

Multi-Metric Prediction
of Software Build

Outcomes

Jacquiline Alannah Finlay

A thesis submitted to Auckland University of Technology in partial fulfilment of the

degree of Doctor of Philosophy (PhD).

2012

School of Computing and Mathematical Sciences

Primary Supervisor: Dr. Andy M. Connor

Second Supervisor: Dr. Russel Pears

Third Supervisor: Dr. Jacqueline Whalley

i

ATTESTATION OF AUTHORSHIP

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person (except where explicitly defined in the acknowledgements), nor material which

to a substantial extent has been submitted for the award of any other degree or diploma

of a university or other institution of higher learning.

Signed:

Jacquiline Alannah Finlay

1st March 2013

ii

ACKNOWLEDGEMENTS

Firstly I would like to thank all the people that have supported me on my journey. I owe

thanks to so many!

I am very thankful for the endless encouragement, knowledge and guidance provided by

my supervisors Dr. Andy Connor, Dr. Russel Pears and Dr. Jacqui Whalley.

Andy, thank you so much for your insights, creativity, support and advice. I have had

much enjoyment in sharing ideas and thoughts with you. Your knowledge in the field of

software engineering astounding. Russel, your expertise in data mining is second to

none. Thank you for sharing your skills and being so patient with me. Jacqui, thank you

for being so supportive, providing advice when I have needed it most and being a

wonderful role model for me.

It has been an honour to have you all as my supervisors.

I would like to thank all the staff, the old and new, in the School of Computing and

Mathematical Sciences at AUT. I would also like to thank the people at the Software

Engineering Research Lab (SERL), for taking me under their wing and providing a

excellent environment for learning and research. Thank you to Gordon G., Ewing C.

and Ramon L., for your heart warming conversations and IT support. In addition to this

I am thankful for the teaching assistant experience I have had at AUT. I am also very

grateful for the financial support provided from the Build IT and the AUT fees

scholarships.

I would also like to thank my primary supervisor of my honours dissertation, Dr. Terri

Lomax. I would have never envisioned travelling down this path if it was not for you.

Finally I would like to thank my family for all their love and support. Thank you to my

parents for their endless love and encouragement. Thank you to my mother, Denise, for

giving me strength and being my light. Many thanks to my supportive and loving

fiancé, Adam Althouse.

iii

ABSTRACT

This thesis details the design, implementation and evaluation of software prediction

models designed to address some of the challenges associated with the identification

and mitigation of the risks associated with a software development project. Being able

to predict potential failures during a software development project is critical to project

success and has been the subject of decades of research. Despite the years of research

and its importance to the software domain there is much about software project success

and failure that remains unknown. This is partially due to the limited software project

data available to researchers and the challenges of capturing the relationships between

various software artifacts. It is also partially due to the representation, misinterpretation

and lack of data captured and made available within existing software projects. As a

result there is very little reported research where an attempt has been made to combine

software metrics and social network metrics in order to predict software success and

failure.

Software metrics extracted from the source code files of a system during its

development are employed to create novel prediction models of software success and

failure. The social component of a globally distributed software development team was

also investigated using social network metrics. These social network metrics were

directly mapped to software metrics in order to predict software build outcomes. This

thesis presents the results of the first extensive source code analysis of a live software

project (IBMs Jazz repository) using a range of traditional data mining methods. A

novel data mining approach is reported in which a combination of both software and

social network metrics are used to create software build prediction models.

Additionally, data stream mining techniques were used to construct models for software

build prediction. It has been found that data stream mining offers a powerful solution

for monitoring the evolution of source code metrics and social network metrics over

time.

It is found that using aggregated software metrics and social network metrics it is more

difficult to predict software build failure than build success. The results also indicated

that a combination of software metrics and social network metrics do not enhance

prediction accuracy. However, when used in parallel they potentially provide an

effective decision making tool to avoid potential failure.

iv

TABLE OF CONTENTS

1 INTRODUCTION AND OUTLINE ... 1

1.1 RESEARCH OBJECTIVES ... 4

1.1.1 Building a Predictive Model .. 5

1.1.2 Enhancing the Predictive Model ... 6

1.1.3 Evolving a Predictive Model over Time ... 7

1.2 OVERVIEW OF RESEARCH CONTRIBUTION .. 7

1.3 THESIS ORGANISATION... 8

1.4 CHAPTER SUMMARY .. 8

2 BACKGROUND AND MOTIVATION ... 9

2.1 INTRODUCTION ... 9

2.2 EMPIRICAL SOFTWARE ENGINEERING .. 11

2.2.1 Software Metrics .. 12

2.2.2 Mining Software Repositories (MSR) .. 16

2.3 GLOBAL SOFTWARE DEVELOPMENT .. 20

2.3.1 Social Networks .. 21

2.4 RATIONAL TEAM CONCERT (JAZZ) .. 25

2.4.1 Mining the Jazz Repository ... 25

2.5 DATA MINING TECHNIQUES .. 30

2.5.1 Data Pre-processing ... 31

2.5.2 Feature Selection .. 33

2.5.3 Data Mining Methods .. 37

2.5.4 Synthetic Minority Over-sampling Technique ... 40

2.6 MINING DATA STREAMS .. 41

2.6.1 Pre-processing For Data Stream Mining ... 43

2.6.2 Data-Based Techniques .. 45

2.6.3 Distribution Changes in Data Streams .. 46

2.6.4 Data Stream Mining Methods .. 47

2.6.5 Hoeffding Tree .. 48

2.6.6 K-Means Clustering .. 49

2.6.7 Mining Data Streams: New challenges... 50

2.7 CHAPTER SUMMARY .. 51

3 RESEARCH AND EXPERIMENTAL DESIGN ...53

3.1 DATA MINING SOFTWARE REPOSITORIES ... 57

3.2 EXPERIMENTAL DESIGN .. 59

3.3 BUILD PREDICTION WITH SOFTWARE METRICS .. 61

v

3.3.1 Extracting Software Artifacts ... 62

3.3.2 Software Metric Aggregations ... 70

3.4 DATA MINING METHODS ... 73

3.5 INCREASING PREDICTION ACCURACY OF ALL FAILED BUILDS .. 77

3.5.1 Frequency of Features Selection ... 78

3.5.2 Applying After State Features To Before State Data Set .. 78

3.5.3 Application of SMOTE ... 78

3.6 BUILD PREDICTION USING SOCIAL METRICS ... 79

3.6.1 Extracting Social Artifacts... 80

3.6.2 Social Network Metric Aggregations .. 85

3.7 MINING TIME-CHANGING DATA STREAMS .. 87

3.8 CHAPTER SUMMARY .. 89

4 EXPERIMENTAL RESULTS ...90

4.1 INITIAL SOFTWARE METRIC DATA MINING EXPERIMENT RESULTS... 92

4.2 BEFORE STATE RESULTS ... 93

4.2.1 Data set Performance ... 94

4.2.2 Feature Selection Performance .. 96

4.2.3 Classifier Performance .. 98

4.2.4 Best Performing Models for the Before State Metrics .. 99

4.3 AFTER STATE RESULTS ... 108

4.3.1 Data set Performance ... 109

4.3.2 Feature Selection Performance .. 111

4.3.3 Data Mining Performance .. 112

4.3.4 Best Performing Models for the After State Metrics .. 114

4.4 ENHANCING PERFORMANCE OF EXPERIMENTS .. 121

4.5 FREQUENCY OF FEATURES SELECTION FOR BEFORE STATE METRICS .. 122

4.5.1 Best Performing Model for the Before State .. 127

4.6 FREQUENCY OF FEATURES SELECTION FOR AFTER STATE METRICS .. 129

4.6.1 Best Performing Model for the After State ... 133

4.7 APPLYING AFTER STATE FEATURES TO BEFORE STATE DATA SET .. 136

4.7.1 Best Performing Models ... 138

4.8 APPLICATION OF SMOTE ... 141

4.8.1 Before State Data Sets .. 142

4.8.2 Best Performing Models for the Before State Metrics .. 144

4.8.3 After State Data Sets .. 147

4.8.4 Best Performing Models for the After State Metrics .. 150

4.8.5 After State Metrics Applied to Before State SMOTE Data Sets... 154

4.9 DATA MINING RESULTS FOR SOCIAL NETWORK METRICS .. 161

vi

4.10 DATA STREAM MINING RESULTS ... 164

4.10.1 Software Metrics as Evolving Data Streams .. 164

4.10.2 Communication Metrics as Evolving Data Streams ... 172

4.10.3 Software Metrics and Communication Metrics as Evolving Data Streams 179

4.10.4 Simulating Instances: Application of SMOTE ... 183

4.11 CHAPTER SUMMARY ... 195

5 DISCUSSION AND RESEARCH SUMMARY ... 196

5.1 INTRODUCTION ... 196

5.2 RESEARCH SUMMARY .. 196

5.3 ANALYSIS OF RESULTS .. 198

5.3.1 Data Mining Software Metrics ... 198

5.3.2 Enhancing Performance of Experiments ... 200

5.3.3 Data Mining Social Network Metrics .. 203

5.3.4 Data Stream Mining Software and Social Metrics.. 205

5.4 REAL WORLD APPLICATION... 207

5.5 GUIDELINES FOR DATA STREAM MINING ... 211

5.6 CHAPTER SUMMARY .. 212

6 CONCLUSIONS ... 214

6.1 LIMITATIONS AND THREATS TO VALIDITY ... 216

6.2 FUTURE WORK ... 218

6.2.1 Exploring other Software Repositories ... 218

6.2.2 Merging Software and Social Metrics .. 218

6.3 CHAPTER SUMMARY .. 224

APPENDICES ... 226

APPENDIX A: SOFTWARE METRICS ... 226

APPENDIX B: SOCIAL NETWORK METRICS ... 236

APPENDIX C: BEFORE STATE SOFTWARE METRICS RESULTS .. 237

APPENDIX D: AFTER STATE SOFTWARE METRICS RESULTS .. 237

APPENDIX E: FREQUENCY FEATURE SELECTION THRESHOLDS .. 237

Features Selected for the Before State: .. 237

Features Selected for the After State: ... 239

REFERENCES ... 241

vii

LIST OF FIGURES

FIGURE 1 SOFTWARE METRICS AS MULTIDIMENSIONAL DATA.. 5

FIGURE 2 SOCIAL METRICS AS MULTIDIMENSIONAL DATA ... 6

FIGURE 3 JAZZ REPOSITORY: CONTRIBUTORS, PROJECT AREA, TEAM AREAS AND WORK ITEMS 27

FIGURE 4 WORK ITEMS, CHANGE SETS AND SOFTWARE BUILDS (KWAN, ET AL., 2009) .. 28

FIGURE 5 DEVELOPER COLLABORATION OVER SOURCE CODE FILES FOR TWO CHANGE SETS (KWAN, ET AL., 2009) 29

FIGURE 6 ABSTRACT CONCEPT OF DSMS (STONEBRAKER, ET AL., 2005) ... 43

FIGURE 7 WINDOW UPDATE STRATEGIES (TAO, 2011) .. 45

FIGURE 8: THE RESEARCH VIA ARTIFACTS PROCESS (NGUYEN, ET AL., 2009) ... 55

FIGURE 9 OVERVIEW OF STEPS WITHIN THE KDD PROCESS .. 58

FIGURE 10 JAZZ API, CREATING A CONNECTION .. 62

FIGURE 11 NAVIGATING THE JAZZ API FOR RETRIEVING SOFTWARE BUILDS ... 64

FIGURE 12 NAVIGATING THE JAZZ API FOR RETRIEVING WORK ITEMS ... 68

FIGURE 13 NAVIGATING THE JAZZ API FOR RETRIEVING SOURCE CODE ... 70

FIGURE 14 SOFTWARE METRICS AS MULTIDIMENSIONAL DATA.. 77

FIGURE 15 SOCIAL METRICS AS MULTIDIMENSIONAL DATA ... 77

FIGURE 16 SOCIAL NETWORK EXAMPLE .. 84

FIGURE 17 SOCIAL METRICS INSTANCE SAMPLES (WOLF ET AL., 2009) ... 86

FIGURE 18 BEFORE STATE MINING RESULTS BY DATA SET .. 95

FIGURE 19 BEFORE STATE MINING RESULTS BY FEATURE SELECTION ... 97

FIGURE 20 BEFORE STATE MINING RESULTS BY MINING ALGORITHM ... 99

FIGURE 21 BEFORE STATE RESULTS: OVERALL CLASSIFICATION ACCURACY OF BUILDS VERSUS CLASSIFICATION FOR FAILED

BUILDS .. 100

FIGURE 22 RSA BEFORE STATE (CFSSUBST AND J48)... 102

FIGURE 23 MAX BEFORE STATE (INFOGAIN AND J48) .. 104

FIGURE 24 MAX BEFORE STATE (NO FEATURE SELECTION AND J48) .. 107

FIGURE 25 AFTER STATE MINING RESULTS BY DATA SET .. 110

FIGURE 26 AFTER STATE MINING RESULTS BY FEATURE SELECTION... 112

FIGURE 27 AFTER STATE MINING RESULTS BY MINING ALGORITHM ... 113

FIGURE 28 AFTER STATE RESULTS: OVERALL CLASSIFICATION ACCURACY OF BUILDS VERSUS CLASSIFICATION FOR FAILED

BUILDS .. 114

FIGURE 29 RSA AFTER STATE (CFSSUBST AND J48) .. 116

FIGURE 30 MAX AFTER STATE (NO FEATURE SELECTION AND J48) ... 118

FIGURE 31 MAX AFTER STATE (INFOGAIN AND J48) .. 119

FIGURE 32 BEFORE STATE METRIC FEATURE SELECTION FREQUENCY .. 123

FIGURE 33 BEFORE STATE FREQUENCY FEATURE SELECTION RESULTS BY MINING ALGORITHM 125

viii

FIGURE 34 BEFORE STATE MINING RESULTS BY FREQUENCY FEATURE SELECTION .. 126

FIGURE 35 BEFORE STATE MINING RESULTS FOR FREQUENCY SELECTION BY DATA SET... 126

FIGURE 36 MAX BEFORE STATE (FREQUENCY FEATURES > 3 AND J48) .. 128

FIGURE 37 AFTER STATE METRIC FEATURE SELECTION FREQUENCY .. 130

FIGURE 38 AFTER STATE FREQUENCY FEATURE SELECTION RESULTS BY MINING ALGORITHM 131

FIGURE 39 AFTER STATE MINING RESULTS FOR FREQUENCY SELECTION BY DATA SET .. 132

FIGURE 40 AFTER STATE MINING RESULTS BY FREQUENCY FEATURE SELECTION .. 133

FIGURE 41 MAX AFTER STATE (FREQUENCY FEATURES >0 AND J48) .. 135

FIGURE 42 AFTER STATE FEATURES APPLIED TO BEFORE STATE DATA BY MINING ALGORITHM 137

FIGURE 43 AFTER STATE FEATURES APPLIED TO BEFORE STATE DATA BY FEATURE SELECTION METHOD 137

FIGURE 44 AFTER STATE FEATURES APPLIED TO BEFORE STATE DATA BY DATA SET ... 138

FIGURE 45 FREQUENCY FEATURE THRESHOLD RESULTS: OVERALL CLASSIFICATION ACCURACY OF BUILDS VERSUS

CLASSIFICATION FOR FAILED BUILDS .. 139

FIGURE 46 J48 CLASSIFICATION TREE OF THE MAX AFTER STATE DATA SET, WITH BEFORE FREQUENCY FEATURES THAT ARE

GREATER THAN 3 ... 140

FIGURE 47 OVERALL CLASSIFICATION ACCURACIES USING SMOTE RESULTS FOR BEFORE STATE METRICS BY DATA SET ... 142

FIGURE 48 OVERALL CLASSIFICATION ACCURACIES USING SMOTE RESULTS FOR AFTER STATE METRICS BY FEATURE

SELECTION METHOD .. 143

FIGURE 49 OVERALL CLASSIFICATION ACCURACIES USING SMOTE RESULTS FOR BEFORE STATE METRICS BY MINING

ALGORITHM.. 144

FIGURE 50 J48 CLASSIFICATION TREE USING SUBSET EVALUATION ON THE RSA BEFORE STATE DATA SET WITH SMOTE AT

300% ... 146

FIGURE 51 OVERALL CLASSIFICATION ACCURACY USING SMOTE FOR AFTER STATE METRICS BY DATA SET 148

FIGURE 52 OVERALL CLASSIFICATION ACCURACY USING SMOTE FOR AFTER STATE METRICS BY FEATURE SELECTION 149

FIGURE 53 OVERALL CLASSIFICATION ACCURACIES USING SMOTE FOR AFTER STATE METRICS BY MINING ALGORITHM ... 150

FIGURE 54 CLASSIFICATION TREE OF SMOTE AT 500% ON THE RSA AFTER STATE DATA SET USING INFORMATION GAIN 153

FIGURE 55 OVERALL CLASSIFICATION ACCURACIES USING SMOTE WHEN APPLYING AFTER STATE FEATURES TO THE BEFORE

STATE BY MINING ALGORITHM ... 155

FIGURE 56 OVERALL CLASSIFICATION ACCURACIES USING SMOTE WHEN APPLYING AFTER STATE FEATURES TO THE BEFORE

STATE BY FEATURE SELECTION .. 156

FIGURE 57 OVERALL CLASSIFICATION ACCURACIES USING SMOTE WHEN APPLYING AFTER STATE FEATURES TO THE BEFORE

STATE BY FEATURE SELECTION .. 157

FIGURE 58 CLASSIFICATION TREE OF BEFORE STATE OF RSA DATA SET WITH 300% SMOTE USING AFTER STATE SUBSET

EVALUATION AND J48 CLASSIFIER ... 159

FIGURE 59 COMMUNICATION MINING RESULTS BY TIME INTERVALS ... 162

FIGURE 60 HOEFFDING TREE OVERALL CLASSIFICATION ACCURACY FOR RSA AFTER STATE ... 165

FIGURE 61 HOEFFDING TREE CLASSIFICATION ACCURACY FOR SUCCESSFUL BUILDS FOR RSA AFTER STATE..................... 166

FIGURE 62 HOEFFDING TREE SENSITIVITY MEASUREMENTS FOR SUCCESSFUL BUILDS FOR RSA AFTER STATE 166

FIGURE 63 HOEFFDING TREE CLASSIFICATION ACCURACY FOR FAILED BUILDS FOR RSA AFTER STATE 167

ix

FIGURE 64 HOEFFDING TREE SENSITIVITY MEASUREMENTS FOR FAILED BUILDS FOR RSA AFTER STATE 168

FIGURE 65 FINAL HOEFFDING TREE FOR AFTER STATE SOFTWARE METRICS ... 169

FIGURE 66 TRAJECTORIES OF THE AVERAGE NUMBER OF ATTRIBUTES PER CLASS FEATURE AND CUMULATIVE DRIFT COUNT

OVER TIME ... 170

FIGURE 67 TRAJECTORIES OF THE NUMBER OF INTERFACES FEATURE AND CUMULATIVE DRIFT COUNT OVER TIME 171

FIGURE 68 INITIAL HOEFFDING TREE MODEL USING SOFTWARE METRICS .. 172

FIGURE 69 HOEFFDING TREE CLASSIFICATION ACCURACY WITH 100% OF COMMUNICATION METRICS OF BUILDS 173

FIGURE 70 HOEFFDING TREE CLASSIFICATION ACCURACY FOR SUCCESSFUL BUILDS WITH 100% OF COMMUNICATION

METRICS .. 174

FIGURE 71 HOEFFDING TREE SENSITIVITY RATINGS FOR SUCCESSFUL BUILDS WITH 100% OF COMMUNICATION METRICS 174

FIGURE 72 HOEFFDING TREE CLASSIFICATION ACCURACY FOR FAILED BUILDS WITH 100% OF COMMUNICATION METRICS 175

FIGURE 73 HOEFFDING TREE SENSITIVITY RATINGS FOR FAILED BUILDS WITH 100% OF COMMUNICATION METRICS 176

FIGURE 74 FINAL HOEFFDING TREE FOR 100% OF SOCIAL NETWORK METRICS... 177

FIGURE 75 TRAJECTORIES OF GROUP INOUT DEGREE CENTRALITY AND CUMULATIVE DRIFT COUNT OVER TIME 177

FIGURE 76 TRAJECTORIES OF EDGE GROUP BETWEENNESS CENTRALITY AND CUMULATIVE DRIFT COUNT OVER TIME 178

FIGURE 77 HOEFFDING TREE OVERALL CLASSIFICATION ACCURACY FOR RSA AFTER STATE AND 100% OF THE SOCIAL

NETWORK METRICS ... 179

FIGURE 78 HOEFFDING TREE CLASSIFICATION ACCURACY FOR SUCCESSFUL BUILDS FOR RSA AFTER STATE AND 100% OF THE

SOCIAL NETWORK METRICS ... 180

FIGURE 79 HOEFFDING TREE SENSITIVITY MEASUREMENTS FOR SUCCESSFUL BUILDS FOR RSA AFTER STATE AND 100% OF

THE SOCIAL NETWORK METRICS ... 181

FIGURE 80 HOEFFDING TREE CLASSIFICATION ACCURACY FOR FAILED BUILDS FOR RSA AFTER STATE AND 100% OF THE

SOCIAL NETWORK METRICS ... 182

FIGURE 81 HOEFFDING TREE SENSITIVITY MEASUREMENTS FOR FAILED BUILDS FOR RSA AFTER STATE AND 100% OF THE

SOCIAL NETWORK METRICS ... 182

FIGURE 82 FINAL HOEFFDING TREE FOR RSA AFTER STATE AND 100% OF SOCIAL NETWORK METRICS 183

FIGURE 83 HOEFFDING TREE OVERALL CLASSIFICATION ACCURACY FOR RSA AFTER STATE (WITH SMOTE APPLIED TWICE)

 .. 184

FIGURE 84 HOEFFDING TREE OVERALL CLASSIFICATION ACCURACY FOR SUCCESSFUL BUILDS FOR RSA AFTER STATE (SMOTE

APPLIED TWICE) ... 185

FIGURE 85 HOEFFDING TREE SENSITIVITY MEASUREMENTS FOR SUCCESSFUL BUILDS FOR RSA AFTER STATE (SMOTE

APPLIED TWICE) ... 185

FIGURE 86 HOEFFDING TREE CLASSIFICATION ACCURACY FOR FAILED BUILDS FOR RSA AFTER STATE (WITH SMOTE APPLIED

TWICE) .. 186

FIGURE 87 HOEFFDING TREE SENSITIVITY MEASUREMENTS FOR FAILED BUILDS FOR RSA AFTER STATE 187

FIGURE 88 FINAL HOEFFDING TREE FOR AFTER STATE SOFTWARE METRICS (WITH SMOTE APPLIED TWICE) 188

FIGURE 89 HOEFFDING TREE OVERALL CLASSIFICATION ACCURACY FOR 100% OF COMMUNICATION METRICS (WITH SMOTE

APPLIED TWICE) ... 190

x

FIGURE 90 HOEFFDING TREE CLASSIFICATION ACCURACY FOR SUCCESSFUL BUILDS WITH 100% OF COMMUNICATION

METRICS (WITH SMOTE APPLIED TWICE)... 191

FIGURE 91 HOEFFDING TREE SENSITIVITY MEASUREMENTS FOR SUCCESSFUL BUILDS FOR 100% OF COMMUNICATION

METRICS (WITH SMOTE APPLIED TWICE)... 191

FIGURE 92 HOEFFDING TREE CLASSIFICATION ACCURACY FOR FAILED BUILDS WITH 100% OF COMMUNICATION METRICS

(WITH SMOTE APPLIED TWICE) ... 192

FIGURE 93 HOEFFDING TREE SENSITIVITY MEASUREMENTS FOR FAILED BUILDS FOR 100% OF COMMUNICATION METRICS

(WITH SMOTE APPLIED TWICE) ... 192

FIGURE 94 FINAL HOEFFDING TREE FOR 100% OF SOCIAL NETWORK METRICS (WITH SMOTE APPLIED TWICE) 193

FIGURE 95 FUTURE WORK: PREDICTING BUILD OUTCOME FROM SOFTWARE AND SOCIAL METRICS USING DATA MINING AND

VOTING LOGIC .. 221

xi

LIST OF TABLES

TABLE 1 EXAMPLE OF RECORDED ACCURACY RESULTS .. 75

TABLE 2 EXAMPLE OF RECORDED SENSITIVITY RESULTS ... 76

TABLE 3 EXAMPLE NODE RANKINGS FOR BETWEENNESS AND MARKOV CENTRALITIES .. 84

TABLE 4 EXAMPLE OF NETWORK METRICS ... 85

TABLE 5 SUMMARY OF DATA MINING RESULTS FOR BEFORE STATE METRICS DATA SETS .. 94

TABLE 6 SUMMARY OF DATA MINING RESULTS FOR CLASSIFIERS ON BEFORE STATE METRICS .. 98

TABLE 7 RESULTS FROM RSA DATA SET USING SUBSET EVALUATION AND J48 CLASSIFICATION 103

TABLE 8 RESULTS FOR THE MAX DATA SET USING INFORMATION GAIN AND J48 CLASSIFICATION 105

TABLE 9 MAX BEFORE STATE (NO FEATURE SELECTION AND J48)... 106

TABLE 10 TOTAL BEFORE STATE (NO FEATURE SELECTION AND BAYESIAN NETWORK) .. 108

TABLE 11 PHASE 1 DATA MINING RESULTS FOR AFTER STATE METRICS .. 109

TABLE 12 AFTER STATE RESULT RANGES BY CLASSIFICATION METHOD .. 113

TABLE 13 RESULTS FOR THE AFTER STATE OF THE RSA DATA SET USING SUBSET EVALUATION AND THE J48 CLASSIFIER ... 117

TABLE 14 MAX AFTER STATE (NO FEATURE SELECTION AND J48) .. 117

TABLE 15 MAX AFTER STATE (INFOGAIN AND J48) ... 120

TABLE 16 RESULTS FOR BEFORE STATE OF THE MAX DATA SET WITH >3 FREQUENCY FEATURE SELECTION AND THE J48

CLASSIFIER ... 129

TABLE 17 RESULTS FOR THE MAX DATA SET USING >0 FREQUENCY FEATURE SELECTION AND THE J48 CLASSIFIER 134

TABLE 18 RESULTS FOR THE AFTER STATE OF THE MAX DATA SET USING >3 FREQUENCY FEATURE SELECTION FROM THE

BEFORE STATE AND THE J48 CLASSIFIER ... 141

TABLE 19 RESULTS FOR THE BEFORE STATE OF THE RSA DATA SET WITH 100% SMOTE USING SUBSET EVALUATION AND A

BAYESIAN NETWORK .. 145

TABLE 20 RESULTS FOR THE BEFORE STATE OF THE RSA DATA SET WITH 300% SMOTE USING SUBSET EVALUATION AND J48

CLASSIFICATION. .. 145

TABLE 21 RESULTS FOR THE BEFORE STATE OF THE RSA DATA SET WITH 100% SMOTE USING INFORMATION GAIN AND A

BAYESIAN NETWORK .. 147

TABLE 22 RESULTS FOR THE AFTER STATE OF THE RSA DATA SET WITH 200% SMOTE USING SUBSET EVALUATION AND A

BAYESIAN NETWORK .. 151

TABLE 23 RESULTS FOR THE AFTER STATE OF THE RSA DATA SET WITH 100% SMOTE USING INFORMATION GAIN AND A

BAYESIAN NETWORK .. 152

TABLE 24 RESULTS FOR THE AFTER STATE OF THE RSA DATA SET WITH 500% SMOTE USING INFORMATION GAIN AND THE

J48 CLASSIFIER .. 154

TABLE 25 RESULTS FOR THE BEFORE STATE OF RSA DATA SET WITH 300% SMOTE USING AFTER STATE SUBSET

EVALUATION AND J48 CLASSIFIER ... 158

xii

TABLE 26 RESULTS FOR THE BEFORE STATE OF RSA DATA SET WITH 100% SMOTE USING AFTER STATE SUBSET

EVALUATION AND BAYESIAN NETWORK CLASSIFIER .. 160

TABLE 27 RESULTS FOR THE (100%) SOCIAL NETWORK DATA SET WITH SUBSET EVALUATION FEATURE SELECTION AND

BAYESIAN NETWORK CLASSIFICATION... 163

TABLE 28 FINAL PREDICTION ACCURACIES OF HOEFFDING TREE AND K-NN MODELS FOR RSA AFTER STATE 172

TABLE 29 FINAL PREDICTION ACCURACIES OF HOEFFDING TREE AND K-NN MODELS FOR 100% OF COMMUNICATION

METRICS .. 178

TABLE 30 FINAL PREDICTION ACCURACIES OF HOEFFDING TREE AND K-NN MODELS FOR RSA AFTER STATE (WITH SMOTE

APPLIED TWICE) ... 189

TABLE 31 FINAL PREDICTION ACCURACIES OF HOEFFDING TREE AND K-NN MODELS FOR 100% OF COMMUNICATION

METRICS (WITH SMOTE APPLIED TWICE)... 194

TABLE 32 EXAMPLE OF REAL WORLD APPLICATION ... 210

TABLE 33 EVIDENCE TO SUPPORT EXPERIMENTAL RESEARCH GOALS ... 213

TABLE 34 AVERAGE METRIC VALUES FOR FULL, CONFLICTED AND NON-CONFLICTED DATA SETS 222

TABLE 35 BASIC SOFTWARE METRICS ... 226

TABLE 36 BASIC AVERAGE METRICS ... 227

TABLE 37 DEPENDENCY METRICS ... 229

TABLE 38 COMPLEXITY METRICS .. 230

TABLE 39 COHESION METRICS ... 231

TABLE 40 HALSTEAD METRICS ... 233

TABLE 41 INHERITANCE METRIC .. 235

1

1 Introduction and Outline

Within technology industries many software projects either fail outright or partially fail.

Many projects are unable to meet basic project parameters such as cost, schedule and

user requirements. The causes behind such failures widely vary and in many cases are

not fully understood (Cerpa & Verner, 2009). Software systems have the tendency to

require change over time, during both development and maintenance phases. In some

cases managing such change can become a complex task, especially when considering

larger systems (Settimi et al., 2004). The collaboration and communication between

people strongly influence the decisions made within projects and therefore may have a

direct impact on system artifacts (Ebert & De Neve, 2001). This research focuses on

investigating the relationships between people (in the form of social networks that exist

in an organisation) and various software artifacts (e.g. work items, builds, change sets)

within the Software Development Lifecycle (SDLC). This is achieved by using data

mining techniques applied to the data available in a software repository. This results in

the generation of predictive models as a means of improving the existing ways in which

knowledge is distributed within a software project team and to enhance understandings

of software artifacts to reduce the degree of failure.

Years of effort from researchers and engineers have been dedicated towards solving

these types of problems. Researchers are struggling with a lack of relevant software

project data in order to generate new insights about causes of project failure. Such

insights could have a significant impact in the way in which project planning is

implemented. An area which has been particularly challenging is software developer

team communication and collaboration (Nguyen, Schröter & Damian, 2009). There has

been much research which examines social networks and their relation to team

performance (Bolstad & Endsley, 2003; Cannon-Bowers, 1993; Guimerà, 2005) but as

yet there has been little work undertaken in the context of a software development team.

Social structures (communication hierarchies, flows and relationships between people)

heavily influence knowledge distribution and decision making within a team. As a

consequence social-cognitive activities of team members have a direct impact on project

success (Sack, 2006).

2

This study examines what collaboration and practices exist within a software

development team and what impact development activities have on project success. This

involves an investigation into the negative and positive aspects of social networks,

software source code and software quality. The relationships between people (connected

via social networks) and various software development artifacts (e.g. work items,

software builds and code changes) and how such relationships influence project

outcomes is investigated. To facilitate this, a range of software and social metrics are

derived from project artifacts and predictive models are built from patterns that exist

between the metrics.

By extracting artifacts from software repositories, software metric values can be derived

that can be used to characterise the artifacts. Software metrics are commonly used in

model-based project management methods and are used to measure the complexity,

quality and effort of a software development project (Manduchi, 2002). For example a

commonly used, or traditional metric, such as Lines of Code (LoC), measures the size

of a software project via the number of executable lines of code within a source code

file. Other metrics, such as Cyclomatic Complexity, measure the number of possible

(linear independent) paths within source code (Fenton & Neil, 2000). A wide range of

software metrics have been proposed over time, each of which is intended to measure

some attribute of a software artifact. Software metrics provide an advantage as some can

be determined easily or automatically. Some metrics can also be visualised and can be

used to measure complexity of a system. However, there are also drawbacks in using

such measurements. For example to estimate the amount of time to program certain

modules, the relationship between LoC and the amount of effort required is not linear.

Some lines of code may take longer to write than others due to the complexity found

within the system being developed. In addition the LoC required for a particular

function in one programming language, maybe expressed as a single statement in other

programming languages. There are many different types of categories of software

metrics and an in-depth description of these can be found in the next chapter.

Data mining techniques can be used to identify patterns and exceptions from data and

build predictive data models. For this research data is extracted from source code and

communication metrics from a real software project repository. Metrics from the

repository are extracted using various techniques and a range of data mining classifiers

3

are used to explore the data. Data mining methods have great potential to generate new

insights into software developer’s activities by looking at social network and software

artifact data for project risk management. In many cases the level of recorded

information to perform such tasks is limited. Software project data is either highly

summarised or compressed and there is no mechanism for drilling down to greater

levels of detail or looking at how projects evolve over time. Fortunately, the IBM Jazz

data repository has become available and enables researchers to gain insights into

developer communication and activities within the SDLC. Through the mining process

a social network may be searched for occurrences of structural holes, project

management problems and instances of positive patterns as well. In identifying

structural holes it may help to highlight issues related to developer communication

aspects of project management. Software source code may also be searched for

occurrences of poor quality and potential defects. Insights can be gained from how such

metrics influence the outcomes of software artifacts and a range of possible solutions

may be built to aid decision makers in mitigating reoccurring knowledge distribution

problems.

Software development teams are often responsible for delivering a product within a

certain time constraint. To achieve a software release before a deadline the development

team uses an integration system to integrate modules of work. This process often

requires coordination and collaboration of software development team. This integration

system is referred to as a build in IBMs Jazz repository. If a software build fails, it can

cost the development team in extra time to diagnose the issue. The study of build failure

is timely and the subject of previous research (Wolf, Schroeter, Damian & Nguyen,

2009) and is a specific instance of predicting and avoiding software defects which is the

focus of significant research activities. The process of extracting data from the Jazz

repository will be discussed later in this thesis, but this process resulted in producing a

dataset of 199 build instances. Of those there were 72 builds that failed and it is clearly

a concern for an organisation when 36% of its development activities would be

considered to have defects that are significant enough to cause a build failure.

A software build is the process of converting source code files into executable code.

Depending on the compiler settings unit tests for the build are also executed. The build

may either be a success, failure or warning type, depending on its outcome. This build

4

outcome is used as an indication of successful team coordination in the Jazz repository.

Previous studies have shown that it is possible to predict build outcomes by data mining

developer communication metrics available in the Jazz repository (Wolf, Schroeter,

Damian & Nguyen, 2009). However, no studies have investigated the use of software

metrics for the prediction of build outcomes using the Jazz data.

1.1 Research Objectives

The issues raised in this chapter are addressed in more detail in later chapters. The

remainder of this chapter sets out the goal of the research and describes the contribution

of the work to the body of Mining Software Repositories (MSR) research. In addition

this, the outline of the thesis is also presented. The overall goal of this study is to

explore the nature of the people and the artifacts, central to a software project and the

relationships between them in order to develop models that promote software

management practices that help avoid project failure.

The research methodology is discussed in more detail in Chapter 3, however it is

important at this stage to note that the research has been exploratory in nature. Whilst a

number of initial research questions were formed prior to starting research, the nature of

exploratory and constructivist research is such that further questions arose throughout

the duration of the research that informed particular trajectories of inquiry throughout

the study. The primary research objective that was being addressed at the beginning of

the research was to determine whether both software metrics and social network metrics

could be combined into a single model to predict the outcomes of a given build. Clearly

to address this objective it is first necessary to determine whether there is the ability to

predict outcomes using just software metrics or just social network metrics. The value

of a combined model can then be determined in relation to the individual models.

Research Question: To what extent can a combination of software and social

network metrics extracted from IBMs Jazz repository be used to generate

predictive models to determine software build success and failure more

effectively than either of the individual models?

5

1.1.1 Building a Predictive Model

In order to evaluate the performance of a combined model based on both software and

social network metrics it is necessary to understand whether software metrics have some

potential to predict build outcomes using various combinations of approaches.

Therefore the first phase of this research was to extract and propagate software and

social network metrics from a range of multi-dimensional software artefacts and find

whether any subset of metrics for each type (software or communication) are significant

indicators for predicting build success and failure in their own right.

In order to investigate the software repository it is necessary to determine which metrics

were appropriate and how metrics from a collection of source code file metrics may be

aggregated into values that are at an appropriate level of granularity. When combined

with a set of builds over time this produces a multidimensional experimental space as

shown in Figure 1.

Figure 1 Software Metrics as Multidimensional Data

Similarly it is important to understand which communication metrics can be derived

through social network analysis. Just as for the software metrics it was necessary to

explore the available communication data as shown in the multidimensional

experimental space in Figure 2.

6

Figure 2 Social Metrics as Multidimensional Data

Assuming that the individual prediction ability of the two sets of metrics is determined;

it is then possible to investigate whether the combination of software and social metrics

has any value with respect to the predictive power of the individual models produced.

1.1.2 Enhancing the Predictive Model

The early phases of this research resulted in the development of a number of different

predictive models as detailed in Chapter 3. The development of these models raised a

number of further research directions that were worthy of exploration. Consequently,

the next research objective identified was to improve on the prediction accuracy and

sensitivity of the preliminary data mining experiments. Traditional data mining methods

were explored for a wide range of software artifacts and models generated to predict

software build outcomes. A series of feature filter strategies and classification

algorithms were applied to combinations of software and social network metrics.

Building on the initial experiments, additional techniques were explored to improve the

prediction performance in terms of both accuracy and sensitivity. Three approaches are

investigated: 1) Features are selected based on their observed frequency based from the

initial experiments. 2) The after state feature filters are applied to the before state

software metrics, to see if future filters can enhance past models. 3) Attaining large

amounts of real or live software data is challenging, to increase the sample size of the

data, a strategy for synthetically generating more instances for the mining processes was

also explored. Its impact on accuracy and sensitivity was examined and compared with

the first major stage of the data mining experiments.

7

1.1.3 Evolving a Predictive Model over Time

This next phase of this research was to investigate how software and social network

metrics evolve over time. Much of the mining software repository literature treats

project metrics as static and not changing over time. This assumption does not

accurately reflect reality. Software and communication metrics change over time

therefore there is much potential for evolving predictive models to more accurately

reflect reality. More specifically the objective of this phase was to build an adaptive

time-based prediction model for identifying potential project risks. This would provide

the opportunity to operate in real time by integrating the predictive model with the

software repository so that prediction events can be managed without having to wait for

specific build events, therefore facilitating a risk-based approach to managing

development activities.

1.2 Overview of Research Contribution

This thesis contributes to knowledge about success and failure patterns of a software

project as well as their implications within a software project repository. This

knowledge could enable identification of such patterns and possibly support

intervention in cases where failure patterns are observed. A result of this research is a

system to classify build success and failure patterns and discover them within a project

repository. The predictive models can be used as decision support for planning,

diagnosis and rectification of identified or emerging problems within the project.

In terms of data mining this research makes a contribution to the field by exploring a

novel application of data stream mining techniques using software project data. Data

mining multi-dimensional data is a difficult task even for traditional mining methods.

The research objectives and an outline of the approach are presented in 1.1. To further

explore these issues the data is also encoded and data mined as a time-series stream to

see how metrics evolve over a software projects lifetime. To date there have been no

studies that have been conducted for data stream mining multi-dimensional software or

social network metrics to predict software build outcomes.

8

1.3 Thesis Organisation

This thesis consists of seven chapters, followed by appendices (in text and on CD) and

references. Chapter 1 has detailed the research problems, questions, objectives and

contributions of this thesis. Chapter 2 provides the context and background for this

work. In addition, chapter 2 emphasises the existing needs and gaps in knowledge

within the software and knowledge engineering domain and the research described in

this thesis. Chapter 3 details the research via artifacts methodology that was adopted

and its application to this work. Chapter 4 presents a summary of the results of the

experimental phases. Chapter 5 presents a discussion of the implications of the results

and a summary of the research. Finally chapter 6 presents a discussion of potential

future research, limitations of this study and conclusions based on the contributions that

have been made by this thesis.

1.4 Chapter Summary

This chapter has provided a summary that forms the foundation of this thesis including

an introduction to the research problem and the primary research objective. The next

chapter examines the mining software repositories related literature relevant to this

research problem.

9

2 Background and Motivation

2.1 Introduction

There are still many aspects of software management that are not yet fully explored and

understood. This is due to lack of knowledge, largely because of the complexity of the

domain (Stamelos, 2009). The US Department of Defence lost over four billion dollars

a year due to software failures (Dick, Meeks, Last, Bunke & Kandel, 2004). Empirical

software engineering research is not yet able to reliably identify critical factors that

influence or define a projects’ success or failure. Software project management

problems are often complex and requires expertise in multiple disciplines (Jørgensen,

Faugli & Gruschke, 2007). Both internal and external organisational issues have impact

on a projects’ success. For example issues occur when people with the wrong skill sets

are determining project pathways. In some instances, project managers have taken a

certain attitude towards allocating costs and resources. In one instance a project

manager may underestimate the effort required for a particular job in order to enhance

the performance of their team, while compromising the quality of work (Agrawal,

2007). With project timeframes that are too short software engineers may be more

inclined to get something out as soon as possible (a rushed job) rather than taking the

time to design, test and adopt good development practices. Poor cost and schedule

estimation can also be due to skills of the estimator not matching the job (Barretoa,

Barrosb & Wernera, 2008; Chicano & Alba, 2005).

Software engineers and project managers spend much of their time monitoring tasks and

activities within changing environments (Denning & Riehle, 2009). It has been found

that it is in human nature to be unaware of an environment from one view to the next

and people often do not detect large changes to objects and scenes (Simons & Chabris,

1999). In the context of software development projects there can be an inordinate

number of complex dynamic events taking place including those events that are

influenced by social-cognitive and specific software activities. Reducing the number of

software failures within a project was one of the most challenging problems within

software engineering research (Mockus & Weiss, 2000). This research focuses on the

development of techniques that can be used to analyse development events which are

10

often hidden (e.g. communication between members of a team), or are not easily

detectable (social hierarchies and communication flow), or are ignored, within a

software development team.

Software repositories such as source control systems have become a focus for emergent

research as being a source of rich information regarding software development projects.

The mining of such repositories is becoming increasingly common with a view to

gaining a deeper understanding of the development process and building better

prediction and recommendation systems for decision support in software development

teams. The Jazz development environment has been recognized as offering new

opportunities in this area because it integrates the software source code archive and bug

database by linking bug reports and source code changes with each other (Herzig &

Zeller, 2009). Whilst this provides much potential in gaining valuable insights into the

development process of software projects, such potential is yet to be fully realized.

The following survey of literature is broken down into four major themes. To begin the

fundamental aspects of empirical software engineering research are covered. In this

section the quantitative empirical evidence that can be extracted from source code and

used for knowledge discovery processes are introduced. The second section explores the

social elements of software projects and presents the concepts of global software

development. In this section empirical evidence that can be drawn from social media

and interaction is presented in relation to software engineering. In addition to this

various software repositories options are explored. This leads to the third section,

where a specific software repository for this research and is covered in more detail in

relation to the evidence that it provides and previous studies that have utilised it.

Finally, to build from the knowledge discovery processes and MSR literature, both

traditional data mining and data stream mining techniques are presented.

11

2.2 Empirical Software Engineering

In modern science empirical studies generate understandings about how and why things

work. Empirical research fundamentally comprises of tests that compares what is

believed to be true (an expected outcome) against what is observed (an actual outcome).

To do this empirical research requires the following steps:

1. Formulating a hypothesis or a question

2. Observing a situation

3. Abstracting observations into data

4. Analysing the data

5. Drawing conclusions with respect to the tested hypothesis

For an empirical study to be a valuable contribution to the body of software engineering

knowledge, the context of the research needs to be defined and its terminology

explained (Kitchenham et al., 2002). The context of the research can be described by

the background in which the research takes place, how the hypothesis is derived and

information relevant to the research. Once the context of the problem domain is

determined researchers are able to question the nature of software repository artifacts.

These questions, in an empirical study, are formalised as hypothesis. Essentially there

are two types of hypotheses, abstract hypotheses (high-level) and concrete hypotheses

(low level) (Perry, Porter & Votta, 2000). An abstract hypothesis uses natural everyday

language for this research, for example: “Successful software builds are crucial part of

the development process”. A concrete hypothesis is stated in terms of the research

design, for example “From a range of software metrics, only a few will be statistically

significant predictors of build failure”.

The design of a study consists of a detailed plan for generating the data that will be used

to test the hypothesis. The design also describes the tools, resources and processes

involved. This includes the rationale and methods used for sampling a population to

derive data. For researchers to better interpret the data and the results, the threats to the

studies validity should also be stated explicitly. Defining limitations aids in clarifying

any ambiguity within the results. Results of an empirical study can be analysed using a

classical analysis technique or a Bayesian analysis technique. The classical analysis

12

involves use of statistics to interpret the findings. Whereas the Bayesian analysis

method systematically uses prior information from previous experiments used to

interpret the results. The classical analysis method is commonly used for software

engineering studies (Kitchenham, et al., 2002).

Over the past 40 years there has been extensive use of software metrics in empirical

software engineering research (Shepperd, 2011). Applying empirical methods to

software metric driven data has remained challenging. Ideally studies that apply the

same method, to the same research context, should obtain the same (or similar) results.

This is not true for software engineering research, as software metrics can be

misunderstood or misused (Fenton and Neil, 2000). There are no single solutions or

definitive answers (Tichy, 2000). For example, in some cases, empirical software

engineering studies may not scale well (data is collected over a limited time frame) and

test results from various software projects (different project contexts) are difficult to

compare (Perry, et al., 2000). When reviewing empirical software engineering work, it

is important to keep in mind that, any software experiments based from real-world data

is not known to be ready for data mining immediately, as the data is often noisy,

unpredictable and complicated. Another challenge to empirical software engineering

studies is that often the technology that is being studied changes during the research

making it difficult (or in some cases impossible) to compare and relate results over time

(Pfleeger, 1999).

2.2.1 Software Metrics

Software metrics are used extensively within empirical studies as they represent

quantitative measurements of software artifacts. To determine how software artifacts

should be interpreted and whether or not such interpretations are valid, it is necessary to

cover the software artifacts that are worthwhile measuring for this research. Software

source code is a useful software artifact however it is challenging to use towards

software project decision making due to the fact that software systems often comprise of

massive amounts of code. One way to overcome interpreting large amounts of code is

to derive software metrics instead (Subramanian & Corbin, 2001). Software metrics are

abstract quantitative measurements derived from software code.

A wide range of metrics can be used during many stages of software projects and are

commonly found within planning, cost estimation, effort estimation, quality assurance,

13

software debugging, project task scheduling and software performance optimization

studies. However, software metrics are not commonly used within the industry itself

(Fenton & Neil, 2000). A frequent reason for this is because software metrics are easy

to misuse or misinterpret as they can be used in a variety of ways and guidance about

how to use metrics can be ambiguous. A common problem found within the literature

that relates to software metrics is that the terminology is often mixed making it difficult

for comparative analysis (Grimstad, Jørgensen & Moløkken-Østvold, 2006). In a

multitude of studies software metrics can be extracted and derived in numerous ways

and can often have multiple meanings associated with them. The multiple interpretation

challenge also becomes apparent when studying software artifacts in general. It is

therefore essential to clearly define software metrics and artifacts that are derived and

how they will be used in a given context.

When used correctly software metrics can provide powerful insights into the

development lifecycle. While the first book about software metrics was published in the

1970s (Gilb, 1977) there is research literature related to software metric that dates back

to the 1950s and 1960s. Between then and now software metric measurements have

been used to predict software characteristics and development quality issues within a

wide variety of studies. The first empirical study of a large software system (the IBM

OS 360) utilised software metrics such as the number of modules, the time taken to

prepare for software releases and the number of modules between releases (Belady &

Lehman, 1976). This study in many ways was ahead of its time as it generated

understandings about the evolution of software systems that still hold to be true to this

day. These insights were documented as the three laws of software evolution:

1. Law of continuing change

 Systems that are used undergo change continuously until it is more cost

effective to free and recreate it. A system goes under continuous

maintenance and development and is driven by changes in capabilities

and usage.

2. Law of increasing entropy (complexity)

 As a system evolves over time the continuous changes that are made

need to be managed. Extra recourses are required in preserving a systems

(elegant) structure.

14

3. Law of statistically smooth growth (self regulation)

 As a program evolves its metrics maybe appear to be randomly

distributed in time and space. However, statistically they are self-

regulating when trends are mapped over longer periods of time.

The three laws were revisited and expanded on in a later study (Lehman, 1996).

Through the use of empirical methods new understandings and insights were generated

about software development lifecycles. Then in the late 1970s complexity metrics were

used to predict characteristics of programmer performance (Curtis, Sheppard &

Milliman, 1979). It was found that as the size of a program grew, Halstead and McCabe

metrics were found to be good predictors for measuring psychological complexity. In

the 1980s early prediction models were used to assess software cost estimation (Boehm,

1984). In the 1990s it was found through the use of software metrics that 45 to 60

percent of the total cost of a large software project is spent on maintenance (Coleman,

Ash, Lowther & Oman, 1994).

To date software metrics have been incorporated in many areas of software engineering

research. For example, Nagappan, Ball and Zeller (2006) investigated whether object-

orientated metric predictions of component failures made from one software project

were applicable to other projects in order to see if mining results were generalisable.

Large software projects included within this study included: Internet Explorer 6,

Internet Information Services, Process Messaging Component, Microsoft DirectX and

Microsoft NetMeeting. For each module a number of traditional source code metrics

were computed as well as Arcs and Blocks metrics that refer to a functions' control flow

graph used for computing cyclomatic complexity. In doing so a new metric was

introduced that counted the number of instances where a function utilises a global

variable (AddrTakenCoupling). Their results showed that metrics proved to be useful in

capturing similarity between components. In addition to this predictors were accurate

only when obtained from the same or similar projects meaning that project context

influenced the selected predictors. There was not a single set of metrics that fits all

software projects. In a similar study of software fault-proneness, results showed that it is

possible to use software metrics in building statistical models based on historical

software project data before testing (Denaro, Morasca & Pezz, 2002). These types of

15

models provide insights into software project planning, monitoring and testing phases.

In another study software metrics were derived from 5ESS® software updates in order

to predict change quality to aid towards decision making in code inspection, testing and

delivery (Mockus & Weiss, 2000). Using software metrics that reflect software change,

size, duration, diffusion, type and developer expertise (e.g. the number of deltas a

developer makes towards software code) it was found that the developer expertise

metrics alone were a strong predictor of change quality.

Software metrics provide a compressed or abstract view of a systems design, size,

stability or maintainability. However, there are various limitations introduced when

incorporating software metrics into decision making processes. For example, software

metrics do not directly take into account the context of the project. More specifically,

the context that surrounds the skills of the developers, expertise of the managers, social

networks and communication protocols are not captured. Without project context

traditional software metrics and the models that are built may be easily misinterpreted.

For example if a large number of defects are found in a software module prior to

release, the software metric may also indicate that there will be a large amount of

defects after the release. The relationship between software metrics and a project

outcome may not be so unambiguous. For example if a person has eaten a large lunch at

1:00pm, is it likely that person will eat a large dinner at 6pm. Now, depending on that

person’s diet, whether the person eats a lot, the answer may be yes. However, that

person may not feel like eating a large dinner as they are full from the lunch (Fenton &

Neil, 2000). The same logic applies to that of the software release. For example if a

software module has many defects pre-release it does not necessarily indicate that it will

have more defects post-release. This is why it is important to make use of a range of

metrics, derived from both software and social artifacts, when building decision making

models to capture as much project context as possible.

In order to extract insights from a range of software metrics, they first need to be

derived from source code from a software project. The next section (2.2.2) presents the

concept of software data repositories that can be used as a means to extract metrics.

Then in order to find interesting patterns mining methods are used to model the metric

data.

16

2.2.2 Mining Software Repositories (MSR)

To expand on empirical software engineering studies the Mining Software Repositories

(MSR) research community analyzes data from software repositories to reveal

interesting patterns and information about the development of software systems. MSR

has been a very active research area since 2004 (Kagdi, Collard & Maletic, 2007). Until

the emergence of MSR as a research endeavour, the data from software repositories

were mostly used as historical records for supporting development activities. Analysis

of MSR research over the years has shown that the general approach of extracting

knowledge from a repository has the potential to be a valuable method for analyzing the

software development process for many domains (Poncin, Serebrenik & van den Brand,

2011). Software repositories contain artifacts that are results of software development

processes. A software artifact is a term that is used to describe a function of a piece of

software. For instance an artifact may be expressed using unified modelling language

(UML) diagrams such as classes, use cases, behaviour and interactions (Settimi, et al.,

2004). Software artifacts are also used to describe the processes and methods of

developing software. For example software documentation, development

methodologies, project plans, risk mitigation plans and business plans.

Software artifacts can also hold information about versions of the system, changes made

to source code and interactions between people during development phases. These can

be accessed via retrieving information from version control systems, bug-tracking

systems and communication archives (Kagdi, Collard & Maletic, 2007). Software

repositories grant researchers the ability to query developer-level actions such as code

transformations and re-factorings, bug fixes and development features (Robbes, 2007).

MSR has great potential to generate understandings of how software evolves over time

(Hassan, 2006). Combining information that can be retrieved from software

repositories and machine learning methods there is potential to improve productivity

within software development teams.

An examination of the data sets currently available to researchers is critical as they

highly influence the path of this research and subsequently inform the literature review

undertaken. The ISBSG and the COCOMO81 NASA data sets are frequently found

within the literature (Bibi, Tsoumakas, Stamelos & Vlahavas, 2008; Braga, Oliveira,

Ribeiro & Meira, 2007; Lokan, 2005). Researchers found that both data sets have a lack

17

of evidence to support research into how projects evolve, how changes are handled and

how changes can influence a projects success. There is a lack of historical or accurate

data for comparative analysis for software project studies (Subramanian & Corbin,

2001). Instead most research employs historical data with artificially added noise to

make data appear realistic (Jørgensen & Shepperd, 2007). However, more recently there

have been software repositories that have become available which offer a data rich

environment for researchers.

There are different types of software repositories available for researchers. These

include historical, run-time and code repositories (Hassan, 2008). Historical repositories

contain source code, archived communication data that is relevant to the evolution and

progress of a software project. Run-time repositories provide information about the

execution and usage of an application at a deployment site or sites. Code repositories

contain source code for a various number of applications created by a team of

developers. When deciding upon which repository to explore it is important to define

the scope and aim of the research and whether a particular repository can support its

goals. Depending on the complexity of the repository, it may involve a wide or breadth

first exploration that focuses on the relationships and dimensions between artifacts to

provide a general view and understandings (Kagdi, Collard & Maletic, 2007). Then,

depending on the aim of the study, a particular area of the repository is narrowed down

for an in-depth analysis.

Even though repositories have existed for many large software projects, the data stored

within these repositories have not been of focus within the software engineering

research community until recently (Hassan, 2008). This is primarily because of the

restricted access to such repositories (containing sensitive and detailed information) and

the complexity of the task of extracting the data. There is often limited support for

automation of extracting software metrics. Due to these limitations often validating

derived models can also be challenging. However, despite these shortcomings, the MSR

field has shown that these repositories are able to be data mined to uncover interesting

and useful patterns and provide valuable information to software project teams. The aim

of the MSR community is to transform these repositories into models to guide decision

making during the software lifecycle by detecting interesting patterns from the extracted

18

data (Williams & Hollingsworth, 2005). The predictive models generated can facilitate

developers into making changes to related artifacts to reduce software faults.

Software bugs come in many forms, they can represent an error, a logic or syntax fault

or resource issues within source code files. Valuable knowledge for developers and

managers, regarding software bugs, include knowing where potential bugs may exist

and how much effort it will take to fix them. The ability to predict failure-prone

components of software system is valuable knowledge to software developers as they

are then able to mitigate the failure-risk. Using an Eclipse bug database (Bugzilla), a

combination of complexity metrics were used to predict defects (Zimmermann, Premraj

& Zeller, 2007) to a sufficient degree of accuracy. Mining object-orientated metrics

were also found to be useful for predicting defect density (Basili, 1996; Subramanyam

& Krishnan, 2003).

Predicting how long it will take to fix a software bug can be a difficult topic for

developers and managers. From mining data extracted from the JBoss Project bug

database, results showed that with a sufficient number of issue reports predictions for

effort to fix a bug were very close to the actual time taken (Weiss, Premraj,

Zimmermann & Zeller, 2007). Data mining experiments based from the Mozillas bug

tracking system (Bugzilla) repository show that during the early stages of a

development project little effort was required to fix bugs. However, at later stages of the

same project the amount of effort required to fix the same number of bugs increased

(Ahsan, Afzal, Zaman, Gütel & Wotawa, 2010). What remains unclear, to date, is how

to effectively measure the characteristics of a defect in order to determine where it

exists and how long it may take to fix during a specific part of projects lifetime. As

mentioned previously software defects come in different forms, therefore extracting

metrics for defects at different level of granularity within a bug database will heavily

influence the results of the data mining (Moha, Guéhéneuc & Leduc, 2006; Ying,

Murphy, Ng & Chu-Carroll, 2004).

Research that focuses on the analysis of metrics derived from source code analysis to

predict software defects has generally shown that there is no single code or churn metric

capable of predicting failures (Basili, 1996; Denaro, et al., 2002; Nagappan, Ball &

Zeller, 2006) though strong evidence suggests that a combination can be used

19

effectively (Mockus & Weiss, 2000). While software projects can be rated by a range

of metrics that describe the complexity, maintainability, readability, failure propensity

and many other important aspects of software development process health, it still

continues to be risky and unpredictable (Buse & Zimmermann, 2010). In addition to

Buse and Zimmermann's (2010) paradigm of software analytics, it is also suggested that

metrics themselves need to be utilised to gain insights and as such it is necessary to

distinguish questions of information which some tools already provide (e.g., how many

bugs are in the bug database?) from questions of insight which provide managers with

an understanding of a project's dynamics (e.g., will the project be delayed?). Buse and

Zimmermann's (2010) continue by suggesting that the primary goal of software

analytics is to help managers move beyond information and toward insight, though this

requires knowledge of the domain coupled with the ability to identify patterns involving

multiple indicators.

A majority of source code repositories being researched are from a Version Control

System (VCS). A VCS records the activities of developers and histories of files of a

software project. A VCS allows developers to "checkout" modules so that they are able

to retrieve source code files and make changes. Developers are able to update a VCS

which retrieves all changes since the last checkout and synchronises by replacing older

files with newer versions and removing files that have been deleted. Developers are

also able to commit their changes where files are added, removed or updated (Chen et

al., 2001). There are also many other potential functions a VCS can provide to aid a

team of developers for integrating and backing up their work.

Zimmermann, Weibgerber, Diehl & Zeller (2004) investigated the use of associative

rule mining techniques on version histories within a VCS to model specific source code

files that were likely to be changed in the future. In another study, also utilising a VCS,

models were built to determine source code changes by data mining change history

(Ying, Murphy, Ng & Chu-Carroll, 2004). Depending on the mining task, achieving the

right level of granularity within a repository may provide better results. For example

extracting measurements from smaller units of source code may achieve higher

classification accuracies. However, upon refining the level of granularity, it may

weaken associations to the "bigger picture".

20

Depending on the VCS mined, its history may have limited functionality. For example a

developer committing code, may not necessarily be the developer who actually wrote

the code (Zimmermann, 2007). In addition to this only a certain set of commands may

be historically recorded within a VCS. Another issue is that is it may be difficult or

impossible to use a VCS for finding projects suitable for particular case studies. It is

therefore important to gain understandings about the functionality available from the

repository that can be easily utilised for metric extraction.

2.3 Global Software Development

Software development for large systems involves team work, communication and

collaboration. It is not uncommon that a large development team is globally distributed.

Global Software Development (GSD) systems are having positive impacts on the way

products are conceptualised, designed, tested and developed (Herbsleb & Moitra, 2001).

In many cases the concept of a GSD team is introduced to optimise the cost of

development, via outsourcing and integrate research and development centres from

around the globe (Ebert & De Neve, 2001). However, as a total cost solution a GSD

team may not be as beneficial as one may suspect. In some case studies it has been

found that GSD teams require more manager roles to handle extra coordination

requirements. In addition to this it has also been found that in some remote sites it can

take a longer time to achieve useful contributions to development (Conchúir, Pär,

Olsson & Fitzgerald, 2009). This can be due to the level of expertise of developers or

due to collaborating over different time-zones (Herbsleb, Mockus, Finholt & Grinter,

2001). In some cases there has been a negative stigma with GSD as local developers

may feel that their jobs are threatened as roles are moved to overseas. As a consequence

this can have a negative impact on developers' ability to trust other members within a

globally distributed team (Lanubile, Ebert, Prikladnicki & Vizcaino, 2010). To make

matters worse it might not be feasible to have any face-to-face meetings.

Despite these barriers engineers with different cultural and educational backgrounds

work together to improve and innovate new products (Ebert & De Neve, 2001). Tactical

approaches have also been created to alleviate the distance problem for GSD teams.

Such tactics include reducing intensive collaboration by increasing modularity in

development process as well as the final product and reducing cultural and temporal

distances (Carmel & Agarwal, 2001). It is currently uncertain what aspects of a software

engineers' behaviour result in an effective team. However, it has been shown that

21

software engineers who have been optimistic in the past will tend to make optimistic

predictions in the future (Jørgensen, et al., 2007). In addition to this, software engineers

who were found to be better at solving a task will have less optimistic predictions (as

they have a better understanding of the task) and software engineers who have great

confidence in estimation are more likely to generate optimistic predictions.

In software projects there are many situations where a group of people are required to

work together to collect a wide range of information and reach an agreement about how

it is interpreted. Often within software projects there is too much information for a

single person to understand and requires the expertise of many people. To make a

project even more challenging software projects usually have time-critical tasks and

required support for collaborative reasoning. Communication is the primary method

used to distribute knowledge within a team (Rus & Lindvall, 2002). Even though

research has been conducted on the relationship between communication and

coordination in teams, the research that has been applied to the area of software

engineering has led to inconsistent results.

2.3.1 Social Networks

In software project management the behaviour of a development team is an influential

factor in terms of project success. Group structure and patterns of social relationships

have a strong influence on knowledge and information distribution within a team

(Warner, Letsky & Cowen, 2005). Therefore taking social network patterns into account

during project phases has the potential for identifying success and failure. Current

trends within the software development literature focus on gaining insights into how

tools are used within development environments to share knowledge and perspectives to

teams. It has been found that teams with higher levels of socio-technical congruence

have a better chance of success (Herbsleb et al., 2008). Congruence in a team is

achieved when people are able to coordinate their capabilities effectively towards the

projects goals. Software development environments are now integrating collaboration

tools that are used during all phases of the development lifecycle. This aids and captures

software developers sharing knowledge and captures project problems and decision

making to the extent of what the network is able to capture.

A social network is essentially a coding scheme that is used to aid researchers in

extracting coordination data between people (Hanneman & Riddle, 2005) and gain

22

better understandings of how communication influences an outcome of particular task

(Sparrowe, Liden, Wayne & Kraimer, 2001). Social networks are representations of

social interactions between people. Networks can be constructed using directed or

undirected acyclic graphs. Each node represents a person, an object of interest, or a

communication channel and each edge represents the relationship between people

(Begel & DeLine, 2009). Social network analysis provides information about positive

and negative aspects of the team collaboration and its relationship to a particular artifact

(Scott, 1988). In addition to this social networks can be used to analyse how an

individual is connected with others and the degree to which an individual's position

within a network provides certain advantages or disadvantages (using centrality

metrics).

Once a social network is constructed, using social network analysis and mining methods

predictive models can be built for finding occurring collaboration problems. Metrics

that are derived from social networks can measure the importance of actors within a

team. Factors such as communication structure, coordination, harmony and

communication frequency are related to project success (Nguyen, et al., 2009; Serce et

al., 2009; Stamelos, 2009). Communication plays an important role in determining the

success or failure of software integrations for resolving conflicts between components

of a software system. In addition to this a combination of network measurements can be

combined to create a predictive model.

Social networks and behaviour of people, which can cause projects to fail, need to be

accounted for during risk mitigation when planning a software engineering project.

Face-to-face meetings, teleconferences, web conferences, emails, forums and online

chat are examples of common methods used to distribute knowledge within a team.

Some researchers explicitly avoid the concept of collaboration and communication

technologies in terms of improving the performance of GSD teams, whilst

acknowledging they are the most intuitive approach (Carmel & Agarwal, 2001). It has

been found that social networks have great potential towards finding relationships

between software build failures and communication problems (Wolf, et al., 2009).

Capturing project knowledge and establishing techniques that extract patterns from this

data will contribute to the body of knowledge in empirical software engineering

research. Even though social influences can have great impact on a projects' success,

23

there is little research within the software engineering literature which looks at the

relationship between the outcome of coordination (successful or not) and the

characteristics that lead to coordination failures.

Analysis of the density of a network also provides knowledge on the roles individuals

play within a group, task behaviours, accountability and expectations (Hanneman &

Riddle, 2005). When direct (face-to-face) communication between project members is

not possible, social network analysis techniques can be utilised to identify other people

within the project that have the potential to act as communication brokers (Marczak,

Damian, Stege & Schroter, 2008; Wolf, et al., 2009). Failures in communication

structures may become apparent through the pattern recognition and observation of

structural holes, for example where there are missing links between nodes and

occurrences of redundancies within the social network when a failed outcome was

expected. Other possible anti-social network limitations include communication barriers

that global software development teams' experience that local in-house development

teams may not experience. For example time zone differences, lack of face-to-face

meetings and various corporate cultures (Serce, et al., 2009). These barriers can also

result in breakdowns of team trust, sub-optimal team productivity and exchanges of

misleading knowledge.

There are similar issues between studies that have used software metrics or social

metrics. For example just like software metrics, social networks that have been used

within multiple studies are not easily comparable (Wolf, et al., 2009). In addition to this

there have been limited research that has focused on the link between people’s positions

within a social network and job performance (Sparrowe, Liden, Wayne & Kraimer,

2001). Again it appears that the context in which the metrics are derived have a heavy

impact on how decision models are built and interpreted. From social network

measurements advice networks can be built to show how resources can be used in a way

that can enhance individual job performance (Marczak, Damian, Stege & Schroter,

2008). Such task-based social networks can be constructed from three elements:

24

1. Project members

 These include all people who are involved with a specific task

(developers, testers and managers etc).

2. Collaborative tasks

 These are the units of work that project members must collaborate and

communicate on.

3. Task-related communication

 Captures the network between collaborative tasks and team members

and represents tasks and project members as nodes and the

communication between each node is represented as an edge.

Communication data is a key aspect for constructing social networks, however only a

sub-set of this data is captured in software repositories. For example face-to-face

meetings are challenging to record and measure without too much interference.

However, software repositories have been known to provide a rich source of

communication data automatically collected from other communication channels. For

example emails, source-code repositories and build systems. Collaborative

Development Environments (CDE) provides tools for developers, working in global

teams, that facilitate communication and collaboration. Examples of CDEs tools include

SourceForge (Howison & Crowston, 2004), Assembla (http://www.assembla.com/),

GForge (www.gforge.org), Trac (trac.edgewall.org), Google Code

(http://code.google.com), Rational Team Concert (RTC) (Jazz.net/projects/rational-

team-concert), GitHub (http://github.com/), Launchpad (launchpad.net), CodePlex

(www.codeplex.com) and CodeBook (Begel & DeLine, 2009; Lanubile, et al., 2010).

Different CDEs provide different levels of functionality. For example a CDE may or

may not provide functionality for source code version control, bug tracking, build tools,

planners, knowledge portals, communication and web-based tools. In addition to this

different CDEs may or may not provide direct associations between repository artifacts.

For example CDEs such as SourceForge, Assembla, Gforge, Trac, Google code, HitHub

and Launchpad make use of separate CVS or Subversion (SVN) systems (e.g. Bazaar or

Git). Whereas CodePlex and RTC (Jazz) make use of built-in CVS and provide direct

links to other artifacts within the repository. In addition to this Codeplex and RTC

(Jazz) also offer build tool artifacts while other CDEs may not.

25

Despite a CDEs ability to cope with geographical distances, many CDEs do not offer

support to reduce the socio-cultural distances (Calefato, Gendarmi & Lanubile, 2009).

Github combines features from social networking websites using Git. Codebook, a

prototype from Microsoft, also aims to develop social networking services over source

code. RTC (Jazz), by IBM, is a more recent and full-featured CDE that provides

presence and workspace awareness in one environment. For a resource to be considered

valuable for this work it will ideally consist of both software and communication data.

In addition to this both types of data need to be related to each other and can be used to

measure areas of project success and failure.

2.4 Rational Team Concert (Jazz)

IBM's Jazz Repository (RTC) is a fully integrated software team collaboration and

development tool that automatically captures software development processes and

artifacts (Herzig & Zeller, 2009; The IBM Rational Jazz Project, 2009). The Jazz

repository contains snapshot based evidence that provides researchers the potential to

gain insights into team collaboration and development activities within software

engineering projects (Nguyen, et al., 2009). With Jazz it is possible to extract the

interactions between contributors in a development project and examine the artifacts

produced. Such interactions are captured from user comments on work items, which is

the primary communication channel used within the Jazz project. As a result Jazz

provides the capability to extract social network data and link such data to the software

project outcomes. What makes the Jazz repository unique is that there is full

traceability between a wide range of software artifacts. The Jazz team itself is globally

distributed and provides the opportunity to data mine developer communication, bug

databases and version control systems at the same time.

2.4.1 Mining the Jazz Repository

The key repository artifacts for mining that are extractable from Jazz include work

items, change sets, source code files, contributors, communication and build items

(IBM, 2007). Work items are used by contributors for keeping track of tasks and issues

within the team. Different types of categories are assigned to work items to indicate

their status. A work item may be categorised as a defect, enhancement, plan item,

retrospective, story, task, or another category which can be specified by the user (Jazz

Work Item Overview, 2009). Work items can be treated as the software systems

26

requirements. For example a defect work item identifies a possible bug within a

software system. When a bug is identified, a new requirement is made in order to fix it.

An enhancement work item describes a request for a new feature to be made. Plan items

are a high-level description of a unit of with that is for a given development iteration.

Retrospective work items record elements of the project that were successful or

unfavourable for a completed iteration. A story work item describes part of a use case.

Task work items contain information for a specific unit of work and a track build item

stores the status of a software build.

Software builds are a key process for converting source code into usable software.

During a software build source code is compiled and converted into executable code.

Within a development environment a build tool is used to compile and link various files

to form a working unit (Buffenbarger, 2005). Simple software programs may consist of

a single or small set of files to be compiled. However, for large complex software there

may be a vast number of files that are combined in different ways to produce various

versions of the software system. Software builds can be manual (compiled on a single or

shared computer) or automated (compiled daily). In complex systems continuous

integration is performed where small changes are applied and compiled frequently. This

is done as a quality control process and aims to reduce time taken to deliver software by

applying quality assurance during its development, as opposed to afterwards.

Continuous builds provide earlier detection of broken or incompatible code (Duvall,

Matyas & Glover, 2007). Metrics generated from automated testing and continuous

builds focus aids software developers with delivering quality code (Nguyen, Schröter &

Damian, 2009). Software production failures, such as build failures, can delay delivery

time by slowing the development cycle (Brooks, 2008). To date no source code analysis

has been conducted on the Jazz project data, though some analysis has been conducted

in terms of the social network analysis. One of the aims of this research is to perform an

in-depth analysis of the repository to gain insight into the usefulness of software product

metrics in predicting software build failure.

A change set is a collection of code changes in a number of files. In Jazz a change set is

created by one author only and relates to one work item. A single work item may

contain many change sets. Source code files are included in change sets and over time

can be related to multiple change sets (Jazz Source Control Overview, 2009). People

27

who are involved with the project are called contributors. Comments are stored

communication between contributors of a work item. Comments on work items are the

primary method of information transfer among developers. If a work item is complex

developers tend to communicate more often (Kwan, Schröter & Damian, 2009).With

these artifacts, Jazz provides a rich source of software project data and information that

can be extracted for a variety of purposes. Such flexibility combined with the capacity

to drill down into many layers of a software project is suitable for the nature of this

research.

The Jazz source control repository holds objects that support team processes, system

components and work spaces. Team members (contributors) are able to work with

different types of artifacts available in multiple work spaces (team areas). Figure 3

illustrates that through the use of Jazz it is possible to visualize members, work items

and project team areas. As contributors make changes to a files contents or properties,

multiple versions of files are stored within the repository. These file versions provide

researchers with the capability to map changes of a software project over time in order

to see how software evolves. A team area is a work space that stores items that have

been placed under source control. Every team area has an owner and only that owner

can make changes to the team area. Changes made by contributors within a team area

are kept private until they decide to share changes by "delivering" them to a workspace.

When multiple contributors make changes, they can be accepted into their own private

work space. In some instances contributors will be required to communicate and

collaborate changes made in order to solve potential source code file conflicts.

Figure 3 Jazz Repository: Contributors, Project Area, Team Areas and Work

Items

28

Source code change sets and documents are associated with work items so that

contributors are able to navigate from requirements to code. Figure 4 shows a change

set is a collection of code changes in a number of files. A change set is created by one

contributor and relates to one work item. However, a single work item may have many

change sets associated with it. Change sets within the Jazz source control system make

it possible to combine and synthesise work amongst contributors. If combining changes

is problematic it is possible for contributors to collaborate to resolve any issues and this

is all captured within one development environment (illustrated in Figure 5). Change

sets also have flow targets associated with them that indicate sources and destinations of

incoming and outgoing change sets. Change set flow targets aid developers in

indentifying which change sets are coming from which team areas and work spaces.

Figure 4 Work Items, Change sets and Software Builds (Kwan, et al., 2009)

Contributor chat sessions are also captured and associated with work items to aid

contributors in resolving project issues. Using the Jazz repository it has been shown

that, for certain types of software builds, there is a relationship between socio-technical

contributors and build success rate (Kwan, et al., 2009). The benefit that Jazz provides

is that social networks can be extracted from work items and relationships between

work items, source code and software builds are able to be queried (Herzig & Zeller,

2009). Jazz provides the data mining community with an extensive source of software

development data.

29

Figure 5 Developer Collaboration Over Source Code Files for Two Change sets

(Kwan, et al., 2009)

A build item is compiled software which forms a working unit. The build engine in Jazz

stores build information and related items to the repository. For every software build a

build definition is provided, indicating if a build is a continuous build (regular user

builds), nightly build (incorporating changes from the local site) or integration build

(integrating components from remote sites). Builds in Jazz are associated with change

sets and work items. Before a build is executed, the latest changes are accepted from a

team and snapshots of the files are generated. A repository snapshot is a record of

contents (files) in a certain point in time.

A server-side Application Programming Interface (API) is available from Jazz and

provides methods for creating, updating and deleting artifacts within the repository. A

client-side API is also available and is useful for coordinating client elements such as

views and editors of artifacts. An API provides a developer with the capability to run

complex queries for stored artifacts based on the artifacts' properties and relationships.

If the researcher was to extract the artifacts from the repository database directly,

without the support of an API, there are over 200 relations (most of which are cryptic)

for the researcher to utilise. There is too great a risk of misinterpreting the databases

relations, which would result in errors when extracting artifacts. The only document that

describes the database structure is in the data warehouse. However, the only information

provided describes only 30 of the major relations relevant to the data warehouse itself.

For this reason not using the repository API to gain access to artifacts is considered

infeasible. In terms of this research, the client API is a suitable choice for extracting

artifacts.

30

There are a few drawbacks and limitations by adopting the Jazz repository into research.

Firstly, the repository itself is highly complex and has fairly large storage requirements

for tracking software artifacts. Accessing the data is a challenging endeavour due to the

high artifact traceability (linkages) (Herzig & Zeller, 2009). There is also a lack of

documentation for the platform for process components and there is no public APIs in

the Rational Team Client that allow for easy manipulation of configurations (Cheng et

al., 2008). Another issue is that the repository contains holes and misleading elements

which cannot be removed or identified easily (Herzig & Zeller, 2009). Such holes

within the data occur because the Jazz environment has been used within the

development of itself; therefore many features provided by Jazz were not implemented

at early stages of the project. As a consequence there is a challenge in dealing with such

inconsistency and this research required an approach that delves further down the

artifact chain than most previous work using Jazz. In doing so it is argued that the early

software releases were functional, so whilst the project “meta-data” may be missing

details such as developer comment the source code should represent a stable system that

can be analyzed to gain insight regarding the development project. Finally, there is also

an issue in the nature of collaborative development environments as there is a lack of

support for reducing social-cultural distances that introduce communication barriers in

distributed teams.

In terms of the Jazz project, contributors have little or no chances to have face-to-face

meetings which can aid in developing values, attitudes and trust (Calefato, Gendarmi &

Lanubile, 2009). Despite these limitations there are still many benefits in incorporating

the Jazz repository in collaboration and software development research. Data mining of

the metrics extracted from the Jazz repository has much potential for improving insights

into the software development and team collaboration processes.

2.5 Data Mining Techniques

Researchers adopt the use of data mining methods when they are on a search for

valuable pieces of knowledge within large amounts of data and manual analysis of such

data is not feasible (Khoshgoftaar, Allen, Jones & Hudepohl, 2001). Data mining in

software repositories enable researchers to build predictive models that can provide new

and interesting insights and aid decision making for managing software project

(Vandecruys et al., 2008). What is challenging within this area is that no single software

metric or combinations of metrics have been discovered to predict the quality or success

31

rate for all types of software projects. However, the high correlation between software

metrics and software failure rates indicate that there are relationships which exist

between them (Dick, et al., 2004). In order to gain understandings about these

relationships a wide range of data mining techniques have been applied to analyse

software metrics. The Mining Software Repositories (MSR) literature shows that this it

is currently an active research area and that the insights gained from the mining process

aids in enhancing software development processes and methodologies (Olatunji, Idrees,

Al-Ghamdi & Al-Ghamdi, 2010). Data used by MSR studies are from developer

mailing lists, personal archives, issue tracking systems and concurrent version systems

(CVS) such as Bugzilla (Amor, 2006). Data extracted from such sources has the

potential to provide insights into improving change and source code management

(Weiss et al., 2007). Other research areas within the MSR literature focus on software

quality (Fenton & Neil, 2000), design (finding reusable components and forming better

model solutions) and social processes (Jensen & Neville, 2002).

2.5.1 Data Pre-processing

There are various challenges that arise when adopting data mining approaches. Real life

data is not always going to be immediately suitable for the mining process. There is

often noise within data, missing data, or even misleading data that can have negative

impacts on the mining and learning process (Chau, Pandit & Faloutsos, 2006;

Hernández & Stolfo, 1998). Inconsistencies and errors within a system that is being

developed are common occurrences within software projects and can result in a project

exceeding its budget and time constraints. In terms of this research the project data

existing within Jazz was generated during the development of Jazz. Therefore features

what would capture certain projects aspects would not exist till later stages (resulting in

missing values often appearing at early stages of the project). Such gaps may occur at

both social metric aspects of the data and software metrics levels. It is therefore

recommended to pre-process or “clean” the data and prepare it in such a way that the

highest prediction accuracy and sensitivity possible can be obtained from the data.

Once a data set is extracted from a software repository it is then necessary to do some

pre-processing before applying data mining algorithms. Data cleaning will aid in

ensuring that any models revealed from the mining are reliable (Hernández & Stolfo,

1998). Data cleaning is the process of detecting and deleting corrupt, misleading or

inconsistent records and definitions from the data set. As a result prediction models will

32

deliver a higher quality representation of the data in terms of completeness, validity,

uniqueness and consistency (Ramler & Wolfmaier, 2008). Common methods of data

cleaning include, data transformation, duplication elimination and statistical methods

(Rahm & Do, 2000).

Data transformation is the process mapping data from one format to another, more

suitable, format for mining. A commonly used data transformation method involves

normalizing numeric values. Duplication elimination is the detection and deletion of

duplicate entries. Removing duplicate values can be achieved by sorting the data set by

a key attribute that brings duplicate entries together. Statistical methods can also be

applied to analyze the data, focusing on the mean, standard deviation, range of values

within the data set. The data analysis phase involves a manual inspection and the use of

analysis programs to detect the kinds of instances which should be removed in detail.

This aids in identifying values that may be error-prone. Statistical methods can also be

applied to handle missing values, replacing them with more suitable values.

Data profiling and data mining are two approaches that can be used in data analysis. In

data profiling analysis each attribute of an instance provides information on the data

type, length, value range, discrete values, frequency, uniqueness, null values and

common string patterns (Rahm & Do, 2000). Data mining aids in discovering patterns

within the data set and revealing relationships between attributes. Descriptive data

mining models include clustering and sequence discovery. Data mining can aid in

cleaning the data by associating "business rules" which can be used towards filling in

missing values within the data set.

There are challenges that can arise within the data cleaning process. For instance data

transformations need to support any changes in structure and representation of the data.

This can become challenging when multiple data sources are integrated (Hernández &

Stolfo, 1998). Data quality problems can be found in both schema and instance levels of

data sources (Rahm & Do, 2000). Schema level issues will also cause issues in instance

levels. For example poor schema design and lack of integrity constraints will affect the

uniqueness and integrity of instances within the data set. At instance level data entry

errors can occur, which may result in misspellings, redundancy and contradictory

values.

33

There are different types of transactions that can occur within VCS repositories.

Transactions may be large in size, that may consist of changes to a systems

infrastructure, or they may be simple merge transactions that often consists of small file

updates (Zimmermann & Weibgerber, 2004). VCS repositories often do not keep

information relating to this aspect of transactions that are made. Depending on the

objective of the mining task, a smaller merge-based transaction may introduce noise

into a data set as it may consist of unrelated changes and introduce duplicate instances.

Defining the level of granularity to extract data has great impact on mining outcomes.

However, real world data sets naturally tend to be noisy and ideally the data set needs to

reflect reality as much as possible. For mining defects from bug databases, if the

number of defect instances are small (where defects are a minority class), then the

balance of classes will have a significant impact on prediction accuracies (Sunghun,

Hongyu, Rongxin & Liang, 2011). By sampling the false positive and false negative

rates it will provide insights into whether or not the defect data is suitable for generating

predictions.

2.5.2 Feature Selection

It is often possible to characterise a data set with fewer attributes than originally

considered and in doing so the computational expense in processing mining algorithms

can be significantly reduced. In addition to this feature selection can also remove further

noise from the data set and therefore improve the performance in terms of accuracy and

sensitivity of the results. Feature selection is an important part of the data mining

process especially in cases where the data is highly skewed (Forman, 2003) and this is

often the case with software metric data (Dick, et al., 2004). Feature selection is a

process to find a feature subset within a data set that is a good substitute to all features.

This process provides the data miner with knowledge of which features are useful and

may lead to better results in terms of accuracy (Forman, 2003). There are a range of

subset evaluators that can be adopted and each consists of data wrappers, filters and

embedded methods. A wrapper is a search algorithm that is used to search through the

data set problem space to identify significant factors using a data model. A filter does

the same thing, however it does not apply a model, instead a subset is evaluated by a

filter. An embedded method involves the use of embedded logic within a specific

model. There are a range of search approaches that can be applied, for example, greedy

34

hill climbing, greedy forward selection, greedy backward selection, exhaustive, best

first, genetic algorithm and simulated annealing searches. There are also an extensive

range of filter methods such as, mutual information, consistency-base, correlation-based

and separate class identification (Forman, 2003). In terms of this research Information

Gain, Subset Evaluation and Principal Components Analysis are covered as they

commonly used within the mining literature. The main contribution of this thesis is in

the software engineering discipline, so only standard and common techniques are under

consideration.

Information Gain as a feature selection algorithm is used to define a sequence of

attributes used to investigate the state of an artifact. The sequence that is generated is

used by classification algorithms, such as decision trees. Information Gain ranks

attributes by their individual evaluators. An attribute with a high Information Gain value

is considered to be more significant within the data set. Information Gain generates a

list of weighted features that are found to improve classification accuracy of Naive

Bayes mining results for software fault prediction models (Menzies et al., 2008). In

another study which utilised data from three open source projects (Apache, PostgreSQL

and Python), Information Gain was used towards building a model for finding which

factors encouraged developers to contribute to development mailing lists. This model

also was used to predict which developers were more likely to contribute based on

previous contribution behaviour within an 85-89% accuracy (Ibrahim, Bettenburg,

Shihab, Adams & Hassan, 2010).

Subset Evaluation as a feature selection algorithm is often used as a data filter or

wrapper for classification and clustering algorithms. Within Subset Evaluation each

subset is evaluated by two types of criterion. These criterion can be either independent

or dependent (Huan & Lei, 2005). Independent evaluation criterion is used within a

filtering model to evaluate the goodness of a feature or subset of features by exploiting

characteristics of the data without the use of a mining algorithm. Common independent

criteria include distance, information, dependency and consistency measures (Huan &

Lei, 2005; Trendowicz et al., 2008). Dependent criteria are used in the wrapper model

and require a mining algorithm for feature selection and can be more computationally

expensive.

35

Subset Evaluation was applied to the software metrics data extracted from a

telecommunications system and from 42 of the original features a subset of

approximately 6 features were found be significant for data mining (Gao, Khoshgoftaar,

Wang & Seliya, 2011). Finding an optimal feature subset is often a difficult process and

in most cases feature selection is used for non-deterministic polynomial-time hard (NP-

hard) problems. Subset Evaluation tends to be computationally expensive as the filter

iteratively evaluates subsets of attributes by examining the characteristics of the data

without learning algorithms.

Many object-orientated software metrics have a high correlation with each other as they

are likely to be measuring the same underlying dimension of an object. PCA transforms

data components so that they do not correlate to each other and become more

orthogonal. PCA is frequently found within software metric studies about effort

estimation (Jørgensen, 2007), fault-proneness (Venkatasubramanian, Rengaswamy,

Kavuri & Yin, 2003) and software quality (Thwin & Quah, 2005). PCA as a feature

selection method has been applied to software metrics extracted from 5 large Microsoft

systems and the regression models built could accurately predict the likelihood of post-

release defects for new software modules (Nagappan, et al., 2006). As a method PCA

treats points within the data set as form a hyper-ellipsoid feature space where there are

few large axes and many small axes (Dick, et al., 2004). The algorithm determines the

directions and lengths of the axes where each feature forms a vector and a covariance

matrix is formed for the data set. Then the eigenvectors and eigen-values are

determined. Large eigen-values indicate axes that carry significant amount of

information about the data set and smaller Eigen-values represent noise dimensions.

The axes are defined by the eigen vectors associated with each eigen-value. Feature

reduction is then carried out by forming a matrix of significant eigenvectors then

applying a transformation. In a study based on the MIS, OOSoft and ProcSoft data sets

it was found that the metric values and failure from these data sets are highly correlated

(known as the multi-collinearity problem in data analysis) (Dick, et al., 2004). The

advantage of using PCA is that each eigenvector that is obtained is orthogonal to every

other eigenvector and attributes within the feature space. As the feature space is reduced

and each attribute is therefore statistically independent from one another.

36

When determining software or communication metric predictors to be used for

statistical analysis or machine learning methods it is important to determine which

software system will be used. The MSR literature shows that to make studies

comparable, it is best focus on prior research that is based on a single software system,

or at least systems of similar types (Nagappan, et al., 2006). The next stage is to

decompose the system into entities. These entities will represent instances within the

data. For each of these instances a set of metric functions are mapped to each entity.

From this it is then possible to determine the correlations between all metrics and

entities. Using feature selection methods, such as Information Gain, Subset Evaluation

or PCA, predictors are built for new entities. It is then important to evaluate the

explanative and predicted power of the selected parameters.

One of the limitations of using Information Gain or Subset Evaluation, as well as other

standard machine learning methods, is the lack of the ability to integrate business

knowledge which can characterise software projects. Instead human input may be

required to aid the learning process. For example a smaller set of features may be

selected from a data set, however the miner with knowledge of the domain may insert

additional features that they think are also important to incorporate within a predictive

model.

Another limitation is that the data may still be over fitted to a particular model (Lei &

Huan, 2003). Over fitting (or over training) occurs when the search algorithm searches

for the best parameters for a model of a limited data set. Not only will an over-fitted

model capture the general patterns within the data, it will also model noise. This is

because the model is fitted too closely to the training data and new instances are

predicted with less accuracy. One solution to the over fitting problem is called early

stopping where a data set is divided into a training and test set. The training of a model

is then "stopped" when the error rate increases. If the data set is too small, another

solution is to use cross fold validation, regularization and other statistical methods to

validate derived models from selected features. These methods can be applied to both

supervised and unsupervised machine learning methods.

Model-based approaches that use software metrics to predict development outcomes and

aid in assessing software quality are described in the research literature. Regression-

37

based prediction is the most common approach (found within approximately half of the

reviewed literature) (Jørgensen & Shepperd, 2007). Commonly used regression

techniques include Least-Square Regression (LSR) (MacDonell & Shepperd, 2003),

stepwise regression (a variant of LSR) and ordinal regression (Sentas, 2005). However,

one of the limitations of using statistical regression models is that it is assumed that

predictor attributes exist independently of each other. This is not necessarily suitable

for the use of a range of software metrics, as they are often related to each other. This

problem is known as the multi-collinearity phenomenon. Machine learning algorithms

are able to cater for the multi-collinearity problem and it is for this reason that they are

being used in this study over more traditional statistical methods. However, like

regression techniques, there are still limitations. For instance where there is a small

amount of "linear behaving" data it may be discarded as noise when it may be an

important feature or an interesting pattern. However, depending on the from the range

of software metrics included in the data, it is fair to say that many of them may be

dependent on each other, therefore data mining techniques are suitable for the nature of

this research.

2.5.3 Data Mining Methods

In data mining classification algorithms are used to map data into defined classes. A

classification tree iteratively partitions data via a learning process and classifies an

instance based on a class attribute (that are usually an observed nominal or ordinal data

type) (Gray & MacDonell, 1997). Each learned partition forms decision nodes and the

final "decided" classification is represented as leaf nodes of the tree (Breiman, 1984).

Each decision node contains a split that tests the data based on one or more variables to

determine how the data is partitioned to a classification node (leaf). Classification-based

modelling for software quality estimation is a confirmed technique in achieving better

software quality control (Khoshgoftaar & Seliya, 2002; Khoshgoftaar & Seliya, 2004).

CART (classification and regression trees), relational probability trees (RPTs) and C4.5

(j48) methods have also been applied to large social networks and have yielded highly

accurate models of relational data (Jensen & Neville, 2002). Decision trees have also

been commonly used in software cost estimation (Gray & MacDonell, 1997; Leung,

2002). Decision trees are a powerful tool as they allow the data miner to visualise the

new rules and concepts derived from features of a given data set. In addition to this

decision tree learning is one of the most commonly used classification methods

(Domingos & Hulten, 2000). Software and social metrics have been modelled using a

38

vast variety of classification methods (forming various hybrids of classification

methods). However, there is no single "best" solution that is used to predict software

outcomes, regardless of whether they are project specific software metrics or

generalised software metrics (taken from a number of different projects).

Amongst the hybrids methods, Bayesian Networks (BNs) are also commonly used

within software and social metric studies. A BN is essentially a directed acyclic graph

of nodes that are joined by probability functions. BNs convey both qualitative and

quantitative information about the relationships which exist between elements of data

through conditional probability and have been applied to software metric estimation

studies (Fenton & Neil, 2000; Jørgensen & Shepperd, 2007; Pendharkar, 2005). This

type of model has great potential for handling the complex sets of relationships between

software artifacts and coordination structures of a software team. This is because BN's

offer a subjective interpretation of the probability of an event occurring (Yedidia, et al.,

2002). Beliefs or rules of a BN are constructed by the philosophy that knowledge is

expressed via probability and any inference is conditioned on observed data.

Information contained within the observed data can be carried via the “likelihood”

function. Knowledge is expressed using Bayes Law:

Each node within a BN has a state and if that node is a child node within a graph, its

state is dependent on the states of its parents' nodes. This is also similar in terms of anti-

patterns, where one negative practice can cause chain reactions to cause further negative

states. If a BN node does not have any parents then it is not conditioned on any other

nodes. A BN is most useful if nodes do not have too many direct statistical

dependencies as the node itself may become challenging to manage and understand

(Stamelos, Angelis, Dimou & Sakellaris, 2003). It is ideal to keep nodes in a singly-

connected graph for efficient calculation of probabilities. In some cases the network

may form a loop if the graph is undirected.

Within the BN model probabilities are expressed in terms of degrees of belief. Expert

systems utilise BNs for various purposes including medical diagnosis, map learning,

language understanding and insurance risk. BNs have great potential for use in this

39

research in order to gain understandings about software metrics, social networks and

their relationship to project success. For example BNs have the potential to provide

insights into which combinations of metrics (and metric levels) relate to successful

software builds.

In study by Wolf, Schroeter, Damian & Nguyen (2009) IBMs Jazz repository was used

to build a social network of developers and a Bayesian classifier was used to accurately

predict if a software build was going to fail. In order to do this multiple social networks

were constructed for a particular focus (in this case software builds). The nodes of the

social network, in this instance, were the project contributors. To link the nodes within

the network an edge was made where contributors commented or subscribed on the

same work items. The weighting of the edge determined the number of comments made

(to indicate how heavy the communication flow is). Network analysis measures (k-core)

were applied to predict a builds' outcome.

For this research it will be useful to construct social networks based on parameters that

have a positive or a negative influence. It is anticipated that as a result patterns might

emerge that can be used as a diagnostic tool.

In data mining a clustering algorithm is suitable for seeking sets of categories within

large amounts of data. The categories may be mutually exclusive, hierarchical or

overlapping. Clustering is a machine learning technique where labels of classes within

the training data are unknown. In data mining clustering is unsupervised machine

learning. In the software metrics literature clusters are based on observations as opposed

to interpolations (estimation) or extrapolations (generalisations) (MacDonell &

Shepperd, 2003). With this method the researcher applies background knowledge that

can be used in clustering the data.

A widely used and well-known clustering method that minimizes clustering errors is the

k-means clustering algorithm and has been applied to software defect and effort

estimation (Bibi, et al., 2008), social network analysis (Al-Fayoumi, 2009) and

software and system design (Browning, 2001). K-means clustering aims to partition

observations within a data set into k clusters or groups (k is specified by the data miner).

K-means clustering starts by assigning a distance vector to its closest cluster. Then each

40

clusters centre is updated to be the mean of its instances. K-means clustering converges

to a solution when there are no further changes in assignment of instances to clusters.

One of the limitations of k-means clustering is that it uses a local search method which

can be detrimental to its performance as it depends on the searches initial starting

conditions. For this research, clustering has potential in providing additional insights

into classification outcomes.

2.5.4 Synthetic Minority Over-sampling Technique

When working with real work data it is often found that data sets are heavily comprised

of "normal" instances with only a small percentage representing interesting findings. As

a result the "abnormal" instances have a negative impact on a models' performance as

they are have a greater probability of misclassification using data mining methods

(Chawla, Cieslak, Hall & Joshi, 2008; Lee & Xiang, 2001). Data instances that

introduce noise within the data and are often found within the minority class (Haibo &

Garcia, 2009; Jeatrakul, Kok Wai, Chun Che & Takama, 2010). In order to overcome

this limitation synthetically under-sampling the majority class may improve a

classifiers' performance. However, in doing so a data set may become unbalanced or

have an insufficient number of instances for recognising interesting patterns. Another

solution is to provide the classifier with more complete regions within the feature space

via synthetic and simulation means.

One noteworthy method to do this is to use a Synthetic Minority Over-sampling

TEchnique (SMOTE) (Chawla, 2010; Chawla, Bowyer, Hall & Kegelmeyer, 2002).

This enables a data miner to over sample the minority class and under-sample the

majority class to achieve potentially better classifier performance without loss of data.

While other over-sampling methods exist, such as Rippers Loss Ratio and Naive Bayes

methods, SMOTE provides better levels of performance as it generates more minority

class samples for a classifier to learn from therefore allowing broader decision regions

and coverage (Chawla, 2010). An advantage of using SMOTE is that the values derived

are interpolated rather than extrapolated, so they still carry relevance to the underlying

data set. SMOTE has been utilised within the software research community and

compared with other sampling techniques in software quality modelling (random under-

sampling, Wilson’s editing, one-sided, selection, random oversampling, cluster-based

oversampling and Borderline-SMOTE) and has yielded encouraging results (Drown,

2009; Seiffert, Khoshgoftaar & Hulse, 2009). SMOTE has also been applied as a

41

sampling strategy for software defect prediction where data sets from NASA projects

software repository were used (Gray, Bowes, Davey, Sun & Christianson, 2009; Jiang,

Li & Zhou, 2011; Pelayo & Dick, 2007) and fault-prone prone module detection using

the MIS (Yasutaka, 2007), telecommunication systems and NASA projects (Seliya,

Khoshgoftaar & Hulse, 2010) data sets.

In order to avoid the over-fitting problem and expanding the minority class regions

within a data SMOTE generates new instances by operating within the existing feature

space. For each minority class instance SMOTE interpolates values using a k-nearest

neighbours technique and creates attribute values for new data instances (Drown, 2009).

Depending on the amount of over sampling needed, synthetic samples are generated by

taking the difference between the feature vector that is under consideration and its

nearest neighbour, then multiplying it by a random number between 0 and 1 and then

adding it to the feature vector under consideration. This causes a random line segment

between two existing features (Chawla, 2010) and creates a new instance within the data

set. As a result SMOTE generates more general regions from the minority class and

decision tree classifiers are able to use the data set for better generalisations.

Most machine learning algorithms work from the assumption that the data is being

mined from a stationary distribution. This is not an entirely true when working with

software metric data sets. The instances within software and communication metrics

data can be gathered over time (months and years). There are a number of algorithms

available to researchers that adopt temporal-based learning methods. Of particular

interest for this research is mining decision trees from continuously-changing streams of

software builds.

2.6 Mining Data Streams

Database management systems (DBMS) are widely used to create, modify and delete

data that is modelled within relations. Over time database systems grow and evolve

resulting in large volumes of continuous data. The data from this perspective arrives in

the form of streams. Data streams are generated continuously and are often time-based.

In large and complex systems the data, arriving in a stream form, takes its toll on

resources (storage size) and in some cases it is impossible to store the entire steam. This

is because streams themselves can be overwhelming (hundreds or thousands of data per

second). Often in these cases the data is processed once and then is disposed of, if

42

storage limitations are of concern. Data Stream Management Systems (DSMS) has

spiked much interest within the database research domain (Babcock, Babu, Datar,

Motwani & Widom, 2002). A data stream is a sequence of continuous and ordered data

elements that arrive in real-time. Data streams have various applications within

computer science, including managing network traffic (Babu & Widom, 2001), web

searches (Jiawei & Chang, 2002), sensor networks (Madden & Franklin, 2002), ATM

transactions (Liu, Lin & Han, 2011) and safety systems (Horovitz, Krishnaswamy &

Gaber, 2007). Data stream mining has also been used within the context of social

networks, using streams from Twitter for opinion and sentiment mining and analysis

(Bifet & Frank, 2010). The concept of data streams and data flows are not new, however

this remains a very active area of research.

The implications of data stream mining in the context of real-time software artifacts is

yet to be explored. Currently there is no research that has explored whether or not

stream mining methods can be used for predicting software build outcomes. In large

development teams software builds are performed in a local and general sense. In a

local sense developers perform personal builds of their code. In a general sense the

entire system is built (continuous and integration builds). These builds occur regularly

within the software development lifecycle. As there can be a large amount of source

code from build to build, the data and information associated with a build is usually

discarded due to system size constraints. More specifically, in IBMs Jazz repository,

while there are thousands of builds performed by developers; only the latest few

hundred builds can be retrieved in total. Data stream mining offers a potential solution

to provide developers real-time insights into fault detection, based from source code and

communication metrics. In doing so it potentially enables developers to mitigate risks of

potential failure during system development and maintenance and track evolutions

within source code over time.

During the development of code, an IDE compiles regularly to check for errors.

However, there are no tools that exist which provide information to a developer about

how their current development work has impact on the overall build. Software and

communication metrics can be extracted any time during development, providing a

continuous stream of data. These streams can be data mined and as a result provide real-

time models for predicting the outcome of a build.

43

DSMSs aim to provide support for stream-based processing tools. These tools provide

functions for keeping the data streams moving, querying streams, handling noise within

streams, integrating stored and streamed data, generating stream-based predictions and

instant processing and responding (Stonebraker, Çetintemel & Zdonik, 2005). Figure 6

illustrates the abstract concept of a DSMS. In real world applications streams arrive for

processing in real-time. A DSMS requires an allocated memory space that contains a

portion of the latest streams and disposes of older data upon newer data arrival. In

many cases online stream tools are restricted to only look once at the data stream (Liu,

et al., 2011). A permanent storage is used for maintaining data that is regarded as

important from a stream and also stores queries and indexes.

Figure 6 Abstract Concept of DSMS (Stonebraker, et al., 2005)

A stream is composed of two elements, one element being the data and the second being

the increasing timestamp, representing the arrival time of the actual data. The data can

be encoded as a form of a single relational instance or group of relational instances from

a relational-based stream. It can also be object orientated where data is associated and

derived from methods. In addition to this, filtering mechanisms can be put in place to

process streams that contain particular attributes or items of interest. The timestamp

element can be encoded as a traditional timestamp or a sequenced number.

2.6.1 Pre-processing For Data Stream Mining

Task-based techniques are used to reduce computational challenges found in mining and

processing data streams. There are three major task-based technique categories: 1)

approximation algorithms, 2) sliding windows and 3) algorithm output granularity

44

(Gaber, Zaslavsky & Krishnaswamy, 2005). Approximation algorithms can be used to

provide approximate solutions for one-pass methods with error bounds. While

approximation algorithms are designed for computationally hard problems, they do not

address the problem of data arrival rates. Therefore this technique may be used in

conjunction with another algorithm to adapt to available resources. Sliding windows

performs' analysis with the most recent data segments from a stream.

Since entire streams that are large in size are not stored within in a DSMS only a subset

of a stream becomes available. The subset of a stream is composed of discontinuous

elements which form sub-streams. These sub-streams are used by window models,

where a window is based on a certain range of time of a stream. A window over a

stream, which is a continuous sub-stream, can be presented by timestamps of the

previous data with the newest data. Elements that are inside a window are temporarily

stored and can be scanned multiple times. Once older data is outside of a window it can

no longer be retrieved by the window model (Babcock, Datar & Motwani, 2002). There

are many different window models; these can be based on window sizes, update

intervals and window closure constraints. Window size can be time based or count

based (fixed number of elements). A windows update strategy depends on the when

older elements of data are expired upon the arrival of new data. Such strategies include

sliding windows, jumping windows and tumbling windows and are illustrated in Figure

7. With a sliding window the window "slides" across the time series one streaming

instance at a time (Patroumpas & Sellis, 2006). With a jumping window, a window

may "jump" over instances, streaming a small set of instances at a time (Golab,

DeHaan, Demaine, Lopez-Ortiz & Munro, 2003). A tumbling window stores instances

until it is full and then flushes all stored instances before starting over from scratch with

a new window.

45

Figure 7 Window Update Strategies (Tao, 2011)

Finally, algorithm output granularity provides a resource-aware approach that can cope

with fluctuating high data rates taking into consideration available memory and

processing speed. With this technique mining is followed by the adaption of resources

and data arrival rates. Before the available computational memory is filled the generated

knowledge is merged into existing structures.

2.6.2 Data-Based Techniques

The arrival rate of windows maybe very high and processing occurs in real-time. To

ensure that the data is mined efficiently within a timely manner there are three main

data-based techniques which can be adopted. Data-based techniques refer to

summarizing a data set or selecting a subset of data from a stream and the three main

methods for this are 1) sampling, 2) load shedding and 3) sketching (Gaber, et al.,

2005). Sampling is the process of selecting data via a probability function. Boundaries

of error rate are set by a sampling size that is determined by Very Fast Machine

Learning (VFML) methods using the Hoeffding bound. The sampling method is not

recommended for use if data rates fluctuate or if sample rates and error bounds contain

anomalies. Load shedding is the process of dropping a sequence of data streams. This

method has similar issues to sampling. If parts of a data stream are dropped then they

are not modelled and they may have introduced a new pattern of interest. The Sketching

method is the process of randomly selecting a subset of features. This can have a

negative impact on accuracy and is challenging to use in the data stream mining context.

Other methods include synopsis data structures and aggregation. These techniques are

46

not used with traditional mining methods, however can be valuable with stream mining

context

2.6.3 Distribution Changes in Data Streams

In a traditional DBMS data is seemingly static and represents a static distribution. This

idea does not bode well for many real-world applications. Data is often continuous and

is accumulated over long periods of time. In addition to this, data becomes more

dynamic as it changes and evolves. This phenomenon is referred to as data evolution,

dynamic streaming or concept drifting (Baena-García et al., 2006). Changes in a stream

can evolve slowly or quickly and both types of rates of change can be queried within

stream-based tools. These data distribution changes from streams have a direct impact

on DSMS. This is because a DSMS needs to adjust its model to reflect such changes so

that new predictions can be generated for the data under the new distribution. There are

two types of changes that can occur within data streams 1) data distribution change and

2) concept drift change. Change detection techniques aid in finding such distribution

changes and then provide new information for users to understand the causes of such

changes. These changes are modelled into the stream processing application. By

analyzing data distributions over time there is then potential for predicting future

distribution changes.

Window-based change detection triggers when a window moves and is dependent on a

window movement strategy and a statistical test. For each change detection method a

reference window (the current or older data) and an observation window (newly arrived

data) are used. There are two major techniques used for detecting changes. One of these

techniques looks at the nature of the data set, to determine if it has evolved, whereas the

other looks at the models to see if they are still suitable for newer data. The latter of the

two makes use of concept drifting. The optimal change detector and predictor system

consists of high accuracy, fast detection of change, low false positive or negative ratios,

low computational cost and no parameters needed.

When using window models the simplest rule is to keep each window the same fixed

size. A small size window reflects accurately the current data distribution and a large

size window provides more examples to work with, increasing accuracy and stability.

The window size can be determined by the user or by using a decay function that

47

measures the importance of instances according to how long they have been within the

window.

A technique called ADWIN is a parameter-free adaptive sliding window strategy that

compares all adjacent sub-windows to a partition window that contains all the data

(Bifet, 2009). This method is recognised to generate the best accuracy, however may

have a time cost with larger streams. This method dynamically adjusts the size of a

window and derives efficient variations using Hoeffdings' bound. A window will

become larger when the data is stationary to maintain better accuracy. A window will

become smaller when change is taking place as it will discard stale data. This eliminates

the need for the user to determine the best window size. In addition to ADWIN there are

many algorithms available for addressing change detection. Three noteworthy methods

available from MOA (a Massive Online Analysis software environment) (Bifet et al.,

2011) include OLIN (On Line Information Network), CVFDT (Concept-adapting Very

Fast Decision Trees) and UFFT (Ultra Fast Forest of Trees). MOA is a software tool

for running online data stream mining experiments.

2.6.4 Data Stream Mining Methods

When capturing data streams the amount of data accumulated can increase rapidly.

Traditional data mining methods are tailored for static and structured data, where the

data is captured and stored. These methods may not be suitable for time-based streamed

data due to storage constraints. Commonly used data stream mining methods include

classification, clustering, time series analysis and frequency counting. These are

examples of incremental learners. Any discrete search learner can be made capable of

processing a data stream. A range of both clustering and classification methods are

commonly used in relational data mining. A clustering framework for data streams is

called HP Streams, where clusters are found for high dimensional data streams. Other

methods available under the MOA framework (Bifet, et al., 2011) include

StreamKM++, CLUStream, CLUSTree, DenStream and CobWeb. Classification

techniques available via MOA include Bayesian classifiers, decision trees, meta-

classifiers, function classifiers and a drift classifier called SingleClassiferDrift. Decision

trees are among the most commonly used classifier models. For data stream mining the

Hoeffding tree is ideal for Very Fast Decision Tree (VFDT) learning.

48

2.6.5 Hoeffding Tree

The Hoeffding tree (or VFDT) is an incremental time inducing method. Using the

Hoeffding bound, it looks at the number of instances that are needed to predict an

outcome within a certain precision that can be predetermined (Hulten, 2001). This

method has potential in terms of predicting future outcomes of a software build with

high accuracy while working with real-world data. Rather than using training and test

sets, instances are represented as streams. Data streams provide unique opportunities for

evaluation as the amount of available data with the time-based property can be

examined.

The Hoeffding tree is commonly used for classifying high speed data streams. An

induction algorithm generates a decision tree from data incrementally by inspecting

each instance within a stream without the need to store instances for later retrieval. The

tree resides in memory during each iteration and stores information in its branches and

leaves, potentially growing from "learning" from a new instance. The decision tree itself

can be inspected at any time during the streaming process. The Hoeffding tree is a type

of decision tree that is grown by a batch learning process. The quality of the tree itself is

comparable to that used by traditional mining techniques, even though instances are

introduced in an iterative approach.

Just like traditional decision tree learners, the Hoeffding tree is easy to interpret, making

it easier to understand how the model works. In addition to this decision tree learners

have proven to provide accurate solutions to a wide range of problems that are based on

multi-dimensional data. For Hoeffding trees each node of a decision tree contains a test

which splits instances, sending them down various branches of the tree depending on

their values from a particular set of attributes. To create a decision in the context of data

stream mining, a Hoeffding bound (also known as a Chernoff bound) is used. The

Hoeffding bound is expressed as:

Where R is the random variable range and n is the number of independent observations

made overall. The bound holds true for the distributions generating the values and only

depends on a range of values, number of observations made and a split confidence level.

49

The confidence parameter for the Hoeffding tree is (). With the probability close

to one this parameter is a small value. An additional parameter is tie-breaking () and

this is called upon within the decision split method. Tie-breaking is used in cases where

the Hoeffding bound value is considerably small where its evaluation values for two

attributes may be very close. As a consequence this will prevent the decision tree to

grow. Instead of waiting for an additional window which, in some cases, can be a waste

of resources, the VFDT forces a split. For example if the Hoeffding bound is less than

a node split is forced based on the best attribute. Ties are more likely to occur for

numeric and nominal types of attributes.

To begin building a tree via a data stream it is preferred to inspect the decision tree after

a few instances have been learned from. This is known as a grace period and is an

addition parameter to the Hoeffding tree. Other options for the Hoeffding tree include

the criterion used to perform splits (e.g. Information Gain), the maximum memory that

is to be consumed by the tree, the type of numeric estimator to use (e.g. Gaussian

approximation), the type of nominal estimator to use, pre-pruning, the method for leaf

prediction (e.g. Adaptive Naive Bayes) and the threshold for the number of examples a

leaf should observe before leaf prediction.

2.6.6 K-Means Clustering

Clustering data streams using the k-means technique iteratively generates groups of

subsets within the data and indentifies centres of clusters from the records observed. In

data stream mining this is referred to as Very Fast K-Means (VFKM). The algorithm

starts by calculating the sample size bounded by an error rate of . The k-Means

algorithm passes instances once through , where T is the average instance size,

n is the number of instances and k is the number of centres. The algorithm updates the

centres and weightings iteratively during input from streams. Like the Hoeffding tree,

clustering methods for data streams make use of the Hoeffding bound and it determines

the learner loss as a function for each step of the algorithm. This approach is called

Very Fast Machine Learning (VFML). More specifically the Hoeffding bound is used to

determine the number of examples needed in each step of a k-means algorithm. More

data records are executed with each run until the Hoeffding bound constraint is satisfied.

50

2.6.7 Mining Data Streams: New challenges

Many of the issues and challenges found from data stream mining are also applicable to

relational data mining. These include catering for unbounded data sets, noisy data,

efficiency and data evolution (Gaber, et al., 2005; Stonebraker, et al., 2005). Data

streams can be unbounded in size and may not be stored entirely in memory all at once;

therefore approaches are required to handle the flow of continuous data. To compensate

this stream processing tools generate estimations for results when complete data is not

available. Larger streams have an impact on computing performance and storage and

therefore impact the efficiency of the way a stream is processed. Online stream

processing tools in a real-time environment require high efficiency and this sometimes

costs the level of accuracy in the overall performance.

Parameters for data stream mining techniques are required to be specified before

execution of the mining phase. While a few parameters may be adjusted during

processing time, there is no means to adjust other parameters while the mining process

is running (Jiang & Gruenwald, 2006). In some cases it may not be possible to stop the

mining process to make adjustments to the parameters because it may take a long time

for the algorithm to process. Other issues include minimizing the amount of energy and

bandwidth of streaming data (Gaber, et al., 2005).

Despite these limitations the dynamics of data streams and displaying changes and

trends of the knowledge structures generated has great potential for benefiting temporal-

based analysis. The outcomes of the analysis may improve real-time decision making

processes as developers work on source code.

A data stream mining application is required to provide time efficiency, resource

efficiency, handling noisy data, ability to detect changes and be deterministic. The

application must be time efficient because as stated previously, streams often arrive in

real-time and be comprised of large amounts of data per second. Stream mining

techniques need to have a balance between accuracy of results and response time.

Unbounded streams of data are dependent on the amount of available memory and

computational speed. Therefore resources are required to be efficiently allocated. This

can be achieved through memory management, scheduling and data-based techniques.

Just like traditional mining methods, noise within data also needs to be catered for.

51

Data within streams may be delayed, missing or arrive in unordered segments. In

addition to this a data stream mining application needs to automatically detect changes

within data so that its mining strategy is adjusted as data evolves over time. For

robustness the stream miner needs to be able to generate the same output regardless of

the time of stream execution.

2.7 Chapter Summary

This chapter has described the motivations and challenges behind the work presented in

this thesis. Within the literature there is a wide range of software and social metrics,

ranging from simple count metrics to complex hybrid metrics. There are also a wide

range of methods applied to explore the metrics. Despite all this there appears to be no

single set of metrics, or combination of methods, that are able to generate predictive

models to develop a software project diagnostic tool. In addition to this there are few

studies which attempt to map social metrics of the software development process to

software metrics.

Predicting the outcomes of processes within the software development life cycle can

take considerable effort. For example to accurately predict which software entities are

likely to fail, older historical records of previous outcomes are needed. Sources of

software failure can be found within bug databases, program code (complexity metrics),

or a combination of approaches. There has been much research done within the data

mining of software repositories domain and various models have been built to predict

change and fault-proneness in modules, however, there are still challenges that need to

be addressed. These challenges include focusing on the quality of the data used to

generate models, in order to provide reliable and useable explanations for the

correlations of features within them (Christensen & Albert, 2007). This is because these

models should aim to provide insights into development practices in order to release

more reliable software.

The mining software repositories community faces a number of challenges, namely; 1)

how to represent and accurately interpret software and social metrics that may be

extracted from a repository, 2) how to use this information and relate it to a software

process and deliver results about a specific type of project and 3) how to build a

predictive model that uses this information about historical development processes so

that it can be used as a knowledgebase for decision making.

52

There are also challenges in querying software and social metrics such as 1) which

metrics should be included in the extraction, 2) how should these metrics be ranked or

selected as important features and 3) when should metrics be automatically,

interactively or manually selected. Finally data mining methods have challenges, 1)

how to eliminate "noisy" data and deal with unbalanced data, 2) how to validate models

when they are built from small training sets (limited information) as they could behave

differently when new instances are introduced (over fitting problem), 3) if the purpose

of the mining process is to improve predicting a development process success, will it

take too much time to make decisions based from the knowledge derived from the

model? For example if a decision tree is complex (consisting of many branches and

levels) or not easily coherent (duplicate nodes), there are various methods that can be

explored to "simplify" a model.

This chapter has also presented the concept for data stream mining and its potential

application to software and communication metrics for software builds. Data stream

mining methods provide ways to investigate, design and implement solutions for real-

time decision making during the software development process.

As the Jazz repository is relatively a new source of data for researchers there is no

literature that has derived software metrics from change sets of software builds, other

than those articles that have arisen from this research. Nor is there a great deal of

literature which combines the elements of both software metrics and social network

metrics for time series analysis. While decision trees classifiers have been used

extensively in the software metrics literature, there has been virtually no application of

the data stream mining methods to analyse how such software artifacts change over

time. The next chapter presents the experimental methods and tools used to evaluate a

combination of software and social network metrics and how they relate to software

build outcome prediction.

53

3 Research and Experimental Design

This chapter describes the overall structure of the research conducted and goes into

greater depth regarding the experimental design, methods and tools used to evaluate

which combinations of software and social metrics give the best prediction indicators of

whether a software build will succeed or fail. This chapter is composed of two major

sections 1) the Research Methodology and 2) the Experimental Design. In the first

section the research via artifacts and the Knowledge Discovery in Databases (KDD)

methodologies are introduced. The second section describes how these methods are

applied in the context of mining the Jazz repository for this thesis.

Researchers adopt the use of data mining methods when they are on a search for

valuable pieces of knowledge within large amounts of data and manual analysis of such

data is not feasible (Khoshgoftaar, et al., 2001). Data mining in software repositories

may enable researchers to build predictive models that can provide new and interesting

insights and aid decision making for managing software projects (Vandecruys, et al.,

2008). What is challenging within this area is that no single software metric or

combinations of metrics have been discovered to predict the quality or success rate for

all types of software projects. However, the high correlation between software metrics

and software failure rates indicate that there are relationships which exist between them

(Dick, et al., 2004; Menzies, et al., 2008). In order to gain understandings about these

relationships a wide range of data mining techniques have been applied to analyse

software metrics.

To reiterate, the emergence of Mining Software Repositories (MSR) literature shows

that this it is currently an active research area and that the insights gained from the

mining process has aided software development processes and methodologies (Olatunji,

et al., 2010). Data used by MSR studies are from developer mailing lists, personal

archives, issue tracking systems and concurrent version systems (CVS) (e.g. Bugzilla)

(Amor, 2006). Data extracted from such sources has the potential to provide insights

into improving change and source code management (Weiss et al., 2007). Other

research areas within the MSR literature focus on software quality (Fenton & Neil,

54

2000), design (finding reusable components and forming better model solutions) and

social processes (Jensen & Neville, 2002).

As well as informing the direction of the research itself, the review of the MSR

literature has also informed the development of a suitable methodological framework in

which to conduct the work that combines concepts from both qualitative and

quantitative research paradigms. Whilst the work is primarily quantitative in nature

there is a degree of interpretation required to translate the meaning of the quantitative

outcomes into a real world scenario. As such the research methodology employed is

both exploratory and constructivist in nature.

The research via artifacts process (Nguyen, et al., 2009) is used in conjunction with the

design science paradigm (Hevner, March, Park & Ram, 2004) as this research requires

the construction of new ideas, frameworks and technology using the Jazz repository.

Researchers learn from experience when observations are made from prototype

behaviours, therefore systems change as new knowledge is developed (Nunamaker &

Chen, 1990). The aim of the experiments within this study is to provide insights into a

range of solutions to enhance developer communication networks, productivity and gain

new understandings about the relationships between developers and software artifacts

within the SDLC. From the design science perspective, prototype iterations incorporate

knowledge from models that are built from a range of metrics extracted from the Jazz

repository and new frameworks are applied from new observations from the mining and

simulation processes. For example the first prototypes focuses on software build

artifacts. The second prototypes focus on enhancing the prediction accuracy. The third

iteration will incorporate work item artifacts and developer communication. Within this

stage comments that have been made by contributors on work items that are related to

software builds are mined. Insights gained from these prototypes lead to new theories

and models about social anti-pattern criteria and optimisation methods (new

representation of the problem, fitness function and interpretation of the artifacts).

Data mining and leveraging of software artifacts from IBMs Jazz repository (illustrated

in Figure 8) are core components to this work. There are two main challenges in using

such an approach: the complexity of the data mining task and the validity of the new

55

understandings gained from the software artifacts (Nguyen, et al., 2009). This mining

process has been found to be complex and in some cases impossible.

Figure 8: The research via artifacts process (Nguyen, et al., 2009)

Knowledge is gained from the artifacts extracted from the repository as opposed to

devoting long periods of time for querying developers of the technology via a series of

interviews and surveys. Therefore the approach provides a degree of practical separation

between the research and the day-to-day activities of the development team. The

research via artifacts process is in essence a structural view of research and therefore

requires a degree of control at different levels of abstraction to ensure that a given

research goal is addressed. In Figure 8 the process labelled “mining” is at a lower level

of abstraction and it is here that knowledge Discovery in Databases (KDD)

methodologies is used to control the data mining process. The Design Science paradigm

is an iterative process that sits at a high level of abstraction. With particular reference to

Figure 8, the Design Science paradigm applies to how insights gained from the artifacts

are used to iteratively refine the research and data mining activities.

Even though there are limitations in only utilising a data repository, as not all aspects of

the project are captured, it still consists of a rich source of information. The prototypes

are developed within an iterative and agile process. Data is extracted from the Rational

Team Concert (RTC) client API. The extraction tool is extended appropriately when

56

adding new queries to the data query set within each development iteration. Due to the

large size of the repository, each time an extraction is made it updates earlier data sets

as opposed to extracting all the data each time (Nguyen, et al., 2009). In doing so it

significantly reduces computational work load.

This research is both exploratory and constructivist in nature and therefore utilises the

system development research methodology (Nunamaker, Chen & Purdin, 1991) and the

design-science research guidelines (Hevner, et al., 2004) to design, develop and

implement a framework. A systems development research process involves:

constructing a framework, developing system architecture, analysis and design, building

a system, observation and evaluating phases. In the constructing a framework stage, a

clear definition of the research problem is vital in defining the research process, this is

defined in the research question for this work. In the development of the systems

architecture stage, system components (modules), functionalities and interactions

between components (relationships) are defined via the available artifacts within the

Jazz repository. The architecture then goes through an analysis and design stage, where

the design of data structures, databases or knowledge bases is created (Harman & Tratt,

2007). Insights into such structures and knowledge will be gained from the previously

mentioned data mining methods and a set of evaluation criteria that measures both the

accuracy and sensitivity of the results. To create research constructs that reflect the

reality of the software project a quantitative research approach has been adopted under

positivist paradigm. Quantitative research revolves around being able to find answers by

physically measuring the reality of observations and by creating formulas to aid

prediction for the future. This enables the possibility of measuring cause and effects of

what goes wrong within software projects. An implementation of the design stage is

made during the system building stage. Once a model is built and tested, observations

provide insight into the accuracy of the built system and evaluations can be made for

further development of enhancements. This provides researchers with insights into the

advantages and disadvantages of concepts, frameworks, designs and knowledge

discovery.

At a lower level of abstraction this work is also experimental in nature. In the context of

this thesis, these experiments are attempts to extract knowledge from the data repository

using a data mining approach. The experimental design deployed as part of the research

57

is discussed in more depth in section 3.2. For this research, the experiments conducted

attempt to construct different understandings of the underlying data as a means to

develop an appropriate approach for use in a real world scenario.

3.1 Data Mining Software Repositories

Data mining, KDD and machine learning techniques have been used in previous work

to generate models of network data (e.g. social networks, web pages, relational

databases and data on people, places, things and events extracted from textual

documents). Data mining techniques have been developed largely for use with

relational databases, where records have dependencies between one another (Jensen &

Neville, 2002). The KDD process consists of identifying valid, useful and

understandable patterns within data. In this instance, data is a set of values and a pattern

is a subset with the data that describes a particular model. Before any mining processes

take place it is first necessary to gain an understanding of the application domain. This

will aid the data miner in making decisions within the KDD process. For example the

researcher will need to identify the goals and generate hypotheses for the KDD process.

This will aid towards decision making regarding the selection of particular data mining

models (categorical or numerical) such as classification, regression and clustering as

well as the selection of a models' parameters. The goal of the mining may be to

understand a particular model or use a model for prediction. KDD is an iterative process

and fundamentally involves the following steps:

1. Creating a target data set

a. This may involve creating a subset of data from the available samples

from the repository that are suitable for the data mining goals.

2. Cleaning and pre-processing a data set

a. Removing noise, collecting relevant information about the model and

deciding strategies for handling missing data and accounting for any

other changes to the data set.

3. Data reduction and projection

4. Finding significant and useful features within the data depending on the goal of

the mining task. This step may involve reducing or transforming the

representation of the data.

5. Data mining

58

6. The searching process for patterns of interest

7. Representation of patterns from classification, regression and clustering

8. Interpreting mined patterns

During this process the data miner may result in re-iterating steps 1-8 as new

information is revealed about the data. This is because new knowledge may resolve

conflicts or change previously held beliefs. Additional information is provided from

visualisations of the extracted data and patterns which can aid in forming actions from

discovered knowledge. Actions from using newly discovered knowledge include

incorporating it into another systems' implementation or documentation. The basic flow

of steps and when potentially multiple iterations can occur is illustrated in Figure 9.

Figure 9 Overview of steps within the KDD process

From data mining to knowledge discovery in databases (Fayyad, Piatetsky-Shapiro

& Smyth, 1996)

Before applying data mining methods, data characteristics such as size, the degree of

connectivity among elements and how comparable elements within the data are, need to

be analysed for estimating computational effort and result accuracy. It is also necessary

to look at the number and types of links that exist between the research artifacts of

interest and the type of mining task that will be undertaken (e.g. supervised learning or

unsupervised learning) (Sebastian, 2002). In order to construct models for predicting

software success and failure it is first necessary to distinguish a useful set of parameters

that incorporate aspects from both social and software artifacts. These parameters can

either be empirical or derived and are heavily dependent on the data that is available.

59

The research via artifacts process refines the design science approach making it

applicable to the knowledge development process towards experimental design.

3.2 Experimental Design

This research is broken down into 3 major experimental phases, each with their own set

of sub-stages and activities that ensure that the enquiry is undertaken in the context of

the overall research methodology. Phase 1 involves an exploration of Jazz and its client

API. To do this an application has been developed by the researcher that extracts the

software artifacts of interest. Additional tools are developed to derive software (see

Appendix A: Software Metrics) and social metrics (see Appendix B: Social Network

Metrics) from the extracted artifacts. From this various data sets are constructed

representing different software metric aggregations. The data sets are then pre-

processed, where observations with missing data and noise are removed. The data sets

are then filtered using Subset Evaluation and Information Gain methods for identifying

significant predictors for both software and social metrics. Data mining methods are

then applied to provide initial insights into predicting build success and failure. Mining

methods explored include the j48 classification decision tree, Naive Bayes and Bayesian

Networks. The main purpose of this experimental phase is to take a coarse exploration

through all of the possible permutations and combinations of mining approaches and

data aggregations in order to highlight the most promising candidates for further

investigation. This phase is required because to conduct an exhaustive exploration of the

experimental space to the depth required in later phases is simply not feasible in a

realistic timescale.

Phase 2 builds from the analysis of the preliminary mining experiments with the aim of

increasing classifier results for the promising methods in terms of both accuracy and

sensitivity. During this phase a new feature reduction method is explored, where the

features selected from the previous phase experiments are counted and are selected

based on how frequently they appeared. In addition to this the before and after state

metrics are also explored in terms of feature selection, where features selected from the

after state are used to filter before state metrics. Towards the end of phase 2 the

application of SMOTE is explored to generate more instances of minority classes within

the data.

60

Experimental phases 1 and 2 aim to provide insights by first exploring the software

metric data by using a variety of data mining methods. These experiments were the

starting point of the research to address the overall research goal defined in Chapter 1.

More specifically, phase 1 provides initial insights into which methods are best for

predicting successful and failed builds. Phase 2 seeks additional insights by focusing on

whether it is possible to improve classification performance on predicting failed builds

by exploring a variety of techniques. The need to do this emerged during the research

itself as would be expected in the natural cycle of build-test-refine that is associated

with constructivist research. This phase builds from the results of the first phase, by

taking the best performing data sets adopting additional methods (SMOTE and

Frequency Feature Selection) in an attempt to enhance the classification results in terms

of both accuracy and sensitivity criteria.

Phase 3 includes an extraction and exploration of communication metrics from the

project contributors. This phase aims to provide insights into the confidence of the

ability to predict build outcomes from communication metrics. This phase of research

has much overlap of the work conducted by Wolf et. al. (2009). Replication of work

was necessary to maintain consistency. This experimental stage combines the use of

software metrics and communication metric data sets to see if they enhance the

prediction accuracies further. This was considered from the early stages of the research,

but following this line of enquiry was dependent on being able to gain some degree of

prediction from just the software metrics. During this phase the best models are taken

from previous mining experiments, are implemented and are executed.

This work revolves around the use of classification methods for the analysis of software

metrics. For this purpose the Waikato Environment for Knowledge Analysis (WEKA)

(Hall et al., 2009) machine learning workbench is used.

There are various challenges that arise when adopting data mining approaches. Real life

data is not always suitable for the mining process. There is often noise within the data,

missing data, or even misleading data that can have negative impacts on the mining and

learning process (Chau, et al., 2006). The project data that is extracted from Jazz was

gathered during the development of Jazz. As a consequence features that automatically

capture project processes did not exist until later development stages of Jazz (gaps

61

would often appear at early stages of the project data set). Excluded from the data set

were instances that had no work items associated with a build (as no social network

metrics could be extracted for those instances), build results that had no source code

files (as no software metrics could be derived from those instances).

Software metrics from continuous builds were used to construct the main data sets,

however in doing so there were more instances of successful builds than failed builds.

In order to balance the data set failed builds were injected from nightly and integration

builds. This option was preferred over removing successful builds from the data set,

thus decreasing the possibility of model over-fitting. In total, approximately 200 builds

were included in the generation of the metrics.

In the early stages of this research an explorative style is adopted in the first instance as

an attempt to discover the implications of the ratio of features to instances. To that end,

the early experiments utilizing the Jazz metrics have been designed to explore the

different ways that metrics can be extracted from Jazz. This consists of approaches

intended to reduce the number of features in the data set as well as to calculate metric

values differently.

3.3 Build Prediction with Software Metrics

The first stage of experiments systematically filters the available metrics using a variety

of methods to simplify the problem space and determine the best classification trees.

The term “best” is open to interpretation which is a reflection of the constructivist

nature of this research. In reality, the best classification is normally a subjective

interpretation of the trade-off between conflicting goals. For example, this research aims

to maximise overall classification accuracy, classification accuracy of the minority class

and sensitivity of the results. It may be challenging to satisfy all three criteria. In an

attempt to improve classification accuracy, clustering accuracy and sensitivity results a

range of feature selection methods are applied to each data set. However, before any

data-mining activities take place it is first necessary to become familiar with the Jazz

Repository for extracting various software project artifacts. The Jazz repository is

complex and can be extracted and interpreted in many different ways. The following

details the interpretation of the objects within the repository that have been utilised for

extracting software metrics from software build change sets and work item contributor

communication.

62

3.3.1 Extracting Software Artifacts

For extracting the artifacts software has been developed that has utilised the Jazz client

API (application programming interface). Unfortunately at the time of extraction, there

was little API documentation available for this process, however documentation about

the API can be found in the online Jazz forums. For software metrics only Java source

code files are extracted from builds' change-sets, as these are the only file types that are

useful for deriving all required metrics types. There are many different ways change sets

and communication can be extracted from the repository it is therefore essential to be

unambiguous how artifacts are queried and interpreted. All software development done

in this research is in Java using IBMs Rational Team Concert, which provides an

eclipse-based client IDE (Integrated Development Environment). In addition to this

IBMs DB2 database management system (and server) is used for retrieving software

artifacts from Jazz. At no point during the experimental phases is the data within the

repository modified or is new data created within the repository. To begin the extraction

process a connection needs to be established. This is achieved by using the Jazz client

API and more specifically requires the use of the objects shown in Figure 10, where

IloginHandler is an interface from ITeamRepository.

Figure 10 Jazz API, Creating a connection

The repository allows the retrieval, creation and update of software development

artifacts. Complex queries can be used to retrieve objects based on their relationships

with one another or their attributes.

A build item represents a software build. A build, in this sense, is a compilation of

software to form a working unit. In Jazz a build contains the work from one or more

work items and these work items are not necessarily unique from build to build. The

Jazz database does not keep a complete record of every build over time and as a result

the number of builds available to access is limited. Nevertheless builds are an essential

63

component to this work as their relationship with change sets allow for the extraction of

source code files that will be used for extracting software metrics. The attributes of a

build item includes:

 Build ID

o Unique Identifier of a particular software build

 Label

o Identifier of a particular build (viewed by end user) and provides

information on what type of build it is.

 Start Date

o The builds' start date

 Duration

o The duration of the build

 Build Status

o If a build state is "OK" it has been a successful build and if a build state

is an "ERROR" the build has failed to compile. However, if a build

status is "WARNING" it means that even though the build has compiled

(unless the compiler set to treat warnings as errors), there may be

potential problems with the source code based.

Jazz builds are, in this case, a vital component for extracting both software metrics and

constructing social network metrics to form data sets for mining. The Jazz objects that

are used for extracting build instances are shown in Figure 11. All build instances are

retrieved from the repository regardless of their connection to other existing (parent)

artifacts.

64

Figure 11 Navigating the Jazz API for Retrieving Software Builds

The Jazz repository consists of various types of software builds. Included in this study

were continuous builds (regular user builds), nightly builds (incorporating changes from

the local site) and integration builds (integrating components from remote sites). Builds

included in the final data sets were chosen from a range of build definitions within Jazz.

65

These build definitions are applicable to both the before and after state change sets. The

following is a summary that is extracted directly from the repository, of the build

components that the software metrics for this research were derived from:

 Beta and Weekly Builds

o A Beta build generally begins when the software is feature complete.

However, builds during a beta phase tend to have more software bugs

than "completed" software, as well as potential speed and performance

issues.

 Continuous Builds

o Within this snapshot of the repository, continuous builds are the most

common build type and are used for building major components of the

Jazz project. These include

o Analysis components:

 The Analysis Component provides an extensible toolkit for

integrating static analysis tools and frameworks, like SAFE (IBM

Research project) and the CodeReview framework (Eclipse TPTP

project), into the Jazz platform. It allows to perform analyses

interactively inside the IDE and non-interactively from within a

batch team build.

o Team build components:

 The Jazz Team Build component integrates a team's build system

into Jazz and provides build awareness to the team. This is

accomplished with build progress monitoring, build alerts, build

result viewing and linkage of builds with other artifacts in Jazz,

such as change sets and work items.

o Connector components:

 This component provides interoperation and synchronization

between Jazz SCM and other SCM systems

o Core file system components:

 Components that are responsible for the server-side architecture,

including the server programming model, server extensibility,

repository item modelling and storage, database interactions and

object persistence, web services dispatch and security.

66

o Service components:

 The Jazz REST Services components implement "RESTful" web

services for Jazz. This web services provides stable long-term

programmatic web-based "APIs" for directly accessing the

facilities and data offered by the various Jazz components. These

web services use an arrangement of URIs, HTTP methods and

standard representation languages such as XML and JSON, that

work like the rest of the web.

o Process components:

 The Team Process component provides Jazz's process support

foundations. Team Process is a kernel component, so its facilities

are available to other components in all client and server

configurations. In this context, process refers to the collection of

practices, rules, guidelines and conventions used to organize

work.

o Reporting components

 The Reports component gathers data about the Jazz repository

and presents it to the user in a readable format. It manages a data

warehouse, in which facts about the repository are stored at

periodic intervals. It also integrates with the BIRT reporting

engine to render reports and charts based on the information in

the data warehouse.

o Source Code management (SCM) components:

 The SCM component manages source code and other digital

assets that a team creates. It is able to recreate earlier

configurations in order to maintain previous versions of a

product. It may also be used to prevent unauthorized access to

assets or to alert the appropriate users when an interesting asset

has been altered.

o Web user interface components:

 This component provides frameworks, APIs and infrastructure

for creating web browser-based user interfaces. Also develops the

Admin Web UI and the Jazz Team Server Setup Wizard.

67

o Work item components:

 Provides support for managing defect reports, feature requests

and other development tasks.

 Nightly Builds

o Nightly build for the ClearQuest Connector. This build, unlike the

continuous build, runs tests that require access to ClearQuest-installed

component.

Each build may be linked to zero or more work items. A work item is a description of a

unit of work. The attributes of a work item include:

 Work Item ID

o A unique numerical value which represents the identification of the work

item

 Type

o Defect, Task, Enhancement, Story, Build Item, plan item or Other

 Summary

o Summary of what the work item is about

 Description

o Description of what the work item is about

 Severity

o Unclassified, Minor, Normal, Major, Critical, Blocker

 Priority

o Unassigned, Low, Medium or High

 Due Date, Creation Date, Modified Date, Resolution Date

 Has History, Is Complete

 Creator UserID, Modifier UserID, Resolver UserID, Approvor UserID,

Subscriber UserID

 Comments

o Discussions by contributors about a work item

During the iterative process of extracting builds, each builds' set of work items are also

queried. The objects associated with querying work items that are used within this

68

research are shown in Figure 12. At this repository level, it is possible to start extracting

social network elements which will be used towards later experimental stages.

Figure 12 Navigating the Jazz API for Retrieving Work Items

69

Each work item or software build that is extracted potentially has a change set which is

linked to it. A change set is a related group of files that are modified during a projects'

lifetime and is the fundamental element of source control within the Jazz repository. A

change set may consist of changes to individual files (modifications), deletion of files or

addition of new files. A small change set may modify only a few lines of code within a

single Java file, whereas larger change sets consist of changes to multiple files and

folder contents and structures. Each change set has a record of two states, the before and

after state. Each state has versionable files and folders. The before state of a change set

is the state that is recorded before any changes have been made. Whereas the after state

of a change set represents the collection of files and folders after all the changes have

been made and is marked as "complete". For each build software metrics will be

extracted that correspond to the before and after states of that build. These will be used

to construct data sets for data mining. The before and after software metric data set

states are not merged and are mined separately. This is undertaken to determine whether

an early prediction of build outcome can be achieved. Once this stage is complete a

comparative analysis is carried out to determine the best performing data sets in terms

of highest number of correctly classified instances and sensitivity measurements. The

classification trees of the best performing mining experiments are also evaluated in

terms of making rational sense and their degrees of complexity.

In the Jazz data set a given build contains change sets that indicates the actual source

code files that are modified during implementation. These change sets consist of change

objects which are used for extracting project files. The objects that are utilised for

extracting source code are shown in Figure 13.

70

Figure 13 Navigating the Jazz API for Retrieving Source Code

During the extraction process a systematic file hierarchy is set up, where the IDs and

results of the builds are preserved as folder names and Java source code stored under the

correct folders, respectively. Preserving these extra details about the builds in one form

or another is important for constructing the data sets. For this study the build result

attribute will be the classifier for all data mining experiments.

3.3.2 Software Metric Aggregations

Forty-two software metrics are calculated for the source code of each build using the

IBM Rational Software Analyser. As the repository is developed and used by an IBM

team, the IBM software analyzer is a tool that would be readily available for the team to

use to analyze their source code metrics. Aggregation is the process of computing

statistical measures such as averages, medians, or maximums that summarise the result

for a particular set of software metrics. Aggregated software metric data can be

processed by mining algorithms and the accuracy and sensitivity between such

aggregations can be measured and compared.

In order for IBM's Rational Software Analyzer tool to calculate the metrics for builds,

each build needs to be presented as its own Java project. To construct Java projects for

the extracted Java files a separate application has been developed which takes Java files

and constructs an eclipse project for them (by constructing all the necessary files and

packages of a Java project for the Eclipse IDE).

71

The builds as Java projects are then loaded into an Eclipse workspace. Since there are

approximately 200 build projects (some of which are quite large in size) the memory

size allocated to Eclipse needed to be increased from its default value. Another

alternative is to load the projects into separate workspaces if computer memory

becomes an issue. To automatically generate metric reports a batch file that references

the analyzer workspace and a metrics rule file is used. The metric rule file is exported

from the software analyzer, containing all metrics that are to be processed by the

analyzer. With the snapshot of the Jazz repository provided by IBM for this research, it

can take 2-3 days of processing using a computer with the following specifications:

AMD II triple-core 2.20 GHz, 8 GB DDR3 ram and a Windows 7 64-bit operating

system.

The Extensible Mark-up Language (XML) metric reports generated are stored with the

build ID and result preserved within the folder system. An additional Java application

has been developed that reads the xml reports and generates the desired software metric

data set from them. The resulting data set is stored as a plain comma-separated text file

(which can then be imported into excel and Weka). The metric data sets are then used

to initiate the data mining processes. To ensure that the metrics extracted were valid,

sample programs, with expected metric outcomes where created by the researcher.

To begin this work investigates how to aggregate software metrics from collections of

source code files: To begin the software metrics are generated for the available software

build projects and are stored in an individual report document in XML format. The

typical layout for metric data within the report is as follows:

<Category Name>

 <Rule Name>

 <Result Type>

 <Result Type>

The <Category Name> tag is the category assigned for the software metric rules types.

For example software metrics such as "Average block depth", "Weighted methods per

class" and "Maintainability index" are all rules that are under the "Complexity Metrics"

72

category. The <Result Type> tag represents the various levels that the metrics are

calculated from. Metrics can be at package, class or method level depending on their

rules. At the <Rule Name> and <Result Type> levels of the report hierarchy metric

values are assigned. In the work to date various options for aggregating the metric

values to produce representative metric data sets for each complete build is explored.

The metrics extracted at the <Rule Name> level of the report hierarchy will construct

the "Rational Software Analyzer" metrics data set, which will be coined as the RSA

data set. The Max, Median, Mean and Total metrics data sets are aggregated from the

<Result Type> level. At these levels the value for each metric for each source code file

is calculated individually, then the average, maximum, median and total sum is

propagated up to the build level. A minimum data set is not included as most instances

within the data had zero values for metrics. In total 10 data sets are constructed: RSA,

max, median, mean and total software metric values for both the before and after states

of Jazz builds.

Source code files are extracted for each build within the repository. Subsequently

software metrics were generated by utilizing the IBM Rational Software Analyzer tool.

As a result the following traditional, object orientated and Halstead software metrics

were derived from the source code files for each build, for each aggregation. In total

there are 42 software metrics explored in this study. The metrics are derived for the

formulas and definitions summarised in Appendix A: Software Metrics. All 42 software

metrics are included in this research:

 Complexity Metrics:

o Average block depth, Weighted methods per class, Maintainability index

and Cyclomatic complexity

 Dependency Metrics:

o Abstractness, Afferent coupling, Efferent coupling, Instability and

Normalized Distance

 Halstead Metrics:

o Number of operands, Number of operators, Number of unique operands,

Number of unique operators, Number of delivered bugs (estimated),

Difficulty level, Effort to implement (estimated), Time to implement

73

(estimated), Program length, Program level, Program vocabulary size

and Program volume

 Cohesion Metrics:

o Lack of cohesion 1, Lack of cohesion 2, Lack of cohesion 3

 Basic Metrics:

o Depth of Inheritance, Number of attributes, Average number of attributes

per class, Average number of constructors per class, Average number of

comments, Average lines of code per method, Average number of

methods, Average number of parameters, Number of types per package,

Comment/Code Ratio, Number of constructors, Number of import

statements, Number of interfaces, Lines of code, Number of comments,

Number of methods, Number of parameters and Number of lines

 Jazz Metric (classifier):

o Build Result, this attribute indicates whether a software build was a

success, failure or resulted as a warning. This metric is used as the

classifier for the data mining experiments.

A more directed set of metrics was not defined despite there being some evidence in the

literature that certain metrics may have limitations or deficiencies. Similarly, no new

metrics were included if they could not be calculate by the Rational Software Analyser

tool. The decision to maintain the complete list of available metrics was an attempt to

simulate the range of options that would be open to the Jazz development team in their

day-to-day activities.

3.4 Data Mining Methods

Feature selection methods used in this study include Subset Evaluation, Information

Gain, principal components analysis (PCA) and no feature selection. The "no feature

selection" method acts as a control and provides a benchmark for each experiment as it

will indicate whether or not feature selection methods are adding any value to the data

mining. Classifier methods used for this study include the j48 tree, Naive Bayes and

Bayesian network. Simple k-means clustering is also adopted for further exploration of

the nature of the data. Default Weka values are used for all classification and clustering

methods except for 1 parameter for the Bayesian network. The parameter that is

changed is the number of max parents within the K2 search algorithm and is increased

from 1 to the total number of features included for the mining.

74

The j48 mining algorithm in WEKA is an open source implementation of the C4.5

decision tree learner. These trees are represented as connected acyclic node-edge graphs

and are fundamental for displaying data structures. Recursive partitioning tree models

can be used for prediction and has become a popular alternative for regression and other

algebraic methods. Branches within a decision tree indicate rules that have been learned

from the data. Leaf nodes within a decision tree indicate a class prediction should that

node be reached. To interpret a decision, displayed via WEKA, the trees' leaf nodes will

contain the predicted classification followed by two sets of numbers. The first set of

numbers is the total number (weight) of instances assigned to that node and the second

number is the number (weight) of instances that have been misclassified. Fractional

numbers occurring within leaf nodes indicate missing attribute values.

The Naive Bayes classifier is used as another probabilistic classification algorithm and

is based on Bayes Theorem. Naive Bayes is robust in the sense that it has the ability to

ignore or cope with missing data and smaller data sets. The Bayesian network, also

known as a belief network, is an additional probabilistic classification algorithm and,

unlike Naive Bayes, constructs conditional dependences and relationships between

features and a classifier. The Naive Bayes, Bayesian Network and j48 algorithms have

been selected due to their potential for handling complex sets of relationships, which

according to much of the research performed using software and social metrics is a

necessity. Given the relatively small size of the data sets 10-fold cross validation is

utilized in order to make the best use of the training data. The relative optimism of

cross-validation is acknowledged and will be addressed in future work when more data

becomes available from the Jazz project.

For each mining activity the total number of correctly classified instances and

incorrectly classified instances are captured. The confusion matrix (also known as a

contingency table) is also documented where the total number of correctly classified

successful builds and total of incorrectly classified successful builds are presented. The

total number of correctly classified failed builds and number of incorrectly classified

builds are also recorded from this matrix. For example in Table 1, under the #

Successful builds correct (incorrect) heading, the first value 109, is the total number of

75

correctly classified successful builds. The value within the brackets (18) under the same

heading is the total number of incorrectly classified successful builds.

Table 1 Example of Recorded Accuracy Results

Successful

builds correct

(incorrect)

Failed builds

correct (incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

109 (18) 49 (22) 79.798% 20.202%

Performance data that is captured for both successful and failed builds includes TP

(True Positive) Rate, FP (False Positive) Rate, Precision, Recall and F-Measure. When

precision, recall and F-Measure values are closer to 1.0 it is considered to be a desirable

result and values closer to 0.0 are poor. The TP Rate is the rate of instances that are

correctly classified as a successful or failed build amongst all instances. Presented in

Table 2 the TP rate for successful builds is calculated by 109/(109+18) and the TP rate

for failed builds 49/(49+22). For this example 198 build instances were processed in

total. The FP Rate is the proportion of instances that are classified as a success (or fail),

but belong to a different class, amongst all the instances that are not of that class. For

example the FP rate of successful class is 49/(109+49) and for the failed class is

18/(109+18). The precision measurement is the proportion of instances that truly have a

class among all instances that were correctly classified of a class. For example for

successful builds the precision is calculated by 109/(109+22) and for failed builds is

49/(18+49). The recall value is the total number of correctly classified instances divided

by the total number of correctly classified plus the total number of incorrectly classified

instances of a class. For example the recall for successful builds is given by

109/(109+18) and for failed builds is 49/(49+22). The F-Measure is a combined

measurement for precision and recall values and the formulae is

2*Precision*Recall/(Precision + Recall). The F-measure for successful build instances

is 2*0.832*0.858/(0.832+0.858). Table 2 presents an example of how the sensitivity

measurements are documented along with weighted averages for both successful and

failed build measurements. In addition to classification accuracy and sensitivity

measurements, the j48 decision trees are also examined in terms of intuitiveness.

76

Table 2 Example of Recorded Sensitivity Results

Class TP Rate FP Rate Precision Recall F-Measure

Successful

Build
0.858 0.31 0.832 0.858 0.845

Failed Build 0.69 0.142 0.731 0.69 0.71

Weighted

Average
0.798 0.25 0.796 0.798 0.797

For this thesis an experimental hypercube is used to determine each data mining

configuration and is illustrated in Figure 14 and Figure 15. In Figure 14 the n-

dimensional cube is comprised of six factors, this includes the 42 software metrics, the

5 software metric aggregations, the 199 build instances that are captured over time, the

before and after change set states of a build, the 4 feature selection methods and 3 data

mining methods.

Various experiment setups are executed over 4 major phases. The first phase explores

the software metrics and various aggregations (Total, RSA, Mean, Median and Max)

using traditional feature selection and data mining methods. From the insights gained

from the first phase, the second phase attempts to boost the classifiers' performance

(increasing correctly classified instances and sensitivity ratings). The methods explored

for the second phase are presented in section 3.5. From the first and second phases the

relationships between the best performing software metric data set and social network

metrics data are explored in the third phase (using methods described in section 3.6).

Finally, the fourth phase explores how software metrics and social metrics evolve over

time by encoding the best performing metric aggregation as data streams. In doing so

the final phase moves away from traditional data mining methods, where data is treated

as static and introduces the application of data stream mining methods. The

experimental methodology for the final phase is covered in more detail in section 3.7

77

Figure 14 Software Metrics as Multidimensional Data

Figure 15 Social Metrics as Multidimensional Data

3.5 Increasing Prediction Accuracy of All Failed Builds

The second experimental phase involves a deeper focus on improving classifier

performance of the initial data mining experiments by looking at potential alternatives

for feature selection and introducing synthetic data instances. This phase was defined

during the research as initial results were generated that helped refine the research

direction rather than defined a-priori. This phase can be broken down into three main

experimental stages. The first stage focuses on the frequency of selected features

amongst the before and after states of the build metrics. The second stage explores the

impacts of applying the features selected from the after state to the before state data, in

order to see if future metric feature selection can enhance past metric data models.

Finally, the third stage utilises SMOTE for synthetically generating more instances of

any minority classes within the data for potentially improving the percentage of

correctly classified instances. Mining experiments in stage 1 and 2 of this phase utilise

78

10 cross-fold validation. Mining experiments in stage 3 make use of a supervised

learning method where test and training data sets are generated.

3.5.1 Frequency of Features Selection

From the initial experimental phase all features that have been selected from all

experiments are counted. For example, if Cyclomatic Complexity was found to be

selected from the mean metric data set using Subset Evaluation and in another

experiment was found from the max metric data set using Information Gain, then

Cyclomatic Complexity will have a frequency of 2. For this stage features are iteratively

selected, based on their frequency and are then applied to the pareto-optimal data sets

from the initial phase. This process is carried out separately on the before and after state

data sets. During this iterative selection phase features are reduced by increasing the

count threshold. For example from the various experiments if metrics were selected

more than once, they are included within the feature set. In the next iteration a metric is

selected if it appears more than twice and so on, until no more metrics are left to select.

From the first experimental phase the resulting pareto-optimal data sets will have the

iterative frequency feature selection method applied to them.

3.5.2 Applying After State Features To Before State Data Set

The next stage begins with the application of features selected from best performing

feature selection methods, from the best performing after state data sets and applying

each set of features to the respective best performing before data sets. In addition to this

the frequency feature selection iterations performed on the best performing after state

data sets is also applied to the best performing before state data sets. In order to manage

risk of a failure build it is useful to revise and review risk exposures during software

build cycles. In this case the before state metrics are used to determine if build failure is

based on changes prior to any changes made in the source code. This will characterise

source code that is about to be changed in terms of it being modified successfully or if

there are patterns in existing code that may lead to failure.

3.5.3 Application of SMOTE

In stage three SMOTE is applied to the best performing data sets. To do this the data

sets are broken down into individual training and test data sets for the exploration of

supervised learning methods. The training set data consists of 70% of the original data

set instances and will reflect the naturally occurring ratio of successful builds and failed

builds. The remaining 30% of instances are then used as the test set. This creates a

79

stratified data set that will ensure that there is an unbiased estimate of classification

performance.

This phase of experiments, utilising SMOTE, is broken down into two stages. For the

first stage feature selection is applied to the data that is of the same change set state. For

the second stage features from the after state are applied to the before state data. For

both stages SMOTE will be iteratively applied to the training sets by incrementally

increasing the number of generated instances. For instance the percentage of instances

to generate ranges from 100% to 500% (inclusive) and is incrementally increased in

steps of 100%.

3.6 Build Prediction Using Social Metrics

This phase focuses on the communication between developers to predict build success

and failure and exploring its impacts on development. Within the repository each

software build may have a number of work items associated with it. These work items

represent various types of units of work and can represent defects, enhancements and

general development tasks. Work items provide traceable evidence for coordination

between people as they can also be commented. In addition to this they are one of the

main channels of communication and collaboration used by contributors of the Jazz

project. That being said there are, of course, other channels of communications which

are not captured by work items, these include email, on-line chats and face-to-face

meetings. Even though these elements are not captured, exploration of communication

on work items offers a non-intrusive means to explore much of the collaboration that

has occurred during the Jazz project. The Jazz team itself is fairly large, with 66 team

areas for approximately 160 contributors that are globally distributed over various sites

across the United States of America, Canada and Europe.

This aspect of the research is necessary despite there being previous work that has

investigated social network analysis using Jazz (Wolf et al., 2009). Part of the overall

goal of this research has been to consider whether the combination of software and

social network metrics provides better prediction of build outcomes in comparison to

the predictions on a single set of metrics only. To ensure the consistency between the

two sets of metrics, it was necessary to generate social network metrics for the same

builds from the Jazz data for which there are software metrics.

80

3.6.1 Extracting Social Artifacts

To explore the communication between contributors involved in builds, social network

metrics are derived from the communication networks that are present within work

items. Each work item is able to be commented on and this is the main task-related

communication channel for the Jazz project. This enables contributors to coordinate

with each other during the implementation of a work item. There are many elements, in

regards to contributors, of a work item to consider. This makes the process of

constructing a social network a little more challenging. In doing so some basic

assumptions about the data is been made. Work items can have various contributors

assigned to various roles, for example there are creators, modifiers, owners, resolvers,

approvers, commenters and subscribers. For the purposes of this work a social network

is constructed similar to the work presented by Wolf et al. (2009). For each social

network constructed, nodes represent contributors involved with a build. A series of

directed edges represent the communication flow from one contributor to another. A

build can have zero to many work items associated with it. Therefore the social

networks generated at the work item level are required to be propagated to the build

level for analysis of its impact on build success. To do this if a contributor appears

within multiple work items that are associated with a single build, only one node is

created to represent that contributor (there are no duplicate nodes). Additional edges are

added to reflect entirely new instances of communication that takes place between

contributors. All edges within a network are treated as unique (there are no duplicate

edges). This is because it would threaten the validity of metrics such as density. If a

network is fully connected it a density of 1. If there are edges which represent each

individual flow of communication the density metric would no longer be valid

(potentially being greater than 1), which would make comparisons between networks

metrics challenging.

For this research roles which are used to construct the network nodes include,

committers of change sets, creators, commenters and subscribers. Committers

(modifiers and resolvers) of change sets for a build are presented as a node, as they have

a direct influence on the result of the build. Creators of a work item are communicating

the work item itself with other members of the team. Commenters are contributors that

are discussing issues about a work item. Subscribers are people who may be interested

81

on the status of a work item as it has impact on their own work and other modules. In

order to generate the edges between nodes, the following rules have been implemented

to establish connections between people:

a) The work items' creator is linked to its commenters [creator → commenters].

This connection is made because the creator of the work item has communicated

the work item itself to the contributors who are collaborating on it.

b) The work items' creator is linked to the subscribers [creator → subscribers]. This

link is made because the creator of a work item has given the subscribers

something to subscribe to and has therefore communicated with them also.

c) Work item commenters are linked to subscribers [commenters → subscribers].

This link is established because commenters pass on information about the work

item to subscribers. Comments on a work item may have direct impact on other

work items which other contributors are working on within a build.

d) Work item commenters are linked to commenters [commenters → commenters].

Assuming that all commenters of a work item read all other comments on that

work item. For example if commenters and comment on the same work

item the assumption is made that has read all comments made by (→).

Another connection is made vice versa where it is assumed that has read all

comments by (→) on the same work item. Even though this may not

reflect what happens in reality. There is no sure way to capture what a

contributor may or may not read. It is therefore best to capture these types of

relationships than to completely negate them.

e) Change set committers of a work item are linked to commenters [committers →

commenters]. Committers have a direct impact on a build status and its work

items by committing source code and documentation and therefore will affect

the comments made on the work item itself. Assuming that change requires

group collaboration.

f) Committers are also linked to subscribers [committers → subscribers]. Where

committers affect and influence the state of one work item, collaborations may

need to be made with its subscribers who work on other work items.

82

From these elements constructing the social networks for each build, the metrics are

calculated are:

 Social Network Centrality Metrics

o Group In-Degree Centrality, Group Out-Degree Centrality, Group InOut-

Degree Centrality, Highest In-Degree Centrality and Highest Out-Degree

Centrality

o Node Group Betweenness Centrality and Edge Group Betweenness

Centrality

o Group Markov Centrality

 Structural Hole Metrics

o Effective Size and Efficiency

 Basic Network Metrics

o Density, Sum of vertices and sum of edges

 Additional Basic Count Metrics

o Number of work items the communication metrics were extracted from

o Number of change sets associated with those work items

 The classifier value for the mining experiments will, again, be by build result.

Centrality metrics are used to calculate a nodes' importance within the network, by its

number of connections within the network. In general terms the degree of a node relates

to the number of its connections to neighbouring nodes. The Out-Degree of a node is

the number of its outgoing connections . The In-Degree of a node is the number

of its incoming connections . The InOut-Degree of a node is the sum of its In-

Degree and Out-Degree metrics . To add to the collection of network metrics

the highest In and Out degree metrics are captured for each builds' work items. Doing so

may prove to be useful as metrics that represent extreme values are likely to be either

wanted or undesirable and therefore many relate directly to success and failure. To

calculate the Group Degree Centralization index for a builds' network the following

formulae is used (using In-Degree metric focus):

83

Where g is the number of nodes, is the largest node degree index in the network,

 is any of the degree centrality measures of a node . In addition to group degree

centrality metrics the group betweenness centrality is also added to the collection of

social network predictors.

Betweenness centrality indicates a nodes' importance in overall connectivity within a

network. In this case individual nodes' centrality is derived from the number of shortest

paths from all nodes "passing" through it, divided by the total number of shortest paths

within the network. It is also possible to calculate betweenness centrality for edges.

Betweenness centrality metrics provide insights into how a network is linked and the

traffic-directing capabilities of a node or edge in a graph. To calculate the Group

Betweenness Centralization metric, using Freeman's formula, for an entire network of a

software build:

Where is the largest betweenness index of all contributors within the network.

The Markov Centrality metric makes use of a global "objective" ranking function,

where if a node () is considered to be "central" (is positioned closer to the centre of

the network mass), it will have a higher ranking than nodes which are less "central".

Using the same formula as above and substituting with , the Group Markov

Centrality is obtained. Where is the largest ranking node. This metric is not

explored in previous work by Wolf et al., (2009), but has potential as to identify nodes

of relative importance of a node by "travelling" random paths within a network (White

& Smyth, 2003)

Structural Hole Metrics included in this study include the effective size and network

efficiency metrics. The effective size of a node is the number of its neighbouring nodes,

minus the average degree of those in 's ego network. This is not counting their

connections to .The efficiency metric normalizes the effect size of a node () by

dividing its effective size by the number of its neighbouring nodes.

84

The density metric is calculated as a percentage of all possible connections within a

network. A network that is fully connected has a density of 1 and a network with no

connections has a density of 0.

To implement the rules for these metrics an application has been developed in Java by

the researcher that establishes the social network that utilises the Jazz API and calculate

network metrics using the Java Universal Network Graph Framework (JUNG

http://jung.sourceforge.net/). If provided with a sample network that is illustrated in

Figure 16 the betweenness and Markov vertex rankings for nodes are shown in Table 3

and the overall metrics extracted for such a network are shown in Table 4. Nodes U-Z

are representations of contributors and the links are the flows of communication. In this

study all networks are composed of directed edges, as per the connection rules above.

Figure 16 Social Network Example

Table 3 Example Node Rankings for Betweenness and Markov Centralities

Node Betweenness Markov

U 0 0.0567

V 8 0.2056

W 2 0.2237

X 0 0.1327

Y 0 0.0620

Z 10 0.3190

85

Table 4 Example of Network Metrics

Network Metric Value

Group In-Degree Centrality 0.080

Group Out-Degree Centrality 2.000

Group InOut-Degree Centrality 0.384

Highest In-Degree Centrality 0.800

Highest Out-Degree Centrality 0.800

Node Group Betweenness Centrality 8.000

Markov Centrality 0.1828

Edge Group Betweenness 1.538

Effective Size 9

Efficiency 4.333

Density 0.466

Sum of Vertices 6

Sum of Edges 14

Similar to the software metrics exploration phases, where success is represented by

build result, these build results are also used to represent coordination outcomes. From

this perspective build success is regarded as coordination success. Just like the first

stages of exploring the software metric data sets, the same data mining techniques are

applied to the social network metrics data set.

The additional basic count metrics, including the number of work items and the number

of change sets associated with a builds' work items, provide an additional size

measurement that is directly related to a builds' communication network. While these

two metrics are not derived directly from the network itself they provide an additional

summary about the amount of work the network is associated with.

3.6.2 Social Network Metric Aggregations

Similar to software metrics, social network metrics can be captured over time. In Jazz

each work item comment has a date and timestamp. To generate better understandings

about how social metrics evolve over time this phase of experiments introduces a build

related time interval that is used as input for building prediction models. The

communication metrics are extracted from builds via time intervals (to generate four

social metric data sets). More specifically the social metric data sets are constructed by

86

selecting the first 25%, 50% or 75% and 100% of the communication that occurred

since the previous build. This is a similar approach explored by Wolf et al. (2009)

which also utilises the Jazz repository. An illustration of this approach is shown in

Figure 17.

Figure 17 Social Metrics Instance Samples (Wolf et al., 2009)

Once this data set is pre-processed the Subset Evaluator and Information Gain feature

selection methods are again used to filter the social network metrics from insignificant

predictors (the "no feature selection" is also applied as a benchmark control). Then the

j48 classifier, Naive Bayes and Bayesian Network methods are applied using 10 cross-

fold validation.

SMOTE may still have potential for improving classification accuracies and

sensitivities. For this the data set is broken down into a training and test set, again using

the same technique as previously 70% of social network instances will compose the

training set (reflecting the naturally occurring ratio of successful and failed builds) and

the remaining 30% will be used as the test set.

Propagating social networks that originally exist at work item level, to build level will

also prove to be useful for the next stages of this phase. During this next sub-stage the

best performing software metric data sets (before and after states) and the social

network metric data set are combined. The number of features will increase to 57, as

there will be 42 software metrics with the addition of 14 social network metrics plus the

classifier (build result). The consequence of this is not an ideal scenario from a data

87

mining perspective, as the ratio of features to instances is not favourable. However,

feature selection methods are again applied to reduce the numbers of predictors of the

feature space. This process will also determine if significant predictors are selected from

a combination of social network and software metrics.

3.7 Mining time-changing data streams

In order to explore the time-series component of the data a combination of WEKA and

MOA APIs are used. The software metrics and social metrics data sets are presented as

individual cached instance streams. Instances within the stream are sorted via the date

and time of the software build started (oldest to newest) to simulate a software project

build process. Using the Hoeffding tree, the model is trained using the first 20 instances.

The remaining instances are used for both prediction and additional training. For each

instance predicted results are measured again in terms of their overall accuracy and

sensitivity. A concept drift detection method called ADaptive sliding WINdow

(ADWIN) (also available via the MOA tool) is also utilised to detect and estimate

degrees of change within the metrics. Used in conjunction with the Hoeffding tree, drift

detection keeps an adaptive list of recently seen instances and measures the overall

change in the average values of recently seen items. This is of particular interest for this

research as it can be used to detect significant metric values that change over time in

less predictable ways. This introduces an additional measurement criteria including the

total number of drifts that occur over time, variance, estimation and width(T) values.

In addition to this a linear k-NN method using Euclidean distance is also adopted to

predict build outcomes within the time-series based framework. For this research the k-

NN offers an additional and separate experimental setup to the Hoeffding tree. The k-

NN approach is not used strictly in a data stream mining sense as it requires full access

to historical data to perform classification. However, each instance can be classified as

it becomes available. In this case the classifier works at instance level rather than group

level where each instance will have its own unique blend of software metric bias and

communication metric bias. Weka's API offers support for this approach. A Java

application has been implemented which utilises this for processing instances. To

calculate probability: p1(correct prediction | k nearest neighbours of training instances).

Training instances are used to search for near neighbouring instances for each test

instance. The nearest neighbouring instances have the correct and known class

classification. A class label is then assigned based from the nearest neighbours' overall

88

probability. For example each nearest neighbours' outcome is counted, then the class

label from is assigned based on which outcome is the most common amongst the

neighbouring nodes. Due to the limited number of instances 5 nearest neighbours

(where k=5) of the training instances are searched. For this research the k-NN approach

is defined by the following pseudo-code:

kNearestNeighbours(int k, Instance testInstance, Instances trainingInstances){

Foreach (trainingInstance in trainingInstances){

o Calculate the Euclidean distance of the test vector to the current

training vector

o Map training point if it is within k nearest neighbours

}

Label = majorityVote(training map of k)

}

Where “k” is the number of nearest neighbours, “testInstance” is the latest instance that

has become available for classification; “trainingInstances” is the number of historical

instances that have been recorded (to be classified against). The “Label” is the

classification outcome based on a “vote” of nearest neighbours (using their actual

labelled values). Once the latest test instance has been classified it is then added and

stored with the training instances.

The Hoeffding tree, ADWIN and k-NN methods will be applied to the optimal

performing (most accurately modelled) software metrics data set found from the

previous sets of experiments and will also be applied the communication metrics data

set.

The SMOTE method is also applied to perform a what-if analysis to see what might

occur if data stream mining ran against a larger data set of software and social network

metrics. For the simulation to be realistic the naturally occurring distribution of

successful and failed build instances is maintained. To do this SMOTE is applied twice

to each data set increasing the number of instances by 900% per application. In the first

instance SMOTE will increase the instances of the minority class (failed builds). In the

second instance the minority class is changed (to successful builds) so SMOTE then

89

increases the number of instances of other class. Although this is not the way SMOTE is

used in traditional data mining, this has the potential to provide additional insights into

how important data sample size is for stream mining software and social network

metrics. Furthermore SMOTE generates values via interpolation, rather than

extrapolation, therefore the new instances remain relevant to the context of software

builds for the Jazz project.

3.8 Chapter Summary

This chapter has presented the overall research methodology including details of the

experimental methods and tools used for this research project. There are three major

experimental phases that were designed to test the research question constructed to find

which combinations of software and social network metrics provide the best predictors

for a software builds' success within the Jazz project. The extraction process, metric

aggregations interpretations, data mining methods and evaluation criteria have also been

detailed. In the next chapter the results of the data mining experiments are presented and

analysed.

90

4 Experimental Results

Chapter 3 described the methodology used to define and extract the data required to

complete four experimental phases, namely an initial exploratory mining of software

metrics, boosting mining performance, combining software and social network metrics

and finally demonstrating how the emergent models can be deployed in practice. The

objective of the initial mining stage is to gain insights into which combination of feature

selection, mining algorithms and software metrics works best for classifying successful

and failed builds. This initial phase is required to narrow down an extensive search

space into a smaller number of feasible avenues of investigation. The objective of the

second stage is to introduce different ways to boost classifier performance through

exploration of novel feature selection tactics and adoption of SMOTE. The objective of

the third stage is to see if the models developed using software metrics can be combined

with social metric data to provide better insight into the classification of software

builds. This analysis is undertaken using the best performing methods from previous

experimental phases.

Initial analysis of the Jazz repository indicated that it consisted of approximately 360

builds. However, from these builds software metrics could only be extracted for 199

build instances change sets, for the before and after states. This is because there is a

limit defined by the Jazz team to only keep the latest 200 builds. Build instances were

extracted from 28th June, 2007 to 16th June 2008. From these instances there are 127

successful builds and 72 failed builds. Early explorative research utilised software

metrics from continuous builds to construct the metrics data set, however in doing so

there were more instances of successful builds than failed builds. In order to balance the

data set, failed builds were injected from nightly, integration and connector builds. This

option was preferred over removing successful builds from the data set, as it reduced the

possibility of model over-fitting by having too small a data set. Software metrics

instances were derived from 15 nightly builds (incorporating changes from the local

site), 34 integration builds (integrating components from remote sites), 143 continuous

builds (regular user builds) and 7 connector Jazz builds. These builds were included in

the data set whether or not they had associated work items. This increased the number

of build instances for each data set to 200. This presents a situation where the number of

91

features is very much less than the number of instances available for analysis, which is a

far from desirable scenario from a data mining perspective. To increase the number of

instances another possible solution is to include more builds from additional snapshots

of the repository, but more data was not forthcoming from IBM at the time that the

research was executed. Various strategies for reducing the number of metrics are used to

classify the relative number of builds in the data set are investigated, to combat the

number of features to instances ratio. The Weka machine learning (Hall, Frank, Holmes

& Pfahringer B., 2009) workbench is used for all data mining experiments.

In terms of data pre-processing, build instances that have a warning build result have

been classified as failed build instances. During initial explorations of the software

metrics it was found that after implementing the classification model (the resulting j48

decision tree), that was built from using only successful and failed build instances, all

warning builds instances were classified as failed instances. Warning builds as failed

builds also increase the number of the minority instances which will benefit the mining

processes in potentially detecting interesting patterns. This is a different approach than

that used by Wolf, Schroeter, Damian and Nguyen (2009), where warning builds were

treated as successful builds. In their study it is assumed that warning builds required no

further actions from developers. Though it is not discussed in this thesis, an initial

classification model was created excluding the warning builds and this model was used

to attempt to classify the warning builds as either successful or failed. The outcome of

all builds being classified as failed builds supports the decision to override the

classification and assign the warning builds to the failed class. It can also argued that a

warning is a bug in waiting (Spinellis, 2006). While warnings may be acceptable for

debugging build types, for release builds it is better practice to treat warning builds as

failed builds as some of them may indicated potential problems (Miller, 2008;

Subramaniam & Hunt, 2006).

For each data set if a build had source code regardless to the connection to work items

or other objects within the repository metrics are extracted and added as an instance.

Any instances of a build that had no software metrics (missing values), for all features,

are removed. This data pre-process is important to reduce the amount of noise within

the data, missing data, or even misleading data that can have negative impacts on the

mining and learning process. The project data that is extracted from Jazz was gathered

92

during the development of Jazz. As a consequence features that automatically capture

project processes did not exist until later development stages of Jazz (gaps would often

appear at early stages of the project data set).

For the before and after state change sets metrics of builds, Subset Evaluation (CfsSubst

(SE)), Information Gain (Infogain (IG)) and Principal Components Analysis (PCA)

feature selection methods are used to filter each data sets features. Then for each

filtered set the selected mining algorithms (j48 Classifier (j48), Naive Bayes (NB) and

Bayesian network (BN)) for this study were ran separately on each set of features for

each data set using 10 cross fold validation. In addition to this the mining algorithms are

also applied to the full data set without any feature selection (No FS) to serve as a

benchmark for observing any increases or decreases of performance from using feature

selection methods.

4.1 Initial Software Metric Data Mining Experiment Results

Mining experiments are performed on both the before and after software metric build

state data sets. There are multiple dimensions to the results that need to be considered

when deciding on which methods and data sets are best to use for further exploration.

For this reason the results from the initial data mining are broken down into 3 sections.

Each section is based on the data set, the feature selection and the mining algorithms

components of this study. For each data set the ranges of correctly classified instances

for all mining experiments performed, on each data set, are presented. This includes the

overall percentages of correctly classified and incorrectly classified instances. These

values are also broken down to show the percentage of correctly classified successful

and failed build classes derived from the classifier confusion matrix to ensure that a

high overall accuracy is not derived just from identifying one type of build. For each of

the feature selection methods used the results present how often Subset Evaluation,

Information Gain, PCA and no feature selection (benchmark) performs the best in terms

of correctly classified instances. Finally for each mining algorithm adopted the

experimental results are presented in terms of correctly classified instances and

sensitivity ratings including true positive (TP), false positive (FP), Precision, Recall and

F-Measure values for successful, failed build classes and weighted averages.

93

The initial mining stage requires 120 individual experiments in Weka. Broken down this

is 5 data metric aggregations (Rational Analyzer Metrics, Total Metrics, Max Metrics,

Median Metrics and Mean Metrics), by 4 feature selection methods (Subset Evaluation,

Information Gain, PCA and No Feature Selection), by 3 classifiers (j48 Classification

Tree, Naive Bayes and Bayesian network), by 2 software build states (Before and After

build states).

The combination of data set, metric aggregation, feature selection method and

classification method creates an experimental hypercube. The following sections present

results that populate that hypercube with the goal of obtaining some insight into which

slices through the hypercube offer the most potential for further study.

4.2 Before State Results

Using the software metrics derived from the before state of each build, classification

experiments show that the RSA and Max data sets have performed the best in terms of

their overall percentage of correctly classifying instances. Table 5 shows the minimum

and maximum classification accuracies achieved from the initial 60 data mining

experiments on the before state software metric data set aggregations. Results are

presented to one decimal place, so some rounding has occurred. According to these

initial figures it is apparent that failed build instances are more difficult to predict than

successful build instances. This pattern has occurred across all data sets indicating that

there is a strong overlap of success and failed builds within the feature spaces explored.

The variation of correctly classified instances occurs largely due to the different types of

software metrics aggregations.

94

Table 5 Summary of Data Mining Results for Before State Metrics Data Sets

 RSA Total Mean Median Max

% of Correctly

Classified

Instances

65.2 - 79.3 62.6 - 76.3 60.6 - 75.3 46.0 - 66.2 64.1 - 78.8

% of

Incorrectly

Classified

Instances

20.7 - 34.9 23.7 - 37.4 24.8 - 40.0 33.8 - 54.0 21.2 - 35.9

% of Correctly

Classified

Successful

Builds

80.2 - 95.2 72.2 – 100.0 48.4 - 92.1 29.4 - 100.0 88.9 - 78.6

% of Correctly

Classified

Failed Builds

12.5 - 70.8 9.7 - 72.2 32.0 - 82.0 0.0 - 75.0 29.2 - 69.4

4.2.1 Data set Performance

The histogram presented in Figure 18 shows the overall percentages of correctly

classified instances, of successful and failed builds, per mining experiment for the

before state metrics, using 10 cross fold validation. From this perspective each mining

scenario is represented by the feature selection method and mining algorithm used.

Figure 18 illustrates that in each data mining scenario the median and mean metric data

sets have generally performed not as well as the total, max and RSA metric

aggregations. For this set of experiments the max data set has on average performed the

best across all methods in terms of generating the best percentages of correctly

classified instances for 6 out of the 12 scenarios explored. This occurs when the j48

classifier and Naive Bayes methods are used. The RSA software metrics data set has

also performed well, generating the best classification accuracies instances for 4 out of

the 12 experiments.

95

Figure 18 Before State Mining Results by Data Set

From the RSA metrics data set the best result was produced from the metrics selected

via Subset Evaluation. Using the j48 tree 79.3% of builds was correctly classified and

70.8% of failed builds were also correctly classified. Using the Bayesian network 76.3%

of builds were correctly classified, however only 52.8% of failed builds were correctly

classified. From the total metrics data set the best results, in terms of correctly classified

instances, were obtained using a Bayesian network with no feature selection and

Information Gain. Both experiments were able to correctly classify 76.3% of build

instances. With no feature selection the number of correctly classified failed instances

was slightly higher (at 72.2%) using the Bayesian network than the Information Gain (at

69.4%).

For the max metrics data set Information Gain produced the best percentage of correctly

classified instance at 78.8%. This result was only slightly higher than the 77.8%

generated via no feature selection method. With Information Gain applied the number

of correctly classified failed builds was at 65.3%, whereas with no features selection

this value was minutely increased to 66.7%.

After running the three (j48, Naive Bayes and Bayesian Network) mining algorithms

without any feature selection, on each data set, the max metric data set performed the

best, with correctly classified instances at 77.8% using the j48 classifier. However, only

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

N
o

 F
S

Su
b

se
t

In
fo

G
ai

n

P
C

A

N
o

 F
S

Su
b

se
t

In
fo

G
ai

n

P
C

A

N
o

 F
S

Su
b

se
t

In
fo

G
ai

n

P
C

A

j48 NB BN

A
cc

u
ra

cy
 (

%
)

Feature Selection by Data Mining Method

Total RSA Mean Median Max

96

66.7% of failed builds were correctly classified. The max data set, with no feature

selection methods applied produced the best number of correctly classified instances 2

out of 3 times when compared to the other data sets mining results (without feature

selection). In addition to this the max data set generated the highest number of correctly

classified instances using the j48 tree and Naive Bayes methods.

4.2.2 Feature Selection Performance

Of particular interest are the results of applying the feature selection algorithms from

Weka, as these selection strategies are based around finding significant impact arising in

the data. This differs from the more heuristic based filtering approaches that are based

on the classification of the metrics rather than arising from the data. A number of the

available metrics are selected when applying both the Infogain and CfsSubset

algorithms, possibly indicating that these are stronger indicators of build failure. It is

observed that the number of correctly classified failed builds heavily varies from

experiment to experiment, when changing both the feature selection method and data

mining method, on the same data set.

When the Subset Evaluation is applied to each data set it was found that the RSA data

set produced the best result using the j48 classifier with 79.3% correctly classified

instances. In addition to this 70.8% of failed builds were also correctly classified. The

RSA data set produced the best results in terms of correctly classified instances when

using the j48 classification tree and Bayesian network methods when compared to all

other data sets. From the Bayesian network the rational analyzer data set generated

76.3% overall accuracy. However, only 52.8% of failed builds were correctly classified.

From applying Information Gain the max data set produced the highest number of

correctly classified instances at 78.8% using the j48 tree. However, in this case the max

data set did not produce the best results when using other mining methods. When

running Naive Bayes the best performing data set with Information Gain feature

selection was from the RSA with an overall accuracy of 65.2%. From the Bayesian

network method the best performing data set, with Information Gain feature selection

applied, was from the total metrics data set with an overall accuracy of 76.3%.

When PCA is applied to each data set the max data set produced the best results when

running both the j48 classification tree (76.3% overall accuracy with 63.9% of correctly

classified failed builds) and the Naive Bayes methods (67.68% overall accuracy with

97

30.6% of correctly classified failed builds). For the Bayesian network the RSA data set

produced the best result with an overall accuracy of 74.2% with 55.6% of failed builds

correctly classified. Figure 19 shows the percentage of correctly classified instances by

feature selection method for the before state metrics. From this perspective each mining

scenario is represented by its mining algorithm and data set used. It is illustrated that for

7 out of the 15 feature selection scenarios PCA has proven to be the most effective,

particularly when using Bayesian Network and Naive Bayes methods. There are also 4

cases where feature selection methods have tied with each other producing identical

levels of accuracy. This can be observed when looking at No FS (No Feature Selection)

and the Infogain (Information Gain) and the Subset (Subset Evaluation) and on the

RSA, mean and median data sets in several of the scenarios. In a few instances it is also

observed that data mining results have not improved with addition of feature selection

methods. For example there are cases where no feature selection has outperformed

Subset Evaluation (SE), InfoGain or PCA. This indicates that these feature selection

methods may not be crucial for improving accuracy in the context of predicting

software build failure for this repository instance. However, the role of feature selection

itself is to not only to improve classifier performance but also to improve model

comprehensibility and run time performance. In this respect feature selection methods

have a significant impact on the final model.

Figure 19 Before State Mining Results by Feature Selection

These results indicate that there is no single best solution when it comes to choosing a

feature selection method for mining various software metric aggregations. However, it

does show which data sets are worthwhile for further exploration. From the 4 feature

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN

Total RSA Mean Median Max

A
cc

u
ra

cy
 (

%
)

Data Mining Method by Data Set

No FS Subset InfoGain PCA

98

selection methods and 3 mining algorithms the max data set produced the best results 6

out of 12 times. The RSA produced the best result 4 out of 12. The Total data set

produced the best result for 2 out of 12 mining experiments.

4.2.3 Classifier Performance

For each mining activity the TP, FP, Precision, Recall, ROC and F-Measure are

measured for both successful and failed build classifiers. In addition to this a weighted

average is also measured. All these criteria range from 0 to 1. When values are closer to

one, this indicates better performance. Ranges of classification accuracy are provided

for each mining algorithm adopted and summarised in Table 6.

Table 6 Summary of Data Mining Results for Classifiers on Before State Metrics

Mining algorithm j48 Naive Bayes
Bayesian

Network

Correctly Classified

Instances
57.6% - 79.3% 46.0% - 67.7% 62.6% - 76.3%

Incorrectly

Classified Instances
20.7% - 42.4%. 32.3% - 54.0% 23.7% - 37.4%

Figure 20 illustrates the percentage of correctly classified instances by data mining

algorithm for the before state metrics. Each mining scenario is represented by its data

set and feature selection method. From this perspective it is observed that the Naive

Bayes method has performed the worst out of the three mining algorithms explored, in

terms of generating highest percentages of correctly classified instances. The best

performing algorithm in this context is the j48 classifier, where it generated the highest

result for 13 out of 20 mining scenarios. This is then followed by the Bayesian network,

generating highest correctly classified instances for 7 out of the 20 scenarios.

99

Figure 20 Before State Mining Results by Mining Algorithm

4.2.4 Best Performing Models for the Before State Metrics

This section presents the top performing models from the mining experiments of the

before state metrics from phase 1. Models of particular interest will contain high levels

of overall classification accuracy and high levels of accuracy for predicting failed

builds. Figure 21 presents the overall classification accuracy and failed builds

classification accuracy for 60 data mining experiments that were based from the range

of data set aggregations, feature selection methods and data mining methods for the

before state software metrics. For the full set of results for this section refer to Appendix

C: Before State Software Metrics Results.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

To
ta

l

R
SA

M
ea

n

M
ed

ia
n

M
ax

To
ta

l

R
SA

M
ea

n

M
ed

ia
n

M
ax

To
ta

l

R
SA

M
ea

n

M
ed

ia
n

M
ax

To
ta

l

R
SA

M
ea

n

M
ed

ia
n

M
ax

NO FS Subset Infogain PCA

A
cc

u
ra

cy
 (

%
)

Data Set by Feature Selection Method

j48 Naive Bayes Bayesian Network

100

Figure 21 Before State Results: Overall Classification Accuracy of Builds Versus

Classification for Failed Builds

Figure 21 allows a simple visualisation of the outcomes of the experimentation. The

nature of the experimentation is to find the models that best satisfy the goals of

maximising overall accuracy as well as maximising the accuracy on classifying failed

builds. This can be considered a multi-objective optimisation problem and the builds

highlighted in Figure 21 represent the pareto-optimal set of non-dominated solutions. It

is not possible to say that any one of these models is “better” than the rest as each

presents a unique solution that performs better in one objective than any of the others.

When maximizing the overall classification accuracy and the accuracy of classifying

failed builds, the first model from the pareto-optimal set has been taken from the RSA

data set, when the Subset Evaluation feature selection was applied. This model correctly

classified 79.3% of the provided instances and is detailed in Table 7. Out of the data

mining algorithms the j48 classification tree performed the best. The second model

from the pareto-optimal set was derived from using the max data set using Information

Gain and the j48 classification tree. This model correctly classified 78.8% of the

instances and is presented in Table 8. The third model from the pareto-optimal set was

also taken from the max metric data set, with no feature selection, using the j48

classification tree. This model correctly classified 77.8% of the provided instances and

is presented in Table 9. From all the best performing models, at this stage, the j48

classification tree has performed generally better than the Naive Bayes and Bayesian

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0% 20% 40% 60% 80% 100%

O
ve

ra
ll

A
cc

u
ra

cy
 (

%
)

fo
r

C
o

rr
e

ct
ly

C

la
ss

if
ie

d
 B

u
ild

s

Accuracy (%) for Correctly Classified Failed Builds

101

Network methods. It is observed that the Bayesian Network has outperformed Naive

Bayes method. This appears to be the current trend across all data sets for this stage.

The pareto-optimal set (presented in Table 10) was obtained from using the total sum

data set, with no feature selection filter and the Bayesian Network classifier. From this

experiment 76.3% of instances were correctly classified and out of those, 72.2% of

failed build instance were correctly classified.

Figure 22 presents the decision tree (via j48) using the RSA Data Set with Subset

Evaluation filter applied and the classification accuracy and sensitivity values are

presented in Table 7. Most of the metrics within the tree are essentially measures of size

rather than complexity. Starting at the top of the tree, various branches are followed

depending on specific metric values. Once an endpoint is reached a prediction has been

made. End nodes (the predicted value) that are separated by a '/' indicate the observed

total number of builds that have been classified and the second value (if present) is the

number of builds that have been misclassified. For example if a node has [Successful

build 5.0/1.0] then 5 builds in total have been classified as a success and 1 build has

been incorrectly classified as a success.

In this model the number of types per package, at the top of the tree, is a strong

predictor. If the number of types per package is below 27 the build is classified as

successful. It is observed that a degree of confusion is present within this tree and rather

appearing near the bottom leaf nodes, it appears near the top of the tree. For instance

there is a duplicate of the number of unique operators metric that appears on the higher

branches (right hand side) of the tree. As a decision tree grows in size, the chance of

over-fitting the data increases. Each split within the tree is a representation of a subset

of rules from the previous level. This combined with the degree of confusion nodes

makes it difficult to create generalisations for classifying failed builds. Ideally the

majority of failed builds will appear within higher levels of the tree.

102

Figure 22 RSA Before State (CfsSubst and j48)

103

From this experiment approximately 71% of failed builds are correctly classified,

whereas approximately 84% of successful builds are correctly classified. It is also

observed that the sensitivity measurements were slightly better for successful builds

than failed builds.

Table 7 Results from RSA Data Set Using Subset Evaluation and j48 Classification

Successful builds correct

(incorrect)

Failed builds correct

(incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

106 (20) 51 (21) 79.3% 20.7%

Class TP Rate FP Rate Precision Recall F-Measure

Successful Build 0.841 0.292 0.835 0.841 0.838

Failed Build 0.708 0.159 0.718 0.708 0.713

Weighted Average 0.793 0.243 0.792 0.793 0.793

The second best result obtained at this stage was with the max data set, using

Information Gain as a filter and the j48 mining algorithm. The decision tree for this

result is presented in Figure 23. The classification accuracies and sensitivity values are

presented in Table 8. It is observed that the comment/code ratio is a significant metric

for predicting build success and failure. In this tree failure is predicted in nodes which

are placed in higher levels of the tree. For example if the comment/code ratio metric is

>115.56 then out of the 20 builds classified as failure, only three have been

misclassified. Another strong indicator of build failure appears to involve not only

comment/code ratio, but also maintainability index, average lines of code per method

and afferent coupling, where 10 failed builds were correctly classified. Again, within

this tree, there is also a degree of confusion with rules which are indicated by the

duplicate nodes. This is particularly noticeable with average number of methods and

average lines of code per method metrics.

104

Figure 23 Max Before State (InfoGain and j48)

105

Table 8 Results for the Max Data set using Information Gain and j48 Classification

Successful builds correct

(incorrect)

Failed builds correct

(incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

109 (17) 47 (25) 78.8% 21.2%

Class TP

Rate

FP Rate Precision Recall F-Measure

Successful Build 0.865 0.347 0.813 0.865 0.838

Failed Build 0.653 0.135 0.734 0.653 0.691

Weighted Average 0.788 0.27 0.785 0.788 0.785

With the max data set a maximum value is calculated for all source code files. This

means that the metric value used to represent the after state of the code may relate to an

entirely different source code file than gave rise to the maximum value for the before

state. Therefore the above classification can at best be used to interpret trends. Despite

this, examination of the tree can provide some insight into what may be occurring

during the build cycle. The top node of the tree classifies build instances on the basis of

increasing size (as represented by the comment/code ratio). For instance both Figure 23

and Figure 24 decision trees show that when the size of the comment/code ratio

increases there is a higher probability of build failure.

Figure 23 is the final decision tree for the results presented in Table 9. The classification

accuracies presented in Table 9 shows that approximately 84% of successful builds are

correctly classified, whereas only 66.7% of failed builds are correctly classified, for the

max before state data set. This result is also reflected by the sensitivity measurements

with the average of 0.74 for successful builds and 0.60 for failed builds. Presented in

Table 10 are the classification accuracies for the decision tree Figure 24, where 78.5%

of successful builds are correctly classified and 72.2% of failed builds are correctly

classified.

106

Table 9 Max Before State (No Feature Selection and j48)

Successful builds correct

(incorrect)

Failed builds correct

(incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

106 (20) 48 (24) 77.8% 22.2%

Class TP

Rate

FP Rate Precision Recall F-Measure

Successful Build 0.841 0.333 0.815 0.841 0.828

Failed Build 0.667 0.159 0.706 0.667 0.686

Weighted Average 0.778 0.27 0.776 0.778 0.776

In Figure 24 even though there is no feature selection applied it is observed that

comment/code ratio is a strong indicator of build success or failure. Inspection of the

classification tree indicates that generally the first few nodes are intuitive. When

navigating through deeper levels of the tree repeated metrics are observed and indicates

some confusion found within the classification (e.g. Lack of cohesion 3). Resolution of

this uncertainty requires further research, however it may be related to the use of the

maximum metric values in the data set. The maximum value may potentially obscure

results.

Initial insights indicate that elements within data are highly dependent and the objects

that are being explored should not be considered independent of each other. In addition

to this there is much variability between the models generated, again, this may be

largely due to the various software metric aggregations that have been explored. This

aspect will be explored further in the discussion section of this thesis.

107

Figure 24 Max Before State (No Feature Selection and j48)

108

Table 10 Total Before State (No Feature Selection and Bayesian Network)

Successful builds correct

(incorrect)

Failed builds

correct (incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

99 (27) 52 (20) 76.3% 23.7%

Class TP

Rate

FP

Rate

Precision Recall F-Measure

Successful Build 0.786 0.278 0.832 0.786 0.808

Failed Build 0.722 0.214 0.658 0.722 0.689

Weighted Average 0.763 0.255 0.769 0.763 0.765

4.3 After State Results

For each build the after state metrics are also examined. It is found that the after state

results show similarities to the before state metrics, in terms of the features selected and

classification accuracies. The mining results of the after state have also shown that in

most cases failure is more difficult to predict than success. The number of correctly

classified failed builds varies from experiment to experiment on the same data set from

using the range feature selection and mining methods. The max and RSA software

metric data sets, again, outperformed the total mean and median data aggregations. The

summary of the ranges of accuracy and sensitivity for each data set is presented in Table

11. It is observed that the experiments performed on the total data set generated the

same range of overall accuracies from the before state. For this reason, as well as it not

performing as well as the RSA and Max data sets, the total data set is not included in the

further experimental phases.

109

Table 11 Phase 1 Data Mining Results for After State Metrics

 RSA Total Mean Median Max

% of

Correctly

Classified

Instances

62.8 - 80.4 62.8- 76.3 56.3 - 75.9 52.8 - 63.8 62.6 - 79.8

% of

Incorrectly

Classified

Instances

19.6 - 37.2 23.7 - 37.4 24.1 - 43.7 36.2 - 47.2 20.2 - 37.4

% of

Correctly

Classified

Successful

Builds

80.3 - 93.7 74.0 - 100.0 45.7 - 93.7 29.4 – 100.0 81.1 - 94.5

% of

Correctly

Classified

Failed Builds

15.3 - 66.7 6.9 - 72.2 12.5- 75.0 0 .0- 70.7 19.7 - 69.0

4.3.1 Data set Performance

From the RSA metrics data set the best result was produced using Subset Evaluation

feature selection (reflecting similar results to the before state). Using the j48 tree 80.4%

of builds are correctly classified. However, from this outcome, only 34.7% of failed

builds are correctly classified. For the max metrics data set produced the best percentage

of correctly classified instance at 79.8% when no feature selection method is applied

and using the j48 classification tree. This result was only slightly higher than the 78.3%

generated via the PCA method. With no features selection applied the number of

correctly classified failed builds was at 69.0% and with PCA this value was lower with

59.2% accuracy. In terms of overall accuracy the RSA and max data sets continue to

perform the best out of all metric aggregations, reflecting the same pattern as the before

state metric results.

For the total metrics data set the best results produced in terms of correctly classified

instances were obtained using no feature selection using the Bayesian network with

76.9% of build instances correctly classified. The number of correctly classified failed

110

build instances is at 72.2%. With Information Gain the number of correctly classified

failed instances was slightly lower at 76.4% using the Bayesian network method and the

number of correctly classified failed build instances at 70.8%.

The mean metrics data set generated the best number of correctly classified instances

when using PCA as feature selection with a result of 75.9%. Similarly to the before

state, when Subset Evaluation and Information Gain was applied to the median metrics

data set, the same set of features were selected. As a result the mining results are

identical for these two feature selection sets. Again, these results indicate that there is no

single "best" solution when it comes to choosing a feature selection method.

Figure 25 illustrates the percentage of correctly classified instances by data set for the

after state metrics. Each mining scenario is represented by a feature selection method

and mining algorithm. Again, similar to the before state the max data set generated the

highest number of correctly classified instances for 5 out of 12 scenarios. This is then,

again, followed by the RSA data with best classification percentages in 4 out of 12

scenarios. The same pattern is also detected where the median and mean data sets did

not provide valuable evidence in predicting software build success or failure.

Figure 25 After State Mining Results by Data Set

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

N
o

 F
S

Su
b

se
t

In
fo

G
ai

n

P
C

A

N
o

 F
S

Su
b

se
t

In
fo

G
ai

n

P
C

A

N
o

 F
S

Su
b

se
t

In
fo

G
ai

n

P
C

A

j48 NB BN

A
cc

u
ra

cy
 (

%
)

Feature Selection by Data Mining Method

Total RSA Mean Median Max

111

4.3.2 Feature Selection Performance

After running the three selected mining algorithms without any feature selection, on

each data set, the max metric data set performed the best, with correctly classified

instances at 79.8% using the j48 classifier with 69.0% of failed builds correctly

classified. When the Subset Evaluation is applied to each data set it was found that the

RSA data set produced the best result using the j48 classifier with 80.4% correctly

classified instances. However, only 34.7% of failed builds were correctly classified,

which is very low.

Similar to the before state data set, the rational analyzer produced the best results in

terms of correctly classified instances when using the j48 classification tree and

Bayesian network methods when compared to all other data sets. From the Bayesian

network the rational analyzer data set generated 74.9% overall accuracy with 64.0% of

failed builds correctly classified. From applying Information Gain as a feature selection

method the RSA data set produced the highest number of correctly classified instances

at 76.9% using the j48 tree. However, in this case the max data set did not produce the

best results when using other mining methods. When running Naive Bayes the best

performing data set with Information Gain feature selection were the max metrics with

an overall accuracy of 67.7%. From the Bayesian network method the best performing

data set, with Information Gain feature selection applied, was from the total metrics data

set with an overall accuracy of 76.4%. When PCA is applied to each data set the max

data set produced the best results when running both the j48 classification tree (78.3%

overall accuracy with 59.2% of correctly classified failed builds) and the Naive Bayes

methods (65.7% overall accuracy with 25.4% of correctly classified failed builds). For

the Bayesian network, again, the max data set produced the best result with an overall

accuracy of 77.8%, however only 47.9% of failed builds were correctly classified.

Figure 26 illustrates the percentage of correctly classified instances by feature selection

for the after state metrics. Each mining scenario is represented by a mining algorithm

and data set. Again showing similar patterns to the before state the PCA method gave

the best scenarios for generating the highest number of correctly classified instances in

6 out of 15 scenarios. This is primarily observed from the mean, median and max data

sets using a combination of all mining algorithms explored. The second best feature

112

selection methods were derived from Subset Evaluation and when no feature selection

was applied.

Figure 26 After State Mining Results by Feature Selection

It is observed that the Information Gain method classified a greater number of

significant metrics than the Subset Evaluator. This is to be expected as the CfsSubset

method does not assume that all metrics are dependent of each other. Instead, it looks

for inter-connected relationships between metrics to identify significant associations.

From initial mining of the before and after state metrics, the results indicate that there is

no single best solution when it comes to choosing a feature selection method for mining

various software metric aggregations. However, it does show which data sets are

worthwhile for further exploration. From the 4 feature selection methods and 3 mining

algorithms the max data set produced the best results 5 out of 12 times. The RSA

produced the best result 4 out of 12, followed by the total data set, producing the best

result 3 out of 12 times.

4.3.3 Data Mining Performance

Table 12 presents a summary of the results from the data mining methods perspective so

that they can be compared for analysis. Presented are the ranges of classification

accuracies. From this it is observed that the j48 classification method generates the

levels of accuracy with fairly similar levels of sensitivity to other methods explored.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN

Total RSA Mean Median Max

A
cc

u
ra

cy
 (

%
)

Data Mining Method by Data Set

No FS Subset InfoGain PCA

113

Table 12 After State Result Ranges by Classification Method

 J48 Naive Bayes Bayesian network

Correctly Classified

Instances

52.8% to 80.4% 56.3% - 67.7% 53.8% - 77.8%

Incorrectly

Classified Instances

19.6% to 47.2% 32.3% - 43.7% 22.2% - 46.2%

Figure 27 illustrates the percentage of correctly classified instances by data mining

algorithm for the after state metrics. Each mining scenario is represented by its data set

and feature selection method. In relation to the before state similar patterns are observed

in the after state metrics from this context. It is observed that the j48 classifier obtained

the highest percentages of overall correctly classifying instances for 17 out of the 20

scenarios. This pattern is observed across all data sets and feature selection methods.

This is then followed by the Bayesian Network that performed well for 3 out of 20

scenarios. These instances are shown within the total data set using Information Gain

and no feature selection. In addition to this and similarly to the before state metrics, it is

shown that the Naive Bayes method did not produce any best performing instances.

Figure 27 After State Mining Results by Mining Algorithm

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

To
ta

l

R
SA

M
ea

n

M
ed

ia
n

M
ax

To
ta

l

R
SA

M
ea

n

M
ed

ia
n

M
ax

To
ta

l

R
SA

M
ea

n

M
ed

ia
n

M
ax

To
ta

l

R
SA

M
ea

n

M
ed

ia
n

M
ax

NO FS Subset Infogain PCA

A
cc

u
ra

cy
 (

%
)

Data Set by Feature Selection Method

j48 Naive Bayes Bayesian Network

114

4.3.4 Best Performing Models for the After State Metrics

The after state produces very similar results to the before data set with minor observed

differences. Figure 28 presents the overall classification accuracy and failed builds

classification accuracy for 60 data mining experiments that were based on the range of

data set aggregations, feature selection methods and data mining methods for the after

state software metrics. Again, models of particular interest have maximum overall

classification accuracy and accuracy for predicting failed build instances and the pareto-

optimal solutions are highlighted. For the full set of results for this section refer to

Appendix D: After State Software Metrics Results

Figure 28 After State Results: Overall Classification Accuracy of Builds Versus

Classification for Failed Builds

The first model from the pareto-optimal set is taken from the RSA metrics data set,

using Subset Evaluation and the j48 classification tree. The best model correctly

classifies 80.4% of instances and is presented in Table 13. The second best result was

produced from the max data set using no feature selection and the j48 classification tree.

The model correctly classified 79.8% of the instances and is presented in Table 14. The

third best model, again, was from the max data set using Information Gain and the j48

classification tree. This model correctly classified 74.7% of the instances and is

presented in Table 15.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0% 10% 20% 30% 40% 50% 60% 70% 80%

O
ve

ra
ll

A
cc

u
ra

cy
 (

%
)

fo
r

C
o

rr
e

ct
ly

C

la
ss

if
ie

d
 B

u
ild

s

Accuracy (%) for Correctly Classified Failed Builds

115

From the after state results it observed that the prediction of failed builds is generally

more challenging than the classification of successful builds. So far the best

classification results are primarily from the RSA and max data sets.

Table 13 details the classification accuracies and sensitivity values for the RSA data set

with the Subset Evaluation filter applied using j48 decision tree. The classification tree

for this result is illustrated in Figure 29. Here it is observed that the number of attributes

metric serves as a main predictor for classifying builds. In this result, in addition to the

number of attributes metric, the weighted methods per class (successfully classifying 17

failed builds), program vocabulary size and average block depth (successfully

classifying 20 failed builds) within this model are strong predictors. So far it has been

noticed that size metrics, rather than complexity metrics, are having more influence on

the classification of builds. Again there are nodes which add confusion to the decision

tree. In this case there are duplicates of the weighted methods per class (which appears

on the second level of the tree), number of unique operators metric, program vocabulary

size (which appears 3 times).

116

Figure 29 RSA After State (CfsSubst and j48)

This results shows that approximately 89% of successful builds are correctly classified,

whereas only 65% of failed builds are correctly classified. In regards to sensitivity, the

successful builds have an average rating on 0.76, whereas failed builds have an average

of 0.60.

117

Table 13 Results for the After State of the RSA Data Set Using Subset Evaluation

and the j48 Classifier

Successful builds correct

(incorrect)

Failed builds

correct (incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

113 (14) 47 (25) 80.4% 19.6%

Class TP Rate FP Rate Precision Recall F-Measure

Successful Build 0.89 0.347 0.819 0.89 0.853

Failed Build 0.653 0.11 0.77 0.653 0.707

Weighted Average 0.804 0.261 0.801 0.804 0.8

Table 14 shows again that successful builds are easier to predict than failed builds, with

approximately 86% instances correctly classified with a TP rate of 0.858. This

experiment shows a slightly higher classification accuracy for failed builds with nearly

70% correctly classified instances, however the TP rate is lower at 0.69.

Table 14 Max After State (No Feature Selection and j48)

Successful builds correct

(incorrect)

Failed builds correct

(incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

109(18) 49 (22) 79.8% 20.2%

Class TP

Rate

FP Rate Precision Recall F-Measure

Successful Build 0.858 0.31 0.832 0.858 0.845

Failed Build 0.69 0.142 0.731 0.69 0.71

Weighted Average 0.798 0.25 0.796 0.798 0.797

Similar to the before state the classification tree with no feature selection was one of the

best performing. In the after state however the contents of the tree are different. This is

presented in Figure 30 and is based on the results presented in Table 14. Here the initial

node metric is the same as the before state where the comment/code ratio, if greater than

~115, classifies a failed build. This tree however also displays elements of confusion

with duplicate metrics (average number of methods and comment/code ratio) which

118

appears at lower levels of the tree. In addition to this metrics also are duplicated on the

same branch (number of operators).

Figure 30 Max After State (No Feature Selection and j48)

The third best result was obtained again from the max data set filtered using

Information Gain and mined using the j48 algorithm. The decision tree shown in Figure

31 that presents the results from Table 15 begins by taking on a similar form to Figure

30. Similarly the comment/code ratio is considered a significant metric when trying to

predict failed builds. Another evident trend is that size metrics at method level are

appearing to be common influences with the decision trees in general (i.e. average

119

number of methods and average lines of code per method). This tree again displays

confusion via appearance of duplicate nodes, namely from such method size metrics.

Figure 31 Max After State (InfoGain and j48)

In this experiment approximately 83% of successful build instances were correctly

classified with an overall sensitivity average of approximately 0.73. Results for failed

build instances did not perform so well, with approximately 60% correctly classified

and a lower TP rating of 0.606.

120

Table 15 Max After State (InfoGain and j48)

Successful builds correct

(incorrect)

Failed builds correct

(incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

105 (22) 43 (28) 74.7% 25.3%

Class TP Rate FP Rate Precision Recall F-Measure

Successful Build 0.827 0.394 0.789 0.827 0.808

Failed Build 0.606 0.173 0.662 0.606 0.632

Weighted Average 0.747 0.315 0.744 0.747 0.745

It is not entirely surprising that the maximum value data set yields optimal results in

terms of classification accuracy. Again this shows that extremes of values for many

metrics are likely to be either desirable or undesirable, depending on the metric and

have the effect of being able to find “good” or “bad” code that will contribute towards

failure or success. For example if the maximum value of the comment to code ratio

taken across all software builds exceeds a certain threshold then one would expect the

build to be vulnerable to failure. A key difference in the results is that the overall

accuracy can be traded off against an improved ability to predict failed builds. For

example, using the RSA data set gives a very large number of correctly classified

successful builds that leads to the highest overall accuracy. Meanwhile, using other data

sets (e.g. median, mean and total) can give more accurate classification of failed builds

at the cost of a reduced ability to classify successful builds.

Given the challenge in identifying failed builds the best classification is again with the

RSA and Max data sets, which provided the best trade-off between overall accuracy and

correct classification of failed builds. Classifications do not lead to a significant overall

difference in prediction accuracy, perhaps indicating that many combinations of metrics

have some scope to predict whether some builds are likely to be successful or fail. This

certainly supports other literature that has shown that there is no single code or churn

metric capable of predicting failures though evidence suggests that a combination can

be used effectively (Denaro, et al., 2002).

After mining the before and after state software metric data sets it is observed that the

RSA and max data sets perform better, in terms of accuracy, when compared to the

121

mining results obtained from the median, mean and total aggregations. As a result the

RSA and max data sets are carried forward to the next stage of experiments. In regards

to feature selection methods, while PCA performed well it will also not be included in

the next experimental stages. This is because there is little or no readability of the

output of PCA, which becomes a vital factor when interpreting decision trees. Both

Subset Evaluation and Information Gain methods for feature selection are examined

further. All three data mining methods will also be examined further in the next stage

attempts to improve the classification accuracy of failed build instances.

At this stage, it is important to re-iterate that the purpose of this initial phase of

experimentation is not to find a definitive prediction model, but instead to identify the

most promising approaches. It is acknowledged that the results presented in this phase

show a high degree of variability, possibly indicating that the size of the data set is

limiting the ability of some methods to perform adequately. The variability in the results

will be discussed in more depth in Chapter 5.

4.4 Enhancing Performance of Experiments

The results presented in sections 4.1, 4.2 and 4.3 revealed that while the before and after

state metrics are different (consist of different values for metrics) they also have much

commonality in relation to the mining results produced. It was also found that

prediction of failed builds is more difficult to achieve than the prediction of successful

builds. This is in despite of the data set aggregations, feature selection methods and

mining algorithms utilised. This sections' objective is to investigate approaches for

developing more accurate models by boosting the number of correctly classified failed

builds. This is attempted using three main methods 1) feature frequency selection, 2)

after state features as a filter to before state metrics and 3) application of SMOTE.

For the first method all the features selected from section 4.1 are counted and are

filtered based on their frequency. The frequency is determined by the number of times

they were selected using Subset Evaluation and Information Gain. This will provide

insights into whether or not the features selected using Information Gain and Subset

Evaluation can be further filtered based on the common occurrence features regarded as

"significant". In some respects, this is an approach to combat the variability observed in

the prediction models by reducing the number of potential predictor parameters.

122

The second method mentioned explores filtering the before state metrics using features

selected from the after state. This provides insights into whether or not features selected

from a future change set will increase the accuracy of predicting older metric values.

This approach is being considered because it is possible that patterns that lead to failure

may be identified in source code before the cause of failure fully emerges.

Finally, for the third method, SMOTE is applied at various levels to the RSA and Max

data sets. In doing so the number of instances for the minority class (failed builds) will

be increased through a process of creating synthetic data. This will provide insights into

how much overlap there is in feature space of successful and failed build metrics.

For this phase the features considered for the before state are taken from all features

selected between all before state data sets from the Subset Evaluation and Information

Gain selection methods. These features are then counted and are iteratively dropped

based on the total number of times they appeared. This iterative frequency selection

method was then applied to the best two performing data sets, being the RSA and max

metrics data sets, from the first experimental phase. There is a relatively high degree of

variability in the features selected from each of the data sets presented in phase 1 and

the resulting classification experiments presented in the best performing models section.

All mining during the frequency of selection stages are done with 10 cross-fold

validation. Overall this phase requires a total of 178 mining experiments in Weka.

4.5 Frequency of Features Selection for Before State Metrics

For this stage there are a total of 36 individual data mining experiments. To break this

down it comprises of 2 data sets, by 3 classifiers (j48, Naive Bayes, Bayesian network),

by 1 build states, by 6 frequency feature selection threshold tests.

The histogram shown in Figure 32 indicates the frequency of selection for each of the

metrics under consideration for the before state. Metrics are omitted from the

experiments if their overall ranking was low (they were not counted for more than

once). There is a clear indication that certain metrics were insignificant as they were not

selected at all, irrespective of the feature selection algorithm used. In contrast, metrics

such as the maintainability index, number of unique operators, difficulty level, number

of attributes, average number of constructors per class and number of types per package

123

were selected frequently, suggesting that they are stronger “code quality” indicators for

the prediction of either build failure or success.

Figure 32 Before State Metric Feature Selection Frequency

124

In total there are 6 thresholds used for filtering features for each of the before and after

state data sets (12 thresholds tested in total). For the full set of features used refer to

Appendix E: Frequency Feature Selection Thresholds.

For the before state metrics, using j48 tree, Naive Bayes and Bayesian network methods

and iteratively increasing the number of features included, the range of correctly

classified instances for the RSA data set is between (and inclusive of) 62.1% and

75.3%. Correctly identifying failed build instances the accuracy ranges from 11.1% to

75.0%. Compared to the initial mining experiments from the RSA data set this method

has not improved overall accuracy for correctly classifying instances. From the first

stage the accuracies were between 65.2% and 79.3%. In addition to this the upper range

of correctly identifying failed builds has slightly dropped from the previous experiments

that are between 12.5% to 70.8%. Generally there is no significant change in accuracy

from the results presented in section 4.1.

Figure 33 shows the percentage of correctly classified instances by mining algorithm for

the before state metrics when applying the various thresholds of the frequency feature

selection method. Each mining scenario is represented by the best two performing data

sets from the previous experimental phase and 5 selection iterations. In this mining

scenario the j48 classifier produced the best results, in terms of correctly classifying

build instances, for 11 out of 12 scenarios. Secondly the Bayesian Network method

produced the best result in 1 out of 12 scenarios; however the result was not overly

more significant than the j48 classifiers (on the RSA data set, with the frequency greater

than 2). From these results it is again observed that the j48 decision tree classifier

performs better, in most cases, in terms of accurately classifying software builds. In

terms of feature selection, the frequency feature selection method compared to

Information Gain and Subset Evaluation produced very similar results in terms of

correctly classified instances and sensitivity values for the before state metrics.

125

Figure 33 Before State Frequency Feature Selection Results by Mining Algorithm

Using the frequency feature selection method for the max data set the overall correctly

classified instances ranges from 63.6% to 79.8%. For correctly identifying failed builds

the accuracy ranges from 26.4% to 70.8%. This result is not a significant change from

previous mining of the max data set where an overall accuracy generated ranged from

64.1% to 78.8% and for correctly classifying builds ranged from 29.2% to 69.4%.

Figure 34 illustrates the percentage of correctly classified instances by frequency feature

iteration for the before state metrics. Each mining scenario is represented by a mining

algorithm and the best performing data sets from section 4.1 mining experiments. From

these sets of mining scenarios feature selection iterations produced very similar results

across both data sets.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

RSA Max

>0 >1 >2 >3 >4 >5 >0 >1 >2 >3 >4 >5

A
cc

u
ra

cy
 (

%
)

Data Set by Frequency Feature Selection

j48 Naive Bayes Bayesian Network

126

Figure 34 Before State Mining results by Frequency Feature Selection

Figure 35 illustrates the percentage of correctly classified instances by data set for the

before state metrics using frequency feature selection. Each mining scenario is

represented by a mining algorithm and feature selection threshold. From this

perspective the max data set performed the best, in terms of correctly classified

instances, for 8 out of 18 instances and produced the highest percentages over this set of

experiments. When compared to section 4.2.4 the max data set also performed well

when using the j48 classifier.

Figure 35 Before State Mining Results for Frequency Selection by Data Set

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

j48 Naive Bayes Bayesian
Network

j48 Naive Bayes Bayesian
Network

RSA Max

A
cc

u
ra

cy
 (

%
)

Data Mining Method by Data Set

>0 >1 >2 >3 >4 >5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN

>0 >1 >2 >3 >4 >5

A
cc

u
ra

cy
 (

%
)

Data Mining Method by Frequency Selection

RSA Max

127

4.5.1 Best Performing Model for the Before State

The best performing model for the before state metrics using the feature frequency

method is produced using the max data set when frequency threshold is greater than 3

(selected more than 3 times from previous experiments). Results for this experiment are

presented in Table 16. The percentage of correctly classified instances is 79.8%. This is

a very similar result when compared to the results presented in section 4.2.4 where the

best model derived from the before state data, using the max data set had an overall

accuracy of 78.8% and also had 4 additional correctly classified failed build instances.

This is considered to be an increase in overall accuracy; however, it is not a significant

improvement. For the full set of results for this section refer to Appendix E: Frequency

Feature Selection Thresholds, Features Selected for the Before State.

Figure 36 shows the decision tree for the max before state data set where frequency

features filter is greater than three. The classification table for this tree is presented in

Table 16. Once again comment/code ratio appears to be a significant metric when

predicting build failure (20 classified, with 3 incorrectly classified). Other metrics

which also appear to have a higher degree of impact for predicting failed builds includes

the maintainability index, number of delivered bugs (correctly classifying 8 failed

builds) and difficulty level (correctly classifying 9 failed builds). Within this tree there

is still a degree of confusion with duplicate nodes, this time occurring with the difficulty

level and number of unique operators metrics. It is also noteworthy that there is still a

strong presence of sizing metrics in general.

128

Figure 36 Max Before State (Frequency Features > 3 and j48)

From this experiment approximately 85% of successful builds were correctly classified

with a TP rating of 0.849. Approximately 71% of failed builds were correctly classified

with a TP rating of 0.708.

129

Table 16 Results for Before State of the Max Data Set with >3 Frequency Feature

Selection and the j48 Classifier

Successful builds correct

(incorrect)

Failed builds correct

(incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

107 (19) 51 (21) 79.8% 20.2%

Class TP

Rate

FP Rate Precision Recall F-Measure

Successful Build 0.849 0.292 0.836 0.849 0.843

Failed Build 0.708 0.151 0.729 0.708 0.718

Weighted Average 0.798 0.24 0.797 0.798 0.797

Interestingly, as the number of selected metrics is reduced by applying a higher

frequency threshold, the overall accuracy does not change significantly, yet there is a

trend towards better classification of successful builds. This again indicates that some

metrics are very strong indicators of success whereas others are weak indicators of

failure. This will be discussed in more depth in Chapter 5.

4.6 Frequency of Features Selection for After State Metrics

The histogram shown in Figure 37 indicates the frequency of selection for each of the

metrics under consideration for the after state. Similarly to the before state metrics were

omitted from the experiments if their significance was low. Software metrics such as

abstractness, depth of inheritance, number of attributes, average number of constructors

per class, average number of methods and number of comments were selected

frequently, suggesting that they are stronger “code quality” indicators for the prediction

of either build failure or success.

130

Figure 37 After State Metric Feature Selection Frequency

131

For the after state metrics, using j48 tree, Naive Bayes and Bayesian network methods

and iteratively increasing the number of features included, the range of correctly

classified instances for the RSA data set is between (and inclusive of) 58.8% and

76.9%. In regards to correctly identifying failed build instances the accuracy ranges

from 4.2% to 66.7%. Comparing to the initial experiments on the after state metrics for

this data set this also not an improvement on the results where the range of correctly

classified instances is from 62.8% to 80.4%. There is also not a great improvement for

classifying failed build instances, where previously accuracies ranged from 5.3% to

66.7%. Figure 38 presents the percentage of correctly classified instances by mining

algorithm for the after state metrics using frequency feature selection. Each mining

scenario is represented by a data set and feature frequency iteration. The mining

algorithm that produced the best results across most (11 out of 12) scenarios was the j48

classifier. This is a very similar result again to the before state metrics.

Figure 38 After State Frequency Feature Selection Results by Mining Algorithm

For the max data set the overall correctly classified instances ranges from 57.1% to

79.3%. For correctly identifying failed builds the accuracy ranges from 0% to 68.06%.

This again shows no improvement of results, where previous experiments of the max

data set had correctly classified instances ranging from 62.6% to 79.8%. Correctly

identifying failed builds also has not improved, where previously the accuracy ranged

from 19.7% to 69.0%.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

RSA Max

>0 >1 >2 >3 >4 >5 >0 >1 >2 >3 >4 >5

A
cc

u
ra

cy
 (

%
)

Data Set by Frequency Feature Selection

j48 Naive Bayes Bayesian Network

132

Figure 39 presents the percentage of correctly classified instances by mining algorithms

for the after state metrics using frequency feature selection. Each mining scenario is

represented by a data set and feature frequency threshold. In these sets of experiments it

is observed that the RSA data set generates the highest number of correctly classified

instances 10 times out of 18 scenarios.

Figure 39 After State Mining Results for Frequency Selection by Data Set

Figure 40 presents the percentage of correctly classified instances by feature selection

iteration for the after state metrics using frequency feature selection. Each mining

scenario is represented by the mining algorithm and data set that is used. It is observed

that as the number of iterations increases, the level of classification accuracy slightly

decreases. This shows that even if a few metrics appear to be common influences,

exclusive use of such metrics are still not enough to determine success. This again

shows that there is no single "best" software metric and there is no single "best" feature

selection method, of the metrics investigated.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN

>0 >1 >2 >3 >4 >5

A
cc

u
ra

cy
 (

%
)

Data Mining Method by Frequency Feature Seleciton

RSA Max

133

Figure 40 After State Mining results by Frequency Feature Selection

4.6.1 Best Performing Model for the After State

From this stage of experiments the best result produced is derived from the Max data set

where >0 feature frequency selection is applied and is presented in Table 17. For this

feature selection iteration if features were counted at least once, they were included in

the overall features selected. This result has not made significant improvement from the

first phase of mining experiments, where the best overall correctly classified instances

for the max data set was 79.8% using no feature selection and the j8 classifier. What is a

noticeable trend is the j48 classifier has been generating the best mining results across

all experiments in both phases for both before and after software metric states. This

again is followed by the Bayesian Network. For the full set of results for this section

refer to Appendix E: Frequency Feature Selection Thresholds and Features Selected for

the After State.

0%

10%
20%
30%
40%

50%
60%
70%

80%
90%

j48 Naive Bayes Bayesian
Network

j48 Naive Bayes Bayesian
Network

RSA Max

A
cc

u
ra

cy
 (

%
)

Data Mining Method by Data Set

>0 >1 >2 >3 >4 >5

134

Table 17 Results for the Max Data Set using >0 Frequency Feature Selection and

the j48 Classifier

Successful builds correct

(incorrect)

Failed builds correct

(incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

108 (19) 49 (22) 79.3% 20.7%

Class TP Rate FP Rate Precision Recall F-Measure

Successful Build 0.85 0.31 0.831 0.85 0.84

Failed Build 0.69 0.15 0.721 0.69 0.705

Weighted

Average

0.793 0.252 0.791 0.793 0.792

Figure 41 presents the decision tree for the results presented in Table 17. Once again

comment/code ratio is a significant predictor for classifying failed builds (18 correctly

classified). However, in this case a majority of failed builds are predicted in lower level

branches of the tree. Regardless of this the other metrics which impact a majority of

classifying failed builds include, in addition to comment/code ratio, lack of cohesion 2,

number of operators, average number of methods, lack of cohesion 3, average lines of

code per method and afferent coupling to correctly classified 35 failed builds. Duplicate

nodes are also present, namely the comment/code ratio, number of operators and

average number of methods.

135

Figure 41 Max After State (Frequency Features >0 and j48)

136

4.7 Applying After State Features To Before State Data Set

This section comprises of a total of 48 data mining experiments. Broken down this is 2

best performing data sets, by 3 classifiers (j48, Naive Bayes, Bayesian network), by 6

frequency feature selection iterations. This also includes the addition of the 2 initial

Subset Evaluation and Information Gain feature selection methods, by 2 best

performing data sets and by the 3 previously mentioned classifiers.

Prediction accuracies in the 70% range are not overly high, but may be sufficient to

provide some indication of risk at the beginning of the build cycle. A build that is

considered to be higher risk could be identified and more diligence placed upon the

processes used during the development as a means to mitigate that risk and increase the

likelihood of the build being successful. A key aspect of being able to successfully

manage risk in this way would be having the means to incrementally revise and review

risk exposure during the build cycle. To that end, this experimental stage investigates

whether there is any improvement in accuracy achieved when the after state feature

selection is applied to the before state data.

For this stage the features selected from Subset Evaluation, Information Gain and all

frequency feature tested thresholds from the after state metrics are applied to the before

state RSA and max metrics data sets. The before state is used to determine whether

build failure can be predicted prior to any changes in the source code being made. This

is an attempt to characterise source code that is about to be changed in terms of its

likelihood to be modified successfully or whether there are patterns in the existing code

that have the potential to lead to failure. In doing so the ranges for correctly classified

instances for the RSA data set is between (and inclusive of) 62.1% and 78.3%. The

range of correctly classified failed instances ranges from 2.3% to 66.7%. The overall

correctly classified instances for the max data set is between 38.4% and 81.8%. The

range of correctly classified failed instances ranges from 0% to 76.4%.

Figure 42 illustrates the percentage of correctly classified instances by mining algorithm

for application of after state features to the before state data sets. Each mining scenario

is represented by a data set and the feature selection method used. From this perspective

the best results are again obtained by using the j48 classifier. In this testing phase the

j48 classifier produced the best results for 15 out of 16 scenarios.

137

Figure 42 After State Features Applied to Before State Data by Mining Algorithm

Figure 43 shows the percentage of correctly classified instances by feature selection

method for application of after state features to the before state data sets. Each mining

scenario is represented by a mining algorithm and data set. From this viewpoint it is not

clear which feature selection method is best for determining the best models, despite

which mining algorithm is used.

Figure 43 After State Features Applied to Before State Data by Feature Selection

Method

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

RSA Max RSA Max RSA Max RSA Max RSA Max RSA Max RSA Max RSA Max

Subset InfoGain >0 >1 >2 >3 >4 >5

A
cc

u
ra

cy
 (

%
)

Data Set by Feature Selection Method

j48

Naive
Bayes

Bayes
Network

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

j48 Naive Bayes Bayes
Network

j48 Naive Bayes Bayes
Network

RSA Max

A
cc

u
ra

cy
 (

%
)

Data Mining Algorithm by Data Set

Subset

InfoGain

>0

>1

>2

>3

>4

>5

138

Figure 44 shows the percentage of correctly classified instances by the before data set

when applying after state features. Each mining scenario is represented by a mining

algorithm and feature selection methods used. From this angle the RSA data set has

often produced the best results in terms of overall correctly classified instances for 14

out of the 24 scenarios.

Figure 44 After State Features Applied to Before State Data by Data Set

4.7.1 Best Performing Models

Again models of particular interest contains high levels of overall classification

accuracy and high levels of accuracy for predicting failed builds. Figure 45 presents the

overall classification accuracy and failed builds classification accuracy for 72 data

mining experiments that were based on RSA and Max software metric aggregations,

frequency feature thresholds and data mining methods for the before state software

metrics.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN

SE IG >0 >1 >2 >3 >4 >5

A
cc

u
ra

cy
 (

%
)

Data Mining Aglorithm by Feature Seleciton Method

RSA

Max

139

Figure 45 Frequency Feature Threshold Results: Overall Classification Accuracy

of Builds versus Classification for Failed Builds

When the after state max data set has the before state >3 feature frequency selection

method applied it produced the pareto-optimal solution for this set of experiments and is

presented in Table 18. The classification tree for this result is illustrated in Figure 46.

This experiment has produced the best result thus far from all experiments performed.

There were 85% of successful builds were correctly classified with a TP rating of 0.849

and approximately 76% of failed builds were correctly classified with the TP rating of

0.764. The classification tree exhibits an amount of confusion, particularly in the mid

level nodes. Unlike previous trees where comment/code ratio alone was indicating a

significant factor for predicting failed builds, other rules for predicting failure are

presented in higher levels of the tree. Confusion within this model is again defined by

the presence of the same classification attribute at various levels in the same branch. For

example the "weighted methods per class" metric appears twice within the same branch.

Average number of constructors per class and depth of inheritance was also duplicated.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0% 20% 40% 60% 80% 100%

140

Figure 46 j48 classification tree of the max after state data set, with before

frequency features that are greater than 3

141

Table 18 Results for the After State of the Max Data Set using >3 Frequency

Feature Selection From the Before State and the j48 Classifier

Successful builds correct

(incorrect)

Failed builds correct

(incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

107 (19) 55 (17) 81.8% 18.2%

Class TP

Rate

FP Rate Precision Recall F-Measure

Successful Build 0.849 0.236 0.863 0.849 0.856

Failed Build 0.764 0.151 0.743 0.764 0.753

Weighted Average 0.818 0.205 0.819 0.818 0.819

4.8 Application of SMOTE

It has been observed repeatedly that predicting failure is more challenging than

predicting success regardless of feature selection and data mining methods applied. In

addition to this not predicting failure does not mean that success has been predicted.

This is potentially due to the fact that the build successes and failures overlap in feature

space and “failure” signatures have a greater degree of fragmentation than their

“success” counterparts. Evidence for this is most apparent in the very different

classification trees that have been discussed to date. Each shows a different set of

software metrics that can be used to gain roughly the same overall prediction accuracy.

As a result, the next aspect of this work is to develop a deeper understanding of what

source code characteristics are most related to build failure and develop a set of

indicative metrics that can provide development teams with the opportunity to

proactively manage risk exposure throughout a development project even if they cannot

categorically predict build failure or success.

It is observed that one of the reasons why build failure is difficult to predict is because

of the naturally occurring skewed class distribution within the data. SMOTE is a

supervised class-imbalance learning method. It works by generating virtual minority-

class instances. In order to apply SMOTE to the data sets explored within this study, it

will require a total of 40 mining experiments. Broken down that is 2 best performing

data sets, 2 feature selection methods, by 5 SMOTE iterations, by 2 change set states.

142

4.8.1 Before State Data Sets

For the before state metrics, the RSA data set generated accuracy ranges between (and

inclusive of) 47.5% and 79.7% for correctly classified instances. For correctly

identifying failed builds accuracies ranged from 4.6% to 81.8%. This is a minor

improvement for correctly classifying failed builds, when comparing the highest levels

of accuracy, from the set of experiments from Phase 1 (12.5% - 70.8%). The correctly

classified instances from the max data set ranged between 44.1% and 69.5%, from

these, correctly classified failed instances range from 9.09% to 100%. This is again a

minor improvement from Phase 1 where correctly classified builds ranged from 29.2%

to 69.4%. Figure 47 illustrates the percentage of correctly classified instances for the

before state data. Each mining scenario is represented by a mining algorithm, feature

selection method and by each SMOTE percentage increase (100% to 500% in

incremental steps of 100). Where SMOTE at 100% increases the number of instances

by 100%. The RSA data set produced the best result for 20 out of 30 of these data

mining scenarios.

Figure 47 Overall Classification Accuracies using SMOTE Results for Before State

Metrics by Data Set

From the feature selection focus, the Subset Evaluation method generated accuracies

from 47.5% to 79.7% with correctly classified failed builds ranging from 9.1% to 100%.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

j48 BN NB j48 BN NB j48 BN NB j48 BN NB j48 BN NB

subset infogain subset infogain subset infogain subset infogain subset infogain

100% 200% 300% 400% 500%

A
cc

u
ra

cy
 (

%
)

Data Mining Method by Feature Selection and SMOTE percentage

RSA Max

143

The Information Gain method generated overall accuracies from 44.1% to 79.7% with

4.6% to 81.8% failed builds correctly classified. Figure 48 shows the results of applying

SMOTE to the before state data by feature selection method. From this angle the best

performing feature selection method when used with SMOTE is the subset evaluator,

producing the best results for 17 out of 30 scenarios. Information Gain produced the

best result for 7 out of 30 scenarios. There were also instances when the feature

selection methods tied, this occurred for 6 out of the 30 scenarios.

Figure 48 Overall Classification Accuracies using SMOTE Results for After State

Metrics by Feature Selection Method

The mining algorithm focus for the j48 classifier generated correctly classified instances

ranging from 47.5% to 79.7% with correctly classified failed builds ranging from 40.9%

to 81.8%. Using the Naive Bayes method correctly classified instances range from

44.1% to 67.8% with ranges of 4.6% to 86.4% of failed builds correctly classified.

Finally the Naive Bayes method generated overall accuracies from 50.9% to 79.7% with

correctly classified failed builds ranging from 40.9% to 100.0%. Figure 49 presents the

results of the before state data when SMOTE is applied from the feature selection

method view. Each mining scenario is presented by its SMOTE percentage increase,

feature selection method used and data set. From this perspective both the j48 classifier

and Bayesian network methods performed well each producing the best result for 9 out

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% 200% 300% 400% 500% 100% 200% 300% 400% 500%

j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN

RSA Max

A
cc

u
ra

cy
 (

%
)

SMOTE Percentage by Data Mining Method and Data Set

Subset InfoGain

144

of the 20 scenarios. Again it is observed that the Naive Bayes method did not produce

significant results.

Figure 49 Overall Classification Accuracies using SMOTE Results for Before State

Metrics by Mining Algorithm

4.8.2 Best Performing Models for the Before State Metrics

The best performing models from this stage of experiments is derived from using

SMOTE at 100% with the subset evaluator and BN (Table 19) and SMOTE at 300%

using Subset Evaluation and the j48 classifier (Table 20). An additional pareto-optimal

result was also obtained using Information Gain and BN on the RSA data set (Table 21)

with SMOTE at 100%. These top three performing methods generated identical

percentages of correctly classified instances 79.7% and the same number of correctly

classified failed and successful builds. In terms of sensitivity metrics the TP Rate, FP

rate, Precision, Recall and F-measure are also identical for both successful and failed

builds.

The results presented in Table 19 shows that when using SMOTE the percentage of

correctly classifying failed builds increases significantly. In this case approximately

82% of failed builds were correctly classified, with a TP rating of 0.818. For successful

builds there were approximately 78% correctly classified instances with a TP rating of

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% 200% 300% 400% 500%

SE IG SE IG SE IG SE IG SE IG SE IG SE IG SE IG SE IG SE IG

RSA Max RSA Max RSA Max RSA Max RSA Max

A
cc

u
ra

cy
 (

%
)

Feature Selection by Data Set

j48 Naive Bayes Bayes Network

145

0.784. Identical results obtained are shown in Table 20 and Table 21 where different

levels of SMOTE are applied using the j48 and Bayesian Network classifiers.

Table 19 Results for the Before State of the RSA Data Set with 100% SMOTE

using Subset Evaluation and a Bayesian Network

Successful builds correct

(incorrect)

Failed builds

correct (incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

29 (8) 18 (4) 79.7% 20.3%

Class TP Rate FP Rate Precision Recall F-Measure

Successful Build 0.784 0.182 0.879 0.784 0.829

Failed Build 0.818 0.216 0.692 0.818 0.75

Weighted Average 0.797 0.195 0.809 0.797 0.799

Table 20 Results for the Before State of the RSA Data Set with 300% SMOTE

using Subset Evaluation and j48 Classification.

Successful builds correct

(incorrect)

Failed builds

correct (incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

29 (8) 18 (4) 79.7% 20.3%

Class TP Rate FP Rate Precision Recall F-Measure

Successful Build 0.784 0.182 0.879 0.784 0.829

Failed Build 0.818 0.216 0.692 0.818 0.75

Weighted Average 0.797 0.195 0.809 0.797 0.799

The classification tree presented in Figure 50 is a representation of the results from

Table 20. This tree also displays degrees of confusion within its nodes. However, unlike

most of the previous trees which begin with the comment/code ratio, this one begins

with the number of types per package as its root node. In this instance duplicate nodes

can be found within the same tree path, for example number of unique operators,

number of delivered bugs and average number of constructors per class metrics are

duplicated.

146

Figure 50 j48 Classification tree using Subset Evaluation on the RSA Before State

data set with SMOTE at 300%

147

Table 21 Results for the Before State of the RSA Data Set with 100% SMOTE

using Information Gain and a Bayesian Network

Successful builds correct

(incorrect)

Failed builds

correct (incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

29 (8) 18 (4) 79.7% 20.3%

Class TP

Rate

FP Rate Precision Recall F-Measure

Successful Build 0.784 0.182 0.879 0.784 0.829

Failed Build 0.818 0.216 0.692 0.818 0.75

Weighted Average 0.797 0.195 0.809 0.797 0.799

4.8.3 After State Data Sets

The RSA data set (after state) obtained classification accuracies that range between

56.7% and 71.7%. For correctly classifying failed builds, accuracies are between 13.6%

and 90.9%. For the max data set the ranges of correctly classified instances are between

36.7% and 70.0%. Correctly classified failed build accuracies were between 18.2% and

90.9%. Figure 53 presents the results for the SMOTE experiments on the after state

data set. Each scenario is presented by a mining algorithm, feature selection method and

SMOTE percentage. Similar to the SMOTE experiments on the before state the RSA

data set produced the best results for most scenarios (in this case 25 out of 30).

148

Figure 51 Overall Classification Accuracy using SMOTE for After State Metrics

by Data Set

In regards to the feature selection methods used, the Subset Evaluation method overall

correctly classified instances between 36.7% and 71.7% with correctly classified failed

builds ranging between 18.2% and 90.9%. When using Information Gain the overall

correctly classified instances generated identical values to the Subset Evaluation

method, ranging again between 36.7% and 71.7%. For correctly classifying failed builds

the range was 13.6% and 86.4%. Figure 52 presents the correctly classified instances for

the after state data set after the application of SMOTE, with a focus on the feature

selection method used. Scenarios from this perspective are presented by a SMOTE

iteration, mining algorithm and data set. Results from the SMOTE activities on the

before state data showed that the Subset Evaluator produced the best results for 22 out

of 30 scenarios.

0%

10%

20%

30%

40%

50%

60%

70%

80%

j48 BN NB j48 BN NB j48 BN NB j48 BN NB j48 BN NB

subset infogain subset infogain subset infogain subset infogain subset infogain

100% 200% 300% 400% 500%

A
cc

u
ra

cy
 (

%
)

Data Mining Method by Feature Selection and SMOTE Percentage

RSA Max

149

Figure 52 Overall Classification Accuracy using SMOTE for After State Metrics

by Feature Selection

In terms of the mining algorithm level for the j48 classification tree, overall correctly

classified instances ranged between 56.7% and 71.7% and correctly classified failed

instances ranged between 36.4% and 81.8%. From using Naive Bayes the overall

correctly classified instances range between 36.7% and 66.7% with correctly classified

failed builds ranging from 13.6% and 77.3%. Finally, for the Bayesian Network method

the correctly classified instances ranged between 56.7% and 71.67% and correctly

classified failed instances ranging from 18.2% to 90.1%. Figure 53 presents SMOTE

results for the after state data set based on mining algorithm. Each instance is presented

by a SMOTE iteration, feature selection method and data set. From this view, the j48

classifier produced the best result for 9 out of 20 scenarios. This is closely followed by

the Bayesian network which produces the best results for 8 out of 20 scenarios.

0%

10%

20%

30%

40%

50%

60%

70%

80%

100% 200% 300% 400% 500% 100% 200% 300% 400% 500%

j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN

RSA Max

A
cc

u
ra

cy
 (

%
)

SMOTE Percentage by Data Mining Method and Data Set

Subset InfoGain

150

Figure 53 Overall Classification Accuracies using SMOTE for After State Metrics

by Mining Algorithm

4.8.4 Best Performing Models for the After State Metrics

Similar to the before state metrics the best performing after state metrics also generated

identical results in terms of overall correctly classified instances, however the number

correctly classified failed and successful builds vary between experiments. From these

mining experiments the best performing results were generated when:

 SMOTE was set to 200% (presented in Table 22), using Subset Evaluation and a

Bayesian Network.

 SMOTE was set to 100% (presented in Table 23) when using a Bayesian

Network.

 SMOTE was set to 500% (presented in Table 24), using Information Gain and

the j48 classifier.

Again these best performing experiments were derived from the RSA data set. Similar

to the before state when looking at the sensitivity metrics there is no significant

variation between each experimental result. When SMOTE is applied at 200% the

sensitivity metrics slightly increase in accuracy for classifying failed builds.

0%

10%

20%

30%

40%

50%

60%

70%

80%

100% 200% 300% 400% 500%

SE IG SE IG SE IG SE IG SE IG SE IG SE IG SE IG SE IG SE IG

RSA Max RSA Max RSA Max RSA Max RSA Max

A
cc

u
ra

cy
 (

%
)

SMOTE Percentage by Feature Selection and Data Set

j48 Naive Bayes Bayes Network

151

Presented in Table 22 are the results based on the RSA after state data set, with SMOTE

applied at 200% and using Subset Evaluation and a BN. In this scenario approximately

90% of failed build instances were correctly classified, with a TP rating of 0.909. This

is higher than correctly classified successful build instances (60%), with a TP rating of

0.605.

Table 22 Results for the After State of the RSA Data Set with 200% SMOTE using

Subset Evaluation and a Bayesian Network

Successful builds correct

(incorrect)

Failed builds correct

(incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

23 (15) 20 (2) 71.7% 28.3%

Class TP

Rate

FP Rate Precision Recall F-Measure

Successful Build 0.605 0.091 0.92 0.605 0.73

Failed Build 0.909 0.395 0.571 0.909 0.702

Weighted Average 0.717 0.202 0.792 0.717 0.72

The features selected using Information Gain is identical for the results presented in

Table 23 and Table 24. In this case the Bayesian Network and j48 classifier generated

identical classification accuracies with slightly varied sensitivity values. The

Classification tree for the results presented in Table 24 is illustrated in Figure 54.

152

Table 23 Results for the After State of the RSA Data Set with 100% SMOTE using

Information Gain and a Bayesian Network

Successful builds correct

(incorrect)

Failed builds correct

(incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

24 (14) 19(3) 71.7% 28.3%

Class TP

Rate

FP Rate Precision Recall F-Measure

Successful Build 0.632 0.136 0.889 0.632 0.738

Failed Build 0.864 0.368 0.576 0.864 0.691

Weighted Average 0.717 0.221 0.774 0.717 0.721

Similar to the decision trees generated in section 4.1 the classification tree displays

degrees of confusion within its nodes. In this instance duplicate nodes can be found

within the same tree path and involve the weighted methods per class, number of

attributes and number of unique operators metrics. In summary the frequency feature

selection methods did not greatly improve classification outcomes in terms of the

overall accuracy and sensitivity of the results from the first phase of experiments.

153

Figure 54 Classification tree of SMOTE at 500% on the RSA After State Data Set

using Information Gain

154

Table 24 Results for the After State of the RSA Data Set with 500% SMOTE using

Information Gain and the j48 classifier

Successful builds correct

(incorrect)

Failed builds correct

(incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

26 (12) 17 (5) 71.7% 28.3%

Class TP

Rate

FP Rate Precision Recall F-Measure

Successful Build 0.684 0.227 0.839 0.684 0.754

Failed Build 0.773 0.316 0.586 0.773 0.667

Weighted Average 0.717 0.26 0.746 0.717 0.722

4.8.5 After State Metrics Applied to Before State SMOTE Data Sets

To further explore the application of SMOTE on software metrics part two of this stage

applies the feature selection method from phase two, stage two. In this instance the

features selected from Subset Evaluation and Information Gain from the after state are

applied to the before state SMOTE experiments. This requires an additional 60 mining

experiments. That is 2 best performing data sets, by 2 feature selection methods, by 3

data mining methods, by 5 SMOTE iterations. Figure 55 presents the classification

results for the before state metrics with SMOTE applied and after state features applied.

Each scenario is represented by a SMOTE percentage, a feature selection method and a

data set. In this series of experiments the Bayesian Network method produced the best

results (10 out of 20 times), closely followed by the j48 classifier (8 out of 20 times)

and produced the same results twice (from the Max data set using SMOTE at 200%

with the subset evaluator).

155

Figure 55 Overall Classification Accuracies using SMOTE when applying After

State Features to The Before State by Mining Algorithm

Figure 56 shows the application of SMOTE on the before state metrics with features

selected from the after state metrics. Each scenario is represented by a SMOTE

percentage, a mining algorithm and a data set. From this perspective the feature

selection that produced the best results from these scenarios is the subset evaluator,

generating 15 out of 20 best cases.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% 200% 300% 400% 500%

SE IG SE IG SE IG SE IG SE IG SE IG SE IG SE IG SE IG SE IG

RSA Max RSA Max RSA Max RSA Max RSA Max

A
cc

u
ra

cy
 (

%
)

SMOTE Percentage by Feature Selection and Data Set

j48 Naive Bayes Bayes Network

156

Figure 56 Overall Classification Accuracies using SMOTE when applying After

State Features to The Before State by Feature Selection

Figure 57 illustrates the correctly classified instance when applying after state features

to the before state data set with SMOTE applied. Each scenario is presented by its

mining algorithm, feature selection method and SMOTE percentage. It is observed that

the Max and RSA data set give similar levels of performance across all scenarios. More

specifically the Max data set generates the best scenario 15 out of 30 times, the RSA 14

out of 20 times and generate the same result once when SMOTE is 100%, using

Information Gain and the j48 classifier.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% 200% 300% 400% 500% 100% 200% 300% 400% 500%

j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN j48 NB BN

RSA Max

A
cc

u
ra

cy
 (

%
)

SMOTE Percentage by Data Mining Method and Data Set

Subset InfoGain

157

Figure 57 Overall Classification Accuracies using SMOTE when applying After

State Features to The Before State by Feature Selection

In this scenario, using the RSA data set, the features selected using the subset evaluator

after SMOTE is applied at 300% and 100% are identical. The mining accuracy and

sensitivity results are shown in Table 25 (from the j48 classifier) and Table 26 (from the

Bayesian Network) respectively. The decision tree for the results presented in Table 25

is illustrated in Figure 58. When SMOTE is applied at 300% the level of accuracy is the

best generated this far from all experiments (83.1%). Approximately 84% of successful

builds are correctly classified with a TP rating of 0.838. For failed builds 82% of

instances are correctly classified with a TP rating of 0.818. There is some confusion

displayed within the decision tree, where duplicate nodes occur referencing the average

number of constructors per class, weighted methods per class and number of unique

operators metrics. One branch of the tree successfully classified 32 failed build

instances. This decision branch utilises simple average and count type software metrics

with a single dependency metric (instability).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

j48 BN NB j48 BN NB j48 BN NB j48 BN NB j48 BN NB

subset infogain subset infogain subset infogain subset infogain subset infogain

100% 200% 300% 400% 500%

A
cc

u
ra

cy
 (

%
)

Data Mining Method by Data Set and SMOTE Percentage

RSA Max

158

When compared to the best generated mining results in section 4.2.4, using the RSA

before state data set, the application of SMOTE has slightly increased the precision and

recall values. The second best performing models generated, while adopting the use of

SMOTE, contained similar percentages for overall correctly classified instances (around

75%) and the number of correctly classified failed and successful builds slightly varied

between experiments.

Table 25 Results for the Before State of RSA Data Set with 300% SMOTE using

After State Subset Evaluation and j48 Classifier

Successful builds correct

(incorrect)

Failed builds

correct (incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

31 (6) 18 (4) 83.1% 16.9%

Class TP Rate FP Rate Precision Recall F-Measure

Successful Build 0.838 0.182 0.886 0.838 0.861

Failed Build 0.818 0.162 0.75 0.818 0.783

Weighted Average 0.831 0.174 0.835 0.831 0.832

159

Figure 58 Classification Tree of Before State of RSA Data Set with 300% SMOTE

using After State Subset Evaluation and j48 Classifier

160

Table 26 Results for the Before State of RSA Data Set with 100% SMOTE using

After State Subset Evaluation and Bayesian Network Classifier

Successful builds correct

(incorrect)

Failed builds correct

(incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

26 (11) 19 (3) 76.3% 23.7%

Class TP

Rate

FP Rate Precision Recall F-Measure

Successful Build 0.703 0.136 0.897 0.703 0.788

Failed Build 0.864 0.297 0.633 0.864 0.731

Weighted Average 0.763 0.196 0.798 0.763 0.767

From all experiments conducted and presented in sections 4.1 and 4.4 there are common

trends that have emerged from using combinations of various software metrics. In

general terms of identifying which methods are best for feature selection and mining

algorithms it is observed that the subset evaluator and the j48 classifier have generated

the best results for a majority of mining experiments. While the max data set performed

well when investigating frequency feature selection and upon applying after state

features selected to before state metrics, the RSA data set has appeared to perform well,

in terms of overall accuracy and classification of failed builds. For this reason the RSA

data set is carried forward to the next stage of mining.

In the next section social network metrics and their relationships to predicting software

build outcomes are explored. This is accomplished through using similar methods from

sections 4.1 (in terms of feature selection and data mining methods).

161

4.9 Data Mining Results for Social Network Metrics

When considering the mining of social network metrics from the Jazz repository,

without merging them with any software metric data sets, there are 191 build instances

with social network metrics that could be extracted for analysis. Of these builds, there

were 120 successful builds, 51 failed builds and 20 warning builds. The same data pre-

processing method that was applied to the software metrics data sets is applied to the

social network data. Warning builds were treated as failed build instances raising the

total number of failed builds to 71. A software build can have one or more work items,

therefore the communication captured will inherently overlap from build to build.

Unlike the software metrics there are no before and after states for communication, as

the work items themselves are not stored as change sets. Communication metrics

emerge over the duration of a software build and the final values calculated from all

communication during a build are therefore naturally associated to the after state

software metrics. All communication for a builds' work items is taken into account

when extracting social network metrics. The social metrics represent the communication

of work items, across all Jazz team areas, for each build instance. For this stage there is

a total of 36 data mining experiments. This involves the use of 4 data sets of social

network metrics time intervals, 3 feature selection methods (no feature selection, Subset

Evaluation and Information Gain) and 3 mining algorithms (j48 classification tree,

Naive Bayes and Bayesian Network). For all mining experiments, again, 10-cross fold

validation is utilised.

Communication metrics are extracted from builds in relation to time, to generate four

social metric data sets. The social metric data sets are constructed by selecting the first

25%, 50%, 75% and 100% of the communication that occurred since the previous build

similar to the work presented by Wolf et al. (2009). Similar to this previous study it was

found that no single communication metric is recognised a being suitable for prediction

software builds, however a small combination of social metrics show potential in terms

of prediction strength. Unlike the previous study, suitable levels of precision and recall

were not obtained using the first 25% of the communication metrics interval. This is

mostly likely due to the different rules that have been implemented to construct the

network for this research that ensure that the social network metrics can be combined

162

with the software metric extractions. However, higher levels of precision and recall

were obtained through using 100% of the communication metrics for a build. In this set

of experiments precision values ranged from 52% to 72% and recall values ranged from

57% to 72%. Presented in Figure 59 are the overall classification accuracies achieved

from the 36 mining experiments for communication metrics. In this case no feature

selection is coined as No FS, Subset represents Subset Evaluation and Infogain is the

Information Gain feature selection filter.

Figure 59 Communication Mining Results by Time Intervals

Similar to the initial software metric mining results it is again observed that failed build

instances are more difficult to correctly classify than successful build instances. The

best result for this stage was produced using the subset evaluator and the Bayesian

Network classifier that is shown in Table 27. From this result approximately 86% of

successful social collaborations were correctly classified with a TP rating of 0.858.

However, in this case only 50% of failed builds were correctly classified, with TP rating

of 0.507. The Bayesian Network classifier utilised the number of change sets metric to

predict build outcomes. When the Information Gain filter is applied, in addition to the

number of change sets metric the Group InOut-Degree Centrality metric is also selected

as being a significant predictor.

0%

10%

20%

30%

40%

50%

60%

70%

80%

j4
8

N
ai

ve
 B

ay
es

B
ay

es
ia

n
 N

et
w

o
rk

j4
8

N
ai

ve
 B

ay
es

B
ay

es
ia

n
 N

et
w

o
rk

j4
8

N
ai

ve
 B

ay
es

B
ay

es
ia

n
 N

et
w

o
rk

No FS Subset Infogain

A
cc

u
ra

cy
 (

%
)

Data Mining Method by Feature Selection

25%

50%

75%

100%

163

Table 27 Results for the (100%) Social Network Data Set with Subset Evaluation

Feature Selection and Bayesian Network classification

Successful builds correct

(incorrect)

Failed builds correct

(incorrect)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

103 (17) 36 (35) 72.8% 27.2%

Class TP Rate FP Rate Precision Recall F-Measure

Successful Build 0.858 0.493 0.746 0.858 0.798

Failed Build 0.507 0.142 0.679 0.507 0.581

Weighted Average 0.7277 0.3624 0.7214

0.727 0.7175

In an attempt to increase the accuracy for predicting failed builds using social network

metrics SMOTE is again applied to the data set in increments of 100%. Unlike the

software metrics it was found that this method did not improve classification results.

The communication metrics data set aggregations were then merged with the RSA data

set and the mining experiments were executed again using the 3 feature selection

methods and the 3 mining methods. It was observed that no communication metrics

were found to be significant factors and did not increase accuracy in terms of correctly

classified instances or sensitivity measurements in this case when the software metrics

and the social network metrics are combined into a single data set. These experiments

were also applied to the Max software metric data set aggregation and again yielded

similar results. It appears that it is best to keep software metrics and social network

metric models separate for data mining.

Whilst the previous experiments have focused on utilising both before and after states

of the source code, there is no reason why the approach could not be applied

incrementally through the build cycle. This provides software teams an indication of

whether exposure to risk is increasing or decreasing as a result of the changes to the

source code that were being made. This is explored further in section 4.10 where the

results for software metrics and communication metrics, presented as separate data

streams, are presented. Since the j48 classifier has commonly produced the highest

levels of classification accuracy using traditional mining methods the Hoeffding tree is

utilised in a data stream mining context.

164

4.10 Data Stream Mining Results

In this section of results the outcomes of the data stream mining are presented by

illustrating the trend of overall classification accuracy as well as accuracies specific to

successful and failed builds predictions. The sensitivity ratings are also displayed over

time, showing true positive, false positive, precision, recall and f-measure trends.

Due to the limited size of the data set the default value of grace period for the Hoeffding

tree is lowered from the default 200 instances. At the beginning of this set of

experiments various grace periods were trialled to see whether or not the beginning set

of training instances had an effect on the final classification accuracy. Sampled training

grace period values were trialled using 5, 20, 50 and 100 instances. The results

indicated that if the grace period is set too high it will result in a loss of final accuracy,

as the initial model built is over fitted to the data. In terms of results for sections 4.10.1

and 4.10.2 a grace period of 20 was found to generate the highest level of accuracy for

198 instances. The split confidence is 0.05 and the tie threshold option is set to 0.1. For

the results presented in section 4.10.4 the grace period is set to 200 for 1990 instances

(after the application of SMOTE), the split confidence is 0.5 and the tie threshold option

is set to 0.05.

4.10.1 Software Metrics as Evolving Data Streams

Figure 60 presents the trend of overall classification accuracy for builds over time using

the Hoeffding Tree method for the RSA software metrics data set. For this stage the

after state software metrics are included. This is to ensure the outcomes of the software

metric prediction comparable to the outcomes of social network metric predictions. The

179 instances are executed as time series of data streams. It is observed that after

approximately 100 builds the prediction accuracy begins to stabilize and improve. This

is to be expected because at the start of the training process insufficient instances exist,

resulting in model under-fitting. The final overall prediction accuracy is 72.4%, with a

weighted precision value of 0.748, which is a considerable improvement from the

earlier prediction accuracies which start around 47%, with a weighted precision value of

0.476. The overall trend shows that, as more instances are trained, the classification

accuracy steadily improves but appears to reach an asymptotic value.

165

Figure 60 Hoeffding Tree Overall Classification Accuracy for RSA After State

To expand on the overall accuracy findings, Figure 61 presents the trend of

classification accuracy for successful builds for the RSA after state. As the actual

outcome of each build was known then it is possible to report the outcomes of the

classification in more detail in terms of true positive and false positive measures. These

measures are presented in Figure 62 for successful builds. For the case of successful

builds, the true positive rate is the proportion of successful builds that have been

correctly classed as successful builds. The false positive rate is proportion of failed

builds that have been incorrectly misclassified as successful builds. At the beginning of

the time series, using 20 training instances (11 successful and 9 failed builds), the true

positive rate was 0.416. Towards the end of the time series successful builds were

correctly predicted with 81.1% accuracy.

0%

10%

20%

30%

40%

50%

60%

70%

80%

2
0

2
7

3
4

4
1

4
8

5
5

6
2

6
9

7
6

8
3

9
0

9
7

1
0

4

1
1

1

1
1

8

1
2

5

1
3

2

1
3

9

1
4

6

1
5

3

1
6

0

1
6

7

1
7

4

1
8

1

1
8

8

1
9

5

A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

166

Figure 61 Hoeffding Tree Classification Accuracy for Successful Builds for RSA

After State

Figure 62 Hoeffding Tree Sensitivity Measurements for Successful Builds for RSA

After State

The sensitivity measures indicate that there is a period of instability for correctly

predicting success. As with the overall prediction accuracy, after approximately 100

builds there is a gradual increase in the ability to correctly classify successful builds. At

approximately 170 builds there is a minor drop off and the true positive rate hovers at

around 0.8. The false positive measure supports results from previous results that

correctly classifying failed builds is harder to achieve. The percentage of failed builds

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

2
0

2
7

3
4

4
1

4
8

5
5

6
2

6
9

7
6

8
3

9
0

9
7

1
0

4

1
1

1

1
1

8

1
2

5

1
3

2

1
3

9

1
4

6

1
5

3

1
6

0

1
6

7

1
7

4

1
8

1

1
8

8

1
9

5

A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2
0

2

5

3
0

3

5

4
0

4

5

5
0

5

5

6
0

6

5

7
0

7

5

8
0

8

5

9
0

9

5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

1
3

0

1
3

5

1
4

0

1
4

5

1
5

0

1
5

5

1
6

0

1
6

5

1
7

0

1
7

5

1
8

0

1
8

5

1
9

0

1
9

5

Se
n

si
ti

vi
ty

 R
at

in
g

No. of Trained Instances

truePositive

falsePositive

167

classified as successful builds hovers at around 50% up until 160 builds where a minor

improvement is seen.

Presented in Figure 63 is the trend of accuracy for failed builds over time and the

corresponding sensitivity measurements are shown in Figure 64. When comparing these

results to previous mining experiments the same issue is encountered, where failure is

more difficult to predict than success. At the beginning of the time series failed builds

were predicted with an accuracy of 55.6%. At the 160 build mark there is an

improvement in ability to correctly classify failed builds and after training the model on

all 198 instances there appears to be a steady prediction accuracy of 57.0% for failed

builds. Unlike the overall prediction accuracy and successful build accuracy, the trend

for predicting failure does not appear to overly improve with more instances. It is

difficult to predict what may occur as by definition, a data stream is unbounded in

nature. Whilst it appears that the prediction accuracy has become asymptotic it may be

that any improvement is periodic in nature and may require a sufficient number of

builds to reinforce the statistical significance of the current window of data used to

detect concept drifts.

Figure 63 Hoeffding Tree Classification Accuracy for Failed Builds for RSA After

State

In Figure 64 an interesting result is observed when classifying failed build instances. In

this time series after about 100 training instances the trend for false positive test ratings

0%

10%

20%

30%

40%

50%

60%

70%

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

168

stabilize and start to decrease. In a training set with few failed instances, there are more

instances that are predicted as failures incorrectly than there are instances of failed

builds predicted correctly. However, as the stream progresses and more failed signatures

are seen the false positive rate drops substantially.

Figure 64 Hoeffding Tree Sensitivity Measurements for Failed Builds for RSA

After State

Presented in Figure 65 is the final decision tree generated, from the data stream mining

process, using the Hoeffding tree method. The leaves of the tree show the predicted

outcome and the numeric values represent the votes used in the majority vote classifier.

The value on left represents the weighted votes for failed builds and the value on the

right represented the weighted votes for successful builds (i.e. failed builds | successful

builds).

The tree size is small with a depth of just 2. Here it is observed that only 2 attributes out

of the original 46 are used to classify instances. At the root of the tree the Average

Number of Attributes per Class metric is presented, indicating that this metric has a high

impact on the classification of results. The second significant metric is the Number of

Interfaces. Failed builds are associated with a high number of attributes per class. This

is intuitive because the higher the number of attributes the more complex a class may

become. If the Average Number of Attributes metric value is low and the Number of

Interfaces is high then this model also predicts a failed build. Too many interfaces have

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2
0

2

5

3
0

3

5

4
0

4

5

5
0

5

5

6
0

6

5

7
0

7

5

8
0

8

5

9
0

9

5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

1
3

0

1
3

5

1
4

0

1
4

5

1
5

0

1
5

5

1
6

0

1
6

5

1
7

0

1
7

5

1
8

0

1
8

5

1
9

0

1
9

5

Se
n

si
ti

vi
ty

 R
at

in
g

No. of Trained Instances

truePositive

falsePositive

169

the potential lead to a design defect known as the "Swiss Army Knife" anti-pattern

(Moha, Guéhéneuc & Leduc, 2006), where a complex class uses a high number of

interfaces to address many different requirements. This problem may be due to rapid

changing, or misinterpretation of system requirements. Interestingly, the final decision

tree shows that failures are predicted with a much greater degree of confidence on the

basis of the Average Number of Attributes per class feature when compared to the

Number of Interfaces feature.

Figure 65 Final Hoeffding Tree for After State Software Metrics

From streaming data over time the data can become more dynamic as it changes and

evolves (Baena-García, et al., 2006). To capture when such evolutions occur it is

possible to apply concept drift detection during the data stream mining process using

approaches such as ADWIN. It is observed that through learning via the 198 instances

in the data stream that 50 concept drifts occur. Figure 66 and Figure 67 shows the

concept changes that occur with respect to the two predictor features that the Hoeffding

tree model uses. In both diagrams, the dotted line indicates when a concept drift is

detected, irrespective of whether the change was triggered by a change in the particular

metric. A step change in the cumulative drift detection indicates that a concept drift has

been detected. As is evident from the figures, the concept changes are first fairly

chaotic, with large metric values triggering changes as particular builds are added to the

data stream. This response is not unexpected as the relatively small data set makes the

emerging model sensitive to extreme changes in any given metric. Over time, the

concept drift rate slows down, reflecting greater stability in the data streaming in,

enabling overall classification accuracy to improve without the need for structural

changes in the model.

170

The subtle nature of the concept changes would indeed make it difficult, if not

impossible for a human designer to decide when such changes occur without the use of

an automated change detector such as ADWIN. Apart from the need to update the

decision tree model when such changes occur, the detection of such changes are useful

in their own right to the human user as they represent changes in patterns, arising from

changes in the software development environment that would be of use to developers

and project managers.

Figure 66 Trajectories of the Average Number of Attributes per Class feature and

Cumulative Drift Count over time

0

10

20

30

40

50

60

0

10

20

30

40

50

60

70

80

2
0

2

5

3
0

3

5

4
0

4

5

5
0

5

5

6
0

6

5

7
0

7

5

8
0

8

5

9
0

9

5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

1
3

0

1
3

5

1
4

0

1
4

5

1
5

0

1
5

5

1
6

0

1
6

5

1
7

0

1
7

5

1
8

0

1
8

5

1
9

0

1
9

5

C
u

m
u

la
ti

ve
 A

D
W

IN
 D

ri
ft

 D
e

te
ct

io
n

M
e

tr
ic

 V
al

u
e

(A

vg
. n

o
. o

f
A

tt
ri

b
u

te
s

p
e

r
C

la
ss

)

Trained Instances

Average number of
attributes per class

Cumulative Drift
Detection

171

Figure 67 Trajectories of the Number of Interfaces feature and Cumulative Drift

Count over time

Application of the Hoeffding tree analysis to the Jazz data stream results in the

classification model shown in Figure 65. To fully understand the application of the

Hoeffding tree approach it is important to analyse the emergence of this model, not just

the final model itself. By examining Figure 60 it would seem reasonable to conclude

that the minimum number of instances required to develop a classification tree that is

reasonably stable would be around 100 instances. It is at this point that the prediction

accuracy starts to stabilize and show a trend to improving asymptotically. However, an

examination of the Hoeffding tree analysis at this point shows that no actual decision

tree has been generated by the model at this point in time. In fact, the Hoeffding tree

approach has not classified a single feature that has sufficient predictive power to use

effectively. The approach is therefore attempting to classify a new build in the data

stream against the majority taken over all instances and all attribute values. So, for

example, if there were 60% successful builds, then all builds would be labelled success.

This is an exceptionally degenerate case where severe model under-fitting is occurring

due to lack of training examples resulting in no clear predictors. The Hoeffding tree

approach identifies an actual decision tree only after 160 builds. This first decision tree

identifies only a single attribute against which to classify a given build and the resulting

decision tree is shown in Figure 68.

0

10

20

30

40

50

60

0

100

200

300

400

500

600

2
0

2

5

3
0

3

5

4
0

4

5

5
0

5

5

6
0

6

5

7
0

7

5

8
0

8

5

9
0

9

5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

1
3

0

1
3

5

1
4

0

1
4

5

1
5

0

1
5

5

1
6

0

1
6

5

1
7

0

1
7

5

1
8

0

1
8

5

1
9

0

1
9

5

C
u

m
u

la
ti

ve
 A

D
W

IN
 D

ri
ft

 D
e

te
ct

io
n

M
e

tr
ic

 V
al

u
e

 (

N
o

. o
f

In
te

rf
ac

e
s)

Trained Instances

Number of
Interfaces

Cumulative Drift
Detection

172

Figure 68 Initial Hoeffding Tree Model using Software Metrics

Finally in addition to the Hoeffding tree and concept drifting techniques a k-NN

algorithm is trained using a similar process where the number of training instances are

the same used for the Hoeffding tree. The final prediction accuracies of the Hoeffding

tree and the k-NN are shown in Table 28, where k = 5. From this result the Hoeffding

tree has performed better in terms of overall correctly classified instances for both

successful and failed build outcomes when compared to the k-NN method.

Table 28 Final Prediction Accuracies of Hoeffding Tree and k-NN models For RSA

After State

 Successful Builds Failed Builds Overall

 Correctly

Classified

Instances

Incorrectly

Classified

Instances

Correctly

Classified

Instances

Incorrectly

Classified

Instances

Correctly

Classified

Instances

Hoeffding

Tree

103 24 41 31 72.6%

k-NN 93 23 31 32 69.3%

In this section the application of data stream mining was explored in terms of predicting

build outcomes over time. The Hoeffding tree, ADWIN concept drifting and k-NN

methods were used to explore how software metrics evolved over time. In the next

section these techniques are applied to the communication network metrics.

4.10.2 Communication Metrics as Evolving Data Streams

Communication metrics were extracted for each build. The same data stream mining

method that was used to generate the results in section 4.10.1 was applied. It was found

at the end of the data stream mining process that 63% of instances were correctly

classified. The communication metrics classified as being significant predictors of a

173

builds' outcome include the group InOut Degree Centrality and the Total number of

change sets.

It is observed that communication metrics do not provide better levels of accuracy for

predicting build outcomes when compared to software metric mining results. The trends

across all levels of communication extractions are very similar, to summarise the

findings of the results for 100% of metrics suffice. Presented in Figure 69 is the

classification accuracy for the data stream mining results for 100% of the

communication network metrics for builds. Similar to the stream mining results from

software metrics the trends appear to begin to stabilise after approximately 90-100 build

instances.

Figure 70 presents the corresponding classification accuracies over time for successful

builds and the sensitivity ratings over time for successful builds is presented in Figure

71. For predicting successful builds using communication metrics the classification

accuracy appears to steadily increase over time after training on approximately 90

instances.

Figure 69 Hoeffding Tree Classification Accuracy with 100% of Communication

Metrics of Builds

0%

10%

20%

30%

40%

50%

60%

70%

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

174

Figure 70 Hoeffding Tree Classification Accuracy for Successful Builds with

100% of Communication Metrics

Figure 71 Hoeffding Tree Sensitivity Ratings for Successful Builds with 100% of

Communication Metrics

0%

10%

20%

30%

40%

50%

60%

70%

80%

2
0

2
7

3
4

4
1

4
8

5
5

6
2

6
9

7
6

8
3

9
0

9
7

1
0

4

1
1

1

1
1

8

1
2

5

1
3

2

1
3

9

1
4

6

1
5

3

1
6

0

1
6

7

1
7

4

1
8

1

1
8

8

1
9

5

A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Se
n

si
ti

vi
ty

 R
at

in
g

No. of Trained Instances

truePositive

falsePositive

175

Figure 72 presents the corresponding classification accuracies for failed builds and

shown in Figure 73 are the sensitivity ratings for failed builds over time. Over the

duration of the simulated data stream, the proportion of successful builds that are

correctly classified by the decision tree steadily increases to around 70%. Over the same

simulated period the proportion of failed builds that are correctly classified drops from a

very high initial value to around 54%. The initial values are a result of the lack of data

causing model under-fitting.

Figure 72 Hoeffding Tree Classification Accuracy for Failed Builds with 100% of

Communication Metrics

The outcome of this data stream mining experiment supports observations made from

using software metrics where it is significantly more challenging to identify a failed

build than it is a successful one. In this case it appears that the developer

communication metrics are equally as effective in this regard when compared to source

code metrics. From the false positive data it is clear that there is a significant problem in

failed builds being misclassified as successful builds.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

2
0

2
7

3
4

4
1

4
8

5
5

6
2

6
9

7
6

8
3

9
0

9
7

1
0

4

1
1

1

1
1

8

1
2

5

1
3

2

1
3

9

1
4

6

1
5

3

1
6

0

1
6

7

1
7

4

1
8

1

1
8

8

1
9

5

A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

176

Figure 73 Hoeffding Tree Sensitivity Ratings for Failed Builds with 100% of

Communication Metrics

Figure 74 presents the final decision tree using the Hoeffding Tree stream mining

technique on social network metrics for build instances. It is observed that this is a

small tree with the depth of 2. There is also no confusion or repeated metrics appearing

within its branches. The tree is composed of two metrics, the group InOut degree

centrality and edge group betweenness centrality. The classification tree appears to be

intuitive in terms of the outcomes it presents. At the root of the tree the

GroupInOutDegreeCentrality metric is found and if this value is higher than 0.36 the

build result is predicted to be a failure. This indicates that if there are increases in the

amounts of incoming and outgoing messages between nodes of a network then there

may be a potential problem that needs to be resolved.

The addition of EdgeGroupBetweennessCentrality as a new metric has an interesting

effect in that it refines the classification of successful builds only and does not improve

the classification of failed builds at all. Of the 39 builds used in this incremental change,

15 of them are failed builds that are misclassified as successful builds by the addition of

the new metric.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Se
n

si
ti

vi
ty

 R
at

in
g

No. of Trained Instances

truePositive

falsePositive

177

Figure 74 Final Hoeffding Tree for 100% of Social Network Metrics

It is observed that through learning process of 198 instances that 73 concept drifts

occur. The starting variance value was 0.25 which remained stable ending with a value

of 0.24. The starting estimation value was 0.476 and over time to 0.23. Similar to the

software metrics, when comparing the changes of group InOut degree centrality and the

edge betweenness centrality metrics to when a concept drift occurs there are conceptual

drifts that occur when metrics fluctuate. This is presented in Figure 75 and Figure 76

respectively.

Figure 75 Trajectories of Group InOut Degree Centrality and Cumulative Drift

Count over time

0

10

20

30

40

50

60

70

80

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

C
u

m
u

la
ti

ve
 A

D
W

IN
 D

ri
ft

 D
e

te
ct

io
n

M
e

tr
ic

 V
al

u
e

(G

ro
u

p
 In

O
u

t
D

e
gr

e
e

 C
e

n
tr

al
it

y)

Trained Instances

Group InOut Degree
Centrality

Cumulative Drift Detection

178

Figure 76 Trajectories of Edge Group Betweenness Centrality and Cumulative

Drift Count over time

A k-NN algorithm is trained using a similar process where the number of training

instances are the same that are used for the Hoeffding tree. The final prediction

accuracies of the Hoeffding tree and the k-NN when applied to communication network

metrics are shown in Table 29, where k = 5. Similar to the software metrics the

Hoeffding tree has performed better in terms of overall correctly classified instances for

both successful and failed build outcomes when compared to the k-NN method.

Table 29 Final Prediction Accuracies of Hoeffding Tree and k-NN models for

100% of Communication Metrics

 Successful Builds Failed Builds Overall

 Correctly

Classified

Instances

Incorrectly

Classified

Instances

Correctly

Classified

Instances

Incorrectly

Classified

Instances

Correctly

Classified

Instances

Hoeffding

Tree

87 40 39 33 63.3%

k-NN 80 36 23 40 57.5%

0

10

20

30

40

50

60

70

80

0

50

100

150

200

250

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

C
u

m
u

la
ti

ve
 A

D
W

IN
 D

ri
ft

 D
e

te
ct

io
n

M
e

tr
ic

 V
al

u
e

(E

d
ge

 G
ro

u
p

 B
e

tw
e

e
n

n
e

ss
 C

e
n

tr
al

it
y)

Trained Instances

Group Betweenness
Centrality

Cumulative Drift Detection

179

This section has shown the mining results for both the RSA after state data set and

communication metrics (at their various extractions times) in a data streaming context

using the Hoeffding tree classifier, ADWIN and k-NN methods.

4.10.3 Software Metrics and Communication Metrics as Evolving Data

Streams

Figure 77 presents the trend of overall classification accuracy for builds over time using

the Hoeffding Tree method for the merged RSA After State software metrics and 100%

of communication metrics data set. The time series is tested and trained with 179

instances. It is observed again after approximately 90 builds the prediction accuracy

begins to stabilize and improve. This is as suspected because at the start of the training

process there are not enough instances to substantially model the outcomes based on the

data available and as a result over-fitting occurs. When using a combination of software

and social metrics it has been found that identical classification accuracies were

generated when compared to using software metrics. For instance the same final overall

prediction accuracy is 74.84%, which was the same level of accuracy to that generated

by using only the RSA After State metrics. The overall classification accuracy at the

beginning of the data stream mining was also the same, starting at 47.6%.

Figure 77 Hoeffding Tree Overall Classification Accuracy for RSA After State and

100% of the Social Network Metrics

To expand on the overall accuracy findings, Figure 78 presents the trend of

classification accuracy for successful builds for the RSA after state and 100% of the

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

180

communication metrics. The sensitivity measurements (true positive and false positive

values) for successful builds over time are also presented in Figure 79. Again it is

observed that after approximately 90 builds the prediction accuracies appear to stabilise

and steadily increase over time. At the beginning of the time series, using 20 training

instances (11 successful and 8 failed builds), the prediction accuracy for successful

builds is 25% (lower than the accuracy of only using the RSA software metrics).

Towards the end of the time series successful builds were correctly predicted with a

85.0% accuracy (identical to the RSA software metrics outcome). The sensitivity

ratings show the over-fitting occurring from training on only 100 instances, as the false

positive dramatically increase from around 50 to 100 instances, similarly to the RSA

software metrics results.

Figure 78 Hoeffding Tree Classification Accuracy for Successful Builds for RSA

After State and 100% of the Social Network Metrics

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

181

Figure 79 Hoeffding Tree Sensitivity Measurements for Successful Builds for RSA

After State and 100% of the Social Network Metrics

Presented in Figure 80 is the trend of accuracy for failed builds over time and the

corresponding sensitivity measurements are shown in Figure 81. Comparing these

results to previous mining experiments, again, failure is more difficult to accurately

predict than success. At the beginning of the time series failed builds were predicted

with an accuracy of 77.8%. After training the model on 175 instances there appears to

be a steady prediction accuracy of 57.0% for failed builds. The final accuracy for

predicting failed builds using a combination of software and social network metrics is

identical to the results obtained from using only software metrics. Again it is observed

that the trend for predicting of failure does not appear to overly improve with more

instances.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

Se
n

si
ti

vi
ty

 R
at

in
g

No. of Trained Instances

truePositive

falsePositive

182

Figure 80 Hoeffding Tree Classification Accuracy for Failed Builds for RSA After

State and 100% of the Social Network Metrics

Figure 81 Hoeffding Tree Sensitivity Measurements for Failed Builds for RSA

After State and 100% of the Social Network Metrics

Presented in Figure 82 is the final decision tree generated from the data stream mining

process using the Hoeffding tree method. The tree size is small with a depth of 2. Here

it is observed that only 2 attributes out of the original 58 (software metrics and social

network metrics) are used to classify instances. At the root of the tree the Group inOut

Degree Centrality metric is presented. The second significant metric again is the

Maintainability index. Comparing this decision tree to the tree generated using only the

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2
0

2
9

3
8

4
7

5
6

6
5

7
4

8
3

9
2

1
0

1

1
1

0

1
1

9

1
2

8

1
3

7

1
4

6

1
5

5

1
6

4

1
7

3

1
8

2

1
9

1

Se
n

si
ti

vi
ty

 R
at

in
g

No. of Trained Instances

truePositive

falsePositive

183

RSA software metrics data set, it appears that the average number of attributes per class

metric has been merely switched for the group InOut degree centrality metric. In

addition to this the Maintainability index threshold values for determining build success

and failure (268.11) remains the same. When comparing this tree to the tree generated

from only social network metrics, it appears that the edge betweenness centrality metric

is exchanged for the Maintainability index metric. Again the threshold values for

determining build failure (>0.36) using the group InOut Degree Centrality remain the

same. Due to there being no increased instances of successfully predicting failed builds

and similar levels of sensitivity have been generated, SMOTE is not applied on the

merged data set.

Figure 82 Final Hoeffding Tree for RSA After State and 100% of Social Network

Metrics

4.10.4 Simulating Instances: Application of SMOTE

In this section SMOTE is applied to two data sets 1) the RSA after state and 2) 100% of

communication metrics. In this set of experiments SMOTE is applied differently from

the results presented in section 4.8 where various levels of SMOTE had been applied to

increase the number of failed build instances. In this case SMOTE is applied twice to

each data set to preserve the naturally occurring distribution ratio between classes. In

the first application the number of failed build instances is increased and the second

application increases the number successful build instances. In doing so each data set

size is increased from 198 to 1990 instances. Within these instances 720 are failed

builds and the remaining 1720 instances are successful builds. The goal of this set of

experiments is to perform a "what-if" analysis to see what may occur to the data stream

mining results if there is a larger data set available. This section of results is based on

184

the assumption that the new instances generated using SMOTE is a fair representation

of real-world data, over an extended period of stability.

The results are presented in two sections: 1) the software metrics based on the RSA

after state data set and 2) the results based on 100% of communication metrics. The

Hoeffdings tree grace period parameter is set to 200 for this set of experiments.

Presented in Figure 83 is the classification accuracy for the data stream mining results

for RSA after state metrics for builds. After the model is trained on 200 instances the

classification accuracy at the start of the time series, is 65.2% and at the end of the

stream the accuracy was 80.35%. The average overall accuracy for the entire time series

was 70%. The general trend of accuracy, although higher than the result presented in

section 4.10.1 (more specifically Figure 60), has great similarity. This indicates that the

there is potential for the accuracy of prediction to improve as more real data emerges.

Figure 83 Hoeffding Tree Overall Classification Accuracy for RSA After State

(with SMOTE applied twice)

Figure 84 presents the classification accuracies of successful builds and their

corresponding sensitivity ratings over time is presented in Figure 85. For successful

builds at the beginning of the data stream time series the accuracy was 66.38% and

ended with 79.1% (with an average of 64%). It is observed that the general trend for

classifying success starts to stabilise and gradually increase after approximately 900

instances. This trend was also observed in section 4.10.1, after the model was trained on

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

2
0

0

2
6

4

3
2

8

3
9

2

4
5

6

5
2

0

5
8

4

6
4

8

7
1

2

7
7

6

8
4

0

9
0

4

9
6

8

1
0

3
2

1

0
9

6

1
1

6
0

1

2
2

4

1
2

8
8

1

3
5

2

1
4

1
6

1

4
8

0

1
5

4
4

1

6
0

8

1
6

7
2

1

7
3

6

1
8

0
0

1

8
6

4

1
9

2
8

A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

185

approximately 90 instances. This is also observed when comparing the sensitivity

ratings for successful builds with the previous sections. Whilst the application of

SMOTE is intended to demonstrate the potential for improved prediction with more

data, it should be noted that it may simply have scaled the outcome of the real data by a

factor of 10.

Figure 84 Hoeffding Tree Overall Classification Accuracy for Successful Builds for

RSA After State (SMOTE applied twice)

Figure 85 Hoeffding Tree Sensitivity Measurements for Successful Builds for RSA

After State (SMOTE applied twice)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

1
9

0
0

A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2
0

0

2
8

2

3
6

4

4
4

6

5
2

8

6
1

0

6
9

2

7
7

4

8
5

6

9
3

8

1
0

2
0

1
1

0
2

1
1

8
4

1
2

6
6

1
3

4
8

1
4

3
0

1
5

1
2

1
5

9
4

1
6

7
6

1
7

5
8

1
8

4
0

1
9

2
2

Se
n

si
ti

vi
ty

 R
at

in
g

No. of Trained Instances

truePositive

falsePositive

186

Presented in Figure 86 is the classification accuracies over time for failed builds and the

corresponding sensitivity ratings for failed builds is presented in Figure 87.

Classification accuracy for failed builds started at 63.5% and at the end of the time

series was 82.2% (with an average of 78%). When comparing the accuracy of

predicting failed builds to results found in section 4.10.1, the general trend appears to be

similar after approximately 70 trained instances. The false positive values between 700

to 1000 trained instances appear to peak when classifying failed builds, due to over-

fitting the model at earlier time segments. The false positive value then proceeds to

decrease over time.

Figure 86 Hoeffding Tree Classification Accuracy for Failed Builds for RSA After

State (with SMOTE applied twice)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

1
9

0
0

A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

187

Figure 87 Hoeffding Tree Sensitivity Measurements for Failed Builds for RSA

After State

Figure 88 illustrates the final decision tree using the Hoeffding Tree stream mining

technique on the extended RSA after state software metrics data set. In this case the tree

is larger than the previous software metric based Hoeffding tree, with a depth of 7.

Upon inspecting the tree there are common sense classifications being made, for

example a higher number of interfaces tends to be associated with failure. This is

intuitive because if there are too many Java interfaces it can become tedious when

debugging an error as the actual implementation of the error may be in an obscure

location. Interfaces also add to the collection of files within the system and if an

interface is "dead" (not used) and not removed it leads to a less elegant system design.

The number of interfaces has a direct influence on dependency metrics, i.e.

Abstractness.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2
0

0

2
8

2

3
6

4

4
4

6

5
2

8

6
1

0

6
9

2

7
7

4

8
5

6

9
3

8

1
0

2
0

1
1

0
2

1
1

8
4

1
2

6
6

1
3

4
8

1
4

3
0

1
5

1
2

1
5

9
4

1
6

7
6

1
7

5
8

1
8

4
0

1
9

2
2

Se
n

si
ti

vi
ty

 R
at

in
g

No. of Trained Instances

truePositive

falsePositive

188

Figure 88 Final Hoeffding Tree for After State Software Metrics (with SMOTE

applied twice)

Similar to the Hoeffding tree in the previous section (4.10.1), the average number of

attributes metric also appears to be a strong indicator of build failure. Upon further

inspection it is still observed that while an additional set of metrics are used for

predicting failure in this tree, the result is mainly contingent on the number of unique

operators. For example the following metrics are low or null i.e. the number of

interfaces, program level, average number of attributes per class, difficulty level,

average number of methods and average block depth and the number of unique

operators is high there is a chance of a failed build. If there are a high number of

operators, a failure outcome is more likely.

The output of ADWIN from the stream mining of the extended version software metrics

data set shows a total of 55 concept drifts. This is not much of an increase when

compared to the results from section 4.10.1, where there were 50 concept drifts using

software metrics. Again, this may be that the application of SMOTE has simply scaled

the outcomes present in the real data. The application of SMOTE in this way is intended

to be indicative of potential rather than an absolute guarantee of increased predictive

performance. The variance value after training on 200 instances was 0.122 and at the

end of the streaming was 0.0536. The estimation value started at 0.1428 and ended at

189

0.0569. SMOTE interpolates rather than extrapolates values using existing data and as a

result would not introduce new concepts to the data. Therefore the introduced

complexity of the decision tree may be due to the fact that the model is synthesising the

micro-patterns from the failed build instances.

In addition to the Hoeffding tree and concept drifting techniques a k-NN algorithm is

trained using a similar process where the number of training instances is the same used

for the Hoeffding tree. The final prediction accuracies of the Hoeffding tree and the k-

NN when applied to communication network metrics are shown in Table 30, where k =

50. From this result it is observed that the Hoeffding tree and k-NN generate very

similar levels of overall classification accuracies. The Hoeffding tree was able to

correctly predict 16% more failed builds than the k-NN method.

Table 30 Final Prediction Accuracies of Hoeffding Tree and k-NN models for RSA

After State (with SMOTE applied twice)

 Successful Builds Failed Builds Overall

 Correctly

Classified

Instances

Incorrectly

Classified

Instances

Correctly

Classified

Instances

Incorrectly

Classified

Instances

Correctly

Classified

Instances

Hoeffding

Tree

1005 265 592 128 80.3%

k-NN 1024 131 418 217 80.6%

Figure 89 presents the overall classification accuracies for enlarged communication

metrics data set using the Hoeffding tree. Similar to the software metrics overall

accuracy shown in the previous section where the number of correctly classified builds

appears to increase after approximately 1000 trained instances. The final classification

accuracy for this model slightly increased when compared to streaming the original data

set, where 70% of build instances were correctly classified.

190

Figure 89 Hoeffding Tree Overall Classification Accuracy for 100% of

Communication Metrics (with SMOTE applied twice)

To show accuracy of this result by class Figure 90 presents the classification accuracies

of successful builds and their corresponding sensitivity ratings over time is presented in

Figure 91. For successful builds at the beginning of the times series the accuracy was

50% and ended with 73.2% (with an average of 62.4%). It is observed that the general

trend for classifying success starts to stabilise and gradually increase after

approximately 900 instances. Similarly to the software metrics results and the trend of

social metrics observed in section 4.10.2, after the model was trained on approximately

90 instances the accuracy gradually improved and stabilized. This is also observed

when comparing the sensitivity ratings for successful builds with the previous sections.

0%

10%

20%

30%

40%

50%

60%

70%

80%

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

1
9

0
0

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

191

Figure 90 Hoeffding Tree Classification Accuracy for Successful Builds with 100%

of Communication Metrics (with SMOTE applied twice)

Figure 91 Hoeffding Tree Sensitivity Measurements for Successful Builds for

100% of Communication Metrics (with SMOTE applied twice)

Presented in Figure 92 is the classification accuracy over time for failed builds and the

corresponding sensitivity ratings for failed builds are presented in Figure 93.

Classification accuracy for failed builds started at 80% and at the end of the time series

was 66.0% (with an average of 75%). Again when comparing the accuracy of

predicting failed builds to results found in section 4.10.2 and to the trend of software

0%

10%

20%

30%

40%

50%

60%

70%

80%

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

1
9

0
0

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2
0

0

2
9

5

3
9

0

4
8

5

5
8

0

6
7

5

7
7

0

8
6

5

9
6

0

1
0

5
5

1
1

5
0

1
2

4
5

1
3

4
0

1
4

3
5

1
5

3
0

1
6

2
5

1
7

2
0

1
8

1
5

1
9

1
0

Se
n

si
ti

vi
ty

 R
at

in
g

No. of Trained Instances

truePositive

falsePositive

192

metrics in section 4.10.1, the trend appears to be similar after around 70 trained

instances. It is also observed that in this experiment another false paradox phenomenon

occurs for failed builds. True positive values are higher than false positives in this

experiment after around 1350 trained instances. During this time period the general

classification accuracy for correctly classifying failed builds decreases.

Figure 92 Hoeffding Tree Classification Accuracy for Failed Builds with 100% of

Communication Metrics (with SMOTE applied twice)

Figure 93 Hoeffding Tree Sensitivity Measurements for Failed Builds for 100% of

Communication Metrics (with SMOTE applied twice)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

1
9

0
0

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2
0

0

2
9

5

3
9

0

4
8

5

5
8

0

6
7

5

7
7

0

8
6

5

9
6

0

1
0

5
5

1
1

5
0

1
2

4
5

1
3

4
0

1
4

3
5

1
5

3
0

1
6

2
5

1
7

2
0

1
8

1
5

1
9

1
0

Se
n

si
ti

vi
ty

 R
at

in
g

No. of Trained Instances

truePositive

falsePositive

193

Illustrated in Figure 94 is the final Hoeffding tree for the extended social network

metrics data set. This tree has also grown in size when compared to the Hoeffding tree

presented in section 4.10.2 and has a depth of 6. From this decision tree a majority of

failed builds are predicted by low group out degree centrality values and a high edge

(number of connections within the network) count. Contributors who display high out-

degree centrality are said to be "influential" within the network. This decision diagram

is intuitive, in this sense, because if there are a high number of connections within a

network yet no one driving the discussion there is a higher chance of build failure.

There is some degree of confusion displayed within this tree. For example the node

Markov centrality metric can essentially be removed, because if this value is low or

high the predicted outcome is a successful build.

Figure 94 Final Hoeffding Tree for 100% of Social Network Metrics (with SMOTE

applied twice)

Similar to the software metrics results in the previous section the total number of

concept drifts did not increase when compared to the social network mining results

presented in 4.10.2. The concept drifts increased from 74 to 76 in total. Again this was

to be expected due to the nature of how SMOTE generates new instance values.

194

In addition to the Hoeffding tree and concept drifting techniques a k-NN algorithm is

trained using a similar process where the numbers of training instances are the same

used for the Hoeffding tree. The final prediction accuracies of the Hoeffding tree and

the k-NN when applied to communication network metrics are shown in Table 31,

where k = 50. From this result it is observed that the Hoeffding tree and k-NN generate

very similar levels of overall classification accuracies. The Hoeffding tree was able to

correctly predict 12% more failed builds than the k-NN method. The software metric

results have again provided a better level of classification accuracy (with about a 10%

improvement) when compared to using social network metrics.

Table 31 Final Prediction Accuracies of Hoeffding Tree and k-NN models for

100% of Communication Metrics (with SMOTE applied twice)

 Successful Builds Failed Builds Overall

 Correctly

Classified

Instances

Incorrectly

Classified

Instances

Correctly

Classified

Instances

Incorrectly

Classified

Instances

Correctly

Classified

Instances

Hoeffding

Tree

930 340 475 245 70.6%

k-NN 889 256 341 294 69.3%

195

4.11 Chapter Summary

This chapter has presented the data mining results drawn from the extractions of

software metrics and communication metrics. Feature selection methods explored

included Information Gain, Subset Evaluation, principal component analysis, frequency

feature selection and application of the after state features to the before state data sets.

Traditional data mining methods explored included the j48 decision tree builder, Naive

Bayes and Bayesian Networks. The results indicated that in terms of feature selection

there was no single best method to use. However, in terms of the mining methods

explored it was observed that the j48 decision tree typically provided better results in

terms of correctly classifying instances. From mining different software metric data set

aggregation it was found that the RSA data set typically provided better results for

classifying builds. For software development teams looking to build predictive models

of development endeavours, the metric values obtained from IBMs rational software

analyzer tool and the maximum metric values have portrayed a valuable starting point

for data mining activities.

Social network metrics were also extracted and data mined using traditional and data

streaming methods. The results have shown prediction models built from software

metrics provided better classification accuracies than the models built using social

network metrics. In addition to this upon merging software and social network metric

data sets, software metric predictors were found to be more significant in determining

build success and failure as they were not selected using Information Gain or Subset

Evaluation feature selection methods.

Finally data stream mining methods were explored where Hoeffding tree, ADWIN

concept drifting and k-NN were used to see how software and social network metrics

evolved over time. Similarly to the results presented that were based on traditional

mining methods software metrics had higher prediction accuracies than social network

metrics.

196

5 Discussion and Research Summary

5.1 Introduction

The methodology and results of the experimental studies are described in chapters 3.2

and 4 respectively. Whilst some analysis of the results was presented in the previous

chapter, the main purpose of this chapter is to extend the analysis and interpret the

outcomes. This chapter looks at the interpretations and philosophies that underpin the

experimental research results in the context of this thesis and its scientific enquiries. In

addition, this chapter also presents a simulated scenario of how a predictive model built

on both the software and social networks could be deployed in a development team to

successfully leverage the value of the predictive power of both elements. Finally, this

chapter presents a summary of the research study.

The following section details the major findings of the study. Interpretations of the

findings and their relationship to the original research question are discussed as well as

their impacts on decision making for a software development project. There have been

no alterations to the IBM Jazz repository before and after the extraction of software and

social network metrics, to avoid false or misleading data and information.

5.2 Research Summary

This study has adopted the system development research methodology (Nunamaker, et

al., 1991) and adhered to the design science guidelines to investigate, design, develop

and implement predictive models. In conjunction with this a research via artifacts

method (Nguyen, et al., 2009), similar to previous studies that have made use of the

Jazz repository, is also adopted. Overall, this methodological approach is similar to

other studies that have considered the creation of predictive models from historical data

using data mining approaches (Khoshgoftaar, Allen, Jones & Hudepohl, 2001).

One of the challenges within this work was in getting a suitable level of granularity for

predicting software artifact outcomes. This thesis has presented data mining results of

software and communication metrics extracted from change sets of software build items

and work items within the Jazz repository. Other levels of granularity were initially

explored, for example software metrics were also derived at work item level change sets

197

and were classified by work item type. While there existed more (1157) instances of

change sets at work item level it was found that metrics extracted at build level provide

better classification outcomes for prediction of failure than those extracted at work item

level predicting defects. However, despite the level of granularity between build item

and work item software metrics, the same challenge was observed when predicting

failure or defects, where there was much overlap in feature space.

Under the KDD process (Fayyad, et al., 1996) the first step is to construct the target data

sets. For this multiple software metric state aggregations (RSA, Total, Mean, Median

and Maximum) and social network metric (25%, 50%, 75% and 100% time segments)

aggregations were derived from software builds. Such aggregations were necessary as

they condensed vast amounts of information about source code into smaller

representative numerical values that could be used to build predictive models. Secondly

the data sets were pre-processed, where builds without associated change sets were

removed. In total for each software metric data set there were 42 software metrics

including traditional (size), complexity, dependency, cohesion, inheritance and Halstead

metric categories. For each social metric data set there were 16 metrics including size

metrics and centrality metrics. In addition to this simple count metrics were also

included in the social network data sets to show the number of work items and change

sets a particular discussion was connected to. All data sets presented in this thesis were

classified by a build result outcome metric. There are a range of metrics that are unique

to the Jazz environment (number of change sets, number of work items and the build

outcome). It is important to note that the number of change sets metric is associated

with a work item (included in the communication metric data set) is not the same as the

number of change sets associated with a build item.

The results of the classifications were used to search for patterns of interest that are

open for interpretation. While it remains very difficult to draw generalisations from the

results of this work, in order to make comparisons to other software metric studies,

understandings gained from this work are similar to the insights found within the

literature surrounding software metrics for defect and quality prediction.

198

5.3 Analysis of Results

5.3.1 Data Mining Software Metrics

The aim of the first set of data mining experiments was not only to generate various

prediction models, but to primarily find a suitable direction of inquiry to enhance

classification accuracy and generate better understandings of the nature of various

software metrics. More specifically the aim of the initial experiments was to find which

software metric aggregation, feature selection method and data mining method

produced the greatest promise in terms of classification accuracy and sensitivity. This

initial phase was necessary in order to reduce the scale of the inquiry to a manageable

size as a truly exhaustive search of all combinations would not be achievable in a

reasonable timescale.

During the first stages of experiments, filtering methods (Subset Evaluation,

Information Gain and PCA) were applied to various software metric aggregations

(RSA, max, mean, median, total software metrics) to reduce the original number of

predictors. Prediction models were generated using traditional data mining methods

(j48, Naive Bayes and Bayesian network) and their performance (accuracy and

sensitivity) were tested. This stage of experiments gave preliminary insights into

whether software metrics could be used predict to software build outcomes on their

own. The software metrics derived from the before and after state consisted of different

values for each instance, however through data mining methods the patterns found from

these states were very similar in terms of accuracy, sensitivity and metrics that were

selected as being significant features for the prediction models.

The results were presented via three categories based on the data set, feature filtering

and mining methods. During this stage it was found that the subset evaluator generated

the best result when applied to the rational software analyser (RSA) data set. This was

to be expected as the CfsSubset method looks for the inter-relationships between

metrics to identify significant factors. Once the CfsSubset method was used to filter the

metrics the j48 decision tree classifier was applied using 10-cross fold validation and

produced the best results with an overall classification accuracy 80.4%. The precision

and recall weighted average values were also high with a rating of 0.8.

199

However, it would not be correct to state that the subset evaluator performed the best for

all experiments, therefore it is not the "single best" solution. This problem can also be

seen within the mining software metrics literature as it remains unclear which feature

selection method is "best" to use, as many studies contradict each other. It is more

correct to state that the "best" feature selection method is highly contingent on the

context of the software metric data set itself that is being investigated. In some cases

selecting only 20% of the 42 software metrics the models built were not adversely

affected. This result coincides with other studies (Fenton & Neil, 2000; Kehan Gao,

Khoshgoftaar, Wang & Seliya, 2011).Yet in other cases, mining methods applied with

no features filtered produced very similar or better results. Throughout these initial

results and later results there was much variability in the models produced. This is most

likely due to the relatively small size of the data set and the large number of predictors

and perhaps the absence of robust relationships.

In terms of selecting a data mining method, it was observed that the j48 classifier

frequently produced better classification accuracies in a majority of the experiments.

However, upon inspecting the decision trees, there were degrees of confusion found

within their branches and leaves, showing duplicate metric nodes or constructed rules

which did not make sense. This was particularly true for classifying failed builds.

Again, this may be a direct result of the ratio of predictors to data instances. In many

cases it has been observed that there is not a major difference in the predictive power of

different metrics which makes it difficult to select a significant set consistently. Across

all experiments of the initial software metric based mining stage it was also observed

failed builds were much more difficult to predict than successful builds. In particular, it

has been observed that predicting failure is a different task than predicting non-success.

The accuracy, precision and recall values for failed builds were considerably lower than

successful builds across a majority of data mining experiments.

These initial findings support the claims of Buse and Zimmerman (2010) who suggest

that while a range of metrics can be used to describe a project, other important aspects

such as development process "health" can be unpredictable. The primary goal of their

software analytics paradigm is to provide insight by identifying patterns based on multi-

dimensional factors. In doing so development teams are provided with the opportunity

200

to proactively manage risk exposure through the development project. These results

support other studies that have shown that there is no single code or churn metric that is

capable of predicting failure (Basili, 1996; Denaro, et al., 2002; Nagappan, Ball &

Zeller, 2006). In that context, the outcome of this phase of research is that a number of

different methods have the potential to be applied in a real world development

environment. Whilst there may be minor differences between the nature of the

predictive models, they all could improve the outcomes of software development

projects if applied in conjunction with human expert judgement.

Predicting failure is more challenging than predicting success and it is also observed

that not predicting failure does not mean that success has been predicted. This is due to

the fact that the build successes and failures overlap in feature space and “failure”

signatures have a greater degree of fragmentation than their “success” counterparts. This

is most apparent in the very different classification trees that have been discussed. Each

shows a different set of software metrics that can be used to gain roughly the same

overall prediction accuracy. This indicates that there is much uncertainty in the

relationships between software build failures.

The degree of variability within each of the Jazz builds, each with various purposes,

results in wide variations of metrics. This can make it difficult to predict which builds

are likely to fail. Even if there were more failed build instances it may not lead to

improved reliability of Jazz as a whole. Instead prediction of reliability should be

viewed as complementary to defect or build failure density prediction.

5.3.2 Enhancing Performance of Experiments

The second phase of experiments aim was to increase the prediction accuracy and

sensitivity values of failed builds. To do this phase two focused on filtering features

based on their selected frequency during the prior experimental phase. Even though

there was variability between the prediction models of the first phase, it was observed

that certain metrics were commonly selected as being significant factors for predicting

build outcomes. The variability suggests that the indicators may be weak themselves.

Therefore by looking at how often they were used in the range of experiments was a

way of investigating whether the strength of prediction could be reinforced.

201

As the number of selected metrics is reduced by applying a higher frequency threshold,

the overall accuracy does not change significantly, yet there was a trend towards better

classification of successful builds. This possibly indicates that some metrics are very

strong indicators of success whereas others are weak indicators of failure. This again

may be related to the fact that the build successes and failures overlap in feature space

and “failure” signatures have a greater degree of fragmentation than their “success”

counterparts. This insight reinforces the outcomes of this work that a predictive model

cannot be applied blindly, but does have the potential to complement the expert

opinions within the software development team.

It was observed that the before and after state of the software metrics produced fairly

similar results in terms of overall classification accuracy and sensitivity. The j48

algorithm again generated the highest levels of accuracy across all experimental feature

thresholds. It was observed that if using the j48 algorithm, despite the data set

aggregation, that it is best to include metrics that were commonly selected from all

experiments that were found to appear more than three times. This indicates that even if

a certain metric is selected commonly from a range of data mining experiments,

classification accuracy still depends on its relationship to other metrics.

In addition to exploring the frequency thresholds for selecting features, the after state

selected features were applied to the before state metrics. This was to see whether or not

classification improved when "past" metrics were selected from a filter provided from

the "future". During the build cycle an iterative review of the risk that is exposed may

be used to improve the accuracy prediction of failure and therefore manage the risk

ahead of time. In this case the before state is used to determine whether build failure

can be predicted prior to any changes made. This attempted to characterise source code

that is about to be changed of its likelihood of being changed successfully or if there are

patterns in existing code that can potentially lead to failure. Code that is likely to be

changed in a build introduces potential defects or build failure (Khomh, Di Penta &

Gueheneuc, 2009). The patterns that cause a build to fail may not be obvious until the

change is made. Therefore identifying the causes of failure may determine significant

predictors earlier during the build cycle.

202

It has been shown that features selected from the after state metrics to predict the

outcomes of a build in the before state, can be used for process of examining code for

potential failure. Some evidence exists in literature that may explain this phenomenon.

For example, the results within this work is supported work by Kitchenham (2010)

where it was found that software metrics reflecting change in code extracted at various

points in time were more likely to predict fault rates in an evolving system better than

final snap-shot based software metrics.

It appears that examining the degree of magnitude in change of a build offers the most

clarity in terms of predicting the likelihood of a failed build. This approach also

provides software development teams the opportunity to incrementally assess whether

risk exposure is increasing or decreasing throughout a build cycle. However, it is

important to appreciate that the metric values in the classification tree do not necessarily

represent any absolute indication of change. This is particularly true for the results of

the max data set, as the maximum metric may not be drawn from the same before and

after state file.

The frequency feature selection threshold metrics from the after state were also used to

filter metrics from the before state. When the feature frequency threshold was greater

than three, from the after state and the features filtered the max before state data set the

classification accuracy slightly improved (to 81.8%). From this experiment there was

also an increase (approximately 10%) of precision and recall values for correctly

classifying failed build instances. Despite this improvement there still remained much

variability between models that were derived from the application of the after state

metrics to the before state data and the frequency threshold selection experiments.

The goal of synthetically generating data was to explore what might happen if there was

more data available for mining, more specifically to see if classification of builds

improved with more data. While the use of SMOTE may not be a fair representation of

new real world data, it does however interpolate values between existing instances to

generate new instances. This provides insights into what may occur if there were no

"new" anomalies encountered during the project. This may not be entirely realistic

given that the causes of failure are not predictable and that new failure modes are likely

to appear over time.

203

To do this the number of minority class (failed builds) instances were increased using

SMOTE. It was found that classification accuracy improved when SMOTE was applied

at 300% to the before state data and filtering metrics using the subset evaluator from the

after state metrics. In this scenario the overall classification increased (to 83.1%). The

accuracy correctly predicting failed builds also increased, correctly identifying 81% of

failed instances. A slight increase in precision (0.75) and recall (0.82) values also

occurred. It was observed that increases in precision and recall values were also

obtained across experiments for classifying build failure.

From previous data mining experiments build failure metrics were very close to

successful builds. This indicates that perhaps if more data is available accuracy for

classifying builds will improve over time. The results obtained during this phase support

other studies where software fault prediction increased in classification accuracy and

stability when adopting the use of SMOTE (Kehan, Khoshgoftaar & Napolitano, 2011;

Pelayo & Dick, 2007; Shatnawi, 2012) based on other project software metrics. In

addition to the application of SMOTE this phase also showed that higher classification

accuracy and sensitivity values can be achieved again by applying the future state

metrics to before state data. This can be thought of in terms of the fact that the patterns

that cause actual failure may already be present in code that has resulted in a successful

build.

5.3.3 Data Mining Social Network Metrics

From the data mining experiments on only social network metrics it was again

discovered that failure was more difficult to predict than success. This finding is also

supported by previous work (Wolf, et al., 2009) where no single communication

structure measurement (e.g. density, centrality or structural holes) could distinguish

between success and failure build outcomes.

Additional predictors such as the number of work items and change sets were also

included to see if an increased of size in complexity and number of changes related to a

work item could be related to predicting build failures. Again the results are supported

by Wolf et al. (2009), where metrics also did not significantly differentiate between

success and failed builds. Results are also supported where higher classification

accuracies were obtained from mining the first 25% of communication and all (100%),

204

rather than the first 50% and 75% of communication. However, unlike this study the

precision and recall values of the prediction models generated were not as high. This is

because communication metrics were extracted across all teams, rather than across

teams that had more than 30 build results (consisting of at least 10 failed and 10

successful builds). For the work presented in this thesis communication metrics were

taken across all work items of a build if the build itself consisted of software metrics

derived from change sets. This resulted in fewer instances in the final data set. From the

insights provided by SMOTE and work by Wolf et al. (2009), a larger data set might

provide greater levels of accuracy and sensitivity. The purpose of initially mining the

social network metrics separately from the software metrics was to gain insights and

confidence from the social networks prior to merging them.

Unlike software metrics, the extracted social metrics are not derived from change sets

and therefore have no before and after states. Hence there are fewer mining experiments

performed on social metrics than there were on software metrics. Upon merging the

software metrics data sets with the social network metrics aggregated states, there were

no social network metrics that were detected as significant factors for constructing

predictive models when using feature selection methods (Subset Evaluation and

Information Gain). When comparing predictive models that were built from software

metrics and built from social network metrics it was found that software metric models

performed better in terms of prediction accuracy and sensitivity. While there are many

studies that have explored the use of software metrics and social network metrics for

predicting software quality, there are few studies that have explored using a

combination of these metric types. It seems reasonable to suggest that software metrics

have more significance in terms of predictive power but this is not to say that social

network metrics have no value. An analysis of which builds in the Jazz repository are

predicted correctly by either a software or a social network metric classification model

shows that in some cases both models predict the same outcome, but this is not always

the case. There are instances where software metrics do not correctly predict the

outcome whereas the social network metrics do. The potential for a more robust mixed-

metric prediction that leverages the advantages of both predictors is discussed later.

The models derived from traditional data mining methods are useable by the Jazz

development teams to assess quality of their software and communication in relation to

205

the result of their future builds. However, predicting a build result has no value for a

developer if they have no time left to react on the prediction, as they can simply run a

build instead of using a derived decision model. Therefore a continual review of

software and social network metrics is required to add value for decision making

regarding build outcomes and defects. Traditional mining methods generate models for

the end of a process and are often used for a "one off" analysis. Data stream mining

involves extensive feedback and does not require all data to be stored for learning

instances and therefore scales well when working with large data repositories.

5.3.4 Data Stream Mining Software and Social Metrics

This research has presented a potential solution for encoding software and social metrics

as data streams. In this case the data streams were provided when a software build was

executed. The real-time streams can be run against the model which has been generated

from software build histories. From the real-time based predictions developers may

delay a build to proactively make changes on a failed build prediction. One of the

advantages of building predictive models using data stream mining methods is that they

do not have large permanent storage requirements. One of the reasons why Jazz only

keeps a limited number of build change sets is because of the huge storage

requirements. This research has shown that data stream mining techniques hold

potential as the Jazz environment, as the platform can continue to store the latest n

builds without losing relevant information for a prediction model that has been built

over an extended series of (older) software builds. As a tool, the predictive models can

be encoded into the IDE and updated when builds are performed. This tool would

provide contributors with real-time feedback during the development of their code in

relation to the metrics extracted and predicted build outcome. It would also provide real-

time insights into the way the team is communicating effectively for generating a

successful build. While data stream mining has application in managing network, web

searches traffic, systems, networks, ATM transactions and safety, few studies have

investigated data stream mining using software and social network metrics. To the

researchers' knowledge this is the first attempt ever made to use data stream mining

techniques for predicting software build outcomes using software metrics and

communication metrics and as a result this is the main contribution of this work.

206

From the data stream mining experiments it was observed that after approximately 90

instances classification accuracy began to stabilise and steadily improve. From a range

of 42 metrics, in this case, only 2-5 will appear to be significant. This means that the

classification trees will be easy to interpret and should not contain much confusion

within its branches. This also holds true for social network metrics, where 2-3

communication measurements may be selected from a range of 16 metrics.

From the decision tree, built from software metrics, presented in section 5.3.4, the

average number of attributes and the maintainability index were found to be significant

for classifying builds. These are both examples of basic (sizing) and complexity type

metrics and coincides with findings of previous studies (Khoshgoftaar & Munson,

1990). However, this again conflicts with other studies that size and complexity metrics

are not sufficient for accurately predicting real-time software defects (Challagulla,

Bastani, Yen & Paul, 2005). This result shows that again researchers who are utilising

software metrics must be careful about what the metrics represent within the context of

their project and to be careful with drawing generalisations. From this it would be fair to

draw the same conclusion of Nagappan et al. (2006) where they found that there is no

single set of complexity metrics that can acts as a "best" predictor of software defects. It

is also clear that it is not possible to assume that just because a metric (or set of metrics)

appears to have some ability to predict outcomes that this will always be the case and

should be followed blindly. It is unlikely that a predictive model based on software or

social network metrics will be useful when applied automatically. The value of such a

system is to provide indications of where potential risks may arise to direct human

intervention to inspect areas of concern and make expert decisions as to how to control

and manage the risk. The potential for such a system has been realised by this research

and how such a system could be deployed in the Jazz environment is discussed in the

next section.

207

5.4 Real World Application

The models built may be used by Jazz teams to assess the quality of their current

software metrics and communication metrics in relation to the result of an upcoming

build. The process of applying the model starts at the end of the preceding build. On the

completion of the preceding build once the outcome is known the Hoeffding tree

method is used to rebuild the two prediction models based on software and social

network metrics.

At the beginning of the build the developers will determine their best guess as to which

code will need to be changed to implement new features and correct the bugs scheduled

to be fixed in the build. This will allow an initial change set to be defined and software

metrics to be extracted to classify the likely outcome of the build by applying the

software metrics to the current classifier tree. If the predicted outcome is given as a

failed build, this allows the software development team the opportunity to reconsider

the scope of the build and potentially remove features that are intended for

implementation in the build. The team can interactively remove features and the

corresponding code from the change set and reapply the software metrics to the

classification tree until the perceived risk in the build is at an acceptable level. Such

modifications should not be done blindly on the basis of the classification outcome but

should also include some aspects of expert judgement.

As the build cycle progresses a number of changes will occur. Firstly, it should be

expected that developers will realise that the implementation of a particular set of

features includes changes to source code files that were not expected at the outset of the

build. This means that the actual change set will alter over the period of the build.

Secondly, actual code changes will be made over that time as the features are

implemented. Both of these will result in different software metric values being

calculated for the change set. The final change that will occur is that developers will be

discussing the build using the online discussion forums in Jazz which will allow social

network metrics to be calculated.

During various time segments of a build (e.g. 25%, 50% and 75%) the software metrics

and social network metrics are re-calculated and are used to re-predict build outcomes

208

based on the existing classification models. Again, this provides the software

development team with the opportunity to consider the risk that is present in the current

build. If the initial prediction at the beginning of the build was positive (i.e. a successful

build was predicted) but interim predictions start to indicate that the build will fail then

this provides the development team the opportunity to proactively manage the risk that

has emerged. Again, this could involve reconsidering the scope of the build or

alternatively it could highlight where more effort needs to be applied or where greater

communication about the complexity of the build is required.

Once a build is (100%) complete the outcomes of the build can be used to update the

predictive models that can be used in the same way as a decision support tool for the

next build cycle. It has been shown in chapter 4 that over time the usefulness of the

predictive model will increase but the application of the model will always be in terms

of directing the development team to the presence of risk rather than blindly controlling

the development process.

While a team is working towards a build the model provides feedback about the current

significant software metrics and communication structures from work items that are

related to the build. This knowledge enables the identification of potential build

outcomes and supports intervention in cases where build failure predictions are

observed. With the adaptation of data stream mining patterns are classified from

emergent states without the addition of huge storage requirements.

To demonstrate how the above process may be used in practice a real example of a

small series of Jazz builds is presented. Table 32 shows how a combination of models

based on software metrics and social network metrics can be used to predict a build

outcome. Due to storage constraints the top section of the table presents 4 builds, their

emergence of significant software metrics and predicted outcomes for the before and

after state. The lower section of the table presents the same 4 builds, the emergence of

significant social network metrics and predicted outcomes for 25%, 50%, 75% and

100% of the communication intervals during the build. The “Pred.” field is the predicted

outcome generated from using the Hoeffding tree classifier for each modelled instance.

209

In this example for the first build (I20070628-0026) the classifier has not been trained

on enough instances for the predicted outcome to be reliable, it simply provides a

starting point for the learning process. The next visible build (C20080619-1123) has

been trained on 159 instances, where prediction based on the before and after state

metrics correctly determine the outcome of a successful build. This also remains true in

this case for all social network metric time segments. It is observed that the before and

after state software metrics, while having slightly different values share similar models

for predicting a builds outcomes.

The following build (C20080619-1236), while being predicted as primarily an "OK"

build, when the social network metrics were extracted at the 75% interval an indication

of a failure is observed. If this pattern persists there may be a risk of build failure in the

future. The last build presented (C20080619-1345) details a great risk of failure as both

before and after state metrics generate an "ERROR" status. In addition to this 75% and

100% of social network metric intervals also predict potential failure.

210

Table 32 Example of Real World Application

211

5.5 Guidelines for Data Stream Mining

Depending on the software environment or repository used the following presents the

guidelines for adopting data stream mining techniques for software and communication

metrics:

1. Ensure that the development infrastructure can collect relevant data

a. This study has shown that a certain volume of data is required to build a

meaningful model. Even if there is no immediate intention to build a

predictive model, it is important to ensure that sufficient data will be

available at some time in the future to inform decisions regarding what

are unit of analysis and what outcomes are measureable.

2. Evaluate what outcomes can be classified

a. For this study each instance was classified by software build outcome.

Other potential outcomes could be unit test results, whether or not a

module is delivered on time (for effort and cost prediction), or current

module states.

3. Determine the level of granularity for analysis

a. For this study, the unit of analysis was a software build. This was

determined by considering different units of greater or less granularity. It

is expected that a single bug fix is likely to be too granular, whereas a

product level of analysis would be too coarse. The goal is to find a

suitable mid-point for analysis that has useful outcomes but for which

there is sufficient data points to build a model.

4. Create the target data instance or instances

a. Find significant and useful features within the data depending on the goal

of the mining task.

b. Extract software and communication metrics that have a relationship to

the outcome to be classified.

c. Ensure that the metrics are extracted at a suitable level of granularity for

classification purposes.

d. Encode each instance as a data stream.

212

5. Automate the data cleaning process

a. Depending on the intervals between data streams (how often target data

instances are extracted), automation of the cleaning process may be vital

to ensure the models integrity.

6. Perform data stream mining

a. Searches for patterns of interest.

b. Identifies significant metrics.

c. Identifies conceptual evolutions within the stream.

d. Generates a representation from the classification process (e.g. a decision

tree if using the Hoeffding tree method).

7. Interpret and utilise the mined patterns to aid proactive decision making during

the software development life cycle.

5.6 Chapter Summary

This chapter has presented the implications of the experimental results in the context of

the objectives of this thesis and briefly presents a summary of this research. The

outcomes of this work require further investigation in order to draw any sorts of

generalisations for other software development projects. In terms of the research

question originally presented in chapter 1, the results for each and evidence supporting

these results are presented in Table 33. The final chapter presents potential future

research and draws conclusions based on the evidence and contributions made by this

thesis.

213

Table 33 Evidence to Support Experimental Research Goals

To what extent can a combination of software and social network

metrics extracted from IBMs Jazz repository be used to generate

predictive models to determine software build success and failure

more effectively than either of the individual models?

Metrics Types
Evidence

(sections)

Software Metrics
4.1 - 4.8,

4.10.1and 4.10.3

Social Network Metrics 4.9 and 4.10.2

Combinations of Software and

Social Network Metrics 4.9 and 4.10.3

Experimental work has been done to address the primary research question. It has been

found that the software metrics, derived from IBM's Jazz project repository, can be used

to generate predictive models to determine software build success and failure. It has also

been found that a range of social network metrics, derived from IBM's Jazz Project

repository, can be used to generate predictive models for determining software build

outcome. When the software metrics and social network metrics are combined, the

social network metrics did not provide any significant predictors of build outcomes

when using the j48 decision tree, Naive Bayes and Bayesian Network mining methods.

When using the Hoeffding tree, both software and social network metrics were found to

be significant predictors of build outcome, however there was no substantial

improvement observed in terms of overall classification accuracy.

214

6 Conclusions

This thesis has presented the outcomes of a thorough and systematic investigation into

the development of affective prediction models for use in software development. This

research made use of the IBM Jazz repository to predict the outcome of a software build

through software metrics with social network metrics analysis. Although this type of

analysis for quality prediction has been extensively studied in the past few decades

using a range of data mining methods, the study of combining these metrics has

remained relatively unexplored. In addition to this, data mining and encoding software

metrics and social metrics as data streams for software build outcome prediction has

also remained unexplored. Both of these areas have been considered in this work and

the implications of combining software metrics and social network metrics for building

prediction models in the context of IBMs' Jazz project has been discussed in detail.

This thesis makes a number of key contributions:

 Data Mining Software Metrics

o This is the first study that has extracted software metrics from Jazz

builds to generate prediction models for software build outcomes. From

this stage prediction models that have been built using the software

metrics derived from IBMs' Rational Analyzer tool provided the highest

levels of classification accuracy out of the various metric aggregations

investigated.

 Combining Software and Social Network Metrics

o This work also presents the investigation of merging software metrics

and communication metric types. From this it was observed that while

software metrics and social network metrics can be used to construct

models for predicting build outcomes separately, it was found that it was

best not to merge the two metric types.

 Software Metrics as Data Streams

o This is the first study to apply data stream mining methods (Hoeffding

tree) to software metrics to predict software build outcomes.

215

 Social Network Metrics as Data Streams

o This is the first study to apply data stream mining methods (Hoeffding

tree) to social network metrics to predict software build outcomes.

 Application of SMOTE

o Contributes to the body of knowledge of the application of SMOTE to

software metrics, social network metrics and a combination of the two

used in conjunction with traditional data mining and data stream mining

methods.

 Proactive Management of Development Activities

o The main outcome of this thesis is the combination of the above

contributions into a systematic method for proactive management of

development activities on the basis of perceived risk determined by

software and social network metric analysis.

The outcomes of the initial experiments are a systematic attempt to predict build success

and failure for a software project by utilizing source code metrics. The goal of these

experiments is not to build a single predictive model, but to explore which combinations

of data mining algorithms and data set offer potential for further study and application

in software development environments. Prediction accuracies of 70-80% have been

achieved through the use of the j48 classification algorithm using 10-fold cross

validation. Despite this overall accuracy, there is greater difficulty in predicting failure

than success and at present the classification trees' content display some uncertainty and

confusion. However, the results show promise in terms of informing software

development activities in order to minimize the chance of failure. While overall

prediction accuracies slightly improved the prediction of failed builds remained

problematic. This remained true during the frequency feature selection and application

of the after state features to the before state experimental phases.

SMOTE was then introduced to increase the number of instances of the minority class

(failed builds). In doing so while the classification of failed builds improved, when

using software metrics, there is no single set of metrics that could be used to determine

failure.

216

From exploring the communication metrics, again a similar theme emerged where

prediction of failure remained a challenge. However, when applying SMOTE to the

communication data little improvements were found in classifying failure. It was also

found that, while using traditional data mining methods, there were no combinations of

social and software metrics that could be used to determine build failure. However, data

stream mining found combinations of both software and social network metrics to be

significant for predicting build outcomes.

6.1 Limitations and Threats to Validity

There are limitations for incorporating the Jazz repository into research. To reiterate, the

repository is highly complex and has huge storage requirements for tracking software

artifacts. Another issue is that the repository contains holes and misleading elements

which cannot be removed or identified easily. This is because the Jazz environment has

been used within the development of itself. Therefore many features provided by Jazz

were not implemented at early stages of the project. There is a great challenge in dealing

with such inconsistency and the methodology has adopted an approach that delves

further down the artifact chain than most previous work using Jazz. It is a premise that

the early software releases were functional, so whilst the project “meta-data” may be

missing details (such as developer comments) the source code should represent a stable

system that can be analyzed to gain insight regarding the development project. Some of

the holes in the repository are as a result of the Jazz team purposefully removing core

libraries from the data released for analysis. Again, what is not clear is whether failure

in one software module is actually caused by a code change in a dependent module.

Looking at the root cause of a failure and where the failure is actually realised is an

interesting area of future work.

The results presented within this thesis are only applicable to the Jazz project and may

not be generalisable to any other software project. The prediction models built and

results generated can only be directly compared to other studies that have made use of

IBMs' Jazz Repository. Even when comparing to other Jazz studies there are concerns

over validity that arise from the possibility of different extraction techniques being

applied. However, the approach for creating a predictive model by mining data streams

that relate to software and social network data should be able to be applied to other

repositories and as such is a generalisable process. Similarly, the process of using the

predictive model to identify build outcome risk and proactively manage the build scope

217

and activities is equally applicable to other projects. The actual prediction models and

significant models are likely to be very different for other projects, but the techniques

for developing them are entirely generic.

Other limitations from this study are products of the relatively small sample size of

build data from the Jazz project combined with the sparseness of the data itself. For

example, the ratio of metrics (42) to builds (199) is such that it is difficult to truly

identify significant metrics. Whilst various strategies for reducing the number of metrics

used in the classification have been investigated, this does not address the fundamental

problem that the data set is rather small. Even though a sampling technique (SMOTE) is

applied to increase the number of instances, there is no way of telling whether or not the

generated instances accurately reflect real-world data. Cross-fold validation was also

utilised to provide estimates for how well the generated models would perform in real-

world scenarios.

For generating communication metrics similar assumptions about the construction of

the network are made to the study presented by Wolf et al. (2009). Communication

metrics were extracted from only work items that were included in software builds.

While work items contain much discussion between contributors other channels that

may have been used for communication were not included. For example other

communication channels used by contributors include emails, face-to-face meetings,

web-based forums and teleconferences. These channels were not captured as they were

either not easily available or would be too invasive to capture. However, the risk to

validity in this particular research is low. Whilst such communication events inevitably

occur, one of the keystone decisions for the Jazz team in terms of managing their global

virtual team is to specifically focus intra-team discussion through the Jazz collaboration

environment itself. In the construction of the network itself, it is also assumed that every

contributor commenting on or subscribing to a work item reads all comments made on

that work item. However, upon manually reading the discussion of work items it is clear

that contributors make reference to older comments within the discussion.

Despite these difficulties, the results show that there is much potential for predicting

build success or failure on the basis of an analysis of source code that will be changed

during a build, even when the degree of change is not known. Due to the relatively

218

small data set, this potential has not yet been fully realised. However, more clarity in the

prediction is gained when the degree of change during a build is analysed. This provides

the opportunity for development teams to incrementally examine their exposure to risk

during the build cycle. Unfortunately access was not available to the live development

which means that the models could not be applied to the live development process.

Therefore the approach may not be well received or even used despite its potential to be

useful to mitigate risks of build failure.

6.2 Future Work

This thesis has presented the results for data mining experiments of software and social

network metric aggregations using a range of traditional and stream mining methods.

While this research has gone some way to addressing the challenges associated with

data mining software repositories, there is still much potential for future work in

understanding evolving success and failure patterns found within the SDLC.

6.2.1 Exploring other Software Repositories

The methodologies used for this research are able to be applied to other software

repositories provided they contain change sets for software builds and social network

artifacts. Although studies of other repositories may not be directly comparable to this

research, they may provide more insights into aspects of project success and failure.

Within this study build success and failure were used to classify build instances. In

other software repositories it would be interesting to investigate the levels of granularity

used for classifying success and failure.

Unfortunately at the time of this work, IBM was not able to provide a subsequent

snapshot, due to architectural technicalities in making the data anonymous and in

removing sensitive source code. The removal of source code from the current repository

should also be considered a significant threat to the validity of this work.

6.2.2 Merging Software and Social Metrics

When mining a combination of software and social metrics there were no social

network metrics that were picked as being significant factors when using Subset

Evaluation and Information Gain feature selection filters. Through visualising output of

simple k-means clustering it is observed that there is still an overlap in feature space for

both software and social metrics. There is a potential of future work to investigate

whether social network metrics can provide additional insights into the prediction of

219

build failure when used with software metrics. This work would involve a hybrid of

data modelling processes utilising both software and social metrics to predict an

outcome. To do this more build instances are needed than what has been available

during this research.

In the context of this work and providing there were more real instances of data

available, a voting system could be utilised. This could be achieved through using either

traditional mining methods or data stream mining methods. To begin, this process

requires two data sets where "data set X" is the data set of software metrics and "data set

Y" is the data set consisting of social metrics. Both data set X and Y have a build result

(actual outcome) parameter that is used for classifying instances. Each instance from

data set X and Y corresponds so that they both reference the same software build. As a

result the number of instances in data set X will be the same number of instances in data

set Y. Both data sets X and Y are split into a training set, a test set and a holdout test set.

For instance the training set will consist of 70% of the original instances and will reflect

the naturally occurring distribution of successful and failed build outcomes. The holdout

data set will be necessary for testing the impact of the final merging of software and

social metric data sets together. However, due to the limited number of instances this

was not feasible to obtain. A potential data mining process, for future work, is

illustrated in Figure 95.

Two models are built using the decision tree classifier. The first model ("model A") is

generated from using data set X. This produces the same results to previous software

metrics mining models, without using feature selection methods. The second model

("model B") is based on data set Y. Once both models are implemented, the instances

from the test set of data set X are executed against model A and the instances from the

test set of the Y data set are executed against model B. This produces two sets of

"predicted build outcomes" for each build instance, one that is based entirely from

software metrics and the other from social network metrics.

In addition to the predictions from models A and B a k-NN approach using Euclidean

distance is also utilised. In this case the classifier works at instance level rather than

group level where each instance will have its own unique blend of software metric bias

and communication metric bias. This k-NN approach is not available using the GUI

220

(Graphical User Interface) from Weka, however Weka's API (Application Programming

Interface) offers support for this method. A Java application is implemented which

utilises this for processing instances. Using the data sets X and Y models A' and B' are

built from the k-NN approach, where X is the set of features used by model A' and Y is

the set of features used by model B'. Training instances (form data sets X and Y) are

used to search for neighbouring instances for each (X and Y) test set instances. A class

label is then assigned based from the model that has the higher probability. For example

if p1 > p2 for an instance, then the class label from model A is assigned. Classification

of an instance can also be achieved by a probability threshold. For example if a

prediction probability is greater than a threshold set by the user, then the class label is

assigned based on the predicted outcome from that model.

From the j48 classification predictions, if the two predicted build outcomes for a single

build instance are different it indicates that there is a conflict between the use of

software and social metrics. From this a new data set (data set Z) is formed based on

these conflicts and in this case an instance is composed of a combination of software

and social network metrics. From these conflicted instances a new model (model C) is

generated. Model C is then implemented and tested against the holdout test set. The k-

NN approach is also applied to the holdout test set. For this the nearest neighbours are

searched using the training data set and the conflicted data set. Both sets are composed

of software and social network metrics.

This model has been implemented and some initial experimentation conducted.

However, the results could not be presented within this work as the need for test sets,

trainings sets and a hold out sets resulted in very little data to train from. Training sets

were very small compared to the 100 instances required from the data stream results for

stabilised classification accuracies. Nevertheless, from using this method, it was found

that 94% of instances were correctly classified when the software metric and social

network models did not conflict (145/153 non conflicted instances correctly classified,

using the j48 classifier, with no filtered features). There were 46 instances that had

conflicting predictions, of which 35 instances were failed builds.

221

Figure 95 Future Work: Predicting Build Outcome from Software and Social

Metrics Using Data Mining and Voting Logic

Predicted build outcome instances that are the same from using both models A and B

indicates a higher probability of correctly classifying an instance. However, for

conflicted instances the results from Model C are used. This provides an additional vote

for conflicted instances, where two out of the three predictions determines the class

label. For the k-NN predictions this vote approach is also applied and the results from

the k-NN and j48 models are compared for accuracy. Metrics can also be changed from

the voting stage to see if other metrics are better indicators for build outcomes.

It is difficult to extract real knowledge from the experiments on the existing data using

this approach due to the lack of data. However, some statistical analysis of the

differences between builds that result in conflict when compared to builds where the

predicted outcome was the same from the social and software metric models are quite

insightful and indicate that there is potential to understand how failure is represented

through metric values.

222

Table 34 shows a very simple statistical analysis of the average values of certain key

metrics. This is broken down into values for the complete data set and then the

outcomes of the first stage of the voting logic described above. This makes it possible to

compare the instances where conflict occurs to both the non-conflict set and the full set

of instances.

Table 34 Average Metric Values for Full, Conflicted and Non-Conflicted Data Sets

Software Metric Full

(Average)

Conflict Set

(Average)

Non-Conflict Set

(Average)

Average block depth 1.724

1.656 1.818

Weighted methods per

class

4574.953

3292 2524.4

Maintainability index 260.155

266.922 262.252

Instability 0.467

0.418 0.526

Number of unique

operators

36.813

38.2 38.4

Program vocabulary

size

797.973

780.6 876.8

Depth of Inheritance 0.541

0.768 0.528

Number of attributes 508.693

386.8 168.2

Average number of

constructors per class

1.047

4.76

3.46

Average number of

methods

23.792 16.95 26.64

It can be seen from this data that there is a statistical difference between the metrics

associated with conflict between software and social metric predictions and those where

there is no conflict in the prediction. This is a very simple analysis and should not be

223

over-emphasised, however it does indicate that there is a potential to further refine the

understanding of how failure can be indicated through a more targeted model.

This conflict model may also be applied using the Hoeffding tree mining of data-

streams and applied by the real development team. Assuming that sufficient builds exist

to overcome the over-fitting that has been observed in the results chapter, the conflict

approach can be used to develop four models based on four data-streams. Upon

completion of a build the final set of software and social network metrics are applied to

the classifiers and the final predicted outcome determined. If the software and social

network classifiers produce the same predicted outcome then the “normal” data-streams

are updated irrespective of actual build outcome. However, if the social and software

metric based prediction differs then the build data is added to the conflict data-streams

instead. During use, the normal data-streams are used to classify the outcome of a build

and only when the two outcomes differ the conflict models applied. This results in a two

stage risk assessment process during a build. Again, the only concern is the need for at

least 90 conflict builds to have some confidence in the predictive power of the conflict

model.

There is also possible future work that could investigate the nature of the cause of

failure, in particular the concept that changes in the source code in one module can

actually cause a failure in another module. Understanding the way that source code

propagates failure through a software structure would provide great insight in the actual

cause of failure. However, this work would not use data mining and is therefore out of

scope of this thesis.

224

6.3 Chapter Summary

There are no absolute truths in software engineering, the goal of this research was to

improve on existing software development practices and potentially produce technology

that adds value to the evolutionary IT world. This thesis presents the outcomes of a

systematic attempt to predict build success or failure for a software product by utilizing

source code and social network metrics. Prediction accuracies of 70-80% have been

achieved through the use of decision trees, Naive Bayes, Bayesian Networks and k-NN

methods. Despite this overall accuracy, there is greater difficulty in predicting failure

than success and at present the classification trees contained some uncertainty and

confusion. However, the results show potential in terms of informing software

development activities in order to minimize the chance of failure. The difficulty in

classifying failed builds can be due to a number of reasons: 1) There is too much

overlap within the feature space for successful and failed builds, 2) The metrics

explored simply do not capture failure entirely, 3) A combination of the metrics

explored do not capture failure entirely, 4) more instances of failure are required and 5)

there is a need for more data of both classes.

The early phases of this work involved the building of static classification models based

on the entire set of historical data in the Jazz repository. This has been extended to show

that it is possible to build models over time using approaches that consider the

emergence of software and social network metrics as data-streams. These models offer

much value in terms of guiding software development teams towards understanding the

risk in their development activities, however it is clear that there is a minimum volume

of data required to have some confidence in the models. In the case of the Jazz project it

appears that confidence in the model develops after around 90 builds have been

included.

225

The real-time streams can be run against the model which has been generated from

software build and work item histories. From the real-time based predictions developers

may delay a build to proactively make changes on a failed build prediction. It would

also provide real-time insights into the way the team is communicating effectively for

generating a successful build. One of the advantages of building predictive models

using data stream mining methods is that they do not have large permanent storage

constraints. The main reason why Jazz only stores a limited number of build change sets

is because of the huge storage requirements.

This chapter has briefly presented a summary of this research study as well as the

implications of the experimental results in the context of the objectives of this thesis.

The frameworks and results of this work have much potential for future investigations.

This final chapter outlines potential future work and presents conclusions based on the

contributions made by this thesis.

226

Appendices

Appendix A: Software Metrics

There are many different types of software metrics that can be extracted from source

code. The software metric categories commonly found within the literature include

ranges of basic software metrics (Table 35 and Table 36), dependency metrics (Table

37), complexity metrics (Table 38) cohesion metrics (Table 39), Halstead metrics

(Table 40) and the inheritance metric (Table 41). Basic software metrics provide simple

counts of various source code elements providing indications towards a software

systems' size. Basic software metrics are also used towards calculating other metric

categories. Basic average metrics (Table 36) provide similar information at a package,

class or method level and make use of basic software metrics. Both categories of basic

metrics are useful in generating a general understanding of the size and design of the

software system artifacts. The following tables reflect metrics that are extracted from

Java source code and are explored within this research.

Table 35 Basic Software Metrics

Metric Name Formula Description

Number of

Types per

Package

Total number of

classes/objects within the

project

Derived from overall project or for each

project package.

Number of

Comments

(NoC)

Total number of comments

Derived from overall project or for each

project package or class. Including Java

doc and "in code" comments e.g. // and

/** notations

Lines of Code

(LoC)
Total lines of executable code

Derived from overall project or for each

project package or class. In code

comments and empty lines are omitted in

this count

Comment/Code

Ratio

Derived from overall project or for each

project package, class or method.

227

Number of

Import

Statements

The total number of imports

within all classes

Derived from overall project or for each

project package or class.

Number of

Interfaces

Total number of interface

classes/objects

Derived from overall project or for each

project package or class.

Number of

Methods (NoM)
Total number of methods

Derived from overall project or for each

project package or class. Constructors are

omitted from this count. This count

includes "getter" and "setter" property

functions.

Number of

Parameters

(NoP)

Total number of parameters

Derived from overall project or for each

project package or class. This metric

includes constructor parameters.

Number of Lines

(NoL)
Total number of lines

Derived from overall project or for each

project package or class. These includes

lines that have no code and comments.

The number of lines count stops after the

final } is found within a class.

Table 36 Basic Average Metrics

Average

Number of

Attributes Per

Class

Derived from overall project or for each

project package

Average

Number of

Constructors Per

Class

Derived from overall project or for each

project package

Average

Number of

Comments

Derived from overall project or for each

project package or at class (type) level. At

class level metric is the total number of

comments.

Average Lines

of Code Per

Method

Derived from overall project or for each

project package or at class (type) level.

228

Average

Number of

Methods

Derived from overall project or for each

project package.

Average

Number of

Parameters

Derived from overall project or for each

project package.

The dependency metrics that are presented in Table 37, provide insights into

relationships between software modules by assessing the systems' abstractness and

stability. If a software system has good abstraction, a change in one module will not

require multiple changes in other modules which make use of it. As a result one module

does not depend on other modules in order to function (the lower the coupling, the

better) (Martin, 1994) (Harman, 2007). Dependency metrics are used towards

understanding the quality of a systems' design, reusability and maintainability by

making use of class, interface and references metrics.

229

Table 37 Dependency Metrics

Abstractness (A)

Derived from overall project or for each

project package

Afferent

Coupling (Ca)

Where NoICR is the Number

of Internal Class References

and NoECR is the Number of

External Class References.

Derived from overall project or for each

project package or at class (type) level.

An internal class reference is where a class

references another class within its own

package.

An external class reference is where a class

references another class outside of its own

package.

Efferent

Coupling (Ce)

Total number of times a class

makes references outside its

own package

Derived from overall project or for each

project package or at class (type) level.

Instability (I)

Where Ce is Efferent coupling

and Ca is Afferent Coupling.

Derived from overall project or for each

project package or at class (type) level.

Normalized

Distance

Derived from overall project or for each

project package or at class (type) level.

This metric provides us data about if

packages are balanced and has a good mix

between abstraction and instability.

Complexity metrics (Table 38) indicate the complexity of the software and can be used

towards design effort and software maintenance estimation. Developed by McCabe in

1976, cyclomatic complexity measures the number of possible independent pathways

through source code. In order to do this a control flow graph of the program is

generated, where nodes within the graph represent a source code command, or sequence

of commands and an edge that connects nodes represents the possible order of

execution. For example if the source code consists of an "IF" statement of a single

condition there are two possible pathways the code could be executed. One pathway is

taken if the resulting value of the "IF" statement is TRUE and the other pathway if the

230

value is FALSE. Whereas if the code consists of no loops or "IF" statements, there is

only one possible pathway the code could be executed, therefore there would only be

one pathway for execution.

Table 38 Complexity Metrics

Average Block

Depth

Where NoM is the number of

methods, NoConstr is the

number of constructors and

NoNC is the number of nested

code

Derived from overall project or for each

project package, class or method. Try/catch

are included in the nested count. Value is 1

if the code is not nested. High average

block depth values are considered

detrimental.

Average

Cyclomatic

Complexity

Where CC is the Cyclomatic

Complexity.

Cyclomatic complexity is

calculated by the number of

pathways that can be taken

within the code.

Where NoE is the number of

edges and NoN is the number

of nodes.

NoConstr is the number of

constructors

Derived from overall project or for each

project package, class or method.

Cyclomatic complexity per method is the

total number of pathways that the code

within that method can take.

Cohesion metrics provide insights into the responsibilities and design of software

modules. High cohesion values indicate the reusability and readability of source code.

231

A cohesive software component is analysed by looking at how often methods share

access to fields (Chae, Kwon & Bae, 2000). A cohesive software system will have good

class subdivision and a cohesive class will have a high degree of encapsulation. Lack of

cohesion metrics (LCOM) with high measured values indicate a lower level of

cohesion.

There are three different types of LCOM each with their advantages and disadvantages.

For instance LCOM1 can be used to identify classes that are consisting of many

different objectives and are likely to have less predictable behaviours. However, one of

the disadvantages of using LCOM1 is that it can provide a value of zero for classes that

are very different and it is not well suited for classes that make use of their own

properties (i.e. getter and setters methods have high LCOM1 values). It is easy to

misinterpret the meaning of LCOM1 and it may not necessarily be the best method for

measuring the cohesiveness of classes that fall within the object-orientated software

paradigm.

In order to overcome the limitations of LCOM1, LCOM2 and LCOM3 were created.

Both LCOM2 and LCOM3 are similar metrics and a low value again indicates high

cohesion. However, the limitations of using any LCOM metrics is that they consider

variables that may not be in use. Therefore it is important to remove any "dead"

variables from the source code in order to eliminate wrong interpretations of results.

Table 39 Cohesion Metrics

Lack of

Cohesion 1

(LCOM1)

The total number of pairs of

methods that do not share

instance variables

Derived from overall project or for each

project package or at class (type) level.

A higher LCOM indicates lower cohesion.

LCOM1 indicates if a class needs to be

split into more classes as variables exist

within disjointed sets.

High values in LCOM1 are found to be

fault prone. A cohesive class will have a

value of 0.

232

Lack of

Cohesion 2

(LCOM2)

For each pair of methods in a

class if they access different

sets of instance variables P is

increased by 1. For every

variable they share Q is

increased by 1.

Derived from overall project or for each

project package or at class (type) level.

If the number of methods or variables is 0,

then LCOM2 is 0. LCOM2. If the metric

value is greater than or equal to 1 then the

class if considered to be problematic in

terms of cohesion.

Lack of Cohesion 3

(LCOM3)

For LCOM3 consider an

undirected graph where the

vertices are methods of a class

and an edge is the

corresponding methods that

share at least one instance

variable.

Where NoP is the number of

procedures, mA is the total

number of methods that

access a variable (attribute)

and a is the number of

attributes

Derived from overall project or for each

project package or at class (type) level.

LCOM3 has a range of 0-1 and has no

single threshold value.

Halstead metrics (Table 40) provide software project estimate values by measuring the

complexity of software through operands and operators from code. Empirical studies

have shown that Halstead metrics can be used to estimate the level of difficulty required

to understand, implement, maintain and debug software modules.

233

Table 40 Halstead Metrics

Number of

Operands

Total Number of Operands

These include:

Identifiers:

 All identifiers that are not

reserved words

Programming Types:

 Reserved words that specify

type. Eg: bool, char, float,

double, int, long, short and void

etc.

Programming Constants:

Character, numeric or string

constants

 Derived from overall project or for each

project package, class or method.

Number of

Operators

Total Number of Operators

Eg: "+", "/", "-", "*" etc

Derived from overall project or for each

project package, class or method.

Note that comments are not counted

when calculating operands or operators

Number of

Unique

Operands

Number of operands that are

unique

Derived from overall project or for each

project package, class or method.

Number of

Unique

Operators

Number of operands that are

unique

Derived from overall project or for each

project package, class or method.

Program

Volume

234

Difficulty Level

Where D is the Difficulty level,

n1 is the number of unique

operators, n2 is the number of

unique operands and N2 is the

total number of operands

Derived from overall project or for each

project package, class or method.

Effort to

Implement (E)

D * V

Where D is the Difficulty Level

and V is the Program Volume

Derived from overall project or for each

project package, class or method.

Number of

Delivered Bugs

(NoDB)

Where NoDB is the number of

delivered bugs and E is the

Effort to Implement metric

Derived from overall project or for each

project package, class or method.

Time to

Implement (T)

T = E / 18

Where E is the Effort to

Implement

Derived from overall project or for each

project package, class or method.

The time to implement or understand a

program (T) is proportional to the effort.

Halstead has found that dividing the

effort by 18 give an approximation for

the time in seconds

Program Length

Derived from overall project or for each

project package, class or method.

http://www.verifysoft.com/en_halstead_metrics.html#36

235

Program Level

L = 1 / D

Where D is the Difficulty Level

metric

Derived from overall project or for each

project package, class or method.

The program level (L) is the inverse of

the error proneness of the program. I.e. a

low level program is more prone to errors

than a high level program.

Program

Vocabulary Size

Number of unique operands +

number of unique operators

Derived from overall project or for each

project package, class or method.

The depth of inheritance metric is presented in Table 41. A high level of nested

inheritance can indicate highly complex and coupled software components. For

example if one class inherits from another its depth is 2. If a class does not inherit from

other classes its depth is one.

Table 41 Inheritance Metric

Depth of

Inheritance

(DoI)

Where LoLP is the length of

the longest path from a given

module and AHR is the

aspect hierarchy root.

Derived from overall project or for each

project package or at class (object) level.

http://www.verifysoft.com/en_halstead_metrics.html#34

236

 Appendix B: Social Network Metrics

 Density

o Measurement of the connectivity between team members

o How knowledge is distributed

o Is calculated as a percentage of the existing connections to all possible

connections within the social network. A fully connected network has

the density of 1.

 Centrality and Team members positions (a.k.a. the ego network)

o Measures the importance of actors within the social network

o Out-degree (number outgoing connections), In-degree (number of

incoming connections) and In-Out-Degree (the sum of In-Degree and

Out-degree)

o A probability index for each node is generated that assumes that

communication takes the shortest path from one node to another

o Measures the extent of which a person is in between two other people.

That is, the “actors in the middle” and “interpersonal influence”

 Structural holes

o Measures any missing links between nodes and the redundancies within

the social network.

o The effective size of a node is the number of direct neighbours minus the

average degree of those nodes' ego network (not including the number of

connections).

237

Appendix C: Before State Software Metrics Results

[Contents on CD]

Appendix D: After State Software Metrics Results

[Contents on CD]

Appendix E: Frequency Feature Selection Thresholds

[Contents on CD]

Features Selected for the Before State:

The first iteration features (where features appeared at least once were included) are:

Average block depth, Weighted methods per class, Maintainability index, Cyclomatic

complexity, Abstractness, Afferent coupling, Efferent coupling, Instability, Normalized

Distance, Number of operands, Number of operators, Number of unique operands,

Number of unique operators, Number of delivered bugs, Difficulty level, Effort to

implement, Time to implement, Program length, Program level, Program vocabulary

size, Program volume, Lack of cohesion 2, Lack of cohesion 3, Depth of Inheritance,

Number of attributes, Average number of attributes per class, Average number of

constructors per class, Average number of comments, Average lines of code per

method, Average number of methods, Average number of parameters, Number of types

per package, Comment/Code Ratio, Number of constructors, Number of import

statements, Lines of code, Number of comments, Number of methods, Number of

parameters, Number of lines

For the second iteration where features that appeared twice or more were included are:

Average block depth, Weighted methods per class, Maintainability index, Afferent

coupling, Efferent coupling, Instability, Normalized Distance, Number of operands,

Number of unique operands, Number of unique operators, Number of delivered bugs,

Difficulty level, Time to implement, Program length, Program level, Program

vocabulary size, Lack of cohesion 2, Lack of cohesion 3, Depth of Inheritance, Number

of attributes, Average number of attributes per class, Average number of constructors

per class, Average number of comments, Average lines of code per method, Average

number of methods, Average number of parameters, Number of types per package,

238

Comment/Code Ratio, Number of constructors, Number of import statements, Number

of comments, Number of methods, Number of parameters, Number of lines

For the third iteration features that appeared 3 times or more were included. These

features are: Average block depth, Maintainability index, Afferent coupling,

Normalized Distance, Number of operands, Number of unique operators, Number of

delivered bugs, Difficulty level, Program length, Program level, Program vocabulary

size, Lack of cohesion 2, Depth of Inheritance, Number of attributes, Average number

of constructors per class, Average number of comments, Average lines of code per

method, Average number of methods, Number of types per package, Comment/Code

Ratio, Number of constructors, Number of comments, Number of lines.

For the fourth iteration features that appeared 4 or more times were included. These

features are: Maintainability index, Afferent coupling, Number of operands, Number

of unique operators, Number of delivered bugs, Difficulty level, Program vocabulary

size, Lack of cohesion 2, Number of attributes, Average number of constructors per

class, Average number of methods, Number of types per package, Comment/Code

Ratio, Number of constructors, Number of comments, Number of lines.

The fifth iteration features that appeared 5 or more times were included. These features

are: Maintainability index, Number of unique operators, Difficulty level, Number of

attributes, Average number of constructors per class, Average number of methods,

Number of types per package

For the final iteration features that appeared 6 or more times were included. These

features are: Maintainability index, Number of unique operators, Number of attributes,

Average number of constructors per class, Average number of methods, Number of

types per package

239

Features Selected for the After State:

For each feature frequency iteration the features selected are as follows:

The first iteration features who appeared at least once were included. These features are:

Average block depth, Weighted methods per class, Maintainability index, Cyclomatic

complexity, Abstractness, Afferent coupling, Efferent coupling, Instability, Normalized

Distance, Number of operands, Number of operators, Number of unique operands,

Number of unique operators, Number of delivered bugs, Difficulty level, Time to

implement, Program length, Program level, Program vocabulary size, Program volume,

Lack of cohesion 2, Lack of cohesion 3, Depth of Inheritance, Number of attributes,

Average number of attributes per class, Average number of constructors per class,

Average number of comments, Average lines of code per method, Average number of

methods, Average number of parameters, Number of types per package, Comment/Code

Ratio, Number of constructors, Number of import statements, Number of comments,

Number of lines

For the second iteration features that appeared twice or more were included. These

features are: Average block depth, Weighted methods per class, Maintainability index, ,

Abstractness, Afferent coupling, Efferent coupling, Instability, Normalized Distance,

Number of operands, Number of unique operands, Number of unique operators,

Number of delivered bugs, Difficulty level, Time to implement, Program level, Program

vocabulary size, Lack of cohesion 2, Depth of Inheritance, Number of attributes,

Average number of attributes per class, Average number of constructors per class,

Average lines of code per method, Average number of methods, Average number of

parameters, Number of types per package, Comment/Code Ratio, Number of

constructors, Number of import statements, Number of comments, Number of lines.

For the third iteration features that appeared 3 times or more were included. These

features are: Average block depth, Weighted methods per class, Maintainability index,

Abstractness, Afferent coupling, Instability, Number of unique operators, Difficulty

level, Lack of cohesion 2, Depth of Inheritance, Number of attributes, Average number

of attributes per class, Average number of constructors per class, Average number of

methods, Number of types per package, Comment/Code Ratio, Number of import

statements, Number of comments, Number of lines.

240

For the fourth iteration features that appeared 4 or more times were included. These

features are: Weighted methods per class, Maintainability index, Abstractness, Depth of

Inheritance, Number of attributes, Average number of constructors per class, Average

number of methods, Comment/Code Ratio, Number of comments, Number of lines

The fifth iteration features that appeared 5 or more times were included. These features

are: Abstractness, Depth of Inheritance, Number of attributes, Average number of

constructors per class, Average number of methods, Number of comments

For the final iteration features that appeared 6 or more times were included. These

features are: Abstractness, Number of Attributes, Average Number of Constructors

241

 References

Agrawal, M. and Chari, K. (2007). Software Effort, Quality and Cycle Time: A Study

of CMM Level 5 Projects. IEEE Transactions on Software Engineering, 33(3),

145 - 156.

Ahsan, S., Afzal, M., Zaman, S., Gütel, C. & Wotawa F. (2010). Mining Effort Data

from the OSS Repository of Developer's Bug Fix Activity. Journal of IT in Asia,

3, 67-80.

Al-Fayoumi, M., Banerjee, S. and Mahanti P.K. (2009). Analysis of Social Network

Using Clever Ant Colony Metaphor. World Academy of Science, Engineering

and Technology, 53, 970 - 974.

Amor, J., Robles, G. and Gonzalez-Barahona, J. (2006). Effort Estimation by

Characterizing Developer Activity. International Conference on Software

Engineering, Proceedings of the 2006 International workshop on Economics

Driven Software Engineering Research, 3 - 6.

Babcock, B., Babu, S., Datar, M., Motwani, R. & Widom, J. (2002). Models and issues

in data stream systems. Paper presented at the Proceedings of the twenty-first

ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems, Madison, Wisconsin.

Babcock, B., Datar, M. & Motwani, R. (2002). Sampling from a moving window over

streaming data. Paper presented at the Proceedings of the thirteenth annual

ACM-SIAM symposium on Discrete algorithms, San Francisco, California.

Babu, S. & Widom, J. (2001). Continuous queries over data streams. SIGMOD Rec.,

30(3), 109-120. doi: 10.1145/603867.603884.

Baena-García, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldà, R. & Morales-

Bueno, R. (2006). Early Drift Detection Method. ECML PKDD 2006 Workshop

on Knowledge Discovery from Data Streams.

Barretoa, A., de O. Barrosb, M. & Wernera, C. M. L. (2008). Staffing a software

project: A constraint satisfaction and optimization-based approach. Computers

& Operations Research, Brazil, 35(10), 3073-3089.

Basili, V. R., Briand, L. C. and Melo, W. L. (1996). A validation of object-oriented

design metrics as quality indicators. IEEE Transactions on Software

Engineering, 10(22), 751–761.

242

Begel, A. & DeLine, R. (2009, 16-24 May 2009). Codebook: Social networking over

code. Paper presented at the Software Engineering - Companion Volume, 2009.

ICSE-Companion 2009. 31st International Conference.

Belady, L. A. & Lehman, M. M. (1976). A model of large program development. IBM

Systems Journal, 15(3), 225-252. doi: 10.1147/sj.153.0225.

Bibi, S., Tsoumakas, G., Stamelos, I. & Vlahavas, I. (2008). Regression via

Classification applied on software defect estimation. Expert Systems with

Applications, 34(3), 2091 - 2101.

Bifet, A. (2009). Adaptive learning and mining for data streams and frequent patterns.

SIGKDD Explor. Newsl., 11(1), 55-56. doi: 10.1145/1656274.1656287.

Bifet, A. & Frank, E. (2010). Sentiment Knowledge Discovery in Twitter Streaming

Data. Discovery Science. Springer Berlin/Heidelberg.

Bifet, A., Holmes, G., Pfahringer, B., Read, J., Kranen, P., Kremer, H., . . . Seidl, T.

(2011). MOA: A Real-Time Analytics Open Source Framework. Machine

Learning and Knowledge Discovery in Databases, 617-620.

Boehm, B. W. (1984). Software Engineering Economics. Software Engineering, IEEE

Transactions on, SE-10(1), 4-21. doi: 10.1109/tse.1984.5010193.

Bolstad, C. A. & Endsley, M. R. (2003). Tools for Supporting Team Collaboration.

Human Factors and Ergonomics Society Annual Meeting Proceedings, 47, 374-

378.

Braga, P., Oliveira, A., Ribeiro, G. & Meira, S. (2007). Bagging Predictors For

Estimation of Software Project Effort. Proceedings of International Joint

Conference on Neural Networks, 1595-1601.

Breiman, L., J. Friedman, R. Olshen and C. Stone. (1984). Classification and

Regression Trees. Belmont, CA: Wadsworth International Group.

Brooks, G. (2008, 4-8 Aug. 2008). Team Pace Keeping Build Times Down. Paper

presented at the Agile, 2008. AGILE '08. Conference.

Browning, T. (2001). Applying the Design Structure Matrix to System Decomposition

and Integration Problems: A Review and New Directions. IEEE Transactions on

Engineering Management, 48(3), 292-306.

Buffenbarger, J. (2005). A large-scale fault-tolerant distributed software-build process.

British Computer Society Configuration Management Specialist Group

Conference.

243

Buse, R. P. L. & Zimmermann, T. (2010). Analytics for software development. Paper

presented at the Proceedings of the FSE/SDP workshop on Future of software

engineering research, Santa Fe, New Mexico, USA.

Calefato, F., Gendarmi, D. & Lanubile, F. (2009). Adding social awareness to Jazz for

reducing socio-cultural distance between distributed teams. Eclipse-IT 2009, 4th

Italian Workshop on Eclipse Technologies, Bergamo, Italy, 19-28.

Cannon-Bowers, J. A., Salas, E. & Converse, S. . (1993). Shared mental models in

experts team decision making. Journal of applied psychology, 85(2), 221-246.

Carmel, E. & Agarwal, R. (2001). Tactical approaches for alleviating distance in global

software development. Software, IEEE, 18(2), 22-29. doi: 10.1109/52.914734

Cerpa, N. & Verner, J. M. (2009). Why did your project fail? Commun. ACM, 52(12),

130-134. doi: 10.1145/1610252.1610286

Chae, H., Kwon, Y. & Bae, D. (2000). A cohesion measure for object-oriented classes.

Software - Practice and Experience, 30, 1405–1431.

Challagulla, V. U. B., Bastani, F. B., Yen, I. L. & Paul, R. A. (2005, 2-4 Feb. 2005).

Empirical assessment of machine learning based software defect prediction

techniques. Paper presented at the Object-Oriented Real-Time Dependable

Systems. 10th IEEE International Workshop.

Chau, D., Pandit, S. & Faloutsos, C. (2006). Detecting Fraudulent Personalities in

Networks of Online Auctioneers. Knowledge Discovery in Databases 4213, 103-

114. doi: 10.1007/11871637_14

Chawla, N. (2010). Data mining for imbalanced data sets: An overview. Data Mining

and Knowledge Discovery Handbook, 875 - 886.

Chawla, N. (2010). Data Mining for Imbalanced Data sets: An Overview Data Mining

and Knowledge Discovery Handbook. In O. Maimon & L. Rokach (Eds.), (pp.

875-886): Springer US.

Chawla, N., Bowyer, K., Hall, L. & Kegelmeyer, W. (2002). SMOTE: Synthetic

Minority Over-sampling TEchnique. Journal of Articial Intelligence Research,

16, 341-378.

Chawla, N., Cieslak, D., Hall, L. & Joshi, A. (2008). Automatically countering

imbalance and its empirical relationship to cost. Data Mining and Knowledge

Discovery, 17(2), 225-252. doi: 10.1007/s10618-008-0087-0

Chen, A., Chou, E., Wong, J., Yao, A. Y., Qing, Z., Shao, Z. & Michail, A. (2001,

2001). CVSSearch: searching through source code using CVS comments. Paper

244

presented at the Software Maintenance. Proceedings. IEEE International

Conference.

Cheng, P., Chulani, S., Ding, Y. B., Delmonico, R., Dubinsky, Y., Ehrlich, K., . . . Ying,

A. (2008). Jazz as a research platform: experience from the Software

Development Governance Group at IBM Research. First International

Workshop on Infrastructure for Research in Collaborative Software Engineering

(IRCoSE) at FSE.

Chicano, F. & Alba, E. (2005). Software Project Management with GAs. Paper

presented at the 6th Meta-heuristics International Conference, Vienna, Austria,

177(11), 2380-2401

Christensen, C. & Albert, R. (2007). Using Graph Concepts to Understand the

Organization of Complex Systems. International Journal of Bifurcation and

Chaos, 17(0), 2201. doi: 10.1142/S021812740701835X

Coleman, D., Ash, D., Lowther, B. & Oman, P. (1994). Using metrics to evaluate

software system maintainability Computer, 27(8), 44 - 49 doi: 10.1109/2.303623

Conchúir, E., Ågerfalk Pär, Olsson, H. & Fitzgerald, B. (2009). Global software

development: where are the benefits? Commun. ACM, 52(8), 127-131. doi:

10.1145/1536616.1536648

Curtis, B., Sheppard, S. B. & Milliman, P. (1979). Third time charm: Stronger

prediction of programmer performance by software complexity metrics. Paper

presented at the Proceedings of the 4th international conference on Software

engineering, Munich, Germany.

Denaro, G., Morasca, S. & Pezz, M. (2002). Deriving models of software fault-

proneness. Paper presented at the Proceedings of the 14th international

conference on Software engineering and knowledge engineering, Ischia, Italy.

Denning, P. J. & Riehle, R. D. (2009). The profession of IT: Is software engineering

engineering? Commun. ACM, 52(3), 24-26. doi: 10.1145/1467247.1467257

Dick, S., Meeks, A., Last, M., Bunke, H. & Kandel, A. (2004). Data mining in software

metrics databases. Fuzzy Sets and Systems, 145(1), 81-110. doi: DOI:

10.1016/j.fss.2003.10.006

Domingos, P. & Hulten, G. (2000). Mining high-speed data streams. Paper presented at

the Proceedings of the sixth ACM SIGKDD international conference on

Knowledge discovery and data mining, Boston, Massachusetts, United States.

245

Drown, D. J., Khoshgoftaar, T.M. Seliya, N. (2009). Evolutionary Sampling and

Software Quality Modeling of High-Assurance Systems. Systems, Man and

Cybernetics, Part A: Systems and Humans, IEEE Transactions 39(5), 1097-

1107. doi: 10.1109/TSMCA.2009.2020804

Duvall, P., Matyas, S. & Glover, A. (2007). Continuous integration: improving software

quality and reducing risk: Addison-Wesley Professional.

Ebert, C. & De Neve, P. (2001). Surviving global software development. Software,

IEEE, 18(2), 62-69. doi: 10.1109/52.914748

Fayyad, U., Piatetsky-Shapiro, G. & Smyth, P. (1996). From data mining to knowledge

discovery in databases. AI Magazine, 7(3), 37-54.

Fenton, N. & Neil, M. (2000). Software Metrics: Roadmap. ACM, Future of Software

Engineering, Limerick, Ireland, 357-369.

Fenton, N. E. & Neil, M. (1999). A critique of software defect prediction models.

Software Engineering, IEEE Transactions on, 25(5), 675-689. doi:

10.1109/32.815326

Forman, G. (2003). An extensive empirical study of feature selection metrics for text

classification. J. Mach. Learn. Res., 3, 1289-1305.

G. Hulten, L. S. and P. Domingos. (2001). Mining time-changing data streams.

Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining KDD 01, 97–106. doi:

10.1145/502512.502529

Gaber, M. M., Zaslavsky, A. & Krishnaswamy, S. (2005). Mining data streams: a

review. SIGMOD Rec., 34(2), 18-26. doi: 10.1145/1083784.1083789

Gao, K., Khoshgoftaar, T. M. & Napolitano, A. (2011, November). Impact of data

sampling on stability of feature selection for software measurement data. In

Tools with Artificial Intelligence (ICTAI), 2011 23rd IEEE International

Conference on (pp. 1004-1011). IEEE.

Gao, K., Khoshgoftaar, T. M., Wang, H. & Seliya, N. (2011). Choosing software

metrics for defect prediction: an investigation on feature selection techniques.

Software: Practice and Experience, 41(5), 579-606. doi: 10.1002/spe.1043

Gilb, T. (1977). Software Metrics: Winthrop Publishers (Cambridge, Mass.)

Golab, L., DeHaan, D., Demaine, E. D., Lopez-Ortiz, A. & Munro, J. I. (2003).

Identifying frequent items in sliding windows over on-line packet streams. Paper

246

presented at the Proceedings of the 3rd ACM SIGCOMM conference on Internet

measurement, Miami Beach, FL, USA.

Gray, A. R. & MacDonell, S. G. (1997). A comparison of techniques for developing

predictive models of software metrics. Information and software technology,

39(6), 425-437. doi: 10.1016/s0950-5849(96)00006-7

Gray, D., Bowes, D., Davey, N., Sun, Y. & Christianson, B. (2009). Using the Support

Vector Machine as a Classification Method for Software Defect Prediction with

Static Code Metrics. Engineering Applications of Neural Networks, 223-234

Engineering Applications of Neural Networks. In D. Palmer-Brown, C. Draganova, E.

Pimenidis & H. Mouratidis (Eds.), (Vol. 43, pp. 223-234): Springer Berlin

Heidelberg.

Grimstad, S., Jørgensen, M. & Moløkken-Østvold, K. (2006). Software effort

estimation terminology: The tower of Babel. Information and Software

Technology, 48(4), 302-310.

Guimerà, R., Uzzi, B., Spiro, J. & Amaral, L. (2005). Team Assembly Mechanisms

Determine Collaboration Network Structure and Team Performance. Science,

308(5722), 697-702. doi: 873529361

Haibo, H. & Garcia, E. A. (2009). Learning from Imbalanced Data. Knowledge and

Data Engineering, IEEE Transactions on, 21(9), 1263-1284. doi:

10.1109/tkde.2008.239

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. & Witten, I. H. (2009).

The WEKA Data Mining Software: An Update; SIGKDD Explorations. 11, 1,

10-18. doi: 10.1145/1656274.1656278

Hall, M., Frank, E., Holmes, G. & Pfahringer B. (2009). The WEKA Data Mining

Software: An Update. SIGKDD Explorations, 11(1).

Hanneman, R. A. & Riddle, M. (2005). Introduction to social network methods

Retrieved from

http://wiki.gonzaga.edu/dpls707/images/6/6e/Introduction_to_Social_Network_

Methods.pdf

Harman, M. (2007). The Current State and Future of Search Based Software

Engineering. Future of Software Engineering (FOSE '07).

Harman, M. & Tratt, L. (2007). Pareto Optimal Search-based Refactoring at the Design

Level. Proceedings of the 9th annual conference on Genetic and evolutionary

computation. 1106 - 1113.

http://wiki.gonzaga.edu/dpls707/images/6/6e/Introduction_to_Social_Network_Methods.pdf
http://wiki.gonzaga.edu/dpls707/images/6/6e/Introduction_to_Social_Network_Methods.pdf

247

Hassan, A. E. (2006, 24-27 Sept. 2006). Mining Software Repositories to Assist

Developers and Support Managers. Paper presented at the Software

Maintenance, 2006. ICSM '06. 22nd IEEE International Conference.

Hassan, A. E. (2008). The road ahead for Mining Software Repositories. Paper

presented at the Frontiers of Software Maintenance, 2008. FoSM 2008.

Herbsleb, J., Cataldo, M., Damian, D., Devenbu, P., Easterbrook, S. & Mockus, A.

(2008). Socio-technical congruence (STC 2008). Paper presented at the

Companion of the 30th international conference on Software engineering,

Leipzig, Germany.

Herbsleb, J., Mockus, A., Finholt, T. & Grinter, R. (2001). An empirical study of global

software development: distance and speed. Paper presented at the Proceedings

of the 23rd International Conference on Software Engineering, Toronto, Ontario,

Canada.

Herbsleb, J. & Moitra, D. (2001). Global software development. Software, IEEE, 18(2),

16-20. doi: 10.1109/52.914732

Hernández, M. A. & Stolfo, S. J. (1998). Real-world Data is Dirty: Data Cleansing and

The Merge/Purge Problem. Data Mining and Knowledge Discovery, 2(1), 9-37.

doi: 10.1023/a:1009761603038

Herzig, K. & Zeller, A. (2009). Mining the Jazz Repository: Challenges and

Opportunities. Mining Software Repositories MSR '09. 6th IEEE International

Working Conference, 159-162.

Hevner, A., March, S., Park, J. & Ram, S. (2004). Design Science in Information

Systems Research. MIS Quarterly, 28(1), 75-105.

Horovitz, O., Krishnaswamy, S. & Gaber, M. M. (2007). A fuzzy approach for

interpretation of ubiquitous data stream clustering and its application in road

safety. Intelligent Data Analysis, 11(1), 89-108.

Howison, J. & Crowston, K. (2004). The perils and pitfalls of mining SourceForge.

Proceedings of the Mining Software Repositories Workshop at the International

Conference on Software Engineering (ICSE).

Huan, L. & Lei, Y. (2005). Toward integrating feature selection algorithms for

classification and clustering. Knowledge and Data Engineering, IEEE

Transactions on, 17(4), 491-502.

IBM. (2007). About the Repository. Rational Software Information Center Retrieved

15th October, 2011, from

248

http://publib.boulder.ibm.com/infocenter/rtc/v1r0m1/topic/com.ibm.team.scm.d

oc/topics/c_repo.html

IBM Rational Jazz Project. (2009) Retrieved November, 2009, from http://Jazz.net/

Ibrahim, W. M., Bettenburg, N., Shihab, E., Adams, B. & Hassan, A. E. (2010, 2-3 May

2010). Should I contribute to this discussion? Paper presented at the Mining

Software Repositories (MSR), 2010 7th IEEE Working Conference.

Jazz Source Control Overview. (2009) Retrieved March, 2010, from

https://Jazz.net/learn/LearnItem.jsp?href=content/docs/platform-overview/scm-

overview.html

Jazz Work Item Overview. (2009) Retrieved November, 2009, from

http://Jazz.net/library/LearnItem.jsp?href=content/docs/platform-

overview/work-item-overview.html

Jeatrakul, P., Kok Wai, W., Chun Che, F. & Takama, Y. (2010, 19-23 Sept. 2010).

Misclassification analysis for the class imbalance problem. Paper presented at

the World Automation Congress (WAC), 2010.

Jensen, D. & Neville, J. (2002). Data Mining in Social Networks. In National Academy

of Sciences Symposium on Dynamic Social Network Modeling and Analysis.

Jiang, N. & Gruenwald, L. (2006). Research issues in data stream association rule

mining. SIGMOD Rec., 35(1), 14-19. doi: 10.1145/1121995.1121998

Jiang, Y., Li, M. & Zhou, Z. H. (2011). Software Defect Detection with R ocus.

Journal of Computer Science and Technology, 26(2), 328-342.

Jiawei, H. & Chang, K. C. C. (2002). Data mining for Web intelligence. Computer,

35(11), 64-70. doi: 10.1109/mc.2002.1046977

Jørgensen, M. (2007). Forecasting of software development work effort: Evidence on

expert judgement and formal models. International Journal of Forecasting,

23(3), 449 - 462.

Jørgensen, M., Faugli, B. & Gruschke, T. (2007). Characteristics of software engineers

with optimistic predictions. The Journal of Systems and Software, 80(9), 1472 -

1482.

Jørgensen, M. & Shepperd, M. (2007). A Systematic Review of Software Development

Cost Estimation Studies. IEEE transactions on Software Engineering, 33(1), 33-

53.

http://publib.boulder.ibm.com/infocenter/rtc/v1r0m1/topic/com.ibm.team.scm.doc/topics/c_repo.html
http://publib.boulder.ibm.com/infocenter/rtc/v1r0m1/topic/com.ibm.team.scm.doc/topics/c_repo.html
http://jazz.net/
http://jazz.net/library/LearnItem.jsp?href=content/docs/platform-overview/work-item-overview.html
http://jazz.net/library/LearnItem.jsp?href=content/docs/platform-overview/work-item-overview.html

249

Kagdi, H., Collard, M. & Maletic, J. (2007a). A survey and taxonomy of approaches for

mining software repositories in the context of software evolution. Journal of

Software Maintenance and Evolution: Research and Practice, 19, 77 - 131.

Kagdi, H., Collard, M. & Maletic, J. (2007b). A survey and taxonomy of approaches for

mining software repositories in the context of software evolution. JOURNAL OF

SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND

PRACTICE, 19(2), 77-131. doi: 10.1002/smr.344

Kagdi, H., Collard, M. L. & Maletic, J. I. (2007). A survey and taxonomy of approaches

for mining software repositories in the context of software evolution. JOURNAL

OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND

PRACTICE, 19(2), 77-131. doi: 10.1002/smr.344

Khomh, F., Di Penta, M. & Guéhéneuc, Y. G. (2009, October). An exploratory study of

 the impact of code smells on software change-proneness. In Reverse

Engineering, 2009. WCRE'09. 16th Working Conference on (pp. 75-84). IEEE.

Khoshgoftaar, T., Allen, E., Jones, W. & Hudepohl, J. (2001). Data Mining of Software

Development Databases. Software Quality Journal, 9, 161–176.

Khoshgoftaar, T. M. & Munson, J. C. (1990). Predicting software development errors

using software complexity metrics. Selected Areas in Communications, IEEE

Journal on, 8(2), 253-261. doi: 10.1109/49.46879

Khoshgoftaar, T. M. & Seliya, N. (2002). Software quality classification modeling

using the SPRINT decision tree algorithm. In Tools with Artificial Intelligence,

2002.(ICTAI 2002). Proceedings. 14th IEEE International Conference on (pp.

365-374). IEEE.

Khoshgoftaar, T. M. & Seliya, N. (2004). Comparative Assessment of Software Quality

Classification Techniques: An Empirical Case Study. Empirical Software

Engineering, 9(3), 229-257. doi: 10.1023/B:EMSE.0000027781.18360.9b

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El

Emam, K. & Rosenberg, J. (2002). Preliminary guidelines for empirical research

in software engineering. Software Engineering, IEEE Transactions on, 28(8),

721-734.

Kwan, I., Schröter, A. & Damian, D. (2009). Does Congruence Have An Effect? A

Study of Coordination and Builds in a Software Project. IEEE Transactions on

Software Engineering, 99(10), 1-23.

250

Lanubile, F., Ebert, C., Prikladnicki, R. & Vizcaino, A. (2010). Collaboration Tools for

Global Software Engineering. Software, IEEE, 27(2), 52-55. doi:

10.1109/ms.2010.39

Lee, W. & Xiang, D. (2001). Information-theoretic measures for anomaly detection. In

Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on

(pp. 130-143). IEEE.

Lehman, M. (1996). Laws of software evolution revisited. Software Process

Technology. In C. Montangero (Ed.), (Vol. 1149, pp. 108-124): Springer Berlin

/ Heidelberg.

Yu, L. & Liu, H. (2003, August). Feature selection for high-dimensional data: A fast

correlation-based filter solution. In MACHINE LEARNING-INTERNATIONAL

WORKSHOP THEN CONFERENCE- (Vol. 20, No. 2, p. 856).

Leung, H. & Fan, Z. (2002). Software cost estimation. Handbook of Software

Engineering, Hong Kong Polytechnic University.

Liu, H., Lin, Y. & Han, J. (2011). Methods for mining frequent items in data streams:

an overview. Knowledge and Information Systems, 26(1), 1-30. doi:

10.1007/s10115-009-0267-2

Lokan, C. (2005). What Should You Optimize When Building an Estimation Model?

11th IEEE International Software Metrics Symposium (METRICS'05).

MacDonell, S. & Shepperd, M. (2003). Combining techniques to optimize effort

predictions in software project management. The Journal of systems and

software, 66(2), 91 - 98.

Madden, S. & Franklin, M. J. (2002, 2002). Fjording the stream: an architecture for

queries over streaming sensor data. Paper presented at the Data Engineering,

2002. Proceedings. 18th International Conference on.

Manduchi, G. and Taliercio, C. (2002). Measuring software evolution at a nuclear

fusion experiment site: a test case for the applicability of OO and reuse metrics

in software characterization. Information and Software Technology, 44(10), 593

- 600.

Marczak, S., Damian, D., Stege, U. & Schroter, A. (2008). Information Brokers in

Requirement-Dependency Social Networks. In the proceedings of International

Conference on Requirements Engineering, 53 – 62.

251

Martin, R. (1994). OO design quality metrics - An Analysis of Dependencies. Proc.

Workshop Pragmatic and Theoretical Directions in Object-Oriented Software

Metrics, OOPSLA’94.

Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B. & Jiang, Y. (2008). Implications

of ceiling effects in defect predictors. Paper presented at the Proceedings of the

4th international workshop on Predictor models in software engineering,

Leipzig, Germany.

Miller, A. (2008). A Hundred Days of Continuous Integration. Paper presented at the

Agile, 2008. AGILE '08. Conference.

Mockus, A. & Weiss, D. M. (2000). Predicting risk of software changes. Bell Labs

Technical Journal, 5(2), 169-180. doi: 10.1002/bltj.2229

Moha, N., Guéhéneuc, Y. G. & Leduc, P. (2006). Automatic generation of detection

algorithms for design defects. 21st IEEE/ACM International Conference.

Automated Software Engineering. ASE'06.

Nagappan, N., Ball, T. & Zeller, A. (2006a). Mining metrics to predict component

failures. IEEE Proceedings of the 28th International Conference on Software

Engineering, 452–461.

Nagappan, N., Ball, T. & Zeller, A. (2006b). Mining metrics to predict component

failures. Paper presented at the Proceedings of the 28th international conference

on Software engineering, Shanghai, China.

Nguyen, T., Schröter, A. & Damian, D. (2009). Mining Jazz: An Experience Report.

Infrastructure for Research in Collaborative Software, 1 - 4.

Nunamaker, J., Chen, J. & Purdin, T. (1991). Systems development in information

systems research. Journal of Management Information Systems, 7(3), 89-106.

Nunamaker Jr, Jay F. and Minder Chen. "Systems development in information systems

research." System Sciences, 1990., Proceedings of the Twenty-Third Annual

Hawaii International Conference on. Vol. 3. IEEE, 1990.

Olatunji, S., Idrees, S., Al-Ghamdi, Y. & Al-Ghamdi, J. (2010). Mining Software

Repositories – A Comparative Analysis. International Journal of Computer

Science and Network Security, 10(8), 161-174.

Patroumpas, K. & Sellis, T. (2006). Window Specification over Data Streams Current

Trends in Database Technology – EDBT 2006. In T. Grust, H. Höpfner, A.

Illarramendi, S. Jablonski, M. Mesiti, S. Müller, P.-L. Patranjan, K.-U. Sattler,

252

M. Spiliopoulou & J. Wijsen (Eds.), (Vol. 4254, pp. 445-464): Springer Berlin /

Heidelberg.

Pelayo, L. & Dick, S. (2007, June). Applying novel resampling strategies to software

defect prediction. In Fuzzy Information Processing Society, 2007. NAFIPS'07.

Annual Meeting of the North American (pp. 69-72). IEEE.

Pelayo, L. D., S. (2007). Applying Novel Resampling Strategies To Software Defect

Prediction. Fuzzy Information Processing Society, 2007. NAFIPS '07. Annual

Meeting of the North American 69-72. doi: 10.1109/NAFIPS.2007.383813

Pendharkar, P., Subramanian, G. & Rodger, J. (2005). A probabilistic model for

predicting software development effort. EEE Transactions on Software

Engineering, 31(7), 615–624.

Perry, D. E., Porter, A. A. & Votta, L. G. (2000). Empirical studies of software

engineering: a roadmap. Paper presented at the Proceedings of the Conference

on The Future of Software Engineering, Limerick, Ireland.

Pfleeger, S. L. (1999). Albert Einstein and empirical software engineering. Computer,

32(10), 32-38. doi: 10.1109/2.796106

Poncin, W., Serebrenik, A. & van den Brand, M. (2011, March). Process mining

software repositories. In Software Maintenance and Reengineering (CSMR),

2011 15th European Conference on (pp. 5-14). IEEE.

Rahm, E. & Do, H. (2000). Data Cleaning: Problems and Current Approaches. IEEE

Computer Society, 23(4), 3-13.

Ramler, R. & Wolfmaier, K. (2008). Issues and effort in integrating data from

heterogeneous software repositories and corporate databases. Paper presented

at the Proceedings of the Second ACM-IEEE international symposium on

Empirical software engineering and measurement, Kaiserslautern, Germany.

Robbes, R. (2007). Mining a Change-Based Software Repository. Proceedings of the

Fourth International Workshop on Mining Software Repositories, 15 - 23.

Rus, I. & Lindvall, M. (2002). Knowledge management in software engineering.

Software, IEEE, 19(3), 26-38. doi: 10.1109/ms.2002.1003450

Sack, W., Détienne, N., Burkhard, J., Mahendran D. & Barcellini, F. . (2006). A

Methodological Framework for Socio-Cognitive Analyses of Collaborative

Design of Open Source Software. Computer Supported Cooperative Work, 15,

229–250. doi: 10.1007/s10606-006-9020-5

253

Scott, J. (1988). Social Network Analysis Sociology, 22(1), 109-127. doi:

10.1177/0038038588022001007

Sebastian, F. (2002). Machine Learning in Automated Text Categorization. ACM

Computing Surveys, 34(1), 1-47.

Seiffert, C., Khoshgoftaar, T. M. & Hulse, J. V. (2009). Improving software-quality

predictions with data sampling and boosting. Trans. Sys. Man Cyber. Part A,

39(6), 1283-1294. doi: 10.1109/tsmca.2009.2027131

Seliya, N., Khoshgoftaar, T. M. & Hulse, J. V. (2010). Predicting Faults in High

Assurance Software. Paper presented at the Proceedings of the 2010 IEEE 12th

International Symposium on High-Assurance Systems Engineering.

Sentas, P., Angelis, L., Stamelos, I. and Bleris G. (2005). Software productivity and

effort prediction with ordinal regression. Information and software technology,

47(1), 17–29.

Serce, F., Alpaslan, F., Swigger, K., Brazile, R., Dafoulas, G., Lopez, V. &

Schumacker, R. (2009). Exploring Collaboration Patterns among Global

Software Development Teams. 2009 Fourth IEEE International Conference on

Global Software Engineering, 61 - 71.

Settimi, R., Cleland-Huang, J., Ben Khadra, O., Mody, J., Lukasik, W. & DePalma, C.

(2004). Supporting software evolution through dynamically retrieving traces to

UML artifacts. In Software Evolution, 2004. Proceedings. 7th International

Workshop on Principles of (pp. 49-54). IEEE.

Shatnawi, R. (2012, March). Improving software fault-prediction for imbalanced data.

In Innovations in Information Technology (IIT), 2012 International Conference

on (pp. 54-59). IEEE.

Shepperd, M. (2011). Data quality: cinderella at the software metrics ball? Paper

presented at the Proceedings of the 2nd International Workshop on Emerging

Trends in Software Metrics, Waikiki, Honolulu, HI, USA.

Simons, D. & Chabris, C. (1999). Gorillas in our midst: Sustained inattentional

blindness for dynamic events. . Perception, 28, 1059-1074. doi: 10.1.1.65.8130

Sparrowe, R., Liden, R., Wayne, S. & Kraimer, M. (2001). Social Networks and the

Performance of Individuals and Groups. The Academy of Management Journal,

44(2), 316-325.

254

Sparrowe, R., Liden, R., Wayne S. & M., K. (2001). Social Networks and the

Performance of Individuals and Groups The Academy of Management Journal,

44(2), 316 - 325.

Spinellis, D. (2006). Bug busters. Software, IEEE, 23(2), 92-93. doi:

10.1109/ms.2006.40

Stamelos, I. (2009). Software project management anti-patterns. The Journal of Systems

and Software, 48(1), 52-59. doi: 10.1016/j.jss.2009.09.016

Stamelos, I., Angelis, L., Dimou, P. & Sakellaris, E. (2003). On the use of Bayesian

belief networks for the prediction of software productivity. Information and

software technology, 45(1), 51 - 60.

Stonebraker, M., Çetintemel, U. & Zdonik, S. (2005). The 8 requirements of real-time

stream processing. SIGMOD Rec., 34(4), 42-47. doi: 10.1145/1107499.1107504

Subramaniam, V. & Hunt, A. (2006). Practices of an agile developer. Pragmatic

Bookshelf.

Subramanian, G. & Corbin, W. (2001). An empirical study of certain object-oriented

software metrics. The Journal of Systems and Software, 59(1), 57 - 63.

Subramanyam, R. & Krishnan, M. S. (2003). Empirical analysis of CK metrics for

object-oriented design complexity: implications for software defects. Software

Engineering, IEEE Transactions on, 29(4), 297-310. doi:

10.1109/tse.2003.1191795

Kim, S., Zhang, H., Wu, R. & Gong, L. (2011, May). Dealing with noise in defect

prediction. In Software Engineering (ICSE), 2011 33rd International

Conference on (pp. 481-490). IEEE.

Tao, Y. (2011). Mining Time-Changing Data Streams. Published doctoral dissertation,

University of Waterloo, Ontario, Canada.

Thwin, M. M. T. & Quah, T.-S. (2005). Application of neural networks for software

quality prediction using object-oriented metrics. Journal of Systems and

Software, 76(2), 147-156. doi: 10.1016/j.jss.2004.05.001

Tichy, W. F. (2000). Hints for Reviewing Empirical Work in Software Engineering.

Empirical Software Engineering, 5(4), 309-312. doi: 10.1023/a:1009844119158

Trendowicz, A., Ochs, M., Wickenkamp, A., Münch, J., Ishigai, Y. & Kawaguchi, T.

(2008). Integrating Human Judgment and Data Analysis to Identify Factors

Influencing Software Development Productivity. e-Informatica Software

Engineering Journal, 2(1), 47-69.

255

Vandecruys, O., Martens, D., Baesens, B., Mues, C., Backer, M. & Haesen, R. (2008).

Mining software repositories for comprehensible software fault prediction

models. Journal of Systems and Software, 81, 823–839.

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N. & Yin, K. (2003). A review

of process fault detection and diagnosis: Part III: Process history based methods.

Computers & chemical engineering, 27(3), 327-346.

Warner, N., Letsky, M. & Cowen, M. (2005). Cognitive Model of Team Collaboration:

Macro-Cognitive Focus. Human Factors and Ergonomics Society Annual

Meeting Proceedings, 49(5), 269-273.

Weiss, C., Premraj, R., Zimmermann, T. & Zeller, A. (2007). How Long Will It Take to

Fix This Bug? Paper presented at the Proceedings of the Fourth International

Workshop on Mining Software Repositories.

White, S. & Smyth, P. (2003). Algorithms for estimating relative importance in

networks. Paper presented at the Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, Washington,

D.C.

Williams, C. C. & Hollingsworth, J. K. (2005). Recovering system specific rules from

software repositories. SIGSOFT Softw. Eng. Notes, 30(4), 1-5. doi:

10.1145/1082983.1083144

Wolf, T., Schroeter, A., Damian, D. & Nguyen, T. (2009). Predicting build failures

using social network analysis on developer communication. Proceedings of the

IEEE International Conference on Software Engineering (ICSE), Vancouver.

Yasutaka, K. (2007). The Effects of Over and Under Sampling on Fault-prone Module

Detection.

Ying, A. T. T., Murphy, G. C., Ng, R. & Chu-Carroll, M. C. (2004). Predicting source

code changes by mining change history. Software Engineering, IEEE

Transactions on, 30(9), 574-586. doi: 10.1109/tse.2004.52

Zimmermann, T. (2007, May). Mining workspace updates in CVS. In Mining Software

Repositories, 2007. ICSE Workshops MSR'07. Fourth International Workshop

on (pp. 11-11). IEEE.

Zimmermann, T., Premraj, R. & Zeller, A. (2007, May). Predicting defects for eclipse.

In Predictor Models in Software Engineering, 2007. PROMISE'07: ICSE

Workshops 2007. International Workshop on (pp. 9-9). IEEE.

256

Zimmermann, T. & WeiBgerber, P. (2004). Preprocessing CVS data for fine-grained

analysis. IEE Seminar Digests, 2004(917), 2-6.

Zimmermann, T., Weibgerber, P., Diehl, S. & Zeller, A. (2004, May). Mining version

histories to guide software changes. In Software Engineering, 2004. ICSE 2004.

Proceedings. 26th International Conference on (pp. 563-572). IEEE.

