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Abstract 

The work done in this thesis encapsulates an area of inquiry that has seen surprisingly 
little research in the broad and rapidly developing field of knowledge discovery. Both 
the Data Mining and Data Warehousing disciplines, which lie under the large umbrella 
of knowledge discovery, are well established in their own right but very little cross-
fertilization has taken place between these two disciplines. The integration of Data 
Mining techniques with Data Warehousing is gaining popularity due to the fact that 
both disciplines complement each other in extracting knowledge from large datasets. 
However, the majority of approaches focus on applying data mining as a front end 
technology to mine data warehouses. Relatively little progress has been made in 
incorporating mining techniques in the design of data warehouses. 

Recently though, there has been increasing interest in adapting clustering techniques 
that have been developed in the Data Mining discipline to the Data Warehousing 
environment. Such an adaptation is not easy from a technical viewpoint as a resource 
such as a Data Warehouse has generally a large community of users, each of which may 
potentially have different and conflicting data requirements which in turn translates to 
different clustering requirements for the same data resource. While methods such as 
data clustering applied on multidimensional data have been shown to enhance the 
knowledge discovery process, a number of fundamental issues remain unresolved with 
respect to the design of multidimensional schema which is an integral part of any Data 
Warehouse. These relate to automated support for the selection of informative 
dimension and fact variables in high dimensional and data intensive environments, an 
activity which may challenge the capabilities of human designers on account of the 
sheer scale of data volume and variables involved.  

In this thesis, a novel methodology is proposed which facilitates knowledge workers to 
select a subset of dimension and fact variables from an initial large set of candidates for 
the discovery of interesting data cube regions. Unlike previous research in this area, the 
proposed approach does not rely on the availability of specialized domain knowledge 
and instead makes use of robust methods of data reduction such as Principal Component 
Analysis, and Multiple Correspondence Analysis to identify a small subset of numeric 
and nominal variables that are responsible for capturing the greatest degree of variation 
in the data and are thus used in generating data cubes of interest. Moreover, information 
theoretic measures such as Entropy and Information Gain have been exploited to filter 
out less informative dimensions to construct compact, useful and easily manageable 
schema. In terms of data analysis, we experiment with association rule mining to 
compare the rules generated with semi automatically generated schema with the rules 
gathered without the presence of such schema. 
 
The three case studies that were conducted on real word datasets taken from UCI 
machine learning repository revealed that the methodology was able to capture regions 



x 
 

of interest in data cubes that were significant from both the application and statistical 
perspectives. Additionally, the knowledge discovered in the form of rules from the 
generated schema was more diverse, informative and have better prediction accuracy 
than the standard approach of mining the original data without the use of our 
methodology-driven multidimensional structure imposed on it. 
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Chapter 1 

Introduction 
This chapter introduces the general context, the aims and the rationale of the thesis with 
a brief description of each chapter’s contents. The motivation for integrating data 
mining, data warehousing and machine learning in non-conventional application 
domains is given, followed by identifying the limitations of the existing frameworks to 
satisfy the requirements of intelligent and semi-automatic data analysis.  

1.1 Knowledge discovery from large datasets 
Knowledge discovery from large datasets is the result of an exploratory process 
involving the application of various algorithmic procedures for manipulating data 
(Bernstein, Provost et al. 2005). It aims to extract valid, novel, potentially useful, and 
ultimately understandable patterns from data (Fayyad, Piatetsky-Shapiro et al. 1996).  
Data mining and data warehousing are two key technologies for discovering knowledge 
from large datasets. Data mining enables the discovery of hidden trends from large 
datasets, while data warehousing provides for interactive and exploratory analysis of 
data through the use of various data aggregation methods. 
 
In the past several years, a wide range of data mining techniques have made significant 
contributions to the field of knowledge discovery in a number of domains. In the 
banking sector, these techniques are used for loan payment prediction, customer credit 
policy analysis, classification of customers for targeted marketing, and the detection of 
money laundering schemes and other financial crimes. Similarly, in the retail industry, 
such techniques are used in the analysis of product sales and customer retention. In the 
telecommunication industry these techniques help in identifying and comparing data 
traffic, system workload, resource usage, profit and fraudulent pattern analysis (Han and 
Kamber 2006). 
 
Likewise, data warehousing has contributed extensively as a key technology for 
complex data analysis, decision support and automatic extraction of knowledge from 
huge data repositories (Nguyen, Tjoa et al. 2005). It provides analysts with a 
competitive advantage by providing relevant information to enhance strategic decision 
making. Moreover, warehousing has reduced costs by tracking trends, patterns, and 
exceptions over long periods in a consistent and reliable manner. Due to sophisticated 
analytical powers, these warehouse systems are being used broadly in many sectors 
such as financial services, consumer goods and retail, manufacturing, education, 
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medical, media, and telecommunication. More recently, there has been an increasing 
research interest in the knowledge engineering  community towards integrating the two 
technologies (Goil and Choudhary 2001; Liu and Guo 2001; You, Dillon et al. 2001; 
Zhen and Minyi 2001; Ohmori, Naruse et al. 2007; Usman, Asghar et al. 2009; Usman 
and Pears 2010; Usman and Asghar 2011).  

1.2 Integrated use of data mining and data warehousing 
Both data mining and data warehousing technologies have essentially the same set of 
objectives and can potentially benefit from each other’s methods to facilitate knowledge 
discovery.  Each technology is mature in its own right, and despite the very clear 
synergy between these two technologies, they have developed largely independent of 
each other.  

 
The integrated use of data mining and data warehousing techniques such as Online 
Analytical Processing (OLAP) has received considerable attention from researchers and 
practitioners alike, as they are key tools used in knowledge discovery from large data 
datasets (Han 1998; Sapia, Höfling et al. 1999; Goil and Choudhary 2001; You, Dillon 
et al. 2001; Zhen and Minyi 2001; Ohmori, Naruse et al. 2007; Zubcoff, Pardillo et al. 
2007; Pardillo, Zubcoff et al. 2008). (Usman and Pears 2011) used a hierarchical 
clustering technique in conjunction with multidimensional scaling (Cox and Cox 2008) 
to design schema at different levels of data abstraction. They developed an iterative 
method that explores the similarities and differences in information contained across 
consecutive levels in the cluster hierarchy. The presentation of such information at 
different levels of abstraction provides decision makers with a better understanding of 
the patterns and trends present in the data. Although, a variety of integrated approaches 
have been proposed in the literature to mine large datasets for discovering knowledge. 
However, a number of issues remain unresolved in the previous work (Sarawagi, 
Agrawal et al. 1998; Sarawagi 2001; Kumar, Gangopadhyay et al. 2008; Ordonez and 
Zhibo 2009), especially on intelligent data analysis front.  

1.3 Unresolved issues and motivation of the thesis 
In this section, we discuss some of the important issues which remained unresolved in 
the previous approaches of integration. Firstly, the prior work assumed that data 
analysts could identify a set of candidate data cubes for exploratory analysis based on 
domain knowledge. Unfortunately, situations exist where such assumptions are not 
valid. These include high dimensional datasets where it may be very difficult or even 
impossible to predetermine which dimensions and which cubes are the most 
informative.  In such environments it would be highly desirable to automate the process 
of finding the dimensions and cubes that hold the most interesting and informative 
content. 

Secondly, reliance on domain knowledge tends to constrain the knowledge discovered 
to only encapsulate known knowledge, thus excluding the discovery of unexpected but 
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nonetheless interesting knowledge (Koh, Pears et al. 2011). Another related issue is that 
it restricts the application of these methodologies to only those domains where such 
domain knowledge is available. However, a knowledge discovery system should be able 
to work in ill-defined domains (Nkambou, Fournier-Viger et al. 2011) and other 
domains where no background knowledge is available (Zhong, Dong et al. 2001). 

Thirdly, there has been relatively less research in leveraging data mining techniques in 
the design of data warehouses or multidimensional schema (Sapia, Höfling et al. 1999; 
Zubcoff, Pardillo et al. 2007; Pardillo, Mazón et al. 2008; Pardillo and Mazón 2010; 
Usman, Asghar et al. 2010). It is a daunting task for data warehouse developers to 
integrate the outcomes of data mining techniques with data warehouse to perform 
analytical operations. The reason of this daunt is the requirement of a multidimensional 
model or schema for interactive data exploration and designing such schemas is a 
complex task as it requires extensive domain knowledge along with the expertise in data 
warehousing technologies. Additionally, modelling requires multiple manual actions to 
discover important facts and dimensions from the dataset, creating a bottleneck in the 
knowledge discovery process. Even if the human data warehouse designers try to 
resolve these problems, an incorrect design with the incorrect choice of dimensions and 
facts can still be generated if he/she doesn’t understand the underlying relationships 
among the data items. Recent research has proved that in data warehouses the choice of 
the dimensions and measures heavily influences the data warehouse effectiveness 
(Pighin and Ieronutti 2008). 

Fourthly, there remains a need for automated support in the design of data cubes, 
especially in domains containing high dimensional data. In such domains the sheer scale 
of the data, both in terms of data volume as well as in the number of dimensions, may 
make it difficult for human designers to decide which dimensions are the most 
informative and should thus be retained in the final version of the data cube. 
Furthermore, high dimensional and high volume datasets present significant challenges 
to domain experts in terms of identifying data cubes of interest. The presence of mixed 
data in the form of nominal and numeric variables present further complications as the 
interrelationship between nominal and numeric variables have also to be taken into 
account.  A methodology that assists domain experts in identifying dimensions and facts 
of interest is highly desirable in these types of environments. 

Finally, in high dimensional environments the design and data analysis processes need 
to be integrated with each other. With the use of appropriate information theoretic 
measures such as Entropy in the design process, less informative dimensions can be 
filtered out, thus leading to a more compact, useful and manageable schema. In terms of 
data analysis, the main tool used in multidimensional analysis in a data warehousing 
environment is the use of various data aggregation and exploratory techniques that form 
part of the On Line Analytical processing (OLAP) suite of methods. While traditional 
OLAP methods are excellent tools for exploratory data analysis they are limited as far 
as detecting hidden associations between items resident in a data warehouse. The 
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discovery of such hidden relationships and associations often yields important insights 
into underlying trends and in general leads to an improved decision making capability. 

The above mentioned issues motivated us to formulate a generic methodology for data 
cube identification and knowledge discovery that is applicable across any given 
application domain, including those environments where limited domain knowledge 
exists.  

1.4 Research challenges considered to be out of Scope  
In this section, we highlight some of the important research challenges which are 
relevant to our work but could not be addressed because of the limited timeframe of this 
PhD research.  

 Firstly, the proposed research only targeted two data types namely, numeric and 
nominal data. However, there are a number of other data types such as 
multimedia data types (images, audio, video and graphical objects) which are 
not considered in this research. The analyses of these special data types require 
the formulation of specialized statistical methods and algorithms that would not 
be feasible within the limited timescale of a PhD. 

 Secondly, we consider the design of only one type of multidimensional schema 
(STAR schema) in our research. However, there are two other schemas used in 
typical data warehouse environments known as Snowflake and Fact 
Constellation schema. Each schema has unique design and construction 
requirements and because we were focusing on automating the schema design 
process it was not feasible to consider multiple schema types.     

 Finally, the dimensions that we design in our methodology-driven schema only 
support two level hierarchies, with the first level consisting of groups and the 
second consisting of individual values within each group. In practice, a typical 
data warehouse schema consists of dimensions defined on multiple hierarchical 
levels. However, the levels in the dimensional hierarchy are specified by human 
data warehouse designers and it poses a significant research challenge to 
automatically determine meaningful levels based purely on patterns within the 
data, without the use of human input. Although we were unable to automate the 
process of designing multi-level dimensions due to lack of time, we elaborated 
the procedure of extending our proposed method to accommodate multiple 
hierarchies in the future work section in Chapter 8 of this thesis.  

1.5 Problems to be addressed 
The main research problems addressed in this thesis are as follows: 

 To provide automated support in multidimensional schema design and in 
identifying cubes of interest from multidimensional data viewed at different 
levels of data abstraction. This is a significant research issue in high volume, 
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high dimensional data environments as specialized domain knowledge is likely 
to be of limited value in cube design in such environments. 

 To facilitate analysts to effectively discover knowledge in the form of diverse 
association rules from large multidimensional cube structure.  

1.6 Aims and Contributions 
The title of this thesis reflects the overall goal of this work, which is to exploit data 
mining techniques in the design of multidimensional schema for enhancing knowledge 
discovery. Although data mining and data warehousing area have reached the state of 
maturity, new challenges arise when integrating the established technology especially to 
novel usage scenarios. Real-world case studies from the diverse domains of automobile, 
census and ecology are used to exemplify the challenges and motivate the proposed 
solution. The complementary ideas which determine the contributions of this thesis are 
as follows: 

 To provide automated and data-driven support for the design and construction of 
multidimensional schema. 

 To generate cubes of interest at different levels of data abstraction and study the 
effect of abstraction level on information content.   

 To identify, at each level of data abstraction, the most significant 
interrelationships that exist between numeric and nominal variables, thus 
enabling the data analyst with pathways to explore the data.  

 To discover diverse and meaningful association rules from multidimensional 
cube structure at various level of data abstraction.  

The primary focus of the work is on extending the applicability of integrated approaches 
towards knowledge discovery by identifying the bottle-necks of the integrated 
approaches and searching for the ways to overcome the identified limitations. We have 
made the following main contributions in this thesis: 

 Proposed a knowledge discovery methodology that utilizes a combination of 
machine learning and statistical methods to identify interesting regions of 
information and diverse association rules in large multidimensional data cubes.  

 Provided an algorithm for constructing a binary tree from hierarchical clustering 
results (dendrogram). 

 Proposed a measure based on Information Gain and Multiple Correspondence 
Analysis (MCA) to identify and rank the most informative dimensions among 
nominal variables that should be retained for schema design.  
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 Applied well-known dimension reduction techniques such as Principal 
Component Analysis (PCA) in order to identify and rank the most informative 
numeric facts present in high dimensional datasets.  

 Generated informative cubes at different levels of data abstraction and studied 
the effect of abstraction level on information content. At each level of data 
abstraction we identify and rank the most significant interrelationships that exist 
between numeric and nominal variables, thus enabling the cubes of interest to be 
identified.    

 Provided methods to construct candidate schema with highly ranked dimensions 
(nominal variables) and measures (numeric variables). 

 Performed case studies on three real-world datasets to validate our methodology 
and showed that it enables analysts to find cubes of interest and the diverse 
association rules. Furthermore, we showed that rules generated from our semi-
automatically generated multidimensional schema are in general more diverse 
and have better predictive accuracy than rules generated from the same data 
without the use of the multidimensional schema. 

 Performed in-depth scalability study to validate that our methodology scales 
well with both large volume and high dimensional datasets. 

1.7 Novelty and significance 
The proposed methodology is novel from the viewpoint of its research objectives. To 
date, no systematic study has been proposed in the literature to investigate the following 
issues 

 To study the dynamics of the relationships between nominal and numeric 
variables at different levels of data abstraction in a multidimensional data 
context. 

 To provide automated support for the design of multidimensional schema and 
construction of informative data cubes in those environments where limited or 
no domain knowledge is available. 

 To allow the discovery of diverse association rules from multidimensional cube 
structure.  

The successful identification of regions of interest in data cubes and diverse association 
rules within high volume, high dimensional data represents a significant contribution to 
the research literature on multidimensional data analysis. To date, a few solutions have 
been proposed for this problem in the literature, but they tend to rely on expert users 
supplying information to guide the discovery process. Our proposed methodology does 
not assume that user input is available, but is flexible enough to accommodate such 
information should it be available. The proposed methodology would also be of interest 
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to practitioners as commercial interest in high volume, high dimensional data analysis 
continues to grow. However, the proposed methodology definitely does not exhaust the 
challenges of comprehensive and completely automatic analysis for non-conventional 
domains, but we expect it to be useful for a wide range of application scenarios.   

1.8 Thesis Outline 
To address the specified research aims this thesis is outlined as follows:  

Chapter 2 provides the review of the four main themes of related work in the context of 
our research. Section 2.1 discusses previous research in identifying data cubes that hold 
the greatest information content. Section 2.2 is dedicated to the review of previous 
research on identifying relationships between mixed data types. In Section 2.3, we 
present the work done so far in automating the design and construction of 
multidimensional schema. Section 2.4 is dedicated to the coverage of the application of 
association rule mining to enhance knowledge discovery from multidimensional 
schema. Finally, we review our prior work in section 2.5 which is closely related to the 
themes of the literature review presented in this chapter and which also forms the 
foundation of the work done in this thesis. 

Chapter 3 presents an overview of the proposed methodology for multidimensional cube 
design that facilitates the discovery of interesting cube regions and diverse association 
rules. Moreover, we illustrate the methodological steps with a running example. We 
demonstrate that classical statistical methods for data analysis such as Principal 
Component Analysis (PCA) and Multiple Correspondence Analysis (MCA) can be 
successfully used in conjunction with hierarchical clustering to uncover useful 
information implicit in large multidimensional data cubes. Moreover, information gain 
measure can be effectively used to discover diverse association rules with high 
prediction accuracy. Section 3.1.7 shows that our methodology facilitates easy 
discovery of inter-relationships between numeric and nominal variables which are 
significant from both application and statistical perspectives. Furthermore, this useful 
and interesting knowledge can be discovered in the form of association rules without 
excessive reliance on specialized domain knowledge as explained in sections 3.1.8. 
Finally in section 3.1.9 we show that the multidimensional schema generated through 
our methodology gives diverse association rules with better predictive power as 
compared to the rules generated without the multidimensional structure imposed on it. 
 
Chapter 4 presents the application of the proposed methodology on the first case study 
performed on real-world dataset, namely Automobile (Schlimmer 1985), taken from the 
well-known UCI machine learning repository (Asuncion and Newman 2010). This 
benchmark dataset describes the specification of an automobile in terms of various 
characteristics, its assigned insurance risk rating and its normalized (financial) losses in 
use as compared to other automobiles. The Automobile dataset has a small number of 
records, only 205, but has a rich mix of 11 nominal and 16 numeric variables that suits 
the objectives of our research. 
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Chapter 5 presents our second case study conducted using a larger dataset as compared 
to Automobile dataset. It is the Adult (Kohavi and Becker 1996) dataset  which consists 
of 48,842 records with 8 nominal and 5 numeric variables. This benchmark dataset was 
extracted from the US Census bureau website using a data extraction system and is 
available for download from the UCI machine learning repository. 

Chapter 6 presents our third case study conducted on a much larger dataset called 
CoverType (Blackard, Dean et al. 1998). This is currently one of the largest datasets in 
the UCI repository containing 58,1012 records with 54 variables (42 nominal and 12 
numeric) and 7 target classes (Obradovic and Vucetic 2004). This benchmark dataset is 
used to predict forest cover types from cartographic variables. Forest cover type is 
basically defined as a descriptive classification of forest land based on occupancy of an 
area by the tree species present in it. The main motivation behind choosing this dataset 
is that it poses extreme challenges to the analysts in finding useful and interesting 
knowledge from the rich mix of nominal and numeric variables and sheer size of data. 
To give a glimpse of the difficulties involved in mining association rules from this 
complex dataset, we present some interesting facts for this dataset discovered by (Webb 
2006) which motivated us to mine diverse association rules from large datasets. Webb 
2006 reported the results of this particular dataset and observed that not a single non-
redundant rule generated through CoverType dataset was found to be productive. The 
identified fact that all non-redundant associations for this dataset represented 
unproductive associations highlights the dangers of data mining without sound 
methodologies for discovering meaningful and diverse association rules. 
 
Chapter 7 present experiments conducted on synthetic datasets to test the scalability of 
our proposed methodology. An important issue in our approach is to ensure that the 
proposed methods do not become a bottleneck in an environment where a large number 
of records or high dimensionality is present. To address this issue, the focus of this 
chapter is to show that the each step of the proposed methodology indeed scales with 
size and dimensionality of data. We have implemented a full-fledged prototype, i.e., for 
generating synthetic data with various parameters, and have conducted an extensive 
experimental evaluation to compare the processing time of each step of our proposed 
methodology. The key variables that we have identified for our scalability study are data 
size (in terms of number of records) and dimensionality (in terms of number of 
dimensions/variables). 
 
Finally, Chapter 8 summarizes the contributions of this thesis, draws conclusions and 
identifies future research directions which we regard promising in the context of this 
thesis. 

1.9 Publications from thesis 
The following research papers have been written and published during the course of this 
research. 
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Chapter 2 

Literature Review 
In this chapter, we review four main themes of literature related to the contributions 
made in this thesis. Firstly, we discuss previous research in identifying data cubes that 
hold the greatest information content. Secondly, we review previous research on 
identifying relationships between mixed data types. Thirdly, we present work in 
automating the design and construction of multidimensional schema. Fourthly, the 
application of association rule mining to enhance knowledge discovery from 
multidimensional schema is covered. Finally, we review our prior work which is closely 
related to the themes of the literature review presented in this chapter and which also 
serves to form the foundation of the work done in this thesis.  

2.1 Identification of informative data cubes 
A limited number of approaches have been proposed in the past in order to identify data 
cubes that hold the greatest information content. In this section we present the major 
contributions in this field and identify the most prominent techniques having similar 
objectives to the work done in this thesis. 

Sarawagi et al. (1998) explored methods for guiding users towards the discovery of 
interesting cube regions. The authors focused on identifying regions within the data 
cube where cells contained values that were significantly different from an expected 
threshold value calculated via a regression model. This work was extended further by 
Sarawagi (Sarawagi 2001), whereby differences in cell values across regions were used 
to find surprising information in unexplored areas of a data cube based on  the concept 
of maximum entropy.  

According to Kumar et al. (Kumar, Gangopadhyay et al. 2008), the work done in 
(Sarawagi, Agrawal et al. 1998; Sarawagi 2001) defined surprises in a rigid manner, 
implying that users cannot view them differently according to their needs. Furthermore, 
the discovered surprises are not easy to understand and interpret by merely scanning 
high dimensional data presented in a large number of rows and columns. Kumar et al. 
(Kumar, Gangopadhyay et al. 2008) overcame these limitations by proposing an 
DIscovery of Sk-NAvigation Rules (DISNAR) algorithm for detecting surprises defined 
by users and establishing the concept of cube navigation using the detected surprises. 
The proposed DINSAR algorithm utilized a Gaussian distribution for detecting skewed 
nodes existing in cube lattices. It consisted of a four step recursive process. Firstly, it 
generates a set of candidate nodes for a given node. Secondly, it measures the skewness 
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of candidate nodes. Thirdly, it applies a test of significance of skewness proposed by 
(D'Agostino and Stephens 1986) on candidate nodes and finally, transform nodes with 
significant skewness into cube navigation rules .The algorithm terminates either when it 
reaches the lowest level nodes in the cube lattice or when no more nodes of surprises are 
identified in the current iteration. The proposed rule based approach provides a method 
of guidance for cube navigation in order to enhance the cube exploration capabilities.  

Our research exhibits some similarities with (Kumar, Gangopadhyay et al. 2008) and 
(Sarawagi 2001) in the sense that we also assist the user by providing candidate 
interesting cube regions for exploration at multiple levels of data abstraction. In addition 
to this, we provide greater level of guidance to users than (Kumar et al. 2008) by 
explicitly ranking paths on the basis of an information content measure based on 
entropy. 

In the medical field, statistical methods were applied on cubes by (Ordonez and Zhibo 
2009) to improve disease diagnostics. The authors proposed the integration of OLAP 
cube exploration with parametric statistical techniques to find significant differences in 
facts by identifying a small set of discriminating dimensions. However, this work is 
limited in terms of understanding the interrelationships between the significant facts and 
dimension variables. Additionally, the work can only be utilized after the construction 
of a data cube. There is no facility for the user to construct a constrained data cube 
having important dimensions and facts beforehand for further cube exploration, as 
proposed in this thesis. Furthermore, their application of statistical tests requires prior 
domain knowledge in order to pinpoint regions where the significant fact differences are 
suspected.  

Moreover, as Koh et al. (2011) argue, heavy reliance on domain specific information 
only leads to the discovery of known patterns that fit a preconceived template and has 
the danger of inhibiting the discovery of unknown hidden patterns present in the data. 
Motivated by this, they proposed a generic solution for discovering informative rules by 
automatically assigning item weights based on the strength of interactions between them 
in a transactional database. In order to evaluate the informative rules generated by their 
proposed method, they utilized Principal Components Analysis (PCA) to capture the 
amount of variance by each rule term (the actionable component of the rule). The higher 
the variance captured for a rule term, the greater the significance of the rule is as a 
whole. Our work is similar as we also provide a solution without reliance on domain 
specific information. However, our proposal differs from their work as the emphasis is 
on the discovery of interesting cube regions. Additionally, our use of PCA is not to 
evaluate results but to rank the numeric variables in order of significance.  Such a 
ranking provides guidance to the user to choose fact variables of his/her own choice. 

More recently, a neural network based approach has been proposed by (Abdelbaki, Ben 
Messaoud et al. 2012) that predicts measures over high dimensional data cubes. The 
authors introduced a new two stage approach based on the novel concept of PCA-cubes. 
The first stage is data pre-processing in which PCA has been utilized to reduce data 
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cube dimensionality. For the second stage, an OLAP oriented architecture embedded 
with a Multilayer Perceptron (MLP) was introduced for prediction purposes. The MLP 
learns from multiple training sets to perform prediction on each targeted measure. The 
authors termed their neural network based approach as: Neural Approach to Prediction 
over High Dimensional Cubes (NAP-HC). The experimental study showed that NAP-
HC has largely met its goals in the case of data cubes exhibiting low levels of sparsity. 
However, its performance degrades when applied on highly sparse data cubes. Our work 
is similar in terms of the usage of PCA to reduce high dimensional data. However, we 
do not apply PCA after the construction of data cubes; instead we use PCA to filter out 
the less informative dimensions in order to construct a compact and more informative 
data cube.  

It is apparent from the review in this section that a limited variety of approaches have 
been proposed in the literature to mine large data cubes for discovering knowledge. 
However, a number of issues remain unresolved in previous work (Sarawagi, Agrawal 
et al. 1998; Sarawagi 2001; Kumar, Gangopadhyay et al. 2008; Ordonez and Zhibo 
2009), especially on the intelligent data analysis front.  

Firstly, prior work has assumed that data analysts could identify a suitable set of 
candidate data cubes for exploratory analysis based on domain knowledge. 
Unfortunately, situations exist where such assumptions are not valid. These include high 
dimensional high volume (in terms of number of instances) datasets where it may be 
very difficult or even impossible to predetermine which dimensions and which cubes 
are the most informative.  In such environments it would be highly desirable to 
automate the process of identifying dimensions and cubes that hold the most interesting 
and informative content. 

Secondly, as stated earlier, excessive reliance on domain knowledge tends to constrain 
the knowledge discovered to only encapsulate known knowledge, thus excluding the 
discovery of unexpected but nonetheless interesting knowledge (Koh, Pears et al. 2011). 
Another related issue is that it restricts the application of these methodologies to only 
those domains where such domain knowledge is available. However, a knowledge 
discovery system should be able to work in ill-defined domains (Nkambou, Fournier-
Viger et al. 2011) and other domains where no background knowledge is available 
(Zhong, Dong et al. 2001).  

Finally, these approaches mostly target a specific data type. In the real world, datasets 
have a mix of numeric and nominal variables, often involving high cardinality nominal 
variables, thus challenging the analytic capability of the methods employed. In the 
following section, we review some of the machine learning approaches that tackled the 
problem of mixed data analysis. 

2.2 Identification of relationships between mixed data types 
Real world datasets consist of a mix of numeric and nominal data. Specifically, data sets 
with a large number of nominal variables, including some with large number of distinct 
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values are becoming increasingly common (Rosario, Rundensteiner et al. 2004). For the 
purpose of efficient analysis of such mixed variable datasets, (Ahmad and Dey 2007) 
identified the problems associated with the traditional k-means algorithm as it is best 
suited for numeric data. In order to perform analysis on mixed data, the authors 
proposed a new algorithm which uses a cost function and distance measure based on co-
occurrence of values. The proposed cost function alleviated the shortcoming of Huang’s 
(Huang 1997) cost function. However, the limitation of the proposed work is that the 
analysis still relies on co-occurrences of data and discretization of numeric values which 
leads to a loss of information. In addition to this, the work does not support the 
identification of semantic relationships amongst values in nominal variables. For 
instance, nominal variables such as Product-category, Product-names, and Product-
codes etc. in general contain a large number of distinct values and therefore require 
efficient methods for revealing inter-relationships amongst different values. 

For the same purpose, a feature selection algorithm for mixed data containing both 
continuous and nominal features was introduced by (Tang and Mao 2007). The authors 
stressed that feature selection is a crucial step in pattern recognition and that most of the 
feature selection algorithms do not target mixed data containing both nominal and 
numeric features. Tang and Mao (2007) proposed a mixed forward selection (MFS) 
search algorithm for mixed feature space. MFS starts with an empty set and selects a 
one step-optimal feature at each step, but the selection is done through two stages. In the 
first stage, MFS searches the optimal nominal and continuous features separately. In the 
second stage it selects the step-optimal feature from the two candidate features 
identified in the first stage through the comparison of classification accuracy. In their 
experimental study, Mahalanobis distance and symmetrical uncertainty are employed as 
the evaluation criteria for continuous and nominal features respectively. The stopping 
criterion in the MFS algorithm is either a predefined feature subset size or the cross-
validated error rate. The limitation of the proposed algorithm is that its performance on 
real word data was significantly inferior in comparison to that of synthetic data. In 
addition, the scalability of memory and runtime was not assessed with respect to the 
number of features.   

In the same quest for mixed data analysis, three different distance measures for  
computing Mahalanobis-type distances were compared by McCane and Albert (McCane 
and Albert 2008). They identified the fact that there is a strong need to develop 
Mahalanobis-type distances for mixed data type variables. They observed that research 
done in mixed data analysis is either heuristic or is only based on the use of nominal 
data, with the exclusion of numeric variables. In their work, Mahalanobis-type distances 
were computed between random variables consisting of several categorical dimensions 
or mixed categorical and numeric dimensions. In each case, distances are computed via 
an interpretation of the categorical data in some real vector space. Authors tested the 
three methods on two application domains namely, classification and principal 
component analysis and found that overall only one method (regular simplex) was 
successful in both domains. The basic idea of the regular simplex method is to assume 
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that any two distinct levels of a categorical variable are separated by the same distance. 
To achieve this, each level of an n-level variable is associated with a distinct vertex of a 
regular simplex in (n-1) dimensional space. The strength of their work is the 
comparison of measures for computing Mahalanobis-type distance measures between 
categorical and numeric dimensions. However, the authors have used very small data 
sets having only a few records to perform the validation; hence, it is unclear how their 
method will scale for large datasets.  

Hsu et. al (Hsu, Chen et al. 2007) focused on hierarchical clustering of mixed data based 
on a distance hierarchy. The proposed work differs from the work of (McCane and 
Albert 2008) as their work only considered nominal variables in the computation of 
distance measure. For clustering mixed data, it was reported that most of the clustering 
algorithms operate on numeric data and only a few can support the analysis of mixed 
numeric and nominal data (Milenova and Campos 2002). The authors extended the 
existing Orthogonal partitioning clustering (O-Cluster) algorithm (Milenova and 
Campos 2002) to work in domains containing both nominal and mixed variable data 
types. The O-Cluster algorithm combines a novel active sampling technique with an 
axis-parallel partitioning strategy to identify continuous areas of high density in the 
input space. It computes the histograms of active partitions to find the best splitting 
points. It operates on a limited memory buffer and requires at most a single scan 
through the data. Furthermore, it proposes the use of a statistical test, namely chi-
squared test  for the identification of good splitting points along data projections and 
makes possible automated selection of high quality separators. The algorithm relies on 
an active sampling method to accomplish scalability with large volumes of data. Similar 
to the work of (Hsu, Chen et al. 2007), the proposed extended (O-Cluster) algorithm 
uses axis-parallel partitioning to build a hierarchy and identifies hyper-rectangular 
regions in the input feature space.  

Doring et al. (Doring, Borgelt et al. 2004) proposed a fuzzy clustering approach based 
on a probabilistic distance feature. Authors stressed on the fact that clustering mixed 
feature-type data is a major data analysis task. This algorithm is based on a probabilistic 
model and thus circumvents the problems of weighting dissimilar components that can 
result from separately computing distances based on different data types. The clusters 
formed from this approach contain the weighted means and covariance matrices of 
numeric attributes and weighted frequencies of the nominal attributes categories. The 
weakness of the proposed work is that the clustering process is driven purely by the of 
nominal variables without explicit contribution from the numeric variables. Moreover, 
the experiments were performed only on synthetic data sets without the use of real-
world data.  

Luo et. al (Luo, Kong et al. 2006) targeted the same area of clustering mixed data. Luo 
et al presented an Evidence based Spectral Clustering Algorithm (EBSC) that works 
well for data containing a mix of both nominal and numeric features. Authors proposed 
a method for building the co-association matrix (Fred and Jain 2005) for datasets with 
mixed variable data types. The co-association matrix is a widely used data structure for 
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combining information from multiple clustering runs (Tsaipei 2011). The idea of 
evidence accumulation is based on the co-association matrix as it views each clustering 
result as an independent evidence of data organization and combines the results into a 
single data partition. The proposed EBSC algorithm first obtains N clustering results by 
running k-means N times with random initializations on a pure numeric subset and M 
clustering results for M nominal attributes. Secondly, co-occurrences of pairs in the 
same clusters are taken as votes for association. Thirdly, data partitions are mapped into 
a similarity matrix of patterns and finally a spectral clustering method is applied to 
obtain the final clustering result. 
 
The performance of the EBSC algorithm was evaluated on real world data sets. It was 
claimed that the measure based on evidence accumulation works well with mixed data 
types. The major weakness in their work is that they created either numeric features or 
nominal features but neglected the use of mixed features in their experimentation on 
synthetic data sets. Furthermore, the real world data set selected for experimentation had 
very few high cardinality nominal variables and the proposed method does not specify 
how such variables will be dealt with by the algorithm. In addition to this, the size of the 
data set used was very small and thus a reliable accuracy comparison could not be made 
with previous existing algorithms on mixed data analysis. 
 
Li and Biswas (Li and Biswas 2002) demonstrated that the similarity measure proposed 
by (Goodall 1966) works well with data with mixed nominal and numeric features. 
Authors proposed a Similarity-based agglomerative clustering (SBAC) algorithm that 
utilizes Goodall similarity measure and hierarchical agglomerative approach for 
clustering. The Goodall similarity measure is determined by the uncommonness of 
attribute-value matches and defines a structure to deal with mixed variables with 
similarity among objects. Specifically, a pair of objects (i, j) is more similar than 
another pair of objects (x, y), if, and only if, the objects i and j have a larger match in 
attribute values which occur relatively less often in the overall dataset (Hsu and Huang 
2008). (Hsu and Chen 2007) identified that their proposed approach assumes that the 
variables are independent and a major limitation of their work is the use of simple 
matching approach of computing the discrepancy for handling categorical variables. 
This simple matching technique ignores the semantic information embedded between 
categorical values of each variable as it uses a traditional value subtraction method for 
comparing distances between nominal variables.   

For the purpose of identifying semantic information between nominal variables and the 
effective visualization of high cardinality nominal variables a new technique was 
proposed by (Rosario, Rundensteiner et al. 2004), called Distance-Quantification-
Classing (DQC) approach. The (DQC) approach pre-process the nominal variables, 
calculates the distance between the variables, assigns order and spacing among the 
nominal values in each variable and finally determines which values are similar to each 
other and thus can be grouped together. The authors investigated an assignment of order 
and spacing among nominal data with a large number of distinct values to highlight the 
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relationships among the data points. Categorical data has been displayed using a well-
established visualization technique called parallel coordinates (Inselberg and Dimsdale 
1991). By this the space on each coordinate is used more efficiently because the spaces 
become meaningful as similar values are positioned close to each other (Kosara, Bendix 
et al. 2006). In this thesis, we have utilized the DQC technique for efficient mapping of 
nominal values to numbers in order to discover the semantic relationship among values 
in nominal variables.  

It is evident from the literature discussed in this section that to tackle the long standing 
problem of mixed data analysis  a variety of clustering algorithms have been proposed 
(Li and Biswas 2002; Doring, Borgelt et al. 2004; Luo, Kong et al. 2006; Ahmad and 
Dey 2007; Becue-Bertaut and Pages 2008; Hsu and Huang 2008; Chatzis 2011; Ji, Han 
et al. 2012) ranging from hierarchical clustering, k-means clustering, fuzzy clustering 
and incremental clustering algorithms. However, none of these approaches have been 
integrated with statistical methods to provide assistance towards the discovery of 
interesting information, as proposed in this thesis. The main consequence of not using 
statistical methods in the past is that it led users to the discovery of previously known 
patterns because the data exploration process relied heavily on user’s subjective 
knowledge. In the real world, it is extremely hard for novice users, and even for experts, 
to have a clear idea of the underlying data in a large multi-dimensional space. Statistical 
methods such as Principal Component Analysis (PCA) and Multiple Correspondence 
Analysis (MCA) help in constraining a large multi-dimensional space by filtering out 
less informative dimensions and retaining the important ones. This allows users to have 
meaningful statistical information that they can use together with any specialized 
domain knowledge that may be relevant in identifying relationships between mixed data 
types. 
  
We close this section by presenting the overall limitations of previous research in 
relation to the problem that we are examining. It is evident that limited research has 
been conducted in the area of finding interrelationships between numeric and nominal 
variables that are increasingly becoming common in real-world datasets. Moreover, the 
predominant statistical techniques for analysis of such variables lack integration with 
machine learning methods for finding interrelationships between variables. 

In the following section, we present the third theme of our literature review which 
covers the work done in in automating the design and construction of multidimensional 
schema.   

2.3 Automating the design of multidimensional schema 
A number of schema design approaches have been proposed in the literature to provide 
automated support for the design of multidimensional schema. Pardillo et al. (2010) 
identified that most of the research in schema design focuses on the automatic 
derivation of database schemata from conceptual models but does not address the 
problem of design of multidimensional schema. Pardillo et al. emphasized that the main 
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issue in data warehouse construction is multidimensional modelling. To resolve this 
issue, they proposed a Model Driven Architecture Framework (MDA) approach for 
multidimensional modelling. In their approach, they built different MDA models using 
an extension of the Unified Modelling Language (UML) and Common Warehouse 
Meta-model (CWM) (Poole and Mellor 2001) to formally establish transformations 
between MDA models using a query language. UML integration with CWM allows 
end-user tools to query the multidimensional schema accurately and reduce 
design/development time. 
 
Likewise, Dori et al. (2008) suggested an Object-process-based Data Warehouse 
Construction Method (ODWC) for designing multidimensional schema. Dori et al. 
suggested that the suitability of current multidimensional modelling methods for large-
scale systems is questionable, as they require multiple manual actions to discover 
measures and relevant dimensional entities and they tend to disregard the system's 
dynamic aspects. They proposed the ODWC method which utilizes the conceptual 
model of operational systems to construct a corresponding multidimensional schema.  
The method operates by first selecting business processes and models them in the form 
of snowflake schemas. Secondly, it selects the schema that is most appropriate for the 
organization’s data mining needs. The main limitation of the ODWC method is the 
strong assumption that business processes are well defined by the organization. There 
could be cases in which the organization’s business processes are not well established or 
not aligned with the organization’s data mining needs. In such cases, the proposed 
method will require additional manual actions to configure business processes for the 
generation of meaningful snowflake schemas. 
 
A similar semi-automatic technique has been proposed by Palopoli et al. (2002) for 
generating multidimensional schema from operational databases. The proposed 
approach first collects subsets of operational schema in the form of Entity-Relationship 
(ER) models and a dictionary of lexical synonymy properties into homogeneous clusters 
and then integrates those schemas on a cluster-by-cluster basis. Each integrated schema 
thus obtained is then abstracted, to construct a global schema representing the cluster. 
The aforementioned process is iterated over the set of cluster schemas, until only one 
schema is left. Based on the final schema a single unified data warehouse schema is 
generated. 

However, in spite of its advantages, the proposed approach has a fundamental limitation 
in those application environments where complex heterogeneous operational systems 
exist. In such environments, the single global scheme obtained by integrating schemes 
of operational databases is likely to consist of a large number of data objects, and 
becomes enormously complex to be effectively used. As a result, the derivation of 
decision support information becomes quite a difficult task. Apart from this limitation, 
this approach has only been tested on a single case study and requires further cases to be 
studied before it can be considered as a comprehensive modelling technique with wider 
applicability.  
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To accomplish ease in schema design, Tryfona et al. (1999) built a conceptual model 
(StarER) for multidimensional modelling on the basis of user modelling requirements. 
The StarER model combines the star structure, which is dominant in data warehouses, 
with the semantically rich constructs of the ER model. Examples from a mortgage data 
warehouse environment, in which StarER has been tested, revealed the ease of 
understanding the model, as well as its efficiency in representing complex information 
at the semantic level. 

In the quest to propose a generic modelling technique, Hahn et al. (2000) proposed the 
generation of a tool specific OLAP schemata from conceptual graphical models. A new 
approach named Bablefish, has been suggested to generate multidimensional schema. It 
allows graphical representation of a conceptual schema for interactive modelling 
purposes. Furthermore, the proposed approach discusses the issue of translating 
graphical representations to configurations for real-world OLAP tools and introduces a 
View concept that allows designers to model interconnections of static schema with 
other aspects of warehouse design such as transformation modelling, data source 
modelling, security modelling etc. The main benefit of the approach is its applicability 
to Greenfield situations when no system is already in place. In real world development, 
there exist cases in non-business domains (Mansmann 2009) where the data warehouse 
developer needs to design schema where an operational system does not exist. 
Furthermore, such domains may be ill-defined domains (Nkambou, Fournier-Viger et 
al. 2011), thus compounding the difficulty of the design problem.  Therefore, their 
research is similar to the work undertaken in this paper as we also target those cases 
where limited domain knowledge exists and no operational system is in place. However, 
the scope of our work is wider as we not only generate schema but also equip analysts 
to discover knowledge from the generated schema. 

Peralta et al. (2003) stated that design automation usually focuses on data models, data 
structures and criteria for defining table partitions and indexes. A rule-based mechanism 
was proposed to automate the design of multidimensional schema. A set of design rules 
embedding design strategies decide the application of suitable transformations in order 
to generate logical multidimensional schema. The proposed system has been prototyped 
by applying design rules using an algorithm that takes into account frequent occurring 
design problems suggested in existing methodologies. Likewise, an automatic tool for 
generating a star schema from an Entity-Relationship Diagram (ERD) was introduced 
by Song et al. (2008). A prototype named SAMSTAR was presented, which was used 
for the automatic generation of star schema from an ERD. With this automatic 
generation of star schema, the system helps designers to reduce their effort and time in 
building data warehouse schemas. 

More recently (Usman, Pears et al. 2013) proposed a methodology for the design of 
multidimensional schema and discovery of interesting cube regions in multidimensional 
datasets. The distinctive feature of their approach is the use of robust data reduction 
methods such as PCA and Multiple Correspondence Analysis (MCA) to identify 
variables that capture the greatest degree of variation in high dimensional data. Such 



19 
 

variables were utilized to design schema and construct informative data cubes which 
contain interesting regions of information. These informative data cubes were generated 
at different levels of data abstraction and the effect of abstraction level on information 
content was studied through OLAP analysis.  

However, OLAP analysis is limited to exploratory analysis and was not designed to 
discover interesting associations among data variables (Ben Messaoud, Loudcher 
Rabaseda et al. 2007). This limitation of OLAP motivated us in our current research to 
augment OLAP analysis with association rule mining methods to discover interesting 
relationships and associations among data variables at multiple levels of data 
abstraction. In the following section, we present the work done to augment OLAP 
analysis with association rule mining for enhanced knowledge discovery. 

2.4 Enhanced knowledge discovery from multidimensional 
schema 
As cited by a number of authors (Kaya and Alhajj 2003; Nestorov and Jukic 2003; Ben 
Messaoud, Loudcher Rabaseda et al. 2007), Kamber et al. (1997) were the first  to target 
the issue of discovering associations rules in a multidimensional environment. In their 
proposed approach, a user specifies hypotheses in the form of meta-rules or pattern 
templates. A mining system then attempts to confirm the provided hypotheses by 
searching for patterns that match given meta-rules. The use of pattern templates ensures 
that rules found are of interest to the user. This method also has the advantage of 
making the rule discovery process efficient as the search for rules is conducted in a 
space constrained by the templates specified. However, the main drawback is that 
interesting rules that fall outside the template scope will not be discovered and this will 
happen when the user is unaware of unexpected and interesting patterns due to limited 
knowledge of the underlying data. 
 
Zhu and Han in Zhu (1998) proposed an approach towards mining three types of 
multidimensional association rules,  namely intra-dimensional, inter-dimensional and 
hybrid association rules. The proposed method leveraged OLAP technology to perform 
multi-level association rule mining on different levels of the dimensional hierarchy. 
However, interestingness evaluation of the generated rules was confined to correlation 
analysis of the left-hand side with the right-hand side of the rules and it is not clear how 
the rules would perform on other objective rule interest measures such as, for example, 
the rule diversity measure (Geng and Hamilton 2006; Zbidi, Faiz et al. 2006). 
 
In order to generalize the methods of multidimensional association rule mining, Psaila 
et al. (2000) proposed a new approach to exploit the concept hierarchies present in the 
multidimensional model. With this approach, data miners reduce complexity in 
multidimensional data by exploiting concept hierarchies to guide the mining process 
towards potentially interesting mining queries. To estimate the degree of rule 
interestingness, the authors employed a metric that was specifically designed for 
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analyzing sales data. The utility of rules generated against generic interest measures 
such as confidence, lift, etc was not explored in this research. 

 
Ng et al. (2002)  focused on applying association rule mining to the most commonly 
used warehouse schema type, the STAR schema. They proposed an efficient algorithm 
which makes use of the properties of the STAR schema and experimental results 
showed that the proposed algorithm significantly outperforms the conventional 
approach of joining the dimension tables first and then mining rules from the logically 
joined tables. This proposed joining process of merging the dimension tables present in 
the schema before mining rules, however, requires the data to be loaded from the data 
warehouse before applying association rule mining which is computationally expensive 
when the volume of data stored is large. 

In order to overcome this limitation, Chung and Mangamuri (2005) introduced another 
improved algorithm named Star-miner that can be implemented directly on the 
relational database system without the need for relational joins. However, their 
experimentation was confined to synthetic data and hence there was no indication of 
how well the approach would work on real world data. A similar approach for mining 
the STAR schema was proposed in Nestorov and Jukic (2003). The authors proposed a 
framework that enabled ad-hoc data mining queries to be run directly on the 
multidimensional warehouse structure. The proposed framework expanded the domain 
of application of association rule mining from the transactional level to the aggregate 
data level. The use of dimensional information resulted in more detailed and actionable 
rules. Experimentation also showed that the rules could be generated much faster than 
with the conventional approach of generating rules from the transactional level.  This 
research revealed new insights into the usefulness of extracting knowledge from 
multidimensional data vis-a-vis transactional data. 

In order to mine association rules from data warehouses, Tjioe and Taniar (2005) 
proposed a pruning approach to filter non informative data in a data warehouse with the 
objective of discovering interesting rules. The authors proposed four algorithms VAvg, 
HAvg, WMAvg and ModusFilter which focus on pruning all rows present in the fact 
table that have less than the average quantity sold, average price, and so forth. After 
pruning, the resultant data is stored in tables called initialized tables as they provide 
efficient data initialization for mining rules. The algorithms then efficiently use these 
tables to mine association rules by focusing on summarized data present in the data 
warehouse. Authors have conducted a performance evaluation to show the effectiveness 
of the proposed row pruning methods. However, no evaluation has been conducted to 
assess the interestingness of the rules discovered through these proposed methods.  

Messaoud et. al in (Messaoud, Rabaséda et al. 2006) highlighted another limitation in 
Tjioe’s work, referring to the fact  that it is limited only to the COUNT measure for 
mining rules from aggregated data. They proposed another method of mining rules 
based on aggregation measures such as sum, avg, min and max. They used criteria for 
the evaluation of rule importance such as Lift and Loevinger measures.  This work has 
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been extended by proposing an online environment for mining association rules called 
OLEMAR (Ben Messaoud, Loudcher Rabaseda et al. 2007). In the extended work 
visual representation has been added in order to visualize the importance of the 
discovered rules using Graphic Semiology principles. A real world case study 
conducted on a breast cancer dataset illustrated the efficiency and effectiveness of the 
proposed work. However, there is still a need to evaluate the performance of the 
discovered rules on objective measures of interest. 

As with research in the area of multidimensional schema design, gaps exist in previous 
research in the area of knowledge discovery from multidimensional data. It is apparent 
from the review that all the previous approaches support constraining search space for 
rule discovery, either in the form of pattern templates or in the form of aggregated data. 
While aggregated data has been shown to be a better foundation for generating rules, the 
evaluation for the most part, with the exception of  Messaoud et al. (2006), used support 
and confidence criteria to measure the importance of rules. These measures are best 
suited to transactional data but do not adequately measure the effectiveness of rules 
generated from data represented at different levels of data granularity. The complexity 
of multidimensional structures requires the use of more sophisticated measures to 
quantify the interestingness of rules discovered at different levels of data abstraction.  

2.5 A multi-level approach to design multidimensional schema 
In this section, we summarize the prior work of (Usman and Pears 2011) which forms 
the foundation for our current research. The authors suggested that the expertise of a 
human data warehouse designer, with his/her limited knowledge of the domain may not 
be effective in high data volume and high dimensional environments. Furthermore, they 
pointed out that nominal variables, while being candidates for dimension variables, may 
not always be suitable candidates for use. This was for two reasons: firstly nominal 
variables which have low information content do not add value to the knowledge 
discovery process and could thus be excluded. Secondly, even when nominal variables 
have high information content it may not be appropriate to use them in raw form to 
define dimensions. This is typically the case in high cardinality nominal variables where 
the grouping of nominal values will lead to the discovery of more meaningful and 
useful patterns. They reasoned that the use of data mining techniques to aid in the 
discovery of meaningful dimensions could augment domain knowledge and thus enrich 
the design process.  

They also pointed out that relationships between nominal and numeric variables may be 
subject to change, depending on the level of data granularity. To test this premise they 
applied a hierarchical clustering algorithm to the numeric variables to generate a 
dendrogram with nodes representing individual clusters containing a mix of numeric 
and nominal variables that are candidates for multidimensional schema.  A 
multidimensional scaling method (Cox and Cox 2008) was then applied on the nominal 
values within a cluster in order to transform them into numerical form. The motivation 
was to obtain a grouping of the nominal variables based on their pattern of co-
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occurrence within a given cluster. However, no concrete algorithm was proposed for 
deriving groups and it was left to the human designer’s subjective judgement to decide 
boundaries between groups. 

Despite the afore-mentioned contributions, their approach suffers from a number of 
limitations. Firstly, the methodology does not provide a clear indication of how many 
levels in the cluster hierarchy are required to optimize the knowledge discovery process. 
Human judgement is required to decide the cluster cut-off point and if this cut-off point 
is underestimated then valuable knowledge may be lost. On the other hand, 
overestimation leads to the situation of an unnecessarily large dendrogram with 
attendant space and computational inefficiencies. We address this problem in this paper 
by utilizing the linkage inconsistency threshold proposed by Cordes et al. (2002)  to 
determine the cut-off point in a dendrogram. The use of a rigorous method of cut-off 
determination via the inconsistency threshold removes the need for the manual error-
prone method of determination. 

Secondly, a manual method was used for the extraction of clustered data and the 
labelling of clusters at the various levels of the hierarchy to generate a binary tree. This 
represents a laborious task for the analyst to extract data from each cluster and label 
each cluster, one by one. Besides the manual work of naming and extracting cluster 
data, users have to manually construct a binary tree structure in order to visualize the 
cluster hierarchy in the form of a hierarchical tree. We believe that cluster extraction, 
labelling and binary tree generation should be automated in order to ensure that 
knowledge discovery is efficient and robust. In this paper, we propose an algorithm that 
generates a binary tree of clusters based on an automatically identified cut-off point and 
labels clusters with automatically determined labels that are based on their position in 
the data hierarchy. 

Thirdly, as mentioned previously, full automation for grouping of nominal variable is 
not provided. Instead, users are required to visualize the results of the multidimensional 
scaling technique in the form of a parallel coordinate display and to group similar 
values present in each dimension. Such grouping by visual inspection may not be 
feasible in cases where similar values lie very close to each other in a dimensional 
coordinate. Nominal variables with high cardinality such as Country, Product codes etc., 
having more than 40 distinct names, are difficult to visualize and group, and thus there 
is a need for a generic method that can create groups of similar values within each 
dimension automatically. In this work, we provide an algorithm which creates groups of 
similar values based on an automatically calculated threshold for each dimension. 

Fourthly, no ranking mechanism for filtering non informative dimensions was provided. 
Users are required to decide the dimensions of their choice with no indication of the 
underlying information content. Thus it would be useful to provide guidance to users by 
ranking dimensions based on objective information theoretic measures such as entropy 
and information gain, thus enabling users to factor in information content in addition to 
their specialized domain knowledge in the decision making process.  
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Finally, no explicit support was provided for the discovery of hidden relationships and 
associations which often yield important insights into underlying trends. To overcome 
the limitation of OLAP’s incapability of finding hidden associations, we applied 
association rule mining on our generated multidimensional schema. This enables the 
mining of hidden trends and patterns in the form of association rules from logically 
constrained schema. Moreover, we evaluate the interestingness of rules with respect to 
multiple objective rule interest measures proposed in Geng and Hamilton (2006) under 
the diversity criterion. We believe that rules containing diverse information convey 
more knowledge and hence, such rules are of more interest to the user. 

Summary 
In this chapter we presented the four main themes of literature review which are closely 
related to the contributions in this thesis. It is apparent from the review that a variety of 
approaches have been proposed in the literature to mine large data cubes for discovering 
knowledge. However, a number of issues remain unresolved in that previous work 
especially on the intelligent data analysis front. Firstly, the prior work assumed that data 
analysts could identify a set of candidate data cubes for exploratory analysis based on 
domain knowledge. Unfortunately, situations exist where such assumptions are not 
valid. These include high dimensional datasets where it may be very difficult or even 
impossible to predetermine which dimensions and which cubes are the most 
informative.  In such environments it would be highly desirable to automate the process 
of finding the dimensions and cubes that hold the most interesting and informative 
content. Moreover, there remains a need for automated support in the design of 
multidimensional schema, especially in domains containing high dimensional data. In 
such domains the sheer scale of the data, both in terms of data volume as well as in the 
number of dimensions, may make it difficult for human designers to decide which 
dimensions are the most informative and should thus be retained in the final version of 
the cube design.  

 
Secondly, reliance on domain knowledge tends to constrain the knowledge discovered 
to only encapsulate known knowledge, thus excluding the discovery of unexpected but 
nonetheless interesting knowledge (Koh, Pears et al. 2011). Another related issue is that 
it restricts the application of these methodologies to only those domains where such 
domain knowledge is available. However, a knowledge discovery system should be able 
to work in ill-defined domains (Nkambou, Fournier-Viger et al. 2011) and other 
domains where no background knowledge is available (Zhong, Dong et al. 2001). To 
the best of our knowledge, none of the work done in the past focused on cases where 
limited or no domain knowledge exists. Most of the work done in the past targeted the 
business domain and hence it would be of interest to investigate the effectiveness of rule 
discovery across non-business domains. Additionally, there is a strong requirement to 
assist data warehouse designers to construct informative schema that can overcome 
design pitfalls and provide analysts a base to counterpart knowledge discovery 
challenges from large multidimensional space. 
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Thirdly, these approaches mostly target a specific data type. In the real world, datasets 
have a mix of numeric and nominal variables, often involving high cardinality nominal 
variables, thus challenging the analytical capability of the methods employed. It is 
evident that limited research has been conducted in the area of finding interrelationships 
between numeric and nominal variables that are increasingly becoming common in real-
world datasets. Moreover, the predominant statistical techniques for analysis of such 
variables lack integration with machine learning methods for finding interrelationships 
between variables. 

As with research in the area of multidimensional schema design, gaps exist in previous 
research in the area of knowledge discovery from multidimensional data. It is apparent 
from the review that all the previous approaches support constraining search space for 
rule discovery, either in the form of pattern templates or in the form of aggregated data. 
While aggregated data has been shown to be a better foundation for generating rules, the 
evaluation for the most part, with the exception of  Messaoud et al. (2006), used support 
and confidence criteria to measure the importance of rules. These measures are best 
suited to transactional data but do not adequately measure the effectiveness of rules 
generated from data represented at different levels of data granularity. The complexity 
of multidimensional structures requires the use of more sophisticated measures to 
quantify the interestingness of rules discovered at different levels of data abstraction.  

In terms of data analysis, the main tool used in multidimensional analysis in a data 
warehousing environment is the use of various data aggregation and exploratory 
techniques that form part of the On Line Analytical processing (OLAP) suite of 
methods. While traditional OLAP methods are excellent tools for exploratory data 
analysis they are limited as far as detecting hidden associations between items resident 
in a data warehouse. The discovery of such hidden relationships and associations often 
yields important insights into underlying trends and in general leads to an improved 
decision making capability. 
 
The above mentioned issues motivated us to formulate a generic methodology for data 
cube identification and knowledge discovery that is applicable across any given 
application domain, including those environments where limited domain knowledge 
exists. High dimensional and high volume datasets present significant challenges to 
domain experts in terms of identifying data cubes of interest. The presence of mixed 
data in the form of nominal and numeric variables present further complications as the 
interrelationships between nominal and numeric variables have also to be taken into 
account.  A methodology that assists domain experts in identifying dimensions and facts 
of interest is highly desirable in these types of environments. Moreover the proposed 
methodology should provide automated assistance to constrain a multidimensional 
schema, supports advanced evaluation of discovered rules interestingness, and offer 
easy implementation methods for non-business domains. 
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Chapter 3 

Discovery of interesting cube regions 
and diverse association rules 

In this chapter, we present an overview of the proposed methodology for 
multidimensional cube design that facilitates the discovery of interesting cube regions 
and diverse association rules. As mentioned earlier, the two main objectives of our 
research are: firstly, to equip knowledge workers with essential information to 
intelligently analyze high dimensional datasets containing mixed data types; and, 
secondly, to assist in the automated cube design process by complementing automated 
techniques for cube design with specialized knowledge that domain specialists may 
possess with their expert knowledge of the application domain.  

3.1 Methodological Framework 
We first present an overview of the framework we propose for data cube design and 
analysis before discussing the details of each step involved in implementing the 
framework. Figure 3.1 depicts the major phases involved. Steps 1 to 6 cover the design 
aspects while the 3 remaining steps deal with analysis of the informative cubes 
generated.  
 
We use a hypothetical example to illustrate each of the phases in the proposed 
methodology. Consider a mixed variable dataset D having 3 numeric (Profit, Quantity, 
Weight) and 3 nominal variables (quality, color, size) with X number of records. This 
dataset, although being small in terms of dimensionality of variable is of mixed data 
type which is a key facet of multidimensional data used in the construction of a data 
warehouse. We now describe each of the phases involved in implementing the 
framework. 

3.1.1 Generate Hierarchical Clusters 
In the first phase, we apply Agglomerative Hierarchical Clustering (AHC) on numeric 
variables of the given dataset to generate a dendrogram. Each level in the dendrogram 
contains a set of child clusters that were split off a single parent. A key issue with any 
form of clustering is to determine the number of clusters; and with respect to 
hierarchical clustering this reduces to determining at what point to terminate generation 
of the dendrogram. We use the linkage inconsistency threshold (Cordes, Haughton et al. 
2002) to determine the cut-off point. The threshold is defined by equation 1. 
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Figure 3.1: Methodological Framework for discovery of interesting cube regions and diverse association 
rules 
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In equation 1, the distance between two clusters is represented as the length of the link, 
link1. The term µ represents the mean of all the links present in the dendrogram and σ is 
the calculated standard deviation across all links. The higher the values of the threshold 
ITh, the less similar are the clusters connected by the link. This threshold thus provides 
an objective method of determining the number of clusters without heavy reliance on 
domain specific information. The inconsistency coefficient of the links in the cluster 
tree structure identifies cluster divisions where similarities between data objects change 
abruptly. A link whose height differs significantly from the height of the links below it 
indicates that the clusters at this level in the dendrogram are much farther apart than that 
of their corresponding child clusters. Such a link is said to be inconsistent with the links 
below it.  
 
As we move from the top level (root node) towards the lower levels (leaf nodes) the 
heights of the links at a particular level will become approximately the same height as 
the links below it, thus indicating that there is no distinct division between clusters 
objects at the particular level in the hierarchy. We take the inconsistency threshold value 
at such a level in the hierarchy as the value that determines the cut-off point. After 
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determining the cut-off point, we give each cluster a unique label and extract the 
clustered data from each level using the procedure shown in lines 2 to 5 of Algorithm 1. 
We then increment the data abstraction level and cluster count in lines 6 and 7.  
 

 
 
After, incrementing the abstraction level, we obtain a similarity value and store it as a 
spilt point, as shown in lines 8 and 9. This similarity value represents the Euclidean 
distance between the data points on which a cluster splits into two child clusters.  

 
Line 10 checks the threshold (cut-off point) in the tree. If the split point is less than the 
threshold value then we recursively call the Binary_cluster_tree method for left and 
right child clusters as shown in line 11 and 12. This method recursively assigns unique 
labels to the two left and right child clusters and extracts clustered data. The recursion is 
terminated when the spilt point equals the calculated cut-off point. Finally, the number 
of clusters and total number of levels in the cluster hierarchy are output.  
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The knowledge contained within a cluster is captured by the relationships that exist 
between the numeric variables and nominal variables. In general, relationships between 
nominal and numeric variables are subject to change depending on the range that the 
numeric variables are constrained on. As the range tightens at the lower levels of the 
dendrogram, significant differences in the relationships emerge, as shown in the results 
of the three case studies that we undertake in Chapters 4, 5 and 6. 
 
Our preference for Agglomerative Hierarchical Clustering (AHC) is based on the fact 
that it tends to capture a natural hierarchy more faithfully than other clustering 
approaches (Seo, Bakay et al. 2003; Seo, Bakay et al. 2004; Usman, Asghar et al. 2010; 
Usman and Pears 2010; Usman and Pears 2011). In hierarchical agglomerative 
clustering, only numeric variables play an active part in cluster formation, in common 
with many other clustering approaches. With AHC, nominal variables are normally 
required to be transformed into numeric form in order to be involved in the clustering 
process. However, our methodology does not require any such mapping and we believe 
that nominal variables should retain their original data format as ad-hoc and 
unnecessary mappings could result in loss of information or may lead to erroneous 
results. In place of ad-hoc transformations we rely on the use of formal methods such as 
Multiple Correspondence Analysis (MCA) and entropy/information gain measures to 
extract natural groupings of nominal variables within a cluster. 
 
To illustrate the first phase of the methodology using the hypothetical dataset, we 
applied the AHC algorithm on the 3 numeric variables from dataset D to generate 
hierarchical clusters at different data abstraction levels. It produced the hypothetical 
dendogram depicted in Figure 3.2.  

 
Figure 3.2: Dendogram structure of hierarchical clusters 

Using Algorithm 1, we identify and label the hierarchical clusters by giving simple 
abbreviations such as C1, C2 etc. at different levels of data abstraction in the form of 
binary tree as represented in Figure 3.3. 
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Figure 3.3: Tree structure of clusters 

3.1.2 Rank Numeric Variables 
After the dendrogram is generated, each of the numeric variables within a cluster is 
ranked by Principal Component Analysis (PCA) in terms of the degree of variance it 
captures across the data present in the cluster. PCA (Jolliffe 2002) is a popularly used 
statistical technique that has been applied in a wide variety of applications for finding 
patterns in high dimensional data (Uguz 2011). The main advantage of PCA is its ability 
to transform a given set of variables into a new (smaller) set of variables that capture the 
most variation. In the following paragraphs, we provide an overview of PCA as a 
method of data reduction.  
 
Suppose that the dataset to be reduced has n numeric variables. PCA projects the 
original dataset onto a smaller dataset that captures most of the variation present in the 
original dataset. It accomplishes this by finding a set of Eigen vectors E1, E2,…, En. 
Given a dataset D, we first project the dataset onto its numeric variables and obtained 
another dataset D’. Now from D’, the covariance of every pair of items can be 
expressed in terms of its covariance matrix M. The matrix P of all possible Eigen 
vectors can then be derived from: 

                QMPP =−1                                                (2) 

where Q is the diagonal matrix of Eigen values of M. Our use of PCA is to obtain a set 
of factor loadings from the set of Eigen vectors obtained from equation 2 above. In 
practice, only a subset of Eigen vectors that capture t% of the total variance across 
dataset D’ is used. Each Eigen vector Ei is associated with an Eigen value ei that 
represents the proportion of variance that is explained by that Eigen vector. The Eigen 
vectors can then be arranged in ranked order of their Eigen values and the first m such 
vectors that collectively capture at least t% (generally set to 0.90) are chosen for 
extraction of the factor loadings. The factor loading Fi for an original numeric variable 
Vi is then given by its commonality (Tryfos 1998).  
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The factor loadings Fi obtained are then used to rank the numeric variables. In order to 
obtain the ranked list of numeric variables in a parent cluster, say C1, we apply PCA on 
the numeric variables of the two child clusters, namely C11 and C12 and obtain the 
factor loadings (Eigen values) for each numeric variable present in these child clusters. 
We then compare differences between the loadings for each numeric variable across 
clusters C11 and C12. Each variable is assigned a ranking at a (parent) cluster that is 
equal to the difference in factor loadings for that variable across the child clusters. The 
higher the difference in loadings for a given variable, the higher is the rank for that 
variable. 

The rationale behind this approach is that the two mutually exclusive child clusters have 
the necessary information to identify the numeric variables that defined the split. Thus, 
if Profit, Quantity and Weight defined the split of cluster C1 (parent) into clusters C11 
and C12 (children), then the variable that discriminates most between the two clusters 
would tend to capture a high degree of variation in one of the clusters while expressing 
itself to a much lesser extent in the other cluster. Thus for example, Profit expresses 
itself much more strongly in cluster C11 when compared to cluster C12. The variable 
Profit has the highest difference in factor loadings amongst the 3 variables, thus 
acquiring the highest rank, followed by Weight and Quantity, as shown in Table 3.1. 
 

Table 3.1: Ranking of numeric variables in cluster C1 

3.1.3 Rank Nominal Variables 
In order to rank the nominal variables, we apply two separate data analysis techniques, 
namely Multiple Correspondence Analysis (MCA) and Information Gain. MCA is a 
counterpart to PCA and is used to detect and represent underlying structure information 
for nominal or categorical data, while Information Gain is a variable selection measure.  

The rationale behind the usage of these techniques for ranking is that it would be useful 
to provide guidance to analysts by ranking dimensions based on objective information 
theoretic measures, thus enabling analysts to factor in information content in addition to 
their own specialized domain knowledge in the decision making process. 

 
Numeric 
Variables 

 
C11 Factor 
Loadings 

 
C12 Factor 
Loadings 

 
Comparison 

Results 

 
Ranking of 
variables 

Profit 0.627 0.283 0.343 Rank # 1 

Quantity 0.742 0.540 0.201 Rank # 3 

Weight 0.896 0.619 0.276 Rank # 2 
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Moreover, these two ranking methods provide assistance in achieving the two main 
objectives of this research; i) identification of interesting cube regions and ii) discovery 
of diverse association rules. Firstly, MCA based ranking helps in identifying interesting 
regions in data cubes via highly ranked paths. These paths are determined through 
outlier analysis of nominal values present in each variable. Details of this method are 
explained through an example in Section 3.1.3.1. Secondly, information gain based 
ranking assists in capturing informative dimensions for discovering diverse association 
rules from multidimensional schema.  

The selection of the ranking method depends on the knowledge discovery task at hand. 
If users are interested in exploring data cubes to find interesting regions then MCA 
based ranking has to be utilized as the information gain ranking method does not have 
the added advantage of highlighting the ranked paths in cube space for finding 
interesting knowledge. Otherwise, if the purpose of discovery task is to uncover diverse 
association rules then information gain based ranking provides a better understanding of 
the underlying information content in each dimension. Thus the two methods are 
alternative to each other and in any given situation a choice is normally made between 
the two, depending on circumstances, as just explained. 

However, there could be cases where users have an interest in both types of knowledge 
discovery tasks. For example, a user may first want to investigate data cube regions and 
after finding interesting regions, would like to discover the diverse rules with high 
prediction accuracy from such dense informative regions. In such cases, we suggest 
using both ranking methods in parallel to enhance knowledge discovery. 

For instance, MCA based ranking assists the user in selecting informative dimensions 
and regions in data cube and information gain based ranking provide extra information 
about the information content in each dimension selected. In this way, user gets added 
information for the efficient discovery of diverse rules with greater prediction accuracy. 
In the case studies on real world datasets presented in the following Chapters, we have 
utilized both ranking methods and explained how these methods work in parallel in 
enhancing the knowledge discovery process.  

3.1.3.1 Ranking via Multiple Correspondence Analysis (MCA) 
In this step, we rank the nominal variables present in each data cluster. To achieve this 
objective, we adopt MCA (Greenacre 1991; Abdi and Valentin 2007; Le Roux and 
Rouanet 2009), which is conceptually similar to PCA but is specially designed for the 
analysis of nominal variables. MCA is an extension of the simple correspondence 
analysis technique to account for more than two variables. It is applicable to large sets 
of nominal variables, each of which may have high cardinality (large number of 
categorical values). It can also be seen as a generalization of the PCA technique when 
variables to be analyzed are qualitative instead of quantitative. After the application of 
MCA, a factor loading is computed for each nominal variable. We compute these factor 
loadings and rank the nominal variables in descending order.  
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Large factor loadings correspond to a large spread among the categories of nominal 
variables and consequently indicate a higher degree of discrimination between the 
categories of a nominal variable.  

It should be noted that we do not automatically reduce the dimensions in this phase 
because our purpose is to provide a ranked list of all dimensions and the user has the 
flexibility to choose the dimensions that are more meaningful for his/her analysis.   

In addition to ranking nominal variables, MCA also provides a calculated value for each 
category in a nominal variable. The category values can be used to segment nominal 
variables on the basis of their values.  Accordingly, some of these categories may be at a 
much greater distance apart when compared to the average distance, taken across all 
categories. Such categories have distinct characteristics and play a vital role in 
determining the interesting regions in a data cube. 

Similar to PCA, we obtain the factor loadings for each nominal variable present in our 
example dataset D and rank them according to their individual factor loading values, 
from largest to smallest.  Unlike our numeric ranking approach, we rank on the basis of 
individual clusters instead of comparing child clusters. The basic reason for this 
approach is that the nominal variables do not play a direct role in clustering the dataset. 
Table 3.2 shows the ranking obtained for cluster C1. 

Another advantage of using MCA for nominal variable analysis is that we can easily 
identify the significant values of the highly ranked nominal variables by means of 
outlier analysis. For instance, if 50 distinct Products are present and each has a unique 
color and shape then a plot of each of these variables with the first two Principal 
Components as axes will reveal any products having color and/or shapes that have very 
different values with respect to one of the numeric variables, say Profit.  

Figure 3.4 clearly shows that two products, (Products A & D), have large deviations 
from the average. The same holds true for the Color (for green & blue values) and 
Shape (with values star & diamond) variables.  

Table 3.2: Ranking of nominal variables in cluster C1 

 

 

 

 

The identification of such outliers plays a central role in our methodology for 
knowledge discovery via exploration of ranked paths in data cubes. However, the visual 
exploration of these outlying values in plot diagrams is a laborious and time-consuming 
process, especially when a large number of values are present in the plot or the plotted 
values lie very close to each other. For example, if there are 100 Products plotted with 

Nominal 
 Variables 

Factor  
Loadings 

Ranking  
of variables 

Product Name 0.627 Rank # 2 

Color 0.701 Rank # 1 

Shape 0.525 Rank # 3 
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50 unique colours and 40 types of shapes, then it becomes difficult to analyse which 
colours and shapes are outliers in the plot. Additionally, users may not be interested in 
the most outlying colours and shapes, as such distinctive colours and shapes may 
already be known to them. Instead, users may be more interested in a set of top k ranked 
values for the colour and shape variables. Here k can be any number of values less than 
the total values projected by MCA. 

 

Figure 3.4: Project values of ranked nominal variables in cluster C1 

In order to give users greater flexibility at this stage, we automate the process of outlier 
detection by taking the Euclidean distances of each distinct nominal value from the 
overall mean and sorting the calculated distances in descending order. The procedure 
for calculation is shown in Algorithm 2. 
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3.1.3.2   Ranking via Entropy and Information Gain Measures 
We adopt entropy and information gain measures to devise an alternative nominal 
ranking method. Entropy is a measure that indicates the degree of impurity in a variable. 
It can be measured in bits for a variable, say, v through equation 4.  

            Entropy (v) = - (p * log (p) + (1-p) * log (1-p))                                 (4) 

Generally, entropy is greater if the distinct values in a variable are evenly distributed 
and vice versa. Information gain, on the other hand, is a measure of purity in a variable.  

The information gain for a given variable v is given by equation 5 below. 

Information Gain (v) = Entropy (v) before spilt – Entropy (v) after split         (5) 

We calculate the information gain for each nominal variable present in a cluster in order 
to rank the variable in terms of significance. The variable with the highest information 
gain acquires the highest rank as it minimizes the information required (i.e. has least 
randomness) to cluster records from the parent cluster, say C1, into child clusters, C11 
and C12.  However, we need to take into account the entropy on left child cluster (C11) 
and right child cluster (C12) in order to calculate the entropy after a parent cluster (C1) 
splits. Equation 6 defines entropy of a variable after the spilt. 

Entropy (v) after split = Wfl * (Entropy (v) left child cluster) + Wfr * (Entropy (v) right 
child cluster)                                                                                              (6) 

In equation 6, Wfl and Wfr represents the weight factors which are the ratios of the 
number of records on the left child (C11) and right child (C12) clusters respectively to  
the total number of records in the parent cluster (C1). Therefore, by comparing the 
entropy before and after the split, we obtain a measure of information gain, or in simple 
terms, we assess the information that was gained by performing a split with a given 
variable v.  

We illustrate this step using our running example having three nominal variables, 
namely quality, color and size. Our objective is to rank the nominal variables present in 
the parent cluster C1. We start by first calculating the entropy of each variable present 
in parent cluster C1 and the two child clusters C11 and C12 using equation 5. The 
results obtained are shown in Table 3.3. Thereafter, we calculate the entropy of each 
variable after the split by substituting the values from Table 3.3 in equation 6. For 
example, the entropy of variable Quality can be calculated as follows: 

Entropy after split = Wfl * (Entropy (Quality) left child) + Wfr * (Entropy (Quality) 
right child) 

                              = 5000/7000 * (2.042) + 2000/7000 * (1.304) 

                              = (0.714 * 2.042) + (0.285 * 1.304) 
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                              = 1.457 + 0.371 

      = 1.828 

We calculate the weight factors for the left and right child clusters by utilizing the 
distribution of records across clusters given in Figure 3.2. We then calculate the 
information gained for the Quality variable using equation 5. 

Information Gain (Quality) = Entropy before spilt – Entropy after split 

                             = 2.028 – 1.828 

                             = 0.2 

Similarly, we calculate the information gain for the other two variables and rank them 
accordingly. The results of the ranking for this example are shown in Table 3.4. 
 

Table 3.3: Calculated entropy of nominal variables 

 
 
 
 
 
 

 

  
Table 3.4: Ranked list based on information gain 

3.1.4 Apply Multidimensional Scaling 
After ranking of nominal variables, the next phase of our methodology involves 
identification of natural groupings of the nominal variables. To achieve this, we apply 
multidimensional scaling (Borg and Groenen 2005) to identify the semantic 
relationships among values in each nominal variable. With multidimensional scaling 
semantic relationships between multiple nominal variables can easily be visualized 
through a parallel coordinate display. In a parallel coordinate display each nominal 
variable is represented on a vertical scale. The values are displayed on the scale and the 
spacing between the values signifies the similarities and differences between the values. 

 
Variables 

 
Cluster C1 

entropy (parent) 

 
Cluster C11 

entropy (left-child) 

 
Cluster C12 

entropy (right-child) 

Quality 2.028 2.042 1.304 

Color 1.845 1.936 1.687 

Size 1.596 1.600 1.404 

Cluster C1 

Variables Entropy before Entropy after Information Gain Rank 

Quality 2.028 1.828 0.2 Rank # 1 

Color 1.845 1.864 -0.01 Rank # 3 

Size 1.596 1.544 0.05 Rank # 2 
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Figure 3.5 depicts the use of this technique for visualizing each of the nominal variables 
for our running example.   

 

Figure 3.5: Parallel coordinates display showing the similarities among nominal values 

Figure 3.5 reveals that objects with quality ok or bad have a similar underlying 
distribution for Color and Size in contrast to the objects with quality as good which have 
different color and size characteristics. Each of these values represents a numeric value 
on the scale. As can be seen from Figure 3.5 the parallel coordinate display enables the 
easy grouping of Color values. Three natural and distinct groups, each having two 
different sets of colors such as (white, orange), (purple, blue) and (red, green) are 
clearly defined on the display.  However, the Size variable is difficult to group through a 
simple visual inspection of the parallel coordinate display. There are 10 different sizes, 
ranging from a to j and the distribution of these values on the scale does not permit a 
precise grouping based on visual inspection. For instance, sizes a and b are closer to 
each other but it is difficult to visually determine whether size c should be grouped with 
sizes a and b or whether it should be contained within another group with size d.  

In a real world scenario variables with large cardinality such as Country or Product 
codes are common and it is next to impossible to group the values by visualization 
alone. An automated method for grouping is then clearly required. Algorithm 3 
generates groups for a given nominal variable given its coordinates produced by the 
multidimensional scaling method.  

A generic grouping strategy is used to assign values to groups, where each group 
corresponds to a collection of semantically related values. We first take the minimum 
and maximum value of each coordinate and calculate a threshold for assigning values. 
The threshold is computed as the average range, taken across all nominal values. 
Nominal values are then assigned to groups on the basis of proximity to each other 
(lines 5 to 15). If two consecutive values are not further from each other than the 
threshold distance then they are assigned to the same group, otherwise they fall into two 
neighbouring groups. After generating the groups, we check for singleton groups (lines 
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16 to 24).  If such singleton groups exist they are merged into a single group called the 
“outlier” group. After ranking the numeric and nominal variables and obtaining the 
natural groupings in each of the nominal variables, we move to the next phase of 
creating a multidimensional schema. 

 

3.1.5 Create Multidimensional Schema 
After receiving ranked lists of numeric and nominal variables, a multidimensional STAR 
schema is created by treating nominal variables as dimensions and numeric variables as 
facts. We produce a schema with all dimensions and facts present in a data cluster. The 
groupings information assists in defining the dimensional hierarchy or dimensional 
levels. Each dimension in a cluster has a group level and value level. For example, if 
Color is a dimension then it has Color (All) level  Color_groups (Group) level  
Color_names (Value) level. A physical structure is created with the use of generic SQL 
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queries. These queries create the necessary tables (fact and dimension) and define table 
relationships that are needed to implement the multidimensional schema. These generic 
queries are automatically structured to support the quick generation of multidimensional 
schema for any given cluster in the hierarchical tree.  
 
For our running example, we construct the multidimensional schema by taking the 
nominal variables as dimensions and numeric variables as facts. Figure 3.6 depicts the 
multidimensional schema for cluster C1.  
 

 

Figure 3.6: Multidimensional schema of cluster C1 

In this step, the schema contains all the dimensions and facts present in the data cluster 
C1. The multidimensional schema is used to construct informative data cubes in the 
next step. 

3.1.6 Construct Informative Data Cubes 
In this phase, a data cube is constructed by using the highly ranked dimensions and facts 
present in the generated multi-dimensional schema. At this stage the user has the option 
of specifying values for the top k and top m thresholds, where k is the number of highest 
ranked dimensions and m is the number of highest ranked facts to be selected for data 
cube construction. Users can input the top k and m threshold to constrain the cube 
search space. They can either select either the top ranked dimensions/facts or the 
dimensions/facts of his/her own choice from the generated schema. We believe that 
each user has specific data analysis requirements and there may be certain cases when 
the user would like to see highly ranked dimensions with low ranked facts or vice versa. 

The construction of informative data cubes allows the user to apply basic OLAP 
operations such as Drill-down, Roll-up, Slice and Dice in order to interactively explore 
the data to find interesting patterns. Figure 3.7 shows the data cube constructed with 
ranked dimensions and facts for cluster C1.  
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Figure 3.7: Cube structure of cluster C1 

It is important to point out that we have represented all 3 dimensions and facts in Figure 
3.7 to show the 3 dimensional structure of the data cube. However, as explained earlier, 
the user can construct data cubes by providing any number of dimensions and facts for 
the construction of informative cubes. 

3.1.7 Explore Interesting Cube Regions via Ranked Paths 

The final phase of the proposed methodology is to visually explore the interesting cube 
regions with the help of distinct categories (values) in each nominal variable determined 
through MCA. As explained in Section 3.3 some of these categories lies further apart 
from the rest of the categories, therefore, they reveal distinct information when viewed 
with respect to certain facts in a data cube. Even in a constrained data cube with only 
highly ranked dimensions and facts it may not be easy to discover interesting patterns or 
regions where the facts are highly distinctive as compared to all other regions in the 
cube. This is due to the sheer number of regions to be explored. Our methodology 
alleviates this problem by rankings paths according to the amount of information that 
they contain. 

By utilizing unique categories in each dimension present in a data cube, we define 
highly ranked paths for the visual exploration of interesting cube regions. A path is 
represented by a set of ordered pairs and is given by:  

P = [(V, v) | where V denotes a nominal variable and v is the value taken by V] 

Our methodology assists users in identifying those regions of data cube that possess 
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highly significant information when compared to all other regions. For instance, if 
cluster C1’s data cube is to be explored, then Profit should be explored with respect to 
Color dimension as a first choice. The combination of the most highly ranked 
dimension (Color) and fact (Profit) suggests that certain regions in the C1 data cube are 
significantly different from the rest of the regions. Therefore, instead of exploring all 
regions of this cube, our methodology assists the analyst in picking up Profit as a fact 
and Color as a dimension to reveal the significant differences. 

Additionally, using Algorithm 1, the values present in the Color dimension are also 
ranked in order of deviation from highest to lowest. Users can further pick those colors 
which show the most deviation from the average. For instance in our running example, 
the green color shows extreme deviation followed by the blue color. Similarly, Products 
A and D show the most deviation from the average. A combination of unique color and 
product corresponds to a particular cell in the data cube that has significant differences 
from cells with this combination of variables. 

For example, the profit earned by Product A, having green color, is the highest when 
compared to the other products. Furthermore, the profit earned on Product D, with the 
color blue, is the second most significant cell in the data cube. We believe that these 
distinct differences in certain cells of a data cube disclose interesting information 
present in the underlying data in the form of navigational paths. We explain this further 
with the help of the results presented in Table 3.5. 

 
Table 3.5: Comparison results of high ranked and low ranked dimensions and facts 

 
Ranked 
Paths 

 
Dimensions 

Fact #1 
Average 
 (Profit) 

Fact # 2  
Average 
(Weight) 

 All  6800 50 

P 1 Color (green) & Product name (Product A) 10200 45 

 Mean Deviation 3400 5 

 All other paths 7000 49 

 Mean Deviation 200 1 

P 2 Color (blue) & Product name (Product D) 8000 47 

 Mean Deviation 1200 3 

 All other paths 6900 49.5 

 Mean Deviation 100 0.5 

-------- ------------------------------------------- -------- ------- 

P n Shape (circular) 6850 50.2 

  
Absolute Difference from average 

 
50 

 
0.2 
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Table 3.5 shows that the overall average profit is 6800 dollars when measured over all 
possible paths.  
 
When the cube is explored through ranked path 1, the average profit rises to 10200. At 
the same time the (mean) deviation of Profit with respect to highly ranked path 1 is 
3400 dollars. This compares to a mean profit value of 7000, taken across all possible 
paths. At the same time, the mean deviation in profit is only 200, thus illustrating the 
utility of path 1. Similarly, (ranked path 2) also shows correspondingly significant 
differences in both facts (Profit and Weight). On the other hand, the lowly ranked 
dimension Shape, with the low ranked dimensional value of (Circular), shows the least 
deviation from the average on both facts. This clearly shows that the amount of increase 
in profit is much higher with the highly ranked path when compared to the lowly ranked 
one. 
 
These results also reveal the importance of MCA as an analytical tool in our proposed 
methodology. This technique not only assists in ranking dimensions, but also assists in 
identifying the dimensional values that have significant differences in the underlying 
data. This enabled us to pick the green and blue colors, as identified by Algorithm 1. 
Correspondingly, we picked a circular shape instead of any other shape for the low 
ranked path because the circular shape type has the lowest value for the Shape 
dimension. The hypothetical example presented in this section illustrates the suitability 
of our proposed methodology for discovering interesting information using highly 
ranked navigation paths (based on correspondence analysis) in data cubes. 
 
The construction of informative data cubes allows the user to apply basic OLAP 
operations such as Drill-down, Roll-up, Slice and Dice in order to interactively explore 
the data to find meaningful patterns. However, pattern discovery through the use of 
OLAP is ultimately limited by the analyst’s insights. Such insights may not extend to 
patterns that are hidden due to the sheer data volume and dimensionality of the data. 
Furthermore, data granularity introduces another complicating factor: patterns 
themselves change depending on the level of granularity, as we proceed down the 
dendogram the dynamics of relationship between variables are likely to change. For 
these reasons we apply association rule mining to enhance the knowledge discovery 
process. 

3.1.8 Mine Association Rules from Schema 
In this step, we apply the well-known Apriori algorithm (Agrawal, Imieliński et al. 
1993) in order to generate rules from the multidimensional schema. In association rule 
mining, a rule is defined as an implication A  B where A, B are frequent items in the 
data. Strong rules meet user-specified thresholds on minimum support and minimum 
confidence. Support reflects the percentage of records that contain both A and B, while 
Confidence refers to the percentage of records containing B that also contain A. Both 
these measures are used to specify the significance of a rule.  
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We utilize the ranked dimensions to discover significant associations between them. For 
instance, in a 4 dimensional data cube, the two dimensions with the highest degree of 
impurity (largest entropy) can be targeted for rule discovery. Dimensions with high 
impurity are not easily predictable as the underlying data distribution tends to be 
uniform. Furthermore, the larger the entropy of a variable, the lesser information we 
know about the underlying variable as the underlying data distribution tends to be 
random in nature. Entropy is a measure of unpredictability or information content. 
Consider an example of a poll on some controversial sports issue. Often such polls 
happen because the outcome is not already obvious. In other words, the outcome is 
unpredictable, and learning the results after performing the poll highlight previously 
unknown information. This is basically an alternate way of saying that entropy of poll 
results is large. Another example is of a coin toss with a coin that has two heads and no 
tails has zero entropy and the outcome can be predicted perfectly as the coin will always 
come up heads. On the other hand, when the coin is fair, that it has the same probability 
of heads as well as tails, then entropy of the coin toss is largest as there is no way to 
predict the outcome of the toss ahead of time. 

Low entropy means that the distribution is less random; the variable may have many 
low values and a few extreme values. Hence, such variables tend to be more predictable. 
Hence association rules that contain high entropy variables on the rule right hand side 
(consequent) will in general provide more insights than their low entropy counterparts, 
provided they meet standard rule evaluation thresholds such as rule Confidence and/or 
Importance. However, association rule mining has the potential to generate a large 
number of trivial rules (Tuzhilin and Adomavicius 2002). Although the rule base can be 
pruned by setting the rule support and confidence thresholds appropriately, there is no 
guarantee that the rules that survive would capture interesting patterns in the 
multidimensional data. One reason is that the support and confidence measures were 
designed to evaluate rules derived from transactional data and are not necessarily 
effective for multidimensional data (Nestorov and Jukic 2003). This limitation 
motivated us to introduce the next step of the methodology that is designed to evaluate 
the interestingness of rules generated from multidimensional schema. 

3.1.9 Discover Diverse Association Rules 
In this step, we evaluate the interestingness of the generated rules with the help of 
alternative evaluation measures. One such measure is known as Importance which 
captures the usefulness of a rule.  

Rule importance is defined in equation 7. 

Importance (AB) = log (probability (B|A) / probability (B| not A))               (7) 

The importance measure assesses the degree of correlation between dimensions. For 
instance, if importance of a rule is greater than 0 then it means the dimensions are 
positively correlated and vice versa. A positive importance means that the probability of 
observing the right hand side of the rule increases when the left hand side is true. Table 
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3.6 shows a list of hypothetical rules generated from cluster C1. We contrast the rules 
generated from cluster C1 with those generated from the same cluster that has the 
multidimensional schema structure imposed on it.   
 
Such rules help in understanding the underlying association among different 
dimensions. For instance, Rule 1 without the schema predicts that the Color of a product 
will be ‘white” if Quality = good and Size = a. Also, the positive importance value 
indicates that there is a strong relationship between the Quality and Size dimensions. On 
the other hand, Rule 1 with the use of the schema predicts the same color by giving an 
association among a group of values present in each dimension, namely G1 and G2. 
Each group contains a set of diverse values which are semantically related. 
 
For instance, Rule 1 with schema predicts the white color product if its Quality belongs 
to the values of 1st group G1 = [ok, bad] and size belongs to the values of 2nd group G2 
= [a,b,c]. It is apparent that the importance value of rules generated with and without 
schema is the same but the rules generated from schema are more diverse in comparison 
to the rules without schema. For instance, rule 1 with schema predicts the same Color 
but is predicated on diverse Quality and Size values present in semantically related 
groups. Intuitively, for two rules R and S with the same importance value, rule R which 
has more triggering conditions in the rule antecedent for any given rule consequent is 
more valuable than a rule S with fewer trigger conditions as rule R is fired in a greater 
diversity of situations than rule S. 
 

Table 3.6: Hypothetical rules from cluster C1 

 
Rule 

# 

Without multidimensional schema 

  Rules                                              Imp  

          With multidimensional schema 

                Rules                                    Imp 

1 If Quality = [Good] and  Size 
[10]   Color = white 

1.80 If Quality [G1]and Size [G2] 
 Color = white 

1.80 

2 If Quality [ok] and  Size [b]      
  Color = orange 

1.29 If Quality [G2]and Size [G4] 
 Color = orange 

1.29 

3 If Quality [ok] and  Size [e]       
  Color = purple 

1.10 If Quality [G2]and Size [G3] 
 Color = purple 

1.10 

4 If Quality [bad] and  Size [f]    
  Color = green 

1.05 If Quality [G2]and Size [G3]  
 Color = green 

1.05 

 
However, we cannot conclude merely on the basis of multiple values present in the 
dimensional groups that the rules generated from the schema are more diverse. We need 
further concrete evidence to support our claim.  
 
In order to do that, we conducted further evaluation using objective measures of 
diversity criteria, namely Rae, CON and Hill proposed by Zbidi et. al in (Zbidi, Faiz et 
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al. 2006) . These measures provide concrete statistical evidence that the diversity of the 
set of rules produced from our semi-automatically generated multidimensional schema 
is higher when compared to the rules generated without schema. 
 
We employ the above mentioned diversity measures for the evaluation of summary 
tables generated for the purpose of rule evaluation. These summary tables are basically 
deduced from the main dataset according to a given rule. For instance, given a rule R1 = 
Quality [Good] and Size [b]  Color = [white] generated from our example dataset D, 
the summary table S1 for this rule is a table with the set of records containing Quality = 
(good) with size = (b).  Using these summary tables we evaluate the interestingness of 
rules. The three measures Rae, CON and Hill are defined in equations 8, 9 and 10 
respectively. 
                                 

( )
( )∑

= −
−

=
m

i

ii

NN
nn

Rae
0 1

1
                 (8)                    

q

qPi
CON

m

i

−

−








=
∑
=

1
1

2

                 (9)   

                                                                   
 

                                

∑
=

−=
m

i
Pi

Hill

1

3

11                                                  (10)                                                     

 
Here, m denotes the total number of rows in a summary table; in  is the value of derived 

count attribute of each row in the summary table; N is the total count ∑
=

=
m

i
inN

1
; 

N
n

P i
i = is the actual probability of row ir  ; 𝑞� = 1

m
 is the uniform probability of row ir . 

With the help of these measures we rank the generated rules in terms of the diversity of 
information contained in each rule.  

Table 3.7: Rule evaluation using advanced diversity measures for cluster C1 

 
Rule set 

Without multidimensional schema 
Rae                  CON                Hill     

With multidimensional schema 
Rae                     CON                Hill 

R1-R2 0.53 0.56 -2.7 0.84 0.87 -0.3 

R3-R4 0.25 0.36 -3.7 0.53 0.58 -1.7 

 
Table 3.7 depicts the values obtained for the diversity evaluation measures on the rules 
that were generated. It is apparent from Table 3.7 that all three diversity measures show 
a significant improvement for the rules generated with the multidimensional schema.  
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Summary 
In this chapter, we presented a methodology for enhanced knowledge discovery and 
explained each step of our methodology with the help of a running example. The 
proposed methodology integrates mining techniques such as hierarchical clustering with 
multidimensional scaling in order to design multidimensional warehouse schema. We 
demonstrated that classical statistical methods for data analysis such as Principal 
Component Analysis and Multiple Correspondence Analysis can be successfully used in 
conjunction with hierarchical clustering to uncover useful information implicit in large 
multidimensional data cubes. Moreover, information gain measure can be effectively 
used to discover diverse association rules with high prediction accuracy. The 
methodology facilitated easy discovery of inter-relationships between numeric and 
nominal variables which are significant from both application and statistical 
perspectives. Furthermore, this useful and interesting knowledge can be discovered 
without excessive reliance on specialized domain knowledge.  

Domain specialists, however, knowledgeable, cannot be expected to predict with high 
precision the dynamics of such relationships at different levels of data abstraction. The 
methodology allows users to efficiently design data cubes at multiple data abstraction 
levels, to find interesting regions in cubes, and to discover diverse association rules 
from multidimensional schema. In order to validate our claims, we now turn our 
attention to the application of the methodology on three real-world datasets in Chapter 
4, 5 and 6. 
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Chapter 4 

Case Study 1: Automobile 
Dataset 

In this chapter, we present our first case study conducted on a real-world dataset taken 
from the University of California Irvine (UCI) machine learning repository (Asuncion 
and Newman 2010) , namely Automobile (Schlimmer 1985). The Automobile dataset 
has a small number of records only 205 has a rich mix of 11 nominal and 16 numeric 
variables that suits the objectives of our research. This benchmark dataset describes the 
specification of an automobile in terms of various characteristics, its assigned insurance 
risk rating and its normalized (financial) losses in use as compared to other automobiles. 
More detailed description of this dataset can be found at University of California – 
machine learning website - http://archive.ics.uci.edu/ml 

4.1 Application of Agglomerative Hierarchical Clustering 
As per the first step of the proposed methodology, we applied Agglomerative 
Hierarchical Clustering using the Hierarchical Clustering Explorer (HCE) tool 
developed by Jinwook, et. al (Jinwook and Shneiderman 2002) to generate a 
dendrogram. From the dendrogram generated we determined the suitable cut-off point 
and generated the binary tree using the procedure explained in Algorithm 1. The 
calculated threshold for cut-off point was 0.676, and we cut the dendrogram at this 
value and considered it to be the last level of our data abstraction hierarchy. There were 
a total of 5 levels of data abstraction till the cut-off point and the last level had 10 
clusters in it.  

4.2 Ranking of Numeric Variables via PCA 
For implementing the second step of our proposed methodology, we used IBM’s SPSS 
package to apply PCA analysis on each cluster. Firstly, we plotted the 16 numeric 
variables present in each cluster and identified that most of the clusters were 
discriminating well on only 1 component or factor as shown in Figure 4.1. 

The number of components to be extracted is based on Eigen value analysis of all 16 
numeric variables present in each cluster. The cut-off point for component extraction 
can be set by the user to a certain percentage of variance captured by a variable, for 
example 80%, 85%, 90% or 95%. As explained in the example presented in Chapter 3, 
we compared the factor loadings of two child clusters to rank the numeric variables in 

http://archive.ics.uci.edu/ml
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the parent cluster. Figure 4.2 shows the ranking of top and bottom 3 numeric variables 
in the cluster hierarchy after performing PCA and comparative analysis as explained in 
section 3.2 of Chapter 3. 

 

 Figure 4.1: Scree plot of showing Eigen values of cluster C11 (left) and C12 (right) 

 

Figure 4.2: Ranking of numeric variables present in Automobile dataset 

It is clear from Figure 4.2 that the ranked lists of numeric variables have sharp 
differences across the data hierarchy. In other words, each data cluster has its own 
unique set of significant numeric variables. For instance, highwaympg (Highway miles 
per gallon), citympg (City miles per gallon) and horsepow (Horse power), which happen 
to be the most significant variables in the complete dataset, do not appear to be 
significant at lower levels of data abstraction.  

Interestingly, the most significant variable highwaympg in the complete unclustered 
dataset appears to be the least significant variable in cluster C1. Similarly, citympg, the 
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second most significant variable in the dataset, took only 14th place in the ranking for 
cluster C2. This implies that the automobiles in the complete dataset are split into two 
separate clusters primarily on the basis of higwaympg and citympg variables and 
marginally on the basis of other variables such as length and curbwgt (Curb Weight) 
variables. 

4.3 Ranking of Nominal Variables 
In order to rank the nominal variables, we applied the two techniques discussed in 
Chapter 3, namely MCA and Information Gain to provide assistance to analysts on the 
basis of objective measures of information content in order to complement existing 
domain knowledge. 

4.3.1   Application of Multiple Correspondence Analysis (MCA) 
After establishing the significant numeric variables in each cluster, we rank the nominal 
variables in the cluster as part of the next step in our proposed methodology. We apply 
MCA using the SPSS package obtain factor loading (Eigen values) for each nominal 
variable. We rank the nominal variables based on their corresponding Eigen values from 
highest to lowest, and the results are depicted in Figure 4.3.  

 

Figure 4.3: Ranking of nominal variables present in Automobile dataset 

Similar to the ranking of numeric variables, the nominal variable ranking varies from 
cluster to cluster, depending on its position in the hierarchy. Each cluster has its own 
unique set of significant nominal variables.  
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4.3.2   Analysis of nominal variables via Information Gain 
As an alternative, we rank the same nominal variables in each cluster based on 
information gain measure. Figure 4.4 shows the information gain based ranking for 
three clusters, at consecutive level in the hierarchy, namely C1, C11 and C12.  

 

Figure 4.4: Ranking of nominal variables based on Information Gain measure 

Similar to numeric variables, the list of ranked nominal variables also show sharp 
differences as we move from a higher level of data abstraction to a lower level. It can be 
seen from Figure 4.4 that Make which is a top ranked in cluster 1 is lowly ranked in 
cluster C11. Similarly, No-of-Cylinders which is the second most significant variable 
took 9th place in cluster C12. In other words, Make and No-of-Cylinders had the least 
randomness in parent cluster C1 but at the immediate lower level in the hierarchy these 
variables appear to be have the most randomness or impurity. We suggest that these 
highly ranked variables should be explored as the first choice in a given cluster C1 as 
they possess more versatile information that defines the split as compared to the lowly 
ranked variables which play a minimum role in the cluster split.  

4.4 Grouping of Nominal Values via Multidimensional Scaling 
After ranking nominal variables, we apply multidimensional scaling and group the 
values present in each nominal variable using Algorithm 2 presented in Chapter 3. 
Figure 4.5 shows the groupings obtained for the top ranked variable (Body-Style) in 
cluster C11 and C12. 

 
Figure 4.5: Groupings obtained after multidimensional scaling and application of Algorithm 2 
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We see that there is a difference in the number of groups and the values present in the 
groups across the two child clusters for the same nominal variable. Interestingly, 
Hardtop which had no similarities with any other body-style type in cluster C11 shows 
an affinity with Sedan and Wagon types in the sibling cluster C12. Moreover, 
Hatchback type becomes an outlier (having no similarities with any other body-style 
type) in cluster C12. Such unique and sharply contrasting patterns are difficult to obtain 
by relying on manual exploration alone in high dimensional and high volume datasets. 

4.5 Generation of Multidimensional Schema 
Advancing to the next step of our methodology, we generate multi-dimensional schema 
by using the numerical variables as facts and nominal variables as dimensions. The 
ranked lists of numeric and nominal variables serve as a starting point to constrain the 
multidimensional space. At this point the appropriate number of important dimensions 
(nominal variables) and facts (numeric variables) are selected for the creation of 
multidimensional schema. 

For further exploration we analyse the distribution of the top 3 facts over the complete 
dataset and examine how their average values change over the levels of the cluster 
hierarchy. Figure 4.6 shows the average values of the top 3 facts taken over the 
complete dataset for the cluster hierarchy. 

It can be seen from Figure 4.6 that the factor loadings based on Eigen values provide a 
sound basis for identifying variables responsible for the division of data into clusters. 
The 3 top ranked facts have distributed well into clusters C1 and C2. For instance, the 
automobiles whose higwaympg and citympg are lower than the overall average are 
present in cluster C1 while the automobiles with higher than average values are present 
in cluster C2. This validates our method of ranking the most significant facts in each 
cluster at the top. The two highlighted clusters in Figure 4.6, namely C2 and C12, have 
the overall highest value for highway and city miles per gallon and the lowest value for 
horse power as compared to all the other clusters in the hierarchy.  

 

Figure 4.6: Hierarchical tree showing average values of highly ranked facts 
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Similarly, cluster C12 has the lowest values for city and highway miles per gallon and 
highest value for horse power. This means that if the user is interested in the analysis of 
automobiles with respect to the top 3 facts, then these two clusters would be of interest 
to explore the facts further using the list of ranked dimensions and their dimensional 
values. 

4.6 Informative Data Cube Construction 
After creating the multidimensional schema we construct data cubes at different levels 
in the cluster hierarchy. Figure 4.7 shows the 3 dimensional cubes structure of two 
clusters (C1 and C11) at different levels of the hierarchy. For easy visualization we have 
chosen 3 dimensional cube structure in Figure 4.7 though the methodology permits any 
number of dimensions and facts for cube construction. 

 

Figure 4.7: Comparison of 3-dimensional cubes at different levels of hierarchy 

It can be seen from Figure 4.7 that the top 3 dimensions and facts in data cube C1 are 
totally absent in data cube C11. Our methodology suggests unique combinations of 
dimensions and facts for cube exploration using OLAP analysis. For instance, in data 
cube C1, the three suggested facts namely, Comp-ratio, Height, and Peak-rpm when 
explored through the ranked dimensions (Make, No-of-Cylinders and Engine-type) 
would give more significant information as compared to the lowly ranked dimensions 
and facts. Consider data cube C1 as an example; the three facts (Comp-ratio, Height and 
Peak-rpm) can be explored through 22 different Make types, 7 different Engine types 
and 6 distinct values for No-of-Cylinders. This makes a total of (22 x 6 x 7) 924 data 
cells in the cube to be explored through standard OLAP analysis. 

By grouping together similar dimensional values this search space can be reduced 
significantly, while enabling meaningful patterns to be discovered. After grouping, we 
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see that there are only 2 groups for Make, 3 groups for Engine-type and 2 groups for 
No-of-Cylinders dimension, thus yielding only (2x3x2) 12 distinct areas in the data cube 
for exploration. The grouping not only reduces the search space but also provides 
groups of dimensional values that have intra-group semantic affinity with each other. 
Furthermore, outliers for each dimension are highlighted by inserting values that are 
distant from all others in the Group-others. For instance, in the Make dimension, Subaru 
and Porsche are the two types of automobiles grouped in Group-others which bear no 
relation to the other 20 automobiles that were grouped together in Group1. 

4.7 Exploration of Interesting Cube Regions 
In this research, we claim that our proposed methodology provides highly ranked paths 
that reference interesting cube regions. In order to validate this claim, we took the top 3 
ranked paths and compared them with the lowly ranked path suggested by our 
methodology for each data cluster. Figure 4.8 shows the results of the cube exploration 
through highly ranked paths for cluster C1, C11 and C12. 

 

Figure 4.8: Results of cube exploration through ranked paths (Automobile dataset) 

In order to avoid repetition, we present the results for these three clusters. However, the 
results for all other clusters are consistent and in line with the results presented in Figure 
4.8. The right combination of dimensions and their values define a path for navigating 
in data cubes. This path refers to specific cells in a data cube where the interesting 
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information resides.  It can be seen from Figure 4.8 that the top 3 ranked paths 
consistently give better results as compared to the bottom ranked path, which means 
that the suggested ranked paths have the potential to reveal interesting information. 
Interestingness is a subjective term; in this research, we consider the most deviating 
values from the mean to be the more interesting. 

For instance, in cluster C12 the average Price of all the automobiles (across all 
dimensions) is 29267.9 dollars. If the average Price is calculated across the highly 
ranked path (P1), which is (MakePeugeot, Engine_Type l and #_of_Cylinders 
four), then the value decreases to 15797 dollars. This shows a deviation of 13471 
dollars from the mean. 

Similarly, we calculated the deviation of all other paths in the data cube and noted the 
mean deviation to be 4490.1 dollars only. This reveals that the highly ranked path 
possesses extremely significant price deviation when compared to all other cells in the 
data cube. On the other hand, the lowly ranked path (Pn) of cluster C12 consisting of 
the bottom ranked dimensions and values (# of doors  two, Fuel-system idi and 
Aspiration turbo) shows the least deviation (2300.9 dollars) in Price, which is less 
than all of the deviations covered by P1, P2 and P3. The same holds true for the other 
two facts present in cluster C12.  It clearly shows that the top facts, when analyzed 
through highly ranked paths, tend to reveal more interesting information than the lowly 
ranked paths. Moreover, this behaviour is consistent across the three clusters shown in 
Figure 4.8.  

These paths assist users in quickly identifying those cells in a data cube that have the 
highest deviations from the mean. This is typically the information sought by OLAP 
analysts who are interested in quickly finding regions among the large search space of 
data cubes that show large deviations from the norm. Finding such information in a 
timely manner without the use of automated support may not be feasible in the case of 
large dimensionality. The inclusion of each dimension exponentially increases the 
number of cells within a cube. For instance, in the C12 cube, the number of members 
for the Make dimension is 6, for Engine-type it is 5 and for No_of_cylinders it is 3, thus 
making up a total of  6 x 5 x 3 = 90 cells to be explored in order to find interesting 
information. For cube C1 the number is larger, with 21 Make members, 8 fuel-system 
members and 7 Engine-type members, giving a total of 1176 cells to be explored.  

Even in a relatively small cube like C1, it may be next to impossible for a user to 
navigate through all the right combinations of dimensional members in order to identify 
the automobiles that, for instance, have the highest deviations for a single fact, say 
Peak-rpm. The ranked paths that we identify help to resolve this problem. It can be seen 
from Figure 5.8 that the three highly ranked paths (P1 to P3) suggest 3 unique Make 
members (mazda, mercedes-benz, honda) out of 21 with 3 unique fuel-system members 
(4bbl, idi, 1bbl) out of 8 and 2 Engine-type members  (rotor, ohc) out of 7 for analyzing 
the top 3 facts (comp-ratio, height and peak-rpm). It is next to impossible for OLAP 
users to identify this significant set of dimensions and paths for analyzing any of the 
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facts present in the data cube using a manual cube exploration approach. With our 
approach, users can pinpoint the cube regions to be explored in order to discover 
knowledge. Indeed, the assistance via ranked paths of dimensions and facts saves a 
considerable amount of time and effort and enhances the knowledge discovery process 
from data cubes. 

4.8 Mining Association Rules from Multidimensional Schema 
While exploration of interesting regions in cubes via ranked paths is a promising step 
towards the advancement of knowledge discovery from large datasets, it must be noted 
that exploration of the data cube via OLAP analysis by itself is limited in finding the 
associations and correlations that could exist among dimensions. Although our proposed 
methodology provides a more constrained space to the OLAP user to find patterns, 
pattern discovery could still be a laborious task. A case can be made that even in the 
constrained space a user may require some intelligent assistance in order to find hidden 
associations among the dimensions. On the other hand, an OLAP user after finding a 
behavioural pattern through OLAP analysis may require further support to drill down to 
find the dimensional attributes influencing that pattern of interest. In order to deal 
effectively with such cases, we apply the Apriori algorithm for discovering 
multidimensional association rules.   

In order to assess the benefits of the multidimensional schema on knowledge discovery 
we apply rule mining on multidimensional schema on three clusters C1, C11 and C12 
and compare the rule bases generated with those obtained from the original cluster data. 
Table 4.1 shows the top 10 rules generated for cluster C1 at minimum probability value 
of 0.4 and minimum importance value of 0.10.  

Table 4.1: Rules generated with multidimensional schema 

RULES WITHOUT SCHEMA (CLUSTER C1) 
No Rules Imp 

R1 Make = alfa-romeo, No Of Cylinders = four  Body Style = convertible 1.410 

R2 Make = alfa-romeo, No Of Cylinders = [All]  Body Style = convertible 1.310 

R3 Make = porsche, No Of Cylinders = six  Body Style = hardtop 1.134 

R4 Make = porsche, No Of Cylinders = [All]  Body Style = hardtop 0.981 

R5 Make = plymouth, No Of Cylinders = four  Body Style = wagon 0.493 

R6 Make = renault, No Of Cylinders = four  Body Style = wagon 0.493 

R7 Make = dodge, No Of Cylinders = four   Body Style = wagon 0.493 

R8 Make = volkswagen, No Of Cylinders = four  Body Style = wagon 0.493 

R9 Make = mazda, No Of Cylinders = two  Body Style = hatchback 0.483 

R10 Make = alfa-romeo, No Of Cylinders = six  Body Style = hatchback 0.362 

 
Based on these thresholds the algorithm produced 47 rules in total. From the rule base 
produced we see that the two most highly ranked dimensions (Make and No-of-
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cylinders) have a strong tendency to predict the value of the low ranked dimension 
(Body-Style). Basically, the rules indicate that certain makes of car are distinctive in 
terms of their body style as some of the Alpha-Romeo models are convertibles whereas 
the Porsche models tend to come in hardtop version. 

Table 4.2 shows the rules generated with the multidimensional structure imposed on 
cluster C1. We note that while the rules generated are more informative as the Make and 
No Of Cylinders terms now refer to groups rather than individual values. The 
dimensional schema has produced rules that distinguish classes of automobiles from 
each other. One class belongs to those automobiles whose makes are in group 1, who 
have x, y and z number of cylinders and are convertibles. On the other hand, when 
automobiles in another Make group (group others) are considered the body style tends 
to be hardtop, instead of convertible. These rules are more compact, easier to 
understand and convey more information to an end user than a plethora of rules that 
cover each and every combination of Make and number of Cylinders. 

Table 4.2: Rules generated with multidimensional schema 

RULES WITHOUT SCHEMA (CLUSTER C1) 
No Rules Imp 

R1 Make Group = group1, No Of Cylinders Group = group1 Body Style 
Name = convertible 

1.410 

R2 Make Group = group1, No Of Cylinders Group = [All] Body Style Name 
= convertible 

1.310 

R3 Make Group = group_others, No Of Cylinders Group = group1 Body 
Style Name = hardtop 

1.134 

R4 Make Group = group_others, No Of Cylinders Group = [All]  Body Style 
Name = hardtop 

0.981 

R5 Make Group = group1, No Of Cylinders Group = group1 Body Style 
Name = wagon 

0.493 

R6 Make Group = group_others, No Of Cylinders Group = [All]  Body Style 
Name = wagon 

0.493 

R7 Make Group = group1, No Of Cylinders Group = group_others  Body 
Style Name = hatchback 

0.483 

R8 Make Group = group1, No Of Cylinders Group = [All]  Body Style Name 
= hatchback 

0.403 

R9 Make Group = group_others, No Of Cylinders Group = group1 Body 
Style Name = hatchback 

0.362 

R10 Make Group = group1, No Of Cylinders Group = [All]  Body Style Name 
= sedan 

0.302 

 
For instance, the first rule generated without schema can be interpreted as: if Make of an 
automobile is [alfa-romeo] and No-of-Cylinders are [four] then the Body-Style of that 
automobile is predicted to be [convertible]. On the other hand, the first rule from the 
schema that utilized the dimensional group level suggests that if Make and No-of-
Cylinders of an automobile belongs to [group1] then Body-Style value is [convertible]. 
Here, [group1] of Make has 19 distinct values (peugeot, jaguar, nissan, mercedez-benz, 
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saab, mazda, toyota, volvo, honda, alfa-rmero, audi, volkswagon, mitsubishi, isuzu, 
dodge, plymouth, bmw, mercury, renault) while No-of-Cylinders has 5 distinct values 
(six, twelve, eight, four, five) for [group1]. In other words, Rule1 in Table 4.2 provides 
much more diverse information as compared to the first rule of Table 4.1 for the same 
importance value. 

4.9 Evaluation of Rule Interestingness via Diversity Criterion 
In order to quantitatively verify whether the rules produced through our 
multidimensional design scheme are superior, we evaluate the rule bases on three 
objective interestingness measures, Rae, CON and Hill that were introduced in section 
3.9 of Chapter 3. For a given cluster we rank the rules in descending order of rule 
Importance and then compare the first k  (where k ranges from 6 to 10, in steps of 1) 
rules produced against each other on the 3 chosen interestingness measures. Table 4.3 
reveals that the multidimensional schema consistently outperforms the raw cluster 
structure, irrespective of the value of k and the level of data granularity. 

Table 4.3: Rule interestingness comparison using diversity measures  

 
Cluster 
Names 

  
Rule sets 

NO 
Schema 

Rae 

With 
Schema 

 Rae 

NO 
Schema 

CON 

With 
Schema 

CON 

NO 
Schema 

Hill 

With 
Schema 

 Hill 

  
  

C1 
  
  

R1-R6 0.139 0.196 0.168 0.221 -3.919 -3.473 

R1-R7 0.116 0.179 0.154 0.233 -4.701 -3.823 

R1-R8 0.100 0.151 0.142 0.203 -5.502 -4.682 

R1-R9 0.086 0.142 0.132 0.195 -6.321 -5.446 

R1-R10 0.076 0.117 0.122 0.167 -7.154 -6.287 

  
  

C11 
  
  

R1-R6 0.246 0.291 0.310 0.396 -2.784 -2.079 

R1-R7 0.206 0.271 0.280 0.393 -3.454 -2.272 

R1-R8 0.173 0.220 0.244 0.473 -4.270 -3.126 

R1-R9 0.152 0.189 0.224 0.303 -4.927 -3.755 

R1-R10 0.151 0.186 0.246 0.317 -4.965 -3.791 

  
  

C12 
  
  

R1-R6 0.178 0.203 0.196 0.244 -3.796 -3.261 

R1-R7 0.169 0.186 0.233 0.256 -3.976 -3.574 

R1-R8 0.161 0.181 0.253 0.287 -4.158 -3.682 

R1-R9 0.153 0.174 0.265 0.294 -4.343 -3.791 

R1-R10 0.146 0.170 0.271 0.301 -4.529 -3.899 

 
These results thus confirm our qualitative analysis that the use of the multidimensional 
results in the production of more informative and diverse knowledge to the user in the 
form of rules. 

Finally, we compared the predictive power of rules generated without multidimensional 
schema with the rules generated from schema. We took Make and No_of_Cylinder as 
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the input variables in order to predict the Body_Style of automobiles. We generated the 
rules using a randomly chosen subset of 70% of data and then used the remaining 30% 
to evaluate the predictive accuracy. We ran 10 tests where each test randomly picks 
unique test data to ensure the predictive accuracy of the generated rules to predict the 
Body_Style of the automobiles accurately. Table 4.4 shows the accuracy percentage for 
the 10 tests.  

From this case study, we note that rule mining performed on the multidimensional 
schema designed and constructed with the help of hierarchical clustering and 
multidimensional scaling technique generates diverse rules with greater prediction 
accuracy. In the next chapter, we discuss the results of second case study which is 
performed on a larger dataset.   

Table 4.4: Rule prediction accuracy 

Prediction Tests Cluster C1 Cluster C11 Cluster C12 

  Schema No Schema Schema No Schema Schema No Schema 

Test 1 48.7 43.9 91.4 88.5 100 100 

Test 2 48.7 36.5 94.2 85.7 100 100 

Test 3 46.3 39 88.5 85.7 100 83.3 

Test 4 36.5 41.4 88.5 91.4 83.3 100 

Test 5 34.1 43.9 94.2 77.1 100 83.3 

Test 6 48.7 43.9 88.5 91.4 100 87.7 

Test 7 40.3 33.5 91.2 83.7 83.3 83.3 

Test 8 44.7 41 88.5 85.7 100 83.3 

Test 9 34.5 36.4 93.5 88.3 83.3 100 

Test 10 37.1 31.9 94.2 77.1 83.3 83.7 

Average Percentage 41.96 39.14 91.27 85.46 93.32 90.46 

 

Summary 
 
In this chapter, we presented our first case study conducted on a real-world dataset 
taken from the University of California Irvine (UCI) machine learning repository 
(Asuncion and Newman 2010), namely Automobile (Schlimmer 1985). The Automobile 
dataset has a small number of records only 205 has a rich mix of 11 nominal and 16 
numeric variables that suits the objectives of our research. This benchmark dataset 
describes the specification of an automobile in terms of various characteristics, its 
assigned insurance risk rating and its normalized (financial) losses in use as compared 
to other automobiles. 
 
We applied Agglomerative Hierarchical Clustering to generate a dendrogram. The 
calculated threshold for cut-off point for the dendrogram was 0.676, and we cut the 
dendrogram at this value and considered it to be the last level of our data abstraction 
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hierarchy. There were a total of 5 levels of data abstraction till the cut-off point and the 
last level had 10 clusters in it.  We then ranked the numeric variables in each cluster and 
found that the ranked lists of numeric and nominal variables have sharp differences 
across the data hierarchy. In other words, each data cluster has its own unique set of 
significant numeric and nominal variables.  
 
Our methodology also suggested unique combinations of dimensions and facts for cube 
exploration using OLAP analysis. For instance, in data cube C1, the three suggested 
facts namely, Comp-ratio, Height, and Peak-rpm when explored through the ranked 
dimensions (Make, No-of-Cylinders and Engine-type) gave more significant information 
as compared to the lowly ranked dimensions and facts. Furthermore, the grouping of 
nominal values not only reduced the search space but also provided groups of 
dimensional values that have intra-group semantic affinity with each other. 
Furthermore, outliers for each dimension were highlighted by inserting values that are 
distant from all others in the Group-others. For instance, in the Make dimension, Subaru 
and Porsche are the two types of automobiles grouped in Group-others which bear no 
relation to the other 20 automobiles that were grouped together in Group1. The ranked 
paths suggested by the methodology assisted in quickly identifying those cells in a data 
cube that have the highest deviations from the mean. This is typically the information 
sought by OLAP analysts who are interested in quickly finding regions among the large 
search space of data cubes that show large deviations from the norm. 

The case study also revealed association rules generated through schema are more 
compact, easier to understand and convey more information to an end user than a 
plethora of rules that cover each and every combination of values of the variables 
involved in rule mining process. For instance, the first rule generated without schema 
was: if Make of an automobile is [alfa-romeo] and No-of-Cylinders are [four] then the 
Body-Style of that automobile is predicted to be [convertible]. On the other hand, the 
first rule from the schema that utilized the dimensional grouping suggested that if Make 
and No-of-Cylinders of an automobile belongs to [group1] then Body-Style value is 
[convertible]. Here, [group1] of Make had 19 distinct values (peugeot, jaguar, nissan, 
mercedez-benz, saab, mazda, toyota, volvo, honda, alfa-rmero, audi, volkswagon, 
mitsubishi, isuzu, dodge, plymouth, bmw, mercury, renault) while No-of-Cylinders had 
5 distinct values (six, twelve, eight, four, five) for [group1]. We also quantitatively 
verified the rules produced through our multidimensional design schema were superior, 
on three objective interestingness measures. Finally, we compared the predictive power 
of rules generated without multidimensional schema with the rules generated from 
schema and found out that the rules generated through schema were not only diverse but 
also have better prediction accuracy. 
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Chapter 5 

Case Study 2: Adult Dataset 
In this chapter, we present our second case study conducted on a much larger dataset as 
compared to Automobile dataset. It is the Adult (Kohavi and Becker 1996) dataset  
which consists of 48,842 records with eight nominal and five numeric variables as 
shown in Table 5.1. This benchmark dataset was extracted from the US Census bureau 
website using a data extraction system. More detailed description of this dataset can be 
found at University of California – machine learning website (Asuncion and Newman 
2010).  
 

Table 5.1: Numeric and nominal variables present in Adult dataset 

Numeric 
Variables 

 Nominal 
Variables 

Distinct values in each 
nominal variable 

Age  Sex 2 
Hours Per Week  Race 5 
Capital Gain  Relationship 6 
Capital Loss  Marital Status 7 
Final Weight  Work Class 8 
  Occupation 14 
  Education 16 
  Country 41 

 

5.1 Application of Agglomerative Hierarchical Clustering 
For the first step of hierarchical clustering, we removed the missing values from the 
dataset and used 30,162 records (61 % of the total) to generate clusters at multiple levels 
of data abstraction. After the dendrogram was generated, we calculated the 
inconsistency coefficient value for determining the cut-off and generate the binary tree 
using the procedure explained in Algorithm 1. The calculated threshold for cut-off point 
was 0.623 so we cut the dendogram at this value and considered it to be the last level of 
our data abstraction. There were a total of 9 levels of data abstraction till the cut-off 
point and the last level had 18 clusters in it. 
 
Likewise, in the previous case study, we plotted the numeric variables present in each 
cluster to fix the number of principal components to be extracted. Most clusters were 
discriminating well on 1 component as depicted in Figure 5.1. The application 
procedure remains the same as in the previous case study. Figure 5.1 shows the scree 
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plots and it can be seen that the variable in the clusters are discriminated well on 1 
component.  
 

 
Figure 5.1: Scree plot showing Eigen values of cluster C11 (left) and C12 (right) 

5.2 Ranking of Numeric Variables via PCA 
We rank the numeric variables present in each cluster and observe that the ranking is 
unique to each cluster. Similar to the previous case study, sharp differences in rankings 
for a given variable appear at different levels in cluster hierarchy. The rankings 
computed for the first few levels of the hierarchy are shown in Figure 5.2.  

 

Figure 5.2: Ranked lists of numeric variables present in Adult dataset clusters 

Figure 6.2 shows the ranking of numeric variables in the cluster hierarchy after 
performing PCA and comparative analysis as explained in section 3.2 of Chapter 3. 
Interestingly, some clusters such as C1, C2 and C22 have fewer than five numeric 
variables in each of them. This is due to the fact that the omitted numeric variables have 
variance equal to zero. This is because the Eigen values for variables having zero 
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variance do not exist. We omit such variables because they do not play any role in 
multidimensional analysis.  

5.3 Ranking of Nominal Variables 
Similar to case study 1, we rank nominal variables present in each cluster via two 
separate data analysis techniques in order to achieve the two main objectives of this 
research; i) identification of interesting cube regions and ii) discovery of diverse 
association rules.  

5.3.1   Application of Multiple Correspondence Analysis (MCA) 
After establishing the significant numeric variables in each cluster, we rank the nominal 
variables in the cluster for finding interesting cube regions. The application procedure 
remains the same and the nominal variables in each cluster are ranked on the basis of 
Eigen values from highest to lowest. The rankings of first few levels are shown in 
Figure 5.3.  

 

Figure 5.3: Ranked list of nominal variables present in Adult dataset 

Similar to the ranking of numeric variables, the nominal variable ranking varies from 
cluster to cluster, depending on its position in the hierarchy. Each cluster has its own 
unique set of significant nominal variables.  



62 
 

5.3.2   Analysis of nominal variables via Information Gain 
In order to discover diverse association rules, we rank the same nominal variables in 
each cluster based on information gain measure. Figure 5.4 shows the information gain 
based ranking for three clusters, at consecutive levels in the hierarchy, namely C1, C11 
and C12.  

 

Figure 5.4: Ranking of nominal variables based on Information Gain measure 

Similar to numeric variables, the list of ranked nominal variables also show sharp 
differences as we move from a higher level of data abstraction to a lower level. It can be 
seen from Figure 5.4 that Country which is top-ranked in cluster C1 is lowest ranked in 
cluster C11. Similarly, Relationship which is the third most significant variable in C1 
took last place in cluster C12. In other words, Country and Relationship had the least 
randomness in parent cluster C1 but at an immediate lower level in the hierarchy these 
variables appear to be having the most randomness or impurity.  

Similar to our previous case study, we observe the emergence of sharp patterns in both 
numeric and nominal variables as we go down in the cluster hierarchy. We suggest that 
these highly ranked variables should be explored as a first choice in a given cluster C1 
as they possess more versatile information that defines the split as compared to the 
lowly ranked variables which play a minimum role in the cluster split.  

5.4 Grouping of Nominal Values via Multidimensional Scaling 
After ranking the nominal variables, we apply multidimensional scaling and group the 
values present in each nominal variable using Algorithm 2 presented in Chapter 3. We 
implemented Algorithm 2 and developed a prototype that shows the grouped nominal 
values for each nominal variable. Figure 5.5 shows the groupings obtained for variable 
(Occupation) in C11 in the interface of our developed prototype. The prototype shows 
the nominal variables present in the cluster in the tree view on the left hand side and 
displays the different groups and the values present for each group in a data grid for a 
selected variable.  
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Figure 5.5: Groupings achieved for Occupation variable in cluster C11 using the developed prototype  

5.5 Generation of Multidimensional Schema 
As in the previous case study, we generate a multi-dimensional schema by using the 
numerical variables as facts and nominal variables as dimensions. The ranked lists of 
numeric and nominal variables serve as a starting point to constrain the 
multidimensional space. At this point the appropriate number of important dimensions 
(nominal variables) and facts (numeric variables) are selected for the creation of the 
multidimensional schema. As an example, we show the Age and Hrs-per-week facts for 
all of the data clusters. Figure 5.6 shows the averages of both these facts across multiple 
levels of the hierarchy. 

 

Figure 5.6: Hierarchical tree showing the averages of Age and Hours per week 
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We can see from the tree that the average Age of people in the complete dataset is 30.43 
and they work approximately 40.93 hours per week. However, as we go one level down 
the hierarchy, we see a sharp difference in the averages as the first cluster C1 has almost 
the same average, but the second cluster has a much higher average of 56 for Age. More 
interestingly, if we look at cluster C212 we note that the average age here appears to be 
more than 70. Similarly, cluster C112 has the maximum and C111 has the minimum 
hours per week value across all data clusters. 

By looking at the distinct differences, an analyst would be interested to know more 
about the effects of other factors such as Occupation or Education for the people whose 
age is above 70 but who still work 45 hours or more per week and are present in C212. 
Another interesting case to be examined is relatively young people working more than 
61 hours per week who are also present in C112. 

Figure 5.7 shows the schema generated using the top 4 highly ranked dimensions, 
namely, Occupation, Marital-Status, Relationship, and Work-Class.  

 

Figure 5.7:  Multidimensional schema generated for cluster C11 

Moreover, the natural groups obtained in the previous step of our methodology are also 
depicted for the top ranked Occupation dimension. The natural groupings highlight the 
semantic relationships present in various occupations. For instance, people having 
occupations like (craft-repair, transport-moving and handler cleaner) tend to have 
similar behaviour and therefore grouped together in cluster C11. It would be interesting 
to examine the distribution of fact variables such as Hrs-per-week or Age associated 
with these occupation types. 
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5.6 Informative Data Cubes Construction 
In order to explore these ranked dimensions and facts, we construct a 3-dimensional 
cube using the 3 top ranked dimensions and facts. Each dimension has two levels (group 
level and value level) in order to navigate in the dimensional hierarchy. Figure 5.8 
shows the 3 dimensional cubes structure of two clusters at different levels of the 
hierarchy. 
 

 

Figure 5.8: Comparison of 3-dimensional cubes at different levels of hierarchy 

It can be seen from Figure 5.8 that Relationship happens to be the 3rd ranked dimension 
in cluster C1; however, is totally absent in a lower level cluster C12. Moreover, the 
Work-Class dimension remained at number 2 in rank on both cubes. However, the 
number of groups within this dimension changed significantly.  The Work-Class 
dimension has 4 groups [G1, G2, G3 and G-others] in the cluster C1 cube whereas the 
same dimension has only 2 groups [G1 and G-others] in the cluster C12 cube which is 
at a lower level in the cluster hierarchy. Additionally, the values present in each group 
appear to be entirely different from one another. Such sharp differences give new 
insights about the underlying data and further relations of these dimensions with the 
facts can be explored in an OLAP manner. 

5.7 Exploration of Interesting Cube Regions 
Similar to the previous case study, we took the top 3 ranked paths and compared them 
with the lowly ranked path suggested by our methodology for each data cluster. Figure 
5.9 shows the results of the cube exploration through highly ranked paths for cluster 
C112 and C212. It is clear from the results in Figure 5.9 that the highly ranked paths in 
each cluster have a tendency to reveal interesting information about the facts present in 
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the data. For example, we analyze cluster C212 where there were records of older (age 
70 plus) people. 

 

 Figure 5.9: Results of cube exploration through ranked paths (Adult dataset) 

According to our methodology the three highest ranked dimensions are Relationship, 
Marital_status and Country, as they capture the greatest amount of variation in the 
cluster and hence it would be useful to examine how this sub group of older adults are 
distributed across different combinations of values taken across these dimensions. 
However, even for these three highly ranked dimensions there are 9 countries, 6 
relationship types and 5 marital status types to choose from, which means that even 
after constraining the cube to only the highly ranked dimensions a large navigation 
space still remains to be explored manually.  

To resolve this problem, our methodology suggests ranked paths to define data cubes 
containing distinctive and interesting information. For instance, ranked path P1 
highlights the data cell in the cube that has the highest deviation on Age. We note that 
the average age of people whose Relationship status is (unmarried) and Occupation is 
(Prof-specialty) has an extreme deviation from the overall mean value of 38.4 registered 
for all individuals contained in the cluster. Similarly, people having (Priv-house-
service) as Occupation, and (Married-civ-spouse) as their marital status display the 
second highest deviation from the mean. Using ranked paths, users can easily determine 
which particular dimensions chosen from a large number of possibilities exhibit extreme 
deviation from the average. To take another example, consider the cube defined over 
cluster C212; even though this cube is defined over just the 3 most highly ranked 
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dimensions, the search space to be explored is still too large for knowledge discovery 
purposes. This is due to the fact that the Relationship dimension has 6 members, the 
Marital-Status dimension has 5 and the Country dimension has 10, making up a total of 
(6 x 5 x 10) = 300 data cells within this cube for exploration. Yet, this is a cluster at a 
lower level of the data abstraction hierarchy. At higher abstraction levels the situation is 
even worse; there are 41 countries, 16 education types and 14 occupations, making up a 
total of 9184 cells to be explored. In order to uncover interesting knowledge in a timely 
manner, users will need to navigate using the most discriminating countries, education 
types and occupations suggested by our methodology.  

In certain special cases where the distribution of a measure is bimodal, the deviation 
from the mean may be less interesting to the user via highly ranked paths. However, in 
such cases the highly ranked paths could either be easily ignored or used for 
comparative analysis between the two peaks of the data population. For example, in a 
Census dataset, Hrs-per-week variable may have a bimodal distribution. Suppose this 
variable shows two extremes (70 and 60 hrs-per-week) respectively in top ranked paths 
(P1 and P2) for a particular dimension say, Occupation. It would be interesting to 
identify and compare occupations of people who are working an extreme number of 
hours per week. However, if one of the extreme paths appears to be obvious to the 
analyst then that path could be filtered out and paths at a lower level should be explored 
for discovering interesting knowledge. 

5.8 Mining Association Rules from Multidimensional Schema 
As done in the previous case study, we applied rule mining on both original cluster data 
and multidimensional schema for clusters C1, C11 and C12. Similar to the previous 
case study, we picked the three most impure dimensions (having high entropy values) to 
generate association rules. Table 5.2 shows the top 10 rules of cluster C12 generated 
without multidimensional schema at a minimum probability value of 0.4 and minimum 
importance value of 0.10. Based on these thresholds the algorithm produced 53 rules in 
total. 

Table 5.2: Rules generated without multidimensional schema 

RULES WITHOUT SCHEMA (CLUSTER C12) 
No Rules Imp 
R1 Education = Bachelors, Occupation = Adm-clerical  Work Class = Local-gov 1.343 
R2 Education = [All] ,Occupation = Handlers-cleaners  Work Class = Local-gov 1.298 
R3 Education = 10th, Occupation = [All]  Work Class = Local-gov 1.170 
R4 Education = HS-grad, Occupation = Adm-clerical  Work Class = Self-emp-not-inc 0.535 
R5 Education = Some-college, Occupation = Sales  Work Class = Self-emp-not-inc 0.487 
R6 Education = HS-grad, Occupation = Prof-specialty  Work Class = Self-emp-not-inc 0.407 
R7 Education = Bachelors, Occupation = Sales Work Class = Self-emp-inc 0.368 
R8 Education = HS-grad, Occupation = Exec-managerial Work Class = Self-emp-not-inc 0.346 
R9 Education = HS-grad, Occupation = Sales Work Class = Self-emp-inc 0.275 
R10 Education = Some-college, Occupation = Exec-managerial Work Class = Private 0.190 
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With the same threshold values of support and confidence, we generated the rules from 
the multidimensional schema of the same cluster, C12. The first 10 rules satisfied the 
given thresholds and are shown in Table 5.3. 
 

Table 5.3: Rules generated with multidimensional schema 

RULES WITH SCHEMA (CLUSTER C12) 
No Rules Imp 
R1 Education Group = group1, Occupation Group = group1                                    

 Work Class Name = Local-gov 
1.343 

R2 Education Group = [All], Occupation Group = group_others                               
 Work Class Name = Local-gov 

1.298 

R3 Education Group = group_others , Occupation Group = [All]                             
 Work Class Name = Local-gov 

1.170 

R4 Education Group = group_others , Occupation Group = group1                          
 Work Class Name = Self-emp-not-inc 

0.535 

R5 Education Group = group1, Occupation Group = group1                            
 Work Class Name = Self-emp-not-inc 

0.487 

R6 Education Group = group1, Occupation Group = group1                        
 Work Class Name = Self-emp-inc 

0.368 

R7 Education Group = group_others, Occupation Group = group1               
 Work Class Name = Self-emp-inc 

0.275 

R8 Education Group = group1, Occupation Group = group1                        
 Work Class Name = Private 

0.190 

R9 Education Group = [All], Occupation Group = group1                           
 Work Class Name = Private 

0.159 

R10 Education Group = group_others , Occupation Group = group_others            
 Work Class Name = Private 

0.154 

 
We observe that the rules generated with the use of the multidimensional schema follow 
the same trends as in the previous case study. The rules generated through the use of the 
multidimensional schema are more informative. For example, Rule (R1) without 
schema predicts Work-Class = [Local-gov] if Education = [Bachelors] and Occupation 
= [Adm-clerical]. On the other hand, Rule (R1) with schema predicts the same Work-
Class value with a diverse set of Education and Occupation values present in [group1] 
of each dimension.  
 
For instance, [group1] of Education consists of (Doctorate, Masters, Bachelors, Prof-
school, Some-college, Assoc-voc) and [group1] of Occupation consists of (Prof-
specialty, Exec-managerial, Tech-support, Sales, Adm-clerical, Protective-serv, Other-
service, Transport-moving, Machine-op-inspct). These groups provide rich and diverse 
information to the user while retaining the same importance score of 1.343. If we focus 
on the Education dimension, we see that rule R1 without schema only suggests 
Bachelor as the educational level for people who work in Local-government, whereas 
R1 with the schema suggests a set of values in which Masters and Doctorate 
qualifications are also present. 
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5.9 Evaluation of Rule Interestingness via Diversity Criterion 
In order to validate the claim that rules generated from schema are more diverse, we 
performed evaluation of the rules with the Rae, CON and Hill diversity measures, as 
with the previous Case Study. We took a set of top rules generated without schema and 
compared it with the same set of rules generated with the use of the schema. Table 5.4 
shows the results of this evaluation. 

Table 5.4: Rule interestingness comparison using diversity measures  

 
Cluster 
Names 

  
Rule sets 

NO 
Schema 

Rae 

With 
Schema 

 Rae 

NO 
Schema 

CON 

With 
Schema 

CON 

NO 
Schema 

Hill 

With 
Schema 

 Hill 

  
  

C1 
  
  

R1-R6 0.322 0.337 0.432 0.452 -1.693 -1.636 

R1-R7 0.259 0.295 0.369 0.421 -2.302 -1.948 

R1-R8 0.218 0.277 0.327 0.418 -2.873 -2.095 

R1-R9 0.204 0.270 0.325 0.423 -3.084 -2.159 

R1-R10 0.192 0.264 0.321 0.427 -3.285 -2.216 

  
  

C11 
  
  

R1-R6 0.322 0.397 0.432 0.526 -1.693 -1.286 

R1-R7 0.256 0.376 0.365 0.522 -2.346 -1.385 

R1-R8 0.216 0.312 0.324 0.463 -2.918 -1.805 

R1-R9 0.204 0.309 0.325 0.472 -3.084 -1.829 

R1-R10 0.192 0.303 0.321 0.475 -3.285 -1.872 

  
  

C12 
  
  

R1-R6 0.164 0.263 0.263 0.371 -3.017 -2.248 

R1-R7 0.217 0.312 0.353 0.454 -2.437 -1.703 

R1-R8 0.172 0.297 0.294 0.454 -3.339 -1.800 

R1-R9 0.142 0.279 0.252 0.441 -4.261 -2.110 

R1-R10 0.136 0.276 0.448 0.443 -4.755 -2.141 

 
It is apparent from Table 5.4 that all the objective measures of diversity show 
significant improvement for the set of rules generated from the multidimensional 
schema. Similar to the Automobile case study results, the rules generated from the 
multidimensional schema are more diverse and capable of conveying more interesting 
knowledge to the user. Furthermore, the prediction accuracy of the rules generated from 
the schema also appears to be higher when compared to the rules without schema. To 
validate this claim, we tested the prediction accuracy of the rules generated without 
schema against the rules generated with schema. We used 30% of the test data from 
each cluster and ran 10 tests where each test randomly picked unique test data to assess 
the predictive accuracy of association rules generated. Table 5.5 shows the prediction 
accuracy for each test, expressed as a percentage. 

It is clear from Table 5.5 that the prediction accuracy of the rules generated through the 
use of the multidimensional schema is higher when compared to the one without 
schema. Again, we note from this case study on a relatively large dataset, that rule 
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mining performed on the multidimensional schema designed and constructed with the 
help of hierarchical clustering and multidimensional scaling technique generates diverse 
rules with greater prediction accuracy.  
 

Table 5.5: Rule prediction accuracies for two sets of rules 

Prediction Tests Cluster C1 Cluster C11 Cluster C12 
  Schema No Schema Schema No Schema Schema No Schema 

Test 1 39.7 40.1 40.1 40.1 50 52.2 

Test 2 40 40.3 40.3 40 47.7 47.7 

Test 3 40.2 39.7 39.7 39.1 56.8 40.9 

Test 4 39.5 40 40 39.3 47.7 38.6 

Test 5 41.5 39.5 39.5 40.8 43.1 50 

Test 6 40 39.7 40.3 39 55.3 40.9 

Test 7 41.5 40.1 39.7 39.7 56.8 50.2 

Test 8 39.7 39.5 40.1 40 50 39.3 

Test 9 39.5 40 40 39.3 47.3 40.9 

Test 10 40.2 39.5 41.3 40.8 47.7 47.7 

Average Percentage 40.18 39.84 40.01 39.81 50.24 44.84 

 
Summary 
 
In this chapter, we presented our second case study conducted on a much larger dataset 
as compared to Automobile dataset. It is the Adult (Kohavi and Becker 1996) dataset  
which consists of 48,842 records with eight nominal and five numeric variables as 
shown in Table 5.1. This benchmark dataset was extracted from the US Census bureau 
website using a data extraction system. 

We ranked the numeric variables present in each cluster and observed that the ranking is 
unique to each cluster. Similar to the previous case study, sharp differences in rankings 
for a given variable appear at different levels in cluster hierarchy. Similar to numeric 
variables, the list of ranked nominal variables also show sharp differences as we move 
from a higher level of data abstraction to a lower level. It was observer that Country 
variable which was top-ranked in cluster C1 was lowest ranked in cluster C11. 
Similarly, Relationship variable which was the third most significant variable in C1 
took last place in cluster C12. In other words, Country and Relationship had the least 
randomness in parent cluster C1 but at an immediate lower level in the hierarchy these 
variables appear to be having the most randomness or impurity. We suggested that these 
highly ranked variables should be explored as a first choice in a given cluster as they 
possess more versatile information that defines the split as compared to the lowly 
ranked variables which play a minimum role in the cluster split.  
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Similar to the previous case study, we took the top 3 ranked paths and compared them 
with the lowly ranked path suggested by our methodology for each data cluster. We 
observed that the highly ranked paths in each cluster have a tendency to reveal 
interesting information about the facts present in the data. For example, we analyzed 
cluster C212 where there were records of older (age 70 plus) people. The ranked path 
P1 highlighted the data cell in the cube that had the highest deviation on Age. We noted 
that the average age of people whose Relationship status is (unmarried) and Occupation 
is (Prof-specialty) has an extreme deviation from the overall mean value of 38.4 
registered for all individuals contained in the cluster. Using ranked paths, users can 
easily determine which particular dimensions chosen from a large number of 
possibilities exhibit extreme deviation from the average. 

As done in the previous case study, we applied rule mining on both original cluster data 
and multidimensional schema and observed that the rules generated with the use of the 
multidimensional schema follow the same trends as in the previous case study. The 
rules generated through the use of the multidimensional schema are more informative. 
For example, Rule (R1) without schema predicts Work-Class = [Local-gov] if 
Education = [Bachelors] and Occupation = [Adm-clerical]. On the other hand, Rule 
(R1) with schema predicts the same Work-Class value with a diverse set of Education 
and Occupation values present in [group1] of each dimension. For instance, [group1] of 
Education consists of (Doctorate, Masters, Bachelors, Prof-school, Some-college, 
Assoc-voc) and [group1] of Occupation consists of (Prof-specialty, Exec-managerial, 
Tech-support, Sales, Adm-clerical, Protective-serv, Other-service, Transport-moving, 
Machine-op-inspct). The evaluation results also confirmed that all the objective 
measures of diversity show significant improvement for the set of rules generated from 
the multidimensional schema. Similar to the Automobile case study results, the rules 
generated from the multidimensional schema are more diverse and capable of 
conveying more interesting knowledge to the user. Furthermore, the prediction accuracy 
of the rules generated from the schema also appeared to be higher when compared to the 
rules without schema. 
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Chapter 6 

Case Study 3: CoverType Dataset 
In this chapter, we present our third case study conducted on a much larger dataset  
called CoverType (Blackard, Dean et al. 1998). This is currently one of the largest 
datasets in the UCI repository containing 581012 records with 54 variables (42 nominal 
and 12 numeric) and 7 target classes (Obradovic and Vucetic 2004). This benchmark 
dataset is used to predict forest cover types from cartographic variables. Forest cover 
type is basically defined as a descriptive classification of forest land based on 
occupancy of an area by the tree species present in it. It is a typical real world dataset 
having an imbalanced class distribution for the cover type variable as shown in Table 
6.1. 
 

Table 6.1: Distribution of forest cover types present in CoverType dataset 

 Cover Types 
(Class name) 

No of records  

 Spruce-Fir 211840 
 Lodgepole Pine 283301 
 Ponderosa Pine 35754 
 Cottonwood/Willow 2747 
 Aspen 9493 
 Douglas-fir 17367 
 Krummholz 20510 
 TOTAL 581012 

 
The actual forest cover type for a given observation (30 x 30 meter cell) was determined 
from US Forest Service (USFS) Region 2 Resource Information System (RIS) database. 
Independent variables were derived from data originally obtained from the US 
Geological Survey (USGS) and USFS data. Data is in raw form (not scaled) and 
contains binary (0 or 1) columns of data for qualitative independent variables 
(wilderness areas and soil types). This study area includes four wilderness areas located 
in the Roosevelt National Forest of Northern Colorado. More detailed description  and 
background information for this dataset can be found at University of California – 
machine learning website (Asuncion and Newman 2010).  
 
The main motivation behind choosing this dataset is that it poses extreme challenges to 
the analysts in finding useful and interesting knowledge from the rich mix of nominal 
and numeric variables and sheer size of data. To give a glimpse of the difficulties 
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involved in mining association rules from this complex dataset, we present some 
interesting facts for this dataset discovered by (Webb 2006) which motivated us to mine 
diverse association rules from large datasets. (Webb 2006) reported the results of this 
particular dataset and observed that not a single non-redundant rule generated through 
CoverType dataset was found to be productive. He further explained that this was due to 
a peculiarity of this dataset which uses 40 mutually exclusive binary variables 
(SoilType 1 to SoilType 40) to represent which one of 40 soil types predominates in an 
area. Thus, the most frequent attribute values are values of 0 for individual soil type 
variables and the most frequent itemsets are sets of these values. Because they are 
mutually exclusive, for any two of these variables, all associations between these 
variables must be unproductive. The identified fact that all non-redundant associations 
for this dataset represented unproductive associations highlighted the dangers of data 
mining without sound methodologies for discovering meaningful and diverse 
association rules.  

6.1 Application of Agglomerative Hierarchical Clustering 
Unlike with the two previous case studies the dataset was sampled prior to the 
application of hierarchical clustering. Stratified random sampling was used to obtain an 
unbiased sample in view of the unbalanced nature of the dataset. In this process we 
divided the records into homogeneous subgroups, defined by the forest cover type 
variable prior to sampling, thus improving the representativeness of each class in the 
sample. We used a sample size of 45,000 records to generate clusters at multiple levels 
of data abstraction. Similar to the previous case studies on smaller datasets, we 
calculated the inconsistency coefficient value which was 0.519 for determining the cut-
off point and generated the binary tree of clusters using the procedure explained in 
Algorithm 1. There were a total of 8 levels of data abstraction till the cut-off point and 
the last level had 16 clusters in it.  
 
Although we adopted a stratified sampling method to produce a sample that retains the 
diversity of classes, the sample size was rather small at approximately 8 % of the total 
volume of records.  As a consequence, overall information loss could be high enough to 
prevent the accurate depiction of all trends and patterns which exist in the original 
dataset. In order to accelerate the creation of the dendogram, we used the sampled 
dataset, instead of the original dataset. Once the binary tree was created, we distributed 
the original (non-sampled) data by allocating each record to the cluster whose centroid 
was closest the current record in Euclidean terms. The population of the dendogram 
with the entire dataset was done in order to alleviate the problem of small volume 
preventing the identification of certain patterns. Figure 6.1 depicts the first four levels of 
binary tree after allocation of records for the CoverType dataset.  
 
Likewise, as in the previous case studies, we plotted the numeric variables present in 
each cluster to fix the number of principal components to be extracted. Most clusters 
were discriminating well on 1 component as depicted in Figure 6.2. The application 
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procedure remains the same as in the previous two case studies. Figure 6.2 shows the 
scree plots and it can be seen that the data in the clusters are discriminated well on 1 
component. The scree plots for the other clusters followed the same trend and were 
omitted to conserve space. 
 

 
 

Figure 6.1: Binary tree for CoverType dataset 

 

 
 

Figure 6.2: Scree plot showing Eigen values of cluster C2 (left) and C21 (right) 

6.2 Ranking of Numeric Variables via PCA 
We rank the numeric variables present in each cluster and observe that the ranking is 
unique to each cluster. Similar to the previous case studies, sharp differences in 
rankings for a given variable appear at different levels in the cluster hierarchy. The 
rankings computed for the first few levels of the hierarchy are shown in Figure 6.3.  

Figure 6.3 shows the ranking of numeric variables in the cluster hierarchy after 
performing PCA and comparative analysis as explained in section 3.2 of Chapter 3. 
Unlike in the previous two case studies, we observe from Figure 6.3 that the clusters at 
the first level of the hierarchy, namely C1 and C2 have the same top 2 highly ranked 
variables. This is due to the component loadings of Hillshade_9am and Aspect variables 
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in the four clusters, namely (C11, C12, C21 and C22), responsible for the ranking the 
two clusters, C1 and C2, at the first level of the hierarchy. These four clusters showed 
maximum difference in component loading values for Hillshade_9am and Aspect 
variables as compared to all other variables involved in the analysis. 

 

Figure 6.3: Ranked lists of numeric variables present in CoverType dataset clusters 

For instance, the component loadings of Hillshade_9am in C11 and C12 are 0.193 and 
0.952 respectively which makes the difference equal to 0.759, which is the highest as 
compared to all the other variables and consequently ranks Hillshade_9am at the top in 
cluster C1. Similarly the Aspect variable is ranked 2nd in cluster C2 because the two 
subsequent clusters, namely C21 and C22, responsible for determining this rank have 
loading values of 0.605 and 0.085, correspondingly making the difference in loadings 
equals to 0.519 which is the 2nd highest difference after the highest difference of 0.871 
for the Hillshade_9am variable. Interestingly, this case study shows that in certain 
datasets such as Forest Cover, clear delineations between clusters only start to occur at 
levels 2 and below in the dendogram structure. Despite this, the level 1 delineation is 
important as the subtle variations in level 1 are a necessary pre-requisite for uncovering 
more pronounced deviations further down in the cluster hierarchy. 

These component loadings basically highlight the degree of variation captured by 
individual variables in each cluster. If we examine the averages of these two variables 
then we find more evidence of the variation that is captured by these two variables. For 
example, in cluster C11 the average Aspect of the forest cover types is 71.6 whereas in 
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cluster C12 the average is 255.6 which highlight the significant variation of records 
present in the two clusters.  Therefore, tree species with less Aspect values become a 
part of C11 and vice versa. Similarly, we observe the same high variation in cluster C21 
and C22, where cluster C21 has average Aspect of 274.6 as compared to the low 
average Aspect of 72.3 in cluster C22. 

Interestingly, the most significant variable Elevation in the complete un-clustered 
dataset is amongst the least significant variables at lower levels in the cluster hierarchy. 
This implies that forest cover types in the complete dataset are split into two separate 
clusters, primarily on the basis of the Elevation and Slope variables and marginally on 
the basis of other variables such as Vertical_Distance_To_Hydrology and 
Hillshade_3pm. Similarly, Horizontal_Distance_To_Roadways variable which happens 
to be an insignificant variable in cluster C1 appears to be the most significant in the 
child clusters C11 and C12. Another strong pattern can be observed in the rankings of 
cluster C21 and C22, whereby the Slope variable is ranked first in terms of significance 
in one child cluster C21 and whilst being the least significant in the other child cluster 
C22 at the same hierarchical level.  

6.3 Ranking of Nominal Variables 
Similar to the previous case studies, we rank nominal variables present in each cluster 
via two separate data analysis techniques in order to achieve the two main objectives of 
this research; i) identification of interesting cube regions and ii) discovery of diverse 
association rules.  

6.3.1   Application of Multiple Correspondence Analysis (MCA) 
After establishing the significant numeric variables in each cluster, we rank the nominal 
variables in each cluster in order to find interesting cube regions. The application 
procedure remains the same and the nominal variables in each cluster are ranked on the 
basis of Eigen values from highest to lowest. The rankings for the first few levels are 
shown in Figure 6.4. 

The nominal variable ranking varies from cluster to cluster, depending on its position in 
the hierarchy, except for the Soil_type variable that remains at rank 1 throughout the 
hierarchy. We note that sibling clusters rank the nominal variables the same. This is due 
to the fact that the Soil_type variable is a high cardinality variable as compared to the 
Wilderness_Area and Cover_Type variables. When MCA is applied on the mapped 
values, the soil type variable captures the highest variation in all of the clusters. The 
same results are obtained with Entropy based ranking. 

However, the information gain measure that drives the Entropy based ranking method is 
better able to eliminate bias due to high cardinality ranks soil type at the 3rd position in 
cluster C12, as shown in Figure 6.5. This case study also illustrates relying on only one 
type of ranking, namely MCA may not be adequate for all kinds of datasets, especially 
the ones which have these types of complex and dominating variables. 
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Figure 6.4: Ranked list of nominal variables present in Adult dataset 

It is important to clarify at this stage that we grouped the 40 binary valued soil type 
variables present in the original dataset into a single variable named Soil_Type with 40 
different soil type values such as Soil_Type1, Soil_Type2 and so on. This 
transformation benefits us in three major ways. Firstly, we are able to identify semantic 
relationships among different soil types in order to group them using multidimensional 
scaling and grouping techniques introduced in Chapter 3. Secondly, it eases the 
exploration of data cubes by taking soil type as a single dimension with 40 distinct 
categories (values). Thirdly, it allows us to mine and discover underlying associations 
between multiple soil type values and other nominal variables such as Wilderness_Area 
and Cover_Type.  

6.3.2   Analysis of nominal variables via Information Gain 
In order to discover diverse association rules, we rank the nominal variables in each 
cluster based on the information gain measure. Figure 7.5 shows the information gain 
based ranking for three clusters, at consecutive levels in the hierarchy, namely clusters 
C1, C11 and C12.  

 

Figure 6.5: Ranking of nominal variables based on Information Gain measure 

Similar to numeric variables, the list of ranked nominal variables also show sharp 
differences as we move from a higher level of data abstraction to a lower level. It can be 
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seen from Figure 6.5 that Soil_Type which is top-ranked in cluster C1 is lowest ranked 
in cluster C12. Similarly, Wilderness_Area which is the second most significant 
variable in C1 took last place in cluster C11. In other words, Soil_Type and 
Wilderness_Area had high randomness in parent cluster C1 but at an immediately lower 
level in the hierarchy these variables appear to be having low randomness or impurity.  

Similar to our previous case studies, we observe the emergence of sharp patterns in both 
numeric and nominal variables as we go down in the cluster hierarchy. We suggest that 
these highly ranked variables should be explored as a first choice in a given cluster C1 
as they possess more versatile information that defines the split as compared to the 
lowly ranked variables which play a minimum role in the cluster split.  

6.4 Grouping of Nominal Values via Multidimensional Scaling 
After ranking the nominal variables, we apply multidimensional scaling and group the 
values present in each nominal variable using Algorithm 2 presented in Chapter 3. 
Figure 6.6 shows the groupings obtained for the Soil_Type variable in C11. The 
prototype displays the different groups and the values present for each group in a data 
grid for a selected variable. It can be seen from Figure 6.6 that the Soil_Type variable 
produced five distinct major groups covering the 34 different soil types present in the 
cluster C11.  
 

 

Figure 6.6: Groupings achieved for Soil_Type variable in cluster C11  

Furthermore, each group represents soil type values which have semantic relationships 
with other values present in the same group. For instance, Group 2 consists of soil type 
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19 and soil type 20 which are grouped together and both of these soil types have the 
same metadata description in the dataset. These soil types belongs to “Typic Cryaguolis 
and Typic Cryaquolls”, two  families of soil types which have the same depth (0 to 4 
inches) and same dominant plant (subalpine fir) associations. Moreover, their climate 
and geographical zones are also identical. It highlights the fact that groups created 
through the use of multidimensional scaling technique not only have objective 
similarities but also have likeness in a real-world setting. 

6.5 Generation of Multidimensional Schema 
As in the previous case studies, we generate a multi-dimensional schema by using the 
numerical variables as facts and nominal variables as dimensions. The ranked lists of 
numeric and nominal variables serve as a starting point for selection of an appropriate 
number of important dimensions (nominal variables) and facts (numeric variables) for 
the creation of the multidimensional schema. 

As an example, we show the Elevation and Slope fact variables for all of the data 
clusters. Figure 6.7 shows the averages for these variables across multiple levels of the 
hierarchy. 

 

Figure 6.7: Hierarchical tree showing the averages of Elevation and Slope 

We can see from the tree that the average Elevation and Slope in the complete dataset is 
2959.3 and 14.1 respectively. However, as we go one level down the hierarchy, we see a 
sharp difference in the average emerging as the first cluster C1 covers records which 
have higher elevation and lower slopes values while cluster C2 covers the opposite 
trend of lower elevation and higher slope values. More interestingly, if we look at 
cluster C22, we note that it captures forest lands with the lowest average elevation and 
the highest average slope values. Similarly, cluster C12 covers the forest land with the 
lowest slopes while cluster C112 covers lands with the highest elevation. Thus the 
clustering covers a spectrum of gradients of forest lands, ranging from low steepness in 
C112 to steep forest land in C22. 
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By looking at the distinct differences, an analyst would be interested to know more 
about the effects of wilderness areas and major tree species in these areas. For instance, 
it would be interesting to examine the effects of steepness factor by contrasting the 
predominant tree species grown in cluster C2 with that of cluster C112. Similarly, it 
would be interesting to investigate which major tree species are associated with which 
soil types. 

Figure 6.8 shows the schema generated for cluster C22 using the three dimensions, 
namely, Wilderness Area, Soil_Type and Cover_Type.  

 

Figure 6.8: Multidimensional schema generated for cluster C22 

Moreover, the natural groups obtained in the previous step are also depicted for the top 
ranked Soil_Type dimension. The natural groupings highlight the semantic relationships 
present in various soil types. For instance, forest land having soil types (SoilType23, 
SoilType25 and SoilType38) tend to have similar behaviour and are therefore grouped 
together in Group2 of cluster C22.  

In the detailed description of the soil types, present on the UCI machine learning 
website (Asuncion and Newman 2010), it is evident that the above three soil types 
belong to the Leighcan family of soils. According to United States Department of 
Agriculture (USDA 2012), soils from the Leighcan family occur on moraines and 
consist of residuum and/or till from igneous and metamorphic rock. These soils share 
common characteristics such as extremely warm climate and stony geographical zones. 
Additionally, these particular soil types lie in the same climatic zone of Subalpine.  
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In the National Cooperative Soil Survey conducted by US National Resource 
Conservation Services (NRCS 2012), these zones have (0 to 15%) of slopes, (7000 to 
12,000) feet elevation and are derived from gravel deposits of igneous, metamorphic 
and sedimentary rocks. These similarities among the soil types highlight the fact that 
groups created through the use of multidimensional scaling technique not only have 
objective similarities but also have correspondence in a real-life. In this context it would 
be productive to explore and analyze the distributions of fact variables such as Elevation 
or Slope associated with these semantically related groups of soil types, wilderness 
areas and cover types. 

6.6 Informative Data Cube Construction 
In order to explore these ranked dimensions and facts, we construct a 3-dimensional 
cube using the dimensions and top 3 facts. Figure 6.9 shows the 3 dimensional cube 
structure of two clusters at different levels of the hierarchy. 
 

 

Figure 6.9: Comparison of 3-dimensional cubes at different levels of hierarchy 

It can be seen from Figure 6.9 that Wilderness Area happens to be the 3rd ranked 
dimension in cluster C11; however, it holds 2nd position in an upper level cluster C2. 
Moreover, the Soil Type dimension remained at number 1 in rank on both cubes. 
However, both the total number and composition of groups within this dimension 
changed between clusters.  The Soil Type dimension has 5 groups [G1, G2, G3, G4 and 
G-others] in the cluster C11 cube whereas the same dimension has an extra group [G5] 
in the cluster C2 cube which is at an upper level in the cluster hierarchy. Similarly, 
Wilderness Area has 2 groups [G1 and G-others] in cluster C2 cube but has only one 
group of outliers [G-others] in cluster C11 data cube. Additionally, the values present in 
each group are entirely different from one another. For instance, Group1 of CoverType 
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dimension has four values [Krummholz, Spruce/Fir, Lodgepole Pine and Aspen] in C2 
whereas the comparable Group1 in C11 data cube contains only 2 values [Ponderosa 
Pine and Douglas-fir]. Such sharp differences give new insights about the underlying 
data and further relationships of these dimensions with the fact variables can be 
explored through OLAP analysis. 

6.7 Exploration of Interesting Cube Regions 
Similar to the previous case studies, we took the top 3 ranked paths and compared them 
with the lowly ranked path suggested by our methodology for each data cluster. Figure 
6.10 shows the results of the cube exploration through highly ranked paths for the 
complete dataset on clusters C1 and C2. It is clear from the results in Figure 6.10 that 
the highly ranked paths in each cluster have a tendency to reveal interesting information 
about the facts present in the data.  

 

 Figure 6.10: Results of cube exploration through ranked paths (CoverType dataset) 

We take the top 2 dimensions from each cluster and examine the three highest ranked 
fact variables to examine forest lands and cover types (tree species). As these highly 
ranked dimensions capture the greatest amount of variation in the cluster, it would be 
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interesting to see how sub groups of forests are distributed across the different 
combination of values taken across these dimensions. 

However, even for these two highly ranked dimensions there are 41 soil types and 7 
cover types or 4 wilderness areas to choose from, which means that even after 
constraining the cube to only two dimensions a large navigation space still remains to 
be explored manually. To resolve this problem, our methodology suggests ranked paths 
to define data cubes containing distinctive and interesting information. For instance, 
ranked path P1 highlights the data cell in the cube that has the highest deviation on 
Elevation in complete dataset. We note that the average elevation of forest land where 
Soil_Type is (SoilType1) and Wilderness area is (Cache_la_pourde) has an extreme 
deviation from the overall mean value of 2959.3 registered for all cover types contained 
in the cluster. 

It is mentioned in the dataset description page (Blackard, Dean et al. 1998) that 
Cache_la_pourde is probably more unique than the other wilderness areas, due to its 
relatively low elevation range and tree species composition of Ponderosa pine, Douglas-
fir, and cottonwood/willow.  

However, it is extremely challenging to find the relationship of Cache_la_pourde 
wilderness area with the 40 different soil types. Even if we trim down soil types to only 
12 distinct types, considering that in the dataset only 12 unique soil types are associated 
with Cache_la_pourde, it is still a gruelling task to analyze these 12 soil types in order 
to identify the one which shows extreme deviation from the average for any given fact 
variable, say Elevation.  

Although the first ranked path P1 suggested by our methodology encompasses some 
common domain knowledge, it still provides additional precise information on soil type 
which is another dimension to examine known facts. In particular, it was explicit that 
the elevation for Cache_la_pourde area is low with high slope range but its implicit 
relationship with the soil types responsible for lowest elevation and highest slope range 
was not obvious. This previously implicit information can be quickly identified as path 
P1 pin-points the exact type (Soil Type 1) responsible for the lowest elevation and the 
highest slope. Analysts can dig out further interesting information by examining the 
unique characteristics of this particular soil type. For example, it belongs from the 
Cathedral family of extremely stony soils mostly present in mountain slopes and hills. It 
covers 2 to 100% of slopes, is at 6200 to 9850 feet of elevation and has a mean annual 
air temperature of 38 to 50 degrees F.  

Similarly in ranked path P2, forests having Comanche_peak as Wilderness_Area, and 
(SoilType4) as soil type, display the second highest deviation from the mean. Again, it 
is given on dataset description page (Asuncion and Newman 2010) that Comanche Peak 
area would have a lower mean elevation value. The primary tree species 
Comanche_Peak has is Lodgepole pine, followed by Spruce/fir and Aspen. However, its 
association with the corresponding soil type is absent. The ranked path P2 not only 
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highlights the 2nd lowest elevation but also indicates that out of 23 different soil types 
associated with Comanche_Peak area, Soil Type 4 is responsible for the second lowest 
elevation value. Soil Type 4 belongs to Vanet series of soils and consists of shallow, 
well drained, moderately permeable soils.  

Using these ranked paths, analysts can not only identify the interesting regions in the 
data cube for exploration but can also perform comparative analysis. For instance, P1 
and P2 for the complete dataset can be compared for the top facts, namely elevation and 
slope. Both paths suggested low elevation and high slope ranges but their associated soil 
types were completely different. For Soil Type 4, in ranked path P2, the elevation range 
is from 7800 to 8500 feet and covers 20 to 40% slopes whereas Soil Type 1 in P1 
interestingly shows contrasting values of 6200 to 9850 elevation range and 2 to 100% 
slope coverage. Moreover, the mean annual air temperature also differs noticeably 
between the two soil types as Soil Type1 has 38 to 50 degrees F and Soil Type 4 has a 
tighter range of 42 to 45 degrees F. This new soil type dimension thus enhances the data 
cube exploration and allows for rich multidimensional analysis. 

Our methodology provides these ranked paths in the order: highest to lowest deviation. 
The lowly ranked path Pn for each cube consists of a combination of dimensional 
values which show the least deviation captured as compare to all other paths. Using 
ranked paths, users can easily determine which particular dimensions chosen from a 
large number of possibilities exhibit extreme deviations from the average.  

To take another example, consider the cube defined over cluster C2; even though this 
cube is defined over just the 2 highly ranked dimensions, the search space to be 
explored is still too large for knowledge discovery purposes. This is due to the fact that 
the Soil_Type dimension has 40 members and the Wilderness_Area dimension has4, 
making up a total of (40 x 4) = 160 data cells within this cube for exploration. In order 
to uncover interesting knowledge in a timely manner, users will need to navigate using 
the most discriminating soil types and wilderness areas suggested by our methodology.  

6.8 Mining Association Rules from Multidimensional Schema 
As done in the previous case studies, we applied rule mining on both the original dataset 
as well as the multidimensional schema version for clusters C1, C11 and C12. We chose 
the two most impure dimensions (having high entropy values) to generate association 
rules. Table 6.2 shows the top 10 rules for cluster C12 generated without 
multidimensional schema at a minimum probability value of 0.41 and minimum 
importance value of 0.10. Based on these thresholds the algorithm produced 84 rules in 
total.  

With the same threshold values, we generated the rules from the multidimensional 
schema for the same cluster, C12. The first 10 rules satisfied the given thresholds and 
are shown in Table 6.3. We observe that the rules generated with the use of the 
multidimensional schema follow the same trends as in the previous case studies. The 
rules generated through the use of the multidimensional schema are more informative.  
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Table 6.2: Rules generated without multidimensional schema 

RULES WITHOUT SCHEMA (CLUSTER C12) 
No Rules Imp 
R1 Soil Type = SoilType3, Wilderness Areas = Cache_la_Poudre                                       

 Cover Type = Cottonwood/Willow 
1.865 

R2 Soil Type = SoilType17, Wilderness Areas = Cache_la_Poudre                                       
 Cover Type = Cottonwood/Willow 

1.863 

R3 Soil Type = SoilType38, Wilderness Areas =  Comanche_Peak                                     
 Cover Type = Krummholz 

1.605 

R4 Soil Type = SoilType39, Wilderness Areas = Comanche_Peak                         
 Cover Type = Krummholz 

1.573 

R5 Soil Type = SoilType40, Wilderness Areas = Comanche_Peak                        
 Cover Type = Krummholz 

1.537 

R6 Soil Type = SoilType38, Wilderness Areas = Neota                                           
 Cover Type = Krummholz 

1.486 

R7 Soil Type = SoilType40, Wilderness Areas = Neota                                         
 Cover Type = Krummholz 

1.382 

R8 Soil Type = SoilType14, Wilderness Areas = [All]                                              
 Cover Type = Douglas-fir  

1.020 

R9 Soil Type = SoilType2, Wilderness Areas = [All]                                              
 Cover Type = Ponderosa-Pine 

0.832 

R10 Soil Type = SoilType10, Wilderness Areas = Cache_la_Poudre                                       
 Cover Type = Ponderosa-Pine 

0.823 

 
Table 6.3: Rules generated with multidimensional schema 

RULES WITH SCHEMA (CLUSTER C12) 
No Rules Imp 
R1 Soil Type Group = Group4, Wilderness Area = Group-Others                                       

 Cover Type = Cottonwood/Willow 
1.865 

R2 Soil Type Group = Group3, Wilderness Area = Group-Others                                       
 Cover Type = Cottonwood/Willow 

1.863 

R3 Soil Type Group = Group1, Wilderness Area =  Group1                                     
 Cover Type = Krummholz 

1.605 

R4 Soil Type Group = [All], Wilderness Area Group = Group-Others                         
 Cover Type = Ponderosa-Pine 

1.065 

R5 Soil Type Group = Group-Others, Wilderness Area Group = [All]                        
 Cover Type = Douglas-fir 

1.020 

R6 Soil Type Group = Group4, Wilderness Area Group = Group-Others                                           
 Cover Type = Ponderosa-Pine 

0.823 

R7 Soil Type Group = Group3, Wilderness Area Group = [All]                                        
 Cover Type = Ponderosa-Pine 

0.814 

R8 Soil Type Group = Group5, Wilderness Area Group = Group-Others                                              
 Cover Type = Ponderosa-Pine 

0.808 

R9 Soil Type Group = Group4, Wilderness Area Group = Group1                                              
 Cover Type = Ponderosa-Pine 

0.597 

R10 Soil Type Group = Group2, Wilderness Area Group = Group1                                       
 Cover Type = Spruce-fir 

0.504 
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These groups provide rich and diverse information to the user while retaining the same 
importance score of 1.605. If we focus on the Wilderness-Area dimension, we see that 
rule R3 without schema only identifies Comanche_Peak as a forest land with soil type 
38, whereas R3 with the schema identifies a diverse set of wilderness areas in which 
Rawah and Neota areas are also present. 

6.9 Evaluation of Rule Interestingness via Diversity Criterion 
In order to validate the claim that rules generated from schema are more diverse, we 
performed evaluation of the rules with the Rae, CON and Hill diversity measures, as 
with the previous case studies. We took a set of top rules generated without schema and 
compared it with the same set of rules generated with the use of the schema. Table 6.4 
shows the results of this evaluation. 

It is apparent from Table 6.4 that all the objective measures of diversity show 
significant improvement for the set of rules generated from the multidimensional 
schema. Similar to the Automobile and Adult case study results, the rules generated from 
the multidimensional schema are more diverse and capable of conveying more 
interesting knowledge to the user.  

Table 6.4: Rule interestingness comparison using diversity measures  

 
Cluster 
Names 

  
Rule sets 

NO 
Schema 

Rae 

With 
Schema 

 Rae 

NO 
Schema 

CON 

With 
Schema 

CON 

NO 
Schema 

Hill 

With 
Schema 

 Hill 

  
  

C1 
  
  

R1-R6 0.230 0.278 0.277 0.366 -2.987 -2.293 
R1-R7 0.239 0.256 0.342 0.364 -2.646 -2.51 
R1-R8 0.226 0.240 0.34 0.363 -2.77 -2.712 
R1-R9 0.184 0.238 0.288 0.378 -3.764 -2.731 

R1-R10 0.176 0.234 0.292 0.386 -4.005 -2.780 
  
  

C11 
  
  

R1-R6 0.275 0.296 0.361 0.394 -2.338 -1.884 
R1-R7 0.247 0.281 0.351 0.402 -2.644 -1.999 
R1-R8 0.228 0.244 0.344 0.369 -2.892 -2.393 
R1-R9 0.187 0.229 0.292 0.364 -3.884 -2.573 

R1-R10 0.161 0.196 0.258 0.327 -4.81 -3.131 
  
  

C12 
  
  

R1-R6 0.219 0.284 0.251 0.376 -3.304 -2.294 
R1-R7 0.181 0.278 0.208 0.397 -4.273 -2.353 
R1-R8 0.163 0.263 0.209 0.397 -4.749 -2.509 
R1-R9 0.149 0.225 0.208 0.359 -5.195 -3.015 

R1-R10 0.137 0.205 0.203 0.342 -5.757 -3.348 
 
Furthermore, the prediction accuracy of the rules generated from the schema also 
appears to be higher when compared to the rules without schema. To validate this claim, 
we tested the prediction accuracy of the rules generated without schema against the 
rules generated with the use of the schema. We used 30% of the test data from each 
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cluster and ran 10 tests where each test randomly picked unique test data to assess the 
predictive accuracy of association rules generated. Table 6.5 shows the prediction 
accuracy for each test, expressed as a percentage. 

It is clear from Table 6.5 that the prediction accuracy of the rules generated through the 
use of the multidimensional schema is higher when compared to the one without 
schema. Again, we note from this case study on a very large dataset, that rule mining 
performed on the multidimensional schema designed and constructed with the help of 
hierarchical clustering and multidimensional scaling technique generates diverse rules 
with greater prediction accuracy.  

Table 6.5: Rule prediction accuracies for two sets of rules 

Prediction Tests Cluster C1 Cluster C11 Cluster C12 
  Schema No Schema Schema No Schema Schema No Schema 

Test 1 64.52 64.54 66.28 66.22 64.25 64.15 

Test 2 64.47 57.36 66.46 51.75 64.43 53.66 

Test 3 64.70 64.45 66.10 51.47 64.22 53.21 

Test 4 64.41 57.85 66.41 66.25 64.34 53.65 

Test 5 64.50 64.32 66.25 51.81 64.54 64.26 

Test 6 64.62 57.37 66.54 51.82 64.43 53.73 

Test 7 64.89 57.55 66.42 66.26 64.33 64.27 

Test 8 64.70 64.48 66.82 66.31 64.25 64.23 

Test 9 64.71 64.22 66.11 51.47 64.62 53.46 

Test 10 64.52 64.38 66.41 51.67 64.22 64.14 

Average Percentage 64.60 61.65 66.38 57.50 64.36 58.88 

 

Summary 
 
In this chapter, we presented the results of our third case study performed on a large real 
world dataset namely CoverType from ecology domain. As in the previous case studies, 
this dataset also revealed interesting and previously unknown knowledge. In terms of 
discovering interesting regions in data cubes, the combination of ranked dimensions 
namely, wilderness area and soil type along with important facts such as elevation and 
slope give interesting insights into various forest cover types. We have shown that 
through the use of the ranked paths, analysts can pinpoint particular wilderness areas (4 
areas) and soils (40 types) which have the highest deviations from the mean without 
going through the gruelling task of analyzing a large number of paths available for 
exploration.  

The knowledge discovered through the ranked paths was not only aligned to the 
common domain knowledge but also provided additional dimension to navigate data 
cubes. In particular, it was explicit that the elevation for Cache_la_pourde area is low 
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with high slope range but its implicit relationship with the soil types responsible for 
lowest elevation and highest slope range was not obvious. This implicit information was 
easily and efficiently revealed through the top ranked paths suggested by the 
methodology. It was identified that Soil Type 1 from Cathedral family and Soil Type 4 
from Vanet series of soils are the main types which have lowest elevation and highest 
slopes in the overall dataset.  
 
More interestingly, when these two soil types were further examined and their 
characteristics were compared it was observed that their wilderness areas, elevation, 
slopes and mean air temperature have significant differences.  For instance, Soil Type 4 
has an elevation range of (7800 to 8500) feet and covers (20 to 40%) slopes whereas 
Soil Type 1 ranges from (6200 to 9850) feet and has (2 to 100%) slope coverage. 
Moreover, the mean annual air temperature also differs noticeably between the two soil 
types as Soil Type1 has (38 to 50 degrees F) and Soil Type 4 has a tighter range of (42 
to 45 degrees F).  
 
We also grouped the soil types together through the use of multidimensional scaling 
technique to form semantically related groups of dimensional values. The values 
grouped through this technique not only had objective (data driven) similarities but also 
showed likeness in a real world setting.  For instance, Group2 of cluster C11 consists of 
soil type 19 and soil type 20 which are grouped together and both of these soil types 
have the same metadata description in the dataset. These soil types belongs to “Typic 
Cryaguolis and Typic Cryaquolls”, two  families of soil types which have the same 
depth (0 to 4 inches) and same dominant plant (subalpine fir) associations. Moreover, 
their climate and geographical zones are also identical.  

Finally, association rule mining also showed that the rules generated through our 
generated schema were much more diverse and interesting as compared to the rules 
produced via flat data without the schema structure. The prediction accuracy of the rules 
to predict cover type has also been tested for both schema and non-schema and the 
schema structure outperformed the other with marginal difference. 
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Chapter 7 

Scalability Study 
In this chapter, we present experiments conducted on synthetic datasets to test the 
scalability of our proposed methodology. An important issue in our approach is to 
ensure that the proposed methods do not become a bottleneck in an environment where 
a large number of records or high dimensionality is present. To address this issue, the 
focus of this chapter is to show that the each step of the proposed methodology indeed 
scales with size and dimensionality of data. We have implemented a full-fledged 
prototype, i.e., for generating synthetic data with various parameters, and have 
conducted an extensive experimental evaluation to compare the processing time of each 
step of our proposed methodology. The key variables that we have identified for our 
scalability study are data size (in terms of number of records) and dimensionality (in 
terms of number of dimensions/variables). In the following sections, we introduce the 
experimental setup used to testing scalability and present the results of each 
methodological step with respect to the key variables.  

7.1 Experimental Setup 

All experiments conducted for the scalability tests were run on a 64-bit Intel® Core™ i-
5 2400 CPU at 3.10 GHz  running Windows 7 Operating System with 8GB RAM. The 
main software used in the experimental study is MATLAB and Microsoft SQL Server 
2008 R2. MATLAB has been used to measure the processing time of the first three 
steps of our methodology namely hierarchical cluster generation, numeric variable 
ranking and nominal variable ranking while Microsoft SQL Server 2008 R2 has been 
utilized to create multidimensional schemas, construct informative cubes and generate 
association rules. In the following sections we show the results of our experiments 
performed on synthetic datasets with respect to large data size and high dimensionality 
for each step of our methodology. 

7.2 Processing time for hierarchical cluster generation 
As explained in Chapter 3 the first step of the proposed methodology is to generate 
hierarchical clusters at different abstraction levels. Therefore, our first set of experiment 
aims at the analysis of the impact of data size (number of records) on computation time 
of the hierarchical cluster generation. We test the influence of increasing the number of 
records on cluster generation process considering computation time as the main 
performance indicator. Varying the number of records starting from 200 K to 2000 K, 
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we measure the cluster generation time in seconds. For consistency, we fixed the other 
variable, namely the number of dimensions to 10 to test the variability in computation 
time with number of records. Figure 7.1 show the results of our experimentation on 
synthetic datasets of different sizes.  

 

Figure 7.1: Processing time of hierarchical cluster generation w.r.t different data sizes 

The y-axis represents the cluster generation time in seconds while the x-axis refers to 
the number of records in thousands or K. It can be seen from Figure 7.1 that the 
proposed method of cluster generation which involves the sub-steps of cluster labelling 
and data allocation at different abstraction levels (see Algorithm 1- Chapter 3) scales 
well with the increasing number of records. Data size has a proportional or linear effect 
on computational time. 

The second set of experiments aims at the analysis of the impact of second variable 
which is data dimensionality. We test the influence of dimensions on cluster generation 
similar to the previous set of experiments by considering the computation time as the 
main performance indicator. Varying the number of dimensions starting from 20 till 
200, we evaluate the processing time in seconds. We fixed the number of records as 
10K to test the effect of dimensionality on processing time. The result of the experiment 
is depicted in Figure 7.2.  

 

Figure 7.2: Processing time of hierarchical cluster generation w.r.t different dimensions 
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Here, the x-axis refers to the number of dimensions or variables involved for generating 
hierarchical clusters at various levels of data abstraction. It is clear from Figure 7.2 that 
the increase in the number of variables in data effects the cluster generation time in a 
linear fashion. Similar to the previous set of experiments with large data sizes, it can be 
observed that cluster generation process also scales well with dimensionality of the data.   

7.3 Processing time for ranking numeric variables 
In this section, we present the scalability results of the second step of our methodology 
which is ranking of the numeric variables. Similar to the previous section, we fixed the 
number of dimensions/variables to 10 and present the results with respect to different 
data sizes varying from 200K to 2000K.  Figure 7.3 shows the results of the experiment. 

 

Figure 7.3: Processing time of ranking numeric variables w.r.t different data sizes 

It is clear from Figure 7.3 that ranking of numeric variables takes a maximum 2.106 
seconds for the extreme case of 2000K data size. Moreover, it shows that PCA which is 
used for the ranking the numeric variables is a robust method and large data size does 
not affect the processing time significantly. In fact, over the entire range of data size 
processing time scales in a sub-linear fashion, as shown in Figure 7.3. 

In the second part of the experiment to test the effect of ranking numeric variables on 
dimensionality, we fixed the number of records to 10K and varied the number of 
dimensions/variables from 20 to 200 dimensions, in steps of 20. Figure 7.4 shows the 
results of this experiment. It can be seen from Figure 8.4 that the processing time scales 
linearly with dimensionality.  

However, with increase of dimensionality, we noticed that processing time has higher 
sensitivity to dimensionality than data size. This is evident from the fact that the 
gradient in Figure 7.4 is higher than of Figure 7.3. The reason is that when a large 
number of dimensions are involved then it takes a higher amount of time to compute 
individual component scores and to compute the item covariance matrix that is needed 
for the application of PCA. 
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Figure 7.4: Processing time of ranking numeric variables w.r.t different dimensions 

7.4 Processing time for ranking nominal variables 
Similar to the previous section, we compute the processing time of the third step of our 
methodology which involves ranking nominal variables. We use the same parameters 
and firstly measure processing time with respect to different sizes by fixing the number 
of dimensions to 10. It is important to highlight at this point that for this step, we have 
used information gain based ranking method to measure the processing time. The reason 
for choosing information gain instead of Multiple Correspondence Analysis (MCA) 
based ranking method is that MCA is basically a counterpart of PCA and hence the 
processing time is more or less similar to PCA whereas the information gain based 
ranking method utilizes entropy concept which is a completely different method from 
correspondence analysis techniques. Therefore it is worth investigating and reporting 
the processing time with respect to our information gain based ranking method. Figure 
7.5 shows the results of this experiment. 

It is clear from Figure 7.5 that information gain based ranking method is also a robust 
method as it takes only fraction of a second (0.218) to process 2000K records.  

 

Figure 7.5: Processing time of ranking nominal variables w.r.t different data sizes 
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If we compare it with correspondence analysis based methods such as PCA/MCA then 
it can easily be identified that for exactly the same number of records PCA took 2.106 
seconds. Figure 7.6 shows the comparison of information based ranking method verses 
correspondence based ranking method.  

 

Figure 7.6: Information gain ranking method vs Correspondence analysis based ranking method with 
respect to different data sizes 

We can easily see that there is a significant difference in processing time with respect to 
different data sizes. It is clear that the information gain based ranking method is much 
faster than correspondence analysis based methods such as PCA/MCA and should be 
preferred when faster processing is required.  

The second set of experiment tests the scalability with respect to dimensionality. Again, 
we fixed the number of records to 10K and record the processing time obtained by 
varying the nominal variables from 20 to 200. Figure 7.7 shows the results of this 
experiment. 

 

Figure 7.7:  Processing time of ranking nominal variables w.r.t different dimensions 
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method gives an output in less than a second. Again, if we compare the processing time 
of information gain method with correspondence based method for high dimensional 
data then we see that the information gain method supersedes the other. Figure 7.8 
shows the results of this comparison.  

 

Figure 7.8: Information gain ranking method vs Correspondence analysis based ranking method with 
respect to different dimensions 

It is clear that the information gain based ranking method is significantly more robust 
than the correspondence analysis based ranking method with respect to scalability. For 
instance, the processing time for 200 dimensions using correspondence based method is 
nearly 7 seconds whereas the same number of dimension can be processed in 
approximately 0.234 seconds using the information gain based ranking method. The 
results presented in Figure 7.8 clearly show the robustness of information gain based 
ranking method for nominal variables in terms of both data volume and dimensionality.  

7.5 Processing time for multidimensional scaling 
The fourth step of our proposed methodology is the application of the multidimensional 
scaling technique. Similar to previously presented steps, we measured the processing 
time of this step by varying both data size and dimensionality. Figure 7.9 shows the 
results of our experiment by varying the number of records whereas Figure 7.10 depicts 
the results by varying the number of dimensions and fixing the number of records to 
10K. 

 

Figure 7.9: Processing time of multidimensional scaling w.r.t different data sizes 
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Figure 7.10: Processing time of multidimensional scaling w.r.t different dimensions 

Similar to the results of previous steps, it is clear from Figure 7.9 and Figure 7.10 that 
multidimensional scaling method scales well with data volume and dimensionality of 
the data. Moreover, the method is more sensitive to dimensionality than data size, in 
terms of the number of records. For instance, the rate of increase in processing time 
with increasing number of dimensions is much higher as compared to the rate of 
increase with respect to increasing number of records. 
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contains sections where data generation and schema generation time is measured and 
displayed in seconds.  

 
Figure 7.11: Prototype for generating synthetic data and multidimensional schema 

A small sample of either the synthetically generated data or real data loaded by users is 
shown in the data grid at the bottom of the prototype to give a glimpse of the data 
before proceeding to the schema generation process. The Generate Schema button 
generates the appropriate multidimensional schema in the Database Server and loads the 
corresponding data into dimension and fact tables. The functional code for creating 
dimension and fact tables and populating the schema is provided at the end of this thesis 
in Appendix I.   

7.6.2 Effect of large data size on schema generation 
Our first set of experiments aims at the analysis of the impact of first variable which is 
the data size (number of records) on execution time of the schema generation process. 
We test the influence of increasing the number of records on schema generation 
considering the generation time to be the main performance indicator. Varying the 
number of records starting from 10 K to 2000 K, we measure the schema generation 
time in seconds. For consistency, we fixed other variables such as number of 
dimensions and number of measures to 3 to test variability of the schema generation 
time with the number of records. Figure 7.12 and Figure 7.13 show the results of our 
experimentation.  
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Figure 7.12: Scalability of processing time with Data Size [10K-100K] 

 

Figure 7.13: Scalability of processing time with Data Size [100K-2000K] 

It can be seen from Figures 7.12 and 7.13 that the proposed method scales well with the 
increasing number of records as the computing time increases linearly. 

7.6.3 Effect of dimensionality on schema generation 
The second set of experiments aims at the analysis of the impact of the second variable 
which is schema dimensionality. Varying the number of dimensions starting from 3 to 
200, we measure the schema generation time in seconds. We fixed the number of 
records to 10K to test the effect of increasing dimensions on schema generation time. 
Figure 7.14 and Figure 7.15 show the results of our experiment.  Here, the x-axis refers 
to the number of dimensions involved for schema generation.  

An interesting observation in these experiments is the curse of dimensionality issue. 
Figure 7.14 and Figure 7.15 confirm that increasing the number of dimensions has a 
direct impact on schema generation time, and consequently, on the performance of our 
proposed method. 
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Figure 7.14: Scalability of processing time with dimensionality [3Dims-30Dims] 

 

Figure 7.15: Scalability of processing time with dimensionality [40Dims-200Dims] 

Figure 7.16 shows the comparison of schema generation time with respect to different 
number of dimensions. We can see from Figure 7.16 that with each additional 
dimension the execution time increases significantly.  

 

Figure 7.16: Scalability of processing time with data size for varying dimensionality 
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variable are interacting with each other in the determination of processing time. This 
experiment thus illustrates that dimensionality plays a key role in the determination of 
schema generation time. 

Moreover, if we compare the schema generation time of high dimensional data against 
that of high data volume, we observe that the impact of adding 3 dimensions is almost 
equivalent to adding 10,000 data instances. Figure 7.17 presents the relative sensitivity 
of dimensionality versus data size. 

 

Figure 7.17: Comparative effects of dimensionality and data size on processing time 

The dimensionality is increased progressively in intervals of size 3, while the number of 
records is simultaneously incremented in intervals of 10K in order to assess the relative 
contributions of dimensionality and data size on processing time. Thus for example at a 
given data point, say (12D, 40K), the next measurement point (15D, 50K) was 
generated first by increasing dimensionality by 3 and then proceeding to increase data 
size by 10K. 

From the trajectories of the two curves it is clear in Figure 7.17 that dimensionality is a 
bigger issue than data size. Moreover, in traditional OLAP applications, cube 
materialization is the most demanding process (Ribeiro and Weijters 2011) which 
requires the warehouse designer to select the smallest subset of dimensions that together 
capture the most meaningful information. Therefore, in our proposed methodology, we 
stress on using information theoretic measures such as information gain to filter out less 
informative dimensions, which in turn minimizes the number of views required for 
materialization. To the best of our knowledge, we are the first to experiment with 
schema generation with data having over 200 dimensions. Considering the time 
required for generating schema, our method is clearly robust and scalable to high 
dimensional data environments.  
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 7.6.4 Effect of cardinality on schema generation 
To test the effect of cardinality on schema generation, we run another set of experiments 
by varying the number of hierarchical levels from 1 to 10 in each dimension to calculate 
the schema generation time. In these experiments, we fixed the number of records to 
10,000 for a 3 dimensional dataset where each dimension consists of 100 distinct 
values. In addition to the data file, a grouping XML file is also given as input. This 
grouping file has the grouping information which is utilized by our developed prototype 
to assign group names at each level of dimensional hierarchy. Figure 7.18 shows the 
effect of varying the number of hierarchical levels for the 3 dimensional data used for 
experimentation. 

 

Figure 7.18: Effect of cardinality on processing time 

The cardinality is increased 1L (one level) to 10L (ten levels) in the hierarchy. The 
reason for testing a maximum of ten levels is that in real world data warehousing 
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Kamber 2006) or another common Location dimension is typically defined as follows  
(Region  Country  State  City  Town  Street) (Malinowski and Zimányi 
2008). In general, having more than 10 levels is counter-productive in terms of model 
comprehensibility in a real world context and this influenced our decision to restrict the 
number of levels to 10. Similar to results presented in the previous section, the curse of 
dimensionality issue is also apparent in these experiments.  

The results in Figure 7.18 confirms that increasing cardinality or the number of levels in 
the dimensions has a significant impact on schema generation time. We note that the 
schema generation time increases by approximately 20 seconds with the addition of 
each level in the dimensional hierarchy. It highlights the fact that dimensional 
cardinality directly effects the processing time. The rationale behind this significant 
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dimensional table for the additional level and secondly, inserts the corresponding group 
names in this column from the uploaded grouping file. However, the linear increase in 
time shows that our proposed method scales well with the cardinality.  

7.7 Processing time of constructing informative data cubes  
The sixth step of our methodology is to construct informative data cubes using the 
automatically generated schema. In this section, we note the cube construction time with 
respect to both increasing number of records and dimensions. For testing the effect of 
increasing number of records on cube construction time, we fixed the number of 
dimensions to 3 and calculated the construction time by varying the number of records. 
Figure 7.19 shows the results of scalability of processing time with varied data sizes.  

 

Figure 7.19: Processing time of constructing informative data cubes with varied data sizes  

It is clear from Figure 7.19 that the cube construction time is scalable with increasing 
number of records. We also tested the scalability of this step by varying the number of 
dimensions from 20 to 200 dimensions in order to ensure that the method scales well 
with high dimensional data. Figure 7.20 shows the scalability results of cube 
construction with respect to different number of dimensions.  

 

Figure 7.20: Processing time of constructing informative data cubes with varied number of dimensions 
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Similar to the experiments conducted to test the scalability of schema generation step, 
the curse of dimensionality issue is also apparent in here. Figure 7.20 confirms that the 
increasing number of dimensions has a direct impact on cube construction time and, 
consequently, on the performance of our proposed method. 

The difference in gradients of the trajectories in Figures 7.19 (sub-linear) and 7.20 
(super-linear), it is apparent that cube generation time is more sensitive to 
dimensionality than data size. This implies that that a small number of dimensions can 
have a larger impact on cube generation time as compared to a large number of records.  

7.8 Processing time of association rule mining  
The final step of our methodology is the application of rule mining algorithm in order to 
generate diverse association rules. We fixed minimum support to 3% and minimum 
confidence to 40% for all the experimentation in this step. These are the default values 
for support and confidence parameters in MS SQL Server 2008 R2 data mining 
software and are suitable for large datasets with a large number of distinct items 
(MacLennan, Tang et al. 2011).  

We note the effect of processing time of this final step by varying the two key variables 
which are consistently used in all our experiments. Firstly, we fixed the number of 
dimensions to 3 and calculated the processing time by varying the number of records. 
Figure 7.21 shows the results obtained through our first set of experiment. 

 

 Figure 7.21: Processing time of rule generation with varied data sizes 

Secondly, we fixed the number of records to 10K and calculated the processing time by 
varying the number of dimensions. Figure 7.22 depicts the results by varying the 
number of dimensions.  
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with the previous steps of our methodology. Here, we note that scalability with respect 
to dimensionality is sub-linear as opposed to being super-linear with respect to high data 
volume.  

 

Figure 7.22: Processing time of rule generation with varied dimensions 

This is due to the fact that association rule mining involves a time consuming and 
iterative step of finding frequent and candidate item-sets for a given threshold support 
percentage (3% in our experiment). As association rule mining algorithm works by 
scanning the complete data set and counting the support of each item, processing a large 
number of records with distinct values takes more time when compared to a high 
number of dimensions with less number of distinct records. For example, it takes 7.11 
seconds to generate rules from a dataset of size 200K having 3 dimensions but lesser 
time (5.49 seconds) is required to generate rules on a dataset of size of 10K having 20 
dimensions. The reason is that the algorithm has to process (200,000 x 3 = 600,000) 
items for a 3-dimensional dataset of size 200K compared to processing (10,000 x 20 = 
200,000) lesser number of items for a 20-dimensional dataset of size 10K. Thus the 
dimensionality has a smaller (sub-liner) effect as opposed to the larger (super-liner) 
effect of increasing then number of records for this particular step of our methodology. 
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Table 7.1: Scalability of proposed methodology w.r.t variable data sizes 

 

It is important to clarify at this point the reason for showing the scalability results of 
only 7 (out of 9) steps of our proposed methodology. Although our methodology has 9 
steps in total, 2 of these steps (steps 7 and 9; refer to Chapter 3 for details) do not 
require computational processing because they are manual knowledge exploration steps.  

For example, step 7 of our proposed methodology is a cube exploration step in which 
users utilize the output of the first 6 steps to discover interesting regions in data cubes 
via ranked paths. Similarly, step 9 of the methodology allows users to explore the 
diverse rules generated through the automatically created multidimensional schema. It is 
also evident from the results present in Table 7.1 that multidimensional schema 
generation is the most time consuming step of our proposed methodology and this 
motivated a more detailed scalability study for this step when compared to the other 
steps of our methodology, such as ranking and multidimensional scaling. Figure 7.23 
shows the overall processing time of our proposed methodology with respect to 
different data sizes.  

 

Figure 7.23: Scalability of proposed methodology with respect to different data sizes 
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We have chosen a larger unit (minutes) instead of (seconds) to represent the processing 
time on (y-axis). It is clear from Figure 7.23 that our methodology scales well with large 
data sizes and it only requires 209.26 minutes to discover interesting cube regions and 
to find diverse association rules from a dataset of size 2000K.  

After establishing the scalability of our methodology with large data sizes, we now 
present the results obtained through the experiments performed with high dimensional 
data. Table 7.2 summarizes the results of the experiments with variable number of 
dimensions by fixing the number of records to 10K. Again, it can be seen that the 
multidimensional schema generation is the most time consuming step. The higher the 
dimensionality of data the more adverse effect it brings on the processing time.  

Table 7.2: Scalability of proposed methodology w.r.t variable dimensions 

 

Figure 7.24 depicts the total processing time with respect to different dimensions. 
Again, we have chosen a larger unit (minutes) instead of (seconds) to represent the 
processing time on the y-axis.  

 

 Figure 7.24: Scalability of proposed methodology with respect to different dimensions 
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Similar to the results obtained for each of the steps, Figure 7.24 confirms that our total 
processing time scales well with dimensionality. It is not only scalable but also very 
efficient as it only requires 71.42 minutes to discover the most interesting regions in 
data cube and to find the diverse association rules from a dataset having 200 
dimensions.  

Summary 

In this chapter, we presented the results of our scalability study performed on synthetic 
datasets. Considering the processing time as the main performance indicator, this 
scalability study aimed at the analysis of the effect of two main variables: (i) the size of 
data and (ii) the dimensionality of data. Firstly, we presented the scalability results of 
the individual steps of our methodology and secondly we showed that the overall 
methodology scales well with both data size and dimensionality. We observed that most 
of the steps of our methodology are robust and their processing time is very low. 
However, majority of the steps involved in our methodology are more sensitive to high 
dimensionality compared to data size. We also identified that the multidimensional 
schema generation step is the most time consuming step in the execution of our 
methodology.  

In order to study schema generation step in detail, we developed a prototype for the 
automatic generation of multidimensional schema. In our first set of experiments, we 
analyzed the impact of our first variable which is data size (number of instances) on 
computation time of the schema generation process. We tested the variability of the 
processing time for size up to 2000K records by fixing the number of dimensions. The 
results of our experiments showed that our schema generation method scales well with 
number of records as the processing time increased linearly. 

In our second experiment, we tested the influence of high dimensional data by varying 
the number of dimensions and fixing the number of records to 10K. We tested up to 200 
dimensions and found a linear increase in the schema generation time. Moreover, we 
observed an interesting issue, called the curse of dimensionality, that increasing number 
of dimensions has a direct and influential effect on schema generation time and 
consequently on the performance of our proposed method. The results presented in 
Figure 7.16 highlighted that with the addition of a single dimension the processing time 
increases rapidly. Furthermore, we observe a trend (depicted in Figure 7.17) that the 
impact of adding 3 dimensions is approximately equivalent to adding 10,000 data 
records. It showed that dimensionality is a bigger issue than data size and this 
underscores the need for filtering dimensions using methods such as information 
theoretic measures such as information gain and Eigen value analysis employed in this 
research.  

Finally, we tested the effect of dimensional cardinality on processing time. We varied 
the number of hierarchical levels to be created by the schema up to 10 levels and again 
found that increasing cardinality also has a significant impact on schema generation 
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time. We observed that with the addition of each level in the dimensional hierarchy the 
computation time increases by approximately 20 seconds. However, similar to the 
previous results, we found that our method also scales well with cardinality. The results 
of these experiments show that overall our proposed methodology for discovering 
interesting cube regions and finding diverse association rules scales well with both data 
volume and dimensionality. 
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Chapter 8 

Thesis Conclusions and Future 
Work 

This thesis has explored the integrated use of data mining, data warehousing and 
machine learning techniques to enhance knowledge discovery from real world datasets 
from different application domains. We particularly focused on discovering interesting 
and diverse knowledge from those application scenarios where there is either no or very 
limited domain knowledge is available to the analysts. Our case studies demonstrated 
that useful and interesting knowledge can easily be discovered without excessive 
reliance on specialized domain knowledge. In this concluding chapter, we summarize 
and evaluate the main outcomes of this research, discuss the issues that remain open and 
make suggestions for possible directions of future research. 

8.1 Research Achievements  
In this section, we outline the research achievements and discuss the extent to which the 
major objectives of our research were realised. The primary objective of this research 
was to develop a knowledge discovery methodology that utilizes machine learning and 
statistical methods to provide automated and data-driven approach in multidimensional 
schema design and analysis. In terms of design, we identified that fact that very limited 
research  has been conducted in leveraging data mining techniques in the design of data 
warehouses or multidimensional schema (Sapia, Höfling et al. 1999; Zubcoff, Pardillo 
et al. 2007; Pardillo, Mazón et al. 2008; Pardillo and Mazón 2010; Usman, Asghar et al. 
2010) and these techniques have the potential to offer support in multidimensional 
schema design process.  

In this research, we integrated hierarchical clustering technique with multidimensional 
scaling in order to support the automated multidimensional schema design. The use of 
hierarchical data clustering was useful as it highlighted the fact that relationships 
between numeric and nominal variables changed significantly depending on the 
granularity of the data. We observed sharp differences in patterns at different levels of 
data abstraction. For instance, the variables that were ranked higher based on statistical 
methods such as Principal Component Analysis (PCA) and Multiple Correspondence 
Analysis (MCA) at one level, appeared to be lowly ranked in an immediate lower level 
of data hierarchy. We demonstrated that classical statistical methods for data analysis 
such as PCA and MCA can be successfully used in conjunction with hierarchical 
clustering to uncover useful information implicit in large multidimensional datasets. 
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Moreover, the use of hierarchical clustering along with multidimensional scaling 
technique allowed us to identify and group, at each level of data abstraction, the 
semantically related values present in each nominal variable. This integrated use of 
hierarchical clustering and multidimensional scaling revealed the most significant 
interrelationships that existed between numeric and nominal variables, thus enabled 
analysts with pathways to explore data in an OLAP manner. The three case studies 
presented evidence that the interrelationships between nominal and numeric variables 
are not only significant from both the application and statistical perspectives but could 
also be discovered without excessive reliance on domain knowledge. 

Although our integrated use of techniques showed noteworthy achievements, it can be 
argued that our methodology deals separately with the numeric and nominal variables. 
We justified the separate application of these techniques in our methodology (See 
Chapter 3 for details) and would like to emphasize that none of the existing techniques 
for mixed data analysis in literature provides the benefits which the integrated use of 
separate mature techniques provide. For example, a number of proposals appear in 
literature  for clustering mixed data (Luo, Kong et al. 2006; Ahmad and Dey 2007; Hsu, 
Chen et al. 2007; Hsu and Chen 2007; Tang and Mao 2007; Chatzis 2011; Ji, Han et al. 
2012) but the scope of these proposals is limited only to clustering accuracy and quality. 
None of these proposals provide explicit means to discover further knowledge at 
different levels of the cluster hierarchy.  

Analysts often require more knowledge from large and high dimensional datasets as 
opposed to merely analyzing a group of values clustered together at various data 
abstraction levels. Furthermore, these proposals lack the power of analysing semantics 
among nominal values which could easily be identified through the use of 
multidimensional scaling technique. Similarly, statistical techniques, though mature 
cannot be used on their own to promote knowledge discovery. For example, an analyst 
can apply the multidimensional scaling technique to identify the spread of nominal 
values on a scale but grouping mechanisms need to be applied so that commonalities of 
objects within a group can be identified. This also opens up the issue that which set of 
techniques from these diverse domains of machine learning and statistics work 
coherently with each other in order to satisfy the ever growing need of analysts and 
decision makers. Our methodology is a step forward towards the solution of this issue 
and provides a set of techniques from the machine learning and statistical domains that 
coherently work together to facilitate the ultimate goal of knowledge discovery from 
large datasets.  

Another objective of this research was to support the generation of cubes of interest at 
different levels of data abstraction and study the effect of abstraction level on 
information content. From the literature review on cube design (presented in Chapter 2) 
we identified that there remains a need for automated support in the design of 
informative data cubes, especially in domains containing high dimensional data. High 
dimensional and high volume datasets present significant challenges to analysts in terms 
of identifying data cubes of interest. Our proposed methodology assisted the warehouse 
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designers and analysts in identifying dimensions and measures of interest in these types 
of environments. Again, the integrated use of hierarchical clustering and 
multidimensional scaling made it possible for human analysts to extract knowledge 
hidden at multiple levels of data abstraction by exploring through ranked pathways 
provided by our methodology. For instance, in our first case study conducted on the 
Automobile dataset, in data cube C1, when explored through the highly ranked 
dimensions (Make, No-of-Cylinders and Engine-type)  encapsulated patterns whereby 
variables of interest (fact variables) have much greater deviations from their means as 
compared to exploration via lowly ranked dimensions. The ranked paths suggested by 
the methodology assisted in quickly identifying those cells in a data cube that have the 
highest deviations from the mean. This is typically the information sought by OLAP 
analysts who are interested in quickly finding regions among the large search space of 
data cubes that show large deviations from the norm.  

Similarly, the third case study conducted on the Forest Cover Type dataset also showed 
that, through the use of the ranked paths, analysts can pinpoint particular wilderness 
areas (4 areas) and soils (40 types) which have the highest deviations from the mean 
without undertaking the gruelling task of analyzing a large number of paths available 
for exploration. The knowledge discovered through the ranked paths was not only 
aligned to commonly known domain knowledge but also provided precise information 
on navigation of data cubes.  
 
In particular, it was explicit that the elevation for Cache_la_pourde area is low with 
high slope range but its implicit relationship with the soil types responsible for lowest 
elevation and highest slope range was not obvious. This implicit information was easily 
and efficiently revealed through the top ranked paths suggested by the methodology. It 
was identified that Soil Type 1 from Cathedral family and Soil Type 4 from Vanet 
series of soils are the main types which have lowest elevation and highest slopes in the 
overall dataset. More interestingly, when these two soil types were further examined 
and their characteristics were compared it was observed that their wilderness areas, 
elevation, slopes and mean air temperature have significant differences.  
 
Although the ranked pathways suggested by our methodology provided pathways in 
quickly and efficiently exploring large data cubes there remains a limitation to our 
approach. The suggested pathways are unable to support customized OLAP queries. For 
example, the top k highest selling items might not be items which have the highest 
deviation from mean in profit terms. Therefore, our ranked paths do not provide 
answers to such top k type queries because we calculate the absolute difference from 
mean and it is not necessarily the case that all items which have extreme deviation from 
mean in profit terms are the top selling items. This situation arises when the sales 
quantity fact variable is not included in the list of highly ranked fact variables, as 
identified by our methodology. To overcome this problem, the analyst will need to use 
his/her specialized domain knowledge to augment the list of highly ranked fact 
variables with the sales quantity variable. 
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The final objective was to integrate the design and analysis processes in order to extend 
the capabilities of traditional data exploration methods such as OLAP to discover 
diverse and meaningful association rules from multidimensional cubes.  The main tools 
used in multidimensional analysis in a data warehousing environment consist of various 
data aggregation and exploratory techniques that form part of the OLAP suite of 
methods. While traditional OLAP methods are excellent tools for exploratory data 
analysis their capability is limited as far as detecting hidden associations between items 
resident in a large data warehouse.  

In order to achieve this objective we generated association rules using the most 
informative dimensions retained after filtering via information theoretic measures such 
as Entropy and Information Gain. In the three case studies, the rules generated with our 
proposed methodology were shown to be more diverse on the Rae, CON and Hill 
objective diversity measures when compared against an approach that simply generated 
rules on flat data. Diversity is a common factor for measuring the interestingness of 
aggregated/summarized data. A diverse rule is interesting because in the absence of any 
domain knowledge, analysts commonly assume that the uniform distribution holds in 
summarized data (Geng and Hamilton 2006). According to this reasoning, the more 
diverse the rule is the more interesting it is. To date 19 diversity measures have been 
proposed in the literature, 16 of them were proposed by (Hilderman and Hamilton 2001) 
and the other 3 by (Zbidi, Faiz et al. 2006). However, these measures were used to 
evaluate the interestingness of database summaries.  Summaries are the compact 
descriptions of raw data at different levels of data abstraction.  None of the existing 
research has utilized diversity measures to evaluate the interestingness of classification 
or association rules (Geng and Hamilton 2006). To the best of our knowledge, we are 
the first to evaluate the interestingness of association rules using diversity measures.  
 
A number of other interestingness measures have been proposed in the literature to 
measure the interestingness of patterns such as novelty, generality, surprisingness, 
conciseness, peculiarity etc. However, our proposed methodology permits the 
evaluation of interestingness only through the diversity criterion. The aforementioned 
interestingness measures are all useful in different scenarios and are sometimes 
correlated with, rather independent of one another. For example, conciseness often 
coincides with generality and peculiarity may coincide with novelty. Conversely, some 
of these measures may have absolute independence, depending on the context or 
application domain. For example, diversity may have no correlation with novelty. 
Knowledge which may appear to be diverse does necessarily mean that it is novel. It is 
extremely challenging to find truly novel patterns/rules from data, thus explaining why 
novelty has received the least attention in the research community (Geng and Hamilton 
2006). Novelty requires the knowledge discovery systems to model everything that the 
users know explicitly in order to detect what is unknown or novel. In general, it is not 
feasible for users to specify all knowledge quickly and consistently in a system. 
Therefore, the proposed methodology utilized probability-based objective measures for 
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evaluation since such measures do not involve modelling user expectations in advance 
which is an extremely difficult task in areas where domain knowledge is either limited 
or not available.  
 
However, the probability based measures neither takes into account the context of the 
application domain nor the goals and background knowledge of the user. The objective 
measures only involve the probabilities of the antecedent of the rule, the consequent of 
the rule, or both and to represent the generality, correlation and reliability between the 
antecedent and consequent of the rules (Geng and Hamilton 2006). Nonetheless, novelty 
remains a major criterion in the evaluation of interesting rules and discovery of diverse 
rules have the potential to complement the identification of novel rules. For example, 
the rules discovered through diversity measures could be analyzed by the domain users 
as a first step and only those diverse rules which appear to be novel according to user’s 
analysis could be identified and retained as a second step. As it is widely accepted that 
no single measure is superior to others or suitable for all applications, thus the 
aforementioned two step approach is a reasonable way to discover diverse and novel 
rules. However, the determination of rule novelty was out of the scope of this research.  
 
Our case studies revealed association rules generated through the use of the schema are 
more compact, easier to understand and convey more information to an end user than a 
plethora of rules that cover each and every combination of values of the variables 
involved in rule mining process. For instance, the rules generated with schema 
suggested a group of distinct values for each input variable as opposed to a large 
number of rules containing a single value for each input variable.  

It is clear from the discussion presented in this section that our proposed methodology 
achieved the following main objectives of this research. 

 Provided automated and data-driven support for the design and construction of 
multidimensional schema. 

 Generated cubes of interest at different levels of data abstraction and identified 
the effects of data abstraction levels on information content. 

 Identified at each level of data abstraction, the most significant 
interrelationships that exist between dimensions (nominal variables) and facts 
(numeric variables) 

 Discovered diverse and meaningful association rules from multidimensional 
cube structure at various levels of data abstraction.  

8.2 Benefits of the automated approach over the traditional 
domain based approach 
In this section we give a general discussion on the application of the proposed 
automated methodology versus application of the traditional manual method of data 
analysis. We emphasize that our proposed methodology is suitable in cases where very 
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limited domain knowledge exist and analysts depend on the systems to guide him/her in 
discovering useful knowledge.  

Without the presence of this automated methodology, data warehouse designers have to 
rely heavily on domain knowledge to model dimensions and dimensional hierarchies. 
Moreover, the manually designed schema may be unable to highlight the natural 
grouping of values which are interesting and worth exploring using an OLAP tool. For 
instance, Country could be taken as a dimension by a human data warehouse designer 
and one meaningful way of grouping countries is to assign countries based on 
geographical regions such as Asia, Europe, and Africa. However, with the application of 
the automated method as proposed by this research can result in the Country dimension 
taking on completely different semantics. For example, the countries Australia, Mexico 
and Spain were grouped together by Gross Domestic Product (GDP) in the underlying 
data. This gives a non-traditional, yet, data semantic driven scheme for dimensional 
design that may not be apparent to data warehouse designers. Other similar examples 
were also discussed in detail in the three case studies presented in this thesis.  

 
We believe that the proposed methodology facilitates a broad range of users (data 
warehouse designers, data miners, analysts) as different users have diverse analytical 
needs. For instance, a data miner may be interested in finding natural grouping 
(clusters) of data whereas the warehouse designer is more interested in finding 
important dimensions and measures in order to design a multi-dimensional scheme and 
may not be interested in knowing the natural clusters that exist in the data. It shows that 
certain information which appears to be knowledge for one type of user may not appear 
the same for the other. Thus knowledge discovery requires not just domain expertise but 
also the use of automated aids that provide additional insights through the use of data 
driven methods.  

8.3 Conclusions 
The research represented in this thesis was motivated by the observation that integrated 
use of data mining and warehousing techniques are gaining rapid momentum as the core 
technology for knowledge discovery from large datasets in the business world and 
beyond. On one hand, the emergence of novel application domains with minimum 
domain knowledge availability motivates this integrated approach. On the other hand, it 
is not feasible to simply thread in the result of one technique into the other as the 
seamless integration requirement goes well beyond a simple merger of techniques. For 
example, if we take the integration of hierarchical clustering and PCA for ranking the 
numeric variables, a simple combination of the two techniques will not work as it is not 
possible to simply apply PCA on the current generation of clusters in order to rank 
them. The raw component scores obtained through PCA does not indicate the 
importance of a variable in a given cluster. It is the difference in component scores 
between consecutive levels in the hierarchy that reveals the relative importance or 
ranking of the variables.  
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Likewise, MCA maps the nominal variables onto principal axes, but simply using this 
mapping alone is not sufficient to understand the semantics amongst the potentially 
large number of values present in the nominal variables. In order to make sense out of 
such large nominal values, a grouping mechanism is required so that those values that 
are of local proximity to each other and share properties in common are grouped 
together. Again, it is clear that it is not just a case of simply applying the different 
techniques in some sequential order without doing any intelligent pre-processing 
beforehand. Such pre-processing plays a vital role in discovering useful information. 

Thus for such integration to occur in a seamless manner a suitable methodology is 
required for coupling data mining and machine learning techniques into one coherent 
mechanism for supporting data warehouse design. The work presented an attempt to 
reduce the gap between the capabilities of integrated systems and the design 
requirements imposed by emerging knowledge discovery applications.  

In the introductory chapter, we explained the general complexity of integrating data 
mining and machine learning techniques by pointing out that most of the integrated use 
of techniques for knowledge discovery had the following main assumptions. Firstly, 
prior work assumed that data analysts could identify set of informative dimension and 
data cubes based on their domain knowledge. Unfortunately, situations exist where such 
assumptions are not valid. These include high dimensional datasets where it is very 
difficult or even impossible to predetermine which dimensions and which cubes are the 
most informative. Secondly, it restricts the application of prior methodologies to only 
those domains where such domain knowledge is available. However, a knowledge 
discovery system should be able to work in ill-defined domains (Nkambou, Fournier-
Viger et al. 2011) and other domains where no background knowledge is available 
(Zhong, Dong et al. 2001). Thirdly, majority of the work done in the past focused on the 
discovery of knowledge from pre-existing data warehouses whereas very limited work 
exists in utilizing mining techniques to design a multidimensional model that supports 
knowledge discovery.  

The overall power of such integrated methodologies for knowledge discovery is 
determined by the interplay between the design and analysis steps. Thus, any 
improvement in design will in turn lead to enhanced knowledge discovery.  

8.4 Future Work 
The results presented in this thesis improve the knowledge discovery process by the 
fusion of data mining, data warehousing and machine learning technologies. The 
proposed methodology addresses the requirement for enriching the knowledge 
discovery a step closer by integrating the stand-alone analysis methods and overcoming 
their individual limitations of comprehensive analysis. However, the set of methods and 
techniques proposed by our methodology is by no means exhaustive.  

The use of some potentially useful methods was not explored due to the limited 
timeframe of our work whereas others were excluded deliberately as they did not fit or 
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would have expanded the scope of our resulting methodology. The body of work in this 
research can be extended by connecting it to the other related research areas, such as 
Online Analytical Mining (OLAM), real-time or temporal data warehousing, or by 
extending the current methods and their applications of this research in diverse 
application domains. In the latter category, a number of promising directions for future 
research can be identified. 

Hierarchical Clustering  

We have not considered any other clustering methods except agglomerative hierarchical 
clustering. It would be interesting to apply and compare other hierarchal clustering 
methods, especially methods which have a tendency to outperform traditional 
agglomerative clustering in terms of clustering accuracy and performance such as 
constrained agglomerative algorithms (Zhao and Karypis 2002) and Dynamically 
Growing Self-Organizing Tree (DGSOT) algorithm (Khan, Awad et al. 2007).  

Variable Ranking 

We have only utilized Principal Component Analysis (PCA) technique for ranking the 
numeric variables. It would be interesting to explore the use of alternative ranking 
methods for numeric variables such as Fisher score (Tsuda, Kawanabe et al. 2002), 
Linear Support Vector Machine (Tong and Chang 2001), Discriminant Analysis (Klecka 
1980) etc. which have also proved to be effective in various application domains. 
Likewise, we have only considered Multiple Correspondence Analysis (MCA) and 
Information Gain measure to rank nominal attributes. It would also be useful to explore 
the use of other methods such as Factor Analysis (Lawley and Maxwell 1971)  and 
Categorical Principal Components (Linting, Meulman et al. 2007) which is a non-linear 
approach that supports the use of nominal variables and is capable of handling and 
discovering non-linear relationships between variables. Use of these methods can 
extend the applicability of our methodology in those datasets where non-linear 
relationships exist which could not be identified through linear PCA. Another possible 
direction for future work would be to find an automatic method for detecting that certain 
fact variables could in fact be used to define dimensions. For instance, the Age variable 
is inherently numeric but can be used as a dimension variable by discretizing its value 
into distinct age ranges. Here the challenge would be to find the optimal partitioning 
strategy for discretization. Apart from the commonly used equal-width and equal-
frequency strategies, newly proposed approaches based on entropy (Han and Kamber 
2006) have been shown to outperform the more naïve approaches and these are worth 
exploring. 

Visual exploration of diverse association rules 

Association rule mining algorithms typically give a textual list showing simple IF-
THEN statements for the association rules and very little research has been conducted in 
the area of developing visualizers for effective visualization of association rules. Our 
work can be extended in terms of representing the diverse association rules using some 
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form of visual representation such as rule-focusing methodology (Blanchard, Guillet et 
al. 2007) which is an interactive methodology for the visual post-processing of 
association rules. It allows users to explore large sets of rules freely by focusing his/her 
attention on limited subsets. This approach relies on rule interestingness measures, on a 
visual representation, and on interactive navigation among the rules. A visual 
representation can improve user understanding of the level of diversity manifested by 
different sets of rules. For example, the framework proposed by (Liu, Hsu et al. 1999) 
could be adopted. The proposed framework has an interestingness analysis component 
and a visualization component. We could use our diversity measures to evaluate the rule 
interestingness and the visualization component could then be used to visually explore 
the diverse rules produced. The key strength of the Liu et. al visualization component is 
that from a single screen, the user is able to obtain a global, yet detailed picture of 
various interesting aspects of the discovered rules. Enhanced with color effects, the user 
can easily and quickly focus his/her attention on the more diverse rules. This powerful 
component can be integrated with our methodology in the post-processing of rules. 

Support for deeper dimensional levels for richer information 

In this research the dimensions that we design support two level hierarchies, with the 
first level consisting of groups and the second consisting of individual values within 
each group. A promising direction for future research would be to explore the use of 
deeper hierarchies, as it was shown in the case studies that the dimensional structure 
was responsible for capturing rich information. Our grouping algorithm (Algorithm 3- 
presented in Chapter 3) can be extended in recursive manner to accommodate multiple 
levels in the dimensional hierarchy. For example, the current algorithm automatically 
calculates a threshold for grouping the values at first level of dimensional hierarchy; we 
can keep decrementing this threshold until the groups formed at the first level split and 
divide into multiple groups at a lower level of hierarchy. The level in dimensional 
hierarchy where the division occurs could be labelled as second level and the same 
procedure could be repeated for obtaining multiple levels in the hierarchy. Conversely, 
the threshold can also be incremented in a nesting manner. For instance, we can keep 
incrementing the automatically calculated threshold until the groups formed at the first 
level merge together at a higher level of dimensional hierarchy. The current level of 
grouping achieved through Algorithm 3 could be called as a base level (instead of first 
level) and from this base level, both deeper (divisive manner) and higher (nesting 
manner) levels of dimensional hierarchies could be obtained using the proposed 
extensions that we have just described.  

Wider applicability and interesting application domains 

We also intend to test the methodology with complex datasets from the biological, 
medical and engineering domains to further test the performance and scalability of the 
proposed methodology. In addition to the above mentioned directions for future work, 
we would also like to highlight two other interesting applications of our work. Firstly, it 
would be productive to extend the methodology to handle data streams. In the context of 
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data stream research, taming the multidimensionality of real-life data streams in order to 
efficiently support OLAP analysis/mining tasks is a critical challenge (Cuzzocrea 2009). 
It would be very useful to adapt our proposed methodology to stream data and 
automatically build schema in order to adapt the process of discovery of cubes of 
interest in the face of concept changes that occur in data stream environments. 

Secondly, an issue not addressed at all in this research is privacy preserved data mining. 
The concept of diversity has been used in privacy preserved data mining in a completely 
different manner to our usage of it. (Machanavajjhala, Kifer et al. 2007) proposed a 
powerful privacy criterion called l-diversity and showed that the traditional k-
annoymized datasets have some subtle and severe privacy problems. First, an attacker 
can discover the values of sensitive attributes when there is little diversity in those 
sensitive attributes and secondly, the k-anonymity strategy does not guarantee privacy 
from attackers possessing background knowledge. In order to avoid such attacks the 
diversity based proposal inserts a diverse set of values for each tuple in sensitive 
datasets. This insertion of such diverse sets of values makes it impossible for the 
attackers to violate privacy based on their background knowledge. Similarly, we see a 
possible future direction for our current research in the data privacy domain. The 
association rules produced through our methodology can be leveraged to introduce 
diversity in the datasets to avoid attackers identifying private information based on 
background knowledge.  
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Appendix I 

C # code of the developed prototype for synthetic data and schema generation. 

 

Create Database Function  
 
        public void CreateDatabase(string dbName) 
        { 
            String str = ""; 
            SqlConnection myConn = new SqlConnection("Server=WT405A-
002WCW\\DWSERVER;Integrated security=SSPI; database=master"); 
 
            str = "CREATE DATABASE " + dbName + " ON PRIMARY " + 
                  "(NAME = " + dbName + ", " + 
                  "FILENAME = 'E:\\" + dbName + ".mdf', " + 
                  "SIZE = 10MB, MAXSIZE = 100MB, FILEGROWTH = 10%) " + 
                  "LOG ON (NAME = " + dbName + "_Log, " + 
                  "FILENAME = 'E:\\" + dbName + "_log.ldf', " + 
                  "SIZE = 10MB, " + 
                  "MAXSIZE = 100MB, " + 
                  "FILEGROWTH = 10%)"; 
 
            SqlCommand myCommand = new SqlCommand(str, myConn); 
             
            try 
            { 
                myConn.Open(); 
                myCommand.ExecuteNonQuery(); 
            } 
            catch (System.Exception ex) 
            { 
                MessageBox.Show(ex.ToString(), "Alert", MessageBoxButtons.OK, 
MessageBoxIcon.Information); 
            } 
            finally 
            { 
                if (myConn.State == ConnectionState.Open) 
                { 
                    myConn.Close(); 
                     
                } 
            } 
        } 
 
 
 
 

Schema Generation Function  
 
        private void btnGenerate_Click(object sender, EventArgs e) 
        { 
            if (txtDistinctValues.Text.Trim() != "" && txtNoOfDimensions.Text.Trim() != "" && 
                txtNoOfMeasures.Text.Trim() != "" && txtNoOfRecords.Text.Trim() != "") 
            { 
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                lblStartTime.Text = DateTime.Now.ToString(); 
                Int32 totalRows = Convert.ToInt32(txtNoOfRecords.Text.Trim()); 
                Int32 totalDimensions = Convert.ToInt32(txtNoOfDimensions.Text.Trim()); 
                Int32 totalDistinctValues = Convert.ToInt32(txtDistinctValues.Text.Trim()); 
                Int32 totalMeasures = Convert.ToInt32(txtNoOfMeasures.Text.Trim()); 
                ArrayList dimensions = new ArrayList(); 
                ArrayList distinctValues = new ArrayList(); 
                ArrayList measures = new ArrayList(); 
                 
                // Generate dimension column names 
                GenerateDimensions(ref dimensions, totalDimensions); 
 
                // Generate measure column names 
                GenerateMeasures(ref measures, totalMeasures); 
 
                // Generate distinct values 
                GenerateDistinctValues(ref distinctValues, totalDistinctValues); 
 
                // Generate dataset 
                GenerateDataset(dimensions, measures, distinctValues, ref ds, totalRows); 
 
                // Set time 
                lblEndTime.Text = DateTime.Now.ToString(); 
                TimeSpan ts = Convert.ToDateTime(lblEndTime.Text.Trim()) - 
Convert.ToDateTime(lblStartTime.Text.Trim()); 
                lblTimeTaken.Text = ts.TotalSeconds.ToString() + " Second(s)"; 
                 
            } 
            else 
                MessageBox.Show("Please enter all input values."); 
        } 
 
 
        private void CreateDatabaseSchema(DataSet ds) 
        { 
            string dbName = "Generated_SCHEMA"; 
              
            // create db 
            CreateDatabase(dbName); 
 
            SqlConnection myConn = new SqlConnection("Server=WT405A-
002WCW\\DWSERVER;Integrated security=SSPI; database=" + dbName); 
            myConn.Open(); 
                         
            // create dimension tables 
            GenerateDimensionTables(ref myConn, ref ds); 
 
            // create fact table 
            GenerateFactTable(ref myConn, ref ds); 
                     
            myConn.Close(); 
        } 
 

Grouping File Reading Function 
 
 
        private ArrayList GetGroupingList(XmlDocument xDoc, string dimName) 
        { 
            ArrayList list = new ArrayList(); 
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            try 
            { 
                dgvGroupingData.DataSource = null; 
                
                XmlNode root = xDoc.DocumentElement; 
                XmlNode dimension = root.SelectSingleNode("//dimension[@name='" + dimName + "']");   
 
                if (dimension != null) 
                { 
                    DataGridViewColumn col1 = new DataGridViewColumn(); 
                    col1.HeaderText = "Scale"; 
                    col1.Name = "Scale"; 
 
                    col1.CellTemplate = new DataGridViewTextBoxCell(); 
                    DataGridViewColumn col2 = new DataGridViewColumn(); 
                    col2.HeaderText = "Category"; 
                    col2.Name = "Category"; 
                    col2.CellTemplate = new DataGridViewTextBoxCell(); 
                    DataSet dsTemp = new DataSet(); 
                    DataTable dt = new DataTable("tab"); 
                    dt.Columns.Add(new DataColumn("Scale", typeof(double))); 
                    dt.Columns.Add(new DataColumn("Category", typeof(string))); 
                    ArrayList scales = new ArrayList(); 
                    ArrayList cats = new ArrayList(); 
                    XmlNode node = dimension; 
                    node = node.FirstChild; 
 
                    while (node != null) 
                    { 
                        scales.Add(Convert.ToDouble(node.Attributes[0].Value)); 
                        cats.Add(node.InnerText); 
                        node = node.NextSibling; 
                    } 
                    //scales.Sort(); 
                    for (int j = 0; j < scales.Count; j++) 
                    { 
                        DataRow row = dt.NewRow(); 
                        row["Scale"] = scales[j].ToString(); 
                        row["Category"] = cats[j].ToString(); 
                        dt.Rows.Add(row); 
                        
                    } 
                    DataRow[] sortedRows = dt.Select("", "Scale DESC"); 
                   
                    double max = Convert.ToDouble(sortedRows[0][0]); 
                    double min = Convert.ToDouble(sortedRows[sortedRows.Length - 1][0]); 
                    double thresh = max - min; 
                    thresh = thresh / sortedRows.Length; 
                    list = CreateGroups(thresh, dimName, sortedRows); 
 
                } 
            } 
            catch(Exception ex) 
            { 
                MessageBox.Show("GetGroupingList => " + ex.Message); 
            } 
 
            return list; 
        } 
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Group Creation Function 
 
 
        private ArrayList CreateGroups(double thresh, string currentDimName, DataRow[] sortedRows) 
        { 
            ArrayList tableGrp = new ArrayList(); 
 
            try 
            { 
                ArrayList table = new ArrayList(); 
                ArrayList group = new ArrayList(); 
                ArrayList groupGrp = new ArrayList(); 
                int j = 0; 
                string prevValue = "", grpVal = "", prevGrpVal = ""; 
 
                for (int i = 0; i < sortedRows.Length; i++) 
                { 
 
                    if (group.Count == 0) 
                    { 
                        group.Add(currentDimName + "_Group" + j.ToString()); 
                        groupGrp.Add(currentDimName + "_Group" + j.ToString()); 
 
                        if (i == 0) 
                        { 
                            group.Add(sortedRows[i][0].ToString()); 
                            prevValue = sortedRows[i][0].ToString(); 
                            groupGrp.Add(sortedRows[i][1].ToString()); 
                            prevGrpVal = sortedRows[i][1].ToString(); 
                        } 
 
                        j++; 
                    } 
                    else 
                    { 
                        double val = 0; 
 
                        val = Convert.ToDouble(prevValue) - 
                              Convert.ToDouble(sortedRows[i][0].ToString()); 
 
                        if (val < thresh) 
                        { 
                            group.Add(sortedRows[i][0].ToString()); 
                            prevValue = sortedRows[i][0].ToString(); 
                            groupGrp.Add(sortedRows[i][1].ToString()); 
                            prevGrpVal = sortedRows[i][1].ToString(); 
 
                            if (i == sortedRows.Length - 1) 
                            { 
                                table.Add(group); 
                                tableGrp.Add(groupGrp); 
                            } 
                        } 
                        else 
                        { 
                            table.Add(group); 
                            tableGrp.Add(groupGrp); 
                            group = new ArrayList(); 
                            groupGrp = new ArrayList(); 
                            group.Add(currentDimName + "_Group" + j.ToString()); 
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                            groupGrp.Add(currentDimName + "_Group" + j.ToString()); 
                            j++; 
                            group.Add(sortedRows[i][0].ToString()); 
                            prevValue = sortedRows[i][0].ToString(); 
                            groupGrp.Add(sortedRows[i][1].ToString()); 
                            prevGrpVal = sortedRows[i][1].ToString(); 
 
                            if (i == sortedRows.Length - 1) 
                            { 
                                table.Add(group); 
                                tableGrp.Add(groupGrp); 
                            } 
                        } 
                    } 
                } 
 
                CreateOtherGroupColumn(ref table, ref tableGrp, currentDimName); 
                ReorderGroupNames(ref table, ref tableGrp); 
        
            } 
            catch(Exception ex) 
            { 
                MessageBox.Show("CreateGroups => " + ex.Message); 
            } 
             
            return tableGrp; 
        } 
 

Populating Data Grid Function 
 
 
        private void PopulateGroupGrid(ArrayList table, ArrayList tableGrp) 
        { 
            try 
            { 
                // ---------------------  Value GRID --------------------- 
                dgvGroupVals.Rows.Clear(); 
                dgvGroupVals.Columns.Clear(); 
 
                // create columns 
                for (int i = 0; i < table.Count; i++) 
                { 
                    ArrayList item = (ArrayList)table[i]; 
                    DataGridViewColumn col1 = new DataGridViewColumn(); 
                    col1.HeaderText = item[0].ToString(); 
                    col1.Name = item[0].ToString(); 
                    col1.CellTemplate = new DataGridViewTextBoxCell(); 
                } 
 
                if (table.Count != 0) 
                { 
                    // --------------------- Group GRID --------------------- 
 
                    dgvGroupVals.Rows.Clear(); 
                    dgvGroupVals.Columns.Clear(); 
 
                    // create columns 
                    for (int i = 0; i < tableGrp.Count; i++) 
                    { 
                        ArrayList item = (ArrayList)tableGrp[i]; 
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                        DataGridViewColumn col1 = new DataGridViewColumn(); 
                        col1.HeaderText = item[0].ToString(); 
                        col1.Name = item[0].ToString(); 
                        col1.CellTemplate = new DataGridViewTextBoxCell(); 
                        int colInd = dgvGroupVals.Columns.Add(col1); 
                        dgvGroupVals.Columns[colInd].Width = 140; 
                    } 
 
                    int index1 = dgvGroupVals.Rows.Add(); 
 
                    //fill rows 
                    for (int i = 0; i < tableGrp.Count; i++) 
                    { 
                        ArrayList item = (ArrayList)tableGrp[i]; 
 
                        for (int j = 1; j < item.Count; j++) 
                        { 
                            if (dgvGroupVals.Rows.Count < item.Count - 1) 
                                index1 = dgvGroupVals.Rows.Add(); 
 
                            dgvGroupVals.Rows[j - 1].Cells[i].Value = item[j]; 
                        } 
                    } 
                } 
 
            
            } 
            catch (Exception ex) 
            { 
                MessageBox.Show("PopulateGroupGrid => " + ex.Message); 
            } 
        } 
         

Storing Group Names Funciton 
        private void ReorderGroupNames(ref ArrayList table, ref ArrayList tableGrp) 
        { 
            try 
            { 
                int k = 1; 
 
                for (int i = 0; i < tableGrp.Count; i++) 
                { 
                    ArrayList group = (ArrayList)tableGrp[i]; 
                    ArrayList values = (ArrayList)table[i]; 
 
                    if (group.Count > 0) 
                    { 
                        string dimName = group[0].ToString(); 
 
                        if (!dimName.Contains("_Group-Others")) 
                        { 
                            string[] splittedName = dimName.Split('_'); 
                            string newName = ""; 
 
                            for (int j = 0; j < splittedName.Length - 1; j++) 
                            { 
                                newName += splittedName[j] + "_"; 
                            } 
 
                            newName += "Group" + k.ToString(); 
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                            group[0] = newName; 
                            values[0] = newName; 
                            tableGrp[i] = group; 
                            table[i] = values; 
                            k += 1; 
                        } 
                    } 
                } 
            } 
            catch (Exception ex) 
            { 
                MessageBox.Show("ReorderGroupNames => " + ex.Message); 
            } 
        } 
 
 

Creation of Group-Others Function 
 
        private void CreateOtherGroupColumn(ref ArrayList table, ref ArrayList tableGrp, string 
currentDimName) 
        { 
            try 
            { 
                if (table.Count != 0) 
                { 
                    ArrayList valueToDelete = new ArrayList(); 
                    ArrayList groupToDelete = new ArrayList(); 
                    ArrayList otherGroupTable = new ArrayList(); 
                    ArrayList otherGroupGroups = new ArrayList(); 
 
                    for (int i = 0; i < tableGrp.Count; i++) 
                    { 
                        ArrayList group = (ArrayList)tableGrp[i]; 
                        ArrayList values = (ArrayList)table[i]; 
 
                        if (group.Count == 2) 
                        { 
                            valueToDelete.Add(values); 
                            groupToDelete.Add(group); 
 
                            if (otherGroupGroups.Count == 0) 
                            { 
                                string[] dimName = group[0].ToString().Split('_'); 
                                string newname = dimName[0]; 
 
                                for (int j = 1; j < dimName.Length - 1; j++) 
                                { 
                                    newname += "_" + dimName[j]; 
                                } 
 
                                otherGroupGroups.Add(newname + "_Group-Others"); 
                                otherGroupTable.Add(newname + "_Group-Others"); 
                            } 
 
                            otherGroupGroups.Add(group[1].ToString()); 
                            otherGroupTable.Add(values[1].ToString()); 
 
                        } 
                    } 
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                    for (int i = 0; i < groupToDelete.Count; i++) 
                    { 
                        table.Remove(valueToDelete[i]); 
                        tableGrp.Remove(groupToDelete[i]); 
                    } 
 
                    tableGrp.Add(otherGroupGroups); 
                    table.Add(otherGroupTable); 
                } 
                else 
                { 
                    if (dgvData.Rows.Count != 0) 
                    { 
                        ArrayList otherGroupTable = new ArrayList(); 
                        ArrayList otherGroupGroups = new ArrayList(); 
                        otherGroupTable.Add(currentDimName + "_Group-Others"); 
                        otherGroupGroups.Add(currentDimName + "_Group-Others"); 
                        otherGroupTable.Add(dgvData.Rows[0].Cells[0].Value); 
                        otherGroupGroups.Add(dgvData.Rows[0].Cells[1].Value); 
                        tableGrp.Add(otherGroupGroups); 
                        table.Add(otherGroupTable); 
                    } 
                } 
            } 
            catch (Exception ex) 
            { 
                MessageBox.Show("CreateOtherGroupColumn => " + ex.Message); 
            } 
        } 
 
 

Fact Table Creation  and Insertion Function 
 
        private void GenerateFactTable(ref SqlConnection myConn, ref DataSet ds) 
        { 
            try 
            { 
                string qry = "CREATE TABLE FactTable (FactTable_ID INTEGER IDENTITY (1, 1) 
PRIMARY KEY NOT NULL, "; 
 
                for (int i = 1; i < ds.Tables[0].Columns.Count; i++) 
                { 
                    string tableName = ds.Tables[0].Columns[i].ColumnName; 
 
                    if (tableName.Contains("Dim")) 
                        qry += tableName + "_ID INTEGER"; 
                    else 
                        qry += tableName + " INTEGER"; 
 
                    if (i != ds.Tables[0].Columns.Count - 1) 
                        qry += ", "; 
                } 
 
                qry += ")"; 
 
                SqlCommand myCommand = new SqlCommand(qry, myConn); 
                myCommand.ExecuteNonQuery(); 
 
                // insert data 
                string insertQry = "INSERT INTO FactTable("; 
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                for (int i = 1; i < ds.Tables[0].Columns.Count; i++) 
                { 
                    string tableName = ds.Tables[0].Columns[i].ColumnName; 
 
                    if (tableName.Contains("Dim")) 
                        insertQry += tableName + "_ID"; 
                    else 
                        insertQry += tableName; 
 
                    if (i != ds.Tables[0].Columns.Count - 1) 
                        insertQry += ", "; 
                } 
 
                insertQry += ") VALUES("; 
 
                for (int j = 0; j < ds.Tables[0].Rows.Count; j++) 
                { 
                    string vals = "", dec = ""; 
 
                    for (int k = 1; k < ds.Tables[0].Columns.Count; k++) 
                    { 
                        string colName = ds.Tables[0].Columns[k].ColumnName; 
 
                        if (colName.Contains("Dim")) 
                        { 
                            // generate sub query 
                            dec += " declare @" + colName + " varchar(50); SET @" + colName + " = (SELECT " 
+ colName + "_ID FROM " + colName + " WHERE " + colName + "_name = '" + 
ds.Tables[0].Rows[j][k].ToString() + "' ); "; 
                            vals += "@" + colName; 
                        } 
                        else 
                            vals += ds.Tables[0].Rows[j][k]; 
 
                        if (k != ds.Tables[0].Columns.Count - 1) 
                            vals += ", "; 
                    } 
 
                    vals += ")"; 
                    SqlCommand insertCommand = new SqlCommand(dec + insertQry + vals, myConn); 
                    insertCommand.ExecuteNonQuery(); 
                } 
            } 
            catch (Exception ex) 
            { 
                MessageBox.Show("GenerateFactTable => " + ex.Message); 
            } 
        } 
 

Dimension Tables Creation and Insertion Function 
 
        private void GenerateDimensionTables(ref SqlConnection myConn, ref DataSet ds) 
        { 
            try 
            { 
                XmlDocument xDoc = new XmlDocument(); 
 
                for (int i = 0; i < ds.Tables[0].Columns.Count; i++) 
                { 
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                    string tableName = ds.Tables[0].Columns[i].ColumnName; 
 
                    if (tableName.Contains("Dim")) 
                    { 
                        string qry = "CREATE TABLE " + tableName + " " + 
                                     " (" + tableName + "_ID INTEGER IDENTITY (1, 1) PRIMARY KEY NOT 
NULL, "; 
 
                        for (int ind = 0; ind < Convert.ToInt32(nudGroupingLevel.Value); ind++) 
                        { 
                            qry += tableName + "_group_lvl_" + (ind + 1).ToString() + " varchar(50) "; 
 
                            if (ind != Convert.ToInt32(nudGroupingLevel.Value) - 1) 
                                qry += ", "; 
                        } 
 
                        qry += ", " + tableName + "_name varchar(50) )"; 
 
                        SqlCommand myCommand = new SqlCommand(qry, myConn); 
                        myCommand.ExecuteNonQuery(); 
 
                        if (txtGroupingFile.Text.Trim() != "") 
                        { 
                            xDoc.Load(txtGroupingFile.Text); 
                        } 
 
                        // insert data 
                        for (int j = 0; j < ds.Tables[0].Rows.Count; j++) 
                        { 
            
                            string insertQry = "IF (SELECT Count(*) FROM " + tableName + " WHERE " + 
tableName + "_name = '" + ds.Tables[0].Rows[j][i].ToString() + "' ) = 0 BEGIN INSERT INTO " + 
tableName + " (" + tableName + "_name, "; 
 
                            for (int ind = 0; ind < Convert.ToInt32(nudGroupingLevel.Value); ind++) 
                            { 
                                 
                                insertQry += tableName + "_group_lvl_" + (ind + 1).ToString(); 
 
                                if (ind != Convert.ToInt32(nudGroupingLevel.Value) - 1) 
                                    insertQry += ", "; 
                            } 
                             
                            insertQry += ") VALUES('" + ds.Tables[0].Rows[j][i].ToString() + "',"; 
 
                            for (int ind = 0; ind < Convert.ToInt32(nudGroupingLevel.Value); ind++) 
                            { 
                                insertQry += "'" + GetGroupValue(xDoc, tableName.Replace("Dim_", ""), (ind + 1), 
ds.Tables[0].Rows[j][i].ToString()) + "' "; 
 
                                if (ind != Convert.ToInt32(nudGroupingLevel.Value) - 1) 
                                    insertQry += ", "; 
                            } 
 
                            insertQry += ") END"; 
                            SqlCommand insertCommand = new SqlCommand(insertQry, myConn); 
                            insertCommand.ExecuteNonQuery(); 
                        } 
                    } 
                } 



135 
 

            } 
            catch (Exception ex) 
            { 
                MessageBox.Show("GenerateDimensionTables => " + ex.Message); 
            } 
        } 
 
 

Reading Grouping Information Function 
 
        private string GetGroupValue(XmlDocument xDoc, string dimensionName, int groupingLevel, 
string valueToCompare) 
        { 
            string groupVal = ""; 
            ArrayList objGroupingList = new ArrayList(); 
            objGroupingList = GetGroupingList(xDoc, dimensionName); 
 
            if (objGroupingList != null && objGroupingList.Count > 0) // get group value 
            { 
                for (int k = 0; k < objGroupingList.Count; k++) 
                { 
                    ArrayList innerList = (ArrayList)objGroupingList[k]; 
 
                    if (innerList.Contains(valueToCompare)) 
                    { 
                        groupVal = innerList[0].ToString().Trim(); 
                        break; 
                    } 
                } 
            } 
            else 
                groupVal = ""; 
 
            return groupVal; 
        } 
 
 

Synthetic Dataset Generation Function 
 
 
        private void GenerateDataset(ArrayList dimensions, ArrayList measures, ArrayList distinctValues, 
ref DataSet ds, Int32 totalRows) 
        { 
            DataTable dt = new DataTable("tab"); 
            DataColumn colPK = new DataColumn("ID"); 
            dt.Columns.Add(colPK); 
 
            // add dimension columns 
            for (int i = 0; i < dimensions.Count; i++) 
            { 
                DataColumn col = new DataColumn(dimensions[i].ToString()); 
                dt.Columns.Add(col); 
            } 
 
            // add measure columns 
            for (int i = 0; i < measures.Count; i++) 
            { 
                DataColumn col = new DataColumn(measures[i].ToString()); 
                dt.Columns.Add(col); 
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            } 
 
            int id = 1; 
 
            // fill data 
            for (Int32 i = 0; i < totalRows; i++) 
            { 
                DataRow row = dt.NewRow(); 
                row["ID"] = id++; 
 
                for (int j = 1; j < dt.Columns.Count; j++) 
                { 
                    if (dt.Columns[j].ColumnName.Contains("Dim")) 
                    { 
                        row[dt.Columns[j].ColumnName] = dt.Columns[j].ColumnName + 
GetRandomValue(distinctValues); 
                    } 
                    else 
                        row[dt.Columns[j].ColumnName] = random.Next(0, 1000); 
                } 
 
                dt.Rows.Add(row); 
            } 
 
            ds.Tables.Add(dt); 
            dgvData.DataSource = ds; 
            dgvData.DataMember = "tab"; 
            btnGenerateSchema.Enabled = true; 
        } 
 
        private string GetRandomValue(ArrayList distinctValues) 
        { 
            int index = random.Next(0, distinctValues.Count); 
            return distinctValues[index].ToString(); 
        } 
 
        private void GenerateDistinctValues(ref ArrayList distinctValues, int totalDistinctValues) 
        { 
            for (int i = 0; i < totalDistinctValues; i++) 
            { 
                distinctValues.Add("_v" + (i + 1).ToString()); 
            } 
        } 
 
        private void GenerateMeasures(ref ArrayList measures, int totalMeasures) 
        { 
            for (int i = 0; i < totalMeasures; i++) 
            { 
                measures.Add("Measure_" + (i + 1).ToString()); 
            } 
        } 
 
        private void GenerateDimensions(ref ArrayList dimensions, int totalDimensions) 
        { 
            for (int i = 0; i < totalDimensions; i++) 
            { 
                dimensions.Add("Dim_" + (i + 1).ToString()); 
            } 
        } 
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        public static void ShuffleInPlace(ArrayList source) 
        { 
            Random rnd = new Random(); 
 
            for (int inx = source.Count - 1; inx > 0; --inx) 
            { 
                int position = rnd.Next(inx); 
                object temp = source[inx]; 
                source[inx] = source[position]; 
                source[position] = temp; 
            } 
        } 
 

Schema Generation Time Calculation Function 
 
        private void btnGenerateSchema_Click(object sender, EventArgs e) 
        { 
            lblSchemaStartTime.Text = DateTime.Now.ToString(); 
            CreateDatabaseSchema(ds); 
            lblSchemaEndTime.Text = DateTime.Now.ToString(); 
            TimeSpan ts = Convert.ToDateTime(lblSchemaEndTime.Text.Trim()) - 
Convert.ToDateTime(lblSchemaStartTime.Text.Trim()); 
            lblSchemaTimeTaken.Text = ts.TotalSeconds.ToString() + " Seconds"; 
        } 
 
        private void btnBrowseDataFile_Click(object sender, EventArgs e) 
        { 
            openFileDialog1.FileName = ""; 
 
            if (openFileDialog1.ShowDialog() == DialogResult.OK) 
            { 
                txtDataFile.Text = openFileDialog1.FileNames[0]; 
            } 
        } 
 
        private void btnBrowseGroupingFile_Click(object sender, EventArgs e) 
        { 
            openFileDialog1.FileName = ""; 
 
            if (openFileDialog1.ShowDialog() == DialogResult.OK) 
            { 
                txtGroupingFile.Text = openFileDialog1.FileNames[0]; 
            } 
        } 
 
        private void btnLoadDataFiles_Click(object sender, EventArgs e) 
        { 
            if (txtDataFile.Text.Trim() != "") 
            { 
                lblStartTime.Text = DateTime.Now.ToString(); 
 
                // load data file 
                StreamReader rdr = new StreamReader(txtDataFile.Text.Trim()); 
                DataTable dt = new DataTable("data"); 
                Boolean colsCreated = false; 
                string nextLine = "", line = ""; 
 
                while (rdr.Peek() > -1) 
                { 
                    if (nextLine == "") 
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                        line = rdr.ReadLine(); 
                    else 
                    { 
                        line = nextLine; 
                        nextLine = ""; 
                    } 
 
                    if (!colsCreated) 
                    { 
                        nextLine = rdr.ReadLine(); 
                        CreateColumns(ref dt, line, nextLine); 
                        colsCreated = true; 
                    } 
                    else 
                    { 
                        string[] splittedLine = line.Split('\t'); 
 
                        { 
                            DataRow dr = dt.NewRow(); 
 
                            for (int j = 0; j < dt.Columns.Count; j++) 
                            { 
                                string groupingVal = ""; 
 
                                if (dt.Columns[j].ColumnName.Contains("Dim")) 
                                { 
                                     
                                } 
 
                                if (groupingVal.Trim() == "") 
                                    dr[dt.Columns[j].ColumnName] = splittedLine[j]; 
                                else 
                                    dr[dt.Columns[j].ColumnName] = splittedLine[j] + "  -  " + groupingVal; 
                            } 
 
                            dt.Rows.Add(dr); 
                        } 
                    } 
                } 
 
                ds.Tables.Add(dt); 
                dgvData.DataSource = ds; 
                dgvData.DataMember = "data"; 
                btnGenerateSchema.Enabled = true; 
 
                // set time 
                lblEndTime.Text = DateTime.Now.ToString(); 
                TimeSpan ts = Convert.ToDateTime(lblEndTime.Text.Trim()) - 
Convert.ToDateTime(lblStartTime.Text.Trim()); 
                lblTimeTaken.Text = ts.TotalSeconds.ToString() + " Seconds"; 
            } 
            else 
                MessageBox.Show("Please select data file."); 
        } 
 
 
 

Column Creation Function 
 
        private void CreateColumns(ref DataTable dt, string line, string nextLine) 
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        { 
            string[] splittedLine = line.Split('\t'); 
            string[] splittedNextLine = nextLine.Split('\t'); 
 
            for (int i = 0; i < splittedLine.Length; i++) 
            { 
                string colName = ""; 
 
                if (i == 0) 
                    colName = "ID"; 
                else 
                { 
                    Double val = 0; 
                    Double.TryParse(splittedNextLine[i].Trim(), out val); 
 
                    string name = splittedLine[i].Trim().Replace("-", "_"); 
 
                    if (val != 0) 
                        colName = "Measure_" + name; 
                    else 
                        colName = "Dim_" + name; 
                } 
 
                DataColumn col = new DataColumn(colName); 
                dt.Columns.Add(col); 
            } 
        } 
 

View Grouped Values Function 
 
        private void btnViewGrouping_Click(object sender, EventArgs e) 
        { 
            if (txtGroupingFile.Text.Trim() != "") 
            { 
                Form1 frm = new Form1(txtGroupingFile.Text.Trim()); 
                frm.ShowDialog(); 
            } 
            else 
                MessageBox.Show("Please select meta file."); 
        } 
    }} 
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