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INDUSTRIAL FAULT RECOGNITION USING DISTRIBUTED CURRENT SIGNATURE 

ANALYSIS 

ABSTRACT 

Immediate detection and diagnosis of existing faults and faulty behaviour of electrical motors 

using electrical signals is one of the important interests of the power industry. Motor current signature 

analysis is a modern approach to diagnose faults of induction motors. This thesis investigates the 

significance of propagated fault signatures through distributed power systems, aiming at explaining and 

quantifying different observations of faults signals and hence diagnoses machine faults with a higher 

accuracy. 

Electrical indicators of faults, unlike other fault indicators, (e.g. vibration signals), propagate all 

over the network. Therefore fault signals may be manipulated by operation of neighbouring motors and 

the system’s environmental noise. Both simulation and practical results clearly demonstrate the signal 

interference and hence confusion in diagnosis due to presence of a faulty motor nearby. Thus a 

knowledge based system is necessary to understand the meaning of the signals manifested at various 

parts of the distributed power system. On another side, taking into account that fault signals are 

travelling all over the network, several observations can be made for events in the network. In this 

thesis the idea of cross evaluation of fault signals considering signal propagation will be discussed and 

analysed. The research attempts to improve diagnosis reliability with a simple and viable framework of 

decision making. 

  The thesis scope is limited to monitoring behaviour of induction motors in distributed power 

systems. These types of electrical motors are the main load of most industries. In this thesis, existing 

formulations of fault signatures would not be significantly disturbed, as distributed diagnosis can fit 

into an existing framework of current signature analysis. The research takes advantage of multiple 

areas of study to formulate propagation of fault signals while they are travelling in a scaled down 

distributed power system. 
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At the beginning, a systematic approach has been employed to estimate influence of fault 

signals in currents of neighbouring electrical motors. Further analysis in attenuation of electrical signals 

leads to a technical framework that evaluates propagation of fault signals in power networks. The 

framework has been developed to estimate origin of fault signal by employing propagation patterns and 

estimating anticipated fault representatives around the network. An analytical process has been 

proposed to take advantage of multiple observations in order to diagnose the type and identify origin of 

fault signals. This can help maximize the number of independent observations and thus improve the 

accuracy of traditional approaches to current signature analysis. In general, this provides a better 

monitoring of behaviour of electrical motors at a given site. A rewarding system has been used to 

identify and track the signals caused by motors and quantify association of current signals with known 

industrial faults. 

An example of a scaled down distributed power system has been simulated to describe 

behaviour of distributed power systems with faulty components. The simulation model is carefully 

compared with the practical results to validate the simulation results thoroughly. Type and strength of 

faults and size, speed, load and placement of electrical motors are acting variables in propagation 

patterns of fault signals. These variables have been simulated in a scaled down industrial power 

network to examine distributed diagnosis in the new environment. In addition a number of scaled-down 

experiments have been employed to verify results of simulation models and confirm the accuracy of 

results.  

Analytical results demonstrate significant improvement in describing interference amongst 

electrical motors that work together in an electrical network. This leads to a simple strategy for 

identifying the ownership of fault signals and hence having more accurate diagnostic results. Further 

developments in modelling the propagation of fault indicators emerged for improving the reliability 

and efficiency of fault diagnosis in industrial systems. On the other hand, a number of shortcomings 

have been observed in implementing strategy of distributed diagnosis including confusion among many 

similar faults in the power network and malfunctioning of the diagnosis system due to non-linear 

interferences of noise signals. Some of these problems are believed to be solvable by using a proper 
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numerical solution (e.g. Artificial Neural Network, Bayesian, etc.) to process fault indices and 

propagation patterns before and after occurrence of each fault. 

In conclusion, the thesis does not claim to provide a complete solution of fault diagnosis in 

electrical motors. But it is an attempt to provide a more dependable industry solution for fault diagnosis 

in induction motors. Distributed diagnosis is a framework which takes advantage of multiple 

observations of a single fault and hence it is dependent on quality of acquired signals among individual 

observations.  
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Chapter 1:  

INTRODUCTION 

1.1 Industrial Fault Diagnosis 

Diagnosis of the malfunctioning behaviours in power systems is a challenging research area. 

Many technologies have been implemented to protect electrical equipment and detect the cause of 

faults since establishment of power systems. Various types of protective equipment have been 

recommended to detect serious faults such as short circuit. Another type of fault is related to the 

malfunctioning and unhealthy operation of the network components. Such incidents have less impact 

on the operation of distributed power systems compared to electrical faults. Neglect of these faults can 

cause major and regular losses due to failure of electrical appliances and possible interruption in the 

continuity of the service. 

Induction motors are the main load of most industrial power systems. Therefore special 

attention has to be paid to maintain the healthy operation of electric motors. For more than a century, 

regular protective maintenance was the main approach employed by industry to assure healthy 

operation of electric motors. Recent developments in processing technologies suggested using state 

monitoring to minimize the cost of maintenance and assess the condition of the operation of electrical 

motors, without interrupting the normal function. Several technologies have been introduced and 

valued in power industries. These developments have led to a continuous improvement in accuracy and 

effectiveness of diagnostic methodologies. A number of successful diagnostic approaches have been 

indicated in Figure 1. 
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Figure 1 Diagnostic approaches for induction motors  

As shown in Figure 1, diagnostic technologies can be categorized into two groups of vibration 

analysis and analysis of electric signals. Fault diagnosis using electric signals offers a remote judgment 

while direct access to vibration sensors is required for vibration analysis. A number of technologies 

have been proposed to diagnose motor faults by analysing electric signals.  

Various types of motor faults are frequently associated with electric drives and rotating 

components. Many methods have been published and are commercially available to observe the 

behaviour of electric motors. However, most industries are still complaining about regular unpredicted 

faults. Moreover, there are always some faults that are difficult to detect and their effects would appear 

as they accelerate motor aging and reduce the useful lifetime of system components [1]. 
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Vibration analysis, thermal monitoring, noise monitoring and finally monitoring electric signals 

are the most common approaches of fault diagnosis in electric motors. Among all these methods, 

monitoring the behaviour of electric motors using electric signals is the most viable and interesting for 

industries due to the following reasons: 

 Direct access to the motor is not required 

 It is easier to simplify electric signals 

 There is the possibility of remote monitoring 

 Use of current and voltage sensors for other monitoring purposes (e.g. power monitoring) 

However, despite these benefits, fault diagnosis using electric signals usually offers lower 

reliability compared to other established methods of diagnosis such as vibration analysis. Reliability 

issues are mainly caused because of the interference of noise signals due to the normal operation of 

electric motors and also other sources of noises on the site. Therefore there is a high demand from 

industry to provide more robust solutions for fault diagnosis using electric signals. 

1.2 Diagnosis of faults in electric motors using electrical signals 

Current and voltage of electric motors are available indicators to judge the proper functioning of 

electric motors. Current is a function of voltage and characterises the operation of the electric motor. 

But, the voltage of the terminals of a motor is a function of its supply voltage and the topography of the 

power network. Therefore voltage cannot be considered as indicative of behaviour of electric motors.  

Since the supplied voltage is dependent on generated voltage and network topography, it cannot be 

considered as an indicator of functioning performance of the electric motor. But a combination of 

current and voltage as the instantaneous power can be considered as another method of diagnosis. 

Instantaneous power analysis requires measurement of two signals and hence is more expensive 

compared to current monitoring. On the other hand it does not provide a major improvement in 

reliability of diagnosis where a signal processing algorithm is set to categorize significant fault signals 

[2]. 
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Motor current signature analysis is one of the most successful diagnostic approaches proposed 

for rotating components. This strategy utilizes pattern recognition over current signals of electric 

motors to estimate the presence of pre-recorded faults. Recently there have been a number of studies 

that reported successful applications of motor current signature analysis for various types of electric 

machines. A recent meta- analysis classified and evaluated a number of investigations which reported 

successful employment of fault diagnosis techniques for inter-turn faults [4]. 

The main challenge in diagnosis of motor faults using signature analysis is interference among 

components of distributed power systems. Some approaches have been proposed to improve the 

reliability and reduce conflict. However, a significant amount of interference due to operation of 

parallel motors causes frequency signals similar to patterns of suspected faults. In addition, for most 

low power or less important electric components these techniques are too expensive. A survey found 

that for many low and medium powered electrical component, an individual monitoring system is not 

viable in terms of cost [1]. This paradox demonstrates the need to develop a strategy that provides the 

necessary technology for effective and less expensive fault detection and diagnosis in distributed power 

systems [2, 3]. 

1.3 Diagnosis framework using motor current signature analysis 

The general framework of diagnosis using MCSA has been shown in Figure 2. 
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Figure 2 Single-phase current monitoring scheme  

As shown in Figure 2 any process of diagnosis is involved in data acquisition, categorizing fault 

signals, pattern recognition and report generation. There are several data acquisition components to 

capture and store electric signals. In all technologies, initially the signal should be converted and 

sampled via a current or voltage transformer or transducer. Then the 50Hz frequency will be removed 

to exclude the normal operation of the electric motor. The next stage is to exclude high frequency 

components of the wave that are not contributing toward the process of diagnosis. Analogue current 

signals will then be sampled and converted to digital signals using an analogue to digital converter. 

Digitization processes are followed by calculating the frequency spectrum of the waveform and 

categorizing significant components of the wave using a data processing transformer such as Fast 

Fourier Transform or Discrete Wavelet Transform. Then a fault detection algorithm is required to 

process fault indicators and a post processing system will be needed to generate a diagnostic report and 

announce required warnings. 

Report Generation 

Fault Diagnosis 

Fault Detection Algorithm 

Identifing Significant frequencies 

Calculating the frequency spectrum 

Data Storage 

Analogue to Digital converter 

Low pass filter 

Current Sample using a CT 
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1.4 Motivation 

Motor current signature analysis provides good results in laboratory environments when the 

approach is used on isolated motors. In a real life situation, electric machines are connected to the same 

Bus and work in groups for handling a given industrial operation. They usually share voltage and 

current from common terminals and would easily influence each other. This means that signals picked 

up at any point within the distributed power system would contain information on the local motor as 

well as components relevant to other motors in the neighbourhood. This will result in a significant 

amount of interference among motors and hence a reduction in the degree of confidence in the 

diagnosis. A diagnosis based on analysis of multiple test points may help in easing out this issue. 

The aim of this research is the development of a distributed, and in-network data-processing 

algorithm based on analysis of signals available at various test points within the network.  Each test 

point reveals its view on the potential fault at the various physical locations within the neighbourhood. 

These will then be processed to identify the type and physical location of the fault with a higher degree 

of confidence. The concept is based on collaborative diagnosis and may reveal faults relevant to motors 

with or without sensing points within the neighbourhood.  

A clear understanding of the infrastructure of distributed power systems is required. Any 

industrial site is a combination of several types of clusters of equipment. These components include the 

different size of electrical drives, static loads and nonlinear equipment. Clusters are connected to each 

other via cables and electrical connections. Most electric motors are equipped with voltage and current 

measuring points. Some components have an individual monitoring system while many components do 

not have a direct monitoring system.  

Fault signals travel over the network from one bus to another, thus they may be detected in 

theory wherever a physical link generates a path between sources of fault signals and a measuring 

point. Theoretically, fault patterns may be detected if a typical link exists between the sources of the 

remotely detected signal. In the real situation, noise interference degrades the quality of the signal and 

makes diagnosis difficult. Considering this limitation, there will still be some selected points that may 
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have a clear view of the fault. Some fault signals may travel without a major change and others may 

have major changes. The modified signal may still be detectable in the remote location.  

 

1.5 Contributions and Thesis Outline 

In this thesis, existing formulations of fault signatures would not be significantly disturbed, as 

distributed diagnosis can fit into the existing framework of current signature analysis. The research 

takes advantage of multiple areas of study to formulate propagation of fault signals while they are 

travelling in a scaled down distributed power system. 

In the research, a systematic approach has been employed to estimate the influence of fault 

signals in currents of in-network electric motors. Further analysis in attenuation of electric signals has 

led to a technical framework that evaluates the propagation of fault signals in power networks. The 

framework has been developed to estimate the origin of the fault signal by employing propagation 

patterns and estimating anticipated fault representation around the network. A technical process has 

been proposed to take advantage of multiple observations in order to diagnose the type and identify the 

origin of fault signals. This can help maximize the number of independent observations and thus 

improve the accuracy of traditional approaches to current signature analysis. In general, this provides a 

better monitoring of behaviour of electrical components in a given site. A rewarding system has been 

used to identify and track the signals caused by motors and quantify the association of current signals 

with known industrial faults. 

The main contributions of this thesis are: 

 A framework of fault diagnosis is proposed for  automated fault diagnosis for individual 

induction motors 

 Inherent shortcomings of individual diagnosis due to the propagation of fault signals have 

been demonstrated 
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 An in-network solution has been proposed to improve the reliability and dependability of 

fault diagnosis when a direct monitoring system is available and to provide a 

preliminary diagnosis whenever a direct measuring point is not available. 

The thesis is organized into 8 chapters which include the introduction, literature review, theory 

of the distributed signature analysis concept, a distributed power system behavioural simulation model, 

results, performance evaluation and analysis, conclusion and future scope.   

Chapter 1 describes the process of fault diagnosis in general and current signature analysis in 

particular in terms of motivation, state-of-the-art, background information, and finally the thesis 

outline.  

Chapter 2 presents the literature review in relevant areas followed by the problem statement, 

research objectives, and contributions. In both chapters one and two, great attention is given to those 

techniques applied so far for the diagnosis of electric motor faults. This attempts to give an overview of 

currently used methods for current signature analysis and to estimate the progress made towards an 

implementation of these techniques in typical industrial situations. 

Chapter 3 describes tools, equipment and software that have been used to accomplish thesis 

tasks.  

 Chapter 4 presents the theory of distributed fault diagnosis and related formulations of 

propagation of fault signals and patterns recognition strategy developed in the thesis.  

Chapter 5 describes the research materials, simulation tools and scaled down test-beds, their 

capability and any limiting effect they might have on the results obtained. Details of the simulation 

model and essential key factors of simulations are also described in this chapter.  

Chapter 6 simulates several types of faults by changing acting variables of distributed fault 

diagnosis. Attenuated fault signals and propagation patterns through the network are discussed in the 

chapter.  
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Chapter 7 implements the theory of distributed signature analysis by employing the simulation 

results which are described in the previous chapter. This chapter also evaluates the performance, and 

analysis is based on the final results generated by the strategy of distributed signature analysis.  

Chapter 8 summarizes the conclusion drawn in the thesis along with discussing future research 

directions. 

There are three appendices. Appendix I provides essential MCSA formulation to analyse a 

number of motor faults in electrical motors. Details of components of simulation models are provided 

by Appendix II. Finally all MATLAB functions and m-files developed to diagnose motor faults given 

by Appendix III. 
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Chapter 2:  

LITERATURE SURVEY 

Several studies have been done in the area of fault monitoring and diagnosis. Vibration 

monitoring and current signature analysis are two well-known successful methodologies to identify 

industrial faults. There are a number of engineering areas that contribute to the improvement of 

accuracy and interpretation of fault detection and diagnosis. Associated research and investigations can 

be classified into the following groups: 

 Fault diagnosis using pattern recognition 

 Motor current signature analysis 

 Application of smart processing strategies in fault diagnosis 

 Propagation of fault signals throughout the distributed power system 

 Distributed processing and data synthesis 

In this chapter, significant developments and contributions of the listed areas toward fault 

detection and diagnosis will be discussed in detail. 

2.1 Traditional Fault monitoring and diagnosis 

Fault detection and risk management is a complex problem. Today it is claimed that most of the 

sharp and high risk faults can be detected by modern digital relays. Traditional protection devices are 

not able to detect slow nature faults particularly at early stages of manifestation of faults. Therefore 

another protection method is required to monitor slow nature faults based on vibration and current 

trends. Fault trends caused by change of magnetic flux as a result of the change of mechanical 

characteristics of electric motors. 
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Generally, any increment in the level of vibration signals is considered as a primary illustrator of a 

mechanical fault. Moreover by analysing vibration signals, the nature of most of mechanical faults can 

be detected. Vibration itself may damage mechanical components and must be controlled. If the 

effective value of machine vibrations becomes more than the tolerance of the mechanical equipment, 

protection systems must stop operation of the machine to avoid further damages. Generally, the average 

vibration speed of bearings are compared with a standard set-point such as the international IS0 2372, 

the British BS 4675, or the German VDI 2056, as shown in Table 1. These standards recommend a set 

of vibration limitations of machines which were developed as an indication of a serious mechanical 

fault in the target motor  [6]. 

Table 1 Vibration Severity (10 Hz–1 kHz) VDI 2056, ISO, 2372, BS 4675. This information has been 

summarised from Reference “[7]” in  [6]. 

 Group K Group M Group G 

Types of 

Machines 

Small machines up 

to 15KW 

Medium Machines 15-75 kW 

or up to 300kW on special 

foundation 

Large machines with rigid and 

heavy foundations whose natural 

frequency exceeds machines speed 

Good Up to 0.71m/s Up to 1.12 m/s Up to 1.8 m/s 

Allowable 0.71 to 1.8 m/s 1.12 m/s to 2.8 m/s 1.8 m/s to 4.5 m/s 

Just tolerable 1.8 to 4.5 m/s 2.8 m/s to 7.1 m/s 4.5 m/s to 11.2 m/s 

Not permissible More than 4.5 m/s More than 7.1 m/s More than 11.2 m/s 

In the last few decades strategies of applying vibration waveforms to analyse the nature of fault 

signals have been developed and widely accepted. This method is based on the fact that any kind of 

fault has a specific frequency response. Hence by analysing frequency responses of vibration sensors, 

the nature of the fault may be differentiated. By employing digital processing and pattern recognition 
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methods, a number of effective diagnostic methods have been proposed. These methods mainly 

concentrate on amplitude of a range of frequency components of vibration signals. Nowadays vibration 

motoring is an established industrial tool in fault detection and diagnosis. The effects of vibrations in 

current waveform are clearly tested in several studies. These studies prove that mechanical faults can 

be diagnosed by detecting unexpected changes in the frequency spectrum of current waveforms. 

A set of diagnostic recommendations has been published in reference  [8] to provide guidance 

for industrial fault diagnosis using vibration signals. 

In the early 1970s, the US Nuclear Regulatory Commission introduced the need to verify the 

condition of the motors that are located in nuclear reactors. There is no direct access to those electric 

motors and their accessories as they are located in a high radiation zone. Study on the assignment was 

initiated by Oak Ridge National Labs [9]. These experiments found a relationship between harmonics of 

current signals with vibrations of target motors. Further studies were advised to take advantage of 

current signals to estimate presence of abnormal vibration signals in electrical motors and then 

diagnose motor faults  [6]. The research claimed that “For a known frequency, the current and vibration 

levels are monotonically (if not linearly) related.” The authors advised that conditional operation of 

motor vibrations can be evaluated with frequency spectrum of one phase of stator current. Later on, 

several investigations advocated a sensorless vibration monitoring by analysing the frequency spectrum 

of current signals. Earlier on 1992, G. B. Kliman and J. Stein indicated the possibility to diagnose 

motor faults by monitoring the current of electric motors  [9]. These two areas of research demonstrate 

the possibility to diagnose motors by observing abnormal frequencies in frequency spectrums of 

current signals. 

 

2.2 Fault diagnosis using electric signals 

During the past three decades, many studies have been published to improve maintenance of 

electric motors by early diagnosis of faults. There are several methodologies advised to employ 
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electrical signals for fault diagnosis. This suggests motor current signature analysis is a more reliable 

and cost effective method of fault diagnosis  [11]. 

Haynes, et al. registered one of the earliest patents in the area of fault diagnosis entitled “Motor 

Current Signature Analysis method for diagnosing motor operated devices”  [12]. They suggested 

recording the current signature of motor operated devices and comparing the saved data with the 

known fault signatures. Dorrell et al. demonstrated the relationship between vibration signals and 

abnormalities in current waveform of electric motors in event of static and dynamic air-gap 

eccentricity”  [13].In addition it has been advised to employ a set of formulations that relate the air-gap 

flux variation to the subsequent current vibrations for the diagnoses of eccentricity faults. In this paper 

and also in  [14] a set of complex relationships between current harmonics and rotor eccentricity as an 

indirect effect of eccentrics was presented. 

In 1997, the relationship between vibration signals and magnitude of current harmonics for 

known vibration frequencies has been investigated by Riley, Lin, Habetler, and Kliman [15]. This 

investigation mainly moves towards determining feasibility of setting a limit set-point or a “standard” 

on the current harmonics due to vibrations. They advised that, for a given known vibration frequency, 

the harmonic RMS vibration level and RMS current level are monotonically related  [15]. This 

achievement eases out finding further formulations in current signals where the vibration pattern is 

available.  

Later on, Riley et al. introduced a method for Sensorless On-Line Vibration Monitoring of 

Induction Machines  [16]. They proposed to monitor high shunt induction motors in an online situation. 

In this method, it was necessary to install vibration sensors on target machines and do the mandatory 

adjustments and calibrations. Then all sensors could be removed. The strategy provided a good 

estimation for big sized induction motors. However it is not applicable for motors with unreachable 

body due to the process complexity. In addition, monitoring results are limited to the time and 

adjustment of the motor at the time of experiment. Major mechanical or electrical damages may change 

the motor specification.  
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Abdel-Malek, et al. proposed to use analogue subtraction in order to improve the quality and 

decrease the processing load of motor current signature analysis  [17]. In this patent fault diagnosis 

using current waveforms extended to other types of faults. Dister, et al. proposed architecture for a data 

capturing system that collected trends, and analyse data by utilizing required processing stages in the 

computer  [17]. This method can be a good reference for any diagnostic system that is operated by the 

concept of current signature analysis. 

These investigations were sustained by further studies and development to extend the coverage 

and functionality of motor current signature analysis. Tavner, has published an up-to-date paper that 

reviews different techniques and aspects of condition monitoring for rotating machines. This paper 

compares fault diagnostic strategies and provides a set of recommendations to employ in fault detection 

and diagnosis of induction motors  [1].  

2.3 Signature analysis 

Motor current signature analysis is an inexpensive diagnostic approach. This is because, unlike 

vibration analysis, vibration sensors are not the essential part of analysis in most diagnostic strategies. 

Motor current signature analysis strategies are considered as remote monitoring methods because there 

is no need to approach and physically access the motor during operation. See Figure 3. 

 

 

 

 

 

 

Induction 

Motor 

Data 

Acquisition 

Figure 3 Basic MCSA instrumentation system 
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Signature analysis method has been successfully verified for various types of induction 

machines for both wound and squirrel cage electric motors. Despite of all advantages of current 

signature analysis, MCSA diagnosis has less accuracy than direct vibration measurements. Current 

signature analysis has some shortcomings that limit accuracy of diagnosis. It is very vulnerable to the 

environmental noise, voltage harmonics, operation of non-linear equipment and especially operation of 

another similar nearby motor and may result in wrong warnings being signalled. Also, relationships of 

current frequencies and vibration harmonics may be different from one frequency to another. As a 

result interpreting current signals usually requires extra calculation and considerations. 

  

2.3.1 Frequency patterns 

The frequency components of any kind of faulty situations can be shown as a deviation from 

desirable healthy patterns. Any faulty event has a continuous consequence from appearance of the fault 

to stop by protection command or machine damage. In most situations, fault patterns can be detected by 

static snapshots; however estimation of fault development requires analysis of continuous frequency 

patterns. 

Internal motor faults of induction machines were analysed and tested successfully in various 

investigations such as  [18] to  [23].  

Patterns of faulty situations generally appear as exceeding from a given set-point. Also 

magnitude of fault signals can usually be considered as an indicator of the seriousness of the fault.  

Locations of fault symptoms usually have a close relationship with synchronous speed where 

the magnitude of fault signals are dependent on type and characteristics of the motor and are 

proportional to the seriousness of the fault. Here, fault patterns of some major internal faults in 

induction machines will be investigated and formulated. 

MCSA faults can be divided into two categories. In the first category, the fault can be detected 

using lower frequency components but the second category requires analysis of higher frequency 

points. Low frequency faults are: rotor bar degradation, misalignment, mechanical unbalance and 
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foundation looseness  [9]. Faults that can be diagnosed by using high frequency components are: static 

eccentricity, dynamic eccentricity, stator mechanical faults, stator electrical faults and bearing 

degradation  [9]. 

Any of these faults have specific effects in current signals. By varying frequency components 

and their variation with respect to the time factor, the faulty components can be detected. In this 

method the frequency component of the captured current must be compared against those in the faulty 

categories. 

 

2.3.2 Fault formulation 

The MCSA formulations for some types of internal motor faults are given below. All 

formulation has been cited from reference  [23]. A number of important MCSA formulations have been 

described in Appendix I. 

There are a few studies that have been done to extend the motor current signature analysis to 

other machines. For example, Don Shaw employed current signature analysis to diagnose faults of a 

DC motor  [25]. Given that most industrial loads are induction motors, diagnosis of faults in induction 

motors is more remarkable compared to other types of electrical motors.  

 

2.4 Further development in motor current signature analysis 

Fault formulations provide a guideline to diagnose industrial faults. However there are some 

shortcomings that limit applying MSCA in industrial situations. 

Almost all fault patterns have some frequencies in common. Therefore an individual fault may 

not be detected if it is associated with more than one type of fault. Bonaldi, et al. advised using a rough 

set of identifiers to discriminate MCSA faults  [23]. They have provided a table to discriminate between 

MCSA faults based on their possibility of occurrence and other criteria. This method is very helpful to 
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discriminate signals that are coming from the same source. However, the method is not useful in a 

practical industrial situation where some fault signals may be caused by external sources. 

Configurations of frequency patterns are dependent on motor velocity. This may change during 

any process such as induction motors with variable loading conditions. Some publications recommend 

recording of the motor speed of rotation as well  [1]. Monitoring the shaft speed provides more accurate 

results but also involves extra instruments (i.e. sensors, data acquisition channels and a stronger 

processing unit) and a more complex processing algorithm.  

A high level of noise is expected in industrial power networks due to the normal operation of 

distributed power systems including electrical motors and transformers. These types of noises occupy 

certain frequencies and hence may be eliminated partially by frequency filtration. Distributed power 

system transients including start-up of electric motors, inrush currents, operation of switches and also 

steady state operations of nonlinear equipment, filters and active components may cause electrical 

signals similar to fault indicators. This type of noise is more difficult to discriminate from the original 

signals.  

Similar to any current signals, fault indicators and noises travel from one point to another point 

and may cause a wrong interpretation in the diagnostic system. 

As a result an extra course of action is necessary to improve the reliability of MCSA diagnosis. 

There have been several studies towards improving reliability and applicability of motor current 

signature analysis. Some of these investigations have yielded acceptable and applicable results. Here a 

number of major improvements in employing current signals for fault diagnoses are described and 

discussed accordingly. 

 

2.4.1 Improving data acquisition tools and signal resolution 

There are many solutions provided to reduce the noise. Costa et al. collected a set of 

developments in data acquisition which contribute toward fault diagnostic techniques [23]. They also 

proposed a framework for data acquisition and signal processing.  
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By improving the quality of data acquisition tools and using appropriate data processing 

techniques, the major proportion of noises can be removed in large electric motors. These methods 

usually are not very successful where the motor is relatively small or is exposed to major noise sources 

in the same range of frequency. 

Another development is to improve the quality and resolution of frequency spectrums and to try 

to acquire more useful information from the measured spectrum  [27]. Wavelet Transform and short 

FFT are other attempts to analyse current signals and diagnose faults in varying conditions  [18]. 

Devaney, et al. successfully detected rotor damage during the start-up process  [28]. In the same year 

Hugh Douglas presented a technique to diagnose motor faults by using Wavelet Transform for broken 

bars of induction machines  [29]. 

  

2.4.2 Numerical approaches to describing fault signals 

Strategy of fault diagnosis, using AI (artificial intelligence) based methods has become very 

popular since 2000. There are many published papers with industry application which published 

demonstrate this application as an auxiliary way to finding damaged machines. Some of these 

investigations result in professional methods of diagnosing using current signals  [18] and  [30]. 

Many papers and technical reports have been published in application of different mathematical 

and logical methods to detect electrical problems and instant faults. Fuzzy logic, neural network and 

genetic algorithms have been widely used to improve accuracy of diagnostic techniques. A number of 

papers have reported successful application of artificial intelligence in current signature analysis  [31]. 

Each method provides a unique solution to cancel the environmental noise and interpret captured 

information. 

Examples of successful applications of MCSA are summarized in Table 2 below. 
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Table 2 Minimum fault severity detected by fault diagnosis techniques demonstrated in reference  [31]. 

 

Nominal 

frequency  

Motor 

size 

Voltage Loading Cited in 

[31] 

Severity as 

described in [31] 

Method of Diagnosis  

60 3hp 460 Full load 8 0.43% MCSA 

50 11kW 420 No load 10 20% FFT 

60 5hp 460 50% load 12 0.42% MCSA-current envelop 

50 15kW 400 No load 14 2.04% MCSA- multiple 

reference frame theory  

50 1kW 220/380 Nominal 

load 

51 20% Neural network- 

unsupervised  

50 6hp 380 Nominal 

load 

54 0.42% Fuzzy neural network  

 

As shown in Table 2, various types of experiments have successfully diagnosed the fault type 

using electrical signals. MCSA or a combination of MCSA and other diagnostic methods have been 

employed to diagnose faults with various severities and loading conditions. As demonstrated in Table 

2, MCSA has outstanding diagnosis results in a full load situation where the fault signals are more 

observable in current waveforms. In light loading situations, field methodologies and voltage 

monitoring provide more accurate results.  

A number of recent studies reported successful application of motor current signature analysis 

for synchronous and DC motors. Ilamparithi et al. reported a successful application of signature 

analysis to detect eccentricity of synchronous motors. However reported results are significantly less 

reliable compared to that of induction motors [32]. Another study has reported significant improvement 
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of fault diagnosis using vibration signals by including results of current analysis [33]. This study does 

not recommend current signals as an independent method of diagnosis. 

 Torkaman et al. applied the pulse injection method to detect eccentricity faults in synchronous 

motors [34]. In this method a high frequency signal is injected to the supply waveform and the resultant 

current has been processed to diagnose eccentricity faults. Since the voltage frequency is much higher 

than the nominal frequency, all disturbances due to normal operation of the motor can be neglected. On 

the other hand the method does not have a significant disturbance on operation of the target motor as 

the pulse is rationally small and then inject is for a short duration.  

Most diagnosis studies concentrate on the steady state operation of electrical motors to exclude 

the complex behaviour of electrical motors. However, there are a number of studies approaching fault 

diagnosis in transient situations [35, 36].  

 

2.4.3 Data fusion and crosschecking 

Electrical fault signals, unlike vibration signals, propagate all over the network. Therefore 

significant fault signals may be highly influenced by the operation of neighbouring motors and 

environmental noise. One possible solution to improving reliability of diagnosis is to collect more 

evidence to support a less dependable result.  The idea of applying fusion of different signals in fault 

diagnosis is presented in a few research papers to improve redundancy and reliability of the diagnostic 

system. This data can be picked up from different sources of signals including current waveforms, 

electromagnetic field and vibration [37, 38]. There are a number of studies that widen the coverage of 

fault diagnosis using current signature analysis. Mart ne -Morales et al. proposed a framework to 

diagnose motor faults in a variable operating condition using multiple vibration and current sensors 

[39]. Iorgulescu reported an improvement in detecting bearing faults using data fusion among current 

and vibration signals for DC motors [33].These methods are usually considerably more expensive 

compared to normal motor current signature analysis. 
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Taking into account that significant fault signals are travelling all over the network, several 

observations are achievable for a fault integrated in an electric motor. In this thesis the idea of cross 

evaluation of fault signals considering signal propagation will be discussed and analysed. The proposed 

method targets an improvement method in diagnostic reliability with a simple and viable framework of 

decision making.  

 

2.5 Propagation of current signals in industrial power networks 

There are a number of strategies that describe propagation of special signals throughout power 

systems. Power Line Carrier (PLC) is a well-known strategy to transfer control messages via power 

networks. By definition, “A PLC channel includes the signal path from the transmitting electronic 

equipment at one terminal, through its coupling equipment, over the power line, through the tuning 

equipment at the receiving end, and into the electronic equipment at the receiving terminal”  [40]. 

Frequencies in the range of 30–500 kHz have been employed for PLC communication. This 

frequency range is high enough to be isolated from the normal operation of power system. 

Characteristic impedance of a transmission line (surge impedance) is described as the ratio between the 

voltage and the current of the travelling wave on a line with an infinite length  [40]. Surge impedance is 

a combination of the resistance, inductance and parallel capacitance of transmission lines. A simplified 

schematic of a SCADA channel is shown in Figure 4. 
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Figure 4 Simplified schematic of the SCADA system 

PLC studies provide a good reference to estimate attenuation of SCADA messages over 

transmission lines. Carrier frequency of PLC channels is much higher than the frequency range of fault 

signatures. However, the calculation methodology in conjunction with a technical approach with 

reference to topography of power systems may be utilized to develop the attenuation pattern. Such 

methodology is expected to provide a rough estimation of originality of fault indicators which appear at 

a lower frequency ranges (i.e. 20 to 1000Hz).  

IEEE recommends a set of guidelines to estimate protection faults in power systems in 

transmission lines and distribution systems  [41]. Again, these formulations are calculated for major 

system faults and do not provide required estimations for system harmonics and sub- harmonics. On the 

other hand protection analysis and SCADA approaches may potentially be employed to calculate 

attenuation of fault signals. 

Cross checking fault indicators can be performed by looking at attenuated fault signals from 

different locations. Thus the signal can be picked up from different locations such as a central point or 

other parallel consumers nearby.  
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2.6 Distributed and Central point monitoring 

Remote monitoring and central point diagnosis is a low cost and efficient approach to industrial 

supervision. Central point diagnosis is a well-recognized strategy to identify system failures in power 

engineering and particularly with transmission faults. Protection systems monitor basic indicators of 

current and voltage to protect distributed power systems against serious system failures. These faults 

usually appear as a dramatic increment or a collapse of main system indices such as voltage, current, 

frequency etc  [41]. Subsequently fault detection technologies have been extended to cover tracking 

fault locations as well. IEEE recommends a guideline to detect location of symmetrical and 

asymmetrical faults in transmission lines  [41]. These developments are sustained by more investigation 

to recognize various types of faults using supervisory and monitoring systems.  

A simplified schematic of a supervisory and protection system using central fault monitoring 

has been shown in Figure 5.  

 

Fault

Transmission cable

Data 

converter

 

Figure 5 Automated fault detection and diagnosis 

An automated fault diagnostic system in transmission lines has been shown in Figure 5. This 

system continuously collects current and voltage information and processes information using a 

diagnostic and decision making algorithm. The protection system is responsible for detecting and 

tracking the fault location and discriminating and isolating the fault in the network. 

Cable/Overhead line 
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In general two factors have to be detected to evaluate possibilities of diagnosis. At least one 

indicator has to be measurable and the indicator or configuration of a set of indicators should be 

distinguishable from other causes of faults. Using central point monitoring, detection of the presence of 

faults is debatable as the same signal can be detected in current waveform of the feeding bus. However, 

it is problematic to discriminate the incident with a high level of confidence. Therefore an accurate 

topography modelling is required to estimate the possibility of diagnosis. 

Central fault diagnosis theoretically may be employed to diagnose MCSA faults providing you 

have at least one indicator (i.e. fault signals or a given pattern) to discriminate the motor’s faults.  

Therefore, the approach could be useful where the target motor is considerably bigger than other 

network components in terms of size. Otherwise the evidence provided will not be strong enough to 

judge the system. Hence further evidence is required to be included for more accurate detection. 

Improving reliability potentially provides robust solutions without the need for human interference. 

Gheitasi, A. et al presented a diagnostic approach to evaluate reliability of diagnostic reports and 

provide immediate and delayed decisions for single electrical motors  [43]. 

Analysis of distributed signatures offers improvements for diagnosis as it is taking advantage of 

maximum possible accuracy of direct diagnosis whenever available. Also it provides a framework to 

clarify diagnostic indicators from the noise produced by the propagation of current signals. This 

research aims at a technical scheme to take maximum advantage of all available measuring points in 

diagnostic solutions where components of electrical signals are taken as fault indicators.  Distributed 

diagnosis is expected to suggest more reliable results in electrical motors with a direct measuring 

system and provide early indications of faults for the in-network motors where direct monitoring is not 

available.  
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Chapter 3:  

RESEARCH TOOLS AND SIMULATION METHODOLOGY 

 

This chapter introduces and acknowledges tools and software that have been used to perform 

research tasks of the thesis. At first, software packages and technical tools have been described. Data 

acquisition tools and electric models are described in the next part of the thesis. 

 

3.1 Software selection and configuration 

MATLAB/SIMULINK software and its related components have been used as the main tool to 

generate simulation results, collect information and process simulation and practical data.  

This software provides an excellent environment to introduce and manipulate real time and 

asynchronous data provided by data acquisition equipment. It also provides a set of powerful functions 

for frequency analysis, numerical and intelligent pattern recognition and other analysing tools that have 

been employed to analyse raw and pre-processed results of simulation and practical experiments. In 

addition, MATLAB provides a flexible environment to simulate behaviour of distributed power 

systems. Providing simulation and processing tools in a software package and perfect compatibility of 

the software with data acquisition equipment offers an ideal tool to contribute in different research 

tasks of this thesis. Figure 6 illustrates employment of different components of MATLAB in the thesis. 
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Figure 6 Employment of MATLAB software packages in different parts of the project 

Simulation results and results of practical experiments have been employed to produce required 

information to analyse behaviour of distributed power systems and describe concepts of distributed 

diagnosis. During processing of simulation, current signals of all electric motors are set to be stored in 

a dedicated variable for each electric motor. These variables will then be transferred to the workspace 

environment of MATLAB software. Results of practical experiments have been collected using a data 

acquisition process in spreadsheet files. These files have been converted to MATLAB variables using 

the “MATLAB importer wizard”. Simulation variables have been set to be similar to results of practical 

experiments. Then the information has to be validated using a proper function. Subsequently major 

components of the signal have to be categorized. The next stage is to process significant components of 

the signal using a proper metrology and finally the diagnostic report has to be generated using a logical 

process. The process to diagnose faults and produce a report to advise on condition of electrical motors 

will be described in detail in Chapter 4. 
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3.1.1 Distributed power system behavioural simulation 

SimPowerSystems has been used to model and simulate a typical distributed power system. 

This model has been utilized to study the propagation of fault indices in distributed power systems and 

investigate several acting variables. Power-System-Block-set is used to model a scaled down industrial 

power system and observe network behaviour in a faulty situation. Normal (not accelerated) simulation 

method has been utilized to produce more accurate simulation results. The simulation model generates 

25000 data item per second. Since the simulation time for each model is 3s, 75000 data item will be 

generated for each measuring point. These measurements will be transferred to the workspace of 

MATLAB as one dimension variables after completing the simulation.  

 

3.1.2 Verification of simulation results 

In order to eliminate weak information and minimise the influence of transient signals a simple 

mutual verification process has been employed. There are several state variables involved in the 

operation of electrical motors. Measurement of voltage, rotor speed, torque, and motor current are 

achievable using the simulation model.  All these variables are dependent on each other and hence 

unacceptable value or transitional behaviour of any of these variables revokes all measurements 

associated with the current sample taken for data processing. A sample of current waveform has been 

shown in Figure 7. 

Operations of all electric motors are associated with a transient situation in the start-up process. 

This transient situation appears as a dramatic increment of current and increase of speed from 

stationary state to the nominal speed of the motor as shown in Figure 7 and Figure 8. 
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Figure 7 Current waveform of an electric motor which is involved in fault indices (M10, Case study 1[Eh1]) 

 

Figure 8  Speed of electric motor during and after the process of start-up 
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Here, Speed of electric motors has been used to verify simulation results and discriminate 

transient situations from steady state operation of electric motors. After verifying validity of captured 

signals, a data processing approach is required to take a good sample of the stored waveform and 

categorize abnormal frequency points.  

 

3.1.3 Sampling and categorizing abnormal components of motor waveforms 

The first step of each diagnostic system is to categorize abnormal components of the waveforms 

in a proper form than can be employed for further analysis. There are a number of data processing 

techniques to categorize characteristics of waveforms. Frequency domain, time-frequency domain and 

wavelet techniques are common methods of signal processing in general [31]. 

Fast Fourier Transform (FFT) is the most common method of signal processing while dealing 

with discrete data. This method converts the signal to a number of frequency components where each 

component is a representative for a sinusoid waveform component of the original signal. In the other 

work, aggregation of these sinusoid waveforms that are identifiable with a pair of frequency and 

magnitude forms the original signal. Short Time Fourier Transform (STFT) is the time variant form of 

FFT where the FFT is calculated for a fixed sample of data and hence it is time variant and changes 

continuously based on frequency contents of the signal [31]. Wavelet Transform is introduced as an 

alternative method to analyse abnormal components of signals without allocating a fixed window 

which limits the resolution of frequency spectrum. Application of Wavelet Transform has been 

reported in a number of publications [31]. 

In this thesis STFT has been employed to analyse current signals of electrical motors due to the 

following reasons: 

Dynamic behaviour of distributed power systems and the need to cancel weak results suggest 

use of a time variant technical solution such as STFT or Wavelet Transform. 
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Most signatures and fault patterns have been produced using frequency spectrums. Using other 

signal processing approaches involved in extra work to produce compatible patterns of diagnosis. 

Therefore FFT and STFT (well matched with FFT) are preferable.  

Combination of 1 and 2 suggests that STFT is a better method of signal processing for 

distributed diagnosis. However, using Wavelet Transform generates higher resolution results which 

could be useful for discriminating faults with very similar patterns. 

Process of data analysis to categorize frequency components of fault indices has been shown in 

Figure 9. 

 

 

 

 

 

 

 

 

 

Figure 9 Data processing of stored simulation and practical results 

 

As shown in Figure 9, initially data is partitioned to 0.1s windows. Each window contained 

2500 samples of data (see Figure 10). The frequency spectrum of the signal is then calculated. As 

shown by Figure 10, the spectrum content contains a wide range of frequencies. Since lower frequency 

bands are significant from MCSA diagnosis, higher frequency components of the frequency spectrum 

will be eliminated (See Figure 11). Subsequently a threshold is considered to eliminate noise signals. 
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Threshold value is subjected to topography of the network, level of noise in the site and the requested 

accuracy. Here 10% of the nominal current is considered as the threshold set point. Finally all local 

maximums of frequency spectrums of the current waveform, except the main frequency (observable at 

50Hz in New Zealand) will be considered as fault frequency components (see Figure 12). 

 

Figure 10  0.1Second of the waveform of Figure 9 in steady state situation 

 

Figure 11 Frequency spectrum of the waveform shown in Figure 12 (Tagged 2.9s - 3s) 
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Figure 12 Lower band zoom of the frequency spectrum of the waveform of Figure 13 

 

Figure 13 Frequency components of the frequency spectrums in steady state operation of the electric 

motor 
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The following significant pairs of frequency-magnitude are identifiable from Figure 13. 

(24.43, 1.02), (85.49, 0.8083), (207.6, 0.5464), (360.3, 0.4632) and (470, 0.5137). 

Using FFT to analyse current signals of electric motors results in mixing components of 

transitional and steady state operation of electric motors. Figure 14 illustrates the frequency spectrum 

of current waveform of the target motor calculated using FFT. As shown here, 15.8Amp is calculated 

as the magnitude of current in 50Hz frequency which is not a correct assumption. 

 

Figure 14 Lower band zoom of the frequency spectrum of the waveform of Figure 3-5 

The following functions of MATLAB have been employed to identify fault signals as explained 

in section 3.1.3. A list of important functions of MATLAB has been summarised in Table 3. 
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Table 3 Important functions of MATLAB which have been used in the thesis 

Function  Comment  Example of use 

FFT Calculate Fast Fourier transform Y = fft(xx,NFFT)/L; 

findpeaks Return value and location of local maximums of the signal [pks,locs]=findpeaks(fr0); 

 

newff Form a feed forward artificial neural network net2=newff(bb,vx,5); 

bb is the input matrix, vx is the output 

matrix and there are 5 hidden layers 

Train To train the neural network net2.trainParam.goal= 0.01 ; % error 

target 

net2 = train(net2,bb,vx);  

 

Details of the implemented programs will be discussed in section 6-2. 

3.2 Hardware tools 

During the research work, several practical experiments have been carried out with various 

sizes of induction motors. A number of faults were generated in an artificial way. A Tektronix 

oscilloscope (TDS2012B) has been employed to store measurement information in a flash memory. 

Each measurement is stored in an individual spreadsheet file. Measurement information is listed in  

Table 4. 
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Table 4 Detailed descriptions of measurements using TDS2012B 

Item  Value 

Record Length 2.50E+03 

Sample Interval 4.00E-05 

Trigger Point 1.25E+03 

Model Number TDS2012B 

Serial Number C050177 

Firmware Version FV:v22.11 

 

3.2.1 Experimental environment 

In order to validate the simulation results a typical example of an industrial system has been 

modelled and simulated. A number of induction motors have been connected together via a supply bus 

(generator or an infinite bus). The test-bed has been implemented in the Power Lab of AUT University 

and Aucom Electronic Ltd. For each experiment a fault posed to the system in an identical location and 

current of other parts of the network has been stored thoroughly. The supply bus is fed by a generator 

in the first test-bed and motors loaded with static mechanical loads. While DC generators have been 

applied to load induction motors in the second test-bed, the common bus is fed via a stable power bus. 

One Tektronix oscilloscope has been applied to record measurements in a flash memory. The sampling 

rate of the measurements was 25,000 samples per second and each measurement takes a second. The 

model for one component of the network is shown in Figure 15. Network configuration has been shown 

in Figure 16. 
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Figure 15 Scaled down test-bed designed in the AUT University to analyse faulty behaviour of electric motors in 

industrial situations 
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Figure 16 AUT/ AUCOM scaled down industrial system 
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Electrical signals categorized from individual operation of electric motors are shown by 

 Figure 17. 

 

Figure 17 Individual operations of electric motors - motors are partially loaded (CT ratio is 10:1) 

As shown by Figure 17, current signals are not complete sinusoid waves and some other 

frequency components are detected in the signal of any electric motor. These motors are then connected 

together via a common bus to compare signal spectrum of motors from different monitoring points.  

All motors currents have been captured using single input data acquisition devices and hence 

this data are not collected at the same time. Measurements taken at different instants of time reduce the 

quality of association among signals collected from different motors. However the change does not 

necessarily reduce the quality of measurements because the fluctuating rate is reasonably slow in 

diagnosis of internal faults.  

Characteristic details of electric motors in the AUCOM model have been summarized in 

 Table 5. 
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Table 5 Characteristics of electric motors that have been employed for the practical experiment 

Motor  Power (Hp) Speed 

(RPM) 

Number of 

poles 

Comment  

#1 4 Hp 1440 4 TechoElec& NACN. Co. ltd, Taiwan  

#2 4kW 1430 4 IEC60044; IP55 

7.62 A; 112 M, Weg,  

#3 4kW 1430 4 IEC60044; IP55 

7.62 A; 112 M, Weg,  

#4 22kW 970 4 Gec machines; Ins class F,D200L 

44Amp; NDE 63002; BS5000PT99 

 

 
 

  



39 

 

Chapter 4:  

THEORY OF DISTRIBUTED SIGNATURE ANALYSIS CONCEPT 

4.1 Introduction 

The diagnosis framework is based on the current signature analysis approach discussed in the 

previous chapter.  This chapter focuses on the specific approach taken to accomplish the objectives of 

each section in the methodology.  Most of the work presented is for the general fault diagnosis of 

induction motors, but some shows specific applications explained for electrical networks with typical 

configurations.  The particular machines that will be analysed are medium size induction motors loaded 

with static mechanical torques. These calculations will be generalized to cover a wide range of 

induction motors in distributed power system networks.  The main focus of this study is to apply 

available diagnostic technologies to improve the reliability and coverage of fault diagnosis 

technologies.  

In this chapter, a typical industrial system has been considered as a configuration of machines 

connected via few feeding interconnected supply bus. A number of measuring points have been 

considered to monitor the behaviour of electric motors. See Figure 18. 

In order to analyse observation of each measuring point and assess possibility of valid 

diagnosis, several key factors have to be considered including: influence of fault representatives in 

electrical signals of neighbourhood motors, signal propagations through power line, estimation of 

magnitude of attenuated signals, and superposition of signals. Taking into account that each acting 

variable may affect the reliability of diagnosis, several levels of simulation have to be implemented. A 

technical approach combined with simulation results has been employed to estimate accuracy of 

diagnosis in traditional diagnosis. This analysis is followed by a technical discussion on utilization of 

multiple observations of a single index as a possible metrology of diagnosis and system solution for 

fault diagnosis versus the traditional individual diagnosis. 
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Figure 18 A typical model of an industrial system with three bus and electrical drivesare connectedto power bus 

This chapter commences with the theory of motor current signature analysis implemented to 

monitor and diagnose faults of electric motors. Next, concepts of individual pattern recognition have 

been investigated in actual power networks. It has been proven that fault signals travel around the 

power networks and hence propagated signals are misdiagnosed as a fault in other electrical motors.  

This conclusion demonstrates the needs to monitor the signals of neighbour machines in order to cancel 

the distributed power system’s environmental noise and purify fault signals of the targeted machine. 

The pattern recognition method has then been extended to provide a system solution by 

monitoring all available sensing points using a distributed diagnostic strategy. A matrix of fault indices 

has been formulated to estimate the association of signals of each measuring point with known fault 

patterns. 

Propagation of fault signals has been formulated to generate a matrix of projected indices for 

any possible fault in the power network. By comparing this matrix with the matrix of fault indices 
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using a numerical method (Matrix Correlation, Artificial Neural Network, Bayesian etc.) type and 

origin of faults will be estimated.  

 

4.2 Individual diagnosis 

Several methods have been proposed to identify faults using a neural network. In this section, 

the strategy of motor current signature analysis has been developed to produce a simple numerical 

model that generates fault indices for any possible fault. These indices will be utilized later on for in-

network and distributed diagnosis.  

Motor current signature analysis states that mechanical and electrical faults have a unique 

influence on the frequency spectrum of current signals of electrical motors called signature and 

therefore, pattern recognition strategy is required to diagnose industrial faults. 

 

4.3 Fault patterns 

Here, in order to analyse significant points captured from electric motors, these formulations 

have been transposed to make the motor slip as the subject. Motor slip has been shown with different 

names for each type of fault to estimate the associated speed with each individual significant frequency 

point. 

    
  

 
    

     
 

 

  

                                                 (4-1) ReconFigured from Equation (I-1) 

    
  

 
     

 

 

   
  

                                                 (4-2) ReconFigured from Equation (I-2) 

    
    

   
   

                                                (4-3) ReconFigured from Equation (I-7) 
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        and     have been replaced by ‘D’. Where D is the frequency of the suspected 

significant point  

     Associated motor slip for rotor asymmetry frequencies 

     Associated motor slip for rotor unbalance frequencies 

     Associated motor slip for broken bar frequencies 

s: Motor slip 

p: Number of poles 

k: Harmonic order of fault symptom; k=1,2,3,… 

  : Fundamental frequency 

 

Using the slip index, the suspected speed of the faulty motor can be calculated as shown in 

equation (4-4). 

           

    (4-4) 

Where: 

 s:   the estimated slip of motor with the suspected speed 

V:   speed of the target motor 

vs:   the synchronous speed of the target motor 

 

By substituting any of calculated slips in equations (4-1), (4-2) and (4-3), speed of the motor 

can be calculated. 
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According to the above formula, a signature of a fault is a set of frequency components: 

                   

   (4-5) 

The amplitude of any of these frequency components is a function of the amplitude of 

frequency component in the signature set, seriousness of the fault and amplitude and nominal current of 

the motor. 

                       (4-6) 

 

Where  

 :   Motor’s nominal current 

 :  Index of seriousness of fault: 0<R<1 

  :  Amplitude of the frequency component in a given signature 

  :   Frequency components associated with the fault    

  :  Indices are usually constant in any type of fault while   and   varies for different size of 

electrical motors and different seriousness of the fault. These formulations force a maximum possible 

strength for any frequency components of signature of faults. 

Here in order to simulate faults in electrical motors a set of frequencies with tuned magnitude 

and proportional to the strength of faults has to be utilized in the models. 

 

                            

Fault i:   

                        

   (4-7) 
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4.4 Frequency analysis and picking up significant points 

Current spectrums of electric motors are usually continuous graphs. These graphs contain a 

wide range of frequencies with different origin and hence an early frequency filtration is required to 

cancel unwanted and noise signals. 

Placements of significant frequency components are dependent on the speed of the drive and its 

variation. Therefore, by looking at the rotor speed and the deviation from the nominal speed, frequency 

spectrum is encapsulated in several significant frequency bands. As an example, significant status 

bands for an induction motor with speed variation of 1440 to 1450RPM and nominal frequency of 

50Hz are shown in 19. 

 

Figure 19 Significant frequency bands for mechanical faults type 1, 2 and 3 as explained a) overview 

representation over the complete frequency band, and b) detail spectrum within 300Hz 

Here in order to categorize significant frequency points, the concept of “local maxima” have 

been utilized as demonstrated in Figure 20. 
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Figure 20 Abnormal frequency points have been picked up from the waveform. Note the nominal frequency is 

50Hz and caused by the normal operation of electrical motor and hence is not considered as a 

component of fault signal 

As shown in Figure 20, significant frequency points will be categorized as a set of (     ) 

where    is the frequency point and    is the magnitude of power spectrum of the current signal. 
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4.5 Identify origin of significant points 

In order to analyse the spectrum of electric motors, initially significant points are considered as 

potential signals that are caused by a fault. Then, the relevant speed is calculated and checked to see if 

the speed is in an acceptable range or not. 

The next stage is to collect a set of significant frequencies related to faults of the target motor. 

All local maximums of the current waveform have to be categorized. Then collected local maximums 

should be matched up to the expected significant frequency bands as demonstrated in section 4.3. All 

frequency signals that are not matched with significant frequency bands will be removed and the rest of 

the signals will be classified according to the reference fault. Then, all significant frequency points 

should be compared against doubted faults to identify their origin.  

Here, in order to identify the origin of the fault, pattern recognition method has been proposed 

to substitute frequency of each frequency-magnitude point in transposed formula of relevant 

frequencies. Then their suspected speed is calculated based on mechanical properties of the suspected 

machine. The calculated speed then will be compared with nominated or measured speed of the motor. 

If the calculated speed is in an acceptable variation range from the nominal/measured speed, the 

significant point will be classified as an evidence for the suspected fault (look at Figure 21).Using the 

proposed scheme, one significant frequency point may be a classified form of one suspected fault. 

However, collection of multiple frequency points generates a unique index for any fault which can be 

called the fault index.  
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Figure 21 Verification of origin of significant frequency points 

 

An index defined to indicate strength of fault signals for any measuring point. For a given fault 

type   : 

    
   

   (4-8) 

Where n is the harmonic number.  

To reduce influence of higher harmonics and consider the higher impact of lower harmonics, 

the magnitude is divided to the harmonic order for any significant signal and summed to form the fault 

index of the fault. This formula generates a fault index for any suspected fault. Fault indices are very 

dependent on the size of electrical motors and level of current in the electrical motors. In order to have 

the fault indices independent from sizes of electrical motors and hence having a better discrimination, 

we may use rational fault index as explained in (4-9): 

    
  

       
 (4-9) 

Rational fault index is dependent on the motor speed and hence having the actual speed of the 

target motor or good understanding of variation of speed and its deviation leads to more accurate 

results. 
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4.6 Distributed diagnosis 

Individual decision making usually results in serious failure in distinguishing type and origin of 

fault signals in the distributed power system network. Multiple measuring points in the network capture 

dependent data from their point of view and hence improve accuracy of diagnosis. This helps in 

discriminating and isolating motor faults with higher accuracy. 

 

4.7 Case study: Signal propagation and fault diagnosis in a semi- isolated 

environment 

A simplified industrial test bed has been simulated to verify propagation of fault indicators and 

study the concept of distributed diagnosis. The test bed is combined of a few motors connected together 

via an electric bus and inductive connections fed by a supply bus as shown in Figure 22. 

 

 7.5 KW, 400 V, 1440RPM, induction motor 

 

 

 

 

 

 

 

 

Figure 22 Model of a typical 4-bus system.  

As described before, internal motor faults are associated with a set of frequency components; 

therefore, these faults are modelled by a set of frequency generators with different amplitudes.  
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Here, a fault signal that represents a MCSA fault is injected in to the current of the motor in 

substation 4 to observe the reaction of electrical motors to a fault in the neighbourhood. Figure 23 

shows the propagation of a 200Hz signal originating from subsystem 4. As shown in Figure 23, the 

injected signal is observed in current of other induction motors in the neighbourhood. 

 

Figure 23 Propagation of a single frequency-magnitude pair inserted in subsystem 4.   

Figure 24 demonstrates magnitude of the injected signal and observation in each bus versus the 

connection impedance between the measuring point and location of the injected signal. 
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Figure 24 Proportional magnitudes of fault indices versus resistance to the target bus (Simulation results) 

As shown in Figure 24, there is an inverse relationship between amplitude of fault indices and 

resistances of the cable that connects the motor to the bus of the faulty motor. Now, a multi frequency 

signal is applied to Motor 4 to observe the behaviour of other motors in the power network. As shown 

in Figure 25, almost for any significant frequency, a number of abnormalities can be observed in 

spectrums of all measuring points. A closer view at the significant frequencies in subsystems 1 to 4, 

demonstrates the mutual influence of electrical machines in subsystem 1 to 4. 50Hz, 92Hz, 105Hz and 

118Hz are identified as fault frequencies.  
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Figure 25 Multi frequency fault caused at Motor 4 

This case study demonstrates the inherent propagation of fault signals in a power network. This 

propagation potentially interferes with the frequency spectrum of other motors. As a conclusion, a 

multi measurement diagnosis system is required to double check the captured signals and cancel the 

environmental noise. 

 

4.8 Formulations of fault tracking 

Considering data of other measuring points, a set of significant pairs of magnitude-frequencies 

will be generated. Combination of observed signals while a typical fault is present in one of the 

network components is a function of properties of electric motors, rotor speed, placement of measuring 

points and topography of the electrical network as well as indicators of the fault.  

In order to develop a concept of fault diagnosis in electrical networks, the concept of fault 

indices has been extended to cover faults of suspected motors in the same neighbourhood. Here, a 

matrix of fault indices for any measuring point will be generated. Also, there are several measuring 
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points in any power network and hence there would be a two dimension matrix of fault indices for any 

suspected fault as shown in 4-10. 

 

Fi,1,1 Fi,1,2 …..  Fi,1,k  

Fi,2,1 Fi,2,2 …..  Fi,2,l  

: : : :        (4-10) 

: : : : 

Fi,j,1 Fi,j,2 …..  Fi,j,l  

     

Where: 

      :  Symbol for fault indices:   

i:  type of the fault( there would be one matrix for each type of fault) 

j:  Speed band related to a group of electric motors with the same speed. 

l:  Number of measuring point 

 

Diagnosing the nature and detecting the location of faults in distributed power systems is 

always associated with reliability issues caused by unwanted signals. This is a common diagnostic 

problem especially in distributed power systems. There are a number of successful strategies to model 

the attenuation of fault signals and hence identify the main problem in the network such as [6, 7]. These 

methodologies lead to a set of reliable recommendations for protection issues in industrial sites [8].  

Most fault locating strategies works based on the fact that attenuation of the fault signals in 

distributed power systems is relevant to the distance of source of faults from the point of 

measurements. Relations between fault location and attenuation coefficients for short circuit faults have 

been estimated using the following formula below [42].  
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  (4-11) 

   

  
         

           
 

    
         

         
         

       
       

    
   (4-12) 

Where 

  :  A-phase voltage; 

  :  A-phase current; 

  :  The remote-end current infeed on the faulted phase 

   :  A-phase voltage at fault point; 

  :  Line impedance; 

 :  Fault distance; 

  :  Denotes the real part 

 :  Denotes the imaginary part 

  

This formula has been suggested for single frequency models and power networks have been 

considered linear and Ohmic. Some modification is required to build up an appropriate index for multi 

frequency and nonlinear environments of fault signals.   

 

4.9 Multi frequency modelling 

Power networks are a collection of several load nodes that are physically connected to each 

other via electrical connections with a range of attenuation coefficients. Induction machines are the 

dominant load in most industry sites. Therefore modelling and full understanding of all industrial 

motors is necessary to estimate the attenuation pattern of a fault signal within electrical networks. 
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In order to estimate the attenuation of one fault signal in power networks several issues should 

be considered:  

1) The most fault signal related to fault diagnosis is the current signal and theoretically there 

is no attenuation on current signals while travelling on a power line. These current 

signals cause voltage drop on electrical bus that result in derivative current. 

2) The level of current is not necessarily equal for different electric motors. As a result, high 

power motors may generate a stronger signal while low power motors cause weaker 

signals in an equivalent fault signal. Observing magnitude of the acquired signals is 

not a reliable method to discriminate the origin of fault symptoms in many situations. 

3) In order to estimate the voltage attenuation, a major fault and its related signals in Motor 

1is assumed to take place. Motor 1 is connected to Motor 2 and 3 in parallel and on 

the same bus. Current of Motor 3 is supplied by the main bus via Bus B1. 

Propagation of fault signals to the main bus, influences the entire network by causing 

some voltage drops in Bus B1 and then the main Bus. The signal is then propagated 

to other parts of the network. Here, the mirror signal is observable in other parts of 

the network.  

Complete calculation of signal attenuation indices requires full understanding of dynamic of the 

power network and its components. This information is subject to frequencies of fault signals. They 

may be altered due to system restructure, serious faults or the normal process of ageing. Here a simple 

framework has been proposed to estimate the anticipated magnitude of fault signals over the power 

network. This approach will then be utilized to investigate the originality of fault signals. This method 

uses different network indices to estimate the impedance of electric machines as the main load of the 

network and power connection to approximate the anticipated observable signal in current of other 

electric motors. 
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4.9.1 Frequency dependent impedance of electric motors 

Frequency dependent impedance of electric motors in a given frequency of f can be calculated 

using the following formula: 

   
 

  

  
 (4-17) 

Where   is current and E is voltage of an electric motor in the given frequency of X. For 

example the frequency dependent impedance of electric motors in standard frequency is ratio of the 

feeding voltage and the motor’s current.  

Electric motors are inductive loads and hence their impedance varies for different frequencies. 

On the other hand, frequency of almost all fault signals is bigger than the nominal frequency. As a 

result, calculated impedance for nominal frequency is usually less than the actual impedance.  

 

4.9.2 Impedance of connections 

Power connections including cables, buses and transmission lines are inductive. Similar to the 

frequency dependent impedance of electric motors, the minimum impedance of connections can be 

calculated using the following formula: 

    
       

  
 (4-18) 

Where    is the voltage at the start of the conductor and    is the voltage at the end of the 

conductor 

Another way to estimate the line impedance is to multiply the length of the cable by the unit 

impedance. This calculation returns the minimum impedance because impedance of cables may 

increase due to ageing and other physical phenomena. 
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4.9.3 Route impedance 

As described in 4.9.1 and 4.9.2 the line and motor impedance may be estimated using equation 

(4-17) and (4-18). These two impedances are contributing toward the total impedance of the signal path 

on the way to the Bus. As described before both connections and electric motors are considered to be 

inductive, however their impedance angles are not necessary the same. This statement results in a 

boundary for the impedance of      
 as illustrated in Equation (4-19). 

      

      

       
     

     
 (4-19) 

 

4.9.4 Attenuation of propagated signals 

 

The generated signal propagates in all power networks until effectively dissipated. The current 

signal causes some voltage drop as it propagates in the network and influences all bus with the resultant 

voltage. The generated current signal then causes a voltage in the direct bus. 

             
 (4-20) 

Where     is the total impedance observed in Bus 1. 

    is a combination of many impedances and hence detailed calculation of     requires a 

difficult process of estimating all impedances. The bus impedance in the nominal frequency can be 

calculated using the following formula. 

            
   

   
 (4-21) 

Where 

   : is the nominal voltage measured in Bus k 

   : is total current passing the Bus k in radial power networks 
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If total impedance of Bus 1 is considered as a known value, then the resultant voltage caused by 

fault signal of I can be calculated using the following formula: 

           
 (4-22) 

 

The resultant voltage then causes consequential current in all branches connected to the Bus. 

For example     causes a current signal with a similar frequency in route 2. This current can be 

calculated using the following formula. 

 

     
   

    

 (4-23) 

        
    

    

 (4-24) 

Resultant voltage can be calculated in other bus. For example for Bus0: 

                   
 (4-25) 

Where        is the total impedance between Bus 1 and Bus 0. 

For the nominal frequency,        can be calculated using the following equation: 

 

          
             

         
 (4-26) 

Estimating the magnitude of the appearing signals in B0, ease out calculating the resultant 

voltage in other bus and electric motors. For example the resultant current flows from Bus 1 to Bus 2 

can be calculated using the following formula: 

         
   

       
     

      
      

 (4-27) 
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Subsequently voltage in B2 can be calculated using the following formula: 

                        (4-28) 

Then resultant current in all routes that are directly connected to Bus 2 can be calculated by 

dividing the resultant voltage by the route impedance in frequency of the given signal. For example the 

resultant current in Bus 4 is: 

     
   

   
   (4-29) 

Making use of equations Equation 4-17 to Equation 4-29, the relationship between current 

signals appearing in different places can be generated for well-defined power networks. However for 

most power networks these impedance indices in all frequencies are not available. Following 

simplifications ease out formulating real networks. 

Considering theory of Motor current signature analysis, frequency of most fault signals are 

higher than the nominal frequency (50Hz in New Zealand).In addition all major impedances in 

distributed power systems are inductive. Consequently: 

          (4-30) 

          (4-31) 

   
    

   (4-32) 

These equations bound the minimum value of connections, motors and route impedances. 

Another statement to limit the impedance value can be categorized from equation (4-19). 

      

      

       
 (4-33) 

Using the Ohm law, resultant mirroring current can be estimated as following: 

        
    

    

 (4-34) 
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Also resultant current observed in current of parallel electric motors that are connected directly 

to a bus is: 

        
    

    

 (4-35) 

Then magnitude of the mirror current caused by the Motor 1 in current of Motor 2 will be: 

        
    

    

 (4-36) 

This chain process is continued to cover any other electric in the distributed power system. 

However, mirror signals resulted from a motor more than two bus away from the original fault would 

be attenuated significantly by the impedance of the power connections and hence can be neglected.  

In equation (4-36), 
    

    

 is the attenuation of the fault signal. Here the attenuation index   has 

been defined as the estimated proportion of propagated signal to the original one. Therefore: 

             (4-37) 

Where  

     is the estimated propagated signal in electric motor k which is originally caused by motor 

m. it is usually smaller than 1 but if in-network motors are significantly different it may be even bigger 

than 1. 

 

4.10 Propagation of fault signatures 

Assume a set of fault signals caused by a fault in an electric motor. The measured signal is 

anticipated to be comparable to the fault signature as described in equation (4-7). The fault signal then 

will be propagated in the power network thoroughly. For the signal X, related to fault in electric motor 

m observed in the measuring point k. 

       
      

      (4-38) 
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Where        
 is the anticipated magnitude of the fault signal X, caused by electric motor m and 

observed in current of electric motor k as a result of fault i in electric motor m. 

The above formulations demonstrate an estimation technique to discover the magnitude of 

mirror signals in distributed power systems. This information will be utilized to clarify the original 

signal from neighbouring faults and identify the origin of signals caused by in- network fault. 

 

 

4.10.1 Propagation analysis and fault diagnosis 

A numerical method can generate a diagnostic report using fault indices. The anticipated range of 

signals due to a presumed fault (Projected Matrix) can be compared with the matrix of fault indices (F). 

Correlation of the projected matrix with the matrix of fault indices provides a good index to examine 

the validity of the presumed fault. 

Also        
 indices can be compared with the measured signals to generate a unique indicator 

to point to the fault and identify the type of the fault.  

In this thesis as a case study two methods have been applied to describe fault indices and find 

the origin of type of the fault.  The first method tracks propagation of fault indices using correlation 

between the projected matrices and the fault indices. The second method utilizes artificial neural 

networks to interpret fault indices in each situation. The numerical case studies will be demonstrated in 

chapter 7. 

 

4.11 Pattern of propagation of fault indices 

In order to provide a visual observation of propagation of fault indices in industrial situations, 

concept of propagation charts are developed using equations (4-19) to (4-31). As described in 

propagation equations, transmission of fault signals from one point to another point can be verified. In 

order to produce the propagation graphs two levels of comparison have to be taken. Initially signal 
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propagation will be discussed among transmission bus and then the judgment process will judge all 

electric motors in each bus compared to each other.  

 

4.11.1 Signal propagation among buses 

At the first level propagation of fault indices from one bus to another bus will be judged. 

Looking at Equation (4-38) and considering Equation (4-33) and Equation (4-19), a range can be 

determined to estimate maximum and minimum magnitude anticipated fault indices from one bus to 

another bus. This process compares each pair of bus with each other and verifies whether a fault index 

of one bus can be considered as originated from another one. An arrow can point to the faulty bus and 

demonstrate potential transmission patterns of the signal. In a case where an arrow connects two buses 

together and demonstrates potential transmission of signals between two bus and another arrow points 

to another bus in the same level as a potential origin of signal, the first arrow logically can be ignored. 

For example: Bus 1Bus 2  and  Bus 2 Bus 3 and Bus 1 Bus 3 where Bus 1, Bus 2 and Bus 3 are 

in the same level, suggested that the signal has been originated from Bus 3 and manifested in other bus. 

For a more complex configuration, these arrows should be referred and interpreted based on network 

topography. For example a power network with configuration of Figure 26 in a perfect propagation 

pattern for a fault that is originated from Bus 2.  

 

Bus 3Bus 2, Bus 4Bus 2: in the highest level (relationship between Bus 3 and Bus 4 is not 

important) And  

Bus 2Bus 21, Bus 22Bus 2: in the lower level 
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Figure 26 An example of power network with multilevel bus 

4.11.2 Signal propagation among components of each bus 

After identifying the faulty bus, the next stage is to discriminate the faulty motor. In order to 

accomplish the discrimination, a comparison process similar to section 4.11.1 compares all motors in 

pairs and assesses possibility of transmission of fault indices between each two measurement points. A 

perfect distribution pattern appears as all arrows point to the faulty motor and comparison arrows point 

to none of measuring points if faulty motor is not included in the assessment. 
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4.11.3 Graph of propagation pattern 

Here, in order to illustrate results of estimations in section 4.11.1 and 4.11.2 a graph of 

propagation pattern is introduced. This graph employs comparison results to estimate the origin of 

faults in the network. Placement of electric motors and bus in the graph is a function of configuration 

of power that illustrates network connections and demonstrates propagation of fault indices in the 

network. For example for an electrical network with 3 bus in the highest level and 4 electric motors in 

each bus (Figure 26), graph of Figure 27 has been conFigured for further studies. 
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Figure 27 Example of distributed power system with three buses 

Figure 27 has been taken as a working example for a typical scaled down distributed power 

system to simulate behaviour of distributed power systems. In order to demonstrate propagation of fault 

signals, graphs of propagation patterns have been employed as shown in Figure 27. Here the graph has 

been divided in three areas to represent three buses. Electric motors have been shown in each area and 
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comparison arrows connect these motors and electric bus to point to the original cause of the fault 

indices.   

Thick green arrows represent transmission of fault signals between bus and point toward 

estimated source of signals in each pair comparison. Yellow lines illustrate an equal value between two 

points, or describe a situation where direction of fault signals is not verifiable using propagation 

equations. Blue (pointing up) and red (pointing down) lines show direction of fault representatives 

from one motor to another in each bus. Red circles point at the estimated origin of transmitted fault 

indices in each comparison. And star signs point to the origin of fault signals. 

Figure 27 is an example of propagation pattern for a power network with 12 electric motors.  In 

this example all electric motors are similar and the power network is symmetrical and even handed. 

Details of this network have been discussed in chapter 5. This case study (Case study 1) has been 

analysed in details in chapter 6 and chapter 7.  

For this particular example level of proportional fault indices of fault type 2 are as following: 

 In Motor 1, Motor 2, Motor 3 and Motor 4: 1.9 

 In Motor 5, Motor 6 and Motor 7: 1.2 

 In Motor 9, Motor 10, Motor 11 and Motor 12: 1.8 

 In Motor 8: 5.3 

Since levels of all motors in Bus 1 are almost the same, according to equations (4-19), (4-33) 

and (4-38) it is impossible that one generates the signal for other measuring points and hence the signal 

may be caused by an external source. Similar situations can be observed in Bus 3. Also among motors 

in Bus 2, Motors 5, 6 and 7 have a similar situation and therefore another motor could cause the signal 

in these motors. The only candidate is Motor 8. Extra verifications using equations (4-19), (4-33) and 

(4-38) suggest that Motor 6 is big enough to cause the signal in all electric motors. The simplicity of 

this case study is due to symmetrical propagation of fault indices which causes symmetrical attenuation 

of the signals in all electric motors. The verification process can be illustrated using few arrows: 
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1. Comparing level of signals in Bus 1 and Bus 3:level of signals in Bus 1 is slightly bigger 

than the level of signal in Bus 3 so Bus 3> Bus 1 

2. Comparing level of signals in Bus 1 and Bus 2: level of signals in Bus 1 is smaller than 

the level of signal in Bus 2 so Bus 1< Bus 2 

3. Comparing level of signals in Bus 2 and Bus 3: level of signals in Bus 2 is bigger than 

the level of signal in Bus 3 so Bus 2>  Bus 3 

4. All motors of Bus 1 have  similar proportional fault indices so they can be connected 

with yellow lines and without using any arrow 

5. All motors of Bus 3 have similar proportional fault indices so they can be connected with 

yellow lines and without using any arrows 

6. Motors 5, 6 and 7 have a similar situation and therefore another motor could cause the 

signal in these motors. The only candidate is Motor 8. Extra verifications using 

equations 4-19, 4-33 and 4-38 suggest that Motor 6 is big enough to cause the signal in 

all electric motors. 

Figure 28 illustrates an ideal situation where all arrows point toward one electric motor and there is no 

preference in ownership of fault indicators in other neighbour bus. Hence Motor 8 can be nominated as 

the origin of fault 1 with a very high accuracy. In more general situations, a more difficult situation will 

be expected and numerical calculations may ease out interpreting the propagation results. As shown in 

Figure 28, the origin of fault signals is discoverable by looking at the direction of arrows. For this 

particular example association of fault indices with all electric motors are discoverable. However fault 

indices of Motor 8 and Bus 2 are considerably bigger than the rest of the indices.  
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Figure 28 Fault propagation pattern for a uniform industrial network with a fault in Motor 8 

As described before, the ideal pattern of diagnosis is where: 

a) All arrows point toward one bus as the origin of the signal 

b) All electrical motors in the bus point to one motor as the origin of the signal in their motors  

c) Propagation formulations suggest no transmission between neighbouring motors in the bus. 

These situations advise a reliable diagnosis toward origin of fault indices. However in many situations, 

propagation graphs may point to more than one motor. Or other directional arrows may suggest fault 

signal transmission between healthy electrical motors due to presence of noise signals. Numerical 

solutions may provide an interpretation of the given charts and provide answers with a limited 
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reliability. Also intelligent solutions such as artificial neural networks can improve the reliability of 

diagnosis by training the network behaviour and elimination of environmental interruptions.  

 

4.12 Summary 

This research has formulated a few effective methods of diagnostics for electric motors based 

on the theory of Motors Current Signature Analysis. Individual diagnosis whenever a single motor is a 

target is an effective method and may automatically identify the type and strength of faults in electrical 

motors. Individual diagnosis has some shortcomings for real industry situations where several motors 

contribute to the existing signals of the target motor. Signal propagation is formulated for typical 

electrical networks to estimate the attenuated fault signals caused by a fault and validate the originality 

of fault signals. A method has been proposed to discriminate faults based on signal propagation and 

identify major faults in electrical networks. Then two numerical methods are demonstrated to deal with 

a more complicated situation using a numerical calculation.  

These diagnostic approaches can be applied together or may be utilized individually. This thesis 

recommends using an individual diagnosis to identify definite faults in electric motors, use the 

attenuation factor to double check the originality of signals, and discriminate the fault using the 

propagation pattern and finally use a numerical method to detect the origin and type of the fault in the 

discriminated zone. This approach reduces the amount of processing and has a higher accuracy due to 

applying multiple diagnostic methods at different levels. Model formulations and approaches will be 

suggested and tested in following chapters. 
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Chapter 5:  

DISTRIBUTED POWER SYSTEM BEHAVIOURAL SIMULATION MODEL 

 

Development of the simulation model and methodology of data collection will be described in 

this chapter. The typical model of an electric motor, the surrounding industrial environment and motor 

faults are three major parts of the simulation. These facilitate a method to estimate the behaviour of 

power networks against in-network fault events. The simulation data then will be verified using a 

scaled down industrial system with few practical experiments. 

 

5.1 Simulation concept overview 

A scaled down distributed power system with multi bus has been taken as a case study. Each 

motor is provided with a measuring point to monitor its voltage and current signals continuously. The 

designated sensor for each motor records the trend signal. Duration of samples, frequency of diagnosis 

and frequency of sampling are subjected to the type and accuracy of diagnosis. Here a case study has 

been taken as an example. Required settings have been adjusted for the selected case. The current 

signal will be analysed using frequency spectrums and passed to the diagnostic system. Analysis of this 

spectrum will identify the possibility of observing fault evidences. Sensors related to a given sub-bus 

report their observations to their cluster head and the main processing unit collects the information and 

provides the final decision. Here all components of the model are described thoroughly. The model has 

been simulated in several stages to verify its functioning and validity of the recorded information. The 

simulated prototype will then be generalized. The next stage is to pose a fault in the network and 

capture diagnostic information. This information will then be analysed to identify the pattern of 

propagation of fault signals, estimate the mirroring signals in each point and provide possible solutions 

of diagnosis. 
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5.2 Model of the distributed power system 

Several models have been proposed to demonstrate behaviour of induction motors. [44] and 

[45]. The most common model for induction motors is proposed by IEEE. This model uses fourth order 

electrical and second ordering mechanical equations to estimate the behaviour of electrical motors. The 

model describes basic electric and mechanical characteristics of the motor using quadratic equations 

[45]. IEEE recommends using the following circuit (Figure 29) to estimate behaviour of electric 

motors. 

 

Figure 29 Equivalent circuit of polyphase Induction Machine 

Where: 

U1:  stator terminal voltage 

E1:  stator e.m.f generated by resultant air-gap flux 

R1:  stator effective resistance 

X1:  stator leakage reactance 

Rm:  iron core-loss resistance 

Xm:  magnetizing reactance 

R'2:  rotor effective resistance referred to stator 

X'2:  rotor leakage reactance referred to stator 
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urb:   e.m.f due to the saturable iron bridges in the rotor slots 

I0:  sum of magnetizingI0X and core-  loss I0R current components 

I1:   stator current 

I´2:  rotor current referred to stator 

S:  Motor slip (stator speed-rotor speed)/(stator speed) 

 

Figure 29 is resulted from the following quadratic formulations.  ( 5-1) 

  

  

Where 

d:  direct axis, 

q:  quadrature axis,   

s:  stator variable 

r:  rotor variable, 

Fij:  the flux linkage (i=d or q ;j=s or r), 

rr:  rotor resistance, 

rs:  stator resistance,  
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xls:  stator leakage reactance, 

xlr:  rotor leakage reactance, 

P:  numbers of poles, 

Tem:  electrical output torque, 

Tmech: load torque, 

ωe: stator angular electrical frequency, 

ωb: motor angular electrical base frequency, 

ωr: rotor angular electrical speed. 

 

The specified model illustrates normal operation of electric motors with a good approximation. 

IEEE model has been employed using MATLAB to simulate behaviour of induction motors. In order to 

consider impact of mechanical faults in the proposed model, a block of fault has been integrated in 

model of electric motors.  

As described in Chapter 4, section 4.3, a set of magnitude- frequencies that is proportional to 

the strength of faults can be utilized to model internal faults of electric motors. Equation (4-7) in 

chapter 4 describes the MCSA formulations to locate fault frequencies in the spectra of current 

waveforms. Frequency configurations of current spectrums of fault indicator signals have been 

estimated in equations (4-1) to (4-18) of the literature review chapter. By utilizing these formulations a 

set of parallel voltage sources in conjunction to appropriate impedances can cause a situation similar to 

incident of fault conditions. Figure 30 shows a model of an induction motor that is integrated with 

model of an internal fault. 
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Figure 30 Model of induction motor in conjunction with fault model to describe MCSA faults 

One of the limitations of the IEEE model is its shortcomings in event of voltage drops. This 

problem has been resolved by monitoring electrical torque and the motor speed for each experiment. 

Steady speed and constant torque during a period of time; verify the correctness of the measurement.  

Here MATLAB simulation toolbox has been employed to simulate behaviour of induction 

motors in event of MCSA faults. As discussed before, three phase low voltage squirrel induction 

motors are the main load in most industrial sites. Therfore, 7.5kW/400V induction motors have been 

taken as the default value for electric motors in each case study.These motors have been loaded via 

different mechanical torques.  

This model initially has been employed to observe behaviour of electric motors in faulty 

conditions. Then the model has been altered to generalize the results over a group of induction motors. 

Equations (4-1) to (4-18) of chapter 4 have been employed to model motors faults. MCSA 

faults have been modelled as a set of frequency- magnitude pairs with a series impedance to limit and 

control fault signals. Fault models (2.A) will be included in model of the target motor to observe the 

behaviour of the network in abnormal situations (See Figure 31). 
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Figure 31 Fault model as a combination of several voltage sources with series impedance 

Currents of electrical motors have been recorded using a set of variables for a period of three 

seconds with resolution of 25000 readings per second. Then the first two seconds of the recorded data 

will be eliminated from the waveform to cancel the influence of start-up transients. The remaining data 

is compatible with resolution and accuracy of Tektronix signal analyser which has been used to store 

current waveforms in practical experiments. This resolution is excessive compared to frequency of fault 

signals. The data acquisition tool does not provide the option to reduce the signal resolution therefore, 

all measurements have been provided with the same sampling rate. During each experiment, current, 

torque, speed and supply voltage of each electric motor is recorded to verify validity of experiments. 

The current signals are only signal utilized for process of fault detection and diagnosis. 

Current, torque, speed and the supply voltage of one of electric motors are shown in Figure 32 

and Figure 33.All measurements have been recorded with baud rate of 25000 samples per second. 
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Figure 32 Current waveform of a single motor running individually 

 

Figure 33 Measurer of speed and torque for the simulated electrical motor 

As shown in Figure 32 and Figure 33 the first few seconds are involved in startup transients. 

These transients may manipulate fault signals therefore; first two seconds of all current waveforms will 

be eliminated. Analysing components of electrical waveform in absence of transient behaviour eases 

out the signal processing and pattern recognition. Frequency spectrum of healthy functioning of the 

sample motor has been shown in Figure 34. Then a fault is inserted in a model of the electric motor. A 

frequency spectrum of a motor while running with a fault is shown in Figure 35. 
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Figure 34 Frequency spectrum of the sample electric motor in healthy operation 

 

Figure 35 Frequency spectrum of the sample electric motor while a fault model inserted in model of the electric 

motor 
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As shown in Figure 34 and Figure 35, the simulation model successfully produced the fault 

pattern for the sample motor. This model then will be extended to a group of electric motors working in 

different locations of a typical industrial network. 

 

5.3 Multiple motors in a bus 

In order to simulate propagation of fault signals in industrial power networks a combination of 

multiple electric motors has been taken as a working model. A set of electric motors is connected to 

each bus. Then a number of consumption buses are connected to the main bus which is supplied by a 

supply bus. Figure 36 shows the simulation model for a consumption bus with four motor subsystems. 

 

Figure 36 Model of multiple electric motors in a bus 
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Electric buses are electric conductors which carry current of a group of electrical appliances and 

make a common connection between several components. They always have a very low resistance 

compared to network connections. Therefore attenuation influence of bus can be neglected. Bus 

aggregate and supply current of electric motors via (a) supplying cable(s) connected to the bus. Current 

passing from the bus is the sum of currents of all electric motors supplied by the bus. For example for 

Bus 1: 

Magnitude of each frequency band in current spectrum of the supplied current is sum of 

magnitude of all currents for particular frequencies. 

                         (5-2) 

 

Where: 

  : is Magnitude of a particular frequency point of the current waveform 

 

On the highest level, three subsystems have been connected to the generation bus via different 

media. There is a static load of 1MW parallel with other subsystems to simulate the normal industrial 

situations (Figure 37). 

 

Figure 37 Overview of the simulation model (the Network Model) 
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As described earlier, the system may be extended by duplicating segments systematically, 

therefore the model can be assumed as a typical system for nearly all linear industrial networks. Details 

of the simulation model are given by APPENDIX II. Standard framework of load flow analysis has 

been used to calculate, voltage and current around the network. Details of Matlab simulation 

methodology are achievable from [44]. 

 

5.4 Frequency analysis and power spectrum 

As explained in the theory chapter, in order to find fault indicators, frequency spectrums of 

current signals have to be calculated. Here Fast Fourier Transform with a limited number of samples 

per time, is employed to estimate frequency spectrums of current signals. 100ms of data with sampling 

rate of 25000 samples per second has been taken as a sample for frequency transforms. This selection 

allows identifying minimum frequency of 10Hz (One whole wave) and up to 2500Hz with a minimum 

approximation of 10 samples per each cycle. 25000 samples per second have been selected to keep the 

compatibility between simulation results and the data acquisition system in practical 

experiments.25000 samples per second is higher than the needed frequency resolution. This selection is 

to keep up a correspondence with accuracy of the dedicated data acquisition system for practical 

experiments. 

Since fast Fourier transform (FFT) generates complex numbers, the absolute value of the each 

frequency point has been utilized to identify fault signals in frequency spectra. As an example, 

frequency spectrum of the model explained in Figure 37 has been shown in Figure 38. 
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Figure 38 power spectrum of the current signal 

As shown in Figure 38, all fault signals are observed around 50Hz, which is caused by normal 

operation of the electric motor. However two fault frequency points are located 25Hz lower and 25Hz 

higher from the nominal frequency. This is a potential indicator of a mechanical fault. 

As shown in Figure 38, no fault signal is observable in the extended view. Therefore a limited 

band of frequencies (the interior graph) is satisfactory of the group of selected motor faults. Extended 

view of frequency is appreciated in event of high frequency faults e.g. cavitations incidents. 
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Another faulty waveform has been shown in Figure 39. As shown here three fault frequency 

points are observable in waveform of electric motor No 1.  

 

Figure 39 Frequency spectrum of current waveform of the faulty motor 

Here a fault model has been inserted in model of an electric motor. This variation is the direct 

influence of a mechanical fault (See Figure 40), that causes unhealthy operation of the motor. Here 

fault has been modeled as a set of frequency components. Inserting external frequency components 
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40, manipulating current and voltage of bus using fault models influences mechanical characteristics of 
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Figure 40 Waveforms of a) rotor current, b) stator current, c) electromagnetic torque and d) the motor speed for a 

typical electric motor in the faulty mode. 

As shown in Figure 40, rotation speed and electromagnetic torque are in an acceptable level 

despite the oscillation caused by the fault model. On the other side, current interruptions due to 

presence of fault signals are observable in both starter and rotor currents. This observation satisfies the 

verification process as explained in the previous section. Negative speed or pulsing electromagnetic 

torques are example of occurrence of fault in the simulation model and hence are failure in verification 

of the simulation system. 

Current spectra of all electrical motors supplied via Bus 1 have been shown in Figure 41. A 

fault is integrated in Motor 1 and frequency spectrums of electric motors have been estimated using 

simulation.  
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Figure 41 Current spectrum of a simple industrial model with 4 similar electrical motors is shown, 

Blue: all healthy, Black with a minor fault in Motor 1, green a more serious fault in Motor 1. 

 

 

 

As shown in Figure 41, there are several abnormalities that are observable in waveform in the 

target electric motors. Also Current manipulations in other electric motors are observable as an indirect 

influence of incidence of fault.  

Referring to Figure 41, the fault in Motor 1 is observable in other electric motors. However the 

fault signal has a greater observation in the target motor. Propagation of fault signals may result in false 

warnings in in-network equipment. Any process of fault diagnosis will be more reliable using the 

network approach. Also as explained in the previous section, altering network topography may change 

mechanical and electrical waveforms of each electric motor in the network. Figure 42 demonstrates 

variation of the rotor current, stator current and speed of the target motor in the network. 
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Figure 42 Waveforms of rotor current, stator current and the motor speed for a group of electrical motors (fault 

incident in Motor 1.) 

Any linear industrial scenario can be simulated by duplicating segments of the described model. 

Here a scaled down industrial model is taken as an example to evaluate signal propagation and also to 

formulate fault diagnosis via distributed processing.Considering behaviour of motors and bus in 

response to a fault model and assuming that one motor is the source of a fault with different strength, 

various conditions can be expected. Matlab Simulink has been employed to validate the concept of 

distributed diagnosis in industrial networks. 

In this simulation, two types of major faults are investigated in a typical industrial network: 

rotor asymmetry and rotor unbalanced faults. Therefore, two fault indices are defined to evaluate 

strength of fault events throughout the power networks: 

F1:   index of association of the suspected electric motor with fault type 1 (Rotor Asymmetry) 

F2:   index of association of the suspected electric motor with fault type 2 (Rotor Unbalanced) 

 These indices provide evaluation factors to identify involvement of faults with a set of electric 

motors with suspected faults. The methodology to calculate fault indices has been demonstrated in 

chapter 4. 
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Chapter 6:  

RESULTS ON MODELLING FAULT PROPAGATION OVER THE NETWORK 

 

6.1 Introduction 

 

This chapter targets at evaluation of the concept of distributed diagnosis using simulation 

results. Atypical scaled down distributed power system has been shown in Figure 43. The system will 

be employed to simulate behaviour of distributed power systems while a system component is 

associated with a faulty behaviour. The model consists of a scaled down industrial power cluster and a 

sensor network to collect the acquired information, analyse the primary results and pass pre-processed 

information to the main processing unit. Modelling and simulation approaches for each component of 

the system have been explained in the previous chapter.  
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Figure 43 General structure of the simulation model as described in chapter 3 
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As discussed in chapter 3, each fault is defined by a predetermined signature spectrum. Each 

signature is a combination of multiple frequency points with a given magnitude. Prefect observation of 

a fault is appearance of all components of the fault signature as dominant frequencies of electrical 

motors. However in reality, fault signals may be attenuated in different ratio also extra significant 

points may influence the signals due to presence of noise. Therefore a methodology is required to 

discriminate noise signals with original components of the signature and detect the type and cause of 

the fault in each situation. 

This simulation covers a wide range of industrial configurations. The study has taken into 

consideration that there are various industrial topographies. This also considers the fact that there is a 

range of industrial faults that may be associated with any electric motor and a number of case studies 

have been selected to cover a wide range of faults in small scaled industrial sites. These simulation 

target linear situations where no more than two faults appear simultaneously in the network.  

Size of electric motor, types of faults, speed of the faulty motor, and configuration of the 

simulation model are acting variables in this simulation. Altering these indices and changing the 

location of the faulty motor produces multiple observation of fault incidence. Here different types of 

fault signatures have been tested in a uniform network with similar motors, uniform network with 

different motors, dissimilar motors and configurations, two similar faults in different locations and two 

different faults in different locations have been employed to analyse propagation of fault signals and 

possibility of fault diagnosis within the given network. 

This chapter describes and debates propagation of fault signals throughout the network and 

behaviour of induction motors in response to occurrence of a fault in a different location. The next 

chapter utilises results of this chapter to diagnose the cause and type of the fault using theory of 

distributed fault diagnosis.  

In this chapter, impact of a faulty motor in frequency spectrums on other electric motors will be 

simulated. All other electric motors are considered healthy at time of measurement. As described 
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earlier, a model of 12 electric motors in three main subsystems has been employed for simulations. 

This experiment has been repeated to cover several situations as detailed in the following sections 

6.2 Software implementation 

Following MATLAB programs have been implemented to implement the concept of distributed 

signature analysis and perform thesis tasks.  

Table 6 List of MATLAB programs to implement thesis tasks 

Filename Function Example of use  

Showoneof 

 

To show linear and logarithmic frequency 

spectrums of all motors of the site 

Figure 45 

 

showspect.m 

 

To evaluate and illustrate value of specific signals 

with known frequency points in different measuring 

points 

Figure 47 
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sppy.m 

 

To estimate involvement of a fault frequency point 

in three known faults using the process of pattern 

recognition. To calculate fault indices for a given 

waveform by categorizing fault frequency- 

magnitude pairs and passing them to SPPY 

 

Patarz.m Identify significant points and pass them to SPPY to 

calculate fault indices 

 

 

Challenge1.m To load simulation variables, organize them and 

calculate fault indices using Patarz. This program 

is employed to calculate fault indices manually 

Figure 62 

 

Challengecon2.m To run simulation files automatically, produce fault 

indices using patarz and saving organized fault 

indices in a file. This program is used to generate 

training information for the neural network 
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nnexSome4.m To form and train a neural network to estimate the 

fault location in the network. This program uses 

Challengecon2.m to collect information. The 

network then can be reused by other applications to 

estimate different case studies. 

 

Testnn.m To use the neural network formed and trained by 

nnexSome4.m to find the fault in different case 

studies. 

Figure 72 

 

chart1.m To illustrate propagation of fault indices from one 

location to another location and estimate the fault 

location based on the propagation pattern. This 

program requires challenge1.m to run before 

execution 

Figure 63 

 

  

As shown in Table 6, a number of MATLAB programs have been implemented to perform the 

thesis tasks. These programs are attached in Appendix III. 

 

6.3 Single incident  

Single incidences of faults are the most common situation in most small scaled industries. 

While in large scaled distributed power systems the network is usually involved in sets of different 

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

X = 11

Y = 0.784

Measurning points

 

 

X = 6

Y = 0.0926 X = 8

Y = 0.0546

Detected: Fault in Motor 11 with 75%

p
ro

p
o
rt

io
n
a
l 
p
o
s
s
ib

ili
ty

0.5 1 1.5 2 2.5 3 3.5 4
0.5

1

1.5

2

2.5

3

3.5

4

4.5
Propagation pattern of fault indices

Supply Busses #1,#2 and #3

In
d
u
c
ti
o
n
 m

o
to

rs

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

----Bus 1---- ----Bus 2---- ----Bus 3----



90 

 

types of faults with different levels of severity. In this section different faults with different 

topographical configurations have been discussed to verify the usability of the approach of distributed 

diagnosis. 

 

6.3.1 Uniform network 

Initially a uniform industrial network has been simulated with following specifications: 

Impedance of each electrical motor to the main bus is set to    resistance and impedance of 

each bus to the main bus is set to                                    . 

The network model has been shown in Figure 44. 

 

Figure 44 Primary model of unique simulation model (EH1.mdl) 

Current spectrums of all electric motors before occurrence of any faults have been shown in 

Figure 45.  
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Figure 45 Current spectra of electric motors in a healthy and uniform network(Different loading)-Case study 1 
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As shown in Figure 45, all waveforms are similar and there is no abnormality observable in 

frequency spectrums of electric motors. The only significant point appears at 50Hz which is the 

nominal frequency of the network. 

Now an imperfect representative signal for fault type 2 has been formed and inserted into Motor 

8 with following specifications: 

 

Voltage Phase  Frequency 

170  0  210     (Current indicators of Fault 1) 

190  0  470 

167  0  360 

 

 

As shown in Figure 46, this fault has an observable impact on current spectrums of all electric 

motors. This is due to propagation of fault signals through the network. 
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Figure 46 Current spectra of electric motors in a symmetrical industrial system with a fault in Motor 8 
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Magnitude of fault signals at each measuring point is shown in Figure 46.Figure 47 provides 

competitive information about the fault while Figure 46 addresses overall waveform components of 

each measuring point. Combination of these two Figures provides a bigger picture to judge degree of 

association of each measuring point with the inserted fault. 

 

Figure 47 Proportional value of fault frequencies at each measuring point in a uniform network (Motor 8 is 

faulty) - Case study 1 

Referring to Figure 47, the magnitude of fault signals in the Motor No. 8 is dramatically higher 

than levels of signals in other motors. Also the level of propagated signals remains the same in motors 

of healthy bus. This behaviour is the perfect match for propagation of fault signals as described in 
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chapter 3. Therefore using a simple comparative analysis, Motor 8 can be detected as a perfect 

candidate for the origin of the fault demonstrated in Figure 46 and Figure 47. These signals can be 

eliminated from waveform of all other motors for further behavioural analysis. Evenhanded behaviour 

of the network is due to similarity of the network which eases out estimating attenuation of fault signals 

throughout the network. 

 

6.3.2 Unsymmetrical industrial power system- Case study 2 

Here a more general industrial power network is simulated. In this network similar to Case 

study 1, all electric motors are similar. But they have been connected to supply bus via dissimilar 

connections with unsymmetrical impedances [File: eh2.mdl]. 

Frequency spectrums of all electric motors in healthy mode have been shown in Figure 48. As 

illustrated here, change of connections may make a considerable alteration in frequency spectrums of 

current signals. These frequency points may be confused with fault indicators and cause misdiagnosis. 

This will be investigated in the next chapter, that current waveform assumed as a random observation 

of an industry site. 

Now a similar fault representative with half of the strength of fault 1 has been integrated in 

model of Motor 3. The inserted fault representatives are smaller than the previous case study and hence 

smaller alteration in frequency spectrum of electric motors is anticipated. 

Figure 49 demonstrates magnitude of fault signals throughout the network. Here, unlike the 

previous case study, fault signals are not visually observable in current spectrums of most electric 

motors. There is no noticeable interference among other electric motors. 
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Figure 48 Frequency spectra of a model of similar motors in an unsymmetrical network 
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Figure 49 Current spectra of electric motors in an unsymmetrical industrial system with a fault in Motor 3 
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In order to compare magnitude of fault signals and evaluate the level of signals with the 

anticipated pattern of propagation, magnitude of signal components of the inserted fault has been 

shown and drawn in Figure 50. 

 

Figure 50 Proportional value of fault frequencies at each measuring point- Case study 2 

Similar to the previous case study, all frequency components of the fault have similar behaviour 

and their level stays the same in healthy bus. Magnitudes of frequency components of the fault are 

1 2 3 4 5 6 7 8 9 10 11 12 
0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Measuring points 

 

 

210 0.44521 

470 0.031333 

360 0.17826 

Frequency 
Maximum Value 210Hz 

470Hz 
360Hz 

 

P
ro

p
o

rt
io

n
al

 V
al

u
e 

Bus 3 

Bus 2 
Bus 1 

Proportional value of significant frequencies at each measuring point 



99 

 

noticeably higher than magnitudes of signals in other electric motors. All evidences clearly indicate 

that all fault signals are originated from Motor 3. 

From observation of Case study 1 and 2 it can be concluded that networks with similar 

components usually have a linear behaviour and the only acting variables in attenuation of fault signals 

are impedance of the signal path and placement of the measuring point in the network. As shown in 

Case study 1, major faults result in interference in captured signals and hence misdiagnosis while small 

and less severe faults may have no visual observation in current signals of other motors. 

 

6.3.3 Dissimilar machines- Case study 3[eh3.mdl] 

In order to extend coverage of simulation, more general conditions with different electrical 

motors will be investigated. As shown in Figure 51, current of electrical motors varies from 6A to 50A.  

Referring to Figure 51, many abnormal frequency points are observable in current spectrums of 

healthy motors. Magnitudes of significant points are considerably bigger than fault frequency points in 

Case study 2. As discussed in section 2, these frequency signals make the process of diagnosis more 

difficult.  

Here two types of faults are tested to analyse attenuation of fault signals and verify detestability 

of the fault in each situation.  

Firstly, fault 1 is integrated in Motor 11 to observe the response of electric motors in event of 

fault incidents. 
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Figure 51 Current spectra of healthy electric motors of Case study 3. All motors are induction and squirrel cage 

but with different power rating and different loading condition 
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Figure 52 Current spectra of electric motors after fault in Motor 11( Fault 1)- Case study 3 
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As shown in Figure 52 the integrated signals propagate in the network. However the main 

appearances of the inserted signals are observable in Motor 5 and Motor 11. Also there are several 

major fault signals observable in the network. These waveforms cause a serious doubt in identifying the 

origin of the fault.  A graph of the magnitude of fault signals has been shown in Figure 53 to acquire 

more information about the incident.  

 

Figure 53 Proportional value of fault frequencies (fault 1) at each measuring point- Case study 3 

As shown in Figure 53, the magnitude of fault signals does not follow the pattern explained for 

Case study 1 and 2. Maximum amplitude appears in different locations and fault signals have different 

attenuation patterns. The only judgment can be taken based on amplitude of signals that recommends 

that Motor 11 is the origin of 210 and 470 Hz while Motor 5 is responsible for 30 Hz frequency. This is 
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a false diagnosis as all components of the signal originated by Motor 11.This situation will be 

discussed and analysed in chapter 6. 

6.3.4 Dissimilar motors-Case study 4 

Now another fault with a different magnitude- frequency configuration has been integrated in 

Motor 11 to simulate the network behaviour for fault type 2. (EH31) 

Voltage Phase  Frequency 

170  0  74      Fault 2  

190   0  106 

167  0  084 

Unlike fault 1, all fault frequencies are around the nominal frequency. The frequency spectrums 

of electric motors have been shown in Figure 54.  

As shown in Figure 54, fault signals propagate all over the network. However magnitude of 

fault signals varies from point to point. Fault signals are clearly observable in current signals of all 

motors that are connected to Bus 3. But fault signals dissipate significantly before they become 

observable in waveform of electric motors. In order to view propagation of fault signals, magnitude of 

fault signals in all measuring points has been shown in Figure 55. 
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Figure 54 Frequency spectra of electric motors in an unsymmetrical, disimilar power network with a fault in 

Motor 11-Case study 4. 
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Figure 55 Proportional values of fault frequencies (related to fault 2) at each measuring point. (Fault in 11)- Case 

study 4 

Referring to Figure 55, maximum magnitude of fault signals appear at measuring point 11. 

However, the network has different attenuation for each fault signal.  

6.3.5 Dissimilar motors- Case study 5(eh4.mdl) 

 

Here, another fault with a different magnitude-frequency configuration has been integrated in 

Motor 6 to simulate the network behaviour for fault type 1.  

 

 

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Measurning points

R
a
ti
o
n
a
l 
v
a
lu

e
 o

f 
s
ig

n
if
ic

a
n
t 

fr
e
q
u
e
n
c
ie

s

Rational value of significant frequecnies in each measuring point

 

 

74 14.6435

106 1.7561

84 1.437

Frequency Maximum Value

74Hz

106Hz

84Hz

Measuring Point 

Proportional Value of significant frequencies 



106 

 

Voltage Phase  Frequency 

170  0  65      Fault3 

190  0  48 

167  0  78 

167  0  28 

 

 Where:                                        

Again to analyse behaviour of the network and compare magnitude of significant points in 

current waveform of electric motors, magnitude of fault signals in all measuring points has been shown 

in Figure 56. 
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Figure 56 Rational values of fault frequencies (related to fault 3) at each measuring point (fault in 

Motor 6)- Case study 5 

 



107 

 

As shown in Figure 56, at least 4 may be detected as associated with a kind of fault. However, 

maximum of fault signals appear in Motor 5 and Motor 6. Therefore, visual observation would 

recommend considering both Motor 5 and 6 as the origin for the incident. Chapter 7 resolves the 

accuracy issues using the technical method explained in chapter 3. 

 

6.4 Multiple faults in the network 

 

6.4.1 Two similar faults in the network (Case study 6) [eh6] 

Here an incident of two similar faults in two parts of the network will be investigated. As a case 

study the fault model 3 has been integrated in Motor 6 and Motor 11. The network described in Case 

study 5, has been selected for the experiment. Frequency spectrums of all electric motors have been 

shown in Figure 57. 
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Figure 57 Frequency spectra of electric machines. There are two similar faults integrated in the network- Case 

study 6 
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Visual observation indicates Motor 5 and Motor 12 as possible faulty motors. However, none of 

them originally associated with any fault. This false interpretation can be corrected partially by looking 

at a graph of the magnitude of fault signals as shown in Figure 58. 

 

 

Figure 58 Rational values of fault frequencies (related to fault 3) at each measuring point. (Similar fault in Motor 

6 and Motor 11)- Case study 5. 

 

Looking at Figure 58, Motor 2, 5, 6 and 11 can be taken as possible causes of the fault. 

Therefore neither traditional current signature analysis nor comparative approaches can result in having 

an acceptable diagnosis. Further investigations in chapter 6, will provide more accurate results for the 

case study using the distributed approach and propagation analysis. 
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6.5 Two different faults in a network- Case study 7[eh5.mdl] 

In this section behaviour of the power network in event of two different faults will be 

investigated. To simulate an incident with 2 different faults, the fault in Motor 6 stays the same and 

another fault that is described by equation 6-4 has been integrated in Motor 12. 

 

Voltage Phase  Frequency 

170  0  35       Fault 4  

190   0  44 

167  0  70 

167  0  30 

 

 Where:                               

Frequency spectra of electric motors have been shown in Figure 59. 
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Figure 59 Frequency spectra of electric motors in event of two disimilar faults in different places of the network- 

Case study 7 
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Similar to the previous situation, by no means faults of Motor 6 and 12 can be discriminated 

using visual analysis.  However if the fault signals are known and filtered from each waveform and 

clustered for each fault individually, a better description of the network is achievable. 

 

 

Figure 60 Proportional values of fault frequencies (related to fault 4) at each measuring point-  

Case study 7. 

Figure 60, discriminates the frequency components that are related to fault 4 and indicates 

Motor 12 at the origin of fault frequencies. Motors of Bus 1 and Bus 2 with neglecting the value of 
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35Hz line in measuring point 5 are completely correlated with the propagation pattern described in 

chapter 4. 

 

Figure 61 Proportional values of fault frequencies (related to fault 3) at each measuring point- Case study 7. 

Figure 61, discriminates the frequency components that are related to fault 3 and indicates 

motors 5 and Motor 6 as the origin of the fault. This assumption is very close to the correct diagnosis. 

But to clarify the uncertainty, further analysis is necessary.  
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6.6 Conclusions 

A number of industrial case studies have been analysed by evaluating the concepts of individual 

and distributed diagnosis. As shown in this chapter, components of current spectra in each electric 

motor are closely influenced by other in-network electric motors. Propagation of fault signals during 

minor faults is negligible, but in major fault incidents, signal propagation may cause unnecessary 

warnings in healthy motors. In many cases, tracking fault signals and comparing them with the 

propagation patterns as described in chapter 3, clearly discriminate and describe the original source of 

the fault. In other situations, further technical approach is necessary.  In general, for any diagnostic 

process, fault frequencies have to clearly discriminated, to differentiate between faults.   

Chapter 7 employs observations of this chapter to implement and evaluate concept of 

distributed signature analysis.  
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Chapter 7:   

TECHNICAL SOLUTION AND EVALUATION 

 

7.1 Introduction 

 

This chapter aims at implementing and evaluating the concept of distributed diagnosis using 

simulation results and practical experiments. Here, current spectrums will be analysed without any bias 

to estimate delectability of the inserted fault and approximate reliability of diagnosis. As discussed in 

chapter 6, individual diagnosis may result in serious failure in distinguishing type and origin of fault 

signals in the network. Multiple measuring points in the network capture dependent data from their point 

of view and hence considering data of other measuring points improve accuracy of diagnosis and help in 

discriminating and isolating motor faults. 

In order to implement concept of distributed diagnosis, fault indices and propagation charts, have 

been employed. Fault indices are measured to evaluate involvement of each data with the given fault. 

These indices are estimated using a pattern recognition strategy, as described in chapter 4. Propagation 

charts advise direction of propagation of estimated fault indices using attenuation patterns as explained 

in section 4-11, within the network and hence identify origin of signal.  

Taking into account that fault type, speed of the faulty motor, strength of the fault and location of 

the faulty motor are acting variables of diagnosis, several situations have been considered to evaluate 

concept of distributed diagnosis. The first part of this chapter concentrates on simulation results 

demonstrated in chapter 5. Then a number of case studies have been investigated using fault indices, 

propagation graphs to diagnose motor faults in chapter 5 case studies. And finally, an artificial neural 

network is taken as an example of employing smart decision making strategies in interpreting fault 

indices.  
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7.2 Analysis of simulation data 

A number of experiments have been analysed referring to simulation case studies explained in 

chapter 6. In each Case study fault indices and propagation charts will be demonstrated and described 

to evaluate ability of distributed diagnosis in estimating more accurate results.  

 

7.2.1 Similar electrical motors Case study  1 

As shown in chapter 5, propagation of fault signals is easily interpretable if fault signals are 

detected using process of pattern recognition. Related fault indices for fault type 1 and 2 as described in 

chapter 3 are shown in Figure 62.   

 

Figure 62 Fault indices of electric motors in a uniform industrial network while a fault inserted in electric Motor 

8 (Case study 1) [File: eh1] 
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As shown in Figure 62, association with fault type 2 has been observed for all electric motors. 

However fault indices of Motor 8 and Bus 2 are considerably bigger than the rest of indices. Similarity 

of electrical motors causes an almost uniform attenuation of fault indicators. Propagation patterns 

provide a clearer view of transmission of fault signals to locate origin of faults in the network. 

 

Figure 63Fault propagation pattern for a uniform industrial network with a fault in Motor 8. The attenuation 

pattern and propagation indices clearly indicate Motor 8 as the cause of Fault #1 (speed range 

1450 to 1480RPM) 

Figure 63 illustrated an ideal situation where all arrows point toward one electric motor and 

there is no preference in ownership of fault indicators in other neighbour bus. And hence Motor 8 can 

be nominated as the origin of fault 1 with a very high accuracy. In general situations a more difficult 

situation will be expected and numerical calculation may ease out interpreting the propagation results. 
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7.2.2 Dissimilar machines [eh3 and eh4] Case study 3 

As described in chapter 5, here more general situations will be discussed. Electric motors are 

selected from different types; they are running in different speed ranges and are working in an 

unsymmetrical network. Here, unlike section 7.2.1 some abnormal frequencies are observable in 

frequency spectrums of healthy motors and propagation patterns of fault signals as shown in Figure 64  

 

are not following a uniform scenario. Therefore fault diagnosis is more difficult compared to 

previous case studies. Here to cover all electric motors a wider range of speeds have been selected.  

 

 

Figure 64 Fault indices for electrical motors in a dissimilar and unsymmetrical network with a fault integrated in  

Motor 11. Case study 3: speed range is 1410 to 1470RPM 
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As shown in Figure 64, Motor 11 has the maximum value while Motor 6 and Motor 10 appear 

to be highly associated with the incident.  

 

Figure 65 Fault propagation pattern for an unsymmetrical, dissimilar network with a fault #1 in Motor 11. Case 

study 3 

As shown in Figure 65, propagation pattern points out Motor 11 as the source of fault, however 

Motor 6 and Motor 10 also are considered as suspected motors. This confusion is caused by signals 

which were originally generated by normal operation of electric motors. An adaptive numerical 

solution may cancel the background noise and provide the correct answer. 

Prior analysis has been done in the dedicated range of speed for the faulty motor which is 1410 

to 1480RPM. Any alteration in estimating speed of electric motors may result in estimation error. For 

0.5 1 1.5 2 2.5 3 3.5 4
0.5

1

1.5

2

2.5

3

3.5

4

4.5
Propagation pattern of fault indices

Supply Busses #1,#2 and #3

In
d
u
c
ti
o
n
 m

o
to

rs

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

----Bus 1---- ----Bus 2---- ----Bus 3----



120 

 

example, altering speed range to 1400 to 1420RPM, while electric motors are not running is this speed 

range produces different faulty indices. 

 

Figure 66 Fault indices for an unsymmetrical electrical network (speed range is 1400 to 1420RPM) 

Incorrect fault indicators result in getting inaccurate answers in further processes.  As shown in 

Figure 66, this selection results in diagnosing Motor 2 as associated with fault type 1. 

 

7.2.3 Multiple faults in the network (eh5) [Case study 6] 

In this section methodology of distributed analysis will be evaluated for the situations where 

more than one fault is associated with the network. Case studies 5 and 6 of chapter 5 have been 
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employed to produce required data. Initially situation of two similar faults in the network (Case study 

5) is analysed to illustrate fault indices and propagation patterns in the network. 

 

Figure 67 Fault indices of electrical machines in an unsymmetrical dissimilar network with two similar faults in 

Motor 6 and Motor 11- Case study 5 

As shown in Figure 67, related fault indices for Motor 5 are higher than other electric motors. 

Motors 6 and 7 also appear to have significant level of fault signals. Propagation pattern of fault signals 

has been shown in Figure 68 (wrong diagnosis). 
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Figure 68 Attenuation chart for faults for Case study 6. The chart refers to Motor 11 in Bus 3. 

Propagation pattern points to Motor 11 as the origin of fault signals (wrong answer). Therefore, 

as shown here, monitoring fault indices and attenuation of fault signals are not sufficient to diagnose 

similar faults in the network and each diagnostic process may point at only one electric motor.  

The next case study is to evaluate the network in event of two different types of faults in the 

network. (As shown in Case study 6 in chapter 5). Similar to previous situations, frequency spectrums 

do not provide enough information to estimate the fault and origin of fault signals, however, 

differentiation of fault representatives discriminate network faults.  Here operation speed of Motor 6 

and Motor 11 are different, therefore two different sets of fault indices and two different propagation 

patterns may be calculated. 
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Figure 69 Fault indices of electric machines with two different faults in Motor 6 and Motor 11- Case study 

6.(speed range is 1410 to 1490RPM) 

As shown in Figure 69, two sets of fault indices are detectable. Fault indices point at different 

points. Fault type 1 in Motor 11, and fault type 2 in Motor 6 are considerably bigger than their 

neighbours. Since Motor 6 and Motor 11 are running at different speeds, customized fault indices can 

be calculated. 

1 2
0

20

40

60

80

100

120

140

160
Fault index of several induciton motors against a group suspected event

Type of significant signals

P
ro

p
o
rt

io
n
a
l 
fa

u
lt
 i
n
d
ic

e
s

 

 

Speed range:1420 to14901: Evnt 1 individual2: Evnt 1 parallel3: Evnt 2 individual4: Evnt 2 parallel5: Evnt 3 individual6: Evnt 3 parallel

Motor 1

Motor 2

Motor 3

Motor 4

Motor 5

Motor 6

Motor 7

Motor 8

Motor 9

Motor 10

Motor 11

Motor 12

Fault indices of induction motors against suspected incidents  
 



124 

 

 

 

 

1 2
0

50

100

150

200

250
Fault index of several induciton motors against a group suspected event

Type of significant signals

P
ro

p
o
rt

io
n
a
l 
fa

u
lt
 F

a
c
to

r

 

 

Speed range:1460 to14901: Evnt 1 individual2: Evnt 1 parallel3: Evnt 2 individual4: Evnt 2 parallel5: Evnt 3 individual6: Evnt 3 parallel

Motor 1

Motor 2

Motor 3

Motor 4

Motor 5

Motor 6

Motor 7

Motor 8

Motor 9

Motor 10

Motor 11

Motor 12

Bus1

Bus2

Bus3

1 2
0

1

2

3

4

5

6

7
Fault index of several induciton motors against a group suspected event

Type of significant signals

P
ro

p
o
rt

io
n
a
l 
fa

u
lt
 F

a
c
to

r

 

 

Speed range:1420 to1440

1: Evnt 1 individual2: Evnt 1 parallel3: Evnt 2 individual4: Evnt 2 parallel5: Evnt 3 individual6: Evnt 3 parallel

Motor 1

Motor 2

Motor 3

Motor 4

Motor 5

Motor 6

Motor 7

Motor 8

Motor 9

Motor 10

Motor 11

Motor 12

Bus1

Bus2

Bus3

Fault indices of induction motors against suspected incidents  

Fault indices of induction motors against suspected incidents  

Figure 70 fault indices of motors in Case study 6. Two faults have been integrated in model of two 

electric motors. a) Speed range 1420RPM to 1440RPM; b) speed range 1460 to 

1490RPM 

 

a) 
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Figure 70.a strongly illustrates presence of fault type 1 in Motor 6 while Figure 70.b refers to 

presence of fault 2 in both Motor 6 and 12. Taking into account that Motor 6 a has been detected as 

associated with fault type 1 and considering cross section of fault indicators, Motor 12 can be estimated 

as the source of fault signals related to fault type 2.  

 

 

Figure 71 Attenuation chart for fault for Case study 6. Two different faults in the network with customized 

indices related to fault type 2 

As shown in Figure 71, attenuation pattern of customized fault indices refers to Motor 12 as the 

origin of fault 2. 
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7.3 Discussion 

In order to evaluate different acting variables in fault diagnosis, simulation results have been 

summarized in Table 7.   

Table 7 Evaluation of simulation results 

Case Study         1           2 3 4 5            6           7 

Faulty motor Motor 8 Motor 3 Motor 11 Motor 11 Motor 6 

Motor 6 and 

Motor 11, 

similar faults 

Motor 5 and 

Motor 12, 

different faults 

File name eh1 eh2 eh3 eh31 eh4 Eh6 eh5 

Type of fault 

Major/ 

High 

frequency

-T2 

Minor/High 

frequency 

Major/ High 

frequency-T2 

Major/ around 

50Hz 

frequency 

Major, 

different type, 

close to 50Hz 

Major, 

different type, 

close to 50Hz 

Similar to CS6 

in Motor 6, and 

another type of 

fault with 

frequency 

components 

around 200Hz 

Motors 
All the 

same 
All the same 

Different 

motors 

Different 

motors 

Different 

motors 

Different 

motors 

Different 

motors 

Topography Uniform 
Unsymmetric

al 
Unsymmetrical Unsymmetrical Unsymmetrical Unsymmetrical Unsymmetrical 

Fault is 

observable in 

the faulty 

motor 

Y Y Y Y Y Y Y 

Fault is 

observable in 

healthy 

motors 

Y N Y Y Y Y Y 

Fault 

detection and 

diagnosis 

using fault 

Indices and 

propagation 

patterns 

Y Y N Y N N Y 
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        As shown in Table 7, whenever a major fault appears in the network, fault indices are observable 

in all healthy motors. Most of these confusions have been resolved using propagation patterns. 

However in few situations extra verifications are required. On the other side since all measuring points 

provide individual observations of the same fault event, the system potentially is capable of providing 

solutions for motors without direct measuring points. In this situation, faults can be observed indirectly 

by monitoring and comparing fault impacts in current signals of neighbouring motors. Here as an 

example, a neural network has been implemented to assess feasibility of providing better results using 

numerical solutions. This attempts to initiate a new pathway for future works in area of fault diagnosis 

to provide a robust and reliable solution for fault diagnosis in induction motors.  

 

7.4 An attempt to interpret fault signals using neural networks 

Several numerical and intelligent methods may be utilized to interpret fault indices. Here as an 

example, an artificial neural network has been employed to interpret fault indices and provide a 

numerical solution.  

Artificial neural networks are being applied to many industrial problems including pattern 

recognition, data classification and data interpretation [46]. Artificial neural network produces a 

functional solution to reproduce output files with the given input files. Therefore, reliability of results is 

very dependent to the quality of the training data. There are different types of ANN networks. The most 

common ANN is feed-forward networks with back propagation learning method [46]. 

In this case study, a feed-forward network has been used to estimate the origin of the fault. The 

network is trained with simulation experiments using back-propagation technique. MATLAB neural 

network toolbox has been employed to process signals, for the neural network and provide the result 

for the given task. A matrix of fault indices (12 inputs) has been used to indicate faulty motors as the 

output of the ANN model using the Boolean logic (1 for faulty and 0 for healthy).  Here as an example 

results of Case study 3 [eh3] has been employed to verify the operation of the ANN network. Details of 

the neural network have been summarised in Table 8.  
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Table 8 Brief specification of the implemented artificial neural network 

 

Item Specification of the implemented artificial neural network 

Selected experiments Major occurrence of fault type 1 in four motor (out of 12 motors) in the site. 1 experiment per 

each bus  

Network type Feed forward 

Number of hidden 

layers 

5 layers 

Input data for each 

experiment 

Fault indices of all measuring points during the incident. The input for the ANN network is a one 

dimension matrix of 12 inputs where each data is the fault index in a measuring point. 

Output of the 

network 

Digital matrices refer to the fault as 1 and others as 0. For example: [0 0 0 1 0 0 0 0 0 0 0 0] for 

fault in Motor 4 

Method of learning  Back propagation 

Train goal  0.01 

   )      (7-1) 

Where: 

F:  matrix of fault indices 

N:  Artificial neural network model- to locate the origin of one pattern of fault in each time. 

O:  Matrix of outputs 

Where O is [0 0….1….0 0] for the fault caused by motor n and 1 is located in n th place in matrix of 

outputs. 

A number of experiments are required to train the network. These experiments have to cover all 

ranges of different situations in the power network. Here electrical motors will be classified based on 

their location in the bus and distance to the main bus. In this case study experiments of healthy 
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situation for all electric motors, major fault in Motor 3, major fault in Motor 6, major fault in Motor 9 

and major fault in Motor 12 have been selected as inputs of training iteration of the network. These 

experiments cover minimum of one sample fault for each bus. Training data has been summarised in 

Table 9. 

Table 9 Training Data for the neural network model 

Fault location 

Major Fault- 

Type 

Fault in 

Motor 3 

Fault in 

Motor 6 

Fault in 

Motor 9 

Fault in 

Motor 12 

Fault Indices in motors 

1 to 12 

    1.5368 

    1.8044 

    1.6228 

    1.1164 

    1.4894 

    2.7884 

    0.3435 

    0.3397 

    2.0109 

    2.4842 

    1.5235 

    2.0165 

    1.5672 

    2.0635 

    4.0797 

    1.1404 

    3.3089 

    0.5413 

    0.3827 

    0.3744 

    1.9531 

    2.3798 

    0.5841 

    1.9650 

    1.4475 

    1.6958 

    1.5428 

    1.0454 

    1.2775 

    4.3698 

    0.3821 

    0.3709 

    1.7390 

    2.2960 

    1.4250 

    1.7510 

1.4305 

    1.6544 

    1.4703 

    1.0468 

    3.5381 

    4.3741 

    0.4304 

    0.4222 

    4.1090 

    1.8672 

    1.9416 

    1.3707 

Fault location 
Bus 1 Bus 2 Bus 3 Bus 3 
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Then in order to observe the system behaviour results of Case study 3 (fault in Motor 11) has 

been utilized to verify the event of occurrence of the same fault in Motor 11. 

 

Figure 72 Fault indicators calculated by the neural network show a high number related to possibility of presence 

of fault type 1 in Motor 11. 

As shown in Figure 72, Motor 11 is detected as a faulty one, which is the correct answer and 

hence the network is supposed to be prepared for further experiments. 

Here in order to test robustness of diagnostic system, we assume all measuring points in 

subsystems 2, 4, 6,8,10 and 12 have been turned off and the diagnostic system is receiving data from 

measuring points 1, 3,5,7,9 and 11. This situation can be considered for two types of events where the 

direct measuring point is available for the faulty motor or the faulty motor lost the direct monitoring 
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system. To analyse first type of incidents, results of Case study 3 have been employed again for the 

new situation (with working measuring point). Simulation outcomes have been shown in Figure 73. 

 

Figure 73 Neural network output for a typical power network for Case study 11 (Some measuring points are 

missing but not the direct one) 

As shown in Figure 73 where fault still is diagnosable but with a less degree of confidence. 

Figure 74 shows the output of neural network when all measuring points are available except the direct 

measuring point for Motor 11.  
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Figure 74 Neural network output for the network Case study 3 when direct measuring point is missing 

As shown in Figure 74, neural networks point to the fault location with a lower level of 

confidence compared to the situation when all measuring points are available; but with more 

confidence compared to the previous situation where a direct measuring point was available.  

Several situations have been listed in the following table (Table 10) to judge the application of a 

neural network in distributed fault diagnosis.  
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Table 10 List of neural network experiments to detect the fault in a typical scaled down network (Case study 3) 

with selective measuring points 

NO Experiment detail Diagnosis result 

1 All measuring points in Bus 1 are 

turned off 

Detected: Fault in Motor11 with possibility of0.69003 

2 All measuring points in Bus 1 and Bus 

2 are turned off 

Detected: Fault in Motor11 with possibility of 0.6265 

3 All measuring points in Bus 3 

including motors 11 are turned off 

Suggested: Fault in Motor6 with possibility of 0.23617 

(Not correct). Also suggested: Motor 9: 0.16, Motor 

10:0.16, Motor 11:0.16 and Motor 12:0.16 out of 1. 

4 All measuring points of Bus 3 except 

the faulty one turned off. 

Detected: Fault in Motor11 with possibility of 0.72503 

5 All measuring points of Bus 1 and the 

measuring points of the faulty motor 

are turned off 

Suggested: Fault in Motor 6 with possibility of 0.20452 

also suggested fault in Motor 11 with possibility of 

0.139 as the second option 

6 All measuring points of Bus 2 and the 

measuring points of the faulty motor 

are turned off 

Detected: Fault in Motors 5   6   7   8  and 11 with 

possibility of 0.18452 

 

Results of several experiments with a neural network have been summarised in Table 10. These 

experiments clearly demonstrate the possibility of fault finding when a set of measuring points is 

turned off. This can cover situations where measuring points have been replaced to save the installation 

cost or they are turned off due to failure in wiring or automation systems. The diagnostic system may 
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point to a wrong motor in case of major failure in measuring systems. However an early detection of 

can be considered. Further calculation and considering change of the diagnostic topography due to 

missing measuring points may provide more accurate results. 

 

7.5 Practical experiments 

Here the test-bed explained in chapter 5 has been implemented to verify attenuation and 

propagation of fault signals in a real world situation. Electric motors initially set to work in an isolated 

mode and then they have been connected together via a power network with unmeasured quantities 

fault signals. As explained before the experiment is not providing a perfect environment to provide an 

accurate calculation for propagation of fault indices due to the following reasons: 

All measurements are asynchronous. Therefore, current signals of electric motors in each 

experiment may differ from the next experiment on the same electric motor. 

1. All motors have to be turned off and on to change the system configuration. Each startup 

process may change mechanical characteristics of electric motors that potentially result 

in a change in quality of operation of electric motors. 

2. All network characteristics, such as impedance of connecting cables during experiments 

are considered unknown. Therefore a black box approach is the best option to verify 

propagation of fault signals. 

Besides, of all shortcomings explained in 1, 2 and 3, the experiment can verify propagation of 

fault signals from one location to another location. Two sets of experiments have been employed to 

evaluate concept of signal propagation: stand-alone operation of each motor and parallel operation of 

all motors.  
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Figure 75 Frequency spectrums of electric motors in the scaled down system in isolated situation 

 

Figure 76 Frequency spectrums of electric motors in the scaled down system in parallel mode 

As shown in Figure 75 and Figure 76, frequency spectrums of electric motors in parallel mode 

are not the same as they were in isolated situation. This change is due to propagation of fault signals in 

the power network. 
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In order to analyse the waveform, initially all local maximums of current waveform will be 

categorized and then all measuring points will be compared with expected locations of industrial faults 

and the associated speed will be calculated for any rational assumption. 

 

Figure 77 Fault indices for four electrical motors in both individual and parallel running- The suspected speed 
is 1300 to 1400RPM 

 

 

Figure 78 Fault indices for faults in for four electrical motors in both individual and parallel running- 
Suspected speed is 1400 to 1450RPM 
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Figure 79 Fault indices for four electrical motors in both individual and parallel operation- The suspected speed 

is 1250-1350RPM. 

As shown in Figures 77, 78 and 79 there is a significant change in value of fault indices while 

diagnostic speed varies.  Looking at fault indices, Motor 4 can be considered as associated with a minor 

fault. This is the correct judgement as, Motor 4, has some degree of malfunction with fault 1 that is 

caused by imperfect installation of the motor. The motor’s speed is 980RPM while other motors ran on 

speed range 1400 to 1450RPM. The fault index of Motor 3 is very close to the fault index of Motor 4. 

Considering the size of Motor 4, it can be concluded that the signal is caused by Motor 4.  

Inconsistent increment of proportional fault indices may confuse the simulation. As discussed in 

1, 2 and 3 the main reason of inconsistent increment/decrement of fault indices is the asynchronous 

measurement taken to measure fault signals.  
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7.6 Conclusion 

A number of methodologies using distributed fault diagnostic approaches have been employed 

to improve reliability of industrial fault diagnosis. As demonstrated in this chapter, in most cases in-

network fault diagnosis provided more accurate results. Fault indices demonstrated association of each 

motor with suspected faults. Propagation patterns describe the direction and origin of fault 

representatives and artificial neural network interprets fault indices using a training process. This 

combination attempts to take advantage of all possible indicators to point to the origin of fault signals. 

Besides the improvement, each solution is limited to a range of situations and came with some inherent 

shortcomings. 
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Chapter 8:  

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Introduction  

This chapter summarizes the key features of the Distributed Fault Detection and Diagnosis and 

describes the main findings of this research.  Evaluation and judgement of the research have been 

followed with a set of recommendations to improve the reliability of diagnostic systems.  

In this thesis, initially inherent shortcomings of individual fault diagnoses have been discussed. 

A diagnostic methodology has been proposed to formulate and utilize propagation of fault frequency 

components around the network and provide a more accurate diagnosis for in-network induction 

motors. An industrial scaled down distributed power system has been employed to generate data for a 

number of situations. This data have been used to formulate and evaluate the concept of distributed 

diagnosis. 

Here a set of research contributions, their strength and limitations and thesis recommendation 

for further experiments and investigations are listed as follows. 

 

8.2 Evaluation of research tasks and scope of future work 

This project has successfully demonstrated the benefit and the necessity of in-network diagnosis 

as a replacement for individual diagnosis. Propagation of fault indices across the distributed power 

system causes serious interference in frequency components of current signals of electric motors. This 

interference can be interpreted as an observation of the status of remote equipment. Here a 

collaborative decision making methodology has been proposed to diagnose faults of all in-network 

electric motors considering all available observations.  
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More attention has to be paid to network topography to improve reliability of diagnosis. Taking 

advantage of topographical solutions in distribution networks may facilitate the processes of diagnosis 

and provide higher accuracy results. 

 

8.2.1 Simulation Models 

A scaled down industrial system has been utilized to observe behaviour of power networks 

against the occurrence of mechanical faults in electrical motors. Motor faults have been modelled by 

imperfect equivalent representatives of fault patterns as illustrated in previous research studies. 

Analysing the behaviour of more complicated motors with a higher number of components is an 

interesting assignment to develop and evaluate the concept of distributed signature analysis. Taking 

advantage of dynamic models of mechanical faults is an interesting task to match up propagation 

patterns with the dynamic extension of mechanical faults over a period of time.  

 

8.2.2 Scaled down practical model 

Here, a basic scaled down industrial system with limited numbers of electrical motors has been 

utilised to verify the concept of signal propagation. Results of practical experiments clearly 

demonstrate transmission of fault signals due to connection with other electric motors. Taking 

advantage of synchronous measurements for a long term situation where actual industrial faults occur is 

a better verification process and is recommended for further developments.  

 

8.2.3 Numerical solutions to interpret fault information 

The artificial neural network offers easier simplification of complicated situations and is 

capable of cancelling the network bias due to normal operation of electric motors or the interference of 

environmental noises. Here, a numerical solution based on ANN has been successfully implemented to 

utilize fault indices and diagnose the fault location in different situation. A more comprehensive study 
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can evaluate the application of different types of neural networks to provide a more reliable diagnosis. 

Other methods of smart decision making such as fuzzy logics, Genetic algorithm and the Bayesian 

approach may suggest a general solution of fault diagnosis as well. 

 

8.2.4 Expandability and Transportability 

Accuracy of results of diagnosis is dependent on reliability of data acquisition systems, 

accuracy of fault indices and complexity of network configuration. As discussed previously, the 

concept is not limited to a set of faults. Therefore, including a pattern of new faults can provide the 

capability of diagnosing that fault. Further developments in theory of motor current signature analysis 

and quality of data acquisition systems will emerge to improve the reliability of distributed fault 

diagnosis. 

The concept of distributed diagnosis and in-network fault detection has been employed to 

provide a more reliable diagnosis for electrical motors with direct measuring points and to take 

advantage of all observations to estimate the status of motors without any direct measuring point. This 

approach may offer higher reliability in other methods of diagnosis where fault signals propagate 

within a given network.  

 

8.2.5 Quantifying success of experiments 

As discussed in chapter 7, accuracy of distributed diagnosis is function of network topography, 

severity of faults, and level of noise and size of electrical motors. Forming a proper index to represent 

the network topography and quantifying the success of industrial experiments, emerges to improve the 

reliability fault diagnosis in different industrial networks.  
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8.3 Future developments in industrial fault diagnosis 

Concerning reliability of fault diagnosis in industrial situations, we recommend the following 

research tasks to improve the functionality and reliability of in-network fault diagnosis: 

 Rotor unbalanced and rotor asymmetry faults have been taken as an example to analyze 

in-network fault diagnosis. Including other types of motor faults such as eccentricity 

faults, broken bars and interterm faults in the proposed framework would be an 

interesting research task. 

 An example of a scaled down industrial power system has been simulated to formulate 

propagation of fault signals and evaluate the concept of distributed fault diagnosis. 

Including transformers and electrical drives in the simulation model and investigating 

the nonlinear attenuation of fault signals due to saturation of the transformer in higher 

frequencies would be an interesting research task.  

 The thesis utilizes a simplified model of electrical motors and motors faults to investigate 

the propagation of fault signals. Taking advantage of the dynamic model of electrical 

machines and the mechanical model of faults and analysis of fault indices using load 

flow approach during steady state and transient behavior of electrical motors provides 

the opportunity to diagnose the fault immediately after the incidents.  

 A simple model of an artificial neural network has been taken as an example to evaluate 

the potential to employ numerical calculation to interpret fault indices. However the 

research does not cover a comprehensive study to select an optimum neural network for 

distributed fault diagnosis in industrial situations. Making use of other metrologies of 

numeric, statistic and intelligent data analysis are other areas of future expansion for 

research in this field. 
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APPENDIX I: MCSA FORMULATIONS 

 

Fault type 1: Rotor Asymmetry as described in [23]:  
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Fault type 2: Rotor Unbalance as described in [23]: 
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Fault type 3: Broken bar as described in[23]:   

              (I-3) 

s:  Motor slip 

p:  Number of poles 

k:  Harmonic order of fault symptom; k=1,2,3,… 

  :  Fundamental frequency 

 

  



144 

 

APENDIX II: DETAILS OF SIMULATION MODEL 

EH1

Component  Detail  

Motor 1 Squirrel cage motor, 10Hp, 

400V 

Motor 2 Squirrel cage motor, 10Hp, 

400V 

Motor 3 Squirrel cage motor, 10Hp, 

400V 

Motor 4 Squirrel cage motor, 10Hp, 

400V 

Motor 5 Squirrel cage motor, 10Hp, 

400V 

Motor 6 Squirrel cage motor, 10Hp, 

400V 

Motor 7 Squirrel cage motor, 10Hp, 

400V 

Motor 8 Squirrel cage motor, 10Hp, 

400V 

Motor 9 Squirrel cage motor, 10Hp, 

400V 

Motor 10 Squirrel cage motor, 10Hp, 

400V 

Motor 11 Squirrel cage motor, 10Hp, 

400V 

Motor 12 Squirrel cage motor, 10Hp, 

400V 

B1-B0            

B2-B0     

B3-B0            

M1-B1    

Component  Detail  

M2-B1    

M3-B1    

M4-B1    

M5-B2    

M6-B2    

M7-B2    

M8-B2    

M9-B3    

M10-B3    

M11-B3    

M12-B3    

Supply 

bus/Generator 

450V, 0.2+j0.04   

Static load  
P=1kW; Q=200Var (inductive) 
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EH2

Component  Detail  

Motor 1 Squirrel cage motor, 10Hp, 

400V 

Motor 2 Squirrel cage motor, 10Hp, 

400V 

Motor 3 Squirrel cage motor, 10Hp, 

400V 

Motor 4 Squirrel cage motor, 10Hp, 

400V 

Motor 5 Squirrel cage motor, 10Hp, 

400V 

Motor 6 Squirrel cage motor, 10Hp, 

400V 

Motor 7 Squirrel cage motor, 10Hp, 

400V 

Motor 8 Squirrel cage motor, 10Hp, 

400V 

Motor 9 Squirrel cage motor, 10Hp, 

400V 

Motor 10 Squirrel cage motor, 10Hp, 

400V 

Motor 11 Squirrel cage motor, 10Hp, 

400V 

Motor 12 Squirrel cage motor, 10Hp, 

400V 

B1-B0            

B2-B0     

B3-B0            

M1-B1    

Component  Detail  

M2-B1    

M3-B1    

M4-B1    

M5-B2           

M6-B2         

M7-B2           

M8-B2           

M9-B3         

M10-B3    

M11-B3    

M12-B3    

Supply 

bus/Generator 

450V, 0.2+j0.04   

Static load  
P=1kW; Q=200Var (inductive) 

 

  



146 

 

EH3, EH31, EH4, EH5 AND EH6 

Component  Detail  

Motor 1 Squirrel cage motor, 10Hp, 

400V 

Motor 2 Squirrel cage motor, 50Hp, 

400V 

Motor 3 Squirrel cage motor, 20Hp, 

400V 

Motor 4 Squirrel cage motor, 5.4Hp, 

400V 

Motor 5 Squirrel cage motor, 20Hp, 

400V 

Motor 6 Squirrel cage motor, 20Hp, 

400V 

Motor 7 Squirrel cage motor, 5.4Hp, 

400V 

Motor 8 Squirrel cage motor, 5.4Hp, 

400V 

Motor 9 Squirrel cage motor, 5.4Hp, 

400V 

Motor 10 Squirrel cage motor, 10Hp, 

400V 

Motor 11 Squirrel cage motor, 20Hp, 

400V 

Motor 12 Squirrel cage motor, 5.4Hp, 

400V 

B1-B0            

B2-B0     

B3-B0            

M1-B1    

Component  Detail  

M2-B1    

M3-B1    

M4-B1    

M5-B2           

M6-B2         

M7-B2           

M8-B2           

M9-B3         

M10-B3    

M11-B3    

M12-B3    

Supply 

bus/Generator 

450V, 0.2+j0.04   

Static load  
P=1kW; Q=200Var (inductive) 
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APPENDIX III: MATLAB PROGRAMS 

 

SHOWONEOF 

This program calculates the frequency spectra of a sample of currents of all electrical motors. 

Both linear and logarithmical illustrations have been used. Logarithmic demonstration provides a good 

illustration of changes and linear demonstration helps in calculating the actual value of the signal in 

each frequency point. 

 

function showonef(q,mmk) 

hold off; 

forxy=1:12 

xx=q(xy,:); 

xys=num2str(xy); 

xys=strcat('M# ',xys); 

%L=length(xx); 

L=25000; 

 NFFT = 2^nextpow2(L); 

Y = fft(xx,NFFT)/L; 

%Y(1:100)=0.0001; 

 Y0 = abs(Y); 

Fs =25000;                    % Sampling frequency 

   f = Fs/2*linspace(0,1,NFFT/2); 

Ls=length(Y0); 

   Lf=length(f); 

Ll=min(Lf,Ls); 

  subplot(6,2,xy) 

 

dlim=fix(f(mmk))-1; 

  plot(f(1:mmk),Y0(1:mmk),'blue'); 

  Y0=log(Y0); 
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  hold on; 

   plot(f(1:mmk),Y0(1:mmk),'red'); 

   text(1,-8,xys); 

xlim([0,dlim]); 

%xlabel('Frequency Hz') 

%ylabel('Magnitude(A)') 

%tt=strcat('Motor NO',num2str(xy)); 

%title(tt); 

 

end; 

legend('Linear’, ‘Logarithmic') 
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SHOWSPECT.M 

This program uses bars to illustrated magnitude of dedicated fault frequencies. Initially 

frequency spectrum will be generated using the method explained in showoneof and then fault 

frequency points have been filtered by manipulating the matrix of frequency spectrums.  

 

%function yu2(data) 

f1=65;  %variable frequency points 

f2=48; 

f3=78; 

f4=28; 

q=eh1; 

clear ff1ff2ff3ff4; 

forxy=1:12 

xx=q(xy,:); 

%L=length(xx); 

L=50000; 

 NFFT = 2^nextpow2(L); 

Y = fft(xx,NFFT)/L; 

cc=(100/(f(100))); 

%Y(1:100)=0.0001; 

 Y0 = abs(Y); 

Fs =25000;                    % Sampling frequency 

   f = Fs/2*linspace(0,1,NFFT/2); 

Ls=length(Y0); 

   Lf=length(f); 

Ll=min(Lf,Ls); 

% subplot(3,3,i) 

% Y0=log(Y0); 

%plot(f(1:1300),Y0(1:1300)); 

%  xlabel('Frequency Hz') 

%ylabel('Logarithmic Magnitude (A)') 
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%title('Frequency spectrum of current in of Motor 1'); 

ff1(xy)=max(Y0(fix(cc*f1)),Y0(1+fix(cc*f1))); 

ff2(xy)=max(Y0(fix(cc*f2)),Y0(1+fix(cc*f2))); 

ff3(xy)=max(Y0(fix(cc*f3)),Y0(1+fix(cc*f3))); 

ff4(xy)=max(Y0(fix(cc*f4)),Y0(1+fix(cc*f4))); 

end; 

f1m=num2str(max(ff1)); 

f2m=num2str(max(ff2)); 

f3m=num2str(max(ff3)); 

f4m=num2str(max(ff4)); 

%f1m=strcat('f1 is:',f1m); 

%f2m=strcat('f2:',f2m); 

%f3m=strcat('f3',f3m); 

%f4m=strcat('f4:',f4m); 

ff1=ff1/max(ff1); 

ff2=ff2/max(ff2); 

ff3=ff3/max(ff3); 

ff4=ff4/max(ff4); 

ff=[ff1;ff2;ff3;ff4]; 

bar(ff'); 

%hold on;bar(ff2,'red'); 

%hold on;bar(ff3,'green'); 

%hold on;plot(ff4,'blue') 

 

%plot(ff1,'o') 

%hold on;plot(ff2,'ro') 

%hold on;plot(ff3,'go') 

%hold on;plot(ff4,'bo') 

legend(strcat(num2str(f1),'Hz'),strcat(num2str(f2),'Hz'),strcat(num2str(f3),'Hz'),strcat(num2str(f4),'Hz')); 

xlabel('Measuring points') 

ylabel('Rational value of significant frequencies') 

title('Rational value of significant frequencies at each measuring point'); 

text(4,0.9,num2str(f1));text(7,0.90,f1m); 
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text(4,0.85,num2str(f2));text(7,0.85,f2m); 

text(4,0.8,num2str(f3));text(7,0.80,f3m); 

text(4,0.75,num2str(f4));text(7,0.75,f4m); 

text(3,0.95,'Frequency'); 

text(6.5,0.95,'Maximum Value'); 

hold off; 
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SPPY.M 

This program compares fault frequencies of the spectrum with frequency patterns of three 

known fault events. This program considers each frequency point as associated with all suspected faults 

and calculates the speed that is associated with this involvement. The fault frequency point will be 

considered if the calculated speed is in range of acceptable speeds otherwise it will be rejected and then 

compared against the next significant fault. sppy may return association with none or more than one 

fault for each single frequency- magnitude point. 

 

function [m1,m2,m3,fsign]=sppy(frn0,mag,vmax,vmin) 

cf=1;f0=50;Q=1;K=1;vs=1500;KQ=1;p=4;kk=2;m1=0;m2=0;m3=0; 

    clear speedfsign; 

fsign(1)=0;  

        speed(1)=0; 

for n=15:-1:1 

    k=n; 

    s=((frn0/f0)-(2*k/p))/(1-(2*k/p));%4 

v=(1-s)*vs; 

 

if v>vmin 

if v<vmax 

fsign(kk)=1;  

        speed(kk)=v;kk=kk+1;  

        m1=mag/kk; 

end 

end 

s=((2*k/p)-(frn0/f0))/ (2*k/p+1); %5 

v=(1-s)*vs; 

if v>vmin 

if v<vmax 

fsign(kk)=2; 
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        speed(kk)=v; 

kk=kk+1; 

        m1=mag/kk; 

end 

end 

s=1-n*((frn0/(cf*f0)-n)/(K*Q));%6 

v=(1-s)*vs; 

if v>vmin 

if v<vmax 

fsign(kk)=3; 

        speed(kk)=v;kk=kk+1; 

        m2=mag/kk; 

end 

end 

 

s=1-n*((n+(frn0/(cf*f0))))/KQ;%1 

v=(1-s)*vs;  

if v>vmin 

if v<vmax 

fsign(kk)=4; 

        speed(kk)=v;kk=kk+1; 

        m2=mag/kk; 

end 

end 

 

s=1-n*(((frn0/cf*f0)-n)/(k*Q+n));%2 

v=(1-s)*vs; 

if v>vmin 

if v<vmax 

fsign(kk)=5; 

        speed(kk)=v;kk=kk+1; 

        m3=mag/kk; 
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end 

end 

s=1-((((frn0/(cf*f0))+n)/(k*Q-n))*n);%3 

v=(1-s)*vs; 

if v>vmin 

if v<vmax 

fsign(kk)=6; 

        speed(kk)=v;kk=kk+1; 

        m3=mag/kk; 

end 

end 

 

end; 

dyy= find(speed>0); 

%fkk=fsign(dyy); 

dyy=speed(dyy); 

%dyy=[dyy;fkk]; 

%dyy=sum(dyy)/(length(dyy)); 

%disp(dyy'); 

end 
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PATARZ.M 

This program calculates the frequency spectrums using the same way explained in showoneof. 

Then employs the concept of local maximums to identify fault frequency points in the waveform and 

finally pass frequency-magnitude points to SPPY. 

 

function [f1 f2 f3]=patarz(y0,vmax,vmin) 

%frr=d25;vmax=1900;vmin=3000;rtt=1; 

ijj=size(y0); ijj=ijj(2); 

for ij=1:ijj 

y1=y0(:,ij); 

m1=0;m2=0;m3=0; 

L=2500; 

 NFFT = 2^nextpow2(L); 

Fs =25000;                    % Sampling frequency 

%f = Fs/2*linspace(0,1,NFFT/2); 

%FFT 

        Y = fft(y1,NFFT)/L; 

%Y(1)=[]; 

 

%Y=Y-Y0; % test %%%%%%%%%%%%%%should be removed 

f = Fs/2*linspace(0,1,NFFT/2); 

pyy= (2*(abs(Y(1:NFFT/2)))); 

%f=f(1:1000);pyy=pyy(1:1000); 

%pyy(90:106)=0;pyy0(90:106)=0;%50HZ 

%pyy(1:5)=0; 

 

%pyy=pyy(1:1960); 

%f=f(1:1960); 

%FFT 

  fr0=pyy;            

[pks,locs]=findpeaks(fr0); 
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flocs=f(locs); 

locs22=flocs;pks2=pks; %use the same variable to make it easier 

%plot(locs,pks) 

%[pks1,locs1]=findpeaks(pks); 

%locs11=locs(locs1); 

 

%[pks2,locs2]=findpeaks(pks1); 

 

%locs22=locs11(locs2); 

 

itt=1; 

 

whileitt<length(locs22) 

if pks2(itt)>(max(pks2)/2000) 

itt=itt+1; 

 

else 

         pks2(itt)=[];locs22(itt)=[]; 

%disp(itt) 

end; 

end 

 

%fl=flocs; 

 hold on 

%ps=length(pks2); 

 

xmm=length(locs22); 

locs22(xmm)=[];pks2(xmm)=[];  

 

% pks2=10*log(pks2); 

%two lines removed to increase the speed 

% plot(locs22,pks2,'bo') 
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%plot(locs22,pks2) 

%%%%%%%%%%%%Spp; to diagnose the points 

 

% rts=num2str(rt); %ms=num2str(m); 

 

for stt=1:length(pks2) 

pktf=pks2(stt); 

sttf=locs22(stt); 

% if sttf>0 

              [m1b,m2b,m3b,fsign]=sppy(sttf,pktf,vmax,vmin);%#ok<NASGU> %spp(frn0,vmax,vmin) 

              m1=m1+m1b;m2=m2+m2b;m3=m3+m3b; 

%m1=max(m1,m1b);m2=max(m2,m2b);m3=max(m3,m3b); 

%if (length(fsign)>1)% avoide returning zeros 

 

%fsigns=num2str(fsign);speeds=num2str(speed); 

 

% strs=strcat('detected at,sensor:',rts,' ,time:',ms,' ,speed:',speeds ,' ,type:',fsigns); 

% disp(strs); 

% end; %avoid returning zeros 

%  end; 

end; 

%%%%%%%%%%%%%%%%%%%%% 

 

% end;% end of time variation 

% pause(0.1); 

    hold off; 

%showing faults power 

%m1s=num2str(m1); 

%m2s=num2str(m2);m3s=num2str(m3); 

%dds=strcat('Sensor',rts,'   F1:',m1s,',  F2:',m2s,'  F3:',m3s); 

f1(ij)=m1;f2(ij)=m2;f3(ij)=m3;  

%disp(dds) 



158 

 

%showing faults power 

%m1=0;m2=0;m3=0; 

end; 

 

end%end of sensor variation 

 

% frn0= fix(cf*(f0*(k*Q*((1-sl)/(n))-n)));%1 
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CHALLENGE1.M 

This program organizes workspace variables which were generated by simulation models and 

prepares them for further processing using Patarz. 

 

clear smtsm1; 

vmax=1450;%Variable 

vmin=1430;%Variable 

J=1; 

% 

smt(:,1)=i1(2500:5000); 

smt(:,2)=i2(2500:5000); 

smt(:,3)=i3(2500:5000); 

smt(:,4)=i4(2500:5000); 

smt(:,5)=i5(2500:5000); 

smt(:,6)=i6(2500:5000); 

smt(:,7)=i7(2500:5000); 

smt(:,8)=i8(2500:5000); 

smt(:,9)=i9(2500:5000); 

smt(:,10)=i10(2500:5000); 

smt(:,11)=i11(2500:5000); 

smt(:,12)=i12(2500:5000); 

 

%sm1(:,1)=i1; 

  [b1,b2,b3]=patarz(smt,vmax,vmin); 

%b1=b1./max(b1); 

%b2=b2./max(b2); 

%b3=b3./max(b3); 

%[a1,a2,a3]=patarz(sml,vmax,vmin); 

%a1=a1./max(a1); 
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%a2=a2./max(a2); 

%a3=a3./max(a3); 

sp1=num2str(vmin); 

sp2=num2str(vmax); 

    bar([b1;b2;b3]) 

%bar([a1;b1;a2;b2;a3;b3]) 

sq=strcat('Fault index of several induction motors against a group suspected event'); 

title(sq); 

 

xlabel('Type of fault signals'); 

ylabel('Proportional fault Factor'); 

legend(12,'Motor 1', 'Motor 2','Motor 3','Motor 4','Motor 5','Motor 6','Motor 7','Motor 8','Motor 9','Motor 

10','Motor 11','Motor 12'); 

 

sq1=strcat('Speed range:',sp1,' to ',sp2); 

text(4.5,-.2,sq1); 

text(5,.4,'1: Evnt 1 individual'); 

text(5,.35,'2: Evnt 1 parallel'); 

text(5,.3,'3: Evnt 2 individual'); 

text(5,.25,'4: Evnt 2 parallel'); 

text(5,.2,'5: Evnt 3 individual'); 

text(5,.15,'6: Evnt 3 parallel'); 
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CHART1.M 

This program provides a graphical solution to demonstrate propagation of fault indicators and 

find the faulty motor. Challenge1 produces the required data for this program. 

%challenge1; 

hold off; 

for z=1:3 

for x=1:4 

for y=4:-1:(x+1) 

%bar([b1;b2;b3]) 

% subplot(3,1,1), bar([b1;b2;b3]) 

% disp(x),disp(y); 

% 0.2 is a set point assigned by the network topography as discussed in the theory chapter 

if (b1(4*(z-1)+x)+b1(4*(z-1)+y)>0) 

if (b1(4*(z-1)+x)>1.1*b1(4*(z-1)+y)); hold on; 

        plot((z+(x-1)*0.2),y,'.');hold on; 

         line([(z+(x-1)*0.2),(z+(y-1)*0.2)],[x,y],'Color','red','LineWidth',2) 

elseif (1.1*b1(4*(z-1)+x)<b1(4*(z-1)+y)) 

      hold on; 

      plot((z+(x-1)*0.2),y,'rO'); 

      hold on; 

      line([(z+(x+1)*0.2),(z+(y-1)*0.2)],[x,y],'Color','blue','LineWidth',2); 

else 

         line([(z+(x)*0.2),(z+(y-1)*0.2)],[x,y],'Color','y','LineWidth',2); 

end; 

end; 

end;%for 

end;%for 

end;%for 

%bar([a1;b1;a2;b2;a3;b3]) 
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       bb1=sum(b1(1:4));bb2=sum(b1(5:8));bb3=sum(b1(9:12)); 

if(bb1>bb2) 

           line([1,2],[2.5,2.5],'Color','g','LineWidth',4,'LineStyle','<'); 

        line([1,2],[2.5,2.5],'Color','g','LineWidth',4); 

else 

            line([1,2],[2.5,2.5],'Color','g','LineWidth',4,'LineStyle','>'); 

        line([1,2],[2.5,2.5],'Color','g','LineWidth',4); 

end; 

 

if(bb2>bb3) 

           line([2,3],[1.5,1.5],'Color','g','LineWidth',4,'LineStyle','<'); 

        line([2,3],[1.5,1.5],'Color','g','LineWidth',4); 

else 

            line([2,3],[1.5,1.5],'Color','g','LineWidth',4,'LineStyle','>'); 

        line([2,3],[1.5,1.5],'Color','g','LineWidth',4); 

end; 

 

if(bb1>bb3) 

           line([1,3],[3.5,3.5],'Color','g','LineWidth',4,'LineStyle','<'); 

        line([1,3],[3.5,3.5],'Color','g','LineWidth',4); 

else 

            line([2,3],[3.5,3.5],'Color','g','LineWidth',4,'LineStyle','>'); 

        line([1,3],[3.5,3.5],'Color','g','LineWidth',4); 

end; 

 

sq=strcat('Propagation pattern of fault indices '); 

title(sq); 

 

xlabel('Supply Bus #1,#2 and #3'); 

ylabel('Induction motors'); 
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%legend(12,'Motor 1', 'Motor 2','Motor 3','Motor 4','Motor 5','Motor 6','Motor 7','Motor 8','Motor 9','Motor 

10','Motor 11','Motor 12'); 

xlim([0.5,4]);ylim([0.5,4.5]); 

hold on; 

for i=1:3 

for k=1:4 

        no=num2str(4*(i-1)+k); 

        mm=strcat('M ',no); 

text(i,k,mm); 

end; 

end; 

 

text(0.8,4.3,'----Bus 1----'); 

text(1.8,4.3,'----Bus 2----'); 

text(2.8,4.3,'----Bus 3----'); 
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CHALLENGECON2.M 

This program automatically runs a number of simulation models to generate the data to train the 

Neural Network model. 

clear b1yb2yb3y; 

clear smtsm1; 

vmax=1470; 

vmin=1410; 

J=1; 

% 

sy=1; 

forjk=[1,4,7,10,12,13] 

jks=num2str(jk-1); 

ff=strcat('eh3',jks); 

disp(strcat('eh3',jks)); 

sim(ff) 

smt(:,1)=i1(72500:75000); 

smt(:,2)=i2(72500:75000); 

smt(:,3)=i3(72500:75000); 

smt(:,4)=i4(72500:75000); 

smt(:,5)=i5(72500:75000); 

smt(:,6)=i6(72500:75000); 

smt(:,7)=i7(72500:75000); 

smt(:,8)=i8(72500:75000); 

smt(:,9)=i9(72500:75000); 

smt(:,10)=i10(72500:75000); 

smt(:,11)=i11(72500:75000); 

smt(:,12)=i12(72500:75000); 

 

%sm1(:,1)=i1; 
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xx=1; 

forjj=vmin:10:vmax 

  [b1,b2,b3]=patarz(smt,jj+11,jj); 

  b1z(sy,xx,:)=b1; 

  b2z(sy,xx,:)=b2;b3z(sy,xx,:)=b3; 

  xx=xx+1; 

%b1=b1./max(b1); 

%b2=b2./max(b2); 

%b3=b3./max(b3); 

%[a1,a2,a3]=patarz(sml,vmax,vmin); 

%a1=a1./max(a1); 

%a2=a2./max(a2); 

%a3=a3./max(a3); 

end; 

disp('OOOOOOOOO');sy=sy+1; 

end; 

save; 
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NNEXSOME4.M 

This program forms a feed forward neural network model to interpret fault indicators and 

allocate fault locations. 

clear ptnet2yx1y1; 

%clc; 

%vvv(2,1)=1;vvv(3,2)=1;vvv(4,3)=1;vvv(5,4)=1;vvv(6,5)=1;vvv(7,6)=1;vvv(8,7)=1;vvv(9,8)=1;vvv(10,9)=1;vvv(

7,10)=1;vvv(12,7)=1;vvv(13,12)=1; 

 

%net2=newff(p,t,5);% 5 hidden layer 

bb=b1z(6,:,:);bb=reshape(bb,7,12); 

 

bb= sqrt(sum(bb.^2));%ffffff 

 

vx=[0 0 0 0 0 0 0 0 0 0 0 1]; 

net2=newff(bb,vx,5);% 5 hidden layer 

 

%jk=[1,4,7,10,12,13] 

 

%for j=1:3:13     

    j=1; 

disp(j); 

    bb=b1z(j,:,:);bb=reshape(bb,7,12); 

    bb= sqrt(sum(bb.^2));%ffffff 

vx=[0 0 0 0 0 0 0 0 0 0 0 0]; 

net2.trainParam.goal = 0.01;% error target 

net2 = train(net2,bb,vx); 

y=sim(net2,bb); 

%end; 
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%for j=1:3:13     

    j=2; 

disp(j); 

    bb=b1z(j,:,:);bb=reshape(bb,7,12); 

    bb= sqrt(sum(bb.^2));%ffffff 

vx=[0 0 1 0 0 0 0 0 0 0 0 0]; 

net2.trainParam.goal = 0.01;% error target 

net2 = train(net2,bb,vx); 

y=sim(net2,bb); 

%end; 

 

 

%for j=1:3:13     

    j=3; 

disp(j); 

    bb=b1z(j,:,:);bb=reshape(bb,7,12);%Fault representatives  

    bb= sqrt(sum(bb.^2));%Calculate Fault indices 

vx=[0 0 0 0 0 1 0 0 0 0 0 0]; 

net2.trainParam.goal = 0.05;% error target 

net2 = train(net2,bb,vx); 

y=sim(net2,bb); 

%end; 

 

 

%for j=1:3:13     

    j=3; 

disp(j); 

    bb=b1z(j,:,:);bb=reshape(bb,7,12); 

 

   bb= sqrt(sum(bb.^2));%ffffff 
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vx=[0 0 0 0 0 0 0 0 1 0 0 0]; 

net2.trainParam.goal = 0.01;% error target 

net2 = train(net2,bb,vx); 

y=sim(net2,bb); 

%end; 

bb=b1z(5,:,:);bb=reshape(bb,7,12); 

bb= sqrt(sum(bb.^2));%ffffff 

y1=sim(net2,bb); 

%plot(x1,y1) 

y1=abs(y1); 

y1=y1/(sum(y1)); 

bar(abs(y1)); 

xlabel ('Measuring points') 

ylabel ('proportional possibility') 

% b1z(jk+1,xx,:)=b1; jk: fault in subsystem; xx::fault index 

% 

bb=b1z(5,:,:);bb=reshape(bb,7,12); 

bb= sqrt(sum(bb.^2));%ffffff 

bc=bb; 

y1=sim(net2,bc); 

%plot(x1,y1) 

y1=abs(y1); 

y1=y1/(sum(y1)); 

bar(abs(y1)); 

xlabel ('Measuring points') 

ylabel ('Proportional possibility') 

xf=find(y1==max(y1));xf=num2str(xf); 

xm=max(y1);xm=num2str(xm); 

xxx=strcat('Detected: Fault in Motor',xf,' with possibility of', xm) 

 text(0.5,0.4,xxx); 

text(0.5,0.35,'out of 1') 
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TESTNN.M 

This program employs the trained network explained in nnexSome4.m as an offline neural 

network to and uses fault indices of each simulation Case study to signify the fault location. 

 

bb=b1z(5,:,:);% variable 

bb=reshape(bb,7,12); 

bb= sqrt(sum(bb.^2));%ffffff 

bc=bb; 

bc([5,6,7,8,11])=0; % measuring points to turn off. 

y1=sim(net2,bc); 

%plot(x1,y1) 

y1=abs(y1); 

y1=y1/(sum(y1)); 

bar(abs(y1)); 

xlabel ('Measuring points') 

ylabel ('Proportional possibility') 

xf=find(y1==max(y1));xf=num2str(xf); 

xm=max(y1);xm=num2str(xm); 

xxx=strcat('Detected: Fault in Motor ',xf,' with possibility of', xm) 

 text(0.5,0.4,xxx); 

text(0.5,0.35,'out of 1') 
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