

Adaptive Quality of Service for IoT-based Wireless Sensor

Networks

Syarifah Ezdiani Binti Syed Nor Azlan

A thesis submitted to

Auckland University of Technology

in fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)

School of Engineering, Computer and Math Sciences

Auckland, New Zealand

2018

Supervisors

 Prof. Adnan Al-Anbuky & Assoc. Prof. Nurul Sarkar

i

Abstract

The future of the Internet of Things (IoT) is envisaged to consist of a high amount of

wireless resource-constrained devices connected to the Internet. Moreover, a lot of

novel real-world services offered by IoT devices are realised by wireless sensor

networks (WSNs). Integrating WSNs to the Internet has therefore brought forward the

requirements of an end-to-end quality of service (QoS) guarantees.

In this thesis, a QoS framework for integrating WSNs with heterogeneous data traffic is

proposed. The concept of Adaptive Service Differentiation for Heterogeneous Data in

WSN (ADHERE) is proposed based on the varying QoS factors and requirements

analysis of mixed traffic within an IoT-based WSN. The objective of the QoS

framework is to meet the requirements of heterogeneous data traffic in the WSN - in the

domain of timeliness and reliability. Another objective is to implement an adaptive QoS

scheme that can react to dynamic network changes.

This thesis provides the literature analysis and background study for integrating a WSN

which contains heterogeneous data traffic with the Internet. In the discussion of network

modelling and implementation tools for the testing, this thesis provides an insight into

the different tools that are available and their ability to investigate the concept of service

differentiation among heterogeneous traffic within the IoT-based WSN network.

Furthermore, the major components of ADHERE are presented in the Concept chapter.

The major components are: a heterogeneous traffic class queuing model that

encompasses a service differentiation policy, a congestion control unit and a rate

adjustment unit that supports the adaptive mechanism.

Network modelling and the simulation of an ADHERE QoS framework which is carried

out primarily using the network simulation tool, Riverbed Modeler, are also presented.

Additionally, a proposed co-simulation between Riverbed Modeler and MATLAB is

introduced, which aims to provide a seamless QoS monitoring using the ADHERE

concept. The simulation results suggest that real-time traffic achieves low bound delay

while delay-tolerant traffic experiences a lower packet drop. This indicates that the

needs for real-time and delay-tolerant traffic can be better met by treating both packet

types differently using ADHERE. Furthermore, a verification and added-value to the

ADHERE QoS model using a neural network is also presented. The learning

capabilities in ADHERE optimise the QoS framework’s performance by

ii

accommodating the QoS requirements of the network through the unpredictable traffic

dynamics and when complex network behaviour takes place. Before concluding the

thesis, the implementation of ADHERE QoS as a use-case on a physical test

environment is also discussed. The test environment offers a flexible system that is

capable of reacting to the dynamic changes of process demands. Physical network

performance can be predicted by analysing the historical data in the background on a

network simulator or virtual network. Finally, this thesis offers a conclusion with an

indication of our future research work.

iii

List of Publications

[1] S. Ezdiani and A. Al-Anbuky, "Modelling the integrated QoS for wireless sensor
networks with heterogeneous data traffic," Open Journal of Internet of Things
(OJIOT), vol. 1, 2015, pp. 1-15.

[2] S. E. S. N. Azlan and A. Al-Anbuky, "Quality of Service Modelling for Federated
Wireless Sensor Network Testbed Gateways," in Proc. of 5th Int. Conf. on
Commun., Theory, Reliability, and Quality of Service (CTRQ 2012), Chamonix/
Mont Blanc, France, 2012, pp. 14-18.

[3] S. Ezdiani, I. S. Acharyya, S. Sivakumar, and A. Al-Anbuky, "An IoT environment
for WSN adaptive QoS," in Proc. of IEEE Int. Conf. on Data Science and Data
Intensive Systems, 2015, pp. 586-593.

[4] S. E. Syed Nor Azlan, I. S. Acharyya, S. Sivakumar, and A. Al-Anbuky, "An
architectural concept for sensor cloud QoSaaS testbed," in Proc. of the 6th ACM
Workshop on Real World Wireless Sensor Networks (RealWSN 2015), pp. 15-18.

[5] S. Ezdiani and A. Al-Anbuky "Integrating WSN with the Internet: QoS Analysis
and Modeling for Heterogeneous Data Traffic", presented at the Wireless
Telecommunication Symposium (WTS 2014), Washington DC, 2014.

[6] S. Ezdiani, A. Indrajit S, S. Sivakumar, and A. Al-Anbuky, "Wireless Sensor Network
Softwarization: Towards WSN Adaptive QoS," IEEE Internet of Things Journal,
vol. 4, pp. 1517 - 1527, 2017

iv

Contents

Abstract .. i

List of Publications .. iii

List of Figures ... vii

List of Tables ... ix

List of Abbreviations .. x

Attestation of Authorship .. xii

Acknowledgements .. xiii

Chapter 1 Introduction .. 1

1.1 WSN and the Internet of Things ... 2

1.1.1 WSNs Role in the Internet of Things .. 2

1.1.2 IoT Architecture .. 4

1.2 Research Background ... 5

1.2.1 Heterogeneous Data in WSN Applications ... 5

1.2.2 QoS Domains Classifications .. 6

1.2.3 Traffic Dynamics .. 7

1.3 Research Motivation ... 8

1.4 Research Objectives ... 9

1.5 Research Scope and Contribution .. 9

1.6 Thesis Organisation .. 9

Chapter 2 Literature Review ... 11

2.1 Introduction .. 11

2.2 Quality of Service for the WSN-Internet Integration 11

2.2.1 Enabling QoS based on the IoT-based WSN Service Model 12

2.2.2 The difference between WSN QoS and Internet QoS 15

2.2.3 Performance Measure in End-to-End Communication 17

2.2.4 QoS Over Heterogeneous Networks ... 20

2.3 Service Differentiation QoS in WSN ... 21

2.3.1 Related Work on Timeliness and Reliability QoS 21

2.3.2 Packet Scheduling in WSN Gateway .. 24

2.3.3 Congestion Control ... 28

2.3.4 Adaptive Service Differentiation .. 30

2.4 Envisioned QoS Framework .. 30

2.4.1 Management of Timeliness and Reliability Traffic Requirements 30

2.4.2 End-to-end Service Differentiation ... 31

2.4.3 Adapting to Traffic Dynamics .. 32

2.5 Summary .. 33

Chapter 3 Modelling and Implementation Tools .. 35

3.1 Introduction .. 35

3.2 Related work on QoS in WSNs and the Internet .. 36

v

3.3 Selected Tools .. 38

3.3.1 Features of Riverbed Modeler ... 39

3.3.2 Node and Queue Model Implementation in Riverbed Modeler 41

3.3.3 Co-Simulation between Riverbed Modeler and MATLAB to Support the
Adaptive QoS .. 41

3.3.4 MATLAB Neural Network Tools for QoS Model Validation 42

3.4 Physical WSN-IoT Testbed .. 43

3.5 Summary .. 45

Chapter 4 Integrating WSN to the Internet: ADHERE QoS Concept for Heterogeneous
Data Traffic ... 46

4.1 Introduction .. 46

4.2 Overview of ADHERE QoS Framework ... 46

4.2.1 Network Model ... 46

4.2.2 Queuing System .. 48

4.2.3 Traffic Classes and QoS Requirements... 49

4.2.4 ADHERE QoS Architecture ... 50

4.3 ADHERE QoS Components... 52

4.3.1 A Heterogeneous Traffic Classes Queuing Model 52

4.3.2 Congestion Control and Rate Adjustment Scheme 55

4.4 Adaptive QoS Proof of Concept ... 58

4.5 Adaptive QoS using the Neural Network ... 59

4.5.1 Learning and Prediction .. 60

4.6 Summary .. 62

Chapter 5: Modelling and Simulation of ADHERE QoS Framework 64

5.1 Introduction .. 64

5.2 Modelling and Simulation Phases .. 64

5.3 Development of the Queue Model ... 65

5.4 Development of Node and Network Simulation Models 68

5.4.1 WSN-IoT Network Simulation Setup ... 68

5.4.2 Node and Queue Model Implementation in the Riverbed Modeler 70

5.4.3 Modelling Heterogeneous Data in the Network Model 71

5.4.4 Real-time QoS Monitoring using the MATLAB-Riverbed Modeller Co-
Simulation ... 75

5.5 Results and Evaluation ... 78

5.5.1 Queue Model Performance under Different Traffic Distributions 78

5.5.2 Effect of Service Rate ... 82

5.5.3 Effect of Buffer Size and Arrival Rate .. 83

5.6 Summary .. 85

Chapter 6: ADHERE Validation and Optimization using a Neural Network 87

6.1 Introduction .. 87

6.2 Learning and Prediction Process .. 87

6.3 Data Collection ... 90

6.4 Training and Testing Process ... 92

vi

6.4.1 Data Sets ... 92

6.4.2 Training Samples .. 94

6.5 Neural Network Training Results ... 96

6.5.1 Training and Validation Performance ... 96

6.5.2 Neural Network Training Regression ... 98

6.5.3 Error Distribution .. 101

6.6 Summary .. 103

Chapter 7: QoS Model Implementation and Physical Experiment 105

7.1 Introduction .. 105

7.2 Testbed Operational Architecture... 105

7.3 System Implementation .. 108

7.3.1 Physical Sensor Network .. 108

7.3.2 Test Environment Sensing Data .. 110

7.3.3 Server Implementation .. 111

7.3.4 ADHERE QoS Model Implementation ... 113

7.3.5 WSN Reconfiguration Services using Contiki OS.................................. 116

7.4 Case Study and Results .. 117

7.4.1 Comparison between Physical Sensor Network Experiment and
Simulation - Effect of Service Rate .. 117

7.4.2 Buffer Usage and Traffic Dropped ... 120

7.5 Summary .. 121

Chapter 8: Conclusion and Future Work .. 123

8.1 Conclusion .. 123

8.2 Future Work and Recommendation ... 125

References ... 127

vii

List of Figures

Figure 1-1 A typical WSN and the Internet integration topology 3

Figure 1-2 Integration of isolated WSNs .. 4

Figure 1-3 IoT architecture ... 4

Figure 2-1 IoT-based WSN reference architecture ... 12

Figure 2-2 Cross-domain QoS mapping between different QoS mechanisms 21

Figure 2-3 Comparison of delivery times between real-time and delay-tolerant packets
[25] .. 23

Figure 2-4 Traffic dropped for PQ and WFQ scheduling ... 24

Figure 2-5 Packet scheduling in WSN gateway .. 25

Figure 3-1 Queue model design in Riverbed Modeler environment 40

Figure 4-1 Network Model with heterogeneous traffic classes 47

Figure 4-2 WFQ queuing system .. 48

Figure 4-3 Queuing model for heterogeneous traffic classes .. 53

Figure 4-4 An example of two-classes shift buffers in an IoT access point 54

Figure 4-5 Structure of congestion control and rate adjustment scheme 56

Figure 4-6 An example of ADHERE QoS outcome within three adaptive cycles 59

Figure 4-7 Parallel model for learning and prediction .. 61

Figure 5-1 ADHERE system organisation .. 64

Figure 5-2 Shift buffers at the IoT access point .. 67

Figure 5-3 Riverbed Modeler network simulation environment..................................... 69

Figure 5-4 Testing the heterogeneous data in the queue model at the IoT access point . 71

Figure 5-5 QoS Confiq definition in the Riverbed Modeler ... 72

Figure 5-6 Configuration of ‘RT DT Profile’ in the access point node 72

Figure 5-7 ADHERE implementation on the MATLAB-Riverbed Modeler co-
simulation .. 76

Figure 5-8 Defining different rates of traffic intensity.. 77

Figure 5-9 Buffer usage (packet) vs simulation time for different modes of EF-AF
traffic distributions .. 79

Figure 5-10 Queuing delay (sec) vs. simulation time for different kinds of EF-AF traffic
distributions ... 80

Figure 5-11 Traffic drop (packet/sec) vs. simulation time for different EF- AF traffic
distributions ... 81

Figure 5-12 Serviced packets vs. received packets for (a) Case 1 (SR = AR), (b) Case 2
and Case 3 (SR > AR), (c) Case 4 and Case 5 (SR < AR) .. 82

Figure 5-13 Buffer usage (packets) vs. simulation time ... 84

Figure 5-14 Queuing delay (seconds) vs. simulation time .. 84

viii

Figure 5-15 Traffic drop (packets) vs. simulation time .. 85

Figure 6-1 Parallel model for learning and prediction .. 88

Figure 6-2 ADHERE neural network organisation ... 89

Figure 6-3 Neural network layers ... 91

Figure 6-4 Training performance of Training 1 (Data Set of 30% coverage) 97

Figure 6-5 Training performance of Training 2 (Data Set of 60% coverage) 97

Figure 6-6 Training performance of Training 3 (Data Set of 100% coverage) 98

Figure 6-7 Regression values of Training 1 (Data Set of 30% coverage) 99

Figure 6-8 Regression values of Training 2 (Data Set of 60% coverage) 100

Figure 6-9 Regression values of Training 3 (Data Set of 100% coverage) 101

Figure 6-10 Error distribution of Training 1 ... 102

Figure 6-11 Error distribution of Training 2 ... 102

Figure 6-12 Error distribution of Training 3 ... 103

Figure 7-1 Testbed architecture .. 106

Figure 7-2 SeNSe laboratory plan showing the deployment of the sensor nodes 108

Figure 7-3 Sensor data representation from the database ... 110

Figure 7-4 Remote server architecture - Inter-relationship between application server,
web server and database server ... 111

Figure 7-5 Single table database with NodeID and Variables 113

Figure 7-6 Node ID as database tables .. 113

Figure 7-7 ADHERE concept implementation ... 114

Figure 7-8 Passing QoS parameter to Contiki OS .. 117

Figure 7-9 Comparison between PSN and simulation (serviced packets vs received
packets) for SR=AR .. 119

Figure 7-10 Comparison between PSN and simulation (serviced packets vs received
packets) for SR>AR .. 119

Figure 7-11 Comparison between PSN and simulation (serviced packets vs received
packets) for SR<AR .. 120

Figure 7-12 Buffer usage over 1-minute experiment .. 121

Figure 7-13 Packets dropped over 1-minute experiment .. 121

ix

List of Tables

Table 2-1 Characteristics of the WSN-IoT Service Model ... 13

Table 2-2 Comparisons between the WSN and the Internet network QoS 17

Table 2-3 End-to-end communication in the WSN-IoT network 18

Table 4-1 ADHERE QoS Architecture ... 51

Table 4-2 Neural Network input and output parameters ... 62

Table 5-1 Simulation parameters to test a network with different traffic distributions .. 70

Table 5-2 Demand Object, Type of Service and transmission rate configuration 74

Table 5-3 Test cases with different service rates .. 74

Table 5-4 Arrival rate change over one-hour simulation .. 77

Table 6-1 Network performance categories and related parameters for training data 93

Table 6-2 Definition of Training Sets ... 94

Table 6-3 Input and output data matrix ... 95

Table 6-4 MSE values results ... 96

Table 6-5 Regression values results .. 99

Table 7-1 Algorithm pseudo codes for operation of IoT access point and end nodes .. 109

Table 7-2 Pseudo Code of Adaptive QoS Algorithm ... 115

Table 7-3 Test cases to compare PSN experiment and simulation 118

x

List of Abbreviations

ADHERE Adaptive Service Differentiation for Heterogeneous Data in WSN

AF Assured Forwarding

AQoS Adaptive Quality of Service

AR Arrival Rate

BS Base Station

CBR Constant Bit Rate

CSMA Carrier Sense Multiple Access

DES Discrete Event-based Simulation

DT Delay-Tolerant

DTN Delay-Tolerant Network

EF Expedited Forwarding

FIFO First-in-First-out

FQ Fair Queuing

FTP File Transfer Protocol

GlomoSim Global Mobile Information System Simulator

HRT Hard Real-Time

IoT Internet of Things

MSE Mean Square Error

non-RT non-Real-Time

PCCP Priority-based Congestion Protocol

PDR Packet Delivery Ratio

PQ Priority Queuing

PSC Physical Sensor Cloud

PSN Physical Sensor Network

QoS Quality of Service

RFID Radio-Frequency Identification

RSSI Received Signal Strength Indicator

RT Real-Time

RT-Rel Real-Time and Reliable

RTT Round-Trip Time

SeNSe Sensor Network and Smart Environment Research Centre

SR Service Rate

SRT Soft Real-Time

Tcl Tool command language

xi

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

ToS Type of Service

UDP User Datagram Protocol

VSN Virtual Sensor Network

WFQ Weighted Fair Queuing

WRR Weighted Round Robin

WMSN Wireless Multimedia Sensor Networks

WSAN Wireless Sensor and Actuator Networks

WSN Wireless Sensor Networks

xii

Attestation of Authorship

“I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person (except where explicitly defined in the acknowledgements), nor material which

to a substantial extent has been accepted for the award of any other degree or diploma of

a university or other institution of higher learning.”

Syarifah Ezdiani Binti Syed Nor Azlan: ___ ____________

Date: __30 August 2018___

xiii

Acknowledgements

In the name of Allah, the most Gracious, the most Merciful.

First of all, I would like to thank my supervisor Professor Adnan Al-Anbuky for being

such an inspiring person to work with. This thesis would not have been possible without

Professor Adnan’s endless support, understanding and encouragement. His enthusiasm

and love for knowledge and positivity in problem-solving have been such an inspiration

to help me persevere in this PhD journey. Many thanks also go to my co-supervisor,

Associate Professor Dr. Nurul Sarkar for his reviews and thoughtful suggestions

throughout my study.

I dedicate this thesis to my late parents, Normah and Syed Nor Azlan. I am endlessly

grateful to my mother who, despite no longer being with us, still manages to inspire me

to be a positive and strong, yet kind, individual. Without the blessing and

encouragement from my father, the decision to start my PhD in New Zealand would not

have been made in the first place. My gratitude also goes to my late father-in-law,

Zulkifli, who had passed away a few weeks before my viva voce exam, and my mother-

in-law, Azizah, for their continuous support and prayers. My deepest thanks also to my

sisters and brother for taking a general interest in my work, and most importantly, for

taking great care of our father until he left to meet his Creator in the middle of my

studies.

Thanks also to all members of the Sensor Network and Smart Environment Research

Centre (SeNSe) lab for contributing to an inspiring work environment. Special thanks to

Siva, Indrajit, Craig and Duaa for many interesting and fruitful discussions. My

gratitude also goes to my usrah sisters in Auckland for being part of my support system

throughout my PhD journey.

Finally, my deepest gratitude to my dearest husband, Sazli Zulkifli, for your love,

patience and encouragement. Thank you for being such a great father to our children

Faidhi, Fadlan, Farhad and our newest addition, Fatimah.

1

Chapter 1 Introduction

Rapid technological advances in wireless communication systems, small-scale energy

supplies, microprocessors, low power digital electronics and low power radio

technologies today enable low-power multi-functional sensor devices to detect and react

to changes in their surrounding environments. These sensors devices are equipped with

a tiny microprocessor, a small battery and a set of transducers that are used to acquire

information that reflects the changes in the surrounding environment of the sensor

devices. Consequently, the emergence of low power and minute wireless sensor devices

has led to the development of wireless sensor networks (WSNs).

WSNs have been deployed in diverse applications such as health monitoring,

environmental observation, structural monitoring, habitat monitoring and disaster

management. With the emergence of various important WSN applications, the

integration of WSNs with the Internet has become inevitable. The integration provides

seamless access to the unattended devices, hence offering high-resolution knowledge

about the sensed phenomena. Indeed, the integration of WSN to the cloud and through

the Internet has become one of the prime technologies that bring the Internet of Things

(IoT) to reality.

In numerous WSN applications, the co-existence of two types of data traffic can be

observed - those that must be sent promptly and those that must be sent reliably. Many

applications also involve unpredictable traffic flows, typically from generations of

bursts of data traffic during the occurrence of important events. This highlights the need

for an application-specific mechanism that manages the heterogeneous data which also

takes into account the traffic dynamics and the varying QoS requirements of different

traffic types.

This chapter starts with an overview of WSN and its role in the IoT. Then, the typical

architecture of IoT-based WSN is presented. In Section 1.2, the research background is

given, focussing on WSNs applications with heterogeneous data traffic, the traffic

dynamics of mixed traffic and the pertaining traffic QoS domains classifications. Then,

the research motivation, problem statement, research objectives and research

contribution are identified in Section 1.3 to 1.5. Finally, the organisation of the thesis is

outlined in Section 1.6.

2

1.1 WSN and the Internet of Things

The future of the Internet of Things (IoT) is envisaged to consist of a high amount of

wireless resource-constrained devices connected to the Internet. The pervasive presence

of a variety of things or objects such as Radio-Frequency Identification (RFID) tags,

sensors, actuators and mobile phones supports interactions and cooperation between

these objects or things to reach common goals. This enables the IoT [7, 8] to rapidly

gain ground in the scenario of modern wireless telecommunications. WSNs integrated

to the Internet allow for an autonomous and intelligent link between the virtual world

and the physical world. Consequently, numerous novel real-world services offered by

IoT devices are realised by WSNs. This Section discusses the role of WSNs in the IoT

and gives an overview of the IoT architecture.

1.1.1 WSNs Role in the Internet of Things

The efforts to integrate WSN with the Internet have been around for more than a

decade, especially with the emergence of many important WSN applications. The

integration of WSN to the cloud [9] and through the Internet has also become one of the

prime technologies that bring the IoT to reality. The multi-faceted potential of the IoT

makes the development of a wide range of applications possible. These applications can

be categorised into transportation and logistics, healthcare, smart environments,

personal and social domains [7].

By integrating WSN to the Internet, the notion of managing sensor nodes as well as

accessing data streams produced by WSN from any geographical location can become a

reality. The integration has become a solution for seamless knowledge sharing and

large-scale testing. Realising the tremendous benefits of the integration, the area of

networking WSNs with the Internet has gained considerable attention from the WSN

research community over the past few years.

3

Figure 1-1 A typical WSN and the Internet integration topology

Figure 1-1 shows a typical WSN and the Internet integration topology. WSNs, along

with the Internet, enable a user or client to monitor a phenomenon of interest remotely.

The sensor nodes are typically resource-constrained devices in terms of energy supply,

storage capacity and computational capabilities. Each sensor node collects event data

monitored around their vicinity and periodically sends its reading to a more powerful

node which acts as a data warehouse, commonly referred to as the sink. In addition,

multiple sinks may be required in a large WSN. For the Internet, hosts called the users

(or clients) send queries for data collection and process the received query responses. In

this typical architecture, an interface usually referred to as the gateway provides an

interface between the sensor network and the Internet. Hence, it serves as the last mile

of connectivity by bridging the WSN sink to the Internet.

The most common integration approach is to employ a gateway-based solution [10, 11].

In this strategy, the sink, or the base-station of the WSN serves directly as an interface

between the sensor network and the Internet. The sink operates as a gateway, i.e. a

proxy, that performs the translation of lower layer protocols from the WSN to the

Internet, and vice versa. There are variations to this solution, specifically by having

different gateway capabilities, namely the application-level gateway solution and the

delay-tolerant network (DTN) gateway [12] solution. Another approach is through

direct integration of the IP stack on the smart sensor level, which makes it possible to

connect WSNs and the Internet without requiring proxies or gateways. In this approach,

the sink or the base-station acts as a router, mainly to forward the packets from and to

sensor nodes. An overview of IP-based integration over recent years is given in [13].

In many circumstances nowadays, disparate WSNs need to be integrated into one virtual

sensor network over wired/wireless networks to provide comprehensive services to

users [14]. For example, in some WSN applications, the actual condition of a

4

phenomenon may be determined through a combination of sensory data from nodes that

may be constituents of different WSNs. Figure 1-2 shows a simple diagram of WSN

islands connected through the Internet.

Figure 1-2 Integration of isolated WSNs

1.1.2 IoT Architecture

Figure 1-3 shows a typical IoT-WSN architecture. The network is established with 3

tiers comprised of physical sensor devices, Internet interface and remote server or cloud

support architecture.

Figure 1-3 IoT architecture

The lowest tier consists of physical devices such as the sensor nodes and edge routers.

Sensor nodes send captured data to the edge router, which acts as a sink to the WSN. The

routers are typical IP addressable sensor nodes representing an IoT access point that gains

connectivity to the cloud server through the Internet routers. Data passes through the

multi-hop Internet routers, which eventually reside in the cloud where data accumulation

5

and data abstraction take place. Next, the intermediate level consists of the Internet as the

interconnection backbone. This architecture is one of the common approaches when

integrating the WSN to the Internet as discussed in the previous section and categorised

as the gateway solution [15]. Finally, the upper level represents the IoT virtual cloud

infrastructure and user terminals. Data from the physical sensor nodes are pushed to the

IoT cloud server through the edge router.

The common services and applications offered to the IoT include reporting, analytics

and control of the physical devices. To provide IoT services and applications to end

users, the system may be equipped with a database for storing and reporting related

historical data and a software environment for hosting analytics and control activity.

This is demonstrated in [16, 17] which categorised the IoT applications and their

associated service model when identifying the QoS requirements related to the

application domain. Indeed, the QoS requirement is closely dependant on the end-to-end

interaction in a cloud centric IoT framework [8]. Hence, the research background

involves the domains of application-specific WSN QoS and its relevance to the

application traffic’s QoS requirements. This is discussed in the next section.

1.2 Research Background

It is evident that the concept and emerging applications of the IoT-based WSN have

promoted a diverse research effort among the industry and academic community. Work

in this area mainly involves IoT architecture and its future direction, surveys of its

applications and enabling technologies [7] and security [18, 19]. Nevertheless, there

have been efforts investigating the QoS issues in the IoT [17], particularly for specific

IoT applications [20]. In addition, the QoS support in WSNs remains an open research

field from various perspectives [21]. The background to this research is formulated

within the context of the WSN application with heterogeneous traffic types and the

relevant QoS requirements. Therefore, WSN applications with heterogeneous data

traffic are discussed in the following section. This is followed by a consideration of the

traffic dynamics of the WSN application and then the domain of QoS requirements in

WSN.

1.2.1 Heterogeneous Data in WSN Applications

WSN can be deployed in various domains and applications such as agriculture and

environmental sensing, health care, wildlife or habitat monitoring, military surveillance,

home automation and security. There has also been a growing deployment of wireless

6

multimedia sensor networks (WMSN) [22] and an extended application of WSNs. A

WMSN is equipped with a multimedia device such as a miniaturised microphone,

battery or video transceiver. A WMSN sensor node may have different sensors that

gather different data at a different sampling rate. WMSNs can also transmit multimedia

data such as still images, video, and audio streams along with the ability to monitor

data. It is evident that the co-existence of at least two types of data traffic can be

observed in many WSN applications – real-time data and delay-tolerant data. The traffic

data within an application typically differ regarding the time required for information to

be sent to the destination.

An inspired example of a WSN application consisting of different data types is the MIT

CarTel project [23], which collects multiple real-time and delay-tolerant data within a

vehicular network. In this network, a mobile sensor computing system was designed

and implemented to collect, process, deliver and visualise data from sensors located on

mobile units such as automobiles. A node in the WSN application is a mobile embedded

computer, coupled to a set of sensors. Each node gathers and processes sensor readings

locally before delivering them to a central portal, where the data is stored in a database

for further analysis and visualisation. Data on cars is delivered to a portal, where users

can browse and query it via a visualisation interface and local snapshot queries.

The application provides a simple query-oriented programming interface and handles

large amounts of heterogeneous data from sensors. Such data may include GPS data

about road traffic speed and delays, the quality and prevalence of Wi-Fi access points

on drive routes, images from an attached camera and onboard automotive diagnostic

data. In addition, the nodes rely primarily on opportunistic wireless connectivity to the

Internet, or to "data mules" such as other mobile nodes to communicate with the portal.

The system’s applications run on the portal, using a delay-tolerant continuous query

processor to specify how the mobile nodes should summarise, filter and dynamically

prioritise data. The collected and processed data is accessible to users through the portal

of a website.

1.2.2 QoS Domains Classifications

QoS refers to the kind of quality perceived by the user or application. In networking

communities, QoS is interpreted as a measure of service quality that the network offers

to the end user or application. QoS has also been defined as a set of service

7

requirements that are fulfilled when transmitting a stream of packets from source to

destination.

The advent of multiple traffic types in WSNs highlights the need for a QoS mechanism

to handle this heterogeneous traffic data. Real-time and delay-tolerant data have

different QoS requirements. Typically, real-time data need to be sent in promptly, and

delay-tolerant data is sent to the destination reliably. Therefore, the QoS requirements

can be classified into two domains: timeliness and reliability [21, 24]. Within the

timeliness domain, different types of data may have different deadlines – some may be

shorter, and others may be longer. Similarly, the sensory data may also have diverse

reliability requirements – some data can tolerate a certain percentage of loss during

transmission, whereas others may need to be delivered to the destination without any

loss.

For example, the real-time and the delay-tolerant data in the vehicular network project

[23] introduced in Section 1.2.1 are represented by GPS data and road-surface

anomalies data, respectively. The real-time data is defined as the GPS data from the

vehicles – they need to be collected quickly as they are used to model traffic delay;

however, they do not necessarily need to be sent reliably. On the contrary, the data that

detects road-surface anomalies such as potholes is categorised as the delay-tolerant data

– they require high reliability to avoid false alarm, but do not need to be sent quickly.

An animal farming application [25] which consists of animal farms tagged with sensor

nodes may generate two types of packets – one for the environment data of the

surrounding environments and the other for the health condition of the herds. The

former is considered to be delay-tolerant data. The latter must be sent quickly,

especially during emergencies, hence is assumed to be real-time data.

1.2.3 Traffic Dynamics

In various WSN applications, the occurrence of an important event can suddenly

generate a burst of data traffic. Data in a WSN are normally generated and sent

periodically to the sink. However, a burst of data traffic can also be suddenly generated

when an important event is triggered or detected. This is demonstrated in WSN

applications such as fire hazard monitoring applications [26] and intruder detection

systems [27].

8

In an application of fire hazard monitoring [26], the burst of data in a bushfire

application when a fire occurs is considered to be very critical. Hence, different data

packets generated within the network might have differing importance. Typically, the

network should make more effort to deliver higher priority packets.

Traffic dynamics can also be seen in an intruder detection systems [27] [28]. Typically,

data in an intruder detection application is periodically sent to the sink node. However,

when an important event occurs in the system, the sensor node that detected the event

should send an alarm message to the sink. This alarm message could be in the form of

multiple packets containing information such as the time and place of the intrusion.

Usually, this kind of high priority occurs in bursts. In other words, high priority traffic

is generated within a short period, while low priority traffic exists in the network and

periodically generates thousands of packets.

1.3 Research Motivation

The motivation behind this study is twofold:

Firstly, traffic in WSNs represents two kinds of co-existing data packets: those with

real-time constraints and those with reliability-constraints. These packets have different

QoS requirements. Thus, by treating these packets differently, the needs of both packet

types can be better met. Furthermore, service differentiation is a common approach to

manage heterogeneous traffic in WSN applications and provide the required QoS

imposed by different kinds of network traffic. Due to significant differences between

WSN applications and the Internet, the QoS requirements generated by both networks

vary greatly [29]. The traditional approach for QoS traffic is simply unacceptable in

WSNs. Hence, the interoperability between WSNs and the Internet that employs

different QoS mechanism may also influence the network performance. A mechanism

for an end-to-end service differentiation can preserve the QoS implemented between

different network layers.

Secondly, there is a need for an adaptive WSN network performance matrix to follow

the demands of traffic dynamics and the physical process. We are motivated to devise

an adaptive QoS mechanism that can react to dynamic changes in the network to ensure

seamless QoS interactions between WSNs and the Internet. Specifically, the service

differentiation scheme can work with adaptive capabilities as it reacts to traffic

dynamics.

9

1.4 Research Objectives

In this thesis, a QoS framework for integrating WSN with heterogeneous data traffic to

the Internet is proposed. The concept of Adaptive Service Differentiation for

Heterogeneous Data in WSN (ADHERE) is proposed based on the varying QoS factors

and requirement analysis of mixed traffic within an IoT-based WSN. The objective of

the QoS framework is to meet the requirements of heterogeneous data traffic in the

WSN both in the domain of timeliness and reliability. Another objective is to implement

an adaptive QoS scheme that can react to traffic dynamics. This research also aims to

carry out the verification and validation of the simulated QoS model on the physical

setting of a sensor network.

1.5 Research Scope and Contribution

Most of the work in previous studies only supports two major types of traffic classes:

real-time traffic and non-real-time traffic. Hence, they only consider the QoS associated

with timeliness requirements. This thesis is based on the belief that both the timeliness

and reliability QoS requirements need to be addressed in a WSN. In addition, in contrast

to a common belief that real-time data is much more important than the delay-tolerant

data, it has been shown that delay-tolerant data has reliability requirements that must be

carefully managed. Furthermore, the traffic dynamics among heterogeneous data traffic

needs to be addressed to maintain the QoS of all traffic types. In this context, this

research proposes an adaptive QoS model that also considers the traffic dynamics

within a WSN application. In addition, the network QoS conditions are also monitored

and maintained by introducing adjustments to network parameters.

This thesis has three unique contributions. Firstly, it involves the design and

implementation of an ADHERE QoS model, and the testing is performed on Riverbed

Modeler, where different network scenarios and test cases are simulated. The second

contribution is the implementation of the QoS model on an IoT-based WSN physical

test environment. Thirdly, this thesis proposed the use of a neural network to introduce

an added-value to the proposed ADHERE QoS model.

1.6 Thesis Organisation

This structure of the thesis is organised as follows:

Chapter 1 gives an overview of the current status of WSNs and the IoT. The

background outlined in this chapter includes WSN applications with heterogeneous data

10

traffic and QoS pertaining to the IoT-based WSN and the QoS domain classifications.

The research motivation, problem statement, research objectives and research

contribution are also discussed.

Chapter 2 provides an insight into the work related to the aspect of QoS for IoT-based

WSNs and heterogeneous data traffic within WSNs. A critical analysis of service

differentiation for real-time and delay-tolerant data is presented, and the requirements

for both QoS domains are highlighted.

Chapter 3 deals with the modelling and implementation tools for the testing. It provides

an insight into the different available tools and their ability to investigate the concept of

service differentiation among heterogeneous traffic within an IoT-based WSN network.

Chapter 4 introduces the ADHERE QoS framework. This chapter presents the ideology

of the adaptive QoS concept and provides an overview of the major components of

ADHERE.

Chapter 5 presents the network modelling and simulation of the ADHERE QoS

framework. A proposed co-simulation between Riverbed Modeler and MATLAB is also

presented in this chapter, which aims to provide seamless QoS monitoring using the

ADHERE concept.

Chapter 6 presents verification of the simulated ADHERE QoS framework. An added-

value to the ADHERE QoS model is presented using a neural network. It gives an

overview of the design of the learning algorithm, which complements the developed

adaptive QoS model.

Chapter 7 presents the implementation of ADHERE QoS as a use-case on a physical

test environment, which offers a flexible system capable of reacting to the dynamic

changes of process demands.

Chapter 8 concludes this thesis with suggestions for future research work.

11

Chapter 2 Literature Review

2.1 Introduction

The task of connecting a WSN to the Internet brings several challenges, including the

quality of service (QoS) provisioning for the integration. QoS must be taken into

account to provide reliable network performance for the integration. One of the major

challenges integrating WSNs to the Internet is to provide a reliable and efficient

connection between the two networks. WSNs should interwork with the Internet to

build an end-to-end application system for their users. However, due to the significant

differences between WSNs and the Internet, the QoS requirements generated by both

networks may differ greatly. Internet QoS is typically defined with certain parameters

such as packet loss, delay, jitter, and bandwidth, whereas the QoS requirements in

WSNs are mainly application-specific and defined as data accuracy, aggregation delay,

coverage, exposure, fault tolerance, and network lifetime. This is due to the difference

in WSN application domains and network properties.

In an environment of WSN integrated to the Internet [4], the heterogeneous traffic

travelling on the WSN side is local traffic arriving from sensor nodes and targeted to the

gateway to be relayed to the end-points on the other end of the Internet side. The service

differentiation algorithm representing the QoS mechanism within the WSN typically

governs this traffic.

In this chapter, firstly, a QoS requirement analysis in integrating WSNs with

heterogeneous data traffic with the Internet is presented in Section 2.2. Next, Section

2.3 discusses the service differentiation QoS of previous literature, including the

priority-based scheduling and congestion control mechanisms. The focus areas in the

literature analysis are the WSN-IoT network components and the traffic dynamics of

WSN applications. We highlight the need for an adaptive QoS mechanism to ensure the

network could react to the dynamics of network traffic, which will be an integral part of

our discussion about the envisioned QoS framework in Section 2.4. Finally, Section 2.5

concludes the Chapter.

2.2 Quality of Service for the WSN-Internet Integration

This section presents the QoS requirements for various levels of the IoT-based WSN

networks components. The factors for enabling QoS based on various WSN-IoT service

models are discussed first. Then, the QoS requirements and mechanisms in WSNs are

12

distinguished from the QoS for the Internet. Sections 2.2.3 and 2.2.4 provide insights

into the end-to-end communication and the aspects of QoS over heterogeneous

networks, respectively.

2.2.1 Enabling QoS based on the IoT-based WSN Service Model

Figure 2-1 illustrates the architecture of WSNs integrated to the Internet. The network

architecture comprises a three-level network. The bottom level represents multiple

isolated WSNs, whereas the intermediate and upper levels consist of the Internet and

user terminals, respectively.

Figure 2-1 IoT-based WSN reference architecture

In a typical gateway-based integration solution, the gateway of the WSN serves directly

as an interface between the sensor network and the Internet. It also operates as a proxy

that performs the translation of lower layer protocols from the WSN to the Internet, and

vice versa. In the IoT-based WSN environment, the gateway is also referred to as the

IoT access point between the sensor network and the Internet.

M. Nef et al. [16] offers a description of the service model provided by WSNs in IoT.

WSN-IoT service models are categorised by three factors: interactivity, delay, and the

criticality of the WSN applications. The delay factors are categorised by the nature of

the application traffic, namely non-real-time (non-RT), soft real-time (SRT) and hard

13

real-time. Examples of WSN-IoT application fields are summarised in Table 2-1 [16,

17].

Table 2-1 Characteristics of the WSN-IoT Service Model

 Open Services Model Supple Services Model Complete Services
Model

Interactivity Yes Subscription-specific No

Delay Non-RT SRT SRT/HRT

Criticality No Yes Yes

Example of
application
field

-web or mobile
application which gives
information about nodal
points (hospitals,
drugstore, banks,
museums), road
incidents, meteorological
data)

-management centre of
traffic surveillance

- collaborates with local
institutions and users
(radio stations, local
authorities) and informs
about traffic
characteristics

-can be offered by service
providers for professional
use
-monitors a patient in an
intensive treatment unit
over 24-hours

-local authorities control
the motorways and the
streets with real-time
management systems,
locating dangerous drivers
and deterring accidents

WSN-IoT
applications:

Transportations
and Logistics

 Augmented maps  Logistics

 Mobile ticketing

 Monitoring
environmental
parameters

 Assisted Driving

 Healthcare

 Identification and
authentication

 Data collection

 Tracking

 Sensing

 Smart
Environment

 Smart museum and
gym

 Comfortable homes
and offices

 Industrial plants

 Personal and
Social

 Social networking

 Historical queries

 Losses and thefts

 Futuristic

 City information
model

 Robot taxi

 Enhanced game room

The first model is the Open Services Model. It is interactive as it is based on the user’s

queries, non-RT and non-mission-critical. The second model is the Supple Services

Model. This model is sometimes interactive, sometimes not, depending on the user’s

14

subscription, it is SRT and mission-critical. The third model is the Complete Services

Model. It is not interactive as there is a continuous flow of data; it is SRT or HRT,

depending on the application, and is mission-critical.

The vehicular network application [23] briefly discussed in Chapter 1 consists of

different data types that collect multiple real-time and delay-tolerant data within the

network. The application provides a simple query-oriented programming interface and

handles large amounts of heterogeneous data from sensors. These may include GPS data

about road traffic speed and delays, the quality and prevalence of Wi-Fi access points

on drive routes, images from an attached camera, and on-board automotive diagnostic

data. In addition, the nodes rely primarily on opportunistic wireless connectivity to the

Internet, or "data mules" such as other mobile nodes to communicate with the portal.

The system’s applications run on the portal, using a delay-tolerant continuous query

processor to specify how the mobile nodes should summarise, filter, and dynamically

prioritise data. All of the collected and processed data is accessible to users through a

website portal.

In a real-time system or through delay intolerant WSN applications, QoS guarantees can

be categorised into two classes: hard real-time (HRT) and soft real-time (SRT). As

stated in [30], a deterministic end-to-end delay bound should be supported in an HRT

system. Hence, the arrival of a message after its deadline is considered a failure of the

system. On the other hand, a probabilistic guarantee is required in an SRT system.

Therefore, some lateness is tolerable.

Traditional QoS, such as those employed in the Internet, mainly result from the rising

popularity of end-to-end bandwidth–hungry multimedia applications. On the contrary,

as can be clearly seen from Table 2-1, the QoS solutions such as IntServ and DiffServ

[31, 32] developed for traditional networks cannot be easily adopted in WSN. This is

due to severe resource constraints, and the random deployment of sensor nodes,

combined with application-specific and data-centric communication protocols in WSNs.

Indeed, many existing studies have concluded that the end-to-end QoS parameters

employed in traditional data networks such as the Internet are not sufficient to describe

the QoS in WSNs [21, 29]. Consequently, in recent years, considerable efforts has been

directed towards defining WSN QoS, which include QoS strategies through MAC

protocols, routing protocols, data processing strategies, middleware and cross-layer

designs. The difference between WSN QoS and Internet QoS must be distinguished to

15

provide end-to-end QoS between WSN and the Internet, as presented in the following

sub-section.

2.2.2 The difference between WSN QoS and Internet QoS

Since WSNs are envisioned to be employed in diverse applications, many researchers

suggest that different WSN applications impose different QoS requirements. The two

perspectives of QoS in WSNs are described in [33] to focus on the way the underlying

network can provide the QoS to different applications:

Application-specific QoS. Regarding the application-specific QoS, the QoS parameters

are chosen based on the way an application imposes specific requirements on sensor

deployments, on the number of active sensors, or on the measurement precision of

sensors. These attributes are all related to the quality of applications. The following QoS

parameters may be considered to achieve the quality of applications: coverage,

exposure, measurement errors, and the number of active sensors.

Network QoS. From the perspective of network QoS, the QoS parameters are chosen

based on how data is delivered to the sink and corresponding requirements. The main

objective is to ensure that the communication network can deliver the QoS-constrained

sensor data while efficiently utilising network resources. The QoS parameters from this

perspective include latency, delay, and packet loss, which are similar to traditional end-

to-end QoS metrics. However, since WSNs are envisioned to be employed in diverse

applications, a number of studies suggest that every different application imposes

different QoS requirements.

Regarding the Internet QoS, the RFC 2368 [34] definition of QoS-based routing in the

Internet characterises QoS as a set of service requirements to be met when transporting

a packet stream from the source to its destination. Furthermore, Internet QoS refers to

an assurance from the Internet to provide a set of measurable service attributes to the

end-to-end users regarding the delay, jitter, and available bandwidth and packet loss.

Therefore, QoS efforts have been pursued to end-to-end support using a large number of

mechanisms and algorithms in different protocol layers, while maximising bandwidth

utilisation.

QoS support from the Internet can be obtained using an over-provisioning of resources

and traffic engineering. While traffic bursts in the network could cause congestion, the

default approach of over-provisioning that treats users as the same service class may not

16

always provide an acceptable solution. As a QoS-enabled network should be able to

handle different traffic streams in different ways, this necessitates a traffic engineering

approach that classifies users into classes with different priorities.

The IntServ model and the DiffServ model are typical QoS models employed in the

Internet. They employ reservation-based and reservation-less approaches, respectively.

While network resources are assigned according to an application’s QoS request and

subject to bandwidth management policy in IntServ, QoS in DiffServ is achieved via

some strategies such as admission control, traffic classes, policy managers, and queuing

mechanisms.

The QoS solutions such as IntServ and DiffServ are developed for traditional networks

like the Internet. They cannot be easily ported in WSNs because of: severe resource

constraints in sensor nodes, large-scale and random deployment of sensor nodes, and

application specific and data-centric communication protocols in WSNs. Therefore, to

employ network QoS for WSNs, D. Chen and P. K. Varshney [29] classifies WSN

applications based on the basic data delivery models [35] to map the QoS requirements.

The data delivery models of the upstream traffic, i.e., from sensor nodes to the gateway

can be classified into four categories: event-based, continuous, query based, and hybrid.

In event-based delivery, a sensor node does event reporting if and only if target events

occur. In continuous delivery, in some cases, sensor nodes need to report to the gateway

and generate continuous data transmission periodically. In query-based delivery,

sensory data is stored inside a network and is queried by and then transmitted to the

gateway on demand. Practical applications might trigger hybrid data delivery including

event-based, continuous, and query-based. For example, an application would not only

be interested in all temperature changes (continuous delivery) but also interested in

some specific temperature change (e.g.: below zero degrees; event-based delivery) as

well as querying temperature at a specific time (query-based delivery).

The differences between the WSNs and the Internet network QoS discussed earlier are

illustrated in Table 2-2 below.

17

Table 2-2 Comparisons between the WSN and the Internet network QoS

 WSN Network-QoS Internet QoS

 End-to-end QoS Reliability Assurance End-to-end QoS

QoS Target - Network lifetime

- Cost and energy
efficiency

- Timely response

- Speed of packet delivery

Data Reliability:

- Loss sensitive

- Successful transmission
of all packets

Event Reliability:

- Successful event
detection (successful
transmission of all
packets not required)

- Provides services to
bandwidth-hungry
multimedia applications

QoS
Parameter

- Delay

- Throughput

- Bandwidth

- Reliability

- Throughput

- Packet Loss

- Delay

- Latency

- Bandwidth

- Delay

- Jitter

- Packet loss

Approach/
Technology

- Routing protocol

- Service differentiation

- Traffic priority

- Transport protocol

- Service differentiation

- Data aggregation

- Congestion control

- Data criticality

- Over-provisioning of
resources

- Traffic engineering
(admission control,
policy managers, traffic
classes, queuing
mechanism)

QoS Efforts - SAR

- SPEED

- MMSPEED

- Other PHY and MAC
protocols for energy
efficiency

- ESRT

- ReInForm

- Reliable information
forwarding

- Information assurance

- IntServ

- DiffServ

- MPLS

It is evident that the QoS mechanisms proposed for WSNs are different from traditional

end-to-end QoS employed in the Internet. Nevertheless, in an environment of

interconnected WSNs whereby the Internet plays an integral role as the backbone of the

interconnections, network QoS shall be considered to achieve the QoS. This can be

done by giving close attention to the related QoS factors related to the applications of

interest, and the network requirements imposed by both the Internet and WSN. Hence,

Section 2.3 presents an overview of service differentiation, which is a predominant

approach in managing heterogeneous data traffic in WSNs.

2.2.3 Performance Measure in End-to-End Communication

The end-to-end data flows from a WSN to its users impose various transmission times

in different communication layers. As mentioned earlier in Section 2.2.1, a WSN-IoT

service model such as the Supple Service Model [16], which provides periodically

18

collected sensorial or geographical information, can be either interactive if it is query-

based, or non-interactive if the user subscription defines a semi-continuous flow of data

at regular intervals. Therefore, the transmission time includes the communication

between a sensor node to the gateway, gateway to the Internet router, and the Internet

router to another WSN gateway. Apart from these transmission times, processing delays

and queuing delays within gateway devices further augment the communication time.

Table 2-3 illustrates end-to-end communication in the network. The table depicts the

steps involved in different layers of the network, i.e. ranging from requests initiated by a

user, to communication between nodes which are constituents of different WSNs, until

a response is received by the user.

Table 2-3 End-to-end communication in the WSN-IoT network

 Source and Destination Communication
Layers

Description

1



Local user
and
Gateway

Local users initiate requests and gain
responses to/from sensor nodes through
WSN gateway

2



Gateway
to
Sensor node

The gateway device acts as the sink that
has a direct connection with the sensor
nodes

3



Sensor node
to
Gateway

Sensor node sends captured data to the
gateway device

4



Gateway
to
Internet router

Gateway device passes data to an
Internet router

5



Internet router
to
Internet router

Internet propagation based on no. of
hops

6



Internet router
and
Remote user

Remote users’ communication via
Internet routers

Several studies have demonstrated the network performance testing and QoS

measurements of WSN-Internet integration. One of the main challenges concerning

WSN-Internet interconnection is in providing access to each sensor node through the

TCP/IP based network where the end-to-end communication time is commonly

investigated.

In [36], Su and Almaharmeh proposed an integration module that can ensure QoS for

different network applications. The QoS is provided by an integration controller that

19

runs software modules and can reconfigure the QoS parameters on the network edge

router. In this application-level gateway approach, the performance is evaluated in terms

of inter-arrival time (the time between adjacent packets), packet delay, round-trip time

(RTT) and cumulative distribution function of the RTT.

Similarly, the RTT measured in [37] is defined from the time the user issues a request

(e.g. GET/mode_id/light) until the actual light value appears on the user’s screen. The

overhead included in this period is analysed as follows, starting from the point at which

the request arrives at the gateway:

RTT = 2 x (tjava + tserial + tair) + tprocessing (2.1)

where tjava is the Java gateway overhead, tserial is the gateway to the base station

communication time via the serial interface, tair refers to the base station to

sensor/actuator over-the-air communication at 256Kbps, and tprocessing is the request

service time by sensor/actuator. In other words, the latency or RTT is measured from

the time the user issues a request to the sensor node until the actual response is received

if the lengths of messages travelling to and from the sensors/actuators are equal.

Furthermore, by distinguishing sensor nodes as TCP/IP addressable units, the work in

[38] aimed to reduce the node access time and increase data transfer efficiency by

employing a translation table within the gateway architecture that can provide multiple

node addresses for a single node. In this work, ‘successful data transfer’ of one message

between two nodes (message transfer and response) depends on the shortest end-to-end

delay. This kind of communication delay includes transmission delay, propagation

delay, processing delay, and queuing delay.

The total communication time is defined as:

Ttotal = 2(m +1)hTc + 2(m + h −1)Tt + 2hTp + 2m(h −1)Tq (2.2)

where m is a number of transferred messages, and h corresponds to a number of hops.

Tt (transmission delay) – time for the transmission of one message. (It depends on the

channel bandwidth, bit rate, message length, and coding techniques),

Tp (propagation delay) – signal propagation time between two sensor nodes,

Tc (processing delay) – the time needed for processing one message, and

20

Tq (queueing delay) – average time a message waits in queue for transmission.

It is evident that one of the main contributing factors of the end-to-end communication

is the queuing delay within the gateway. The next sub-section explains the role of the

gateway that acts as the IoT access point of the WSN-Internet integration.

2.2.4 QoS Over Heterogeneous Networks

In a gateway-based integration network, the QoS implementation is commonly provided

on the gateway side of the WSN. Indeed, being in the unique position of having the full

knowledge and control over both the WSN and the Internet, the gateway that acts as the

IoT access point plays a vital role guaranteeing QoS for the integration.

As the QoS employed in WSN differs greatly from that of the Internet, interconnectivity

issues between the two domains are inevitable. Hence, the QoS provisioning becomes

increasingly important as the network is made up of heterogeneous components. The

challenge for generic heterogeneous networks is to offer an end-to-end QoS guarantee

transparently.

The overall problem of QoS interworking may be structured into two different actions;

vertical QoS mapping and horizontal QoS mapping [39]. The concept of vertical QoS

mapping [40] is based on the idea that a telecommunication network is composed of

functional layers and that each single layer must have a role in end-to-end QoS

provisions. The overall result depends on the QoS achieved at each layer of the network

and is based on the functions performed at the layer interfaces. On the other hand, the

concept of horizontal QoS mapping refers to the need to transfer QoS requirements

among network portions that implement their technologies and protocols.

A cross-domain QoS that provides some integrated QoS mapping mechanism between

both varying WSN QoS and the Internet QoS may be employed to address the end-to-

end QoS. The WSN gateway links the QoS models employed in the WSN with the QoS

employed by the Internet. A framework to address the cross-domain QoS problem is

proposed in [41, 42]. The proposed framework is designed to facilitate a seamless QoS

interaction between an ad-hoc network and an access network, i.e., the Internet. While

the QoS solutions for the ad-hoc network are defined to solve specific problems such as

mobility and the fading of wireless channels, the common QoS solutions such as

DiffServ, on the access network are designed to address the issues of fixed structure

networks.

21

Figure 2-2 depicts the cross-domain QoS interaction that can be addressed in the WSN-

IoT application. As shown in the figure, the WSN implements a service differentiation

QoS solution, whereas the Internet that acts as the access network implements a typical

model like DiffServ or IntServ.

Figure 2-2 Cross-domain QoS mapping between different QoS mechanisms

Thus, a framework that runs on a QoS driven gateway may be employed to solve the

interconnectivity issues between two different domains. The model may rely on the QoS

models implemented on each side of the gateway to provide detailed services in the

relevant domain while focusing on QoS concatenation issues. From the end-to-end

viewpoint service quality can be measured in terms of four comprehensive parameters,

namely end-to-end bandwidth, end-to-end delay, end-to-end jitter, and end-to-end loss

rate.

2.3 Service Differentiation QoS in WSN

This section presents the related work on WSN QoS, which addresses the QoS

requirements of the timeliness and reliability domains. It also discusses the approach of

service differentiation in WSN through the priority-based scheduling approach

established in previous studies.

2.3.1 Related Work on Timeliness and Reliability QoS

QoS solutions through service differentiation [43, 44] algorithms for WSN have been

proposed in previous studies. Service differentiation has become a common approach to

achieve the QoS for real-time WSN applications. Starting with one of the earliest works

in differentiated service-based QoS in [45], subsequent efforts in this area of research

have demonstrated this approach to QoS provisioning, specially designed to suit

resource constraint WSN [24, 43, 46-51]. While the proposed mechanisms involve

different aspects of service differentiation, namely, QoS-aware routing, priority-based

scheduling, probabilistic QoS guarantee and MAC protocols, the works are based on the

22

common nature of WSNs – the network is comprised of different data types, hence the

demand for different levels of QoS from the network. However, like many other real-

time QoS solutions in WSNs [30], the differentiated service strategy gives the primary

attention to delay-sensitive [44] packets – the aim is mainly to cater for real-time

packets that need to arrive at the sink in a required time frame, ensuring low latency and

low delay. Nevertheless, there has been limited work [25, 43, 52] that addresses the

varying QoS requirements of different traffic classes.

In contrast to real-time systems, a delay-tolerant WSN [53] is characterised by long-

delay and intermittent connectivity. The main feature of the QoS provisions in delay-

tolerant applications, for example, in sparse mobile sensor networks such as vehicular

networks [23] and wildlife tracking networks [54], is reliable message delivery. In

addition, the delay-tolerant network (DTN) concept [12], which makes use of store-and-

forward techniques within the network, is employed to compensate for unstable

connectivity. Research activities in this area are mainly focussed on routing protocols

[25, 55-57] geared towards minimising delivery delay.

Studies of the domains of timeliness and reliability were demonstrated in other previous

studies on WSN QoS. The work in [25, 52] is geared to address both timeliness and

reliability QoS requirements. In [25], to route packets through a WSN with mixed

priorities traffic, the real-time packets are allocated more bandwidth, whereas the delay

tolerant data with reliability constraints are allocated more storage in the buffer within

sensor nodes. The work is designed to represent a farm with tagged animal with sensor

nodes. In this work, two types of packets are generated – one for the environmental data

of the surrounding environments and the other for the health condition of the herds. The

former is considered to be delay-tolerant data while the latter must be sent quickly,

especially during emergencies; hence, it is assumed to be real-time data.

23

Figure 2-3 Comparison of delivery times between real-time and delay-tolerant packets
[25]

Figure 2-3 shows the different ways that the real-time (Q packets) and delay-tolerant (R

packets) are delivered to the base station in the service differentiation protocol in [25].

Points in the graph indicate the percentage of packets that are delivered to the station in

a time bound scenario, for example, the first two points mean that around 12 percent of

Q packets and three percent of R packets reach the base station in 1,000-time units.

These results show that both Q and R packets achieve their QoS requirements. The Q

packets arrive relatively quickly, typically before 4,738-time units. However, they are

often lost before delivery, and the overall packet delivery ratio (PDR) is as low as

40.75%. R packets travel much more slowly to the base station, many of them not

arriving until 10,000 or even 50,000-time units after being generated. However, these

packets are delivered with much higher reliability, and the final PDR is as high as

95.05%. The total PDR is less than 100% because of extreme buffer capacity

constraints, and so some R packets are evicted due to high storage pressure. With larger

packet buffers, the reliability of both the R and the Q packets would increase.

The work in [1] investigates the performance of a network with the co-existence of

heterogeneous data traffic. The aim of the study is to point out the pitfalls of integrating

the WSN to the Internet without considering the QoS requirements of packet timeliness

and reliability. Network traffic was simply categorised as high and low priority. For its

resource allocation scheme, the network gateway implements some queuing discipline

that governs how packets are buffered while waiting to be transmitted. Two typical

scheduling schemes, i.e., priority queuing (PQ) and weighted fair queuing (WFQ) were

employed to treat packets with high and low priority differently. In the PQ policy, all

high priority packets are sent before any low priority packets. In the WFQ policy, one

24

queue is maintained for each priority class, and weights are associated with the traffic

classes based on their importance.

Figure 2-4 shows the amount of dropped traffic, due to buffer overflow, when typical

PQ and WFQ scheduling is used within the gateway. The traffic dropped for both

schemes occurs at almost a similar rate. This is due to the small weight difference

between packet types. Since packets are categorised merely as high and low priority, the

high priority queue shows a lower drop rate than the low priority queue. However, this

should not be the case for reliability-constrained packets, mainly because these types of

packets cannot tolerate or can only tolerate a small percentage of loss. Hence, they

should have a high packet delivery percentage.

T
ra

ff
ic

 d
ro

pp
ed

 (
pa

ck
et

/s
ec

)

 Simulation time

Figure 2-4 Traffic dropped for PQ and WFQ scheduling

2.3.2 Packet Scheduling in WSN Gateway

As mentioned in the previous Section, the network gateway implements a queuing

discipline to control the resource allocation. Different priority traffic or traffic with

different QoS requirements is placed in different queues in the network gateway. An

ideal queuing approach could contribute to the success of the QoS solution. An

overview of queuing disciplines and packet scheduling mechanisms in a WSN gateway

is presented herein.

Classifying network traffic is the foundation for enabling the service differentiation in a

network. This is particularly vital for wireless multimedia sensor networks (WMSN)

25

[22, 58] where different types of data traffic are organised into traffic classes based on

their QoS requirements. Grouping network traffic based on user-defined criteria is a

means of classifying the network traffic. Hence, the resulting groups of network traffic

can be subjected to specific QoS treatments. The treatments include faster forwarding

by network nodes for high priority real-time traffic or reducing traffic drop due to a lack

of buffering resources for traffic that does not tolerate packet loss.

An illustration of heterogeneous traffic flows arriving at a gateway is shown in Figure

2-5. Different types of traffic sources, i.e., traffic source 1, 2, 3…. n are generated by

the sensor nodes. Packets arrive at the gateway, which typically has a QoS function

such as packet classification and access control to support the service differentiation.

Traffic classification will enable placing the traffic into specific queues. Consequently,

packets can be scheduled more efficiently.

Figure 2-5 Packet scheduling in WSN gateway

As illustrated in the figure, the queuing model implemented in the gateway governs the

way packets of different traffic classes are buffered while waiting to be transmitted.

Once data arrives at the gateway, it will be allocated to buffer queues, depending on the

scheduling algorithm implemented on the gateway. Various queuing disciplines can be

26

used to control which packets are transmitted (using the bandwidth allocation scheme)

and which packets are dropped (depending on buffer space allocation). The queuing

discipline also affects the latency experienced by a packet by determining how long a

packet waits to be transmitted. Examples of the common queuing disciplines are priority

queuing (PQ), and weighted-fair-queuing (WFQ).

PQ is a simple variation of the basic First-in-First-out (FIFO) queuing. The idea of

FIFO queuing is that the first packet that arrives at the gateway is the first packet

transmitted. In FIFO, given that the amount of buffer space at each gateway is finite, if a

packet arrives and the queue (buffer space) is full, then the router discards that packet.

This occurs without regard to which flow the packet belongs to or how important the

packet is. On the other hand, in PQ policy, all high priority packets are sent before any

low priority packets. The low priority transmission will be pre-empted if any new, high

priority packets arrive. Each packet is treated according to its marked priority,

potentially using the IP Type of Service (ToS) field. The gateway then implements

multiple FIFO queues, one for each priority class. Within each priority, packets are still

managed in a FIFO manner.

The idea of the fair queuing (FQ) discipline is to maintain a separate queue for each

flow currently handled by the gateway. The gateway then services these queues in a

round-robin manner. On the other hand, in WFQ [59], weights are associated with the

classes based on their importance. The WFQ scheduling discipline is an important

method for providing bounded delay, bounded throughput and fairness among traffic

flows [51]. The weights are assigned to each flow (queue). Hence, one queue is

maintained for each priority class. This weight effectively controls the percentage of the

link’s bandwidth each flow will get. ToS bits can be used in the IP header to identify

that weight. Queues are then serviced (i.e., packets are taken from the queues and sent

on the outgoing line) at rates based on their weights. For instance, if the high priority

queue was assigned a weight of ‘2’, and the low priority queue was assigned a weight of

‘1’, then two packets will be sent from the high priority queue for every one sent from

the low priority queue.

WFQ is commonly referred as "bit-by-bit round robin," because it implements a

queuing and scheduling mechanism in which the queue servicing is based on bits

instead of packets. Weighted Round Robin (WRR) is a scheduling discipline that

addresses the shortcomings of priority queuing and fair queuing. The basic concept of

27

WRR is that it handles the scheduling for classes that require different bandwidth. WRR

accomplishes this by allowing several packets to be removed from a queue each time

that queue receives a scheduling turn. WRR also addresses the issue with PQ in which

one queue can starve queues that are not high-priority queues. WRR does this by

allowing at least one packet to be removed from each queue containing packets in each

scheduling turn.

The main difference between WFQ and WRR is that WFQ services bits at each

scheduling turn, whereas WRR handles packets in each scheduling turn. The number of

packets to be serviced in each scheduling turn is decided by the weight of the queue.

The weight is usually a percentage of the interface bandwidth, thereby reflecting the

service differences between the queues and the traffic classes assigned to those queues.

WRR has no knowledge of the true sizes of the packets in the buffers that are to be

scheduled. The queues and scheduling are generally optimized for an average packet

size. However, the sizes are all just estimates and have no true meaning with regard to

the actual traffic mix in each queue. This operation of WRR is both an advantage and an

issue. Because WRR has no complex resources that demand state computation as with

WFQ, which must transform bits to bandwidth scheduling, it is fairly simple to

implement WRR. The result is a solution well-suited for handling a large number of

flows and sessions, making WRR into something of a core QoS solution that can deal

with large volumes of traffic and with congestion. The drawback of WRR is that it is

unaware of bandwidth because it does not handle variable-sized packet.

The main benefit of WFQ is that its implementations provide service differentiation

between classes and their aggregated traffic, rather than merely differentiating between

individual flows. A weight allocated to each class divides the scheduling and bandwidth

ratio for each class. In addition, because WFQ is bits aware, it can handle packets of

variable lengths. However the limitation of WFQ is that the original WFQ design is

more of a queuing theory. The existing implementations do not follow the original

concept in which each flow is allocated a weight. Instead, flows are aggregated by being

classified into different service classes, and these classes are then assigned to queues.

28

2.3.3 Congestion Control

Network congestion occurs when offered traffic load exceeds the available capacity at

any point in a network [60]. Congestion in WSN [61] causes overall channel quality to

degrade and loss rate to rise, leading to buffer drops and increased delay. Provisioning a

WSN so that congestion is a rare event is extremely difficult. Sensor networks deliver

myriad types of traffic, from simple periodic reports to unpredictable bursts of messages

triggered by the external events that are sensed. Even under a known, periodic traffic

pattern, and a simple network topology, congestion occurs in the WSN. This is because

radio channels often vary in time and concurrent data transmissions over different radio

links interact with each other, causing channel quality to depend not just on noise but

also on traffic densities. Moreover, the addition or removal of sensors or a change in the

report rate can cause previously uncongested parts of the network to become under-

provisioned and congested. Furthermore, when sensed events cause bursts of messages,

congestion becomes even more likely.

Two types of congestion could occur in WSNs [62]. The first type is link-level

congestion. For WSNs where wireless channels are shared by several nodes using

Carrier Sense Multiple Access (CSMA) protocols, collisions could occur when multiple

active sensor nodes try to seize the channel at the same time. Link-level congestion

increases packet service time, and decreases both link utilisation and overall throughput,

and wastes energy at the sensor nodes. The second type is node-level congestion, which

is common in conventional networks. A node-level congestion is caused by buffer

overflow in the node, which can result in packet loss and increased queuing delay.

Packet loss will degrade reliability and application QoS, and waste the limited node

energy and degrade link utilisation. When packet arrival rate exceeds the packet service

rate, buffer overflow may occur. This is more likely to occur at the sensor nodes close to

the gateway, or the gateway itself, which carries the combined upstream traffic.

Upstream traffic could have high bit rate with the introduction and development of

wireless multimedia sensor networks (WMSNs) [22]. Such high-speed upstream traffic

is prone to cause congestion, which will impair QoS of multimedia applications in

WMSNs.

Both node-level and link-level congestions have direct impact on energy efficiency and

QoS. Therefore, congestion must be efficiently controlled. Congestion control protocol

efficiency depends on how much it can achieve the following potential objectives [63]:

The first objective pertains to energy efficiency for extending a system lifetime.

29

Congestion control protocols need to avoid or reduce packet loss due to buffer overflow

and remain lower control overheads that consume less energy. Secondly, some fairness

needs to be guaranteed so that each node can achieve fair throughput. Most of the

existing work [60, 62] guarantees simple fairness in that every sensor node obtains the

same throughput to the sink. In fact, sensor nodes might be either outfitted with

different sensors or geographically deployed in different places, and therefore they may

have different importance or priority and need to gain different throughput. In this

perspective, weighted fairness is required. Thirdly, it is also necessary to support

traditional QoS metrics such as packet loss ratio, packet delay, and throughput. For

example, multimedia applications in WMSNs require not only packet loss guarantee

(timeliness requirement) but also delay guarantee (reliability requirement). Congestion

control methods involving heterogeneous data traffic have been studied in previous

literature [28, 64, 65]. [28] proposed a weighted priority-based rate control scheme to

control congestion by adjusting transmission rates relative to various data types.

The two general approaches to control congestion are through network resource

management and traffic control [63]. The first approach tries to increase network

resources to mitigate congestion when it occurs. In the wireless network, power control

and multiple radio interfaces can be used to increase bandwidth and weaken congestion.

With this approach, it is necessary to guarantee precise and exact network resource

adjustment to avoid over-provided or under-provided resources. However, this is a hard

task in wireless environments. Unlike the approaches based on network resource

management, traffic control implies controlling congestion through adjusting traffic

rates at source or intermediate nodes. This approach is helpful for saving network

resources and more feasible and efficient when the exact adjustment of network

resources becomes difficult. Most existing congestion control protocols belong to this

type. According to the control behaviour, there are two general methods for traffic

control in WSNs: end-to-end and hop-by-hop. The end-to-end control can impose exact

rate adjustments at each source node and simplify the design at intermediate nodes;

however, it results in slow response and relies highly on the round-trip time (RTT). In

contrast, the hop-by-hop congestion control has a faster response. However, it is usually

difficult to adjust the packet-forwarding rate at intermediate nodes mainly because the

packet-forwarding rate is dependent on MAC protocols and could be variable.

A congestion control solution may consist of three important components: congestion

detection, congestion notification, and rate adjustments [28]. Congestion detection in

30

WSNs often makes use of a congestion indicator, which has been proposed in terms of

buffer occupancy, queue length [60, 66], packet service time [62], or the ratio of packet

service time over packet inter-arrival time at the intermediary nodes [63]. Typically,

when detecting congestion in the network, the transport protocol needs to propagate

congestion notifications from the congested node to the upstream sensor nodes or the

source nodes that contribute to the congestion. This can be done explicitly by sending a

special control message to the other sensors or implicitly using the piggy-back technique

in data packets. Hence, when a node receives the congestion notification message, it

should adjust its transmission rate using a rate control technique.

2.3.4 Adaptive Service Differentiation

In a service differentiation approach, adaptive QoS may be used to maintain QoS relative

to the dynamics of the sensor network. As mentioned in Section 2.3.1, sensor network

dynamics may include the change of network parameters through a course of time, which

may include the intensity of traffic flows due to bursts of traffic, the number of active

sensor nodes and gateway devices, and bandwidth availability.

Related work in adaptive service differentiation is demonstrated in [28], by adopting

congestion control [61] and rate adjustment solutions. The work shows that using a

weighted priority-based rate control scheme; congestion can be controlled by adjusting

transmission rates relative to various data types. Furthermore, an adaptive system for

service differentiation through the fuzzy logic controller was proposed in [67]. The

work introduced an extension from the service differentiation in [28] as it includes a

fuzzy logic controller for traffic load parameters with priority-based rates in the

network. It is reported in [67] that the adaptive QoS system supports prolongs the system

lifetime as adjustments to the network can be performed to enhance system performance.

2.4 Envisioned QoS Framework

The QoS requirement and literature analyses facilitate the formulation of our envisioned

QoS concept. This section discusses the components of the QoS framework.

2.4.1 Management of Timeliness and Reliability Traffic Requirements

The main drawback in the service differentiation QoS according to previous studies is

that primary attention is predominantly given only to the real-time packet with low

bound delay [28, 67], while the desired QoS of the delay-tolerant packet is not taken

into consideration. In fact, it is a common notion that the timeliness constraints of real-

31

time traffic are of greater concern than the reliability constraints of the delay-tolerant

packet [58]. However, we argue that both QoS domains are equally vital [1]. Thus, both

timeliness and reliability requirements need to be carefully considered in the adaptive

QoS mechanism.

Most of the work in previous studies only supports two major types of traffic classes,

i.e., real-time traffic and non-real-time traffic, hence only considers the QoS associated

with timeliness requirements [28]. To improve the QoS for co-existing real-time and

delay-tolerant traffic, the proposed model should provide service differentiation for

traffic classes possessing timeliness and reliability constraints. In addition, the model

should potentially take into account the timeliness and reliability requirements with

multiple levels of tolerance and priorities. We aim to devise a service differentiation

model that explicitly deals with different QoS requirements for different types of data

by applying a prioritisation scheme among WSN traffic.

2.4.2 End-to-end Service Differentiation

The service differentiation mechanism discussed in the literature review was adopted in

the WSN sensors level. However, further attention is required to enable the QoS for

WSNs that is part of the IoT domain [17]. In this perspective, it is an interesting

challenge to define a QoS mechanism that involves components beyond the scope of

sensors - potentially the management of heterogeneous traffic from the gateway level

which acts as the IoT access point.

As discussed in Section 2.3.3, due to the convergent nature of upstream traffic,

congestions are more likely to appear in the upstream direction [63]. The upstream

traffic from sensor nodes to the gateway is a many-to-one communication. Particularly,

at the IoT access point side, congestion occurs due to the lower capacity of the access

point’s outgoing link when compared to incoming traffic. Furthermore, being in a

unique position with full knowledge of and control over both the WSN and the Internet,

the IoT access point plays a vital role guaranteeing QoS for the integration. The QoS

requirements of different traffic types need to be carefully considered in the traffic

management running within the network especially within the IoT access point. This

will facilitate a seamless QoS interaction between both the WSN and the Internet.

Furthermore, the network QoS shall be measured and analysed by giving close attention

to the various QoS requirements imposed by both the Internet and WSN. Therefore, the

32

application-specific QoS requirements of WSNs and the end-to-end QoS requirements

of the Internet must be well distinguished.

Since the QoS mechanism employed in WSNs and the Internet differs greatly, the

interoperability between both networks may also influence the network performance. A

mechanism for an end-to-end service differentiation will be able to preserve the QoS

implemented between different network layers. Due to distinguishable characteristics of

WSN QoS and Internet QoS, a mechanism to communicate the varying QoS should be

made available. A QoS mapping framework will facilitate a seamless QoS interaction

between both networks built over heterogeneous components. The motivation lies in

having seamless QoS interaction between these two networks. The IoT access point

needs to preserve the WSN QoS employed. If the ordinary access point is employed, an

Internet QoS such as DiffServ will potentially be used. The proposed QoS concept is to

make sure that service differentiation is preserved when integrating WSNs to the

Internet.

2.4.3 Adapting to Traffic Dynamics

The buffers required for QoS traffic may suffer the same issue of scarcity as other WSN

network resources. Not having adequate buffer sizes would complicate traffic

classification, introduce delays, and reduce the possibility of granting QoS guarantees.

Therefore, due to limited resources and to ensure optimum resource utilisation (in terms

of buffer usage and bandwidth allocation), a congestion control algorithm and efficient

resource allocation will also be major components of the QoS framework. The

congestion control algorithm will adapt to the event of burst traffic when the

accumulation of packets in the buffer becomes more rapid. This imposes the

requirements of adaptivity to the QoS framework.

The QoS framework should comprise of an adaptive QoS mechanism that is capable of

reacting to dynamic changes in the network to ensure seamless QoS interactions

between the WSN and the Internet. Specifically, the service differentiation scheme may

be featured with adaptive capabilities as it reacts to traffic dynamics. Furthermore, it is

also important to gain real-time and continuous assessment of the current QoS

conditions to ensure the required application-specific QoS is always met. With

knowledge of QoS performance such as queuing delay and traffic drop, informed

adaptations can be made to the network. This can potentially be done through

33

reconfigurations of node attributes such as buffer size, service rates, and bandwidth

allocations.

2.5 Summary

In this chapter, a QoS requirement analysis and a literature review pertaining to WSN-

IoT integration are presented. A literature analysis of WSN with heterogeneous data

traffic and service differentiation of QoS to accommodate traffic dynamics has been

presented. It is evident that there is a glaring lack of research in the area of end-to-end

QoS support, particularly as a means of ensuring the preservation of WSN QoS,

especially concerning the timeliness and reliability of QoS imposed by heterogeneous

data traffic.

The literature analysis also focused on WSNs’ ability to adapt and react to the dynamic

changes of the network, potentially via a resource control mechanism. In this

perspective, the capacity of the network including the resources within the network

gateway needs to be considered carefully. Since upstream packets are queued at the

gateway, which also acts as the IoT access point, it has complete knowledge about

them. As a consequence of the unique position of full knowledge and control over both

the WSN and the Internet, the IoT access point plays a vital role guaranteeing QoS for

the integration.

Therefore, an integrated QoS framework is envisioned, encompassing an IoT access

point that runs a QoS mechanism that links the network-level QoS mechanism from

both WSN and the Internet. While most of the differentiated services in previous

literature has operated at the sensor node level, the envisioned QoS framework will

focus on enabling QoS in the domain of WSN-IoT. The QoS framework will have the

following components:

i) A QoS model that explicitly deals with different QoS requirements for different

types of data by applying a prioritisation scheme among WSN traffic

ii) An adaptive QoS mechanism that is capable of reacting to dynamic changes of

the network to ensure seamless QoS interactions between the WSN and the Internet

Firstly, the QoS framework should be able to address the varying QoS requirements

imposed by heterogeneous data traffic and their association to timeliness and reliability

domains. While it is typical that timeliness is of greater concern than reliability, we

34

argue that both QoS domains are equally vital. It is imperative to consider both domains

in an application, especially with the emergence of more complex sensor network

applications that may need some support for multiple traffic types. Secondly, the service

differentiation scheme features adaptive capabilities to react to application-specific

traffic dynamics within the network.

35

Chapter 3 Modelling and Implementation Tools

3.1 Introduction

This approach to studying the QoS of WSNs was selected by considering factors related

to the research aim of assessing the integrated influences of WSNs and the Internet on

the QoS. In this research, it is of vital importance that the selection of tools and methods

are based on investigating the envisioned QoS framework. As discussed at the end of

Chapter 2, this research is inspired by two major goals. Firstly, to provide a solution for

QoS provisioning that satisfies the QoS requirements for the mixed traffic nature of

WSNs connected to the Internet. Secondly, to devise a scheme for validating and

verifying network performance under the modelled QoS.

Generally, the approach for investigating networking protocols and evaluating network

performance may fall into 1) Analysis and mathematical modelling, 2) Simulation –

typically time-based simulation or discrete event-based simulation (DES), 3) Hybrid

simulation, i.e., simulation using both mathematical modelling and simulation, and 4)

experimentation using a locally established testbed. Modelling and simulation are

means of verifying the working and measuring the effectiveness of different techniques

proposed for WSNs. As a representation, analytical modelling provides quick insights

about the ideal techniques developed for WSNs. Simulations provide a good

approximation to verify the different schemes and applications developed for WSNs at

low cost and in less time. They cannot offer real results because of the imprecise

representations of WSN-specific constraints such as limited energy and the sheer

number of sensor nodes. On the other hand, real-world implementation and testbeds

offer more accurate data to verify the concepts, but they are restricted by size, costs,

effort and time factors. Repeating environmental conditions are also challenging for a

physical WSN testbed.

One of the main objectives of this research is to design a QoS model based on service

differentiation and congestion control. The literature investigates congestion control

through traffic control and resource control protocols’ performance using simulations,

experimentation and by modelling their behaviour [68]. The congestion control protocol

is evaluated to identify its efficiency in the presence of overload traffic. The pre-

dominant metrics used by congestion control protocols are packet drop, packet delivery

ratio, end-to-end delay, throughput and queue length. The choice of models and the

simulation environment is important for credible results through simulation. The

36

selection of the simulation tool will also be based on the capabilities of the available

simulation tools.

This chapter begins with an overview of the currently available simulation tools, along

with a review of related work in WSN QoS studies. An overview of related work

involving interactions between network modelling tools and computation tools will be

discussed next, drawing attention to the complexity of the investigation. Drawing from

the analysis, selected tools and approaches to designing and evaluating the integrated

QoS model are presented. Important features of the selected tools are highlighted to

reflect the research activities. Finally, some state-of-the-art WSN testbeds are presented,

followed by an overview of the testbed architecture used for QoS model validation.

3.2 Related work on QoS in WSNs and the Internet

The study of WSNs and QoS have mostly been performed using simulators, particularly

in the domain of service differentiation and priority-based schemes. Simulators are

normally chosen as they do not require hardware for testing purposes, which means that

thousands of nodes can be simulated. Since the simulation depends on machine

processing capabilities, complex simulations are made possible with high-performance

computers. Tools that can be used to study WSNs include J-Sim, NS-2, OMNeT++,

GlomoSim, Riverbed Modeler (formerly known as OPNET Modeler), SENSE, Ptolemy

II and VisualSense.

Typically, these simulation tools support the network simulation steps which have been

discussed by S.A. Madani [69]. The spiral cycle approach with an incremental

development process for WSN modelling and simulation includes: 1) Conceptual

model, 2) Collection and analysis of input/output data, 3) Modelling, 4) Simulation, 5)

Verification and validation, 6) Experimentation and 7) Output analysis. Transitions to

the opposite direction can appear, and some steps can be skipped, depending on

complexity. One important criterion is the tool’s capabilities to facilitate the

measurement of QoS metrics. In addition, the domain of node and network modelling,

heterogeneous traffic modelling, queue management and QoS attributes will be

highlighted.

J-Sim has an autonomous component architecture-based simulation environment written

in Java. The simulator has components as basic entities that are assembled to design

nodes and scenarios. It offers support to languages such as Perl, Tcl (Tool command

37

language) or Phyton. J-Sim [70] was used by Martinez et al. [26] to study the QoS

related to an unbalanced mixture of traffic in forest surveillance application scenarios.

By considering two traffic priorities, namely reliability and timeliness, the authors used

J-Sim to compare three QoS routing protocols for WSN as the candidates for their forest

surveillance network model. The study of MAC and network layer protocols defined to

provide QoS in WSNs has been presented to various QoS routing protocols. Apart from

predominant parameters such as the number of sensor nodes, bandwidth and radio

range, the simulation environment setting included terrain size and morphology. In this

work, J-Sim is primarily chosen due to its ability to model the node’s deployment

around a mountain distributed across four sectors - north, south, west and east. Another

reason is due to the simulator’s component-based feature, which enables users to

modify or improve it.

NS-2 [71] is a discrete event simulator specifically designed for network research. It

uses C++ for protocol designing and Tcl for scripting the interconnections in a scenario

that includes detailed scripting. Its focus is the IP network. In the domain of QoS via

congestion control protocol [68], the researchers in [72-74] employed NS-2 for their

work on resource control protocol. The performance parameters obtained included

dropped packets, power consumption [72], packet loss rate [73], throughput and packet

delivery ratio [74]. To simulate WSNs with more or less 100 nodes, NS-2 can be a

good choice because of its large community, but it is not scalable for 100+ nodes [75].

One of the disadvantages of ns-2 is its object-oriented design, which imposes

unnecessary interdependence between modules. Such interdependence makes the

addition of new protocol models extremely difficult as they can only be mastered by

those who have intimate familiarity with the simulator. Another drawback is that it does

not have a native graphical editor for scenario deployment, which is very important for

WSN study.

A good graphical editor helps in the visualisation of deployment and facilitates

researchers to maintain focus on the core idea and its performance analysis, rather than

the coding and implementation of network deployment scenarios. Several WSN

simulators has been identified with a good graphical editor. Some of the simulators are

Global Mobile Information System Simulator (GlomoSim), OMNET++ and Riverbed

Modeler.

38

GlomoSim [76] is a library based general purpose parallel simulator which can simulate

up to 10,000 nodes [77] and can be very useful in studying large-scale WSNs.

GlomoSim is superseded by QualNet, a commercial network simulator. sQualNet [78],

an evaluation framework for sensor networks based on QualNet was released later. The

QoS model SPEED [49] and interference-minimised multipath routing (I2MR) protocol

[79] with congestion control in WSNs were simulated using GlomoSim. The evaluation

parameter includes control packet overhead, throughput and energy consumption.

OMNeT ++ [80] is a discrete event, component-based, general purpose, public source

modular simulation framework written in C++. It provides a strong GUI support for

animation and debugging. The lack of a WSN-specific module library [81] may be a

problem, but many research groups have been working to add WSN specific additional

modules. SenSim [82] is an OMNeT-based simulation framework for WSNs. It

provides for the basic implementation of different hardware (e.g., basic radio and CPU)

and software (simple routing schemes) modules for WSNs. It provides a template with

basic implementation or empty body, which can help anyone to jumpstart simulating

WSNs. A QoS study for a priority-based scheme for delay-sensitive data transmission

over WSN by Safaei et al. [44] was conducted in OMNeT. A priority-aware congestion

control mechanism and a queue model to support bursty data were created using the

software tools. The QoS performance was demonstrated regarding packet delay, packet

drop and throughput.

Riverbed Modeler (formerly known as OPNET Modeler) is a network simulator tool.

C.Wang et al. [65] used the OPNET Modeler to simulate a QoS model called the

priority-based congestion control protocol (PCCP). In Riverbed Modeler, the packet

inter-arrival time and packet service time was manipulated to produce a measure of

congestion. The main performance parameter, namely queue length and node/system

throughput were retrieved using Riverbed Modeler graphing tools. Another advantage

of the Riverbed Modeler is the ability to implement queue management +[83]. Riverbed

Modeler is used to conceive, develop and test new schemes, models and algorithms for

improving the performance of queue management. Active queue management schemes

and algorithms can be developed and deployed within the tool.

3.3 Selected Tools

Among the discussed network simulators, NS2, OMNET++ and Riverbed Modeler are

the preferred simulators. From the above analysis, the simulation tools chosen for this

39

work are Riverbed Modeler and MATLAB. Network scenarios and QoS attributes are

implemented in Riverbed Modeler, while further data analysis will be done using

MATLAB.

Riverbed Modeler is selected as it comes with the Internet components that are needed

for the architecture studied. Another reason is its queue management capability.

Riverbed Modeler allows the creation of a custom queue model, which is one of the

primary contributions of the research. Riverbed Modeler can be used to conceive,

develop, and test new schemes, models and algorithms for improving the performance

of queue management required in this study.

In service differentiation, adaptive QoS can be achieved through various approaches.

Tools are needed to help to monitor the QoS performance continuously. Therefore, the

simulation data from Riverbed Modeler needs to be analysed in an analytical tool such

as MATLAB to support the adaptive QoS. The features of the selected tools used to

implement the QoS concept are presented in the next section.

3.3.1 Features of Riverbed Modeler

Riverbed Modeler models the network in different layers. ‘Network model’, ‘Node

model’ and ‘Process model’ are used to specify the network and nodes and to define the

QoS concept respectively. The compartmentalisation of different models allows models

to be easily reused and duplicated.

The QoS model, which employs a queuing discipline on the IoT access point, is

designed using Riverbed Modeler. The service differentiation QoS model governs the

way that heterogeneous data packets are buffered while waiting for transmission. Once

data arrives at the IoT access point, it will be allocated to buffer queues depending on

the scheduling algorithm implemented on the coordinator. This model can be designed

and simulated in Riverbed Modeler. Furthermore, the QoS performance of the

heterogeneous data traffic of a sensor network is computed in the network simulation

tool.

 Figure 3-1 shows the Riverbed Modeler environment in which the queue model is

developed.

40

Figure 3-1 Queue model design in Riverbed Modeler environment

The figure shows the hierarchical structure of Riverbed Modeler node models. At the

lowest level, the behaviour of an algorithm or a protocol is encoded by a state/transition

diagram, called state machine. This includes embedded code based on C-type language

constructs. At the middle level, discrete functions such as buffering, processing,

transmitting and receiving data packets are performed by separate objects. Some of

these objects rely on underlying process models. In Riverbed Modeler these objects are

called modules and they are created, modified, and edited in the Node Editor. Modules

are connected to form a higher-level node model. At the highest level, node objects are

deployed and connected by links to form a network model. The network model defines

the purpose of the simulation. The design and development of protocols require the

creation of a node model that is simulated as scenarios in the network model. The

lower-level objects for the queue are provided by Riverbed Modeler, but they need to be

combined to form a node model.

Networks for different applications can be set up using Riverbed Modeler. ‘Application

Config’ and ‘Profile Config’ [84] can be configured in Riverbed Modeler to represent

the application associated with the network. In the simulation, a traffic generator is

simulated to represent steady traffic flows in one-hop transmitting data directly to the

IoT access point. Therefore, multiple classes of traffic can be generated to simulate the

co-existence of real-time and delay-tolerant traffic required to conduct this research.

Riverbed Modeler has a large database of nodes for different hardware and protocols

that can be selected from the ‘Object Palette Tree.’ The WLAN nodes available within

41

Riverbed Modeler allow complete access to all the models, i.e., the node model, process

model and objective C-code. Riverbed Modeler also comes with Internet and cloud

components making it ideal for implementing the proposed QoS model and then

running it on the IoT-WSN scenario.

3.3.2 Node and Queue Model Implementation in Riverbed Modeler

The Node Editor within Riverbed Modeler allows users to create and edit modules for

the node model. The modules include a processor module, queue module, transceiver

module, antenna module and an external system module. These modules can be

connected by packet streams and statistic streams. The queue module is used to model a

buffer. The node is configured to switch data packets at a predefined rate. Incoming data

packets will first be pushed into the buffer. Data packets stored in the buffer will be sent

out or serviced at another predefined rate. In the research, we need to investigate the

way the buffer queues grow to ensure optimum resource consumption. If the incoming

packet rate is greater than the service rate, then the transitional size of data stored in the

buffer will grow until the incoming packet rate is reduced.

3.3.3 Co-Simulation between Riverbed Modeler and MATLAB to Support
the Adaptive QoS

The network simulation tools discussed in the previous topic are ideal for developing

node and network model solutions. A simulator such as Riverbed Modeler models the

WSN network satisfactorily in most cases. However, it is inherently an event-driven

simulator, which leads to compromises in simulating an environment with periodic and

continuous monitoring of the QoS condition. Moreover, network attributes such as

buffer size and transmission rates in the simulator editor are limited to a one-off setting;

and the attribute cannot by default be changed from its initial value during a simulation

run. This is worth improving, especially considering that research in WSN QoS is

shifting more and more weight on the adaptive QoS model.

One of the features of the QoS model is to make it adaptive to the dynamic changes of

network traffic. For this purpose, continuous and real-time analysis of the QoS

condition is needed. In addition, the associated QoS performance computed by Riverbed

Modeler needs to be analysed, and the results need to be used to perform

reconfigurations of the traffic attributes to ensure QoS is maintained. While Riverbed

Modeler is an ideal option to simulate the network, and collect performance statistics,

analytical tools such as MATLAB can be used for the QoS analysis.

42

A mathematical analysis model within a tool such as MATLAB can use the

performance data for analysing the QoS condition and identifying the corresponding

adaptive QoS parameters that need to be altered. For this purpose, a co-simulation

between a network modeler and a mathematical tool can be set up using external

interfaces or API references. MATLAB will use the performance data to analyse the

QoS condition and identify the corresponding adaptive QoS parameters. An adaptive

QoS parameter represents the necessary adjustment made to network configurations to

meet the QoS requirements of the application. For this purpose, co-simulation between

Riverbed Modeler and MATLAB can be established using MATLAB MX functions and

Riverbed Modeler APIs [85, 86].

The co-simulation between a network simulation tool such as Riverbed Modeler and

MATLAB is greatly beneficial. While users may benefit from Riverbed Modeler as a

tool that strives for closer representation to real network devices, the control

mechanisms and decisions to support adaptive QoS are happening in MATLAB.

MATLAB also supports high-level analysis, which enables future network complexity

to become more manageable.

3.3.4 MATLAB Neural Network Tools for QoS Model Validation

The performance of the service differentiation can be further improved with a more

powerful self-adaptation mechanism. This can be done potentially by adopting

continuous learning and prediction of network parameters via the neural network [87].

The continuous learning achieved from neural network serves as an added-value to the

proposed QoS model. For this purpose, the neural network tool in MATLAB is selected.

Continuous learning may also constantly create awareness of network conditions.

Hence, adaptation will be based on the QoS parameters resulting from a traffic

dimensions such as traffic distributions and network load.

The system would be designed so that as new scenarios are experienced by the network

the event neural network would be updated accordingly and the information could be

used to predict future QoS parameters as the system evolves. This would lead to the

creation of an unsupervised learning tool for maintaining the network QoS. It is

envisioned that the approach will overcome the repetition of adjustment calculations for

the adaptive QoS, contributing improvement to the system’s latency.

43

3.4 Physical WSN-IoT Testbed

One of the objectives of this research is to validate the QoS model under a WSN-IoT

environment. As explained in the chapter introduction, physical testbeds offer the most

accurate method of verifying WSN concepts [88]. Therefore, a real-setting of physical

infrastructure, i.e., the WSN-IoT test environment has been set up. The test environment

serves as an avenue for the validation and verification of the modelled QoS.

As most WSN deployments involve the placement of hundreds or thousands of nodes, it

may be impractical to test and evaluate the sensor network on real WSN deployments

due to complexity, cost and time consumption. Nevertheless, it is apparent that research

activities in coordination and communication among sensors within WSN are of great

importance. Thus, one of the main attentions of the present WSN research community is

the development of WSN testbeds – established to provide avenues for

experimentations. WSN testbeds have been developed to support the experimental

research of WSN, equipped with the real world setting of sensor nodes in a controlled

environment. These testbeds are shielded from hazards or external, uncontrollable

factors, thus allowing optimum focus on the observation of a WSN’s behaviour.

Typically, the WSN testbeds are integrated to the Internet to allow remote access to its

users. Furthermore, these testbeds allow job submissions through web-interface, sensor

reading visualisation, the remote programming of nodes and command line tools to

control testbed nodes.

Physical WSN-IoT testbeds [89] offer great benefits to researchers when evaluating

WSN design as they gather real-life data from physical settings. However, when testing

new algorithms and protocols, the process of experimenting with different scenarios and

performing comparisons amongst these scenarios can be quite challenging. In this case,

simulators offer capabilities and features that make them favourable for the design and

testing of new protocols. It is envisaged that a better analysis of WSN applications can

be facilitated by exploiting the advantages of both virtualisation and real-life testbeds.

Therefore, we propose an IoT-based WSN test environment that offers interactions

between the behaviour of the physical environment as it interacts with the phenomenon

and necessary analysis in a virtual remote environment.

An overview of a test environment architecture is presented in [4]. The test environment

has been established by the Sensor Network and Smart Environment Research Centre

(SeNSe) [90] laboratory research team. The effort of the SeNSe team aims to enable the

44

implementation of several use-cases on the same testbed. The primary idea is to allow

for a reconfiguration of the physical sensor nodes flexibly to adapt to the network’s QoS

condition. The reconfiguration is based on the QoS evaluation by the software that

resides on the server and analyses recent historical data. The architecture allows user-

driven QoS-related experimentation and works on a case-by-case basis. As part of our

continued investigation, we are looking at the applicability of the models by testing with

application-specific WSN QoS parameters. Therefore, in this paper, the implementation

of a proposed adaptive QoS model that serves as a use case on the test environment is

presented.

The implementation of a virtual sensor network (VSN) as a software replicated image of

the corresponding physical sensor network (PSN) is demonstrated by Barbato et al.

[91]. The VSN contains all the metadata of the PSN. Data processing takes place within

the virtualised network to cater for the different requirements of the users/clients. This

covers the need for any data storage, processing or computation on PSN hardware. The

large-scale IoT testbed implementation of SmartSantander [92] reaps the benefits of

virtualisation hosted within a cloud infrastructure and provides experimentation and

testing facilities to end users. Therefore, an extended function of specialised network

modelling tools, such as Riverbed Modeler, within the cloud may facilitate an

environment for hosting the QoS controller models on the virtualised network. It serves

as a testing environment, i.e. to observe the impact of modifying virtual sensor node

parameters such as data rate, service rate, buffer size and other functionalities of the

network protocol on network performance before implementation on PSN hardware.

The virtualisation level within the Lysis platform [93] comprises of abstractions of the

functionalities of the real world objects/devices such as smartphones, as well as their

social capability. The virtualisation layer present within the iCore [94] architecture

consists of virtual objects and facilitates the exposure of a virtual interface from the real

object (either sensor or actuator). The first approach considerably reduces latency,

whereas the second approach results in the decoupling of real objects, thus allowing for

reuse of the virtual interface hardware implementation undergoing alteration.

A continuous QoS monitoring calls for a more involved IoT-based sensor network

infrastructure that enables the virtualisation of the real physical world. With a test

environment infrastructure, the adaptive QoS algorithm may be extended to allow

informed adjustments of the IoT access point, which is highly desirable to ensure

45

seamless interconnection with the Internet and to provide better balance to adaptive QoS

strategies. With a software-based network modelling that provides virtualisation of the

real physical world, important performance parameters related to the application of QoS

requirements can be considered without having to make major changes to the physical

setting.

3.5 Summary

The envisioned QoS model involves management of heterogeneous data traffic through

queue management, which impacts on the performance of traffic types. Therefore, this

thesis necessitates using a network simulator tool that supports the allocation of

priorities to different traffic types, queue management and simulation of the Internet

network. This chapter has given an overview of commonly-used and available

simulation tools including OMNET, NS-2 and Riverbed Modeler. Riverbed Modeler

has a complete graphical user interface and a hierarchical design methodology which

are convenient when designing and debugging the network model. Riverbed Modeler

also comes with an analysis tool that facilitates the statistics collection and

investigations of pre-dominant QoS metrics such as packet delay, packet drop and

throughput. One of the features of the QoS model is to make it adaptive to the dynamic

changes of network traffic. For this purpose, continuous and real-time analysis of the

QoS condition is needed. Co-simulation between Riverbed Modeler and MATLAB is

chosen to perform simulations of the network and to collect the performance statistics,

as well as continuous QoS analysis. The neural network tool in MATLAB is also

chosen to introduce a value-added validation of the QoS model through continuous

learning and the prediction of network adjustment parameters to maintain network QoS

conditions.

46

Chapter 4 Integrating WSN to the Internet: ADHERE QoS
Concept for Heterogeneous Data Traffic

4.1 Introduction

This chapter presents the concept of Adaptive Service Differentiation for

Heterogeneous Data in WSN (ADHERE) QoS framework. ADHERE is proposed based

on the identified QoS factors and requirement analysis presented in Chapter 2. The aim

of the QoS framework is to achieve an adaptive service differentiation in integrating

WSN with mixed traffic requirements with the Internet. ADHERE QoS preserves the

QoS mechanism of both WSN and Internet through seamless service differentiation on

the network’s IoT access point.

The objective of the QoS framework is to meet the requirements of heterogeneous data

traffic in the WSN both in the domain of timeliness and reliability. Another objective is

to implement a scheme of an adaptive QoS that is capable of reacting to dynamic

network changes.

This chapter is organised as follows: The next section provides an overview of the QoS

framework, along with the presentation of the network model. The sub-components of

the ADHERE QoS model, namely the queuing model, congestion control unit, and rate

adjustment scheme are presented in section 4.3. Then, an overview of neural network

learning tools for the proposed ADHERE QoS concept is presented in section 4.4.

Finally, section 4.5 concludes the chapter.

4.2 Overview of ADHERE QoS Framework

The proposed ADHERE QoS framework combines a service differentiation model with

an adaptive scheme. The primary QoS target is to ensure that real-time traffic with

timeliness requirements arrives to the end users with low delay, while delay-tolerant

traffic with reliability requirements achieves a high throughput and high packet delivery

ratio.

4.2.1 Network Model

It is assumed that the application running over the heterogeneous traffic data represents

the Supple Service Model [17], as discussed in Chapter 2. In the Supple Service Model,

sensor nodes generate a continuous flow of data at regular intervals, forming a many-to-

47

one line of convergent traffic in the upstream direction. Figure 4-1 shows the network

model with heterogeneous traffic classes received at the network IoT access point.

Figure 4-1 Network Model with heterogeneous traffic classes

We assume that the sensor nodes have a two-way communication with the IoT access

point. However, no sensor-to-sensor communication is assumed. Each node generates

packets of different types, depicted by different colours in the figure. The IoT access

point, which acts as the IoT access point to the sensor network, relays the received

packet to users through the Internet. The IoT access point may also act as a cluster head

for a particular physical space, hence the assumption of a multiple IoT access point

network. The figure shows the incoming traffic flows. Once they arrive at the IoT

access point, they are allocated to buffer queues. Within the IoT access point, the

weighted fair queuing (WFQ) model is employed. The WFQ scheduling discipline is an

ideal method for providing bounded delay, bounded throughput and fairness among

traffic flows [51, 95].

As shown in Figure 4-1, we consider the WSN network from the point of view of

distributed clusters network. Each of the distributed clusters would be IoT-driven. This

means, each sensor network has a cluster head that become the IoT connectivity to the

Internet. Taking this nature of the sensor network into consideration, the architecture of

the IoT-based WSNs adapted in this research is a single hopping network.

48

4.2.2 Queuing System

Figure 4-1 shown previously also illustrates a queuing model for regulating the buffer

for data packets queued for transmission at the IoT access point. Upon arrival at the IoT

access point, the data will be allocated to different buffer queues based on service

differentiation, which runs from the IoT access point. As shown in Figure 4-1, different

traffic types are buffered in separate queues in the IoT coordinator.

To discriminate traffic classes from each other, we assume that each sensor node adds a

traffic class identifier to its local sensor packets and puts them in proper queues. This

identifier represents the traffic class of each packet. A buffer is allocated for each traffic

class; hence, increasing the number of traffic classes imposes a greater number of

required buffers as well as hardware requirements [28].

Figure 4-2 WFQ queuing system

Figure 4-2 illustrates a WFQ queuing system. Each traffic class is served on a fixed

weight assigned to the related queue. The weight is determined according to the traffic’s

QoS requirement, such as its delay deadline. For instance, let’s consider a four classes

job system with a finite buffer with size K [59]. This means, the maximum number of

packets that can be in the system at any time is K, and any additional packet are refused

entry to the system and will depart immediately without service. Packets of class 1 to

class 4 arrive with rate λi (where i = 0,1,2,3) and require exponential service times with

a mean 1/µi . The queue i is served at rate wi for some wi > 0. The coefficient wi is such

that w0 + w1 + w2 + w3 = 1 [51, 59].

Each queue of finite size serves packets, and the inter-service arrivals are exponentially

distributed with an average service rate, which is synonymous with the capacity of the

outgoing link to the IoT access point. This assumption allows us to apply M/M/1

queuing theory to analyse the WFQ scheduling [59]. An M/M/1 queue consists of a

First-in-First-out (FIFO) buffer queue with each packet arriving according to the

Poisson arrival process, and a processor that retrieves packets from the buffer at a

49

specified service rate. The three main parameters that affect the performance of an

M/M/1 queue are packet arrival rate, packet size, and the service capacity.

The M/M/1 model is used as an approximation of delay, which is the key application-

specific QoS parameter for delay-tolerant data. Despite being an infinite buffer model,

M/M/1 is deemed to be appropriate model as its adoption for the purpose of delay

bound approximation only takes place during the initialization phase. Furthermore, it is

appropriate due to the nature of lightly-loaded queue coming from the delay-tolerant

traffic.

4.2.3 Traffic Classes and QoS Requirements

It is assumed that the network contains different classes of traffic, namely real-time

traffic classes with and without reliability constraints, and multiple priority delay-

tolerant traffic classes. The system can support several different types of traffic classes,

for example:

1. Real-time and reliable traffic class (RT-Rel class)

2. Real-time traffic class (RT class)

3. High priority, delay-tolerant traffic class (DT1 class)

4. Lower priority, delay-tolerant traffic classes (DT2… DTn class)

The RT-Rel class is the highest priority traffic class. It imposes both timeliness and

reliability QoS requirements. From the application point of view, the RT-Rel traffic

class can be categorised as alarm data or real-time data that is part of an integrated data

stream that does not tolerate delay, such as audio/video data. This critical data needs to

reach the users with a low bound delay. It cannot tolerate packet drop and needs to stay

longer in the buffer for future retrieval. On the other hand, the RT class represents real-

time (RT) traffic, which has timeliness QoS requirements but has no reliability

constraint. The RT class is the second highest priority traffic and needs to have high

throughput and low delay bound. Furthermore, there is also delay-tolerant traffic, which

is divided into several classes according to its priority. For this kind of traffic, having a

low delay is not too important, but information needs to be reliably sent to the users.

Typically, delay-tolerant data types with reliability constraint are allocated more storage

in the buffer within the IoT access point. Note that in a typical WSN, each node may not

be having the same sensors. This means, one node may be having all possible traffic

classes (RT-Rel, RT, DT1, DTn), while another node may contain only two types of

traffic classes.

50

The QoS requirement for a specific traffic class must be explicitly defined to ensure

achievement of the QoS target. For example, to accommodate the timeliness QoS

requirements for real-time traffic, a key parameter such as ‘delay bound’ must be

observed. The performance of the queuing system is analysed with the aim of

minimising the average queuing delay through the buffer.

The delay of a single queue can be expressed using the M/M/1 system delay formula

[96]:

஽ܶ ൌ

1
ܿ

1 െ ߣ
ܿ

																																																																					ሺ4.1ሻ	

where λ is the arrival rate of packets into the service queue and c is the service rate,

which is equal to the capacity of the outgoing link. The delay bound is vital information

that offers accurate values in the initialisation phase. This will be explained in the next

section.

4.2.4 ADHERE QoS Architecture

Table 4.1 shows the ADHERE QoS architecture. In the initialisation phase, the model

identifies the data rate of the traffic sources and their QoS requirements, namely the RT

packet’s tolerable delay and the DT packet’s tolerable packet loss. The algorithm also

estimates the required buffer size [25] of different traffic types based on this

information. The required buffer size is estimated to ensure that reliability-constraint

DT packets can take up more space in the IoT coordinator’s buffer. Therefore, in the

QoS model, more bandwidth is allocated to RT traffic to meet low delays. In addition,

buffer storage is allocated to DT traffic to avoid buffer overflow, which may result in

higher traffic drop.

51

Table 4-1 ADHERE QoS Architecture

Function/Task Related Parameter

QoS requirement identification delay bound, loss tolerance, buffer usage
requirements

Initialization source data rate, calculate required buffer size

Queue System *arrival and departure of packets using WFQ
scheduling

QoS Monitoring (Congestion Control and Rate Adjustment Unit

Calculate Performance Indicator congestion degree, traffic dropped, queue size,
buffer usage, ratio between packet inter-arrival
time over packet service time

Adjustment Decision e.g., if queueThreshold==TRUE

 data_rate = new_rate

e.g., if bufferusage < 80%

 buffer_size = new_buffer_size

e.g., if traffic_dropped > 30%

 data_rate= new_rate

Implementation of New
Adjustment Parameter

Adjustment parameters include new data rate
and new buffer size

To ensure optimum resource utilisation (regarding buffer usage and bandwidth

allocation), a congestion control algorithm is proposed as one of the major components

of the QoS framework. Combined with a proposed rate adjustment unit, the ADHERE

QoS model adapts to the network dynamics typically in the event of burst and higher

intensity traffic, where the accumulation of packets in the buffer becomes more rapid.

These QoS components are proposed to react to these changes and maintain the QoS

requirements of all traffic classes in the network.

Network performance is monitored continuously, and the QoS condition is determined

using the congestion control unit. Congestion detection in WSN has been proposed in

the literature using indicators such as buffer occupancy, queue length, packet service

time, and the ratio of packet service time over packet inter-arrival time at the

intermediary nodes. In addition, parameters such as traffic drop or packet delivery rate

[25] can also be used to decide the adjustment as these parameters are closely related to

the buffer’s congestion degree. The rate adjustment unit calculates the new data rate of

the traffic source, using the results of the congestion index [63] and the predefined

source traffic priority [28]. Then, the adjustment parameter, i.e., data rate and buffer

size, is calculated. This approach will ensure that the QoS requirements for different

52

traffic classes are met while maintaining steady queues in the IoT coordinator buffer.

This also ensures that allocated buffer resources are utilised efficiently.

The major components of the ADHERE QoS model, namely the queuing system and

the congestion control and rate adjustment unit are presented in detail in the following

section.

4.3 ADHERE QoS Components

This section describes the major components of the ADHERE QoS framework. A

heterogeneous traffic class queuing model that encompasses the service differentiation

policy of ADHERE is discussed first. Then the congestion control and rate adjustment

scheme that supports the adaptive mechanism within ADHERE is presented.

4.3.1 A Heterogeneous Traffic Classes Queuing Model

The first component of the ADHERE QoS model is the service differentiation model

which manages the heterogeneous data traffic with varying timeliness and reliability

requirements. The IoT access point addresses upstream and downstream traffic flow of

real-time and delay-tolerant packets between the sensor nodes and the IoT access point.

The continuous delivery of packets creates multiple queues in the IoT access point, as

shown in Figure 4-3.

There are two main types of network models which have been proposed in the literature

for analysing network performance. They are packet-level and flow-level models. The

proposed ADHERE QoS is a packet-level model, which considers a fixed number of

flows, each with an infinite stream of packets. These packets are injected into the

network according to a process that is governed by a congestion control mechanism.

The packets are often approximated to explicitly model the relationships between

round-trip times, packet drop probabilities and rate-allocation among the flows.

Consequently, they capture the role of buffers as well as queing and packet delay.

Packet-level models are also useful to estimate quantities such as queue sizes at buffers

and throughput, hence is used study the stability of congestion control algorithm. Since

only long-lived flows are considered, packet models do not capture flow-level dynamics

such as flow transfer durations or the number of active flows resulting from flow

bandwidth allocation procedure.

53

Figure 4-3 Queuing model for heterogeneous traffic classes

The generation of a WSN traffic load heavily depends on the application, which can be

categorised as event-driven or periodic data generation. The event-driven scenario such

as intruder detection and tracking generates bursty traffic. In the WSN literature, the

constant bit rate (CBR) data traffic and the variable bit rate (e.g., Poisson distribution)

are commonly employed [16, 97, 98]. Each traffic class is exponentially generated with

an average packet generation, typically using packets per second.

Traffic flows are fed into the IoT access point buffer, which in turn serves the packets

based on predefined service rates and using the WFQ algorithm. In WFQ policy, each

traffic type is maintained in separate queues. Weights are associated with the traffic

classes based on their importance and QoS requirements. Queues are then serviced

using FIFO at rates based on their weights. The weights are associated with the traffic

classes and their priority index. For instance, in a two-classes system with RT and DT

traffic, the RT queue may be assigned a weight of two, and queue DT may be assigned a

weight of one. Hence, two packets would be sent from queue RT for every one sent

from queue DT. Figure 4-4 illustrates the working of the two separate and independent

shift buffers for the incoming RT and DT data traffic.

54

Figure 4-4 An example of two-classes shift buffers in an IoT access point

In the service differentiation algorithm, the source data rate is first initialised. The queue

model is designed by taking into account the QoS requirements of the different traffic

type. Typically, the QoS requirements of the RT packet is defined as delay bound,

whereas the DT packet QoS requirement is defined using packet loss tolerance. This

application-specific QoS requirement is used to calculate the data rate of the traffic

sources, using the M/M/1 queuing formula:

 mean delay = 1 / (service rate – arrival rate) (4.2)

Next, by considering the expression in [25], the expected buffer requirements for a

system with multiple traffic types can be defined. The expected buffer storage

requirements for real-time (RT) and delay-tolerant (DT) traffic types can be estimated

using the following expressions:

RT_buffer	ൌ	ሺdatarate_RT/ሺ2*Nሻሻ*ሺN‐1ሻ*logሺሺN/ሺ1‐0.99ሻሻ‐ሺN‐1ሻሻ						(4.3)

DT_buffer	ൌ	SERV_RATE_DT*ሺdatarate_DT/ሺ2*Nሻሻ*ሺN‐1ሻ*logሺሺN/ሺ1‐0.99ሻሻ‐ሺN‐1ሻሻ	

(4.4)

where N is the number of sensor nodes.

The required buffer size is estimated to ensure that DT data with a reliability-constraint

is allocated more storage in the buffer. Therefore, in the QoS model, more bandwidth is

allocated to RT traffic (by setting higher weights) to meet the low delay bound. In

addition, more buffer storage is allocated to DT traffic to avoid buffer overflow which

may result in a high traffic drop.

55

It is assumed that each node in the WSN, indicated as i, has different kinds of traffic

sources. Let j represent the traffic class. Hence, j represents one of the traffic classes

RT-Rel, RT, DT1, DT2 and so on. Then, let SPi
j denote the traffic source priority in

sensor node i. The value of SPi
j could be set manually to achieve service differentiation.

Ideally, the value of SPi
j is set high enough for high priority traffic, so that it can be

discriminated against the other low priority traffic.

Each sensor node, i, has a priority index, traffic class priority, ்ܲ஼
௜ , defined as the sum

of the traffic source priority. This can be expressed as follows:

்ܲ஼
௜ ൌ ∑ ܵ ௝ܲ

௜																																																													ሺ4.5ሻ௝

where j is the traffic class, represented by RT-Rel, RT, DT1… DTn.

As each sensor has different traffic classes, each node’s global priority associated to

each traffic classes RT-Rel, RT, DT1 and DT2 can be expressed as follows:

ܩ ோ்ܲିோ௘௟
௜ ൌ 	 ܵ ோ்ܲିோ௘௟

௜ 																																																									ሺ4.6ሻ

ܩ ோ்ܲ
௜ ൌ 	 ܵ ோ்ܲ

௜ 																																																																ሺ4.7ሻ

ܩ ஽்ܲଵ
௜ ൌ 	 ܵ ஽்ܲଵ																																																																																									

௜ (4.8)

ܩ ஽்ܲ௡
௜ ൌ 	 ܵ ஽்ܲ௡

௜ 																																																															(4.9)

Note that ܩ ௝ܲ
௜ is calculated only for active traffic sources. If a traffic source is not

active, then regardless of its type of traffic class, the value of SPi
j is set to zero. This is

applicable when some nodes do not have certain traffic classes. This setting ensures that

the algorithm will share the existing network capacity only between active nodes.

4.3.2 Congestion Control and Rate Adjustment Scheme

A congestion control approach through flexible and distributed rate adjustment in the

IoT access point is proposed to introduce the adaptive approach of the proposed scheme.

The ADHERE QoS model avoids congestion in the network by determining the traffic’s

data rate, which is appropriate to the network condition. It acts as a scheduler between

the network layer and the MAC layer, which maintains queues according to traffic

types. Figure 4-5 shows the architecture of the congestion control and rate adjustment

56

scheme. It consists of three major parts; namely, congestion detection unit, rate

adjustment unit, and congestion notification unit.

Figure 4-5 Structure of congestion control and rate adjustment scheme

The congestion detection unit is responsible for detecting any congestion in advance. It

measures the input rate determining the congestion intensity. Each sensor node

measures its input traffic load and calculates the difference between its input rate and its

maximum allowable transmission rate. The output of this unit is the difference between

the input rate and the output rate. This can be of a positive or a negative value. In each

predefined time interval, the IoT access point calculates the sending rates of all sensor

nodes’ traffic sources as well as its local traffic source.

The rate adjustment unit calculates the new rate for each sensor node’s traffic source, as

well as the local traffic source. The computation is based on the current congestion

index and the source traffic priority. The new rate will be sent to the congestion

notification unit.

 The congestion notification unit is responsible for notifying all sensor nodes of the

newly computed rate. The unit uses an implicit congestion notification by adding the

new rate of each sensor node to the sending data of the IoT access point. When a sensor

node detects any congestion, it will adjust its traffic source rate accordingly.

A congestion indicator strategy similar to the RED active queue management algorithm

[30, 99] is employed in each network node. In each queue associated to a particular

traffic class, two different fixed thresholds are defined. When the queue length is less

than a minimum threshold, it implies that there is no congestion in the queue. Hence,

the congestion index is set to 0. In this case, the sampling rate can be modified. On the

57

other hand, when the queue length exceeds the maximum threshold, there is a

significant congestion in the queue. Thus, the congestion index is set to 1. In this case,

the sensor node should decrease its transmission rate to avoid any packet loss.

Furthermore, whenever the queue length is between the two thresholds, the congestion

index is set to a value between 0 and 1, depending on the queue length.

A. Initialisation phase:

In the initialisation phase, the output rate of the IoT access point is measured. Let ௦ܶ
஺௉

denote the service time of the packet in the IoT access point. Using the exponentially

weighted sum, the average service time തܶ௦஺௉	is calculated as follows:

തܶ௦஺௉ ൌ ሺ1 െ ሻߙ തܶ௦஺௉ ൅ .ߙ ௦ܶ
஺௉																														ሺ4.10ሻ

where α is a constant, 0 ൑ ߙ ൑ 1.

The average service time is the time taken to transmit a data packet over the MAC layer

successfully. It is measured starting from the time when the network layer first sends the

packet to the MAC layer to the time the MAC layer notifies the network layer that the

packet has been transmitted.

After computing the average service time, the IoT access point output rate, ݎ஺௉, can be

obtained:

஺௉ݎ ൌ
1
തܶ௦஺௉

																																																														ሺ4.11ሻ

Then, the IoT access point calculates the maximum transmission rate for each sensor

node, ݎ௠௔௫
௜ . This is computed based on the sensor node’s global priority ሺܲܩ௜ሻ and the

IoT access point’s global priority ሺܲܩ஺௉ሻ, as shown below:

௠௔௫ݎ
௜ ൌ .஺௉ݎ

௜ܲܩ

஺௉ܲܩ
																																																			ሺ4.12ሻ

where ܲܩ஺௉ is the sum of the global priority of all of the sensor nodes sending their

packets to the IoT access point. This step is repeated for each of the sensor nodes in the

network to assign the nodes with an initial maximum transmission rate.

58

B. Calculate new transmission rate of the IoT access point at each periodic time

interval ࢋ࢛࢙࢘ࢇࢋ࢓ࢀ

The total input rate at the IoT access point ሺݎ௜௡
஺௉ሻ is computed as the sum of output rates

from the sensor nodes. Let ܥሺܲܣሻ be the set of sensor nodes connected to IoT access

point. Then ݎ௜௡
஺௉ is calculated as follows:

௜௡ݎ
஺௉ ൌ ෍ ௢௨௧ݎ

௞ 																																																						ሺ4.13ሻ
௞∈஼ሺ஺௉ሻ

where ݎ௢௨௧
௞ is the output rate of the kth node from the IoT access point.

Then the transmission rate difference at the IoT access point is computer as follows:

஺௉ݎ∆ ൌ .ߚ ஺௉ݎ െ ௜௡ݎ
஺௉																																																		ሺ4.14ሻ

where ߚ is a constant close to 1.

Using the value of ∆ݎ஺௉, the IoT access point calculates and propagates the new

maximum transmission rate for the sensor nodes as follows:

௢௨௧ݎ
௜ ← ௢௨௧ݎ

௜ ൅ .஺௉ݎ∆
௜ܲܩ

஺௉ܲܩ
																																							ሺ4.15ሻ

The congestion control and rate adjustment unit provide continuous monitoring of a

WSN-IoT network performance through assessment of the QoS on the IoT access point

and makes necessary adjustments to the network configuration.

4.4 Adaptive QoS Proof of Concept

A test of an adaptive QoS concept was conducted as part of the proof of concept. A

sample of ADHERE QoS outcome is illustrated in Figure 4-6. To demonstrate the

continuous monitoring of the QoS condition, an adaptive QoS concept was

implemented to react to the data flow dynamics close to WSN applications in the

physical world. The figure shows the performance of three source variables with

different priority levels and different QoS requirements.

59

Traffic Class Weightage Buffer size

(packet)
Data rate (kbps)

Initial rate Adjusted rate

RT1 0.5 20 32 16, 8

RT2 0.3 20 32 19.2, 12.8

DT 0.2 30 32 16, 12.8

Figure 4-6 An example of ADHERE QoS outcome within three adaptive cycles

In this example, RT1, RT2, and DT represent real-time traffic with high priority, real-

time traffic with low priority and delay-tolerant traffic, respectively. The figure depicts

the traffic performance during three QoS monitoring cycles. In each cycle, a

performance indicator is given by average traffic dropped. Based on the status of traffic

dropped, the system’s QoS controller reacts by setting a new traffic source data rate. As

shown in the figure, although the traffic drop of all traffic types increased in the first

cycle, the rate adjustments managed to reduce the traffic drop of DT and RT traffic in

the second and third cycle. The test shows that continuous network improvement and

traffic reliability can be achieved through the adaptive approach. It also highlights the

impact of the interaction of the WSN with the dynamics of the phenomenon monitored.

4.5 Adaptive QoS using the Neural Network

To provide a verification and added-value to the ADHERE QoS model, we propose the

use of neural network for developing the learning concept that provides an extension to

the proposed ADHERE QoS framework. The aim is to design a neural network-learning

algorithm for the developed adaptive QoS provisioning model. Using neural network

tools in MATLAB, a learning algorithm to complement and improve the developed

adaptive QoS framework is developed. The learning capabilities in ADHERE should

optimise the QoS framework’s performance by accommodating the QoS requirements

of the network through the dynamic changes of a particular application scenario.

60

Indeed, there is a need for building intelligence within the network such that it can adapt

to the network dynamics. This can be achieved through learning and prediction of the

network behaviour in relation to network dynamics. These techniques can follow and

learn the known variation in a system and retrain when unknown information occurs.

Soft computing techniques like Fuzzy Logic, Neural Network, Bayesian Networks and

Evolutionary Algorithms enable finding solutions for complex problems with

incomplete definitions and do not require a system definition. The use of a fuzzy logic

controller in a service differentiation [67] indicates that the performance of the service

differentiation algorithm can be further improved through the learning cycles. A fuzzy

logic controller is adopted to determine the optimal traffic load parameter in a service

differentiation scheme, which features a priority-based rate control system. The

transmission performance in the wireless multimedia sensor network (WMSN) was

improved in terms of a significant reduction of traffic delay and packet loss probability.

The assumption in the knowledge-based fuzzy logic is that the relationship between the

input and output is known, whereas our assumption behind the use of the neural

network model is that the relation between the input and output is vaguely known. This

is because neural networks do not need a system model for prediction. Based on their

training requirements, neural networks are classified into two categories; unsupervised

and supervised artificial neural network. The supervised neural network needs to be

trained before use. The neural network prediction capability is limited to trends, which

are an extrapolation of the network’s training. Unsupervised neural networks have the

capability to learn and adapt to trends that they have not been trained within. This is

ideal when dealing with WSN applications that have complex system behaviours and

unpredictable traffic dynamics.

4.5.1 Learning and Prediction

The network QoS conditions are learnt to predict the required adjustments parameters to

ensure the QoS is maintained. Figure 4-7 shows the organisation adopted for continuous

learning and prediction of the neural network [85]. Continuous learning is required to

constantly create awareness of the network dynamics due to the ever-changing

transmission rates from different traffic types. The artificial neural network algorithm

goes through three stages of the continuous learn, predict and adapt to the changing

requirements of the network. The following explains the discreet processes of training,

prediction and retraining:

61

Figure 4-7 Parallel model for learning and prediction

Training: For training the neural network, the complete QoS condition is created as a

map and fed to training. The neural network is trained once it discovers the adjustment

parameters to the associated QoS condition.

Prediction: During the prediction, the input data comprises a subset of the QoS

condition at the end of a monitoring cycle.

Retraining: A retraining is required when new and unknown QoS conditions occur,

hence new adjustments are discovered. The retraining module is connected to the

continuous learning module, which transfers collected data to the training module for

adding new information to the neural network.

The sets of results obtained from modelling and simulation activities on the Riverbed

Modeler form the basis of the neural network algorithm. In the formulated ADHERE

algorithm, the network’s QoS performance is observed periodically, i.e., for a

predefined adjustment cycle. Based on the QoS condition, adjustments are made to the

network parameters to maintain QoS requirements. The QoS condition parameters and

the adjustment parameters form the neural network input and output categories, as

shown in Table 4-2.

62

Table 4-2 Neural Network input and output parameters

 NN Input NN Output

Definition The performance
indicator of the network

The adjustment parameter (determined
based on the network’s QoS condition)

Parameters Traffic delay Buffer size

 Traffic drop Source data rate

 Delivery ratio

 Buffer usage

The input is defined as the behaviour of the network, i.e. the QoS performance indicator

of the network. The parameters are traffic delay, traffic drop, delivery ratio and buffer

usage. On the other hand, the output is defined as the adjustment parameter that has

been determined using the QoS algorithm by taking into account the network’s QoS

condition. These control values are used to improve the network performance. The

output parameters are buffer size and source data rate.

As discussed earlier in Figure 4-6, the traffic performance of heterogeneous data traffic

are determined during each monitoring cycle. These traffic flows are generated under an

initial data rate and serviced through queues on a predefined buffer size. The dynamics

of different traffic classes, for example, in an event of an emergency which generates a

burst of data, may cause the increase of traffic drop in the high priority queue as the

allocated buffer size is not sufficient for the higher intensity traffic. Consequently,

buffer usage will increase accordingly. Therefore, rate adjustments in the ADHERE

algorithm should be able to reduce the traffic drop. While network improvement and

traffic reliability can be achieved through these monitoring cycles, continuous

monitoring and repetitive QoS evaluation are required. On the other hand, the use of a

neural network will facilitate the system’s learning of network behaviour which will be

useful as the system evolves and more complexity is expected. The proper system

learning, prediction and retraining in neural network will enable seamless adjustment of

decision in future events, hence will accommodate the maintenance of traffic QoS

requirements more efficiently without undergoing repetitive QoS evaluations.

4.6 Summary

In this chapter, the proposed ADHERE QoS framework for integrating WSN to the

Internet is discussed. ADHERE is a service differentiation-based QoS framework

handling various levels of real-time traffic and delay tolerant traffic within WSN. In

63

addition, the service differentiation scheme is designed to function in the IoT access

point that interconnects a WSN and the Internet. The model’s main objective is to

preserve the service differentiation employed by the sensor network by adapting to

changes in the network traffic.

The ADHERE QoS framework is encompassed by two major components. The first

component of the framework is the heterogeneous traffic queuing model that defines the

way separate queues are used for each type of traffic class. The model is designed to

function on different traffic classes with different QoS requirements, i.e., the timeliness

and reliability QoS domain. The traffic classes are broadly categorised as real-time

traffic classes with or without reliability constraints, and multiple priorities delay-

tolerant traffic classes. The other major component is a service differentiation-based

QoS mechanism to manage the heterogeneous data traffic. An adaptive QoS scheme is

proposed by implementing a congestion control unit and a rate adjustment unit, which

reacts to dynamic changes in the network.

This chapter also presents the use of neural network to offer a means of validation and

optimisation for the proposed adaptive QoS mechanism. The concept of learning and

prediction is presented along with a discussion of the input and output parameters of the

neural network. It is targeted that the proper learning through ADHERE neural network

can optimise the QoS framework’s performance by providing a seamless QoS

maintenance of the network with unpredictable traffic intensity.

64

Chapter 5: Modelling and Simulation of ADHERE QoS
Framework

5.1 Introduction

This chapter presents the modelling of the Adaptive Service Differentiation for

Heterogeneous Data in WSN (ADHERE) QoS ideology proposed in Chapter 4. A

detailed description of the modelling of key components of the ADHERE QoS concept

is also presented herein. The model implementation and the testing of the individual

components are presented, followed by the results from the modelling and simulation

activities.

The network models and main components of the service differentiation algorithm were

designed and analysed using Riverbed Modeler and MATLAB. As explained in Chapter

3, the Riverbed Modeler is a good discrete event-based network simulator, but it lacks a

strong mathematical simulation framework. MATLAB, on the other hand, offers a

better mathematical environment. Therefore, the characteristics of the service

differentiation model were gained through MATLAB to anticipate the QoS framework

performance. The service differentiation algorithm was initially implemented in

MATLAB to understand and investigate its characteristics. MATLAB provides visual

output for users to validate and debug the algorithm studied. The service

differentiation’s response to continuously streaming data with different QoS

requirements (i.e. real-time or delay-tolerant) was then analysed.

5.2 Modelling and Simulation Phases

The modelling of ADHERE was separated into several phases. Figure 5-1 shows an

overview diagram of the modules involved in the simulation planning phase.

Figure 5-1 ADHERE system organisation

65

The queue model was initially developed in MATLAB. The aim was to understand and

investigate the characteristics of the model when service differentiation is used to treat

heterogeneous data traffic with different QoS requirements. The queue model was

modelled with a clear abstraction from reality, and its formal specifications of

conceptualisation were based on queuing theory and associated, underlying

assumptions. Based on the model produced, the queue components were implemented

on the Riverbed Modeler using the process editor in the simulation tool. The queue

model, along with the QoS profile created in the Riverbed Modeler, was then embedded

in the node and access point model. Then, network simulation was based on the

proposed network architecture, and the simulation results provided an understanding of

the overall model performance. In addition, the MATLAB-Riverbed Modeler co-

simulation was established to provide an avenue for a real-time QoS monitoring system

that adapted to the dynamic changes of the simulated network. A mathematical analysis

model within a tool such as MATLAB used the performance data derived from a

network simulator, such as the Riverbed Modeler, for analysing the QoS condition and

identifying the corresponding AQoS parameters for alteration. For this purpose, a co-

simulation between a network modeller and a mathematical tool was set up using

external interfaces or API references [85].

In addition, using the simulated data sets and the simulation results gained from the

Riverbed Modeler, system training was conducted in MATLAB neural network tools.

As discussed in Section 4.5, the neural network potentially offers a value-added and

validation to the ADHERE model. In the neural network activity, the adaptive

component of ADHERE has undergone a learning process, and the outcomes are

envisaged to be a great potential for the seamless adjustment decisions in future events.

The work on the neural network will be presented in Chapter 6.

5.3 Development of the Queue Model

The development of the queue model on which the service differentiation algorithm

runs was initially implemented in MATLAB. MATLAB provides visual output for

users to validate and debug the algorithm studied. The aim was to understand and

investigate its characteristics. The service differentiation’s response to continuously

streaming data with different QoS requirements (i.e. real-time and delay-tolerant) was

analysed. In this phase, the main constraints of buffer usage were considered [1] before

porting the algorithm as an embedded task suitable for the next simulation phase (i.e.

66

through the implementation of the queue model and custom QoS profile in the Riverbed

Modeler).

In the simulation, two types of heterogeneous traffic were first defined - real-time traffic

and delay-tolerant traffic denoted as RT and DT, respectively. The purpose of the

simulation was to investigate the way heterogeneous traffics’ arrival and service rate, as

well as the IoT access point’s buffer size influence the traffic performance in the

network. The predominant performance parameters observed were buffer usage, delay,

and the drop in traffic.

The parameters associated with a WSN application with RT and DT traffic were first

defined. Based on the application’s QoS requirements, the following were initialised:

(i) the RT and DT sources data rate

(ii) the required buffer size (in the coordinator) for both RT and DT data traffic

In the simulation, RT and DT traffic flows were fed into the IoT access point buffer,

which in turn served the packets based on a predefined service rate and using a

weighted fair queuing (WFQ) algorithm. In WFQ policy, each traffic type is maintained

in separate queues. Weights are associated with the traffic classes based on their

importance and QoS requirements. Queues are then serviced (i.e. packets are taken from

the queues and sent to the outgoing line) using First-In-First-Out (FIFO) at rates based

on their weights. For instance, if queue RT was assigned a weight of two, and queue DT

was assigned the weight of one, then two packets would be sent from queue RT for

every one sent from queue DT. Figure 5-2 illustrates the working of the two separate

and independent shift buffers for the incoming RT and DT data traffic.

Riverbed Modeler supports several mechanisms for providing QoS guarantees,

including Traffic Scheduler, which determines how the packets buffered in the logical

queues are scheduled for departure, including WFQ and WRR. As discussed in Section

2.3.2, the main benefit of WFQ is that its implementations provide service

differentiation between classes and their aggregated traffic, rather than merely

differentiating between individual flows. In addition, because WFQ is bits aware, it can

handle packets of variable lengths, which are more practical in WSN scenarios.

Therefore WFQ is adopted in the simulation activity to offer more extensive future

work. The configuration and deployment of the QoS support through the QoS Attribute

Config within Riverbed Modeler is discussed in Section 5.4.3.

67

Figure 5-2 Shift buffers at the IoT access point

In the service differentiation algorithm, the source data rate is first initialised. The queue

model is designed by taking into account the QoS requirement of the different traffic

types. Typically, the QoS requirement of the RT packet is defined by the delay bound,

whereas the DT packet QoS requirement is defined using packet loss tolerance. This

application-specific QoS requirement is used to calculate the data rate of traffic sources

using equation 4.1, i.e., the M/M/1 queuing formula.

The pseudo codes for deadline and service rate definition and data rate initialisation in

MATLAB are shown below:

Algorithm 5-1 Pseudo-code for deadline, service rate and data rate initialisation in

MATLAB

Initialise application-specific RT deadline

Initialise application-specific DT deadline

Set buffer service rate for RT queue

Set buffer service rate for DT queue

Initialise data rate based on M/M/1 queuing formula

datarate_RT = SERV_RATE_RT -(1/RT_deadline); (5.1)

datarate_DT = SERV_RATE_DT -(1/DT_deadline); (5.2)

68

After obtaining the data rate initialisation based from the user-specific delay

approximation, next is to determine the required buffer size for both RT and DT traffic.

For this purpose, the required buffer size was estimated by using the delay tolerant

sensor networks expression by Liu et al. [25], i.e. equation 4.3 and 4.4. The required

buffer size is estimated to ensure that DT data with a reliability-constraint is allocated

more storage in the buffer. Therefore, in the QoS model, more bandwidth is allocated to

RT traffic (by setting higher weights) to meet low delay bound. In addition, more

buffer storage is allocated to DT traffic to avoid buffer overflow, which may result in

high traffic drop.

5.4 Development of Node and Network Simulation Models

In this section, the simulation work conducted on the Riverbed Modeler is presented. In

the simulation, the overall network components were modelled in such a way that the

node and network models represent real infrastructures in real network settings. The

similar queue model, which had been tested in MATLAB, was implemented using the

Riverbed Modeler. The implementation of heterogeneous traffic sources and the

simulation setup are discussed. The simulation cases and associated design parameters

of the study are also presented.

5.4.1 WSN-IoT Network Simulation Setup

We first present the simulation from the preliminary simulation setup using standard

network models in the Riverbed Modeler, as shown in Figure 5-3. The network model

was generated based on the reference architecture presented in Chapter 4. A WSN with

all sensor nodes communicating directly with the IoT access point were organised in a

star topology.

69

Figure 5-3 Riverbed Modeler network simulation environment

A network carrying different applications was setup. Application Config and Profile

Config [84] were defined to represent the application associated with the network. The

simulated application service was comparable to the Supple Service Model architecture

discussed by M.Nef et al. [17] in enabling QoS in the IoT. The Supple Service Model in

the IoT provides periodically collected sensory or geographical information to users. In

this architecture, there are also query-based user interactions when real-time

information is needed.

In the preliminary test, a traffic generator is simulated to represent steady traffic flows

in one-hop transmitting data directly to the gateway. A service differentiation model

that supports two major types of traffic classes was implemented [1] to simulate the co-

existence of real-time and delay-tolerant traffic. The traffic classes were Expedited

Forwarding (EF), which was assigned to real-time traffic, and Assured Forwarding

(AF), which was assigned to delay-tolerant traffic. As shown in Table 5-1, EF traffic is

generated using User Datagram Protocol (UDP) and Constant Bit Rate (CBR) traffic.

AF traffic is provided using Transmission Control Protocol (TCP) and File Transfer

Protocol (FTP) traffic. UDP is usually preferred over TCP in typical multimedia

applications where timeliness is of greater concern than reliability [58].

Upper Level:

User

Intermediate

Level:

Internet

Lower Level:

Gateway tier

Lower Level:

Sensor tier

70

Table 5-1 Simulation parameters to test a network with different traffic distributions

Parameters Value

Topology Star

Simulation time 1 hour

Buffer Size 50 kBytes

Traffic characteristic EF AF

Traffic types CBR FTP

Traffic distribution 20% 80%

Inter-arrival time 50 sec. 20 sec.

Traffic distribution 50% 50%

Inter-arrival time 20 sec. 20 sec.

Traffic distribution 80% 20%

Inter-arrival time 20 sec. 50 sec.

Packet size 40 bytes

The effect of differentiated service was investigated by observing the network’s ability

to meet different QoS requirements. The performance was assessed by monitoring the

packet queues under different traffic distribution (i.e. the different percentage of EF-AF

traffic). In the simulation, EF-AF distributions of 50%-50%, 20%-80% and 80%-20%

were generated. An inter-arrival data rate of 20 seconds was used for an equal EF-AF

distribution, while 20 seconds and 50 seconds were set to simulate the 80%-20% traffic

distribution. Simulation time was set to one hour, and a relatively small 50kBytes buffer

size was configured. The results of the test are discussed in Section 5.6.1.

5.4.2 Node and Queue Model Implementation in the Riverbed Modeler

Node Editor within the Riverbed Modeler allows users to create and edit modules for

the node model. As discussed in Section 3.2 of Chapter 3, the modules include the

processor module, queue module, transceiver module, antenna module and the external

system module. Packet streams and statistical streams can connect these modules. The

queue module is used to model a buffer. The node is configured to switch data packets

at a predefined rate. Incoming data packets will first be pushed into the buffer and data

packets stored in the buffer will be sent out or serviced at another predefined rate. If the

incoming packet rate is greater than the service rate, then the transitional size of data

stored in the buffer will grow until the incoming packet rate is reduced.

71

5.4.3 Modelling Heterogeneous Data in the Network Model

Two traffic generators for the respective RT and DT traffic sources were first simulated.

RT requires bounds on the delay that a packet will experience, whereas DT has a

predefined loss tolerance value. To implement these bounds, RT and DT packets were

treated differently within the IoT access point queues. To introduce heterogeneous

traffic flow into the queue model, the following scenario was constructed in the

Riverbed Modeler.

Figure 5-4 Testing the heterogeneous data in the queue model at the IoT access point

In this test, both the ‘RT Source’ and ‘DT Source’ nodes shown in Fig. 5.4 were

standard node models in Riverbed Modeler (i.e. the ppp_wkstn). They are configured

with FTP-based applications, which are identical except for the priorities associated

with them. Service differentiation among RT and DT traffic was introduced by

implementing the weighted fair queuing (WFQ) policy proposed in the ADHERE

model. The access point handled separate queues for each of the RT and DT flows.

Each traffic source can be assigned a weight that effectively controls the percentage of

the link’s bandwidth each flow will get. A traffic source with a higher weight will

receive more bandwidth than those with less weight [28].

The Application Config tool in Riverbed Modeler, discussed in Chapter 3 is used to

create the applications associated with the RT and DT traffic. The QoS Config tool

discussed in Chapter 3 is used to deploy the WFQ queuing in the IoT access point

buffers. QoS Config is also the tool used to specify the priority level and service

differentiation among RT and DT sources. Each WFQ profile configuration consists of

attributes for specifying the profile name and configuration of the logical queues. In the

72

simulation, a QoS profile, named “RT DT” was created and is deployed on the IoT

access point’s interface attached to the link between the access point and Destination.

Figures 5-5 and 5-6 show the RT DT Profile definition using QoS Config and the

configuration of the access point node supporting the WFQ scheme, respectively.

Figure 5-5 QoS Confiq definition in the Riverbed Modeler

Figure 5-6 Configuration of ‘RT DT Profile’ in the access point node

As shown in the figures, the WFQ profile contains the following attributes:

73

 Buffer Capacity - specifies the buffer size in packets on the interface where the

corresponding WFQ profile is deployed

 Max Queue Size (pkts) – determines the maximum number of packets that can be

accumulated in the logical queue when the number of packets in the physical queue

reaches the value of the attribute Buffer Capacity

 Weight – specifies the share of the allocated bandwidth for the corresponding queue

For example, using expressions 4.3 and 4.4, by letting N=15, the required buffer size of

RT and DT yield to 27 packets and 69 packets, respectively. These values are set to the

Max Queue Size (pkts) attribute, as shown in Figure 5-5. The buffer size represents the

expected storage requirements for the different traffic types and their associated data

rate.

The application supported by both ‘RT Source’ and ‘DT Source’ in Figure 5-4 were

configured to transfer streams of data with predefined intervals between the transfer of

subsequent files. The configuration was set on the attribute’s dotted lines shown in

Figure 5-4, which represented the traffic Demand Objects, used to specify traffic flows

between two nodes. The traffic flow attribute of the Demand Objects, namely Traffic

(packets/sec), specifies the transmission rate of the traffic flow. In addition, each traffic

demand object was also specified with the type of traffic carried by them, by setting the

Type of Service attribute accordingly to the defined Application Config. The Type of

Service associated with the applications were set to Excellent Effort (highest priority

level) and Standard (lower priority level), for RT and DT traffic, respectively.

Furthermore, as discussed through Algorithm 5-1, the service differentiation was also

defined by setting different service rate parameters for both RT and DT using

expressions (2) and (3). The configurations of these parameters will be discussed in the

next section.

5.4.3.1 Test Cases to Study the Effects of Service Rates

The aim of the simulation was to identify the impact of service rate to network

performance. Five experiment cases were set up – all of which were differentiated by

the values of packet arrival rate and the access point’s service rate. Arrival rate and

service rate were defined as the number of packets that arrived at the buffer and are

served by the buffer per second, respectively.

Table 5-2 shows the associated settings for the Demand Object and Type of Service

attributes of the DT and RT sources in all experiment cases.

74

Table 5-2 Demand Object, Type of Service and transmission rate configuration

Demand Object Attributes Value

DT Source  Destination Type of Service Excellent Effort traffic

 Traffic (packets/sec) 5 packet/sec

RT Source  Destination Type of Service Standard traffic

 Traffic (packets/sec) 8 packets/sec

The application supported by both RT Source and DT Source was configured to transfer

streams of 42-byte files with predefined intervals between the transfer of subsequent

files. The arrival rate was set by defining the attribute Traffic (packets/sec) of the

traffic sources, as shown in Table 5-2. The arrival rate of RT and DT was constant at

eight and five packets per second, respectively. The packet size and data rates were

inspired by a typical WSN intruder detection system [100], where RT data was

represented by light sensory data whereas DT data was represented by temperature

sensory data.

Table 5-3 shows the experiment case with different service rates. Five cases were set up

– all of which had different service rates (SR), but the packet arrival rate (AR) and the

buffer size was kept constant. The cases were:

- Case 1 when SR is equal to AR (SR=AR),

- Case 2 and Case 3 when SR is greater than AR (SR>AR),

- Case 4 and Case 5 when SR is less than AR (SR<AR)

Table 5-3 Test cases with different service rates

 Service Rate (SR), pkt/s

Experiment Cases RT Source DT Source

Case 1 SR = AR 8 5

Case 2 SR > AR 16 10

Case 3 SR > AR 9 7

Case 4 SR < AR 4 2

Case 5 SR < AR 7 4

75

A relatively small buffer size of 20 packets was configured for each of the RT and DT

buffers. The small buffer size was set to allow seeing the results of different arrival and

service rates more easily. The experiment was conducted for 10 minutes.

As discussed through Algorithm 5-1, the service differentiation was also defined by

setting different service rate parameters for both RT and DT using expression (2) and

(3). The packet service rate is an important factor that determines the packet service

time, which is the primary requirement of RT packets. Packets arriving at separate

queues feeding into the IoT access point will be served at a predefined service rate. In a

steady state, the service rate must be the same or higher than the packet arrival rate at

the buffer. This will ensure that packets are not kept waiting to be served at the outgoing

queue. On the other hand, when the packet arrival rate exceeds the packet service rate, a

buffer overflow may occur. This is very likely to occur at the access point carrying the

combined upstream traffic. However, the available service rate depends on the capacity

of the access point nodes. Therefore, service rates for different queues need to be

considered, especially when the traffic load increases due to the occurrence of an

important event that generates bursts of RT data or when the total number of nodes

increases.

If RT and DT have the same packet arrival rate, the trends of the buffer usage and

serviced packets will show significant difference, especially if the access point’s buffer

size is set to a small value. RT packets are anticipated to have lower queuing delay, and

DT traffic will be higher. The statistics serviced packets, buffer usage and packet drop

are observed in this experiment.

5.4.4 Real-time QoS Monitoring using the MATLAB-Riverbed Modeller
Co-Simulation

A mathematical analysis model within MATLAB can use the performance data for

analysing the QoS condition and identifying corresponding ADHERE parameters that

need to be adjusted. For this purpose, a co-simulation between a network modeller and a

mathematical tool was set up using external interfaces or API references [85].

Figure 5-7 shows the ADHERE concept implementation on MATLAB-Riverbed

Modeler co-simulation environment. It shows the service differentiation QoS model and

a Congestion Control Unit run in Riverbed Modeler and MATLAB, respectively.

76

Figure 5-7 ADHERE implementation on the MATLAB-Riverbed Modeler co-
simulation

The QoS algorithm shown in Table 4-1 in Chapter 4 was implemented. The Riverbed

Modeler runs the queuing and heterogeneous traffic models, which were discussed in

Sections 5.3 and 5.4. The network performance indicators derived from the model

hosted by the Riverbed Modeler are queuing delay, buffer usage and traffic drop for all

traffic types. These are defined as follows: queuing delay is the duration packets have to

wait in the queue before being sent; buffer usage is defined as the number of packets

waiting in the queue at any time during the simulation, and traffic drop is defined as the

number of packets dropped due to buffer overflow. These parameters represented the

QoS condition of the network passed to the Congestion Control Unit hosted by

MATLAB. The Congestion Control Unit analysed the QoS condition and identified the

corresponding network parameter for adjustment to maintain the required QoS. The

Congestion Detection Unit first calculated the congestion index and the outcome was

used by the Rate and Buffer Adjustment Unit to determine the new data rate for each

traffic types and the buffer size for different queues at the access points. The aim was to

ensure the QoS requirements for different traffic classes were met while maintaining

steady queues at the access point buffer.

The simulation activity discussed in Section 5.4.1 was conducted to investigate the

model performance discussed above and is based on predefined traffic distribution. This

exercise investigated the way traffic dynamics affect the network. Sensor network

dynamics are the effects of the change of certain network parameters through a course

of time. These may include changes in intensity to traffic flows especially due to bursts

of sensed data when an event is triggered, changes in the numbers of active sensor

nodes and gateway devices, and bandwidth availability.

5.4.4.1 Test Cases to Study the Traffic Dynamics and Buffer Size

To investigate the network performance under different traffic load, simulation cases

with varying data rates were conducted during this simulation phase. Varying traffic

77

intensity is simulated to demonstrate traffic dynamics. To introduce greater traffic

intensity, the value of Traffic (packet/sec) attribute in the Demand Object for both RT

Source and DT Source are increased over the course of simulation time. This is to

represent bursts of traffic for an event or network with greater number of sensor nodes.

Figure 5-8 is an example of the way the traffic data rates change with time.

Figure 5-8 Defining different rates of traffic intensity

Figure 5-8 shows the approach used to increase the arrival rate of DT traffic. The arrival

rate is in packets/s. A simulation on Riverbed Modeler involving 15 nodes was

conducted to investigate the behaviour of the network under varying data rates and

buffer sizes. Over the period of one-hour simulation, the RT and DT packets’ data rates

were increased every 15 minutes. The following table shows the arrival rate values for

RT and DT traffic over the simulation time.

Table 5-4 Arrival rate change over one-hour simulation

 Arrival Rate (AR), pkt/s

Simulation Time (min) RT Source DT Source

0 - 15 8 5

16 - 30 40 25

31 - 45 80 50

46 - 60 120 75

A low buffer size of 30 packets was initially set. Then, during the simulation run-time,

the ADHERE QoS model estimated the required buffer size for heterogeneous traffic.

The estimated buffer size was then allocated to the associated RT and DT traffic.

78

ADHERE aims to allocate sufficient buffer storage to DT traffic to avoid buffer

overflow, which may result in a high traffic drop, and to allocate more bandwidth to RT

traffic to meet low bound delay. This will accommodate the timeliness and reliability

QoS requirements of RT and DT traffic.

Buffer usage, queuing delay and traffic drop statistics were observed in this experiment.

The required performance of the ADHERE QoS model to meet the timeliness and

reliability requirements of both RT and DT packets was analysed.

5.5 Results and Evaluation

This section presents the performance measures and behavioural characteristics of the

simulation cases.

5.5.1 Queue Model Performance under Different Traffic Distributions

As discussed in Section 5.4.1, the network performance under different real-time and

delay-tolerant traffic distributions was investigated. The network performance was

assessed by monitoring the packet queues in the gateway’s buffer under different kinds

of traffic distributions. In the simulation, EF-AF distributions of 50%-50%, 20%-80%

and 80%-20% were generated. The service differentiation’s ability to meet both types of

traffic QoS requirements was investigated through buffer usage, queuing delay, and the

amount of traffic dropped.

79

B
uf

fe
r

us
ag

e
(p

ac
ke

t)

B
uf

fe
r

us
ag

e
(p

ac
ke

t)

 Simulation time Simulation time
(a) 50% - 50% (b) 20% - 80%

B
uf

fe
r

us
ag

e
(p

ac
ke

t)

 Simulation time
 (c) 80% - 20%

Figure 5-9 Buffer usage (packet) vs simulation time for different modes of EF-AF
traffic distributions

The first statistic was buffer usage, defined as the number of packets waiting in the

queue at any time during the simulation. As shown in Figure 5-9, there were

significantly greater AF packets waiting in the queue for the entire simulation, while EF

packets were seldom kept waiting. However, the buffer usage of the EF traffic increased

for the 80%-20% distribution due to a higher data rate that introduced a greater volume

of data in the buffer. While EF packets were forwarded to the output traffic, the AF

packets occupied larger buffer space. Hence, the results indicate that both EF and AF

packets achieved their QoS requirements.

80

Q
ue

ui
ng

 d
el

ay
 (

se
c)

Q
ue

ui
ng

 d
el

ay
 (

se
c)

 Simulation time Simulation time
(a) 50% - 50% (b) 20% - 80%

Q
ue

ui
ng

 d
el

ay
 (

se
c)

 Simulation time
 (c) 80% - 20%

Figure 5-10 Queuing delay (sec) vs. simulation time for different kinds of EF-AF traffic
distributions

The second statistic is queuing delay (i.e. the duration that packets have to wait in the

queue before sending). As shown in Figure 5-10, due to service differentiation, the AF

traffic experienced a longer queuing delay than the EF traffic, especially in the 80%-

20% distribution. The result also showed that the differentiated service provided a low

delay bound for EF traffic and all traffic distribution. This indicated that the EF traffic

with timeliness requirements was first to be forwarded to the external network,

regardless of the order of arrival.

81

T
ra

ff
ic

 d
ro

p
(p

ac
ke

t/
se

c)

T
ra

ff
ic

 d
ro

p
(p

ac
ke

t/
se

c)

 Simulation time Simulation time
(a) 50% - 50% (b) 20% - 80%

T
ra

ff
ic

 d
ro

p
(p

ac
ke

t/
se

c)

 Simulation time
 (c) 80% - 20%

Figure 5-11 Traffic drop (packet/sec) vs. simulation time for different EF- AF traffic
distributions

Last to be investigated is the traffic drop, defined as the number of packets dropped due

to buffer overflow. As shown in Figure 5-11, the AF traffic has a lower drop rate than

the EF queue. Although the EF traffic was serviced first, it was often lost before

delivery. This was acceptable as the EF traffic had more tolerance to packet losses

compared to the AF traffic. On the other hand, while the AF packets travel slower (due

to higher queuing delays), they are delivered with much more reliability. In addition,

due to constrained buffer capacity, a small percentage of EF packets were evicted due to

high storage pressure. The reliability of both AF and EF packets can be improved with

larger gateway buffers.

The results suggest that when the service differentiation and buffer eviction policy are

used, both the timeliness and reliability of QoS requirements imposed by different

packet types can be met. The scheme ensures low delay bound for EF packets while

maintaining low packet loss for AF traffic. Hence, the framework is suitable for a

network with mixed priorities and varying QoS requirements regarding timeliness and

reliability.

82

5.5.2 Effect of Service Rate

Network performance in the simulations for Cases 1 to 5, as outlined in Table 5-3, is

observed in this section.

The effect of the service rate was investigated through the amount of serviced packets

by the IoT coordinator. It was observed that RT traffic and DT traffic are served

according to assigned serviced rates for the different buffer queues.

(a) (b)

 (c)

Figure 5-12 Serviced packets vs. received packets for (a) Case 1 (SR = AR), (b) Case 2
and Case 3 (SR > AR), (c) Case 4 and Case 5 (SR < AR)

When SR and AR were equal (Case 1), more than 97% packets were served through the

outgoing buffer queues for both RT and DT traffic. The small buffer size gradually built

up the queues, but incoming packets were steadily served into the outgoing queues

under SR=AR. Better performance was shown in Cases 2 and 3 when SR>AR. A 100%

delivery rate is shown as all packets were successfully served. However, as shown in

Figure 15-12 (c), it is observed that much less than 100% packets were served when SR

<AR. The delivery rate for Case 4 was 50.1% and 39.8% for RT and DT traffic,

respectively. Traffic was also dropped in Case 5, as only 86.5% and 78.9% was served

for RT and DT traffic, respectively. The DT traffic reliability requirement was not

83

addressed due to insufficient buffer size. It is expected that even with a larger DT buffer

size, traffic will eventually be dropped at a certain point with higher intensity incoming

traffic. This suggests a need for continuous monitoring and network adjustments to

accommodate the trade-offs between RT and DT QoS requirements.

As shown in Figure 15-12 (b), Case 2 and 3 had a 100% delivery rate, which indicates 0

buffer usage and 0 packet drop for the entire simulation time. This also indicates that

when the packet rate for traffic source nodes is increased, the IoT access point is not fast

enough to remove the packets in the buffer, which leads to continuous build ups of

buffer occupancy. Consequently, once the buffer usage has reached its maximum

capacity, packet starts to be dropped. Subsequently, more incoming packets will be

dropped due to buffer overflow. A solution is to adjust the buffer size to match the

requirements of the RT and DT traffic, which will be discussed in the next section.

5.5.3 Effect of Buffer Size and Arrival Rate

The results of incorporating the QoS model into our network modelling and simulation

on the Riverbed Modeler are described in this section. A simulation on Riverbed

Modeler involving 15 nodes was conducted to investigate the behaviour of the network

under varying data rates and buffer sizes. Service differentiation among RT and DT

traffic was introduced by implementing a WFQ policy, whereby each traffic source was

assigned a weight. Traffic sources with higher weight receive more bandwidth than

those with less weight. For this purpose, the normalized weight assigned to RT and DT

traffic classes are set to to 0.7 and 0.3, respectively. In addition, a low buffer size of 30

packets and estimated buffer size were allocated for RT and DT traffic, respectively.

Over the period of a 1-hour simulation, the RT and DT packets data rate were increased

every 15 minutes. Sufficient buffer storage was allocated to DT traffic to avoid buffer

overflow, which could result in a high traffic drop. In addition, higher bandwidth was

allocated to RT traffic to meet low bound delay. This would accommodate the

timeliness and reliability of QoS requirements associated with RT and DT traffic. The

queue performance at a range of traffic intensities was investigated and the way suitable

estimated buffer size could accommodate the traffic’s QoS requirements was observed.

84

Figure 5-13 Buffer usage (packets) vs. simulation time

Figure 5-14 Queuing delay (seconds) vs. simulation time

85

Figure 5-15 Traffic drop (packets) vs. simulation time

Figures 5-13 to 5-15 show the performance for varying RT and DT data rates in terms

of buffer usage, queuing delay and traffic drop, respectively. It shows that when the

arrival rate is increased, the estimated buffer can accommodate the traffic burst, even

when the service rate for the IoT access point remains constant. The results confirm that

by introducing service differentiation among traffic as well as estimating the required

buffer size, both RT and DT traffic met their QoS requirements. As shown in Figure 5-

14, by setting higher weights to the RT traffic, more bandwidth was allocated, and the

low delay requirement of RT traffic was met. Furthermore, as shown in Figure 5-15, by

estimating sufficient buffer size to DT traffic, traffic drop can be minimised. Hence,

both timeliness and reliability requirements are accommodated.

5.6 Summary

The modelling and simulation of the ADHERE QoS model are presented in this chapter.

A detailed description of simulation and experiment cases on Riverbed Modeler and

MATLAB has been given. The network models and main components of the service

differentiation algorithm are designed and analysed using Riverbed Modeler. The

service differentiation’s response to continuously streaming data with different QoS

requirements (i.e. real-time or delay-tolerant) has been analysed.

Several design parameters have been discussed and implemented in the experiment case

studies. The network model was tested under several design parameters; namely, traffic

distribution, buffer size, traffic arrival rate, traffic service rate and WSN node density.

The performance parameters analysed are queuing delay, packet drop, buffer usage and

86

delivery rate. Results show that the varying timeliness and reliability QoS requirements

of RT and DT traffic can be met with the ADHERE QoS concept. Our findings show

that the service differentiation among traffic and estimation of sufficient buffer size can

accommodate the RT traffic timeliness and DT traffic reliability QoS requirements.

Particularly, the low delay requirement of RT traffic was met through sufficient

bandwidth allocation. In addition, the higher delivery rate requirement of DT traffic was

achieved by using the ADHERE estimation of sufficient buffer size.

The network modelling using the Riverbed Modeler simulation indicates the overall

system performance and provide QoS-based design guidelines for an actual WSN-

Internet integration system. Furthermore, the co-simulation concept of the Riverbed

Modeler and MATLAB was viable and could facilitate analysis of the network when

complexity takes place as the network evolves.

87

Chapter 6: ADHERE Validation and Optimization using a
Neural Network

6.1 Introduction

This chapter presents the implementation of a neural network concept which offers an

extension to the simulated ADHERE QoS framework. The objective is to provide a

value-added feature of the ADHERE QoS model as well as to observe similar results of

the initial observation from the modelling and simulation activities. The aim is to design

a neural network learning algorithm for the developed adaptive QoS model. Using

neural network tools in MATLAB, a learning algorithm to complement the proposed

adaptive QoS framework is developed. The adaptive component of ADHERE

undergoes a learning process, whose outcomes will be used for seamless adjustment of

decisions in future events. The learning capabilities in ADHERE optimizes the QoS

framework’s performance by seamlessly accommodating the QoS requirements of the

network which experience unpredictable dynamic changes in certain application

scenarios.

6.2 Learning and Prediction Process

As introduced in Chapter 5 (refer Figure 5-1), using the simulated data sets and the

simulation results gained from the Riverbed Modeler, a system training is conducted

using MATLAB neural network tools. The network QoS conditions are learnt to predict

the required adjustments parameters, to ensure that the QoS is maintained. Figure 6-1

shows the organisation adopted for continuous learning and prediction of the neural

network. Continuous learning is required to constantly create awareness of the network

dynamics due to changes of transmission rates from different traffic types. The neural

network algorithm goes through three stages of the continuous learning, predicting and

adapting to the changing requirements of the network. The following explains the

discrete processes of training, prediction and retraining:

88

Figure 6-1 Parallel model for learning and prediction

Training: For training of the neural network, the complete QoS condition is created as

a map and fed to training. The neural network is trained once it discovers the adjustment

parameters to the associated QoS condition.

Prediction: During prediction, the input data comprises a subset of the QoS condition

at the end of a monitoring cycle.

Retraining: Retraining is required when new, and demand for unknown changes in

required QoS conditions occur. The retraining module is connected to the continuous

learning module, which transfers collected data to the training module for adding new

information to the neural network.

The method used for ADHERE Neural Networks concept is based on back-propagation

neural network. In the formulated ADHERE algorithm, the WSN network performance

is observed periodically, i.e., for a predefined adjustment cycle. Accordingly,

adjustments are made to the network parameters to maintain the QoS requirements. The

input parameters and output parameters of the neural networks in MATLAB are shown

in Figure 6-2. The sets of results obtained from modelling and simulation activities on

the Riverbed Modeler are collected, forming the basis on which the proposed ADHERE

algorithm is implemented.

89

Figure 6-2 ADHERE neural network organisation

The neural network input is defined as the QoS instance of the network, which has been

collected through the simulation activities. The input parameters are: traffic delay,

delivery ratio and buffer usage, which are the QoS performance indicator of the

network. On the other hand, the output is defined as the adjustment parameters which

have been determined using the QoS algorithm by taking into account the network’s

QoS condition. These are the control values that are used to improve the network

performance. The output parameters are buffer size and source data rate.

As discussed in Chapter 5, the queuing delay is defined as the duration packets have to

wait in the queue before being sent. In addition, the buffer usage is defined as the

number of packets waiting in the queue before being sent. A new QoS parameter

observed in the neural network learning and prediction process is the delivery ratio -

defined as the number of packets successfully serviced by the IoT access point over the

packets that arrived at the queue.

In the simulation activities, the way different buffer buffer sizes accommodate different

traffic QoS requirements has been observed. The initial observations indicate that when

source data rate is increased, traffic drop is likely if the IoT access point’s buffer size is

small. As such, the delivery ratio and buffer usage are the main performance indicators

for DT traffic. As discussed in the simulation results in Chapter 5, once the buffer usage

has reached its maximum capacity, packets start to be dropped. Subsequently, more

incoming packets will be dropped due to buffer overflow. When this happens, buffer

usage is high and delivery ratio is very low. Hence by estimating the required buffer

90

size, higher intensity traffic can be accommodated. In other words, the delivery ratio can

be optimised with adequate buffer size. On the other hand, the indication from traffic

delay is used to accommodate the timeliness requirements for RT data. Adjustment to

the source data rate of the RT traffic is done to maintain the required timeliness QoS

requirement. Therefore, by adjusting the RT source data rate and estimating the required

buffer size for DT traffic, the timeliness and reliability QoS requirements can be met.

6.3 Data Collection

Data collection in MATLAB involves the following 5 steps, which are 1) Data

selection, 2) Validation and test data, 3) Network architecture setup, 4) Train the

network and 5) Evaluate the Network

Step 1: Data Selection

The selection of data is comprised of two major data – input data and target data. All

data are collected from the statistics obtained from Riverbed Modeler of various

network scenarios. The input data presented to the network are queuing delay, buffer

usage and delivery ratio performance under a range of traffic intensity. On the other

hand, target data defines the desired network output. The parameters are source data rate

and buffer size.

The training samples have been selected to ensure that the network conditions would

have adequate parameters variations, hence providing sufficient and proper training

during the neural network learning. Network cases with different network attributes are

simulated to represent the possible states of the network, from steady condition to

extreme cases where congestion is likely due to high traffic intensity and insufficient

buffer size. From the collected data, a number of network cases are categorised to

represent different network conditions. The network cases are categorised as 1) settled

cases, 2) high traffic intensity cases, 3) extreme cases and 4) very extreme cases. These

categories will be discussed in detail in Section 6.4.

Step 2: Validation and Test Data

The samples for training, validation, and testing are formulated to represent different

training cases. Each data set is comprised of 70% training samples, 15% validation

samples and 15% testing samples. The training cases will be discussed in detail in

Section 6.4.

91

Training samples are presented to the network during training, and the network is

adjusted according to its error. Validation samples are used to measure network

generalization, and to halt training when generalization stops improving. Testing

samples have no effect on training and therefore provide an independent measure of

network performance during and after training.

Step 3: Network Architecture

In this step the number of neurons in the fitting network’s hidden layer is set. It is

recommended to change the number of neurons if the network does not perform well

after training.

Figure 6-3 shows a two-layer feed-forward network with sigmoid hidden neurons and

linear output neurons which can fit multi –dimensional mapping problems. The network

should be provided with consistent data and enough neurons in its hidden layer. As

described in Section 6.2, the input parameters are packet delay, delivery ratio and buffer

usage whereas the outputs are source data rate and buffer size.

Figure 6-3 Neural network layers

Fitting networks are feedforward neural networks used to fit an input-output

relationship. Feedforward networks consist of a series of layers. The first layer has a

connection from the network input. Each subsequent layer has a connection from the

previous layer. The final layer produces the network's output.

Feedforward networks can be used for any kind of input to output mapping. A

feedforward network with one hidden layer and enough neurons in the hidden layers,

can fit any finite input-output mapping problem. Specialized versions of the

feedforward network include fitting and pattern recognition networks in MATLAB. A

variation on the feedforward network is the cascade forward network in MATLAB,

92

which has additional connections from the input to every layer and from each layer to

all the following layers.

Step 4: Train the Network

As mentioned in Step 1 (Data selection) the scenario cases are selected based on several

categories of network conditions. Data are selected to introduce a balance of variation

for the training purpose. However, extreme cases are introduced later in the training.

This means that on-going training will occur as a proper training to the system, as it

would ensure smooth network parameter adjustment. The system should also be trained

based on unknown conditions and should cope with extreme conditions that may occur

in the future, hence it should be able to react to certain incoming conditions as expected.

The aim of this training strategy is to ensure that retraining is included and to

demonstrate that the system is working in an adaptive manner.

The network is trained with Levenberg-Marquardt backpropagation algorithm (trainlm),

which is often the fast backpropagation algorithm in the Neural Network Toolbox in

MATLAB. It is highly recommended as the first-choice supervised algorithm. This

algorithm typically requires more memory but less time. Training automatically stops

when generalization stops improving, as indicated by an increase in the mean square

error (MSE) of the validation samples. Conducting the training for multiple times will

generate different results due to different initial conditions and sampling. Furthermore,

retraining optimizes the network on inputs and targets.

Step 5: Evaluate the Network

After the neural network performance is observed to obtain an MSE value that indicates

good training, the network can optionally be tested on more data. Iterating for improved

performance includes doing the training all over again if the first attempt did not

generate good results or if marginal improvement is required. In addition, the network

size can also be adjusted by changing to higher neurons if the retraining did not help. A

larger data set will need to be used if higher neurons did not offer any improvement.

6.4 Training and Testing Process

6.4.1 Data Sets

The behaviour of the model is evaluated using different traffic load by setting a range of

packet arrival rates. Arrival rate ranging from 2 to 20 pkt/s at the IoT access point for a

93

given buffer capacity has been collected using Riverbed Modeler. For the training data,

the values of the inputs (traffic delay, delivery ratio and buffer usage) of the network

have been obtained with 99% confidence level and 0.05 maximum relative error using

the Riverbed Modeler simulator.

The training samples have been selected to ensure that the network conditions cover

adequate parameters combinations, hence providing sufficient and proper training

during the neural network learning. These cases differ in terms of the arrival rate of RT

and DT traffic classes, queue conditions (SR=AR, SR>AR, SR<AR) and buffer service

rates. Based on the arrival rates values of the RT and DT data, these cases are

categorised into 4 categories, namely Settled Cases, High Traffic Intensity Cases,

Extreme Cases and Very Extreme Cases. The following table shows the values range

for the parameters used in the data collection.

Table 6-1 Network performance categories and related parameters for training data

WSN Network
performance
categories

Arrival rate (AR)
values range

Queue Condition
(SR/AR)

Service rate (SR)
values range

Category 1:
Settled Cases

RT = DT

2 to 13 pkt/s

SR=AR

SR>AR

SR<AR

(SR=AR, SR>AR,
SR<AR)

Range: 1 to 15
pkt/s

Category 2:
High Traffic
Intensity Cases

RT =DT

14 to 16pkt/sec

SR=AR

SR>AR

SR<AR

(SR=AR, SR>AR,
SR<AR)

Range: 7 to 18
pkt/s

Category 3:
Extreme Cases

RT > DT

RT: 13 to16 pkt/s

DT: 9 to 10 pkt/s

SR<AR (SR<AR)

RT: 3 to 11 pkt/s

DT: 1 to 6 pkt/s

Category 4:
Very Extreme
Cases

RT > DT

RT: 6 to 12 pkt/s

DT: 5 to 9 pkt/s

SR<AR (SR<AR)

RT: 4 to15 pkt/s

DT:1 to 9 pkt/s

Category 1 until 4 defines the QoS condition of the network, starting from steady

condition up to the condition when the network performs very poorly due to limited

buffer space and high traffic rates. For example, the drastic reduction of the delivery

ratio after the value of 16 pkt/s is due to the network congestion, as confirmed also by

the increment of the drop rate for the corresponding values of arrival rate. Traffic drop,

which increases as the arrival rate increases, is defined as the number of packets

94

dropped due to buffer overflow. This increment is almost linear till the arrival rate 14

pkt/s and after the value of 16pkt/s it jumps up from 60% to 90%. This results in a huge

reduction of delivery ratio for the corresponding arrival rate.

6.4.2 Training Samples

The system is trained using different training sets. The training sets are formulated to

represent different data coverage. The aim is to compare the neural network

performance using different training sets.

The training sets are distinguished by having different data coverage of the network

variation. They represent the poor, moderate and good training data, which contain

30%, 60% and 100% data coverage, respectively. For example, the poor training data,

only consists of part of the QoS condition category (Category 1 and Category 2

explained in Section 6.4.1). The initial neural network training includes this data set. On

the other hand, the good training data set consists of all of the 4 categories. This data set

is used in the later stages of the training.

Table 6-2 Definition of Training Sets

Training Set
Coverage/ No.

of samples

No. of cases selected from WSN Network Performance
Categories

Category 1 Category 2 Category 3 Category 4

30% /23 20 3 0 0

60% / 47 30 5 12 0

100% /78 36 9 21 12

Within the MATLAB environment, the two variables that are loaded from the data set

are QoSConditionInputs and AdjustmentParameterTarget. They represent the input data

(3xm matrix) and target data (2xm matrix).

The QoSConditionInputs is a data matrix of 3 x m defining 3 QoS conditions under m

different network cases. The QoS condition values are data from network simulation

statistics taken every T interval at the end of a monitoring cycle. They represent the

neural network input values as described in Section 6.2, which are:

1. packet delay

2. delivery ratio and

3. buffer usage

95

The AdjustmentParameterTarget is a matrix containing the associated adjustment

values for the network cases. The data set is used to train the neural network to estimate

the adjustment parameters from the QoS conditions. As explained in Section 6.2, the 2 x

m matrix of the adjustment parameters to be estimated given the inputs are:

1. source data rate

2. buffer size

The three sets of training which have been conducted are summarized in Table 6-3. For

instance, for the initial training which is Training 1, the input is a 3 x 23 matrix

representing 23 samples of 3 elements. Furthermore, larger data sets are used for

retraining, which are Training 2 and Training 3. Both of them consist of better coverage

of QoS condition categories. In addition, validation and test samples are also set aside in

the simulation training. As shown in the table, 70% of the Training 3 data (54 samples)

was used for the retraining of the neural network, 15% (12 samples) was used for the

validation and the remaining 15% (12 samples) was used for the testing of the network.

Table 6-3 Input and output data matrix

Training
/Coverage

Input data
matrix

Target data
matrix

70%
Training
samples

15%
Validation

samples

15%
Testing
samples

Training 1
(30%)

3 x 23 2 x 23 17 3 3

Training 2
(60%)

3 x 47 2 x 47 33 7 7

Training 3
(100%)

3 x 78 2 x 78 54 12 12

The following codes are used to design a fitting neural network with 10 hidden neurons

with this data at the command line.

LOAD QoS_dataset.MAT; //loads these two variables
[x,t] = QoS_dataset; //loads the inputs and targets into chosen
variables
net = fitnet(10); //Function fitting neural network
net = train(net,x,t);
view(net)
y = net(x);

The results from the learning process are observed through the error rate. The aim is to

achieve a low error rate which is within the tolerable value. Function fitting is the

96

process of training a neural network on a set of inputs in order to produce an associated

set of target outputs. Once the neural network has fit the data, it forms a generalization

of the input-output relationship and can be used to generate outputs for inputs it was not

trained on. The dataset is used to train a neural network to estimate the relationship

between the two sets of data.

6.5 Neural Network Training Results

This section presents the results concerning the training of the neural network. In the

following, the neural network results after training is completed are discussed. The

training performance are indicated using the mean square error (MSE) and regression

(R). Regression values measure the correlation between outputs and targets. A

regression value of 1 means a close relationship, whereas 0 indicates a random

relationship.

6.5.1 Training and Validation Performance

Training automatically stops when generalization stops improving, as indicated by an

increase in the MSE of the validation samples. The MSE is the average squared

difference between outputs and targets. While lower values are better, zero MSE means

no error. The following tables show the results in terms of MSE values for the three

training sets.

Table 6-4 MSE values results

Training 1
30%

Training 2
60%

Training 3
100%

MSE

Training 1.97656 1.50532 2.26030

Validation 4.46077 5.04052 5.38405

Testing 9.04224 19.85661 5.02986

The performance progress of all the trainings are shown in Figure 6-4 until 6-6. The

property ‘best epoch’ indicates the iteration at which the validation performance

reached a minimum. Figure 6-4 shows that validation stops at Epoch 14 when MSE has

reached a minimum value. The training continued for 6 more iterations before it

stopped.

97

Figure 6-4 Training performance of Training 1 (Data Set of 30% coverage)

Figure 6-5 Training performance of Training 2 (Data Set of 60% coverage)

98

Figure 6-6 Training performance of Training 3 (Data Set of 100% coverage)

Figure 6-4 indicates that the training using 30% coverage of adaptive QoS cases

generated poor results, as shown by the significant difference on training validation and

test curves. Improvements are shown during retraining when larger data sets are used.

Figure 6-5 and Figure 6-6 show improvement on precise data fittings with trainings

using 30% and 60% coverage. The validation and test curves are very similar,

particularly in Training 3 in which the data set has complete coverage of all QoS

conditions’ categories as defined in Section 6.4.2. The results show that by retraining

using a larger set of training data, the network generalizes well to the new data and

produces sufficiently accurate results.

6.5.2 Neural Network Training Regression

The next step is validating the network through the regression plot. Regression plot

represents the relationship between the outputs of the network and the targets. If the

training was good, the network outputs and the targets would be similar. A regression

value of 1 means a close relationship, whereas a zero value indicates a random

relationship.

The following tables show the results in terms of regression values for the network

trainings.

99

Table 6-5 Regression values results

Training 1
30%

Training 2
60%

Training 3
100%

Regression

Training 0.99490 0.99571 0.99353

Validation 0.93900 0.98909 0.98496

Testing 0.96940 0.90392 0.98518

The associated regression plots for training, testing and validation for Training 1, 2 and

3 are shown in Figure 6-7, Figure 6-8 and Figure 6-9, respectively.

Figure 6-7 Regression values of Training 1 (Data Set of 30% coverage)

100

Figure 6-8 Regression values of Training 2 (Data Set of 60% coverage)

101

Figure 6-9 Regression values of Training 3 (Data Set of 100% coverage)

The dashed line in each plot represents the ideal result – outputs = targets. The solid line

represents the best fit linear regression between the outputs and the targets. As the

regression value is an indication of the relationship between the outputs and the targets,

the value of R=1 shows that there is an exact linear relationship between the outputs and

the targets. As shown in Figure 6-9, the training with complete QoS network categories

results in a good fit. The overall R value also has the highest value as compared to

Training 1 and Training 2 which are trained using smaller data sets and incomplete

coverage of QoS condition categories.

6.5.3 Error Distribution

Figure 6-10 up to Figure 6-12 show the distribution of errors for the training, validation

and test sets for all neural network trainings.

102

Figure 6-10 Error distribution of Training 1

Figure 6-11 Error distribution of Training 2

103

Figure 6-12 Error distribution of Training 3

The figures show that the data fitting errors for Training 2 and Training 3 with a larger

data set have better error distribution. However, they are not distributed within a

reasonably good range around zero. This can be further improved by using larger data

sets or higher number of neurons. Nevertheless, the drop in error rate in the retraining

indicates that the training has matured gradually.

6.6 Summary

The neural network learning activities in MATLAB provides a comprehensive

validation to the proposed AQoS algorithm. Using the simulated data sets and the

simulation results gained from the Riverbed Modeler, a system training is conducted in

MATLAB neural network tools. In addition, to provide a value-added adaptive feature

of the QoS framework, as well as to deliver similar results of initial observation from

the modelling, system training is conducted using neural network on MATLAB.

The training samples have been selected to ensure that the network condition covers the

optimum possibility of parameters combinations, hence providing sufficient and proper

training during the neural network learning. Network conditions are categorised into 4

categories, namely Settled Cases, High Traffic Intensity Cases, Extreme Cases and Very

Extreme Cases. The neural network is trained using different data sets, to show the

impact of using larger data set with better coverage of QoS cases.

As shown by the results, when larger data set with complete coverage of QoS conditions

are used to train the network, the values of MSE and R has improved. This means that

104

the data fitting can be quite precise with larger data set. Furthermore, the drop in error

rate in the retraining indicates that the training has mature gradually.

It is expected that a WSN with heterogeneous data which also involves dynamic traffic

will evolve over time and therefore introduce complexity to the system as the network

grows in size. Additional types of sensor data may also be needed to accommodate the

WSN application’s requirements. Therefore, the learning capabilities in ADHERE can

facilitate the optimisation of the QoS framework’s performance by accommodating the

QoS requirements of the network when the traffic is dynamic, and also when complex

network behaviour takes place.

105

Chapter 7: QoS Model Implementation and Physical
Experiment

7.1 Introduction

This chapter presents the implementation of the ADHERE QoS model on a physical

testbed. The physical experimentation serves as a means of verification and validation

to the computer simulation environment. This environment, which enables the software

adaptation of the IoT-based-WSN, was thoroughly discussed in an earlier publication in

[6]. It was highlighted that there is a need for an environment which delivers constant

monitoring of a WSN-IoT network performance through assessment of the QoS, and

which ultimately makes required adjustments to a physical network’s configuration.

Based on historical sensor data captured from the physical network, the chosen

approach involves modular organization that allows implementation and analysis of

QoS for WSN.

The architecture of the test environment is first presented in Section 7.2. The test

environment offers a system that is flexible enough to be capable of reacting to dynamic

changes of process demands. By analysing the historical data in the background on a

network simulator or virtual network, physical network performance can be predicted.

This allows for estimation of the adjustments needed, which are necessary to improve

the network performance without disturbing the physical system. Section 7.3 discusses

the system implementation of the proposed architecture. Furthermore, Section 7.4

reports the case study and applicability of an adaptive QoS model on the system. The

comparison between simulation and physical experiment is also discussed in Section

7.4.

7.2 Testbed Operational Architecture

Figure 7-1 depicts the proposed architecture of the test environment [4], which is

established with a PSN, an IoT interface and a remote server or cloud support.

106

Figure 7-1 Testbed architecture

The PSN is organized in multiple physical sensor cloud (PSC) formations. There is an

IoT coordinator for each PSC which serves as the access point between the Internet and

the PSC. The remote server or the cloud hosts the data storage and necessary

environment for network virtualization, intelligence and other processing that support

decision-making for managing the PSN operation.

Upon receiving the sensor data, the IoT access point pushes them to the cloud server,

which accommodates the database for storing network simulation tools for modelling

the virtual sensor network (VSN), related historical data and a mathematical modelling

tool for hosting QoS evaluation models. Moreover, a QoS controller program, which

runs the QoS algorithm is part of the QoS Provisioning Function. It enables analytical

activities, whilst suggesting alterations to be made on the sensor nodes’ operational

parameters to maintain the network’s QoS condition. The alteration is done by

remotely-configuring the physical leaf nodes.

Figure 7-1 also depicts a queuing model for regulating the buffer for data packets whilst

in queue to get transmitted at the IoT access point. When data arrives at the IoT access

point, it will be allocated to different buffer queues according to the service

differentiation which runs within the IoT access point. As depicted by the figure, in the

IoT access point, different traffic types are buffered in separate queues.

The VSN which resides within the virtualization environment offered by the network

simulator is an exact replication of the nodes within the PSN. It mimics the network

data flow which occurs in the actual physical network. Such cloud-level virtualization

107

offers an environment for testing the network performance when subjected to different

QoS parameters. These parameters are generated by the ADHERE QoS algorithms

residing within the QoS provisioning function, in an iterative manner.

Additionally, to increase the level of accuracy of the obtained simulation results,

historical real-life PSN data accumulated in the remote server can be reused on the VSN

for simulation purposes. This helps the process of identifying and converging upon the

required QoS parameters in an adaptive way by closing the loop between VSN and

PSN.

PSN data within the database acts as the input for the QoS model residing in the QoS

model simulators and the network. SQL queries are performed by the simulation tool to

feed this data to the application layer which belongs to the simulation model.

Furthermore, the historical data’s associated time stamps can be used by the simulator

to calculate the service time or other performance measures. Then, the network

performance indicators that have been derived from the network simulator are passed to

the analytical tool for further QoS analysis.

The decisions and control mechanism to support the ADHERE QoS are computed using

MATLAB functions. The mathematical analysis feature also supports high-level

analysis, which in turn makes future network complexity more manageable. MATLAB

does offer various mathematical functions that make the computation easier. MATLAB

MX permits use of MATLAB functions in C programs [85]. This results in more

efficient executable functions in either the network edge or the Cloud.

The co-simulation approach may also ensure QoS for the virtualized environments,

especially when the PSN application workload increases [101]. Therefore, this structure

has great potential for solving complexity and for further analysis, while it acts as part

of the WSN system operational management.

The performance of the network is continuously monitored, and the QoS condition is

determined via the QoS provisioning algorithm. When an adjustment decision has been

made, the adjustment parameters (e.g. buffer size and data rate) are written in a C

header file, which will be used by the operating system to reconfigure the PSN. The test

environment architecture is flexible in a way that other parameters related to other

potential WSN applications can be adopted. As such, this closed loop conceptual

108

framework supports the architecture in imposing the necessary dynamic changes on the

PSN adaptively.

7.3 System Implementation

This section presents the system implementation of the proposed architecture. The

selection of software and hardware tools to build the system is discussed in this section.

The test environment has been established by the research team of the Sensor Network

and Smart Environment Research Centre (SeNSe) [90] laboratory. The effort given by

the SeNSe team aims at enabling the implementation of several use-cases on the same

testbed.

7.3.1 Physical Sensor Network

As shown by Figure 7-2, in the PSN setup [3], CC2538 controllers are deployed on a

functional basis and at different locations within the SeNSe laboratory. A total of 16

nodes were deployed, from which fifteen nodes act as end devices and one node acts as

the IoT access point. The end devices sense multiple sensor data, namely, temperature,

light and received signal strength indicator (RSSI) sensing. The sensed values are

forwarded to the upper tier of the server database over the Internet.

Figure 7-2 SeNSe laboratory plan showing the deployment of the sensor nodes

In the proposed architectural organization, each of the three sensor data captured by the

end devices represents different traffic types with different priorities by means of packet

remarking. Upon transmission of PSN data to the IoT access point, the data is then

relayed to the cloud server over the Internet, wherein the incoming data is stored and

organized by the Data Management Services Unit in its database.

109

The MAC protocol of the nodes is implemented with polling based on Time Division

Multiple Access (TDMA). The end devices transmit their data to the IoT access point

only when polled. In the current setup, new incoming data automatically updates the

server database at intervals of 90 seconds. Table 7-1 describes the pseudo codes for both

the IoT access point and the end devices.

Table 7-1 Algorithm pseudo codes for operation of IoT access point and end nodes

Pseudo code for IoT access point node

While TRUE {

Initialization: Set and initialize data storage arrays of size n
light[n] = {01,02,….0n}
temp[n] = {01,02,….0n}
rssi[n] = {01,02,….0n}

Polling request: For each ‘n’ end devices: Transmit polling counter messages
(1, 2,….., n-1,n) to all the end devices.

INPUT:

Reception: Keep storing received node data to arrays defined for the 3 sensor
variables

 Repeat ‘n’ times{
light[n] = {l1,l2,…ln}
temp[n] = {t1,t2,….tn}
rssi[n] = {r1,r2,…rn}

}

OUTPUT:

Serial data string: Send sensor data received via serial output
For each ‘n’ end devices
Node ID: light[l], temperature[t], rssi[r];

Delay:
}

Wait for 45 seconds;

Pseudo code for end node

While TRUE {

- Sampling:

- Reception:

- Check condition:

Sense the 3 sensor values – light, temp and rssi

Receive polling counter messages i.e. 1,2,….,n-1,n

Check if the condition (Counter = Node ID) is satisfied

If Transmit flag is set {

 Transmit Flag = TRUE;

- Transmission: Transmit data array to IoT access point;
light[n] = {l1,l2,…ln}
temp[n] = {t1,t2,….tn}
rssi[n] = {r1,r2,…rn}

Transmit Flag = FALSE;
}

}

110

Grouping of nodes on a functional basis renders a clear demarcation between the

different sets of groups of nodes. This arrangement facilitates clear and distinguishable

data plots on the webpage. During the course of our physical experimentation (through

data logging), grouping of the nodes in separate geographical locations emerged as a

viable option.

7.3.2 Test Environment Sensing Data

The sensor data plots shown in Figure 7-3 represent the samples of the signal trends of

the captured data, i.e., ambient light, temperature and the RSSI values from a selection

of nodes in the network.

Figure 7-3 Sensor data representation from the database

The sensory data trends contain the information associated with the layout of the nodes

deployment, as shown by Figure 7-2. The figure shows the readings for three

consecutive days. The observation from the light sensor reading indicates that the light

values are high during sunny parts of the day, particularly on the nodes facing the

window. In contrast, a lower light reading is observed from the nodes facing the lab. It

is also shown that the temperature increases during the day for those nodes facing the

window, hence reflecting the internal heat inside the controller chips. Lastly, the RSSI

data trend exhibits some activities during the day resulting from people movement

within the lab. On the contrary, the RSSI values during the night are observed to be

more stable.

111

7.3.3 Server Implementation

The server has been implemented to accommodate the major functions as discussed in

Section 7.2. Figure 7-4 illustrates the inter-working of the three servers, namely, an

application server, a database server and a web server.

The application server is installed with Contiki OS, mainly to carry out the physical and

virtual node configuration. Contiki OS compiles the scheduler to perform network

operations to the target node. For modelling and provisioning purposes, Riverbed

Modeler also resides within the application server. Network simulators such as

Riverbed Modeler allow replication of a PSN to form a VSN. This serves as abstraction

levels for testing applications or protocols prior to execution on real hardware devices.

The Riverbed Modeler also offers support for simulation of entire networks and access

to model parameters, hence having a significant effect on the simulation accuracy.

Figure 7-4 Remote server architecture - Inter-relationship between application server,
web server and database server

In order to to run the QoS Provisioning module, MATLAB is also installed in the

Application Server. Therefore, the co-simulation between Riverbed Modeler and

MATLAB to support the QoS Provisioning takes place in the Application Server. While

users may benefit from Riverbed Modeler as a tool that strives for closer representation

to network devices, MATLAB serves as the control mechanism and decisions to support

the ADHERE QoS. Future network complexity become more manageable as

MATLAB also supports high level analysis. The co-simulation approach can also

ensure QoS for the virtualized environments, especially when the PSN application

workload increases [101]. Hence this structure offers the environment for analysis and

solving complex computational requirements.

112

The application server also contains a Contiki-based Cooja simulator, which is a useful

tool for the development of Contiki-based sensor network implementations. Besides

serving as a testing environment for code testing [102], it observes the impact of

modifying network parameters such as data rate and network protocol on network

performance and power consumption prior to the implementation on PSN hardware.

The web server is the point of entry for the sensor data. Using a REST API , it receives

data from the IoT access point. The REST API establishes communication with the

users and exchanges information between the application server and the database. The

user selects the nodes using GET and POST. The server uses PHP for scripting, while

Python is used by the client side for collecting sensor data. These specific scripting

languages are chosen due to a minimal required learning curve for the researchers. Data

is forwarded by the client to the web server. The web server then forwards the data to

the MySQL database for processing and determining sensor node statistics using REST

APIs. The QoS provisioning module predicts QoS parameters that serve as inputs to

the web server that use the Contiki programming interface to update the physical and

virtual nodes. In the following, the implementations of the main functional blocks of the

server are discussed.

For data management services, MySQL is implemented within the database server as

the Relational Database Management System (RDBMS). The PSN data is retrieved by

the database queries from the incoming data packet. Having organized the database such

that each node has its own table, the SQL queries query the table to get information

from the node.

The collected data packets are time stamped and stored in rows within the database. As

the size of the database increases, the latency of data retrieval increases proportionally.

This spatio-temporal increase has a performance implication. Our findings [3] show that

data retrieval can be maintained at a minimal rate. This reflects the independence of

retrieval rate on the number of nodes when individual tables for every sensor node are

used.

Figure 7-6 shows a database table resulted in O(n log (n)) complexity for data retrieval.

Two operations are required: a search operation of the node and next a read operation to

fetch the data. The temporal requirement for the search operation was improved from

O(log (n)) to O(1) by splitting the single table into multiple tables as illustrated in

Figure 7-6. As shown in the figure, each table represents a specific physical or virtual

113

node. As the complete node data is encapsulated in individual tables, the overall

retrieval time is reduced from O(n log (n)) to O(n). This has also supported the one-to-

one representation of the nodes within the PSN.

Figure 7-5 Single table database with NodeID and Variables

Figure 7-6 Node ID as database tables

7.3.4 ADHERE QoS Model Implementation

The implementation of the proposed ADHERE QoS concept is illustrated by Figure 7-

7 [3]. PSN data within the database acts as the input for the QoS model residing within

the Riverbed Modeler. The simulation tool performs SQL queries to feed the PSN

historical data to the application layer belonging to the simulation model. In addition,

the associated time stamps of the historical data can be used by the simulator to

compute the service time or other performance measures.

.

114

Figure 7-7 ADHERE concept implementation

Then, the network performance derived from the model hosted by the Riverbed Modeler

is passed to the QoS analysis model hosted by MATLAB. MATLAB uses the

performance data to analyze the QoS condition and identify the corresponding QoS

parameters. In the system implementation, the co-simulation between Riverbed Modeler

and MATLAB is set up using MATLAB MX functions and Riverbed Modeler APIs

[85], as shown by Figure 7-7.

An example of ADHERE algorithm is shown in Table 7-2. The objective of the QoS

model is to avoid congestion in the network by determining the traffic’s data rate which

is appropriate to the network condition. For instance, congestion detection in WSNs has

been proposed using indicators such as buffer occupancy, queue length [60, 66], service

time of packets [62], as well as the ratio of service time to inter-arrival time of the

packets between the intermediary devices [63].

115

Table 7-2 Pseudo Code of Adaptive QoS Algorithm

Define QoS requirement:

 RT packet delay bound, DT packet loss tolerance

Initialization: Identify data rate RT_datarate, DT_datarate,
Set required buffer size RT_buffer, DT_buffer

While TRUE {

Data transmission: Transmit data array to IoT access point

Queue Algorithm… Arrival and departure of packets in IoT access point buffer using
weighted priority queuing scheduling policy

QoS Condition Monitoring and Adjustment (Every T interval)

- Congestion Control Unit

 Calculate congestion index
congestion_index = service_rate/arrival_rate

- Rate Adjustment Unit:

 Adjust new RT data rate based on congestion index
if congestion_index>1

RT_datarate = new_RT_datarate(priority, datarate)
else if congestion_index <1

RT_datarate = new_RT_datarate(priority,datarate)
else
Adjust new DT data rate based on congestion index
if congestion_index>1

DT_datarate = new_DT_datarate(priority, datarate)
else if congestion index <1

DT_datarate = new_DT_datarate(priority,datarate)
Else

- Buffer Adjustment Unit:

 Adjust buffer size based on new data rate
RT_buffer min (sizeRT)
DT_buffer min(sizeDT)

OUTPUT:

Write new value In c header file (to be read by OS for reconfiguration)
RT_datarate, DT_datarate
RT_buffer, DT_buffer

}

The implemented algorithm supports two types of traffic classes, i.e., real-time (RT)

traffic and delay-tolerant (DT) traffic. In the initialization phase, the algorithm identifies

the data rate of the traffic sources and their QoS requirements, namely the RT packet’s

tolerable delay and the DT packet’s tolerable packet loss. The algorithm also estimates

the required buffer size [25] of different traffic types based on this information. The

required buffer size is estimated to ensure that the reliability-constraint DT packets can

take up more space in the IoT access point’s buffer. Therefore, in the QoS model, more

bandwidth is allocated to RT traffic to meet low delay. In addition, more buffer storage

116

is allocated to DT traffic to avoid buffer overflow which may result in higher traffic

drop.

The rate adjustment unit calculates the new data rate of the traffic source, using the

results of the congestion index [63] and the predefined source traffic priority [28]. Then,

the adjustment parameter, i.e., data rate and buffer size, is passed to the WSN

Configuration Services, to perform the physical nodes reconfiguration. This approach

will ensure that the QoS requirements for different traffic classes are met while

maintaining steady queues in the IoT access point buffer. Another aim is to ensure that

allocated buffer resources are utilized efficiently.

7.3.5 WSN Reconfiguration Services using Contiki OS

In the system implementation, the low power wireless transceivers are subjected to

many reconfigurations over the Internet. In addition, a self-configuring architecture

[103] which requires no human intervention for the reconfiguration and deployment of

IoT applications is a desirable approach. To deal with such stringent requirements of an

IoT-based environment, Contiki OS offers advantages such as flexibility, multi-tasking

and concurrency [104].

As shown in Figure 7-8, the QoS parameters predicted by the QoS provisioning module

are inputs to the web server that uses the flexible and open source Contiki programming

interface residing within the SeNSe server to update the physical and virtual nodes with

the QoS parameters. Contiki OS is specifically compiled for the physical nodes and the

code is in C. The reconfiguration header file generated by the QoS provisioning module

is integrated into the directory that is compiled into the hex file for the nodes. With the

current implementation, the reconfiguration file is generated as a C header file that is

created in the directory where the Contiki OS code resides. Currently, the

reprogramming of the nodes with the new reconfiguration settings is done manually.

However, part of our ongoing work involves a fully automated system, whereby the

VSN would be automatically reconfigured based on the information it received from the

physical network.

117

Figure 7-8 Passing QoS parameter to Contiki OS

7.4 Case Study and Results

Comparisons between PSN and simulation behaviour were conducted. The QoS

performance of the network’s heterogeneous data traffic was studied via the physical

test environment experimentation and simulation of similar models. This activity also

ensures a virtualization [6] with the closest replication of the PSN with the Riverbed

Modeler simulation tool.

The communication between one IoT access point and the end devices in the PSN

testbed has been established as a unicast on a single channel using Contiki OS. The

polling-based network protocol was successfully implemented for the Contiki-based

PSN setup. In the simulation, two types of traffic have been defined. RT and DT traffic

flows are fed into the IoT access point buffer, which in turn serves the packets based on

a predefined queuing policy. Furthermore, the queuing mechanism in the IoT access

point is observed, and the QoS performance of the traffic is studied.

7.4.1 Comparison between Physical Sensor Network Experiment and
Simulation - Effect of Service Rate

To ensure the comparability of both physical and simulated environments, an

experiment with a single node communicating with a single IoT access point was done

first. The aim is to identify the impact of service rate to network performance. Five

cases have been set up in the PSN experiment – all of which are the simulated cases as

indicated in Table 5-3 in Chapter 5. As discussed in Chapter 5, AR and SR are defined

as the number of packets that arrived at the buffer and are served by the buffer per

second, respectively. The AR in the PSN is set by defining the sampling rate of the

traffic sources. This is also indicated in Table 7-1 within the pseudo code for the end

nodes. Table 7-3 shows the exact parameters used in the simulation cases of SR=AR,

SR>AR, and SR<AR as indicated in Table 5-3.

118

Table 7-3 Test cases to compare PSN experiment and simulation

 Service Rate (SR), pkt/s

Test Cases RT Traffic

(Light)

DT Traffic

(Temperature)

Case 1 SR = AR 8 5

Case 2 SR > AR 16 10

Case 3 SR > AR 9 7

Case 4 SR < AR 4 2

Case 5 SR < AR 7 4

To show association with a real WSN application, it is assumed that RT data is light

sensory data [100], whereas DT data is represented by temperature sensory data. For all

cases, the arrival rate of RT and DT are constant at 8 packets per second (pkt/s) and 5

pkt/s, respectively. Furthermore, a relatively small buffer size of 20 packets is also kept

constant for each of both RT and DT buffers. As explained in Chapter 5, the small

buffer size was set to allow seeing the results of different arrival and service rates more

easily. As with the simulation, the PSN experiment was also conducted for a duration of

10 minutes.

The traffic performance in both PSN experiment and Riverbed Modeler has been

observed. Figure 7-9 up to Figure 7-11 show the comparisons between both PSN

experiment and computer simulation for all cases, i.e. Case 1 to Case 5. In both PSN

experiments and simulation, it was observed that RT traffic and DT traffic are served

according to the assigned serviced rates of the different queues in the buffer. As shown

by Figure 7-9 to Figure 7-11, the trend of serviced packets against received packets at

the buffer for all cases shows a good match. The difference between both environments

was always smaller than 3% for Cases 1, 4 and 5. Furthermore, as shown in Figure 7-

10, when SR>AR, there is very significant similarity in both PSN experiment and

simulation.

In the PSN experiment, a small deviation occurs in terms of total packets received at the

IoT access point. Meanwhile, the traffic generated in the simulation is always ideal

based on theoretically-calculated values. For example, Figure 7-9 shows that the total

RT packets received at the buffer was only 3680 packets in the PSN experiment,

whereas the actual number of incoming packets shown by the simulation is 4800.

119

Figure 7-9 Comparison between PSN and simulation (serviced packets vs received
packets) for SR=AR

Figure 7-10 Comparison between PSN and simulation (serviced packets vs received
packets) for SR>AR

120

Figure 7-11 Comparison between PSN and simulation (serviced packets vs received
packets) for SR<AR

The deviation of the packets received in the IoT access point may be due to the

communication channel’s stability between the sensor node and the IoT access point.

However, the overall rate at which traffic is served in the RT and DT buffer queues

through the course of both environments showed a good match. This validates the fact

that the behaviour of the queue and node model in the simulation closely resembles the

performance characteristics of an actual IoT access point.

7.4.2 Buffer Usage and Traffic Dropped

The buffer usage and traffic drop also showed a similar trend between both PSN

experiments and simulation. Both Case 2 and Case 3, i.e. when SR > AR, have 100%

delivery rate and zero buffer usage at all time. This indicates the traffic drop can be

avoided when packets are served at a higher rate than the arrival rate. Figure 7-12 and

Figure 7-13 depict the buffer usage and packet drop, respectively. Since Cases 2 and 3

have 100% delivery rate and zero buffer usage at all time, only the performance of the

remaining cases, i.e. Cases 1, 4 and 5 are compared in the figures.

121

Figure 7-12 Buffer usage over 1-minute experiment

Figure 7-13 Packets dropped over 1-minute experiment

Figure 7-12 shows that when the packet rate for traffic source nodes is increased, the

buffer usage of the IoT access point grows steadily. Figure 7-13 shows that once the

buffer usage has reached its maximum capacity, packets start to be dropped.

Consequently, more incoming packets will be dropped due to buffer overflow. This can

be solved by adjusting the buffer size to match the requirements of the RT and DT

traffic. Automated reconfigurations of the adjustment parameters such as the buffer size

can be done within the PSN architecture presented in this chapter through continuous

QoS monitoring.

7.5 Summary

In this chapter, the ADHERE QoS model is implemented on a physical testbed. The

experimentation serves as a means of verification and validation to the computer

simulation environment. The concept of virtualization has been presented and a

122

conceptual organization targeting an adaptive QoS is presented. The architecture offers

a system for interactions between the behaviour of a PSN and the necessary analysis in

a virtual remote environment. The main contribution of the architecture is that it is

capable of identifying the required adjustment for the PSN in order to enhance the QoS

performance of the WSN applications.

The ADHERE QoS algorithm is implemented as a target application of the system. This

represents a use case, which can provide the requested QoS for different traffic classes

on the developed physical test environment. In the results section, comparisons of

traffic QoS on the PSN and computer simulation are presented. The overall rate at

which RT and DT traffic is served at the buffer queues through the course of both PSN

experiments and computer simulations showed a good match. This validates the fact

that the behaviour of the queue and node model in the simulation closely resembles the

performance characteristics of an actual IoT access point. Therefore, the similarity of

network performance within the simulation environment and the PSN experiment

indicates the success of the virtualization concept.

The techniques for interoperability among the system components, namely PSN and a

remote database, VSN and QoS provisioning unit, as well as Contiki OS and network

reconfiguration are also discussed. With the encouraging preliminary outcomes

between pairing components, the proposed architecture can be used as a test

environment for experimentation involving other custom adaptive QoS parameters and

real-time analysis of network performance. The co-simulation concept between network

simulator and MATLAB is viable and this opens up more future research possibilities

when more complexity takes place potentially at a business intelligence level.

123

Chapter 8: Conclusion and Future Work

8.1 Conclusion

The main motivation behind this thesis is the fact that traffic in WSNs represent two

kinds of co-existing data packets: those with real-time constraints and those with

reliability-constraints. By treating these packets that have varying QoS requirements

differently, the needs of both packet types can be better met. Furthermore, nowadays the

effort of connecting WSN to remote servers or clouds through the IoT inspires the

formation of a highly complex system. Therefore, the contribution of the research is

focused within the area of IoT-based WSNs with heterogeneous data traffic. A QoS

requirement analysis pertaining to the integration conducted in the study reflects the

QoS domains related to network and traffic heterogeneity.

Based on the review of the literature, it is evident that previous studies pertaining to the

integration have concentrated on issues pertaining to the integration approach and its

practical implication such as the security related issue. As such, there is a glaring lack of

studies in the area of end-to-end QoS support for WSN-Internet integration, particularly

to ensure preservation of QoS mechanism in both network domains. Furthermore, a

significant research gap which has been highlighted in the literature review is the

service differentiation mechanism to manage heterogeneous data traffic focused

primarily on the real-time packets, whereas the QoS requirements of delay-tolerant data

need to be carefully considered as well.

The QoS requirement analysis also indicates open research issues related to co-

existence of real-time and delay-tolerant data packets, and the differences between

WSN QoS and Internet QoS that imposes a mechanism for a seamless QoS interaction

between both networks. The literature review has provide an insight of the integrated

QoS components facilitating seamless interaction between both networks. Therefore, an

integrated QoS framework is envisioned, that also operates on the IoT access point that

supports the different QoS mechanisms used to manage the hetereogenous data within

WSNs which are connected to the Internet.

A service differentiation-based QoS framework is proposed in handling various level of

real-time traffic and delay tolerant traffic within the sensor network. The proposed

ADHERE QoS framework is encompassed by two major components. The first

component of the framework is a service differentiation-based QoS mechanism to

124

manage heterogeneous data traffic. In the proposed model, separate queues are used for

each type of traffic classes. Secondly, a prioritized buffer eviction policy is proposed to

support different types of traffic classes, namely real-time traffic classes with and

without reliability constraints, and multiple priorities delay-tolerant traffic classes.

The network modelling on Riverbed Modeler simulation indicates the ADHERE model

system performance and provides a QoS-based design guideline for an actual WSN-

Internet integration system. Several design parameters have been discussed and

implemented in the experiment case studies. The network model was tested under

several design parameters; namely, traffic distribution, buffer size, traffic arrival rate,

traffic service rate and WSN node density. The performance parameters analysed are

queuing delay, packet drop, buffer usage and delivery rate. Results show that the

varying timeliness and reliability QoS requirements of RT and DT traffic can be met

with the ADHERE QoS concept. Our findings show that the service differentiation

among traffic and estimation of sufficient buffer size can accommodate the RT traffic

timeliness and DT traffic reliability QoS requirements. Particularly, the low delay

requirement of RT traffic was met through sufficient bandwidth allocation. In addition,

the higher delivery rate requirement of DT traffic was achieved by using the ADHERE

estimation of sufficient buffer size.

The learning activities through neural network provide a comprehensive validation to

the proposed AQoS algorithm. The dropping in error rate indicates that the training has

matured gradually. It is expected that a WSN with heterogeneous data which also

involve traffic dynamic will evolve over time and introduce complexity to the system as

the network grows in size. Additional types of sensor data may also be needed to

accommodate the WSN application’s requirements. Therefore, the learning capabilities

in ADHERE can facilitate in optimising the QoS framework’s performance by

accommodating the QoS requirements of the network through the unpredictable traffic

dynamics and when complex network behaviour takes place.

Finally, the ADHERE QoS model is implemented as a use case on a physical testbed.

The experimentation serves as a means of verification and validation to the computer

simulation environment. A conceptual organization targeting AQoS is also presented in

this thesis. The architecture offers a system for interactions between the behaviour of a

physical sensor network (PSN) and the necessary analysis in a virtual remote

environment. The main contribution of the architecture is that it is capable of

125

identifying the required adjustment for the PSN in order to enhance the QoS

performance of the WSN applications. The concept of virtualization has also been

presented in the implementation activities and the performance of both PSN and

computer simulation under the QoS model has been distinguished. The virtualization

has been demonstrated as the network performance shows similarity between the

developed model in the simulation and the PSN experiment.

In the viewpoint of the implications of system deployments, we advocate that designing

and evaluating ADHERE QoS model for an IoT-based WSN addresses the requirements

for an adaptive WSN network performance matrix, which follows the demands of traffic

dynamics in numerous IoT-WSN applications. The implementation of the QoS model

on a physical testbed architecture indicates the potentials for future experimentation

involving custom adaptive QoS parameters and real-time analysis of network

performance. System planners would to be able to select relevant QoS parameters for

certain application scenarios to evaluate the heterogeneous traffic performance as well

as seamlessly accommodating the QoS requirements through the learning capability.

8.2 Future Work and Recommendation

Several future work has been identified from this research study. Firstly, further

activities involving modelling and analysing a delay tolerant network (DTN) for WSNs

integration can be carried out. The main activity may also include the validation and

verification of QoS model under real-setting and open federated WSN testbeds [2, 105],

in order to test the QoS model for interconnection of multiple WSNs. In this activity the

influence of Internet propagation, under various number of router hops or

intercontinental distance can be of interest.

In this research, a single-hopping network is considered. However, there are many WSN

applications where multi-hop is involved. Therefore, another future work to be

considered is to have more involved cases with a multi-hop network model. For this

purpose, the queuing model components, namely the approximation of delay bound and

buffer dimensioning will need to be revised to achieve a more suitable model which is

suitable for multi-hop environment. In addition, the queuing model M/M/1/K, M/D/1

and M/G/1 can be considered as they correspond to finite buffers, and operate on fixed

or generally distributed packet lengths.

126

Another aspect of future work recommendation is related to the techniques for

interoperability among the system components, namely PSN and a remote database,

virtual sensor network (VSN), QoS provisioning unit, and Contiki OS for network

reconfiguration presented in Chapter 7. With the encouraging preliminary outcomes

between pairing components, the testbed architecture can be used as a test environment

for future experimentation involving custom AQoS parameters and real-time analysis

of network performance. The co-simulation concept between network simulators and

MATLAB is viable and this opens up more future research possibilities when more

complexity takes place at the business intelligence level. Future work may include

generating incremental outcomes from the modular organization to achieve a

completely automated system. This model is well-suited to delay-tolerant applications

such as this research’s testbed- acquisition-system. In addition, the system may be

tested under other several design parameters such as WSN node density, traffic

distribution, network dimension, gateway capabilities and integration standards.

There are several future works identified from the neural network activities. For

instance, through the data collection of the learning cycles and events, the information

can be organised and deposited into a data warehousing architecture [106, 107]. This

will provide a repository of the learning experiences, through organisations of network

characteristic and related adjustments parameters adaptation to network dynamics.

Furthermore, as the information could be used to predict the future QoS parameter as

the system evolves, the unsupervised learning tool may also be used for controlling a

physical sensor cloud in a virtualized environment as described in Chapter 5. This

approach will also overcome the repetition of adjustment calculation for an adaptive

QoS model like ADHERE, hence will contribute improvement to the latency of a

virtualization system environment. Another potential work is to study the effect of using

neural networks in an adaptive QoS from the application perspective. For example, an

application that requires high resolution of sensor measurements will call for a

sufficient sampling rate. In this perspective, the application’s performance is influenced

by the quality of obtained data; hence an adaptive feature which controls the traffic drop

may give significant improvement to the network performance.

127

References

[1] S. Ezdiani and A. Al-Anbuky, "Modelling the integrated QoS for wireless sensor
networks with heterogeneous data traffic," Open Journal of Internet of Things
(OJIOT), vol. 1, 2015.

[2] S. E. S. N. Azlan and A. Al-Anbuky, "Quality of Service Modelling for
Federated Wireless Sensor Network Testbed Gateways," in Proc. of 5th Int.
Conf. on Commun., Theory, Reliability, and Quality of Service (CTRQ 2012),
Chamonix/ Mont Blanc, France, 2012, pp. 14-18.

[3] S. Ezdiani, I. S. Acharyya, S. Sivakumar, and A. Al-Anbuky, "An IoT
environment for WSN adaptive QoS," in Proc. of IEEE Int. Conf. on Data
Science and Data Intensive Systems, 2015, pp. 586-593.

[4] S. E. Syed Nor Azlan, I. S. Acharyya, S. Sivakumar, and A. Al-Anbuky, "An
architectural concept for sensor cloud QoSaaS testbed," in 6th Workshop on
Real World Wireless Sensor Networks (RealWSN 2015), Seoul, Republic of
Korea, 2015.

[5] S. Ezdiani and A. Al-Anbuky, "Integrating WSN with the Internet: QoS
Analysis and modeling for heterogeneous data traffic," presented at the Wireless
Telecommunication Symposium (WTS 2014), Washington DC, 2014.

[6] S. Ezdiani, A. Indrajit S, S. Sivakumar, and A. Al-Anbuky, "Wireless Sensor
Network Softwarization: Towards WSN Adaptive QoS," IEEE Internet of
Things Journal, vol. 4, pp. 1517 - 1527, 2017.

[7] L. Atzori, A. Iera, and G. Morabito, "The Internet of Things: A Survey,"
Computer Networks, vol. 54, pp. 2787-2805, 2010.

[8] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of Things (IoT):
A vision, architectural elements, and future directions," Future Generation
Computer Systems, vol. 29, pp. 1645-1660, 2013.

[9] N. Mitton, S. Papavassiliou, A. Puliafito, and K. S. Trivedi, "Combining cloud
and sensors in a smart city environment," EURASIP Journal on Wireless
Commun. and Networking, vol. 2012, pp. 1-10, 2012.

[10] L. Wu, J. Riihijarvi, and P. Mahonen, "A modular wireless sensor network
gateway design," in Proc. of Int. Conf. on Commun. and Networking in China
(ChinaCom 2007), Shanghai, China, 2007.

[11] L. Shu, X. Wu, H. Xu, J. Yang, C. Jinsung, and L. Sungyoung, "Connecting
heterogeneous sensor networks with IP based wire/wireless networks," in Proc.
of the 4th IEEE Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems, 2006 and the 2006 2nd Int. Workshop on Collaborative
Computing, Integration, and Assurance (SEUS 2006/WCCIA 2006) p. 6 pp.

[12] K. Fall, "A Delay-Tolerant Network Architecture for Challenged Internets," in
Proc. of 2003 Conf. on Applications, Technologies, Architectures and Protocols
for Comput. Commun. (SIGCOMM 2003), Karlsruhe, Germany, 2003, pp. 27-
34.

[13] P. A. C. d. S. Neves and J. J. P. C. Rodrigues, "Internet Protocol over Wireless
Sensor Networks, from Myth to Reality," Journal of Communications, vol. 5,
pp. 189-196, March 2010.

[14] L. Shu, X. Hui, X. Wu, L. Zhang, C. Jinsung, and L. Sungyoung, "VIP Bridge:
Integrating several sensor networks into one virtual sensor network," in Proc. of
Int. Conf. on Internet Surveillance and Protection (ICISP '06), Côte d'Azur,
France, 2006, pp. 2-2.

128

[15] C. Alcaraz, P. Najera, J. Lopez, and R. Roman, "Wireless sensor networks and
the internet of things: Do we need a complete integration?," in 1st Int. Workshop
on the security of the Internet of Things (SecIoT’10), 2010.

[16] M.-A. Nef, S. Karagiorgou, G. I. Stamoulis, and P. K. Kikiras, "Supporting
service differentiation in wireless sensor networks," in Proc. of the 15th
Panhellenic Conf. on Informatics (PCI 2011), 2011, pp. 127-133.

[17] M.-A. Nef, L. Perlepes, S. Karagiorgou, G. I. Stamoulis, and P. K. Kikiras,
"Enabling QoS in the Internet of Things," in Proc. 5th Int. Conf. Commun.,
Theory, Reliability, and Quality of Service (CTRQ 2012), Chamonix/ Mont
Blanc, France, 2012, pp. 33-38.

[18] P. Porambage, C. Schmitt, P. Kumar, A. Gurtov, and M. Ylianttila, "PAuthKey:
A pervasive authentication protocol and key establishment scheme for wireless
sensor networks in distributed IoT applications," International Journal of
Distributed Sensor Networks, vol. 10, p. 14, 2014.

[19] Z. Liang and C. Han-Chieh, "Multimedia traffic security architecture for the
internet of things," IEEE Network, vol. 25, pp. 35-40, 2011.

[20] J. Jin, J. Gubbi, T. Luo, and M. Palaniswami, "Network architecture and QoS
issues in the Internet of Things for a smart city," in Proc. Int. Symp. Commun.
and Inf. Technol. (ISCIT), 2012, pp. 956-961.

[21] B. Bhuyan, H. K. D. Sarma, N. Sarma, A. Kar, and R. Mall, "Quality of Service
(QoS) provisions in wireless sensor networks and related challenges," Wireless
Sensor Network, vol. 2, pp. 861-868, November 2010.

[22] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, "A survey on wireless
multimedia sensor networks," Computer Networks, vol. 51, pp. 921-960, 2007.

[23] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, et al.,
"CarTel: A distributed mobile sensor computing system," in Proc. 4th Int. Conf.
on Embedded Networked Sensor Systems (SenSys'06), Colorado, USA, 2006, pp.
125-138.

[24] E. Felemban, C.-G. Lee, E. Ekici, R. Boder, and S. Vural, "Probabilistic QoS
guarantee in reliability and timeliness domains in wireless sensor networks," in
Proc. of 24th Annual Joint Conf. of the IEEE Computer and Commun. Societies
(INFOCOM 2005), Miami, USA, 2005, pp. 2646-2657.

[25] H. Liu, A. Srinivasan, K. Whitehouse, and J. A. Stankovic, "Melange:
Supporting heterogeneous QoS requirements in delay tolerant sensor networks,"
in Proc. of 7th Int. Conf. on Networked Sensing Systems (INSS), Kassel,
Germany, 2010, pp. 93-96.

[26] J.-F. Martinez, A.-B. Garcia, I. Corredor, L. Lopez, V. Hernandez, and A.
Dasilva, "Modelling QoS for wireless sensor networks," in IFIP International
Federation for Information Processing. vol. 248, Wireless Sensor and Actor
Networks ed Boston: Springer, 2007, pp. 143-154.

[27] N. A. Alrajeh, S. Khan, and B. Shams, "Intrusion detection systems in wireless
sensor networks: A review," International Journal of Distributed Sensor
Networks, vol. 9, 2013.

[28] M. H. Yaghmaee and D. A. Adjeroh, "Priority-based rate control for service
differentiation and congestion control in wireless multimedia sensor networks,"
Computer Networks, vol. 53, pp. 1798-1811, 2009.

[29] D. Chen and P. K. Varshney, "QoS support in wireless sensor networks: A
survey " in Proc. of Intl. Conf. on Wireless Networks (ICWN '04), Las Vegas,
Nevada, USA, 2004.

[30] Y. Li, C. S. Chen, Y.-Q. Song, and Z. Wang, "Real-time QoS support in wireless
sensor networks: A survey," in Proc. of 7th IFAC Intl. Conf. on Fieldbuses &
Networks in Industrial & Embedded Systems (FeT 2007), France, 2007.

129

[31] B. Braden, D. Clark, and S. Shenker, "Integrated service in the Internet
architecture: An overview, RFC 1633," June 1994.

[32] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, "An
architecture for differentiated services, RFC 2475," December 1998.

[33] A. Ganz, Z. Ganz, and K. Wongthavarawat, Multimedia Wireless Networks:
Technologies, Standards and QoS. Upper Saddle River, NJ: Prentice Hall PTR,
2004.

[34] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, "A Framework for QoS-
based Routing in the Internet, RFC 2386," 1998.

[35] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, "A taxanomy of wireless
micro-sensor network communication models " ACM Mobile Computing and
Communication Review (MC2R), June 2002.

[36] W. Su and B. Almaharmeh, "QoS Integration of the Internet and wireless sensor
network," WSEAS Transaction on Computers, vol. 7, pp. 253-258, April 2008.

[37] T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos, and K. Kim,
"TinyREST- a protocol for integrating sensor networks into the Internet," in
Proc. of REALWSN, 2005.

[38] M. R. Kosanovic and M. K. Stojcev, "Implementation of TCP/IP protocols in
wireless sensor networks," in XIII Int. Scientific Conf. on Info., Comm. and
Energy Systems and Technologies (ICESR 2007), Ohrid, Macedonia, 2007, pp.
143 - 146.

[39] M. Marchese, QoS Over Heterogeneous Networks: Wiley.com, 2007.
[40] M. Marchese and M. Mongelli, "Vertical QoS mapping over wireless

interfaces," IEEE Wireless Communications, vol. 16, pp. 37-43, 2009.
[41] Y. L. Morgan and T. Kunz, "A proposal for an ad-hoc network QoS gateway,"

in Proc. of the IEEE Int. Conf. on Wireless and Mobile Computing, Networking
and Commun. (WiMod'05), Montreal, Canada, 2005, pp. 221-228.

[42] Y. L. Morgan and T. Kunz, "A design framework for wireless MANET QoS
gateway," in Proc. of 6th Int. Conf. on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing and 1st ACIS Int.
Wksp. on Self-Assembling Wireless Networks (SNPD/SAWN'05) Towson, USA,
2005.

[43] B. Nefzi and Y.-Q. Song, "QoS for wireless sensor networks: Enabling service
differentiation at the MAC sub-layer using CoSenS," Ad Hoc Networks, vol. 10,
pp. 680-695, 2012.

[44] F. Safaei, H. Mahzoon, and M. S. Talebi, "A simple priority-based scheme for
delay-sensitive data transmission over wireless sensor networks," International
Journal of Wireless & Mobile Networks, vol. 4, 2012.

[45] S. Bhatnagar, B. Deb, and B. Nath, "Service differentiation in sensor networks,"
in Proc. of 4th Intl. Symp. on Wireless Personal Multimedia Commun., 2001.

[46] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, and T. He, "RAP: A real-
time communication architecture for large-scale wireless sensor networks," in
Proc. of 8th IEEE Real-Time and Embedded Technology and Applications
Symp., 2002, pp. 55-66.

[47] N. Jain, D. K. Madathil, and D. P. Agrawal, "Exploiting multi-path routing to
achieve service differentiation in sensor networks," in Proc. of 11th IEEE Intl.
Conf. on Networks (ICON 2003), Sydney, Australia, 2003.

[48] K. Akkaya and M. Younis, "An energy-aware QoS routing protocol for wireless
sensor networks," in Proc. of 23rd Intl. Conf. on Distributed Computing Systems
Workshops, 2003, pp. 710-715.

130

[49] T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher, "SPEED: A stateless protocol
for real-time communication in sensor networks," in Proc. of 23rd Intl. Conf. on
Distributed Computing Systems (ICDCS 2003), 2003, pp. 46-55.

[50] W. L. Tan, O. Yue, and W. C. Lau, "Performance vvaluation of differentiated
services mechanisms over wireless sensor networks," in Proc. of IEEE 64th
Vehicular Technology Conf. (VTC-2006 Fall) 2006, pp. 1-5.

[51] M. H. Yaghmaee and D. Adjeroh, "A model for differentiated service support in
wireless multimedia sensor networks," in Proc. of 17th Int. Conf. on Comput.
Commun. and Networks (ICCCN 2008) India, 2008, pp. 1-6.

[52] E. Felemban, C.-G. Lee, and E. Ekici, "MMSPEED: Multipath Multi-SPEED
Protocol for QoS guarantee of reliability and timeliness in wireless sensor
networks," IEEE Transactions on Mobile Computing, vol. 5, pp. 738-754, 2006.

[53] P. McDonald, D. Geraghty, I. Humphreys, S. Farrell, and V. Cahill, "Sensor
network with delay tolerance (SeNDT)," in Proc. of 16th Int. Conf. on Comput.
Commun. and Networks (ICCCN 2007), Hawaii, USA, 2007, pp. 1333-1338.

[54] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
"Energy-efficient computing for wildlife tracking: Design tradeoffs and early
experiences with ZebraNet," in ACM Sigplan Notices, 2002, pp. 96-107.

[55] A. Vahdat and D. Becker, "Epidemic routing for partially connected ad hoc
networks," Technical Report CS-200006, Duke University,2000.

[56] A. Lindgren, A. Doria, and O. Schelén, "Probabilistic routing in intermittently
connected networks," ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 7, pp. 19-20, 2003.

[57] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, "Spray and Wait: An
efficient routing scheme for intermittently connected mobile networks," in Proc.
of the 2005 ACM SIGCOMM Workshop on Delay Tolerant Networking
(SIGCOMM 2005), Philadelphia, USA, 2005, pp. 252-259.

[58] T. Melodia and I. F. Akyildiz, "Research challenges for wireless multimedia
sensor networks," in Distributed Video Sensor Networks, ed: Springer, 2011, pp.
233-246.

[59] A. Al-Sawaai, I. Awan, and R. Fretwell, "Analysis of the weighted fair queuing
system with two classes of customers with finite buffer," in Proc. of Int. Conf.
on Advanced Information Networking and Applications Workshops (WAINA
'09), 2009, pp. 218-223.

[60] B. Hull, K. Jamieson, and H. Balakrishnan, "Mitigating congestion in wireless
sensor networks," in Proc. of the 2nd Int. Conf. on Embedded Networked Sensor
Systems, 2004, pp. 134-147.

[61] M. A. Kafi, D. Djenouri, J. Ben-Othman, and N. Badache, "Congestion control
protocols in wireless sensor networks: A survey," IEEE Communications
Surveys & Tutorials, vol. 16, pp. 1369-1390, 2014.

[62] C. T. Ee and R. Bajcsy, "Congestion control and fairness for many-to-one
routing in sensor networks," in Proc. of the 2nd Int. Conf. on Embedded
Networked Sensor Systems, 2004, pp. 148-161.

[63] C. Wang, B. Li, K. Sohraby, M. Daneshmand, and Y. Hu, "Upstream congestion
control in wireless sensor networks through cross-layer optimization," IEEE
Journal on Selected Areas in Communications, vol. 25, pp. 786-795, 2007.

[64] M. H. Yaghmaee and D. Adjeroh, "A new priority based congestion control
protocol for wireless multimedia sensor networks," in Proc. of 2008 Int. Symp.
on World of Wireless, Mobile and Multimedia Networks (WoWMoM 2008),
2008, pp. 1-8.

131

[65] C. Wang, K. Sohraby, V. Lawrence, B. Li, and Y. Hu, "Priority-based
congestion control in wireless sensor networks," in Proc. of IEEE Int. Conf. on
Sensor Networks, Ubiquitous, and Trustworthy Computing, 2006, p. 8.

[66] Y. G. Iyer, S. Gandham, and S. Venkatesan, "STCP: a generic transport layer
protocol for wireless sensor networks," in Proc. of 14th Int. Conf. on Computer
Comm. and Networks (ICCCN) 2005, pp. 449-454.

[67] Y.-L. Chen and H.-P. Lai, "A fuzzy logical controller for traffic load parameter
with priority-based rate in wireless multimedia sensor networks," Applied Soft
Computing, vol. 14, Part C, pp. 594-602, 2014.

[68] M. A. Kafi, D. Djenouri, J. Ben-Othman, and N. Badache, "Congestion Control
Protocols in Wireless Sensor Networks: A Survey," Communications Surveys &
Tutorials, IEEE, vol. 16, pp. 1369-1390, 2014.

[69] S. A. Madani, J. Kazmi, and S. Mahlknecht, "Wireless sensor networks:
modeling and simulation," ed: Vienna University of Technology, Vienna,
Austria, 2010.

[70] A. Sobeih, J. C. Hou, L.-C. Kung, N. Li, H. Zhang, W.-P. Chen, et al., "J-Sim: a
simulation and emulation environment for wireless sensor networks," IEEE
Wireless Communications, vol. 13, pp. 104-119, 2006.

[71] (July 2018). The Network Simulator - ns-2. Available:
http://www.isi.edu/nsnam/ns/

[72] J.-M. Huang, C.-Y. Li, and K.-H. Chen, "TALONet: A power-efficient grid-
based congestion avoidance scheme using multi-detouring technique in wireless
sensor networks," in Wireless Telecommunications Symposium (WTS 2009),
2009, pp. 1-6.

[73] D. Lee and K. Chung, "Adaptive duty-cycle based congestion control for home
automation networks," IEEE Transactions on Consumer Electronics, vol. 56,
2010.

[74] M. A. Razzaque and C. S. Hong, "Congestion detection and control algorithms
for multipath data forwarding in sensor networks," in Proc. of 11th Int. Conf. on
Advanced Communication Technology (ICACT 2009), 2009, pp. 651-653.

[75] V. Naoumov and T. Gross, "Simulation of large ad hoc networks," in Proc. of
the 6th ACM Int. Workshop on Modeling Analysis and Simulation of Wireless
and Mobile Systems, 2003, pp. 50-57.

[76] X. Zeng, R. Bagrodia, and M. Gerla, "GloMoSim: a library for parallel
simulation of large-scale wireless networks," in Proc. of 12th Workshop on
Parallel and Distributed Simulation (PADS 98), 1998, pp. 154-161.

[77] E. Egea-Lopez, J. Vales-Alonso, A. S. Martinez-Sala, P. Pavon-Marino, and J.
García-Haro, "Simulation tools for wireless sensor networks," in Proc. of
Summer Simulation Multiconference (SPECTS), 2005, pp. 2-9.

[78] M. Varshney, D. Xu, M. Srivastava, and R. Bagrodia, "sQualNet: A scalable
simulation and emulation environment for sensor networks," in Proc. of the Int.
Conf. on Info. Processing in Sensor Networks, New York, USA, 2007, p. 24.

[79] J. Y. Teo, Y. Ha, and C. K. Tham, "Interference-minimized multipath routing
with congestion control in wireless sensor network for high-rate streaming,"
IEEE Transactions on Mobile Computing, vol. 7, pp. 1124-1137, 2008.

[80] A. Varga and R. Hornig, "An overview of the OMNeT++ simulation
environment," in Proc. of the 1st Int. Conf. on Simulation Tools and Techniques
for Comm., Networks and Systems, 2008, p. 60.

[81] E. Egea-Lopez, J. Vales-Alonso, A. Martinez-Sala, and P. Pavon-Marino,
"Simulation scalability issues in wireless sensor networks," IEEE
Communications Magazine, 2006.

132

[82] C. Mallanda, A. Suri, V. Kunchakarra, S. Iyengar, R. Kannan, A. Durresi, et al.,
"Simulating wireless sensor networks with OMNET++," submitted to IEEE
Computer, 2005.

[83] B. Zheng and M. Atiquzzaman, "Study of active queue management using
OPNET."

[84] D. Akbaş and H. Gümüşkaya, "Real and OPNET modeling and analysis of an
enterprise network and its security structures," Procedia Computer Science, vol.
3, pp. 1038-1042, 2011.

[85] S. Sivakumar, "Energy efficient opportunistic connectivity for wireless sensor
network," Doctor of Philosophy, School of Engineering, Auckland University of
Technology, 2013.

[86] G. Amoussou, B. Agba, Z. Dziong, M. Kadoch, and F. Gagnon, "Performances
analysis of mobile ad hoc routing protocols under realistic mobility and power
models," in OPNETWORK, 2006.

[87] R. Rajkamal and P. V. Ranjan, "Packet classification for network processors in
WSN traffic using ANN," in Proc. of 6th IEEE Int. Conf. on Industrial
Informatics (INDIN 2008), 2008, pp. 707-710.

[88] K. Garg, A. Förster, D. Puccinelli, and S. Giordano, "Towards realistic and
credible wireless sensor network evaluation," in Ad Hoc Networks. vol. 89, D.
Simplot-Ryl, M. Dias de Amorim, S. Giordano, and A. Helmy, Eds., ed:
Springer Berlin Heidelberg, 2012, pp. 49-64.

[89] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T. Razafindralambo.
(November 2011) A survey on facilities for experimental Internet of Things
research. IEEE Communications Magazine. 58 - 66.

[90] (July 2018). SeNSe Project - QoS Federated Sensor Networks over the Internet.
Available: http://sense.aut.ac.nz/CC2538_test/plotgraphs_comparison31.php

[91] A. Barbato, M. Barrano, A. Capone, and N. Figiani, "Resource oriented and
energy efficient routing protocol for IPv6 wireless sensor networks," in IEEE
Online Conference on Green Communications (GreenCom), 2013, pp. 163-168.

[92] (July 2018). Santander on Fire - Future Internet Research & Experimentation.
Available: www.smartsantander.eu

[93] R. Girau, S. Martis, and L. Atzori, "Lysis: a platform for IoT distributed
applications over socially connected objects," IEEE Internet of Things Journal,
vol. PP, pp. 1-1, 2016.

[94] (July 2018). The iCore Project. Available: http://www.iot-icore.eu
[95] A. K. Parekh and R. G. Gallager, "A generalized processor sharing approach to

flow control in integrated services networks: the single-node case," IEEE/ACM
Transactions on Networking, vol. 1, pp. 344-357, 1993.

[96] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks vol. 2: Prentice-
Hall International New Jersey, 1992.

[97] J. Ben-Othman and B. Yahya, "Energy efficient and QoS based routing protocol
for wireless sensor networks," Journal of Parallel and Distributed Computing,
vol. 70, pp. 849-857, 2010.

[98] M. Chopde, K. Ramteke, and S. Kamble, "Probabilistic model for intrusion
detection in wireless sensor network," Int. J. Commun. Netw. Secur.(IJCNS),
vol. 1, pp. 19-23, 2011.

[99] S. Floyd and V. Jacobson, "Random early detection gateways for congestion
avoidance," Networking, IEEE/ACM Transactions on, vol. 1, pp. 397-413, 1993.

[100] Y. Li and L. E. Parker, "Intruder detection using a wireless sensor network with
an intelligent mobile robot response," in IEEE Southeastcon, 2008, pp. 37-42.

133

[101] J. Liu, Y. Zhang, Y. Zhou, D. Zhang, and H. Liu, "Aggressive resource
provisioning for ensuring QoS in virtualized environments," IEEE Transactions
on Cloud Computing, vol. 3, pp. 119-131, 2015.

[102] I. Khan, R. Jafrin, F. Z. Errounda, R. Glitho, N. Crespi, M. Morrow, et al., "A
data annotation architecture for semantic applications in virtualized wireless
sensor networks," arXiv preprint arXiv:1501.07139, 2015.

[103] S. Cirani, L. Davoli, G. Ferrari, L. R, x00E, one, et al., "A scalable and self-
configuring architecture for service discovery in the Internet of Things," IEEE
Internet of Things Journal, vol. 1, pp. 508-521, 2014.

[104] A. Dunkels, B. Grönvall, and T. Voigt, "Contiki-a lightweight and flexible
operating system for tiny networked sensors," in 29th Annual IEEE Int. Conf. on
Local Computer Networks, 2004, pp. 455-462.

[105] D. Bimschas, O. Kleine, and D. Pfisterer, "Debugging the Internet of Things: A
6LoWPAN/CoAP testbed infrastructure," in Ad-hoc, Mobile, and Wireless
Networks, ed: Springer, 2012, pp. 207-220.

[106] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos,
"Wireless sensor network virtualization: A survey," IEEE Communications
Surveys & Tutorials, vol. 18, pp. 553-576, 2016.

[107] M. Rifaie, K. Kianmehr, R. Alhajj, and M. J. Ridley, "Data warehouse
architecture and design," in Proc. of IEEE Int. Conf. on Info. Reuse and
Integration (IRI 2008), 2008, pp. 58-63.

