
Operating Room Scheduling
Application

Scott Mackenzie

A thesis submitted to Auckland University of Technology in

partial fulfilment of the requirements for the degree of Master

of Computer and Information Sciences

School of Engineering, Computer and Mathematical Sciences

Auckland University of Technology

2018

Abstract

This project explores how the use of a purpose-built software can improve visibility and
usage in operating rooms in Auckland City Hospital. Using a design science approach
an Angular application was developed as a replacement for an already existing manual
system. It was found that the application developed increased visibility of information as
well as saves time when reporting compared to the existing system. Although the software
was completed as planned, for various reasons the client evaluation in normal use could
not take place in the time frame of this masters. Further live testing is recommended in
order to gain quantitative data in regards to increase in session usage.

Contents

List of Figures 4
Attestation of Authorship . 6
Acknowledgements . 7

Chapter 1. Introduction 8
1.1 Auckland Hospital case study . 8

1.1.1 Operating room session planner 8
1.1.2 Process overview . 10
1.1.3 Business rules . 11
1.1.4 Discussion . 12

1.2 Hypothesis and research questions . 14

Chapter 2. Literature Review 15
2.1 Introduction . 15
2.2 Scheduling phases . 15

2.2.1 Strategic level . 17
2.2.2 Tactical level . 18
2.2.3 Operational level . 19

2.3 Operating room scheduling problems . 19
2.3.1 The operating room . 19
2.3.2 The operating room staffing . 20
2.3.3 Cancellations . 20

2.4 Existing operating room scheduling systems 21

Chapter 3. Research Design 23
3.1 Introduction . 23
3.2 Design Science . 23

3.2.1 Identify the problem and motivation 24
3.2.2 Define the objectives of a solution 25
3.2.3 Design and Development . 25
3.2.4 Demonstration and Evaluation . 25

1

3.2.5 Communication . 25

Chapter 4. System Design 27
4.1 Requirements gathering . 27

4.1.1 User Story Format . 28
4.1.2 User Stories . 28

4.2 Technologies . 31
4.2.1 Front-End . 31
4.2.2 Back-End . 34
4.2.3 Hosting . 40
4.2.4 Login and Authentication . 40

4.3 System Architecture . 42

Chapter 5. System Development 43
5.1 Planner Component . 43

5.1.1 Planner-Header Component . 43
5.1.2 Calendar Component . 47
5.1.3 Booking Component . 51

5.2 Reporting Component . 56
5.2.1 Change History Report . 56
5.2.2 Actual History Report . 56
5.2.3 Six Week History Report . 56

Chapter 6. System Evaluation 59
6.1. User Story Evaluation . 59
6.2. SCRUM and Business Rules Evaluation 67

Chapter 7. Conclusion 69
7.1 Limitations . 70

7.1.1. Live Trial . 70
7.1.2 Time . 70
7.1.3 Usability Study . 70
7.1.4 Lack of Existing Solutions . 70

7.2 Further Work . 71
7.2.1 Live Trial . 71
7.2.2 Usability Study . 71
7.2.3 Improved and Additional Reporting 71
7.2.4 Professional Front-End Design . 71
7.2.5 Mobile Optimisation . 71
7.2.6 Code Rewrites . 71

2

7.2.7 Improved Import Feature . 71
7.2.8 Advanced Alerting Feature . 72

References 73

3

List of Figures

1 Operating room session planner . 9
2 Operating room SCRUM process overview. Retrieved from Operating

Room Weekly Production Planning (SCRUM) Overview (2014) 10
3 Weekly operating room production planning time-frames . Retrieved from

Operating Room Weekly Production Planning (SCRUM) Overview (2014) 11
4 Proposed new operating room scheduling process 13
5 Hierarchical decision levels. Adapted from Guerriero and Guido (2011) . 17
6 Example master surgical schedule covering four operating rooms over five

days . 18
7 Daily schedule software. Retrieved from Operating Room Scheduling (n.d.) 22
8 A demonstration of how Google Calendar could show block bookings.

Retrieved from Google Calendar (n.d.) 22
9 Design Science methodology model. Retrieved from Papas, O’keefe, and

Seltsikas (2012) . 24
10 User stories shown in Kan-ban board style using Trello 28
11 User Story 1 . 29
12 User Story 2 . 29
13 User Story 3 . 29
14 User Story 4 . 29
15 User Story 5 . 29
16 User Story 6 . 29
17 User Story 7 . 30
18 User Story 8 . 30
19 User Story 9 . 30
20 User Story 10 . 30
21 User Story 11 . 30
22 User Story 12 . 30
23 User Story 13 . 30
24 Potential architectures using Cdata API Server. Retrieved from (CData

Software, Inc., 2018) . 35
25 The root API showing available calls. 36

4

26 Showing GET call of all bookings. 36
27 Showing GET call of an individual booking. 37
28 Method for the request of specific booking. 37
29 Method for updating a specific booking. 38
30 Method for creating a new booking . 38
31 SQL Booking table diagram . 39
32 Custom rule used to set role type. 41
33 High level overview of system architecture. 42
34 Planner component container showing sub components. 43
35 Header component controls. 43
36 Date Service Initialization. 44
37 Level Service Initialisation. 44
38 Planner-Header Component Initialisation. 44
39 HTML template for date changer . 45
40 Method for setting date back one week 45
41 Method for setting date forward one week 45
42 Flow of actions following click on left arrow 46
43 Flow of actions following click on down arrow 47
44 Construction of the Calendar Component 48
45 levelService getLevel() method . 49
46 dateService getDates() method . 49
47 populate () method . 49
48 bookingService.getLevelBooking() method 50
49 The Booking Object . 50
50 permissionService setPermission method 51
51 Calendar HTML showing creation of Booking components 52
52 Booking Component creation . 53
53 The Booking modal panel showing the dataService provided data 54
54 Colour showing the various states of booking 55
55 In application display of six week report 57
56 Formatted CSV with generated coding 58
57 Demonstration of an admin user reallocating surgeons. 60
58 Demonstration of an admin user reallocating services. 61
59 Demonstration of various statuses. 62
60 Setting confirmation status . 63
61 Setting confirmation status and showcase of request log 64
62 Demonstration of timestamped change log 65
63 Six week report in application . 66

5

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of my knowl-

edge and belief, it contains no material previously published or written by another person

(except where explicitly defined in the acknowledgements), nor material which to a sub-

stantial extent has been submitted for the award of any other degree or diploma of a

university or other institution of higher learning.

Scott Mackenzie Date

6

Acknowledgements

I would like to acknowledge the expertise and support provided by my supervisory team
of Associate Professor David Parry and Associate Professor Stephen Reay. Their guid-
ance and advice has made this process immensely easier.

I would like to acknowledge the production planning team from ADHB and the DHW
Lab. Without them this research would never have become.

My Mother and her partner Vic, for allowing me to move back home for 6 months while
I studied and for dealing with my late nights at the computer.

And finally my partner Cécile who waited patiently (at times) in another country for me
to finish. Merci pour tout

7

Chapter 1. Introduction

In 2014 the Auckland District Health Board introduced a new operating room weekly
production planning (SCRUM (Sutherland & Schwaber, 2013)) process. This new pro-
cess’ performance improvements were measured against the previous year showing much
improvement. When measured against 2013 an additional 191 operating room sessions
were run, a 0.6% improvement representing 1.4 million dollars of additional capacity (OR

SCRUM Overview for Surgical Board Meeting, 2014).
With on average session usage varying between 95 and 98 percent week by week the

production planning team at Auckland Hospital predicted even more improvement could
be made to the process by implementing a purpose-built software.

1.1 Auckland Hospital case study

In order to understand the research area the existing system for scheduling operating
rooms in Auckland Hospital must be understood. Auckland District Health Board has
an established set of processes it uses (Operating Room Weekly Production Planning

(SCRUM) Overview, 2014) which will be explained in depth below:

1.1.1 Operating room session planner

Before the scheduling process begins an operating room session planner is created. A
session in this context is either a morning or afternoon block of time which is allocated
to either an individual surgeon or surgical service. This planner is intended to be the
primary source of reference for all staff wanting an understanding of planned operat-
ing room sessions for both surgical services and surgeons. All operating room sessions
across Auckland Hospital are included in this schedule which is forecast approximately
six months in advance.

The planner is also used to provide visibility of surgeon leave, sessions available
and requests for additional operating room sessions using predetermined colour blocks
as shown in Figure 1. It is readily available as a live spreadsheet through the Auckland
District Health Board intranet.

8

Figure 1: Operating room session planner

9

1.1.2 Process overview

The existing SCRUM process used has seven stages identified in Figure 2.

Figure 2: Operating room SCRUM process overview. Retrieved from Operating Room
Weekly Production Planning (SCRUM) Overview (2014)

1. A surgical booker compares the master operating room session planner against their
own information. Surgical leave and requests from surgeons or services are at this
point communicated to the production coordinator.

2. The production coordinator attends SCRUM meetings at a service level where sur-
geon availability as well as a review of surgical wait lists are considered. The pro-
duction coordinator must then inform the operating room scheduler of any changes
to surgeon leave, sessions to be released and sessions to be requested for their ser-
vice.

3. Before the weekly operating room SCRUM meeting the operating room scheduler
must update surgeon leave, released sessions as well as session requests as commu-
nicated by the production coordinators.

4. Weekly a SCRUM meeting is held with operating room managers, service man-
agers, production coordinators and the operator room scheduler in attendance. The
objective of this meeting is to review all requests and the availability of all operating
room sessions in Auckland Hospital. The outcome of this meeting is the acceptance
or rejection of proposed reallocation of sessions.

5. The operating room scheduler will reflect any changes confirmed during the SCRUM
meeting by updating the operating room session planner. Minutes showing this
changes are then distributed to all parties.

6. The operating managers must review the feasibility of any changes. Operating room
staffing, anaesthetist cover, equipment and instrumentation must all be considered.

10

If the changes are feasible the operating room manager must then confirm with the
operating room scheduler.

7. Finally the operating room scheduler must confirm the changes to the operating
room manager, operating room charge nurse, anaesthetist rosterer, surgical booker,
service manager and production coordinator.

The expected timing of the above seven stages are shown in Figure 3.

Figure 3: Weekly operating room production planning time-frames . Retrieved from
Operating Room Weekly Production Planning (SCRUM) Overview (2014)

1.1.3 Business rules

To accompany the SCRUM process a list of business rules are used:

1. A surgeon being on leave does not indicate that a session is available to be reallo-
cated.

2. A session where the assigned surgeon is on leave must be confirmed as being used
or released by the service a minimum of three weeks prior to its occurrence. Any
session not confirmed which is less than three weeks away will be offered for real-
location as part of the operating room SCRUM process.

3. Once a session has been confirmed as released for reallocation by a service it can
be claimed back by the original service as long as there are no other requests on it.

4. The reallocation of any session is at the discretion of the operating room manager
based on the ability to provide staff and other resources.

5. Where multiple services request the same session then the priority rules will be used
to determine the allocation.

11

6. The operating room scheduler is the point of contact for confirming availability of
sessions.

If a vacant session is requested by multiple services the following priority rules are
used in order to determine which service receives the session:

1. The clinical priority of the case(s) intended for the requested session.

2. The overall level of ESPI (Elective Services Patient Flow Indicators) 5 risk for each
service assuming that both services intend to use the session for completion of an
ESPI 5 case.

3. The overall progress by service against planned discharges.

4. The timing of the submitted request. Priority given to services submitting requests
more than two weeks in advance over requests received within two weeks.

5. The ability of the operating room to complete the planned sessions proposed by
each service.

6. The level of session usage of each service and the previous record of services in
releasing sessions.

1.1.4 Discussion

As can be seen in the above descriptions, there are three key components to the operating
room scheduling process at Auckland Hospital:

1. The operating room session planner which is the single point of reference for all
planned operating room sessions.

2. The operating room scheduler who is the primary point of coordination for all
changes and requests to regular operating room allocations as well as responsible
for keeping the session planner up to date.

3. The operating room SCRUM meeting which is the primary forum for discussion of
requests and reallocation of sessions.

In reference to Figure 2 the operating room scheduler is involved in six of the seven
stages which represents a large bottleneck. The accuracy of the session planner is directly
connected to the timely fashion in which it is updated by the operating room scheduler.

Whilst working directly with the operating room scheduler it is proposed that an up-
dated process involving a purpose-built software would alleviate this bottleneck as well
as increasing the accuracy and visibility of the session planner.

12

Figure 4: Proposed new operating room scheduling process

The proposed new operating room scheduling process seen in Figure 4 removes much
of the need for the operating room scheduler to be used as a middleman. No longer does
the accuracy of the session planner rely on one person.

The new process involves four main steps and one optional step as follows:

1. The surgical booker compares the master operating room session planner found
on the purpose-built software against their own information. Surgical leave and
requests from surgeons or services are at this point updated on the purpose-built
software.

2. The production coordinator attends SCRUM meetings at a service level where sur-
geon availability as well as a review of surgical wait lists are considered. The pro-
duction coordinator then reflects changes to surgeon leave, sessions to be released
and sessions to be requested by updating the purpose-built software.

3. Weekly a SCRUM meeting is held with operating room managers, service man-
agers, production coordinators and the operator room scheduler in attendance. The
objective of this meeting is to review all requests and the availability of all operating
room sessions in Auckland Hospital. The outcome of this meeting is the acceptance
or rejection of proposed reallocation of sessions.

All outcomes are recorded in real time on the purpose-built software. A report of
all changes (minutes) is then distributed.

13

4. The operating managers must review the feasibility of any changes. Operating room
staffing, anaesthetist cover, equipment and instrumentation must all be considered.
If the changes are feasible the operating room manager can confirm through the
purpose-built software.

5. A final optional stage is for the operating room scheduler to inform the operating
room manager, operating room charge nurse, anaesthetist rosterer, surgical booker,
service manager and production coordinator of all changes. This stage can be re-
placed by simply looking at the up to date session planner in the purpose-built
software.

This proposed process cuts all need for the operating room scheduler to act as the
middle man between involved parties. It puts responsibility to multiple parties to ensure
the single source of truth (the session planner) is kept current. By doing this the visibility
of changes is increased. An example being a surgical booker directly indicates through
the purpose-built software a surgeon will be on leave on a specific date, this is instantly
available information to all reviewing the session planner through the software. The cur-
rent process, the surgical booker emails the operating room scheduler of a surgeon being
on leave, the operating room booker would then update the session planner spreadsheet
as soon as possible. Only after this would the leave be indicated on the session planner
spreadsheet hosted on the intranet.

All business rules from the original process remain the same except for a variation to
business rule 6. It should now read: The session planner inside the purpose-built software
is the point of reference for confirming availability of operating room sessions.

1.2 Hypothesis and research questions

It is hypothesised that the proposed operating room scheduling process can increase op-
erating room utilisation by increasing visibility of information through a purpose-built
software.

Research Question: Can the existing operating room scheduling process in Auckland
Hospital be improved by implementing a purpose-built software?

14

Chapter 2 Literature Review

2.1 Introduction

This chapter is split into several sections that review the literature around specific aspects
in relation to operating room scheduling. Section 2.2 is going to discuss the phases in-
volved in the scheduling of operating rooms, pinpointing the phases of particular interest
to this research. Section 2.3 will identify the common problems surrounding operating
room scheduling, this will give valuable insight towards which areas deserve the most
focus when working to develop a more efficient and effective operating room booking
system. Section 2.4 introduces existing systems used for the scheduling of operating
rooms. By reviewing existing systems it can be identified how effective they are when
dealing with the problems raised in section 2.3, which in turn gives valuable insight for
the development of a new system.

2.2 Scheduling phases

Before discussing the levels involved when scheduling operating rooms it is important
to understand the following resource management strategies when allocating operating
rooms:

• Open Scheduling
Open scheduling is often referred to as a first come first serve strategy. No oper-
ating resources are allocated and an empty schedule is filled with surgical cases in
order of requested. This strategy heavily favours surgeons who have the ability to
scheduling well in advance due to predictability. But is very unfavourable toward
specialities who do not have that degree of certainty (Patterson, 1996).

• Block Scheduling
”Block booking is essentially a reservation. Let’s say you are going to dinner on
Saturday night, and you don’t want to wait for a table. You call ahead and reserve-
block book-a table. Your evening is pretty well planned now. You don’t have to
worry about rushing around or getting to the restaurant early-you are taken care

15

of.” (Earnhart, 2003).
Block scheduling is when a block of time is allocated to either a surgeon or group
of surgeons. This block is then ”owned” by them and in the true definition of black
scheduling would never be released (Miller et al., 2014). This strategy provides
surgeons with a schedule that is predictable so they can book individual sessions
in this block. It’s downfall is if the session not going to be used, utilisation suf-
fers. The reallocation of block time last minute can raise difficult issues especially
with two competing groups requesting that session, on top of staffing and resource
availability.

• Modified Block Scheduling
Modified block scheduling is a modification of both the above strategies. There are
two main modifications that are commonly employed (Patterson, 1996). The first is
to block a share of allocation while leaving the remainder open and the second is to
have an agreed upon time where unused blocks must be released and made available
to other surgeons or groups. This method balances the needs of specialities where
some can not book as far ahead as others. Although it does mean an efficient and
visible way of releasing sessions must be employed in order to maximise utilisation.

To keep the review scoped to the current resource management strategy used at Auck-
land Hospital from here onward it is assumed a modified block scheduling strategy is used.

Abedini, Li, and Ye (2017) identify three main levels involved in the scheduling of
operating rooms:

1. Strategic: Using historical data and forecasting, operating room blocks are allo-
cated to specific surgery groups. This phase generally has a horizon of one year
(Blake & Carter, 2002).

2. Tactical: Development of a master surgical schedule is the main outcome from this
phase. This schedule outlines the number and type of available operating rooms,
hours the rooms are open as well as the surgeons or surgical groups that the blocks
are allocated too. Time horizon of this phases is typically one to three months
(Guerriero & Guido, 2011).

3. Operational: This phase involves the scheduling at a much more detailed level
such as assigning each case to specific operating rooms, start and end times of
scheduled cases and reservation of specialised equipment. This schedule can be
modified to cater to unexpected events such as cancellations, surgery going under
or over allocated times as well as the inclusion of urgent cases. This phase is com-
pleted on a daily basis (Guerriero & Guido, 2011).

16

The scope of this project is mainly concerned with the tactical level and to an extent
the strategic level. But as the three levels are dependent on each other (the outcomes from
each being the input in to the next phase) it is important to have a thorough understanding
of the whole process.

Figure 5: Hierarchical decision levels. Adapted from Guerriero and Guido (2011)

2.2.1 Strategic level

The goal of the strategic level is to determine the surgeries that are to be performed as
well as the medical staffing. This allows the allocation of resources which is needed in
order to ascertain costing involved. This furthermore allows decisions to made in order to
maximise profit or minimise costs depending on business strategy (Blake & Carter, 1997).

Strategic planning is mostly based on historical data and forecasting with a horizon
of one or more years (Guerriero & Guido, 2011). There is conflicting reports in the liter-
ature about the effectiveness of this process. Masursky, Dexter, OLeary, Applegeet, and
Nussmeier (2008) studied three hospitals who produce long term forecasts in an attempt
to predict long term changes in operating room usage using the changes to local popula-
tion. Their findings showed that these forecasts were highly inaccurate. It was noted that
a more accurate method is to save billing and operating room time data display it graphi-
cally year by year and model using corresponding forecasting methods to show changes.
A study by Dexter, Macario, Qian, and Traub (1999) tested the validity of a common
forecasting method in which the average of the most recent year’s total hours of elective
cases is used to predict future usage of operating room time. Their results showed that
this method provided adequate results.

There have been numerous studies in which improvements have been attempted to
be made at the strategic level. It was discovered by VanBerkel and Blake (2007) that a
significant bottle neck in wait times was caused by resource allocation. Beds in particular
were identified as a key resource causing problems. They observed through simulation
that redistribution of beds at the time of strategic level planning operating room time was
better utilised.

17

2.2.2 Tactical level

Guerriero and Guido (2011) state that it is accepted that most elective surgeries do not
differ over several weeks. As such the tactical level is dedicated to developing a master
surgical schedule. A master surgical schedule is constructed to define which surgical
group or surgeon is allocated to individual time blocks per operating room per day as
seen in Figure 6. The horizon of the planning period is predetermined by the planning
team involved commonly between one month to one year.

Figure 6: Example master surgical schedule covering four operating rooms over five days

The master surgical schedule is constructed taking in to account historical data as well
as actual demand from waiting lists and requests for surgeries. The master surgical sched-
ule construction is an iterative process with input and negotiation from various parties. It
is likely that a request from one surgical group would directly effect another thus each
request has to be considered, accommodated (if possible), and finally reflected on the
master schedule. This process is repeated as often as necessary.

Of particular note to this research is that a base master schedule is often reused over
extended amounts of time (Kharraja, Albert, & Chaabane, 2006). The consequence of this
is that it needs to be constantly re-optimized to reflect various scenarios. Aspects such
as availability of nurses, surgeons and other medical staff as well as infrequent events
(shutdowns / public holidays) can in effect cause major changes to the normal schedule
thus these need to be identified early with suitable visibility to all involved.

At this stage of the process many key decisions such as the hiring of new staff, in-
creases in ward usage as well as what surgical groups should be provided with increased
resources are made. One such technique of making these decisions is to us the data en-
velopment analysis technique. Oneill and Dexter (2004) show this techniques potential
as a tool for operating room managers decision making in regards to increasing resource
allocations all based around data collected at this stage. Multi-factor efficiency and non-
radial super-efficiency have also being investigated with promising results (O’neill, 2005).
The strength of these techniques is directly dependent around the accuracy of the avail-
able data thus it is imperative that regardless of process used, data should be current and
valid.

18

2.2.3 Operational level

The final level of the process is the operational level. This levels main purpose is to create
a schedule for the day of surgery. Cardoen, Demeulemeester, and Beliën (2009) further
split this level in to two distinct steps: an assignment step and a sequencing step.
The assignment step involves a discussion between the patient and the surgeon. This
discussion is influenced by many factors such as free capacity availability in the surgeons
allocated blocks as well as patient and surgeon preferences. The result of this stage is the
patient and surgeon are aware of the day that surgery will happen but they will not know
specific timings, this is to be decided in the sequencing step.
The sequencing step generally happens the day before surgery. The theatre manager at
this time is aware of all the patients who are to be operated on the following day. There
may be a preferred sequence by both surgeons and nurses but in order to resolve conflicts
as well as balance limited resources this may not be possible. Once a sequence has been
determined the patients will be contacted to inform them of surgery starting times.
Although this level is out of scope for the project input from the strategic and tactical
levels are direct inputs. The theatre manager needs to be aware as soon as possible to
changes in allocated time blocks as well as changes to speciality or surgeon allocations in
order the efficiently and correctly produce daily schedules.

2.3 Operating room scheduling problems

The single largest cost when delivering surgical care is the operating room (Macario,
Vitez, Dunn, & McDonald, 1995), with a significant portion of these costs being allo-
cated to surgical staffing (Dexter, Macario, Traub, Hopwood, & Lubarsky, 1999). This
highlights the need for efficient and robust systems to maximise labour, productivity and
to reduce wastage in operating room resources.

The scheduling of operating rooms is a complex problem, with the organisation of var-
ious stakeholders, resources and services having to be taken in to consideration. Surgical
and nursing staff, anaesthesiologist, medical equipment, and recovery beds in surgical
wards all have to be taken in to consideration when scheduling operating room sessions.
Li, Rafaliya, Baki, and Chaouch (2017) identify that a well-designed system should be
concerned with the welfare of all involved parties and should prioritise the allocation of
available resources in an efficient and effective manner.

2.3.1 The operating room

Operating rooms are scarce and expensive (Stepaniak & Pouwels, 2017). The demand
for operating room capacity in some specialisations is beyond the supply, which can have
negative side effects such as long delays in surgery for the patient, emotional stress for

19

the patient and family along with the possibility of transfer to other hospitals resulting in
lost revenue. Stepaniak and Pouwels (2017) identify that these issues can have serious
implications on the running of a hospital, making it of the best interests for hospital man-
agement to optimise usage while taking in to account patient waiting times. The above
issues are commonly referred to in the attempts for improved operating room scheduling
systems which will be discussed further in Section 2.4.

Typically operating rooms will be allocated by speciality to the available operating
rooms. The variability around types of surgeries as well as the fluctuations involved in the
demand and duration of these surgeries makes regular schedules very hard to create (Li et
al., 2017).

On top of all these issues hospital management has to efficiently schedule at a day to
day level ensuring a balance between over-utilisation and under-utilisation. Strum, Var-
gas, and May (1999) define under-utilisation as time spent during scheduled operational
hours that an operating room is not used and over-utilisation is defined as time used by
scheduled cases past the end of scheduled operational hours. Dexter and Traub (2002)
explain it well when they say ”Hypothetically, a service could be allocated two operating
rooms for the day but perform all of its cases in one operating room. There could be both
unused time in one and overtime in the other.”.

2.3.2 The operating room staffing

There is a magnitude of staffing involved in the use of operating rooms all with different
goals and expectations. In a block scheduling strategy a theatre manager or charge nurse
has to ensure that surgeons, nursing staff, anaesthesiologists are all aware of block book-
ings where they are required. Even after this the smooth running of the existing schedule
is reliant on the efficiency of staff.
”If surgeons are not using their blocks effectively, they’re tying up resources that could
be used by other surgeons and groups, this is why its so important to have a block man-
agement system that details procedures holders must follow if they need to make changes
to their blocks.” (Sadler, 2015). Any delays in procedures have to be made up at a future
time which will normally include overtime adding to an already high staff costing.

2.3.3 Cancellations

Cancellations are unfortunately an aspect that has to be dealt with regularly. A study
by Appavu, Al-Shekaili, Al-Sharif, and Elawdy (2016) investigated reasons for operating
room cancellations. Their findings showed that 26% of surgeries were cancelled with
63% of those being due to patient no shows, 17% due to surgical reasons and only 2% of
cancellations due to operating room reasons.
If there is no similar and ready surgeries that can be pushed forward at the time this means

20

the operating room will be underutilised. Other than improvements to how patients are
reminded and informed about bookings not much can be done from a planning perspective
around this area. It is important to have a platform to identify reasons why this has
occurred so further research and work can be done around this area.

2.4 Existing operating room scheduling systems

The most common method to scheduling is to follow the above planning levels with ev-
erything recorded in spreadsheets. In fact there is very little in terms of software solutions
for this particular problem which further validates a need for more exploration.

At individual levels many studies have applied mathematical models in order to opti-
mise either profits or utilisation. Yet this pure output does not translate well in to use as
it is still in either a spreadsheet or graph. They are also rigid, meaning there is very little
room for change or exceptional circumstances.

At an operational level one commercial software was found (Operating Room Schedul-

ing, n.d.). It claims it’s features as:

• Easy scheduling of operating rooms

• Print outs of staff schedules for surgery bookings

• Colour coded scheduling to view at a glance

• Doctor’s day-list for chart tracking

• Multi-room scheduling

The software although very dated seems sufficient for a doctor who just wants to know
their own schedule but nothing is mentioned in regards to an overall view for a whole
operating theatre which excludes it from a tool that would be useful in this research.

21

Figure 7: Daily schedule software. Retrieved from Operating Room Scheduling (n.d.)

The closest software found to what is required would be a general organisation cal-
endar such as Google Calendar (Google Calendar, n.d.). Although these tools do not
offer anywhere near the sophistication needed to properly function an operating room
scheduling system, many of the visual element could be adapted to portray information
clearly.

Figure 8: A demonstration of how Google Calendar could show block bookings. Re-
trieved from Google Calendar (n.d.)

22

Chapter 3. Research Design

3.1 Introduction

The aim of this research is to improve and extend upon an existing system for the schedul-
ing and usage of operating rooms in Auckland Hospital. It is hypothesised that through
the use of a purpose-built software this system can improve efficiency, clarity and work
flow in comparison to it’s tedious manual counterpart. To test this hypothesis a software
prototype must be designed and developed in order to demonstrate it’s usage. Therefore
any research methodology used must include the development of software as well as the
evaluation of its use.

Both Action Research and Design Science were initially investigated as potential
methodologies applicable to this research. Design Science was ultimately decided upon
largely due to the explanation by Papas et al. (2012) around the definition of success to
each methodology. It is explained that Action Research’s definition of success is the im-
provement of practice being observed whereas Design Science’s philosophy implies that
the research is a success if the improvement of practice is observed by the use of an arte-
fact. This suggests that the use of an artefact is not key to Action Research. By using a
Design Science approach the artefact is key to the research allowing focus to be on the
design, development and evaluation of the hypothesised purpose-built software.

Immediately preceding the Design Science methods a literature review has been con-
ducted in order to identify the background and current knowledge in the problem space,
this also allowed for a more overall understanding of the processes to which this studies
focus area is just a small part. Following this the Design Science process which will be
explained in more depth below.

3.2 Design Science

The main purpose of design science is achieving knowledge and understanding of a prob-
lem by building and using an artefact (Von Alan, March, Park, & Ram, 2004). Von Alan
et al. (2004) present a set of guidelines of which design science research should address:

23

1. Design as an artefact: The research must produce an innovative and purposeful
artefact for the specific problem domain.

2. Problem relevance: An artefact must either solve a problem that has not yet been
solved or it should be an improved solution on an existing process.

3. Design evaluation: The quality and utility of the artefact must be demonstrated in
regards to the problem area. These evaluations must be done using well-executed
methods.

4. Research contributions: Well executed Design Science research must provide
clear and verifiable contributions to the problem space.

5. Research rigour: Design Science research is reliant upon rigorous design, devel-
opment and evaluation of the designed artefact.

6. Design as a search process: The search for an effective artefact requires utilising
available means to reach desired ends while satisfying laws in the problem environ-
ment.

7. Communication of research: The research must be presented in a way that is
meaningful to both management and technology orientated audiences.

The Design Science methodology process model which has been chosen for this re-
search was designed by Papas et al. (2012). It has six key activities as shown in Figure 9
all of which are designed to address the guidelines above.

Figure 9: Design Science methodology model. Retrieved from Papas et al. (2012)

3.2.1 Identify the problem and motivation

By identifying the problem you can justify the value of a solution. The problem defini-
tion will be constantly referred too when developing an artefact as the key output of this

24

research should be an artefact which solves the original problem. By identifying a satis-
factory solution to the problem the researcher and audience are motivated to pursue it. By
clearly identifying the problem it shows the researchers understanding of the area.

For this research the problem and motivation has been explained in depth in Chapter
1, while the targeted literature review in Chapter 2 shows a deeper understanding of the
processes involved.

3.2.2 Define the objectives of a solution

With an understanding of what is possible in the subject area objectives for a satisfactory
solution may be outlined. Objectives can be both qualitative or quantitative. By identi-
fying these objectives it is possible to measure success of the project in comparison to
alternative methods or solutions which have been discussed in Chapter 1 and Chapter 2.

For this research objectives have been portrayed as ’user stories’ (Adolph, Cockburn,
& Bramble, 2002). User stories are a popular tool in software development for modelling
requirements. They allow a list of actions to be completed with an expected outcome to
be described. By using these user stories as test cases the effectiveness of solutions can
be measured.

The user stories for this research can be found in Chapter 4.

3.2.3 Design and Development

This activity involves the development of an artefact. For this research the artefact is in the
form of a purpose-built software. The architecture decisions as well as the software de-
velopment methods used to develop this software to meet functionality described through
the use cases are key parts of this activity and are described in depth in Chapter 4.

3.2.4 Demonstration and Evaluation

Demonstration of the software solving the initial problems described is essential. For this
research this is done through the software being used live side by side with the existing
manual system. Using the results of these demonstrations features that need more work as
they do not satisfy the use cases can be identified starting an iterative process by returning
to the Design and Development activity. These evaluations are analysed in Chapter 6.

3.2.5 Communication

A key guideline to Design Science research is the communication of research. Research
has to be presented for both management and technology orientated audiences. This com-

25

munication has to identify the importance of the research, the artefact, its utility and nov-
elty, the rigour used in its design and its effectiveness in use.

For this research this thesis as well as the software artefact is to communicate all the
above.

26

Chapter 4. System Design

4.1 Requirements gathering

As a means of gathering requirements a number of objectives which are essential to the
success of the research were listed as user stories. User stories are short descriptions that
detail functionality as told by the user’s perspective. They usually follow a template such
as:

As a [user], I want [outcome] so that [reason].

This is then followed by acceptance criteria as a way to confirm the requirement has been
met. It should be noted that no where in the user story is any detail to how the user story
should be done.

User stories were chosen opposed to traditional requirement documents as a means to
capture the high level requirements without limiting development to specifics. Traditional
requirements documents detail how the software should and will act. Bartlett (2016)
shows these differences well using a basic e-commerce site as an example:

• As a customer, I want to be able to view the items in my cart so that I know for sure

what Im purchasing.

As can be seen, this user story does not include any specific details on implementation
which allows more discussion and more flexibility during development. Whereas in con-
trast a requirements document may list requirements as such:

• Display the name of each item in the shopping cart.

• Display the quantity of each item in the shopping cart.

• Allow the user to remove any items in the shopping cart.

This is much more rigid way of approaching which was decided against in order to
allow change throughout.

27

4.1.1 User Story Format

In order to have the user stories readily available Trello (Atlassian, 2016) was used. Trello
is a web based application where you can create a board and add individual cards which
can be used to simulate a Kan-ban board (Gross & McInnis, 2003).

Figure 10: User stories shown in Kan-ban board style using Trello

The individual cards are styled so that a lot of information can be gathered with just a
quick glance. They are numbered and named so that their stories can easily be identified
and referenced. An indication to the amount of acceptance criteria that have been met
is also present in this view. If more information is needed the individual cards can be
expanded where the user story and acceptance criteria can be seen in full as well as any
other comments anyone may have left.

4.1.2 User Stories

The following are high level user stories in which were identified crucial to the projects
success. These provide the basis for the rest of the systems design as well as a benchmark
for the systems evaluation.

28

Figure 11: User Story 1
Figure 12: User Story 2

Figure 13: User Story 3
Figure 14: User Story 4

Figure 15: User Story 5 Figure 16: User Story 6

29

Figure 17: User Story 7 Figure 18: User Story 8

Figure 19: User Story 9
Figure 20: User Story 10

Figure 21: User Story 11 Figure 22: User Story 12

Figure 23: User Story 13

30

4.2 Technologies

4.2.1 Front-End

A large aspect of this project involves the clear and accurate display of information to the
screen. To facilitate this a suitable front-end JavaScript framework needs to be chosen.
The reasons for using an existing framework as an alternative to vanilla JavaScript are
numerous:

There is a common boastful saying along the lines of I can write your 100 lines of
code in your preferred language in a few lines using my preferred language. Using a
front-end framework this is often a truth. This leads to more efficiency in the writing
of code as well as increased readability of code purely through the more concise nature.
The communities involved are very large. They have a lot of people spending a lot of
time in the development and usage of these frameworks. It makes sense to leverage this
knowledge and to bypass many of the pain points others have experienced. Information
and interaction with experts is readily available through platforms such as Stack Overflow.
Three frameworks have been chosen for comparison in this project to ensure the best tool
for the job is chosen. Angular, React and Vue are chosen because of their reputations as
being on the leading edge. The factors to take in to consideration for this comparison are
their community size, their likelihood of longevity, learning curve involved, performance
expectations and completeness of development life cycle.

The Frameworks

Angular is a TypeScript based JavaScript framework maintained by Google. It is ad-
vertised as a framework that can be used to develop across all platforms by reusing code
across all deployment targets such as web and mobile. Speed and performance is empha-
sised using Web Workers and server-side rendering with tooling available through a wide
range of IDEs with the ability to extend existing simple declarative templates (Google,
2018). Components in Angular are used using a template structure separating view from
logic.

React is A JavaScript library for building user interfaces (Facebook, 2018). React was
developed and is maintained by Facebook. It has many high profile users such as Airbnb,
Uber, Reddit, PayPal and many more (Facebook, 2017). It employs declarative views to
make code easy to read and debug as well as a component-based system. Component logic
is written in JavaScript using React instead of templates, this enables data to be passed
through the application whilst keeping state out of the DOM. Vue is different to the two
previous frameworks as in it was originally developed by a single person, Evan You who
is a ex-Google employee (You, 2018). Since release it has been adopted by many large
users such as Alibaba, Baidu, Expedia and Nintendo (Nifty Software E.U, 2018). It is

31

advertised as being approachable, versatile, performant, maintainable and testable (You,
2014). The core library of Vue is focused purely on the View layer much like React.
Again much like the above frameworks it uses declarative views and is component based.
All three are covered by the MIT License.

Community Size

Community size and number of contributors is an important metric to consider when
determining which framework to use. This determines the ease in which to get help as
well as the amount of resources available to the developer. A more active community
is generally going to be more beneficial than a less active one. Values that are going
to be taken in to account are: Stack Overflow question numbers, Stack Overflow being
the largest and most trusted community for developers (Stack Overflow, 2016). As well
as GitHub contributor numbers which will indicate the amount of developers actively
working on the platform. Angulars core framework repository has had 574 contributors
for a total of 9,437 commits on GitHub. In total 93,929 questions have been tagged in
Stack Overflow with Angular. Reacts core repository has had 1,163 contributors for a
total of 9,615 commits on GitHub. In total 71,652 questions have been tagged with React
in Stack Overflow. Vue has had 165 contributors for a total of 2,488 commits on GitHub.
In total Vue has had 13,208 questions tagged in Stack Overflow.

Both Angular and React have very similar numbers of commits in GitHub whilst Re-
act has over double the number of contributors. In terms of questions asked on Stack
Overflow Angular has a fairly large lead over React with Vue being much lower in all
metrics.

Longevity and stability

It is important for ongoing support that the framework chosen doesn’t disappear in the
near future. The investment involved particularly in development time is a large one which
shouldn’t need to be repeated for a substantial amount of time. As of 2017 the Angular
team has announced long-term-supporting version starting with Angular 4. One major
update will occur every six months and these will be supported for at least the following
year with bug fixes and important patches. React APIs are very stable and are used by
over 20,000 components at Facebook alone, as such they are very reluctant to change any
public APIs or behaviour. Vue has a planned release in March 2018 and has recently hired
many new developers as part of ongoing expansion efforts (Ramsey, 2018). This indicates
that a road map for ongoing support is intended yet there is no formal confirmation. The
sheer volume of large users for React make it unlikely to go away any time soon, and the
Angular team have vocally committed to ongoing releases (Minar, 2016). Vue seems to
have intentions of ongoing support but nothing in concrete. It should also be noted in the

32

case of React and Vue which are predominantly view only frameworks, that you are often
reliant on many other libraries in which also need upkeep.

Learning curve

The learning curve involved in adopting any of these frameworks is an aspect that needs
to be taken in to consideration. As well as weighing up the benefits to learning new tech-
niques or technologies on top of learning already involved through the new framework.

TypeScript vs ES6 vs ES5

React uses JavaScript ES6, Vue uses ES5 or ES6 whilst Angular uses TypeScript. Type-
Script is a super set of JavaScript and essentially a new language. It offers all features
from JavaScript ES6 as well as static types and decorators which are useful for code intel-
ligence tools, debugging and refactoring. This is particularly useful for large projects in
which many different people work on. ES6 or ECMAScript 2015 is the latest version of
JavaScript and includes many new features such as function shorthand arrows and classes.
TypeScript although a new language is very recognisable to developers in languages such
as Java as well as more traditional JavaScript developers.

Templates

Angular and Vue both use a very traditional approach of separating user interface template
HTML from JavaScript whereas React uses JSX which mixes the JavaScript and HTML
together. Angular templates are HTML with special angular keywords which enable you
to inject JavaScript. This means you can still have a specialised design team without
the need for them to learn JavaScript. Reacts templating style can best be described as
injecting HTML into JavaScript. This is a big change from traditional approaches. Vue
uses a single file components approach (Vue.js, 2018) in which the template scripts and
JavaScript are all in the same file.

Performance

In a variety of metrics Angular 4, React and Vue are relatively comparable in which there
will be no noticeable difference in performance (Krause, 2017).

Completeness of development life-cycle

Although referred to as frameworks React and Vue are much closer to libraries. They
only cover the user interface component side of development which means you have a
lot more decisions to make on the architecture of your application by integrating further
libraries. Angular on the other hand is a fully functioning framework encompassing the

33

entire life-cycle of the application. It has strict rules and guidelines with no need for
further libraries. This comes with a higher learning curve for the core framework but in
turn removes the need to research further libraries and the added complexity that comes
with integrating additional libraries.

Decision

After comparing all the frameworks, the decision was made to develop using Angular.
This decision was made for the following reasons:

• The use of TypeScript. This increases productivity and test-ability by being type
safe.

• A traditional separation of HTML view from logic gives a more familiar feel.

• The community is very large and active with guaranteed ongoing support backed
by large companies.

• Strong performance emphasis.

• Completeness of the framework. Only having one framework to worry about which
is well documented reduces complexity which would have been introduced by
adding libraries.

4.2.2 Back-End

The back-end of this application is split in to two main parts: the API and the database.
These two parts work directly with each other to deliver data to the front-end which is
then shown to the screen. The only requirements of them are:

• The data is returned to the application in a timely manner so not to deliver a bad
user experience.

• Large amounts of requests can be made without disrupting the connection between
front and back-ends.

• Data is easily structured in a way that reports can be generated easily.

REST API

A REST API is ”An API which defines a set of functions which developers can perform
requests and receive responses via HTTP protocols such as GET and POST” (Deering,
2012). One of the conditions of being a RESTful system is that the client (front-end)

34

and server (back-end) are independent of each other (Erl, Carlyle, Pautasso, & Balasub-
ramanian, 2012), meaning that both the client or server can be replaced without having to
change any underlying functionality. This condition was particularly important in regards
to this project as the back-end had to be completely rebuilt late in to development.

REST API Version 1

The original REST API chosen for this project was a product by Cdata (CData Software,
Inc., 2018). This product allowed an API to be built with just a few clicks which saved a
lot of time that could be used for development in other aspects of the application.

Figure 24: Potential architectures using Cdata API Server. Retrieved from (CData Soft-
ware, Inc., 2018)

This initial API allowed data to be retrieved from the applications database and for
Angular services to be made and then injected in to the application using the documen-
tation provided (CData Software, Inc., 2017). Unfortunately there was an undocumented
limit to the amount of requests that could be made using the basic version of the prod-
uct. This meant it was no longer suitable for the application as requests would be denied
frequently providing a poor experience to the user.

REST API Version 2

Fortunately a suitable alternative existed in the form of django REST framework (Christie,
2018). Using this framework was considerably more work to set up but it did allow for
more flexibility as well as a web browsable feature which is helpful for debugging.

35

Figure 25: The root API showing available calls.

Figure 26: Showing GET call of all bookings.

36

Figure 27: Showing GET call of an individual booking.

Using the available documentation it was simple to mimic the API calls that were
created in version 1 of the API and simply changing the end-point in the Angular service
confirming the applications truly separate client-server relationship.

The nature of the django REST framework makes it easy to further filter requests as
needed such as the following method:

Figure 28: Method for the request of specific booking.

The above code snippet shows a request for a specific room’s bookings on a specific
date. The given parameters are appended on to the default endpoint URL and that specific
booking object is then returned for further manipulation or display. This type of call is
readily available with added parameters or even less. For example if all bookings on a
certain date where requested you would just omit the level and room parameters.

In addition to the various GET methods there is also PUT and POST methods. PUT
to update bookings and POST to insert new bookings as per HTTP Protocol standards
(Belshe, Thomson, & Peon, 2015).

37

Figure 29: Method for updating a specific booking.

Figure 30: Method for creating a new booking

Database

Both of the above APIs both were not reliant on the type of database used. An SQL based
database was chosen due to the familiarity and ease of use. All data is stored on one
simple table which makes it very easy to initially upload as well as copy. PostgreSQL
was chosen as the database type due to the ease of integrating with Heroku which will be
discussed more in 4.2.3.

38

Figure 31: SQL Booking table diagram

The above diagram shows the fields present in the booking table which the REST API
pulls from.

date: The date the booking is on.
level: The level the booking is on.
room: The room the booking is on.
am dept: The department that has the booking in the AM session.
pm dept: The department that has the booking in the PM session.
am surg: The surgeon that has the booking in the AM session.
pm surg: The surgeon that has the booking in the PM session.
valid:

• A 1 value in this field shows a valid booking.

• A 0 indicates another row has superseded this one.

created: The the date this row was created.
am status:

• A 0 value in this field indicates the AM booking has not been changed from the
original planned session.

• A 1 indicates that the session has been recycled.

• A 3 indicates the session has been shutdown.

• A 4 indicates the surgeon is on leave.

• A 5 indicates this session has requests against it.

pm status:

39

• A 0 value in this field indicates the PM booking has not been changed from the
original planned session.

• A 1 indicates that the session has been recycled.

• A 3 indicates the session has been shutdown.

• A 4 indicates the surgeon is on leave.

• A 5 indicates this session has requests against it.

am confirmed

• A 1 value in this field shows a confirmed AM session.

• A 0 value in this field shows a unconfirmed AM session.

pm confirmed

• A 1 value in this field shows a confirmed PM session.

• A 0 value in this field shows a unconfirmed PM session.

Using a relatively small table, all the needed data to display as well as to report is
included in a very small database size.

4.2.3 Hosting

Cloud based hosting is ideal for this software due to the ease of deployment and the up
time being as close to 100% as possible allowing it to be accessed anywhere, anytime
as long as the user has an internet connection. Heroku (Salesforce, 2018) was chosen to
be the cloud provider. By using Heroku, applications can be run directly from GitHub
repositories which cuts deployment time greatly as well as being able to rollback the
application to any commit version that exists on the application repository. Heroku also
has pre-built PostgreSQL environments making the hosting of existing databases as easy
as copying over the existing development database.

By hosting the Angular application, django-REST API and the PostgreSQL database
on the same platform it allows simple building scripts to be run making deployment easy.

4.2.4 Login and Authentication

Although not as a such a security issue as there is no personal information of patients or
of any others present in the application, it is still valuable to be able to identify who is
using the application and even more importantly who is making changes so that they can
be logged.

40

Schneier’s law (Schneier, 2009) states ”Anyone can invent an encryption algorithm
they themselves can’t break; it’s much harder to invent one that no one else can break”
This is the basis to why it’s advised to not create your own encryption and to use a well
tested alternate.

auth0 (auth0 inc., 2018) was chosen as the login service as it has an easy to use API.
Custom code can be written inside this service in order to categorise users into guests,
admin, normal users. As certain features are locked behind being an admin user this is
essential.

Figure 32: Custom rule used to set role type.

This login was implemented in to a simple Angular service which will request from
the API whether a user is authenticated and will receive back a response with either an
error or a JSON object which has the users details. This is where their name and role type
can be retrieved and further used in the application.

41

4.3 System Architecture

Pulling all of the above in to a simple high level system architecture diagram the clear
separation of pieces can be seen.

Figure 33: High level overview of system architecture.

42

Chapter 5. System Development

5.1 Planner Component

The planner component is the overarching container consisting of the calendar, booking
and header components.

Figure 34: Planner component container showing sub components.

5.1.1 Planner-Header Component

The header component contains all the controls for the change of date and floor level that
the calendar component is displaying.

Figure 35: Header component controls.

When initialising this component both the level service and the date service are in-
jected. This allows the component to call service methods as well as listen to changes by

43

subscribing to the observable these services provide.

@Injectable()
export class DateService {
date: Date;
private dateChange = new Subject<any>();
dateChange$ = this.dateChange.asObservable();

setDate(date: Date) {
this.date = date;
this.dateChange.next(this.date);

}
}

Figure 36: Date Service Initialization.

@Injectable()
export class LevelService {
level: number;
private levelChange = new Subject<any>();
levelChange$ = this.levelChange.asObservable();

setLevel(level: number) {
this.level = level;
this.levelChange.next(this.level);

}
}

Figure 37: Level Service Initialisation.

By looking at Figure 36 and Figure 37 it can be seen that an Observable object is
created. This Observable is updated by using manipulation methods from within the
service, setLevel() for example in Figure 37.

This process can be seen in use by analysing the planner-header component in detail:

export class HeaderComponent implements OnInit {
today: string;
todayDate: Date;
level: number;

constructor(private dateService: DateService,
private levelService: LevelService) {

}
}

Figure 38: Planner-Header Component Initialisation.

The above Figure 35 shows the LevelService and DateService being injected

44

in to the HeaderComponent allowing these services to be used and called upon using
this.dateService and this.levelService.

Using Figure 35 as reference the left and right arrows indicate going back a week in the
past and going forward a week in the future. Below the HTML template for these arrows
can be seen followed by the methods that are called to manipulate the dateService.

<div class="row">
<div class="col col-md-4">
<a (click)="backWeek()"> << BACK

</div>
<div class="col col-md-4">
<h6 >Week starting {{today}}</h6>

</div>
<div class="col col-md-4">
<a (click)="forwardWeek()"> FORWARD >>

</div>
</div>

Figure 39: HTML template for date changer

private backWeek() {
this.todayDate.setDate(this.todayDate.getDate() - 7);
this.today = moment(this.todayDate).startOf(’isoweek’)
.format(’dddd MMMM Do YYYY’);

this.dateService.setDate(this.todayDate);
}

Figure 40: Method for setting date back one week

private forwardWeek() {
this.todayDate.setDate(this.todayDate.getDate() + 7);
this.today = moment(this.todayDate).startOf(’isoweek’)
.format(’dddd MMMM Do YYYY’);

this.dateService.setDate(this.todayDate);
}

Figure 41: Method for setting date forward one week

By using the Angular event binding (click), component logic can be called. In the
above example it can be seen that the event binding has been added on to the anchor (<a>)
tags. For the first example: <a (click)="backWeek()"> << BACK a
click on the tag calls the backWeek() method inside the component. This in turn
will set the member variable this.todayDate to be one week prior, following this
the dateService.setDate method is called which manipulates the dateChange
Observable sending a change to all components subscribed to it.

45

Figure 42: Flow of actions following click on left arrow

The levelServiceworks in a very similar way to dateService. By clicking on
the level drop down list component logic is called which will use the levelService
setLevel method to manipulate the levelChange Observable which will then be
recognised throughout the application.

46

Figure 43: Flow of actions following click on down arrow

5.1.2 Calendar Component

The consequence of the above service updates in the header component can best be seen
in the calendar component. The calendar component does not manipulate any state to do
with level or date it just subscribes to the respective services and then displays the correct
bookings to the page.

47

constructor(
private auth: AuthService,
private bookingService: BookingService,
private dateService: DateService,
private levelService: LevelService,
private permissionService: PermissionService
) {

if(!auth.isAuthenticated()) {
this.auth.login();

}
}

ngOnInit() {
if(this.auth.isAuthenticated()) {
this.getLevel();
this.getDates();
this.populate();

if(!localStorage.getItem("permission")) {
this.permissionService.setPermission();

}

let subscription = this.dateService.dateChange$
.subscribe((value) => {
this.getDates();
this.populate();

});

let subscription = this.levelService.levelChange$
.subscribe((value) => {
this.getLevel();
this.dateService.setDate(new Date());
this.populate();

});
}

}

Figure 44: Construction of the Calendar Component

Using Angular life cycle hooks all service dependencies are injected through the con-
structor. ngOnInit is an Angular life cycle hook to indicate that the component is done
being created, it is during this hook that there are multiple checks to determine if and what
should be rendered to the page.
Firstly there is a check to authService to ensure there is a logged in user, there is no
scenario where a non-authorised person should have access to this page. If the current

48

user is not logged in they are redirected to the login page opposed to seeing a rendered
calendar.

If the user is logged in the populating of the component commences:

private getLevel() {
this.level = this.levelService.getLevel();

}

Figure 45: levelService getLevel() method

The levelService getLevel()method is called to set the local this.level
variable for future use in populating the bookings.

private getDates() {
this.mondayDate = this.dateService.getMonday();
this.tuesdayDate = this.dateService.getTuesday();
this.wednesdayDate = this.dateService.getWednesday();
this.thursdayDate = this.dateService.getThursday();
this.fridayDate = this.dateService.getFriday();

}

Figure 46: dateService getDates() method

The getDates() method is called on the dateService in order to identify the
dates needed to populate the current calender screen. By saving these in to a local variable
they are reused during calls to the bookingService. The logic involved on working
out which day each date relates to is left to the dateService to calculate.

public populate() {
this.bookingService.getLevelBooking(
this.mondayDate, this.level).subscribe(
data => this.mondayBookings =
(data as any).results,

err => {
// Log errors if any
console.log(err);

});
}

Figure 47: populate () method

Using the previously set local variables the populate() method populates the ar-
rays of Bookings for each day of the week. The bookingService.getLevelBooking()
method is called passing the date and level parameters of the bookings that are to be dis-
played.

49

getLevelBooking(date:Date, level:number):
Observable<Booking[]> {

let formattedDate = moment(date).format(’YYYY-MM-DD’);
this.url = "?date=" + formattedDate + "&level=" + level
+ "&valid=1";

return this.http.get(‘$this.baseUrl$this.url‘)
.map((res:Response) => res.json())
.catch((error:any) =>
Observable.throw(error.json().error || ’Server
error’)); //...errors if any

}

Figure 48: bookingService.getLevelBooking() method

Shown in Figure 48, by passing in a specific date and level all the applicable Booking
objects are returned as an Observable<Booking[]> type allowing the method to be
subscribed to.

A Booking object is closely coupled with the booking booking table shown in
Figure 31.

export class Booking {
constructor(
public url: string,
public date: Date,
public level: number,
public room: number,
public am dept: string,
public am surg: string,
public pm dept: string,
public pm surg: string,
public valid: number,
public am status: number,
public pm status: number,
public am confirmed: number,
public pm confirmed: number,
public created: Date,
) { }

}

Figure 49: The Booking Object

The final check is against the permissionService. This service provides checks
on what permissions the user has, whether it be admin, guest or user. In order to keep
this available on page refreshes as well as application wide this is saved as a localStorage

50

variable on the client. This variable is set using information that the authService
returns.

public setPermission() {

if(this.permission === undefined) {
if (this.auth.isAuthenticated()) {
if (this.auth.userProfile) {
this.profile = this.auth.userProfile;
this.permission = (this.profile ?

this.profile[’http://test.com/roles’] : ’’);
} else {
this.auth.getProfile((err, profile) => {
this.profile = profile;
this.permission = (this.profile ?

this.profile[’http://test.com/roles’] : ’’);
});

}
}

}

if(this.permission == "admin") {
localStorage.setItem("permission", "1");

} else if(this.permission == "guest") {
localStorage.setItem("permission", "2");

} else {
localStorage.setItem("permission", "0");

}
}

Figure 50: permissionService setPermission method

After all the checks and variable populations have occurred subscriptions for both
the dateService and the levelService are created in order to allow for changes.
When these subscriptions are triggered the above processes of populating the local vari-
ables are run again to reflect the changes.

With all of the local variables set it is the Calendar components job to use these to
create Booking components to fill in the screen.

5.1.3 Booking Component

The final components to create are the Booking components. These components are cre-
ated in the Calendar component using the Booking object arrays. The Booking com-
ponents hold a lot of complex logic in regards to the state of the booking and how they
should be displayed, as well as an admin panel which gives control over these states.

51

<div class="row">
<div class="col-md-1">
{{mondayDate}}

</div>
<div class="col-md-11">
<div *ngFor="let booking of mondayBookings">
<app-booking am confirmed="booking.am confirmed"
........... date="booking.date">

</app-booking>
</div>

</div>
</div>

Figure 51: Calendar HTML showing creation of Booking components

Figure 51 shows the creation of booking components. For every Booking object
saved in the mondayBookings array, a row is created and all the required variables are
passed to its constructor.

52

export class BookingComponent implements OnInit {
@Input() url: string;
@Input() surgAM: string;
@Input() deptAM: string;
@Input() deptPM: string;
@Input() surgPM: string;
@Input() level: number;
@Input() date: Date;
@Input() room: number;
@Input() am status: number;
@Input() pm status: number;
@Input() am confirmed: number;
@Input() pm confirmed: number;

}

constructor(
private dataService: DataService,
private bookingService: BookingService,
private calendar: CalendarComponent,
private permissionService: PermissionService) {

}

ngOnInit() {
this.is am confirmed = this.am confirmed == 1;
this.is pm confirmed = this.pm confirmed == 1;
this.is am shutdown = this.am status == 3;
this.is pm shutdown = this.pm status == 3;
this.is am leave = this.am status == 4;
this.is pm leave = this.pm status == 4;

const fb = new FormBuilder();
this.formModel = fb.group({
’f deptAM’: [this.deptAM],
’f surgAM’: [this.surgAM],
’f deptPM’: [this.deptPM],
’f surgPM’: [this.surgPM],
’f am confirmed’: [this.is am confirmed],
’f pm confirmed’: [this.is pm confirmed],
’f am shut’: [this.is am shutdown],
’f pm shut’: [this.is pm shutdown],
’f am leave’: [this.is am leave],
’f pm leave’: [this.is pm leave],

});

this.getRequestLog();
}

Figure 52: Booking Component creation

53

Figure 52 shows the process involved with the creation of the Booking object. The
@Input Angular keyword indicates that these fields are expected to be passed in when
creating. This process can be seen clearly in Figure 51.

The services are injected through the constructor much like the other components
analysed. dataService is a new service which is used uniquely in the Booking com-
ponent. This service is used to populate the drop down menus for preset surgeon and
service names in the modal panel relating to each individual booking. This was a re-
quirement added late in development as a way of keeping data entry clean for reporting.
bookingService is injected as a way to update changes made to the individual book-
ings, calenderService is injected as a way of triggering a refresh when Bookings
are updated. Finally permissionService is injected so that the correct panels are
shown dependent on the permissions the user has.

Figure 53: The Booking modal panel showing the dataService provided data

The HTML code for Booking Components contains a lot of custom code to show the
different states of sessions. The colour combinations were taken directly from the existing
spreadsheet which was shown in Figure 1.

54

Figure 54: Colour showing the various states of booking

55

5.2 Reporting Component

A big time and resource sink using the existing manual operating room booking system
is the reporting of what has happened in regards to individual sessions. This previously
involved the use of two separate systems in order match up ’what should have happened?’
to ’what has happened?’. By having a system that records and displays changes in real
time the need for manually reporting and matching up of separate systems becomes re-
dundant. Three main reports are of critical importance:

1. Change History Report

2. Actual History Report

3. Six Week History Report

5.2.1 Change History Report

The change history report outputs all changes that have been made on every session. Be
this a change in service, surgeon or status. This report can be set for ’all time’ or alterna-
tively a date range can be chosen to report between. This is important when reporting on
usage and also when auditing that services are abiding by the set in Section 1.1.3.

As the database is modelled in a way that it is easy to differentiate between the dif-
ferent statuses of sessions, simple logic can be run from within the reporting components
connected to the sessionService and by importing a library Ala-SQL (Gershun &
Wulff, 2014) this can be generated and exported in standard CSV format with a single
button click taking away all the manual comparisons.

5.2.2 Actual History Report

This report is very similar to the change history report but has further filtering in order
to determine what the final state of each session was. Using the logic from the change
history report it is simple to further filter this by removing all sessions where Valid is set
to 0 (Figure 31). Then using Ala-SQL a standard CSV formatted file can be outputted
with a button press.

5.2.3 Six Week History Report

The six week history report is a key metric used when auditing session usage. It takes
snapshots of what each session looked like in regards to service, surgeon and status at six,
five, four, three, two and one week out. This report like all others can be displayed in the
application but even more usefully can be exported in the identical formatting needed to
analyse and for further integration in to other systems if needed.

56

Figure 55: In application display of six week report

57

Figure 56: Formatted CSV with generated coding

58

Chapter 6. System Evaluation

Originally it was planned to conduct two months of live trials in order for the client to
evaluate usefulness and suitability of the application in operational use. Unfortunately
because of operational and organisational changes on the client side this was not possible,
despite the software being available for use at the start of the planned evaluation period.

In order to showcase the developed application the user stories introduced in Section
4.1.2 as well as the business rules from Section 1.1.3 are evaluated.

6.1. User Story Evaluation

User Story 1. Access Session Planner
User Story 1 was based around the session planner being available at any time so that

the information can be available when needed. The approach taken to achieve this was
to use a cloud provider to allow the application to be hosted online. The chosen cloud
provider Heroku has a customer promise ”We’ll do everything we can to achieve 100%
up time” (Salesforce, 2017). As of the time of printing there has been no issues with up
time so the acceptance test of ’session planner is available at all times’ has been met.

User Story 2. Surgeon Change
User Story 2 indicates that an admin user should be able to change allocated surgeons

on specific bookings. Figure 57 demonstrates an admin user changing the surgeon as-
signed on a specific session and the resulting change being displayed in the main planner.
The associated acceptance test for this story is ”Allocated surgeon can be changed on
specific room bookings.” The demonstration below fulfils this criteria.

59

Figure 57: Demonstration of an admin user reallocating surgeons.

User Story 3. Service Change
Much like the above User Story 2 a session’s service must be able to be reallocated

by an admin user. Figure 58 shows this process and also fulfils the associated acceptance
test ”Allocated service can be changed on specific room bookings”.

60

Figure 58: Demonstration of an admin user reallocating services.

User Story 4. Identify Status of Session
A key feature missing from the existing manual based system was clarity of informa-

tion, it was difficult to determine the status of each individual session. Borrowing from an
already established set of internal standards, colors were added to each session to indicate
status.

• Green: Session is as originally scheduled.

• Yellow: The Session has been recycled and confirmed.

• Orange: This session has been released and is not confirmed.

• Purple: This surgeon is on leave but session has not been released.

• Gray: This session has been shutdown (public holiday, no staff, maintenance)

The acceptance criteria for this story is that the multiple statuses can be effectively
identified. Using the color based system this test is fulfilled shown in Figure 59 this has
been fulfilled.

61

Figure 59: Demonstration of various statuses.

User Story 5: Bulk add sessions
The purpose of User Story 5 is to ease the process of importing data in to the appli-

cation. The acceptance criteria states that this should be imported using CSV format as
this is the existing format of the data. Although not he most elegant solution this has
be fulfilled by importing via CSV option through the database IDE DataGrip (JetBrains,
2018). In the simplest sense this works as intended, yet there is no error catching or val-
idation which could prove problematic should some dirty data be added. This is a high
importance problem which needs to be further addressed.

User Story 6: Confirm/unconfirm session
Knowing whether a session is confirmed or not is a large advantage to using a real

time application like the one developed in this research. Previously it was a fairly tedious
job to email the relevant people to check whether a session was being used or not. By
having this displayed clearly using the colour statuses users can know instantly whether
sessions are available or not before requesting them. Figure ?? shows how confirming
and unconfirming can be achieved.

62

Figure 60: Setting confirmation status

User Story 7: Request a session and User Story 8: Identify amount of requests
As User Story 7 and 8 are closely related they will be demonstrated together. In order

for a user to let other users know of their request to use a certain session this must be easy
to see and identify from inside the application.

63

Figure 61: Setting confirmation status and showcase of request log

Figure 61 showcases requesting a session and the resulting actions. After requesting a
session a counter is added on the session which can be seen from within the planner. On
top of this all requests can be viewed within the detail panel for the concerned session. If
the user is an admin user they further have the option to accept or reject said session.

User Story 9: See change log of session
A new feature that was not possibly in the existing system is that of a change log

for sessions. As every change is recorded it is possible to have this valuable feature on
display. The information can be seen inside each sessions detailed view shown in Figure
62.

64

Figure 62: Demonstration of timestamped change log

User Story 10 / 11 / 12: Reporting
Reporting being a huge advantage for a digital system over the existing manual system

it is important that the process is simple and accurate. As described in Section 5.2 all the
logic is controlled by the reporting controllers. Whereas for the user all the reports are a
simple one button affair. This will display the reports to the screen for quick checks or al-
ternatively have the option to download as an CSV file in a format suitable for integration
to other systems.

65

Figure 63: Six week report in application

Figure 63 and Figure 56 show the reports in their two forms.

66

6.2. SCRUM and Business Rules Evaluation

For this application to have any chance of uptake it has to fully support the existing
SCRUM and business rules. This section is going to evaluate the applications suitabil-
ity in regards to this. The proposed new operating room scheduling process introduced in
Section 1.1.4 has four distinct steps:

1. The surgical booker can compare their own notes against the master planner inside
the application. Any leave or requests that need to be recorded can be done at this
point.

2. Production coordinators have service level SCRUM meetings to review waiting lists
considering surgeon leave and requests. If any sessions need to be released or
requested to match demand, this is where it happens.

3. At the weekly SCRUM meeting all attendees can see the state of the master sched-
ule in real time. Discussion around requests can be carried out and confirmed or
rejected in this meeting, with all actions clearly timestamped.The change report can
then be generated and sent out to all in attendance in place of the previous meeting
minutes.

4. All operating managers can review the decisions made and check the master planner
to ensure they are staffed and equipment is available. If they as a department decide
at this stage they can notify the surgeons else the surgeons can see for themselves
by logging in and checking the planner.

There is 6 main business rules around the SCRUM process which was introduced in
Section 1.1.3 which also need support:

1. A surgeon on leave is shown through the planner as a purple colour. This does not
indicate that the session is available for reallocation.

2. At the SCRUM meeting three weeks before a session with a surgeon on leave is
due to occur, the session will be released if the service has not confirmed otherwise.
This is done by unconfirming inside the application and the session in question will
be orange at this stage.

3. After releasing a session the original service can claim this session back as long as
it has no other requests on it. This can be done through the standard request feature
inside the planner and it will be timestamped accordingly. At the next SCRUM
meeting or Admin review whichever comes first this will be re-confirmed to the
original service. If there was requests on this session the standard SCRUM process
will occur and the resulting actions will be displayed inside the application.

67

4. When requesting a session, this request is added to the request log. If there are
multiple requests on a session they go through the priority rules detailed in Section
1.1.3. The outcome of this process is displayed inside the application.

5. The operating room scheduler is the point of contact for confirming availability of
sessions inside the application. This person has full Admin rights and can manipu-
late the planner as needed.

68

Chapter 7. Conclusion

This research investigated how a purpose-built software could increase utilisation and
visibility in regards to the scheduling of operating room sessions. The research was un-
dertaken using a combination of design science and an in depth literature review in order
to grasp the problem space. As a result of this methodology an artefact in the form of an
Angular application was developed based upon user stories and business rules from the
existing manual system. The purpose-built software developed in this research is a new
concept to the problem space far removed from the existing manual processes.

The question was asked in Section 1.2, Can the existing operating room scheduling
process in Auckland Hospital be improved by implementing a purpose-built software? It
was hypothesised that the usage of a purpose-built software would increase both utilisa-
tion of operating rooms and the visibility of information.

It is clear to see through the system’s evaluation in Chapter 6 that the application cov-
ers all user stories and business rules that are required for this application to be regarded
as usable. Further more when comparing the developed Angular application to the exist-
ing manual system it is much easier to see the status of every session, it is much easier to
request and release sessions, every interested party can see the master planner in a clear
and concise interface at any time through the online application and reporting has gone
from a tedious and time consuming task to a one button push.

Unfortunately there was no live testing of the application during this research so it
can not be confirmed whether by using the developed application operating room session
utilisation would increase.

To conclude it is believed that through the use of the purpose-built Angular application
the operating room scheduling system at Auckland Hospital could be improved. These
improvements would be best seen through the increased clarity of information through
the session planner and the time saving nature of the reporting features.

69

7.1 Limitations

7.1.1. Live Trial

The lack of a live trial was a large limitation in validating the research question. In an ideal
situation the application could have been developed and used in a side by side manner
to the existing system. This would have provided valuable insights to the development
process as pain points could have been assessed in real time and fixed in further iterations
of the software.

Following this development period a full scale live trial would have been conducted
with utilisation metrics being compared to previous months and years giving a more quan-
titative answer to the research question.

7.1.2 Time

The full technology stack being new meant that a substantial amount of time was dedi-
cated to understanding best practices and exploring capabilities in the stack. This lead to
many rewrites in code as best methods were discovered.

7.1.3 Usability Study

Although tested against the business rules and user stories a usability study of the appli-
cation being used by an external party would strengthen the conclusion made above. This
was not possible due to the lack of a live trial and time constraints.

7.1.4 Lack of Existing Solutions

Perhaps more an opportunity than a limitation but it is worth noting that there is very little
existing solutions to the problem space which meant that the application had very little to
be compared too. As many applications that are developed are not necessarily new but
aim to improve on existing applications, this was not a luxury available in this research.

70

7.2 Further Work

7.2.1 Live Trial

As discussed in the limitations a live trial would be ideal in order to quantify the improve-
ments the application brings to the existing solution.

7.2.2 Usability Study

Also discussed in the limitations a usability study would prove valuable in confirming the
findings of this research as well as a list of possible improvements which can be added in
future releases of the software.

7.2.3 Improved and Additional Reporting

As every change made in the application is logged it is possible to greatly improve the
reporting features of the application. This information could lead to allocation being dig-
itally allocated based on past trends and usage without the need for manual intervention.

7.2.4 Professional Front-End Design

As well as increasingly usability by employing a front-end designer would give the appli-
cation a much more polished and professional feel.

7.2.5 Mobile Optimisation

The application was solely developed for a desktop computer. By optimising it for mobile
phones it would further increase its clarity of information as it could be viewed in many
more situations.

7.2.6 Code Rewrites

As this application was originally a proof of concept a lot of the early code could be
further optimised for readability in particular for if additional developers were to work on
the project.

7.2.7 Improved Import Feature

Although potentially a feature that wouldn’t be needed further down the track an in app
import feature would be beneficial. This would allow an Admin user to import session
data without fear of corruption or bad formatting. This feature would gate-keep all infor-
mation sent to the database.

71

7.2.8 Advanced Alerting Feature

This feature would be implemented in order to alert users that are subscribed to specific
events. Examples of this could be:

• A service wishes to be alerted every time a session is released on a certain day.

• A surgeon wishes to know when their sessions have been reallocated or released.

• An admin wishes to know when a session hasn’t been confirmed within the business
rules logic

With these alerts the application would allow the portrayal of information to be even
greater.

72

References

Abedini, A., Li, W., & Ye, H. (2017). An optimization model for operating room schedul-
ing to reduce blocking across the perioperative process. Procedia Manufacturing,
10, 60–70.

Adolph, S., Cockburn, A., & Bramble, P. (2002). Patterns for effective use cases.
Addison-Wesley Longman Publishing Co., Inc.

Appavu, S. T., Al-Shekaili, S. M., Al-Sharif, A. M., & Elawdy, M. M. (2016). The
burden of surgical cancellations and no-shows: Quality management study from a
large regional hospital in oman. Sultan Qaboos University Medical Journal, 16(3),
e298.

Atlassian. (2016). Trello [software]. Retrieved from https://trello.com/ (On-
line; accessed 1-February-2018)

auth0 inc. (2018). Single sign on and token based authentication. Retrieved from
https://auth0.com/ (Online; accessed 1-February-2018)

Bartlett, J. (2016). User story vs requirement whats the difference? Retrieved from
https://blog.testlodge.com/user-story-vs-requirements/

(Online; accessed 1-February-2018)
Belshe, M., Thomson, M., & Peon, R. (2015). Hypertext transfer protocol version 2

(http/2).
Blake, J. T., & Carter, M. W. (1997). Surgical process scheduling: a structured review.

Journal of the society for health systems, 5(3), 17–30.
Blake, J. T., & Carter, M. W. (2002). A goal programming approach to strategic re-

source allocation in acute care hospitals. European Journal of Operational Re-

search, 140(3), 541–561.
Cardoen, B., Demeulemeester, E., & Beliën, J. (2009). Optimizing a multiple objective

surgical case sequencing problem. International Journal of Production Economics,
119(2), 354–366.

CData Software, Inc. (2017). Easily build angular2 database apps. Retrieved from
https://www .cdata .com/kb/articles/apiserver -angular2

.rst (Online; accessed 1-February-2018)
CData Software, Inc. (2018). Cdata software. Retrieved from https://www.cdata

.com/ (Online; accessed 1-February-2018)

73

https://trello.com/
https://auth0.com/
https://blog.testlodge.com/user-story-vs-requirements/
https://www.cdata.com/kb/articles/apiserver-angular2.rst
https://www.cdata.com/kb/articles/apiserver-angular2.rst
https://www.cdata.com/
https://www.cdata.com/

Christie, T. (2018). django-rest-framework. Retrieved from http://www.django

-rest-framework.org (Online; accessed 1-February-2018)
Deering, S. (2012). Do you know what a rest api is? Retrieved from https://

www.sitepoint.com/developers-rest-api/ (Online; accessed 1-
February-2018)

Dexter, F., Macario, A., Qian, F., & Traub, R. D. (1999). Forecasting surgical groups total
hours of elective cases for allocation of block time application of time series anal-
ysis to operating room management. Anesthesiology: The Journal of the American

Society of Anesthesiologists, 91(5), 1501–1501.
Dexter, F., Macario, A., Traub, R. D., Hopwood, M., & Lubarsky, D. A. (1999). An

operating room scheduling strategy to maximize the use of operating room block
time: computer simulation of patient scheduling and survey of patients’ preferences
for surgical waiting time. Anesthesia & Analgesia, 89(1), 7–20.

Dexter, F., & Traub, R. D. (2002). How to schedule elective surgical cases into spe-
cific operating rooms to maximize the efficiency of use of operating room time.
Anesthesia & Analgesia, 94(4), 933–942.

Earnhart, S. (2003). Make clear rules on block scheduling. OR manager, 19(9), 40–42.
Erl, T., Carlyle, B., Pautasso, C., & Balasubramanian, R. (2012). Soa with rest: Prin-

ciples, patterns &constraints for building enterprise solutions with rest. Prentice
Hall Press.

Facebook. (2017). Sites using react. Retrieved from https://github.com/

facebook/react/wiki/Sites-Using-React (Online; accessed 1-
December-2017)

Facebook. (2018). React. Retrieved from https://reactjs.org/ (Online; ac-
cessed 1-January-2018)

Gershun, A., & Wulff, M. R. (2014). Alasql [software]. Retrieved from https://

github.com/agershun/alasql (Online; accessed 1-February-2018)
Google. (2018). Angular. Retrieved from https://angular.io/ (Online; accessed

1-January-2018)
Google calendar. (n.d.). Google. Retrieved from https://calendar.google

.com/

Gross, J. M., & McInnis, K. R. (2003). Kanban made simple: demystifying and applying

toyota’s legendary manufacturing process. AMACOM Div American Mgmt Assn.
Guerriero, F., & Guido, R. (2011). Operational research in the management of the oper-

ating theatre: a survey. Health care management science, 14(1), 89–114.
JetBrains. (2018). Datagrip many databases, one tool. Retrieved from https://

www.jetbrains.com/datagrip/ (Online; accessed 1-February-2018)
Kharraja, S., Albert, P., & Chaabane, S. (2006). Block scheduling: Toward a master

surgical schedule. In Service systems and service management, 2006 international

74

http://www.django-rest-framework.org
http://www.django-rest-framework.org
https://www.sitepoint.com/developers-rest-api/
https://www.sitepoint.com/developers-rest-api/
https://github.com/facebook/react/wiki/Sites-Using-React
https://github.com/facebook/react/wiki/Sites-Using-React
https://reactjs.org/
https://github.com/agershun/alasql
https://github.com/agershun/alasql
https://angular.io/
https://calendar.google.com/
https://calendar.google.com/
https://www.jetbrains.com/datagrip/
https://www.jetbrains.com/datagrip/

conference on (Vol. 1, pp. 429–435).
Krause, S. (2017). Results for js web frameworks benchmark round 6. Retrieved

from http://www.stefankrause.net/wp/?p=431 (Online; accessed
1-February-2018)

Li, X., Rafaliya, N., Baki, M. F., & Chaouch, B. A. (2017). Scheduling elective surgeries:
the tradeoff among bed capacity, waiting patients and operating room utilization
using goal programming. Health care management science, 20(1), 33–54.

Macario, A., Vitez, T., Dunn, B., & McDonald, T. (1995). Where are the costs in peri-
operative care?: Analysis of hospital costs and charges for inpatient surgical care.
Anesthesiology: The Journal of the American Society of Anesthesiologists, 83(6),
1138–1144.

Masursky, D., Dexter, F., OLeary, C. E., Applegeet, C., & Nussmeier, N. A. (2008).
Long-term forecasting of anesthesia workload in operating rooms from changes in
a hospitals local population can be inaccurate. Anesthesia & Analgesia, 106(4),
1223–1231.

Miller, R. D., Eriksson, L. I., Fleisher, L. A., Wiener-Kronish, J. P., Cohen, N. H., &
Young, W. L. (2014). Miller’s anesthesia e-book. Elsevier Health Sciences.

Minar, I. (2016). Versioning and releasing angular. Retrieved from https://blog

.angularjs.org/2016/10/versioning-and-releasing-angular

.html (Online; accessed 1-February-2018)
Nifty Software E.U. (2018). Made with vue.js. Retrieved from https://

madewithvuejs.com/ (Online; accessed 1-January-2018)
O’neill, L. (2005). Methods for understanding super-efficient data envelopment analysis

results with an application to hospital inpatient surgery. Health Care Management

Science, 8(4), 291–298.
Oneill, L., & Dexter, F. (2004). Market capture of inpatient perioperative services using

dea. Health Care Management Science, 7(4), 263–273.
Operating room scheduling. (n.d.). Retrieved from http :// www

.scheduleyourclinic .com / medical -operating -room

-scheduler.htm

Operating room weekly production planning (scrum) overview. (2014).
Retrieved from https :// drive .google .com / open ?id =

0B2rflpjVyqGXVWNQSlFSM3ZEcDg

Or scrum overview for surgical board meeting. (2014). Retrieved from https://

drive.google.com/open?id=0B2rflpjVyqGXQWJ0Mjd5V0hkM2s

Papas, N., O’keefe, R. M., & Seltsikas, P. (2012). The action research vs design sci-
ence debate: reflections from an intervention in egovernment. European Journal of

Information Systems, 21(2), 147–159.
Patterson, P. (1996). What makes a well-oiled scheduling system? OR manager, 12(9),

75

http://www.stefankrause.net/wp/?p=431
https://blog.angularjs.org/2016/10/versioning-and-releasing-angular.html
https://blog.angularjs.org/2016/10/versioning-and-releasing-angular.html
https://blog.angularjs.org/2016/10/versioning-and-releasing-angular.html
https://madewithvuejs.com/
https://madewithvuejs.com/
http://www.scheduleyourclinic.com/medical-operating-room-scheduler.htm
http://www.scheduleyourclinic.com/medical-operating-room-scheduler.htm
http://www.scheduleyourclinic.com/medical-operating-room-scheduler.htm
https://drive.google.com/open?id=0B2rflpjVyqGXVWNQSlFSM3ZEcDg
https://drive.google.com/open?id=0B2rflpjVyqGXVWNQSlFSM3ZEcDg
https://drive.google.com/open?id=0B2rflpjVyqGXQWJ0Mjd5V0hkM2s
https://drive.google.com/open?id=0B2rflpjVyqGXQWJ0Mjd5V0hkM2s

19–23.
Ramsey, C. (2018). Vue announces three new hires as part of ongoing ex-

pansion. Retrieved from http://www .audiomediainternational

.com/business/vue-announces-three-new-hires-as-part-of

-ongoing-expansion/07225 (Online; accessed 1-February-2018)
Sadler, D. (2015, Jul). Staff shortages and scheduling strategies. OR Today Magazine.
Salesforce. (2017). Customer promises. Retrieved from https://www.heroku

.com/policy/promise (Online; accessed 1-February-2018)
Salesforce. (2018). Heroku. Retrieved from https://www.heroku.com/ (Online;

accessed 1-February-2018)
Schneier, B. (2009). Schneier on security. John Wiley & Sons.
Stack Overflow. (2016). About stack overflow. Retrieved from https://

stackoverflow.com/company (Online; accessed 1-January-2018)
Stepaniak, P. S., & Pouwels, S. (2017). Balancing demand and supply in the operat-

ing room: A study for the cardiothoracic department in a large teaching hospital.
Journal of Clinical Anesthesia, 42, 7–8.

Strum, D. P., Vargas, L. G., & May, J. H. (1999). Surgical subspecialty block utilization
and capacity planning a minimal cost analysis model. Anesthesiology: The Journal

of the American Society of Anesthesiologists, 90(4), 1176–1185.
Sutherland, J., & Schwaber, K. (2013). The scrum guide. the definitive guide to scrum:

The rules of the game. ScrumGuides. com.
VanBerkel, P. T., & Blake, J. T. (2007). A comprehensive simulation for wait time re-

duction and capacity planning applied in general surgery. Health care management

Science, 10(4), 373–385.
Von Alan, R. H., March, S. T., Park, J., & Ram, S. (2004). Design science in information

systems research. MIS quarterly, 28(1), 75–105.
Vue.js. (2018). Single file components. Retrieved from https://vuejs.org/v2/

guide/single-file-components.html (Online; accessed 1-February-
2018)

You, E. (2014). The progressive javascript framework. Retrieved from https://

vuejs.org/ (Online; accessed 1-January-2018)
You, E. (2018). Vuejs. Retrieved from https://github.com/yyx990803 (On-

line; accessed 1-January-2018)

76

http://www.audiomediainternational.com/business/vue-announces-three-new-hires-as-part-of-ongoing-expansion/07225
http://www.audiomediainternational.com/business/vue-announces-three-new-hires-as-part-of-ongoing-expansion/07225
http://www.audiomediainternational.com/business/vue-announces-three-new-hires-as-part-of-ongoing-expansion/07225
https://www.heroku.com/policy/promise
https://www.heroku.com/policy/promise
https://www.heroku.com/
https://stackoverflow.com/company
https://stackoverflow.com/company
https://vuejs.org/v2/guide/single-file-components.html
https://vuejs.org/v2/guide/single-file-components.html
https://vuejs.org/
https://vuejs.org/
https://github.com/yyx990803

	List of Figures
	Attestation of Authorship
	Acknowledgements

	Chapter 1. Introduction
	1.1 Auckland Hospital case study
	1.1.1 Operating room session planner
	1.1.2 Process overview
	1.1.3 Business rules
	1.1.4 Discussion

	1.2 Hypothesis and research questions

	Chapter 2. Literature Review
	2.1 Introduction
	2.2 Scheduling phases
	2.2.1 Strategic level
	2.2.2 Tactical level
	2.2.3 Operational level

	2.3 Operating room scheduling problems
	2.3.1 The operating room
	2.3.2 The operating room staffing
	2.3.3 Cancellations

	2.4 Existing operating room scheduling systems

	Chapter 3. Research Design
	3.1 Introduction
	3.2 Design Science
	3.2.1 Identify the problem and motivation
	3.2.2 Define the objectives of a solution
	3.2.3 Design and Development
	3.2.4 Demonstration and Evaluation
	3.2.5 Communication

	Chapter 4. System Design
	4.1 Requirements gathering
	4.1.1 User Story Format
	4.1.2 User Stories

	4.2 Technologies
	4.2.1 Front-End
	4.2.2 Back-End
	4.2.3 Hosting
	4.2.4 Login and Authentication

	4.3 System Architecture

	Chapter 5. System Development
	5.1 Planner Component
	5.1.1 Planner-Header Component
	5.1.2 Calendar Component
	5.1.3 Booking Component

	5.2 Reporting Component
	5.2.1 Change History Report
	5.2.2 Actual History Report
	5.2.3 Six Week History Report

	Chapter 6. System Evaluation
	6.1. User Story Evaluation
	6.2. SCRUM and Business Rules Evaluation

	Chapter 7. Conclusion
	7.1 Limitations
	7.1.1. Live Trial
	7.1.2 Time
	7.1.3 Usability Study
	7.1.4 Lack of Existing Solutions

	7.2 Further Work
	7.2.1 Live Trial
	7.2.2 Usability Study
	7.2.3 Improved and Additional Reporting
	7.2.4 Professional Front-End Design
	7.2.5 Mobile Optimisation
	7.2.6 Code Rewrites
	7.2.7 Improved Import Feature
	7.2.8 Advanced Alerting Feature

	References

