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Abstract

Scheduling, the task of producing a time table for resources and tasks, is well-known

to be a di�cult problem the more resources are involved (a NP-hard problem).

This is about to become an issue in Radio astronomy as observatories consisting of

hundreds to thousands of telescopes are planned and operated.

The Square Kilometre Array (SKA), which Australia and New Zealand bid to

host, is aiming for scales where current approaches � in construction, operation but

also scheduling � are insu�cient. Although manual scheduling is common today,

the problem is becoming complicated by the demand for (1) independent sub-arrays

doing simultaneous observations, which requires the scheduler to plan parallel ob-

servations and (2) dynamic re-scheduling on changed conditions. Both of these

requirements apply to the SKA, especially in the construction phase.

We review the scheduling approaches taken in the astronomy literature, as well

as investigate techniques from human schedulers and today's observatories. The

scheduling problem is speci�ed in general for scienti�c observations and in particular

on radio telescope arrays. Also taken into account is the fact that the observatory

may be oversubscribed, requiring the scheduling problem to be integrated with a

planning process.

We solve this long-term scheduling problem using a time-based encoding that

works in the very general case of observation scheduling. This research then com-

pares algorithms from various approaches, including fast heuristics from CPU schedul-

ing, Linear Integer Programming and Genetic algorithms, Branch-and-Bound enu-

meration schemes. Measures include not only goodness of the solution, but also

scalability and re-scheduling capabilities.

In conclusion, we have identi�ed a fast and good scheduling approach that allows

(re-)scheduling di�cult and changing problems by combining heuristics with a Ge-

netic algorithm using block-wise mutation operations. We are able to explain and

eradicate two problems in the literature: The inability of a GA to properly improve

schedules and the generation of schedules with frequent interruptions.

Finally, we demonstrate the scheduling framework for several operating tele-

scopes: (1) Dynamic re-scheduling with the AUT Warkworth 12m telescope, (2)

Scheduling for the Australian Mopra 22m telescope and scheduling for the Allen

Telescope Array. Furthermore, we discuss the applicability of the presented schedul-

ing framework to the Atacama Large Millimeter/submillimeter Array (ALMA, in

construction) and the SKA. In particular, during the development phase of the SKA,

this dynamic, scalable scheduling framework can accommodate changing conditions.

9



1 OVERVIEW

Part I

Introduction

1 Overview

1.1 Radio astronomy

Radio astronomy is the �eld of astronomy that observes radio waves � electromag-

netic radiation with wavelengths of millimeters to meters � from extraterrestrial

sources. In contrast the eye observes photons of 300-700nm wavelength (Kitchin

(1998)). Due to these more practical dimensions in radio astronomy, theoretically

any conductor of suitable size can be used as an observation instrument. In practice

radio astronomy instruments take various forms.

Figure 1: A typical radio telescope design with primary mirror and feed horn in the
focus. The feed horn has to be supported by struts which interfere with the signal.
The signal is �ltered and ampli�ed in place, and transferred to a data center, where
it is down-converted, digitized and �nally, analysed. Left panel: Warkworth 12m
antenna. Picture courtesy of Institute for Radio Astronomy and Space Research
(IRASR, AUT University). Right panel: A block diagram of a single dish antenna.

However, the most well-known radio astronomy observation instrument is the

radio telescope dish. It is based on a mirror that re�ects radiation onto a feed horn,

which collects the radiation to be ampli�ed and translated into science data (see

Figure 1).

It is true in general that the signal to noise ratio is dependent on the number of

sampling points obtained, since some form of averaging is involved: Noise ∝ 1√
nS
.

The number of samples is proportional to the duration, the sampling rate. If several

receivers are used, this number goes in too: nS = nR×T×fS. Given �xed equipment,

only the observation time can be increased, and only if it is quadrupled, the noise is

halved. It would seem obvious that more collecting area / more telescopes contribute

to a better signal to noise ratio roughly linearly (see Kraus (1966) for details).

10



1.1 Radio astronomy 1 OVERVIEW

1.1.1 Interferometry and Radio telescope arrays

Interferometry is a powerful tool to increase the (angular) resolution and to reduce

the noise further. By linking two or more antennas together, and assuming the

same signal reaches them � although with some delay � this common signal can

be extracted through correlation, as all individual noise contributions are uncorre-

lated (Kitchin (1998)). The angular resolution increases with the distance between

the telescopes. The image detail recoverable increases with diversity of baselines

(distance vectors between antennas).

Figure 2: Simpli�ed concept

of an interferometer.

Hence, given a set of antennas, there is a trade-o�

to be made:

� In a compact con�guration, the angular res-

olution is low. However, the combinations

of antennas cover a small range of baselines

well, a image would show large structure well.

Since the photons travel through the same air

paths, the noise can be removed very e�ectively

through correlation.

� In a distant con�guration, the angular reso-

lution is high, so an image of the sky would

show many details of a central region. But

the combinations of antennas cover the range

of baselines only sparsely, so the general struc-

ture would be less de�ned. Signals have higher noise. Very large baseline

interferometry (VLBI) operates in such a distant con�guration, by linking to-

gether telescopes throughout a continent or around the globe. Various VLBI

networks are active.

Arrays usually aim for a compromise between the two cases. For the case of the

ATCA (Australian Telescope Compact Array), the 6 antennas can be moved to

a compact star con�guration of a few dozen meters maximum distance, or to an

expanded con�guration covering several kilometers. For the ATA (Allen Telescope

Array), 42 antennas are distributed in an area of a few hundred meters in a quasi-

random fashion, to allow good coverage of baselines.

1.1.2 Square Kilometre Array (SKA)

The Square Kilometre Array (SKA) will consist of several components, covering a

range of radio wavelengths:

1. Dense aperture array,

2. Sparse aperture array and

11



1.2 Planning, Scheduling, Control and Monitoring 1 OVERVIEW

3. Dishes.

Only the radio telescope dishes are considered in this work. Their con�guration is

made of two components:

� There will be a core region, similar in concept to today's radio telescope arrays,

but several kilometer diameter in size and �lled with thousands of dishes.

� Furthermore, 20 to 25 stations � clusters of telescopes � with about 30 to

50 telescopes each, will be distributed across the continent, extending the

maximum distance to thousands of kilometers.

With those two components, both aspects mentioned above are well-covered, making

the SKA an extremely powerful science tool.

Figure 3: If placed in Australia, the core

region would be where today's ASKAP

site is, near Perth in Western Australia.

Red dots indicate already operating tele-

scope sites. White dots indicate the

spirals of telescope centers extending up

to New Zealand and providing an enor-

mous baseline of 5500km. Courtesy of

CSIRO/anzSKA/AUT.

The Square Kilometre Array, as a

next-generation observation instrument,

is magnitudes larger in size than current

arrays, several of which, called precur-

sors and/or path�nders, are testing vari-

ous concepts, materials, manufacturing,

techniques and technologies for the SKA

project. For instance, the ATA devel-

oped a cheap telescope manufacturing

technique to get a high number of small

telescopes (42 so far) at a low price.

Besides the hardware, much work

is needed on data processing and data

analysis. Radio telescopes are notori-

ous for high data volumes (several giga-

bytes per second), and linking the data

streams together requires new data cen-

ters and better algorithms. This is the

reason computer scientists and the ICT

industry are excited about this project, but such a projects incurs, with the required

infrastructure and sta�, consequences and opportunities for a country as a whole.

1.2 Planning, Scheduling, Control and Monitoring

Operating complex equipment is well studied from the manufacturing industry. Fol-

lowing Wall (1996), the process can be split up into four segments: Planning, which

de�nes the tasks to do including their restrictions, Scheduling, where it is decided

when and how to do these tasks, Control, where the tasks are executed, and Monitor-

ing, which observes the execution and provides a feedback loop to alter the control

process, or to demand a di�erent schedule.

12



1.2 Planning, Scheduling, Control and Monitoring 1 OVERVIEW

1.2.1 Planning

In most general terms, the tasks that could be done are separated from the tasks

that are planned to be done. The outcome is the plan.

In manufacturing, the tasks or jobs are the items to produce. In planning, the

variety of items and quantities are decided.

For observations, the tasks are proposals. Scientists interested in using the equip-

ment submit an proposal, which can consist of one or more observations. These are

speci�ed with the scienti�c requirements, and the total hours needed to reach the

science goals.

Typically, a committee decides to either grant execution of a set of observations,

or assigns a priority or grade to each proposal and leaves it to the scheduler to select

high-grade observations before low-grade ones.

1.2.2 Scheduling

Figure 4: The feedback loop between plan-

ning, scheduling, control/execution and moni-

toring. Planning can be more integrated than

depicted here.

A scheduler takes the plan and as-

signs execution times as well as re-

sources (e.g. equipment) to the

tasks. The result is called the sched-

ule.

Two aspects are of importance in

creating a schedules: Validity and

Goodness.

Validity: The schedule has to be

valid, i.e. each task can actually

be executed as the schedule states.

Time constraints, order constraints

and resource constraints have to be

adhered to.

In project scheduling for in-

stance, there is high interdepen-

dence between the tasks (see Fig-

ure 5 on page 17 for an illustrative Gantt-diagram). The scheduler is strongly

constrained in the possible orderings of tasks.

In job shop scheduling, the manufacturing items have to be assigned to machines.

Here, the order of machines visited need to be taken into account, as well as the

resources needed to do a certain job at a certain machine at a certain time.

However, for observation scheduling, the assumption can be made that there are

no interdependencies, i.e. that the measurements are independent.

13



1.2 Planning, Scheduling, Control and Monitoring 1 OVERVIEW

Goodness: The goodness of a schedule is the critical Figure of merit that a sched-

uler has to take into account. It is usually expressed as a cost function (to be

minimized) or a preference function (to be maximized).

This measure is highly dependent on the application area, and has to be speci�ed

by stakeholders with domain knowledge (usually the operators). In general, the time

needed and resources required are to be minimized. A full discussion on the cost

function for the case of radio astronomy scheduling can be found in section 7 on

page 65.

For a scheduler, the time interval considered can be unlimited or limited. In

project scheduling for instance, the time axis is open but the total time is to be

minimized. For observation scheduling, even if the time is split into limited terms,

it is possible to carry on un�nished or unscheduled observations to the next term.

If planning is intertwined with scheduling, the schedule is potentially oversub-

scribed, meaning not all tasks can be completed. It is up to the scheduler to prefer

completing high priority tasks before starting low priority tasks.

1.2.3 Control/Execution

The control system is a highly complex, often distributed system that has to make

sure all the pieces of equipment work in accord. It takes the task to execute at the

current time and sets up the machines and instruments to their correct state.

The relevant properties of a reliable control systems for the moment is that if

the task can be executed, the control system executes it.

1.2.4 Monitoring

The monitoring system obtains qualitative and quantitative indicators from the

pieces of equipment about the state of operation. This information is logged for later

analysis, but also shared with the control system to allow it to react to misalignments

and failures. The noti�cations can not only reach the control system, but also

the scheduler, if resources are permanently unavailable and a change in schedule is

required.
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1.3 Thesis aim and structure

This work is concerned with the issue of planning and scheduling observations on

radio telescope arrays. Planning is integrated, as, with oversubscription on obser-

vatories, the scheduler also has to decide which tasks to exclude.

With the Square Kilometre Array, the �eld of scheduling today faces the issue of

scalability. It is clear that a semi-manual scheduling system for a dozen instruments

that is updated once in a month will not work for a complex system with up to

1000 instruments that are not staying constant (construction process, equipment

failure or other circumstances). This demands scalable and �exible solutions. Even

though humans are in charge of decisions and preferences, the scheduling can not be

accommodated by humans any more. This work is also the �rst to consider dynamic

array splitting � part of the speci�cation of the SKA � allowing parallel observations

to be scheduled.

The aim of this work is to develop a statement for the real-world problem of

scheduling observations, and to evaluate and compare various approaches to solving

this problem. Finally, real-world application of the work on today's observatories is

explored for various cases.

The rest of this work is organised as follows:

Chapter 2 de�nes scheduling, its terms and several real world problems, followed

by an investigation of the fundamental problem and its properties.

In Chapter 3, speci�cs to the problem of scheduling in astronomy and radio

astronomy are presented.

In Chapter 4, the speci�c use case of concern, Telescope Array Scheduling is

discussed and related to existing scheduling problems and de�nitions. Furthermore,

a survey on current usage in telescope arrays is presented. The available data is

analysed and current solutions discussed.

In Chapter 5, the approach to radio astronomy scheduling and observation

scheduling in general is laid out.

In Chapter 6, the implementations and test framework to compare and evaluate

solutions as well as the new methods and approaches employed are presented.

In Chapter 7, the cost function (�gure of merit for schedules) is discussed.

In Chapter 8, the results are presented and discussed in Chapter 9, including a

thorough discussion on how the �ndings can be used in future telescope arrays.

In Chapter 10, the application of the approach in the real-world is explored.
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2 Scheduling

Scheduling is an enormous �eld of research. Due to its importance in manufacturing

and transportation, scheduling has received a lot of attention since the early days

of computer science. To name but one example, Gi�er & Thompson (1960) lay

out all the foundations of what today would be called a non-preemptive scheduling

problem with tasks, resources and machines. The issue of predecessor relationships,

minimizing the total make-span and the complexity of the problem are already

mentioned and analyzed. An attempt to give a comprehensive overview of scheduling

history and the various areas can be found elsewhere, such as in Pinedo (2008).

Wall (1996) provides a modern account and very general overview of resource-

constrained scheduling, de�ning a schedule as an assignment of resources (where),

tasks (what) to periods of time (when). He notes scheduling to be a dynamic

problem � not only the tasks to do may change, but the objectives may also change

during execution of a schedule. No schedule is static until project is completed, and

this is especially true when humans interaction is part of the process. A schedule

is subject to constraints. They are a combination of temporal, precedence and

availability considerations.

Scheduling has to deal with incomplete information, and often strongly connected

with planning. Smith (2005) argues that only narrow aspects of scheduling are

solved so far. One of the open �elds he names speci�cally is the integration of

planning and scheduling, either to be solved by special separated solvers, or as a

single integrated search space. His earlier survey, Smith et al. (2000), goes into

detail on existing planning and scheduling research.

To further illuminate the importance of scheduling research, illustrative examples

from various domains are described below, in part taken from Wall (1996), Pinedo

(2008) and Ernst et al. (2004). It should also be noted that bad scheduling � in

industry, manufacturing, airports, and many other applications areas not mentions

� can cost huge amounts of money, and consequently good scheduling can avoid

these costs.

CPU Scheduling In CPU scheduling, the problem is to (quickly) select a task

for the next execution timeslot. The time is open-ended, and it is assumed that all

tasks are executed eventually. These algorithms can be called heuristics, making only

local decision (what to put in the next time slice) based on priority, and previous run

time. It goes without saying that CPU scheduling algorithms have to be very fast

in deciding. This can result in the starvation of a task, and real-time and embedded

systems in particular want to avoid this by strategies such as completing the task

with the earliest-deadline �rst.
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Network Scheduling In network scheduling, the problem is similar to CPU

scheduling. For each connection, a stack of packets are waiting to be sent. The

scheduler has to make a trade-o� between them when ordering them. It is important

to maximize throughput and to avoid starvation, as timeouts incur re-transmissions.

These algorithms can take more time considering options. Additionally to heuristics,

linear optimization can be employed.

Job-shop Scheduling In Job-shop scheduling, the machines are a �xed given,

and so are the requirements on which machines a job needs to pass. There are

single machine models, parallel machine models, where a job can be done on any

of the machines, and job shop models, where a job has to go through some order

of machines to visit. Usually, the make-span, the time for a job to �nish, is to be

minimized. This type of scheduling virtually always implies that a job occupies the

resource fully, and that the job visits several machines in some, partially de�ned,

order. In contrast, we require a job to be assigned to a set of machines at the same

time.

The application area of this extremely prominent problem is manufacturing.

Figure 5: A Gantt diagram dis-

plays the predecessor relations

and ordering required in project

scheduling.

Project scheduling Another prominent prob-

lem in scheduling literature is project scheduling,

where, for a project, tasks have to be ordered and

assigned to people. The tasks each have prede-

cessors, and resources (people) associated with

their execution. The task is not only to �nd a

valid ordering, but to minimize the total time

to completing the project. In Figure5, a Gantt

diagram is provided to illustrate predecessor re-

lationships.

Airport/Transportation Scheduling In transportation scheduling, resource pro-

ducers, resource consumers and a means of transportation have to be associated to

meet demands. For instance, trucks need a schedule for delivery of goods from

factories to stores. A variation is airport scheduling, where the time of arrival for

airplanes has to be coordinated with sta� availability on ground, and schedules are

subject to varying conditions.

Classroom and Sta� scheduling Classroom scheduling, or timetabling, is the

task of assigning students and teachers to rooms at certain timeslots. In this context,

the people and rooms can be thought of as the resources (see Schaerf (1999) for a

survey). In schools and universities, the desired schedule is a repeating timetable
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(e.g. weekly or biweekly). In the related exam scheduling problem however, a sched-

ule for exams is sought, so that no student/teacher/room has overlapping exams.

In sta� scheduling, a recurring timetable for sta� is sought, so that shifts are

�lled while taking e.g. holidays into account. Another people scheduling problem

is classroom assignment, where the task is to assign rooms and subgroups of people

(teachers and students) to time intervals, subject to certain conditions. The teachers,

students and rooms can be seen as three classes of resources / equipment. They are

required for the execution of a class. They can only be used for one execution at a

time. Another aspect that is very similar is that classes should be continuous.

2.1 Fundamental problem

Most of the theoretical literature focuses on the problem of creating a good and

valid schedule, given constraints and quality measures. However, as Wall (1996)

emphasizes, the problem is actually three-fold:

1. Creating valid solutions

Solutions have to be valid, i.e. adhere to the �hard constraints�.

2. Creating valid and good solutions

Solutions should be close to the optimal solution, i.e. most of the �soft con-

straints� should be satis�ed.

3. Updating a schedule on changes

In real life, a schedule has to be modi�ed when constraints or resources change.

Ideally, a minimal change will make the schedule valid under the new con-

straints, and good.

Often times production/industry scheduling only address the �rst two steps, and

in the area of theoretical computer science only the �rst step is addressed as the

combinatorial problem of �nding a valid solution, when studying NP-hard problems

such as binary satis�ability, bin-packing, N-queens and others, scheduling means

the association of tasks to times. This �constraint satisfaction problem� (CSP) is

mostly concerned with uninterruptable jobs and the availability of resources. From

this viewpoint, two real-world aspects complicate the problem: (1) Constraints and

preferences may be subject to change, even during the execution of the schedule,

requiring rescheduling; (2) As Schiex et al. (1995) emphasizes, the knowledge about

the situation may be incomplete, and the scheduler may have to be able to work

with these �uncertainties�.

2.1.1 Complexity of �nding a valid solution

The abstracted problem of �nding valid solutions to a constrained domain is called

a constraint satisfaction problem (CSP).
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To allude to the complexity of the problem, lets consider n = 100 tasks of �xed

duration. They can be ordered in n! = 10158 di�erent ways if they do not have

interdependencies. A factorial grows larger than any polynomial, which already

hints that we have a NP-hard problem at hand.

Since NP-hard problems can not be simpli�ed, we can proof that �nding a valid

solution is NP-hard by re-mapping to another NP-hard problem:

The task is to assign N tasks to a time-interval. Each task has a duration and a

bene�t. The total time-interval length is given (the constraint), and for simplicity

we assume only one task may be active at a certain time.

An analogous problem is Bin-Packing or the Knapsack problem: Given a back-

pack, the task is to �ll it with items, each of certain weight and bene�t, while not

exceeding a weight limit. The best combination of items is sought.

It can be easily seen that the �lling a backpack and �lling a schedule are equiv-

alent problems. Because the Knapsack problem is NP-hard, so is scheduling, as

NP-hard problems can not be reduced in complexity.

2.1.2 Finding good solutions

After the e�ort of creating a valid solution, this might be far from the optimal solu-

tion. The complexity of �nding valid solutions is at least bound by the complexity

of listing all valid solutions. See Ullman (1975) and Aarup et al. (1994) for dis-

cussions on scheduling complexity. In some rare cases, see Frank et al. (2005) for

instance, the scheduling complexity is in P. However, the very strict criteria for these

cases are not applicable in practice.

2.2 Algorithm classes

Wall (1996) distinguishes exact methods from heuristic methods:

� Exact methods:

� Critical path method (CPM, for dependencies within a single project)

� Linear (Integer) Programming

� Bounded enumeration

� Heuristic methods:

� Scheduling heuristics: minimal slack, nearest latest �nish time, shortest

feasible duration, least resource proportions

� Sequencing heuristics: order, based on decision trees

� Hierarchical approaches: goal programming for multi-objective schedul-

ing
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� �AI� approaches: knowledge base and inference, or multi-agent based:

each agent improves to his bene�t

� Simulated annealing: based on neighborhood operator

� Evolutionary algorithms: binary or order-based representations

Scheduling methods are noted by Wall (1996) to often break when the structure of

the problem changes; others scale poorly. One of the many scheduling books, Aarup

et al. (1994), notes that �nding a schedule can be seen as a constraint-directed

search process, and adopts the following classi�cation of algorithm:

1. constructive algorithms incrementally add to a schedule until completion

2. repair methods alter an existing schedule to solve con�icts or optimize.

Barbulescu et al. (2006) contributes a general insight on what well-performing over-

subscribed scheduling algorithms seem to have in common: They are good because

they make multiple moves at once. This lets them explore a plateau with little or no

gradient. Randomization is also noted to be e�cient in traveling the search space.

We identify the following major algorithm classes from the vast �eld of schedul-

ing:

1. Constrained Satisfaction Problem solvers:

(a) The problem is viewed as a combinatorial issue where the right order of

a NP problem has to be found. Scheduling is a form of bin-packing.

(b) Algorithms used are Backtracking, Local search, CPM, Constraint prop-

agation. Very hard since they are often close to brute force.

(c) Constraints limit the domain space of each variable (e.g. which bins a

item can go to).

(d) Preferences are expressed by choosing branches in a preferred order (de-

termining the order of listing solutions).

2. Heuristics, �CPU schedulers�:

(a) The task is to quickly assign a process to a CPU (or a data package to a

network link)

(b) Algorithms used are FIFO, Round-robin, Fair queuing. Simple and quick.

(c) Constraints are expressed by creating queues: Only jobs that could run

at this time slot are in the queue.

(d) Preferences are expressed by creating several queues, and the order of

picking from the queues (e.g. priority queues).
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3. Genetic/Evolutionary algorithms: Wall (1996)

(a) The problem is to �nd the �ttest chromosome, which is an encoding of a

schedule. Every piece/gene can have a value out of a set (e.g. [tstart...tend]

or A,C,G, T ).

(b) The algorithm is mutating and crossing an existing population of solu-

tions randomly. Based on a �tness function, the best are selected to the

next generation. This is repeated. Many variations of this fundamental

algorithm exist.

(c) Constraints are expressed by the gene structure.

(d) Preferences are expressed in the �tness function.

4. Linear (Integer) Programming solvers:

(a) The problem is viewed as a assignment issue.

(b) Algorithms used are branch-and-bound or Simplex methods. Solvable in

linear time if the problem can be expressed with linear variables.

(c) Constraints are expressed as linear relations (≤,≥,=)

(d) Preferences are expressed as a (linear) cost function.

Table 1 summarizes di�erent approaches and algorithms. Column 1 classi�es them as

problem class, approach of solution or requirement for a unsolved problem. Further

columns indicate whether it is possible to update the solution (e.g. on changes),

whether a closed time frame is considered, whether planning is integrated with

scheduling, if the formulation is capable of parallel jobs and whether short-term or

long-term scheduling is considered.

In 2.2.1 - 2.2.4, the use and formulation of these methods are discussed. Their

applicability to observation scheduling is discussed in 6.1.

2.2.1 CSP solving

For the CSP approach, the main issue is �nding valid solutions. Usually, CSP solvers

try to �nd one solution, or list all possible solutions, and can be thus identi�ed with

search algorithms. Since it is a combinatorial problem rather than an optimization,

there is usually no preference of solutions involved. Even without good initial guess

heuristics and traversal methods, tackling this NP-hard problem is complicated in

general, since the space complexity does not go away.

2.2.2 Heuristics, CPU-like schedulers

These algorithms make local decisions and usually do not consider multiple solutions,

or in-depth, global analysis of possibilities, and so, may miss out on better solutions.
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Table 1: A comparison table of some of the approaches and algorithms. The last
two rows identify requirements for Array Scheduling for ATA and SKA.

Type Name constructive
or

updatable
/ repair

closed /
open-
time

planning
in-

cluded

considers
parallel
jobs

short /
long
term

Problem
CSP repair closed no yes L/S

Classroom
scheduling

repair closed no yes L

Solution

SOFIA constructive closed yes no S
(Night)

CPU constructive open no no1 L/S
LP/IP constructive closed no yes L/S
JIC repair closed no no S

(Night)
CERES repair closed yes no S

(Night)
GA repair open /

closed2

yes yes L/S

Requirements
ATA repair3 open /

closed
yes no L

SKA repair open /
closed

yes yes L

1 The multi-core case is only multiple schedulers drawing from the same pool, with-
out any resource resolution.
2 The chromosome will be �nite, but the cost function can be formulated to allow
an open system.
3 Ideally, the repaired schedule, e.g. after cancellation of a project, should look very
similar to the previous schedule.
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Algorithm 1 Genetic algorithm

Generation = 1
Generate i n i t i a l populat ion POP of s i z e pop−s i z e
u n t i l t e rminat ion c r i t e r i o n reached
{

Generat ion = Generation + 1
Produce ch i l d r en CHI by apply ing ope ra to r s to POP

( through s e l e c t i o n , mutation , e t c . )
Evaluate f i t n e s s f o r each I in CHI
POP = POP + CHI
Reduce populat ion to s i z e pop−s i z e us ing s e l e c t i o n method

}
re turn POP

For instance, consider two processes, A and B. The resource needed for process A is

becoming unavailable soon. Typically, a CPU scheduler will not look ahead to �nd

out whether, if B is run now, process A will starve. Zhao et al. (1987), for instance,

discusses various strategies for multi-processor systems.

For instance, an allocation algorithm can just look at each time slot and pick a

job based on certain preferences, e.g. priority, time-to-last date, etc. This would

give a good solution very quickly, in time O(T ).

2.2.3 Genetic programming

Genetic algorithm (GA) solutions are simple to write, as any form of cost function

can be expressed. An in-depth understanding of the problem at hand is not necessary

for the GA to provide good solutions. However, optimality is not guaranteed. It is

not completely understood why they work so well. The GA is more successful if the

space of valid solutions is easy to explore.

Formulation for a Genetic Algorithm Genetic algorithms are a general frame-

work for optimization, inspired by the evolutionary process in biology: A population

of individuals is improved through a number of generations. Each individual is en-

coded as its chromosome, which is made up of individual genes. Each gene can take

several values, identi�ed as alleles of the gene.

The process runs in two steps that are repeated until some termination crite-

rion is reached (e.g. time, goodness of solution): (1) The population is modi�ed

through genetic operators (2) The new population is truncated through a selection

mechanism, and the �tness function. Algorithm 1 illustrates the working of a GA.

Several decisions are left open for implementation: The size of the population, the

termination criterion, the genetic operators used and how often and in which order

they are applied, the �tness function and the selection method.

The �default� genetic operators, the most commonly used ones, are crossover and
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mutation. Crossover takes two chromosomes, cuts them in half at some points, and

exchanges the tails. The mutation operator selects genes randomly and sets them

to a new, random value from the allele of the gene.

Model In the scheduling literature, two formulations are commonly found:

Time-indexed and Order-based. The time-index gene encoding lets genes represent

timeslots and the alleles are the jobs that can be run at this time (see Figure 6).

Figure 6: GA encoding using genes as timeslots.

A problem referred to as fragmentation here, is consistently found in GA

scheduling studies. In this context we mean the undesired outcome that, for in-

stance, the sequence of tasks is (A, B, A, B, A, B), i.e. alternating or frequently

changing. For calibration and setup, as well as good quality observations, long con-

tinuous observations are necessary and such solutions are undesired. The source of

such solutions is that the GA, given independent genes doesn't have a understanding

that neighboring genes should be preferred to be similar.

Figure 7: GA encoding using genes as jobs start time.

Trying to avoid this issue, the second popular formulation, order-based encoding,

lets each gene identify the start time of the associated task (see Figure 7). This

formalism seems natural for uninterruptible tasks, not allowing fragmentation at

all. For interruptible tasks, the number of genes can be made variable.

It is clear that with this formulation, the mutation and crossover operators have

to be programmed in speci�c ways to keep the solution valid. This can be rather
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complex and it is more di�cult for the GA to explore the space of solutions. Wall

(1996) notes that this formulation is less successful than the time-indexed encoding.

Formulation Evolve generations genetically according to a cost function.

Result The result, after n iterations, is a population of good schedules. The

best of these can be taken as the resulting schedule.

Comments The bene�t of a genetic algorithm is that an arbitrary, non-linear

�tness/cost function can be given, and the problem does not have to be well studied

to give good solutions. Starting from an existing schedule (population), it can be

easily modi�ed by changing constraints to adjust for changes.

The genetic approach can be extended to a interactive phase where the user can

order suggested schedules. For instance, after the automated phase, the scheduler

suggests 6 schedules which are distributed to the a�ected personnel, which can order

them and hand them back to the scheduler, to generate a new population of schedules

until all participants agree on one schedule.

2.2.4 Linear / Integer programming (LP/IP)

In linear programming, the cost function and constraints are limited by linear ex-

pressions. If the cost function is not linear, a linear approximation may give initial

solutions to start another algorithm from. Linear programming problems can be

solved in linear time.

The general linear programming problem is to �nd the variables a that minimize

the linear function f(a) subject to relations g(a) ≥ 0.

Integer programming requires the variables a to be integers and is only in special

cases solvable in linear time.

A second drawbacks of LP/IP is that it can not understand the issue of frag-

mentation (incontinuity between tasks).

Integer Programming problem formulation This formulation is often found

in job shop scheduling and is provided here for comparison.

Model

� index k refers to the time slots of the scheduling term

� index i refers to the �machines�, i.e. a resource of a certain resource class.

aj donates how many are needed for the execution of job j, and N is the

total amount of resources available. If various resource classes are used (e.g.

antennas, correlators, etc), more variables of this type have to be added.
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� index j refers to the tasks (�job�)

Let xijk =

1 if job j is scheduled on resource i for time slot k

0 otherwise

Formulation Minimize the cost function, e.g. (for a full discussion on the cost

function see 7)

max :
∑

j

priorityj ×
1

aj

∑
i

∑
k

xijk

subject to:

1. No incompatible jobs are at the same time k, i.e. not requesting more resources

than we have: ∑
i.j

aj × xijk ≤ N ∀j ∀k

2. A job is on when it can do work, i.e. the source object is up:

xijk = 0∀k /∈ LSTrangej

3. A job gets its aj antennas, at the time it is running, i.e. aj resources must be

allocated at the same time. ∑
i

xijk = aj ∀k ∀j

4. A job gets its hj hours: (this constraint can be moved to the cost function,

see below) ∑
k

xijk = hj ∀i ∀j

Result

xijk is the full schedule (<timeslots, job, resource>), specifying for each time k,

whether the job j is using resource i (0 if not).

Linear Programming problem For completeness, this linear formulation allows

linear subdivision of timeslots.

Model

� index k refers to the time slots of a day.
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� index i refers to the �machines�, i.e. a resource of a certain resource class.

aj donates how many are needed for the execution of job j, and N is the

total amount of resources available. If various resource classes are used (e.g.

antennas, correlators, etc), more variables of this type have to be added.

� index j refers to the tasks (�job�)

We let xijk be linear, expressing for the scheduling term how many days are to be

spent on job j on antenna i within time slot k.

Formulation Minimize the cost function

subject to:

1. No incompatible jobs are at the same time k, i.e. not requesting more resources

than we have: ∑
j

xijk ≤ days∀i ∀k

2. A job is on when it can do work, i.e. the source object is up:

xijk = 0∀k /∈ LSTrangej

3. A job gets its aj antennas, at the time it is running, i.e. aj resources must be

allocated at the same time. ∑
i

xijk = aj ∀k ∀j

Result

xijk is a weighted allocation of the term, i.e. for time slots k, how many days should

be spent with job j, resource k.

After the result is available, how much of job k is going to be done will be �xed,

but the ordering is yet to be de�ned. This would be put in another scheduler based

on preferences. The bene�t of this formulation is that its complexity is in P. The

drawback is that it will not pack jobs that e�ciently because constraint (1) does

not understand incompatibilities/oversubscription.
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3 Scheduling in Astronomy

3.1 Literature review

Johnston et al. (1996) provides a good general introduction to scheduling for obser-

vatories. He notes that observatories today run either manual, partially automated

or fully automated systems. Hence, �scheduler� can refer to a computer system or a

person. If a computer system is meant speci�cally, we will refer to it as the �schedul-

ing system�. Next to the manual scheduling, the automated-interactive mode, where

a human runs and interacts with a scheduling system is very common.

Furthermore, a scheduling system can be classi�ed in a high-level way as (illus-

tration in Figure 8)

1. Long-term scheduling � allocates blocks of time for a full term (several months)

2. Medium-term scheduling � helps operation sta� respect the moon phase, target

visibility, etc. (several days)

3. Short-term scheduling � determines the order of execution for the current night

(within one night)

Johnston et al. (1996) continues to identify desired scheduler capabilities:

� adaptability: open for changing requirements and needs

� interactivity: control is given to the user

� connectivity: coupling to other systems

Future scheduling systems are desired to distribute their calculations in a computer

network. For short-term schedules it is relevant to keep optimist/pessimist backup

plans, and account for what-if scenarios (weather, seeing, early �nish); this aspect

can however, also a�ect medium-term scheduling.

Johnston et al. (1996) concludes by expressing the need for a multi-observatory

interchange format for scheduling data, realistic benchmark problem sets and an

overview of the tools available.

Leibundgut (1997) argues that current scheduling at the VLT favors certain exe-

cution modes, and leaves other astronomers out (for example targets of opportunity

and surveys).

de Castro & Yáñez (2003) discuss the general problem of scheduling in the

astronomy domain. They note that a Committee for Assignment of Time (CAT)

determines must-do projects, assigns a priority and typically has an overcommitment

of equipment at hand. Herein too, the di�erence between long-term vs. short-term

scheduling is recognized. It is noted that the schedule is dependent on the scienti�c

policy, which is not trivial, and has to be discussed in the community.
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Figure 8: In a �classical mode�, only blocks of times are given to astronomers at
the start of the term. In a �mixed-mode� system, the long, medium and short-term
schedulers interact, and adapt to changes. Taken from Johnston et al. (1996).

Clark et al. (2009) note that the short-term predictability is very important for

observers of an observatory in visitor mode. Based on weather forecasts, a system

at the Green Bank Telescope (GBT) gives transparency to its observers.

3.1.1 Fully-automated optical telescopes

ATIS is a popular command language to describe the execution/scheduling on au-

tomated optical telescopes. The commands are grouped into command groups,

forming a observation. Scheduling on ATIS-based systems is about ordering these

command groups. The command groups already have the necessary information

(duration, target coordinates, etc.) in it, so the builtin scheduler, called APA (�As-

sociate Principal Astronomer�), can do its work.

Most articles discuss improvements to the APA, or replacing it by other algo-

rithms. Algorithms discussed here are usually short-term, for the current night only.

When conditions change, the scheduler will rewrite the whole schedule without hes-

itation. This is due to the fact that no human interaction is planned for execution.
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As Bresina et al. (1993) describes, the existing APA works on a sense-select-

execute loop. First the �enabled groups� are determined, i.e. tasks whose precondi-

tions are satis�ed for the current sensed environmental conditions. Then the next

group is selected and executed. The selection choice is based on task priority, num-

ber of observations remaining, which task is closest to its LST end, and �nally, to

break ties, the task ID.

As an alternative system, CERES is described in more detail by the same au-

thors in Drummond et al. (1994). It is based on a temporal look-ahead: Alternative

schedules are explored, and evaluated based on an objective function, which in turn

is a weighted linear function of priority, fairness, airmass and duration. For gen-

erating schedules, three algorithms were evaluated: a greedy hill-climbing search,

a random schedule generator, and the existing ATIScope algorithm. The greedy

search outperformed both, and interestingly, the random schedule generator per-

formed better than the ATIS algorithm. This is because the ATIS algorithm does

not consider all aspects of the objective function, it operates primarily on priority.

The authors continue to describe the CERES system implementation. Since not

always alternative schedules are available for the case something breaks, and the

generating and searching process is time-consuming, a fallback to the original ATIS

algorithm is used in such cases.

Robustness is another key aspect of schedules identi�ed. A schedule is robust, if

it does not have to change much in case a task can not be executed due to environ-

mental perturbations. There seems to be a tradeo� between robustness and schedule

quality (as measured by the objective function). Since short-term schedulers are dis-

cussed, it is important to have a backup plan to switch over to, rather than stop

operation for a few minutes and elaborate a new schedule. Systems capable of such

alternative plans are called �proactive� rather than �reactive�. The authors argue for

a mixed system, and continue their discussion in Drummond et al. (1995), where

the �Just-in-Case Scheduler� (JIC) is discussed.

JIC starts out with an existing initial schedule. Since the duration of calibrations

can vary, and possibly �break� the execution of a following task, it estimates the

expected duration uncertainties to predict the reason for breaks. Then, it generates

schedules in case the schedule breaks here, and merges these alternative schedules

(called �multiply contingent schedule�) with the current schedule. This is repeated

for all tasks, and results in a more robust schedule. In case of a break, JIC can

switch to a alternative schedule. In summary, JIC robusti�es an existing schedule,

by iteratively assuming one task will be delayed/fail, and creating a new schedule

for that case.

Edgington et al. (1996) also implements a greedy algorithm for ATIS, which is

based on �states�. Each state is an independent, partial scheduled, and identi�ed by

an LST time window, and a counter. The algorithm goes on to calculate the tasks
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available for execution (�enabled groups�). For each group, it applies the group,

creates a successor state, and applies an evaluation function based on the preference

requirements. The best state found becomes the current state, and the procedure is

repeated. The evaluation function is a linear combination of airmass, priority, and

the run count.

Another aspect the authors emphasize is that it is preferred to have a smooth west-

east ordering of targets, to minimize slew time. The performance of their algorithm

is noted to be load-dependent, but outperforms the standard ATIS scheduler.

Morris et al. (1997) developed another extension, genH (generates search heuris-

tics) for ATIS, which is a meta-scheduler that iteratively mutates an existing sched-

ule, �nds the best mutation, schedules it with APA and tests its score. Finally,

it keeps the best overall schedule. Morris et al. (1997) note other similar ap-

proaches, namely PALO by Greiner (1996), which generates problem elements that

are expected to be improvements, and COMPOSER by Gratch & Chien (1996), a

statistical hill-climbing algorithm.

Spragg & Smith (1993) report of a �tactical planning tool� called Nightwatch

for the Royal Greenwich Observatory. It is also a short-term scheduler for optical

astronomy, and can account for service or visitor mode observations. The tech-

nique is based on a CSP resolver with delayed evaluation and forward checking.

Unfortunately, the project was yet to be completed at the time of the publication.

Ga�ney & Cornell (1997) The Hobby-Eberly telescope constitutes a special

case, because its altitude is �xed. Only the receiver is variable (similar to Arecibo).

As a result, the hour angle is very limited, and a short-term scheduler is needed

to determine when to observe objects out of a pool of observations, so that they

are just within view. Unfortunately, the paper only describes the system, and no

algorithms or decision procedures.

Boër et al. (2000) Another special telescope is the autonomous TAROT (Tele-

scope a Action Rapide pour les Objets Transitoires) observatory. It has fast slewing

(<3 s), and is meant for Gamma-Ray bursts followups, always listening to the no-

ti�cation system for such events. In the other time (90%) it is used for variability

measurements. A request constitutes a set of observations that can be issued by an

astronomer and is alive for up to 1 year. A group is de�ned as contiguous images to

be scheduled together. Furthermore, an observation can be time-constrained by the

issuer. Although the article does not explain if ordering of observations happens or

how it works, it can be conjectured that an e�cient order is not necessary due to

the short slew times, so observations can be done in priority order. In the case a

task can not be observed in the current night, its priority is growing.
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3.1.2 Flight scheduling

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne tele-

scope. The short-term scheduler, described by Frank & Kürklü (2005), not only

has to take care of the order of short, uninterruptable observations, but also the

�ight plan as well. Its objective is to maximize the number of observations of the

night. This Single Flight Planning Problem (SFPP) is solved with �squeaky wheel

optimization� (SWO).

The time window is speci�ed by the two solutions of

θr,s(o) = cos−1

(
sin(20 deg)− sin(declination) · sin(γ)

cos(declination) · cos(γ)

)
+ LST + ra

where γ refers to the position of the aircraft.

3.1.3 Space VLBI

HALCA is a radio-astronomy satellite that was the key element of the VLBI Space

Observatory Programme (VSOP). It does Space VLBI which requires communica-

tion contact with ground tracking stations (GTS) and simultaneous observation of

the same object from a radio telescope on the ground. As Meier (1998) explain,

this requires special constraints:

� constant contact with at least one GTS is needed for stable LO signal uplink

and data downlink,

� the observed source must be close to projected orbit normal for good UV

coverage and

� 70 degrees or more away from the sun due to power panel shading by the

antenna

� the observed source must be visible from both the satellite and the ground

radio telescope.

These constraints result in severely limited time intervals for observing radio sources.

The tool SVLBSCHED is a long-term and short-term scheduler, where the long-

term part (18-months) is a limited-resource algorithm: It allocates by scienti�c

priority, top-down until no resources left. Equal priority ties are broken by observing

days preference, i.e. which observation promises better (u-v) coverage.

3.1.4 Arrays

Grim et al. (2002) discuss the relevance for LOFAR to consider simultaneous ob-

servations. This is due to its structure and how it observes the sky, namely the

beamforming is done digitally: By adding time-delays into the signals received from
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the aperture array nodes, a certain position is producing an interference pattern and

the receiving power from this portion in the sky is maximized. This can be done for

eight beams simultaneously. The parallel scheduling problem formulation presented

uses two abstractions: observation types (abstraction of execution modes) and vir-

tual instruments (abstraction of resources necessary). In this case, the problem is

very similar to the job-shop: a machine is a virtual instrument. For future research,

the authors name oversubscription.

Gharote et al. (2009) look at the scheduling problem for the Giant Metrewave

Radio Telescope (GMRT). For this, astronomical constraints (visibility, sun dis-

tance), equipment constraints, logistical constraints (preference for local observers,

weekly maintenance/system tests) and people constraints (preferred dates by as-

tronomer) are taken into account. A linear solver provides a �rst cut solution, and

is repaired by heuristics, with the help of a human via a GUI.

3.1.5 Satellite scheduling

Spike is the name of the software used for scheduling on the Hubble Space Telescope

(HST), and is one of the earliest works of scheduling in astronomy. Several articles,

presented �rst in full in Miller et al. (1988), have this software as its subject.

Minton et al. (1992) present a repair heuristic for large-scale CSP/scheduling

problems that uses value-ordering to prefer minimizing the number of constraint

violations after each step. It is analysed to perform much better than backtracking,

and as good as the previously implemented, more complicated neural network. This

caused the HST team to replace the Neural network with this heuristic in the Spike

software.

Johnston (2002) describes the inner working of the heuristic algorithms imple-

mented in Spike. There is

� procedural search: best-�rst, or most-constrained-�rst

� rule-based heuristic search: select promising partial schedules

� commitment rules: decide how to extend schedules by scheduling decisions

� arti�cial neural networks: a set of discrete scheduling choices is represented

by ANN

Furthermore, the authors note the dynamics of the problem: With increased expe-

rience, and over time, the problem and its constraints change.

Chavan et al. (1998) note that the Very Large Telescope (VLT, ESO) uses a

medium and short-term scheduler (MTS, STS) where the STS component is based

on Spike. Unfortunately, the inner workings and algorithms are not explained in

this work.
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For ROSAT, a satellite borne X-ray observatory, Nowakovski et al. (1999)

found that relaxing the problem to a "generalized assignment problem" leads to

good solutions. A relevant policy is that the observation times should, over time,

be proportional to the ownership of the observatory. This scheduler plans out the

order of micro-observations (target with duration) based on priority.

There are special satellite-based constraints, and slew times must be allowed as

o�-time between observations. It is desired to maximize the time used for obser-

vations, minimize partially scheduled observations and to maximize high-priority

objects. A minimum observation time of 10 minutes is used, which results in 5800

slots for a 6 months term, where 1800 objects are placed, with 1000-125000 seconds

integration time, and time slots between 10 and 40 minutes.

In a (non-parallel) ILP representation, this results in the special case where

there are more objects than slots. The algorithm repeats solving the problem as

a LP, removing successfully assigned (those without split) slots, and repeating the

solving process for the rest. Afterwards, the schedule is repaired to make it valid.

The bene�t of this approach is that it uses an polynomial scale algorithm (primal

simplex).

As alternative algorithms, a greedy �rst-�t heuristic, with back-tracking is pre-

sented, however the article comes to no �nal conclusion which of them, or which

combination, is the best algorithm.

Kleiner (1995) presents an interactive planning interface for the Submillimeter

Wave Astronomy Satellite (SWAS). The tool is mostly a helpful GUI to guide a

human scheduler. No automated scheduling is described here, but an update is

given in 1999, where Kleiner (1999) reports that the system e�ciently calculates

calculates orbit, planet positions, visibilities, gyration, satellite LOS velocity, guide

stars, slew paths etc. through coordinate transformations only, without the need for

timeslots/stepping. Also, the contradiction between robustness/e�ciency is noted,

so the system is designed to be dynamic and conservative: Instead of working on a

schedule, a human scheduler only works on a so called "order form", which is the

activity speci�cation. From this, a schedule is just one instance, and can be easily

constructed. Order forms are tolerant of change, and schedules are not. When

the schedule breaks, a new one, that is equally e�cient can be easily constructed,

because the �order form� was �ne tuned, not the (broken) schedule. Unfortunately,

again, a scheduling algorithm is not described, and the website supposed to provide

information is not online any more.

Harrison et al. (1999) discusses the requirements of the reverse situation, i.e.

observation satellites imaging earth. This problem is very similar to the automated

telescopes, yet here, the possible observation windows are small, in the minutes

range. The problem is approached as knapsack problem, where branch-and-bound,

greedy and tabu search methods are known. As objective function, the sum of
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priority multiplied by utilized time for each project is maximized, i.e.
∑

i pi ∗ ti.
Since this paper used only a small problem set (10-30 tasks), enumeration was

su�cient, but scales very badly.

Giuliano & Johnston (2008) explores schedulers for the next-generation James

Webb Space Telescope (JWST). They identi�es multiple objectives: to minimize

the unscheduled time, to minimize angular momentum buildup and to minimize the

number of observations missing their last opportunity to schedule.

There are a few spacecraft-speci�c constraints to be taken care of, namely mo-

mentum buildup and sun shielding. It is argued that single objective solutions loose

information and �x the tradeo� between multiple objectives, such as number of

observations dropped and amount of momentum correction needed. True multi-

objective algorithms leave the trade-o� open for the algorithm to discover. This ap-

proach is implemented using Pareto optimality. Pareto optimality is reached when

no modi�cation can be made without worsening one objective. In a n-dimensional

parameter space, a Pareto frontier can be identi�ed. For the Pareto frontier, non-

dominated sorting into ranks is performed: rank n dominates individuals > n, i.e.

rank 1 is the Pareto frontier (dominated by no other individual). Furthermore, a

crowding distance is taken into account, meaning that members of crowded regions

are eliminated more easily.

The evolutionary algorithm (EA) used by Giuliano & Johnston (2008) is based

on Generalized Di�erential Evolution (GDE3), roughly described as follows: A par-

ent and 3 members of population x1, x2, x3 are selected. A new �trial vector�

y = x1 +F ∗ (x3− x2) is calculated, with F being the di�erential weight parameter.

In the last step, y is crossed with the parent, and a selection between parent and

trial vector.

These vectors represent decision vectors, and decide for each operation whether

or not to schedule it in a timeslot. The full system is based on Spike: an iterative

repair search starts with an initial guess, whereas EA invokes Spike with initial

information, but has no knowledge of constraints.

Spike goes ahead and schedules the �rst 22 days (one term) worth of observa-

tions, removes con�icts, and �lls gaps. This is done 400 times (population size:

20, 20 generations). Next, the secondary search generates 400 momentum buildup

schedules for each generated schedule in the �rst layer. These are initialized ran-

domly to get a wide Pareto frontier sampling. The random �search� is compared

with GDE3.

The conclusions drawn are that a separation of the objectives is superior to linear

combinations (which only works on convex frontiers), and that it gives insight to

problems/tradeo�s. For future research, distributed calculations are considered, as

well as additional heuristics for sample creation.
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3.1.6 Details of GA studies

In this section, genetic algorithm approaches taken by studies mentioned above are

discussed in more technical detail.

de Castro & Yáñez (2003) compare a neighborhood search algorithm and a GA

in a study of short-term scheduling of uninterruptable observations.

For uniformly distributed targets in the sky, the GA performs better. However,

realistic targets preferably lie in the galactic plane. Therefore, the Infrared Space

Observatory (ISO) target list is used as a test set, oversubscribing the period by

factors of 1.5 and 3 (calculated without slew time). For duration, an exponential-

like exposure between 0 and 4000 seconds is used.

The chromosome uses an order-based encoding, i.e. the vector of arranged targets.

The selection criterion used is �roulette-wheel selection�, i.e. the selection probability

is proportional to the �tness value. The crossover (crossover probability of pc = 0.6)

uses a random selection of couples (n/2); the parents are crossed and replaced by

children with probability pc. In one tested crossover operator, the parent genes

are split in two at a random point, and latter section exchanged, in the other the

middle section of the parent gene is selected, and exchanged (prone to repeated

observations).

The mutation (mutation probability of pm = 0.1) simply permutes two genes (from

the targets order). The GA is con�gured with a population size of 50 and 10

generations.

The authors �nd that the Lin-Kernighan method performs better when the input

is sorted by RA, but the algorithm is slow. The GA performs well and should be

chosen when the main constraints are not well-known. It is also noted that the used

cross-over operators are not very successful. The main conclusions are:

� A high-quality observation is hard to achieve with restricting policies, e.g.

keeping the ratio of observers proportional to the corresponding institutes

�nancial involvement

� GAs are by far superior in large-scale problems

� To make the problem easier for the scheduler, a low oversubscription is needed,

as well as a large number of observations with short exposure times

Unless the same GA representation is used, the found GA performance and cross-

over problems are not generalizable however.

Sponsler (1989) tried to map the Spike CSP problem to a chromosome, by

identifying each gene with an activity having an associated starting time slot. The

following genetic operations are in use:

� vertical crossover: partial matched crossover, exchanges one gene, i.e. the

activity times of one activity, between two chromosomes
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� horizontal crossover: on a single chromosome, swap two genes

� mutation: reset a randomly selected gene to a new legal segment

The used �tness function is a combination of preference and constraint satisfaction,

where latter is weighed exponentially. To the surprise of the author, the GA performs

very poorly, especially in comparison to neural network, both in time used and

goodness of solutions.

For the genetic algorithm tested in Grim et al. (2002), a gene is also asso-

ciated with a micro-observation. The �tness function consists of two parts, the

constraint-�tness and the preference-�tness. The weight of the constraint-�tness is

adapted stepwise during the GA run. The constraints are resources, observation

frequencies, execution order, that the distance to earlier observation must not be

too small, and relations to other observation. The preference �tness is de�ned as∑
obs(obslen/(windowlen) + 1).

The crossover operation is not explained, but said to be complicated (due to order-

based chromosome structure).

The GA is con�gured to use a population size of 30 and 20000 generations. The

selection method used is Tournament selection between the two worst of the current

and two chromosomes of the next generation. The GA is run in steady-state, mean-

ing only few individuals are replaced each generation. The authors cite an article

saying it supposed to be better than a generational model.

For discussing the poor results of these two studies, we recall the issues of this

chromosome representation mentioned in section 2.2.3. The structure of the chro-

mosome allows invalid solutions too easily, making operators very di�cult to write.

Furthermore, the search space is too constrained making it hard to explore, and GAs

are known to perform badly in tightly-constraint problems. The authors in Grim

et al. (2002) themselves conclude that the algorithm is not really suited because

it always ends up with invalid solutions that have to be repaired. A time-indexed

chromosome encoding would be more native and results in a smaller search space.

The fragmentation problem of this alternative encoding, is known to Grim et al.

(2002).

Furthermore Wall (1996) states that in scheduling, a struggle (generational

model) always performs better than steady-state. He performed a thorough study

in this �eld of resource-constrained scheduling, while the book cited by Grim et al.

(2002) for the opposite argument is a general scheduling book.

3.1.7 Summary

Scheduling in astronomy is not an issue in many areas, as it can be solved su�-

ciently by a manual scheduler. However, in some areas where the problem of �nding

schedules is very di�cult (e.g. satellites, Space VLBI) or the scheduling is part of an
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automated system (automated optical telescopes), research has evolved. However,

in recent years another niche has developed, due to the development of large-scale

projects and ever-more complicated instruments. For modern telescope arrays such

as LOFAR, ATA and ALMA, there is a demand for simplifying the work of a sched-

uler, as parallel observations, split arrays and more dynamic scheduling becomes

commonplace. These demands are highlighted by Mora & Solar (2010), Jones

(2004) and Fomalont & Reid (2004). The last discusses science based on splitting

the Square Kilometre Array into 10 sub-arrays.

3.2 Domain description of Observation Scheduling

In this work we consider long-term scheduling for observations. In the case of astron-

omy, this would be over several days up to several months. As such, the individual

steps within an observation (e.g. calibration, observing object A, then B, etc) is not

as relevant as making the necessary conditions available; The individual objects to

observe are abstracted away to the �eld of view required. The observations may be

interrupted, although this might incur a penalty that can be expressed through the

re-calibration required.

A description of the domain follows:

� (I) Astronomers send in proposals.

� (II) Proposals contain observation tasks.

� (III) Observation tasks specify

� (IIIa) the desired �eld of view: In the usual case of a small astronomical

object, this constrains the observation times by the visibility of the object

(earths rotation).

� (IIIb) the required resources / equipment. Among others, this contains

the required number of antennas.

� (IIIc) the desired hours of observation. For good data quality, long ob-

servations are desired by the astronomer.

Proposals are to be executed by the radio telescope array. (IV) Due to oversub-

scription, possibly not all proposals can be executed; (V) proposals are given

a priority by a committee, and higher-priority proposals are preferred. The

committee can also amend the proposal (shorter observation, less equipment).

� (VI) At the beginning of the term (quarter or semester), the accepted proposals

are given to the scheduler (human or system).

� (VII) The desired outcome of the scheduling process is a schedule
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� (VIIa) which is an association between time intervals, proposals and re-

sources

� (VIIb) that ful�lls the requirements of the proposals

� (VIIc) that is feasible to execute by the operating sta�

* (VIIc1) it must contains regular, scheduled maintenance periods de-

�ned by the operating sta� (e.g.

* (VIIc2) it must contain a certain share of free times, for Targets of

Opportunity (TOO), short-term observations, maintenance, tests

� (VIII) In reality, the schedule will go back to the committee, is checked with

the operating sta�, amendments to the schedule and/or the proposals are

made.

� (IX) During the term changes can occur

� (IXa) Targets of opportunity (TOO) can occur: A star might suddenly

�are, a supernova might explode, etc. Suddenly, operation has to be

preempted and this target is to be observed.

� (IXb) A proposal might be canceled

� (IXc) A new, important proposal might be added

� (X) However, changes must not completely rewrite the schedule, so that as-

tronomers and operation sta� can plan ahead.

3.3 Symmetries

Inherent properties of celestial mechanics make the time symmetric around the side-

real time. In other words, the visible sky is the same at the same time the next

�day�, if day isn't used as 24 hours (Julian day) but about 23 hours 56 minutes

(sidereal day). The symmetry is due to earths rotation around its axis, and the shift

compared to solar days is due to earths revolution around the sun.

Since the visible sky, namely which side is facing a star is location-dependent

(longitude), the local sidereal time (LST) is used, which incorporates the location.

This symmetry suggests the use of time measured in sidereal time of day and

sidereal day. An observation can usually be done on any day if the local sidereal

time range is the same.

3.4 System description

An automated long-term scheduling system is sought that allows parallel ob-

servations, is reactive to resource availability and operator preferences, can

re-schedule once these change and, last but not least, is scalable.
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Figure 9: Domain model of the scheduling problem.

3.4.1 De�nitions

Proposal A proposal may consist of several observations to be done. A proposal

has a priority, and each observation speci�es the total hours of observation

time required. A proposal can also contain a �required� �ag, indicating it

must be included in the schedule for this term.

Observation task contains a de�nition of possible time intervals for execution, an

expression of the resource requirements (for instance the number of antennas

and the backends required), and the total hours the task has to run. The task

can be split. The task belongs to a proposal. Each resource requirement take

the form �need any n out of this set� or �need exactly this/these one(s)� and

they all have to be ful�lled simultaneously.

Term the current scheduling period, e.g. a quarter or a semester.

Schedule associations of time intervals with execution modes. The time intervals

are non-overlapping and cover the whole term.

Execution mode a set of observation tasks with the resources associated to them.

A execution mode can only be realized when the resources are not oversub-

scribed.

Resource equipment in a certain state needed for an observation. E.g. antennas,

antenna con�gurations, front-ends, receivers, �lters, back-ends, correlators.

3.4.2 Functional requirements

Assumptions

1. Assume maintenance periods (VIIc1) are expressed by a proposal that has to

be executed (required �ag set).
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2. Assume surveys that desire to map x degrees (all-sky surveys: x=360) for

h hours are expressed by n observation tasks which observe patches of x/n

degrees for h/n hours (x/n small, e.g. 10 degrees).

De�nition

A scheduling system is desired that produces one or multiple schedules S ′, given

� the terms time frame I,

� a date in the future t, after which execution modes may be planned for,

� a set of proposals to be considered for scheduling P ,

� a frequency of free times f =
Tfree

Tterm
,

� and optionally, one or more existing schedules S, each with a preference value

attached to it.

Then a scheduling system as de�ned above, when used at term start and whenever

changes occur, can be capable of suggesting a schedule for the term. This satis�es

I-X functionally.

3.4.3 Non-functional requirements

A system must not only produce a schedule to be acceptable, it must produce a

good schedule. De�ning what a good schedule is, and being able to express so, is

key to a scheduling system.

� If given an initial schedule S to alter due to changed conditions. The produced

schedules must not make modi�cations before the current time t, but must

take past allocations into account.

� The scheduled free times should be close to f. f ′ ≈ Tfree

Tterm
.

� The required time requirements of observation tasks must be respected.

� The required resources for observation tasks must be available. If a resource

has to be made available, e.g. an antenna recon�guration is necessary, the

time necessary for this has to be included. This implies that recon�guration

time should be minimized (e.g. tasks for a certain con�guration should be run

in temporal proximity).

� The observation tasks should be as continuous as possible. Observations

usually are made up of a setup period that includes initial calibration (e.g.

10-30 minutes), and the actual target observation, which is preempted by

recalibration (e.g. for 3 minutes every 20 minutes). Since recalibration is
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required every time a execution mode is started, the execution mode should

continue as long as possible to minimize the setup periods.

� The observation task's FOV must not have the sun within a angular distance

of s degrees.

� The proposal priority should be respected, i.e. higher priority proposals

should be executed. Furthermore, the observation tasks should get the time

they require.

3.4.4 Special case: Large-Scale Radio Telescope Arrays

Certain special requirements apply for large-scale radio telescope arrays:

� Radio telescope arrays have the bene�t over optical arrays that the atmo-

spheric e�ects are smaller, and that observations are possible 24× 7.

� Most of the work is long surveys with little interaction.

� An array with more than half a dozen telescopes is so complex that manual

scheduling becomes undesirable.

3.4.5 Additional requirements

A good scheduling framework can allow

� the �exibility of reorganising parts of the array, or splitting into sub-arrays to

do several observations at the same time with fewer telescopes

� parallel execution of tasks

� Re-scheduling when changes occur (e.g. operator sta�, telescopes become

unavailable, maintenance required or completed, a new important proposal

comes in).

3.5 Problem mapping

As can be seen from Figure 9, the task of a scheduler remains the mapping of tasks

with resources and time intervals, given constraints and some method of assessing

the quality of schedules. This section deals with mapping the speci�c problem of

Radio telescope array scheduling to well-known problems in the literature.

The most prominent scheduling formulation is job-shop scheduling. The ma-

chines are a �xed given, and so are the requirements on which machines are needed

to pass. A mapping would equate machines to telescopes, tasks to observations. A

mapping of a reorganisable array, where an observation can be completed on any

42



3.5 Problem mapping 3 SCHEDULING IN ASTRONOMY

su�ciently large set of machines is not applicable. The biggest issue is that the

notation of a task requiring two machines at the same time is not expressible.

In more general terms, a formulation of many scheduling problems such as job-

shop scheduling given by the Graham notation (Rogers & Graham (1982)). The

observation scheduling problem discussed here is outside this notation, because the

notation assumes that one job uses one machine at a time. In our case, multiple

resources are required for execution at a time.

The second prominent scheduling formulation is project scheduling. The case

where resource constraints are to be considered is called resource-constrained project

scheduling problem (RCPSP). This is applicable and the situation is RCPS with no

dependencies between tasks. This makes it a more �trivial� case as the possibili-

ties are less constrained, but increases the number of possible orderings. Following

Herroelen et al. (1997), the problem can be classi�ed as m,1,va|pmtn|av, a m-

resource-type preemptive RCPSP.

Astonishingly little research has been done in this area since Herroelen et al.

(1998). Only recently, PRCPSP is being started to be explored, although with

serious limitations. For instance, with Ballestín et al. (2008), m_PRCPSP has

been developed, allowing m interrupts, an option that will clearly introduce bias

longer tasks vs shorter tasks. See Hartmann (2002) for a review of subclasses of

the RCPSP.

The problem is also equivalent to classroom scheduling. Here the resources are

of several types (classrooms, teachers, pupils) that, adhering to quite complex rules,

have to be assigned to timeslots. The problem is usually applied to short, repetitive

intervals (one or two-week rhythms).

Solution methods used in the literature are explained in the methodology section.
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4 Current scheduling in Radio Telescope Arrays

This section presents a survey of the current situation in today's working telescope

arrays.

4.1 Survey of Scheduling Techniques

Virtually all telescope arrays working today have been contacted and inquired about

their scheduling, control and monitoring systems. I am grateful for the e�ort and

patience while allowing me an insight in their systems.

The surveyed observatories included:

� ATCA � Phil Edwards, Mark Wieringa � Australia Telescope Compact Array

in Narrabri, Australia. Part of the research a travel to the array and an

observation.

� LOFAR � Ruud Overeem, Arjo de Vries � Low Frequency Array in the Nether-

lands

� ATA � Colby Gutierrez-Kraybill � Allen Telescope Array in Hat Creek, Califor-

nia, USA. Part of the research was a travel to the array and close collaboration

with Colby Gutierrez-Kraybill.

� HST � Robert Hawkins � Hubble Space Telescope, Space.

� CARMA � Steve Scott � Combined Array for Research in Millimeter-wave

Astronomy, California

� Wettzell Observatory � Alexander Neidhardt, Martin Ettl � Germany

� LHC � Stefan Schlenker � Large Hadron Collider, Switzerland

� IVS � International VLBI Service

� LBA � Long Baseline Array, Australian VLBI

Most of these observatories use manual scheduling, partially supported by visual-

ization software.

4.1.1 ATCA

The ATCA is a array of 6 dishes with 22 meters diameter. ATCA is run in observer

mode, meaning the astronomers come to the site. For the scheduler, this means that

new observers should not be placed between Friday and Sunday, so that they can

get a introduction from the sta� maintenance between 8am-4pm on weekdays.

The schedules terms are 6-month long. Proposals are rated between 0 and 5

(highest), the median being 3.6.
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Most important is that the observation is within the correct LST range. A

portion of idle time is held free for Targets Of Opportunity (TOO).

The ATCA employs a Java-based tool called �TermScheduler� developed by Dave

McConnell and maintained by Mark Wieringa.

The main feature of the tool is that it allows assigning proposals to slots, while

showing the requirements of the current proposal to be placed next. The scheduler

(human) iteratively generates timetables and checks for better solutions and errors

(similar to the work�ow of writing latex).

Contrary to ATCA, the SKA will not be run in observer mode. The ATCA

allows no splitting of the array (using some antenna for one observation, and some

for another). No expansion to more dishes is planned.

Unfortunately, a data set of the ATCA proposals could not be obtained.

4.1.2 HST

The Hubble Space Telescope uses Spike for automated scheduling, as mentioned in

the literature review. Its scheduler is a search and repair heuristic that mostly tries

to �nd valid solutions that satisfy all constraints.

4.1.3 LOFAR, LHC

LOFAR and the LHC both use PVSS as its control system. However, unlike the

LHC, LOFAR also uses a scheduling system, named SAS (Speci�cation, Adminis-

tration and Scheduling).

Its main functions are (1) specifying an observation (target, frequencies, dura-

tions), (2) scheduling: Assigning resources to observation request (stations, disks,

cluster nodes, timeslots) and (3) administration, registration of metadata: data

products, statuses produced in the process and progress is stored in the database

(postgres).

SAS interacts to PVSS through MACScheduler, which fetches the next observa-

tion from SAS and starts and con�gures the PVSS system.

Although some scheduling algorithms have been implemented, it is unclear how

much of the scheduling is in fact done automatically.

4.1.4 ATA

ATA plans to introduce automated scheduling for their 42 dishes of 6 meter diameter

each.

Maintenance is currently held on Wednesdays, blocking the array from observa-

tions for testing, repair and con�guration.

The observations done at the ATA include mostly surveys.

Every 6 months, a number of projects come in. A scheduling term is 3 months

long. All proposals that pass the committee are done, and they are not assigned a
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priority. Each observation speci�es the total hours required, the number of antennas,

IF and correlators requested.

Projects can change over time; Observations are given a grade after they have

been done from A to F, where low grade observations (E-F) are repeated. Also

possible are targets of opportunity and cancellation of projects.

4.2 ATA data set

The ATA deals mostly with surveys, and is operated in service mode. The data

set contained 215 approved proposals with information on LST start and end time,

number of antennas required, and total hours requested. These are all approved

proposals over the past years. The empirical distributions are shown in Figure 10

(durations) and Figure 11 (total hours).
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Figure 10: The distribution of durations. 7-8 hour durations are observations of a
region, while higher durations refer to surveys.
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Figure 11: The total hours requested per project (uniform scale on left panel, log-
scale in right panel).

4.2.1 Quartal 3, 2010

To give a speci�c, detailed insight, a quartal from 2010 contained the observations

laid out in table 3 and was scheduled as shown in Figure 12.
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Title Total
Time
Re-

quested

Frequency
[MHz]

Backend
Re-

quested

Posted

Intensive monitoring of Cygnus X-3 28 3040 2

Correlators

9-Jun-2010

Demonstrating a fast-dump 8-input

correlator for transient studies with

the ATA (resubmit)

30 800 1

Correlator

9-Jun-2010

Commensal correlator observations

with SETI projects

0 1430 2

Correlators

9-Jun-2010

Galactic Center Survey correlator

engineering time

9 3040 2

Correlators

9-Jun-2010

Weekly "hex" calibration

observations

13 700 2

Correlators

9-Jun-2010

Test of new method to equalize

primary beams in mosaiced images

16 4442 2

Correlators

10-Jun-2010

SETI Engineering tests of SonATA 100 1420 Beamformer 11-Jun-2010

REU Project: Fast variability of

Methanol Masers

14 6660 Beamformer 11-Jun-2010

Engineering for Validation of

Multiple Beam Dump-To-Disk

Observing

15 6660 Beamformer 11-Jun-2010

Beamformer Calibration Studies

3040 - 3440

16 3040 Beamformer 11-Jun-2010

SETI Targeted Search at Two

Times the Waterhole

150 2840 Beamformer 11-Jun-2010

SETI Observations of Candidate

�Dyson Spheres� Selected from

IRAS

30 1420 Beamformer 11-Jun-2010

SETI Survey of a Region Near

Cygnus X-3

80 1420 SETI/Prelude 11-Jun-2010

PiGSS 5250 3100 2

Correlators

12-Jun-2010

Table 3: ATA proposals relevant for the 3rd quartal of 2010
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Figure 12: A section of how the quartal was scheduled. Rows represent days,
columns represent a time slot of this day (in solar time). In comparison, the LST
shifts each day by 4 minutes, which is why the observations begin to wander to the
left. White areas indicate free time for targets of opportunity.

4.3 Test set generator

The model was chosen to be a sum of 4 populations. The ratios were selected so

that the result matches the ATA data set.
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Population name Properties Total

share

�Full-Sky� A proposal consists of 8 jobs to cover all LST ranges with

equally length. Total hours are uniformly chosen between

100 and 1000 hours.

23%

�Galactic� A proposal aims for a the galactic LST range. Since it

doesn't matter which preferred direction is used, 14± 2

was chosen. Total hours are uniformly chosen between 4

and 50 hours.

40%

�Random� A proposal aims at a source anywhere in the sky. The

LST range window size is uniformly chosen between 6 and

10 hours. The total hours is drawn

h = (1./(u ∗ 200 + 1)) ∗ 6000 where u is a uniform variable

between 0 and 1. A total hours less than 4 hours is

rejected.

32%

�Daytime� These tasks may be real observations, maintainance or

test observations. They start between 9 and 16 local time.

Total hours are chosen as h = a ∗ 10 + b+ 1 where a is

uniformly chosen as either 0 and 1 (long task), and b is

uniformly chosen between 0 and 10.

4.6%

(16% of a

day)

The priority is in all cases chosen uniformly between 1 and 5. As many pro-

posals are generated as needed, basically �lling either the number of days available

completely (by hours), or a multiple of them.
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Figure 13: ATA data set and generated data set from model. Top panel: distribu-
tion of number of antennas in proposals. Bottom panel: distribution of number of
antennas in proposals, weighted by number of hours. The ATA antenna distribution
can be roughly described to have 4% for 1 antenna, and about 1% at each log2
decade, and the rest at the total number of antennas. This is how the model was
chosen. It can be assumed that the number of antennas is the same for test obser-
vations as for real ones, and thus this model was used across all four populations.
The distributions agree well.

Antenna model

Total hours model Other authors used a log-uniform distribution here, and the

ATA dataset looks very similar to this (see Figure 11, left panel).
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Figure 14: Distribution of total hours requested in proposals. The distributions
agree well.

LST window size model The duration or LST window size is the absolute dif-

ference between LST start and end. It can be associated with the duration of how

long a source is visible.
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Figure 15: ATA data set and generated data set from model. Top panel: distribution
of LST window duration in proposals. Bottom panel: distribution of LST window
duration in proposals, weighted by number of hours. The distributions agree to an
acceptable degree; The excess at 3 hour durations are the all-sky surveys (covering
24 hours, split up in 8 subtasks of 3 hours). Maintenance tasks are nominally written
as 24 LST hour durations, as they have di�erent time constraints. The main e�ort
in reproducing ATA data is to have an expected duration window size of 8 hours.
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Part II

Methodology

5 Approach

5.1 Time granularity

Although in principle the problem could be stated in continuous time, this problem

approach uses timeslots ∆T based on the granularity of the problem: In radio astron-

omy it is not a big deal to lose 15 minutes of observations. The integration time for

15 minutes usually doesn't give any new results, in fact this is about the time needed

for setup, calibration, etc. This de�nes the granularity of the observation problem

and the solutions. here, for certainty, we set ∆T = 15minutes, although easily

modi�able as di�erent domains may come up with di�erent granularities through

the same logic.

5.2 No interdependencies

We assume all observations are independent in their time requirements (no prede-

cessor relationships). On a long-term scheduling system this is true on large-enough

time-scales, when all micro-observations (calibration and relative checks) are com-

bined in larger observation tasks. Preferences may be used to prefer an ordering,

however all orderings are taken as valid.

5.3 Preemption

Unless an observation target is circumpolar, or the requested time is shorter than a

day, the observation will be interrupted. Thus, only preemptive scheduling can be

of use. This seems obvious to astronomers, but much of the literature on resource-

constrained (project) scheduling deals with strong predecessor relation ships and

non-preemptive tasks, which is not applicable here.

5.4 Parallelism

One novel aspect of this work is to allow parallel execution of observations. This

means that a job needs several machines at a time (e.g. any subset of a given size),

while another uses another, distinct, subset.

This formalism is incompatible with job-shop scheduling that requires an item

(job) to go through machines in order, but doesn't allow it to use multiple (possibly

varying) machines sets.
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5.4.1 Job-Combinations

Before placing jobs in parallel, it has to be determined whether they are in princi-

ple compatible. With n jobs, there are 2n combinations to be tested. This can be

simpli�ed by assuming that a superset of an incompatible job combination is again

incompatible, but the order of the complexity remains unless rigid requirements

are made. For instance, if every job needs an equipment that can only accommo-

date m jobs at a time (e.g. storage devices or transmission lines), or if every job

needs an item for itself of a resource set of size m, the complexity is reduced to nm

combinations.

A virtual priority can be assigned to the �companions�. Since the priorities are

usually logarithmic, i.e. two �priority 4� proposals are worth as much as one �priority

5� proposal, for instanceexp(pa+b) = exp(pa) + exp(pb) can be used.

5.4.2 Resource-sets

The formalism adopted here lets each observation specify a number of resource

requirements which all have to be ful�lled: RA ∧RB ∧ ... ∧RZ , where, for example,

A stands for antennas, and B for backends.

Each resource requirement consists of a set of usable items S, and 0 < a ≤ |S|,
the number of items required from it R : (a, S). For instance RA : (2, {X, Y, Z})
would specify that any 2 of X,Y,Z ful�lls requirement A of a certain job.

This formalism allows the expression of �need any n out of this set� RB : (n, S)

and �need exactly this/these one(s)� RC : (1, {X}) requirements.

Computation of resource-compatible jobs A job J1 and a job J2are only

compatible if every single of their resource requirements are compatible:

compatible(J1, J2)⇔
∧

Ri∈R

compatibleRi
(J1, J2)

. The general case of n+1 jobs requires n jobs to be compatible with themselves

and with in sum with another job and can be reduced to the following scenario.

Consider two jobs with each resource requirements on A (e.g. antennas): J1 :

RA : (a1, S1) and J2 : RA : (a2, S2).

If S1 6= S2, there are m1 resources in S1, namely S1\S2, that can be assigned to

J1, reducing a1 to a′1 = a1−m1, and m2 resources in S2, namely S2\S1, that can be

assigned to J1, reducing a1 to a′1 = a1 −m1.

Hence we have S = S1 = S2. Then

compatibleR(J1, J2)⇔ a1 + a2 ≤ |S|

.
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Figure 16: Illustration of the �schedule space� (space of valid schedules).

In the general case with a job vector J and without exactly same resource sets

but a strict superset S =
⋃
Si,

compatibleR(J)⇔

∑
s∈S

∑
i

1 s ∈ Si

0 otherwise

 ≤ |S|
.

Proof (indirect): After assigning all resources R around the tasks, there is at

least a resource item si left that is wanted by two tasks J1 and J2, i.e. si ∈ S1,si ∈ S2.

Both tasks still need another resource: i.e. a′1 < a1 and a′2 < a2, but all other tasks

have their resources a′i = ai . So
∑

k>2 a
′
k + a′1 + a′2 = |S\si|, which is at least (both

1 short)
∑

k>2 ak + a1 − 1 + a2 − 1 ≤ |S| − 1. This contradicts the (supposedly

ful�lled) requirement a1 + a2 ≤ |S|. �

The time complexity for calculating the compatibility of a job set is O(|S|) =

O(|
⋃
Si|), hence a simple (sub-)problem.

5.5 Space of valid schedules

Due to the assumption that observations are independent, at each timeslot, the

observations whose time requirements are ful�lled can be found. The �schedule

space� maps time onto sets of job-combinations S : t → {JC}. A job-combination

is just a set of compatible jobs JC : {J}. An illustration is given in Figure 16.

The size of the schedule space can be given as a sum of all job combinations

at each slot, which can be estimated by the multiplication of the number of slots
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(T/∆T ) multiplied by the number of job combinations without considering time

constraints. With T the total time considered (e.g. 91 days) and ∆T the time slot

size, we can write the space complexity of the schedule space as

O(

T/∆T∑
t=1

|St|) ≈ O(
T

∆T
× |S|)

Checking all constraints over the whole scheduling term is proportional to the

length of the term. Checking the constraints for all companions in a timeslot is

proportional to the number of companions, as only one set of tasks will be selected.

Checking the constraints for a companion set in a timeslot is proportional to the

number of companions, as all that is needed is for each task to (1) check if the

time constraints for the task are ful�lled, (2) to check if the necessary resources are

available and (3) to count down the available resources at that timeslot.

The time complexity of this calculation, excluding the number of job combina-

tions (2n in general, nk simpli�ed), is similar to the size of the schedule space:

O(
T

∆T
× |S|)

Due to LST symmetry (see 3.3) this time complexity can be usually be reduced

to calculating only one day:

O(
1

∆T
× |S|)

All scheduling algorithms presented will work on the schedule-space, so that a

valid schedule is always guaranteed.

Complex time requirements

Sidereal time requirements are just a special case of time requirements. To take any

time requirements f(t)→ boolean into account, the schedule space is to be browsed,

and at each timeslot where a job can not run for some reason (resources not available

at that time, bad date for observers, ...), all job combinations that contain this job

are to be removed.

To force certain observations, or to free up a certain time interval, the space of

valid schedules can be edited by either emptying the relevant time slots or setting

them to the desired task.

Special cases

� Surveys and other observations may need certain LST interval distributions,

for instance equal coverage of all visible portions of the sky. The proposal can

be broken into LST- observations that cover the sky, e.g. in four LST intervals

of six hours length, each requesting a quarter of the total proposal time. Such
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a split will assure that the scheduler can not bias the requested time towards

one LST interval.

� Distant locations; Extended arrays, VLBI: For an interferometer, the source

has to be visible to all locations. The LST is di�erent from location to location,

but one can be chosen for scheduling. Then, the LST range of visibility is

not the complete, say, 8 hours it is visible from that location, but has to be

shortened to a range where it is visible to all locations. The further apart the

locations in east-west, the shorter the visible range.

� Maintenance. Maintenance can be put in formally as a proposal. There

might be some freedom in assigning time, or it might be a required mainte-

nance period (day). In the latter case, the schedule space for that range is

to be forced to include task. The scheduling formalism allows maintenance of

some resources to go on while others are used for observations, if the resource

requirements are speci�ed for both.

6 Implementation of a multi-paradigm framework

The implementation was done using Java. The LP/IP solver incorporated is lp_solve

5.5, from Berkelaar et al. (2010). The largest GA libraries available for Java are

ECJ, JGAP and the Watchmaker Framework. They all were tested, but the last

one was chosen as it allows easy runtime con�guration and freedom in choosing

the form of the chromosome. The Watchmaker Framework can be found at Dyer

(2010). Genetic operators and the genetic history were easy to implement there. For

correctness, JUnit tests were incorporated. The implementation is available under

http://johannes.jakeapp.com/research/observation-scheduling/ .

6.1 Algorithms

6.1.1 CSP solvers

These algorithms have been excluded in this work since they do not scale well and

�nding valid solutions is simple in the case considered here. However, their initial,

greedy guess approaches can be used as heuristics.

6.1.2 Heuristics

The simple heuristics used here can be written as listing scheduling algorithms. Stork

& Uetz (2000) distinguishes listing scheduling algorithms on whether they iterate

through time slots (serial listing scheduling) or jobs (parallel listing algorithms).

Serial listing schedulers (see Listing 2) go through the time slots and select

a suitable choice based on some strategy.
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Algorithm 2 Serial listing scheduler

def s e r i a l−l i s t i n g −s chedu l e r ( ) :
s chedu le = {}
while not done :

t = getNextUnal locatedTimes lot ( )
cho i c e s = getChoices ( t )
task = s e l e c t ( cho i c e s )
schedu le [ t ] = task

return schedu le

Strategies for selecting a task (function select in Listing 2) used here:

� Prioritized : Task with highest priority is selected.

� ShortestFirst : Task with shortest time left is selected.

� Random: A random task is selected.

� First : The �rst task of the available tasks is selected (FIFO strategy).

� KeepingPrioritized : If possible, the task from the last timeslot is continued,

otherwise the highest priority task is selected.

� FairPrioritized : Randomly select a task with a probability proportional to its

priority.

� EarliestDeadline: Select the task with the least number of possible time slots

left

� MinimumLaxity : Select the task with the least laxity, i.e. number of possible

time slots - number of time slots still required (compare with Zhao et al.

(1987))

Strategies for moving through the schedule used here (function getNextUnallocat-

edTimeslot in Listing 2):

� Serial : simply iterate from the �rst time slot to the last

� SerialLeastChoice: The next time slot selected is the one with the fewest

number of choices. The number of choices is calculated from the schedule

space, with the already-�nished tasks removed.

� ContinuousUnlessOneChoice: Acts like Serial, unless there are time slots with

only one choice, in which case it acts like SerialLeastChoice.

� ContinuousLeastChoice: This strategy acts like SerialLeastChoice, but subse-

quent calls return the adjacent unallocated time slots to which the same task

can be extended. This should allow task selection strategies like KeepingPri-

oritized to use more continuous observations.
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� ExtendingLeastChoice: Similar to ContinuousLeastChoice, but �lls neighbor-

ing unallocated time slots immediately with the same task as far as possible.

Parallel listing schedulers (see Listing 3) order the tasks based on some strategy,

and try to accommodate them on the timetable one by one.

Algorithm 3 Parallel listing scheduler

def pa r a l l e l−l i s t i n g −s chedu l e r ( ) :
s chedu le = {}
for j in getTasksOrdered ( ) :

for time t in g e tPo s s i b l e S l o t s ( j ) :
j c = f indJobCombinat ionSuperset ( schedu le [ t ] , j )
i f j c a v a i l a b l e :

s chedu le [ t ] = j c
i f i sComplete ( j ) :

break
return schedu le

Strategies for ordering tasks (getTasksOrdered in Listing 3):

� by pressure: For each task, a number called �placement pressure� is calculated,

which refers to the ratio of the number of possible time slots to the requested

total hours. Observations with high pressure are �rst in the ordering, as

they are di�cult to place in the schedule. The pressure calculation has to be

corrected for very long observations that can only be accommodated partially

in any case. This strategy is similar to the minimum laxity de�ned above.

� by priority : Ordered by priority, highest priority �rst.

� shortest �rst : Ordered by requested hours, shortest �rst.

The variant of the algorithm used here, TrivialFirst, �lls time slots with only one

choice �rst, but otherwise works as described in Listing 3.

Another heuristic algorithm is �GreedyPressure�, shown in Listing 4. At each

time slot, as many as possible of the preferred tasks are scheduled. For the task

ordering strategy, by pressure from above is used.

6.1.3 Genetic Algorithm (GA)

For a general introduction to GA, see section 2.2.3. Here, the speci�c choices of

chromosome representation, genetic operators, selection method etc. are discussed.
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Algorithm 4 �Greedy pressure� scheduler

def greedy−pre s su r e ( ) :
s chedu le = {}
pressureOrderedTasks = {}
for t in time :

pressureOrderedTasks [ t ] =
f i l t e rUn a v a i l a b l e ( t , getTasksOrdered ( ) )

for t in time :
ta sk s = f i l t e r F i n i s h e d ( pressureOrderedTasks [ t ] )
j c = createBestJobCombination ( ta sk s )
schedu le [ t ] = j c

return schedu le

def createBestJobCombination ( ta sk s ) :
va lue s = {}
for j c in jobCombinations ( )

va lue s [ j c ] = 0
for t in ta sk s :

i f t in j c :
va lue s [ j c ] = va lue s [ j c ] + 1

else :
break

return j c with h i ghe s t va lue
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Figure 17: An illustration of the timeline as a chromosome for a Genetic Algorithm.

Chromosome A time-indexed encoding is chosen. Each time slot is represented

by a gene, which can be set to a a job combination. The alleles � possible values of

this gene � are de�ned by the corresponding slot in the schedule space (see 5.4.1).

The justi�cation for this selection is two-fold: First, it is native and straight-forward

due to the independence of observations. Secondly, the alternative representation,

order-based encoding has been consistently found to perform poorly (see section

3.1.6).

Crossover operator A crossover operator creates a child from two parents by

using the values from parent A for some genes and the rest from parent B. A corre-

sponding alternate child can be immediately produced.

A typical implementation is 1-point-crossover. This crossover operator makes

random pairings of two chromosomes, and, with probability pCrossover, cuts both

chromosomes at a random gene, and exchanges their tails (see Figure 18 ).

Figure 18: 1-point crossover

The generalization, n-point-crossover uses n points for cutting. Figure 19 shows

2-point-crossover.

Let pDoubleCrossover specify the probability of using 2-point-crossover and ndaysCrossover

the maximum distance between crossover points. Both 2-point and 1-point crossover

can be used.
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Figure 19: 2-point crossover

Mutation operators

� The default Mutation (Mut) operator would reset a gene with probability

pMut to a random allele.

Figure 20: Illustration of the mutation operations: Mut and MutSimPrev modify
individual genes while MutSimFw, MutSimBw, MutKeep, MutPlace change blocks
of genes.

Figure 21: Illustration of the mutation operation MutEx.

To avoid fragmentation, several additional operators are implemented for evalu-

ation. These are operators that make multiple moves. Compare for instance with

Sponsler (1989) and Tanomaru (1995).

� MutationSimilarPrev (MutSimPrev): Selects a gene with probability pMutSimPrev×
60
∆T

and sets it to a job-combination most similar to the previous timeslot's

job-combination.

� MutationSimilarForward (MutSimFw): Selects a gene with probability

pMutSimFw× 1
15

and sets all the following timeslots to a similar job-combination

for as long as possible (max: 1 day). If m genes were changed, the next m

genes are not selected.

� MutationSimilarBackward (MutSimBw): Same as MutationSimilarFor-

ward, but back in time. pMutSimBw × 1
15
.
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� MutationKeeping (MutKeep) is a combination of MutationSimilarForward

and the default mutation: It selects a gene with probability pMutKeep× 1
15

and

sets it to a random allele. All following timeslots are set to the most similar

job-combination for as long as possible (max: 1 day). Ifm genes were changed,

the next m genes are not selected.

� MutationExchange (MutEx): Selects a gene with probability pMutex/9 and

tries to exchange the gene with one of the previous days (3 days).

� MutationJobPlacement (MutPlace): For each job, selects the job with

probability pMuiP lace. For the selected job, selects a random gene where the

job can be placed. Sets all surrounding genes to the same value (like Muta-

tionSimilarForward and MutationSimilarBackward).

Figure 20 and Figure 21 illustrate the working of the various mutation operators.

It is thought a priori that Mut will introduce fragmentation, whereas the MutSim

operations will make the schedule more continuous, reducing and avoiding fragmen-

tation. It is expected that the additional mutations are more successful in changing

the schedule compared to the default mutation operator, because they can make

modi�cations more appreciated by the �tness function, namely long, continuous

observations.

Each of these operator has an associated probability that it is selected, some

modi�ed by a factor to make the resulting probabilities comparable.

Fitness The �tness function has to assign a value to a schedule, which the GA

tries to maximize. The measure is discussed in section 7.

Selection Selection via Roulette Wheel Selection, with 2 elite individuals. Roulette

Wheel Selection seems to be a standard selection mechanism, and when used with

a few (2) elite individuals outperformed Cuto� Selection in all test with a relaxed

Sudoku toy problem. Elitism means that the best individuals always make it to

the next round. This avoids degradation of the population and having to rediscover

good solutions.

Initial population The initial population is a set of schedules which may contain

randomly generated solution schedules and/or solution schedules produced by other

algorithms (e.g. heuristics, LP).

GA parameters

� Population size, Number of iterations: To make results and computa-

tional e�ort comparable, the product of population size and number of itera-

tions is kept constant: niter × npop = 1000.
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� Genetic operator probabilities: Starting from default values pCrossover =

0.1, pMut = 0.1 (all others 0, disabled), the best probability combination is to

be determined.

6.1.4 LP/IP

Integer Programming problem, with parallelism In this formulation, we

incorporate the calculated schedule space (from Section 5.5), which for each time

slot k provides JCSk, the set of job combinations that can be run at this time.

Model Let JCk,j ∈ JCSkrefer to the job combination j that can run at time

k, and priority(JCk,j) be its (combined) priority.

Let x(JCk,j, k) =

1 if job combination JCk,jis scheduled to run at time slot k

0 otherwise
.

Formulation Minimize the cost function (see 7), e.g.

min : −
∑

k

∑
j

priority(JCk,j)× x(JCk,j, k)

subject to:

1. Only one companion is run at a time∑
JCk,j

x(JCk,j, k) ≤ 1 ∀k

2. Each job is on when it can do work, i.e. the astronomical target object is up.

The set of job companions where all jobs' time constraints are ful�lled, JCSk,

already respects this property (for the calculation of the schedule space, see

section 5.5).

3. Each job gets its required resources: Already ensured when �nding compan-

ions.

4. Each job j gets at most the hj hours it requested∑
j∈JCk,j

∑
k

x(JCk,j, k) ≤ hj ∀j

Result

x(JCk,j, k) describes the full schedule, specifying for each time k, if the jobs of JCk,j

are active (0 if not). Speci�cally, y(k) := {JCk,j ∈ JCSk|x(JCk,j, k) = 1} provides
the job combination to run for each time slot k.
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6.2 Combinations and Comparison of Algorithms

This section presents the framework used to compare scheduling algorithms de-

scribed above.

The main part is a genetic algorithm, that is initially �lled with all other solutions

(heuristics and LP/IP), and a number of random initializations. The idea is to allow

the GA to select and evolve better solutions based on the guesses from the other

algorithms.

The tool of evaluation is based on test data sets generated from the random

model described in section 4.3, corresponding to an oversubscription of 100%, 200%,

300%, and 400% of a 91-day term. It may seem that a 100% �lled schedule is easy to

create, but the proposal bias on the galactic core region makes certain time intervals

oversubscribed.

A quality measure of an algorithm is the �tness function of its (best) output

schedule. Evaluation is done across all test sets and for varying parallelism, allowing

1, 2, 3 or a maximum of 4 tasks in parallel at a time. Averaging over the 16 test

cases provides a stable measure of algorithm quality.

6.2.1 Analysis of initial population in�uence

Genetic history Each chromosome of the initial population can be labeled �100%

Algorithm A� according to the algorithm it originated from. While the GA makes

mutations and crossovers of schedules, these labels can be carried along and updated

accordingly. For instance, a crossover at 70% of the chromosome would make the

mixture 30% of parent As and 70% of parent Bs properties, whereas a random

mutation of 5% of the genes would reduce the parents in�uence by this value. The

�nal surviving population can thus indicate what algorithms contributed most to

the solutions.

Similarity measure As a di�erent measure of in�uence, each surviving schedule

can be compared to the initial population by timeslot similarity.

6.2.2 Research questions

1. Question: What are the best GA parameters, which are useful operators?

(a) Method : Through meta-optimization, the values that maximize the qual-

ity measure.

Starting from start values, a optimization algorithm was set to improve

the GA parameters, namely npop, pCrossover, pDoubleCrossover, ndaysCrossover,

pMut, pMutSimPrev, pMutSimFw, pMutSimBw, pMutEx, pMutP lace. Starting

from npop = 50 pcrossover = 0.1, pmut = 0.1 (all others 0, disabled), the

SciPy COBYLA implementation � see Jones et al. (01 ) and Powell
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(1979) � was used to probe the continuous parameter space. The correct-

ness was veri�ed using local hill-climbing.

(b) Interpretations : If pop u 0 for a operator op, this operator is not helpful

in improving the schedules.

2. Question: Is the GA comparable to other techniques?

(a) Method : By ranking of GA output and algorithms �tness value, it can

be decided if the GA with a random initial population can outperform

(some) other algorithms.

3. Question: Does the GA improve other algorithms' solutions?

(a) Method : Running the GA using other algorithm's output as the initial

population. Comparing initial and �nal population of the GA using the

genetic history and similarity measure.

(b) Interpretations : If the �nal population (and the best output schedule)

are in�uenced by the GA, the GA improved upon other algorithms. If

the output population is basically one of the initial population, the GA

wasn't able to improve the solution.

4. Question: What are the best algorithms?

(a) Method : Running the GA using other algorithm's output as the initial

population. Comparing initial and �nal population of the GA using the

genetic history and similarity measure.

(b) Interpretations : The genetic history and the �nal population show how

in�uential and successful a initial schedule was, and how in�uential/use-

ful its algorithm. Algorithms whose output dies during evolution are less

useful than algorithms whose output is very similar to the �nal popula-

tion.

Additionally, it is to be tested how the runtime compares between algorithms, how-

ever, this is not so much a concern for long-term schedulers. If the results are good,

this can be up to several hours.

7 Cost function

To develop a solution towards optimality, a cost or bene�t (depending on the sign)

has to be assigned to solutions. Scheduling algorithms will aim to optimize this

measure. This subsection discusses various telescope array scheduling desires as

aspects that can be integrated into the cost function.
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Let Tj refer to the total time requested for job j, in number of timeslots.

Let xjk =

1 if job j is scheduled at time k

0 otherwise
.

1. Completed hours for a job: The deviation from demanded hours is minimized

(not linear).

min :
∑

j

|Tj −
∑

k

xjk|2

2. Idle times: in general, not using the available resources is bad (linear):

min :
∑

k

(1−
∑

j

xjk)

3. Task priority:

� Proportionally (in hours, linear)

min :
∑

j

priorityj × (Tj −
∑

k

xjk)

which just translates to

max :
∑

j

priorityj ×
∑

k

xjk

If the observatory is oversubscribed, a scheduler might end up with many

started tasks, but no �nished ones. Thus only counting completed jobs would

be a good measure. However, this very discontinuous function would be is

hard to optimize. Hence, adding a bonus for completed jobs would be better

(yet still non-linear), for instance:

max :
∑

j

∑
k

xjk × priorityj ×

1 if jcompleted

1
2

otherwise

4. Best observation conditions: A job should ideally observe when the object of

interest is ideal to observe (linear):

max :
∑

j

∑
k

xjk × rjk

where rjk identi�es the return for job j to be scheduled at time k.

In the case of astronomy, this bene�t can done accurately by determining the

airmass and the elevation angle, and not allowing it to go below a certain
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wavelength-dependent angle (e.g. 12° for 6GHz).

The relevant equations of the transformation are:

sin(altitude) = cos(zenith) = sin(latitude) · sin(dec) + cos(latitude) · cos(dec) ·
cos(LST − ra)

airmassX = 1
sin(altitude+244/(165+47altitude1.1))

1

5. Continuous observation: A job would like a block of time to be as long as

possible. At the start of the observation, extra calibration may be necessary

that will not hold true for the next time slot if not adjacent (nonlinear).

max :
∑

j

priorityj ×

∑
b∈Bj

(|b| −∆T )


where Bj 3 b are the lengths of time blocks allocated for job j, and ∆T refers

to the duration of one time slot.

6. Resource switching: It could be expressed that recon�guring the array (chang-

ing baselines) or changing receivers, etc. takes time and e�ort (=cost). This

has to account for neighboring time slots and their equipment di�erence. To

give an example, at the ATCA it takes a full day to change the antenna con-

�guration.

It should be noted that apparently several constraints (elevation maximization),

hour completion for a job, job completion, continuous observations, resource switch-

ing are not expressible in a linear way. Hence, a linear solution might be a good

start, but a nonlinear solver is needed.

Another approach is to weaken some of the constraints, and add the deviation

from the ideal to the cost of a solution: max : −
∑(

real−ideal
tolerance

)
2 (non-linear).

Chosen cost/�tness function The chosen cost function for the linear solver, as

shown in section 6.1.4, is:

max :
∑

j

priorityj ×
∑

k

xjk

For the GA, to decrease fragmentation, the �tness function is adapted to:

max :
1

normalization

∑
j

priorityj ×

∑
b∈Bj

(|b| −∆T )


The implementation of calculating the �tness function in algorithm form can be

found in Listing 5.

1approximation formula
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Algorithm 5 Fitness function

def c a l c u l a t eF i t n e s s ( schedu le ) :
t imeS l i c e = 15 # minutes
penal ty = 15 # minutes , f o r setup , e t c .
prev iousJc = None
f i t n e s s = 0
for Time t in schedu le :

JobCombination j c = schedu le [ t ]

usefulTime = 0
for Job j in j c :

i f not i sF i n i s h ed ( j ) :
i f j in prev iousJc :

usefulTime += t imeS l i c e
else :

usefulTime += t imeS l i c e − penal ty

f i t n e s s = f i t n e s s + j c . p r i o r i t y * usefulTime
prev iousJc = j c

return f i t n e s s / ca l cu l a t eNorma l i z a t i on ( )

This could be easily extended with a bene�t term rjk, but in radio astronomy

if the required elevation (LST range requirement) is achieved, quality is practically

independent from the elevation and state of the atmosphere.

The normalization is calculated by assuming the scenario of not having any

time-constraints, and just placing as many high-priority tasks as possible. Listing 6

shows the calculation of this upper bound. A �tness value of 1 can not be reached, as

time constraints have to be adhered to that are not considered in the normalization

calculation.

The cost function is meant to be adaptable by sta� during a term, to accommo-

date changing needs.

Algorithm 6 Normalization calculation

def ca l cu l a t eNorma l i z a t i on ( ) :
norma l i za t i on = 0
timeDone = 0

for Job j in getAl lJobsSortedByPr ior i tyDescend ing ( ) :
timeChunk = min ( totalTermDuration − timeDone ,

j . r equestedTota lDurat ion )
norma l i za t i on += j . p r i o r i t y * timeChunk
timeDone = timeDone + remainingTime

return norma l i za t i on
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Figure 22: Plot of table 4 on the next page.

Part III

Results

In this section the GA is referred to as ��lled� if the solutions from other algorithms

were used, and as �empty� otherwise. The default con�guration of the GA refers to

using a population size of 50, a mutation probability pCrossover = 0.1 and a crossover

probability of pMut = 0.1, and not using any other operators (a reasonable a priori

con�guration).

Generated based on the ATA historical data (see section 4.3), the characteristics

of the 16 speci�c test scenarios used are outlined in Table 4. These scenarios re-

�ect various oversubscriptions (planning pressure) and possible parallelism. A value

of 300% for oversubscription means that the sum of all requested hours from all

proposals exceeds the term duration by a factor of 3. As expected, the number of

tasks (column 2) grows roughly linearly with the oversubscription (column 1), and

the number of job combinations (column 4) grows exponentially with parallelism

(indicated in Figure 22).

The number of days is held constant at 91 days (a quarter of a year), hence

the number of time slots is T
∆T

= 91 days
15 minutes

= 8736. In column 5, the number of

possible schedules is indicated, calculated from the choices in the schedule space.

This provides a measure of the search space size and can also be estimated by

log(# of job combinations) × T
∆T

. Note that the number of job combinations is

lower for the generated proposals for 200% oversubscription than it is for those in

the 100% case. This is due to more shorter jobs in the 100% case.

Another measure of scheduling di�culty is plotting the number of demanded re-

sources over time. Figure 23 shows, averaged over the days, the number of antennas

requested over time, with the available number of antennas (42) indicated as well.

69
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Oversub-
scription

Number
of jobs

Max.
Parallel
jobs

Number
of job

combina-
tions

log(# of
Possible
Sched-
ules)

100% 64

1 64 20119
2 84 20795
3 114 20888
4 134 20891

200% 84

1 84 18186
2 108 18574
3 138 18589
4 153 18589

300% 140

1 140 24160
2 214 25308
3 457 26795
4 954 28034

400% 179

1 179 24539
2 294 25457
3 729 26701
4 1779 27768

Table 4: Test scenarios

The simulated bias towards the galactic center is immediately visible.

8 Evaluation results

8.1 Algorithm performance

Due to their simplicity, all heuristic algorithms show good scalability in relation with

the problem complexity (number of job combinations), keeping the total execution

time below a minute. However, the linear solver does not cope well with the stated

problem. Its execution duration is in the days range up to a week. Hence, its solution

is not used for the GA. A typical GA run of 1000 evaluations (ngen × npop = 1000)

was between 500 and 5000 seconds.

The plots in Figure 24 show the algorithms �tness value in comparison to their

runtime. Only the non-dominated algorithms are given markers. For non-dominated

algorithms, there is no algorithm that provides a better result in shorter time. To

understand which algorithms su�er more fragmentation than others, Figure 25 shows

a plot of a �tness function without penalty for a change of observations vs. a �tness

function with a high penalty for a change in observation (60 minutes as opposed

to 15 minutes in the unmodi�ed �tness function). These measures are indicated by

�observatory-biased �tness value� and �observer-biased �tness value� respectively,

as the observatory wants to accommodate many high-priority projects, and the

observer wants uninterrupted observations.
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Figure 23: Resource demand of the test scenarios.

8.2 GA parameter meta-optimization

The �best� genetic operator probabilities found using meta-optimization are shown

in table 5. The meta-optimization always disables the mutation operator (Mut),

and prefers 2-point-crossover to 1-point-crossover. For the �lled GA, only the Mu-

tationJobPlacement operator is left to introduce changes.

8.3 Algorithm qualitative comparison

Figure 26 shows how the various algorithm perform qualitatively � using the �tness

function as the �gure of merit. The GA is outperformed by a number of heuristics,

even in the optimized con�guration. The �lled GA provides, of course, at least as

good a result as the heuristics it started out with. The highest-scoring heuristics

in this plot are �TrivialFirstParallelListing by Priority� and �SerialListing Priori-

tized�. It should be noted that the �tness values are not directly comparable across

the scenarios, as a scenario with more choice (higher oversubscription) and higher

parallelism can usually achieve higher �tness than a scenario with less choice or

stricter limits on parallelism. Additionally, as mentioned above, the speci�c, gener-

ated proposals of 200% oversubscription have less possible schedules than the other

cases.
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Figure 24: Algorithm quality vs. runtime. Top left panel: 100% oversubscription, 1
parallel task, Top right panel: 100% oversubscription, 4 parallel tasks, Bottom left
panel: 400% oversubscription, 1 parallel task, Bottom right panel: 400% oversub-
scription, 2 parallel tasks.
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Figure 25: Algorithm quality with varied �tness function. Top left panel: 100%
oversubscription, 1 parallel task, Top right panel: 100% oversubscription, 4 parallel
tasks, Bottom left panel: 400% oversubscription, 1 parallel task, Bottom right panel:
400% oversubscription, 2 parallel tasks.
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Parameter

Reference,
Default

configura-
tion

Best Con-
figuration,
Empty GA

Best Con-
figuration,
Filled GA

Population size 50 41 61
Crossover operator probability 0.1 0 0

DoubleCrossover operator probability 0 0.1 0.099
DoubleCrossover max days 0 1 15

Mutation operator probability 0.1 0 0
MutKeep operator probability 0 0.019 0

MutSimFw operator probability 0 0.012 0
MutSimBw operator probability 0 0.02 0

MutSimPrev operator probability 0 0.048 0
MutEx operator probability 0 0.019 0

MutPlace operator probability 0 0.031 0.006

Table 5: Summary of best GA con�guration

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fitness value

SerialLeastChoice MinimumLaxity

GA (optimized, empty)

ContinuousLeastChoice MinimumLaxity

SerialLeastChoice Prioritized (smoothened)

SerialLeastChoice MinimumLaxity (smoothened)

SerialLeastChoice FairPrioritized (smoothened)

ContinuousLeastChoice ShortestFirst

ContinuousLeastChoice FairPrioritized

GA (default, empty)

ExtendingLeastChoice FairPrioritized

GA (optimized, filled)

SerialLeastChoice KeepingPrioritized

TrivialFirstParallelListing by Pressure

ContinuousUnlessOneChoice KeepingPrioritized

ExtendingLeastChoice Prioritized

SerialLeastChoice EarliestDeadline

SerialLeastChoice Prioritized

SerialLeastChoice FairPrioritized

ContinuousLeastChoice EarliestDeadline

SerialListing ShortestFirst

SerialListing FairPrioritized

ContinuousUnlessOneChoice Prioritized

ContinuousLeastChoice KeepingPrioritized

GreedyPressure
SerialListing EarliestDeadline

SerialLeastChoice EarliestDeadline (smoothened)

ContinuousUnlessOneChoice FairPrioritized

ExtendingLeastChoice KeepingPrioritized

SerialLeastChoice KeepingPrioritized (smoothened)

ExtendingLeastChoice EarliestDeadline

GA (default, filled)

ContinuousUnlessOneChoice EarliestDeadline

ExtendingLeastChoice ShortestFirst

SerialListing MinimumLaxity

ContinuousUnlessOneChoice MinimumLaxity

ParallelLinear

SerialLeastChoice ShortestFirst

ContinuousUnlessOneChoice ShortestFirst

SerialListing KeepingPrioritized
SerialListing Prioritized

SerialLeastChoice ShortestFirst (smoothened)

ContinuousLeastChoice Prioritized

TrivialFirstParallelListing by Priority

ExtendingLeastChoice MinimumLaxity

Algorithm output comparison
100% 1

100% 2

100% 4

200% 1

200% 2

200% 4

400% 1

400% 2

400% 4

Figure 26: Qualitative comparison of algorithm output by �tness value.

To give an insight into the progress of the GA in the various con�gurations,
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Figure 27 on the following page, Figure 28 on page 77 and Figure 29 on page 78

show the development of various con�gurations over time. The x-axis refers to a

time measure, which is, to make the lines comparable for di�erent population sizes,

measured in the number of schedules generated (generation number multiplied by

population size). The data points represent the best chromosome's �tness value,

the error bar shows the standard deviation of the population. Runs of the GA

con�gurations with the default and optimized con�gurations are shown, each in the

empty variant (starting from bottom left in the graph) as well as the �lled variant

(starting from the best heuristic value, top left). It can be seen that the GA by

itself does not do better than the best heuristic.

To answer the question whether the GA can build upon the heuristic solutions,

how and it improves them, the following plots in table 7 on page 79 show an insight to

the in�uences of those initial solutions, as well as the operators involved in creating

the best schedule. The left column shows various con�gurations used. In the second

column, the ancestors to the best solution are summarized. These schedules from

other algorithms, have been crossed, mutated and subsequently selected throughout

the run of the GA. The bar indicates how often the algorithm is a parent (over all

test sets). The last column shows, for the best schedule, how often each operator

was applied to an average gene. These modi�cations led to the surviving, best

individual.

Obviously, in the �empty� GA case, there is no ancestry (hence the N/A entries).

The �SerialListing Prioritized" and �TrivialFirstParallelListing by Priority� heuris-

tics prove to be most in�uential. This is in agreement with the above �nding, that

they achieve the highest �tness value. In the �lled default con�guration case it is

interesting to see that no modi�cations survive, i.e. the GA only selects the best

heuristic but is not able to improve it.

8.4 Individual algorithm output

In this section, the actual schedules produced by various algorithms are illustrated.

The schedule visualization displays days (vertically) and hours (horizontally). Each

cell represents a timeslot of 15 minutes. Jobs that have already completed, but were

still scheduled are shown in white font.

The SerialListingScheduler using the FairPriority strategy shown in Figure 30 on

page 80 obviously produces a large amount of fragmentation � only few observation

blocks last longer than one timeslot.

In contrast, the SerialListingScheduler using the Priority strategy scheduler

shown in Figure 31 on page 81 produces more continuous observation. The result

from the TrivialFirstParallelListingScheduler using the Priority strategy scheduler

is very similar (shown in Figure 32 on page 82 ).

The GA with the default con�guration, shown in Figure 33 on page 84, also
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GA con-

figuration

Genetic Origin of the Surviving

Population

Operator Counters of the

Surviving Population

empty,

default con-

�guration N/A 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

MutationJobPlacement

MutationExchange

MutationSimilarPrev

MutationSimilarBw

MutationSimilarFw

MutationKeeping

Mutation

Crossover

empty,

optimized

con�gura-

tion) N/A 0 2 4 6 8 10 12

MutationJobPlacement

MutationExchange

MutationSimilarPrev

MutationSimilarBw

MutationSimilarFw

MutationKeeping

Mutation

Crossover

npop = 41, pCrossover = 0, pMut = 0, pMutKeep = 0.019, pMutSimFw = 0.012,
pMutSimBw = 0.02, pMutSimPrev = 0.048, pMutEx = 0.019, pMutP lace = 0.031,
pDoubleCrossover = 0.1, ndaysCrossover = 1

�lled, default

con�guration

none all

TrivialFirstParallelListing by Priority

SerialListing Prioritized

0.0 0.2 0.4 0.6 0.8 1.0

MutationJobPlacement

MutationExchange

MutationSimilarPrev

MutationSimilarBw

MutationSimilarFw

MutationKeeping

Mutation

Crossover

�lled,

optimized

con�gura-

tion

none all

TrivialFirstParallelListing by Priority
SerialListing ShortestFirst
SerialListing Prioritized
SerialListing KeepingPrioritized

SerialLeastChoice ShortestFirst
SerialLeastChoice KeepingPrioritized

ParallelLinear
ContinuousUnlessOneChoice EarliestDeadline

0.00 0.05 0.10 0.15 0.20 0.25

MutationJobPlacement

MutationExchange

MutationSimilarPrev

MutationSimilarBw

MutationSimilarFw

MutationKeeping

Mutation

Crossover

npop = 61, pCrossover = 0, pMut = 0, pMutKeep = 0, pMutSimFw = 0,
pMutSimBw = 0, pMutSimPrev = 0, pMutEx = 0, pMutP lace = 0.006,
pDoubleCrossover = 0.099, ndaysCrossover = 15

Table 7: An insight into the GA genetic history.
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produces large amounts of fragmentation. In comparison, the operations of the

optimized GA, shown in Figure 31 on page 81, were more successful in keeping

observations continuous. The result of the �lled GA in optimized con�guration is

shown in Figure 35 on page 86.
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9 PERFORMANCE OF SCHEDULING ALGORITHMS

Part IV

Discussion

9 Performance of Scheduling algorithms

The problem of observation scheduling discussed here seems simple when compared

to project scheduling for instance, as there are no predecessor relationships. How-

ever, in other aspects it is more di�cult than the RCPSP as we allow arbitrary

preemption, but would like to avoid such interrupts. A similar situation is CPU

scheduling, where each task should get a turn, but swapping is costly. In long-term

scheduling the number of combinations making up the solution space is large (up to

exp(28000) = 1012160 in the cases looked at). This number will quickly increase for

longer scheduling terms and for a higher number of (shorter) proposals, as well as

allowing more parallel observations (e.g. 8-12 for SKA).

Unfortunately, the LP solution, which is expected to give an optimal result (if

only to a simpli�ed cost function) does not deal well with this complexity and takes

an unreasonable time to �nish (days - weeks). Furthermore, it is vastly outperformed

by heuristics and the GA.

�SerialListing, Prioritized� and �TrivialFirstParallelListing, Priority� are fast heuris-

tics that provide excellent solutions, both accommodating high-priority proposals

and avoiding interrupts. The former is especially easy as it just goes through all

time slots and picks the job combination with the highest priority. Continuous obser-

vations are just an emerging e�ect. The parallel listing algorithm however is placing

jobs in priority order on the schedule. These algorithms are straight-forward, easy

to implement and very fast.

9.1 Genetic algorithm

Concerning the genetic algorithm, the issue of fragmentation was immediately re-

producible. In fact, it is visible that the standard crossover and mutation operators

are not successful in probing the problem space towards a better solution. This can

be, as known from e.g. Barbulescu et al. (2006) and Wall (1996), attributed to

the fact that only single, independent moves are made, and that it is very unlikely

for the single moves to fall in such an order that a improvement is found.

With the new, added mutation operators � MutationKeeping, MutationSimilar-

Forward, MutationSimilarBackward, MutationSimilarPrev, MutationExchange, Mu-

tationJobPlacement � that do multiple moves at once, e.g. overriding and extending

a block, the GA was much more successful. In fact, meta-optimization disabled

the ine�ective single-gene operations (simple Mutation), and enabled several of the

other ones.
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The mutation operators MutationKeeping, MutationSimilarForward, Mutation-

SimilarBackward are very similar. The only di�erence between them is that the

�rst randomly picks an observation and keeps it forward, while the other two use

the already-in-place observation. The di�erence between the latter is only the di-

rection of extension in time.

The "�lled" GA is only successful when most operators are disabled. Apparently,

the GA needs to be careful to keep the solutions at this high �tness value, so that

only few modi�cations at a time are possible. Mostly crossover is used, with the

MutPlace operator placing random jobs. This optimized GA is capable of making

minor improvements to the heuristics.

Comparing Figure 33 and Figure 35, it is also observable in the displayed sched-

ules that fragmentation is e�ectively removed and avoided by these block-wise opera-

tors as intended. However, the �empty� GA is clearly outperformed by the heuristics.

Hence, it might seem that selecting the "best" heuristic is su�cient and the

problem is solved. However, one should keep in mind that the problem might change,

and the heuristics are not smart enough to understand complex preferences. Hence

we recommend running "SerialListing, Prioritized" and "TrivialFirstParallelListing,

Priority" �rst, and running the GA �lled with those solutions for several minutes.

This has the bene�ts, that

� The schedule can be updated when constraints change. The re-scheduling can

take the previous scheduling solution into account. This allows open-ended

update-able scheduling.

� The schedule can also be updated when preferences change.

� Even if the GA can not make any improvements, it at least selects the heuristic

that works best in this problem setting.

We believe that the graphs in Table 7 show an interesting insight into the working of

the GA. When an initial population is used, it can be tracked for a measure of in�u-

ence. The number of successful applications of an operator can be used as a measure

of the operators success. In an extreme case, ��lled� GA with default con�guration,

the GA could not improve the initial solution at all, as the corresponding graph

in Table 7 shows. We recommend these visualizations for other studies. In future

works, these measures might for instance be useful when developing an adaptive GA

that measures the e�ectiveness of operations and modi�es their probabilities based

on it. See e.g. Hartmann (2002) for a self-adapting GA. Furthermore, as the best

con�guration for the empty GA introduces many changes, this might improve its

performance where it currently saturates.

It should be stressed that endless more operators and scenarios could be thought

of, but the presented results give an insight to the problem space and the inner

workings of the genetic algorithm under various circumstances. However, already,
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the issue of fragmentation can be claimed to be solved to some degree, by replacing

the simple gene-wise Mutation operator.

Furthermore, many complications to the approach can be thought of. To men-

tion just one, the problem can be stated so that the task duration is dependent

on the resources committed to it. In radio astronomy, this is directly a result of

the radiometer equation, which relates the integration time with the number of

observation samples obtained (which is related to the number of detectors).

The code used to track the genetic linage and initial populations in�uence can be

found in 16. For completeness, the operators implementations are attached: Muta-

tionExchange in Listing 11,MutationKeeping in Listing 14,MutationSimilarForward

and MutationSimilarBackward in Listing 12, MutationJobPlacement in Listing 15.

10 Real-world integration

10.1 Planning and Scheduling

With an oversubscribed schedule, we inevitably �nd ourselves in the research �eld of

integrated planning and scheduling (Smith et al. (2000)). The scheduling algorithm

has to decide in some way, which observations to drop.

However, in observatories, the situation is often like with CPU schedulers: The

point of view is that everything planned will be done eventually. Hence, since time

is open, un�nished observations can be carried along to the next term, possibly with

a higher priority.

10.2 Scheduling and Control Systems & Monitoring

After the long process of scheduling, having a schedule is of course not satisfactory

as such.

First of all, it has to be executed. Hence some loose (e.g. manual steering

based on a print-out) or tight integration (fully automated fetching next task) of the

control system with the scheduling system is necessary. Since the �rst is trivial, we

demonstrate the second kind.

The NRAO ��eldsystem� is a popular control system in radio astronomy ob-

servatories, especially for those related to the VLA and VLBI networks. A task

is correctly executed at a speci�c time by writing a �le in �keyin� format, which

describes for each involved antenna the procedure necessary � the con�guration of

all devices, and the timings of the observations.

This �le goes through SCHED, which, despite the name, does not do any schedul-

ing. It is more a high-level control system preprocessor. SCHED produces �les for

each station, which drudg in turn makes into executable scripts at each antenna.
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Figure 36: Screen shot of the demo environment after initial scheduling. The current
schedule is shown on the top with the current time: 2h45m. Currently, the higher-
priority observation is scheduled and executed. Bottom left: Web-cam view of the
Warkworth 12m telescope pointing and observing NGC3603. Bottom right: the
monitoring system currently shows both backends as available.

These are then �nally run on the �eldsystem, which, being run at each station

independently, coordinates all devices there.

Tight integration demo Listing 7 on the following page shows an observation

template that is ready to be preprocessed by SCHED. The scheduler only has to

�ll in time and equipment allocated (e.g. using m4), and then this task can be run.

We prepared two such templates for two di�erent locations � PKS 0539-691 and

NGC3603. Additionally, a proposal for each is prepared, the one with of NGC3603

having a higher priority.

A simple mock monitoring system that reads text �les was implemented. Fur-

thermore, a Control system frontend was made that replaces the station and cur-

rent time in the right template, sends the �le through SCHED, drudg and into the

�eldsystem for immediate execution.

With these components, the feedback loop between planning, scheduling, control

system and monitoring was demonstrated as shown in the screen shot �gures 36

and 37 on page 94.

10.3 User interaction in scheduling

Naturally, a complete automated system without human checks is not the goal. A

tradeo� is to be made between allowing manual interaction, and making schedule

changes easy and not too time-consuming.
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Algorithm 7 A minimalistic fragment of a observation task speci�cation for
SCHED. Only the text STARTYEAR, STARTMONTH, STARTDAY and START-
TIME were replaced, and the ACTIVESTATIONS has to be set to a list of stations
involved in this observation.

! SCHED template to observe NGC3603
s r c c a t /
EQUINOX = J2000
SOURCE='J1115−6116 ' , 'NGC3603 '

RA=11:15 :09 .1 DEC=−61:16:17 RAERR= 0.1 DECERR=
0.1 CALCODE='V'

REMARKS='NGC 3603 i s a b e au t i f u l c i rcumpolar HII r eg i on
'

FLUX = 2 .30 , 0 . 50 , 0 . 34 , 8 . 60 , 0 . 21 , 0 .09
FLUXREF = 'X/S rfc_2010c '
/

endcat /

! ================================================================
! Cover in fo rmat ion (PI , experiment . . . )
! ================================================================
ver s i on = 1
expt = 'We observe NGC3603 ! '
expcode = EXPCODE
obstype = 'VLBA'

piname = ' Johannes Buchner '
emai l = ' johannes . buchner . acad@gmx . com '
obsmode = '128−4−2'

! ================================================================
! Catalogs . These are the standard ones and are the d e f a l t s .
! ================================================================
sta ca t /

STAtion=WARKWRTH STCode=Ww DBCODE=Ww DBNAME=Ww
AXISTYPE=ALTAZ AXISOFF=0.01
FRAME='random '
LAT=−36:25:48
LONG=174:39:36
ELev=132.0
TSETTLE=6 DAR=VLBA NBBC=8 ! RECORDER=VLBA NDRIVES=2

NHEADS=1
DISK=MARK5A MEDIADEF=DISK TSCAL=CONT

/
endcat /
year = STARTYEAR
month = STARTMONTH
day = STARTDAY
s t a r t = STARTTIME

s t a t i o n s = ACTIVESTATIONS
setup = '$SCHED/ setups /v4cm−128−4−2. set '
source = 'NGC3603 ' dur = 300 gap = 0 record /91
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Algorithm 8 Scheduling loop for demo. If resources change, the schedule is up-
dated, taking past observations into account and continuing the operation.
The ScheduleExport provides a mean of visualization (HTML export). The mon-
itoring system (on a high level) gives information about the resource availability.
In reality, this would be event-based. The Control system is told the tasks (job
combination) to execute, and is guaranteed that the resources to do so are available.

1 ReusableScheduler s chedu l e r = new ReusableScheduler ( ) ;
2 s chedu l e r . setNdays ( ndays ) ;
3
4 ControlSystem cs = new NraoBasedControlSystem ( ) ;
5 MonitoringSystem mon = new TextFi leMonitor ingSystem ( ) ;
6 ScheduleExport ex = new HtmlScheduleExport ( ) ;
7
8 LSTTime currentTime = null ;
9 Schedule s = null ;

10
11 while ( true ) {
12 s chedu l e r . s e tAva i l ab l eResour c e s ( " antennas " ,
13 mon . getAvai lab leAntennas ( ) ) ;
14 s chedu l e r . s e tAva i l ab l eResour c e s ( "backends" ,
15 mon . getAvai lab leBackends ( ) ) ;
16
17 s chedu l e r . updateScheduleSpace ( proposa l s , currentTime , s ) ;
18
19 log . i n f o ( " advancing  s chedu l e s  . . . " ) ;
20 s chedu l e r . advanceSchedules ( ) ;
21 s = schedu l e r . getCurrentSchedule ( ) ;
22 ex . export ( s , currentTime ) ;
23 log . i n f o ( " execut ing  . . . " ) ;
24
25 for ( Entry<LSTTime , JobCombination> e : s ) {
26 LSTTime t = e . getKey ( ) ;
27 // on re−entry , s k i p forward
28 i f ( currentTime != null && t . i sBeforeOrEqual ( currentTime ) ) {
29 continue ;
30 }
31 currentTime = t ;
32 ex . export ( s , currentTime ) ;
33 cs . execute ( e . getValue ( ) ) ;
34
35 measureEnvironment ( t ) ;
36
37 i f (mon . haveResourcesChanged ( ) ) {
38 log . debug ( " r e s ou r c e s  have changed" ) ;
39 break ;
40 }
41 }
42 }
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Algorithm 9 A scheduler that allows reentry, and combines all algorithms avail-
able. updateScheduleSpace carves the schedule space, removing the choice from the
past, but keeping them for calculation. The subsequent methods run the relevant
schedulers and store the best result.

1 public class ReusableScheduler {
2
3 public void updateScheduleSpace ( Co l l e c t i on<Proposal> proposa l s ,
4 LSTTime currentTime , Schedule prev iousSchedu le ) {
5 log . debug ( " c r e a t i n g schedu le space " ) ;
6 ITimel ineGenerator t l g = new SimpleTimel ineGenerator (
7 getRequirementGuard ( ) ) ;
8 space = t l g . s chedu le ( proposa l s , ndays ) ;
9 l og . debug ( " c rea ted schedu le space " + space . f indLastEntry ( ) ) ;
10
11 for ( Entry<LSTTime , Set<JobCombination>> e : space ) {
12 LSTTime t = e . getKey ( ) ;
13 // remove cho ice from pas t
14 i f ( currentTime != null && t . i sBeforeOrEqual ( currentTime ) ) {
15 space . c l e a r ( t ) ;
16 JobCombination j c = prev iousSchedu le . get ( t ) ;
17 i f ( j c != null )
18 space . add ( t , j c ) ;
19 }
20 }
21 }
22
23 public void advanceSchedules ( ) {
24 // c r ea t i n g h e u r i s t i c i n i t i a l popu la t i on
25 Map<IScheduler , Schedule> schedu l e s2 = Heu r i s t i c s S ch edu l eCo l l e c t o r
26 . g e tS ta r tSchedu l e s ( space ) ;
27 h e u r i s t i c s c h e du l e s = new HashMap<Str ing , Schedule >() ;
28 for ( Entry<IScheduler , Schedule> e : s chedu l e s2 . entrySet ( ) ) {
29 h e u r i s t i c s c h e du l e s . put ( e . getKey ( ) . t oS t r i ng ( ) , e . getValue ( ) ) ;
30 i f ( e . getKey ( ) . t oS t r i ng ( ) . conta in s (PREFERRED_HEURISTIC) ) {
31 bestSchedule = e . getValue ( ) ;
32 }
33 }
34
35 schedu l e s = h eu r i s t i c s c h e du l e s . va lue s ( ) ;
36 i f (GA_ENABLED) {
37 advanceSchedulesWithGA ( ) ;
38 }
39 }
40
41 private void advanceSchedulesWithGA ( ) {
42 SimpleScheduleFi tnessFunct ion f = new SimpleScheduleFitnessFunct ion ( ) ;
43 f . setSwitchLostMinutes ( 1 5 ) ;
44
45 WFScheduler s chedu l e r = new WFScheduler ( f ) ;
46 s chedu l e r . s e tPopu la t ion ( s chedu l e s ) ;
47 s chedu l e r . setNumberOfGenerations ( numberOfEvaluations / popu la t i onS i z e ) ;
48 s chedu l e r . s e t E l i t e S i z e ( 2 ) ;
49 s chedu l e r . s e tCro s s ove rProbab i l i t y ( crossoverProb ) ;
50 s chedu l e r . s e tMutat ionProbab i l i ty ( mutationProb ) ;
51 s chedu l e r . s e tPopu l a t i onS i z e ( popu la t i onS i z e ) ;
52 s chedu l e r . setMutat ionExchangeProbabi l i ty (mutationExchangeProb ) ;
53 s chedu l e r . se tMutat ionSimi larBackwardsProbabi l i ty ( mutat ionSimilarProb ) ;
54
55 bestSchedule = schedu l e r . s chedu le ( space ) ;
56 s chedu l e s = schedu l e r . getPopulat ion ( ) ;
57 }
58 } 93
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Figure 37: Screen shot of the demo environment after re-scheduling. Between the
previous screen shot and this, we let one backend fail (as shown on the bottom
right). Rescheduling immediately and automatically occurred (see top). Now, the
lower-priority observation is scheduled because it can still be executed with only
backend A. Bottom left: Telescope pointing and observing PKS 0539-691. Bottom
right: the monitoring system currently shows only backend A as available.

Current (astronomy) scheduling systems show the following work�ow with hu-

mans depicted in Figure 38 on the next page.

On the one hand, a human scheduler has to be in ultimate control of the sched-

ule, on the other hand, as Kleiner (1999) discuss, it is very di�cult to reschedule

using a computer-based system once a human made direct changes. Following the

recommendation of Kleiner (1999), it is best to not let the human scheduler edit

the schedule directly, but provide a method of adding preferences and constraints

to advise the scheduling system. In this approach it is required from the user to

make explicit why she or he would like a certain change to occur. If this is in the

form �this task is preferred here� it can be a preference, modifying the priority in

that time period. It may turn out that these decisions, when articulate, require a

change in the speci�cations, e.g. �the task can not be executed in this time period�.

Extracting these decisions as such allow re-scheduling and provide documentation.

A demonstration of such a UI is shown in Figure 39. This user interaction

suggestion accesses the scheduling framework through JRuby on Rails. At any time,

the user is presented with the schedules (center left), to be ordered in preference and

displayed in the big area on the right. Through marking time ranges, preferences

can be added, and viewed on the top left. Once done, the next iteration can be

launched by the �rst button on the bottom left, which lets scheduling algorithm

suggest additional schedules. The speci�cation, ranking and selection is left to the

user, the crossover/mutation/generation to the scheduler.
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Figure 38: User interaction patterns. Left: Current usage. First draft, time-
consuming scheduling sessions, followed by only minor modi�cations. A change
in speci�cations is hard to accommodate.
Right: Proposed usage pattern. The current information and demands are always
incorporated. The drawback could be that the schedule can be less predictable � if
a predictable schedule is needed, the scheduler has to prefer schedule changes that
a�ect the least number of people.

In this method, re-scheduling is easy, yet the user is left in control.

10.4 Applicability to ATA, ALMA and SKA

Figure 40: Sub-array splitting

Once a user interface has matured, the

framework is directly applicable to ATA.

From the outline of the scheduling prob-

lem in Mora & Solar (2010), ALMA

is in the very same scenario of wanting

parallel observations at a time, in com-

bination with a dynamic scheduler.

For SKA, the initial challenge is

working on an incomplete system dur-

ing growing construction. The sched-

uler allows such changing requirements

speci�cally. As demanded by Johnston

et al. (1996), the system is adaptive to

changing demands and can be coupled

to other system.

With sub-arrays, there can be various ways of splitting. For instance, if we think

of the stations as the �rst hierarchical layer, and of the antennas as the second (each

station consisting of a number of antennas), a sub-array can be formed by assigning
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Figure 39: User interaction suggestion

full stations or by proportionally subdividing stations (see Figure 40). For using the

full extent of the SKA, the second kind will be relevant, but there may be instances

where the �rst kind is required. For instance, when observatories have their own

observations to attend to, or due to maintenance of a station.

In either case, such splitting is possible with the approach taken here, as follows.

To show 1st-layer splitting, let proposal A request any one of the �stations� resource

type, and all of the �antennas� (e.g. 20 of the 20 per station). As many of such

proposals can be scheduled in parallel as there are stations. To show 2st-layer

splitting, let proposal B request all of the �stations� resource type, and some of the

�antennas� (e.g. 4 of the 20 per station). Then 5 of such proposals can be scheduled

in parallel through the approach taken in this work.
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Part V

Conclusions

We provided a de�nition and formulation of the scheduling problem faced by modern

radio astronomy observatories. In particular, we present

1. a complete literature review of the past approaches to scheduling in astronomy,

2. characteristics of the scheduling problem based on records and operating sta�

experience,

3. manual strategies used by human schedulers in currently operating observato-

ries and

4. today's requirements for the complex machines radio telescope arrays like the

ATA and SKA are. These include dynamic and scalable (re-)scheduling, man-

agement of many resources, parallel observations, dynamic parallel observa-

tions. With these in mind, we compared ideas from all major approaches

based on existing scheduling algorithms.

The GA is well-known to perform poorly in order-based encodings. This is due to the

fact that mutation operations are di�cult to write so that the GA can e�ciently

sample the problem space. Hence the recommended time-indexed encoding has

been used here. This formulation has the well-known issue of �fragmentation�, a

undesired high amount of interrupts. This problem was successfully solved here

using a penalty in the �tness function, and creating mutation operators that work

on multiple, neighboring genes at once.

Due to the complexity of the problem, exact algorithms such as branch-and-

bound are impractical. The simplest and fastest of these approaches, Linear (Inte-

ger) Programming, was found to take unreasonable amounts of time (days) and to

provide poor results (fragmentation).

We found that simple algorithms, in particular just going through the schedule

and allocating the highest-priority observation possible at each time slot, lead to

very good �rst-cut solution in the test dataset looked at. The GA can select the

best heuristic and thus keep the approach robust to changes in the characteristics

of the problem. It may help to make minor improvements, but also allow to update

the schedule on changed requirements.

With this work we provided a �rst solution to scheduling observations where

parallel observations are considered. We successfully demonstrated dynamic re-

scheduling on changed conditions, by integration of the scheduling framework with

the control system used in the AUT Warkworth 12m telescope.

The scheduling framework presented here is relevant for currently operated tele-

scopes like the ATA, currently constructed telescopes like ALMA and the future
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large-scale project SKA. In particular, during the development phase of SKA, the

dynamic, scalable scheduling framework can accommodate changing conditions.
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Algorithm 10 . MutationSimilarPrev operator. Randomly mutates a slot and tries
to extend the previous Job if possible.

1 public class ScheduleSimi larPrevMutat ion extends AbstractScheduleMutation {
2 protected Schedule mutateSchedule ( Schedule s1 , Random rng ) {
3 Schedule s2 = new Schedule ( ) ;
4 int i = 0 ;
5 int n = 0 ;
6 JobCombination l a s t J c = null ;
7 for ( Entry<LSTTime , JobCombination> e : s1 ) {
8 LSTTime t = e . getKey ( ) ;
9 JobCombination j c = s1 . get ( t ) ;
10
11 Set<JobCombination> j c s = po s s i b l e s . get ( t ) ;
12 i f ( e . getValue ( ) != null && ! j c s . isEmpty ( ) ) {
13 s2 . add ( t , j c ) ;
14 i f ( l a s t J c != null && ! l a s t J c . equa l s ( j c ) ) {
15 i f ( mutat ionProbab i l i ty . nextValue ( ) . nextEvent ( rng ) ) {
16 j c = getMostS imi lar ( l a s tJc , j c s ) ;
17 i f ( j c != null ) {
18 s2 . add ( t , j c ) ;
19 i++;
20 }
21 }
22 n++;
23 }
24 }
25 l a s t J c = j c ;
26 }
27 i f ( h i s t o r y != null ) {
28 h i s t o r y . d e r i v e ( s2 , s1 , i * 1 . / n ) ;
29 // r e s t i s random
30 }
31 updateCounters ( s2 , s1 , i ) ;
32 return s2 ;
33 }
34 }
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Algorithm 11 MutationExchange operator. Randomly selects slot and tries to
exchange with the same slot from a previous day

1 public class ScheduleExchangeMutation implements EvolutionaryOperator<Schedule> {
2 private Schedule mutateSchedule ( Schedule s1 , Random rng ) {
3 Schedule s2 = new Schedule ( ) ;
4 int i = 0 ;
5 int n = 0 ;
6 Probab i l i t y prob = mutat ionProbab i l i ty . nextValue ( ) ;
7 Probab i l i t y u = new Probab i l i t y ( 1 . / 3 ) ;
8 for ( Entry<LSTTime , JobCombination> e : s1 ) {
9 LSTTime t = e . getKey ( ) ;
10 s2 . add ( t , e . getValue ( ) ) ;
11 Set<JobCombination> j c s = po s s i b l e s . get ( t ) ;
12 i f ( ( i * 1 . / n) < prob . doubleValue ( ) && u . nextEvent ( rng ) ) {
13 i f ( ! j c s . isEmpty ( ) ) {
14 JobCombination j c = e . getValue ( ) ;
15 Lis t<LSTTime> timeCandidates = new ArrayList<LSTTime>() ;
16 i f ( t . day > 3)
17 timeCandidates . add (new LSTTime( t . day − 3 , t . minute ) ) ;
18 i f ( t . day > 2)
19 timeCandidates . add (new LSTTime( t . day − 2 , t . minute ) ) ;
20 i f ( t . day > 1)
21 timeCandidates . add (new LSTTime( t . day − 1 , t . minute ) ) ;
22
23 Co l l e c t i o n s . s h u f f l e ( t imeCandidates ) ;
24 // f i nd a exchange par tner
25 boolean foundPartner = fa l se ;
26 for (LSTTime t2 : t imeCandidates ) {
27 JobCombination j c2 = s1 . get ( t2 ) ;
28 Set<JobCombination> j c s 2 = po s s i b l e s . get ( t2 ) ;
29 // par tner s shou ld be exchangeab le , but not the same ,
30 // and not both n u l l
31 i f ( ( j c == null | | j c s 2 . conta in s ( j c ) )
32 && ( j c2 == null | | j c s . conta in s ( j c 2 ) )
33 && ! ( j c 2 == null && j c == null )
34 && ( j c == null | | ! j c . equa l s ( j c 2 ) ) ) {
35
36 // sw i t ch
37 i f ( j c != null )
38 s2 . add ( t2 , j c ) ;
39 i f ( j c 2 != null )
40 s2 . add ( t , j c 2 ) ;
41 foundPartner = true ;
42 break ;
43 }
44 }
45 i f ( foundPartner ) {
46 i++; /* we l e t t h i s count */
47 } else

48 s2 . add ( t , e . getValue ( ) ) ;
49 }
50 }
51 n++;
52 }
53 i f ( h i s t o r y != null )
54 h i s t o r y . d e r i v e ( s2 , s1 , i * 1 . / n ) ;
55 i f ( counter != null ) {
56 counter . d e r i v e ( s2 , s1 ) ;
57 counter . add ( s2 , this . t oS t r i ng ( ) , i ) ;
58 }
59 return s2 ;
60 }
61 }
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Algorithm 12 The MutationSimilarForward and MutationSimilarBackward oper-
ators are instances of this class. The operator randomly selects blocks and tries to
extend them backwards in time as far as possible (maximum 1 day).

1 public class ScheduleSimi larMutat ion extends AbstractScheduleMutation {
2 private boolean forwardsKeep = fa l se ;
3 private boolean backwardsKeep = true ;
4
5 protected Schedule mutateSchedule ( Schedule s1 , Random rng ) {
6 Schedule s2 = new Schedule ( ) ;
7 int i = 0 ;
8 int n = 0 ;
9
10 JobCombination l a s t J c = null ;
11
12 int toSkip = 0 ;
13 for ( I t e r a t o r <Entry<LSTTime , JobCombination>> i t = s1 . i t e r a t o r ( ) ; i t
14 . hasNext ( ) ; ) {
15 Entry<LSTTime , JobCombination> e = i t . next ( ) ;
16 LSTTime t = e . getKey ( ) ;
17 JobCombination j c = e . getValue ( ) ;
18 Set<JobCombination> j c s = po s s i b l e s . get ( t ) ;
19 i f ( j c != null && ! j c s . isEmpty ( ) ) {
20 s2 . add ( t , j c ) ;
21 i f ( toSkip > 0) {
22 toSkip−−;
23 } else {
24 /* only i f we have a change , we shou ld cons ider i t */
25 i f ( ( l a s t J c == null | | ! l a s t J c . equa l s ( j c ) )
26 && ( mutat ionProbab i l i ty . nextValue ( ) . nextEvent ( rng ) ) ) {
27 log . debug ( "mutating around " + t ) ;
28 toSkip = makeSimilarAround ( t , jc , p o s s i b l e s , s2 ) ;
29 i += toSkip ;
30 }
31 }
32 n++;
33 }
34 l a s t J c = j c ;
35 }
36 log . debug ( "changed " + i + " o f " + n ) ;
37 i f ( h i s t o r y != null ) {
38 h i s t o r y . d e r i v e ( s2 , s1 , i * 1 . / n ) ;
39 // r e s t i s random
40 }
41 updateCounters ( s2 , s1 , i ) ;
42
43 return s2 ;
44 }
45
46 protected int makeSimilarAround (LSTTime t , JobCombination t h i s j c ,
47 ScheduleSpace template , Schedule s2 ) ;
48 }
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Algorithm 13 makeSimilarAround function used by MutationSimilarForward, Mu-
tationSimilarForward, MutationKeeping and JobPlacementMutation operators.

1 public class ScheduleSimi larMutat ion extends AbstractScheduleMutation {
2 // . . . cont inued . . .
3 protected int makeSimilarAround (LSTTime t , JobCombination t h i s j c ,
4 ScheduleSpace template , Schedule s2 ) {
5 boolean posContinue = forwardsKeep ;
6 boolean negContinue = backwardsKeep ;
7 int countChanged = 0 ;
8 LSTTime l a s t = template . f indLastEntry ( ) ;
9 // i t e r a t e f o r 1 day maximum
10 LSTTimeIterator i t = new LSTTimeIterator (new LSTTime(0 , 1 ) ,
11 new LSTTime(1 , 0 ) , Schedule .LST_SLOTS_MINUTES) ;
12 for ( ; i t . hasNext ( ) ; ) {
13 LSTTime tDel ta = i t . next ( ) ;
14
15 i f ( posContinue ) {
16 LSTTime tPlus = new LSTTime( t . day + tDelta . day , t . minute
17 + tDel ta . minute ) ;
18 i f ( tPlus . minute > Schedule .LST_SLOTS_PER_DAY
19 * Schedule .LST_SLOTS_MINUTES) {
20 long extraDays = tPlus . minute
21 / ( Schedule .LST_SLOTS_PER_DAY * Schedule .LST_SLOTS_MINUTES) ;
22 tPlus . day += extraDays ;
23 tPlus . minute −= extraDays
24 * ( Schedule .LST_SLOTS_PER_DAY * Schedule .LST_SLOTS_MINUTES) ;
25 }
26 i f ( tPlus . i sA f t e r ( l a s t ) ) {
27 posContinue = fa l se ;
28 } else {
29 Set<JobCombination> j c s = template . get ( tPlus ) ;
30 i f ( ! j c s . isEmpty ( ) ) {
31 JobCombination j c = getMostSimi lar ( t h i s j c , j c s ) ;
32 i f ( j c != null ) {
33 log . debug ( " j c " + j c ) ;
34 s2 . add ( tPlus , j c ) ;
35 countChanged++;
36 } else {
37 posContinue = fa l se ;
38 }
39 } else {
40 posContinue = fa l se ;
41 }
42 }
43 }
44 i f ( negContinue ) {
45 // s im i l a r to above sec t ion , but in nega t i v e time d i r e c t i o n . . .
46 }
47 }
48 return countChanged ;
49 }
50 }
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Algorithm 14 The MutationKeeping operator. Randomly mutates a slot and tries
to extend the selection as long as possible (max 1 day).

1 public class ScheduleKeepingMutation extends ScheduleSimi larMutat ion {
2 @Override
3 protected Schedule mutateSchedule ( Schedule s1 , Random rng ) {
4 Schedule s2 = new Schedule ( ) ;
5 int i = 0 ;
6 int n = 0 ;
7 int toSkip = 0 ;
8 Probab i l i t y u = new Probab i l i t y ( 2 . / 5 . ) ;
9
10 for ( Entry<LSTTime , JobCombination> e : s1 ) {
11 LSTTime t = e . getKey ( ) ;
12 JobCombination j c = s1 . get ( t ) ;
13
14 Set<JobCombination> j c s = po s s i b l e s . get ( t ) ;
15 i f ( e . getValue ( ) != null && ! j c s . isEmpty ( ) ) {
16 s2 . add ( t , j c ) ;
17 i f ( toSkip > 0) {
18 toSkip−−;
19 } else {
20 i f (u . nextEvent ( rng )
21 && mutat ionProbab i l i ty . nextValue ( ) . nextEvent ( rng ) ) {
22 // randomly choose a ta s k
23 j c = ( JobCombination ) j c s . toArray ( ) [ rng . next Int ( j c s
24 . s i z e ( ) ) ] ;
25
26 s2 . add ( t , j c ) ;
27 toSkip = makeSimilarAround ( t , jc , p o s s i b l e s , s2 ) ;
28 i += 1 + toSkip ;
29 log . debug ( "mutated and made " + toSkip + " s im i l a r " ) ;
30 }
31 }
32 n++;
33 }
34 }
35 log . debug ( "changed " + i + " o f " + n ) ;
36 i f ( h i s t o r y != null ) {
37 h i s t o r y . d e r i v e ( s2 , s1 , i * 1 . / n ) ;
38 // r e s t i s random
39 }
40 updateCounters ( s2 , s1 , i ) ;
41
42 return s2 ;
43 }
44 }
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Algorithm 15 The MutationJobPlacement operator. Randomly selects a job, and
�nds a suitable slot to schedule it. Neighboring slots are changed too.

1 public class ScheduleJobPlacementMutation extends ScheduleSimi larMutat ion {
2 protected Map<JobCombination , L i s t<LSTTime>> po s s i b l e S l o t s =
3 new HashMap<JobCombination , L i s t<LSTTime>>();
4 protected List<JobCombination> jobs ;
5
6 public ScheduleJobPlacementMutation ( ScheduleSpace po s s i b l e s ,
7 Probab i l i t y p r obab i l i t y ) {
8 f i l l P o s s i b l e S l o t s ( ) ;
9 setForwardsKeep ( true ) ;
10 setBackwardsKeep ( true ) ;
11 jobs = new ArrayList<JobCombination>( p o s s i b l e S l o t s . keySet ( ) ) ;
12 }
13
14 @Override
15 protected Schedule mutateSchedule ( Schedule s1 , Random rng ) {
16 Schedule s2 = new Schedule ( ) ;
17 int i = 0 ;
18 int n = 0 ;
19 // copying schedu l e
20 for ( Entry<LSTTime , JobCombination> e : s1 ) {
21 LSTTime t = e . getKey ( ) ;
22 JobCombination j c = s1 . get ( t ) ;
23 Set<JobCombination> j c s = po s s i b l e s . get ( t ) ;
24 i f ( e . getValue ( ) != null && ! j c s . isEmpty ( ) )
25 s2 . add ( t , j c ) ;
26 n++;
27 }
28 // p lace j o b s
29 for ( int j = 0 ; j < jobs . s i z e ( ) ; j++) {
30 i f ( this . mutat ionProbab i l i ty . nextValue ( ) . nextEvent ( rng ) ) {
31 JobCombination j c = jobs . get ( j ) ;
32 Lis t<LSTTime> s l o t s = p o s s i b l e S l o t s . get ( j c ) ;
33 LSTTime t = s l o t s . get ( rng . next Int ( s l o t s . s i z e ( ) ) ) ;
34 s2 . add ( t , j c ) ;
35 i += 1 + makeSimilarAround ( t , jc , p o s s i b l e s , s2 ) ;
36 }
37 }
38 updateHistory ( s2 , s1 , i , n ) ;
39 updateCounters ( s2 , s1 , i ) ;
40 return s2 ;
41 }
42 }
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Algorithm 16 The genetic history used to track the linage and in�uence of the
initial population to the �nal population. The crossover operator calls the derive
method for every child, which passes on the properties of the parents onto the child.

1 /**
2 * @param <K> chromosome type
3 * @param <V> proper ty type
4 */
5 public class Genet icHistory<K, V> {
6 private stat ic Logger l og = Logger . getLogger ( Genet i cHis tory . class ) ;
7
8 private Map<K, Map<V, Double>> prop e r t i e s = new HashMap<K, Map<V, Double >>();
9
10 public void i n i t i a t e d (K key , V property ) {
11 i f ( l og . isDebugEnabled ( ) )
12 log . debug ( "adding i n i t i a l member with property ' " + property + " ' " ) ;
13 ensureKnown ( key ) . put ( property , 1 . ) ;
14 }
15
16 private Map<V, Double> ensureKnown (K key ) {
17 i f ( ! p r op e r t i e s . containsKey ( key ) ) {
18 Map<V, Double> m = new HashMap<V, Double >() ;
19 p r op e r t i e s . put ( key , m) ;
20 return m;
21 } else {
22 return p r op e r t i e s . get ( key ) ;
23 }
24 }
25
26 public void de r i v e (K newKey , K parent , Double par t s ) {
27 i f ( p r op e r t i e s . containsKey ( parent ) && ! p r op e r t i e s . get ( parent ) . isEmpty ( ) ) {
28 Map<V, Double> p = ensureKnown (newKey ) ;
29 for ( Entry<V, Double> e : p r op e r t i e s . get ( parent ) . entrySet ( ) ) {
30 i f ( l og . isDebugEnabled ( ) )
31 log . debug ( "handing over " + e . getKey ( ) + " " + e . getValue ( )
32 + " −−> " + e . getValue ( ) * par t s ) ;
33 i f (p . containsKey ( e . getKey ( ) ) ) {
34 p . put ( e . getKey ( ) , p . get ( e . getKey ( ) ) + e . getValue ( ) * par t s ) ;
35 } else {
36 p . put ( e . getKey ( ) , e . getValue ( ) * par t s ) ;
37 }
38 }
39 }
40 }
41
42 public Map<V, Double> ge tPrope r t i e s (K key ) {
43 return p r op e r t i e s . get ( key ) ;
44 }
45 }
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