
3

Using Satisfaction Arguments and Rich Traceability in

Requirements Prioritisation

Praveen Kumar Motupally

A Dissertation submitted to Auckland University of Technology in
partial fulfilment of the requirements for the degree of Master of

Computer and Information Sciences (MCIS)

2008

School of Computing and Mathematical Sciences

Primary Supervisor: Dr. Andy Connor

4

Abstract

Requirement Engineering (RE) is a distinct subset activity of Systems Engineering. Eliciting and
Specifying requirements are the sub processes of RE. Eliciting and Specifying correct requirements,
that meet the customer’s needs contributes to the project’s Quality and Success. However
determining the “Candidate Requirements” is challenging for a number of reasons. Requirement
Prioritisation helps to cope with this problem.

A number of Requirement Prioritisation methods exists. This dissertation aims to investigate a better
prioritisation technique by subjectively assessing the “effort” between prioritising requirements with
the Analytical Hierarchy Process (AHP) and prioritising “Satisfaction Arguments” (SA) with AHP and
subjectively assessing the “effort” again.

The results of the experiment show a similar set of priorities produced by both attempts, however,
the perceived effort of prioritising SAs is less compared with prioritising requirements with AHP due
to “Propagation of Priorities”. The results of the experiment show that “Propagation of Priorities” is
possible with both the approaches, however “Propagation of Priorities” was found to be bi-
directional when prioritising SA with AHP and unidirectional when prioritising requirements with
AHP.

5

Table of Contents

1 Introduction ... 8

2 Literature Review .. 9

2.1 Software Requirements Engineering ... 9

2.1.1 Feasibility Studies .. 12

2.1.2 Requirements Elicitation and Analysis .. 12

2.1.3 Requirements Specification ... 14

2.1.4 Requirements Validation ... 16

2.1.5 Requirements Management .. 16

2.2 Requirements Prioritisation ... 17

2.2.1 Aspects of Requirements Prioritisation ... 18

2.2.2 Requirements Prioritisation Methods ... 19

2.2.3 Comparison of Requirements Prioritisation Methods .. 27

2.2.4 Challenges in Requirements Prioritisation .. 30

2.3 Potential Solutions ... 33

2.3.1 Requirements Clustering ... 33

2.3.2 Proposed Clustering Technique ... 34

2.4 Summary .. 37

3 Methodology ... 39

3.1 Research Methodology .. 39

3.2 Solution Construction and Experimental Design ... 40

4 Results ... 42

5 Conclusions .. 46

6 References ... 47

6

Attestation of Authorship

 “I Praveen Kumar Motupally hereby declare that this submission is my own work and that, to the
best of my knowledge and belief, it contains no material previously published or written by another
person (except where explicitly defined in the acknowledgements), nor material which to a
substantial extent has been submitted for the award of any other degree or diploma of a university
or other institution of higher learning."

Signature:

Date:

Praveen Motupally
Auckland, New Zealand

7

Acknowledgments

My gratitude goes to my Professor, Dr Andy Connor for giving me the opportunity to work on a very
unique idea, he encouraged me to discover a unique requirement prioritization technique, his help
during my dissertation project and advice were immeasurable. Dr Andy Connor is a visionary, a man
of technical excellence, someone committed to delivering excellence, it was truly my privilege to
work with him.

I take this opportunity to thank AUT staff, for their help and support over the last three years, they
play major role in my academic achievements.

I am thankful to my family for their support and encouragement; I thank my wife Ana, my son Karun
and my sweet daughter Gautami for bearing with me during the last few months, without their
support and understanding it would not have been possible for me to complete this research work.

Praveen Motupally
Auckland, New Zealand

8

1 Introduction
Software Requirements Engineering (RE) normally comes to fore in the early phases of software
engineering (SE). Though we have made significant progress in the area of software development,
challenges experienced in the past 20 years persist. A large percentage of this can be attributed to a
poor RE practice. Using appropriate RE techniques can make software development projects more
successful (Jiang, 2005).

“The hardest single part of building a software system is deciding precisely what to build. Therefore,
the most important function that the software builder performs for the client is the iterative
extraction and refinement of the product requirements” (Brooks, 1987).

The following are some perceived scenarios from the industry which show how requirement
engineers, software developers and customers perceive system requirements.

Inefficient communication between team members, and the stakeholders leads to flaws in the
product, increased cost and delay in delivery (Brooks, 1987). Conflicting requirements may arise as a
result of multiple expectations by the stakeholders, or due to limited available resources (J. Karlsson,
Olsson, S., & Ryan, K. , 1997). User requirements constantly change, therefore they “evolve” as a
result of a greater understanding of the system as the project progresses (Kaindl, 2002) and
unrealistic timelines for the delivery of the system are just a few notable factors which can lead to a
great discrepancy between customer requirements and the final delivered system. RE is therefore an
essential practice which ensures that the delivered system meets the client’s expectations.

Prioritising requirements a key area of RE, plays a crucial role in the decision making of system
development, in time and resource constraints and in meeting user requirements. Prioritising
requirements is complex and challenging for a number of reasons, for large scale requirements, the
complexity is multiplied (P. Berander, & Andrews, A., 2005).

The purpose of this research is to investigate whether a more efficient prioritisation of requirements
can be achieved by using the concept of “Satisfaction Arguments” (SA) (Attwood, 2004; Dick, 2000;
Hull, 2005) in “Requirement Prioritisation” as a means of implicitly grouping together requirements,
with a relatively low number of factors in pair-wise comparisons, and then prioritising these using
techniques such as the Analytical Hierarchical Process (AHP) to ensure a fine-grained prioritisation.

Chapter 2 outlines the background of this research, a literature review includes an overview of the
software requirements process, the key phases and activities involved in RE, current major research
issues in software requirement engineering (SRE), a discussion of questions such as; What is
prioritisation and why is it important? What prioritisation methods are used and what are their
characteristics. A comparison of these methods, challenges in requirement prioritisation and
prioritising large requirements sets, and some potential solutions are also reviewed. The concept of
“Rich Traceability and Satisfaction Arguments” that allows system level requirements to be
automatically generated and given a priority by applying requirement prioritisation methods is
introduced. This chapter concludes by summarising SRE, Requirement Prioritisation and how people
try to resolve issues in dealing with large requirements sets. Chapter 3 presents the research
approach, solution construction and experimental design and the results of the experiment as

9

carried out on a set of user and system requirements are given in chapter 4. Finally, section 5
concludes the research with concise discussion.

2 Literature Review

2.1 Software Requirements Engineering
What are Systems Engineering, Requirement Engineering and Software Engineering and how are
they related? Systems Engineering defines systems requirements at an abstract level, defining
overall architecture and then integrating different parts of the system into a finished product, the
important activities of this process being hardware development, policy and process design and
system deployment. This process is less concerned with engineering the system components,
whereas Software Engineering deals with this aspect in detail (Holt, 2001; Sommerville, 2007; R.
Stevens, Brook, P., Jackson, K., & Arnold, S., 1998).

The process of identifying, modelling, communicating and documenting stakeholder’s requirements
and constraints is called “Requirement engineering” (RE) (Sommerville, 2007). RE is a specific subset
activity of Systems Engineering as illustrated in Figure 1, with a primary goal of creating and
maintaining Systems Requirement Specifications. This process involves feasibility studies to assess
the viability of the system being developed, Elicitation and Analysis, and Specification of
requirements and Validation (Sommerville, 2007). RE plays a crucial role in software design and
development, with its primary focus being the development of the right software for the
stakeholders (A. Aurum, & Wohlin, C., 2005).

Figure 1: Requirement Engineering in relationship to Systems Engineering

Software Engineering deals with all aspects of software production for example, engineering
software components to work within organisational and financial constraints, technical process and
project management, and spans the entire process from the early stage of System Requirements
Specification to maintaining the system, post production (Sommerville, 2007). As illustrate in Figure
2, there is a clear overlap between systems engineering, requirement engineering and software
engineering.

10

Figure 2: Software Engineering

According to Weigers (2003), the RE process consists of two sub processes:

Ø Requirement Development
Ø Requirement Management

Requirement development consists of four sub processes. Requirements elicitation involves
identifying software requirements from a number of sources such as interviews, documents, legacy
systems, workflow analysis etc. Requirements Analysis is the process of classifying requirement
information. Requirement specification is the process of writing a system requirements document in
a structured manageable format which can communicate to its various readers. Finally Requirements
Validation evaluates the requirements on the basis of satisfaction of users’ needs.

Requirement
Engineering

Requirement
Development

Requirement
Management

Requirement
Elicitation

Requirement
Analysis

Requirement
Specification

Requirement
Validation

Figure 3: Requirement Engineering Processes (Sommerville, 2007)

11

Sommerville proposes Feasibility Studies prior to the four key RE activities defined by Weigers, in the
RE process, i.e. Requirements Elicitation and Analysis, Requirements Specification and Requirements
Validation. Figure 4 illustrates the relationship between these activities and also shows documents
produced at each stage of the RE process(Sommerville, 2007).

Feasibility
Study

Feasibility
Report

Requirements
Elicitation/Analysis

Requirements
Specification

Requirements
Validation

System/
Domain
Models User and

System
Requirements

Requirement
s Document

Figure 4: Linear Requirements Development Process (Sommerville, 2007)

An alternative model of RE process is a three stage iterative activity around a spiral as illustrated in
Figure 5, the amount of time spent on each stage varies with the scale of the project. In the later
phase efforts are devoted to system requirement engineering and system modelling as shown in the
outer rings of the spiral (Sommerville, 2007).

Figure 5: Spiral Requirements Development Process (Sommerville, 2007)

12

The key RE activities are briefly discussed in the following sections.

2.1.1 Feasibility Studies
A Feasibility study is recommended prior to undertaking Requirements Elicitation, the sources for
this process are business requirements and an outline of the system. This process is an enquiry to
determine if the system being developed meets the overall objective of the organisation, within the
given cost/schedule constraints and possible integration with any existing systems (Sommerville,
2007).

The output of the feasibility study is a viability report that outlines whether the system would
contribute to the business objectives and whether or not it is worthwhile to developing the intended
system. (Sommerville, 2007).

2.1.2 Requirements Elicitation and Analysis
After a feasibility study the next stage of the RE process is Requirement Elicitation. The meaning of
“elicitation” is to draw forth or bring out (something latent or potential), therefore Requirements
Elicitation is just not about collecting or capturing requirements but is a process of discovering
requirements for a software system, with the sole purpose of communicating these needs to the
developers (Zowghi, 2005).

Eliciting the right requirement is a critical part of RE, a case study by Hofmann and Lehner (2001)
shows that key RE practices leads to project success (Hofmann & Lehner, 2001). Many requirement
errors surface after the system is implemented and are found to be extremely costly to fix. Many RE
problems originate with elicitation issues yet, research conducted on requirement engineering has
chiefly ignored elicitation (Christel, 1992).

Requirements need to be “elicited” as the requirements may be spread across multiple
stakeholders, existing documentation and systems. Requirements Elicitation is an intensively
communicative phase of software development for which software engineering does not provide
comprehensive techniques and for this reason effective techniques from social sciences,
organisational theory, group dynamics, knowledge engineering and practical science can be used
(Zowghi, 2005).

Eliciting Requirements is a complex and difficult process for several reasons such as, problems of
scope, understanding and volatility (Christel, 1992). Brooks (Brooks, 1987) distinguishes
requirements elicitation problems between; inherent difficulties in what one is trying to accomplish
and those created through inadequate practice (Hatley, 1987; Sommerville, 2007; Stuart, 1997).

Requirements Elicitation activities comprise; communication, prioritization, negotiation, and
collaboration with the relevant stakeholders. This process involves understanding the application
domain, identifying requirement sources, analysing stakeholders, selecting appropriate techniques
and finally eliciting requirements (Zowghi, 2005). The three interleaved processes identified by
Christel (1992) are elicitation, specification and validation. Sommerville (2007) defines four aspects
of the requirements elicitation and analysis phase of the overall requirement engineering process.
These are; requirements discovery, classification and organisation, prioritisation and negotiation and
finally documentation, as illustrated in Figure 6.

13

Requirements
Prioritization and

Negotiation

Requirements
Documentation

Requirements
Classification

and organization

Requirements
Discovery

Figure 6: Requirements elicitation and analysis process (Sommerville, 2007)

During the requirement elicitation and analysis phase, requirement engineers explore the problem
domain and endeavour to, understand stakeholders needs and other existing systems, for the
purpose of identifying system functionality and hardware requirements (Sommerville, 2007; Zowghi,
2005).

The techniques and approaches employed during requirements elicitation often depend on a
number of factors such as time and cost, the availability of resources, the safety criticality of the
system, and any legal or regulatory constraints. Some examples of techniques are; interviews,
ethnography, observation, brainstorming (Sommerville, 2007), though this is not an exhaustive list.
Understanding the application domain in a series of steps could be an approach in addition to using
interview techniques to elicit (Zowghi, 2005).

In a Structured Analysis and Design (SAD) methodology, a combination of techniques could be used,
for example data flow diagrams (DFD) to detail the function decomposition and Entity Relationship
Diagrams (ERD) to represent the system entities, other requirement methodologies used by SAD are
Data Dictionaries and Event Lists (Zowghi, 2005). The agile development methodology gives little
emphasis to requirement elicitation and advocates incremental development (Frauke, Armin, &
Frank, 2003).

14

Complexity and difficulties persist in requirements elicitation due to contextual, human, economic
and educational factors. The most common problems encountered during this process are discussed
below (Zowghi, 2005).

No single project is similar to any other therefore replicating a successful requirements elicitation
process from another project may not be possible. Communication is fundamental difficulty due to
problems such as articulating requirements (Sommerville, 2007), the analyst and the stakeholder
may be looking at the same problem from different perspectives, stakeholders suggesting a solution
rather than the requirements (Zowghi, 2005).

The quality of the requirements may suffer for reasons such as insufficient domain knowledge,
incorrect, incomplete, inconsistent requirements or requirements that are not easy to validate.
Requirements evolve as the project progresses hence there is a volatility of requirements (Zowghi,
2005).

Conflict in requirements is bound to occur due to multiple stakeholders with multiple interests and
the likely changes in preference (Sommerville, 2007). A lack of experience by the analyst has an
impact in effective elicitation in terms of the ability to select appropriate techniques and understand
the problem domain (Zowghi, 2005).

The available techniques are not very useful due to a lack of empirical research and an effective
transfer of knowledge from research into practice. Practitioners tend to repeat mistakes due to a
lack of experience or insufficient awareness, and organisational, financial and time constrains
restrict them from implementing appropriate techniques despite the need for the project to succeed
(Sommerville, 2007; Zowghi, 2005).

Some of the trends and challenges in research and practice are discussed as follows. Research has
identified that the requirement elicitation phase has some unique complex characteristics, yet in
practice elicitation is not considered as a distinct phase. The primary challenge for researchers is to
reduce the gap between research and practice, by reducing complexity. In practice the level of
experience of senior and junior practitioners differ and organisational, time and financial constraints
remain (Zowghi, 2005).

Reducing the gap between research and practice emerges as a crucial factor for researchers, to
increase awareness and education in industry for the selection of appropriate techniques,
collaboration and reuse of knowledge and exploration of the possible applications of requirement
elicitation in emerging fields of software engineering such as agent based systems, agile
development methodologies, and web systems (Zowghi, 2005).

2.1.3 Requirements Specification
Typically a Software Requirement Specification (SRS) is written early in the software lifecycle and aids
communication between the potential user and the developer (Pohl, 1994). A SRS is a
comprehensive description of the intended purpose and environment for the software under
development it contains the description of the systems function and its constraints. (Sommerville,
2007). The requirements specification documents the "what," and the design description documents
the "how" (Thayer, 2008).

http://searchsoa.techtarget.com/sDefinition/0%2C%2Csid26_gci213024%2C00.html

15

Writing an SRS is a technical process therefore it differs from writing a book or even a technical
document such as an instruction manual or user guide. Two aspects of the SRS which need to be
carefully balanced are “Readability” meaning enabling the reader to place statements in context and
“Process ability” which ensures quality i.e. clarity, language, precision and traceability (Hull, 2005).
The use of diagrams and pictures in an SRS, enhances communication.

A clear distinction has to be made between high and low level requirements descriptions in an SRS.
User Requirements (UR) are high level, abstract requirements whereas system requirements (SR) are
a detailed description of what the system should do. Problems arise during the RE process due to a
lack of a clear distinction between UR and SR (Sommerville, 2007).

User Requirements describe system functions, so technical details such as system design
characteristics and, software jargon should be avoided in documenting user requirements as
customers generally do not have advanced technical understanding (Sommerville, 2007).

SR’s can be classified into functional, non-functional or domain requirements. Functional
requirements are detailed descriptions of the system function, how input and output is processed.
The essential attributes of functional requirements are completeness and consistency. Completeness
defines the required service and the consistency ensures that requirements are not contradictory.
To achieve completeness and consistency in large scale projects is a challenge (Sommerville, 2007).

Non-functional requirements attributes are system properties such as security, response time,
availability and reliability and usually apply to the system as a whole. These requirements are
constraints on the system functions and specify system performance therefore they are more critical
than the functional requirements, depending on the nature of the system, for example, these
requirements are highly critical in an aircraft system, the system will not function correctly, if the
reliability requirement is not meet (Sommerville, 2007).

Generalised non-functional requirements such as ease of use or ability to recover from failure are
vague goals which leaves scope for interpretation and can lead to incorrect implementation of
requirements which may in turn lead to disputes after the delivery of the system and contribute to
difficulties in verifying non-functional requirements (Sommerville, 2007).

For a large scale system, a separation of functional and non-functional requirements in the
requirements document is helpful to manage the requirements; however this separation in two
separate documents presents visibility of relationship between functional and non-functional
requirements. For small scale systems these requirements can be merged into a single document
(Sommerville, 2007).

Domain requirements originate from the business domain rather than the stakeholders and are
difficult to understand in terms of relating these requirements to other system requirements. An
example of such a requirement is the automation of traffic signal controls for a train system, an
understanding of how train deceleration is computed and the characteristics of the train are
essential. (Sommerville, 2007).

The SRS has a multiple and diverse sets of users such as stakeholders, developers, testers and
support / maintenance staff, therefore there is a challenge in documenting requirements for
communication and ensuring precise requirement precision (Sommerville, 2007).

16

Most SRS are still being written in natural language (Chantree, 2006; Kaindl, 2002) and there seems
to be a little use of the RE research findings in practice. Using simple (Sommerville, 2007) and
consistent language to write SRS will make it easier to identify different kinds of requirements (Hull,
2005). Written requirements vocabulary should be simple language with simple tables and intuitive
diagrams. Requirement engineers have realised the challenge of managing requirements with a
word processor (Kaindl, 2002) or in database (Hull, 2005; Stuart, 1997).

2.1.4 Requirements Validation
To deliver a system that meets the customer’s requirements, the functionality of the system is
checked against the specification at every stage of the development life cycle, beginning with the
requirement review, design and code review to quality assurance. Boehm distinguishes between
software verification and software validation (Boehm, 1988).

Ø Validation
Ø Verification

Validation ensures that the right system is built and meets the customer’s expectations and
verification ensures the functional and non-functional requirements are met. The goal of this
process is to ensure that the software system is “fit for purpose”. (Sommerville, 2007).

Some of the methods employed by the V&V process for checking and analysing the system are
inspection or peer reviews which are carried out at all stages of the process and may be
supplemented by some automatic analysis (Sommerville, 2007).

2.1.5 Requirements Management
Quality of the software is dependent on quality of the development process, there are two of the
many possible reasons for software project failure are; software project failure, flaws in requirement
elicitation and requirements becoming out of date (British Computer Society, 2004). Therefore
managing requirements is crucial for project success. The key requirement management practices
are in the areas of Requirements Elicitation, Specification and Modelling, Prioritization, Requirements
Dependencies and Impact Analysis, Requirements Negotiation and Quality Assurance (A. Aurum, &
Wohlin, C. , 2005). Requirements management has a critical effect on an organisation's development
costs and software quality (Sawyer, 1999).

Understanding of requirements improves progressively during the development life cycle, after the
user experiences the system, new needs and priorities may arise, therefore software requirements
evolve and require a process to monitor these changes. (B. H. C. Cheng, & Atlee, J. M., 2007;
Sommerville, 2007). Therefore the task of requirements management is to identify requirements
which may possibly change (Bush, 2003). These changing requirements may have an impact on their
dependent requirements. (J. Cleland-Huang, Settimi, R., BenKhadra, O., Berezhanskaya, E., &
Christina, S., 2005; J. Cleland-Huang, Zemont, G., & Lukasik, W., 2004; Hayes, 2006; Marcus, 2003;
Mehrdad & Steve, 2005) Managing links between these dependent requirements is required for
analysing the impact of change (Sommerville, 2007).

Tracking requirements to their source is essential to ensure that the original requirement purpose
has been met therefore during the elicitation stage, quantified, measurable acceptance criteria need
to be defined (British Computer Society, 2004).

17

In a geographically distributed (De Neve, 2001), large scale (Alspaugh, 2001) or even in small scale
organisations, having a diverse set of cultures, requirements and priorities, requirement
contradiction and conflicts are bound to occur, prioritising requirements helps to resolve such
conflicts in requirements (A. Aurum, & Wohlin, C. , 2005; Sommerville, 2007).

Changes to the business as a result of priorities, legislation & regulation or environment will have an
impact on the systems which are in use or in development stage. Therefore, requirement
management is crucial to control the changing system requirements and to minimise the impact of
these changes (Sommerville, 2007).

2.2 Requirements Prioritisation
Making a choice from a couple of options is often difficult and with multiple options this problem is
multiplied. Prioritisation is the process which is designed to help cope with this problem (P.
Berander, & Andrews, A., 2005). Prioritisation is an important part of RE activity and an integral part
of decision making (S. Hatton, 2008).

Prioritization helps decision makers analyse requirements in order to assign priority which reflect
their importance. Due to time and resource constraints, fast and reliable prioritization methods are
keenly sought by practitioners (J. Karlsson, Wohlin, C., & Regnell, B., 1998).

Requirements prioritization is a fundamental activity for project success. Prioritizing requirements is
a strategic process which drives development expense and delivery. This process assigns priority to
requirements to establish their relative order in a collection of requirements to determine which
requirements are most important. (P. Berander, & Andrews, A., 2005). Prioritisation of requirements
is useful for negotiating with and helping stakeholders to resolve conflict and reach an agreement
(Moisiadis, 2002)

The key challenge in prioritising requirements is to determine optimal requirements, which meet the
technical constraints and preferences of stakeholders, and contribute to the overall business
objectives (P. Berander, & Andrews, A., 2005; Firesmith, 2004).

In the world of commercial software development, all requirements cannot be met in a time and
resource constrained environment (J. Karlsson, Wohlin, C., & Regnell, B., 1998). The purpose of
requirement prioritizing is to determine the essential set of requirements (Gonzales-Baixauli, 2004;
Liaskos, 2006; Moreira, 2005; Regnell, 2003). The benefits of such an exercise are creation of realistic
project schedules based on the available budget and resources, improvement in customer
satisfaction (Firesmith, 2004) and identification of requirement defects (J. Karlsson, Wohlin, C., &
Regnell, B., 1998). Prioritization also helps to minimize rework and schedule slippage (P. Berander, &
Andrews, A., 2005).

The requirements prioritization processes can be broadly classified into Methods and Negotiation.
The Methods approach assigns quantitative values to different aspects of the requirements while
negotiation focuses on resolving conflicts by brokering agreement between different stakeholders,
through prioritised requirements (L. Lehtola, & Kauppinen, M., 2004; L. Lehtola, Kauppinen, M., &
Kujala, S., 2004).

Some of the requirement prioritisation methods used in practice are; Analytical Hierarch Process
(AHP) Hierarch AHP, priority groups, Binary Search Tree, Bubble Sort and Spanning Tree Matrix (J.

18

Karlsson, Wohlin, C., & Regnell, B., 1998). These method can be used to negotiate and arrive at
consensus on the priority of requirements Choosing the most suitable method is often quite difficult
(S. Hatton, 2008).

More discussion and analysis of requirements prioritisation is given in section 2.2.4

2.2.1 Aspects of Requirements Prioritisation
An aspect is an attribute or a property of a projects requirement which is used to prioritize
requirements. Often there are numerous candidate requirements in a project that cannot be met
with the available time and resources, prioritisation helps to determine the most essential
requirements (P. Berander, & Andrews, A., 2005).

Some examples of aspect are importance, penalty, cost, time, and risk. For example, when buying a
new car, it would be easy to make a choice when a single aspect exists, for example speed; in this
case, we need only evaluate which car is the fastest. If a decision has to be made on multiple aspects
such as cost, safety and comfort, the choice now becomes a bit more difficult compared with the
previous attempt (P. Berander, & Andrews, A., 2005). Prioritizing requirements is done based on
different aspects.

2.2.1.1 Importance
The importance aspect is a multifaceted concept and could mean urgency of implementation,
importance of a requirement for product architecture, strategic importance for the company, etc,
therefore its essential to specify the nature of importance, when prioritising the importance aspect
(P. Berander, & Andrews, A., 2005; L. Lehtola, Kauppinen, M., & Kujala, S., 2004).

2.2.1.2 Penalty
The penalty aspect is an implication that is a result of not implementing a requirement (Wiegers,
1999), this aspect is not the opposite of importance, since there might be severe impact of not
implementing a low priority requirement (P. Berander, & Andrews, A., 2005).

2.2.1.3 Cost
The cost aspect is often expressed in terms of man hours, the number of hours spent developing the
software, the cost is determined by considering the complexity of the requirements and the quality
required (P. Berander, & Andrews, A., 2005; Wiegers, 1999).

2.2.1.4 Time
Cost is often calculated in terms of man hours which are directly related to time. The time aspect is
influenced by factors such as degree of parallelism in development, training needs, need to develop
support infrastructure, complete industry standards, etc (P. Berander, & Andrews, A., 2005; Wiegers,
1999) (A. Aurum, & Wohlin, C. , 2005)

2.2.1.5 Risk
Every project has a degree of risk involved. Risk management is a process used for planning to
manage those risks which may cause difficulties in development. Some of the risk factors are
performance risks, process risks, schedule risks etc., calculating the risk per requirement enables
engineers to forecast the possible project level risk (P. Berander, & Andrews, A., 2005; Wiegers,
1999).

19

2.2.1.6 Volatility
Requirements tend to change as the project progresses for reason such as the market changes,
business requirements changes, legislative changes or users change therefore requirements are
volatile. In some cases volatility of requirements is handled as part of the risk aspect. The impact of
this aspect is an increase in project cost and timeframe of the project (P. Berander, & Andrews, A.,
2005; Ruhe, 2003).

2.2.1.7 Other Aspects
The above list though fundamental is not considered an exhaustive list. Some examples of other
aspects are; financial benefit, strategic benefit, competitors, competence/resources, release theme,
ability to sell, etc. Requirements aspects help in decision-making, multiple aspects are usually being
prioritised and lack of such guidelines would make proceeding difficult (P. Berander, & Andrews, A.,
2005; L. Lehtola, Kauppinen, M., & Kujala, S., 2004).

2.2.2 Requirements Prioritisation Methods
A number of requirement prioritisation methods exist, such as; analytic hierarchy process (AHP)
(Vargas, 1990), hierarchy AHP, spanning tree matrix, bubble sort, binary search tree, priority groups
(J. Karlsson, Wohlin, C., & Regnell, B., 1998), MoSCow, simple ranking (S. Hatton, 2008), and planning
game for extreme programming (Lena et al., 2007). Some of the decision making frameworks are;
EVLOVE (Greer, 2004), cost-value approach (J. Karlsson, & Ryan, K., 1997) and Quantitative Win-Win
(Gunther, 2002).

Requirement prioritisation methods can be grouped into two categories, methods using an ordinal
or ratio measurement scale, these methods can be used as stand-alone utilities or use cost-value
frameworks within these methods (J. Karlsson, Wohlin, C., & Regnell, B., 1998). The cost-value
approach takes into account cost and the customers value and gives the best return on investment
(ROI) in terms of customer satisfaction (L. Karlsson, Höst, M., & Regnell, B., 2006). Ratio scale are
considered to be a richer scale over ordinal scale, however richer scale are time consuming and slow
over the ordinal scale (L. Karlsson, Höst, M., & Regnell, B., 2006).

Some of the most common measurement scales are; nominal, ordinal, interval and ratio scale (S. S.
Stevens, 1946). The nominal scale uses numerals as labels, or a combination of words and numbers,
an example of this scale is the numbering of soccer players for identification. The ordinal scale uses a
range of numbers in rank-order, for example, assigning student grades between 1-5, where 5 is best.
The difference between the 5 and 4 is not necessarily the difference between 4 and 3 meaning the
ordinal scale is not invariant when it comes to equality of differences however the interval scale is,
for example, the difference between 20°C and 21°C is the same as 29°C and 30°C. A ratio scale is
richer, resulting in a higher level of information than the other scales since it satisfies equality of
intervals and equality of ratio, for example the distance between two cities is 10 miles, this distance
is twice the distance of 5 miles, but we cannot claim that 20°C is twice as warm as 10°C (J. Karlsson,
Olsson, S., & Ryan, K. , 1997).

Business aspects, customer satisfaction or technical aspects are some of the factors which influence
the definition of priority criteria. A case-based ranking approach is inspired by the case-based
reasoning approach. In a case-based ranking approach, elicitation of priority and requirement
analysis is done in parallel, the prioritisation criteria is acquired by examples rather than explicitly
encoded, meaning solutions are based on examples. AHP can be considered to use a case-based

20

ranking approach; however it would be impractical for relative comparisons when the number of
requirements increases (Avesani, 2005).

Value-oriented prioritization (VOP) is a quantitative method and takes into account the impact of the
specific business values of an organisation. This method eliminates arguments and discussions on
individual requirements by emphasising the core business values. VOP provides a higher granularity
to ordering the requirements (Azar, 2007).

In an investigation of requirement practices in six companies, information was seldom provided as to
why the requirement was relevant. Reasons for this are often not documented for fear of possible
rejection. All the companies did perform prioritisation, however they did not use any standardised
methods e.g. AHP / one hundred dollar($100)method etc. Some kind of attributes were used to
indicate priority and in some cases the person with authority took the decision (P. Berander, &
Andrews, A., 2005) In a field study of 10 organisations requirement prioritisation was undertaken
(M. Lubars, Potts, C., & Richter, C., 1993).

A survey of software development practices in New Zealand showed that development organisations
do use tools and spend time on feasibility, design and testing to provide a solution to the client’s
needs. However there was no explicit evidence of prioritization of requirements in practice in this
case study (Groves, 2000). In determining the software requirement practice the size of the
development project and the software development team need to be considered (Phillips, 2005).
Some of the most important requirement prioritisation methods are discussed in detail below.

2.2.2.1 Analytical Hierarchy Process (AHP)
AHP was developed by Thomas Saaty in 1980. AHP is a structured approach for dealing with complex
problems. AHP helps to determine solutions rather than prescribing corrective decisions. (L.
Karlsson, Höst, M., & Regnell, B., 2006; Saaty, 1980). AHP is considered to be a powerful and flexible
mathematical decision making tool as it provides structure to the decision making process (Forman,
2008; Hatton, 2008).

AHP is powerful in dealing with competing criteria, when decisions need to be weighed up against
multiple criteria and has found application in decision theory. This tool is useful when there are
conflicting requirements (Vargas, 1990). A wide range of problems from simple to complex and
capital intensive decisions, an important feature of AHP is its application in measurement of vague
criteria along with the real ones through Ratio scales (Vargas, 1990).

AHP is highly sophisticated and suitable for complex and large scale projects. AHP is the only method
which organises the requirements into hierarchies and then uses a pair-wise comparison, which is a
promising approach, since it’s based on a ratio scale, is fault tolerant and includes consistency
checking (L. Karlsson, Höst, M., & Regnell, B., 2006; Vargas, 1990).

AHP and $ 100 methods use a ratio measurement scale and both these techniques scale well with
small sets of requirements. Unlike other techniques, AHP can be used iteratively. AHP transforms the
ordinal scale information into a ratio scale through a chain of mathematical operations. A numerical
weight is given for each requirement in the hierarchy. This ability distinguishes AHP from the other
prioritisation methods.

21

AHP uses pair-wise comparison to set priority against the objectives or alternatives. The
requirements are ordered using an ordinal scale (see Table 1) to show the relative importance to
one another to signify the importance of one requirement over the other. (S. Hatton, 2008).

A ratio scale measurement is richer than an ordinal scale, as it provides more information about the
priority due to relative comparisons. Thus there is a cost of using simple techniques which provide
ordinal ranks and complex techniques providing relative importance of requirements. In a multi-
criteria decision-making problem, AHP does a pair-wise comparison within a hierarchy to determine
the “Relative Importance” of the requirement. The $ 100 technique (P. Berander, & Andrews, A.,
2005) uses a ratio scale measurement and provides a “Relative Difference” between the different
requirements (Vargas, 1990).

AHP is comparatively difficult and time consuming when compared with other methods; however
the results of this technique are more reliable and accurate than other techniques. AHP offers a
precise analysis of customer requirements but the cost of doing pair-wise comparisons is higher (S.
Hatton, 2007b). Automated tool support is recommended for AHP to reduce the clerical overhead
involved in application of this approach.

Techniques using ratio scales of measurement cannot be compared with techniques using ordinal
scales since the measurement scale differs. In one study it was concluded that AHP was superior to
numeral assignment in regards to time consumption, while studies by Karlsson et al. and Ahl (L.
Karlsson, Berander, P., Regnell, B., & Wohlin, C., 2004) showed that Planning Game (which basically
is an extended way of doing numerical assignment where ranking is also introduced) was superior to
AHP (P. Berander, Khan, K.A., & Lehtola , L., 2006). AHP & $ 100 techniques yield more accurate
results over other techniques.

However this technique is best with a small set of requirements, when the number of requirements
increase pair-wise comparisons increase thereby increasing the load on this technique, making the
calculation complex (S. Hatton, 2008). Pair wise comparisons are time consuming to perform for
large sets of requirements (L. Karlsson, Höst, M., & Regnell, B., 2006). Techniques such as “Local
Stopping Rule” (LSR) & “Global Stopping Rule” (GSR) (J. Karlsson, Olsson, S., & Ryan, K. , 1997) are
used to reduce the number of comparisons, and a cost-value framework enhances the process, thus
making the effort efficient. However, AHP is still difficult and time consuming, but has been found by
some authors to be the best technique (J. Karlsson, Wohlin, C., & Regnell, B., 1998).

At a high level, AHP has two phases, organising requirements into a hierarchy and then evaluating
the priorities. Domain knowledge is essential in designing the hierarchy, and the results of this
exercise may differ when carried out by two different people due to user preferences.

AHP is a decision making method carried out in three prioritization stages; in the preparation stage
all exclusive pairs of requirements are outlined; during the execution stage all the outlined
requirements are compared; during the evaluation phase, using the scale in table 1 requirements,
requirements are determined in priority over others and to what extent. In the presentation stage
the results of the execution are presented. (J. Karlsson, Wohlin, C., & Regnell, B., 1998).

22

Table 1: Fundamental scale used for pair-wise comparison in AHP (J. Karlsson, Wohlin, C., & Regnell, B., 1998)
Intensity of Importance Description
1 Of equal importance
3 Moderate difference in importance
5 Essential difference in importance
7 Major difference in importance
9 Extreme difference in importance
Reciprocal If requirement i has one of the above

numbers assigned to it when
compared with requirement j, then j
has the reciprocal value when
compared with i.

After the “Intensity of Importance” scale is assigned to each of the n requirements of a software
project, the n (n-1)/2 formula is used to determine the priority of the requirement. To illustrate AHP
let us assume that we are developing an ATM which has four candidate requirements:

Table 2: System Requirements
Requirement Description
R1 ATM will allow withdrawal of cash
R2 ATM will allow balance checking
R3 ATM will accept other eftpos cards
R4 ATM will allow transfer of cash

The requirements are then placed into an AHP matrix table as shown in Table 3 which allows us to
assign “intensity of importance” values from Table 1. The highlighted R1’s are the same requirement
and the relationship between these requirements is equal, therefore we insert 1 “Of equal
importance” therefore we insert 1 at all diagonal positions.

Table 3: AHP Pair-wise comparison matrix
Requirement R1 R2 R3 R4
R1 1 5 or 0.50
R2 1
R3 1
R4 1

Value 5 “Essential difference in importance” is inserted into R2 to indicate the relationship between
R1 and R2 which means that R1 is 5 times more important than R2. For example if we replace value
5 from R2 to 0.50 which means that R1 is 5 times less important than the R2 requirement.

In Table 4, decimal value 0.50 is inserted to indicate the relative importance between R2 and R1,
which means that R2 is half as importance than R1. Further averaging is done by totalling the column
values.

Table 4: Column Total
Requirement R1 R2 R3 R4
R1 1 5 5 8
R2 0.50 1 3 3
R3 0.50 0.30 1 7
R4 0.80 0.50 0.50 1
Totals 2.90 6.80 9.5 19

23

The total value of R1 i.e. 2.90, is then divided by the R1 value 1, for example 1/2.90 = 0.34 derives
the normalized value.

Table 5 : cell percentages
Requirement R1 R2 R3 R4
R1 1/2.90=0.34 5/6.80=0.73 5/9.5=0.52 8/19=0.42
R2 0.50/2.90=0.17 1/6.80=0.14 3/9.5=0.31 3/19=0.15
R3 0.80/2.90=0.27 0.30/6.80=0.04 1/9.5=0.10 7/19=0.36
R4 0.60/2.90=0.20 0.50/6.80=0.07 0.50/9.5=0.05 1/19=0.05
Totals 2.90 6.80 9.5 19

The cell values are transferred into Table 5. The rows are totalled and then divided in the row total
column, the resulting value is the priority of the requirement.

Table 6: AHP Pair-wise comparison matrix
Requirement R1 R2 R3 R4 Row Total
R1 0.34 0.73 0.52 0.42 2.01/4=0.50
R2 0.17 0.14 0.31 0.15 0.77/4=0.19
R3 0.27 0.04 0.10 0.36 0.77/4=0.19
R4 0.20 0.07 0.05 0.05 1.45/4=0.36

The final prioritized requirements are shown in Table 7:

Table 7: Requirements Priority
Requirement Description Priority
R1 ATM will allow withdrawal of cash 50%
R2 ATM will allow balance checking 19%
R3 ATM will accept other eftpos cards 19%
R4 ATM will allow transfer cash 36%

This method has proved to be precise, effective, and produces informative and reliable results (J.
Karlsson, Wohlin, C., & Regnell, B., 1998). Despite its effectiveness, AHP has essential downsides
which hinders its usage in large scale development projects since all exclusive pairs are to be
compared, the required effort could be substantial, however, AHP scale well with small sets of
requirements therefore is useful in small scale projects (J. Karlsson, Wohlin, C., & Regnell, B., 1998).

Pair-wise comparison makes the process fairly insensitive to judgemental errors and the resulting
priorities are based on a relative ratio scale, which allows for a useful assessment of requirements (J.
Karlsson, Wohlin, C., & Regnell, B., 1998).

2.2.2.2 Hundred-dollar test
AHP first groups the hierarchies and then evaluates them whereas the $ 100 approach involves only
one step i.e. it only distributes the available dollars among the requirements, yielding a “Relative
difference” between the requirements. Therefore $ 100 is not as complex as AHP, but it is still
powerful since it uses a ratio scale for measurement. This approach is highly suitable for individuals
or groups of stakeholders (S. Hatton, 2008), unlike AHP which is built for large projects with multiple
stakeholders. This technique will scale well with small sets of requirements. The results of this

24

technique are reliable. Unlike AHP, however iterative use of the $ 100 approach in the life cycle of
the project will not scale.

The $ 100 techniques is useful when there are numerous ideas and some them need to be carried to
the next stage, or when there is limited time or is to be used in the early stages of a project e.g. to
reach a consensus on the “mission statement” (Cowley, 1997).

This method is simple and straight forward however it does not work in an iterative process in a
project because once the results are known, participants will bias their input the next time around or
allocate more dollars to their favourite feature which didn’t make it into the list in the first iteration.
Sometimes we may have to limit the amount spent on a single feature otherwise participants may
influence some of the requirements which will ultimately acquire a high priority. Further, we may
allow higher limits so long as we have the opportunity to understand where the really big votes
came from. They may represent high-priority needs from a limited stakeholder community
(Leffingwell, 2003).

2.2.2.3 Cumulative Voting
"Cumulative voting" and the $ 100 method are fundamentally the same, except that this techniques
has $20 to spend between the requirements. This technique is straight forward and simple,
stakeholders are given imaginary units or 20 dollars to distribute between requirements. The
outcome of this process is requirements are prioritized on a ratio. This technique is well suited to
cases where there are few requirements, if you have 4 requirements, there are on average five
points to distribute for each requirement (P. Berander, & Andrews, A., 2005)

A requirement is said to have higher priority when more units or dollars are assigned to it. However
when there are more groups of requirements to prioritize, representing them on a ratio scale
becomes a challenge (P. Berander, & Andrews, A., 2005). In a large scale prioritization there is a
possibility of miscalculation if the allocated units or 20 dollars do not total to 20$. Limiting the
allocation of units or dollars per requirement will eliminate the risk of stakeholder’s tendency to
heavily allocate on a requirement which might influence the result. However stakeholders may be
forced to not prioritize according to their real priorities (P. Berander, & Andrews, A., 2005).

To illustrate the "Cumulative voting" technique (Ayad, 2008) let’s consider the previous example in
Table 2 (section 2.2.2.1) with our four candidate requirements. The requirements units or dollars are
assigned based on the “Importance” aspect, for example, if a requirement is twice as important as
another requirement then this requirement gets the appropriate priority.

Table 8 : Cumulative Voting
Requirement Units/$$ Priority
R1 0 1
R2 0 1
R3 0 1
R4 0 1
Total Units/$$ 20

25

Table 9 displays requirements with the assigned values, R1 has the highest units/$$ therefore has
the 1st priority and R4 has the least units/$ assigned, meaning it has the least priority amongst the
requirements.

Table 9 : Allocated units / $
Requirement Units/$$ Priority
R1 8 1
R2 6 2
R3 4 3
R4 2 4
Total Units/$$ 20

The total units/$$ cannot exceed more than 20, zero can be assigned to requirement to indicate that
it is not important.

The final prioritized requirements are displayed in Table 10 below, its recommend to sort the
requirements by priority for visibility and to ensure that requirements are not over assigned.

Table 10 : Requirements Priority
Requirement Description Units/$$ Priority
R1 ATM will allow withdrawal of cash 8 1
R2 ATM will allow balance checking 6 2
R3 ATM will accept other eftpos cards 4 3
R4 ATM will allow transfer of cash 2 4

2.2.2.4 Numerical Assignment
This approach is very easy to use, and less time consuming than ratio scale and ranking techniques.
This approach uses an ordinal scale and groups requirements into priority groups. Therefore
requirements grouped in one category appear to have equal priority and there is no information
regarding the relationship between the requirements. Unlike AHP & $ 100, requirements in this
approach are prioritised based on the “perceived importance” rather than the “relative importance”
(P. Berander, & Andrews, A., 2005).

Restricting the number of requirements per group is advisable since the stakeholder may think that
85% of the requirements are critical. This approach can be used on less complex or non-sensitive
data (S. Hatton, 2007b).

This technique assigns symbols to each requirement representing perceived importance and
classifying requirements into priority groups such as mandatory, desirable or inessential, or
essential, conditional or optional (IEEE, 1998; J. Karlsson, 1996).

It’s possible to assign numerical values between 1-5, with the 5th ranked requirement being the most
important, however this approach does not provide information about the relationship between the
requirement therefore requirements in a priority group appear equally important. (L. Karlsson, Höst,
M., & Regnell, B., 2006). The values 1-5 are assigned as follows:

26

Table 11 : Numeric Assignment Scale Range (J. Karlsson, 1996)
Scale Range Description
5 Mandatory (the customer cannot do without it).
4 Very important (the customer does not want to be without it
3 Rather important (the customer would appreciate it).
2 Not important (the customer would accept its absence).
1 Does not matter.

We will apply the scale range 1-5 to our example requirements to illustrate the numeric assignment
technique as shown in Table 12.

Table 12 : Requirements priority according to the numeral assignment technique
Requirement Priority
R1 5
R2 5
R3 4
R4 3

Requirements R1 & R2 have higher priority over R3 & R4 and R3 has higher priority over R4.

2.2.2.5 Ranking
This method is simple and easy to use, like numerical assignment, and top ten approaches, when
compared to ratio scale techniques. Technique scales well with small sets of requirements (S.
Hatton, 2008) therefore it can help sophisticated techniques such as AHP create hierarchies. Unlike
the numerical assignment approach, this technique ranks requirements without ties. It’s not possible
to see the relative difference between ranked elements as in AHP. Research shows that there is
difficulty in remembering more than seven elements (S. Hatton, 2007b). Mathematical calculations
such as addition and multiplication on the ordinal ranked requirements do not produce meaningful
results, however this ranking supports statistical operation, for example, taking the mean priority of
the requirement, which might result in a tie between requirements (A. Aurum, & Wohlin, C. , 2005).
This techniques yields medium level granularity in prioritising requirements when compared to AHP
and $ 100 approach.

Numerical assignment, groups requirements into priority groups whereas the ranking technique uses
a unique ordinal scale to rank requirements without any ties in rank. The list of ranked requirements
could be achieved in a numbers of ways, for example, by using the bubble sort or binary search tree
algorithms. This technique suits single stakeholder situations however there might be problems
aligning several different stakeholders’ ideas using this method, since this method doesn’t work if a
single requirement is ranked the same way twice (P. Berander, & Andrews, A., 2005; J. R. Swisher, &
Jacobson, S. H. , 1999; J. R. Swisher, Jacobson, S.H., & Yücesan, E., 2003).

Table 13 : Requirements priority according to the Ranking method
Requirement Priority
R1 5
R2 4
R3 3
R4 2

27

Unlike numeric assignment, this method does not allow duplicate ranking priority as shown in the
Table 13.

2.2.2.6 Top-Ten
This approach is extremely easy to use compared with all the above approaches. This approach uses
neither the ordinal nor ratio scale of measurement. In the ranking approach the requirements are
prioritised 1-n and in the numerical approach groups of requirements are created, in this approach
the top-ten requirements are picked by multiple stakeholders, without assigning any order of
priority, therefore this technique is useful when multiple stakeholders of equal importance exist
were each stakeholder can pick their top ten requirements. However the downside of this approach
is that unnecessary conflict arises when some stakeholders get support for their top priorities and
others only for their third priority (P. Berander, & Andrews, A., 2005).

This approach yields neither “Relative” nor “Perceived” importance of the requirements (as opposed
to AHP, $ 100, Ranking, Numerical) rather this approach tries to satisfy multiple stakeholder,
therefore, there is a possibility of missing crucial requirements. This approach might be useful when
used in the early stages of the project (P. Berander, & Andrews, A., 2005; S. Hatton, 2008).

Table 14 : Requirements priority according to the Top 10
Requirement Priority Stakeholder
R1 1 SH1
R2 2 SH1
R3 3 SH1
R4 4 SH2

Stakeholder (SH 1) has managed to get the top three requirements into the product whereas SH 2
managed to get only one requirement into the product, this might spark conflict in the organisation.

2.2.3 Comparison of Requirements Prioritisation Methods
Requirement prioritisation methods use ordinal or ratio scales. Ordinal scales where requirements
are ordered is the least powerful, ratio scales are considered to be a higher level of measurement
and are more powerful since they are able to measure the priority of one requirement over another
based on a relative comparison, making an highly sophisticated evaluation and calculations possible
(P. Berander, & Andrews, A., 2005; Fenton, 1998). Table 15 summarises the methods based on scale,
granularity and sophistication. More sophisticated techniques are richer and more time consuming
therefore they are better used when dealing with sensitive analysis for conflict resolution or to
support critical decisions (P. Berander, & Andrews, A., 2005).

Table 15 : Prioritisation techniques (P. Berander, & Andrews, A., 2005)
Techniques Scale Granularity Sophistication
AHP Ratio Fine Very Complex
Hundred-dollar test Ratio Fine Complex
Ranking Ordinal Medium Easy
Numerical Assignment Ordinal Coarse Very Easy
Top-ten -- Extremely Coarse Extremely Easy

28

Combining some of the prioritization techniques (see table 15) is possible in order to make the
requirement prioritization process easy and efficient. An example of this is the Planning Game in
eXtreme programming (XP), where a combination of numerical assignment and ranking techniques is
used, and the requirements are grouped by priority and then ranked within each group. Studies
compared the extreme programming Planning Game technique with pair-wise method, and showed
planning game to be superior to pair-wise comparisons (P. Berander, & Andrews, A., 2005; L.
Karlsson, Höst, M., & Regnell, B., 2006).

In another approach, requirements are grouped into “Must”, “Optional” and “More Attention”
categories. In this approach all requirements do not require prioritisation using more sophisticated
techniques, simple techniques can be applied to the optional category and more sophisticated
techniques such as AHP, $ 100 and ranking can be applied to the “More Attention” group. The
numerical assignment approach can be used in AHP to create the groups within the hierarchical
structure and in the $ 100 approach to create the different groups within the hierarchy (P. Berander,
& Andrews, A., 2005).

Using a combination of methods at different stages of the software project is likely to yield useful
results, however selecting the right method for a particular stage of the project require experience.
Each of the prioritization method outputs different types of information e.g. simple ranking provides
order of preference while $ 100 and AHP magnitude of preference and the others, hierarchical order
of preference of groups, some methods can be used iteratively while the others cannot (S. Hatton,
2007a).

A combination of methods at different stages of a software development project is illustrated with
the following example. At the early stage, high level requirements do not require highly
sophisticated methods such as AHP or $ 100 as there would be a limited understanding of these
requirements in this stage of the project. MoSCoW is highly suitable at this stage for grouping
requirements into Must have, Should have and Could have categories, and is an excellent starting
point and easy to use (S. Hatton, 2008).

In the middle stage, the stakeholder and the development team have a greater understanding of the
requirements, must and should have requirements can be further investigated using $ 100 or simple
ranking techniques. Simple ranking is feasible on small groups of requirements within the must,
should and could have requirements (S. Hatton, 2008).

At a later stage, when the requirements are fully fleshed out and the design specification is being
worked out, there would be a higher degree of requirement understanding. In large and complex
projects there is possibility of conflicting requirements surfacing during the design phase, which
indicates that the early prioritization efforts are not sufficient. Therefore the rich and highly
sophisticated approach AHP, is recommended for this stage, though it is time consuming, it is known
for its effectiveness when decisions need to be weighed up against multiple criteria. It is highly
recommended for resolving conflicting requirements and yields accurate and fine grained results (S.
Hatton, 2008).

2.2.3.1 AHP
Propagation of priorities is only possible with AHP. This is the only method which decomposes the
problem area into a hierarchy of criteria and alternatives. AHP states the objective, defines the

29

criteria and picks the alternatives. The judgement of priority is determined by the relative ranking,
similar to $ 100, this is the only method which uses both qualitative and quantitative criteria to
derive priority.

Unlike other prioritisation methods, AHP can be employed iteratively. Most of the prioritisation
methods employ human judgment to determine the priority of the requirements, for example
numeric assignment, $ 100 etc prioritise by perceived priority rather than relative importance, while
AHP offers relative importance between alternatives, and helps stakeholders to visualise the
problem in a hierarchy. The simple ranking methods provides order of preference while AHP and $
100 provide the magnitude of preference.

AHP is recommended for multiple decision makers, while the other prioritisation methods require
appropriate judgement to suit the context. Though AHP yields fine granular results which are based
on a relative scale, like $ 100 method, large sets of requirements make the pair-wise comparisons
cumbersome, making this method very complex.

2.2.3.2 Hundred-dollar test
This method is simple compared to AHP since its uses human judgement to distribute the available
dollars between the requirements. While this technique does a comparative analysis for
prioritisation like AHP, it does not structure the problem area into hierarchy and alternatives.

The results of the prioritisation of two stakeholders may differ due to personal preferences,
therefore the results of prioritisation is based on the perceived importance rather than relative
importance. $ 100 yields relative difference and fine granular results like AHP. This technique is
straight forward and simple compared to AHP. Like AHP, this technique does not scale with large
sets of requirements. This technique cannot be used iteratively on the same set of requirements as
AHP can.

2.2.3.3 Ranking
AHP and $ 100 methods use a ratio measurement scale while this method uses an ordinal
measurement scale. Requirements are ranked without a tie, meaning, the relative difference is not
available as in AHP or $ 100 method. This technique does not scale when multiple stakeholders exist.
The operational overhead is low compared to AHP and $ 100 since this method orders requirement
by assigning priority, this is a simple and easy method.

2.2.3.4 Numerical Assignment
Like Ranking, this technique uses an ordinal measurement scale. Priority groups are created based
on the individual perceived importance, therefore the relative importance is missing in this
approach, as in the ranking technique. The priority of requirements in each group seems to be of
equal importance.

2.2.3.5 Top-ten
This technique picks the top-ten requirements without using an ordinal or ratio scale, unlike any of
the prioritisation techniques discussed so far. This technique is suitable for multiple stakeholders
with equal importance, therefore it does not offer any conflict resolution like AHP. This technique
might be useful in the beginning of the project to define high level requirements, while AHP or $ 100
methods could be used in the later stage of the project.

30

2.2.4 Challenges in Requirements Prioritisation
Requirements prioritisation is a complex communication and negotiation process, the challenges in
requirements prioritisation stem from informal practice and the ambiguous nature of the process
since “Requirements Prioritisation” and “Priority” can, in practice, imply several different meanings
(L. Lehtola, Kauppinen, M., & Kujala, S., 2004).

Though requirements prioritisation is a crucial aspect of product development, this process is often
not well done for reasons such as difficulty in assigning / modifying priority, selecting an appropriate
method for a particular stage of the project and communicating priorities. A possible reason for this
is a lack of proven technique (Davis, 1990; L. Lehtola, Kauppinen, M., & Kujala, S., 2004).

Determining an optimal set of requirements for a release of a software system is difficult as
requirements may depend on each other in complex ways, therefore prioritising the dependent
requirements presents a challenge (Carlshamre, 2001)

The scope of large scale projects present challenges in comprehension of the problem domain,
integrating different legacy systems, understanding the requirements of multiple stakeholders who
have diverse culture, socio-economic backgrounds and may even be globally distributed (Feiler,
2006).

In a large system with multiple stakeholders distributed across the world, and requirements
abstracted at different levels, gathering, resolving and prioritising such requirements is challenging
(B. H. C. Cheng, & Atlee, J. M., 2007; Feiler, 2006).

Requirements prioritisation involves a great deal of invisible decision making, stakeholders may
possibly avoid this process for fear of not implementing their favourite requirements. This is more of
a political process than a technical one (Andriole, 1998; P. Berander, & Andrews, A., 2005; L. Lehtola,
Kauppinen, M., & Kujala, S., 2004).

2.2.4.1 Assigning Priority
Prioritising requirements is an important activity in requirement engineering, due to high customer
expectations, a time and resource constrained environment, and pressure to produce the best
return on investment and customer satisfaction(L. Karlsson, Höst, M., & Regnell, B., 2006; Port,
2008). However assigning priority is difficult for several reasons (M. Lubars, Potts, C., Richter, C.,
1993) .

The qualitative and the quantitative aspects may be considered for assigning priority, in some cases
assigning a quantitative value as priority to the requirement may mean that the qualitative aspect is
missing from the process (L. Karlsson, Höst, M., & Regnell, B., 2006).

Assigning priority to requirements with multiple stakeholders and their personal expectations is
challenging, since some stakeholders may not want to compromise. On the other hand, it gets even
more complex when stakeholders know that low priority requirements may never be implemented
(Wiegers, 2003).

Requirements are fully fleshed out as the project progresses (Hatton, 2008). Requirements change in
time, that means that the priority of the requirements may change with a change in business
requirements (Kaindl, 2002).

31

A lack of business domain knowledge or a lack of understanding of the requirements may present
challenges in assigning requirement priority (M. Lubars, Potts, C., & Richter, C., 1993).

Large sets of requirements present challenges in assigning priority to requirements (P. Berander, &
Andrews, A., 2005), as understanding the scope of the project, multiple stakeholders, heterogeneous
cultures and decentralised organisations (Feiler, 2006) make the prioritisation process difficult.

Assigning the real priority to requirements may not be possible at all times, since requirement
engineering is more of a political process than a technical one (Andriole, 1998; Sommerville, 2007),

There is lack of support tools for prioritising requirements. There is a clerical overhead in managing
even a modest number of requirements, for a large-scale project, automated computer based
support is essential (J. Karlsson, Olsson, S., & Ryan, K. , 1997)

2.2.4.2 Selecting the Right Prioritisation Methods
There are numerous methods for prioritizing requirements, choosing the appropriate method can
pose challenges, one of the reason for this is a lack of research in this area, often requirement
engineers learn RE practice on the job (Jiang, 2005).

The numerous prioritization methods, each produce a different degree of information about the
stakeholders’ preferences. The most difficult task is to pick a prioritization method which suits the
stage of the project and the amount of information required. The criteria for selecting a
prioritization method is based on criteria such as, the project development methodology being used,
the time available, the amount of information known about the requirements, the stage the project
is at and the amount of information known about priority of the requirements. Therefore choosing
the most appropriate method is quite difficult (S. Hatton, 2007b).

Methods like AHP can be used iteratively during the life cycle of the projects unlike the $ 100
method. Some development methodologies requirement prioritisation is done only once, while an
iterative prioritisation approach may help to realise the full benefits. However selecting a method
for iterative use or selecting appropriate prioritisation methodology which would suite the stage of
the project is a challenge (S. Hatton, 2008).

Selecting a particular prioritization method for a given circumstance or iterative approach is not very
clear. A method for prioritization could be selected simply based on the personal liking of the
developer, rather than the characteristics of the project. Very little research has been done to help
in technique selection based on project attributes (Jiang, 2005).

The stage of project development determines the amount of information known by the stakeholder
and the developer; meaning the requirements are better defined and understood as the
development process progresses. When the delivery schedule is a major issue, faster methods for
prioritization are required, and the details of the requirements are sacrificed. However, selecting
faster prioritization methods to suit a given stage of the project is a challenge (S. Hatton, 2008).

There is a lack of flexibility when development methodologies have built-in prioritisation techniques,
which may not be suitable for a particular stage of the project (S. Hatton, 2008), in this case, there is
no opportunities to select any other prioritisation method.

32

In previous studies on prioritisation methods, AHP was found to be difficult and time consuming, but
was found to be the best technique (S. Hatton, 2007b). When there is demand for delivery in a
limited time, application of a robust and time-consuming method might prove fatal to the project,
however, application of much faster methods may mean sacrificing quality. A lack of knowledge of
both the simple and complex prioritisation methods will add to the challenge.

Some positive results from combining various requirement prioritisation methods for application at
different stages of a project have been gained (Jiang, 2005; Mishra, 2008). However, an in-depth
understanding of the various methods to be combined poses a challenge.

2.2.4.3 Prioritising Large Sets of Requirements
Prioritising a large set of requirements requires robust methods, such as AHP, which defines the
problem at a high level, since it decomposes the problem into a hierarchy of criteria and
alternatives, and this is a step towards structuring the problem domain and providing visibility to the
stakeholders. The pair-wise comparison presents the best alternative (E. W. L. Cheng, & Li,H., 2001;
Vargas, 1990).

Structuring the requirements into hierarchies has several benefits; firstly in large scale or complex
projects, sets of requirements are likely to be elaborated as a layered hierarchy. Secondly these
layers of hierarchy provide an appropriate level of abstraction to the stakeholders. Finally the
layered hierarchy reduces the number of comparisons in the evaluation phase (Saaty, 1980). The
process of comparison produces a relative scale of measurement of the priority of each
requirement.

Though AHP is robust and suitable for large scale projects, it cannot be used at every stage of the
project. Combining requirement prioritisation techniques can make the process easier and more
efficient. The application of AHP iteratively, in the later stages of the project, when the requirements
are fully fleshed out has benefits (P. Berander, & Andrews, A., 2005; S. Hatton, 2008)

Tools for consistent checking can be highly effective for detecting errors in requirements
specifications. Modelling large, complex systems from stakeholders’ different viewpoints gives rise
to consistency behaviour (Heitmeyer, 1996) which can be classified into: horizontal, meaning the
different viewpoints must not have contradictions, and vertical, meaning, refining or creating new
versions of specifications consistency with previous version is maintained. Inconsistency may be the
result of logical errors in the requirements (Heimdahl & Leveson, 1996).

There are some approaches to managing the inconsistency in requirements which help in large scale
requirements sets (Engels, 2001). Yet in practice lack of appropriate tools which can cope with the
situation (Nentwich, 2003).

AHP eliminates inconsistent responses. According to Saaty (1980), Inconsistency refers to a lack of
transitivity of preference (Saaty, 1980). Transitive consistency means, when A is better than B, and B
is better than C, then A is better than C. AHP eliminates any inconsistencies in requirements and
therefore provides a higher consistency (E. W. L. Cheng, & Li,H., 2001) it helps to select consistent
requirements and eliminate conflicts.

AHP is the recommended method for prioritising large scale requirements at a granular level. This
method combines the qualitative and quantitative approaches into a single methodology. AHP

33

decomposes the unstructured problem into a decision hierarchy and then employs a iterative pair-
wise comparison (E. W. L. Cheng, & Li,H., 2001). This method is therefore, appropriate for dealing
with large sets of requirements since it groups the requirements into manageable hierarchical
groups.

2.3 Potential Solutions
We cannot rely on a single technique to solve RE problems. Methodology for Requirement
engineering Technique Selection (MRETS) is one process which helps in the selection of an
appropriate combination of RE techniques. The results of combining RE techniques look promising
(Jiang, 2005).

AHP clusters requirements into a hierarchy, which abstracts the problem in a layered hierarchy
which helps the stakeholders and developers conceptualize a complex problem. AHP has proved to
be a sound basis for prioritising requirements. The prioritised requirements are determined on a
ratio scale based on their relative importance (J. Karlsson, Wohlin, C., & Regnell, B., 1998). Since AHP
may not scale with large sets of requirements, using techniques to reducing the number of
comparisons has been suggested (J. Karlsson, Olsson, S., & Ryan, K. , 1997). Combining different
prioritization techniques at various stages of the project improves the process (S. Hatton, 2008).

2.3.1 Requirements Clustering
A system can be decomposed into less complex, manageable, functional components by applying a
"divide-and-conquer" concept which helps to decompose the system, making it easier to manage its
complexity (P. Hsia, Hsu, C.T., Kung, D.C., & Holder, L.B. , 1996).

Conceptualizing requirements for a large scale project is a challenge. Thus it is important to
decompose the systems into a set of modules or clusters to manage a large-scale complex
application. Building modular software systems is an on going design issue (Al-Otaiby, 2005).

Requirements clustering allows for the decomposition of large scale-systems into user recognizable
components, where each component is able to satisfy parts of the system independently (P. Hsia, &
Yaung, A. T., 1988).

Some requirement clustering techniques are discussed in this section. Requirements scenarios are
expressed in English and are clustered with those with which it has a strong functional relationship
within logical groups based on the quantitative attribute of the scenario, and as having a weak
relationship with requirements in other cluster groups (Al-Otaiby, 2005). Rapid prototypes are
created in Scenario-Based Prototyping, where requirements are clustered based on the scenario (P.
Hsia, & Yaung, A. T., 1988).

Some of the standard data mining clustering algorithms such as K-Means, agglomerate hierarchical
clustering, bisecting, and probabilistic techniques can be used to cluster requirements, however the
drawback to data mining are the highly dimensional, sparse, noisy data sets, that arise from
ambiguity in requirements (Duan, 2008).

In an incremental development and delivery approach, requirement clustering is done using Entity
Relation (ER) modelling, scenarios and formal specification notation Z. Firstly all the possible
scenarios are prepared to cover the full system operations, then each scenario is presented as a
scenario tree. Using an ER diagram, the systems data model is created. Secondly, this ER model is

34

mapped onto a Z state schema. Finally a six-step requirement clustering algorithm is applied to
further refine the clusters (P. Hsia, Hsu, C.T., Kung, D.C., & Holder, L.B. , 1996).

2.3.2 Proposed Clustering Technique
Requirements traceability in requirement engineering is about understanding how high level
requirements are transformed into low level requirements. “Requirements Traceability” deals with
relationships between high and low level requirements as shown in Figure 7, linking user
requirements (UR) to system requirements (SR).

Figure 7: Elementary Traceability (Hull, 2005)

Figure 7 illustrates elementary traceability; a single UR is linked to three SRs implying that the three
SRs are required to satisfy the linked UR. The purpose of this activity is to create relationships
between layers of information to ensure that the stakeholders requirements are met by the system
requirements (Hull, 2005; Lamsweerde, 2001).

Figure 8 illustrates traceability link relationships between lower levels and higher level requirements,
tracing back to the stakeholders’ requirements. The traceability links flow downwards through the
different layers of requirements and across to the test information (Hull, 2005).

Stakeholder
Requirements

Acceptance
Test Plan

System
Requirements

System
Test Plan

Subsystem
Requirements

Integration
Test Plan

Component
Requirements

Component
Test Plan

Im
p
ac

t
A
n
al
ys

is

D
er
iv
at
io
n
 A
n
al
ys

is

Impact Analysis

Derivation Analysis

Coverage
Analysis

Are all
requirements
covered by

tests?

Figure 8 : Requirements Traceability (Hull, 2005)

35

Traceability linking can be used for various kinds of analysis. Creating traceability links between
paragraphs of a document or between objects in a requirement database has value for system
engineering, traceability links help analysis of impact, coverage and derivation to be performed and
enhances the requirement management process (Dick, 2000) .

Impact analysis: This is change management process for determining the impact on artefacts when
the requirements are changed.

Derivation Analysis: Provides reasons for the existences of artifacts.

Coverage Analysis: Ensures that all requirements are covered.

The meaning of these relationship links is used to explain how one object may be impacted on by
changes to another, however the semantics of these links lack rational association with the
relationship, therefore they are not descriptive enough to explain if one or more SR’s are required to
satisfy the UR. There is therefore a need for deeper and richer semantics in elementary traceability
relationships.

It is difficult for a non-technical person to determine the validity of the traceability relationship links,
therefore it is important to present “Satisfaction Arguments” as a conjunction between the UR and
its corresponding SRs describing how each of the SRs could satisfy the UR. Satisfaction Arguments
have appeared in the literature in several forms. For example, correctness arguments appear in
(Jackson, 2001) and (Hall, 2005), satisfaction arguments in (Attwood, 2004; Hammond, 2001) and
(Hull, 2005).

Rich Traceability introduces satisfaction arguments into elementary traceability, with a detailed
description of how an SR will meet its corresponding UR (Attwood, 2004) as illustrated in Figure 9.

UR 21: The driver shall be able to
deploy the vehicle over terrain type 4A.

SR 15: The vehicle shall transmit power
to all wheels.

SR 32: The vehicle shall have ground
clearance of not less than 25 cms.

SR 53: The vehicle shall weigh not more
than 1.5 tones.

Terrain type4 specifies soft wet
mud, requiring constraints on
weight, clearance and power
delivery.

Figure 9: Rich Traceability (Hull, 2005)

Rich traceability has advantages over elementary traceability, since the links in the elementary
traceability structure lack a relationship rationale between the UR and the SR’s (Attwood, 2004).

Satisfaction arguments (SA) use conjunction (&) or disjunction (Or) operators as illustrated in Figure
10, to describe the relationship between the UR and its SR’s. The “&” operator indicates that all SR’s
are required to hold SA and the “Or” operator indicates that any one of the SR’s is sufficient for the
SA to hold (Attwood, 2004; Dick, 2000).

36

Figure 10: Rich Traceability Conjunction (Hull, 2005)

Though SA’s capture the relationship rationale they sometimes lack sufficient evidence to satisfy the
requirements, therefore SAs depend on domain knowledge (DK) (see Figure 11 in slanted box) for
validity. DK is an argument to support the SA, which is essentially a fact or assumption of the real
world and does not constrain the solution (Attwood, 2004; Dick, 2000).

The focus of the requirement phase is to comprehend the problem domain, which may possibly
involve a diverse range of people of heterogeneous culture, skill, knowledge and status (Coughlan,
2002). The complexity of the task is multiplied by the diversity (Stuart, 1997). Satisfaction arguments
enhance communication (Hull, 2005). The systems requirement specification is written for a specific
audience, therefore complexity should be considered while developing satisfaction arguments.

Rich traceability is a many-to-many relationship, the highlighted system requirements flow into
more than one SA, meaning that these system requirements satisfy more than one UR and need
special attention or, in technical terms, these are reusable software components of high priority.

Figure 11: Rich Traceability as a clustering technique (Hull, 2005)

As illustrated in Figure 11, SRs are clustered by their corresponding SA’s, therefore rich traceability
provides us with an inherent clustering ability, which then allows the priority assigned to an SA to
propagate to its SR’s below and UR above, it further propagates to its dependent SA.

Both elementary and rich traceability provide an inherent clustering technique enabling propagation
of priorities from URs or SA to the SR as illustrated in Figure 11. However, prioritising SAs with AHP

37

has benefits over prioritising UR’s with AHP in elementary traceability, due to the rationale
associated with the relationships of the SA.

2.4 Summary
Systems engineering is about creating solutions for problems, while RE is a subset of system
engineering. Software engineering deals with production of software from the early phase of the RE
process to maintenance of the system, post production. Software engineering spans across system
and requirement engineering, therefore there is an overlap.

RE consists of two processes, requirements development and requirements management.
Requirements elicitation, analysis, specification and validation are subsets of requirements
development. Feasibility studies are carried out as a first phase of the RE process, in a linear
Requirement development process. Feasibility studies are carried out prior to requirement
elicitation which is in turn followed by requirement specification and validation. The spiral
requirement development process is a three stage iterative model, revolving around requirements
elicitation, specification and validation.

The requirements elicitation process is again a, four stage iterative process, beginning with
requirement discovery, classification & organisation, prioritisation & negotiation and
documentation. A software requirement specification is written early in the software lifecycle and
aids communication between the potential stakeholders and the developer. It contains the
description of the system functions and constraints.

User Requirements are defined at a high level, their detailed description are the system
requirements, which are further classified into functional, detailed descriptions of the user
requirements and non-functional, constraints on the service of the system. Domain requirements
are derived from the application domain.

The elicited requirements need to be validated to make sure that the software system meets
customers’ expectations. The purpose of requirement management is to manage the key RE
activities; elicitation, analysis, specification, validation and requirement change management. The
major research issue in RE is to transfer RE research into practice.

In a resource constrained development environment, all requirements cannot be met therefore
prioritisation is required to determine an optimal set of requirements. Making a decision between
requirements is difficult, with tens and thousands of requirements it’s even more complex. However
the challenge is selecting the right prioritisation method from the numerous prioritisation methods.
Prioritizing requirements is a strategic process which drives development expenses and delivery.
Requirements prioritization is a fundamental activity for project success.

An aspect is an attribute or a property of a project requirement that can be used for prioritisation.
Some examples of aspect are; importance, penalty, cost, time, and risk. For requirement
prioritisation the aspect of the requirement can be considered.

Requirement prioritisation methods can be broadly divided into methods using ordinal or ratio scale
measurement. These methods can operate as a stand-alone process or use a cost-value framework
within these methods. Prioritising requirements is important in regard to using the limited resources
in software development projects. Assigning priorities in a group forces the participants to share

38

their particular knowledge on which priority could be decided, and aids communication, sharing of
knowledge, agreement and uncovering potential problems in requirements. The positive side effects
of prioritisation are conflict resolution.

Amongst requirement prioritisation methods, AHP is found to be a robust and scalable method, it
has a hierarchical problem solving and relative comparison approach that has at least three benefits;
Firstly the problem area is elaborated, secondly the grouping aids comprehension / visibility and
finally it reduces the number of comparisons within each group which enables in-depth analysis. A
hierarchical requirement structure aids implicit prioritisation enabling determination of the most
candidate requirements.

Though AHP is considered to be highly sophisticated and ensures granular prioritisation, the
drawbacks to using it are high complication and time consumption. Combining requirement
prioritisation methods at different stages of the project will possibly reduce complexity. There is lack
of tools to support to visualisation of AHP’s hierarchies and reduce the clerical burden of comparison
in the hierarchy groups.

Combining multiple methods at different stage of the project yields useful results. In an example by
Hatton (2008), MoSCoW is used in the beginning stage of the project to group the requirements into
Must, Should and Could have, in the mid stage there is greater understanding of the requirement
therefore the $ 100 and ranking method is used, finally, when the requirement are fully fleshed out,
richer and more sophisticated methods such as AHP are recommended.

It is challenging to assign priority, and select the appropriate prioritisation method, but even more
so when, prioritising large scale requirements, distributed geographically with multiple stakeholders.
The current state of the art is not fully geared to meet these new challenges.

Conceptualizing large scale systems is challenging, decomposing the system into logical groups helps
to manage the complexity better, and requirement clustering provides a new approach to system
decomposition which breaks them down to cohesive and loosely coupled modules.

Requirement Traceability is the process of creating links between the user requirements and system
requirements. This process establishes relationships between requirements in different layers. The
benefits of traceability links are Impact, Derivation and Coverage Analysis. However these
traceability links make it difficult for non-technical people to understand the validity of the
relationship.

Rich traceability introduces the concept of satisfaction arguments (Dick, 2000) between the UR and
SR's supported by additional information in the form of domain knowledge. Prioritising satisfaction
arguments with AHP provides an inherent clustering technique that allows system level
requirements to automatically generate a given priority and therefore help multi-directional
propagation of priorities between SA and UR, SA and SR and between SA’s themselves. This means
prioritisation of requirements in large and small scale projects will be automated, reducing the cost
of prioritisation.

39

3 Methodology

3.1 Research Methodology
The methodology used for this research is the constructive research method (Lukka, 2003) which is
defined as “a research procedure for producing innovative constructions, intended to solve problems
faced in the real world and, by that means, to make a contribution to the theory of the discipline in
which it is applied”. The goal of this research approach is to develop novel solutions to existing
problems.

Constructive research output is “constructions”, according to Kasanen, Lukka & Siitonen (Kasanen,
1993), which means construction of a solution to the problem which had never been thought of up
to now. An element of innovation is clearly evident in constructive research. Another important
charactestic of this research approach is that the solution produced can be verified by its
implementation. Kasanen, Lukka & Siitonen (1993) list the following six phases that usually occur in
constructive research: Problem definition, Literature review, Solution construction, Solution
verification, Theory augmentation and Exploration of the solution scope.

Constructive research is extensively used in change impact analysis in software development. This
approach is also used for testing the impact of change using Lee, Offutt and Alexanders’ (2000)
algorithmic methods. O’Neal & Carver (2001) used this method for analysing evolving requirement
impacts using requirements traceability.

What is needed for requirements to be prioritised, based on the benefit and cost of requirements, is
being researched using a grounded theory approach by Strauss and Corbin (Maya, 2008) which
follows a constructivist research paradigm and a systematic review of literature. This research
investigates how requirements prioritisation can be undertaken based on cost and benefit. The
results of this analysis are “Activities” and “Requirement Properties” (Daneva & Herrmann, 2008).

Activities are the core RE practices, while requirements properties are (1) Type (2) Estimated Benefit
(3) Estimated Size (4) Estimated Cost (5) Priority (6) Requirement Dependency. The type distinguishes
primary and secondary requirements. Primary requirements satisfies the customer while secondary
requirements are derived from the primary requirement and constrain them (Daneva & Herrmann,
2008).

It was found that "priority" is an ambiguous concept and requirement prioritization methods do not
define what priority means and prioritization criterion do not offer any support for benefit or cost
estimation. Due to the multi-fold dependencies in requirements, determining the benefit, size and
cost is a challenge. One way of studying requirement dependencies is the “benefit function”
commonly used in mathematical economics, which is under-utilised in software engineering.
Requirement hierarchies were found to be specific, easier to conceive and refine when they could
support cost or benefit estimation (Daneva & Herrmann, 2008).

It was found that RE activities only consider some of requirement properties and some of the
requirement prioritisation methods are only specific to some RE activities (Daneva & Herrmann,
2008).

40

The research outlined in this dissertation follows the six phases outlined by Kasanen, Lukka &
Siitonen (1993). This involves:

• Problem definition – In this case, the objective of the research is to provide a simple and
precise model for improving the ease with which large requirements sets can be prioritised
with a high degree of granularity. (Chapter 1)

• Literature review – In order to fully understand the solution scope, a detailed literature
review covering existing models as well as potential techniques for prioritising large
requirements sets will inform the research. (Chapter 2)

• Solution construction – This step involves creation of the actual model to be used for impact
analysis. One potential technique to be investigated is that of the using a traceability
method, known as Satisfaction Arguments (Dick, 2000) as a means of aggregating system
requirements and then prioritising them using techniques such as AHP. (Chapter 3.2)

• Solution verification – The model will be verified by application to a dummy set of
requirements found on the web titled “General Purpose Source Particle Module for
GEANT4/SPARSET”. As these are dummy requirements, there is no need for ethical approval.
(Appendix 1)

• Theory augmentation – This study will help to devise an innovative model for prioritising
large requirements sets in software development that would be more easily integrated in
the industry than existing approaches and, at the same time, be more precise.

• Exploration of the solution scope – The applicability of the model for prioritising large sets of
requirements in the software development process will be explored.

3.2 Solution Construction and Experimental Design
For the purpose of this experiment, complexity is implanted into the UR’s & SR’s by creating
dependencies in requirements for testing prioritisation of user requirements and satisfaction
arguments with AHP in two different attempts. The experiment is carried out in two phases on the
same set of requirements, which involve three User Requirements and their eight dependent System
Requirements:

Phase 1:

a) User Requirements (URs) are prioritised with AHP in a 3 x 3 matrix
b) System Requirements (SRs) are prioritised with AHP in 8 x 8 matrix
c) Test propagation of priorities with AHP
d) Observations

Phase 2:

a) Satisfaction arguments (SA) are prioritised using AHP to test propagation of priority.
b) Observations

The purpose of Phase 1.a & 1.b is to subjectively assess the effort involved in prioritising the three
user requirements with AHP and then in phase 1.c to test propagation of priority with AHP.

41

The purpose of Phase 2.a, is to prioritise SAs with AHP and then subjectively assess the effort
involved and test possibilities of priority propagation from the SA to its URs and SRs and between
SA’s.

The efforts of phase 1.a, 1.b are then compared with phase 1.c only. This is done to show the
advantages and disadvantages of the way AHP is used.

The effort required in phase 1.c and phase 2.a are then compared to see if prioritising satisfaction
arguments has any benefit over prioritising URs, and test the propagation of priorities in both the
attempts, and finally assess the efforts / benefits and the similarities and/or differences of each
approach with the other, and recommend the best possible solution.

42

4 Results
Phase 1: In Sections 2.1 & 2.2, (See Appendix 1), three UR’s and eight SR’s were prioritised with AHP,
with a total of 219 comparisons involved in this effort. This demands a lot of manual calculation and
clerical man hours.

 The system requirements (SR) are prioritised in an 8 x 8 matrix, meaning all the system
requirements were prioritised simultaneously, however of the eight SRs 3 belong to UR1, two belong
to UR2 and the remaining three belong to UR3 as illustrated in the Figure 12.

Figure 12: Prioritizing UR’s & SR’s with AHP

AHP process prioritisation in two steps, first it organises the hierarchies and then it applies pair-wise
comparisons. Prioritising all SRs together goes against the rules of AHP. The SRs are required to be
decomposed into logical groups and then AHP can be applied, so alternatives can be prioritised
within each logical group, for example, by making a 3x3 (UR’s), a 3x3 (SR’s), a 2x2(SR’s) and a
3x3(SR’s) matrix before applying pair-wise comparisons, the complexity of comparison is reduced.
Prioritising SR’s in a 8 x 8 matrix was a bit difficult, therefore this calculation was made in the excel
document (See Annexure 1 attached).

UR3 has a lower priority than UR1 & UR2, however if it were not implemented there would be a
direct impact on UR2, since there is a dependency between UR2 and UR3, which may produce
inaccurate priorities.

Though AHP organises requirements into hierarchies, due to a lack of support tools, visualisation of
the hierarchy was not possible. However using Excel to prioritise helped to reduce complexity and
also helped to visualise the hierarchy.

In phase 1, since UR’s were first prioritised and then SR’s, the propagation of priority from UR to its
SR was not possible. However links between the UR and SR provide traceability, this feature provides
the relationship between the UR and its linked SR’s.

43

In section 2.4 (Appendix A) AHP was applied to the same set of three URs, this time, instead of again
prioritising SR’s, the priority of each UR was mapped onto its dependent SR’s, meaning
unidirectional propagation of priority downwards only was possible from UR’s to their dependent
SRs. In this case only 27 comparisons were required, reducing the complexity and computational
cost of comparisons.

Phase 2: In the second phase, satisfaction arguments (SA) were implanted between the URs and the
SRs as shown in Figure 13. This time only the SAs were prioritised using AHP. In this case only 27
comparisons were required for prioritisation. The SA priorities did propagate to their dependent UR
and SRs implicitly grouping the dependent SR’s, similar to the process in section 2.4. Only 27
comparisons were required in this case making this process faster. The additional information
supplied by the SA itself adds richness to traceability.

In Figure 13, SAs are used. The SA for UR1 says functionality of UR1, is delivered by implementing
SR1.1, SR1.2, SR1.3 and SR 2.1”. In this case the SAs were prioritised and SA1 has priority over SA2 &
SA3, therefore priority was propagated to SR1.1, SR1.2, SR1.3 and SR 2.1.

SA1

SR1.1 SR1.2 SR1.3

SA2

SR2.1 SR2.2

SA3

SR3.1 SR3.2 SR3.3

UR1 UR2 UR3

DK

Figure 13: SA & RT / DK with AHP

The results of the attempts in Section 2.1 & 2.2 are inaccurate compared to those of 2.4 & 3.
Propagation of priority was not possible with in 2.1 and 2.2.

The propagation of priority in phase 2 was bi-directional, for example, as a result of SA1 having
priority 1, both its UR and SRs inherit its priority. Further, SA1s priority is inherited by SA2 as well
since SR2.1 is required to implement UR1, therefore SA2 has priority 1 as well (see Figure 13).

Comparison between the three attempts: Firstly, propagation of priority was possible with both the
attempts in Section 2.4 & Section 3 (see Appendix 1). The results of prioritising URs in Section 2.4
and SA in Section 3 with AHP are identical and the number of comparisons was also similar.

44

Figure 14: Propagation of priority

Secondly, the benefit of prioritising SA’s is that the “priority” of SA1 has propagated to SR1.1, SR1.2,
SR1.3 & SR2.1. Since SR2.1 is required to implement SA1, the priority of SA1 has propagated to SA2
and UR1 & UR2 above as illustrated in Figure 14. SAs provide richness to traceability. Creating links
using rich traceability provides deeper semantics in traceability relationships. (Dick, 2000). Rich
traceable links make prioritisation faster.

UR

SA

SR

Design

SASA

Testing

Release
Figure 15: Bi-Directional Propagation of priorities

Finally, this idea of rich traceability can be pushed further by allowing relationships between design
and requirements, therefore selection of requirements will induce selection of design solutions
(Dick, 2000) and priorities can propagate further into testing and even up to the release of software
as illustrated in Figure 15.

Conflicts may arise when the originators of URs are different stakeholders and this problem will be
complex in ultra large systems or large systems. Each person has his/her own view, when multiple
stakeholders exists; multiple views of the same requirement exist. This feature has a positive effect
on the RE process, this difference in view can be used to validate the requirement and to detect any
dissimilarities, inconsistencies, contradicting requirements and additional requirements which can
be used for conflict resolution through communication, and collaboration between people.

45

Additional support could be provided by a graphical representation or by automated detection of
differences between formal specifications to come to a common agreement on the final
specifications. Techniques for requirement conflict resolution are cited in sections 3.3 & 3.5 (Pohl,
1994).

Managing a product family requires knowing which range of products or product features are best
suited to a given set of requirements. Rich traceability offers the ability to represent a product family
as a set of possible responses to a set of possible requirements, providing the ability to manage the
product family at a requirement level rather than at component level. In a project with 328
requirements rich traceability reduces the number of choices to 9.

In both the above cases the priorities from URs or SAs are propagated to SRs, however, in the first
case though, the priorities are propagated to SRs but there is no textual description for this action,
whereas in the second case, the SAs have detailed comments explaining each decision which aids
stakeholders’ understanding. This added element of clarification provides a stronger basis from
which decision can be made.

46

5 Conclusions
Requirement engineering is inherently difficult regardless of the scale of the project (Azar, 2007).
There is no off-the-shelf or out-of-the-box solutions for real-life software development efforts, since
these tools and techniques are developed for general application development and not for a
particular context. Skill is required in selecting the most appropriate technique or tool for a
particular context, which may not serve the purpose 100%, but may still be useful.

This research has outlined directions towards an improved process for prioritising software
requirements using the concept of satisfaction arguments. This approach allows requirement
engineers to effectively and accurately prioritise requirements by prioritising satisfaction arguments
using AHP. Propagation of priorities was possible through prioritising URs and SAs with AHP in two
separate attempts.

The results of the experiment show a high number of comparisons was required when prioritising
three URs and eight SRs with AHP making this process complex and the resulting priorities were
inaccurate compared with those prioritised using AHP on satisfaction arguments. However the
results of prioritising URs and satisfaction arguments with AHP were found to be similar, the effort
required of these two attempts was also similar.

Propagation of priorities was possible in both the case (see sections 2.4 and 3 in Appendix 1) when
applying AHP to user requirements or satisfaction arguments. In the case of prioritising user
requirements, propagation of priorities was unidirectional while prioritising satisfaction arguments
propagated priorities tri-directionally from SA to UR and SRs. Further it was found that the priorities
propagate between SAs. User requirement priorities propagate into the design, development and
release phases. However due to lack of a visual user interface this benefit cannot be harnessed.
When SAs cross multiple URs, the priority is automatically propagated

Prioritising satisfaction arguments is ideal for large scale software development projects as it is
found to be a more efficient way of prioritising requirements. It implicitly groups the requirements
with a low number of pair-wise comparisons, resulting in a fine grained prioritisation process that
reduces time and effort considerably.

47

6 References
Al-Otaiby, T. N., AlSherif, M., & Bond, W.P. (2005). Toward software requirements modularization

using hierarchical clustering techniques. Paper presented at the Proceedings of the 43rd
annual Southeast regional conference - Volume 2, Kennesaw, Georgia.

Alspaugh, T. A., & Anton, A.I. (2001). Scenario Networks for Software Specification and Scenario
Management: North Carolina State University at Raleigh.

Andriole, S. (1998). The politics of requirements management. IEEE Software, 82-84.
Attwood, K., Kelly, T., & McDermid, J. (2004). The Use of Satisfaction Arguments for Traceability in

Requirements Reuse for System Families: Position Paper. in Proceedings of the International
Workshop on Requirements Reuse in System Family Engineering, Eighth International
Conference on Software Reuse, 18-21.

Aurum, A., & Wohlin, C. (2005). Requirements Engineering: Setting the Context. In Engineering and
Managing Software Requirements.

Aurum, A., & Wohlin, C. . (2005). Engineering and Managing Software Requirements.
Avesani, P., Bazzanella, C., Perini, A., & Susi, A. (2005). Facing Scalability Issues in Requirements

Prioritization with Machine Learning Techniques. Paper presented at the Proceedings of the
13th IEEE International Conference on Requirements Engineering, Trento, Italy.

Ayad, H. G., & Kamel, M. S. (2008). Cumulative Voting Consensus Method for Partitions with Variable
Number of Clusters. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(1),
160-173.

Azar, J., Smith, R. K., & Cordes, D. (2007). Value-Oriented Requirements Prioritization in a Small
Development Organization. Software, IEEE, 24(1), 32-37.

Berander, P., & Andrews, A. (2005). Requirements Prioritization. In Engineering and Managing
Software Requirements (pp. 69-94). Verlag, Berlin, Germany: Springer.

Berander, P., Khan, K.A., & Lehtola , L. (2006). Towards a Research Framework on Requirements
Prioritization. Paper presented at the Sixth Conference on Software Engineering Research
and Practise in Sweden (SERPS'06) Umeå, Sweden.

Boehm, B. W. (1988). A spiral model of software development and enhancement. Computer, 21(5),
61-72.

British Computer Society. (2004). The Challenges of Complex IT Projects. The report of a working
group from the Royal academy of engineering and the British computer society. The British
Computer Society, 1-45. Retrieved 17th Oct 2008, from
http://www.bcs.org/upload/pdf/complexity.pdf

Brooks, F. P. J. (1987). No Silver Bullet: Essence and Accidents of Software Engineering. IEEE
Computer, 20, 10-19.

Bush, D., & Finkelstein, A. (2003). Requirements Stability Assessment Using Scenarios. Paper
presented at the Proceedings of the 11th IEEE International Conference on Requirements
Engineering, Los Alamitos, USA.

Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag, J. (2001). An industrial survey of
requirements interdependencies in software product release planning. In: Proceedings of
the Fifth IEEE International Symposium on Requirements Engineering. IEEE Computer society
press, 84-91.

Chantree, F., Nuseibeh, B., de Roeck, A., & Willis, A. (2006). Identifying Nocuous Ambiguities in
Natural Language Requirements. Paper presented at the Requirements Engineering, 14th
IEEE International Conference, Minnesota, USA.

Cheng, B. H. C., & Atlee, J. M. (2007). Research Directions in Requirements Engineering. Paper
presented at the Future of Software Engineering, 2007. FOSE '07, Washington, DC, USA.

http://www.bcs.org/upload/pdf/complexity.pdf

48

Cheng, E. W. L., & Li,H. (2001). Information priority-setting for better resource allocation using
analytic hierarchy process (AHP). Information Management and Computer Security, 9, 61–
70.

Christel, M., & Kang, K. (1992). Issues in Requirements Elicitation. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.141.5894&rep=rep1&type=pdf

Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., & Christina, S. (2005). Goal-centric
traceability for managing non-functional requirements. Paper presented at the Proceedings
of the 27th international conference on Software engineering, St. Louis, MO, USA.

Cleland-Huang, J., Zemont, G., & Lukasik, W. (2004). A heterogeneous solution for improving the
return on investment of requirements traceability. Paper presented at the Requirements
Engineering Conference, 2004. Proceedings. 12th IEEE International, Kyoto, Japan.

Coughlan, J., & Macredie, R. D. (2002). Effective Communication in Requirements Elicitation: A
Comparison of Methodologies Requirements Engineering, 7(2), 47-60.

Cowley, M., & Domb, E. (1997). Beyond Strategic Vision: Effective Corporate Action with Hoshin
Planning.

Daneva, M., & Herrmann, A. (2008). Requirements Prioritization Based on Benefit and Cost
Prediction: A Method Classification Framework. Paper presented at the Software
Engineering and Advanced Applications, 2008. SEAA '08. 34th Euromicro Conference.

Davis, A. M. (1990). Software requirements: analysis and specification: Prentice Hall Press.
De Neve, P., & Ebert, C. (2001). Surviving Global Software Development. IEEE Soft, 62-69.
Dick, J. (2000). Rich traceability. Paper presented at the Automated Software Engineering

Conference, Edinburgh, Scotland.
Duan, C., Cleland-Huang, J., & Mobasher, B. (2008). A consensus based approach to constrained

clustering of software requirements. Paper presented at the Proceeding of the 17th ACM
conference on Information and knowledge mining, Napa Valley, California, USA.

Engels, G., Kuster, J.M., Heckel, R., & Groenewegen, L. (2001). A methodology for specifying and
analyzing consistency of object-oriented behavioral models. SIGSOFT Softw. Eng. Notes,
26(5), 186-195.

Feiler, P., Gabriel, R. P., Goodenough, J., Linger, R., Longstaff, T., Kazman, R., Klein, M., Northrop, L.,
Schmidt, D, Sullivan, K., & Wallnau, K. (2006). Ultra-Large-Scale Systems. The Software
Challenge of the Future. Software Engineering Institute, Carnegie Mellon.

Fenton, N. E., Lawrence, S., & Pfleeger. (1998). Software Metrics: A Rigorous and Practical Approach:
PWS Publishing Co.

Firesmith, D. (2004). Prioritizing Requirements. Journal of Object Technology, 3(8), 35-47. Retrieved
23-Oct-2008, from http://www.jot.fm/issues/issue_2004_09/column4/

Frauke, P., Armin, E., & Frank, M. (2003). Requirements Engineering and Agile Software
Development. Paper presented at the Proceedings of the Twelfth International Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises.

Gonzales-Baixauli, B., Prado Leite, J. C. S., & Mylopoulos, J. (2004). Visual variability analysis for goal
models. Paper presented at the Requirements Engineering Conference, 2004. Proceedings.
12th IEEE International, Springs, CO, USA.

Greer, D., & Ruhe, G. (2004). Software release planning: an evolutionary and iterative approach.
Information and Software Technology, 46, 243--253.

Groves, L., Nickson, R., Reeve, G., Reeves, S., & Utting, M. (2000). A survey of software development
practices in the New Zealand software industry. Paper presented at the Software
Engineering Conference, 2000. Proceedings. 2000 Australian, Canberra,. Australia.

Gunther, R., Eberlein, A., & Pfahl, D. (2002). Quantitative WinWin: a new method for decision
support in requirements negotiation. Paper presented at the Proceedings of the 14th
international conference on Software engineering and knowledge engineering, Ischia, Italy.

Hall, J. G., Rapanotti, L., & Jackson, M. (2005). Problem frame semantics for software development
Software and Systems Modeling, 4(2), 189-198.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.141.5894&rep=rep1&type=pdf
http://www.jot.fm/issues/issue_2004_09/column4/

49

Hammond, J., Rawlings, R., & Hall, A. (2001). Will it work? [Requirements engineering]. Paper
presented at the Requirements Engineering, 2001. Proceedings. Fifth IEEE International
Symposium on, Toronto, Canada

Hatley, D. J., & Pirbhai, I.A. (1987). Strategies for real-time system specification: Dorset House
Publishing Co., Inc.

Hatton, S. (2007a). Prioritisation of Goals. In J.-L. R. Hainaut, E.A.; Kirchberg, M.; Bertolotto, M.;
Brochhausen, M.; Chen, P.; Sisaid Cherfi, S.; Doerr, M.; Han, H.; Hartmann, S.; Parsons, J.;
Poels, G.; Rolland, C.; Trujillo, J.; Yu, E.; Zimlanyi, E. (Ed.), Advances in Conceptual Modeling –
Foundations and Applications. Lecture Notes in Computer Science Vol 4802 Berlin: Springer-
Verlag.

Hatton, S. (2007b). Early Prioritisation of Goals. Springer-Verlag Berlin Heidelberg, 235-244.
Hatton, S. (2008). Choosing the "right" prioritisation method. Paper presented at the 19th

Australasian Software Engineering Conference, Perth, Western Australia.
Hayes, J. H., Dekhtyar, A., & Sundaram, S. K. (2006). Advancing candidate link generation for

requirements tracing: the study of methods. Software Engineering, IEEE Transactions on,
32(1), 4-19.

Heimdahl, M. P. E., & Leveson, N. G. (1996). Completeness and consistency in hierarchical state-
based requirements. Software Engineering, IEEE Transactions on, 22(6), 363-377.

Heitmeyer, C. L., Jeffords, R. D., & Labaw, B.G. (1996). Automated consistency checking of
requirements specifications. ACM Trans. Softw. Eng. Methodol., 5(3), 231-261.

Hofmann, H. F., & Lehner, F. (2001). Requirements engineering as a success factor in software
projects. Software, IEEE, 18(4), 58-66.

Holt, J. (2001). UML for Systems Engineering from
Hsia, P., & Yaung, A. T. (1988). Another approach to system decomposition: requirements clustering.

Paper presented at the Computer Software and Applications Conference, 1988. COMPSAC
88. Proceedings., Twelfth International.

Hsia, P., Hsu, C.T., Kung, D.C., & Holder, L.B. . (1996). User-centered system decomposition: Z-based
requirements clustering. Paper presented at the Requirements Engineering, 1996.,
Proceedings of the Second International Conference on, Colorado, USA.

Hull, E., Jackson, K., & Dick, J. (2005). Requirements Engineering (2 ed.). London: Springer-Verlag.
IEEE. (1998). IEEE Recommended Practice for Software Requirements Specifications. Retrieved from
Jackson, M. (2001). Problem Frames. Addison Wesley.
Jiang, L., Eberlein, A., & Far, B. H. (2005). Combining requirements engineering techniques - theory

and case study. Paper presented at the Engineering of Computer-Based Systems, 2005. ECBS
'05. 12th IEEE International Conference and Workshops on the, Maryland, USA.

Kaindl, H., Brinkkemper, S., Bunenko, J.A., Farbey, B., Greenspan, S., Heitmeyer, C., Leite, J.C., Mead,
N., Mylopolous, J. & Siddiqi, J. . (2002). Requirements Engineering and Technology Transfer:
Obstacles, Incentives and an Improvement Agenda. Requirements Engineering Journal, 7(1),
113-123.

Karlsson, J. (1996). Software requirements prioritizing. Paper presented at the Requirements
Engineering, 1996., Proceedings of the Second International Conference on, Colorado, USA.

Karlsson, J., & Ryan, K. (1997). A cost-value approach for prioritizing requirements. Software, IEEE,
14(5), 67-74.

Karlsson, J., Olsson, S., & Ryan, K. . (1997). Improved practical support for large-scale requirements
prioritizing. Requirements Engineering Journal, 2(1), 51-60.

Karlsson, J., Wohlin, C., & Regnell, B. (1998). An evaluation of methods for prioritizing software
requirements. Information and Software Technology 39, 939-947.

Karlsson, L., Berander, P., Regnell, B., & Wohlin, C. (2004). Requirements Prioritisation: An
Experiment on Exhaustive Pair-Wise Comparison versus Planning Game Partitioning. Paper
presented at the Empirical Assessment in Software Engineering Conference, Keele, UK.

50

Karlsson, L., Höst, M., & Regnell, B. (2006). Evaluating the Practical Use of Different Measurement
Scales in Requirements Prioritisation. ACM, 326-335.

Kasanen, E., Lukka, K., & Siitonen, A. (1993). The constructive approach in management accounting
research. Journal of Management Accounting Research, 5, 243.

Lamsweerde, A. V. (2001). Goal-Oriented Requirements Engineering: A Guided Tour. Paper presented
at the Proceedings of the 5th IEEE International Symposium on Requirements Engineering,
Toronto, Canada.

Lee, M., Offutt, A. J., & Alexander, R. T. (2000). Algorithmic analysis of the impacts of changes to
object-oriented software. Paper presented at the 34th International Conference on
Technology of Object-Oriented Languages and Systems, Santa Barbara, California, USA.

Leffingwell, D., & Widrig, D. (2003). Managing Software Requirements: A Use Case Approach:
Addison-Wesley.

Lehtola, L., & Kauppinen, M. (2004). Empirical Evaluation of Two Requirements Prioritization
Methods in Product Development Projects. Springer-Verlag Berlin Heidelberg, 3281, 161-
170.

Lehtola, L., Kauppinen, M., & Kujala, S. (2004). Requirements Prioritization Challenges in Practice.
Springer-Verlag Berlin Heidelberg, 497–508.

Lena, K., Thomas, T., Bj, rn, R., Patrik, B., & Claes, W. (2007). Pair-wise comparisons versus planning
game partitioning--experiments on requirements prioritisation techniques. Empirical Softw.
Engg., 12(1), 3-33.

Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., & Mylopoulos, J. (2006). On Goal-based Variability
Acquisition and Analysis. Paper presented at the Requirements Engineering, 14th IEEE
International Conference, Minnesota, USA.

Lubars, M., Potts, C., & Richter, C. (1993). A review of the state of the practice in requirements
modeling. Paper presented at the Requirements Engineering, 1993., Proceedings of IEEE
International Symposium on, San Diego, CA, U.S.A.

Lubars, M., Potts, C., Richter, C. (1993). A review of the state of the practice in requirements
modelling. In: Proceedings of IEEE Symposium on Requirements Engineering (RE´93). EEE
Computer Society Press

Lukka, K. (2003). The Constructive Research Approach. In O. P. H. L. Ojala (Ed.), Case study research

in logistics (pp. 83--101): Turku School of Economics and Business Administration.
Marcus, A., & Maletic, J.I. (2003). Recovering documentation-to-source-code traceability links using

latent semantic indexing. Paper presented at the Proceedings of the 25th International
Conference on Software Engineering, Portland, Oregon.

Maya, D., & Herrmann, A. (2008). Requirements Prioritization Based on Benefit and Cost Prediction: A
Method Classification Framework. Paper presented at the Software Engineering and
Advanced Applications, 2008. SEAA '08. 34th Euromicro Conference, Parma, Italy.

Mehrdad, S., & Steve, E. (2005). Traceability in viewpoint merging: a model management
perspective. Paper presented at the Proceedings of the 3rd international workshop on
Traceability in emerging forms of software engineering, Long Beach, California.

Mishra, D., Mishra, A., & Ali, A. (2008). Successful requirement elicitation by combining requirement
engineering techniques. Paper presented at the Applications of Digital Information and Web
Technologies, 2008. ICADIWT 2008. First International Conference on the, Ostrava, Czech
Republic.

Moisiadis, F. (2002, 29-12-2008). The Fundementals of Prioritising Requirements Paper presented at
the Systems Engineering, Test & Evaluation Conference, Sydney, Australia.
http://www.seecforum.unisa.edu.au/Sete2002/ProceedingsDocs/05P-Moisiadis.pdf

Moreira, A., Rashid, A., & Araujo, J. (2005). Multi-Dimensional Separation of Concerns in
Requirements Engineering. Paper presented at the Proceedings of the 13th IEEE
International Conference on Requirements Engineering, Japan.

http://www.seecforum.unisa.edu.au/Sete2002/ProceedingsDocs/05P-Moisiadis.pdf

51

Nentwich, C., Emmerich, W., Finkelstein, A., & Ellmer, E. (2003). Flexible consistency checking. ACM
Trans. Softw. Eng. Methodol., 12(1), 28-63.

O'Neal, J. S., & Carver, D. L. (2001). The impact of changing requirements. Paper presented at the
2001 IEEE International Conference on Software Maintenance, Florence, Italy.

Phillips, C., Kemp, E.A., & Hedderley, D. (2005). Software Development Methods and Tools: a New
Zealand study: Australian Computer Society.

Pohl, K. (1994). The three dimensions of requirements engineering: a framework and its applications.
Paper presented at the fifth international conference on Advanced information systems
engineering, Paris-Sorbonne, France.

Regnell, B., Karlsson, L., & Host, M. (2003). An analytical model for requirements selection quality
evaluation in product software development. Paper presented at the Requirements
Engineering Conference, 2003. Proceedings. 11th IEEE International, Monterey, CA, U.S.A.

Ruhe, G. (2003). Software engineering decision support - A new paradigm for learning software
organizations. Advances in learning software organization, 2640, 104-115.

Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.
Sawyer, P., Sommerville, I., & Viller, S. (1999). Capturing the benefits of requirements engineering.

Software, IEEE, 16(2), 78-85.
Sommerville, I. (2007). Software Engineering (8th ed.). New York: Addison-Wesley.
Stevens, R., Brook, P., Jackson, K., & Arnold, S. (1998). Systems Engineering: Coping with Complexity.:

Prentice Hall.
Stevens, S. S. (1946). On the Theory of Scales of Measurement. Science, 103(2684), 677-680.
Stuart, R. F. (1997). Software Requirements: A Tutorial. IEEE Computer society press, 1-21.
Swisher, J. R., & Jacobson, S. H. . (1999). A survey of ranking, selection, and multiple comparison

procedures for discrete-event simulation ACM, 1.
Swisher, J. R., Jacobson, S.H., & Yücesan, E. (2003). Discrete-event simulation optimization using

ranking, selection, and multiple comparison procedures: A survey ACM, 13(2).
Thayer, R. H., & Dorfman, M. (2008). Guide for Implementing a Software Requirements Specification.

IEEE Software Engineering Standards and Examples:. Retrieved 31-12-2008, from
http://www.computer.org/portal/site/ieeecs/menuitem.c5efb9b8ade9096b8a9ca0108bcd4
5f3/index.jsp?&pName=ieeecs_level1&path=ieeecs/ReadyNotes&file=thayer-dorfman-
sample.xml&xsl=generic.xsl&

Vargas, L. G., & Katz, M.J. (1990). An overview of the Analytic Hierarchy Process and its applications.
European Journal of Operational Research, 48, 2-8.

Wiegers, K. E. (1999). Software Requirements: Microsoft Press, Redmont, Washington.
Zowghi, D., & Coulin, C. (2005). Requirements elicitation: A survey of techniques, approaches and

Tools. In Engineering and managing software requirements (pp. 19-46). Berlin, Germany:
Springer.

http://www.computer.org/portal/site/ieeecs/menuitem.c5efb9b8ade9096b8a9ca0108bcd45f3/index.jsp?&pName=ieeecs_level1&path=ieeecs/ReadyNotes&file=thayer-dorfman-sample.xml&xsl=generic.xsl&
http://www.computer.org/portal/site/ieeecs/menuitem.c5efb9b8ade9096b8a9ca0108bcd45f3/index.jsp?&pName=ieeecs_level1&path=ieeecs/ReadyNotes&file=thayer-dorfman-sample.xml&xsl=generic.xsl&
http://www.computer.org/portal/site/ieeecs/menuitem.c5efb9b8ade9096b8a9ca0108bcd45f3/index.jsp?&pName=ieeecs_level1&path=ieeecs/ReadyNotes&file=thayer-dorfman-sample.xml&xsl=generic.xsl&

52

Appendix – A

Experiment
1. Introduction

This experiment is performed on the real time user and system requirements found on the web
titled “General Purpose Source Particle Module for GEANT4/SPARSET”. The URL for the User
Requirement (UR) Document and System Requirement (SR) Document are in the reference section
of this appendix.

For the purpose of this experiment complexity is implanted into the User Requirement’s (UR) &
System Requirements (SR) by creating dependencies in requirements. Firstly we subjectively assess
the effort and complexity involved in prioritising UR’s & SR’s in different variations. Secondly we test
“Propagation of Priorities” by prioritising UR’s & “Satisfaction Arguments” (SAs) with the Analytical
Hierarchy Process (AHP). The main purpose of this experiment is to investigate whether more
efficient prioritisation of requirements can be achieved by using the concepts of SAs.

Firstly AHP is applied to UR’s in a 3 x 3 matrix and then to the SRs in an 8 x 8 matrix. Secondly AHP is
only applied to the URs. Finally SAs are implanted between the URs and the SRs and this time AHP is
only applied to the SAs.

In this experiment we subjectively assess the "effort”, ”complexity” and possibilities of “Propagation
of Priorities” of each of the three attempts, then we can compare the priorities of the three sets of
SRs and the complexity involved and look for similarities and/or differences and the reasons for
these, which will be discussed in the main dissertation in detail (Chapter 4). The same URs & SRs are
used for each of these attempts.

1.1 UR’s & SR’s

User Requirements

1. Table A1: User Requirements

Requirement Description
UR1 Definition of source particle
UR2 Definition of source position distribution
UR3 Definition of source angular direction

System Requirements

Table A2: System Requirements

Requirement Description
SR1 User input interface
SR2 Source position definition
SR3 Source angular distribution
SR4 Source energy distribution
SR5 User defined biasing function
SR6 Performance requirements
SR7 Interface requirements
SR8 Operational requirements

53

2. Prioritising With AHP (Case 1)

In this section we will prioritise URs first then SRs and then assess the effort and the results. A 3 x 3
UR requirement matrix is constructed and an 8 x 8 SR requirement matrix.

2.1 Prioritise URs with AHP

Table A3: Pair-wise comparisons matrix

Requirement UR1 UR2 UR3
UR1 1 7 7
UR2 0.8 1 2
UR3 0.5 5 1

Totals 2.30 13.00 10.00

The highlighted normalized value 0.43 in Table A4 below is derived, from, UR1’s highlighted value 1
which is divided by the highlighted total value 2.30 from Table A3 above.

Table A4: Cell percentages

Requirement UR1 UR2 UR3
UR1 0.43 0.54 0.70
UR2 0.35 0.08 0.20
UR3 0.22 0.38 0.10

The cell percentages from Table A4 are then transferred into Table A5 below. The rows are totalled
and then divided by the number of columns, the resulting value is the priority of the requirement.

Table A5: Requirement Priority in Ratio

Requirement UR1 UR2 UR3 Row Total
UR1 0.43 0.54 0.70 1.67/3=0.56
UR2 0.35 0.08 0.20 0.63/3=0.21
UR3 0.22 0.38 0.10 0.70/3=0.23

The final prioritization of the user requirements are in Table A6 below:

Table A6: User Requirements Priority

Requirement Priority
UR1 56%
UR2 21%
UR3 23%

Total No of Comparisons:

1. Table 3 (Pair wise comparisons): 9
2. Table 4 (Cell Percentages): 9
3. Table 5 (Priority Ratio): 9

Total No of Comparisons: 27

54

2.2 Prioritise SR’s with AHP

The steps in 2.1 are repeated to prioritise the SR’s in an 8 x 8 matrix below.

Table A7: Pair-wise comparisons matrix

Requirement SR1.1 SR1.2 SR1.3 SR2.1 SR2.2 SR3.1 SR3.2 SR3.3
SR1.1 1.00 7.00 6.00 1.00 3.00 6.00 7.00 7.00
SR1.2 8.00 1.00 5.00 4.00 2.00 5.00 4.00 3.00
SR1.3 0.50 0.50 1.00 2.00 2.00 5.00 4.00 3.00
SR2.1 1.00 5.00 4.00 1.00 3.00 1.00 5.00 4.00
SR2.2 0.80 0.50 0.50 0.30 1.00 2.00 3.00 4.00
SR3.1 0.35 0.43 0.50 1.00 3.00 1.00 4.00 6.00
SR3.2 0.50 0.30 0.60 0.50 0.02 0.04 1.00 0.05
SR3.2 3.00 4.00 0.05 3.00 1.00 5.00 4.00 1.00

Totals 15.15 18.73 17.65 12.80 15.02 25.04 32.00 28.05

The normalized value is shown in Table A8 below.

Table A8: cell percentages

SR SR1.1 SR1.2 SR1.3 SR2.1 SR2.2 SR3.1 SR3.2 SR3.3
SR1.1 0.07 0.37 0.34 0.08 0.20 0.24 0.22 22.00
SR1.2 0.53 0.05 0.28 0.31 0.13 0.20 0.13 0.11
SR1.3 0.03 0.03 0.06 0.16 0.13 0.20 0.13 0.11
SR2.1 0.07 0.27 0.23 0.08 0.20 0.04 0.16 0.14
SR2.2 0.05 0.03 0.03 0.02 0.07 0.08 0.09 0.14
SR3.1 0.02 0.02 0.03 0.08 0.20 0.04 0.13 0.21
SR3.2 0.03 0.02 0.03 0.04 0.00 0.00 0.03 0.00
SR3.2 0.20 0.21 0.00 0.23 0.07 0.20 0.13 0.04

The priority of the requirements is calculated in Table A9 below.

Table A9: Requirement Priority in Ratio

Requirement SR1.1 SR1.2 SR1.3 SR2.1 SR2.2 SR3.1 SR3.2 SR3.3 Row Total
SR1.1 0.07 0.37 0.34 0.08 0.20 0.24 0.22 22.00 23.52/8=2.94
SR1.2 0.53 0.05 0.28 0.31 0.13 0.20 0.13 0.11 1.74/8=0.22
SR1.3 0.03 0.03 0.06 0.16 0.13 0.20 0.13 0.11 0.85/8=0.10
SR2.1 0.07 0.27 0.23 0.08 0.20 0.04 0.16 0.14 1.19/8=0.15
SR2.2 0.05 0.03 0.03 0.02 0.07 0.08 0.09 0.14 0.51/8=0.06
SR3.1 0.02 0.02 0.03 0.08 0.20 0.04 0.13 0.21 0.73/8=0.09
SR3.2 0.03 0.02 0.03 0.04 0.00 0.00 0.03 0.00 0.15/8=0.02
SR3.2 0.20 0.21 0.00 0.23 0.07 0.20 0.13 0.04 1.08/8=0.13

55

The final prioritized system requirements are in Table A10 below:

Table A10: User Requirements Priority

Requirement Priority Priority Order
SR1 2.94 1
SR2 0.22 2
SR3 0.10 5
SR4 0.15 3
SR5 0.06 7
SR6 0.09 6
SR7 0.02 8
SR8 0.13 4

Total No of Comparisons:

1. Table 7 (Pair wise comparisons): 64
2. Table 8 (Cell Percentages): 64
3. Table 9 (Priority Ratio): 64

Total No of Comparisons: 192

2.3 Observations

The number of comparisons of UR’s in a 3 x 3 matrix is 27 and 192 for SR’s in 8 x 8 matrix. The total
number of comparisons in this case is 27 + 192 = 219. To prioritise three UR’s and eight SR’s has
taken a total of 219 comparisons, therefore there is a high cost in terms of manual calculation of
priority in this case.

To implement UR1, we require SR1.1, SR1.2, SR1.3 & SR2.1, to implement UR3 we require SR3.1,
SR3.2, SR3.3 & SR2.2 and finally we require SR2.1, SR2.2 & SR3.1 to implement UR2, as show in
Figure A1.

However if the stakeholders decide not to implement the low priority UR2 then it will have an
impact on UR1 and UR3 implementation because SR2.1 & SR2.2 are both required to implement UR1
and UR3 respectively. Therefore prioritising SR’s in an 8 x 8 matrix together is not recommended, as
the results are not accurate.

Figure A1: Prioritisation of URs with AHP

56

2.4 Propagating Priorities with AHP (Case 2)

The steps in 2.1 are repeated to prioritise UR’s in a 3 x 3 matrix below. In this case the UR’s are
prioritised and the SR’s are not, the priorities of the UR are inherited by their dependent SR’s.

Table A11: Pair-wise comparisons matrix

Requirement UR1 UR2 UR3
UR1 1 7 7
UR2 0.8 1 2
UR3 0.5 5 1

Totals 2.30 13.00 10.00

The normalised value in Table A12 below.

Table A12: cell percentages

Requirement UR1 UR2 UR3
UR1 0.43 0.54 0.70
UR2 0.35 0.08 0.20
UR3 0.22 0.38 0.10

The priority of the requirement is calculated in Table A13 below.

Table A13: Requirement Priority in Ratio

Requirement UR1 UR2 UR3 Row Total
UR1 0.43 0.54 0.70 1.67/3=0.56
UR2 0.35 0.08 0.20 0.63/3=0.21
UR3 0.22 0.38 0.10 0.70/3=0.23

The final prioritized requirements are in Table A14 below:

Table A14: User Requirement Priority

Requirement Priority
UR1 56%
UR2 21%
UR3 23%

Total No of Comparisons:

1. Table 11 (Pair wise comparisons): 9
2. Table 12 (Cell Percentages): 9
3. Table 13 (Priority Ratio): 9

Total No of Comparisons: 27

57

2.5 Observations

The number of comparison involved in prioritisation UR’s is only 27. In this case only the UR’s are
prioritised and then the priority of the UR is mapped onto its dependent SR’s, therefore the
priorities have propagated from the UR’s to its dependent SR’s. For example, to implement UR1, we
require SR1.1, SR1.2, SR1.3 & SR2.1 therefore these SR’s have the top priority 1, likewise to
implement UR2, we require SR2.1,SR2.2 & SR3.1 therefore they have priority 2, finally to implement
UR3, we require SR3.1, SR3.2 & SR3.3 and SR2.2 as it is last in the list it has priority 3.

Table A15: User Requirements Priority

Requirement Priority
SR1.1 1
SR1.2 1
SR1.3 1
SR2.1 1
SR2.2 2
SR3.1 2
SR3.2 3
SR3.3 3

In this case the priorities have been propagated using AHP and the number of comparisons has been
drastically reduced to 27 as opposed to 219 comparisons in section 2.2. As a result of propagation of
priorities the SR’s have unambiguous or clear priority.

3. Satisfaction Arguments (SA) (Case 3)

The steps in 2.1 are repeated to prioritise SA’s in a 3 x 3 matrix below. In this case SA’s are implanted
between the UR’s and SR’s and then SA’s are prioritised with AHP instead of the UR’s or SR’s.

Table 16: Pair-wise comparisons matrix

Requirement SA1 SA2 SA3
SA1 1 7 7
SA2 0.8 1 2
SA3 0.5 5 1

Totals 2.30 13.00 10.00

The derived normalized values are transferred to Table A17 below.

Table A17: Cell percentages

Requirement SA1 SA2 SA3
SA1 0.43 0.54 0.70
SA2 0.35 0.08 0.20
SA3 0.22 0.38 0.10

58

The cell percentages are transferred into Table A18. The rows are totalled and then divided in the
row total column; the resulting value is the priority of the requirement.

Table A18: SA Priority in Ratio

Requirement SA1 SA1 SA1 Row Total
SA1 0.43 0.54 0.70 1.67/3=0.56
SA2 0.35 0.08 0.20 0.63/3=0.21
SA3 0.22 0.38 0.10 0.70/3=0.23

The final prioritized requirements are in Table 19 below:

Table 19: Satisfaction Arguments Priority

SA Priority
SA1 56%
SA2 21%
SA3 23%

Total No of Comparisons:

1. Table 16 (Pair wise comparisons): 9
2. Table 17 (Cell Percentages): 9
3. Table 18 (Priority Ratio): 9

Total No of Comparisons: 27

3.1 Observations

The number of comparisons involved in prioritisation SA’s is only 27 similar to prioritising the UR’s
with AHP in Section 2.4. The feature “Propagation of Priority” when prioritising URs with AHP or
prioritising SA’s with AHP is similar, however it is easy to prioritise SA’s with AHP as they have the
“Reason” detailed and domain knowledge contributing to richness in traceability, between the UR
and the SR’s.

Table A20: User Requirements Priority

Requirement Priority
SR1.1 1
SR1.2 1
SR1.3 1
SR2.1 1
SR2.2 1
SR3.1 1
SR3.2 1
SR3.3 1

59

SA1

SR1.1 SR1.2 SR1.3

SA2

SR2.1 SR2.2

SA3

SR3.1 SR3.2 SR3.3

UR1 UR2 UR3

DK

Figure A2: Prioritisation SA’s with AHP

Since SA1 has priority 1, UR1 and SR1.1, SR1.2, SR1.3 & SR2.1 inherit priority 1, SR2.1 is required by
UR1 and UR2 for implementation and SR2.1 has priority 1 and so UR2 also inherits priority 1.
Similarly SR2.2 is required to implement UR3 and SR2.2 has priority 1 and so UR3 also inherits
priority 1. Therefore In this case the priorities have propagated from SA to SA’s vertically and SR’s
horizontally, respectively, as shown in Figure A2.

4.Results

The results of this experiment are summarised in table A21 below.

Table A21: User Requirements Priority

 Total
Comparisons

Propagation
of Priority

Bi-directional
propagation

Rich
Traceability

Complexity

Case 1 219 No No No Very High
Case 2 27 Yes No No Medium
Case 3 27 Yes Yes Yes Low

 Totals

Prioritising SA’s with AHP has a multi-directional cascading effect beginning at the UR to the release
of the software, as illustrated in the Figure A3.

UR

SA

SR

Design

SASA

Testing

Release
Figure A3: Bi-Directional Propagation of priorities

60

An in-depth analysis and discussion of this experiment is presented in the main dissertation.

5.References

User requirements document
http://reat.space.qinetiq.com/gps/gspm_docs/gspm_urd.pdf

System requirements document

http://reat.space.qinetiq.com/gps/gspm_docs/gspm_ssd.pdf

http://webmail.aut.ac.nz/horde/util/go.php?url=http%3A%2F%2Freat.space.qinetiq.com%2Fgps%2Fgspm_docs%2Fgspm_urd.pdf&Horde=a969391e3ab581348a973e093be15aa8
http://webmail.aut.ac.nz/horde/util/go.php?url=http%3A%2F%2Freat.space.qinetiq.com%2Fgps%2Fgspm_docs%2Fgspm_ssd.pdf&Horde=a969391e3ab581348a973e093be15aa8

61

Appendix – B

Annexure – I (Excel calculation sheet)

	1 Introduction
	2 Literature Review
	2.1 Software Requirements Engineering
	2.1.1 Feasibility Studies
	2.1.2 Requirements Elicitation and Analysis
	2.1.3 Requirements Specification
	2.1.4 Requirements Validation
	2.1.5 Requirements Management

	2.2 Requirements Prioritisation
	2.2.1 Aspects of Requirements Prioritisation
	2.2.1.1 Importance
	2.2.1.2 Penalty
	2.2.1.3 Cost
	2.2.1.4 Time
	2.2.1.5 Risk
	2.2.1.6 Volatility
	2.2.1.7 Other Aspects

	2.2.2 Requirements Prioritisation Methods
	2.2.2.1 Analytical Hierarchy Process (AHP)
	2.2.2.2 Hundred-dollar test
	2.2.2.3 Cumulative Voting
	2.2.2.4 Numerical Assignment
	2.2.2.5 Ranking
	2.2.2.6 Top-Ten

	2.2.3 Comparison of Requirements Prioritisation Methods
	2.2.3.1 AHP
	2.2.3.2 Hundred-dollar test
	2.2.3.3 Ranking
	2.2.3.4 Numerical Assignment
	2.2.3.5 Top-ten

	2.2.4 Challenges in Requirements Prioritisation
	2.2.4.1 Assigning Priority
	2.2.4.2 Selecting the Right Prioritisation Methods
	2.2.4.3 Prioritising Large Sets of Requirements

	2.3 Potential Solutions
	2.3.1 Requirements Clustering
	2.3.2 Proposed Clustering Technique

	2.4 Summary

	3 Methodology
	3.1 Research Methodology
	3.2 Solution Construction and Experimental Design

	4 Results
	5 Conclusions
	6 References

