogram is simply a statistical histogram showing the proportion of pixels in a 
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particular colour to the pixels in the other colours in the whole image. In this thesis, an 

HSV colour space-based colour histogram is adopted. The motivation to adopt HSV 

rather than other colour space like RGB or YUV is that HSV colour space has the 

advantage of being closer to the human conceptual understanding of colours, and can 

separate chromatic and achromatic components (Pathrabe & Karmore, 2011). More 

importantly for paper currency in most countries, its design is based on the rule that 

human eyes are supposed to be able to distinguish different denominations by features 

including colour. Correspondingly, the presumption that HSV is the appropriate colour 

space for investigating the colour features of Series 7 New Zealand banknotes has been 

confirmed by our experiments. The colour feature based on HSV individually 

investigated in this research reaches an average F-measure of no less than 0.9920 when 

the training set is composed of the banknote images captured by using a webcam, either 

working with the MDC or the BPNN. In some other banknote recognition studies, HSV 

colour space is appropriately utilised to extract a colour feature of banknotes, which 

succeeds in obtaining a satisfactory result (Aasma & Asma, 2016; Pathrabe & Karmore, 

2011; Zeggeye & Assabie, 2016). As well, HSV colour space is proved to be efficient in 

the selection of discriminative colours of banknotes as well. García-Lamont, Cervantes, 

López and Rodríguez (2013) performed contrast experiments on the colour feature 

selection of Mexican banknotes in two different colour spaces – RGB and HSV, with 

the outcome that the selected colour feature in the HSV space is able to enhance the 

recognition rate. 

 

The chosen colour space needs to be quantised to construct colour histograms with low 

dimensions. The level of colour space quantisation depends on the specific subject to 

study. Basically, the computational complexity and storage space are increased 

non-linearly with the increasing number of quantised colours, but excessive colour 

quantisation reduces the visual quality of an image (Zeng & Zhou, 2008). One simple 

colour quantisation method is uniform quantisation of each colour channel for every 

pixel. However, uniform quantisation not only disregards the interdependency among 

pixels but also takes no notice of any actual colour distributions in a given image set. As 
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far as HSV colour space is concerned, as the hue (H) is more important in the human 

visual system than the saturation (S) and the value (V) components (Jeong, Won, & 

Gray, 2004), it is reasonable to assign more bins to the hue than to the other components. 

Such a non-uniform quantisation approach is found in many image retrieval-related 

studies, where the hue is quantised into 16 bins, the saturation is quantised into four 

bins, and the value is quantised into four bins (Peng et al., 2012; Zhao et al., 2007). In 

the light of the effectiveness of the 16:4:4 colour quantisation approach, we take such an 

approach into account for constructing a promising colour histogram. On the other hand, 

since the HSV colour space is driven by the human vision system in a sense that 

humans describe colour by means of the hue and the saturation (Suhasini, Krishna, & 

Krishna, 2016), the value is ignored in this research. Thus, the unique non-uniform 

colour quantisation in HSV is piloted at the initial stage of the experiments, where the 

hue is divided into 16 partitions, and the saturation is split into four partitions. From the 

pilot test, the saturation is observed as the unnecessary component for an efficient 

colour histogram that is peculiar to Series 7 New Zealand banknotes. Moreover, the hue 

represents the most significant characteristic of a colour (Suhasini et al., 2016), and is 

insensitive to the change in illumination and camera direction (Jain & Johari, 2016). 

Eventually, only the hue in HSV is adopted for representing the single colour feature of 

a banknote for recognition, ensuring that the quantised colour components constitute 

histogram bins effectively.  

 

Accordingly, in the combinations where the colour feature is to be investigated 

individually in this research, i.e. the Combination No.1 (Colour_PCA_MDC), the 

Combination No.4 (Colour_LDA_MDC), the Combination No.7 (Colour_PCA_BPNN) 

and the Combination No.10 (Colour_LDA_BPNN), colour feature is represented by the 

colour histogram with 16 bins in HSV where the hue is quantised into 16 bins while 

getting rid of the saturation and the value. To our best knowledge, it is the first time 

such an HSV colour space quantisation approach, presented in this thesis, has applied to 

the field of banknote recognition. Other researchers make use of HSV colour space for 

banknote feature extraction in a different way where no quantisation involved, such as 
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perceiving the mean value of the hue, the saturation, and the value separately as the 

predominant colour feature of banknotes (Aasma & Asma, 2016), solely considering the 

mean value of the hue as the colour feature of paper currency (Murthy, Kurumathur, & 

Reddy, 2016; Zeggeye & Assabie, 2016). 

 

Colour histogram indicates the global spread of colours regarding the banknote image, 

but it does not pay attention to the information on the spatial distribution of the image. 

To avoid the lack of notice on spatial information of banknotes, the texture depicted in 

the banknote image is also taken into consideration in this research. As for the texture 

feature of the obverse side of Series 7 New Zealand banknotes, there is the same design 

style but different content among banknotes of different denominations. To be specific, 

the images of key characters – Sir Edmund Hillary on 5 NZD, Kate Sheppard on 10 

NZD, Queen Elizabeth II on 20 NZD, Sir Āpirana Ngata on 50 NZD, Lord Rutherford 

of Nelson on 100 NZD - are located in the same area of the banknotes; the background 

images - Aoraki/Mount Cook on 5 NZD, white camellia flowers on 10 NZD, New 

Zealand Parliament Buildings on 20 NZD, Porourangi Meeting House on 50 NZD and 

Nobel Prize medal on 100 NZD - are located in the same area of the banknotes; the 

images of colour-changing birds – Hoiho (yellow-eyed penguin) on 5 NZD, Whio (blue 

duck) on 10 NZD, Kārearea (New Zealand falcon) on 20 NZD, Kōkako (blue wattled 

crow) on 50 NZD and Mohua (yellowhead) on 100 NZD.  

 

The LBP operator provides a good way of exploiting the spatial characteristics of the 

banknote image where each pixel is compared with its neighbours to generate its LBP 

code. Accordingly, the LBP histogram is used to describe the texture features of Series 

7 New Zealand banknotes. In particular, considering the powerfulness of uniform LBP 

on reflecting the texture feature of an image (Ojala et al., 2002), uniform LBP based on 

a neighbour set of eight members on a circle with a radius of one pixel is adopted to 

create an efficient uniform LBP histogram with fewer bins. Moreover, for the purpose 

of highlighting the detailed texture information of Series 7 New Zealand banknotes, 

when investigating the uniform LBP feature of the banknote, we divide the banknote 
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image into 32 equal-sized blocks to construct the block uniform LBP histogram with 

1888 (32×59) bins for the banknote. In our study, the LDA-based LBP feature 

described by block uniform LBP histograms perform well, with an average F-measure 

of no less than 0.9616 when using the scanned banknote images for training and an 

average F-measure of 0.9920 when using the images captured by webcam for training. 

A similar block-LBP method is discovered in the study undertaken by Guo et al. (2010), 

where a banknote image was divided into 300 (30×10) equal-sized blocks and 256 

kinds of LBP codes were evenly separated into eight bins, thereby forming the final 

LBP feature vector of 9600 (256/8×300) dimensions for each banknote. Although 

uniform LBP was not employed in their study, the recognition rate was improved by 

employing the block-LBP method instead of employing the traditional LBP operator 

(Guo et al., 2010). 

 

In many studies, both colour and texture features are extracted as a composite feature of 

banknotes for recognition. In our research, the composite feature containing colour and 

texture elements of Series 7 New Zealand banknotes is also analysed for recognition, 

which is described by the colour-LBP histogram with 123 bins. Specifically, for each 

banknote, the colour part of the composite feature is represented by the colour 

histogram with 64 bins in an HSV colour space where the hue is quantised into 16 bins, 

the saturation is quantised into four bins, and the value is discarded, while the LBP part 

of the composite feature is represented by the LBP histogram with 59 bins. By doing so, 

the dimensionality imbalance between the colour histogram part and the LBP histogram 

part in the colour-LBP histogram is minimised, so that the colour part and LBP part are 

treated fairly, having almost the same impact on the composite feature. In the 

experiments, the PCA-based composite feature shows its robustness on real-time 

banknote recognition, achieving an average F-measure of no less than 0.996 in the two 

groups of training sets. It is important to mention that in this study it is assumed that 

there are no illumination variations during experimentation. In other words, the images 

of paper currency are captured under the same illumination condition, for both training 

and testing phases.  
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The effectiveness of the composite feature containing color and texture elements has 

also been reported in other banknote recognition studies. In Chambers’ (2012) study, 

the two-part feature vector composed of both colour and texture features showed 

significant improvement for recognition accuracy, in comparison with individually 

adopting the colour or the texture feature; the composite feature delivered the optimal 

performance at 98.6% recognition accuracy when using the feed-forward neural 

network as the classifier trained by Bayesian back-propagation regulation learning 

algorithm. Likewise, García-Lamont et al. (2012) also demonstrated that by combining 

colour and texture features of banknotes to analyse, the recognition performance was 

improved as compared with single colour or texture analysis; the composite feature 

obtained 98.95% recognition rate when working with LVQ networks.  

 

Compared with the composite feature suggested by Chambers (2012) and the composite 

feature presented by García-Lamont et al. (2012), the composite feature investigated in 

our research has its highlights. In Chambers’ study, the color part of the composite 

feature only concerns the intensity histogram based on grey-scale image, whereas in our 

research, the color part of the composite feature is described by the color histogram 

based on a colorful image, which is truly representative of the color information of a 

banknote. Different from the research undertaken by García-Lamont et al. (2012) where 

the color feature part is extracted based on RGB color space, the HSV color space is 

adopted to characterise the color of the banknote in our research. Additionally, 

García-Lamont et al. (2012) employed traditional LBP operator for extracting the 

texture feature part of the composite feature; by contrast, we take advantage of the 

powerfulness of uniform LBP to present the texture feature of the banknote. The 

combined use of uniform LBP and PCA effectively reduces the dimensionality of the 

composite feature vector, thereby speeding up the recognition time to 0.4249s per note, 

which is faster than the approach proposed by García-Lamont et al. (2012) that requires 

0.9641s for recognising a banknote. 

 

In summary, on the one hand, although the colour feature is reported to be incapable of 
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providing sufficient classification information (Hassanpour & Farahabadi, 2009; 

Solymár et al., 2011), in our research, by making the most of HSV colour space, the 

PCA-based colour feature is able to reach an average F-measure of no less than 0.9575 

in the two groups of the training sets, no matter working with the MDC or the BPNN. 

On the other hand, it is meaningful to notice that the PCA-based composite feature 

containing both the colour and texture elements of the banknote is competent in 

obtaining an average F-measure of no less than 0.9960 in the two groups of training sets, 

no matter working with the MDC or the BPNN. Thus, the composite feature along with 

the BPNN as the classifier is proposed for approaching Series 7 New Zealand banknote 

real-time recognition. Since the composite feature investigated in this research takes 

account of both colour and texture features of the banknote, it could potentially serve as 

a fundamental solution to the real-time recognition of other paper currencies. In 

particular, when the colour feature is not enough for discriminating banknotes, such as 

the banknotes of different denominations having the same colour, the texture feature 

components enable the composite feature to be a very promising feature to be exploited 

for real-time recognition tasks. 
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Chapter 6 Conclusion 

This chapter will conclude the thesis by summarising the current research, underlining 

the novelty of the research, highlighting the significance of the research, and finally 

identifying its limitations and future research directions. 

6.1 Summary 

It is not easy to answer how to achieve real-time recognition of the new Series 7 New 

Zealand banknotes under camera using digital image processing. It depends on multiple 

factors, such as constitution of the training set, features to be extracted and classifiers to 

be employed. Based on the reviewed literature on banknote recognition, this thesis 

presents empirical approaches for Series 7 New Zealand banknote real-time recognition. 

Two hundred and fifty banknote samples of different denominations are used for 

training, including 50 each of 5 NZD, 10 NZD, 20 NZD, 50 NZD and 100 NZD. Two 

groups of training sets are generated by processing the training samples in different 

ways. One training set is composed of the banknote images produced by scanning 

banknote samples, and the other training set consists of the banknote images generated 

through webcam capturing banknote samples. Three kinds of features of the banknotes, 

namely, colour feature, texture feature, and composite feature containing both the colour 

and texture elements, are studied, along with two classifiers - the MDC and the BPNN. 

Effective dimensionality reduction algorithms, PCA and LDA, are utilised in the 

experiments to build up computing speed, thereby adapting to real-time recognition. A 

total of 24 contrast experiments have been conducted using various combined methods. 

Fifty banknote samples participate in the testing stage, with 10 banknote samples for 

each denomination. The experimental results are analysed to investigate the relationship 

between the experimental subject and various factors.  

 

The results suggest that the training sets should be generated in the way that simulates 

the testing environment to the maximum extent, to achieve better recognition results. 

With a high-recognition rate as a prerequisite for evaluating the performance of the 
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combined methods investigated in this research, the time cost of recognition is also 

calculated as a secondary performance indicator for real-time recognition. Finally, the 

PCA-based composite feature along with the BPNN is the overall winner that yields an 

average F-measure of 0.9960 when using the scanned banknote images for training and 

0.9980 when using the banknote images captured by webcam for training, with an 

average time taken of 0.4249 seconds for each note to be recognised, and is therefore 

proposed to deal with Series 7 New Zealand banknote real-time recognition. 

Specifically, for the composite feature, the colour part is described by the HSV colour 

histogram with 64 bins where the hue is quantised into 16 intervals, the saturation is 

quantised into four intervals, and the value is discarded, while the LBP part is described 

by the uniform LBP histogram with 59 bins. PCA is then used to reduce the 

dimensionality of the composite feature vector, meanwhile retaining 95% of the 

information of the composite feature. Finally, a three-layer back-propagation neural 

network with sigmoid activation function trained by the Rprop algorithm is employed 

for recognition, which is comprised of four input nodes corresponding to the four 

dimensions of the PCA-based composite feature, five hidden nodes and five output 

nodes corresponding to the five different denominations $5, $10, $20, $50 and $100. 

6.2 Novelty of the research 

To the best of our knowledge, it is the first time that the HSV colour quantisation 

approach presented in this thesis has appeared in the field of banknote recognition. In 

addition, no researchers have applied the block uniform LBP histogram to paper 

currency recognition before us. Moreover, the approach of extracting the composite 

features of banknotes proposed in this thesis is also the innovation point of the research, 

since it appears in the field of banknote recognition for the first time. On the other hand, 

most research work in the banknote recognition field has concentrated on the static 

recognition approach where the images of banknotes being tested are obtained and 

stored in a folder before the testing stage, and the images are read one by one for 

recognition during the testing stage. By contrast, this research project makes use of a 

webcam to capture the images of banknotes for testing to achieve banknote real-time 
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recognition. 

6.3 Significance of the research 

Paper currency-related transaction machines, such as ATMs and self-service payment 

kiosks, are supposed to have a classification function in their system for determining the 

correct denomination of banknotes at the time of a transaction. The outcome of this 

research project fills the gap that has hitherto existed in banknote recognition literature 

– the recognition of Series 7 New Zealand banknotes. The proposed method can be 

considered to apply to the banknote transaction machines to achieve the real-time 

recognition of the denominations of Series 7 New Zealand banknotes. 

 

This research project is also potentially beneficial to blind or visually impaired people. 

Currency is the most common medium of exchange in human society. However, for 

certain people, such as the blind or the visually impaired, how do they identify different 

face values of currency for normal usage? Under this scenario, the camera-based 

classification approaches for Series 7 New Zealand banknotes presented in this thesis 

can help with the future development of a prototype helping the blind to recognise the 

denominations of Series 7 New Zealand banknotes.  

6.4 Limitation and future work 

Although an effective method for Series 7 New Zealand banknote real-time recognition 

is proposed in this thesis, a few limitations in this research should be pointed out. The 

primary limitation is with sample size. Strictly speaking, the number of banknote 

samples collected for the experiments is still relatively small if the proposed method is 

to be put to practical use in the market. In addition, Series 7 New Zealand banknotes $5 

and $10 were released in October 2015, and the remaining three denominations were 

released in May 2016, indicating that the banknotes collected for experimentation are 

relatively new. As a result of the lack of worn or wrinkled banknote samples, the 

proposed method may not be able to precisely recognise worn-out Series 7 New 
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Zealand banknotes. In future, the research could be improved in the following aspects 

so it is capable of working in a more complex context. 

 

Firstly, more samples of Series 7 New Zealand paper currency would be used in future, 

so as to increase the size of both training and testing sets. More training samples are 

helpful for neural network classifiers to train a better network, and more statistical data 

can be obtained from the experiments for analysis when more testing samples are 

provided. As well, as time goes by, the worn or wrinkled Series 7 New Zealand 

banknotes would appear in market circulation. Those banknotes need to be collected at 

that time for study, to equip the current system with the ability to recognise their 

denominations. 

 

Secondly, a banknote detection module would be added to auto-locate the banknote 

under a camera. On this basis, rotation-invariant LBP can be employed to achieve 

rotation invariant banknote recognition. Thus, not only would the conditions for the 

placement of banknotes under a camera become less strict, but also the dimensionality 

of the LBP feature vector would be reduced, thereby lowering computational cost. The 

original LPB operator generates 256 kinds of different output values corresponding to 

different binary patterns, and an LBP histogram of an image will be a 256-dimensional 

vector, which is quite a large data volume. By applying uniform LBP, the 

dimensionality of its vector can be reduced from 256 to 59, assigning each uniform 

pattern to a separate bin and all non-uniform patterns to a single bin. By applying 

rotation invariant LBP, 256 patterns can be simplified to 36 rotation-invariant patterns, 

thereby reducing the dimensionality of its vector to 36. It is worth noting that the 

dimensionality of its vector can be reduced to nine by using the combined use of 

uniform patterns and rotation invariant descriptors, choosing nine uniform patterns out 

of the 36 rotation invariant patterns and merging the remaining 27 under the 

miscellaneous label. 

 

Thirdly, the proposed approach in this thesis potentially paves the way for 
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multi-currency real-time recognition, as taken both colour and texture features of the 

banknote into consideration. In future, other paper currencies would be involved in 

research project in order to validate the general applicability of the proposed approach.  

 

Last, but not the least, deep learning, the most cutting-edge technology in machine 

learning would be a prospective trend for future research. 
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Appendices 
Appendix A: Colour histograms with 16 bins for the banknote images captured by 

webcam (the displayed colour of each column determined by the median value of each 

partition range) 

     
(a) 5 NZD                             (b) 10 NZD 

 

     
(c) 20 NZD                             (d) 50 NZD 

 

 
(e) 100 NZD 
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Appendix B: Recognition results when using the scanned banknote images for training 

     

    (a) Combination No.1               (b) Combination No.2 

     

(c) Combination No.3               (d) Combination No.4 

     

(e) Combination No.5                (f) Combination No.6 
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(g) Combination No.7              (h) Combination No.8 

     

(i) Combination No.9              (j) Combination No.10 

     

(k) Combination No.11              (l) Combination No.12 
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Appendix C: Recognition results when using the banknote images captured by webcam 
for training 

     

(a) Combination No.1              (b) Combination No.2 

     

(c) Combination No.3              (d) Combination No.4 

     

(e) Combination No.5               (f) Combination No.6 
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(g) Combination No.7               (h) Combination No.8 

     

(i) Combination No.9             (j) Combination No.10 

	 	 	 	 	

(k) Combination No.11                (l) Combination No.12 

 


