
AUTOMATIC CONVERSION OF

ACTIVITY DIAGRAMS INTO

FLEXIBLE SMART HOME APPS

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF COMPUTER AND INFORMATION SCIENCES

Supervisors

Dr Roopak Sinha

February 2018

By

Nipuni Perera

School of Engineering, Computer and Mathematical Sciences

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the

Author and lodged in the library, Auckland University of Technology. Details may be

obtained from the Librarian. This page must form part of any such copies made. Further

copies (by any process) of copies made in accordance with such instructions may not

be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this

thesis is vested in the Auckland University of Technology, subject to any prior agreement

to the contrary, and may not be made available for use by third parties without the

written permission of the University, which will prescribe the terms and conditions of

any such agreement.

Further information on the conditions under which disclosures and exploitation may

take place is available from the Librarian.

© Copyright 2018. Nipuni Perera

2

Declaration

I hereby declare that this submission is my own work and

that, to the best of my knowledge and belief, it contains no

material previously published or written by another person

nor material which to a substantial extent has been accepted

for the qualification of any other degree or diploma of a

university or other institution of higher learning.

Signature of candidate

3

Acknowledgements

The completion of this thesis would not have been possible without the immense

guidance and support given by my supervisor. Dear Roopak Sinha, I am nothing

but most humbly grateful to you for guiding me throughout this thesis. Also, I am

extremely glad that I chose Software Architecture as one of the papers in the time of

the coursework during my first semester at Auckland University of Technology, without

which I would not have had the opportunity to be your student.

I would also like to thank my parents, Dear Ammi and Thathi, thank you very much

for believing in me and giving me support throughout this year and listening to all my

stories whenever I finished a new chapter of the thesis. Also thank you so much for

tolerating my stress levels and being there for me during all the emotional breakdowns.

Not to forget my English Literature Teacher from High School, Dear Ms. Lakshila,

I am tremendously grateful to you for teaching me to write with a style, if not for your

mentoring in writing, this thesis wouldn’t have been successfully completed. Thank

you, Barry Dowdeswell, for proof reading my work and for the delightful feedback.

Thank you to all my friends, family and everyone special who helped me make this

journey a success.

Lastly, thank you Thathi for those early morning phone calls despite the time

differences, those motivational conversations were one of the main reasons I could get

where I am today.

This Thesis is dedicated to my loving Grandmother, Kamala Perera.

4

Abstract

Despite the availability of a large number of sensor and actuator devices designed to

co-perform in a smart home, only a few of these devices are easily integrated into a

single smart home unit. However, as devices become more advanced and feature-rich,

the need for smart software to orchestrate these devices to offer complex smart home

services has risen. The research focus of this thesis is designing and deploying software

(or apps) that works with different, and changing, sensor-actuator configurations in

smart-homes.

A systematic literature review was used to identify an visual design modelling

framework for designing smart home apps. Behavioural models, specifically UML

Activity Diagrams, were identified as the most appropriate app design model due to

high usability and similarity with flowcharts. The literature review also informed the

key qualities of an end-to-end solution to design and deploy these smart home apps.

Subsequently, we design and develop an automatic translation tool to address some

key usability and deployment challenges. This tool offers a customized and fully-

featured UML Activity Diagram Editor that allows non-experts to model any smart

home system, such as a smart lighting system. The compiler offered by the Automatic

Translation Tool accepts UML Activity Diagrams as input and generates executable

Java code which can be deployed into any smart home application. An evaluation using

a representative a set of case studies shows that the Automatic Translation Tool features

high usability, availability, and performance.

5

Contents

Copyright 2

Declaration 3

Acknowledgements 4

Abstract 5

1 Introduction 13

2 Literature Review 17
2.1 Background . 18

2.1.1 Smart Home . 19
2.1.2 Visual Plan . 19
2.1.3 Interoperability . 19
2.1.4 Lack of interoperability . 20
2.1.5 Dynamic sensor actuator configurations 20

2.2 Systematic Literature Review (SLR) . 20
2.3 Process of Systematic Literature Review 22

2.3.1 Scoping . 22
2.3.2 Planning . 24
2.3.3 Searching . 27
2.3.4 Screening . 29

2.4 Current State of Art . 30
2.4.1 Research Based Solutions . 30
2.4.2 Commercial Based Solutions 38

2.5 Findings . 43
2.5.1 Factors leading to the choice of an app design model 44
2.5.2 Evaluation of Current Solutions 51
2.5.3 Current / Existing Gaps . 53

2.6 Conclusion . 55

3 Research Method 57
3.1 Selection of a suitable Research Methodology 58

3.1.1 Other Methodologies . 59

6

3.1.2 Chosen Research Approach . 61
3.1.3 Systematic Literature Review 63
3.1.4 Design Methodology . 64

3.2 System Design Methodology . 70
3.2.1 Architecture Creation . 71
3.2.2 Tool Design and Development 71

3.3 System Evaluation Methodology . 72
3.3.1 Tool Validation Methodology 73
3.3.2 Model Validation Methodology 73
3.3.3 Automatic Code Generation Methodology 74

3.4 Methodology Overview . 75
3.5 Conclusion . 76

4 Architecture Creation 77
4.1 Attribute-Driven Design Methodology (ADD) 78

4.1.1 Identification of Architectural Drivers 78
4.1.2 Identification of Quality Attribute Scenarios (QAS) 85
4.1.3 Identification of Architectural Pattern (AP) 88
4.1.4 Architecture Tactics . 90

4.2 Architecture of the Tool . 90
4.2.1 White-Board Architecture of the Tool 92
4.2.2 Logical View - Sequence Diagram 93
4.2.3 Process View - Activity Diagram 95
4.2.4 Scenario View - Use Case Diagram 102

4.3 Conclusion . 104

5 Design and Development 105
5.1 Detailed View of the Architecture . 106

5.1.1 Class Diagram . 107
5.1.2 Development Work-flow . 109

5.2 Component 1:Meta-Model Design . 109
5.2.1 Technology Decisions: Selection of an Application for App

Modeling . 110
5.2.2 Development of Activity Diagram Meta-Model 112
5.2.3 Development of Java Meta-Model 116
5.2.4 Meta-Model Configurations . 119

5.3 Component 2: Model Editor Design . 121
5.3.1 Selection of Model Editor Design Application 121
5.3.2 Design of Activity Diagram Model Editor 122

5.4 Component 3: Model-to-Model Transformation 124
5.4.1 Selection of Model-to-Model Transformation Language 125
5.4.2 Overview of ATL Transformation Process 127
5.4.3 Transformation of Activity Diagram Model to Java Class Model 131

5.5 Component 4: Model to Text Transformation 132

7

5.5.1 Selection of Model-to-Text Transformation Technique 133
5.5.2 Reading Java Model Instance 135
5.5.3 Code Generation from Java Instance Model 138

5.6 Conclusion . 139

6 Evaluation 141
6.1 Smart Home Case Studies . 142

6.1.1 Smart Lock System . 142
6.1.2 Smart Security System . 143
6.1.3 Smart Light System . 144
6.1.4 Smart Weighting System . 145

6.2 Evaluating The Automatic Translation Tool 145
6.2.1 Success Criteria . 146

6.3 Experiment Setup . 148
6.3.1 Measuring Usability . 149
6.3.2 Measuring Performance . 151
6.3.3 Measuring Availability . 151

6.4 Experiment Execution and Data Collection 152
6.4.1 Gathering Experimental Data to Determine Usability 153
6.4.2 Gathering Experimental Data to Determine Performance . . . 154
6.4.3 Gathering Experimental Data to Determine Availability 156

6.5 Data Analysis . 156
6.5.1 Usability . 157
6.5.2 Performance . 159
6.5.3 Availability . 161

6.6 Discussion . 162
6.6.1 Usability of The Automatic Translation Tool 162
6.6.2 Performance of The Automatic Translation Tool 164
6.6.3 Availability of Automatic Translation Tool 166
6.6.4 Impact of the Automatic Translation Tool 167
6.6.5 Strengths and Weaknesses of Automatic Translation Tool . . . 168

6.7 Conclusion . 169

7 Conclusions 171
7.1 A Chapter-wise Summary . 172
7.2 Answering the Research Questions . 173
7.3 Contributions of this Thesis . 175
7.4 Future Works and Improvements . 177
7.5 Final Words . 178

References 180

Appendices 188

8

List of Tables

2.1 Inclusion and Exclusion Process . 27
2.2 Defining Criteria to Compare Existing Solutions 42
2.3 Comparison of Existing Solutions . 43
2.4 Selection Criteria of App Design Model 52
2.5 Evaluation and Selection of App Design Models 53

4.1 Priority Level 1 Quality Attribute Requirements 83
4.2 Priority Level 2 Quality Attribute Requirements 84
4.3 Quality Attribute Requirements Six-Part Scenario Format 85
4.4 Availability Quality Attribute Requirement Scenario 86
4.5 Usability Quality Attribute Requirement Scenario 87
4.6 Interoperability Quality Attribute Requirement Scenario 87
4.7 Quality Attribute Requirement Tactics 90

5.1 Selection Criteria: App Modeling Application 111
5.2 Selection of App Modeling Application 111
5.3 Selection Criteria: App Modeling Editor Application 122
5.4 Selection of App Modeling Editor Application 122
5.5 Association Definitions . 126
5.6 Selection Criteria: Model-to-Model Transformation Language 127
5.7 Selection of a Model-to-Model Transformation Language 127
5.8 Selection Criteria: Model-to-Text Transformation Approach 133
5.9 Selection of a Model-to-Text Transformation Approach 134

6.1 Success Criteria to Evaluate Usability 147
6.2 Success Criteria to Evaluate Availability 148
6.3 Success Criteria to Evaluate Performance 148
6.4 Mapping of Evaluation Subjects to Respective Architectural Drivers . 149
6.5 Quantitative Data of Time, Nodes and Transitions to Model Smart

Home Systems . 153
6.6 Experimental Data of Reconfiguration Time During Addition of a New

Device . 153
6.7 Experimental Data of Reconfiguration Time During Removal of a Device153
6.8 Experimental Data of Reconfiguration Time During Modification of a

Device . 154

9

6.9 Experimental Data of Time and Size of Code Generation 154
6.10 Experimental Data of Availability of Automatic Translation Tool . . . 156

10

List of Figures

1.1 Overview of the automatic translation tool 15

2.1 Smart Home . 18

3.1 Design Science Research Methodology 65
3.2 Methodology Overview . 76

4.1 Three-Step Process of ADD for Architecture Design of Activity Dia-
gram to Java Code Generation Tool . 79

4.2 Pipe and Filter Architecture Pattern for the Proposed Tool 88
4.3 Overview of the Architecture . 91
4.4 Architecture White-Board showing High Level Design of the Tool . . 92
4.5 UML Sequence Diagram - Activity Diagram to Java Code Generation

Tool . 93
4.6 UML Class Diagram - Activity Diagram to Java Code Generation Tool 94
4.7 UML Activity Diagram - Activity Diagram to Java Code Generation Tool 96
4.8 UML Use Case Diagram - Activity Diagram to Java Code Generation

Tool . 103

5.1 Detailed View of the Architecture . 106
5.2 Detailed Class Diagram . 108
5.3 Development Work-flow . 109
5.4 Activity Diagram Meta-Model . 112
5.5 Java Class Meta-Model . 117
5.6 Activity Diagram Model Instance . 120
5.7 Activity Diagram Model Editor Design 124
5.8 Activity Diagram Model Editor . 125
5.9 Overview of ATL Transformation Process 128
5.10 ATL Configurations Window . 129
5.11 ATL Mapping Approach . 130
5.12 ATL Transformation Rules . 131
5.13 Java Model Instance Generation . 132
5.14 Identifying Java Model Instance and Instance Tags 135
5.15 Readind Tags in Java Model Instance 137
5.16 Java Code Generated from Java Model Instance 138
5.17 Overview of Automatic Code Generation from UML Activity Diagram 140

11

6.1 Smart Lock System . 143
6.2 Smart Security System . 143
6.3 Smart Light System . 144
6.4 Smart Weighting System . 145
6.5 Usability Experiment Setup . 150
6.6 Performance Experiment Setup . 152
6.7 Time to Model Smart Home Systems 154
6.8 Model Reconfiguration Time . 155
6.9 Time Generate Code . 155
6.10 Comparison of Nodes, Transitions and Modeling Time 158
6.11 Time and Size of the Code Generated 160
6.12 Time to Model, Generate Code and Number of Nodes 163
6.13 Performance of the Automatic Translation Tool 165

A.1 Java Model Instance in XMI Format . 190
A.2 Smart Home Adoption Curve . 193
A.3 Growth of Demand for Smart Devices 194
A.4 Value of North American Smart Home Market 2012 - 2017 194
A.5 Smart Home Market in Asia Pacific . 196
A.6 Overview of the Proposed Solution . 198

12

Chapter 1

Introduction

Smart homes can provide enhanced comfort and assistance through useful services

like smart lighting, smart security, and smart living systems. Smart home technology

also promises to support elderly living by themselves immensely, such as by issuing

medication reminders or alerts in the case of emergency. These services are possible

through the seamless integration of smart devices - sensors and actuators, and software

that can control them as required.

Smart-home software, collectively called “apps” (Alaa, Zaidan, Zaidan, Talal &

Kiah, 2017), is now getting increasingly complex, thanks to increasing needs for

customisation as well as the introduction of innovative and disruptive device and IoT

technologies.

This thesis focuses on the problem of easily creating and deploying smart-home

apps. Existing tools to create these apps cannot be readily used by non-experts, such as

medical experts wanting to deploy apps within their patients’ smart homes. Technically,

the problem addressed in this thesis is to efficiently and automatically generate correct

code for these apps from behavioural diagrams. Behavioural diagrams, have been

identified in this thesis as more usable for non-experts wanting to design smart home

apps. Moreover, existing automatic code-generators only work for structural diagrams,

13

Chapter 1. Introduction 14

such as UML Class Diagrams (Rumpe, 2016).

The research questions addressed in this thesis are:

• RQ1–Which factors lead to the choice of an app design model to address the

challenges such as lack of interoperability when apps need to operate in different

sensor-actuator configurations in different smart homes?: The first research

question addresses the factors leading to the choice of an appropriate app design

model for non experts. This research question is answered in Chapter 2.

• RQ2–What are the existing solutions and how do they meet the factors identified

in Question 01?: This research question identifies the key qualities of a tool

for designing and generating code for smart home applications. This research

question is also answered in Chapter 2.

• RQ3–What are the characteristics of the architecture of an automatic transla-

tion tool, which translates an app design (based on the model developed after

answering RQ1) to a customized smart home app?: This question focusses on the

architectural design of the translation tool, focussing on the qualities identified in

RQ2. The architecture design of the tool is covered in Chapter 4.

• RQ4–How can the high-level architecture of an automatic translation tool ob-

tained from Q3 lead towards the implementation of a prototype automatic trans-

lation tool?: The final research question is concerned with the implementation of

the tool, and is answered in Chapter 5.

The design of this research followed a systematic literature review to refine and

answer RQ1 and RQ2, and an adapted Design Science methodology to design and

develop a solution (RQ3 and RQ4). Details of the research design are presented in

Chapter 3.

nipuniperera
Highlight

Chapter 1. Introduction 15

Figure 1.1: Overview of the automatic translation tool

Fig. 1.1 shows an overview of the features of the automatic translation tool proposed

in this thesis. The tool automatically generates executable Java code from a UML

Activity Diagram. Activity Diagrams were identified as the most appropriate app design

model for smart home apps while answering RQ1 (details are presented in Chapter 2).

The Eclipse-based automatic translation tool offers a fully featured editor for designing

smart home apps. The tool includes a compiler which accepts a visual plan, expressed

as a UML activity diagram, and translates the visual plan into a runnable code which

can then be deployed to a smart home application. An evaluation of the tool shows that

the editor has high usability, and that it can model any UML Activity Diagram. The

compiler is also shown to generate error-free and compact code (Chapter 6), which can

be deployed easily into any smart-home.

The primary contributions of this thesis are:

1. Choosing UML Activity Diagram as the more appropriate app design model

for designing smart-home apps. UML Activity diagrams are easier to use for

non-experts due to their similarity with flowcharts, and also because they capture

behavioural aspects rather than the structural aspects of a program.

2. The design and development of a customized and fully-featured Activity Diagram

model editor. This editor features strong UML activity diagramming features,

model element relationships and navigation among the model elements between

the model editing space and the customized palette. Moreover, the editor can be

used to design any smart home app.

Chapter 1. Introduction 16

3. The design and development of a compiler that can generate correct execut-

able Java code from UML activity diagrams. This code can be deployed to a

smartphone application in any smart home.

The rest of this thesis is organised as follows. Chapter 2 presents a comprehensive

systematic literature review carried out to answer RQ1 and RQ2. Chapter 3 presents the

research methodology followed throughout the thesis. Chapter 4 defines the architecture

of the proposed solution, followed by Chapter 5 which details the implementation of the

automatic translation tool. Chapter 6 evaluates how well the automatic translation tool

achieves the identified system requirements, especially as compared to other existing

solutions. Finally, Chapter 7 summarizes the thesis and provides future research

directions.

Chapter 2

Literature Review

This chapter carries out a Systematic Literature Review (SLR) to find the literature

evidence about the challenge of lack of interoperability in the context of smart homes. In

addition, finding and summarizing the prior research, this chapter provides justifications

in order to establish credibility. Prior to the SLR, most commonly used terms are

defined, these terms include: smart home, app design model, lack of interoperability

and sensor actuator configurations.

The systematic literature review is followed to find valid and accurate findings

and evidence. This comprises of various phases such as scoping, planning, identification,

screening, and eligibility. During the SLR process, the current state of the art, which

identifies and assesses the existing solutions and products which categorizes them into

research-based solutions and commercial solutions are addressed in detail.Furthermore,

the research questions formulated during the scoping phase are answered with the sup-

port of literature evidence in the findings section of this chapter, which also emphasizes

the research gaps.The identified existing solutions are evaluated on a specific criterion

which in turn supports the design of the proposed tool “The Automatic Translation

Tool”.

17

Chapter 2. Literature Review 18

2.1 Background

This section identifies and emphasizes on relative keywords that will be used throughout

this thesis. The keywords include smart home, app design models, lack of interoperabil-

ity and dynamic sensor actuator configurations.The figure shown below represents a

typical smart home with sensors such as light sensor, a dust sensor and motions sensor,

actuators such as smart light, smart refrigerator, and smart microwave. Also, data from

these sensors and actuators are collected and analyzed by different smart home systems

such as temperature control system, health, and wellness systems and elderly care

systems. As per Figure 2.1., the data from each device, sensor and smart home system

are stored in a cloud-based smart home server and controlled via the wearable sensor.

Figure 2.1: Smart Home

Chapter 2. Literature Review 19

2.1.1 Smart Home

As shown in Figure 2.1 (Jung, 2017), a smart home involves centralized and semi-

automated control of environmental systems such as heat and light with the use of

technology to monitor and control the compatible objects in a smart home environment.

A smart home is a complex entity with a set of diverse systems facilitating various

functionalities in order to occupy the requirements based on information obtained

from smart objects and occupants context (Perumal, Sulaiman, Mustapha, Shahi &

Thinaharan, 2014). Smart homes consist of smart objects which are programmed using

programming languages and are not accessible by end users. Smart homes may consist

of multiple compatible smart objects (Hafidh, Osman, Arteaga-Falconi, Dong & Saddik,

2017).

2.1.2 Visual Plan

Visual plans, also called visual paradigms / patterns, architectural patterns, blue prints.

The use of an app design model when designing software, various additional opportunit-

ies are offered such as high levels of quality improvements, automated code generation,

improved problem solving and design capabilities and overall productivity during the

development of the software (c, Miah & McAndrew, 2016).

2.1.3 Interoperability

As per (Miller, 2000), interoperability is the ability of a system to function with

other systems without the need for need for special effort.This term is also defined by

(Ritter, Zirpins, Schoenherr & Motahari-Nezhad, 2007) as the capability of numerous,

autonomous and heterogeneous systems to use each other’s functions and services

Chapter 2. Literature Review 20

effectively. Furthermore, it involves meaningful sharing of information which in turn

would support the achievement of common goals. In terms of Figure 2.1, interoperability

is the ability of the smart light system and the smart refrigerator to be used in the same

smart home without any challenge in terms of compatibility.

2.1.4 Lack of interoperability

As defined earlier, interoperability is the ability of a system to function with other

systems without special effort from the user’s end. In terms of healthcare and smart

homes, lack of interoperability emphasizes on low levels of ability of multiple tools

and devices to function cooperatively without having the need to obtain functionality

supports from users (Capitanelli, Papetti, Peruzzini & Germani, 2014).

2.1.5 Dynamic sensor actuator configurations

Each smart home has its own sensor actuator configuration, which might differ from

sensor actuator configurations of other smart homes. As shown in Figure 2.1, a smart

home consists of different kind of sensors such as light, temperature and touch sensors

which are connected to their respective devices (such as smart lights and temperature

controls)also know as actuators via smartphone and tablets.

2.2 Systematic Literature Review (SLR)

There are several ways to carry out a literature review for a research study. Two of the

most significant techniques include the traditional literature review and the systematic

literature review (also known as SLR). The traditional method in international research

Chapter 2. Literature Review 21

development mostly and exclusively focuses on the results of other studies without

taking factors such as the research design and data collection methods into consideration.

This technique also is restricted to the literature that is already known by the existing

authors which are found by conducting little more than cursory research (Mallett,

Hagen-Zanker, Slater & Duvendack, 2012). This, in turn, means the same existing

studies are cited frequently which can lead to persistent bias in the literature review.

On the other hand, the systematic literature review emphasizes more strongly

on evidence, impact, casualty and the validity of the research study. This technique

also helps in eliminating research bias by adopting broad search strategies, predefined

search strings and uniform inclusion and exclusion criteria which forces the researchers

to search for studies beyond their subject of research (Mallett et al., 2012). Moreover,

by extracting the information from the research design, the systematic literature review

performs effectively at gauging the robustness of the research evidence. Also, this

method encourages the researchers to engage with the research studies with advanced

criticality and to have a consistent prioritization of empirical evidence over preconceived

knowledge (Mallett et al., 2012).

Therefore, when the above facts are taken into account, the systematic literat-

ure review is chosen as the techniques to be applied when carrying out the literature

review for this research study. In addition to the above-mentioned benefits of applying

SLR over traditional literature review, there are various additional advantages such as

improved quality of reviews through transparency, the inclusion of studies with greater

breadth and improved objectivity and reduction of implicit research bias.

Chapter 2. Literature Review 22

2.3 Process of Systematic Literature Review

2.3.1 Scoping

This part of the research involves formulating research questions based on various focus

areas such as information required in terms of the topic area, who will be your audience;

do you have a clear idea of the research findings that will be relevant to addressing of

the research question chosen, are the formulated research questions answerable (this

would support in achieving successful and informative review).

1. Formulation of Research Questions

In order for the formulation of potential research questions, there is the need

to identify the problem definition which lies in the unresolved challenges area,

which is identified below:

Problem definition: Each smart home may consist of their own sensor-

actuator configuration; therefore, code generation and mobile app develop-

ment for each smart home may be undesirable.

The above-mentioned problem definition leads to the identification and formula-

tion of the below-listed research questions

• Research Question 01 - Which factors lead to the choice of an app design

model to address the challenges such as lack of interoperability when apps

need to operate in different sensor-actuator configurations in different smart

homes?

• Research Question 02 – What are the existing solutions and how do they

meet the factors identified in Question 01?

Chapter 2. Literature Review 23

• Research Question 03 - What are the characteristics of the architecture of

an automatic translation tool, which translates an app design (based on the

model developed after answering Q1) to a customized smart home app?

• Research Question 04 - How can the high-level architecture of an auto-

matic translation tool obtained from Q3 lead towards the implementation of

a prototype automatic translation tool?

2. Clarify if Systematic Literature Review has already been carried out on the

chosen topic

This part of the thesis ensures various factors, such as: if literature review in terms

of the area of focus is carried out previously if relative literature review for the

area of focus exists and does it require improvements and updates. Furthermore,

if the literature review already exists, how long ago were the literature reviews

carried out and if they consist of any potential flaws and errors.

Various readings and literature findings are identified in terms of smart home

scenarios, app design models, automatic code generation and lack of interoperab-

ility. These readings are analyzed and assessed the later current state of the art

section of this chapter.

Lack of interoperability and low levels of compatibility in terms of the health of

elderly people is addressed by Smirek whereby Eclipse Smart Home project is

introduced with Universal Remote Control in 2016 which involves the integration

of various technologies into a single smart home environment. However, use of

this framework may lead to security and privacy issues (Smirek, Zimmermann &

Beigl, 2016).

A translation tool is introduced by (Sinha, Narula & Grundy, 2017) which ad-

dresses the interoperability issues when smart homes are involved with dynamic

nipuniperera
Highlight

Chapter 2. Literature Review 24

sensor actuator configurations. This framework accepts parametric state charts

as user input which may cause complications in terms of user-friendliness and

understandability.

Therefore, although various literature findings in addition to the solutions listed

above exist, which answers the above-defined research question, the above-stated

facts prove that yet there exists room for improvement, this will be addressed in

the new studies that will be carried out later in this chapter.

2.3.2 Planning

This part of the SLR focuses on the breaking down of the chosen research question

into individual concepts in order to generate meaningful search terms and formulate

preliminary exclusion and inclusion criteria. All the chosen research questions would

go through the above-mentioned stages as shown below.

1. Break down of the research questions into individual concepts in order to cre-

ate meaningful terms

Research Question focused: Which factors lead to the choice of an app design

model to address the challenges such as lack of interoperability when apps

need to operate in different sensor-actuator configurations in different smart

homes?

The above-mentioned research question is translated into multiple search terms

which in turn will support in answering the research question as a whole. This

part of the literature review breaks down the above-mentioned question based on

the search terms (search terms are determined by synonyms, broader or narrower

terms, classification terms used by databases) identified below.

Chapter 2. Literature Review 25

• App design models, software design models in software development, Model

Driven Engineering (MDE), Engineering design, software design, design

process, design models and visual models

• Lack of interoperability, inconsistencies, and incompatibilities in smart

homes

• Dynamic sensor actuator configurations and smart homes

Therefore as explained by (Siddaway, 2014), the planning phase of the literat-

ure review involves breaking down the research questions into meaningful sub-

questions taking the keywords into consideration. Hence, the above-mentioned

research question is broken down into three sub-questions based on the key factors

and keywords identified above. The sub-questions are as shown below:

• Which factors influence the need for an app design model (app design model

can also be called the above-mentioned relative search terms)?

• How do challenges such as lack of interoperability incur during the practice

of various smart homes?

• How does the introduction or use of a specific app design model ensure a

low level of interoperability in dynamic sensor actuator scenarios?

The answers to the above-identified sub-questions are provided in the findings

section of this chapter.

2. Formulate preliminary inclusion and exclusion criteria

• Research Question: Which factors lead to the choice of an app design

model to address the challenges such as lack of interoperability when

apps need to operate in different sensor-actuator configurations in differ-

ent smart homes?

Chapter 2. Literature Review 26

• Definition or Conceptualization: App design model, Lack of interoperab-

ility, Different sensor-actuator configurations, Smart home, Healthcare and

people with disabilities

• Measures/Key Variable : What is the need for an app design model?,How

does the introduction or use of a specific app design model ensure low

level of interoperability in dynamic sensor actuator scenarios?,How does

the introduction or use of a specific app design model ensure low level of

interoperability in dynamic sensor actuator scenarios?

• Research Design : Qualitative study

• Participants : N/A (focused participants in the development include old

age people, people with disabilities and people with special needs)

• Time Frame : No particular time frame for now

When carrying out the inclusion and exclusion criteria, various keywords were

excluded from the search criteria, this includes smart cities, wireless sensor

networking, blue tooth, and Wi-Fi. Additional words will be added here when

further research is carried out.

In addition to answering the formulated Research Questions, during the planning

stage of the Systematic Literature Review, an exclusion inclusion criteria are

carried out in order to ensure the accuracy and validity of the readings carried

out during the research. For this purpose, various techniques are performed, this

includes: sorting the search results and readings based on the keywords, for each

reading excluded during the exclusion and inclusion criteria, reasons are provided

as to why they are being excluded.

As mentioned above, PRISMA (Preferred Reporting Items for Systematic Re-

views and Meta-Analyses) (Haroutiunian, Nikolajsen, Finnerup & Jensen, 2013),

Chapter 2. Literature Review 27

is practiced during the exclusion and inclusion criteria of research and readings,

this involves readings been assessed at various stages in terms of a flow chart

which consists of various steps.

Step Funtions No.of Records

Identification Records identified through database searching 31
Additional records identified through other sources 0

Screening
Records after duplicates are removed 30
Records screened 30
Records excluded 01

Eligibility Full text articles assessed for eligibility 30
Full text articles excluded with reasons 01

Included Studies included in qualitative synthesis 30
Studies included in qualitative synthesis (meta-
analysis)

30

Table 2.1: Inclusion and Exclusion Process

Generally, during the inclusion and exclusion criteria of the readings, in

addition to the repeat of readings, various other factors were taken into consideration,

these factors include the choice of search engines, keywords used and relative abstracts

of each reading chosen.

The above-shown table illustrates how the steps indicated by PRISMA are

taken into account when excluding the research studies that are invalid, repeated or not

relevant to the area of research focus. When Table 2.1 is taken into consideration, only

one research study is excluded due to repetition.

2.3.3 Searching

This section of the Systematic Literature Review involves finding available published

and unpublished work which addresses the research questions identified above. This is

carried out in various ways. The ways are as described below, which is related to the

research area of interest.

Chapter 2. Literature Review 28

Even though various search engines are available, chosen search engines

were used to find the readings, these search engines include Google Scholar, IEEE

and AUT Library which supported in finding the readings in relation to the research

area of interest. When the context of each chosen article is taken into consideration,

various aspects of the article were given importance, these aspects include abstract

which gives an overview of the article, journal or the conference paper. In addition to

the abstract, keywords highlighted in the articles would be taken into consideration in

order to ensure the accuracy of the mapping of the focused keywords and keywords

provided in the chosen article. As mentioned above, various keywords will be used

during the searching process of the readings. This process involves uses of relative

keywords such as smart homes, lack of interoperability, app design models, Source code

generation, IoT, dynamic sensor actuator configurations, elderly care, dynamic smart

homes, flexible IoT apps, and deployment of mobile applications (Moher, Liberati,

Tetzlaff, Altman & Group, 2009).

Furthermore, Boolean search operators are taken in to consideration which

involves the use of AND and OR between the keywords used during the search process,

for instance: lack of interoperability and smart homes and use of “NOT” to ensure

unnecessary context is not found, for instance: “smart homes NOT Smart Grids”.

Additionally, various other search terms were carried out with the support of Boolean

search operators during the search process, these search terms include:

• Smart Homes AND Lack of Interoperability

• mHealth Apps AND Aging Population

• UML Diagrams AND Automatic Code Generation

• App design models AND Lack of Interoperability

Chapter 2. Literature Review 29

This part of the systematic literature review also focuses on inspection of

search results, which involves examination of search results in order to ensure higher

levels of accuracy and quality. This is ensured in various ways, such as: (1) ensure

effectiveness and reliability in terms of the inclusion and exclusion criteria carried

out (2) identification of new and additional search terms such as architectural designs,

automated code generation, code design and testing in relation to the smart home

scenarios (Moher et al., 2009).

In addition to the facts mentioned above, additional searches are carried out

to ensure that potential readings are published. This is ensured by considering the

number of references in the readings chosen and by attempting to find the relevant

context in potential book chapters, this includes the Prototyping Methodology proposed

by Kenneth E.Lantz and Software Architecture in Practice by Len Bass.

2.3.4 Screening

This part of the systematic literature review involves exporting the search results to a

citation manager, in this context, the citation manager is EndNote. Use of EndNote

provides various benefits. These benefits include: the search results are saved and

backed up which would eliminate data loss issues, use of cite manager reduces the

search result duplication which eliminates issues in terms of data redundancy, EndNote

provides the ability to share the search results with other users and compile the search

result list in to a form of array of reference styles (Moher et al., 2009).

Chapter 2. Literature Review 30

2.4 Current State of Art

This section of the chapter identifies and assesses existing solutions, these existing

solutions are categorized in to two subsections, i.e.: research-based solutions such

as: Simple Internet of Things Enable (SITE), a proactive architecture for Internet of

Things, rule-based intelligence for domotic environments and IoT suite framework

and commercial based solutions such as: Eclipse Smart Home project supported by

Universal Remote Control, ZigBee Alliance and LonWorks and translation tools to

support automatic code generation.

2.4.1 Research Based Solutions

Various studies and developments have been carried out to address various challenges

confronted by the users of smart homes. Even though the use of smart homes have

provided the solutions for few of the challenges such as fall and disaster predictions

and detections, few other challenges remain unsolved, which will be addressed in this

subsection of the thesis.

Simple Internet of Things (SITE)

(Hafidh et al., 2017) presents a simple Internet of Things enable (SITE) which is a smart

home solution that allows the users to specify and gain control of Internet of Things

(IoT) smart objects. This commercial based solution supports end-users by providing a

user interface which graphically illustrates the data obtained from smart objects which

in turn enhances usability and user-friendliness.

The End User Development (EUD) paradigm proposed by Hafidh allows the

Chapter 2. Literature Review 31

end users to design the smart home applications visually with the use of a pen-based

interface. This, as a result, permits the end users to specify the input and output devices.

Also, the users are allowed to set up behavioral logic using “if-then-else” statements

which describe the preferred conditions and associations by every specific user (Hafidh

et al., 2017).

The EUD paradigm is based on a smart home control and monitoring system

known as the Simple Internet of Things Enabler (SITE). This solution interacts with

two types of entities, i.e.: users and Smart Objects (SOs). This solution defines a user

as an individual that creates as an SOs with the use of General Purpose Transducers

Network (GPTN), this configures a smart home environment by sending commands to

smart home objects (SO) and visualize the information produced by the smart home

object by using SITE Central Visualization and Control CVC. In order to configure a

smart home environment, the user is allowed to specify the function the SITE CVC

should perform in order to respond to the data received from sensors of the smart object

(SO) (Hafidh et al., 2017).

Even though this solution aims to achieve higher levels of usability, few of

the models remain untested which leaves the attempt to achieve better levels of end-user

usability unachieved to a certain extent (Hafidh et al., 2017). In addition to the above,

the area of focus including the problem definition and the formulated research questions

aims to achieve lower levels of interoperability which is not addressed by this solution,

which leaves the existing challenges unaddressed thus leaving room for improvement.

Parametric State Charts

Furthermore, the above-mentioned solution does not address the problem of lack of

interoperability when smart homes are dealt with dynamic sensor actuator configurations.

Chapter 2. Literature Review 32

Thereby a translation tool is proposed by (Sinha, Narula et al. 2017) which accepts a

parametric state chart with a specific static sensor actuator configuration and converts

to a standard state chart which is compatible with the given system configuration.

This, in turn, can be translated and compiled to an Android code with the help of

a code generator and a custom compiler (Sinha et al., 2017). Although the above-

mentioned solution addresses the problem definition largely and provides appropriate

and relative solutions for various challenges such as low levels of interoperability

and compatibility, use of statecharts in the process may introduce the users to further

challenges. These challenges include, as the systems improve in size the statechart may

become complicated and become difficult to understand (Zhang, Roy et al. 1999). As

this project is mainly focused on elderly people, level of user-friendliness and the need

to understand the system stand as important factors.

Furthermore, state charts offer limited potential reuse, although actions asso-

ciated with transition provide a powerful extension, repetitive use of these actions may

move parts of the systems’ state information from the states themselves to variables,

which in turn may cause difficulties during the analysis stage (Zhang, Roy et al. 1999).

A Proactive Architecture for IoT

A proactive architecture for the Internet of Things supporting management of smart

homes is identified by (Perumal et al., 2014). This solution addresses various com-

plications confronted by smart home users, these challenges include: huge diversity

of various smart home applications has caused interoperability requirements and cur-

rent IoT management along with the practice of physical platforms have confronted

challenges such as lack of intelligence on decision making.

Chapter 2. Literature Review 33

The proactive architecture consists of various layers to perform decision-

making functions for the IoT systems. The core layer consists of the web services that

offer service coupling between the system and its services, this layer also represents

a set of IoT systems, home gateway, and web service modules. The home gateway

functionality enables access to external networks. In addition to the above, as mentioned

previously, lack of interoperability and challenges in terms of compatibility occur during

the introduction of new devices to a smart home system, this challenge is addressed by

the practice of specific modules such as device APIs and device stub in order to ensure

new systems’ dependencies.

As per the above stated facts in relation to the proactive architecture for IoT

management in smart homes, it proves that even though lack of interoperability is

addressed to a greater extent with the use of different layer and inclusion of different

modules in the architecture, the challenge of usability in terms of end-user context is

left unaddressed thus leaving room for improvements.

Rule based intelligence for Domotic Environments

Rule-based intelligence for domotic environments (Bonino & Corno, 2010) is largely

supported by home automation systems mainly on human-related environments from

homes to hospitals. This specific solution aims to address two main challenges, such

as lack of interoperability and insufficient support for advanced user-home interaction

(Bonino & Corno, 2010). Bonino’s research work defines a solution to address these

challenges, which is, Intelligent Domotic Environment (IDE) which allows integra-

tion of different automation systems, appliances, and devices into a single powerful

environment, which is capable of providing Ambient Intelligence (AmI) functionalities.

As mentioned above, IDE addresses the challenge of lack of interoperability

Chapter 2. Literature Review 34

with the support of a strong modeling component, whereby a specific home is envir-

onment is presented through formal definition in the form of an ontology. Modelling

allows to make device descriptions independent of technology-specific aspects thus

enabling integrated automation scenarios (Bonino & Corno, 2010).

In addition to the practice of IDE, rule-based reasoning is adapted to identify

the behaviors of IDE. This methodology supports in defining rules for a home environ-

ment with the support of structural rules which allows checking constraints for smart

home or smart plant configurations with respect to architectural elements, devices, and

appliances (Bonino & Corno, 2010). Additionally, structural rules are able to verify the

in-house conditions depending on the current state of the device which in turn provides

support for advanced policies. Even though the feasibility studies show higher levels

of efficiency in terms of rule-based reasoning, the results also emphasize on lower

levels of flexibility during multi-stage reasoning (Bonino & Corno, 2010). In addition

to the above, various other challenges still continue to exist even after this solution

was adopted, these challenges include the challenge of handling complexities during

dynamic and uncertain environments and the challenge of cooperating devices with

varied (Bonino & Corno, 2010).

Architecture for Software Defined Smart Homes

(Xu, Wang, Wei, Song & Mao, 2016) proposes an architecture for software-defined

smart homes which divides the smart home platform into three layers, these layers

include smart hardware layer, a control layer, and external service layer. Each of the

above-mentioned layers consists of various devices and offers a variety of functionalities

and services. The smart hardware layer consists of all types of smart hardware at a

smart home, this includes smart sockets, smart bands, sensors, and cameras. The control

Chapter 2. Literature Review 35

layer provides central management services which in turn supports in physical hardware

deployment at a smart home, abstraction of equipment deployed in the cloud which

can also be generated through traditional intelligent devices. Furthermore, the control

layer is designed to protect the hardware details of the hardware in the smart hardware

layer thus perceiving and analyzing the user demands and supporting the automatic and

intelligent management of smart homes. The external service layer incorporates existing

home service resources thus offering high-quality and highly efficient personalized

services (Xu et al., 2016). This architecture offers variety of features, these features

include: (1) centralized controlled which offers global information, configuration and

optimization thus enhancing on accurate and comprehensive information collection and

effective management, (2) open interface which allows seamless integration between

applications and networks, this, in turn, may offer additional benefits such as editable

dynamic interfaces and easier access and (3) network virtualization which involves

decoupling of networks from physical networks and robust fault tolerance, this, in turn,

offers other benefits such as independent connections, support during partial network

during (Xu et al., 2016).

Even though the above-mentioned architecture is practiced in smart homes

with the variety of benefits offered, there still exists relative challenges and drawbacks.

They include: security and privacy issues in terms of family: although system design

and platform architecture provides accurate user requirements along with personalized

customer services, to ensure the information used is not stolen and if stolen can lead to

higher levels of security and safety issues for the smart home users which in turn would

also lead to huge economic loss (Xu et al., 2016).

Chapter 2. Literature Review 36

Ontology System

(Li et al., 2012) proposes an ontology system which specifies the semantic information

about the devices, services, and workflows involve in a particular smart home which

also allows the users to compose and recompose services based on their preferences

and requirements. Furthermore, this ontology system allows the users to add and

remove preferred services and devices into an ontology which is supported by an

automation system such as a code generation process. This research-based home

automation solution involves the practice of three steps such as abstract workflow design,

construction of functions, device recovery and code generation which is supported

by various computing platforms such as Java and Open Services Gateway initiative

environments.

Thereby, the proposed ontology system supports rapid construction of smart

homes using the framework which involves various functionalities such as discovery

and composition using the current services and workflows. By proposing the ontology

system, (Li et al., 2012) aims to address three challenges confronted by the smart home

users, these challenges are constructed around (1) integration of devices in a single

smart home in order to create a set of complex intelligent control services addressing the

interoperable workflows and other relative services, (2) process of discovering devices

in a smart home and (3) carrying out services and recovery process during device and

service failure. In order to address these issues, ontology introduced by (Li et al.,

2012) consists of four components such as a smart home knowledge base to store the

knowledge about the services and devices and household profile involved in a specific

smart home.

Moreover, the smart home knowledge base also consists of an ontology system

which holds the semantic information and knowledge specifications and reasoning of

Chapter 2. Literature Review 37

the smart home. Secondly, the solution consists of a service modeling and composition

to provide the service specifications supported by the modeling platforms including

the security policies for the ontology. Thirdly, a code generation process is included in

the solution which translates the model created to code using the CodeSmith template.

The code generated can also be used by other target systems such as Web services and

OSGI (Open Service Gateway Initiative) services. A service deployment process is used

to deploy the code generated in an execution engine. Finally, this ontology solution

involves a service execution management where services can be uploaded and scheduled

to run, which allows the devices to send and receive commands and messages to and

from the devices of a specific smart home. During a device failure, the execution engine

is designed to change the control software using other services in order to prevent the

potential failures (Li et al., 2012).

However, even though the ontology models tend to answer the challenge

of lack of interoperability in a smart home unit to a greater level, there still exists

gaps. These gaps include the requirement of improved levels of knowledge in terms of

engineering skills, lower levels of support provided in terms of time-related seasoning,

ontology modeling being computationally expensive and limited ability to deal with the

uncertain and dynamic context of objects (Ni, García Hernando & de la Cruz, 2015).

Even though the above-mentioned solution attempt to address the challenges

such as lack of interoperability which is the main challenges this thesis aims to address,

this specific solution does not address the challenge of low levels of interoperability

during the integration of various appliances or devices in to a single smart home environ-

ment, this in turn leaves room for further improvement and challenge of interoperability

in terms of variety of device integration unaddressed.

Chapter 2. Literature Review 38

2.4.2 Commercial Based Solutions

Eclipse Smart Home (ESH)

Lack of interoperability and low levels of compatibility occur during the addition of a

new device to the smart home or integration of various other devices to the smart home.

These challenges are addressed by Eclipse Smart Home (ESH) project and Universal

Remote Control (UCL) (Smirek et al., 2016). Lukas Smirek proposes a framework to

support the integration of multiple technologies into a single smart home system thus

ensuring that personalized user interfaces are provided to each different smart home

user (Smirek et al., 2016).

Smirek also focuses on the elderly people and their need to use user-friendly

interfaces and devices, therefore a separation between the physical devices and its

abstraction in relation to the smart home system is carried out through a special user

interface. Furthermore, ESH provides a flexible framework, which provides modules

for abstraction and translation functions thus enabling use cases and interaction across

protocol boundaries. This is supported by IoT platform (Smirek et al., 2016). Even

though this integrated system offers open personalized user interfaces based on a

resource server, this may yet result in misuse and injection of malware, thus causing

security and privacy issues (Smirek et al., 2016).

This, in turn, may cause further challenges in relation to usability, reliability,

and user-friendliness of the mobile apps and the smart home procedure as a whole

(Bonfè, Fantuzzi & Secchi, 2013). This has caused gaps in terms of compatibility,

usability between the existing solutions and the requirements of the aging community

and challenges in terms of a level of interoperability when different smart homes

are introduced with differed sensor-actuator configurations (Bonfè et al., 2013). The

Chapter 2. Literature Review 39

problem of interoperability between different smart homes may occur due to its use of

dynamic sensor actuator configurations (Smirek et al., 2016).

AppleHealth

As mentioned previously, IFTTT, presented by (IFTTT Inc., San Diego, CA, USA)

is an action-reaction middleware which allows users to connect to web services with

the support of chains of conditional statements. This particular technology enables

the users to capture the changes occurring in the state of web services which would

be useful when triggering their own application according to the respective changes.

Likewise, AppleHealth offers an interaction solution in order to centralize the mobile

health applications to support the management of health information (Vega-Barbas,

Pau, Martín-Ruiz & Seoane, 2015). However, in order to use the above-mentioned

technologies, the users need to have prior knowledge in regard to web environments

and gain familiarity with, the web applications in order to take advantage of the services

offered by these technologies (Vega-Barbas, Pau, Martín-Ruiz & Seoane, 2015).

SmartThings by Samsung

In addition to the above, SmartThings offered by (SmartThings Inc., Samsung, Wash-

ington, DC, USA) allows the end users to control and monitor their smart home from

a usable mobile application (Vega-Barbas, Pau, Martín-Ruiz & Seoane, 2015). This

platform also permits interconnection of various smart home elements such as furniture,

doors and electrical appliances such as sensors and actuators which in turn may support

automation of human tasks in a home. Additionally, there exist other relative commer-

cial solutions such as GrandCare system and BeClose which perform tasks similar to

SmartThings by Samsung, however, emphasizes mainly on elderly care (Vega-Barbas,

Chapter 2. Literature Review 40

Pau, Martín-Ruiz & Seoane, 2015).

However, according to (Fox-Brewster, 2016), anyone relying on SmartThings

critically for home security purposes may confront various vulnerabilities. Although in

a smart home environment of SmartThings hub is connected to a homes’ own motion

sensors which act like traditional alarms and notify people when an absurd activity is

detected. This system allows hackers to enter a smart home undetected. Even worse,

when connected to a smart lock, (Zillner, 2015) proves that a robber can break into a

smart home without the support of any brute force. Even though SmarThings have not

revealed this to its users, this can lead to critical security issues.

UbiQ Scenario Control

UbiQ Scenario Control designed by (Advantech, 2009) offers a centralized home

automation system which supports lighting control, home security systems, emergency

warning system, door entrance intercom and other community services. This solution

uses a scenario manager to support the configuration of different multiple devices.

Additionally, Nokia has introduced a Home Control Centre (Hayes & Black, 2006)

offering an open platform which allows third parties to integrate different smart home

services and solutions. This solution consists of a control panel which allows the smart

home users to monitor and control the devices. Even though the solutions are statistically

defined, they do not offer the users with the functionality of personalizing the services,

addition or removal of devices without the assistance of the service providers (Li et al.,

2012). This, in turn, leaves gaps in relation to usability and interoperability during the

use of multiple devices in a single smart home unit.

Chapter 2. Literature Review 41

MisterHouse

MisterHouse, an open source smart automation program (Mäyrä et al., 2006) is written

in Perl and involves execution of actions by time, voice and serial data. This solution

offers an execution platform which supports multiple platforms. These platforms

include Universal Powerline Bus, Z-Wave, and ZigBee. However, in order to practice

this platform, the end users need to be expertise in Perl which as a result may hinder

some of the users for developing their own control system for the smart home (Li et al.,

2012). This may also pose challenges in relation to usability and user-friendliness of

the system overall.

Calaos - An Open Source Automation Smart Home Project

Calaos, an open source automation smart home project involves a software stack written

in C++ and consists of a server domain, a touchscreen interface, a web interface and

a mobile app supporting both iOS and Android. This also comprises of the require

configuration tools and the complete operating system which allows the users to create

a smart home automation solution. Calaos aims to produce an entire software suite

which allows the users to configure, control and monitor the smart home according to

their preferences.

Furthermore, Calaos consists of a custom version of Linux designed espe-

cially for IoT which includes a server platform to centralize third-party devices and

as mentioned previously, supported by mobile apps such as Android and iOS which

allows the users to control the complete smart home system from a single interface thus

enhancing the aspect of usability.

In addition to the above, the source code of Calaos is released under the

Chapter 2. Literature Review 42

open source license which in turn would allow anyone to view the code and make

amendments which would also help them in designing their own custom version of the

software thus enhancing the aspect of personalization and in turn usability of the overall

platform.

However, there exist challenges in terms of security and privacy with the code

being available as open source platform which would allow anyone to hack into a smart

home system. On the other hand, this open source home automation system allows

any hardware developers to ensure their hardware is compatible with a particular smart

home system thus assuring improved levels of interoperability during the integration of

various devices into a single smart home unit.

Criteria Definition
Usability Degree to which the smart home user understands and

adopts to the device. Usability may also depend on the
need to have prior knowledge about the way the device
needs to be used (Demiris, Oliver, Dickey, Skubic & Rantz,
2008).

Interoperability refer to Section 2.1.3 of this chapter
Security The ability of any user (unauthorized users) to gain access

to a smart home may cause lead to security issues (Zillner,
2015).

Customizable The ability to customize the application based on smart
users’ preference (Groppe & Mueller, 2005).

Table 2.2: Defining Criteria to Compare Existing Solutions

As shown in table 2.3, all the existing solutions (this includes both research-

based and commercial based solutions) are illustrated in the form of a table. The

existing solutions are evaluated against the most common features addressed by most

of the solutions that are also directly related to the problem definition and the proposed

solution of the thesis. The crosses define the how the solutions are unable to achieve

those factors to a considerable level, the correct mark denotes how the solutions have

been successful in achieving the respective factors and N/A implies how the solutions

have not addressed those factors when building the framework or the device.

Chapter 2. Literature Review 43

Base Solution Name Comparison Criteria
Usability Interoperability Security Customizable

Research

Simple Internet of Things
(SITE)

× × N/A ✓

Parametric State Charts × ✓ N/A ✓

Proactive Arhcitecture × ✓ N/A N/A
Rule Based Intelligence × ✓ N/A N/A
Architecture for SDSM ✓ ✓ × ✓

Ontology System × × N/A N/A

Commercial

Eclipse Smart Home × ✓ N/A ✓

AppleHealth × N/A ✓ ✓

SmartThings × ✓ × ✓

Ubiq Scenario Control × ✓ N/A ×

MisterHouse × ✓ N/A N/A
Calos × ✓ × N/A

Table 2.3: Comparison of Existing Solutions

Therefore, when the above table is considered, every solution fails to meet at

least one of the stated factors. As the two most important factors being interoperability

and usability, even though some of the solutions meet the quality of interoperability,

they fail to be effective in terms of usability. Therefore, the proposed solution would

mainly focus on being both usable and interoperable in smart home environments thus

ensuring the research gap identified in this stage of the systematic literature review is

eliminated to a greater level.

2.5 Findings

This section of the literature answers the previously formulated research questions,

identifies and elaborates on the current solutions, evaluates the current solutions and

identify current and existing gaps. As addressed previously, the research question

broken down into three sub-questions which are answered comprehensively as shown

below.

Chapter 2. Literature Review 44

2.5.1 Factors leading to the choice of an app design model

1. Which factors influence the need for an app design model (app design model

can also be called the above-mentioned relative search terms)?

The use of an app design model when designing software, particularly when UML

diagrams are used, various additional opportunities are offered, such as high

levels of quality improvements, automated code generation, improved problem

solving and design capabilities and overall productivity during the development

of the software (c et al., 2016). Shorter lead-time is provided by increasing the

level of abstraction, which in turn reduces the gap between the problem definition

and the proposed solution with the use of app design models (c et al., 2016).

As mentioned above, in the search terms, even though Model Driven Engineering

was identified as a similar term and claim to manage complexities and provide

improved levels productivity and software quality during software development,

there are very little literature findings proving its improved levels of effectiveness

and usability (Mohagheghi & Dehlen, 2008).

In addition to the MDE, various another modeling of object-oriented software

along with the practice of other methodologies are practiced. These methodolo-

gies include: Jackson Structure Design (JSD), Object Modelling Technique

(OMT), Booch method and Object-Oriented Software Engineering (OOSE),

which support structural design during software development to a greater, extend.

However, these techniques may introduce to additional challenges such as; JSD is

identified as a poor approach and lightly supports the approach of high-level data

analysis and database design, use of pseudocode representation may introduce to

further complexities in terms of usability and understandability (Loomis, Shah

& Rumbaugh, n.d.). Furthermore, Booch method practices detailed description

Chapter 2. Literature Review 45

levels of the notation, which results in, challenges such difficult to understand and

the risk of information fragmentation across various diagrams, this, in turn, would

result in challenges in terms of usability (Jungclaus, Wieringa, Hartel, Saake &

Hartmann, 1994).

Few of the types of app design models may introduce various challenges as men-

tioned above, however, adoption of an app design model overall may support in

achieving various functionalities during software development. These functional-

ities include traceability, communication, code design and generation and testing

(c et al., 2016). Furthermore, software architecture and architectural designs

cater to various other functionalities such as general software architecture design

activities, generates generic artifacts, performed tasks and used or recommended

techniques (Reyes-Delgado et al., 2016).

In addition to the above-mentioned factors, design modeling enhances on various

other functionalities during the software architecture design process, they include

backlog control, architectural analysis, architectural synthesis and architectural

evaluation (Reyes-Delgado et al., 2016). Furthermore, as the software architecture

may lead to complex procedures, an iterative process can be practiced during

the design and development stages, which may provide further benefits such as

improved software quality (Reyes-Delgado et al., 2016).

In addition to the facts mentioned above, even though UML diagrams are ad-

dressed as a whole previously, this part of the systematic literature review would

focus on different types of UML diagrams and their relative factors highlighting

the need for such app design models. As mentioned previously, UML diagrams

support automatic code generation to a greater extent which in turn provides 100

percent complete source code. In addition to the above, UML diagrams used

for system structures and modeling may provide high-level design details of the

Chapter 2. Literature Review 46

system which would support the programmer to a greater level during the system

implementation. These high-level details include variable declarations, initial-

izations, pre-defined constant values, method definitions and class definitions

(Viswanathan & Samuel, 2016).

When different types of UML diagrams are taken into consideration from an

individual perspective, state charts are recognized to be the first candidate which

is suitable for event-driven applications due to an ability to show the state changes

of a particular object during its lifetime (Viswanathan & Samuel, 2016). However,

state charts/ state models fail to support behavioral modeling which is provided

by activity diagrams. They also support in representing the control flow of the

system from one activity to another. Furthermore, activity diagrams have the

ability to specify which object is responsible for which activity which is identified

as a unique feature when compared with the featured offered by other existing

UML and modeling diagrams (Viswanathan & Samuel, 2016). Moreover, this

feature supports automatic code generation to a greater extent.

Even though activity diagrams concentrate on control flow generation, method

definition is not generated by activity diagrams even if the actions inside the

activity may not be specified by the activity diagrams. However, fine-tuning the

activity models in order to include these details may enhance the automatic code

generation procedure to a greater level (Viswanathan & Samuel, 2016).

As mentioned previously, UML state machines and state charts are most widely

used to specify the dynamic behavior of reactive systems. However, generating

code from state machine diagrams may lead to further complexities due to its

dynamic environment which in turn may cause incompatibilities state machine

specification concepts and object-oriented programming languages (Domı, Pérez,

Chapter 2. Literature Review 47

Rubio et al., 2012). On the other hand, state charts will provide various bene-

fits during the software development stage, this includes software maintenance,

modularity and re-usability (Domı et al., 2012).

In addition to the above, various other types of UML diagrams such as class

diagrams and sequence diagrams are used during the software design phase.

Sequence diagrams support in significantly improving the comprehension of

software requirements which in turn may help in generating better comprehend

functional diagrams. However, during source code comprehension and code

generation, sequence diagrams as UML diagrams generated requirement engin-

eering process may abstract the problem definition thus neglecting the design

and implementation details during the development stage (Gravino, Scanniello

& Tortora, 2015). Moreover, UML class diagrams emphasize on source code

comprehension (Gravino et al., 2015).

The above-mentioned factors prove the need for an app design model during the

design and development of an application despite few relative challenges, which

can vary, with the choice of the type of app design model.

Chapter 2. Literature Review 48

2. How do challenges such as lack of interoperability incur during the practice

of various smart homes?

Design and creation of smart homes have introduced the problem of lack of inter-

operability (Capitanelli et al., 2014). Lack of interoperability or in other words

low levels of consistency and compatibility may occur during the incorporation

of various devices into a single a smart home. These complexities may occur

due to various reasons such as integration of different models of different smart

devices, different devices.

Even though numerous smart homes are designed which involves the incorpor-

ation of strongly technology-oriented devices, lack of interoperability during

the integration of devices would lead to further challenges such as neglected

user satisfaction and benefit analysis (Capitanelli et al., 2014). In addition to the

above, during the smart home scenarios, lack of interoperability, higher levels of

consistency and compatibility may occur when different devices are incorporated

to provide a customized system design to match various users’ needs and habits

(Capitanelli et al., 2014).

As mentioned previously, lack of interoperability is regarded as one of the main

issues during the design and development of a generic smart home, which has led

to further costs during the integration of various smart home devices (Stojkoska

& Trivodaliev, 2017). Various products such as Z-Wave and ZigBee are designed,

which includes product properties which require for different vendors to build

interoperable devices to support home automation and healthcare. The above-

mentioned devices are designed to ensure easy integration and higher levels of

interoperability (Stojkoska & Trivodaliev, 2017).

IoT (Internet of Things) architecture with the support of wide range of devices

Chapter 2. Literature Review 49

and software apps allows to carry out multiple functionalities such as home auto-

mation, remote monitoring, and healthcare. When the focused area which is

mobile health applications are taken into consideration to support run rehabilita-

tion system, various devices are integrated to add to a smart home in order to run

various applications preferred by the user or patient. These applications include

rehabilitation plans, fall detection plan, weight management plan, diabetes man-

agement app and medication reminder app (Sinha et al., 2017). Thereby, due to

the users need to use various applications which are provided by various devices

may lead to the need for the integration of existing devices or addition of new

devices to a single smart home. This, in turn, may lead to lack of interoperability.

As stated previously, various devices are integrated to address different health

issues in a smart home when catering to the aging community and healthcare

scenarios. Every device consists of its own sensor actuator configuration and

when integrated into a single smart home may lead to challenges in terms of

interoperability and compatibility.

In addition to the above, various other technical challenges are introduced in

terms of interoperability while attempting to integrate health and other types of

data and information which is used or required by various devices in a single

smart home (Gay & Leijdekkers, 2015).

Therefore, although various solutions such as the use of mobile applications are

practiced to achieve low levels of interoperability during smart home scenarios,

this challenge is yet confronted as per the above-mentioned facts.

Chapter 2. Literature Review 50

3. How does the introduction or use of a specific app design model ensure high

level of interoperability in dynamic sensor actuator scenarios?

Various types of visual designs and app design models are used to achieve high

levels of interoperability during varied dynamic sensor actuator configurations

in smart home scenarios. This has yet led to further challenges such as low

levels of interoperability and the need to write a new piece of code for every new

installation or a change of an existing device (Sinha et al., 2017).

In order to overcome these challenges, app design models and UML designs

such as dynamic modeling (statecharts) are introduced to present an appropriate a

formal design to design an app which in turn may support in generating the code

automatically. This may eliminate the need to write the code repeatedly every

time a new device is added or integrated. Furthermore, the chosen app design

model would be compatible in other application areas apart from smart home

and health-care scenarios where the designed software may achieve higher levels

of flexibility in order to interact with dynamic sensor actuator configurations.

This, in turn, may support in achieving improved levels of compatibility and

interoperability (Sinha et al., 2017).

In addition to the above facts, a practice of design model apps may cater various

other benefits in relation to the health apps and healthcare scenarios. These

benefits include: formulation of an app design model may capture the inherent

flexibility of a particular software that is able to interact with dynamic sensor

actuator configurations in IoT systems, an existing app design model which is

built to perform a specific function, for instance app design model designed for fall

detection mechanism can also be reused to support other similar functionalities

such as alert mechanism provided that dynamic sensor actuator configurations

are compatible (Sinha et al., 2017).

nipuniperera
Highlight

Chapter 2. Literature Review 51

When the above-mentioned facts are taken into consideration, the practice of a

relevant app design model supports in code reusability and app design reusability

thus addressing the previously mentioned challenges, such as lack of flexibility,

inconsistency, interoperability, and incompatibility.

During the choice of an app design model, various criteria should be accomplished

before the code generation, the criteria include: should be easy to use, higher

levels of understandability by any domain expert in terms of the language used.

Also, the chosen app design model should be highly formalized in order to support

the translation to a mobile code without having the need to obtain to manual effort

(Sinha et al., 2017).

Even though the choice of an app design model for IoT systems such as smart

homes is critical, this may provide further relative benefits. These benefits include:

the modeling language supports to develop and design workflows for multiple

systems (Sinha et al., 2017).

2.5.2 Evaluation of Current Solutions

This section of the literature review answers the second research question, which is:

What are the existing solutions and how do they meet the factors identified in

Question 01?

This will be answered in form of a table as shown below. As identified

previously, various relative existing solutions exist in terms of the development of IoT

deployment devices for smart homes. These identified solutions will be assessed in

order to acknowledge the relative factors which were identified in research question 01.

The existing solutions and their related factors which lead to the choice of an app design

model due to challenges such as lack of interoperability are shown in the table below.

Chapter 2. Literature Review 52

Factors Definition
Quality Improve-
ments

Quality of app design models are determined with consistency
between various app design models where they represent the
same system but from different viewpoints. Thereby, change in
one app design model should not affect the existing underlying
models (Bashir, Lee, Khan, Chang & Farid, 2016).

Automated Code gen-
eration

This involves the translation of implemented specific details,
which is carried out with the support of structural modeling, a
combination of multiple models and other relative algorithms
(Viswanathan & Samuel, 2016).

Improved problem
solving

Involves generation and analysis of how processes can be re-
designed, this may also involve visual representations (Figl &
Recker, 2016).

Improved levels of us-
ability

Usability ensure better levels of performance and flexibility dur-
ing app modeling (Gravino et al., 2015).

Traceability Manages and maintains the transformation of models and re-
quirement exchange and corresponding changes of the models
(Gravino et al., 2015)

Software architecture
design activities

Adds quality to software development procedures, provides arti-
facts to support software development process, provide support
in various other areas such as activities, tools and provide an
elaboration of software systems (Reyes-Delgado et al., 2016).

Task performance Aims to achieve an acceptable level of reliability with the use of
various app design models (Gu et al., 2012).

Backlog control Keeps a track of the requirements and informs about the changes
required to be made during various stages of the software design
and development (Jacobson, Spence & Kerr, 2016).

Architectural ana-
lysis, synthesis and
evaluation

Aims at identifying the critical components of the architecture,
focuses on automation of UML models and evaluation determines
a reliability of software at design level (Ayav & Sözer, 2016).

Behavioral modeling Represents dynamic aspects of software during the development
stage (Bashir et al., 2016).

Representation of the
control flow of the
system

Ability to support both dynamic and static aspects thus enhancing
system performance and reducing system complexities ((Xie, Liu,
Hu, Yang & Fu, 2015)

Specification of
which object is
responsible for which
activity

Ensures better levels of clarity and under stability of each activity
and its effect on other relative activities (Bashir et al., 2016)

Software mainten-
ance, modularity, and
reusability

Enhances on modifications and changeability during software
design and development (Fernandez-Saez, Genero, Chaudron,
Caivano & Ramos, 2015)

Table 2.4: Selection Criteria of App Design Model

Chapter 2. Literature Review 53

Factors Class Sequence Activity StateChart
Quality Improvements ✓ ✓ ✓ ✓

Automated Code generation ✓ ✓ ✓ ✓

Improved problem solving ✓ ✓ ✓ ✓

Improved levels of usability ✓

Traceability ✓ ✓ ✓ ✓

Software architecture design
activities

✓ ✓

Task performance ✓ ✓

Backlog control
Architectural analysis, syn-
thesis and evaluation
Behavioral modelling ✓

Representation of the control
flow of the system

✓

Specification of which ob-
ject is responsible for which
activity

✓

Software maintenance, mod-
ularity and re usability

✓

Table 2.5: Evaluation and Selection of App Design Models

Table 2.5 evaluates the UML app design models/diagrams based on the factors

identified in Table 2.4. As per this table, the most suitable app design model is the

UML activity diagram as it details the flow of activities (the behavioral aspect) of

the smart home systems and any other systems, which is later generated to runnable

code automatically. Hence, even though various other app design models are discussed

in Section 2.5.1, prior to the evaluation shown in Table 2.5, a very comprehensive

evaluation was carried taking all the types of app design models in to consideration,out

of which the most suitable 5 were chosen in order to choose the app design model which

supports both the behavioral and the ability to be generated to executable code aspects.

2.5.3 Current / Existing Gaps

This part of the literature review address the existing gaps in terms of smart homes, app

design models and other relative areas of focus mentioned above.

Chapter 2. Literature Review 54

Interoperability is the key to the open markets which supports in achieving

competitive solutions in IoT. However, as mentioned previously, lack of interoperability

in generic smart home solutions is associated with higher costs due to the integration of

different smart home devices (Stojkoska & Trivodaliev, 2017). Even though Z-Wave

with the alliance of ZigBee has produced products to be interoperable with various other

devices and products by different vendors. These systems include public application

profiles catering to various areas such as Home Automation Systems, healthcare, and

remote control. However, these products, appliances, and devices still remain to be

interoperable across profiles and areas (Stojkoska & Trivodaliev, 2017) thus leaving the

challenge of interoperability unaddressed to a certain level.

Lack of security and privacy is regarded as one of the most significant chal-

lenges confronted by smart grid development when in relation to cybersecurity. The

smart grid is regarded to be a targeted by the cyber-terrorists which in turn makes a

security and privacy a critical concern (Stojkoska & Trivodaliev, 2017). IoT is inher-

ently vulnerable to security threats and attacks during wireless networking scenarios.

Furthermore, IoT requires an additional security policy to ensure improved levels of

security which in turn would lead to further costs (Stojkoska & Trivodaliev, 2017). In

addition, during the practice and implementation of security and privacy may require

additional need to provide authenticity (to ensure the device is not malicious), integrity

(received data is identical to the data transmitted) and confidentiality (ensure the data

is not readable by unauthorized readers) (Schneps-Schneppe, Maximenko, Namiot &

Malov, 2012).

Furthermore, the practice of IoT involves generation of data in big amounts

which are often considered real time in nature may lead to uncertainties in terms of

provenance (Stojkoska & Trivodaliev, 2017). The challenge of handling big data is

regarded to be critical as the overall performance is directly influenced by properties of

Chapter 2. Literature Review 55

data management services (Dobre & Xhafa, 2014). Even though various applications

are generated to enhance data integration, data storage, and data presentation which in

turn would support the overall analytical pipeline. However, the challenge of managing

big data in the cloud still exists in terms of data integrity, due to its negative impact

on the quality of data and challenges in terms of security and privacy of outsourced

(Stojkoska & Trivodaliev, 2017).

There exist challenges in terms of networking protocols when implemented

in IoT solutions. Smart home networking protocols are expected to adopt the existing

Wireless Sensor Networks and Machine-to-Machine communications. However, this

installation and implementation procedure involves the inclusion of advanced features

which may lead to further challenges such as increased costs, decreased levels of ease

of use and design of an appealing protocol to achieve both costs and performance may

be a trivial task (Chen, Wan & Li, 2012).

Thereby, when the above facts are taken into consideration, challenges in

addition to lack of interoperability in relation to smart home scenarios exist. These

existing gaps include security and privacy issues, issues in managing bid data and

challenges in relation to networking protocols.

2.6 Conclusion

This chapter of the thesis provides a background which identifies the relative keywords,

i.e.: smart homes, app design models, lack of interoperability and dynamic sensor

actuator configuration for which specific definitions are provided for each of these

keywords. In addition, the process of the systematic literature review is emphasized,

whereby every stage of the process (i.e.: scoping, planning, searching, and screening)

Chapter 2. Literature Review 56

is illustrated in terms of the studies and research carried in relation to the smart home

scenarios.

This section of the thesis also emphasizes the current state of the art which is

sub-sectioned into research-based and commercial solutions. The solutions included

in this section covers various areas such as the degree of usability in relation to home

automation and monitoring systems, the support provided to smart homes by the

proactive architecture of IoT systems and rule-based intelligence enhancing on home

automation systems are few of the existing findings and solutions. Furthermore, the

research questions formulated and modularized during the systematic literature review

are answered here during the findings section this chapter. As mentioned previously,

the research questions answered address the existing solutions and relative factors and

evaluations are carried out between the existing solutions and the factors identified

based on the factors leading to the choice of an app design model.

The following chapter of the thesis presents the research methodology used,

this section emphasizes on various areas such as; overview of the literature methodology

used, illustrations on architectural designs and prototype methodologies practiced.

Furthermore, validation methods practiced to during the validation of both theoretical

and expected results are enhanced.

Chapter 3

Research Method

After the validation of various research methodologies, Design Science Research Meth-

odology is chosen as the approach to be followed to design, develop and This chapter

provides a plan to solve the research questions formulated in the previous Chapter 2.3.1.

Furthermore, this chapter involves the selection of a suitable research methodology

with the support of comparison studies carried out between qualitative and quantitative

research methods along with the consideration of their respective advantages and disad-

vantages. Additionally, this chapter also evaluates and examines various other relative

research methodologies prior to the selection of a specific research methodology.

After the validation of various research methodologies, Design Science Re-

search Methodology is chosen as the approach to be followed to design, develop and

evaluate the Automatic Translation Tool. This methodology consists of six phases,

they include problem definition, the definition of objectives and solution, design and

development, demonstration, evaluation, and communication, which are addressed in

detail. Moreover, methodologies used to evaluate the tool are addressed in detail with

success criteria for each methodology. Finally, this chapter concludes with a summary

of every section included in this chapter.

57

Chapter 3. Research Method 58

3.1 Selection of a suitable Research Methodology

Researchers carried out both quantitative and qualitative research methodologies based

on the data they intend to collect during the research. Quantitative studies are carried

out in order to examine the relationship among the identified variables, describing the

trends, attitudes, and ideas of the population the research is being carried out on (Yates

& Leggett, 2016). In addition, the practice of quantitative approach may enhance the

degree of precision in terms of research which in turn represents a 2-dimensional view

of the findings thus enhancing the comprehensiveness of the data collected through the

qualitative approach (Yates & Leggett, 2016).

On the other hand, quantitative research approach explores the how and

why of the case study or a specific story the research is based on. Furthermore, this

particular research approach focuses on various other factors such as the sample size,

data collection, analysis and interpretation methods thus supporting the researcher when

planning the future studies(Yates & Leggett, 2016).

However, there exist challenges with the practice of both the research ap-

proaches mentioned above, even if research is carried out with both approaches com-

bined. (Jick, 1979) proposes a triangulation methodology which involves the com-

bination of multiple research methodologies which belongs to the same area of the

phenomenon. Moreover, this specific approach provides multiple viewpoints and higher

levels of accuracy in terms of judgments made during the research and data collection

(Jick, 1979). Since the early 1980s, underlying presuppositions of qualitative and

quantitative research strategies have led to higher levels of arguments due to one of

the research approaches attempting to emerge superior to the other research approach.

However, (Newman & Benz, 1998) rejects this debate and believes that these two

research methodologies are neither mutually exclusive nor interchangeable due to their

Chapter 3. Research Method 59

difference in relation to the point of time at which they are invoked by a researcher.

3.1.1 Other Methodologies

Various research methodologies are approaches are proposed and practiced by various

authors and researchers during the evaluation and validation procedures of the UML

translation tool. The research methodologies and approaches that are not suitable for

the validation of the above proposed UML translation tool are eliminated and therefore

identified as alternative research methodologies.

1. Case Study Research - This approach may include various units of analysis such

as the case study of a particular organization. Furthermore, this specific research

approach ensures the investigation of a particular contemporary phenomenon

based on real-life context and focuses on boundaries between phenomenon and

context which are not clearly evident (Lillis, 2008). Additionally, the case study

research approach can be positive, imperative and critical based on the underlying

philosophical assumptions of the researcher (Lillis, 2008).

2. Data Driven Research Article Methodology - This research approach, which

is considered as one of the most commonly used methodologies involves the

inclusion of discourse analysis, case studies and focus on discussion groups and

emphasize on error analysis procedures. (Lillis, 2008).

3. Ethnography -This approach is concerned with collection and analysis of em-

pirical data (this includes a range of other various sources such as observations

and relative informal conversations) extracted from the real world contexts thus

avoiding the experimental conditions provided by the existing researchers (Lillis,

2008) Additionally, during the practice Ethnography as a research methodology,

Chapter 3. Research Method 60

the analysis of data involves the interpretation of meaning and functions of human

behavior and actions carried out during verbal communications and explanations

(Lillis, 2008).

4. Action Research - Action research approach aims to contribute to both practical

concerns of people which are involved with an immediate area of problem and the

main goals of the area of research which is also based on the mutually accepted

frameworks (Myers, 1997).

5. Grounded Theory - This particular research methodology enhances various the-

ories which are grounded in terms of data systematically gathered and analyzed.

Martin and Turner (1986) propose a grounded theory which is considered as

“inductive” due to its ability to permit the researcher to develop a theoretical

account based in general features of a specific topic whereas the general grounded

theory involves grounding of the account in relation to the empirical data and ob-

servations. However, when in comparison with every other research methodology,

the grounded theory proposes the continuous interplay among data collection and

data analysis (Myers, 1997).

6. Narrative and Metaphor Analysis -Narrative is defined as a story, tale or a

recital of facts conveyed by an individual. The narratives are of different types,

these types include oral and historical narratives. Metaphor involves the name,

descriptive term or a phrase of an application which is not directly related to the

application (Myers, 1997).

7. Hermeneutic Approach - This approach is treated as both an underlying philo-

sophy and a particular mode of analysis, whereby human understandings are

emphasized thus focusing on the philosophical perspective which is also con-

sidered to be a research methodology. In addition, as a mode of analysis, this

Chapter 3. Research Method 61

specific research methodology ensures the way in which the textual data is under-

stood (Myers, 1997).Furthermore, the hermeneutic approach is involved with the

meaning of the text or text analog (i.e.: an organization can be regarded as a text

analog) which is understood by the researcher with the support of oral or written

text (Myers, 1997).

3.1.2 Chosen Research Approach

When the above-indicated research methodologies and approaches which belong to

both qualitative and qualitative research areas, even though they support the research

procedure in various ways, they may yet introduce to various challenges and weaknesses

as identified and discussed in this section of the chapter. Additionally, this section

identifies and analyses the selected research methodology that would be practiced during

design and evaluation phases of the architecture of UML translation tool.

When quantitative research approach is taken in to account as a whole, various

challenges exist, they include: the researchers categories and theories not consisting

of the ability to reflect on understanding of the local constituents’, higher possibility

of the researcher missing out the phenomenon occurring as a result of improved levels

of focused provided to theory of hypothesis during the testing phase of the research

process. Moreover, the knowledge generated with the support of this specific research

methodology may be too general and abstract for a direct application to a certain context,

situation or an individual (R. B. Johnson & Onwuegbuzie, 2004).

Furthermore, there exists challenges and weaknesses in terms of qualitat-

ive research, they include difficulty in making quantitative predictions, complications

during the testing phases of hypothesis and theories. Moreover, data analysis is con-

sidered to be time-consuming and the result obtained from the practice of qualitative

Chapter 3. Research Method 62

research methodology tends to be easily influenced by researcher’s personal biases and

idiosyncrasies (R. B. Johnson & Onwuegbuzie, 2004).

Design Science Research Methodology (DSRM) introduced by engineering

as propose by (Hoffman, Roesler & Moon, 2004) raises the need for concentration on a

common design science research methodology (Kao et al., 2016). Furthermore, (Archer,

1984) proposes a type of design science methodology which focuses on building systems

instantiations based on the research outcomes which also concentrates on formulating

a purposeful solution to the problem definition identified from the design theory as

proposed by McPhee (1996) (Kao et al., 2016). When practicing design science in terms

of a research methodology in order to introduce a purpose-oriented design for hospital

beds and a specific mechanism in order to eliminate fire doors from being propped open,

(Archer, 1984) practices a specific design that could be codified thus supporting the

creative aspects and industrial engineering research outcomes and providing reflections

based on different views in terms of the research methodology practiced (Kao et al.,

2016).

As per (Fischer, Greiff & Funke, 2012) and (Von Alan, March, Park, Ram,

2004) design science research methodology tends to be an effective methodology in

terms of developing ways to solve complex issues with the support of artifacts which

in turn would enhance the identification, design, and development of the solution.

Moreover, the above-mentioned authors believe that various additional phases should

be taken in taken into consideration, these phases include: identifying, acquiring and

utilizing the knowledge in order to find the relative solutions for the problem definition

(Von Alan et al., 2004).

In addition to the design science approach as a research methodology, (Genemo,

Miah, McAndrew, 2016) proposes a marking assessment methodology which identifies

Chapter 3. Research Method 63

the assessment process manually thus observing the results obtained from the assess-

ment which would help in gaining a better understanding of the phenomena which is

later investigated in terms of the domain knowledge and previous literature and evid-

ence carried out by the expertise. This specific methodology is recommended by the

above-mentioned authors when understanding the problem domain whereby multiple

relative solutions are presented which can be helpful to a greater level during the design

and development of artifact prototypes.

Besides, design science caters to different types artifacts, they include con-

structs, models, methods and implementations which in turn enhances the performance

of goal-directed activities (March & Smith, 1995). In addition to the above-mentioned

facts in relation to design science approach, rather than concentrating on basic the-

oretical knowledge, design science research methodology involves the application of

knowledge and tasks in terms of relative tasks and circumstances in order to produce

effective and useful artifacts (March & Smith, 1995).

When the above-mentioned research approach, i.e. Design science research

methodology, it involves the practice, creation, and evaluation of rigorous IT design

artifacts which in turn would support in solving problems identified in relation to the

case study. Thereby, this particular research approach is practiced during the design

and evaluation phases during modeling of the UML translation tool.

3.1.3 Systematic Literature Review

As mentioned in the previous chapter, SLR was used as the technique for a literature

review. This methodology was supportive in various ways, such as formulation and

modularization of research questions based on the keywords identified, practice the of

inclusion-exclusion criteria with the use of PRISMA which in turn helped in clarifying

Chapter 3. Research Method 64

and filtering the readings and literature findings collected. Furthermore, use of Boolean

operators during the search of existing literature findings and evidence enhanced the

search process thus permitting to identify readings with higher levels of relevance. In

addition to the above, the systematic literature review identified the current state of as

shown in Chapter 02, which were evaluated against the factors identified through the

first research question formulated. This chapter overall identifies the relative existing

gaps in addition to the illustrations in relation to the studies carried out in terms of

existing literature evidence and findings.

3.1.4 Design Methodology

As mentioned previously, Design Science Research Methodology (DSRM) would be

practiced as the research approach during design and the evaluation of the architecture

for the UML translation tool. This specific research approach involves a rigorous pro-

cedure which may support in designing artefacts to solve the focused problem definition

which is identified in the refer to Chapter 2 Section 2.1, in order to make a contribution

to the research process, to evaluate the designs and ultimately to communicate the

results to the intended audience (Peffers, Tuunanen, Rothenberger & Chatterjee, 2007).

These artifacts may include the models, methods and instantiations, social innovations,

properties of technical, social and informational sources which includes the definitions

of any objects designed with involves an embedded solution supporting in understanding

the research problem identified (Peffers et al., 2007).

Design Framework

When the design framework is taken in to, the Design Science Research Methodology

(DSRM) emphasizes on a set of rules and guidelines which in turn would support

Chapter 3. Research Method 65

in the modeling and identification of relative tasks and activities thus enhancing the

architecture of UML translation tool. This procedure will also be supported by the

generation of iterative prototypes 0.thus ensuring improved levels of refinement during

the design and evaluation phases of the architecture.

Figure 3.1: Design Science Research Methodology

The diagram shown above indicates the stages, phases or protocols that will be

followed during the design science research methodology. The guidelines as identified

above will be defined in this section of the chapter which will additionally address in

terms of the architecture of the UML translation tool.

1. Protocol 01: Problem Identification : (Peffers et al., 2007) suggests the identi-

fication of the problem definition during the initial phase of the Design Science

Research Methodology (DSRM) due to various reasons such as: identifying

and defining the problem area may support in designing and developing relative

artefacts which in turn would effectively provide a solution which may be useful

during the atomization of the problem conceptually thus providing a solution

that can capture relative complexities effectively. This phase may involve the

achievement of two additional factors: they include motivation provided to the

researcher, audience, and stakeholders in relation to the research. Furthermore,

Chapter 3. Research Method 66

this phase would also provide sufficient reasons, results, knowledge and required

resources which would support the researcher and the audience in understanding

the state of the problem and importance of the solution. Therefore, as mentioned

previously, the problem definition lies in the area of interoperability in relation

to the practice of various smart devices in a specific smart home with varied

sensor actuator configurations. Furthermore, the problem definition is extended

to lack of user-friendliness, understandability, and usability in relation to the

current interfaces introduced and practiced by various individuals, researchers

and organizations.

2. Protocol 02: Definition of Objectives

As identified and mentioned in figure 01, the second phase involves the identifica-

tion and definition of objectives which in turn addresses the problem definition

as mentioned in section 5.2.1 of this chapter. Furthermore, this phase of the

design science of the research methodology procedure acknowledges the feasible

and possible solutions addressing the problem definition (Peffers et al., 2007).

In addition to the above-mentioned facts, design science research methodology

emphasizes on a cross-disciplinary approach which enhances both design and

development activities which are further subdivided into discreet activities thus

highlighting on an iterative procedure (Von Alan et al., 2004). When the pro-

posed UML translation tool is taken into account, the proposed tool addresses

the problem definition and research questions identified in chapter 02 of this

thesis. This specific tool is designed to achieve various objectives which in turn

would address the problem definition to a greater extent when compared with

the existing literature and findings. The UML translation tool is designed and

developed to achieve various objectives as mentioned below.

• Address the challenge of lack of interoperability during the integration of

nipuniperera
Highlight

Chapter 3. Research Method 67

multiple smart home devices with varied sensor actuator configurations into

a single smart home.

• Achieve improved levels of usability, user-friendliness, and understandabil-

ity in terms of the user interface of the proposed UML translation tool as

the proposed tool is designed and developed to support the elderly people.

• In addition to the above-identified objectives, quality attributes will be

addressed by the proposed solution as a part of the objective achievement,

these quality attributes will be generated in the following chapter of this

thesis.

3. Protocol 03: Design and Development of Artefacts

This protocol involves the design and development of artifacts which as mentioned

previous can potentially be constructs, methods, models or instantiations. This

can also be “a new property which belongs to technical, social or informational

resources” (Järvinen, 2007). Furthermore, the design artefacts can be designed

in a way to highlight on relative research contributions carried out whereby the

research is embedded to the artifact designed, this specific feature enables the

determination of desired functionalities of the artifacts designed and its respect-

ive architecture during the design and development of the actual architecture

(Järvinen, 2007). Additionally, the resources involved in the design of the artifact

assures the concentration on the objectives identified and defined in the previous

phase of the design science approach. This, as a result, may provide further know-

ledge in terms of theory which in turn may support during the generation of the

proposed solution. As shown figures 01, an iterative and refine procedure shown

between the definition of objectives and design and development of artefacts

(protocol 02 and protocol 03) thus ensuring the artefacts designed and developed

to support the architecture of the UML translation tool thus mapping back to the

nipuniperera
Highlight

Chapter 3. Research Method 68

identified objective in the previous phase in order to ensure the solution generated

meets the initial objectives derived with the support of existing literature evidence

and findings.

4. Protocol 04: Demonstration

This phase involves the practice and demonstration of the artifacts designed

during the design and development phase of the design science approach. This

particular demonstration protocol may involve various additional methods such

as experimentations, simulations, case studies proof and other relative activities.

Moreover, various additional resources are required to support the demonstration

of the designed functionality, this includes further knowledge in terms of how the

artifacts are designed to solve the problems identified and designed during the

initial phase of the design science methodology (Peffers et al., 2007).

Demonstration phase which is also known as a building functionality, in fact,

involves the practice of instantiations whereby, (Newell and Simon, 1972) em-

phasizes on regards, this specific overall procedure as an “empirical discipline”.

This is mainly due to its ability to provide working artifacts which in turn en-

hances the further required advancements, iterations and refinements based on

the results obtained from the demonstrations carried out.

5. Protocol 05: Evaluation This measures how well the designed artifacts support

the solution proposed to address the problem definition. Besides, this protocol

involves a comparison study between the defined objectives and actual results

obtained from the artifacts demonstrated during the demonstration phase of the

design science research approach (Peffers et al., 2007) practiced to architect the

UML translation tool.

This process may require additional knowledge in terms of relative metrics and

Chapter 3. Research Method 69

analysis techniques (Peffers et al., 2007). This phase also relies on the nature

of the problem and relative artifacts generated which as a result may cause

the evaluation procedure take multiple forms, this includes: comparisons of

functionalities produces by the designed artifacts with the objectives identified

in previous stages of the followed design science approach to architect the UML

translation tool. Towards the final stages of this research methodology, the

iteration and refinement procedure is implemented and practiced in order to

enhance the artifacts designed in terms of effectiveness and feasibility (Peffers et

al., 2007).

Furthermore, in terms of evaluating the artifacts and prototypes generated to

support the architecture of the UML translation tool will be supported with

the further documentation which will be included in chapter 04 of this thesis.

This includes emphasizing on functional and non-functional requirements which

also comprises of generation and identification of relative quality attributes.

Thereby, during this phase of the design science research methodology, generated

prototypes and artifacts will be taken into consideration and iterated back to prior

protocols to ensure improved levels of refinement and ensure each object defined

is achieved.

6. Protocol 06: Communication of Research

This protocol involves the communication of the problem and its relative import-

ance, the artifact and prototypes generated, its relative utility and novelty in terms

of the research methodology practiced and rigor of the design carried out (Peffers

et al., 2007). In terms of communicating the research carried out during the

design and development of the UML translation tool, various fresh ideas and facts

will be published and directed in terms of every aspect considered throughout this

thesis, these include the problem identification, research methodology practiced,

Chapter 3. Research Method 70

architectural design and development practices.

3.2 System Design Methodology

Due to the growth in complexity of embedded products and their need to be developed

rapidly, the practice of a single system design methodology may no longer be adequate

(Sangiovanni-Vincentelli & Martin, 2001).Therefore a hybrid methodology is used

to design the architecture and develop the automatic translation tool. As discussed

earlier, in addition to the literature review, this thesis consists of other phases such as the

architecture creation and design and development of the proposed automatic translation

tool. Different methodologies are followed by these phases in order to achieve the

system requirements and ultimately solve the problem definition.

(Rumbaugh, Blaha, Premerlani, Eddy & Lorenson, 1991) asserts that the use

of Object Orient Modeling (OOM) methodology during the design and the development

of a modeling system promotes a better understanding of systems requirements, cleaner

designs, and maintainable systems. Even though OOM may support modeling aspects

and object-oriented programming to an increased level, this aspect does not emphasize

on model transformation perspective which is a significant area in this tool.

Numerous methodologies are designed for architecture creations of systems

which are used to generate the system requirements. These methodologies include

requirement engineering (RE), Architectural Pattern (AP), System Architecture and

System Design. Most of the software architecture methodologies such as RE requires

the gathering of requirements from stakeholders (Mazón, Pardillo & Trujillo, 2007).

Since this thesis does not involve the participation of external parties (stakeholders),

phases such as requirements gathering cannot be successfully completed. As a result,

Chapter 3. Research Method 71

other methodologies suitable for the architecture creation, design and development of

the automatic translation tool are chosen to define and achieve the system requirements

and develop the tool methodically.

3.2.1 Architecture Creation

Attribute Driven Design by SEI (Software Engineering Institute)(Pesante, 2003) method-

ology is used to create the architecture of the automatic translation tool. This approach

requires three significant components such as the primary functional requirements,

quality attribute requirements, and other architectural drivers. These drivers defined and

detailed in Section 4.1.1 in Chapter 4. This driver is used to generate a well-defined

architecture for the automatic translation tool with the support of various other aspects

such as software quality attribute scenarios (QAS), architectural tactics and patterns

(Wojcik et al., 2006) in order to ensure the architecture of the proposed tool meets the

architectural drivers which are derived from the research questions.

3.2.2 Tool Design and Development

As discussed earlier, the system requirements are formulated and an architecture is

designed to prove how the requirements are achieved. This is carried out using Attribute-

Driven Design (refer section 4.1 in chapter 4) and Model Driven Architecture (MDA)

(refer section 4.2.3 in chapter 4). A tool is designed to meet these requirements with

the support of Model Driven Engineering (MDE) which supports the use of multiple

technology spaces (TC) during the development of a system (Favre, 2004).

When the tool is taken into account, the two most outstanding functions

Chapter 3. Research Method 72

involve the model transformation and code generation from behavioral models. Even-

though, MDE supports model transformation to a greater level, when MDE is used

for code generation it is regarded to introduce new risks to the generated program

(Klein, Levinson & Marchetti, 2015). On the other hand, use of MDE to build tools that

generate code automatically can be more efficient and can lead to a shorter development

cycle when in comparison with the use of the traditional approach.

Therefore, Model Driven Engineering approach is used to design the auto-

matic translation tool due to support given in terms of both model transformation and

code generation procedures. This, in turn, helps the model transformation from activity

diagram model to a code model which is then transformed to an executable code thus

meeting both model transformation (refer section 5.4 in chapter 5) and automatic code

generation aspects of the tool (refer section 5.5 in chapter 5).

3.3 System Evaluation Methodology

Various evaluation techniques are used to evaluate different types of software and

tools. However, as per Section 3.2.2, the automatic translation tool is of model-driven

engineering nature and may require an evaluation criterion that evaluates tools built

based on the MDE.

(Klein et al., 2015) asserts evaluation criteria for MDE tool and this is based

on three areas. The areas include (1)product engineering risk area, (2) development

environment risk area and (3) program constraints risk area. Product engineering

area evaluates the activities that were used to create the system to achieve the system

requirements (refer section 4.1.1 in chapter 4).Development environment emphasizes

on the risks related to the development and management of the system and finally, the

Chapter 3. Research Method 73

program constraints address the arising from drivers external to the tool.

Furthermore, (Mohagheghi, 2010) also proposes evaluation criteria for tools

created based on MDE, this criterion is known as Methodology-Practices-Promises

-Metrics and evaluates the tool based on understandability, ease of use, compatibility

with other tools. Additionally, this evaluation criteria also evaluate modeling and

meta-modeling frameworks and generation of artifacts from models and meta-models.

3.3.1 Tool Validation Methodology

As mentioned earlier, the proposed automatic translation tool designed based on MDE

comprises of both model transformation aspects and automatic code generation feature.

Evaluation criteria for both of these features need to be defined in order to carry out a

complete evaluation process.

3.3.2 Model Validation Methodology

Modeling feature of the tool involves various functionalities such as meta-modeling,

modeling, generating model instances from meta-models, generation of artifacts from

models and meta-models, model-to-model transformations (refer section 4.2 in chapter

4) and model-tot-text transformations.

In order to evaluate this aspect of the tool, Methodology-Practices-Promises

-Metrics evaluation methodology proposed by (Mohagheghi, 2010). This criterion

addressed the various perspectives. They are as defined below.

1. Use of modeling frameworks based on meta-models that are generated to define

the architecture of different models based on different views. This is supported

Chapter 3. Research Method 74

by various other criteria such as the ability to be applied to suitable scenarios and

check for necessary concepts in relation to modeling and modeling dependencies

between different views.

2. Ensuring improved levels of model performance. This is ensured by the ability

to integrate the performing models with the testing tools, ability to achieve

interoperability via models generated based on relevant case studies and the

ability to model the listed case studies in Chapter 2.

3. Ensure greater levels of efficiency during the model transformation process by.

This is determined by the time took to write a transformation rule in the case of

a comparison with another tool and the time taken to generate the target model

from a source model with the support of transformation rules and queries.

3.3.3 Automatic Code Generation Methodology

In order to evaluate the code generation and requirement generation and achievement

aspects of the tool, previously stated evaluation method by (Klein et al., 2015) is

followed. As per Section 3.3, this methodology consists of three areas. This section

emphasizes on how each section addresses the evaluation of the tool in relation to the

above-stated aspects.

1. Project Engineering: this involves evaluation of various areas. (1) Evaluation of

system requirements by ensuring its completeness, clarity, validity, feasibility,

and stability. (2) Evaluation of system design via testing its functionalities, per-

formance, and testability.(3) Code generated needs to feasible, the tool needs to

generated code that exposes internal state of the software, the tool should be able

to generate code that will execute in current and any other target environment,

Chapter 3. Research Method 75

the tool designed and the code generated should be compatible with other integ-

rated environments, the code generated needs to be correct and robust. (4) The

generated code needs to meet quality attribute requirements such as reliability,

maintainability and other quality attribute requirements identified in Section 4.1.1

of Chapter 4.

2. Development Environment: ensures the tool is able to generate code repeatedly

and the code generation tool is available for the lifetime of the system.

3. Program Constraints: ensures improved productivity in terms of code generation.

3.4 Methodology Overview

This section addresses methodologies followed by each phase (refer section 3.1 of this

chapter). The initial phase, which is the problem definition is detailed in a systematic

way in Literature Review (2). The objectives are identified as architectural drivers

which are used as the input for the design of the architecture of the proposed tool.

This is carried out using the Attribute-Driven Design (refer section 4.1 of chapter

4). The Automatic Translation Tool is then designed and developed with the support

of Model Driven Engineering (MDE) where the most important components of the

tool are emphasized. Finally, the developed tool is evaluated using two different

evaluation criteria, the Methodology-Practices-Promises-Metrics is used to evaluate the

modeling component and the Product Risk Taxonomy for the automatic code generation

component of the tool. Overview of the methodologies used is expressed in the form of

a table below.

Chapter 3. Research Method 76

Figure 3.2: Methodology Overview

3.5 Conclusion

This chapter details the methodology followed to design and build the automatic transla-

tion tool. The complete tool is built based on the design science research methodology

(refer section 3.1.4 of chapter 3). However, the creation of the proposed Automatic

Translation Tool consists of sub-phases such as architecture creation (refer chapter4),

design and development (refer chapter 7) and the evaluation of the tool (refer chapter

6). Each of these phases follows a significant methodology as discussed in this chapter.

These methodologies will be followed during their respective phase /chapter. This

chapter as its name says emphasizes the overall methodology and sub methodologies

practiced during each phase to build the tool that meets the system requirements.

Chapter 4

Architecture Creation

This chapter explains the creation of the architecture of Automatic Translation Tool.

This chapter also identifies and details the features of the tool.Section 4.1 addresses

the architectural drivers such as the primary functional requirements, quality attribute

requirements and business and technical constraints. The architectural design template

proposed by (Clements et al., 2002) is followed for the rest of the chapter. The practice

of this template supports the identification of architectural drivers, definition, and

documentation of views and viewpoints of Automatic Translation Tool and how different

views used supports the achievement of different architectural drivers identified during

the initial stages of this chapter. In addition to the design of the architecture of the

tool, this chapter details various other relative terms such as model, modeling, meta-

model, meta-modeling and transformations that are used to design the tool. This

chapter practices the Attribute-Driven Design (ADD) method to define the software

architecture of the tool which uses the previously mentioned architectural drivers as the

primary inputs of the architectural design procedure. This methodology is followed to

ensure all the required drivers are used and are processed with the support of various

design techniques such as the architectural patterns and scenarios. These functions are

77

Chapter 4. Architecture Creation 78

performed to deliver a complete architecture of the tool using the 4+1 view method.

4.1 Attribute-Driven Design Methodology (ADD)

Attribute-Driven Design Methodology recommended by the Software Engineering

Institute (SEI) is known as a systematic methodology followed step-by-step in order to

design the software architecture of a software-intensive system. This approach mainly

focuses on defining the software architecture the system based on the architectures’

quality attribute requirements (Clements et al., 2002).

This methodology comprises of various steps, they include: (1) identify

candidate architectural drivers, (2) choose a design concept that satisfies the architectural

drivers (3) ensure to provide tactics to achieve quality requirements and (4) generate a

complete software architecture for the tool which addresses all the architectural drivers

(Clements et al., 2002).

In addition to the above steps, ADD is a three-step process which involves

input, process and output stages and this terminology will be taken in to practice during

the design of the software architecture of the proposed Activity Diagram to Java Code

Generation Tool.The software architecture design process is as shown below.

4.1.1 Identification of Architectural Drivers

As mentioned previously, the required input to ADD includes the primary functional

requirements, quality attribute requirements and other constraints. When expressing

these architectural drivers in terms of the Automatic Translation Tool, the functional

requirements are expressed with the support of use cases which when considered from

Chapter 4. Architecture Creation 79

Figure 4.1: Three-Step Process of ADD for Architecture Design of Activity Diagram to
Java Code Generation Tool

the perspective of 4+1 architecture (an architectural model designed by (Kruchten, 1995)

to describe the architecture of a software-intensive system based on various, concurrent

views) belongs to the logical view. The quality attribute prioritization prior to the

system being built is supported by the Quality Attribute Workshop (QAW) which is also

recommended by the SEI. Finally, business and technical constraints are determined by

external factors.

Primary Functional Requirements

As the name of the tool defines, the Automatic Translation Tool generates runnable Java

Code from an activity diagram. The tool should allow the software architect to construct

an activity diagram in the provided model editor which is afterward transformed to a

set of lines of Java code. This is carried out with the support of various another set of

developed plug-ins which allow the transformation of an instance of the constructed

activity diagram to a Java instance which is later transformed to understandable and

runnable Java code.

Chapter 4. Architecture Creation 80

Therefore, there are a number of functional requirements this tool comprises

of, in order to meet the previously stated objectives and to achieve the expected perform-

ance of the tool. Furthermore, the functional requirements of the Automatic Translation

Tool are based on the problem definition and the aspects taken into consideration in

terms of answering the research questions (refer section 2.3.1 of chapter 2). Therefore

based on the above-mentioned aspects, the most important functional requirements that

need to meet are listed based on their importance to the tool below.

1. FR1: Ability to generate code automatically from the modeled app, which in this

case is an activity diagram from which Java Code needs to be generated.

2. FR2: Ability to manage interoperability during the inclusion of dynamic sensors

and actuators, the ability to support improved levels of interoperability may also

mean support any kind of case study (e.g.: Smart Lighting System, Smart Door

System or the Smart Security System) thus focusing more towards compatibility.

3. FR3: Ability to understand the transformation at different levels including the

code generation process.

4. FR4: The code generated should be a representation of the behavior of the

modeled app The app design model will be carried out by the user and therefore

in order to achieve higher levels of understandability, the code generated should

have the same syntax as the manually developed code and should match with the

syntax used in the modeling of the app.

Chapter 4. Architecture Creation 81

Quality Attribute Requirements (QARs)

Fundamentally, the systems’ utility is determined by both functional and non-functional

requirements, these characteristics include usability, flexibility, performance, interop-

erability, and security. Even though there had been an uneven emphasis on functional

requirements, the functionality of any system is not considered useful or usable without

the necessary non-functional requirements (Chung & do Prado Leite, 2009). In terms

of both software architecture and ADD, the non-functional requirements are referred

to as Quality Attribute Requirements. Various useful aspects in relation to system

requirements are achieved with the address of QARs. One of the main aspects includes

the guidance provided during the design and creation of quality attribute scenarios

which will be addressed after the identification and prioritization of the QARs of this

tool.

The QARs of a system is derived in various ways, however in this case, as

stated earlier, Quality Attribute Workshop is used in various phases such as the scenario

and tactic identification of the QARs. This method derives the QARs from the mission

or business goals. Since the design of the proposed UML to code generation tool

does not have any external stakeholders involved in the requirement specification, the

derivation of the QARs is entirely based on the ADD and other relative methodologies

such as the QAW.

The Automatic Translation Tool also addresses these QARs during the design

of its architecture and the tool. In addition to these QARs, some additional QARs are

looked at, in order to address the functionality of the tool as a whole. The QARs are

interoperability, usability, understandability, scalability, comparability, modifiability,

re-usability, availability, testability, flexibility and performance of the system, which

are justified later in this section. These quality attribute requirements are prioritized

Chapter 4. Architecture Creation 82

based on specific criteria as detailed below. Architectural tactics and scenarios for the

three most important quality attribute requirements are provided in later sections of this

chapter.

Prioritization of Quality Attribute Requirements

Prioritization of system requirements are based on various aspects such as: importance

determined by the stakeholders, importance determined by the system performance,

penalty introduced if the requirements are not achieved, estimated implementation

cost, lead time influenced by other factors such as training and development of support

infrastructure, internal and external risks, volatility and other aspects (Berander &

Andrews, 2005). Moreover, there are various requirement prioritization scales used

by different authors, the two most common scales proposed by (Wiegers, 1999) are

High-Medium-Low scale and Essential-Conditional-Optional scale.

High level focuses on mission-critical requirements that need to be achieved

prior to the next release, medium level concentrates on the necessary system operations

and low level looks at quality enhancements. Essential level ensures the product is

not accepted until all the requirements are achieved, conditional level support product

enhancements and ensures the product is completely available and optional level looks

at functions that are optional. For the prioritization of system requirements for the

Automatic Translation Tool, both High-Medium-Low and Essential-Conditional and

Optional criteria are used. The prioritization levels are named as 1, 2 and 3 as detailed

below.

1. Priority Level 1: This is the highest level of priority which means it is compuls-

ory that the requirements belonging to this level of priority should be achieved to

avoid system failure. (Wiegers, 1999). In terms of the Automatic Translation Tool,

Chapter 4. Architecture Creation 83

the most critical requirements the tool needs to achieve include usability, availab-

ility, and interoperability. The tool needs to easy to use and completely available

for successful code generation from UML Activity Diagrams. Moreover, the tool

should allow the user to model any smart home case study to achieve high levels

of interoperability. The Table 4.1 details these quality attribute requirements

based on their level of priority.

QAR Name Description
QAR1 Availability High availability of the Automatic Translation Tool can be

achieved by ensuring the presence of all the required plug-ins
and the stated version of the required software. They can also be
achieved by ensuring all the required plug-ins are up-to-date.

QAR2 Usability and Under-
standability

Enhanced usability can be achieved by designing a simple model
editor which would allow the designer to understand the notations
of the activity diagram and how to model the app easily. These
requirements can also be achieved by providing the user with an
additional manual detailing how to use the tool completely from
modeling to code generation.

QAR3 Interoperability Activity Diagram to Java Code Generation Tool can achieve
improved levels of interoperability in a smart home by allowing
the designer to model activity diagrams for any case study, for
instance, the tool should be able to model activity diagrams for
the smart lighting system, smart door system, and smart security
system.

Table 4.1: Priority Level 1 Quality Attribute Requirements

Chapter 4. Architecture Creation 84

2. Priority Level 2: This is the medium level of priority whereby achievement of

these requirements may only support the implementation of the tool and may

not have a major impact on the performance enhancement of the tool. These

requirements support necessary system operations (Wiegers, 1999). Code re-

usability, modifiability, scalability and testability of the code generated from

the UML Activity Diagram are recognized as medium level requirements as the

quality of the code generated does not affect the implementation or performance

of the Automatic Translation Tool.

QAR Name Description
QAR Re-usability Ensure improved levels of code re-usability
QAR5 Modifiability The tool should be able to cope with the modifications or changes

made by the designer or the smart home user.
QAR6 Scalability The chosen modeling language is sufficient to manage massive

modeling projects.It should be able scale down to smaller projects
without the need for additional work and effort.

QAR7 Testability The activity diagram model editor should be able to design activ-
ity diagrams based on any given case study.Also, the code gen-
eration process should generate Java code based on any activity
diagram modeled by the model editor.

Table 4.2: Priority Level 2 Quality Attribute Requirements

Other Architectural Drivers

These drivers include the business and technical constraints. The constraints are re-

quirements for which the design decisions are pre-specified (Kruchten, 1995). Technical

constraints of the tool areas listed below.

Technical Constraints include the computer system, Applications, and plug-

ins that are used to model and generate Java code. This tool does not consist of any

business constraints due to the non-involvement of external stakeholders.

Chapter 4. Architecture Creation 85

4.1.2 Identification of Quality Attribute Scenarios (QAS)

The concept of QAS was first introduced in 2003 by (Bass, Clements & Kazman, 2013)

in order to support the development of software architectures. In other words, the QAS

helps the quality attribute requirements to be expressed in terms of the operational form

of the system.

Quality Attribute Workshop (QAW) supports addressing the quality attribute

requirements in the form of scenarios. There are two different types of QASs such as

the general scenario and the concrete scenario. The general scenario emphasizes the

system-independent specifications which provide a template for a set of requirements.

These scenarios, however, need to be transformed into concrete scenarios ultimately in

order to be more system specific (Wu & Kelly, 2004). Since the tool is not yet developed

and is in the design stage, the general scenario approach is used to express the QASs of

the tool. The general scenario proposed by (Len, Paul & Rick, 2003) consists of six

aspects, such as stimulus, a source of stimulus, artifact, and environment, response and

response measure. They are defined as shown below.

Source of stimulus The entity which generates the stimulus(during execution
or development).

Stimulus a phenomenon that needs to be considered when it arrives
at the system

Environment Conditions under which the stimulus occurs
Artifact the artifact affected by the stimulus
Response Activities that need to be undertaken after the arrival of

the stimulus
Response Measure the attribute-specific constraint that needs to be satisfied

by the response.

Table 4.3: Quality Attribute Requirements Six-Part Scenario Format

The above mentioned QAR six-part scenario format proposed by (Len et

al., 2003) will be taken into consideration when generating the QAR scenarios for the

tool. Even though the tool addresses 7 QARs in total, the three most important QA

Chapter 4. Architecture Creation 86

requirements, based on the prioritization (refer section 4.1 in chapter 4) will be taken

into account during the QA scenario generation. The QA requirements scenarios for

QAR1, QAR2, and QAR3 are defined as shown below.

Availability Scenario

As mentioned earlier, availability requirement of the tool ensures the tool is ready

for use. This part of the chapter will address a scenario in which availability of the

UML to code generation tool will be achieved. When the user needs to use the tool,

he or she would click on the icon of the application which is used to model the UML

diagrams. After the user selects the appropriate workspace in which all the files are

saved, the application checks for the availability of the required plug-ins to supports the

configurations once the application is set to use. Prior to the installation of the missing

plug-ins, the application inquires the user if the plug-ins should be installed via a dialog

box. To ensure complete availability, the user needs to confirm the plug-in installation.

Source of stimulus End User (Software Architect, Software Developer or the
Smart Home Users)

Stimulus Software crash and delay in timing
Environment Starting the application and setting up the workspace
Artefact App design and transformation application
Response Notify the user about the unavailability of the required

plug-ins
Response Measure Repair time,time taken to re-install the missing plug-ins

and relaunch the application..

Table 4.4: Availability Quality Attribute Requirement Scenario

Usability Scenario

Usability, which also means the level of ease in terms of learn-ability, efficiency,

reliability, and satisfaction in using the application to generate code from the UML

Chapter 4. Architecture Creation 87

activity diagram modeling. The functions carried out during runtime are addressed in

this scenario. Usability can be achieved with, how easily the user locates the relevant

workspaces, files, and plug-ins, how well the user know how to run and configure the

relevant meta-models and Java files, how well the user understand the generation of

models and model transformations, how confident the user is during the error recovery

and finally how well the user is satisfied with the code generated from model.

Source of stimulus End User
Stimulus Run and configure the models and Java files
Environment Runtime
Artefact UML modelling and code generation application
Response Use the tool effectively thus understanding the underlying

process
Response Measure Time to model the app and generate the code

Table 4.5: Usability Quality Attribute Requirement Scenario

Interoperability Scenario

This QAR based on a smart home scenario ensures any smart home case study can be

modeled in a single model editor. Therefore this scenario will address two case studies

which will be modeled in the UML model editor. The user will model, for instance, a

smart light system and a smart security system in the proposed model editor to ensure

the achievement of interoperability.

Source of stimulus End User ,
Stimulus Creating any UML Activity Diagram
Environment After the configuration of the UML meta-model
Artifact Meta-model of the UML, model and the model editor
Response The tool allows any well-formed UML Activity Diagram

to be designed. It rejects any invalid activity diagrams.
Response Measure Success percentage in modeling case studies using the

model editor

Table 4.6: Interoperability Quality Attribute Requirement Scenario

Chapter 4. Architecture Creation 88

4.1.3 Identification of Architectural Pattern (AP)

Architecture Patterns are common architectural structures which are well understood

and documented (Schmidt, Stal, Rohnert & Buschmann, 2013). Every individual pattern

details the high-level structure and behavior of a general software system and aims

to achieve relative primary functional and quality attribute requirements (Harrison &

Avgeriou, 2010). Also, the architectural patterns can be categorized based on their focus

area.

Figure 4.2: Pipe and Filter Architecture Pattern for the Proposed Tool

Therefore from the previously listed architectural styles, the Pipe and Filter

architecture will be used to emphasize on the modelling of the domain model (in this

Chapter 4. Architecture Creation 89

case, the activity diagram models and Java models) and partitioning of the application

concerns in order to address the abstract view of the tool as a whole while emphasizing

on the individual roles and responsibilities of each layer. This architectural pattern as

graphically represented in Figure 4.2 consists of three layers, i.e.: the domain layer,

presentation, and service layer and the infrastructure layer. The presentation and the

service layer focuses on the front-end and the User Interface (UI) of the application,

thereby as per the proposed tool, the end user is able to model an activity diagram in

the generated model editor and generate Java code from the modeled activity diagram.

This is further emphasized and understood in section 4.1.4 in chapter 4, where the

architecture of the proposed tool is expressed in the form of the white-board architecture

thus communicating further details of the tool and its architecture.

The domain layer addresses the domain models (representations of an applic-

ation domain that can be used to achieve a variety of operational goals) of the tool. In

the case of the tool, its domain models are the activity diagram meta-model, Java meta-

model, generated activity and Java models. The configurations of Activity Diagram

meta-model can generate a model-editor which sits in the presentation and service layer

thus establishing a relationship between the two layers. The infrastructure layer enables

the application to interact with the external systems support receiving, storing and

providing data when requested (Garlan, Cheng, Huang, Schmerl & Steenkiste, 2004).

Since the proposed tool does not involve with any data storage and exchange, the ATL

transformation process is included in this layer since it involves a model mapping and

providing the Java model to the domain model when requested to support and complete

the code generation process.

Chapter 4. Architecture Creation 90

4.1.4 Architecture Tactics

A tactic is a design mechanism to achieve the desired level of QAR by manipulating

some aspect for an analysis model for the QAR with the support of design decisions.

This technique is used to mitigate the design issues during the design of the architecture

of the proposed tool. In order to explain how these issues will be addressed and

mitigated, the scenarios for each QAR from the priority list 01 is addressed. How each

scenario belonging to a QAR will be mitigated or achieved is explained in the table

below.

QAR Stimulus (4.1.2) Tactics
QAR1 Model multiple case

studies using the
UML model editor

This involves locating and managing of interfaces. Locate the
workspaces, projects, files, and plug-ins. Manage interfaces,
orchestrate multiple plug-ins into a single Eclipse workspace,
integrate multiple applications into a single automated process.

QAR2 Run and configure the
models and Java files.

Support User Initiative, which allows manipulations within the
system such as: undo, cancel, pause, resume and aggregate. Sup-
port System Initiative which manages the projects and work-
spaces, manage the model transformations, manage the system
and user models.

QAR3 Software crash and
delay in timing. This
involves fault detec-
tion, fault recovery
and fault prevention.

Fault Detection involves monitoring the application, application
configurations, exception detection, monitoring model transform-
ations and monitoring the absence of plug-ins installed.Fault
Recovery involves software upgrade, exception handling, install-
ation of required plug-ins and reconfigurations.Fault Prevention
ensures exception prevention, ensure all the plug-ins are installed
and ensure the software is upgraded thus ensuring the software is
completely available for use.

Table 4.7: Quality Attribute Requirement Tactics

4.2 Architecture of the Tool

Figure 4.3 provides an overview of the architecture of the proposed tool. This figure

provides a very brief idea of how the UML diagram is transformed to a runnable

software code with the support of two significant techniques, such as model to model

Chapter 4. Architecture Creation 91

transformation and model to text transformation. For this process, various tools, plug-

ins, and techniques are used which will be addressed in detail section 4.2 of this chapter

and Chapter 7 where the technical aspects of the tool are emphasized to a greater level.

Figure 4.3: Overview of the Architecture

The 4+1 architecture is designed to describe the architecture of a software-

intensive system based on the practice of multiple and concurrent views.This architec-

ture addresses different views and viewpoints of a specific system. The view model,

which is also another word for a framework is systems and software engineering. The

view model consists of a set of views, which are representations of a complete system

from the perspective of different users such as end-users and the developers(Choi &

Yeom, 2002).

This framework consists of 5 views: development view, logical view, physical

view, process view, and scenarios. Out of these views, the process view and scenarios

are chosen to express the perspectives of the Activity Diagram to Java Code Generation

Tool. Out of these 5 views, 3 views, i.e.: the process view, scenario view and logical

Chapter 4. Architecture Creation 92

view are used to express the views of the Activity Diagram to Java Code Generation

view model from the perspective of the end users and the developers as shown below.

4.2.1 White-Board Architecture of the Tool

In order to provide the better understanding of the proposed tool, how generation and

configuration of meta-models support the generation of another model thus eventually

helping the achievement of the code generation functionality and architectural drivers

as explained later in this chapter with the help of 4+1 architecture. The purpose of

whiteboarding the architecture of the tool is to enhance on the understanding ability

of the tool in terms different views and to show the relationship and communication

between different meta-models and models belonging to different layers as shown in

Figure 4.4.

Figure 4.4: Architecture White-Board showing High Level Design of the Tool

Furthermore, even though the whiteboard architecture depicts the high-level

design of the proposed tool, it also highlights which tool, language or visual app design

Chapter 4. Architecture Creation 93

technique is used at different phased on the tool. These components will be addressed

in detail in section 4.2 of this Chapter and in Chapter 5.

4.2.2 Logical View - Sequence Diagram

Logical view graphically details the functional requirements of the system. The se-

quence diagram and the class diagram shown below depict how the functional require-

ments are achieved during the model-to-model transformation of Activity Diagram

Model to Java Model transition.

Figure 4.5: UML Sequence Diagram - Activity Diagram to Java Code Generation Tool

Chapter 4. Architecture Creation 94

Figure 4.6: UML Class Diagram - Activity Diagram to Java Code Generation Tool

The above-shown class diagram shows the entities involved in the design

of the proposed tool. These entities consist of different types of relationships such as

associations and compositions. When Figures 4.6 and 4.7 are taken into account, it is

very clear that FR1, FR2, FR3 and FR4 are achieved with the support of this view.

Chapter 4. Architecture Creation 95

4.2.3 Process View - Activity Diagram

This view expresses the dynamic aspects of the system and details the system processes

and how the communication between various elements and entities are carried out

(Kruchten, 1995). When the activity diagram shown in figure 4.4 is taken into account,

it shows how the required plug-ins are installed if unavailable thus achieving QAR3,

i.e.: Availability. Also, allowing the user to model any activity diagram using the given

model editor supports the achievement of QAR1, i.e. interoperability (refer section 4.1).

Model Driven Architecture

As defined by Object Management Group (OMG), MDA (Model Driven Architecture)

is known to be a technique to organize and manage enterprise architectures supported

by automated tools and other services, this also supports in defining the models and the

transformations between the model types (Brown, 2004). Even though UML (Unified

Modeling Language) also introduced by OMG is practiced to describe the object-

oriented software artifacts, the internal architecture and the scope of applicability of

UML is not yet completely stabilized (Bézivin, 2001). Therefore, in order to support

UML and other similar languages, OMG has introduced a framework based on MOF

(Meta Object Facility) and UML and some additional modeling stacks. This modeling

framework is known as Model Driven Architecture (MDA).

Model

MDA comprises of various fundamental concepts such as models, modeling, views

and model transformations. A model provides an abstraction of a physical system

Chapter 4. Architecture Creation 96

Figure 4.7: UML Activity Diagram - Activity Diagram to Java Code Generation Tool

Chapter 4. Architecture Creation 97

which provides the designers and developers with valid reasons with as to why se-

lective requirements should be taken into consideration during the system design and

construction (Brown, 2004).

Modeling

The process of designing a software application which occurs prior to the coding. Also,

modeling is regarded as an essential part of software projects belonging to any size

ranging from small, medium to large. Modeling process supports carrying out work at a

higher level of abstraction by hiding and masking the details thus emphasizing on the

big picture or by focusing on various levels and domains of prototypes (Gessenharter &

Rauscher, 2011).

Levels of abstraction for activity diagrams come in two significant levels:

design level and conceptual level. At the conceptual level, activity diagrams emphasize

on the abstract views than those on the design level. In other words, activity diagrams

created in this level defines relative characteristics such as actions and operations.

However, this level of abstraction does not provide concrete implementation information.

During design level, further details in relation to the implementation are provided.

For instance, each action in the activity diagram needs to be mapped to a piece of

implementation such as a function or a loop (SAP, 2007).

When the above-mentioned levels of abstractions are taken into consideration,

activity diagrams modeled for the smart home will be based on design level due to its

need to generate code from activity diagrams modeled. This may require mapping of

every node to a certain level in order to support the characteristic of code generation

which will be discussed in detail in Chapter 5.

Chapter 4. Architecture Creation 98

Unified Modeling Language (UML)

The current state of practice in regard to modeling is considered to UML as identified

and detailed in section 4.1.4 of this chapter. This is considered to be the primary

modeling notation which also allows the capture of the most significant characteristics

of a system in relation to its corresponding model (Brown, 2004).

UML is used to model the Activity Diagram to Java Code Generation Tool.

UML consists of both structural and behavioral aspects out of which behavioral aspect

will be taken into consideration when graphically representing different views of the

architecture of the tool. This will be explained in detail in the following subsection of

this chapter.

Model Views and Model Transformations

The model transformations are of different kinds such as the model-to-model transform-

ation and model-to-text transformation, which will be addressed comprehensively in

later sections of this chapter. With the rapid transition from code-oriented to model

oriented software production techniques, much importance is given to the practice of

meta-models which defines itself a language for detailing a particular domain of interest

(Bézivin, 2001).

The model transformation is also supported by OCL (Object Constraint

Language) which defines the behavior of constraints during model transformation. The

constraints prior to the model transformation are known as source model and after the

model transformation known as a target model. Post-conditions ensure that target model

is valid output for the transformation to the respective source model. Preconditions

make sure the model transformation is carried out effectively (Wąsowski & Lönn, 2016)

Chapter 4. Architecture Creation 99

A specific model can follow various modeling concepts and notations in

order to highlight on particular views and perspectives of the system. In the design

of the Activity Diagram to Java Code Generation Tool, 4+1 architecture is taken into

consideration when modeling the tool based on views and perspectives.

Meta-Modeling

The meta-model is basically another model that supports the construction of other

models. Even though they are all considered as models, one model is expressed in terms

of the other where one model is an instance of the other and one model conforms to the

other.

In the context of MDE, a meta-model is regarded as a structural diagram which

defines the model elements, for instance, the elements of the activity diagram (such

as initial node, final node, actions and decision nodes) and their relations. However,

further emphasize is required describe rules and the relationship among the elements.

Definition of rules in a meta-model play a very important role especially if the model

requires some kind of transformation to text (which can also mean code generation) or

to another type of model (Gronback, 2009). When the UML meta-models are taken into

consideration, they define the structure of the UML models. Furthermore, (Andrews et

al., 2003) regards the activity of meta-modeling as a construction of an object-oriented

model of the abstract syntax of a language. Also, when the definition meta-model is put

into a wider context, a meta-model is regarded as a model which defines the language

completely thus addressing the concrete syntax, abstract syntax, and other semantics

(Aßmann, Aksit & Rensink, 2005).

Chapter 4. Architecture Creation 100

Model-to-Model Transformation

Taking this technique into account, two meta-models are built during the design of the

Activity Diagram to Java Code Generation Tool. Initially, a meta-model is designed

for the activity diagram modeling thus identifying the nodes of the activity diagram as

classes, i.e.: a single class for each node. The nodes include activity node, initial node,

final node and the decision node.Furthermore, since the activity diagram is needed to be

transformed to Java code, prior to the model-to-text transformation, the activity diagram

meta-model is mapped with a Java meta-model. This meta-model comprises of classes

such as Java statements of different types such as the assignments and declaration

statement, decision statement and initial and end statements.

The activity diagram meta-model is used to generate a model of the activity

diagram. A mapping process is carried with the support of ATL transformation language

queries where the activity diagram meta-model and the Java meta-model are mapped.

During this mapping process, the generated activity diagram is used as the input model.

The output model generated from running these ATL queries is the Java model.These

meta-models, models, and transformations will be described in details chapter 5 thus

emphasizing on each of their functionalities and how they address the research questions

and the functional and non-functional requirements.

Model-to-Text Transformation

Model-to-text transformation technique is taken into consideration when transforming

the Java model generated during the model-to-model transformation to runnable Java

code. A built-in Java file is provided which reads the instances of the Java model and

writes and writes them to a new Java file. The filtering is carried out based on the

Chapter 4. Architecture Creation 101

statement type. This is detailed in chapter 5.

Modeling Activity Diagrams

As per the tool, the tool involves modeling of an activity diagram in a provided custom-

ized activity diagram model editor. This functionality is achieved with a design of a

meta-model for the activity diagram in Eclipse, version Mars 4.5.2.

Once the user runs Eclipse application within a specific workspace, depending

on the projects available in the chosen workspace, the software checks for the availability

of the required plug-ins and installs them if unavailable. The user then needs to run the

meta-model of the activity diagram, i.e.: activity diagram.ecore as configurations in a

new Eclipse Application instance. This opens a new Eclipse instance with a customized

activity diagram model editor which provides the user with a modeling space and palette

consisting of all the relevant elements for the modeling of an activity diagram. The

modeling of the activity diagram generates an XMI file of the activity diagram model

stating the corresponding nodes and connectors.

Transformation of Activity Diagram to Java Model

ATL is a known to be a hybrid transformation language which consists of both declar-

ative and imperative constructs (Jouault & Kurtev, 2006).This, in fact, supports the

model-to-model transformation process thus enhancing the activity diagram model to

Java model transformation.

The end user needs to run the ADModeltoJavaModel.at the file as ATL

transformation to generate the corresponding Java model from the activity diagram

model.

Chapter 4. Architecture Creation 102

Transformation of Java Model to Java Code

This involves model to text transformation process where the Java model is transformed

to runnable and understandable Java code. As for the Activity Diagram to Java Code

Generation Tool, there is a built-in Java file called ActivityDiagram2JavaCode.java

which when run as a Java application writes the corresponding Java code to another

separate Java file, thus completing the activity diagram to code generation procedure.

Finally ensuring all the listed functional and non-functional requirements are achieved

as listed.

4.2.4 Scenario View - Use Case Diagram

The scenario view explains the functionalities of the system from the preservative of

the outside world. Moreover, this view comprises of diagrams detailing the functions of

the system from the view of a black box. This view is graphically presented in terms of

a use case diagram. Thereby, a use case diagram is designed to show the scenario view

of the Activity Diagram to Java Code Generation Tool.

A use case diagram basically consists of actors involved in the functions of

the system, in the case of the Activity Diagram to Java Code Generation Tool, there

may be actors for different levels of functionalities. Design and modeling of the activity

diagrams can be carried by the software architect or the designer whereas the code

generation from the activity diagram can be carried out by the software developer

to ensure the code generated is understandable and runnable. In the meanwhile, the

client may also learn the complete process from the design and modeling of the activity

diagram to the code generation which is the combination of the functions carried out by

both software architect and the software developer.

Chapter 4. Architecture Creation 103

The use case diagram for the tool has one user called the "End User" who

carries out all the functions required to generate Java code from the activity diagram.

The use case diagram has rectangular shaped boxes distinguishing different layers of

functions as shown in Figure 4.8.

Figure 4.8: UML Use Case Diagram - Activity Diagram to Java Code Generation Tool

Chapter 4. Architecture Creation 104

Both Figure 4.7 and 4.8 graphically explain the process of Activity Diagram

to Java Code Generation Tool in terms of the process view and the scenario view. These

diagrams include the use of different applications, plug-ins, file formats, models and

model transformations. These will be explained in this part of the thesis.

4.3 Conclusion

When the architecture design of the proposed Activity Diagram to Java Code tool is

taken into consideration, as discussed in this chapter, ADD methodology is practiced to

design the architecture for this tool. As shown in Figure 4.1, the architectural drivers are

used as the inputs to the design and several steps are followed during the design phase,

they include identification of architectural scenarios and patterns mitigating the issues

during the design with the support of architectural tactics. Finally, the architecture

design of the tool is represented and communicated using the 4+1 views approach. In

order to ease the understanding of the tool, various terms are defined and explained in

this chapter in addition to the design of the architecture. These terms include modeling,

meta-modeling, mode transformations and a white-board of the architecture which gives

a complete and clear understanding of the proposed tool.

Chapter 5

Design and Development

This chapter details the design and development of the proposed tool. As explained in

earlier chapters of this thesis, the tool involves generating runnable Java code from a

simple UML activity diagram.In order to provide a better understanding of the tool, a

detailed view of the is provided thus illustrating how the proposed tool supports the

achievement of the deployment of smart home applications. The tool comprises of

a set of components such as design of meta-models for UML activity diagram and

Java programming language, design of the activity diagram model editor, model to

model transformation and model to text transformation. Each of these phases or the

components require a set of technology decisions that need to be made which in turn

would enhance the design and the development of the tool. Additionally, the design and

the development of each component will be elaborated with the support of snapshots

from the tool design to add further understanding to the tool.In the meanwhile, the

global case study of this thesis, which is the smart light system will be addressed

throughout this chapter thus showing how the smart light system was modeled using

the proposed tool to ensure the promised architectural drivers are achieved.

105

Chapter 5. Design and Development 106

5.1 Detailed View of the Architecture

As said earlier, the figure shown below is a very detailed view of the architecture of the

proposed tool. During the literature review, which is Chapter 2 in this thesis, various

tools which address the smart home scenarios and challenges relating to the smart

homes such as lack of interoperability and other challenges were discussed. In order

to eliminate the problem definition, a tool is proposed as shown in Figure 5.1 which is

also highlighted in the figure shown below. From the entire framework, the section in

the red rectangle will be taken in to further consideration when designing, developing

and building the tool.

Figure 5.1: Detailed View of the Architecture

Chapter 5. Design and Development 107

The architecture in the second part of the figure describes how the visual

domain-specific plan is compiled to a software code with the use of various techniques,

tools, and plug-ins in detail. Each of these components, how they are developed and

configured and how they eventually achieve the stated architectural drivers(ADs) will

be discussed comprehensively in the following section of this chapter. This is supported

by a comprehensive class diagram that describes the structural aspect of the proposed

solution as a whole.

5.1.1 Class Diagram

The class diagram depicts a detailed structural view of the proposed tool which generates

runnable Java code from modeled UML Activity Diagram. A class diagram describes

this structure of the system with the support of classes, attributes, operation (methods)

and the relationship among these objects. As for the proposed tool, each processor

phase during the tool design is considered as a separate class such as Activity Diagram

Meta-Model Class for the design of the Activity Diagram Mete-Model. The relationship

between the processes is shown in terms of reference and composition association

based on their types of relationship with each other. Furthermore, relative attributes and

operations of each phase are included in their respective classes as shown below.

Chapter 5. Design and Development 108

Figure 5.2: Detailed Class Diagram

As discussed earlier, the most significant components of the proposed tool

will in addressed in detail, where the technical decisions made in relation to the design

and development of the tool and how each component is designed will be discussed

individually.As per Figure 5.1, there are 4 components in the proposed architecture.They

are addressed in length as follows.

Chapter 5. Design and Development 109

5.1.2 Development Work-flow

The below-shown work-flow will be followed during the development of the proposed

tool. The steps in the yellow rectangles need to be followed and developed in order as

the output of a specific phase (represented in orange rectangles) is used as the input in

one of the following phases.

Figure 5.3: Development Work-flow

5.2 Component 1:Meta-Model Design

As per Figure 5.1, component 1 represents the design development of both UML activity

diagram meta-model and the Java meta-model. The activity diagram meta-model is

designed to support the generation of an activity diagram model which will eventually

help in the code generation procedure.This will also help the design of the activity

Chapter 5. Design and Development 110

diagram model editor, especially during the design of the activity diagram nodes.The

Java meta-model is designed so that it can be used as the "output meta-model" during

the model transformation process. There are various applications supporting the design

of meta-models. However, technological decisions are made during the selection of the

most suitable application based on defined selection criteria.

5.2.1 Technology Decisions: Selection of an Application for App
Modeling

There are various applications which support the modeling of app design models. These

tools include Microsoft Visual Studio, Visual Paradigm, Star UML, IBM Rational

Enterprise, Enterprise Architect, Papyrus, Eclipse Modeling Framework a plug-in by

Eclipse, ArgoUML, Magic Draw, Poisedon and Net Beans UML plug-ins. Each of

these tools allows the modeling of a visual app, however only one of these tools are

chosen to model the app design of the proposed tool, this is being carried out based on

selected criteria as said previously.

As shown in the Table 5.1, the criteria to chose the best application to design

app design models include the ability to structure the models, levels of robustness and

easiness to model apps, the ability of the application to allow generation of a customized

model editor, model accuracy and the ability to generate models instanlty. The above

mentioned apps are evaluated agianst this criteria to chose the most suitbale app that

support both app designing and code generation aspects. This is depicted in Table 5.2.

nipuniperera
Highlight

Chapter 5. Design and Development 111

Criteria Definition
Structuring of Models Ensuring creation of classes, packages, associations, attributes

and name spaces specially supporting the building of meta-
models (France, Ghosh, Dinh-Trong & Solberg, 2006).

Robustness and ease of use Improved levels of efficiency when managing the tool, limited
involved during the configurations (Ho, Jézéquel, Le Guennec
& Pennaneac’h, 1999).

Ability to generate a customized
model editor

The ability of the tool to support the generation of customized
model editor (Nordstrom, Sztipanovits, Karsai & Ledeczi,
1999).

Model Accuracy Ability to provide well defined and well understood details of
the classes, associations, name-spaces and attributes created
which in turn would support the generation of an accurate
model instance and a model editor (Rumpe, 2016).

Standard C ompliant Ability to create complex systems with less communication
ambiguity (Inc, 2017)

Model instance generation Ability to generate an instance of the UML class diagram
to enable model-to-model transformation (Ehrig, Küster &
Taentzer, 2009)

Table 5.1: Selection Criteria: App Modeling Application

Criteria Poisedon Enterprise
Architect

Magic
Draw

EMF by
Eclipse

Papyrus

Structuring of Models ✓ × ✓ ✓ ✓

Robustness and ease of use ✓ ✓ ✓ ✓ ✓

Ability to generate a custom-
ized model editor

✓ × × ✓ ×

Model Accuracy ✓ × ✓ ✓ ✓

Standard Compliant ✓ × × ✓ ×

Available for free × × × ✓ ✓

Model instance generation × ✓ × ✓ ×

Table 5.2: Selection of App Modeling Application

Based on the above results, Eclipse Modeling Framework (EMF) seems to

be the most suitable application to model the visual app. In addition, Eclipse as a

foundation and a corporation facilitates the integration and collaboration of extensible

tools and frameworks thus supporting building, deploying and managing the software

(Steinberg, Budinsky, Merks & Paternostro, 2008). Therefore, Eclipse (version Mars

4.5.2) is used to build the complete tool where a different plug-in is integrated into to a

single working space whereby usability and compatibility are achieved to a very great

Chapter 5. Design and Development 112

extent.

5.2.2 Development of Activity Diagram Meta-Model

Meta-Model and Meta-Modeling as addressed in detail in section 4.2.3 of chapter 4 ,

describes the structural aspect of a model and supports the generation of models with

the inclusion of relative attributes, classes, and associations. Therefore, in order to

generate a model of an Activity Diagram, a meta-model of it is designed in Eclipse

(version Mars 2.5.7) (refer section 5.1.2 of chapter 2) with the support of Ecore Tools,

which is an Eclipse plug-in. This helps the generation of model instances with the

design of meta-models. Basically, an activity diagram comprises of various elements

such as actions, decision, final and initial nodes. In this tool, each node is identified

as a class in the activity diagram meta-model where aspects such as name and other

titles are considered as attributes in respective classes. These nodes may have different

types of relationships among each other, which are also defined in the meta-model. The

design of the meta-model is graphically shown below.

Figure 5.4: Activity Diagram Meta-Model

In addition to the titles of the nodes, the active node consists of two additional

nipuniperera
Highlight

Chapter 5. Design and Development 113

attributes called "Dec Assign Node" and "Print Node", these attributes are created to

match the Java statements which in turn would support the model mapping and later

code generation.

As per Figure 5.4, the Left Hand Side (LHS) figure is the class diagram of the

activity diagram meta-model as mentioned earlier entails of the classes, associations,

and attributes describing the structural perspective of an activity diagram. The Ecore file

of the activity diagram on the right-hand side (RHS) depicts a graphical representation

of the activity diagram Ecore model via the context menu of an Ecore file.The core

file as stated defines the elements of the activity diagram meta-model, these elements

include eClass, attribute, eReference, and eDataType. Additionally, Ecore model is

basically a root object representation of the complete activity diagram model. As stated

earlier and as shown in the activity diagram Ecore file, the model consists of classes

with children for every class such as its attributes.

Activity Diagram Node

The activity diagram is regarded as a node in the activity diagram meta-model, due to its

need to be generated to a line of runnable code. The activity diagram generally consists

of various types of nodes such as the activity, decision, final and initial nodes. Therefore,

as per the meta-model, activity diagram node has one-to-many eReference (type of

association) relationship with every node since the activity diagram can have many

nodes from each type of node mentioned earlier. Moreover, in terms of eAttributes,

the class consisting of a single eAttribute called "Name" with the type "String". Even

though activity diagram having a name is unusual, this is carried out to support the

model-to-model transformation and the ultimate code generation requirements.

Chapter 5. Design and Development 114

Activity Node

Activity node is one of the main elements of the activity diagram which depicts a

specific behavior, however, in terms of the proposed tool, the activity node consists

of two attributes such as the Dec-Assign-Node and Print-Node to support the variable

assign and declaration and print statement in a Java program. The activity node is

designed this way to support the mapping of meta-models which will eventually help

the code generation. Furthermore, as shown in the active node (as a class) in the activity

diagram meta-model in Figure 5.4, the said node consists of Dec-Assign and print nodes

with one-to-many relationships to ensure the user is able to define multiple values via a

single variable. This is carried out to avoid repetition of multiple activity nodes in a

single activity diagram which may lead to redundancy issues during the modeling of

the activity diagram. Furthermore, the node holds a variable type string called "text"

holds both values from the dec-assign node and print node. This variable is mainly used

during the design of activity diagram model editor, where the user is allowed to store

values of both dec-assign-node and the print-node in the text-node variable which is

invoked when modeling the activity nodes in the activity diagram. Also, as presented,

all the variables in the activity node class are of type STRING and these values need to

key in by the user as shown in the sample below.

• Dec-Assign-Node: "int var = 20" or "String var = "action""

• Print-Node: "System.out.println(var);"

Initial Node

The initial node is regarded to be the initialization of the flow of activities in an activity

diagram. Likewise, the initial node is represented in terms of a class in the activity

Chapter 5. Design and Development 115

diagram meta-model. The shape of the initial node, which is a circle with a dot in it is

defined during the design of the activity diagram meta-model (refer to section 5.3). The

initial node class consist of an attribute called "Name" which is of type "String". This

is to support the code generation, where the user needs to key in an open parenthesis.

This is explained in detail later during the code generation process. In terms of the

associations, the initial node can lead a single activity node and not any other type of

node. This association is determined in the activity diagram meta-model where the

initial node class has a one-to-one association with the activity node class. Furthermore,

the activity diagram may have more than one initial node in an activity diagram, this is

determined by the one-to-many relationship between the activity diagram class and the

initial node class.

Decision Node

The word "decision" adds meaning to this node, in other words, this node basically

accepts a value or a set of values of an activity node or ’s’, makes a specific decision

and provides two outgoing nodes, one accepting a scenario and the other rejecting. In

simple words, this is an if-statement which if accepted, executes and otherwise proceeds

to the else statement. In terms of the associations, the decision node can occur due to

one or many activity nodes and therefore may have a one to may relationship with the

active node. As every other node, this node also has an attribute called "Name" with

type "String" where the user is key in a set of strings such as: "if (motion-sensor ==

true)". This condition checks if the motion sensors are switched on. The execution after

the if condition or in other words the decision node may take place in activity node,

which is why the decision node may have one-to-many type os associations with the

active node.

Chapter 5. Design and Development 116

Final Node

The final node terminates the flow of activities in an activity diagram. The final node in

the proposed activity diagram performs the same function, however as every other node

class in the activity diagram meta- model, final node class also consists of an eAttribute

called "Name" by type "String", which allows the user to key in a set of strings during

the modeling of the activity diagram phase. In terms of the eAssociations of this node,

the final node terminates the flow of activities and therefore these two nodes share a

one-to-one association between each other.

5.2.3 Development of Java Meta-Model

The Java meta-model addresses features of a Java class, these features include the Java

class, Java statements, and if-statements. In order to match the activity diagram meta-

model to support the model mapping process, two additional statements are added, they

include: begin and end statements. Even though a Java class also comprises of packages,

methods other structural aspects, this tool only addresses the flow of statements thus

enhancing the dynamic side of the code and the structure. The relationship between the

Java statement nodes is corresponding with the activity diagram node associations to

support the model mapping process.

Java Meta-Model

As defined previously, meta-model describes the structural aspect of any type of diagram,

however, a meta-model for Java programming language is created to support the model

mapping process which in turn would support the overall code generation procedure.

Furthermore, this meta-model for Java consists of various classes such as the Java class,

Chapter 5. Design and Development 117

Figure 5.5: Java Class Meta-Model

Java statement, if statement, begin statement and end statement. Even though Java

as a programming language when conformed to standard meta-model would consist

of Java package, Java class, Java methods, fields, interfaces, and parameters (Favre,

2003), the Java meta-model defined for the proposed tool does not consist of the Java

standard meta-model elements. This is due to its need to help the model mapping with

the activity diagram meta-model which is based on a very dynamic structure. This

section details the elements of the defined Java meta-model.

Java Class Element

As defined by Oracle Java documentation, Java class is a body between the braces where

the objects are constructed, initialized and declared, the fields are declared to provide a

state for the class and its objects and methods to implement behavior to the class and

its objects (Bronner & Olubando, 2009). Although the Java class element defined by

the proposed tool does not support the specification of Java objects, Java method is

addressed to a very great extent due to its emphasis on the behavioral nature of the Java

class overall. As shown in Figure 5.5, Java class element consists of an attribute called

"Name with variable type: String", this allows the user to give a name to the Java class,

Chapter 5. Design and Development 118

for instance when mapped with Activity Diagram model and generated would generate

a Java statement similar to: "public class JavaClassName" which when compared with

the standard Java code Java class declaration would look identical.

Java Statement Element

When Java statements are taken into consideration generally, they can object declaration

and invoke, variable assignments, variable declarations, method invoking and print

statements. However in order to match the Activity Diagram meta-model and the shapes

defined during the design of the Activity Diagram model editor, the Java statement

therefore as matched consists of three string variables with one-to-many relationships

for each variable. A single variable is set for both variable declaration and variable

assignment, this variable is called "Dec-Assign Statement"which allows the user to

both declare and assign values to the variables. Moreover, this element comprises of

the print statement which allows the user to print multiple statements using a single

attribute. This element also consists of a title variable which holds both values from

Dec-Assign statement and the print statement. This variable is helpful during the code

generation where the values from the title variable are called when reading the XMI file.

Begin Statement Element

Even though there is no such element called the begin statement in the standard Java

meta-model since there is an element called initial node in a standard activity diagram,

the Java meta-model defined for the proposed tool also comprises of a begin statement

to map with the initial node of the activity diagram model.A Java class as mentioned

previously is surrounded by beginning and ending braces, therefore the beginning

statement is regarded to be the beginning brace which in this case is called the "begin

Chapter 5. Design and Development 119

statement".

If Statement Element

According to Oracle Java documentation, if-then-else statement is regarded as a control

flow statement which allows the execution of a certain statement only if a particular

test evaluates to "true" and otherwise the else statement is executed. In the case of

the proposed tool, the if statement element consists of a variable called "Name "which

allows the user to read the if statement,i.e.: for instance, if(light == false) and the

else statement is supported identified with a new Java statement, this is created with a

relationship between the Java statement element and the if statement element (5.5).

End Statement Element

The end statement as stated previously, the Java class is surrounded by the braces,

therefore at the end of the Java code in a Java class is ended with a closing brace which

in this case is denoted by the "end statement".

5.2.4 Meta-Model Configurations

The run configuration functions of Eclipse has supported the configuration of the

program when being launched, however, when launching the developed meta-models,

they are configured as "run as an Eclipse Application" which generates a new instance

of Eclipse. This instance allows the launching and debugging of the meta-model by

generating a model instance of the meta-model. This function is used to generate a

model instance of the activity-diagram model. An example is shown below.

Chapter 5. Design and Development 120

Figure 5.6: Activity Diagram Model Instance

The above-shown activity diagram model instance is used during the modeling

of the activity diagram (refer section 5.3) and the model-to-model transformation process

where the model instance is used as the input model to the transformation process (refer

section 5.4).

Furthermore, the activity diagram model instance shown in Figure 5.6, is a

model instance of the smart light system. The activity diagram for the smart light is

system is modeled, i.e.: graphically or in other words, diagrammatically represented in

Component 5.3 after the build of the activity diagram model editor.

Even though the model instance for the activity diagram meta-model is

generated through configuration of the meta-model as a new Eclipse application, the

Java model instance is generated with the support of the model-to-model transformation.

Chapter 5. Design and Development 121

This is detailed in Section 5.4.

5.3 Component 2: Model Editor Design

A customized model editor is designed with the selected tools and plug-ins supported

by Eclipse (Mars version 4.52).Prior to the design and the development of the stated

model editor, the suitable tools are plus-ins are chosen based on defined criteria. This

is detailed in section 5.3.1.As mentioned earlier, this section also emphasizes on the

design and the development of the model editor. Lastly, the global case study, the smart

lighting system is modeled as an activity diagram in the customized model editor.

5.3.1 Selection of Model Editor Design Application

There are various tools, plug-ins, and applications supporting the design and generation

of customized app model editors. They include Graphical Modeling Framework (GMF),

Sirius, GenMyModel, Enterprise Architect, EcoreTool and Obeo Designer. Out of

these, the most compatible and user-friendly tool will be selected for this process. The

selection criteria will ensure that the chosen tool supports the achievement of the stated

architectural drivers.

When the results from the above table and other factors are taken into con-

sideration, Sirius is an Eclipse project which allows the design and generation of

customized model-editor by leveraging Eclipse modeling technologies thus ensuring

100 percent compatibility with Eclipse. For the design of the model editor, both Sirius

and Ecore tools are used due to its support in building meta-models and model editors.

Even though GMF is an Eclipse plug-in, it has left the Eclipse train three years ago thus

when used now may lead to availability, up-to-date and compatibility issues (Pelechano,

Chapter 5. Design and Development 122

Criteria Definition
Usability Degree to which the model editing designer supports in

achieving the stated architectural drivers,i.e.: in this case
the ability of the developer to design and build a custom-
ized UML model editor(Shackel, 1991).

Up-to-Date The chosen plug-in or tool must be up-to-date to achieve
improved characteristics.

Availability The plug-in or the application should be available at all
times to support the building and designing of the model
editor (Mohilo, 2017).

Compatibility The plug-in or tool should be compatible with Eclipse
(version Mars 4.5.2) top support further development of
the tool (Mason & Criswell, 1998)

Customizable Allows customizations of the model editor (Steinberg et
al., 2008).

Table 5.3: Selection Criteria: App Modeling Editor Application

Criteria GMF Enterprise
Architect

Sirius GenMyModel EcoreTools

Usability ✓ ✓ ✓ ✓ ✓

Up-to-Date × ✓ ✓ ✓ ✓

Availability × × ✓ × ✓

Compatibility × × ✓ × ✓

Customizable ✓ ✓ ✓ ✓ ✓

Table 5.4: Selection of App Modeling Editor Application

Albert, Muñoz & Cetina, 2006).

5.3.2 Design of Activity Diagram Model Editor

Even though there are existing model editors supporting the design of UML diagrams,

a customized model editor is designed and generated to support the model confirmation

and generation of model instances which are required for the model mapping and code

generation processes. Therefore, as mentioned earlier, a customized model editor is

designed with the support of Sirius (Eclipse plug-in). The model editor consists of

a viewpoint (rfefer section 4.2.3 of chapter 4) which supports the connection of the

activity diagram meta-model designed in this section and the model editor. Moreover,

Chapter 5. Design and Development 123

viewpoint in Sirius provides a set of representations, in this case, the representation

is called the "activitydiagram" which is synchronized with the activity diagram meta-

model built-in component 1 (refer section 5.3).The activation of this viewpoint allows

creating and editing of the corresponding activity diagram in the activity diagram model

editor. (This includes the creation of both nodes and the edges),

Furthermore, the activity diagram nodes are given different shapes such as a

rectangle for the activity, a diamond for the decision node and dot for the initial and

final nodes. Also, the relationships among these nodes are designed with the help of

relation based edges. In order to help the user add these nodes to the modeling area, a

palette (section) is designed with the listed nodes and their associations. The design of

the model editor is shown below.

From the developed model editor design, shown in figure 5.6, the activity

diagram model editor is generated as shown in figure 5.7. As discussed earlier, the

nodes from the activity diagram meta-model are synchronized with the model-editor

design using the "activitydiagram" viewpoint. When the associations are taken into

consideration, there are six relation based edges defining the relationship between these

nodes.

Chapter 5. Design and Development 124

Figure 5.7: Activity Diagram Model Editor Design

The associations shown in figure 5.7 are defined in the table below.

5.4 Component 3: Model-to-Model Transformation

Model transformation plays an important role in Model Driven Engineering (MDE),

in another word, MDE promotes the use of models and regards the models to be the

primary artifacts that drive the complete software development process (Jouault, Al-

lilaire, BÃ©zivin & Kurtev, 2008). Furthermore, MDE involves a series of model

transformations over models, as per (Jouault, Allilaire, BÃ©zivin & Kurtev, 2008),

model transformation is defined as a set of refinement steps over models which decrease

Chapter 5. Design and Development 125

Figure 5.8: Activity Diagram Model Editor

the level of abstraction. The goal of model transformation is to generate a new model

that contains sufficient details to support generation of executable code. Model trans-

formation follows a specific pattern called the "model transformation pattern", this

pattern is applied in the model transformation process when building the proposed tool.

This component, therefore, emphasizes the language, patterns and the tools used in

the model transformation process in order to generate a model that supports automatic

runnable code.

5.4.1 Selection of Model-to-Model Transformation Language

As explained in section 4.2.3 of chapter 4, Model-to-Model transformation technique is

used to map the Activity Diagram model to the Java model which will eventually support

Chapter 5. Design and Development 126

Association Definition
Activity-Decision Flow Defines the association between activity and decision

node, The activity node may have one decision node as
shown in the metamodel. The activity node can lead to
a single decision node as shown in the activity diagram
modeled in the activity diagram model editor.

Decision-Yes-Activity Flow Decision Node can have two activity nodes, i.e. activity
node stating the yes node and an else node as per Java.
Therefore, decision node can lead to one of the activity
nodes with the decision-yes relationship.

Decision-No-Activity Flow Also, decision node can lead to another activity node with
the decision-no edge which explains the else aspect of a
decision of an activity diagram.

Initial-Activity Flow Initial node in activity diagram can only lead to and have
one activity node thus making it have a one-to-one rela-
tionship(reference kind of association) with activity node
(5.5).

Activity-Final Flow Activity Node can only have or lead to one final node, this
is shown clearly in Figure 5.4.

Activity Flow This describes the association between the activity nodes
in an activity diagram, where one activity node can have a
one-to-one relationship with another activity node.

Table 5.5: Association Definitions

the generation of software code. There are various languages which support the model-

to-model transformation method, they include ATL, (Atlas Transformation Language),

ETL(Epsilon Transformation Language), Kermata, QVT (Query View Transformation)

and Graph Rewriting and Transformation (GReAT). The transformation language is

chosen based on criteria which address the ability to map models, ability to compile

and debug the code, traceability, expressibility, and simplicity.

As per the above table, ATL is chosen to map and transform models since

it tends to meet all the criteria. Also, ATL is a plug-in supported by Eclipse which in

turn may support the design and development in term of compatibility. Even though

ETL is a plug-in supported by Eclipse, this tends to be weak in terms of traceability

and expressibility (Samimi-Dehkordi et al., 2014). Furthermore, in terms of simplicity,

ATL and ETL are considered to be the two most simple languages during the model

transformations. GREaT is an independent tool which allows the generation of EMF

Chapter 5. Design and Development 127

Criteria Definition
Ability to map models Ability of the language to create a mapping between the

models (Brown, 2004).
Ability to compile and debug Ability to compile, debug and generate runnable code to

support model transformation (Jouault, Allilaire, Bézivin
& Kurtev, 2008)

Traceability Ability to create a link between, the defined models
(Samimi-Dehkordi, Khalilian & Zamani, 2014)

Expressibility Ability to specify transformation requirements of models
(Samimi-Dehkordi et al., 2014)

Simplicity Determined by the number of basic constructs, a small
number of of constructs lead to a simple language
(Samimi-Dehkordi et al., 2014).

Table 5.6: Selection Criteria: Model-to-Model Transformation Language

Criteria ATL ETL Kermata QVT GReAT
Ability to map models ✓ ✓ ✓ ✓ ✓

Ability to compile and debug ✓ × ✓ ✓ ✓

Traceability ✓ × ✓ × ✓

Expressibility ✓ × ✓ × ×

Simplicity ✓ ✓ ✓ × ✓

Table 5.7: Selection of a Model-to-Model Transformation Language

models, however, this tool cannot be used with Eclipse which can lead compatibility

issues when building the proposed tool (Whittle, Clark & Kühne, 2011).

5.4.2 Overview of ATL Transformation Process

This section describes the model transformation pattern used in the transformation

process. This pattern consist of two types of models known as the "source model"

and the "target model". The source model is the model that is being transformed and

the target model is the model to which the source model is transformed in to. ATL

meta-model, in this case, source model and the target mode are confirmation of a model.

Additionally, all the meta-model in this process conforms to MOF. In the case of the

proposed tool, the source model is the Activity Diagram meta-model (refer figure 5.4)

Chapter 5. Design and Development 128

and the target model is the Java meta-model (erefer figure5.5). The Activity Diagram

meta-model, which is the source model is the conformation of the activity diagram

model instance (refer figure 5.6). These models together with the support of MOF and

ATL generates a new model called the "Java Model" which can be easily transformed

to executable code automatically. Therefore, this transformation pattern is used to

transform the activity diagram model (source model) to a Java model (target model)

according to the transformation definition ""ActivityDiagramModel2JavaModel.atl"

written in ATL language. The pattern of the transformation is shown below.

Figure 5.9: Overview of ATL Transformation Process

As per figure 5.9 and (Jouault, Allilaire, BÃ©zivin & Kurtev, 2008), all the

meta-models conform to MOF (Meta Object Facility).MOF is an OMG meta-modeling

and metadata repository standard. It is an extensible model-driven integration frame-

work used in defining, manipulating and integrating meta-data (Tang, 2009). Likewise,

the models depicted in purple rectangles conform to the meta-models shown in light

blue rectangles which in turn conform to MOF. The Java model, which is the target

Chapter 5. Design and Development 129

model is generated with the support of ATL rules written in the "ActivityDiagram-

Model2JavaModel.atl file. In other words, the activity diagram meta-model (the source

model) is used as the input meta-model, see MM in figure 5.9, the Java meta-model is

used as the output meta-model (refer to MM1 in Figure 5.9 and the Activity Diagram

model is used as the input model (refer to IN in Figure 5.9). Figure 5.10 represents

the configuration of the ATL approach used to generate the Java model from activity

diagram model instance (refer figure 5.6).

Figure 5.10: ATL Configurations Window

In addition to the use of models and meta-models for the transformation

process, a set of ATL rules need to be written to map the elements of Activity Diagram

Meta-Model (MM) and Java meta-model (MM1).The classes, attributes and associations

of the Activity Diagram Meta-Model (refer figure 5.4) needs to be mapped with the

classes, attributes, and associations of the Java Meta-Model (refer figure 5.5). The

mapping of activity diagram nodes and Java classes are shown in the figure below.

Chapter 5. Design and Development 130

Figure 5.11: ATL Mapping Approach

As shown in Figure 5.11, each activity diagram node is mapped to a corres-

ponding Java statement through an ATL file. Each Activity Diagram node is represented

as a class in the Activity Diagram Meta- Model, these classes consist of attributes.

These classes, attributes, and associations are mapped with the corresponding Java

Classes in the Java class Meta-Model. Each mapping is detailed individually in this

section.

Chapter 5. Design and Development 131

5.4.3 Transformation of Activity Diagram Model to Java Class Model

Figure 5.12: ATL Transformation Rules

As per figure 5.12, ATL rules are written for the transformation of every

activity diagram node to Java class statement. ATL as a hybrid transformation language

is a blend of imperative and declarative constructs. However, the declarative style is

used to write the transformation rules due to: its ability to specify relations between

the source and the target models and its ability to encapsulate complex transformation

algorithms behind a complex system (Jouault, Allilaire, BÃ©zivin & Kurtev, 2008).

The target model, i.e.: Java model is generated from the configuration of the ATL

rules shown in figure 5.12. Moreover, the Java model generated, which is an XMI

(eXtensible Meta Interchange) format. This file format is mostly used to exchange

UML diagram model design information. The activity diagram model instance is also

an XMI file which when generated creates a new Java file, which is a corresponding

XMI file matching the mapping rules written using ATL. The generated Java model

instance (in XMI format) is shown below, simultaneous to the respectively matching

activity diagram model instance.

Chapter 5. Design and Development 132

Figure 5.13: Java Model Instance Generation

5.5 Component 4: Model to Text Transformation

As explained in detail in section 4.2.3, the Model-to-Text transformation method is

used in creating the tool to support the code generation from model generated during

the mode-to-model transformation (refer figure 5.13). Three most significant projects

supported by Eclipse to generate text from model to include: Acceleo, Xpand, and

Jet. However, these code generating projects support the code generation from meta-

models (Schamai, Fritzson, Paredis & Pop, 2009), whereas this proposed tool requires

a software code generated from a model instance (this will be explained in detail with

the support of snapshots from the tool later in this chapter). The selection criteria are

shown below.

However, in order to generate Java Code from the model instance which is in

XMI format, the file is read using a Java code, line by line where each line comprises of

a tag name which corresponds with the type of the statements in software code model.

Every line is written to a Java file which will be in the format to execute and debug

immediately. Furthermore, in terms of the programming language to which the model

will be translated, the models will be transformed to Java code due to its improved level

in terms of ease, learn-ability, compilation and debugging functions.

Chapter 5. Design and Development 133

5.5.1 Selection of Model-to-Text Transformation Technique

Various techniques are used to translate models to text. These techniques are mentioned

earlier and in order to evaluate and choose the most suitable method.This is achieved

by defining criteria against which each existing techniques are assessed. The existing

approaches are evaluated in terms of various areas such as ability to translate the

Java models generated in section 4.2.3 of chapter 4,to understandable, executable and

runnable code, the ability of the model transformation approach to translate behavioral

app design models to code easily, the ability to generate code from any case study

modeled in the model editor (refer figure 5.8) thus meeting both interoperability and

compatibility features of the tool.

Criteria Definition
Ability to generate Java code that
meets the defined criteria

Approach to generate Java code that is executable and
understandable (refer section 4.1.1 of chapter 4).

Ability to generate code from beha-
vioral models such as activity dia-
grams.

Ability to transform activity diagram model instances
(refer figure 5.6) to runnable Java code easily (Baker, Loh
& Weil, 2005).

Optimization and refactoring of the
generated code

Ability to achieve improved performance during the model
to text transformation process and the ability to generate
the internal structure of the tool in order to achieve other
system requirements such as understandability, modifiabil-
ity, code-red usability,modularity and adaptability without
having to change the obvious behavior of the app design
model (Mens & Van Gorp, 2006)

Simplification and Normalization Helps to achieve reduced levels of syntactic complexity
by translating Java model instances into a more primitive
language construct (Java code) (Mens & Van Gorp, 2006).

Ability to customized the code In order to have their own smart home environment, the
smart home application needs to be customizable which
in turn requires customizations in the code generated from
the tool (refer section 4.1.1 of chapter 4).

Table 5.8: Selection Criteria: Model-to-Text Transformation Approach

Based on the above-defined criteria, there are Model-to-Text transforma-

tion approaches such as Acceleo, ATL, JTL (Janus Transformation Languages), ETL

(Epsilon Transformation Language), Kermata Language, Acceleo and Xtend (Erata,

Chapter 5. Design and Development 134

Challenger & Kardas, 2015).

Criteria ATL ETL Acceleo Xtend Java
Ability to generate Java code that meets the
defined criteria

✓ ✓ × × ✓

Ability to generate code from behavioral
models

✓ × × ✓ ✓

Optimization and refactoring of the gener-
ated code

✓ × ✓ × ✓

Simplification and Normalization ✓ × ✓ × ✓

Ability to customized the code × ✓ × ✓ ✓

Table 5.9: Selection of a Model-to-Text Transformation Approach

As per the above table, various model-to-text transformation approaches are

evaluated in order to choose the most suitable one to be used to generate Java code from

the Java Model Instance (refer figure 5.13). Therefore, according to the above results,

the most suitable technique seems to be the best choice since it meets every criterion.

Most importantly, the transformation technique needs to transform behavioral models

such as UML Activity Diagrams to Java code. Most of the transformation techniques

mentioned above only support code generation from structural models such as class

diagrams (Erata et al., 2015).

Even though ATL has the ability to support translation of behavioral models

such as Activity Diagrams to Java code, it still leads to other drawbacks such as the

ATL not being very supportive during incremental model transformation procedures,

therefore all though a complete source model is used to generate a complete target

model (the generated source code), if modifications are made to the target model they

may not be preserved (Biehl, 2010), this, in turn, may affect the customizable feature.

During the development procedure, ATL was first used to generated Java code from

model instance, however due to various reasons such as the tag names in the model

instance being different and the lack of time to change the underlying meta-models and

relative model artifacts in order to support the code generation using ATL, reading the

Chapter 5. Design and Development 135

model instance using Java was chosen.

Reading the model instance which is in the format of XMI using Java as the

programming language to read the file meets every criteria above and therefore is used

to transform the Java model instance to executable Java code.

5.5.2 Reading Java Model Instance

The target model generated from the Model-to-Model transformation process, i.e.: Java

instance model (refer figure 5.15) which is in XMI format is used as the input to the

Java code. This code reads the Java model instance and generates a set of lines of Java

code which meets the primary functional requirements in relation to the automatic code

generation aspect (refer section 4.1.1 of chapter 4).

Figure 5.14: Identifying Java Model Instance and Instance Tags

As per Figure 5.14, the DocumentBuilderFactory API is used to obtain a

parser that generates DOM (Document Object Model) object trees from XML docu-

ments (i.e.: the Java instance model). Afterwards, the DocumentBuilder API is used to

obtain the DOM document instances from the XML document (Java instance model).

This class is then used to obtain a Document from XML. The Document API is then

used to represent the complete XML document (R. Johnson, 2005). Therefore, the use

of previously mentioned APIs is used to identify the Java Instance model which is later

Chapter 5. Design and Development 136

read using Java code.

Furthermore, the tags in the Java model instances are varied due to the use

of the different types of statement such as Java Statement, If statement, begin and

end statements. Therefore for instance (Java Statement is generated as <javaCode-

Model:JavaStatement> and if statement is generated as <javaCodeModel:IfStatement>

) each tag is of a different names. The list of tags in the Java Instance Model is regarded

as a NodeList (helps to create an ordered list of nodes) when read by Java and in order to

read all the nodes which are of different types, the method getElementsByTagName()

is used, where the tag name is regarded as "*" which helps to read all the tabs in the

Java model instance XMI file.

The node type of <javaCodeModel: JavaStatement> is read individually out

of which a NodeList is created. This is due to the Java Statement Node having multiple

tags inside its own which need to be read during an if statement. This is emphasized

further in figure 5.14.

The Java code illustrated in figure 5.14 goes through all the nodes in the Java

Model Instance via a for loop with the size of the for loop being defined earlier, which

is equal to the total number of nodes in Java model instance. As shown in figure 5.14,

the nodes in the XML file (Java model instance) is cast to Element interface in order to

acquire all the attributes stored inside a specific node (in XML terms, tags). Furthermore

as illustrated in the code below (refer figure 5.15), as the node is cast as element

interface, this interface allows the use of methods such as "node.getNodeName()" and

allows comparisons with the support of the equal("String") method which eventually

has allowed to complete comparisons during if statements.

Moreover, a node list called statementList is created to obtain the Java State-

ment tags. This node list is created to call the Java statements which are assigned in an

Chapter 5. Design and Development 137

if condition. The if execution and else execution statements which are both of the type

of "Java Statement" are written as, for instance: Yes = "/1" No = "/3". In this case, a

for loop is executed which takes only the digit in the attribute value into consideration

(1 or 3) and the node index is set to that specific digit, from which the node details are

obtained with the support of the getTextContent() method.

Figure 5.15: Readind Tags in Java Model Instance

Chapter 5. Design and Development 138

5.5.3 Code Generation from Java Instance Model

As stated in the previous section, the Java code corresponding to the Java model instance

is generated with the execution of the Java code illustrated in Figure 5.15. The Java

code generated for the smart light system is shown below.

Figure 5.16: Java Code Generated from Java Model Instance

Java code generated which is the ultimately expected result from the automatic

translation tool is achieved. Even though the most significant and the important goal

in relation to the tool is achieved, as mentioned in primary functional requirements in

Chapter 4, the generated tool required certain set of evaluations in order to achieve the

stated requirements. This is carried out in detail in Chapter 6 where each part of the

Chapter 5. Design and Development 139

automatic translation tool is evaluated based on defined evaluation criteria (refer section

3.3 of chapter 3).

5.6 Conclusion

This section details the development aspect of the tool, the selection of different techno-

logies supporting the design of models, model editors and model mapping and finally

code generation. These selections are based on defined selection criteria, and these

definitions are also proved with valid literature findings. Furthermore, in addition to

these selections, other rationals are provided to give reasons as to why these specific

technologies are chosen. Subsequently, each phase during the development of the

Automatic Translation Tool is emphasized where each phase is implemented based on

the previously defined smart home case study, the smart lighting system. Even though

smart lighting system is demonstrated using the Automatic Translation Tool throughout

this thesis, other smart home systems such as the security and door lock system will be

detailed during the evaluation of the tool. The figure below provides an overview of the

complete tool.

Chapter 5. Design and Development 140

Figure 5.17: Overview of Automatic Code Generation from UML Activity Diagram

Chapter 6

Evaluation

This chapter contains the evaluation of the Automatic Translation Tool. Evaluation

criteria are defined based on the quality attribute requirements and primary functional

requirements from Chapter 4. Three success criteria are defined to evaluate usability,

availability, and performance of the tool. Each success criteria experience a certain

number of steps which are followed and used to evaluate the automatic translation tool.

This chapter is divided into few sections which perform very significant

functions in order to carry out a well-documented evaluation process for the Automatic

Translation Tool. Section 6.1 provides reasons as to why the Smart Lighting System

had been used throughout this thesis to demonstrate the Automatic Translation Tool.

Section 6.2, details the success criteria based on the modeling and the code generation

aspects. Subsequently, the Automatic Translation Tool is evaluated based on the success

criteria where findings, results, and drawbacks have been emphasized. This chapter

concludes summarizing the evaluation results, data analysis, and discussions of the

results.

141

Chapter 6. Evaluation 142

6.1 Smart Home Case Studies

This part of the thesis identifies different smart home systems in addition to the Smart

Lighting System. These Smart Systems include Smart Security, Smart Door Lock,

and Smart Weighting Systems. These case studies are modeled using the Automatic

Translation Tool.

6.1.1 Smart Lock System

This case study involves activities, decision nodes, initial node (in this case, called

the initiator) and final nodes known as the terminators. Initially, when the person

walks to the door, the door sensor is activated. The decision node checks if the person

present at the door is a resident of the house, this is ensured by the person swiping a

card for entrance or attempting to unlock the door with the smartphone. This attempt

by the person leads to an authentication of the swipe card or the mobile phone. If

authenticated, the control module in the smart lock which has a motor in itself (which

also acts as the actuator) is activated which in turn activates the door lock and unlocks

the door. If the authentication is denied, the process is terminated automatically. In

the meanwhile, if the person is not a resident, the doorbell camera, microphones and

the speakers are activated. The person is allowed to enter a customer entry code into

the keypad which is checked for authentication. If authenticated, the door is unlocked

and otherwise, the visitor is connected to the visitor through a smart phone, doorbell

camera, microphone, and speakers. Later access to the smart home is granted based on

the residents’ preference and the process is terminated.

Figure 6.1 depicts the smart lock system graphically.

Chapter 6. Evaluation 143

Figure 6.1: Smart Lock System

6.1.2 Smart Security System

Figure 6.2: Smart Security System

Chapter 6. Evaluation 144

In this scenario, the door sensors and wireless sensors are activated when the

person walks to the main door. If the home security system is disarmed via mobile, the

person is regarded as the homeowner and therefore the process is terminated. Otherwise,

the person is regarded as the intruder. This, in turn, leads to the activation of the wireless

sensors and alarms. The intruder alarm then notifies the homeowner and the police via

mobile.

6.1.3 Smart Light System

In this case, assuming the person walks to the door, the system checks if the door is

open. If he doesn’t open the door,the process is terminated. Otherwise, the door sensor

is activated. If the person walks into the room, the motion sensor are activated which in

turn allows the power outlet to switch on the lights on. Otherwise, the lights and the

motion sensor remain deactivated thus terminating the process.

Figure 6.3: Smart Light System

Chapter 6. Evaluation 145

6.1.4 Smart Weighting System

Figure 6.4: Smart Weighting System

This system measures the persons weight every day for fifteen days, then

compare the weight fluctuations within these 15 days and if there are any unusual

changes in the weight, the system notifies the doctor or otherwise continue tracking the

weight.

6.2 Evaluating The Automatic Translation Tool

This section evaluates the Automatic Translation Tool based on success criteria. Even

though the tool consists two significant aspects, the modeling and the automatic code

generation aspects which as per section 3.3 of chaper 3, which are evaluated based on

two different methodologies, in this chapter, a single evaluation criterion is designed

taking the model evaluation methodology (Methodology-Practices-Promises-Metrics)

Chapter 6. Evaluation 146

proposed by (Mohagheghi, 2010) and product risk taxonomy (Klein et al., 2015) as the

code generation validation methodology in to consideration. In addition, the evaluation

criteria also take the architectural drivers (refer section 4.1.1 of chapter 4) the thesis

promises to achieve in relation to the Automatic Translation Tool, which is detailed in

section 4.1 of chapter 4, into consideration.

6.2.1 Success Criteria

Generally, when evaluating a potential software solution, it is very likely to consider

the ability of the software to meet the functional and non-functional requirements

(Bandor, 2006).The success criteria evaluate the Automatic Translation Tool based on

the architectural drivers in priority level 1 (Table 4.1).They include usability, availability,

and interoperability. Evaluation of the tool for these architectural drivers, not only will

ensure the achievement of these architectural drivers, but also the methodologies defined

to evaluate the modeling and automatic code generation aspects of the tool (refer section

3.3 of chapter 3).

Chapter 6. Evaluation 147

Subject Success Criteria Definition

Usability
Number of Nodes and transitions
used to model a smart home case
study.

Use of the reduced level of activity dia-
gram nodes and transitions to model a smart
home case study determine improved levels
of usability. This is also due to the ability
to model the case studies faster which in
other words may lead to high efficiency and
reduced complexities.

Time is taken to model a smart home
case study.

Less time taken to model a smart home case
study determines high usability, this is also
determined by the number of nodes and
transitions involved in modeling the case
study. Less time spent on modeling may
also lead to improved levels of efficiency.

Ability to manage changes made to
a smart home case study.

This is ensured by obtaining the recompil-
ation time during the below-listed circum-
stances

1. Addition of a new device

2. Removal of an existing device

3. Changes made to an existing device

Reduced recompilation time taken is re-
garded highly usable.

Table 6.1: Success Criteria to Evaluate Usability

However, there exist other architectural drivers, such as primary functional

requirements and the second level prioritized quality attribute requirements. In addition

to the availability and interoperability qualities (which also included interoperability in

their success criteria), the evaluation phase of this thesis aims to satisfy other architec-

tural drivers by establishing an architectural driver called “Performance”. Even though

this quality does not address every architectural driver precisely, the success criteria

and their respective definitions ensure the efficiency in terms of the performance of the

automatic translation tool is accomplished to a potential and a great degree. How each

evaluation subject achieves the defined architectural drivers (4.1.1) are summarized in

the table below.

Chapter 6. Evaluation 148

Subject Success Criteria Definition
Availability Number of times the tool is com-

pletely available and compiled suc-
cessfully.

Every time a smart home case study is
modeled using the automatic translation
tool, the tool is launched from the start to
ensure the tool is ready to use every time
required. This also includes the availabil-
ity of all the required plug-ins that involve
in the automatic code generation from the
activity diagrams.

Table 6.2: Success Criteria to Evaluate Availability

Subject Success Criteria Definition

Performance Size of the code generated. This is determined by the number of lines of
code generated by compiling the modeled
case study.A large number of lines of code
may result from a complex smart home
activity diagram. However, improved us-
ability, in this case, is determined by an av-
erage number of lines of code which should
not seem complex at the same time.

Time to compile and generate code. This defines the time taken to generate code
from after being modeled in the activity
diagram model editor. The time to compile
and generate code is not determined by the
complexity of the smart home case study or
the number of nodes are transitions involved
in a case study. The compilation time is
standard regardless of the above-mentioned
factors. However, there can be variation in
time, and less time taken to compile and
generate code is regarded highly usable.

Table 6.3: Success Criteria to Evaluate Performance

6.3 Experiment Setup

This thesis does not involve the participation of external users, therefore an experiment

design is set up which models activity diagrams from four different smart home scenarios

using the activity diagram model editor which are then translated to Java code using the

Automatic Translation Tool. Various aspects such as the number of nodes and transitions

used in a smart home case study, size of the code generated from the respective case

Chapter 6. Evaluation 149

Evaluation Subject Respective Architectural Drivers
Usability FR1, FR2, FR3, FR4, QAR1, QAR2,

QAR5
Availability QAR3
Performance QAR4, QAR5, QAR6, QAR7

Table 6.4: Mapping of Evaluation Subjects to Respective Architectural Drivers

study and the time taken for compilation, code generation recompilation during sudden

changes made to the smart home scenarios are taken in to account and when setting up

the evaluation experiments and evaluating the Automatic Translation Tool as a whole.

As mentioned in section 6.2 of this chapter, the evaluation of the Automatic

Translation Tool involves three significant experiments which are derived based on the

evaluation criteria. These case studies include: measuring usability, availability, and

performance.

6.3.1 Measuring Usability

Usability of the Automatic Translation Tool is ensured by the number of nodes and

transitions involved in modeling of a smart home case study, time taken to model the

case study and the ability of the model editor to manage the sudden changes made to a

specific smart home and the recompilation time after the changes are being made. In

order to carry out the experiments for these three aspects, the four smart home case

studies defined earlier (refer section6.1 of this chapter) are used to experiment each of

the above-mentioned criteria.

1. Each smart home case study was modeled using the activity diagram model editor,

we then counted the number of nodes and transitions involved when modeling

each scenario.

Chapter 6. Evaluation 150

2. Time taken to model each of these smart home scenarios is recorded individually

3. A new device (sensor or an actuator) is added, an existing device is removed and

state of an exciting change is modified for each smart home scenario individually

and recompilation time is recorded for each case study.

Figure 6.5: Usability Experiment Setup

The complete usability experiment setup is shown in the diagram above.

As promised during the evaluation success criteria, usability aspect of the Automatic

Translation Tool is achieved by determining the count of nodes and transitions involved

in each smart home case study that’s modeled using the Activity Diagram Model Editor.

Usability is also determined by the time taken to model each of these smart home case

studies and the time taken to model and generate code, which in this case is known

as the reconfiguration time during an addition of a new sensor or actuator, removal or

modification made to an existing sensor or actuator in each smart home system. The

Chapter 6. Evaluation 151

outcomes of usability are depicted with the purple components in figure 6.5. How

the outcomes are achieved are shown with the support of the Activity Diagram Model

Editor, nodes, and transitions, different smart home systems that are being modeled and

which steps are taken to obtain the reconfiguration time in each case.

6.3.2 Measuring Performance

Evaluating the Automatic Translation Tool based on performance as shown in Table 6.7

ensures the achievement of the quality attribute requirements in the second level of the

prioritization list. Hence, performance is achieved by experimenting the tool based on

the size of the code the smart home scenario generates and the time taken to compile

and generate Java code after the modeling of the smart home scenario. However, for the

purpose of fine and comprehensive evaluation and experimentation, these experiments

are carried out for all the four (previously defined), smart home case studies.

6.3.3 Measuring Availability

Availability, in this thesis, is ensured by the ability of the automatic translation tool to

be ready for use and the ability to compile and generate code successfully without any

interruptions. In order to experiment these criteria, every time a smart home scenario is

modeled for code generation, the tool is launched from the start in order to ensure all

the plug-ins that are used in the process are available, the correct workspace is chosen

and all the installed plug-ins and up-to-date and usable to support high availability of

the tool overall.

Chapter 6. Evaluation 152

Figure 6.6: Performance Experiment Setup

6.4 Experiment Execution and Data Collection

This part of the chapter carries out the experiments set up in the previous section. As

discussed earlier, four smart home systems are modeled using the activity diagram

model editor (which is a main component of the automatic translation tool). These

case studies are modeled to collect quantitative data to evaluate usability, availability,

and performance of the tool. These smart home systems are modeled and the code is

generated multiple times to obtain data which are later used to determine the evalu-

ation subjects identified during the definition of the evaluation success criteria for the

automatic translation tool.

Chapter 6. Evaluation 153

This section consists of three significant areas which address the collection of

data that determine the usability, efficiency, and performance of the automatic translation

tool. The data collected are shown in the form of tables for easy comparison and if

required, direct graph generation.

6.4.1 Gathering Experimental Data to Determine Usability

Case Study Number of Nodes Number of
Transitions

Time to
Model

Activity Decision Initial Final
Light System 7 3 3 1 14 12 minutes 10

seconds
Security System 6 1 1 2 9 8 minutes 32

seconds
Door Lock System 8 4 3 1 16 14 minutes 12

seconds
Weighting System 9 3 1 1 17 13 minutes 45

seconds

Table 6.5: Quantitative Data of Time, Nodes and Transitions to Model Smart Home
Systems

Case Study Add New Component Time
Light System Add a new motion sensor 1 minute 6 seconds
Security System Add a new door sensor 1 minute 8 seconds
Door Lock System Add a new door sensor 6 minutes 33 seconds
Weighting System Add a new weight sensor 1 minute 2 seconds

Table 6.6: Experimental Data of Reconfiguration Time During Addition of a New
Device

Case Study Delete Component Time
Light System Remover a door sensor 1 minute 5 seconds
Security System Remove an intruder alarm 1 minute 5 seconds
Door Lock System Remove a door sensor 2 minutes 11 seconds
Weighting System Remove a weight sensor 43 seconds

Table 6.7: Experimental Data of Reconfiguration Time During Removal of a Device

Chapter 6. Evaluation 154

Figure 6.7: Time to Model Smart Home Systems

Case Study Edit Component Time
Light System Modify a motion sensor 1 minute 05 seconds
Security System Modify wireless alarm status 1 minute 16 seconds
Door Lock System Modify door bell status 1 minute 27 seconds
Weighting System Modify the interval 1 minute 18 seconds

Table 6.8: Experimental Data of Reconfiguration Time During Modification of a Device

6.4.2 Gathering Experimental Data to Determine Performance

Case Study Size of the Code Generated Time to Compile, Generate Code
Light System 29 lines 13 minutes 40 seconds
Security System 23 lines 9 minutes 18 seconds
Door Lock System 27 lines 18 minutes 50 seconds
Weighting System 30 lines 15 minutes 14 seconds

Table 6.9: Experimental Data of Time and Size of Code Generation

Chapter 6. Evaluation 155

Figure 6.8: Model Reconfiguration Time

Figure 6.9: Time Generate Code

Chapter 6. Evaluation 156

6.4.3 Gathering Experimental Data to Determine Availability

Case Study Application
Launching

Run and Configure Availability of Re-
quired Plug-ins

Light System ✓ × ×

Security System ✓ ✓ ✓

Door Lock System ✓ ✓ ×

Weighting System ✓ ✓ ✓

Table 6.10: Experimental Data of Availability of Automatic Translation Tool

6.5 Data Analysis

Generally, various statistical analysis methods are recommended and used to analyze

the data collected, however due to various reasons such as the sample size of the of data

collected being small which may result in statistical assumptions being violated, less

accurate results obtained due to small sample size of data may also lead to shortcomings

in relation to the variability of the overall statistical test.

Therefore, instead of performing statistical analysis on the data gathered,

reasons are provided for significant fluctuations and assumptions are derived from the

collected data. This, in turn, will eventually ensure how well the automatic translation

tool has achieved the architectural drivers promised earlier. However, if the results do

not accomplish expected levels in terms of usability, performance, and availability, they

will be regarded as the disadvantages which will later be drawn as future works.

As discussed earlier, the evaluation phase aims to assess the Automatic

Translation Tool in terms of usability, performance, and availability (refer section 6.3)

which are linked to the architectural drivers (refer section 6.6) the tool promised to

achieve earlier during the establishment of the system requirements (refer chapter

4). Therefore, various evaluation tests are carried out using four significant smart

Chapter 6. Evaluation 157

home case studies (refer section 6.1) to meet the evaluation criteria in terms of usability,

performance, and availability which will be analyzed individually based on the collected

data.

6.5.1 Usability

Usability as defined in chapter 4, aims to achieve increased levels of understanding

ability in terms of the Automatic Translation Tool. However, as mentioned earlier, due

to the inability to involve external participant to assess the tool, the requirement to

evaluate the tool in relation to usability is determined by three important criteria (refer

section6.1 of this chapter), they include the number of nodes and transitions involved in

modeling a smart home case study, time taken to model a smart home case study and

the ability of the Automatic Translation Tool to manage reconfiguration time during a

change made to a smart home system.

In order to testify these criteria, four specific smart home systems (case studies

in other words) are modeled using the automatic translation tool. Firstly, the number

of nodes, they include the activity nodes, decision nodes, initial nodes and final nodes

and transitions (refer figure 5.8) used in each case study are recorded as shown in Table

6.12. Simultaneously, the time taken to model each case study is recorded in minutes

and seconds which are also represented graphically in figure 6.6.

The number of nodes and transitions used in each smart home case study is

based on its size (size of the activity diagram) and complexity. This is directly related

to the time taken to model a smart home case study, higher the number of nodes and

transitions, longer the time taken to model the activity diagram for a smart home case

study. However, when the figures from Table 6.12 are taken into account, most of the

smart home systems have taken a relatively equal amount of time to be modeled using

Chapter 6. Evaluation 158

the automatic translation tool. Most of the time was spent on launching Eclipse and

ensuring all the required plug-in were available for successful modeling, compilation

and code generation. This occurred mainly due to the tool being launched from the start

every time a new smart home system was modeled to generate code.

Figure 6.10: Comparison of Nodes, Transitions and Modeling Time

The relationship between the time taken to model the smart home case studies

and the number of nodes and transitions used in each smart home system are depicted

graphically in Figure 6.10. As the relationship between these components are positive

and does not give rise to a significant fluctuation if not based on the number of the

nodes and transitions involved with the case study. However, modeling time can be

affected by the time taken to launch Eclipse and configure the Automatic Translation

Tool, this is discussed in detail when assessing the availability of the tool. Therefore,

usability based on the number of nodes, transitions and time taken to model the smart

Chapter 6. Evaluation 159

home systems seem positive when the above facts, data, and graphs are considered.,

The final criteria in terms of usability are, the ability of the automatic transla-

tion tool to manage changes made to a smart home case study, these changes include

the addition of a new sensor or actuator, removal of an existing sensor or actuator and

modifications made to an existing sensor or actuator. Each of these scenarios leads to a

specific time, (refer figure 6.7). This time is known as the reconfiguration time which

includes the time to model the changes, compile and generate code after the changes

made.

Even though, most smart homes scenarios have relatively similar reconfig-

uration times (lighting system, security system, and weighing system), the door lock

system tends to have a significantly high time during the addition of a new door sensor

to the system, which can be regarded highly unusable due to the unusually long time is

taken to configure. This is addressed in detail later during the discussing of the data

analysis.

6.5.2 Performance

Performance, derived from multiple architectural drivers (refer section 6.3 of this

chapter), is determined by size of the code generated (number of lines of code) and

the time taken to generate code (this includes the time taken to launch the application,

install any missing plug-ins, configure the automatic translation tool, model the activity

diagram and compile and generate code).

When Figure 6.11 is taken into account, the average time taken to generate

code is 14.25 minutes. Most smart home case studies tend to lie around this value

beside the security system which has taken considerably less time when compared with

Chapter 6. Evaluation 160

the rest of the smart home case studies to model, reconfigure and generate code. The

time is taken to reconfigure and the size of the code is drawn in one graph as shown

below to establish the relationship between these two aspects.

Figure 6.11: Time and Size of the Code Generated

As per the above graph, the size of the code generated does not have a

noticeable relationship with the time taken to configure and generate code. Even though

in some cases, such as the Smart Security and Door Lock Systems, the relationship

between the time and the size of code generation seem positive to a great level, this

statement is proved wrong by both smart lighting and weighing systems. This makes

us believe that there are other reasons that relate and affect the time taken to configure

and generate code. They will be highlighted in detail during the discussion of the data

analysis.

Chapter 6. Evaluation 161

6.5.3 Availability

Availability of the Automatic Translation Tool is determined by the ability to launch an

application and the tool successfully, run and configure the models and generate code

successfully and the complete availability of the required plug-ins. These three factors

affect the time taken to model activity diagrams and configure and generate Java code

effectively.

However, when statistics form Table 6.10 are considered, the application is

launched successfully during the modeling of every smart home case study. During the

configuration and generation of code, the automatic translation tool failed to generate

code successfully during the compilation of the smart lighting system and produced a

“null pointer exception” instead. Nevertheless, the tool generated Java code successfully

during compilation of every other case study. In term of availability of required plug-

ins, the Automatic Translation Tool is built integrating different Eclipse plug-ins that

support Activity Diagram modeling (Ecore tools and Sirius), model transformations

(ATL Transformation Language) and code generation (Java).

The availability of all these plug-ins are necessary for the automatic translation

tool to execute successfully, however during the modeling of the smart lighting and

door lock systems, ATL plug-in was not available which required installation, this could

have led to increased configuration and code generation time which could have been

avoided with high availability of plug-ins. The code generation, configuration, and

modeling of activity diagrams times which are determined by usability and performance

are therefore transparently determined by the availability of the automatic translation

tool. Relative strengths, weaknesses and potential improvements are addressed in detail

in the following section.

Chapter 6. Evaluation 162

6.6 Discussion

This section discusses the data outlined and analyzed in during the data analysis. As

mentioned earlier, the evaluation phase assesses the automatic translation tool in terms

of usability, availability, and performance. Thereby, firstly, how well the automatic

translation tool achieves usability is discussed along with the unexpected situations

that lead to low levels of usability during modeling and compilation of some smart

home case studies. Performance, which as mentioned previously, determined by the

size of the code and the time taken to generate the code, the analyzed data relating to

these aspects are considered in order to examine how well performance is achieved and

which factors lead the lack of performance at certain levels during the evaluation of

the automatic tool. The availability of the tool as said earlier affects both usability and

performance, therefore, the factors that lead to lack of performance and usability of

the automatic translation tool at certain times during the evaluation process may have

caused due to unavailability of the tool. However, all these facts, issues and strengths

and weaknesses are addressed in detail in this section. Furthermore, the analyzed data

which is discussed is used to answer the research questions.

6.6.1 Usability of The Automatic Translation Tool

Usability is determined by the number of nodes and transitions that are used to model

a complete activity diagram for a specific smart home scenario and the time taken

to model a smart home case study completely. During the data analysis in terms of

usability, it was understood that time taken to model and the number of nodes and

transitions taken to model a smart home share a positive relationship (refer figure 6.11).

Moreover, the time taken to model all the smart home case studies are relatively similar

and does not depict a significant fluctuation. This significant relevance is shown in the

Chapter 6. Evaluation 163

figure below.

Figure 6.12: Time to Model, Generate Code and Number of Nodes

However, during the reconfiguration of smart home case studies, especially

during the addition of a new door sensor to the smart door lock system, it was analyzed

that time taken to reconfigure this aspect has taken quite an absurd amount of time to

recompile and regenerate code after that changes were made to the smart door lock

system. If the Table 6.10 is looked at in detail, the availability of required plug-ins

during the modeling, compilation and reconfiguring the Smart Door Lock System is not

achieved due to some of the plug-ins such as the ALT transformation plug-in not being

installed. Therefore, the missing plug-ins required installation which also involved

re-launching of Eclipse. This caused an excessive time spent on modeling, compiling,

configuring, the code generating and recompiling the Activity Diagram for the Smart

Door Lock System.

Therefore, when the above facts are taken in to account, since the time taken

to model the smart home systems are relatively similar, it can be considered that

usability is achieved to a certain extent which is however affected by the availability

Chapter 6. Evaluation 164

of the required plug-ins which can also be regarded as a weakness of the automatic

translation tool. Hence, the reconfiguration time taken for every other smart home

system is remarkably less, besides the smart door lock system. Thereby, it can be said

75 percentage of usability is achieved in terms of usability of the Automatic Translation

Tool when evaluated using four significant smart home case studies.

As per the research question this thesis address, RQ3 emphasizes on the

characteristics of the automatic translation tool, usability is regarded and one of the

most prioritized architectural drivers this tool aims to achieve, which in this case can be

interpreted as one of the most significant characteristics of the Automatic Translation

Tool. Consequently, as per the above data collection, analysis and discussion in relation

as to how the Automatic Translation Tool achieves usability, the evaluation phases

overall ensures achievement of high levels of usability despite the occurrence of few

challenges. As a result, it can be regarded that the Automatic Translation Tool achieves

usability characteristic to an acceptable degree by allowing the users to model Activity

Diagrams and generate code in an adequate time.

6.6.2 Performance of The Automatic Translation Tool

During the data analysis in regard to the performance of the automatic translation tool,

with the support of figure 6.11, it was determined that size of the generated code does

not affect the time taken to compile and generate code. Data analysis of performance

concluded that there are other potential reasons that affect the compilation and code

generation times, these reasons are discussed in this section.

However, as per the compilation times are shown in figure 6.9, the Smart

Security System has taken the shortest time to compile and generate code. This has

occurred due to the lowest number of nodes and transitions used to model the activity

Chapter 6. Evaluation 165

diagram, the lowest time is taken to model the activity diagram and reasons such the

successful launching of Eclipse to model the smart security system, error-less code

generation and availability of all the required plug-ins lead to the transformation of

activity diagram to Java code effectively.

On the other hand, the Smart Lighting System, Door Lock System, and

Weighing System had a relatively higher number of nodes and transitions during the

modeling of Activity Diagrams, as a result, they took longer times to be modeled

and to generate code. In the case of the Smart Lighting System and the Door Lock

System, all the required plug-ins were not available and required re-installation and

relaunching of the application, which led to longer compilation time thus resulting in

lack of performance.

Figure 6.13: Performance of the Automatic Translation Tool

The above figure depicts the compilation and modeling time using the bars

and the compiling, application launching and plug-in availability using the lines. This

Chapter 6. Evaluation 166

depicts the relationship between the availability and the performance measurements

clearly thus supporting the facts stated earlier about how unavailability of certain aspects

can lead to higher compilation times, thus causing challenges in terms of performance.

Additionally, even though numerical values were not assigned to the availability aspects

(refer section 6.10 of this chapter), for the purpose of discussion of data analysis, a high

value was assigned to the availability aspects that were achieved successfully and a low

value was assigned to aspects not achieved.

Hence, the performance of the Smart Lighting System is also affected by the

inability to generate executable and error-less code. However, due to these reasons,

the performance of the Automatic Translation Tool is affected negatively. By ensuring

high availability of all the required plug-ins, compiling and generating Java code

without errors may help to mitigate these challenges. Moreover, as per RQ3, it can be

considered that performance characteristic is achieved by the Automatic Translation

Tool to a certain degree despite the challenges discussed above.

6.6.3 Availability of Automatic Translation Tool

Availability of the Automatic Translation Tool is addressed during the discussion of both

usability and performance due the performance determine the achievement of both of

these characteristics to a great level. As a result, this section will discuss the reasons as

to why some of the availability aspects when modeling certain smart home applications

were not achieved and how it, in turn, affected both usability and performance levels of

the tool.

As shown in Table 6.10, the availability of the Automatic Translation Tool

is determined by the ability to launch the application successfully, run, compile and

configure successfully and ensure all the required plug-ins are available prior to the

Chapter 6. Evaluation 167

configuration. However, during the modeling of both Smart Lighting System and Door

Lock systems, Eclipse failed to ensure all the plug-ins were available, ATL plug-in was

un-installed which required re-installation in both situations. This, as a result, caused

complexities in terms of the time taken to complete and modeling and compile the

activity diagram to Java code, thus causing a negative impact on both usability and

performance of the automatic translation tool.

During the compilation of the smart lighting system, Java code was not

generated completely and caused a null pointer exception instead thus causing issues in

the code generated. However, Java code was generated successfully which resulted in

improved levels of usability and performance.

6.6.4 Impact of the Automatic Translation Tool

Customization and Cost Effectiveness

The Automatic Translation Tool provides its users a customized Activity Diagram Model

Editor which allows the users to model Activity Diagrams for any given case study. The

existing model editors such as Visual Paradigm, StarUML, Papyrus and GenMyModel

support modeling of any UML diagram, however, fails to support automatic code

generation for behavioral activity diagrams.

Furthermore, the Activity Diagram Model Editor is customized for modeling

activity diagrams which in turn will support the users in modeling any type of case

studies. The Automatic Translation Tool is developed in Eclipse, which is a freely

available software to download. Moreover, the tool is developed integrating multiple

Eclipse plug-ins which can be downloaded from the Eclipse marketplace free of cost.

The Activity Diagram Model Editor provides an adequate modeling space to model any

Chapter 6. Evaluation 168

activity diagram, also it provides a palette with all the nodes and transitions required

to model an activity diagram. Therefore, the Automatic Translation Tool provides

a customized Activity Diagram Model Editor which allows easy and cost-effective

modeling procedures unlike software such as Enterprise Architect which costs more

than USD300 for download.

Automatic Code Generation from Activity Diagrams

As mentioned earlier, the above stated UML modeling editors also allow code generation

from the UML models, however that code generation aspect is unfortunately limited to

the structural diagrams such as class and sequence diagrams. Moreover, even though

Enterprise Architect by (Architect, 2010) offers modeling and code generation from

behavioral activity diagrams, it costs as stated earlier more than USD 300 to obtain

the ultimate Enterprise Architect package which performs multiple functions such as

modeling and generating code.

The Automatic Translation Tool, however, offers automatic code generation

from behavioral UML Activity Diagrams within less than 2 minutes approximately

solving the problem of inability to generate code automatically from activity diagrams.

6.6.5 Strengths and Weaknesses of Automatic Translation Tool

The advantage of the Automatic Translation Tool is that it allows efficient and automatic

translation of UML behavioral Activity Diagrams to executable Java code at free of

cost. The tool provides a customized activity diagram which allows modeling of any

activity diagram based on any scenario thus providing improved levels of flexibility.

Moreover, as per the evaluation results, the Automatic Translation Tool carries

Chapter 6. Evaluation 169

out the transformation process efficiently with high levels of performance, determined

by other factors such as availability and high usability. Furthermore, the Java code

generated by compiling a smart home activity diagram is completely executable and

therefore can be used to deploy smart home applications when integrated with data

from smart spaces.

The weakness of the Automatic Translation Tool is, there can be situations

where all the required plug-ins to compile the tool may not be available and may require

re-installation and relaunching of the application and the tool. Moreover, the Java code

generated may not be completely executable which in turn may require prior knowledge

or technical assistance.

6.7 Conclusion

Section 6.1 of this chapter, identifies different smart home systems out of which one

specific smart home system is chosen to demonstrate the automatic translation tool

throughout the thesis globally. This selection of the smart lighting system is carried

with the support of selection criteria. Section 6.2 defines the success criteria used

to evaluate the automatic translation tool and the relationship between the evaluation

criteria and the architectural drivers defined in Chapter 4. Section 6.3 explains how

the data collection is carried out based on the success criteria. Experiment execution,

which is section 6.4, performs data collection to meet the success criteria based on the

smart home systems defined in Section 6.4. Afterwards, the data collected is analyzed

to prove how the automatic translation tool achieves the success criteria and indirectly

the architectural drivers (refer chapter 4). Section 6.5 discusses the data analyzed in

the previous section thus assuring how achievement of each success criteria answer a

research question (refer chapter 2). Furthermore, impacts, strengths, and weaknesses

Chapter 6. Evaluation 170

of the Automatic Translation Tool are discussed based on the evaluation results which

concludes this chapter.

Chapter 7

Conclusions

This chapter summarises the thesis while emphasising the extent to which the research

questions have been answered. It also discusses the limitations of the proposed solution

and reports future research directions.

This chapter concludes the thesis summarizing the results obtained imple-

menting the automatic translation tool for domain and technical experts. Section 7.2

refers back to the research questions formulated during the systematic literature review

(refer chapter 2) and discusses how well the thesis answers each research question.

However, regardless how well the thesis answers these research questions, there still

remains potential gaps and limitations in relation to every research question.

This chapter also discusses these limitations in detail and relate them to future

works and suggests potential improvements that can be carried out to achieve improved

levels of results. Section 7.3 lists the contributions this thesis has made and how each of

these contributions of the automatic translation tool can be used in practical implications.

Finally, the chapter and the thesis overall are concluded with a note about the journey

of thesis and a take home message for the audience.

171

Chapter 7. Conclusions 172

7.1 A Chapter-wise Summary

Chapter 1 provided an introduction of the thesis, presenting an overview of all aspects

of this research: problem definition, research scope and questions, research design and

method, and the proposed solution. Chapter 2 presented the details of a comprehensive

systematic literature review carried out to identify an appropriate app design model, as

well as the overall qualities and features of the proposed solution. It also introduces key

terms used throughout the rest of the thesis. Chapter 3 focussed on the design of this

research, which is based on the well known Design Science Research methodology. This

design involves the steps involved in all research activities, such as problem definition

and refinement, architecture design, system development and evaluation. Chapter 4

reports the architecture design of the Automatic Translation Tool, carried out using

the Attribute Driven Design (ADD) method. We show how the proposed architecture

addresses primary functional requirements and quality attribute requirements. The

4+1 views and beyond approach was used to document the architecture. Chapter 5

shows how a model-driven engineering approach was used to design and develop the

Automatic Translation Tool. This chapter highlights the key components of the tool

- the model editor and the compiler built using model-to-model and model-to-text

transformation processes. The chapter also shows the corresponding technological

decisions made for each phase. In Chapter 6, we first defined key success criteria for the

tool, and then carried out a comprehensive evaluation based on qualities like usability,

availability and performance. The chapter details experimental set up, data collection,

and analysis aspects of this evaluation, which lead to the identification of the tool’s

strengths and weaknesses.

Chapter 7. Conclusions 173

7.2 Answering the Research Questions

RQ1: Which factors lead to the choice of an app design model to address the challenges

such as lack of interoperability when apps need to operate in different sensor-actuator

configurations in different smart homes?

This question is answered in Chapter 2 with the support of the systematic

literature review. In order to solve the challenge of lack of interoperability when a

smart home requires integration of various smart home systems with varied sensor

actuator configurations, various factors that lead to the choice of an app design model

are explored with the help of literature and findings. Various app design models are

evaluated based on these factors to find the most suitable visual app design model that

can be used to solve the above mentioned challenge. UML activity diagram is chosen

based on the evaluation carried out against the factors that lead to the choice of an app

design model (refer to table 2.5 and table 2.4). Even though, UML activity diagrams are

regarded as user friendly and simple to model, the activity diagram can be too simple

where the modelers may attempt to include all the information in one single activity

diagram may cause over complexities.

RQ2: What are the existing solutions and how do they meet the factors

identified in Question 01?

This question is also answered in chapter 2, in terms of the existing solutions

that address the problem definition, they are categorized in to commercial based and

research based solutions. 14 solutions in total were identified and discussed during the

systematic literature review where the research gap of each solution was emphasized.

These solutions were then illustrated in the form of a table where each highlighting the

gaps individually (refer table 2.3).Some of the factors that are identified in RQ1 were

Chapter 7. Conclusions 174

then used in the said table to show how the existing solutions could not meet the said

factors.

Although, the research questions mentions the requirement to evaluate the

current solutions against the factors identified in RQ1, new criteria was defined which

relates to the factors from RQ1 and are presented in a simpler way.

RQ3: What are the characteristics of the architecture of an automatic transla-

tion tool, which translates an app design (based on the model developed after answering

Q1) to a customized smart home app?

The characteristics of the automatic translation tool are identified in chapter 4

as the architectural drivers, these drivers are composed of the primary functional require-

ments and quality attribute requirements which the tool aims to achieve towards the end

of this thesis. These characteristics are based on both factors derived from RQ1 are

translated to primary functional requirements and quality attribute requirements which

address the translation of an visual plan (also known as app design model) to executable

code which can be deployed to a customized smart home application. Therefore 5

primary functional requirements and 7 quality attribute requirements are generated to,

which in this case are known as the characteristics, to address the architecture of the

automatic translation tool.

RQ4: How can the high-level architecture of an automatic translation tool

obtained from Q3 lead towards the implementation of a prototype automatic translation

tool?

This question is answered in chapter 5, which is the design and the develop-

ment of the Automatic Translation Tool. The high-level architecture which is designed

in chapter 4 based on the characteristics discussed in RQ3, is transformed to a prototype

Chapter 7. Conclusions 175

called “The Automatic Translation Tool” which can be implemented to translate a visual

app design model, which in the case of this thesis is the UML activity diagram, to

executable Java code. This can be then deployed to a smart home application. The

translation of the prototype to the tool is carried out based on Model Driven Engineer-

ing (MDE) which supports the modeling aspect (of UML activity diagrams), model

transformation and automatic code generation aspects of the Automatic Translation

Tool”. This tool achieves most of the characteristics detailed in RQ3, however fails to

achieve them completely (refer chapter 6).

Even though, the Automatic Translation Tool allows modeling of various

UML activity diagrams providing a customized activity diagram model editor, Java code

generated from the activity diagrams may sometimes lead to errors during compilation.

Moreover, although activity diagrams, by most authors, are regarded as very user-

friendly and easy to model, in the case of the Automatic Translation Tool, the user

is expected to have prior knowledge in Java and programming to model the activity

diagrams. This may cause challenges in terms of usability (user-friendliness) since the

tool requires prior knowledge and technical assistance during feasible situations.

7.3 Contributions of this Thesis

User-friendly and Customized UML Activity Diagram Editor

As introduced, designed and developed and evaluated, this thesis presents

a customized UML activity diagram model editor which can be used to model any

kind of activity diagram. Even though, this thesis emphasizes on smart home scenarios

during the implementation of the Automatic Translation Tool, the model editor can be

used model activity diagrams for any system or scenario. This development is regarded

Chapter 7. Conclusions 176

as one of the most significant contributions of this thesis due to, most of the existing

model editing tools cater to all the UML type diagrams including both structural and

behavioral, such as Visual Paradigm, Papyrus, GenMyModel, StarUML and Poisedon.

However, none of these editors are customized to model one specific type of visual

modeling language, which would eventually result in various advantages such as support

provided in terms of reuse and maintenance of models and the ability to create your

own transformation such as code generation, which in this case in Java. Therefore,

design of the customized model editor not only allows the easy modelling of activity

diagrams catering to any scenario but also supports automatic code generation via model

transformations which as per the case of the smart homes systems, can be used to deploy

to a smart application.

Interoperable Smart Homes with Automatic Translation Tool

As per the systematic literature review (refer chapter 2), most of the existing

solutions fail to achieve interoperability during the integration of multiple smart systems

in to a single smart home application due to varied sensor/actuator configurations. With

the introduction of the Automatic Translation Tool, the user is allowed to model activity

diagrams for any preferred smart home system, such as smart lighting system, smart

security system and smart door lock system (refer section 6.1 in chapter 6), these

systems can be compiled using the Automatic Translation Tool to generate Java code

for each of these systems regardless their variance in sensor /actuator configurations,

they can be deployed in to a single smart home application thus solving the challenge of

lack of interoperability to a greater level. This in turn may save the cost of purchasing

additional devices that support the interoperation of the multiple smart devices in to a

single smart home application.

Chapter 7. Conclusions 177

Effective and Automatic Code Generation from Behavioral UML Activity Dia-

grams

In addition to the above, the Automatic Translation Tool as said earlier

generates Java code from any activity diagram modeled using the customized Activity

Diagram Model Editor. Most of the existing model to code generation applications only

support code generation from structural UML diagrams such as UML class diagrams,

however the Automatic Translation Tool translates the activities in to Java code which

may be included in a Java class to define the behavior of the modeled and compiled

smart home system. This is regarded as one of the most outstanding contributions this

research makes due to the ability of the Automatic Translation Tool to generate Java

code within less than 2 minutes (refer table 6.10 in chapter6) and can be considered as

a novel deliverable when the literature evidence in terms of automatic code generation

tools are researched and studied in depth.

7.4 Future Works and Improvements

This section depicts the future works and improvements that can be made to the Auto-

matic Translation Tool, these are drawn from the limitations of this research and the

implementations of this tool which mostly occurred due to time constraints. In terms of

the weaknesses of the Automatic Translation Tool, as per section 6.6.5 in Chapter 6, all

the plug-ins required to model and compile an activity diagram using Eclipse can be

undesirable at times due to unavailability of some plug-ins (ATL plug-in) during the

launch of the application (Eclipse). Therefore, in the future, a more concrete termino-

logy (this can be a more concrete plug-in or an application) can used to generate code

from activity diagrams, which specifically meets increased levels of availability of the

application. In terms of the Java code generation, code is generated for the respective

Chapter 7. Conclusions 178

activities modeled in the Activity Diagram Model Editor, therefore code generated from

the Automatic Translation Tool only defines the behavior of an object which will not

include the structure of the code such as class and method declarations. This will not

support executable code generation unless the code is refined after generated from the

Automatic Translation Tool. Therefore, a better code generation aspect can be designed

to support both structural and behavioral aspects of Java code which can eventually be

executed directly after code generation from the Automatic Translation Tool without

having to refine the code prior to execution.

As per the visual modeling language, to ensure high usability, understand

ability and learn-ability, UML activity diagram is chosen to model the smart home

systems. Even though, they meet the above mentioned criteria and helps to specify the

behavior of a system, it does not help the user to specify the structure of the system

which would help the code generation of the structure of the system. Furthermore, as

per section 6.6 of chapter 6, although UML activity diagrams achieve high levels of

usability, it can be undesirable to model complex systems using this modeling language

due to the ability to include any kind of information. Therefore a more specific modeling

language can be chosen that support both behavioral and structural aspects of a system

which in turn would support much effective and effortless automatic code generation

which in turn can be used to deploy to a smart home application much easily.

7.5 Final Words

This research study had been nothing but the most adventurous journey I have come

so far. This thesis conducts a very comprehensive systematic literature review that

helped me answer the first two research questions and achieve a well-organized research

study. The Design Science Research Methodology was a great support when designing

Chapter 7. Conclusions 179

this research, other terminologies such as Attribute Driven Design and Model Driven

Engineering provided assistance immensely to design and develop the Automatic

Translation Tool which has ultimately implemented well, which also helped in answering

the remaining research questions thus addressing the problem defining to a greater level

thus reducing the research gap in terms of interoperability issue in smart home systems

and the inability to generate code automatically from UML activity diagrams.

References

Advantech, C. S. (2009). Mlc flash technologies and structure. September.
Alaa, M., Zaidan, A., Zaidan, B., Talal, M. & Kiah, M. (2017). A re-

view of smart home applications based on internet of things. Journal
of Network and Computer Applications, 97(Supplement C), 48 - 65. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S1084804517302801 doi: https://doi.org/10.1016/j.jnca.2017.08.017

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., . . . others
(2003). Business process execution language for web services. version.

Architect, E. (2010). Sparx systems. Inc.
Aßmann, U., Aksit, M. & Rensink, A. (2005). Model driven architecture: European

mda workshops: Foundations and applications, mdafa 2003 and mdafa 2004,
twente, the netherlands, june 26-27, 2003, and linköping, sweden, june 10-11,
2004, revised selected papers (Vol. 3599). Springer.

Ayav, T. & Sözer, H. (2016). Identifying critical architectural components with spectral
analysis of fault trees [Journal Article]. Applied Soft Computing, 49, 1270-
1282. Retrieved from http://www.sciencedirect.com/science/
article/pii/S1568494616303222 doi: http://dx.doi.org/10.1016/
j.asoc.2016.06.042

Baker, P., Loh, S. & Weil, F. (2005). Model-driven engineering in a large industrial con-
text—motorola case study. Model Driven Engineering Languages and Systems,
476–491.

Bandor, M. S. (2006). Quantitative methods for software selection and evaluation.
Bashir, R. S., Lee, S. P., Khan, S. U. R., Chang, V. & Farid, S. (2016). Uml models

consistency management: Guidelines for software quality manager [Journal
Article]. International Journal of Information Management, 36(Part A), 883-899.
Retrieved from http://ezproxy.aut.ac.nz/login?url=http://
search.ebscohost.com/login.aspx?direct=true&db=
edselp&AN=S0268401216303425&site=eds-live doi:
10.1016/j.ijinfomgt.2016.05.024

Bass, L., Clements, P. & Kazman, R. (2013). Software architecture in practice
[Book]. Upper Saddle River, NJ : Addison-Wesley, [2013] Third edition.
Retrieved from http://ezproxy.aut.ac.nz/login?url=http://
search.ebscohost.com/login.aspx?direct=true&db=

180

http://www.sciencedirect.com/science/article/pii/S1084804517302801
http://www.sciencedirect.com/science/article/pii/S1084804517302801
http://www.sciencedirect.com/science/article/pii/S1568494616303222
http://www.sciencedirect.com/science/article/pii/S1568494616303222
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edselp&AN=S0268401216303425&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edselp&AN=S0268401216303425&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edselp&AN=S0268401216303425&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat05020a&AN=aut.b18728923&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat05020a&AN=aut.b18728923&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat05020a&AN=aut.b18728923&site=eds-live

References 181

cat05020a&AN=aut.b18728923&site=eds-live
Berander, P. & Andrews, A. (2005). Requirements prioritization. Engineering and

managing software requirements, 11(1), 79–101.
Bézivin, J. (2001). From object composition to model transformation with the mda. In

Tools (39) (pp. 350–354).
Biehl, M. (2010). Literature study on model transformations. Royal Institute of

Technology, Tech. Rep. ISRN/KTH/MMK, 291.
Bonfè, M., Fantuzzi, C. & Secchi, C. (2013). Design patterns for model-based

automation software design and implementation. Control Engineering Practice,
21(11), 1608–1619.

Bonino, D. & Corno, F. (2010). Rule-based intelligence for domotic environ-
ments [Journal Article]. Automation in Construction, 19(2), 183-196. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S0926580509001599 doi: http://dx.doi.org/10.1016/j.autcon.2009.10
.008

Bronner, L. & Olubando, B. (2009). Development of an integrated sociological
modeling framework (ismf) to model social systems. In Social computing and
behavioral modeling (pp. 1–11). Springer.

Brown, A. (2004). An introduction to model driven architecture-part 1; mda and today’s
systems. IBM DeveloperWorks, RationalEdge.

c, H., Miah, S. J. & McAndrew, A. (2016). A design science research methodology for
developing a computer-aided assessment approach using method marking concept
[Journal Article]. Education and Information Technologies, 21(6), 1769-1784.

Capitanelli, A., Papetti, A., Peruzzini, M. & Germani, M. (2014). A smart home inform-
ation management model for device interoperability simulation [Journal Article].
Procedia CIRP, 21, 64-69. Retrieved from http://www.sciencedirect
.com/science/article/pii/S2212827114006921 doi: http://dx
.doi.org/10.1016/j.procir.2014.03.150

Chen, M., Wan, J. & Li, F. (2012). Machine-to-machine communications: Architectures,
standards and applications [Journal Article]. KSII Transactions on Internet and
Information Systems, 6(2), 480-497. Retrieved from https://www.scopus
.com/inward/record.uri?eid=2-s2.0-84861022395&doi=
10.3837%2ftiis.2012.02.002&partnerID=40&md5=
3cd197d1ba7f8016eebd988a9875204f doi: 10.3837/tiis.2012.02.002

Choi, H. & Yeom, K. (2002). An approach to software architecture evaluation with the
4+ 1 view model of architecture. In Software engineering conference, 2002. ninth
asia-pacific (pp. 286–293).

Chung, L. & do Prado Leite, J. C. S. (2009). On non-functional requirements in software
engineering. In A. T. Borgida, V. K. Chaudhri, P. Giorgini & E. S. Yu (Eds.),
Conceptual modeling: Foundations and applications: Essays in honor of john
mylopoulos (pp. 363–379). Berlin, Heidelberg: Springer Berlin Heidelberg. Re-
trieved from https://doi.org/10.1007/978-3-642-02463-4_19
doi: 10.1007/978-3-642-02463-4_19

Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J. & Little, R. (2002).

http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat05020a&AN=aut.b18728923&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat05020a&AN=aut.b18728923&site=eds-live
http://www.sciencedirect.com/science/article/pii/S0926580509001599
http://www.sciencedirect.com/science/article/pii/S0926580509001599
http://www.sciencedirect.com/science/article/pii/S2212827114006921
http://www.sciencedirect.com/science/article/pii/S2212827114006921
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861022395&doi=10.3837%2ftiis.2012.02.002&partnerID=40&md5=3cd197d1ba7f8016eebd988a9875204f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861022395&doi=10.3837%2ftiis.2012.02.002&partnerID=40&md5=3cd197d1ba7f8016eebd988a9875204f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861022395&doi=10.3837%2ftiis.2012.02.002&partnerID=40&md5=3cd197d1ba7f8016eebd988a9875204f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861022395&doi=10.3837%2ftiis.2012.02.002&partnerID=40&md5=3cd197d1ba7f8016eebd988a9875204f
https://doi.org/10.1007/978-3-642-02463-4_19

References 182

Documenting software architectures: views and beyond. Pearson Education.
Demiris, G., Oliver, D. P., Dickey, G., Skubic, M. & Rantz, M. (2008). Findings from a

participatory evaluation of a smart home application for older adults. Technology
and health care, 16(2), 111–118.

Dobre, C. & Xhafa, F. (2014). Intelligent services for big data science
[Journal Article]. Future Generation Computer Systems, 37, 267-281. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S0167739X13001593 doi: http://dx.doi.org/10.1016/j.future.2013.07
.014

Domı, E., Pérez, B., Rubio, Á. L. et al. (2012). A systematic review of code gen-
eration proposals from state machine specifications. Information and Software
Technology, 54(10), 1045–1066.

Ehrig, K., Küster, J. M. & Taentzer, G. (2009). Generating instance models from meta
models. Software and Systems Modeling, 8(4), 479–500.

Erata, F., Challenger, M. & Kardas, G. (2015). D3. 1.1 review of model-to-model trans-
formation approaches and technologies. Text & Model-Synchronized Document
Engineering Platform, 70–85.

Favre, J.-M. (2003). Meta-model and model co-evolution within the 3d software space.
In Elisa: Workshop on evolution of large-scale industrial software applications
(pp. 98–109).

Favre, J.-M. (2004). Towards a basic theory to model model driven engineering. In 3rd
workshop in software model engineering, wisme (pp. 262–271).

Fernandez-Saez, A. M., Genero, M., Chaudron, M. R., Caivano, D. & Ramos, I. (2015).
Are forward designed or reverse-engineered uml diagrams more helpful for code
maintenance?: A family of experiments. Information and Software Technology,
57, 644–663.

Figl, K. & Recker, J. (2016). Process innovation as creative problem solving: An exper-
imental study of textual descriptions and diagrams. Information & Management,
53(6), 767–786.

Fischer, A., Greiff, S. & Funke, J. (2012). The process of solving complex problems
[Journal Article].

Fox-Brewster, T. (2016). Forbes welcome. Retrieved from https://
www.forbes.com/sites/thomasbrewster/2016/02/17/
samsung-smartthings-vulnerabilities/#7e42b55d7d09

France, R. B., Ghosh, S., Dinh-Trong, T. & Solberg, A. (2006). Model-driven develop-
ment using uml 2.0: promises and pitfalls. Computer, 39(2), 59–66.

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B. & Steenkiste, P. (2004). Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer, 37(10),
46–54.

Gay, V. & Leijdekkers, P. (2015). Bringing health and fitness data together for connected
health care: mobile apps as enablers of interoperability [Journal Article]. Journal
of medical Internet research, 17(11), e260.

Gessenharter, D. & Rauscher, M. (2011). Code generation for uml 2

http://www.sciencedirect.com/science/article/pii/S0167739X13001593
http://www.sciencedirect.com/science/article/pii/S0167739X13001593
https://www.forbes.com/sites/thomasbrewster/2016/02/17/samsung-smartthings-vulnerabilities/#7e42b55d7d09
https://www.forbes.com/sites/thomasbrewster/2016/02/17/samsung-smartthings-vulnerabilities/#7e42b55d7d09
https://www.forbes.com/sites/thomasbrewster/2016/02/17/samsung-smartthings-vulnerabilities/#7e42b55d7d09

References 183

activity diagrams: Towards a comprehensive model-driven devel-
opment approach. (Vol. 6698 LNCS). Institute of Software En-
gineering and Compiler Construction, Ulm University. Retrieved
from http://ezproxy.aut.ac.nz/login?url=http://
search.ebscohost.com/login.aspx?direct=true&db=
edselc&AN=edselc.2-52.0-79959203376&site=eds-live

Gravino, C., Scanniello, G. & Tortora, G. (2015). Source-code comprehension tasks
supported by uml design models: results from a controlled experiment and a
differentiated replication. Journal of Visual Languages & Computing, 28, 23–38.

Gronback, R. C. (2009). Eclipse modeling project: a domain-specific language (dsl)
toolkit. Pearson Education.

Groppe, J. & Mueller, W. (2005). Profile management technology for smart customiza-
tions in private home applications. In Database and expert systems applications,
2005. proceedings. sixteenth international workshop on (pp. 226–230).

Gu, H., Elhanan, G., Perl, Y., Hripcsak, G., Cimino, J. J., Xu, J., . . . Paul Mor-
rey, C. (2012). A study of terminology auditors’ performance for umls se-
mantic type assignments [Journal Article]. Journal of Biomedical Informatics,
45(6), 1042-1048. Retrieved from http://www.sciencedirect.com/
science/article/pii/S1532046412000901 doi: http://dx.doi.org/
10.1016/j.jbi.2012.05.006

Hafidh, B., Osman, H. A., Arteaga-Falconi, J. S., Dong, H. & Saddik, A. E. (2017).
Site: The simple internet of things enabler for smart homes [Journal Article].
IEEE Access, 5, 2034-2049. doi: 10.1109/ACCESS.2017.2653079

Haroutiunian, S., Nikolajsen, L., Finnerup, N. B. & Jensen, T. S. (2013). The neuro-
pathic component in persistent postsurgical pain: a systematic literature review.
PAIN®, 154(1), 95–102.

Harrison, N. B. & Avgeriou, P. (2010). How do architecture patterns and tactics interact?
a model and annotation. Journal of Systems and Software, 83(10), 1735–1758.

Hayes, P. H. & Black, J. (2006, December 26). System and methods for home appliance
identification and control in a networked environment. Google Patents. (US
Patent 7,155,305)

Ho, W. M., Jézéquel, J.-M., Le Guennec, A. & Pennaneac’h, F. (1999). Umlaut: an
extendible uml transformation framework. In Automated software engineering,
1999. 14th ieee international conference on. (pp. 275–278).

Hoffman, R. R., Roesler, A. & Moon, B. M. (2004). What is design in the context of
human-centered computing? [Journal Article]. IEEE Intelligent Systems, 19(4),
89-95. doi: 10.1109/MIS.2004.36

Inc, N. (2017). Choosing the right modeling tool - business process modeling
notation (bpmn). Retrieved from https://www.nomagic.com/getting
-started/choosing-the-right-modeling-tool

Jacobson, I., Spence, I. & Kerr, B. (2016). Use-case 2.0. Communications of the ACM,
59(5), 61–69.

Jick, T. D. (1979). Mixing qualitative and quantitative methods: Triangulation in action
[Journal Article]. Administrative science quarterly, 24(4), 602-611.

http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-79959203376&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-79959203376&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-79959203376&site=eds-live
http://www.sciencedirect.com/science/article/pii/S1532046412000901
http://www.sciencedirect.com/science/article/pii/S1532046412000901
https://www.nomagic.com/getting-started/choosing-the-right-modeling-tool
https://www.nomagic.com/getting-started/choosing-the-right-modeling-tool

References 184

Johnson, R. (2005). J2ee development frameworks. Computer, 38(1), 107–110.
Johnson, R. B. & Onwuegbuzie, A. J. (2004). Mixed methods research: A research

paradigm whose time has come [Journal Article]. Educational researcher, 33(7),
14-26.

Jouault, F., Allilaire, F., Bézivin, J. & Kurtev, I. (2008). Atl: A model transformation
tool. Science of computer programming, 72(1), 31–39.

Jouault, F., Allilaire, F., BÃ©zivin, J. & Kurtev, I. (2008). Atl: A model trans-
formation tool. Science of Computer Programming, 72(1), 31 - 39. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S0167642308000439 (Special Issue on Second issue of experimental
software and toolkits (EST)) doi: https://doi.org/10.1016/j.scico.2007.08.002

Jouault, F. & Kurtev, I. (2006). Transforming models with atl. In J.-M. Bruel (Ed.), Satel-
lite events at the models 2005 conference: Models 2005 international workshops
doctoral symposium, educators symposium montego bay, jamaica, october 2-7,
2005 revised selected papers (pp. 128–138). Berlin, Heidelberg: Springer Berlin
Heidelberg. Retrieved from https://doi.org/10.1007/11663430_14
doi: 10.1007/11663430_14

Jung, Y. (2017). Hybrid-aware model for senior wellness service in smart home.
Sensors, 17(5), 1182.

Jungclaus, R., Wieringa, R. J., Hartel, P., Saake, G. & Hartmann, T. (1994). Combining
troll with the object modeling technique [Book Section]. In B. Wolfinger (Ed.),
Innovationen bei rechen- und kommunikationssystemen: Eine herausforderung
für die informatik (p. 35-42). Berlin, Heidelberg: Springer Berlin Heidelberg.
Retrieved from http://dx.doi.org/10.1007/978-3-642-51136-3
_5 doi: 10.1007/978-3-642-51136-3_5

Kao, H.-Y., Yu, M.-C., Masud, M., Wu, W.-H., Chen, L.-J. & Wu, Y.-
C. J. (2016). Design and evaluation of hospital-based business intelli-
gence system (hbis): A foundation for design science research methodo-
logy [Journal Article]. Computers in Human Behavior, 62, 495-505. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S0747563216302965 doi: http://doi.org/10.1016/j.chb.2016.04.021

Klein, J., Levinson, H. & Marchetti, J. (2015). Model-driven engineering: Automatic
code generation and beyond (Tech. Rep.). Technical report, Software Engineering
Institute at Carnegie Mellon University, The address of the publisher, 3 2015.

Kruchten, P. B. (1995). The 4+ 1 view model of architecture. IEEE software, 12(6),
42–50.

Len, B., Paul, C. & Rick, K. (2003). Software architecture in practice. Boston,
Massachusetts Addison.

Li, W., Lee, Y.-H., Tsai, W.-T., Xu, J., Son, Y.-S., Park, J.-H. & Moon, K.-D. (2012).
Service-oriented smart home applications: composition, code generation, deploy-
ment, and execution. Service Oriented Computing and Applications, 6(1), 65–79.
Retrieved from http://dx.doi.org/10.1007/s11761-011-0086-7
doi: 10.1007/s11761-011-0086-7

Lillis, T. (2008). Ethnography as method, methodology, and “deep theorizing” closing

http://www.sciencedirect.com/science/article/pii/S0167642308000439
http://www.sciencedirect.com/science/article/pii/S0167642308000439
https://doi.org/10.1007/11663430_14
http://dx.doi.org/10.1007/978-3-642-51136-3_5
http://dx.doi.org/10.1007/978-3-642-51136-3_5
http://www.sciencedirect.com/science/article/pii/S0747563216302965
http://www.sciencedirect.com/science/article/pii/S0747563216302965
http://dx.doi.org/10.1007/s11761-011-0086-7

References 185

the gap between text and context in academic writing research [Journal Article].
Written communication, 25(3), 353-388.

Loomis, M. E., Shah, A. V. & Rumbaugh, J. E. (n.d.). An object modeling technique
for conceptual design [Conference Proceedings]. In European conference on
object-oriented programming (p. 192-202). Springer.

Mainetti, L., Mighali, V. & Patrono, L. (2015). An iot-based user-centric ecosystem for
heterogeneous smart home environments. In Communications (icc), 2015 ieee
international conference on (pp. 704–709).

Mallett, R., Hagen-Zanker, J., Slater, R. & Duvendack, M. (2012). The benefits and
challenges of using systematic reviews in international development research.
Journal of development effectiveness, 4(3), 445–455.

March, S. T. & Smith, G. F. (1995). Design and natural science research on information
technology [Journal Article]. Decision Support Systems, 15(4), 251-266. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/0167923694000412 doi: http://dx.doi.org/10.1016/0167-9236(94)
00041-2

MarketsAndMarkets. (2017). Smart home market by product (lighting control, security
& access control, hvac, entertainment & other control, home healthcare, smart
kitchen, and home appliances), software & service (behavioral, proactive), and
geography - global forecast to 2023.

Mason, D. & Criswell, C. A. (1998, November 10). Method for negotiating software
compatibility. Google Patents. (US Patent 5,835,735)

Mazón, J.-N., Pardillo, J. & Trujillo, J. (2007). A model-driven goal-oriented re-
quirement engineering approach for data warehouses. Advances in conceptual
modeling–foundations and applications, 255–264.

Mens, T. & Van Gorp, P. (2006). A taxonomy of model transformation. Electronic
Notes in Theoretical Computer Science, 152, 125–142.

Miller, P. (2000). Interoperability: What is it and why should i want it? Ariadne(24).
Mohagheghi, P. (2010). An approach for empirical evaluation of model-driven engin-

eering in multiple dimensions.
Mohagheghi, P. & Dehlen, V. (2008). Where is the proof? - a review of experiences

from applying mde in industry [Book Section]. In I. Schieferdecker & A. Hartman
(Eds.), Model driven architecture – foundations and applications: 4th european
conference, ecmda-fa 2008, berlin, germany, june 9-13, 2008. proceedings (p. 432-
443). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from http://
dx.doi.org/10.1007/978-3-540-69100-6_31 doi: 10.1007/978-3
-540-69100-6_31

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, P. (2009). Preferred
reporting items for systematic reviews and meta-analyses: the prisma statement
[Journal Article]. PLoS med, 6(7), e1000097.

Mohilo, D. (2017). Eclipse oxygen: A better workflow for editing in sirius - jaxenter.
Retrieved from https://jaxenter.com/eclipse-oxygen-sirius
-interview-134128.html

http://www.sciencedirect.com/science/article/pii/0167923694000412
http://www.sciencedirect.com/science/article/pii/0167923694000412
http://dx.doi.org/10.1007/978-3-540-69100-6_31
http://dx.doi.org/10.1007/978-3-540-69100-6_31
https://jaxenter.com/eclipse-oxygen-sirius-interview-134128.html
https://jaxenter.com/eclipse-oxygen-sirius-interview-134128.html

References 186

Myers, M. D. (1997). Qualitative research in information systems [Journal Article].
Management Information Systems Quarterly, 21(2), 241-242.

Newman, I. & Benz, C. R. (1998). Qualitative-quantitative research methodology:
Exploring the interactive continuum [Book]. SIU Press.

Ni, Q., García Hernando, A. B. & de la Cruz, I. P. (2015). The elderly’s independent
living in smart homes: A characterization of activities and sensing infrastructure
survey to facilitate services development. Sensors, 15(5), 11312–11362.

Nordstrom, G., Sztipanovits, J., Karsai, G. & Ledeczi, A. (1999). Metamodeling-rapid
design and evolution of domain-specific modeling environments. In Engineering
of computer-based systems, 1999. proceedings. ecbs’99. ieee conference and
workshop on (pp. 68–74).

Peffers, K. E. N., Tuunanen, T., Rothenberger, M. A. & Chatterjee, S. (2007).
A design science research methodology for information systems research
[Journal Article]. Journal of Management Information Systems, 24(3), 45-77.
Retrieved from http://ezproxy.aut.ac.nz/login?url=http://
search.ebscohost.com/login.aspx?direct=true&db=
bth&AN=28843849&site=eds-live

Pelechano, V., Albert, M., Muñoz, J. & Cetina, C. (2006). Building tools for model
driven development. comparing microsoft dsl tools and eclipse modeling plug-ins.
In Dsdm.

Perumal, T., Sulaiman, M. N., Mustapha, N., Shahi, A. & Thinaharan, R. (2014).
Proactive architecture for internet of things (iots) management in smart homes.
In Consumer electronics (gcce), 2014 ieee 3rd global conference on (pp. 16–17).

Pesante, L. H. (2003). Software engineering institute (sei).
Reyes-Delgado, P. Y., Mora, M., Duran-Limon, H. A., Rodríguez-Martínez, L. C.,

O’Connor, R. V. & Mendoza-Gonzalez, R. (2016). The strengths and weaknesses
of software architecture design in the rup, msf, mbase and rup-soa methodologies:
A conceptual review. Computer Standards & Interfaces, 47, 24–41.

Ritter, D. G. N., Zirpins, B. B. C., Schoenherr, G. F. M. & Motahari-Nezhad, H. R.
(2007). Service-oriented computing icsoc 2006.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorenson, W. (1991). Object-
oriented modelling and design.

Rumpe, B. (2016). Modeling with uml. Language, Concepts, Methods. Springer
International, 4.

Samimi-Dehkordi, L., Khalilian, A. & Zamani, B. (2014). Programming language
criteria for model transformation evaluation. In Computer and knowledge engin-
eering (iccke), 2014 4th international econference on (pp. 370–375).

Sangiovanni-Vincentelli, A. & Martin, G. (2001). Platform-based design and software
design methodology for embedded systems. IEEE Design & Test of Computers,
18(6), 23–33.

SAP, A. (2007). Standardized technical architecture modeling: Conceptual and
design level. version 1.0 (Tech. Rep.). Retrieved 2010-08-10 from http://www.
fmc-modeling. org/download/fmc-and-tam/SAP-TAM_Standard. pdf.

Schamai, W., Fritzson, P., Paredis, C. & Pop, A. (2009). Towards unified system

http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=28843849&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=28843849&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=28843849&site=eds-live

References 187

modeling and simulation with modelicaml: modeling of executable behavior
using graphical notations. In Proceedings of the 7th international modelica
conference; como; italy; 20-22 september 2009 (pp. 612–621).

Schmidt, D. C., Stal, M., Rohnert, H. & Buschmann, F. (2013). Pattern-oriented
software architecture, patterns for concurrent and networked objects (Vol. 2).
John Wiley & Sons.

Schneps-Schneppe, M., Maximenko, A., Namiot, D. & Malov, D. (2012). Wired smart
home: energy metering, security, and emergency issues. In Ultra modern telecom-
munications and control systems and workshops (icumt), 2012 4th international
congress on (pp. 405–410).

Shackel, B. (1991). Usability-context, framework, definition, design and evaluation.
Human factors for informatics usability, 21–37.

Siddaway, A. (2014). What is a systematic literature review and how do i do one.
University of Stirling(I), 1.

Sinha, R., Narula, A. & Grundy, J. (2017). Parametric statecharts: designing flexible iot
apps: deploying android m-health apps in dynamic smart-homes. In Proceedings
of the australasian computer science week multiconference (p. 28).

Smirek, L., Zimmermann, G. & Beigl, M. (2016). Just a smart home or your smart
home – a framework for personalized user interfaces based on eclipse smart
home and universal remote console [Journal Article]. Procedia Computer Sci-
ence, 98, 107-116. Retrieved from http://www.sciencedirect.com/
science/article/pii/S1877050916321391 doi: http://dx.doi.org/
10.1016/j.procs.2016.09.018

Steinberg, D., Budinsky, F., Merks, E. & Paternostro, M. (2008). Emf: eclipse modeling
framework. Pearson Education.

Stojkoska, B. L. R. & Trivodaliev, K. V. (2017). A review of internet of things for
smart home: Challenges and solutions. Journal of Cleaner Production, 140,
1454–1464.

Tang, W. (2009). Meta object facility. In L. LIU & M. T. ÖZSU (Eds.), Encyclopedia
of database systems (pp. 1722–1723). Boston, MA: Springer US. Retrieved
from https://doi.org/10.1007/978-0-387-39940-9_914 doi:
10.1007/978-0-387-39940-9_914

Vega-Barbas, M., Pau, I., MartÃn-Ruiz, M. L. & Seoane, F. (2015). Adaptive software
architecture based on confident hci for the deployment of sensitive services in
smart homes. Sensors, 15(4), 7294–7322. Retrieved from http://www.mdpi
.com/1424-8220/15/4/7294 doi: 10.3390/s150407294

Vega-Barbas, M., Pau, I., Martín-Ruiz, M. & Seoane, F. (2015). Adaptive software
architecture based on confident hci for the deployment of sensitive services in
smart homes [Journal Article]. Sensors, 15(4), 7294. Retrieved from http://
www.mdpi.com/1424-8220/15/4/7294

Viswanathan, S. E. & Samuel, P. (2016). Automatic code generation using unified
modeling language activity and sequence models [Journal Article]. IET
Software, 10(6), 164-172. Retrieved from http://ezproxy.aut.ac.nz/
login?url=http://search.ebscohost.com/login.aspx

http://www.sciencedirect.com/science/article/pii/S1877050916321391
http://www.sciencedirect.com/science/article/pii/S1877050916321391
https://doi.org/10.1007/978-0-387-39940-9_914
http://www.mdpi.com/1424-8220/15/4/7294
http://www.mdpi.com/1424-8220/15/4/7294
http://www.mdpi.com/1424-8220/15/4/7294
http://www.mdpi.com/1424-8220/15/4/7294
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=120026706&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=120026706&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=120026706&site=eds-live

References 188

?direct=true&db=bth&AN=120026706&site=eds-live doi:
10.1049/iet-sen.2015.0138

Whittle, J., Clark, T. & Kühne, T. (2011). Model driven engineering languages and
systems. In 14th international conference, models (pp. 16–21).

Wiegers, K. (1999). First things first: prioritizing requirements. Software Development,
7(9), 48–53.

Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R. & Wood, B.
(2006). Attribute-driven design (add), version 2.0 (Tech. Rep.). CARNEGIE-
MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST.

Wu, W. & Kelly, T. (2004). Safety tactics for software architecture design. In Computer
software and applications conference, 2004. compsac 2004. proceedings of the
28th annual international (pp. 368–375).

Wąsowski, A. & Lönn, H. (2016). Modelling foundations and applications :
12th european conference, ecmfa 2016, held as part of staf 2016, vienna,
austria, july 6-7, 2016, proceedings. Switzerland : Springer, 2016. Re-
trieved from http://ezproxy.aut.ac.nz/login?url=http://
search.ebscohost.com/login.aspx?direct=true&db=
cat05020a&AN=aut.b1943781x&site=eds-live

Xie, H., Liu, J., Hu, L., Yang, H. & Fu, X. (2015). Design of pilot-assisted load
control valve for proportional flow control and fast opening performance based
on dynamics modeling [Journal Article]. Sensors and Actuators A: Physical, 235,
95-104. Retrieved from http://www.sciencedirect.com/science/
article/pii/S092442471530159X doi: http://dx.doi.org/10.1016/j.sna
.2015.09.042

Xu, K., Wang, X., Wei, W., Song, H. & Mao, B. (2016). Toward software defined smart
home [Journal Article]. IEEE Communications Magazine, 54(5), 116-122. doi:
10.1109/MCOM.2016.7470945

Yates, J. & Leggett, T. (2016). Qualitative research: An introduction
[Journal Article]. Radiologic Technology, 88(2), 225-231. Retrieved
from http://ezproxy.aut.ac.nz/login?url=http://
search.ebscohost.com/login.aspx?direct=true&db=
rzh&AN=119047675&site=eds-live

Zillner, T. (2015). White paper: Zigbee exploited–the good, the bad and the ugly (Tech.
Rep.). Technical report, Cognosec.

http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=120026706&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=120026706&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat05020a&AN=aut.b1943781x&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat05020a&AN=aut.b1943781x&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat05020a&AN=aut.b1943781x&site=eds-live
http://www.sciencedirect.com/science/article/pii/S092442471530159X
http://www.sciencedirect.com/science/article/pii/S092442471530159X
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=119047675&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=119047675&site=eds-live
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=119047675&site=eds-live

Appendix A

Appendix

189

Appendix A. Appendix 190

Figure A.1: Java Model Instance in XMI Format

Appendix A. Appendix 191

A.1 Market Need for Smart Homes

In addition to the benefits provided by smart homes as highlighted in section 1.2 of the

chapter, presently the smart homes have an increased level of demand. This section

identifies the demand for smart homes in different parts of the world due to various

additional benefits.

The smart home market is expected to reach USD 121.73 Billion by the year

2022, at a CAGR of 14.07 percent between the years 2016 and 2022. This report aims

to identify and highlight the market size and future potential growth of smart home

market based on various products and appliances, software, services and geography

(MarketsAndMarkets, 2017).

In addition to the above, the smart home market is categorized based on

various other factors such as lighting control, security and access control, HVAC control,

entertainment and controls, home, healthcare and smart kitchen (MarketsAndMarkets,

2017).

In terms of the geography, the market need for smart homes had been seg-

mented into North America, APAC, and RoW. The growth of this market is expected

to rise when the increase in the demand for lighting, entertainment controls, and home

health care are taken into consideration. Additionally, the demand for smart homes is

expected to increase as result of the benefits offered and real-time energy consumption

feedback achieved using proactive solutions. However, due to higher levels of demand

expectations for smart homes in the future, the installation rate of smart home systems

is expected to increase during the forecast period (MarketsAndMarkets, 2017).

When the US smart home market is taken into account, currently the smart

home market is believed to be stuck in “chasm” of the technology adoption curve

Appendix A. Appendix 192

whereby difficulties are confronted while attempting to move from early adopter phase

to the mass market phase of the adoption. This is occurred due to various existing

barriers, the barriers include high device barriers, limited consumer demand and long

device replacement cycles and technological fragmentation of smart home ecosystems

which requires the consumers to purchase multiple networking devices and the need to

use multiple apps to build and run in a single smart home.

However, according to BI intelligence, the demand for smart home systems is

expected increase despite the existing barriers and challenges. This is due to analysis

carried out which determines the possible areas of growth and methods to overcome the

barriers. As a result, the smart home has begun to become more prevalent throughout

the US. This is mainly due to the smart home being a stand-alone object which can

be connected to the internet and can be controlled from remote locations and has non-

computing primary functions. Furthermore, the smart home user is permitted to have

multiple smart home devices within a single smart home thus supporting the smart

home ecosystems.

In addition to the above, high prices of smart home systems coupled with lack

of demand thus preventing the smart home market from moving to the mass market

stage from the early adoption stage.

The diagram below describes how the smart home systems are able to move

from the early adoption stage to mass market with the support of BI intelligence.

This article describes the smart home market size and relative trends and

projections.

“4 billion consumer-facing ‘things’ are predicted to be connected to the

internet worldwide in 2016, up from 3 billion in 2015.” — Deloitte

Appendix A. Appendix 193

Figure A.2: Smart Home Adoption Curve

The above statement is supported by IoT and Machine-to-Machine which

involves the communication between devices without having the need for human

interaction. As per the Machina Research predicts, IoT market is forecasted to be worth

USD 4.3 million by 2024. As mentioned previously, even though various challenges

exist in terms of costs and interoperability during device integration, the percentage

of consumers considering to purchase smart homes during the next 12 months are as

shown below.

In addition to the above, in the year 2013 smart home global automation

market held a value of 4.4 billion US Dollars which is expected to increase to 21 billion

US Dollars by 2020. Additionally, revenue of smart home worldwide is expected to

grow from 20.38 billion US Dollars to 58.58 billion US Dollars by the year, 2020.

According to Berg Insights, North America will make up a majority of this market as

shown in the graph.

Appendix A. Appendix 194

Figure A.3: Growth of Demand for Smart Devices

Figure A.4: Value of North American Smart Home Market 2012 - 2017

As per Fung Global Retail Technology, smart home systems offer various

functionalities in terms of different aspects, these aspects include security, lighting,

temperature, climate control, energy management, kitchen and other home equipment

Appendix A. Appendix 195

and home entertainment. In addition, while the internet connectivity supports the users

in connectivity aspect, the smart devices are also able to sync with each other which

in turn may support in improving consumer experience which will eventually result in

mass-market home automation.

As per the industry insights, in 2013 the global smart home industry was

estimated at US Dollars 13.07 billion in 2013 which was majorly supported the increase

in consumer interest towards energy efficiency and optimum resource utilization. Addi-

tionally, growing importance towards security issues played a major role in increasing

the demand for smart and connected homes over the anticipated period.

As a result of forecasted demand increase for smart home automation system,

real estate industry is forecasted to experience growth in sales. These facts are also

supported by the practice of better M2M communication systems, improved IoT and

increase in geriatric population base.

In addition to the above, the predicted demand for smart home systems in

Asia Pacific smart home markets by the application is shown below. The applications

include Security, entertainment, HVAC, lighting, energy management and other.

In terms of healthcare and clinical treatments, smart homes are able to provide

the support these scenarios with the help of Information and Communication Technology

is able to effectively facilitate novel solutions. However, elderly users in smart homes

may find the practice of ICT challenging, as a result, integration of ICT with homes

would, in turn, support the communication and automation capabilities thus emphasizing

on customization for every particular smart home based on preferences of various users.

Additionally, integration of technologies in a single smart home environment would

facilitate deployment of useful services and in turn maximize user acceptance (Vega-

Barbas, Pau, MartÃn-Ruiz & Seoane, 2015).

Appendix A. Appendix 196

Figure A.5: Smart Home Market in Asia Pacific

ICT and Internet of Things have produced various benefits to smart home

systems, these include low power and low-cost devices which can be used in a smart

home to create a network of interconnected smart objects. However, this is affected

by the heterogeneity of technologies which would prevent the smart objects from

interoperating in order to adapt to a single smart home environment. This conflict is

addressed by adopting a software ecosystem which is able to interact with the smart

devices directly which would also allow the users to define customized interfaces

for mobile devices. Furthermore, a multi-protocol can be used which would allow

both services and mobile applications to access the physical networks thus hiding the

heterogeneities (Mainetti, Mighali & Patrono, 2015).

Appendix A. Appendix 197

Domoticz

Domotics, a home automation system is designed to allow its users to use and configure

various devices such as lighting systems, switches, various other sensors such as

temperature, wind, gas, and water. The notifications and alerts received from these

sensors are directed to any mobile device. Moreover, this system is designed to function

in various operating systems. The user interface of Domoticz is a scalable HTML5

web front end which is designed to adapt to both desktop and mobile devices. This

automation system includes various other additional functions such as extended logging,

iPhone and Android push notifications, auto-learning sensors and switches, share and

use external devices and achieve improved levels of in terms of simplicity in regard to

the overall design and use.

A.2 Overview of the Proposed Solution

The new studies will emphasize on the new, proposed solution that will address the

above-defined research question thus ensuring the problem definition is solved to a

greater level. This study will allow the user to create a very simple visual design thus

ensuring higher levels of understanding the ability and user-friendliness, which the

system may accept as the user input with the relative sensor actuator configurations.

The new system introduces a compiler which allows the domain expert to write a

visual domain-specific plan which is later compiled to software code. This code is then

deployed to a dynamic smart home system with the help of customized smart space.

The smart space consists of the sensors, actuators and other network platforms.

Appendix A. Appendix 198

Figure A.6: Overview of the Proposed Solution

	Copyright
	Declaration
	Acknowledgements
	Abstract
	Introduction
	Literature Review
	Background
	Smart Home
	Visual Plan
	Interoperability
	Lack of interoperability
	Dynamic sensor actuator configurations

	Systematic Literature Review (SLR)
	Process of Systematic Literature Review
	Scoping
	Planning
	Searching
	Screening

	Current State of Art
	Research Based Solutions
	Commercial Based Solutions

	Findings
	Factors leading to the choice of an app design model
	Evaluation of Current Solutions
	Current / Existing Gaps

	Conclusion

	Research Method
	Selection of a suitable Research Methodology
	Other Methodologies
	Chosen Research Approach
	Systematic Literature Review
	Design Methodology

	System Design Methodology
	Architecture Creation
	Tool Design and Development

	System Evaluation Methodology
	Tool Validation Methodology
	Model Validation Methodology
	Automatic Code Generation Methodology

	Methodology Overview
	Conclusion

	Architecture Creation
	Attribute-Driven Design Methodology (ADD)
	Identification of Architectural Drivers
	Identification of Quality Attribute Scenarios (QAS)
	Identification of Architectural Pattern (AP)
	Architecture Tactics

	Architecture of the Tool
	White-Board Architecture of the Tool
	Logical View - Sequence Diagram
	Process View - Activity Diagram
	Scenario View - Use Case Diagram

	Conclusion

	Design and Development
	Detailed View of the Architecture
	Class Diagram
	Development Work-flow

	Component 1:Meta-Model Design
	Technology Decisions: Selection of an Application for App Modeling
	Development of Activity Diagram Meta-Model
	Development of Java Meta-Model
	Meta-Model Configurations

	Component 2: Model Editor Design
	Selection of Model Editor Design Application
	Design of Activity Diagram Model Editor

	Component 3: Model-to-Model Transformation
	Selection of Model-to-Model Transformation Language
	Overview of ATL Transformation Process
	Transformation of Activity Diagram Model to Java Class Model

	Component 4: Model to Text Transformation
	Selection of Model-to-Text Transformation Technique
	Reading Java Model Instance
	Code Generation from Java Instance Model

	Conclusion

	Evaluation
	Smart Home Case Studies
	Smart Lock System
	Smart Security System
	Smart Light System
	Smart Weighting System

	Evaluating The Automatic Translation Tool
	Success Criteria

	Experiment Setup
	Measuring Usability
	Measuring Performance
	Measuring Availability

	Experiment Execution and Data Collection
	Gathering Experimental Data to Determine Usability
	Gathering Experimental Data to Determine Performance
	Gathering Experimental Data to Determine Availability

	Data Analysis
	Usability
	Performance
	Availability

	Discussion
	Usability of The Automatic Translation Tool
	Performance of The Automatic Translation Tool
	Availability of Automatic Translation Tool
	Impact of the Automatic Translation Tool
	Strengths and Weaknesses of Automatic Translation Tool

	Conclusion

	Conclusions
	A Chapter-wise Summary
	Answering the Research Questions
	Contributions of this Thesis
	Future Works and Improvements
	Final Words

	References
	Appendices
	Appendix
	Market Need for Smart Homes
	Overview of the Proposed Solution

