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Abstract  
This thesis explores the idea that features extracted from deep neural networks (DNNs) through 

layered weight analysis are knowledge components and are transferable. Among the 

components extracted from the various layers, middle layer components are shown to 

constitute knowledge that is mainly responsible for the accuracy of deep architectures including 

deep autoencoders (DAEs), deep belief networks (DBNs) and DNNs. The proposed 

component-based transfer of knowledge is shown to be efficient when applied to a variety of 

benchmark datasets including handwritten character recognition, image recognition, speech 

analysis, gene expression, as well as hierarchical feature datasets.  

 

The importance of hidden layer and its position in the topology of Artificial Neural Networks 

(ANNs) is under-researched in comparison to the deployment of new architectures, 

components and learning algorithms.  This thesis addresses this imbalance by providing an 

insight into what actually is learned by a neural network. This is because recent advances in 

layer-wise training enable us to explore systematically and rigorously the features that expose 

hidden layer by hidden layer in deep architectures.   

 

The key contribution of this research is providing a transferable component model by 

extracting knowledge components from hidden layers. This thesis also provides an approach 

to determine the contribution of individual layers, thus providing an insight into the topological 

constraints that require addressing while designing a transfer learning model. Such transfer 

learning can mitigate the problem of needing to train each neural network ‘from scratch.’   This 

is important since deep learning currently can be slow and require large amounts of processing 

power.  “Warm started” deep learning may open new avenues of research, especially in areas 

where ‘portable’ deep architectures can be deployed for decision making. 
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1.1. The Blossom Effect 

Nature possesses true intelligence which has been adopted by humans to create intelligent 

systems. The opaque nature of Artificial Neural Networks (ANNs) has not been explored 

enough to provide reason for the success of ANNs. Questions like why ANNs are successful 

and what is the knowledge that ANNs possess still remain as open questions. Knowledge is the 

key to the success of ANNs particularly with respect to deep learning and is the basis of the 

learning mechanism of ANNs with large number of layers called deep neural networks (DNNs) 

[1].  

 

The Blossom Effect is the process that occurs internally in DNNs in which features are folded 

into multi-level components in the middle layer and then are unfolded after passing through 

the middle layer towards classifiers similar to the diurnal/nocturnal cycle of the Sacred Lotus 

flower.  

 

The Sacred Lotus flowers bloom by day and close by night and again bloom in the next 

morning. When a Sacred Lotus flower is closed, it folds the petals so that they can be unfolded 

again and bloom the next day perfectly. This is similar to what happens in the process of 

dimensionality reduction - a similar principle of ANNs - where the features are folded into the 

middle layer(s) and then reproduced for classification [2]. However, conventional neural 
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network theories provide no clear explanation on how the features are reconstructed after 

condensing them as weights that are just numerical values.  

 

Dimensionality reduction could possibly be explained through further research on 

autoencoders, a special type of ANNs [3]. An autoencoder reproduces the output from input. 

The input is encoded into a condensed layer and then decoded from the values of that layer. 

The weights in the layers are mere numbers and possess some patterns when they are extracted 

through several different statistical techniques. 

 

Consider a set of features condensed into a super feature. It is not feasible to bring back the 

original set of features from the super feature without knowing the exact process adopted in 

the condensation; is it some sort of folding or placing one upon the other so that they can be 

differentiated? For instance, an input of two numbers is averaged, and the result is two and it 

is impossible to find out what exact numbers were used as input. 

 

1.1.1. Knowledge Components and the Blossom Effect 

The Blossom Effect emphasises that the weights present in the middle layer(s) of a trained 

DNN possess underlying representations of input features or knowledge that responsible for 

the learning within the DNN. If this knowledge could be extracted from the weights of a trained 

DNN as knowledge components, they can provide same learning capability (may not be to the 

same extent) to an untrained DNN. The knowledge components that are transferred could, in 

theory, provide an efficient and systematic mechanism for transfer learning in DNNs. Such a 

solution diverges from existing transfer learning approaches.  

 

1.1.2. Extraction of Knowledge Components 

To extract knowledge components, a new transferable model is proposed that complements 

existing statistical models and the neural network transfer learning principles. In this research, 

a new concept called Weights of Weights (WofW) is used to extract a smaller number of 

weights from a large number of weights of a DNN. It is evident that not every weight in a DNN 

layer is necessarily important and some weights can even hinder the training process [4]. The 

WofW is a process to retain the knowledge in the middle layer(s) by condensing two layers 

(weights) which is similar to dimensionality reduction. Hence, the weights in the middle layer 
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that consists of underlying knowledge are WofW. The WofW concept along with statistical 

methods is adopted to extract transferable knowledge components, thus providing confidence 

in success through a well-established procedure. Chapter 5 provides mathematical, technical 

and experimental details of a proposed transferable knowledge component model.   

 

This thesis investigates the existence of the Blossom Effect in DNN and provides a knowledge 

component model for deep transfer learning.  

1.2. Significance of Investigating Deep Learning 

The recent success of AI is attributed to ‘deep learning’ - a branch of ML. Deep learning is 

used for image and speech-based systems irrespective of domains and implementations. Deep 

learning is popular and is widely used in various AI based systems as adopted by Google, 

Microsoft, Apple, Amazon, Facebook, Twitter to name a few. The deep learning algorithm is 

used in applications such as image recognition, natural language processing, automated 

systems, bioinformatics, healthcare, and recently in neural network based cryptography called 

neurocryptography [5]. Deep learning has attained the state-of-the-art results for various 

benchmark problems and is widely used among all AI algorithms. ANN and its variants are the 

principal building blocks for deep learning architectures. In spite of the popularity and wide 

range of implementations, there is a lack of a clear consensus on the design of deep 

architectures and the working principles behind deep learning. For instance, the decision on 

initial topology, selection of parameters and the number of hidden nodes is still considerably 

difficult due to the lack of a standardised formal theory.  

1.3. Artificial Neural Networks and Deep Learning  

ANNs are connectionist systems inspired by the functionality of animal/human brain [6]. After 

intense research on the functionality of logical calculations in human brain, McCulloh and Pitt 

were inspired to think about creating a computing system based on brain activity. In 1943, 

McCulloh and Pitt published their work titled “A logical calculus of the ideas immanent in 

nervous activity” which is the first known work on ANNs [7]. However, the application of 

ANNs as practical systems became possible only after 30 more years when Paul Werbos, for 

the first time, described a mechanism for training ANNs through Back Propagation of errors 

[8, 9]. 
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The initial research on modelling the cognitive and convolutional capability of human memory 

can be attributed to David Everett Rumelhart [10]. His early works on distributed processing 

[11] helped build and test intelligent models based on data. Rumelhart along with Hinton is 

attributed with the proposition of Back Propagation (BP) algorithm which is the fundamental 

learning principle of any ANN [12].   

 

The hidden layer(s) where the weights are optimised provides no visible information on the 

functionality of ANN. The major criticism on ANNs is due to this ‘hidden’ functionality which 

describes ANNs as ‘blackboxes’ [13]. This is reflected in treating ANN applications as 

‘unreliable’ in decision centric critical applications like medical diagnosis, financial 

forecasting, space and aeronautics, military and scientific research [14].  

 

The research on ANNs, for the most part, concentrates on parameter optimization. The 

importance of architecture, especially in terms of its relationship with the problem solving, has 

not been investigated to the same degree. However, some prominent ANN researchers have 

hinted at the importance of input being systematically structured for the success of ANNs  [15-

17].  

 

The training process of ANNs for supervised learning involves adjusting the weights and 

bias(es) so that the input produces a predefined output [16]. The trained ANN with known 

(training) data is expected to produce similar results for unknown (test) data. The most 

successful ANN training approach, the BP algorithm, uses the delta rule to determine the value 

for updating the weights [3]. The delta rule consists of a step parameter, called learning rate, 

with which the weights are updated. To escape the trap of local minima, a parameter called 

momentum is introduced which adds a fraction of previous weight updates to the learning rate. 

For the BP algorithm, learning rate and momentum are two vital parameters for optimising 

ANNs [18].  

 

However, there is no standard procedure for setting the learning rate and momentum [19]. 

Generally, the ANN training starts with the learning rate at a higher value and a lower value 

for the momentum, both being set at random initially based on the problem and input data [20]. 

Sometimes an adaptive learning rate is used where the learning rate is updated in varying step 

sizes (either increasing or decreasing step sizes) depending on error gradient [18].   
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Apart from learning rate and momentum, it is vital to determine the number of hidden nodes 

for optimal ANN performance and accuracy. However, selection of the number of hidden 

nodes can be arbitrary. The problem of overfitting/underfitting also needs to be addressed. If 

training is too long, it results in overfitting whereas if the ANN is not trained enough it will 

cause underfitting. The presence of unnecessary nodes can also lead to overfitting. This 

problem has been addressed recently with a principle called dropout [4]. Dropout is the process 

of dropping (ignoring) randomly selected hidden nodes along with their connections during 

training.  

 

Fukushima [21] initially proposed the Neocognitron approach by increasing number of hidden 

layers based on Hubul and Wiesel’s theory on visual cortex phenomena of 1957. The practical 

implementation of Neocognitron was carried out by Lecun [22] for zip code recognition which 

uses BP as a training algorithm. Lecun was able to attain a fair amount of classification 

accuracy in spite of slow training caused by both the size of the data and the number of layers.  

 

The process of identifying patterns in the weights is significant in understanding the underlying 

representations in the weights. The underlying representations might provide an insight into 

the knowledge that is attained through training since there is a direct influence of weights 

(optimisation of weight values) on the efficiency of an ANN.  

 

One of the approaches that could be used to understand the patterns in high dimensional 

numerical values is by projecting the values into a different space or dimension and analysing 

the visualisation obtained through this projection [23]. In the case of ANN with one hidden 

layer, all the representations are condensed in the weights of one hidden layer. It is challenging 

to discover patterns or other models from the condensed representations [17]. So, it is necessary 

to consider ANN with multiple hidden layers where the representations are distributed across 

multiple layers. Early attempts to construct and train ANNs with multiple hidden layers 

attained little success due to hardware limitations and lack of efficient training mechanisms 

[24]. At that time, training was very time consuming and often resulted in overfitting [4].  

  

 

Since the primary objective of this thesis is to explore and extract the knowledge 

representations of ANNs, the following queries are important:  
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➢ What exactly are ANNs acquiring in the form of knowledge?  

➢ What is ANN knowledge and how is this knowledge represented?  

➢ Where is this knowledge present within the ANN architecture?  In which form is the 

knowledge represented? Is it a component or group of components or a definitive 

model?  

 

1.4. Deep Neural Networks and Deep Learning 

Deep learning is a hierarchical learning mechanism based on ANN-centric ML approach, 

principally implemented on architectures with sufficient ‘depth.’ Deep learning enables us to 

extract discrete features from input through a progressive learning mechanism from one layer 

to another in a multi-layer ANN or simple Deep Neural Network (DNN) [3, 16]. Deep learning 

can be implemented only on deep architectures i.e., architectures with sufficient depth [15]. 

The term ‘deep’ is associated with the ‘depth’ and in the case of DNNs, its number of layers 

[17].  

 

A DNN is a multilayer ANN trained to calculate the probability of the output being a certain 

type based on training. This process of this categorisation of output is done by passing through 

each layer to identify different characteristics of input. The main success of DNNs is their 

ability to model non-linear relationships in complex data with multiple and overlapping 

features. Initially, Fukushima, Lecun and Schmidhuber [22, 25, 26] attempted to train DNNs 

with simple BP which resulted in slow training and overfitting. To train these type of ‘deep’ 

architectures efficiently, a new greedy layer-wise training mechanism was introduced by 

multiple people in and around 2006 [3, 27, 28].  In the seminal deep learning approach in [3, 

27, 28], the output of each layer is fed as the input to the next layer and trained against the 

previous layer. The first layer, therefore, extracts low-level features from input, and the next 

layers extract middle-level features, and the last layer extracts the high-level features. 

Traditional BP based DNNs lack this layer-wise training, hence all the features are represented 

in single or multiple hidden layers. In DNNs fine tuning with BP is used for evaluating the 

accuracy and back propagating the error to improve accuracy, a process similar to traditional 

ANN training.  
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When compared to earlier approaches, traditional approaches are capable of learning linear 

features within labelled data (supervised learning) whereas deep learning is capable of 

extracting non-linear features from complex multi-dimensional data with unsupervised training 

[16]. Diverging from the conventional training procedure of ANNs, deep learning adopts a new 

layer-wise training procedure (typically unsupervised) followed by a supervised fine-tuning 

using BP. Deep learning and deep architectures are discussed in depth in Chapter 2, Section 

2.5. However, a general overview of deep learning is provided here for completeness. 

 

Since the deep architectures are a form of ANNs with more hidden layers, knowing the 

importance of the ‘depth’ will provide an insight into how deep learning is efficient than the 

traditional learning approaches [3, 17]. ANN with one hidden layer lacks the ability to group 

similar features or correlate a set of low-level features as a representation of high-level features. 

This is due to the presence of features in the form of condensed representations in one hidden 

layer [17]. This also restricts ANNs to explore the hierarchy of features to discover hierarchical 

relationships between the features to extract lineage between them [29]. In contrast, DNNs can 

preserve the feature space and provide multi-level feature extraction to know the relationship 

between the features [29]. DNNs allow different functions to be assigned to different layers 

and even at different levels to construct a hierarchical problem structure [30]. Consequently, 

DNNs are able to deal with highly complex and domain specific problems as a set of smaller 

individuals, but related, sub-problems or multiple domain problems [31].  

 

Thus, it can be concluded that the main strength of deep learning is its ability to extract features 

from input data at various levels/stages in a hierarchical fashion which is not possible with 

single-layered ANNs [29]. This makes DNN suitable for exploring weights in the layers to 

identify and extract knowledge.  This is the motivation to use DNNs to identify/establish a 

relationship between input features and DNN layers as well as the weights.  

 

In spite of being a slow process, deep learning is considered as the most successful approach 

in 2020 with the-state-of-the-art results demonstrated in a variety of application domains [32-

44]. There are several successful unconventional deep learning approaches based on various 

established ML methods [45] including: Support Vector Machines (SVMs) [46, 47]; deep 

kernel machines [48]; deep spiking neural networks [49]; genetic algorithms [50]; evolutionary 

computation principles [51, 52] as well as a combination of traditional components like 

Boltzmann Machines and autoencoders [45]. These hybrid approaches are used for optimising 



 

 8 

deep learning training mechanism and in some cases just to speed up the process. The hybrid 

deep learning approaches showed promising results for domain specific problems. Some of the 

recent unconventional approaches are presented briefly in the Chapter 2 Section 2.5. 

 

The success of deep learning emphasizes the importance of architecture [15]. However, the 

deciding factor for architecture, once again, takes us back to identifying the number of hidden 

layers required for the experiment or how many layers to start with. Moreover, even after the 

experiment is started, it is uncertain whether to increase the number of layers or to reduce them 

to achieve good results. There is no certainty in relating the number of layers or even weights 

with the results and the entire process is carried out on a trial and error basis. The topology is 

decided arbitrarily and is often problem specific which helps to see the relationship between 

input and topology. However, the lack of formal literature to identify this relationship supports 

the necessity of this research in exploring the knowledge that resides in the hidden layers of 

ANNs. 

1.5. Knowledge Discovery in Neural Networks 

Knowledge extraction is an important aspect of ML research. Every ML algorithm attains 

knowledge through training and learning algorithms which enables it to perform classification, 

prediction or other tasks required for the problem solving [53]. It is important to understand 

that the transfer of knowledge from a learned system to a new system will have several 

advantages including providing a warm start to the new systems [53-58]. Considering the 

current applications of DNNs (as well as traditional ANNs which was discussed earlier), 

training time is one of the major drawbacks [59, 60]. DNNs require a huge amount of training 

data which in turn increases the training time and non-availability of every type of training data 

is also a major problem which could not be tackled just by training again and again [61]. 

Therefore, a simple research step towards transferring knowledge would provide a giant leap 

towards optimising DNNs which indirectly helps its deployment in small scale systems [53-

55, 58, 62-64].  

 

The process of knowledge extraction from ANNs is directly associated with investigating how 

the features in the input are represented in the hidden layers (topology) and neurons (weights). 

The research on extracting knowledge from ANNs was popular in the late 20th century [65-71]. 

A notable account of extracting knowledge from ANN weights is by removing irrelevant 

attributes from the input and training the model with known data (supervised) [69]. In the 



 

 9 

removal process, the attributes that influence the classification were identified, and the rest of 

the attributes were removed. The importance and the influence of an attribute can be identified 

through various attribute selection methods from both statistical and ML approaches [72, 73]. 

Knowledge extraction through attribute removal is generally successful for linearly separable 

data. But for nonlinear multi-class data, the importance of an attribute may not be evaluated 

correctly in relation to other attributes [74].   

 

Knowledge discovery in ANNs attained limited success for ANNs that are trained for a specific 

problem. For instance, the successful attempt to extract symbolic rules from ANN by 

Abruzzian and Monirul is confined to the single digit hidden nodes with a small dataset [75]. 

In other words, most of the earlier attempts for knowledge discovery from ANNs are confined 

to small data sets consisting of linear data and was not compatible with current DNNs and big 

data. This suggests that the extracting knowledge from DNNs could be considered as an area 

of research importance.  

 

It is evident that there is some unknown relationship between the input, DNN’s parameters and 

topology and the problem solving capability of DNNs since DNNs are optimised through 

parameters. The research adopted in this thesis tries to explore the relationship between input 

and the neural network topology (particularly weights) through a systematic research design, 

study and experimental evaluation. The importance of the topological structure and the 

individual parameters have the potential to provide a basic understanding of the key influential 

factors for training ANNs and DNNs and their learning processes. Furthermore, these key 

forces internally present in the DNNs that drive the process of deep learning should provide a 

starting point to explore the internals of DNNs.  

1.6. Preliminary Investigation - Establishing Research Problem & 
Direction 

To establish a better prospective of the research problem and the point of focus, some initial 

exploratory experiments were conducted on ANNs. These experiments can be categorised into 

two parts. Firstly, the evaluation of ANN parameters, namely, learning rate and momentum 

and their influence on different types of topologies. The second category is changing the 

topology of ANNs (addition and removal of layers). All experiments are performed using 

simple yet widely used benchmark datasets iris and wine.   
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The first set of experiments is conducted by changing learning rate and momentum one at a 

time with various types of architectures in two different strategies. The first strategy uses the 

architecture with symmetric node count (same number of nodes in the hidden layers) whereas 

the second strategy uses asymmetric node count. In the first set of experiments, for a fixed 

architecture, the learning rate and momentum are adjusted one at a time. In the second set of 

experiments, the architecture is adjusted keeping learning rate and momentum at constant 

values. Both strategies were used for the experiments. The influence of topology for a fixed 

learning rate and momentum is the same (if not more in some cases) compared to fixed 

topology and varying learning rate and momentum. Further, better results are obtained with 

symmetric node count in the hidden layers. The second set of experiments were conducted in 

order to gain familiarity about the influence of ANN architecture with respect to the problem 

space. These types of experiments require a high number of hidden layers. Thus, the 

experiments are performed on DNNs using layer-wise training.  

 

The majority of ANN implementations are primarily one or two layered as a universal 

approximators [76]. The weights inside the hidden layer that are responsible for the 

functionality possess the problem solving knowledge in the form of representations. Since the 

number of layers are limited, the representations that are present are in the form of condensed 

representations making it impossible to extract patterns or comprehensible representations. The 

limited literature exploration on identifying and extracting representations has motivated to 

undertake this research. The aspect of viewing the relationship between input and neural 

network weights which has been largely ignored since the beginning of ANN research, has 

influenced to further investigate the existence of any connotation either direct or indirect 

between input and the neural network topology particularly weights in the hidden layers.   

 

To start with, the influence of weights on problem space is studied through several experiments 

using a synthetic hierarchical dataset (in line with the traditional ANN representation as a tree-

structure) and DNNs. The experiments aim at determining whether the DNNs are able to 

preserve any notation on the relationships that exists within the input data and how the DNN 

accuracy is affected by choosing hidden nodes in a particular symmetry.  The results obtained 

from the experiments concluded with a new outcome that an architecture with the equal number 

of (hidden) nodes at each hidden layer performs more efficiently than the one having an 

asymmetric node count [29]. In other words, the results from the initial experiments showed 
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that irrespective of feature reduction, the number of hidden nodes should be kept the same as 

we traverse up the tree-hierarchy.  

 

Since the mapping of the hierarchical structure of data with the hierarchical representation of 

architecture was found to be unsuccessful, the research investigation is directed towards 

representation of features in the neural network weights. There is no known study or evidence 

in the literature on feature representation being organized or structured in such a way that it 

reflects the topology [16]. However, the changes in the input demands considerable changes in 

the topology for obtaining efficient and accurate results [3, 17]. Moreover, there is no 

generalised neural network that could tackle the changes in the problem or variation in the 

input without modifying the topology or training parameters [77]. This led to the supposition 

that there is an unknown relationship that exists between structure representation of the input 

(problem) and the architecture of DNNs.  

 

In spite of the success of deep learning, the fundamental questions about the functionality of 

ANNs particularly the internal knowledge that ANNs acquired by optimising weights through 

training is still a puzzle. The successful knowledge transfer approaches for DNN are based on 

transfer of weights or hidden layers and sometime whole topology without knowing on what 

is being transferred and why it is effective [53, 55]. Also, there is no known attempt to perform 

a systematic study on how the input is connected to DNN weights. This research is focused on 

investigating this aspect of DNNs by attempting to build a mathematical expression of the 

relationship that exists between a problem and the ANN/DNN topology. This mathematical 

expression will be useful for efficient knowledge extraction and helpful in gaining familiarity 

with the factors influencing the efficiency and performance of ANNs, especially the ability of 

DNNs to produce good results for previously unseen data. 

 

While there has been some theoretical research published indicating that any problem can be 

solved by an ANN with one hidden layer [76], this is not the focus of this research. Instead, the 

aim of the research is to help future researchers identify suitable and appropriate DNN 

architectures that resemble in some form the type of problem being tackled. Such help may 

include identifying important hidden layers so that the DNN is an ‘analogue’ in some sense of 

the problem. If such an approach can work, it may then be possible to address one of the oldest 

problems in ANN research, which depicts how to extract symbolic knowledge from an ANN. 

The ‘analogue’ aspects may be providing a novel way to extract such knowledge. The unknown 
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question at this stage is as to how the choice of representation is related to DNN architecture. 

The research aim is to shed light on these important questions using the recent growth of 

interest in deep learning as a motivation. Further, the extraction of transferable knowledge 

components can provide an efficient transfer learning mechanism where the knowledge 

transfer is systematic and explorable instead of being unknown and closed. The practical 

application of the research would be extracting transferable knowledge from a trained DNN to 

provide a warm start to an untrained DNN.  

 

With deep learning, DNNs are capable of learning discrete representations at multiple levels 

which paved the way for exploring the learning capabilities of DNNs. Recent advances in ANN 

research, particularly deep learning, has inspired to investigate ANN behaviour in general by 

unleashing deep learning. The exploration of ANN functionality provides an inspiration to get 

closer towards exploring and experiencing the consciousness of the ANN ‘blackbox.’   

1.7. Research Problem 

The main purpose of this research is to examine:  

 

“why artificial neural networks behave the way they do” 

 

Traditionally, the focus of neural network research is on “How” to optimise a neural network 

for a given problem. Recent developments in neural networks, particularly deep learning 

models, also follow the same path of investigating how DNNs can be optimised for a particular 

problem. Since the implementation of multilayer neural networks, the fundamental problem 

has been determining a correct topology and weights. Neural Network weights are the 

functional building blocks of an ANN and these weights have been limited to representation as 

simple numeric values. The basic operation of a Neural Network depends on these weights. 

From the onset, the representation of these weights and their influence on ANNs has not been 

sufficiently explored.   

 

There is a wide range of literature on ‘how’ to solve a particular problem using DNNs which 

includes different types of algorithms, ML approaches etc. However, there is only minimum 

information on ‘why’ a topology with particular number of layers or nodes is able to solve a 

problem. The literature provides no standard or rationale on number of hidden layers and their 

importance to provide a viewpoint on which layer or layers are influential for accuracy and 
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efficiency of DNNs.  Traditionally, the success of deep learning in a wide range of domains 

and applications is attributed to the availability of powerful hardware and efficient software 

resources. Due to this, the investigation into the reason on no formal or decisive procedure for 

studying the impact of adding or reducing layers has not been undertaken.  

 

The increasing application of deep learning for various problems has forced researchers to 

identify new methods and approaches for choosing initial topology and parameters. Therefore, 

the importance of a systematic approach in identifying number of layers and the effect of 

changing layers is becoming more significant which is the core aspect of this thesis. 

 

The most successful deep learning models are constructed by adding and removing layers and 

testing them on a specific problem, thus identifying near optimal topology without knowing 

‘why’ it is working. The academic literature and industrial white papers are full of deep 

learning implementations and their success on benchmark problems. There is no consistency 

or systematic research on knowing ‘why’ a DNN’s functionality is affected by the addition or 

subtraction of layers.  

 

This research endeavours to provide a systematic approach in considering both theoretical and 

practical aspects of neural network learning, particularly deep learning, and towards exposing 

the internal mechanics of neural networks.  

 

Therefore, the research problem is positioned as ‘why’ rather than ‘how.’ 

1.8. Research Focus 

The focus of the research is on exploring the patterns that exist in the neural network weights 

to establish a relationship between input features and neural network weights. This would help 

explore the internal representations in the neural network weights that are influenced by the 

changes in the input; thus, providing an insight on impact of input features on the neural 

network topology.  

 

Since deep learning is based on a form of  feature learning through various hidden layers [16],  

this systematic research on extracting weight patterns enable presentation of ground work on 

how input features are transformed through each layer which will help to identify important 

layers that constitute knowledge and provide maximum impact on accuracy of the model. 
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Identifying these influential layers will enable investigate the functionality of DNNs by 

explaining how features are represented in neural network weights and how these features are 

transmitted from the input layer to the classifier through training. The learning that is attained 

by the neural network (through training) is the knowledge that may be transferable or that is 

what has essentially been transferred unknowingly.  

 

The exploration for the knowledge in the neural network weights to identify and establish a 

profound relationship between input features and neural network weights is the key aspect of 

this research. Since, this type of research requires comprehensive study, the following research 

questions are identified. The contribution of the research can be established by the outcome of 

the following research questions:  

 

1. Exploring the representation in the weights  

a. Why do changes in the weight values impact the classification? 

b. Do changes of weights in some layers have more or higher influence than other 

layers?  

c. Why does increasing or decreasing number of layers impact efficiency of neural 

networks? 

 

2. Establishing the relationship between input features and neural network weights 

a. Why do any changes in the input require changes in the neural network 

topology/weights? 

b. What are some reasons that the changes in the relationships in input features 

present a clear change in the patterns in the neural network weights in various 

layers?  

3. Extracting transferable neural network model  

a. Why is there no systematic research of extracting knowledge from the weights 

as a neural network component knowledge model? 

b. Are these knowledge components transferable (from one DNN to another 

DNN)?  

 

 

The outcomes from the research questions will able to provide an interpretation of 
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o The representation of features in neural network weights in various layers  

o Movement of features from one layer through another by neural network 

training 

o Impact of altering the topology of a neural network by adding or removing 

layers 

o The relationship between input features and weights  

o Knowledge representations in the weights 

 

1.9. Scope of the Research 

The research evaluates the proposed model on deep architecture learning and is confined to 

deep neural networks (feed forward), deep belief networks and deep (stacked) autoencoder 

networks. However, some brief experiments are also conducted to ascertain the proposed 

model on Convolutional Neural Networks.  

 

The research predominantly uses the benchmark datasets of character recognition, image, 

speech along with simple yet popular datasets like IRIS, Wine, and gene expression. Based on 

the requirements, several new versions of datasets are also created by modifying these 

benchmark datasets. Two synthetic datasets, one hierarchical and another random valued 

dataset are also used for experiments. The evaluation of the proposed model is performed on a 

variety of datasets to provide a generalisation on the datasets used in this research. 

1.10.  Thesis Contributions 

The key contributions of the thesis are summarised as follows.  

• Exploring Neural Network Behaviour: As mentioned in Sections 1.2 & 1.3, there is 

an almost non-existent research on the internal functionality of neural networks and its 

effect on DNN behaviour. In this thesis, a systematic approach and methodology are 

followed towards investigating the influence of position of hidden layer on the 

functionality and behaviour of ANNs. This will directly impact the practical 

applications of DNNs, and other deep learning based research by providing a method 

to add or remove layers based on a systematic approach rather than trial and error. The 

research will answer some the key questions in neural network and deep learning by 
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providing an insight of the representation of weights and learning the relationship 

between input features and neural network topology and weights.   

 

• Deep Learning: This research will provide the first insights as to how neural networks 

are able to learn discrete features.   

 

• Exposing Deep Representations: Identifying how features are represented in weights 

(knowledge) will provide a new direction in transfer learning. This work delves and 

exposes the deep representations buried in the neural network weights. This will allow 

the segregation of significant features and help identify their contribution to overall 

accuracy.  

 

• Neural Network Knowledge Models: Identifying what exactly constitutes the 

knowledge in a neural network provides an insight into the DNN functionality. This 

discovery will establish a profound relationship between input features (feature 

components) and DNN weights (knowledge components).  

 

• Deep Transfer Learning: The systematic approach for extracting transferable models 

developed in this research will contribute to improve the performance in deep transfer 

learning. This research, in turn, assists the development of approaches to improving 

deep transfer learning which may result in reducing the time needed for neural network 

training.  

 

• Identifying the importance of a layer: Exploring the process of transformation of 

features from one layer to another layer will provide information on the importance of 

each layer. It will help in knowing the importance and contribution of each layer in 

terms of overall accuracy. This helps to address the topological dependencies and has 

the potential to help estimate accuracy fluctuations based on adding or removing layers. 

1.11. Thesis Organisation 

This thesis is organised as follows and the structure is shown in the Figure 1-1. 

 

Chapter 2: Knowledge Discovery in Deep Neural Networks 
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This chapter is divided into two parts. The first part reviews the known available literature to 

explore the methods of feature extraction using both statistical and ANN based approaches. 

This is followed by examining the layers and weights of a DNN to understand what exactly 

has been learnt and how this knowledge exists in the DNNs. The second part highlights various 

categories of feature representations in the literature related to learning representations and 

knowledge transfer in line with the research focus. This is followed by defining deep learning 

and introducing major deep architectures. This chapter also presents knowledge representation 

and transfer learning aspects available in the literature.  

 

The outcome of this chapter is identification of research gaps, the grey area that has been not 

yet explored which serves as the motivation for this research.   

 

Chapter 3: Preliminary Investigations 

This chapter presents an initial hypothesis on identifying the importance of a layer towards 

exploring the layer with necessary knowledge. 

 

To investigate the feasibility of the research goals, it is necessary to identify the importance of 

various layers and their impact. An initial hypothesis is proposed stating that the middle 

layer(s) is significant and possesses all knowledge. The hypothesis is evaluated through a series 

of experiments, and the results suggest the existence of transferable knowledge components.  

 

Chapter 4: Hypothesis and Research Approach 

This chapter proposes the main hypothesis categorised into two hypotheses based on the 

research gap in the literature (Chapter 2) and the findings of initial experiments (Chapter 3). 

This chapter works towards establishing an appropriate research method for answering the 

research questions posed in Chapter 1 in line with the proposed hypothesis. The detailed 

acceptance criteria and evaluation criteria are laid-out for testing the proposed hypothesis. The 

research framework is illustrated in the Figure 1-1. The research framework gives an outline 

of investigation and proposed approach towards providing a feasible and reliable criterion for 

solving the research problem. 

 

Chapter 5: Transferable Knowledge Component Model 

This chapter proposes a Transferable Knowledge Component model by extracting feature 

components from the weights of the hidden layer(s). The proposed model is expressed in the 
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form of mathematical model and the relationship between the hypothesis and the proposed 

model is established. Initial experiments are performed, and the results suggest that the 

proposed transferable knowledge component model is successfully implemented, and the 

Blossom Effect could be evaluated.  
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Figure 1-1: Thesis Framework and organization: Flow chart indicating the sequence of 
chapters in the thesis and their purpose 
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Chapter 6: Experiment Results and Evaluations 

This chapter provides a comprehensive experimental evaluation of proposed Transferable 

Knowledge Component model. This chapter starts by presenting the details of various datasets 

used for the experiments. The experiments are carried out using a variety of deep architectures 

and strategies to eliminate any possible bias. The second section details the experiment results 

used for the proposed approach followed by a reconciliation and analysis of the results in the 

third section. This chapter concludes with the details on how research objectives are met based 

on theoretical and experimental evidence. The proposed hypotheses are tested and found to be 

true. The experiment results support and validate the proposed Blossom Effect. 

 

Chapter 7: Conclusion and Future Work 

This chapter presents conclusions obtained from this research and the direction for future work. 
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Chapter 2 : Knowledge Discovery in Deep 

Neural Networks 
 

2.1. INTRODUCTION .............................................................................................................  
PART I: FEATURE EXTRACTION APPROACHES ...........................................................................  
2.2. FEATURE CONSTRUCTION, SELECTION AND EXTRACTION ............................................  
2.3. STATISTICAL APPROACHES FOR FEATURE EXTRACTION ................................................  
2.4. ANNS AND FEATURE EXTRACTION: AUTOENCODERS ...................................................  
2.5. SUMMARY .....................................................................................................................  
PART II: LEARNING REPRESENTATIONS & KNOWLEDGE DISCOVERY .......................................  
2.6. CATEGORIES OF SIGNIFICANT PRIORS ...........................................................................  
2.7. DEEP ARCHITECTURE LEARNING (DEEP LEARNING) .....................................................  
2.8. KNOWLEDGE REPRESENTATIONS IN ARTIFICIAL NEURAL NETWORKS ..........................  
2.9. TRANSFER LEARNING AND KNOWLEDGE TRANSFER .....................................................  
2.10. RESEARCH GAP .............................................................................................................  
2.11. CHAPTER SUMMARY .....................................................................................................  

 

2.1. Introduction 

This chapter presents an investigation of the literature on feature learning and knowledge 

discovery in ANNs followed by a deep exploration on representation learning which is the key 

factor for the success of deep learning. This chapter also presents the mechanism of feature 

processing that is responsible for knowledge extraction. Further, this chapter investigates 

literature pertaining to deep learning’s ability to learn underlying representations present in the 

input that are spread into the neural network weights. This chapter concludes with presenting 

a review on traditional transfer learning approaches and their variants.  

 

This chapter is divided into two parts. Part I introduces different aspects that exist in the 

literature associated with features, feature construction, and feature extraction to present a clear 

idea on what a feature is, and the characteristics of different types of features. Since features 

have highest importance in deep learning, it is necessary to know various aspects of features in 
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order to assess the transformation of different types of input features through neural network 

layers.  

 

This is followed by an account of statistical feature extraction approaches including PCA, FA, 

and ML based ANN approaches. Part II presents categories of significant priors (features) 

extracted from the literature followed by a discussion that provides insight into the deep 

learning/deep architectures in the literature. Three main types of deep architectures namely 

DNN, DBN and DAE are briefly explained in this chapter.  

The necessity and the justification for the research undertaken is identified through critical 

review of literature on knowledge representation and transfer learning with deep architectures 

in line with the proposed research question.  

Part I: Feature Extraction Approaches 

The efficiency of machine learning tasks is based on the learning capability of the classifier 

[16]. Typically, a classifier is trained to learn the characteristics of the data to effectively 

segregate the datasets into different classes for classification, clustering, regression, and pattern 

recognition, and identification problems. A feature is commonly recognised as single attribute 

or a set of input attributes or variables [78]. The terms property, attribute and feature are often 

used interchangeably. However, there is a subtle difference between these three terms. A 

property is the characteristic of an object or variable whereas an attribute is the additional 

information apart from standard characteristics. The most common definition of a feature is 

“an attribute which is unique and individually differentiable.” However, this may not be true 

for each case. Sometimes a feature can be a single attribute in a dataset, but not always, as it 

cannot be generalised as proposed in some of the earlier literature [79]. An attribute is simply 

a variable and often treated as raw data, whereas it becomes a feature when ‘processed’.  

 

The widely accepted definition of a feature is proposed by Christopher M Bishop who states 

that:  

 

“a feature is a measurable individual property.”  [80] 

 

 In some cases, discrete features (may be low-level features) are sometimes grouped together 

to form a high-level feature. If an attribute is influential enough to designate a class to the 

record in the dataset, it can be considered a feature. In this research, a feature is considered as 
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“an attribute or group of attributes that constitute a characteristic property or set of properties 

which is unique, measurable, and individually differentiable. A feature may exist as a single 

attribute or set of attributes grouped together.”  

 

In other words,  

 

 “a feature is a representation of related attributes (data) with underlying similarities.”  

 

In the literature examined for this research, the majority of ML approaches have treated the 

terms features and representations as interchangeable and therefore, often not differentiated 

sufficiently. However, it is important to realise that a representation is a property or 

characteristic of a feature that differentiates it from other features. For instance, a binary 

representation of decimal 22 is 10110 where 22 represents a value, which is characterised by a 

binary representation of 10110 with each binary digit with its own value determined by rules 

of the binary system. To study and understand the features in a dataset, it is equally important 

to explore and expose the underlying representations that constitute the nature of a feature. The 

underlying or hidden representations consist of the individual values that represent a particular 

characteristic and constitute the features when grouped together. In other words, a feature is a 

composition of low-level characteristic traits, to be specific, appearances at discrete level. 

According to literature, a feature can be either isolated or overlapping.  

 

Isolated Features: A feature can be considered as an isolated feature when it does not 

influence any other category, or labelled data. [81]. In other words, an isolated feature has zero 

commonalities in the feature model. It is important to note that an isolated feature may be non-

influential by itself but may be part of a feature along with multiple attributes.   

 

Overlapping Features: When multiple attributes constitute a feature, there is always a 

possibility of the same set of attributes existing in more than one feature. These common 

attributes themselves constitute an overlapping feature.  

 

Features may also be classified based on the structure of the input data, typically defined by 

the domain or the application. For instance, the structure of an image dataset is different to that 

of speech and an image feature cannot be compared to that of a speech feature as the 
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representations are different. But it is interesting to observe how this difference is represented 

in neural network weights which is discussed in this thesis. The research on changes in the 

weights for any alterations in the input features will provide an opportunity to identify the 

relationship between input features and neural network weights. 

 

There are two significant categories of features used in pattern recognition: high-level features 

and low-level features. A high-level feature is a humanly readable feature that is important by 

itself. A low-level feature is a discrete feature that may exist as a fundamental block and can 

be decoded only through ML algorithms. A high-level feature is a reconstruction of a set of 

low-level features.  

 

A pattern recognition task, like classification, is the process of reducing the gap between high-

level and low-level features so that ML algorithm can precisely relate the low-level features 

with high-level features. The accuracy of ML algorithms depends on how the efficiently the 

low-level features are learnt by the algorithm through which the high-level features are 

classified. The success of deep learning is also attributed to this particular aspect of learning 

discrete features at the deepest level [3, 15, 17].  

2.2.  Feature Construction, Selection and Extraction 

The fundamental approaches in ML and pattern recognition that involve features and 

manipulation of features are Feature Selection, Feature Extraction, and Feature Construction. 

Feature selection is the process of selecting a subset of features from the original feature-set 

without any manipulation or processing [78]. Feature extraction and construction often create 

new feature(s) from the existing features by combining, isolating, and cleansing of original 

features [82]. The importance of a feature may be determined by its relevance or redundancy, 

and when combined, they determine the efficiency of a feature [83, 84].  Features may also be 

categorized based on their relevance in the feature-set as (i) irrelevant, (ii) redundant, (iii) 

weakly relevant but not redundant, and (iv) relevant  [84]. This section presents the details of 

various feature processing approaches available in literature.  

 

Feature construction involves building feature subsets from the existing features or attributes 

to improve the efficiency of classification [85]. Combining a subset of features to construct a 

super-feature is a form of dimensionality reduction. Reducing dimensionality has proven 

efficient in various applications with high dimensional datasets like gene expression dataset 
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[86]. However, a 2017 survey on feature selection states that there is only a nominal difference 

between dimensionality reduction and feature selection which is debatable [87]. Feature 

construction can also be used for standardising the feature building process to achieve 

uniformity in the features. It is not always feasible to depend on hand-crafted features in the 

case of datasets with high volume and many dimensions. Feature construction is also used for 

converting multi modularity data to single modularity in health informatics [88]. Modularity 

of features often refer to features that work individually as well as in combination of multiple 

features to evolve a new feature. Automating the process of feature construction was also 

proven efficient and been applied on various datasets across multiple domains  [89, 90]. The 

main application of feature construction is prediction. The automated feature construction 

approaches surpassed the handcrafted features for object recognition particularly for 

segregating objects in image and video datasets [88-92]. Another important application of 

feature construction is combining multiple cross domain features to construct a generalised 

feature-set [93]. 

 

Feature selection is the process of selecting relevant attributes in the input data that represent 

a feature or set of features [85]. Feature selection may also be defined as identifying features 

that have less influence and has minimal effect on ML tasks [94]. Therefore, feature selection 

can sometimes be considered as feature elimination, i.e., eliminating irrelevant attributes. The 

relevance of attributes can be determined by identifying their dependency, for instance, in 

determining a class in a classification problem [74]. Selecting appropriate features is 

substantially useful for reducing training times, data storage, data visualization and 

presentation [94, 95]. Feature selection also helps to understand the importance and influence 

of features and to optimise training and improve the efficiency of pattern recognition tasks 

[96].   

 

For the input dataset D with M samples with the feature set X consisting of N features,  

 

 𝑋𝑋 = {𝑥𝑥𝑖𝑖}, 𝑖𝑖 = 1 … .𝑁𝑁 (1) 

 

the target classifier c, the feature selection aims to find the subspace/subset Sn with n features 

from observations SN such that Sn that achieves a minimum classification error for c.  
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Feature selection approaches may also be classified depending on the type of search 

mechanism applied  [72, 74, 94, 97-100]. Considering the type of search strategy, feature 

selection approaches can be either wrapper based, filter based, or embedded [72, 74, 94, 97-

100] 

 

Another classification [74] separates feature selection approaches into two categories, label 

based, and search based [95-98, 101]. Label based feature selection approaches uses machine 

learning (supervised, unsupervised, semi-supervised) whereas search based approaches are (i) 

wrapper, (ii) filter, or (iii) embedded [100]. However, there is an overlap between the labelled 

and search-based criteria. As a result, the categorisation followed in this thesis is supervised, 

unsupervised, and semi-supervised [16, 17].  

 

Wrapper methods are based on evaluating a subset of features on a predefined model [102]. 

Once the model is trained with the subset, the importance or influence of features is evaluated 

by adding and/or removing features and comparing the accuracy with the previous results. 

Since the approach is like a sequential search which needs to be tested for each and every 

attribute/feature, it is computationally expensive. Moreover, the predictor/classifier is based on 

predefined model and in this case it is similar to a neural network blackbox [74].    

 

Implementing a wrapper method is not complex since it is based on a predefined model with 

labels which is similar to supervised learning. When no labelled data is available, the attributes 

are grouped based on no criteria, i.e., grouped randomly. This is similar to implementing 

unsupervised learning for clustering with no guaranteed qualitative results [103].  However, it 

is complex and more time-consuming to identify ‘good’ and ‘bad’ clusters since there is no 

direct approach to evaluate the quality of the selected attributes (clusters) other than using an 

objective function with predefined criteria to differentiate the attributes. 

   

The feature selection process in wrapper methods is based on either sequential search 

algorithms or heuristic search algorithms. Sequential Feature Selection (SFS) is the most basic 

approach which starts with an empty subset and adds one feature at a time in the later stages. 

This process is iterative and each addition is evaluated against a predefined model [104, 105]. 

Other sequential methods are Sequential Floating Forward Selection (SFFS), Sequential 

Backward Search (SBS) and Sequential Backward Floating Selection (SBFS) [74, 104, 106] .  
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Wrapper methods can also be implemented using heuristic search approaches since sequential 

search is operationally expensive [74]. Hence, nature inspired approaches like genetic 

algorithms and particle swarm optimisation are also used for search in the wrapper-based 

feature selection approaches. 

 

The second category of feature selection is filter methods that consider the feature selection 

process as a rank based scenario for listing features based on their scores [107, 108]. Filter 

based feature selection is based on evaluating features using classifiers. Initially, the features 

are ranked based on a criterion followed by an evaluation. The feature can be ranked using one 

of the two methods namely univariate or multivariate ranking.  In the univariate approach, the 

ranking of a feature is independent of search space and the process is performed on one feature 

at a time. This makes a univariate process very stringent. Multivariate approach evaluates the 

features in groups or batches which allows it to incorporate redundant features and handle them 

efficiently. This is followed by the second stage which is an evaluation process using a 

classifier. The ranked features obtained from the first stage are sorted in ascending order based 

on scores. The features with highest ranks are selected to induce classifiers for evaluation. 

There are several successful filter methods for feature selection approaches such as Fisher 

Score [109, 110], lapsian score [111], single [112] and ensemble learners [102], graph theory, 

and other models [113, 114].  

 

Embedded methods use a linear model using L1 regression by adding a penalty based on the 

complexity [115]. The importance of attributes is categorised based on degree of overfitting 

which is controlled by adding additional bias. The penalty is directly used as the cost function. 

This is an intrinsic way of selecting features through the L1 vector [116]. SVM based 

approaches are also used for embedded feature selection as an alternative to regression [117]. 

 

There are several ML approaches for feature selection. These are categorised in this thesis 

based on their learning scenario (supervised, unsupervised or semi-supervised) as mentioned 

earlier in this chapter. The ML based feature selection approaches are often domain or dataset 

or problem specific, which makes it difficult to represent in a generic categorisation [118-122]. 

The principle segregation feature selection based on filter, wrapper, and embedded methods is 

apt, widely accepted, and supported in literature.    
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The purpose of feature extraction is often confined to dimensionality reduction for optimising 

the learning process. However, feature extraction involves identifying and extracting 

characteristic features in the form of input attributes that influence the process of learning or 

other ML problems that the model is designed for. This includes the transformation of input 

into a format that represents a collective information referred as knowledge.  

 

Consider a labelled dataset D with x as data, y being a label and C is the number of classes 

associated with data. Dataset D is domain specific which belong to a particular domain X, such 

that,  

 

 (𝑥𝑥1,𝑦𝑦1), … , … , … �𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛� ∈ 𝑋𝑋 𝑓𝑓𝑓𝑓𝑓𝑓 {𝑐𝑐1, 𝑐𝑐2 … … … , 𝑐𝑐𝑛𝑛}  (2) 

 

The aim of the task is to predict (p) for an unknown value of x with a label y. The label y is 

associated with one of the classes in C and the challenging task is to identify the closest 

possible association.  

 

For identifying the 𝑦𝑦∈  {𝑐𝑐1, 𝑐𝑐2 … … … , 𝑐𝑐𝑛𝑛} or the closest possible value for y, it is important to 

identify the pattern of y which is similar to a class cy but quite distinct to other classes in the 

dataset. In other words, identifying the dissimilarity is as important as identifying the similarity. 

Therefore, the feature extractor can be defined as:   

 

 

 
𝐽𝐽 =  

1
2

 �𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖+1𝑑𝑑
𝑛𝑛

𝑖𝑖=1

(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖+1)  
 

(3) 

 

 

the distinction of the classes is based on distance between the mean values,  

 

  
𝑑𝑑(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖+1) = 𝑑𝑑�𝑚𝑚𝑖𝑖,𝑚𝑚𝑖𝑖+1�  

 

 
(4) 

 

 

where m denotes the mean vector of C.  
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The main aim of feature extraction is to identify, and map measurement space M to the feature 

space F with either linear mapping or non-linear mapping.  

 

The aim of linear mapping is to maximize J(M) for a linear mapping of individual M with X. 

The linear feature extractor J(M) is maximised when M achieves largest Eigen value for scatter 

distances between each class that belongs to C. 

 

Through the details presented in the sections, feature extraction can be defined as  

 

“a process of identifying, highlighting, and segregating to create a representation of 

interesting characteristics in the data”  

 

2.3. Statistical Approaches for Feature Extraction  

In the literature, there are several successful and efficient approaches for extracting features. 

The main purpose of these approaches is to identify the characteristic features that help to 

optimise the learning process. Feature extraction is also used to categorise and group features 

with similar or related characteristics. The main purpose of feature extraction is pattern 

recognition, recognised and emphasized in ML and its applications as early as the 1980s.  

 

There are numerous feature selection and extraction approaches proposed ever since - as early 

as late 1800s. The feature extraction/selection approaches can be broadly classified into two 

categories; linear and non-linear, based on the dimensionality of the data. Typically, if the data 

is represented in more than two dimensions, it is very difficult to interpret which makes it high 

dimensional. Linear approaches are based on the assumption that data are present in the linear 

subspace at lower dimensionality and can be projected linearly. Some linear dimensionality 

reduction techniques include Principal Component Analysis (PCA), Linear regression, Factor 

Analysis (FA), Single Value Decomposition (SVD) and Independent Component Analysis 

(ICA).  

 

In non-linear methods, the data is projected in the form of a non-linear manifold with the feature 

space. Some of the non-linear methods are Sammon’s mapping, curvilinear component 

analysis, self-organising maps, diffusion maps, and ANNs. The machine learning based feature 
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selection/extraction approaches are uniquely distinctive to other feature selection/extraction 

approaches.  

 

One of the objectives of this research is to explore and extract feature components from the 

neural network weights through feature extraction approaches. Since, the mechanism of 

extraction of feature components from neural network weights is attempted for the first time, 

the literature could not assist in any experimental method or procedure. Due to this, it would 

be reasonable to start with an existing component extraction approach which is popular and 

widely accepted, yet simple to analyse. Principal Component Analysis (PCA) is academically 

acclaimed and statistically proven approach for extracting components from dataset which 

makes it the first choice. This section presents an analysis of PCA and its implementation. This 

section also presents a description and review of Factor Analysis (FA) which is used for 

analysing correlation between components. PCA is considered as a special case of FA. This 

section also attempts to examine the capability of autoencoders which are used for feature 

extraction through dimensionality reduction. The importance of domain specific feature 

extraction and its application for evaluation is presented in the research methodology (Chapter 

4).  

 

2.3.1. Principal Component Analysis (PCA) 

PCA is a statistical approach for dimensionality reduction by projecting the correlated 

observations into a non correlated point called principal components [123, 124]. PCA can also 

be described as an algorithm that reduces the dimensionality of a dataset by identifying the 

directions called principle components [125]. PCA is a linear transformation approach that uses 

orthogonal transformation to identify principal components such that the first component 

comprises of the variables or attributes with maximum variance followed by the components 

with variances in reducing order. PCA is based on the statistical influence of the features in the 

feature vector. PCA evaluates a feature based on its statistical dependence to eliminate least 

discriminative features among the feature-set. For any feature extraction approaches, the 

influence of one feature on another feature cannot be ignored. PCA mainly uses either an Eigen 

vector or a single-valued based decomposition according to the type of data. PCA, in which 

the principal components are used as transformed features, is a widely used method for feature 

selection and feature extraction [126].   
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The capability of PCA to automatically determine the number of principle components is 

purely based on variance and is considered to be main reason for its wide acceptance. This 

strength of PCA eliminates any bias since the process is completely dependent on the dataset 

and the type of projection used. The results from the PCA are analysed based on the component 

scores and weights or loading.  

 

In PCA, the input variables are projected into an output feature space with a new coordinate 

system. These transformed variable values associate with a data point in the newly projected 

space. The position of the variables is based on the variance. In the new coordinate system, 

PCA transforms the variables such that the variables with maximum variance are placed in the 

first coordinate (first component) followed by other components based on variance (component 

score).  

 

The component score in the projected space is achieved by multiplying the original variable 

with the weights calculated based on variance, type of rotation, and other parameters. The 

transformed variables are grouped into components based on their component score. 

Traditionally, PCA results are presented as a linear combination on the transformation of 

original variables. In case of variables with different measuring units, some unwanted features 

are also included in the results. As variance is strictly based on units of single measurement 

(common scale) of the input covariance matrix, this challenges the principle theory behind 

constitution of principal components, since the key aspect of PCA component categorisation 

is variance [127]. If the unit of measurement is different or changes for one or more variables, 

this will lead to a new change of scale/component scores and data points. To overcome this, 

the input variables are standardized so that a common measurement and scale can be 

maintained [127].   

 

Rotation methods play a vital role in determining the data points in the projection space making 

them highly influential on PCA results. There are six rotation methods that can be applied for 

PCA. The five types of rotation methods of PCA are namely Varimax, Quaritmax, Equamax, 

Direct Oblimin and Promax. Sometimes, PCA can be used without any rotation method to 

observe the generic PCA results (non-rotational) for preliminary analysis which is the sixth 

type of rotation method (No rotation).  
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Another important statistical method is Factor Analysis (FA) which is often considered as a 

domain specific PCA. In FA, the Eigen values are calculated slightly differently based on 

domain specific assumption about the structure of data. Since its first invention in 1901, PCA 

is used to solve various types of problems and has been the most popular statistical approach 

that has challenged many ML algorithms. The primary application of PCA is 

classification/prediction [124, 128]. PCA is also used to visualise the data points (high 

dimensional) in a low dimensional space for clear representation using special tools [129-131]. 

  

However, the most powerful aspect of PCA is its capability to project the values of the variables 

clearly, which guides in analysing the hidden patterns in data. PCA’s unique capabilities enable 

to identify, explore and expose the underlying relationships between variables [132]. The 

application of PCA includes face detection [133], anomaly detection [134], e-learning [135], 

healthcare [136], speech recognition [137] and many more. Attribute selection or extraction in 

multivariate attribute datasets is complex and often involves multiple criteria. PCA is also a 

top contender for working on multivariate variable datasets [138]. PCA is most successful and 

widely accepted approach for exploring attributes and identifying the relationships, and 

dependencies. PCA is proven efficient in extracting features from image data [139], speech 

data [140],  Real-time (temporal) data [141], Geographical (Global Positioning System or GPS) 

data [142] and Gene expression data [143, 144]. It is noteworthy that PCA is used extensively 

to identify and examine the correlation between attributes  [145, 146].    

2.3.2. Factor Analysis (FA) 

Common Factor Analysis (CFA) or simply Factor Analysis (FA) is a statistical approach for 

attaining knowledge on the variance-based relationship among correlated variables from the 

observed variables. The variability among the correlated variables is measured with respect to 

unobserved variables. This will help to expose and present the underlying factors that are 

strongly influential among correlated variables which are potentially not been observed to the 

necessary extent. FA is based on theoretical factors which propose a formal model on the 

observed variable. FA is similar to PCA, but it is not identical to PCA [147].  

 

FA is important because of its ability to categorise factors as a superset of attributes based on 

underlying relationships. The correlation aspect of FA is powerful and reliable particularly for 

overlapping features reflected by highly correlated variables.   
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The PCA is principally based on variance and is used to extract linearly separable components 

of the variables whereas FA is based on covariance between multiple components called 

factors. In other words, the factors in FA are formed based on the linear combination of 

underlying variables that maximise the shared portions of variance. The extraction of a PCA 

component is based on the values and the starting points of the algorithms used for extracting 

components whereas FA optimisation methods are based only on the values. PCA and FA 

complement each other based on a common rotation method. For instance, FA and PCA 

produce the same results when the extraction method is based on maximum likelihood. The 

most widely used IBM’s statistical software SPSS [148, 149] treats PCA as a simple case of 

FA and the results are varied based on the rotation method used. In contrast, the statistical 

package ‘R’ primarily uses FA and treats PCA as a simple case of FA.  

 

PCA is usually regarded as component based on the uniqueness of attributes, whereas FA uses 

both uniqueness and commonality. FA models are widely accepted, particularly for datasets 

with overlapping variables since FA overtly accounts for errors in the measurements which is 

not the case for PCA.   

 

In case of datasets with minimal overlapping of features as well as with attributes based on 

pure covariance, PCA could be used to produce components by dimensionality reduction. FA 

is used for much complex datasets where the variables are overlapping and highly correlated 

with underlying relationships which could not be seen merely by looking at variance.  

2.3.3. Extracting Components  

Implementing statistical methods such as clustering is one possible way of analysing the 

weights of individual layers of a DNN. Further, to help determine the association of weights 

and the relationships between features, PCA and FA can be used. These statistical methods can 

be used to propose a component model of extracted weights that can be associated with 

features. Therefore, in this research, PCA and FA are explored as a means of investigating the 

weights in each layer and for the extraction of feature components.  

 

A rotation for factors is defined as “performing arithmetic [analysis] to obtain a new set of 

factors” [150]. Rotation methods can be categorised into two types: orthogonal and oblique. 

Orthogonal rotation assumes that the factors are uncorrelated whereas oblique approaches treat 

the factors as correlated. The details of rotation methods used to explore PCA and FA are 
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presented in Table 2-1 which describes the characteristics of each rotation methods and type 

of rotation. The adaptation of rotation methods is important since the proposed component 

extraction is based on PCA / FA and may require a selection of rotation method. 

 

The process of selecting a rotation method is a critical aspect of component analysis. Oblique 

methods are typically used to identify correlation between attributes by predefining the number 

of components to extract [151, 152]. If the correlation exceeds 0.32, the rotation can be 

considered as being orthogonal [153]. Though correlation between the attributes is important, 

it is not the only important factor particularly in analysing the characteristics of  data at the 

initial stages [154]. The experiments presented in Chapter 6, therefore, involve a variety of 

datasets with correlated and non-correlated attributes.  

 

Table 2-1: List of rotation methods and their characteristics for Principal Component 
Analysis (PCA)  and Factor Analysis (FA). The description provides the characteristics of the 
rotation method which will help in analysing the experiment results and to explore the 
relevance of rotation methods.  

Serial  
No. 

Rotation 
Method 

Description Orthogonal/
Oblique 

Correlate
d 

1 No Rotation  No rotation method N/A N/A 

2 Varimax Actual coordinate – Not 
changed. 
Rotated to align with those 
coordinates. 
maximizes the sum of the 
variances of the squared 
loadings 

 
 
 
 
 
 

Orthogonal 

 
 
 
 
 
 

No 

3 Quaritmax orthogonal alternative which 
minimizes the number of 
factors 

4 Equamax  conciliation of varimax and 
Quaritmax 

5 Direct Oblimin Similar to varimax and tends to 
produce varimax like factors 
which not orthogonal but are 
oblique 
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6 Promax Produces group factors similar 
to Oblimin typically used very 
large factorings  

Oblique Yes 

 

The two important reason to choose varimax over other rotation methods are:  

 

(i) Other orientation methods are not applied as they are not reliable [121]. 

(ii) Varimax is most popular, reliable and widely used rotation method [153] 

 

Varimax, an orthogonal method, is more effective across a variety of datasets when compared 

to oblique methods [153]. Varimax is capable of dealing with correlated attribute datasets and 

is better than oblique methods for non-correlated datasets. Thus, varimax is considered to be 

more generalised approach than other rotation methods. The majority implementations of PCA 

and FA use varimax rotation method [153]. 

2.4.  ANNs and Feature Extraction: Autoencoders 

ANNs with one or two hidden layers are attributed to the success of AI approaches for 

classification based on features [78]. However, there was minimal success for ANNs for 

classification particularly when attempting to classify large datasets with complex features 

since ANNs are unable to learn the features at discrete levels. The features in shallow ANNs 

(ANNs with one or two hidden layers) are present in hidden layers in a condensed form since 

there are limited number of layers. The majority of feature extraction approaches associated 

with ANNs involve single or multivariate data projection [155]. One layered ANNs (based on 

multilayer perceptron) often use a nonlinear input feature in high dimensional space projected 

into an abstract low dimensional feature space [156]. Classical ANNs employs a wide variety 

of data projection algorithms and techniques for feature extraction [157-163]. 

 

Some of the initial works on pattern recognition and classification have used ANNs for feature 

extraction or dimensionality reduction [164]. Feed-forward ANN with one hidden layer has 

become a widely accepted method for extracting sets of features [131]. This method uses a 

form of dimensionality reduction by optimising number of hidden nodes [165]. There are some 

noted works that use a data projection based approach for feature identification and extraction 

[166, 167]. One of the earlier works in this area uses Sammon’s nonlinear projection based 
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ANN (SAMANN) [155]. Sammon’s projection tries to preserve the inter-pattern distances and, 

thus, lacks the capability to use or introduce new data to the ANNs for projection process. In 

Sammon’s projection, for each d-dimensional pattern, there exists n patterns when d is 

projected into a space with m-dimensional, where m < d. The mapping difference that occurs 

between m and d is called the Sammon’s distance.  

 

The majority of approaches reported in the literature however use Euclidean distance for 

projection and inter-pattern distance estimation. The projection is performed from high 

dimensional space to a lower dimensionality without disturbing inter-pattern distances. The 

main disadvantage of Euclidean-based approaches is lack of a mapping function between the 

original space and the projected space. The limitations of both SAMMAN and Euclidean 

distance approaches can be addressed by using a BP based ANN with SAMMAN projection. 

This approach is more generalised and can cope with different datasets and allows for the 

inclusion of new data in the projection process. 

 

An autoencoder is a special type of ANN for learning representations from unlabelled data and 

operate by reconstructing the input. In other words, the principle task of an autoencoder is to 

reproduce the input as output, i.e., to copy the input to output. Kohonen's auto-associator is the 

earliest known linear network for reproducing input as output [168, 169]. The autoencoder is 

an unsupervised learner since it requires only input (unlabelled) data to learn the 

representations.  

 

First proposed by Rumelhart et al. in 1989 [12], the primary functionality of an autoencoder is 

dimensionality reduction. Autoencoders are knowns to be a bottleneck in a network since there 

are typically fewer hidden nodes than input nodes [170]. Autoencoders are now predominantly 

used for feature learning.   

 

Autoencoder consists of an encoder function that creates a new coded representation of input. 

This representation is presented as a separate encoder layer. This is followed by a hidden layer 

(middle layer) that filters the identifiers to a required number, representing the essence of the 

input. This is followed by a decoder layer that fragments the features which are used to 

reconstruct the input. This process is pictorially represented in Figure 2-1. 
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Figure 2-1: The representation of an autoencoder with encoding and decoding layers with 
middle layer represented by m1 and m2. The input i is passed through encoding layer and into 
the middle layer (dimensionality reduction) followed by the decoding layer to reconstruct the 
input as iR.  

 

An autoencoder tries to learn a function hW, b(i)≈i for reconstruction so as to minimise the 
mean square difference: 
 

  
𝐿𝐿 (𝑖𝑖, 𝑗𝑗) = �(𝑖𝑖 − ℎ𝑤𝑤  . 𝑏𝑏(𝑖𝑖))2  

 

 
(5) 

 
 

where i is the input data, and j is the reconstruction value.  

 

Typically, for a sigmoid activation function, a cross-entropy loss reconstruction function is 

used. The reconstruction of weights is done by optimising the weights in the hidden layer that 

represents the input encoded using encoders. The significant application of autoencoder is data 

compression due to its ability to represent input in a compressed format. When the number of 

hidden nodes is less than the number of input nodes, the hidden nodes represent a compressed 

format. This compressed format enables an autoencoder to be used for data compression. In 

some cases like speaker identification, autoencoders enable the extraction of important features 

that represent majority of the input representations [171]. For compressing image 

representations, an autoencoder is a natural choice. When an image of 1024 x 1024 is 
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compressed and learnt as 256 x 256, it is easy to handle the data in terms of size, memory and 

speed.   

 

One notable application by Kramer [172]  was the use of a nonlinear PCA (NPCA) approach 

to construct an auto-associative neural network. This approach was then further enhanced, as 

h-NPCA, by introducing non-linear nodes into an autoencoder with hierarchical training [173].  

 

One of the earlier applications of feature extraction using an autoencoder was reported by 

Cottrell in 1991 and was employed for facial recognition through extracting facial features 

from the image [168]. The experiments were carried out by reducing a 512 x 512 pixel 

resolution image into 64 x 64 pixel by decreasing the number of hidden nodes. This work uses 

associative network architecture that creates an association between two ANNs: one a regular 

network and the other, a compression network. The association is carried out by using an 

ensemble of networks, a face compression network, a compression network and a network with 

hidden nodes in the middle layer to learn the compressed features. This approach has given 

way to later implementations particularly in deep learning presented in the next section.  

 

Shallow networks can be used only as non-linear modelling systems with numeric data. 

Processing high dimensional data with ANNs has two major issues. Firstly, ANNs incur the 

curse of dimensionality for large amounts of data. High dimensionality of data makes it 

impossible to attain efficient results. Secondly, due to a smaller number of hidden layers, the 

entire set of features are condensed in one or two hidden layers with extremely overlapping 

features. Increasing the number of hidden layers to address this issue has resulted in slowing 

down the training process, particularly when trained using BP. To mitigate this, a separate 

feature extractor  is used to extract and fine-tune features before feeding them into the classifier. 

Firstly, feature extraction approaches are used for extracting the relevant features followed by 

manually hand crafting them to ease the learning mechanism [174]. However, this process is 

quite time-consuming in itself, and is not robust. Consequently, it is practically impossible to 

implement feature extraction for large datasets. However, for deep learning this is not 

necessarily the case since deep learning learns the representations hierarchically rather than 

features as a whole. Feature extraction is not necessary for deep learning mechanism as deep 

learning learns representations and avoids the requirement of feature extraction as well as fine-

tuning them.   
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2.5. Summary 

This section introduced the standard definitions of features and knowledge, followed by a 

discussion of the statistical and neural network based feature extraction approaches reported in 

the literature. The exploration of literature for the theoretical definitions of features and feature 

extraction will help in modelling a feature extraction approach using neural network weights. 

Considering the fact that there is no sufficient literature on identifying features in the neural 

network weights it is important to acquire sufficient background on features and feature 

extraction approaches that are successfully implemented. The information on types of features 

and their contextual definitions will guide the process of design and implementing component 

model based on features.  

 

Continuing from here, the next section explores the literature on various approaches for 

knowledge discovery and transfer learning in deep neural networks.  
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Part II: Learning Representations & Knowledge Discovery  

ML is completely reliant on how clearly the features are learnt through training. Clarity of 

features is often achieved by manually fine-tuning the features to create a clear distinction 

among each feature, which helps classifier to identify the class that is associated with the 

feature [175]. This fine-tuning of features termed as ‘feature engineering’ is the key for 

achieving accurate results. Feature engineering is quite costly and needs human intelligence 

and prior knowledge about the data. Traditional algorithms are greatly reliant on feature 

engineering. In other words, to be efficient, ML algorithms expect features to be hand-crafted 

or fine-tuned before submitting them to classifiers [176]. 

 

Shallow architecture based algorithms like ANNs, SVMs [177], and other kernel algorithms 

are unable to handle complex and high volumes of data and are proven inaccurate due to the 

lack of efficient training mechanism. For ANNs, increasing number of hidden layers will solve 

the issue of learning representations through multiple layers [178]. The main hindrance in this 

research direction was determining methods of training these ANNs and provide them with 

clean and efficient features which is possible only by manually handcrafting the features with 

human intervention. To reduce this dependency on human involvement, it is, therefore 

necessary to work towards learning algorithms that can learn features from the data itself. The 

efficiency can further be improved by making the training algorithms learn the representations 

by themselves.  

 

The input features are spread across attributes of the dataset in the form of one or more 

attributes [179]. These features are leant by the DNNs and are represented in the form of 

underlying representations in weights across the layers of DNN. The representations are 

patterns or characteristics that are present in features. The uniqueness of a particular 

representation depends on the uniqueness of the feature. For instance, consider a dataset of 

three attributes out of which one is unique and associated with only one particular class. The 

DNN identifies the unique class based upon unique attribute associated with the class. Since 

DNN learns through weights and its internal representations, the attribute certainly needs to be 

represented differently in an exclusive format. The more exclusive and clear the representation 

is, the clearer DNN can learn [16]. Therefore, learning representation is the key aspect for DNN 

accuracy.  
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Representation learning or feature learning is the process of determining the representation that 

constitute features [16]. In other words, feature learning is the process of linking low-level 

features extracted by ML algorithms to high-level features that guide the classifier. The 

efficiency of feature-learning depends on the feature extraction capability of the ML algorithm 

used. Representation learning is what resides inside the human cognition to know, learn and 

experience various real-world scenarios. To start with, human learning is based on extracting 

and learning core representations and using them when required to perform various 

identification and recognition tasks [16]. The core representations learnt through human 

cognition and experience are often considered as core knowledge that exists across multiple 

task and domains. The core knowledge is sometimes referred as common or generic knowledge 

that can be used across different tasks.  For instance, a person who learns how to play a piano 

can utilize the fast finger movement for typing. Here the finger skill is generic and not task 

specific whereas as the implementation may be task specific.  

 

Traditional ML algorithms are task oriented and are designed particularly for a specific task or 

problem which makes these algorithms weaker and non-generic. Further, traditional ML 

approaches and methods lack the capability of learning representations at discrete levels due 

to technical and computation hurdles. For instance, ANN with only one hidden layer is unable 

to demonstrate the same capability that of DNN with multiple hidden layers, since DNN is able 

to learn features at a discrete level through weights present in various hidden layers which the 

ANN lacks. Another advantage of learning representation is that the learned representations 

can be used to express generic priors across multiple problems which is a common case for 

real-world applications to achieve near human accuracy.  

 

Learning representations, particularly with deep learning, is proven to assist the AI systems to 

amalgamate or segregate features efficiently based on a problem [16]. The underlying 

representations or the pattern of priors are most important and influential in the learning 

process. These underlying ‘deep’ representations assist the learner (in this case DNN or ANN 

with sufficient depth) to pursue the ‘deep’ knowledge that enables the achievement of near 

human accuracy for various AI tasks. There are some important priors in the representation 

that are generic and can be used to perform a different task other than the task for which it is 

trained. This is particularly applicable in the case of transfer of knowledge from one DNN to 

another DNN where the second DNN receives the ‘learning’ (similar to experience) from first 

DNNs to perform a different task.   
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Representation learning came into focus with the success of deep learning which attained the-

state-of-the-art results in various real-world implementations and applications. However, the 

investigation on what and how these representations are present in the form of patterns in the 

hidden weights has not been explored which is the significant factor of this thesis. To examine 

the weights for the patterns based on input features, it is necessary to explore more about how 

data is represented in various types of priors. The investigation of how ANN weights are 

impacted by the changes in the input representations requires a systematic experimental 

examination which is undertaken in this thesis. This also demands sufficient knowledge on 

underlying representations that are generic (significant priors) and can be categorised as 

identified  by Bengio, Courville and Vincent [16]. The categorisation of significant priors based 

on the type of representations that exists in the data is presented in the following section. 

2.6. Categories of Priors 

2.6.1. Smoothness 

Traditional linear models have limited success in handling complex data such as the data 

involved in computer vision and Natural Language Processing (NLP). These linear parametric 

models were initially replaced by kernel machines, but, these were limited to local 

generalisation [180] under the assumption that the target function is smooth to learn. Both 

linear models and kernel models assume this smoothness, failing to overcome “the curse of 

dimensionality”, since the generalisation is limited to local neighbours. Furthermore, the raw 

data representations particularly for complex data gives rise to many fluctuations in volume, 

complexity and training samples. However, the importance of linear models cannot be ignored. 

The combination of linear models and representation learning enables researchers to explore 

and expose the feature space in order to possibly improve the efficiency of AI algorithms.   

2.6.2. Distributed Representations 

To express the true nature of the input, representations have to be clear enough. This hints at 

the size of the learned representations based on numerous combinations of input attributes. 

Traditional clustering algorithms require n parameters (examples) to distinguish n outputs in 

the region or feature space since the input data cannot be expressed as distributed 

representations. For example, to distinguish three outputs in results, it is necessary to have at 

least three different parameters where each parameter is exclusively linked to a single output.   
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In the case of DNNs, a total number of 2k features can be represented using distributed 

representations with the same number of n parameters where k is the non-zero element for 

sparse representations. In the case of such dense and non-sparse representations as RBMs 

(presented in the Chapter 2 Section 2.4), k=n  [181]. Clustering is generalised for distributed 

representations using sub-clustering or multi-clustering where representations are identified 

and distinguished in the form of small clusters distributed within the input or groups of clusters 

in parallel.  

 

The important aspect of distributed representation is the nature and presence of representations. 

Some representations can be reused for multiple samples as well as associated with different 

regions of input. Distributed representations enable the association of individual features with 

multiple hidden units in the case of a single-layered ANNs, whereas in the case of non-

distributed representations, the input feature is always associated with a single identifier. For 

instance, in clustering algorithms a feature in a non-distributed representation can only be 

associated with the most suitable cluster. In contrast, in a distributed representation each feature 

is involved in more than one concept and each concept is represented by multiple features, 

thus, making features mutually exclusive and also be independently verified.  

2.6.3. Relational 

The underlying patterns that determine a representation in abstract high-level features are 

interrelated since they represent a specific feature. These underlying patterns are also reflected 

in relating various features in a good and clear high-level representation. Further, there may 

exist some linear dependencies between these patterns (representations) that are reliable and 

definitive for identifying a (characteristic) feature.  

2.6.4. Shared 

The underlying patterns for a representation may be shared across multiple representations and 

substantially across multiple features. In real world examples, particularly in computer vision 

and image processing, core representations are shared across multiple features which helps in 

creating a generalised model.  

2.6.5. Sparsity 

Every representation possesses a group of dependent patterns that are most influential, and 

some definitive patterns are in the form of least-effective features. In an observation x, there 
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exists a set of features that are tolerant or insensitive to minimal changes. This tolerance can 

be identified through the hidden variables whose values are often flat/0 or linear/non-linear or 

a calculated Jacobian determinant through mapping inputs with representations.    

2.6.6. Hierarchical  

Groups of low-level discrete representations may constitute a high-level representation in an 

abstract form. These core representations are underlying representations which can only be 

exposed by ‘deep learning.’ Many real-world applications for text mining, NLP, face 

recognition are built in the form of a hierarchy with abstract representations at the higher levels. 

Learning of these low-level underlying representations (aka deep representations) is necessary 

to achieve high accuracy in any ML task. DNNs are able to learn these deep representations 

through layer-wise training and for the first time, the underlying core features that are 

responsible for better accuracy have been identified [3]. 

2.6.7. Sequential & Temporal 

The nature of similar observations in sequential and temporal data is associated with a common 

observation value in the high dimensional feature space. This relevance of the category in a 

high-dimensional space can be reached through a small move. In case of diversified values, the 

associated value in high dimensional (feature) space is not close. In order to determine the 

representations for diversified categories, it is necessary to take a big leap which is guided 

through spatio-temporal aspects of the data. The search process for identifying associated 

sequential and temporal representations for a target has often proven to be costly in multiple-

manifold search space.  

2.6.8. Manifolds 

The concentration of probability for machine learning algorithms always go around low 

dimensional regions in the output space. It is necessary to provide a thrust to overcome these 

manifolds and explore the entire data space to determine the deep representations, which to 

some extent, is accomplished through deep autoencoder networks.  

2.6.9. Semi-supervised  

In supervised learning, for an input x and a target to predict y, the characteristic factors that 

represent x can be used to explain the pattern of distribution of y. Henceforth, when the 

representations of  f(x) is determined, this can be useful to define and learn the function f(x|y)  

(unsupervised) of an unknown target. Therefore, learning representations using supervised 
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learning may help in analysing and extracting patterns with no classes/targets. This is the core 

concept of deep learning where the DNN tries to learn the representations without target classes 

(unsupervised). 

2.7. Deep Architecture Learning (Deep Learning) 

Representation learning often requires multi-level or hierarchical architectures with significant 

depth. The deeper the architecture, the easier it is to learn representations in detail. However, 

it is challenging to train deep architectures, for instance, ANNs with significantly large number 

of layers. The training multilayer ANNs began over three decades ago. A considerable amount 

of progress has been made in recent decades and this development, as documented in the 

literature, is presented in the next section. 

 

Deep learning is a unique algorithm that is capable of learning representation through layer-

wise training of a very ‘deep’ topology. Deep learning provides the following three significant 

and important advantages over traditional learning approaches: 

1) Deep Learning enables to learn features using unsupervised learning thus eliminating the 

requirement for training of classes. 

2) Deep learning enables the extraction and immediate use of features at various intermediate 

levels  

3) Deep learning provides the reusability of features which is enabled via empirical learning 

through samples. 

De-noising is one of the important characteristics of representation learning via deep 

architectures particularly with DNNs. More abstract features can be extracted as high-level 

features that are more significant and contribute to the accuracy of the classification task. This 

de-noising process for the features has been used as a way of removing insignificant and 

unnecessary features and is somewhat similar to dimensionality reduction.  

 

These aspects provide a theoretical advantage of deep learning over other learning algorithms. 

The next section presents a brief account of deep learning with respect to different types of 

deep architectures and their implementations.  

2.7.1. Deep architectures 

ANNs are once again popular due to the success of deep learning involving multi-layer neural 

networks for solving tasks that are too complex for single-layer or dual-layer neural networks. 
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Common problems pertaining to ANN learning mechanism are also persist in DNNs [29]. If 

training is too long, test results can be poor because the weights have become too specialized 

(overfitting). If training is too short, training results can be poor, leading to poor overall results 

on the full dataset (underfitting). Introducing a recalibration training dataset (i.e. training with 

an additional dataset after initial training) as an additional means to deal with overfitting or 

underfitting can lead to oscillation of weights and unlearning of initial samples [29].  

 

To some extent, the problem of overfitting was addressed in DNNs using thinned DNNs [4]. 

The idea of thinning DNNs is to randomly drop units during learning to prevent unit over-

adaptation. But this requires a number of different DNNs to be trained and then converged 

through averaging at the final stage, which results in a thinned DNN. Also, it is not clear what 

the implications of thinned DNNs are for data representation [29].  

 

The number of layers of an ANN constitutes its depth. The ANN architecture is considered as 

‘Deep’ when multiple hidden layers are used in its architecture [17]. Feed-forward ANNs with 

more than one layer of connections can solve more problems and be more accurate than one-

layered ANN [17]. In this thesis, a ‘hidden layer’ in a DNN is defined as any layer of 

connections or units/nodes apart from those at the input and output stages. Throughout this 

thesis, the context determines whether we refer to hidden connections or hidden units/nodes 

[29]. Theoretical studies also support the statement that DNNs have the advantage of more 

efficient representation when compared to shallow networks and with fewer hidden units [17] 

[29]. Unlike ANNs, the layers of Convolutional Neural Network (CNN) have neurons arranged 

in three dimensions for overlapping purposes.  

In 1980 Fukushima proposed Neocognitron using Convolutional Neural Networks (ConvNets) 

[25] [29] which served as a successful model for later works on deep architectures [182]. This 

first attempt at ConvNets still had an inefficient training mechanism. Fukushima’s work was 

later improved by Lecun [22] who also proposed the theoretical concepts of deep architecture 

in 1998 [21]. CNN, being the first form of DNN, uses the standard BP algorithm for training, 

and the weights are updated according to equation 6. 

 

  

∆ 𝑤𝑤𝑖𝑖𝑖𝑖 (𝑡𝑡 + 1) = ∆ 𝑤𝑤𝑖𝑖𝑖𝑖 (𝑡𝑡) +  η 
δ𝑐𝑐
δ𝑤𝑤𝑖𝑖𝑖𝑖

  

 

 
(6) 
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where η represents the learning rate, c is the associated cost function, wij represents the weight 

between the units i & j and t represents time. 

 

Historically, the concept of DNNs was proposed in 1989 as Convolutional Neural Networks 

(CNNs) without using the word ‘Deep’[29]. Back Propagation (BP) was used to train CNNs 

and was known to be not so effective because of the limitations of BP [29]. For instance, 

feedback is applied only to the immediately previous layer. After the introduction of a new 

greedy layer-wise training, ANNs once again became popular in the form of DNNs [28]. The 

innovation in the research on the training mechanism of deep architectures was achieved in 

2006 when Lecun, Hinton and Bengio proposed three different types of deep architectures, 

each with an efficient training mechanism. Lecun expanded on his earlier work on ConvNets 

by adding an efficient training mechanism [22]. Hinton’s Deep Belief Networks (DBNs) [23] 

and Bengio’s stacked autoencoders [28] were the other two implementations. However, the 

work of Jürgen Schmidhuber cannot be ignored as it is considered to be the first study that 

trained ANN with large number of layers well before the term DNN was used [17].  

 

A fundamental form of deep architecture i.e. DNN, is a feed-forward ANN with more than one 

hidden layer that make them more efficient than a normal ANN [24]. DNNs are trained with 

BP by discriminative probabilistic models that calculate the difference between target outputs 

and actual outputs. The weights in the DNNs are updated using stochastic gradient descent 

defined in equation 6. For larger training sets, DNNs may be trained in multiple batches of 

small sizes without losing the efficiency [183]. However, it is very complex to train DNNs 

with many layers and many hidden units since the number of parameters to be optimized are 

very high. 

 

Deep architecture is a hierarchical structure of multiple layers with each layer being self-trained 

to learn from the output of its preceding layer [182]. This learning process which is deep 

learning is based on distributed representation learning with multiple levels of representations 

for various layers [182]. In simple terms, each layer learns a new feature from its preceding 

layer which makes the learning process concrete. Thus, the learning process is hierarchical with 

low-level features at the bottom and high-level feature at the top with intermediate features in 

the middle [182]. From these features, the greedy layer-wise training mechanism enables the 

extraction of only those features that are useful for learning. Along with this, a pre-
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unsupervised training makes deep learning more effective. Shallow architectures have only 

two levels of computation and learning elements which make them inefficient to handle large 

amounts of training data [28]. Deep architectures require fewer computational units that allow 

non-local generalization which result in increased comprehensibility and efficiency that has 

been proved with its success in NLP and image processing [182]. According to complexity 

theory of circuits, deep architectures can be exponentially more efficient than traditional 

narrow architectures in terms of functional representation of a problem [4]. Traditional ANNs 

are considered to be the most suitable type of neural network for implementing deep 

architectures [182]. 

 

2.7.2. Convolutional Neural Networks-ConvNets 

ConvNets can be considered as a special type of DNNs that perform extraction of features 

using a mechanism called convolution and a process of subsampling. The principal application 

of ConvNets is feature identification [182]. ConvNets are biologically inspired Multilayer 

Perceptron (MLPs) based on virtual cortex principle [25] and the earliest implementation is by 

Fukushima in 1980 [25] for pattern recognition followed by Lecun in 1998 [24]. ConvNets 

diversify by applying local connections, subsampling and sharing of weights which is similar 

to the principal approach of ANNs in the early 1960s [182]. In ConvNets each unit in the layer, 

in a manner similar to the earlier MLP model, receives input from a set of units in small groups 

from its neighbouring layer. The usage of local connections for feature extraction has been 

proven successful, particularly for extracting edges, end points and corners. These features 

extracted at the initial layer are combined subsequently at the later layers to achieve higher or 

better features [182]. The features that are detected at the initial stages may also be used at the 

subsequent stages. The training procedure of the ConvNets is shown in Figure 2-2. The first 

layer takes a raw pixel with 32 x 32 from the input image. The second layer consists of six 

kernels with 5 x 5 local windows. From this, subsampling is done in the 3rd layer (subsampling) 

layer. For the 4th layer, another ConvNets with 16 kernels was exploited with the same 5 x 5 

windows. Then the 5th layer is also constructed using sub sampling. This procedure continues 

till the last layer and the entire structure is developed as Gaussian connections [182]. 
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Figure 2-2: Architecture of the ConvNets CNN as proposed by Lecun [15]. Used with 
permission (open access license). 

 

2.7.3. Deep Belief Networks - DBNs 

The Deep Belief Network (DBN) is a form of deep architecture designed and developed by 

Hinton [26]. DBN is based on MLP model with greedy layer-wise training. DBN consists of 

multiple interconnected hidden layers with each layer acting as an input to the next layer and 

visible only to the next layer [182]. Each layer in a DBN has no lateral connection between its 

nodes present in that layer. The nodes of DBN are probabilistic logic nodes thus allowing the 

possibility of using an activation function. Restricted Boltzmann Machine (RBM) is stochastic 

ANN with input and hidden units connecting every hidden and a visible unit [182]. RBMs act 

as the building blocks of DBNs because of their capability of learning probabilistic 

distributions on their inputs. Initially the first layer of a DBN is trained as RBM that transforms 

input into output. The output thus received is used as data for the second layer which is treated 

as an RBM for the next level of training. Similarly, the output of the second layer will be the 

input for the third layer, and the process continues as shown in Figure 2-3. The transformation 

of data is done using activation function or sampling [182]. In this way the subsequent hidden 

layer becomes a visible layer for the current hidden layer to train it as an RBM. An RBM with 

two layers, a visible layer as layer 1 and a hidden layer as layer 2 is the simplest form of DBN 

[182]. The units of the visible layer are used to represent data and the units (hidden with no 

connection between them) will learn to represent features. If a hidden layer 3 is added to this, 

then layer 2 will be visible to only layer 3 (still hidden to layer 1) and now the RBM will 

transform the data from layer 2 to layer 3. This process is illustrated in Figure 2-3 [182].  

 

In DBNs, the lower-level features of the input are extracted at the lower layers and an abstract 

representation (high-level features) of the input is performed at the higher layers.   
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Figure 2-3: Pictorial representation of the first three layers of a Deep Belief Network where 
each layer is an Restricted Boltzmann Machine (RBM). 

The training procedure of a DBN is carried out in three phrases. Each layer of the DBN is pre-

trained with greedy layer-wise training followed by unsupervised learning for each layer and 

finally training the entire network with supervised training. The importance of this training 

procedure is determined by the generative weights. After learning, the values of the latent 

variables in every layer can be inferred by a single, bottom-up pass that starts with observed 

data vector in the bottom layer using generative weights in the reverse direction. DBNs proved 

to be the most efficient architectures in image recognition [23], face recognition [27] and 

character recognition [28]. 

2.7.4. Stacked Autoencoders – Deep autoencoder networks 

The principle of autoencoders, using an encoding multilayer ANN, evolved from the attempts 

to reduce the dimensionality and find efficient methods to transform complex high dimensional 

data into lower dimensional code [182]. A decoder network is used to recover the data from 

the code [182]. Initially, both encoder and decoder networks are assigned with random weights 

and trained by observing the discrepancy between original data and output obtained from 

encoding and decoding. After this, the error is back propagated firstly through the decoder 

network, followed by encoder network. This entire system is known as an autoencoder [26].  

 

An autoencoder with input x ∈ Rd is “encoded” as h ∈ Rd1 using deterministic function defined 

as fθ= σ (Wx+ b), θ = W, b. To “decode”, a reverse mapping of  f: y = fθ(h) = σW1h + b1 with θ 

= (W1, b1) and W1 = WT  is performed in which encoding and decoding process are performed 

using the same inputs. This process continues for every training pattern. For training, xi is 

mapped to hi with a reconstruction yi. Parameter optimization is achieved by minimising the 

cost function over the training set. However, optimizing an autoencoder network with more 
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than one hidden layer is difficult. Being similar to DBN’s layer-wise training procedure, this 

approach replaces RBMs by autoencoders that perform learning through reproducing every 

data vector from its own feature activation [4]. The considerable change that has been applied 

in this model is changing the unsupervised training procedure to the supervised mechanism in 

order to identify the importance of training model [182]. 

 

The training procedure of DAEs is as follows. In an autoencoder, three layers are considered 

at a time with the middle layer as the hidden layer. In the following instance, the middle layer 

becomes input layer and the output layer of the previous instance become hidden layer (the out 

parameters are now the training parameters) and the layer next to it will be the new output 

layer. This process continues for the entire network [182]. However, the results were not 

efficient since the network becomes too greedy [4]. It can be concluded that, the performance 

of stacked autoencoders with unsupervised training was almost similar to that of RBMs with 

similar type of training whereas stacked autoencoders with supervised pre-training is less 

efficient. Stacked autoencoders were not successful at ignoring random noise in their training 

data as such their performance is slightly poorer (almost equal performance but not the same) 

than RBM based deep architectures. However, this gap in performance is narrowed using the 

stacked de-noising autoencoder algorithm introduced in 2010 [28]. 

 

2.7.5. Unconventional Deep architecture 

Hybrid and unconventional deep architectures are designed either combining/altering 

traditional architectures or by implementing new training mechanisms based on ML 

approaches [45]. In majority of the cases, the design of the deep architectures is problem 

specific and is based on the implementation. This section will provide a brief overview of some 

of the unconventional deep architectures and how these implementations guide the learning 

paradigms and problem solving.  

 

Convolutional Deep Belief networks  

Convolutional Deep Belief networks are based on Convolutional Restricted Boltzmann 

Machine (CRBM) which are a variant of traditional RBMs. Unlike RBMs, the weights of 

CRBMs are shared between the layers. CDBN implements probabilistic max-pooling similar 

to CNNs which allows to shrink the representation thus reducing the computational cost 
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without losing efficiency [184]. CDBN produced better results than traditional DBN for   

CIFAR dataset [185]. 

 

Deep Kernel Machine (DKM) 

Deep Kernel Machine (DKM) is constructed by stacking kernels as layers for a deep 

architecture similar to stacked autoencoder approach. In DKM, each layer (kernel) is associated 

with the next layer similar to DBN based architecture and each layer is optimised using kernel 

based optimisation methods [48]. Each layer of DKM goes through a feature selection using 

supervised learning to eliminate unwanted features followed by a classifier layer at the end 

(usually kNN). DKM, for the first time, implemented the use of a kernel based deep 

architectures that attained considerable success particularly for multiclass problems and 

outperformed other kernel based deep architecture approaches [186]. DKM provided a new 

direction for implementing kernel based methods for optimising deep architectures through 

efficient feature learning mechanism [187].  

 

Deep Coding Network (DCN) 

Deep Coding Network (DCN) is the extension of traditional sparse coding one-layered ANN 

using DBN based architecture with hierarchical structure [188]. The hierarchical multilayer 

structure is proposed to provide local search for avoiding overfitting. The hierarchical nature 

and the local search reduce the computational cost compared to a generic sparse coding 

multilayer network. However, the performance becomes reduced as the number of layers is 

increased making it inefficient for problems with large datasets.  

 

Tensor-Deep Stacking Network (T-DSN) 

A Deep Stacking Network (DSN) uses parallel weight learning process where the weights are 

updated by grouping them into separate blocks, unlike BP (all weights at once). A DSN consists 

of one hidden layer and stacking a minimum of 3 such DSNs forms Tensor-DSN [189]. The 

input layer of the DSN is linked to the hidden layer by lower weight matrix and the logistic 

hidden layer that uses sigmoid is connected to the output layer with an upper layer weight 

matrix [45]. At present, T-DSNs are implemented principally for big data analytics [190] and 

data pattern analysis [191].  
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Deep Q-Networks (DQN) 

Q-learning is a variant of Reinforcement Learning (RL) that adopts the process of selecting 

most suitable action for a finite process instead of reward based RL approach. Deep Q-

Networks are designed by applying Q-learning principle for fine-tuning weights in a traditional 

DNN [192]. Traditional deep architecture based approaches sequentially update the weight, 

which is costly, whereas DQN uses random weight updates which reduces the frequency of 

updates thus reducing computation cost. DQN is proven efficient over the traditional RL-based 

approach for gaming and has provided a new research direction for RL-based deep learning 

[193-196].  

 

Deep Support Vector Machines (DSVMs) 

Deep Support Vector Machines (DSVMs) are designed by stacking SVMs as individual layers 

of traditional DNN [197]. DSVMs are also referred as SVM based deep stacking networks 

[198]. The difficulty in design and implementation of DSVMs is the major reason for its limited 

implementation as DSVMs cannot be created by simply stacking SVMs which is a common 

approach for DNN based  implementations [187]. Another possible variant is using SVM as 

classifier (Softmax layer) in different types of deep architectures [199]. A recent 

implementation of Deep CNN architecture with SVM as Softmax layer is used for automatic 

mass detection for breast cancer which has toppled the benchmark results for the same problem 

using traditional CNN application [200].  

 

Evolutionary Deep Neural Networks 

Application of evolutionary strategies for improving the efficiency and accuracy of ANNs has 

inspired implementation of evolutionary strategies for optimising DNNs. Initially, the genetic 

algorithm (GA) assisted approaches are used for optimising DNNs  [201] and these approaches 

are still quite popular  [202, 203]. 

 

In spite of the success of Neuroevolution (evolving ANN), evolving deep architecture is 

considered as complex and time consuming. However, applying various evolutionary strategies 

for evolving deep architectures attained considerable success in recent times [51, 204, 205]. 

Among all the evolutionary DNN approaches, recently proposed neuroevolutionary based 

method is popular and widely accepted [51] due to its easy adaptation and application. A new 

multipopulation based coevolution strategy for evolving DNNs is also proposed [52, 59].  Use 
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of multiple sets of population and separate coevolutionary strategies for each set of population 

is useful for generating diversified solutions in short periods of time.  

 

Apart from the unconventional approaches stated above, there are other methods implemented 

which are essentially an amalgamation of two or more ML strategies applied for different types 

of deep architectures.  

2.8. Knowledge Representations in Artificial Neural Networks 

The knowledge attained by ANNs resides in their weights. An individual weight by itself may 

not be significant, but in combination with other weights it is responsible for the problem 

solving.  

 

Given that the first research objective is to identify a relationship between input features and 

ANN weights, the second research objective is to identify whether deep architectures, 

particularly DNNs, possess knowledge representations in the form of patterns. Answering this 

question will also provide a new opportunity to extract symbolic knowledge which would help 

to explain, to some extent, the internal operations of deep learning that provide a new direction 

in transfer of knowledge.  

 

 “knowledge in a neural network is the expertise attained by training.”  

 

For further investigation, it is important to define what is meant by knowledge and what it is 

made of. To investigate on how ANNs works and to explore the factualness, it is necessary to 

expose hidden representations in the weights of ANNs that constitute knowledge. These 

representations in the weights are significant, as weights by themselves are nothing but simple 

numeric values. To extract a meaningful pattern from the weights, it is necessary to establish a 

relationship between weights and the core components that are responsible for the change of 

weights, their values and their patterns.  

 

Weights are optimised for a given task and are often optimised based on accuracy of the results. 

However, the constitution of weights is achieved through input features. To know about the 

patterns of the representations in weights that constitute knowledge, it is essential to know the 

relationship between input features and hidden representations. With one-layered or two-

layered ANNs, it is difficult to identify representations from the weights since all the features 



 

 55 

are condensed within these layers. This will increase the complexity of extracting knowledge. 

For instance, Figure 2-4 presents a pictorial representation of an ANN’s weights projected on 

to 3-dimensional space. The ANN consists of one hidden layer and is trained on the MNIST 

dataset. The ANN is able to achieve a classification accuracy of 69.2%. When the weights of 

the only hidden layer are projected, it may be noticed that no visible patterns are present. 

However, a clear difference between various types of weights can be observed with colour 

coding. It can be assumed that the colour actually represents a particular feature and these 

features are spread across multiple weights and scattered across the layer.  

 
Figure 2-4: The 3D Projection of weights of the hidden layer of a fully trained ANN using 
MNIST dataset. The colour bar indicates the attribute to which the weight belongs to. The x, 
y, and z axes are based on the values automatically determines by MATLAB. 

 

When a DNN with seven layers is used to classify the same MNIST data and trained to achieve 

the same accuracy of 67.2%, the weights in the middle layer reveal an entirely different pattern 

when projected (Figure 2-5). The MNIST data set consists of 10 digits which are distributed 

across four different features A, B, C and D. In the Figure 2-5, the features A, B, C and D are 

projected in four different colours and the features are grouped in patterns that are recognisable. 

The patterns possess knowledge perhaps in the form of partial class labels that assist 

classification after few more transformations through other layers towards the last layer.  

 

Further, this type of projection particularly with DNNs gives an opportunity to investigate the 

influence of input on the weights which in turn can be constituted as features. The mechanism 

of identifying the relationship between input features and weights is the first one of its kind 

and is being attempted for the first time in this research. Further evaluation and explanation 

will be presented at the later stages of this thesis.  
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Figure 2-5: Euclidean valued projection of weights of the middle layer of a 7-layered DNN 
trained using MNIST dataset. The features indicated by A, B, C and D are clearly separated 
with A and B being strong features.  

 

Knowledge extraction is another major point of research for neural networks. The task of 

knowledge extraction from ANNs can be directly associated with exploring how the problem 

is represented in the hidden layers (topology) and neurons (weights). The research on extracting 

knowledge from ANNs was widely popular in the late 19th century [67-70]. A notable account 

of extracting knowledge from ANN weights is done by removing insignificant attributes from 

the input and training the model with known data (supervised) [206]. This attempt may be 

successful for linearly separable data, but for non-linear multi-class data, the importance of an 

attribute may not be evaluated correctly with respect to other attributes [65, 71]. Further, 

knowledge discovery attempts have attained limited success in the problem specific 

experiments. For instance, the successful attempt to extract symbolic rules from ANN by 

Kamruzzaman and Monirul is confined to a single digit hidden nodes with a small dataset [58].  

 

The common association of knowledge extraction and knowledge transfer for ANN is its 

weights. Transfer of learning and transfer of knowledge are often used in the same context. 

Simply, knowledge in a neural network is the learning and experience attained by training. 

Transfer of learning will enable a transfer learning mechanism in the form of parametric values 

as well as knowledge attained, whereas transfer of knowledge is the experience that the neural 
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network gained through the learning. There is no guarantee that efficient learning will result in 

efficient knowledge. 

 

Though layer-wise training contributed to the success of DNNs, there has only been a few 

attempts to investigate the possibility of knowledge transfer between two DNNs. All these 

methods implement transfer of weights between DNNs without any established systematic 

approach. One such attempt using deep convolutional neural networks achieved limited success 

with small datasets [58]. The second notable implementation involved classifying upper case 

Latin characters using an ANN that was trained on Chinese characters [64].  

 

There have been numerous attempts for improving the performance of DNNs. Transferring 

knowledge is one such approach where features learnt by one DNN are transferred to another 

DNN to improve performance and accuracy. The importance of knowledge transfer between 

ANNs was identified as early as the 1990s [207]. The process of knowledge transfer involves 

identification, extraction and transfer of knowledge which is also referred as 'Transfer 

Learning'. Deep Transfer Learning (DTL) was hypothesized by Bengio in 2013 [16]. DTL 

attempts to identify transferable features in DNN and copy them to another DNN to improve 

performance and accuracy. The earlier attempt towards feature transfer between DNNs is 

attempted by Yosinski [54]. This approach investigates on identifying layer(s) where 

generalization is occurring. In this approach, two Constitutional Neural Network (CoNN1, 

CoNN2) are trained on two equally divided parts of ImageNet dataset. Then, the weight vectors 

of CoNN1 and CoNN2 are copied to a new network CoNN3 and CoNN4 three layers at a time 

while randomly selecting the weights of the other layers. After several experiments, Yosinski 

concluded that generalization was occurring in the first two layers of the CoNN. The 

transferable features exist only in the first two layers of a DNN for same dataset. However, 

these results were only repeatable when experiments were conducted on similar datasets 

(dataset with similar structure of ImageNet) which raise questions about the existence of 

transferable features only in the first three layers.  

 

The second notable implementations is the classification of the upper case Latin characters 

using an ANN that is trained on Chinese characters [64]. In an another approach presented in 

2014, ImageNet dataset is used for classification of images which concludes that first three 

layers consists of more generic features that can be transferred to another DNN for image 
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classification problems [54]. The most recent work by Terekhov uses an alternate approach in 

which a block of weights are introduced between a trained DNN to obtain a set of weights that 

are optimized with the values between the layers [206]. The new DNN is trained after 

introducing this set of blocks between the layers which reduces the training time. The 

approaches mentioned above depend on transferring a set of layers (weights) from one DNN 

to another. Further, there was no clear indication on what knowledge is being transferred. The 

first two approaches transfer a set of layers that are identified by comparing classification 

accuracy by freezing the weights of two to three layers at a time on a trial and error basis.  

 

A transductive transference approach was proposed to implement transfer learning by reusing 

extracted features [208]. A transductive learning approach examines and learns from the 

training on a specific task on the same dataset. So, in the case of source and target with different 

distributions, a transductive transference approach improves the classification results by 

transferring exploited labelled training instances from trained network to an untrained network. 

Experiments for detecting Latin digits using the weights obtained from a DNN trained on 

Arabic digits dataset has improved performance and accuracy of the classifier in detecting 

Latin digits. However, the place or layer where the generalisation is occurring is still unknown.  

 

The Deep Adaptation Network (DAN) architecture is the first attempt for exploring the process 

of DNN learning and the generalization of deep CNNs [57]. DAN generalises CNNs towards 

domain adaptation state where task specific features are identified and transferred. DAN also 

confirms that generic features are transferable, whereas task specific features need to be 

tailored before transferring to solve a different task.  

 

The efficiency of CNNs for image classification has motivated many researchers to work on 

transfer learning using CNNs which attained a considerable success rate [63, 209, 210]. 

However, these approaches using CNN are limited to image classification and their methods 

of transfer learning is mainly parameter based and confined to small datasets. For instance, the 

work by Wang et al. on crop yield prediction using remote sensing images of soya crops in 

Argentina was quite successful [211]. They used the same parameters to train a different 

network with a small amount of data consisting of remote sensing images of a Brazilian crop. 

Although this attempt was able to produce good results, it is simply copying of parameters and 

hand-crafting input features. For these types of implementations, there is a high chance of 

failure when small but variant changes are made to the input data.  
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For DBNs, an interesting transfer learning approach called Growing DBN with transfer 

learning (GDBN-TL) was proposed [212]. In this, the DBN initially has only one layer and is 

trained to learn the features. Then the weight parameters are frozen, and an additional layer is 

added which will be with the parameters copied from the frozen layer. This process continues 

for a considerable amount of time. This is further followed by another round of top to bottom 

layer-wise training. In the work on GDBN-TL, the authors claim to have reduced training time 

considerably by transferring (or perhaps copying?) knowledge and parameters in a process they 

call instantaneous transfer [212]. However, this is similar to the previously mentioned CNN 

works. Another interesting work uses DBN transfer learning for speech classification 

pertaining to emotion or sentiment recognition [213]. The DBN is trained on one/two language 

datasets and tested on the rest of the datasets. The authors claim to achieve good accuracies for 

five different datasets comprised of three languages, namely German, Italian, and English with 

the DBN trained only in German and English. The comparison of accuracy is with autoencoder 

networks and the DBN has only three layers out of which two layers are transferred (copied) 

which makes the results questionable.   

 

Transfer learning scenario of DAE is similar to the transfer learning principle of CNN / DBN 

and has been successful in improving efficiency and accuracy of the classifier [214, 215]. A 

knowledge transfer approach using DAE for hierarchical data was proposed which attempts to 

transfer the knowledge attained by a DAE to another DAE that has already been partially 

trained. The first DAE was trained on a good dataset (uncorrupted) to achieve maximum 

accuracy. The second DAE was trained on a distorted dataset with which it could achieve a 

maximum of 56.7% accuracy out of possible 80% accuracy which is achieved with uncorrupted 

dataset. When the weights of first DAE are transferred to the second DAE and tested on the 

same corrupted dataset, there was an improvement of about 22% in accuracy (from 56.7% to 

79.6%). This approach not only proves the efficiency of transfer of knowledge but provides 

important information about knowledge attained by DAE [56]. When a DAE is trained with a 

good dataset, it learns the features in such a way that it could re-construct the features 

accurately in spite of missing values in the damaged test dataset.  

2.9. Transfer Learning and Knowledge Transfer  

Transfer learning and knowledge transfer are equivocally presented in the literature creating 

some uncertainty on a profound definition. Knowledge transfer is a part of transfer learning 
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but, it is not ‘the only’ part. Transfer learning is definitively presented in the literature as 

transferring knowledge attained by one system to another untrained or dumb system resulting 

in reducing the training time or improving the performance or sometimes both [55]. However, 

there is a conceptual mismatch with these definitions as industrial requirements often demand 

a variety of practical practices. Considering some cases, transfer of parameter value may be 

enough to produce sufficient classification or required efficiency. In some cases, the execution 

time is important and the decision making can be achieved with minimum results. For instance, 

identifying a single negative result among multiple results may not require the entire execution 

mechanism.  

 

Considering conceptual confusion and contradicting definitions, this research proposes a 

categorisation of transfer learning based on what is been transferred.  The types of transfer 

learning proposed in this thesis are as follows. 

  

1) Transferring only parameters.  

2) Transferring only neural network weights (layers) and choose other parameters 

arbitrarily. 

3) Transferring both parameters and weights.  

4) Transferring some parameters and/or weights based on the problem. 

 

The key issue with the mainstream literature is lack of clarity and consensus on what exactly 

knowledge is. The question of what is to be transferred and what is sufficient to produce desired 

results also needs to be answered. There are some works in literature which are purely based 

on transferring only weights (hidden nodes/layers) to improve efficiency, whereas other 

approaches are based on copying parameter values. To attain some clarity, it is necessary to 

pursue an investigation as to how knowledge is represented and what needs to be transferred 

as knowledge.    

2.10. Research Gap 

From the literature, it is evident that learning representations is significant and contributes to 

the success of deep learning. However, majority of the research concentrates on optimising the 

learning algorithm to achieve higher accuracies. In spite of a clear knowledge of learning 

algorithms and advantages of learning features, there is, to my knowledge, no notable work on 

exploring the underlying representations in the weights. The majority of the ANN and now 
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DNN research is confined to optimising learning by introducing new training algorithms and 

parameters which are problem specific.  

 

The ambiguity of transfer learning and knowledge transfer has been a point of discussion that 

appears throughout the related literature and is one aspect that needs to be resolved and studied.   

 

From a comprehensive review of the known literature undertaken as part of this research, the 

unexplored research areas highlighted in Section 2.8.1 are identified. 

2.10.1. Research Gap in line with the Research Problem 

• The relationship between input features and neural network topology has not been 

explored to the extent of studying the impact of addition or deletion of layers. 

• There is an absence of empirical study on extracting the underlying representations in 

neural network weights that can be mapped to input features; i.e., how changes in the 

input features are reflected in neural network weights.  

• There is a lack of a systematic approach to explore how features are represented in 

weights which are simple numeric values.  

• Research is lacking on the influence of topology, their limitations and boundaries while 

designing a neural network. 

• There is no reflective research on the importance of a layer in a deep neural network 

and its influence on overall accuracy.  

• Transfer learning is merely transferring weights with no true information of what is 

been transferred.  

• The absence of a transferable neural network model (statistical or mathematical) which 

established the knowledge in the form of a feature or group of features.  

2.11. Chapter Summary 

This chapter’s contribution can be summarised as follows: 

o Feature processing involves feature construction, selection and extraction out of which 

feature extraction is attributed to knowledge extraction and there are limited works in 

the literature on feature extraction using artificial neural networks. 

o Deep learning is the process of learning underlying representations that exists in input 

features through neural networks weights.  
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o The underlying representation in the neural network weights constitute knowledge that 

is acquired by deep architectures through deep learning.   

o The transfer learning approaches existing in the explored literature are just copying of 

layers without knowing what exactly is getting transferred  

o There is no known work on a systematic approach or mathematical model for transfer 

of knowledge 

 

The next chapter presents a preliminary investigation into these questions and attempts to 

identify the existence of knowledge in a DNN followed by some initial experiments on 

feature extraction and transfer learning. 
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Chapter 3 Preliminary Investigation 
 

3.1. INTRODUCTION .............................................................................................................  
3.2. INITIAL HYPOTHESIS .....................................................................................................  
3.3. RELATIONSHIP BETWEEN INPUT REPRESENTATIONS AND DNN TOPOLOGY ..................  
3.4. IDENTIFYING THE IMPORTANCE OF LAYERS ..................................................................  
3.5. TRANSFERRING WEIGHTS BETWEEN TWO DNNS ...........................................................  
3.6. FEATURE EXTRACTION AND TRANSFER LEARNING ........................................................  
3.7. DNN OPTIMISATION BY REDUCING NUMBER OF LAYERS ...............................................  
3.8. DISCUSSION ..................................................................................................................  
3.9. CHAPTER SUMMARY .....................................................................................................  

 

3.1. Introduction 

The current neural network research concentrates predominantly on how to optimise topology 

and other parameters for problem solving. The literature review presented in the previous 

chapter provides an insight into the neural network research pertaining to the optimisation as 

well as feature learning. There is very limited research on the impact of modifying topology, 

particularly adding or removing layers. Problem specific neural network models are also 

designed based on trial and error, thus, provide a very little knowledge on why a topology with 

a particular number of layers is able to produce better results.  

 

It is evident that each and every layer of ANN model is important, and has some influence on 

the overall efficiency and accuracy of the ANN. The impact may be positive or negative which 

can be related to the improving or reducing accuracy when a layer is added or removed. By 

removing or adding layers it should be possible to determine which layer is significant and has 

the highest impact on the outcome of the ANN. The conjecture that is presented in this thesis 

that a particular layer is more significant than other layers, will provide an insight into the 

existence of significant knowledge in a particular layer or layer(s).  

 

This chapter proposes the initial hypothesis towards attaining the research goal and investigates 

its feasibility through a systematic experimental evaluation. The research feasibility is studied 

by exploring the following aspects:  
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• Impact of adding and removing layers at various positions  

• Importance and influence of middle layer  

• Impact of a position of a layer on accuracy and efficiency 

 

There are five sets of experiments carried out in this section. Firstly, the relationship between 

input features and neural network weights are investigated followed by a second set of 

experiments to know the importance of a layer by exploring layers for transferable knowledge. 

A set of transfer of layers experiments is carried using different scenarios to investigate the 

impact of transferring weights (layers) from a trained DNN to an untrained DNN.  

Feature extracting and transfer learning experiments are carried out to demonstrate the transfer 

of knowledge and its impact on efficiency of neural networks. Finally, DNN optimisation 

experiments are carried out using knowledge components and a newly proposed concept called 

Weights of Weights (WofW). 

 

3.2. Initial Hypothesis  

 

“The middle layer(s) of a deep neural network is significant and has highest impact on the 

accuracy of the neural network. “ 

 

H1-1: The weights extracted from middle layers are significant. 

H1-2: The weights extracted from the layers near input are overlapping and contribute less 

to classification 

3.2.1. Evaluations:  

Hypothesis is evaluated using Synthetic Hierarchical Dataset, CIFAR, TIMIT and MNIST 

datasets. The experiments are carried out in two different scenarios.  

Scenario 1: 

Firstly, a set of layers are removed, and classification accuracy is compared to the best accuracy 

to test the importance of layers. This is followed by a transfer learning scenario to test the 

classification accuracy when the weights from a particular set of layers are transferred.  

Scenario 2: 

For each layer, the relationship between features and weights is evaluated in each layer by 

adding and removing features one at a time. 
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The hypothesis states that when trained, a DNN tries to learn the representations in the input 

from the first layer and while reaching the middle layer, the weights are optimised in such a 

way that the middle layer possesses the knowledge of all the features in the form of neural 

network weights. From the middle layer, the features start getting unfolded towards being 

problem-specific or class-specific high-level features by the time they reach the last layer of 

the DNN. In other words, the middle layer acquires the information through training and holds 

significant knowledge in the form of underlying representations which will pass through the 

rest of the network constructing problem specific (class based) high-level features.   

 

The null hypothesis in this case is to provide sufficient evidence that the accuracy of neural 

network is least impacted when the middle layer is removed when compared to other layers of 

the neural network.  

 

3.2.2. Experiments & Evaluation 

The initiative to test the proposed Blossom Effect is to investigate the importance of an 

individual layer based on its position. Another consequence of this hypothesis is that the middle 

layer(s) should contain significant knowledge that is attributed to the success of the neural 

networks. The objective of this chapter is to study the influence of a layer on the accuracy of 

the neural network. This, in theory, will help in knowing the importance of a layer which in 

turn provide an explanation of the impact of inclusion and exclusion of a layer(s) on 

classification accuracy.  

 

A systematic experimental process is adopted to provide an evidence on the importance of 

middle layer. To start with, a set of experiments is carried out to examine the capability of 

neural networks to learn hierarchical features. This is followed by testing the impact of having 

equal number of nodes in all the hidden layers on the classification accuracy for hierarchical 

dataset.  

 

This is followed by identifying the importance of a middle layer and its impact on accuracy 

through experiments based on multiple strategies. Experiments are carried out by removing 

layers from different positions of a trained neural network and testing the accuracy without re-

training. The chapter also tries to establish the importance of middle layer through transfer 
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learning experiments i.e., transferring the weights of middle layer to different layers of an 

untrained neural network.  

3.2.3. Expected Outcomes 

The experiment results will provide: 

 

1) The impact of removing a layer from different positions  

2) The importance of middle layer(s) 

3) The impact on accuracy when a middle layer is transferred to various positions 

 

3.3. Relationship between Input Representations and DNN Topology 

The main purpose of this experiment is to discover the relationship between topological 

hierarchies of layers in a DNN (DNN hierarchies) and the hierarchies in the input features 

called Features Hierarchies (FHs), if any. It is not clear whether modelling FHs with a 

hierarchically organised DNN conveys has any benefit over using non-hierarchical neural 

networks. It is also not clear whether the representation of the input reflects exactly in the 

topology. 

 

Taxonomy based datasets are available with biological hierarchies as benchmark for various 

bioinformatics algorithms. However, it is not practical to use them in this preliminary 

investigation due to their size and complexity.  

 

To overcome this, a biological synthetic dataset is constructed using representation with known 

FHs. Connectionist methods of data representation can be categorized into two types: Localist 

and Distributed. In localist representation, each unit is associated with a single feature or 

concept and each concept is represented by one and only one unit [216]. Localist representation 

is simple to use and easy to code but not feasible for a component, structure-based data such 

as FHs. In distributed representations, a single concept is represented by a combination of 

multiple units and each unit can be a part of multiple concepts [216]. For instance, if an 

organism has a subset of 3 features, there is possibility that one of these features may also be 

present in another organism. An organism possesses a lineage based on features which form 

the hierarchy of that organism and distributed representations are suitable for representing such 

taxonomic (hierarchical) data. It is noteworthy to observe that in a distributed representation, 
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an isolated or independent unit has no meaning by itself, and it is valued only when it is in a 

group. With binary encoding and distributed representation, n neurons can produce 2n patterns 

with which small number of units can represented huge amounts of data.  

 

A localist representation represents a single feature or concept on its own, such as an organism 

having backbone, hair, and other unique features which determines the uniqueness of the 

organism. If the organism has multiple features that are represented as 8 localist bits, each bit 

will indicate either the presence or the absence of a concept or feature. For instance, an 

organism that has a backbone is coded as C1 with last bit as 1 and is represented as 0 0 0 0 0 0 

0 1. Similarly, other features may be represented as shown in Figure 1-1 (a). The remaining 

bits of a localist representation can be used to identify individual organisms. 

 

 
 (a) Localist representation                                               (b) Organism: Multiple features 

Figure 3-1: Representations: (a) Localist representation of features where each feature is 
represented by 8 bits. (b) Representation of organisms: Every organism is comprised of    
multiple features.  

 

FHs classification of organisms into taxa is based on the features they possess. Since each 

feature of an organism is represented in bits, organisms with multiple features are represented 

in localist form as a combination of binary bits. For instance, the organism O1 has backbone 

and hair which are C1 - 00000001 and C2 - 00000010 as presented in Figure 3-1 (a). Therefore, 

the features of the organism O1 are represented as 00000011 with combined features as shown 

in Figure 3-1 (b). Similarly, the organism O2 has backbone, hands and feet, and hair on the 

hands (C1, C3 and C4) which is represented as 00001101. This pattern of features of the 

organism determines its sub-group. 

 

Hierarchical data can be defined as data units with hierarchy-based interrelation among them. 

A taxonomic dataset is taxa-based data with FHs to represent organisms organized by species 

for easy and efficient management of data as well as retrieval. The hierarchical tree is 
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constructed from a synthetic dataset of organisms. An organism is represented as a stream of 

binary data of 20 bits categorized into Rank (4 bits), Group (4 bits), Subgroup (4 bits) and 

features (8 bits) as shown in Figure 3-2. The taxonomic Rank is determined by the shared 

features, Group, and Subgroup making this a hierarchical representation. The cophenetic 

correlation coefficient is useful to realise the efficiency of hierarchical structure based on the  

similarity between two values obtained by calculating the distance between a pair of 

unmodeled data within a dendrogram [217]. The typical value for the cophenetic correlation 

coefficient is around 0.8 with values above 0.95 considered as more efficient [218]. The 

cophenetic correlation coefficient for this data is 0.9934. This value highlights that the dataset 

created using synthetic data is efficiently structured with considerable accuracy. 

 

 
Figure 3-2: Binary representation of organism with 20 bits in distributed format with 4 bits 
each for rank, group and sub-group and 8 bits for features 

 

The main purpose of this set of experiments is to examine the learning capability of DNNs for 

hierarchical data with known feature hierarchies, as the first step towards identifying the 

plausibility of this research. The aspect of presence of knowledge and its identity in the DNN 

weights is based on input, and its representation will help in exploring the relationship between 

input features and their representation in DNNs weights. A set of experiments are designed 

aimed at extracting information and developing a new direction in the research to realise the 

importance of the input, weights and DNN topology. 

 

There are 90 organisms in the synthetic dataset categorised into six different species. For all 

experiments, the dataset is divided randomly with the first 60% for training, the next 10% for 

calibration/validation and the remaining 30% for testing. After some initial trials to identify 

appropriate parameters, the initial learning rate was determined as 0.01 with a step-ratio 



 

 69 

(incremental learning step size) of 0.001 and a momentum of 0.3. To reduce the complexity 

and irregularity which may be caused by large weights and weight-decay, a simple penalty 

function is introduced to penalize large weights. Weight-decay is calculated as the half of the 

sum of squared weights times a coefficient termed as weight-cost which is 0.0002 for this 

experiment (a typical starting value for weight-cost is 0.0001). The objective function for the 

experiments is ‘Cross Entropy.’ Each experiment was performed 10 times with 100 epochs, 

different weight initialisations and the results are averaged. 

 

This experimental study is divided into two categories. In Experiment I, a DNN is trained to 

classify the species depending on the features. In the second experiment (Experiment II), a 

second set of data is used to identify whether any two given organisms are related (belong to 

same species) or not. Four different types of strategies are adopted for each experiment. 

 

Table 3-1: Results of Experiment I: Percentage of accuracies of training, validation and 
testing using four strategies along with the rmse values for training. 

No. Hidden layers Train Validation Test Total Avg. Train 
rmse 

1A 3 (30,30,30) 100% 100% 100% 100% 0.023 

1B 3 (30,40,50) 100% 100% 81.5% 94.4% 0.021 

1C 4 (30,30,30,30) 100% 100% 92.6% 97.8% 0.0499 

1D 4 (30,40,50,60) 13% 55.6% 14.8% 17.8% 0.0448 
 

To start with, the number of hidden nodes is chosen as 30 which is 1.5 times the number of 

inputs (nodes). There can be three types of scenarios for selecting hidden nodes, same number 

as number of inputs, double the number of inputs or any other number. The main reason for 

selecting 30 is that it comes in between the two options of same and doubled number of inputs. 

If the number of hidden nodes is doubled at the first hidden layer, there might be a possibility 

of dilution of features at the first stage which could affect the intended experiments.  

 

For scenario A and B, a DNN with hidden nodes 30, 30, 30 and 30, 40, 50 is used whereas for 

C and D, a DNN with hidden nodes 30,30,30,30 and 30,40,50,60 is used. This scenario is 

designed to help determine the influence of symmetric (same number of nodes in all the layers) 

and asymmetric node count. For Experiment I, 20 inputs representing the 20 bits of the 
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organism are used with six separate outputs for determining the species of the organism and 

the results obtained are presented as Table 3-1. Experiment 1A, in which the hidden nodes are 

30, 30, 30, shows 100% results for training, validation and testing. When the number of nodes 

in the hidden layers was changed to 30, 40, 50, there was a variation in the classification 

accuracy with testing dataset which is 81.5% constituting the overall results as 94.4% as shown 

in Table 3-1. However, when the depth of the DNN was increased to four, the confusion matrix 

showed little variation compared to DNN topology with a depth of three, whereas the results 

of the experiment with different number of hidden nodes (1D) showed a considerable reduction 

in the accuracy rate with 17.8% as an overall percentage. Inspection of the confusion matrix 

reveals that classification error has occurred for species 5 with three of class 5 being classified 

as class 4 due to similarity in majority of their features. 

 

The performance difference (Total) between experiment 1A and 1C is 2.2% in the favour of 

1A. However, the difference between 1B and 1D is 76.6% in favour of 1C. On the other hand, 

if analysed, the impact of the same number of nodes and different number of nodes with same 

number of layers, the difference between 1A and 1B is 5.6% in favour of 1A and 1C and 1D is 

80% in favour of 1C.  

 

The second set of experiments (Experiment II) were carried out to identify whether two 

organisms are related or not. For example, the tiger is related to cat as they belong to the same 

species whereas a rat which belongs to different species is not related to cat as defined in our 

synthetic data. The input, in this case, is a 40-bit binary number vector fed to the network (20 

each for two organisms) resulting in either ‘0’ for not related or ‘1’ if related. 60 data samples, 

(10 from each species) are used for this experiment, and the results are shown in Table 3-2. 

 

Table 3-2: Results of Experiments - II:  Training, validation and testing accuracies along 
avg. rmse for the experiments to identify whether the two input  organisms are related or not. 

No. Hidden layers Train Validation Test Total Avg. Train rmse 

2A 3 (30,30,30) 100% 100% 88.9% 96.7% 0.0491 

2B 3 (30,40,50) 100% 100% 100% 100% 0.0027 

2C 4 (30,30,30,30) 100% 100% 83.3% 95.0% 0.0497 

2D 4 (30,40,50,60) 100% 100% 93.4% 98.3% 0.0428 
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In summary, better results for Experiment I are achieved when each layer in the topology has 

the same number of hidden nodes whereas in Experiment II better results are achieved for the 

topology in which each hidden layer has a different and incrementally increasing number of 

hidden nodes.  

 

The difference between overall accuracy for the experiments, in Experiment II, with three 

hidden layers namely experiments 2A vs. 2B, is 3.3% in favour of 2B. In the case of 

experiments with four hidden layers, experiment 2D is 3.3% more accurate than 2C. When the 

performance difference is analysed in terms of depth, the topology with three hidden layers 

(2A and 2B) had better performance than the 4-layered topologies (2C and 2D) with an average 

difference of 5.6% and 6.4% respectively. 

 

A taxonomic FH with associated data was generated, and a DNN was trained to classify the 

organisms into various species depending on their characteristic features. The ability of DNNs 

to identify whether or not two given organisms are related (depending on the sharing of 

appropriate features in their FHs) was then tested. The experimental results showed that the 

accuracy of the classification is reduced with an increase in ‘depth’ of the topology. 

Additionally, improved performance was achieved when every hidden layer had the same 

number of nodes (symmetric) compared to the strategy where hidden nodes are increased as 

they progress towards the middle layer. These experiments show that the relationship between 

DNNs and FHs is not simple and may require further extensive experimental research to 

identify the best DNN architectures when learning FHs. With the experiment results published 

in [29], it is concluded that, all the representations are present in all the weights and vice versa.  

 

The conclusion is based on the evaluation of these specific tests on hierarchical dataset which 

are performed for the first time to test whether the DNN is able to classify and identify the 

ancestry based on hierarchical features presented in distributed representations [29].  

3.4. Identifying the Importance of Layers 

Identifying the importance of a layer to find its impact on an overall accuracy of the neural 

networks is one of the crucial aspects of neural network research which, to my knowledge, has 

yet to be investigated. Examining the impact of various layers will provide an insight into the 
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research of the impact of changing the number of layers in DNN. Further, this will help to 

identify important knowledge hubs, those layers that influence efficiency and accuracy the 

most, among various layers of topology. Considering the importance of this section, the 

experiments are carried out with three different and versatile datasets namely MNIST, IRIS 

and the synthetic dataset that was created and employed in the experiments reported in the 

previous section. The IRIS dataset [219] allows for the classification of flowers of three 

different species and contains 150 samples. The MNIST dataset [220] is a character recognition 

dataset with 60,000 training and 10,000 testing images (see Chapter 6 for a full description of 

these widely used datasets). 

 

The experiments were carried out using MATLAB, Weka and the Microsoft.NET framework 

to investigate if there are any software bound limitations particularly considering the random 

initialisation of weights. For all experiments, the data sets were divided for testing and training 

to ensure that the testing data was not exposed at the time of DNN training. 

 

 
Figure 3-3: Architecture of initial 7-layered neural network. Each bar represents a layer in the 
network. Encoding a bar as green means that the weights in that layer are frozen (fixed). Thus, 
in the architecture in this figure all layers in the network have frozen weights. 

 

To examine the impact of individual layers and their contribution (individually) towards overall 

accuracy and performance, the following three experiments are carried out. Firstly, 

classification experiments are carried out using above mentioned datasets with a 7-layered 

DNN with the weights of all the trained layers frozen to changes. Each experiment is carried 

out in ten tests with 25 runs per batch. From these experiments, three results are selected from 

highest to the least accuracies as follows: (TBest (DNNB)), 2nd best TSBest (DNNSB) and TWorst 

(DNNW). Figure 3-3 presents the structure of DNN that achieved TSBest results. These results 

are used to carry out two more experiments as detailed below.  



 

 73 

3.4.1. Freezing Weights of DNN one Layer at a time:  

To investigate the influence of each layer, classification experiments are then carried out with 

the original results TBest (DNNB), freezing the weights one-layer at a time. In the first run, 

weights of the layer-1 are frozen so that they cannot change and other weights are allowed to 

initialize with random values as per the regular practice as shown in Figure 3-4 (top). For the 

second run of experiments, the second layer weights are frozen (Figure 3-4 (middle)), and 

weights of the other layers are initialized with random values. This process is carried out for 

all the layers one-layer at a time which as illustrated in Figure 3-4. For now, there is no 

conclusive evidence on weights being ordered differently for different layers but the impact of 

freezing a layer could be assessed by the experiment results.  

 

 
Figure 3-4: Illustration of the importance of layers experimental setup: Weight initialization 
with freezing of the weights of various layers, one layer at a time. The weights in the chosen 
layer are adopted from a trained network and all other (unfrozen) layers are loaded with random 
weights. 

 

The scenarios where weights in the middle layer (L4) are frozen have produced better accuracy 

when compared to freezing any one of the other layers (see Table 3-3). In other words, the 
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trained middle layer is able to produce better results, in spite of weights of the other layers 

being randomly initialised.  

 

 It is noteworthy to observe an increase in the accuracy when weights of layer seven (L7) are 

frozen. This rise in accuracy is attributed to the fact that weights in L7 obtained from the 

TBest(DNNB) experiment have become too specific to the task. However, the overall accuracy 

is still less than the accuracy obtained with middle layer strategy.  

 

 
Figure 3-5: A comparison of classification accuracies on the synthetic dataset: The original 
classification accuracy is compared to the accuracies achieved when layers are frozen (previous 
experiment) one layer at a time. The highest (closest) accuracy to the original value is achieved 
when the middle layer weights are frozen. The experiment results are presented in Table 3-3. 

The experiment was repeated with TSBest (DNNSB) and TWorst (DNNW) weights, freezing the 

middle layer strategy, had the highest impact on the classification accuracy once again.  

To test the effect of the middle layer further, a weight value of ‘zero’ is randomly assigned to 

selected weights for every layer, one-layer at a time. From the results of this experiment, it has 

been concluded that the weights in the middle-layer are more sensitive and have highest impact 

on the classification accuracy. 
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Table 3-3: Experiment results:  classification accuracies on synthetic datasets. The original 
classification results against results when weights are frozen, one layer at a type. 

Layers 
No 

Results 
(Layer -wise) 

T-Test  Original 
Results 

T-Test 

1 92.1 0.011 

 
97.6 

 
0.0192 

2 93.9 0.031 
3 94.2 0.054 
4 96.2 0.021 
5 93.1 0.05 
6 92.38 0.012 
7 93.9 0.091 

 

 

Similar results have been obtained for IRIS and Synthetic datasets with both the strategies. 

Each experiment is carried out 30 times, and the average classification accuracy is measured 

using TBest (DNNB). A comparison of classification accuracies between original value, and the 

layer-wise experiments are presented in Appendix J. The results are the averages of accuracies 

for all three datasets. The results further reiterate the importance of middle layer(s) irrespective 

of dataset used for the experiments.  

3.4.2. Experiments with One-layered DNN:  

As a result of the previous experiments, it is evident that some significant patterns are formed 

in the middle layer, the weights in the middle layer are comparatively more sensitive to changes 

and has significant impact on the accuracy of neural network than those in the other layers. A 

set of experiments are conducted that involve splitting of the 7-layered DNN into individual 

ANNs (seven ANNs, each consisting of one layer). The purpose of the experiment is to know 

which layer produces the highest accuracy among the seven layers. The layer that achieves 

highest accuracy could arguably be acknowledged as the most ‘learnt’ layer or layer that 

possesses ‘better knowledge’ when compared to the other layers in the network. This strategy 

is pictorially represented in Figure 3-6 (a). For each experiment, the classification accuracy is 

recorded, and the results are presented in Figure 3-6 (b). 

 

From the experimental results it was observed that better accuracy is achieved for the ANN 

with middle layer weights of DNN. 
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    (a) Experiment Design                                       (b) Classification Results 

Figure 3-6: (a) A one-layered ANN constructed by extracting individual layers from a 
trained DNN (b) A comparison of classification accuracies with original (random), best 
(TBest), worst (TWorst) and with one-layered ANN (Layer-Wise). 

 

3.4.3. Removing One-layer at a time:  

The purpose of this experiment is to study the impact of classification accuracy on a trained 

DNN when an individual layer is removed. The same trained DNN from the previous 

experiment is used for this experiment without any retraining. The strategy of removing the 

middle layer is shown in Figure 3-7 where the removed layer is indicated in red. It was found 

that the classification accuracy is considerably reduced when middle layer was removed.  

 
Figure 3-7: Experiment strategy where middle layer is removed from a trained DNN. The 
reduction in the classification accuracy when the middle layer is removed is far higher 
compared to the accuracy when any other layer is removed. 
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The reduction in accuracy was higher than for the removal of any other layer in the DNN. This 

reiterates the importance of the middle layer in a DNN. 

3.5. Transferring Weights between two DNNs 

The experiment results presented in the previous section suggest that there is a significant 

impact on the classification accuracy (positive or negative) when middle layer is manipulated. 

The first set of experiments where a layer’s weights are frozen suggest that there is high 

contribution of middle layer weights to the overall accuracy compared to the other layers. Also, 

when the middle layer is removed, the classification accuracy is significantly reduced 

compared to the removal of other layers. The implications on classification accuracy is 

significant and has highest impact on the accuracy of DNN when the middle layer is removed. 

Considering the validation of the impact of middle layer, this section presents a set of   

experiments related to knowledge transfer between two DNNs to further investigate whether 

the weights in the middle layer actually contain any transferable ’knowledge’. To test this, a 

set of experiments are designed in which weights are transferred from one DNN to another 

DNN, one layer at a time, freezing all other layer weights to their original values (those 

obtained via the 7-layered DNN with no layer weights frozen). The details of various 

experiments and the results are reported in the following subsections. 

3.5.1. Experiments with same number of layers:  

For this set of experiment, the best (DNNB) and worst (DNNW) performing DNNs from the 

earlier experiments on MNIST dataset were used. 

 
Figure 3-8: Representation of Best (DNNB) and Worst (DNNW) performing DNNs.  The DNN 
with best and worst accuracies are shown in green and red respectively 
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In Figure 3-8, the best performing DNNB with weights TBest is represented in green whereas 

red represents the DNN with worst performance i.e., DNNW with weights TWorst. The weight 

values of the layer are transferred as it is, i.e., without any retraining. 

 

The first set of experiments are carried out by replacing the weights of DNNB with DNNW 

weights, one layer at a time leaving all other layers as they are. Figure 3-9 represents this 

transferring strategy forming new DNN called DNNBW for each layer. The experimental results 

show that DNNBW has better accuracy (average 93.2%) and performance than the original 

DNNW (90.1%). Furthermore, when the middle layer of the best performing DNNB is 

transferred to DNNW, there is a considerable improvement seen in classification accuracy and 

performance when compared to accuracy values (presented below in Figure 3-9 and Figure 

3-11) from the results of original experiments carried out with random weights. 

 

 
Figure 3-10: Transfer of weights (one layer) from the DNN with best classification accuracy 
(DNNB) to the DNN with worst accuracy (DNNW). The green bar indicates the layer selected 
from the DNN with the best classification accuracy (DNNB).   
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The second set of experiments were conducted, with the opposite strategy, where the weights 

of DNNW are replaced with those from DNNB, one layer at a time. The results showed that there 

was a notable reduction in classification accuracy and execution time when the middle layer 

weights of DNNB are transferred to the middle layer of DNNW. Similar results are observed for 

the IRIS and Synthetic datasets. A comparison of classification accuracy and execution time is 

shown in Figure 3-10 and Figure 3-11 respectively. The detailed experiment results can be 

found in Appendix J. 

 

 

 
Figure 3-11: Classification accuracy for the three different datasets when the middle layer 
weights are transferred into an untrained DNNB network. Red indicates the accuracy with 
regular (random) weights and green indicates the accuracy when middle layer weights are 
replaced with weights from the trained DNNW middle layer.  

 

 
Figure 3-12: Execution time for the three different datasets when the middle layer (L4) weights 
are transferred into an untrained DNNW network. MINST (red) indicates the accuracy with 
regular weights and MNIST(M) green shows the accuracy when the middle layer weights are 
replaced with weights from the trained DNNB (middle layer). 
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3.5.2. Experiments with different number of layers:  

This experiment was conducted to investigate the topology based influence, i.e., number of 

hidden layers. A 7-layered DNN is used as the source from which the middle layer is transferred 

to  5-layered and  9-layered DNNs one at a time. The experiment scenario is presented in 

Figure 3-12 and the results are shown in Table 3-4. Classification accuracies are measured 

before (without training) and after transfer. It was found that there is a considerably 

improvement in the classification accuracy of both the 5-layered and 9-layered DNNs after 

performing the transfer of weights.  

 

 

 
Figure 3-13: Transfer of weights strategy, from a 7-layer DNN, applied to a shallower (5-
layer) and a deeper (9-layer) DNN. 

 

Table 3-4: Experiment results for transfer of weights between different topologies. The 
classification results for 7-layered topology DNN after training is 98.5% for IRIS, 96.4% for 
MNIST and 98.3% for Synthetic dataset. The detailed statistics are presented in Appendix J3. 

Topology 

Classification Accuracies (%) 
IRIS MNIST Synthetic 

No 
training Transferred Random Transferred Random Transferred 

5-layered 51.2 76.5 33.5 80.2 44.6 85.2 
9-layered 43.5 7.1.2 45.3 76.8 57.4 79.7 

 

3.6. Feature Extraction and Transfer learning  

This section presents various experiments designed to demonstrate the transfer of features 

through transfer of weights. The experiments are carried out using variety of datasets such as 

speaker identification [221], and a biological taxa-based synthetic dataset [29]. The 

experiments in this chapter are used to evaluate the feature learning capability of deep 
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architectures. The results of these experiments can be used to support the conjecture proposed 

in this thesis, that knowledge in a DNN exists in the form of representations in synaptic 

weights. The results also add further support to the theory that weights are transferable, and 

when transferred, they can provide a warm start, thus reducing the execution (training or 

testing)  time of a DNN without negatively affecting the accuracy. 

3.6.1. Feature Extraction for Speaker Identification 

Speaker Recognition (SR) is the process of recognizing words or statements uttered. 

Automating this process, usually with AI techniques, is called Automatic Speaker Recognition 

(ASR). In terms of ML, SR is considered to be a pattern recognition problem. Speaker 

Identification (SID) is another NLP technique similar to SR but with a different objective. 

SID’s objective is to identify a speaker based on their voice prints by comparing the voice 

profile of the speaker against existing profiles of various speakers [24]. SID systems have 

various applications such as user authorization (voiced password), personalized assistant, 

automatic mail direction, and many more. 

 

The process of SID involves extracting and identifying unique characteristics of speech 

features from a group of speakers; hence, it is important to select the most efficient feature 

extraction approaches that best represent the speech features. One of the most complex aspects 

of feature extraction for SR is when the input utterances are infected with noise [38]. In layer-

wise training, each layer of a DNN extracts features at different levels (hierarchically). A deep 

architecture is a hierarchical structure of multiple layers with each layer being self-trained to 

learn from the output of its preceding layer. 

 

Deep learning algorithms were applied for hierarchical feature extraction to overcome the 

problem of noise in the utterance audio [13] and were found to be effective in improving SR 

performance [27, 21, 7]. Deep learning has been successful in various applications involving 

feature extraction for analysis and comparison [16, 35, 22, 12, 2]. The importance of feature 

extraction is well defined and implemented with DNNs. This makes it important to explore the 

various implementations of deep learning for SID. 

 

Using DNNs to extract features from acoustic speech signals was initially proposed in 2014 

[32]. This approach used a DNN to extract features instead of regular models for representing 
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voice frames (similar to an i-vector based approach). This DNN approach used a supervised 

training method instead of training with a CNN. 

 

A DNN’s topology is designed with each layer working at the acoustic frame level. Each frame 

of speaker’s voice input is fed to this DNN and the output activation values of the last layer is 

accumulated as a representation of that particular speaker. This representation of a speaker is 

called a d-vector. Usually, DNN uses a Softmax (supervised) layer for output. In this approach, 

the output from the last layer is employed instead of a regular Softmax layer. Removing the 

need for an output layer enables the DDN’s the size to be reduced by one layer. This might 

seem small, but the reduction in size by one layer is quite significant for DNNs. Further, 

removing the Softmax layer will enable better generalization and thus allow a DNN to extract 

compact speaker models for unknown speakers [32]. Unlike the regular SID approaches, this 

approach does not use any adaptation technique for extracting known features in the training 

phase. Instead, this approach uses a DNN model for extracting specific features in both the 

enrolment and matching phases.  

 

A typical DNN classifier for speaker recognition uses a set of stacked features as input typically 

from feature extraction approaches such as MFCC [10]. The features used in initial DNN 

approaches are short frame based with 20 milliseconds (ms) with a context of ten frames for 

each segment of input. Each DNN is expected to predict a probability of the speaker for the 

input frames that are fed to DNN. To obtain the overall decision comprising of multiple frames, 

each prediction of DNN can be averaged out to find the speaker class. An alternate approach 

is using two different DNNs, one for frame level prediction followed by the second one for 

classification. 

 

The speakers’ data are extracted from the Census (AN4) speech database provided by Carnegie 

Mellon University [221]. The database consists of 1158 16KHz speech samples collected from 

84 subjects of both genders (male and female) using 16-bit linear sampling. The dataset that is 

publicly available has only 948 samples for training (from 53 males and 21 female subjects) 

and 130 samples for testing (from seven male and three female subjects). For this experiment, 

the training and testing samples are combined, out of which 600 random samples are selected 

to avoid the imbalance in the gender and any other unknown factors since the criteria for the 

separation is not mentioned in the repository. The speech features are extracted as Mel 

Frequency Cepstral Coefficients (MFCCs) using open source code libraries in MATLAB 



 

 83 

2016a [222]. Sixteen MFCCs were extracted from the inputs for each sample in the dataset. 

Once the features were extracted, different classifiers are defined using three DAEs with one, 

three, and five layers. Using multiple and divergent DAEs is necessary in order to test the 

accuracy rates and to determine the necessity of the number of hidden layers in DNNs as 

discussed in the literature [52, 182]. 

 

The DAEs are trained layer-wise using scaled conjugate gradient descent (SGD) whereas the 

baseline ANNs are trained using regular back propagation with a sigmoid activation function.  

The training, validation and testing datasets are divided as 70%, 15% and 15% of the data 

respectively.  DAEs with one, three, and five layers are used with varying numbers of hidden 

nodes. The first layer always has 16 (same as the number of input MFCC features), and the 

subsequent layer has 20 hidden nodes (refer to Table 3-5.). The training time is set to 100 

epochs. ANNs with one, two, and three layers are used with 16, 12, and 22 hidden nodes. The 

learning rate and momentum were fixed to 0.05 and 0.2 respectively for all the neural networks 

but 500 training epochs are performed for the baseline ANN based SID. All experiments are 

conducted in MATLAB 2016a using the Neural Network toolbox and deep learning modules 

on a Microsoft windows 7 PC with Intel dual core 3.4 GHz and 16 GB RAM.  

 

Six different experiments are conducted: three experiments using the baseline SID systems and 

another three with DAE-based SIDs. Each experiment is repeated 25 times, and the average 

results are presented in Table 3-5. Along with model accuracy, the results are validated using 

T-Test to show that there is no significant difference among the results. 
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Table 3-5: Experiment details: Architecture and experimental results (accuracy and error) for 
the ANN and DAE classifiers. 

Experiment 
No Classifier 

No.       of 
Hidden 
Layers 

Hidden 
Layer 

Number 

Number 
of 

Neurons 

Root 
Mean 

Squared 
Error 

Accuracy 
(%) 

T-
Test 

1 

ANN 

1 1 16 0.24 83.7 0.015 

2 2 
1 16 

0.39 71.15 0.029 
2 22 

3  
3 

1 16 

4.15 39.0 0.03 2 12 

3 22 

4 

DAE 

1 1 16 0.19 79.4 0.027 

5 3 

1 16 

0.112 98.8 0.003 2 20 

3 20 

6 5 

1 16 

0.34 69.16 0.022 

2 20 

3 20 

4 20 

5 20 
 

 
The experiment results indicate that the DAE with three layers outperformed all other 

classifiers. The lowest accuracy of 39% is provided by the ANN with three hidden layers with 

a difference of ~59% when compared to the highest accuracy experiment using a 3-layer DAE 

of 98.8%. The worst performing DAE achieved 69.16% which is over 30% better than the 

worst performing ANN (39%). The best results for an ANN are only 83.7%, 15% lower in 

accuracy than the best DAE results. It is noteworthy to observe that the number of hidden layers 

has a considerable effect on the outcome this effect which has also been speculated on in earlier 

research [29]. The reason for the trend of reducing accuracy with increasing number of ANN 
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hidden layers is attributed to the known convergence issues of BP. The BP convergence is due 

to the complexity of the SID task [223]. 

 

The results obtained using DAE employed by the feature learning through encoding features 

as condensed representations provides an evidence on the possibility of knowledge being 

existed as underlying representations.  

 

3.6.2. Transfer Learning Experiments  

These experiments are carried out using a synthetic hierarchical dataset with known feature 

hierarchies (see Section 3.2 for the detail of dataset). In this dataset each sample is a single 8-

bit value. DAEN (DAEN1) is trained with an uncorrupted dataset until 100% classification 

accuracy is achieved. The dataset is then corrupted to distort the existing relationship in the 

within the data by changing randomly selected values (bits). The dataset is further corrupted 

replacing some randomly selected values with NaN. Classification is again performed on the 

corrupted dataset using a second DAEN (DAEN2). Then finally, the weights of DAEN2 are 

replaced with the weights of first DAEN1 making it DAENR and classification is performed 

without training the second DAEN. In other words, the weights are transferred from first 

DAEN to second DAEN for all autoencoders. 

 

A three-layered Deep Autoencoder Network (DAEN) is used to perform the experiments and 

SGD algorithm is used for training. A symmetric node count of 50 is chosen for each layer of 

all the autoencoders. Fifty symmetric nodes are chosen due to the efficiency observed in the 

hierarchical data classification experiments when compared to asymmetry node count i.e., 

when number of hidden nodes in the layers are not equal [29].  SVM is used as the classifier 

for the Softmax layer. Each autoencoder is trained for 400, 200, and 100 epochs and overall 

supervised training for the Softmax layers is performed for 100 epochs. The hierarchical dataset 

used for the experiments consists of 90 samples of six different species. Each experiment was 

performed 25 times. The main reason for selecting the hierarchical dataset is because it consists 

of known features. Further, the dataset is constructed using distributed representation which 

makes it easy to disturb (corrupt) the features and hierarchies. 
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Figure 3-14: Confusion matrix for classification experiment with the original (uncorrupted) 
dataset  

The classification results for various DAENs and data sets are presented in Table 3-6. The 

confusion matrix for the experiment results with the uncorrupted dataset and corrupted dataset 

are presented in Figure 3-13 and Figure 3-14 respectively. For the uncorrupted dataset the 

classification accuracy is 100% whereas when the dataset is damaged accuracy fell to 56.7% 

as a result of the corrupted data and distorted hierarchies (relationships). 

 
Figure 3-15: Confusion matrix for classification results with corrupted dataset. The data is 
distorted to reduce the classification accuracy 

However, when the classification experiment is performed with the same corrupted dataset 

after transfer of weights (from DAEN1 to DAEN2) with new DAENR, a significant rise of 22.2% 

in the classification accuracy to 78.9% is observed as shown in Figure 3-15.  
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Table 3-6: Classification results for the corrupted (C) and uncorrupted (UC) dataset 

Deep autoencoder Dataset Accuracy (%) Train RMSE Test RMSE 

DAEN1 UC 100% 0.003 0.0034 

DAEN2 C 56.7% 0.663 0.5113 

DAENR C 78.9%  0.252 
 

One reason for this increase might be that ‘some knowledge’ is transferred unknowingly when 

weights are transferred. It is a fact that the principle components of any neural network are 

weights, and thus the conjecture that they contain knowledge seems reasonable. It is worthy 

considering that a weight is just numeric values and might not be significant in itself, but 

collective weights might have some kind of hidden representation(s) that may constitute 

knowledge and what is getting transferred in the knowledge transfer process. So, these hidden 

representations might constitute some form of knowledge which is being transferred and is 

responsible for improving the accuracy observed in the experiments undertaken in this 

research. 

 

Figure 3-16: Confusion matrix for classification results for the corrupted dataset after 
transfer of weights from DAE. Note the improved accuracy which is comparable to that of 
the classification of the original dataset (Figure 3-14). 

 

When an autoencoder is able to reconstruct the input, the weights might be storing a structure 

or some form of pattern in the weights. It appears that this structure, when transferred to another 

DAE, can be utilized to replace corrupted values such that the samples are classified correctly. 

However, it is still an open question as to how such representations can be extracted from 

weights.  
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3.7. DNN Optimisation by Reducing number of layers 

This experiment is carried out using MNIST hand-written character recognition dataset. The 

MNIST dataset is divided into three parts 70% for training (TrainDs), 10% for testing (TestDs), 

20% for recalibration (RDs). Each experiment is carried out 25 times.   

 

Firstly, experiments are carried out using only 10,000 images from a total of 60,000 images of 

MNIST data. A 7-layered DNN1 is trained using TrainDs and tested with TestDs1 with a 

classification accuracy of 97.6%. A second DNN2 with 1-layer is constructed by transferring 

the middle layer of DNN1 is found to produce 97.2% accuracy with TestDs.  

 

In the second set of experiments, the entire dataset of 60,000 images is used. DNN1 is able to 

achieve an accuracy of 91.2% with sensitivity and specificity of 71.2% and 81% respectively. 

When the same experiment is carried on DNN2 (1-layer), the accuracy reduced to 67.1%. In 

the next experiment, the three layers (1 middle and 1 each from either side) of DNN1 are 

extracted and these layers made up a DNN2 with 3-layers. There was a little improvement in 

classification accuracy (74.2% c.f. 71.2%). DNN2 is retrained with RDs dataset allowing only 

5% of variation in the weight values. This improved the classification accuracy to 91% with 

better sensitivity and specificity at 82.4% (11.2% more) and 89.8% (8.8% more) respectively.  

 

When these experiments are repeated using the synthetic hierarchical dataset, DNN2 with only 

one layer was able to achieve same classification accuracy with that of a 5-layered DNN1. It is 

noteworthy that the classification accuracy is always better with only one layer. Further 

research and analysis are required to explore the reasons for this behaviour.  

 

From the experiment results presented in Sections 3.1 through 3.6, it is highly likely that the 

middle layer possesses knowledge that significantly affects the overall accuracy of the neural 

network compared to the other layers. Therefore, this section establishes, at least in the context 

of the experiments presented, that the middle layer provides highest contribution to the overall 

efficiency of DNNs.  

3.7.1. Knowledge Components and Weights of the Weights 

The conjecture proposed in this section states that the knowledge component is a subset or a 

proportion of total weights in a layer and this component constitutes knowledge that 



 

 89 

significantly impacts the classification accuracy. This aspect could be associated with the 

principle of dropout where (insignificant) weights are dropped randomly to improve learning 

capability and speed. The subset of weights, which are named as knowledge components are 

extracted from the fullest of weights from the middle layer.  These components are built on the 

mathematical principles of PCA and FA but with significant difference which will be presented 

in next chapter. 

 

The concept of Weights of the Weights (WofW) is quite significant in extracting the subset of 

weights (aka knowledge components). This section also presents experimental evaluation of 

the principle of WofW and the experimental results are presented at the later stages of this 

section. 

 

The concept of the WofW is conceived and developed in this research and is founded on a 

principle of dimensionality reduction by submerging two layers of a DNN as shown in Figure 

3-16. The weights in two layers are fed into an ANN to obtain a new set of weight values that 

possess the qualities of both weights. Based on the encoding principle of autoencoders, the 

weights are fed into a neural network and the network is trained for weight values that produce 

highest accuracy when used in a neural network middle layer. In other words, a large set of 

weights is encoded into a small set of weights similar to dimensionality reduction that occurs 

in autoencoders.  
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Figure 3-17: Representation of scenario where the combination of layers (weights) higher 
level to deduce weights of the weights. In this scenario, the weights of two layers are fed into 
neural network to generate a new set of weights (with same number as one of the layers). 

Thus, the middle-layer weights in the condensed form are similar to WofW and an 

experimental verification using WofW scenario can re-affirm the proposed hypothesis that the 

middle layer consists of significant knowledge in the form of underlying representations in the 

weights. The aspect of WofW being efficient also strengthens the proposed Blossom Effect 

which states that the features are not lost but folded in as representations in the condensed 

weights of the middle layer.   

 

Classification experiments with a varying number of weights extracted from each layer are 

conducted. This set of experiments follows the same concept of extracting weights of the 

weights (WofW) with different number of hidden nodes for each layer. In this case, the entire 

7-layer DNN network is employed. The experimental scenario is presented in Figure 3-17 and 

the experiment results are presented in Table 3-7. 
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Figure 3-18: Experiment scenario for extracting weights of the weights (WofW). A 7-layer 
DNN with 50 nodes in each hidden layer is reduced to a seven layer neural network with 20 
nodes in each layer.  

 

From the results, it can be noticed that, there are some weights that are more influential than 

the others. It is to be noted that the number of nodes to be extracted are determined randomly. 

Thus, there is now a requirement to propose a systematic approach to determine the number of 

weights i.e., transferable components represented in weights as a model. 

 

Table 3-8: Experiment Result using ‘Weights of Weights’ with reducing number of weights. 
The results show that when number of nodes are reduced, the classification accuracy without 
retraining is low since some nodes might have been lost. Whereas with WofW approach, , the 
classification accuracy is higher with the same number of nodes. 

 
Nodes in  

each layer 

Classification   
accuracy (%) 

(without retraining) 

Classification  
accuracy (%) 

50 94.2 - 
40 87.2 93.1 
30 61.6 94.6 
20 44.8 78.1 
10 32.1 82.1 

13 (No. 
 input attributes) 

29.6 88.0 
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3.7.2. Efficiency of the Weights of Weights  

The experimental results obtained shows that Weights of Weights (WofW) can retain the 

knowledge in that the use of WofW improves the accuracy of classification. The results also 

show that there exists some segregation between significant weights and insignificant or less 

influential weights. In other words, though the weights are just numerical values, they possess 

some internal representation in the form of patterns. These representations can be condensed 

into significant weights which may be less in number but holds majority of the knowledge.  

 

In order to be able to extract the optimised weights between two layers, another set of 

experiments is devised and conducted. Starting from the centre of the DNN, optimised weights 

are generated to reduce the number of layers.  

 

The middle layers of three, four and five of a 7-layered DNN are chosen for this experiment. 

To extract optimised weights, layer three is used as input for an autoencoder to obtain the 

weights of layer four as output. The hidden layer weights are fine-tuned to obtain new weights 

that are optimised weights for producing layer 4 weights from layer 3 weights. This is similar 

to the autoencoder experiment explained in Section 3.6.1 The experiment is carried out until 

only two layers are left. 

 

The results of these experiments using different numbers of layers are presented as Table 3-9. 

With complete 7 layers the classification accuracy is 94.2%. Classification accuracy is reduced 

as number of layers are reduced using weight extraction. However, there is considerable 

improvement in the results when the entire network is retrained (supervised).  

 

Table 3-9: Using Weights of Weights with and without retraining the weights. 

Layers Classification Accuracy (%) 
(without retraining weights) 

T-Test Classification  
Accuracy (%) 

T-Test 

7 94.2 0.018 - - 

6 72.5 0.005 93.1 0.0089 

4 43.1 0.016 79.2  0.0051 

2 22.7 0.021 81.1  0.0014 
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The results (Table 3-9) show that extracting weights by combining layers is of no use as the 

feature representations that are present in the weights are lost due to recombining or changing 

the combinations of the layers. This is further emphasised by the improvement of results when 

retrained (supervised) weights are used. It is worth noting that when conducting the 

experiments, the required number of retraining cycles are increased as the number of layers is 

reduced.  

 

3.7.3. Relationship between input features and weights 

The initial experiments presented in Chapter 3 thus far have provided the evidence that hidden 

representations exist in DNNs and these hidden representations are mathematical constructs in 

the form of transferable components. These components are a direct representation of input 

features that influence the learning mechanism of DNNs. From the experimental results, it is 

concluded that the middle layer(s) of the DNN is most significant, most sensitive to changes 

and it is this middle layer that influences the overall accuracy. 

 

Further, these transferable knowledge components form a model, that when transferred, can 

lead to remarkable improvements in learning. The key challenge in this research is identifying 

the relationship between features and a DNN’s weights. At this stage this relationship is 

unknown. However, with these initial results, the transfer of features is occurring when weights 

in the middle layer of a DNN are transferred to another DNN.  

 

Since the features are spread across the various layers of DNN, it cannot be concluded that the 

weights in the middle layer are representing subsets of features or significant features directly. 

It is already proven with the set of initial experiments that weights in the middle layer have the 

highest influence on the accuracy. Since all the weights are represented in features and all 

features are represented in some form of weights, the only possible conclusion is that the 

weights in the middle layer are representing skeletal features or a prototype of features rather 

than features themselves. Then, is it these prototypes of features that constitutes ‘Deep 

Knowledge’? It is my conjecture that it is. It is this ‘Deep Knowledge’ that acts as an underlying 

representation of a domain model that can be transferred to another DNN. Therefore, the 

middle layer is critical since it is  representing the features that are necessary for the transferable 

DNN model. There may exist many such models in the DNN within the same domain. With 
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this, the DNNs can be considered as a model that can be generalised and a domain specific 

DNN model could be generated and implemented for various problems pertaining to the same 

domain. This is the model that is transferred as knowledge model between two DNNs. 

 

3.8. Discussion  

The initial projections using the weights obtained from the experiments (7-layered DNN using 

MNIST that attained best results) show that the middle layer of the 7-layered DNN is 

significant and seems to be performing some funnelling of features between the layers on either 

side. Considering the fact that the middle layer is equidistant from input and output, this 

behaviour can be justified to some extent. It may be argued that the layers near the input are 

too input specific to contain any useful ‘knowledge’ whereas the layers near the output are 

more problem-specific and therefore not useful. Hence, the middle layer may be acting as a 

transition layer where the transformation of weights is occurring. The hidden representation in 

the middle layer could be considered to be un-biased or neutral with respect to input values and 

problem specific classes.  

 

 
(a) 1 
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(b) 2 

 
(c) 3 
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(d) 4 

 
(e) 5 
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(f) 6 

 
(g) 7 

 

Figure 3-19: Projection of weights of a trained DNN with 7 layers. The alphabets from (a) 
through (g) indicating the seven layers (numbered in the picture). The weights are projected in 
3 dimensions to identify the relative distance. It can be noted that the weights are more 
concentrated (folded – the Blossom Effect) in layer four.  
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To establish the fact that the formation of weights in the middle layer is different to the other 

layers, the weight values of various layers are projected in a 3-dimensional scatter graph as 

shown in Figure 3-18. It is noteworthy to observe that, for all the layers, the weight values are 

dispersed in the layers except for the middle layer (Figure 3-18 (d)) where the weights values 

are more concentrated (condensed representations). A graphical representation of variance for 

each layer of weights is presented as Figure 3-19. The variance graph clearly indicates that the 

weights in the middle layer have the least variance compared to other layers. 

 

Figure 3-20:  The graph portraying the projection of weights for each layer of the 7-layered 
DNN. The minimum variance resembles the variance of them being less that other layers. The 
variance value of the 7 layers is diminishing since the weights have become problem specific. 

 

Though transfers of middle layer weights are significant, it is necessary to investigate what 

exactly (features or representations or yet unknown patterns) is being transferred when weights 

are moved from one DNN to another. The relationship between input features and weights of 

a DNN is established by the experiments in this study. Therefore, there must exist some hidden 

representations in the weights that will be named ’Deep Representations.’ These 

representations constitute influential features that are affecting the accuracy and functionality 

of the DNN that is receiving weights. When weights are transferred, it is the features in the 
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form of ‘Deep Representations’ that are being transferred. It cannot be concluded that the 

features in the middle layer are ‘the only important features’, since all the important features 

may not be confined to a single layer. So, it might be skeletal features or prototype of features 

in some form that are being transferred unknowingly when weights are transferred. This 

specific set of transferable skeletal or prototype features is the ‘Deep Knowledge’ that is buried 

as ‘Deep Representations’ in the deepest layer(s) of DNN. A pictorial representation of this 

scenario is shown in Figure 3-20. 

 

 

 
Figure 3-21: The Deep Representations and Knowledge Transfer scenario: The middle layer 
holds the knowledge as deep representations and as such yields the highest accuracy when 
transferred into another DNN. 

 

The existence of multiple deep representations in the weights for the same problem cannot be 

denied. Another underlying fact is that these deep representations may be based on learning or 

the domain or any other factors that influence a DNN’s functionality.  However, it is evident 

that hidden representations do exist and can contribute to a transferable model which influences 

the learning and operations of DNNs. Further empirical research is required to identify, extract 

and analyse such representations. 

 

This chapter provides the foundations for the research carried out in this thesis. Identifying the 

impact of weights in various layers has paved way for further research on the transfer of 

knowledge. The importance of number of nodes and the capability of ANNs (or DNNs) is 

significant and could give a direction for establishing a relationship between input features and 

weights in a hidden layer. The weight variance graph (Figure 3-19) shows a clear indication 

of significant correlation of weights that constitute knowledge that is transferred.  
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To eliminate any technical or domain based bias, a variety of deep architectures as well as 

diversified datasets are used. The reason for not using CNNs is due to the fact that CNNs are 

purely used for image analysis and there has been a transfer of layers approach already 

undertaken in this domain [63, 209] (the transfer of layers in CNNs in image recognition was 

discussed in the Chapter 2 Section 2.6 of this thesis). However, the proposed model is tested 

using CNNs confined to the scope of the research (Chapter 6 Section 6.152 of this thesis). 

Furthermore, the architecture of CNN is different and has been a point of discussion on the 

category of deep architectures that CNN belongs to. 

 

The main purpose of testing initial hypothesis is to provide the evidence of the importance of 

the middle layer. Initial experiments are carried out on MNIST, IRIS and the synthetic datasets 

for a DNN, and are the results are presented in this chapter. ImageNet and CIFAR-10 datasets 

are used for further experiments, and the results are presented in the next chapter. Experiments 

are also carried out using the TIMIT dataset and the results are presented in the Appendix E. 

The proposed hypothesis is thus tested and found to be true. 

 

The experiment results presented in this chapter proved that when the middle layer of a trained 

network is transferred to an untrained network, the untrained network will produce significant 

improvements in the classification results. In addition, the execution time is also considerably 

reduced.  

3.9. Chapter Summary 

This chapter investigates the plausibility of the research through preliminary investigation. 

The outcomes of the chapter can be summarised as follows.  

 

o All the features are represented in all the weights of DNN and vice versa. The middle 

layer(s) is(are) significant among the layers of the DNN, and weights in the middle 

layer are more sensitive to changes. The middle layer has highest positive impact on 

the accuracy and functionality of DNNs, and removing this layer reduces the efficiency 

of the DNN. 

o The weights in the middle layer are in a submerged state where the features are folded 

in, and they gradually become folded out (re-emerge) as they move away from the 
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middle layer. These condensed middle layer representations can be verified through 

the experiment results of the Weights of Weights (WofW).   

o Weights in the middle layers constitute features in the form of hidden representations. 

The middle layer possesses the knowledge in the form of underlying discrete 

representations in the weights and DNN is able to learn these representations through 

training. These features are transferred unknowingly at the time of transfer of 

knowledge. 

 

In the next chapter, research hypothesis is proposed towards identifying the relationship 

between input features and DNN weights and the presence of knowledge components in 

various layers (in line with research problem in the Chapter 1 Section 1.7). The chapter also 

presents how the hypothesis is tested and states the research method adopted for testing and 

verification.   
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Chapter 4 Hypothesis and Research Approach 
 

4.1. INTRODUCTION .............................................................................................................  

4.2. PROPOSED HYPOTHESES ...............................................................................................  

4.3. HYPOTHESIS 1 (H1) ......................................................................................................  

4.4. HYPOTHESIS 2 (H2) : THE BLOSSOM EFFECT  ...............................................................  

4.5. RESEARCH APPROACHES ..............................................................................................  

4.6. DEDUCTIVE-INDUCTIVE RESEARCH APPROACH (DIRA)...............................................  

4.7. CHAPTER SUMMARY .....................................................................................................  

 

4.1. Introduction 

 

The findings of the previous chapter evaluated the importance of various layers through 

classification experiments and the middle layer(s) and found to be of greater importance 

compared to the other layers: that the middle layer possesses transferable knowledge. The 

findings also provide a new research direction in the form of two hypotheses that drive the rest 

of the research presented in this thesis. This chapter presents the hypotheses, and an account of 

various experiments designed to test each hypothesis.  
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4.2.  Proposed Hypotheses 

The principle hypothesis of this research is that  

 

“There exists a Blossom Effect in DNNs in which the input features are folded into the middle 

layer and then will be folded out through the layers thereafter resembling the sacred lotus 

flower.” 

 

4.3. Hypothesis 1 (H1) 

H1: For a given input with n features with x% of least relevant information (noise or distortion) 

that significantly effects the accuracy, x is distributed among L/2 layers in which there exists c 

components in the middle layer (Lm) such that when x is minimised, c ≤ n.  

4.3.1. Scenario 1: x = 0 (no noise, clean data) 

When x = 0% there is no noise and only independent and clearly differential features 

then  n = c where Lm has near equal variance in a short time for all layers, then the 

funnel of layers will turn into a pipe with equally distributed components.  

Result:  

1. All layers are equally important 

2. Knowledge is distributed among all the layers.  

4.3.2. Scenario 2: x > 0 (some noise with few overlapping features) 

When x > 0, i.e., there exists some noise which affects the classification task. 

This causes an effect similar to the Blossom Effect with the variance value being 

smallest at the middle layer and subsequently increases towards output layer. This is 

similar to the observations from the Chapter 3. 

Result:  

1. The middle layer(s) are significant and constitute core knowledge. 

2. The neural network operates with middle layers.  
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4.3.3. Scenario 3: x = 100 (full noise data with complete overlapping features) 

When x = 100 i.e., the data is full of noise and overlapping features, this causes the 

minimisation of variation to occur in all directions producing a combination of the funnel 

(scenario 2) and pipe (scenario 1).  

Result:  

1. Importance of a particular layer may not be determined.  

2. Neural network operation is indeterministic.  

4.3.4. Evaluations:  

The evaluation of Hypothesis 1 is performed using three datasets: IRIS, MNIST handwritten 

character recognition and Speaker dataset with MFCC coefficients.  

Experiment Set 1: 

The first set of experiments are performed with modified IRIS and MNIST datasets with three 

independent and non-overlapping features for Scenario 1: x = 0 (no noise, clean data).  

Experiment Set 2: 

The second set of experiments are carried out using an Air pollution dataset [224]and the 

MNIST dataset with two different setups, one with the existing dataset where there is some 

overlap and a modified setup to make sure there is a profound overlap to suit Scenario 2: x > 0 

(some noise with a few overlapping features).  

Experiment Set 3: 

To evaluate Scenario 3: x = 100 (fully noise data with complete overlapping features) it is 

necessary to perform the experiments on a special type of dataset. Therefore, a modified 

MNIST, Synthetic image dataset and speaker datasets are used.  

4.4. Hypothesis 2 (H2): The Blossom Effect 

For an input with x features, when Cm components are extracted from the middle layer Lm of a 

neural network with l layers such that C1 < Cm > Cl  where C1,C2….Cl ae components extracted 

from layers 1…..l ,  The transformation of information into knowledge occurs at the middle 

layer where the variance is minimum, and number of components is maximum.  

4.4.1. Evaluations:  

Hypothesis 2 is evaluated using Synthetic Hierarchical Dataset, CIFAR, TIMIT and MNIST 

datasets. The experiments will be carried out in two steps:  
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Step 1: 

Extract components from various layers and compared them according to the layer number.  

Step 2: 

Perform a comparison of variance of the weights with the variance calculated from the 

component features.  

Testing on Random Dataset: 

The Blossom Effect hypothesis is tested on a synthetic dataset with unknown values/random 

values without knowing the characteristic of the data (class) upfront. Since the values are 

generated randomly, the amount of noise and its category (low, medium or high based on 

percentage) cannot be determined (scenario 1, 2 or 3). 

4.5. Research Approaches 

There are two types of research approaches detailed in the literature: Inductive and Deductive. 

The process of selecting a research approach is highly dependent on the purpose of study and 

availability of resources and, in some cases, time frame [225]. In some cases, hybrid 

approaches based on selective aspects of both inductive and deductive methods are proposed 

and have been successful [226]. Before choosing a research method, it is necessary to 

understand key aspects of these methods.  

4.5.1. Deductive  

The initial investigation will enable the formation of a new theory. This new theory may be 

entirely new or an extension of or deviation from an existing theory. In some instances, it could 

be simply be a hypothesis generated based on a review of the literature or results in hand. In 

this case, the research design and experiments are framed to validate the theory and test the 

proposed hypothesis.   

4.5.2. Inductive 

Traditionally as well as in majority of instances, research is carried out by proposing a 

hypothesis and then providing sufficient experimental verifications to prove or disprove the 

hypothesis. While performing these verification experiments, researchers often come across 

some new theoretical principles of generalisations which were not proposed in the original 

hypothesis. In this case, the theoretical principles have been extracted based on experimental 

results. This type of approach is called an inductive approach.  
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4.5.3. Selection of Research Method  

Though the research approach adopted in this thesis can be categorised  primarily as deductive, 

the possibility of inductive hypothesis generation cannot be ruled out. In this research, the 

hypothesis was proposed built on an initial investigation (presented in Chapter 3) based on an 

inquiry into the published literature. The research design and experiments work towards 

validating the hypothesis. Since this research has both hypotheses and experimental 

verification, it falls into the category of a deductive approach. However, the hypothesis is based 

on the results of preliminary investigation which makes it inductive.  

 

Another strong reason to support the inductive nature of the research is the lack of sufficient 

literature on how Deep Learning works (Chapter 2). Deep Learning is the core principle of this 

thesis (see Chapter 1’s Research Focus, Thesis Contribution and Chapter 2’s Research Gap). 

The deductive and inductive nature of this research means that a pragmatic combination of 

deductive and inductive approaches has been adopted as the research methodology for this 

thesis as presented in the next section.  

4.6. Deductive-Inductive Research Approach (DIRA) 

A combination of deductive and inductive methods is adopted for the research, and it is named 

as Deductive-Inductive Research Approach (DIRA). The DIRA approach consists of the 

following steps as presented in Figure 4-1.  

 

As shown in the  Figure 4-1, the hypotheses are based on the experiment results obtained from 

the preliminary investigation. However, before proposing the hypotheses, a detailed literature 

review is conducted to reaffirm the research gap identified which is the deductive part of the 

proposed research approach 
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Figure 4-1:  Structure of the Deductive Inductive research approach (DIRA) used for this 
research. .  

 

The validation of the proposed hypotheses is carried out using various experiments. The 

experiment results are evaluated to provide the verification of the hypotheses. Further, the 

experiment results have provided some new principles which make this research inductive.  

4.7. Chapter Summary 

This chapter presents the main hypothesis with two sub-hypotheses designed towards 

achieving the research aim. The outline of experiments for evaluating the proposed hypotheses 

was presented along with the research method to be used. The next chapter, Chapter 5, presents 

a new component model for transfer of knowledge. This model serves as the framework for 

extracting and transferring knowledge components. The performance of proposed transferable 

knowledge component model is also demonstrated in the next chapter.    
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Chapter 5 Transferable Knowledge Component 

Model  
 

5.1. INTRODUCTION .............................................................................................................  

5.2. THE COMPONENT MODEL .............................................................................................  

5.3. HYPOTHESIS VS COMPONENT COMPOSITION IN ANN WEIGHTS ....................................  

5.4. COMPONENT TRANSFER MODEL ....................................................................................  

5.5. EXTRACTING COMPONENTS: INITIAL EXPERIMENTS ......................................................  

5.6. EVALUATION USING AUTOENCODERS ...........................................................................  

5.7. CHAPTER SUMMARY .....................................................................................................  

 

5.1. Introduction 

The hypotheses presented in the previous chapter can be tested through a practical application 

of transferable knowledge component model. In this chapter, a new knowledge component 

model for transfer of knowledge is proposed which functions as the framework for extracting 

and transferring knowledge in a neural network based deep architectures. The efficiency of 

proposed transferable knowledge component model is also demonstrated through the 

evaluation of results obtained from the initial experiments.  

 

Firstly, the theoretical aspects of a transferable knowledge component model designed to 

establish a relationship between input features and DNN weights. This is achieved by 

proposing a component model constituted using DNN weights.  

 

The second part of this chapter presents an evaluation and discussion of how the hypothesis 

(H2-3) presented in Chapter 4 is related to the component model. This is followed by a 

discussion of component extraction approaches and initial experiments using these approaches 

that evaluate the proposed component model. 
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5.2. The Component Model 

The input data that is fed into a DNN consists of features (input features) that are combination 

of one or more attributes present in the data. A DNN consists of layers into which these input 

features are transmitted in the form of weights. The transformation of input features through 

the neural network layers is significant. It is widely accepted that it is the features that a DNN 

is learning and is the key success factor of deep learning. The DNN layers consist of numeric 

weights, but the form of the features that the DNN learns from these weights is not proven. It 

is the conjecture presented in this thesis that the knowledge is represented in the form of 

patterns by a set of weights grouped together and DNN is acquiring this knowledge through 

training. The weights in the DNN layers are optimised for better learning which gives better 

knowledge to the DNN and makes it more efficient in problem solving. It is noteworthy to 

observe that there are some weights that may not be necessarily contributing to the problem 

solving yet remain in the layers. The insight into the principle of extracting significant weights 

called knowledge components will provide a new direction in the research of transfer learning.  

 

Consider an input feature fi which transforms through the DNN layer l where l = 1…. L (number 

of layers). The component Cli is the ith component in the lth layer can be defined as the linear 

combination of features extracted from the correlated weights (weights grouped together with 

underlying patterns) w with an error 𝜀𝜀. The non-correlated weights have no role and are mere 

numbers with minimal or no influence. However, the determining factor in the transformation 

is unknown and has not been the subject of research at the time of writing of this thesis.  

 

The basis for DNN learning is how features are translated from the input (raw) and then learnt 

as high-level representations through which the labels associated with the data can be 

identified. Since the core components in the DNN layers are weights, the features exist in the 

layers in the form of weights. The DNN scans through these weights and identifies and learns 

the underlying features which is knowledge attained by DNN.  

 

From the literature, it is clearly evident that the layers near the input have raw and low-level 

features that are nearly the same as the discrete form of input. Further, the layers near the output 

are high-level features that are responsible for the classification or identification of particular 

aspect of the feature. From the learning mechanism of DNNs (representation learning) the low-
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level features are transformed to form high-level features across multiple transformations as 

they pass through various layers of DNN.  

 

Consider an input data with n number of features, F defined as,  

 

 𝐹𝐹 = 𝑓𝑓1,𝑓𝑓2, … … . . 𝑓𝑓𝑛𝑛 (7) 

 

 

 

where each feature is a linear combination of attributes (ref. Chapter 2) 

 

To determine the projection of these feature vectors in DNN layers:  

Consider a DNN with l layers with Wil being weight of the ith node in lth layer with l = 1…. L.  

 

The aspect of projection of weights for separating the features as a group of weights in a DNN 

layer can be attributed to the concept of Blind Signal Separator model (BSS) [227]. The DNN 

weights are obtained by a combination of input values and variables involved in training 

mechanism (bias, error and training algorithm variables).  

 

If W is the weight tensor, a component C thus may be defined as a combination of these weights 

in the form of features. To define C in terms of W, it is necessary to establish a relationship 

between the input features and components.  

 

The weights of the DNN are then obtained by combining input features and an undetermined 

number (may be bias, learning rate or other values obtained through training algorithm) as 

follows: 

 

 𝐶𝐶 =  𝐹𝐹′𝑆𝑆 + ε (8) 

  

 where 

𝐹𝐹′ is the vector component projection of features F in the DNN 

ε is the stochastic error 

S is underlying function value or factor that affects the transformation.  
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 𝐹𝐹′ is the component obtained through a combination of weights of DNN that matches a 

particular set of features.  𝐹𝐹′ consists of an individual feature or combination of features of F 

that exists as underlying representations in weights W. The introduction of S is due to the fact 

that not every weight is significant in the learning process by itself. It is noteworthy that the 

individual weight may be significant  in a group as defined in the literature [228]. However, it 

is important to note that the value of S becomes 0 or no value in case of optimised DNNs. Thus, 

S is a generalised hidden function and determination of S is out of the scope of this research.   

 

The novelty of this research is in attempting to determine the underlying patterns that exists in 

the weights. Therefore, the challenge is to define 𝐹𝐹′ in terms of W.   

 

A simple approach to start with would be extracting (weight) components. Using PCA, 𝐹𝐹′ can 

be obtained through the covariance matrix of W for the example feature vectors. This way the 

eigen values and eigen vectors of W can be found. The m eigen vectors having the largest Eigen 

values are then used as the columns of 𝐹𝐹′. Thus, a component C can be extracted through the 

weights using PCA. 

 

So (from PCA), 

 

 𝐹𝐹′ = 𝑊𝑊 µ (9) 

 

Where  

𝑊𝑊 is the weight tensor 

µ is the variance 

 

Thus, 

 𝐶𝐶 = 𝑊𝑊 µ 𝑆𝑆 + ε (10) 

 

 

To obtain the ath component in the lth layer 

 

 𝐶𝐶𝑙𝑙,𝑎𝑎 = 𝑊𝑊𝑎𝑎µl𝑆𝑆l +  ε𝑎𝑎 (11) 
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where 𝑆𝑆1≅ 1 

 

The component thus can be extracted using PCA in the case of non-overlapping and highly 

separable features. For datasets with highly overlapping features with high correlation between 

features, Factor Analysis (FA) can be used. FA can produce the similar results to PCA by 

considering the feature commonalties rather than correlation. Thus, for non-overlapping 

features, FA can be used to define the component C as follows:    

 

To obtain the ath component in the lth layer for highly overlapping features, a component can 

be determined by the correlated weight values based on the variance and the knowledge 

components can be extracted using FA. 

 

Consider,  

 𝐶𝐶 = 𝐹𝐹𝐹𝐹 + ε (12) 

 

The FA model is used to determine the knowledge components in the layer l with unknown 

features as follows:   

 

 𝐶𝐶𝑙𝑙,1 = 𝐹𝐹′1𝑆𝑆𝑙𝑙,1 +  𝐹𝐹′2 𝑆𝑆𝑙𝑙,2 + ⋯ . . + 𝜀𝜀𝑙𝑙 (13) 

 

In line with FA, it can be generalised as follows:  

 

 𝐶𝐶𝑙𝑙,𝑎𝑎 = �𝐹𝐹′𝑛𝑛
𝑝𝑝

𝑆𝑆𝑙𝑙 +   𝜀𝜀𝑙𝑙 (14) 

 

where  

𝐶𝐶𝑗𝑗,𝑎𝑎 is the ath component in lth layer 

p is the number of components present in the lth layer 

𝐹𝐹′𝑛𝑛  is the feature factor determined through W  

𝑆𝑆𝑙𝑙 is the Sree (unknown) constant that exists in the weights in the lth layer 

 𝜀𝜀𝑙𝑙 is the error in lth layer (stochastic) 
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5.3. Hypothesis vs Component Composition in DNN Weights 

In principle, the hypothesis H2 presented in the Chapter 4 Section 4.3 states that the number of 

components extracted from the individual layers is based on the variance between the weights 

thus providing a direct relationship between the weights extracted from the components and 

standardized PCA and FA.    

 

Both PCA and FA are functionally dependent on variance. Number of components or factors 

are generated based on variance. In case of PCA, the number of correlated variables is 

transformed into a smaller number of uncorrelated variables. PCA is performed on a symmetric 

matrix which can be either pure sum of squares or correlation. So, in principle, PCA is based 

on total variance. 

 

From the equation for PCA component extraction,  

 

 𝐶𝐶𝑗𝑗,𝑎𝑎 = 𝑊𝑊𝑎𝑎µ1  𝑆𝑆1 +  ε𝑎𝑎 (15) 

 

The µ1 is the variance, that influences the composition of the components and is often 

considered as important parameter. Further, in PCA the number of components extracted is 

based on variance of the data matrix.   

 

In case of FA, the commonalities are considered instead of correlations in order to extract 

underlying knowledge components.  

 

 𝐶𝐶𝑗𝑗,𝑎𝑎 = �𝐹𝐹′𝑛𝑛
𝑝𝑝

𝑆𝑆𝑗𝑗 +  ε𝑗𝑗 (16) 

 

𝐹𝐹′𝑛𝑛 are individual factors based on common variance i.e., variance shared across the variables. 

This variance has direct influence on number of factors deduced from the data matrix.  

 

Consider a weight matrix 𝑊𝑊𝑙𝑙  for layer l (l = 1…. L)  for an L layered DNN and for each layer 

𝐶𝐶𝑙𝑙  components.  
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According to the proposed hypotheses H1,  

For each layer l,  

 

𝐶𝐶𝑙𝑙 is minimum  for max (µ𝑙𝑙 )   and 

𝐶𝐶𝑙𝑙 is maximum for min (µ𝑙𝑙 )   

in the weights   𝑊𝑊𝑙𝑙 

 

For a dataset D, the number of components extracted from the weights of layer l using PCA or 

FA, i.e., 𝐶𝐶𝑙𝑙 is at its minimum when the variance between the variables is at its highest value 

and vice versa.  

 

Thus, the influence of variance stated in standard PCA and FA is similar to the influence of 

variance mentioned in hypothesis H2.  

 

The number of components extracted is determined by variance and can be controlled by 

introducing variance-based stopping criteria.  

 

5.4. Component Transfer Model 

Consider a trained DNN called DNNt from which the components are extracted and transferred 

to a new destination DNND. The components Ct extracted from lth DNNt is obtained from 

equation 11 as  

 

 𝐶𝐶𝑡𝑡𝑡𝑡 = 𝑊𝑊𝑡𝑡𝑡𝑡µl𝑆𝑆l + ε𝑙𝑙 (17) 

 

The CSl is the transferable component(s) that needs to be defined in terms of weights Wtl. To 

transfer the component, the destination Weights needs to be replaced with the values obtained 

through Ctl. This transfer of weights is possible through a weight update using error propagation 

as proposed in BP mechanism. This is a form of learned feature transfer.  

 

The objective now is to define the destination weights WD   in terms of Wtl. The initial values 

of weights including that of WD are initially random numbers to start with followed by weight 

updates, for instance, through BP.  
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 𝑊𝑊𝐷𝐷𝐷𝐷 = 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 … .𝑤𝑤𝑛𝑛 

 

(18) 

The transfer of components involve the transfer of feature weights to lth layer of the destination 

DNND.  

 

To start with, the number of hidden nodes must be equal: hence,  

 

 

 𝑊𝑊𝐷𝐷𝐷𝐷 = �𝐶𝐶𝑡𝑡𝑡𝑡 −  µDl� + 𝑆𝑆 (19) 

 

 

where the values S and Ctl are transferable weights and µDl is the mean variance obtained from 

the existing weight values in the destination.  

 

To obtain individual weights values  

 

 𝑊𝑊𝐷𝐷𝐷𝐷
𝑖𝑖  =  𝐶𝐶𝑡𝑡𝑡𝑡𝑖𝑖 −  µDl + 𝑆𝑆 

 

(20) 

where i is the ith weight, S and  𝐶𝐶𝑡𝑡𝑡𝑡𝑖𝑖  are obtained from trained weights.  

The value of µ𝐷𝐷𝐷𝐷 is based on number of weights (hidden nodes in the next layer) to be replaced. 

When the source and destination weights are same i.e., replacing all the weights (no 

initialisation) µ𝐷𝐷𝐷𝐷 will be 0. If only a set of weights are to be replaced in the destination, the 

value of µ𝐷𝐷𝐷𝐷 depends on variance calculated on the weights of the destination.  The next section 

evaluates equation 20 through transfer learning experiments. The scenario used for the 

experiments is based on the assumption of having the same number of weights in the source 

and destination.  

5.5. Component Extraction Experiments 

A 7-layer deep neural network is used for this experiment with 50 hidden nodes in each layer. 

The configuration and parameters of this DNN are similar to what was used for the initial 

experiments detailed in Chapter 3. In order to extract components, weights are extracted from 
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the middle layers i.e., layer 3, 4, and 5 since these layers are already proven to be significant 

(Chapter 3). 

 
To help determine the association of weights and relationship with features, firstly, a 

multivariate wine dataset [229] with 13 attributes and 178 samples is used for the experiments. 

Proposed component model is used to extract the components according to equation 16 

presented in the previous section. 

 

Figure 5-1 illustrates the number of components extracted from layer three, four and five, and 

it is possible to determine that layer three has one component more than the middle layer (layer 

four).  

 

Both layer three and four consisted of the condensed representation of the original 13 features. 

From the middle layer the two components are expanded in the next layer (layer five) to provide 

12 components. It is likely that this expansion is what makes the next layer features more 

problem specific. This change in the number of components over layers 3 and layer 4 seem to 

represent the Blossom Effect and provides support for the hypothesis H2. This is also in line 

with proposed effect of weight variance which states that the middle layer has minimum 

variance that influence the representation of features (knowledge) as presented in the Chapter 

3. Furthermore, equation 16 of variance calculation is also in line with the weight variance for 

layer three, four and five as presented in the Chapter 3 Figure 3-19.  The number of 

components is based on variance-based stopping criteria similar to other statistical-based 

component extraction approaches as mentioned in Chapter 4. 

 

The features present in layer four, the middle layer, are overlapped and/or condensed based on 

the input representations that exist in the attributes of dataset.  From the middle layer (layer 

four) to layer five, it appears that the components start unfolding and become more problem-

specific features. This unfolding exposes the high-level features that are folded-in at the middle 

layer. This effect of fold-in and fold-out is proposed as ‘The Blossom Effect’. Thus, this 

experiment provides the evidence to the existence of ‘The Blossom Effect’.  
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Layer 3                           Layer 4                       Layer 5 

Figure 5-1: Extraction of components from the weights:  The number of components is 
reduced towards middle layer and then increases their after towards the last layer. This is due 
to the weights being together (condensed representations) as presented in Chapter 3 Section 
3.8  

The experiments conducted to support conclusions using inductive research approach must be 

extensive, rigorous and comparable and to be performed on variety of datasets to support the 

validity of conclusions and observations. Therefore, the hypothesis H2 is further investigated 

extending this initial experiment using diversified datasets, deep architectures and different 

technologies (hardware and software) in Chapter 6.   

 

The next section presents the extraction of components using autoencoders and WofW 

followed by a comparison with the proposed model.  

 

5.6. Evaluation using Autoencoders  

Since PCA and FA are threshold based, it is not feasible to force the number of components to 

be extracted without losing potential knowledge. So, PCA or FA cannot be used for comparing 

the proposed approach.  

 

The main aim of this research is to extract feature components from the neural network weights 

so that they can be analysed against the input features-based components extracted using 

proposed knowledge component model. As mentioned earlier in this thesis, autoencoders are 

traditionally used for feature reconstruction which makes them idle choice for evaluating 

proposed component model. 
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With deep autoencoders, the number of weights (nodes) can be set to a constant value so that 

the weights in the layer represent the condensed features (components). So, the experiment 

with autoencoder is conducted to identify the possibility of reducing nodes in the middle layer. 

 

A deep autoencoder network learns the representations in the features by reconstructing the 

input. Once the input is encoded, the middle layer represents the features in the form of weights 

that are fine-tuned to reconstruct the input. However, we can restrict the number of nodes in 

the middle layer to a set number so that all the features are condensed to specific number of 

weights as shown in Figure 5-2.  

 

 
Figure 5-2: Deep Autoencoder with encoding, decoding layers  represented in amber and 
middle layer represented in green. 

 

In this experiment, the weights achieved from three layers are given as input to an autoencoder 

which encodes them into ten nodes that represent the entire essence of 50 weights. Then, these 

ten weights are used with a decoding mechanism to reconstruct the input. The decoded weight 

values are obtained by transposing of the encoded weight values. The error between input and 

reconstructed input is propagated, and weight values in the hidden layer are adjusted to 

minimise the error. This experiment is represented in Figure 5-3. 
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Figure 5-3: The strategy of extracting components from deep autoencoder network 

 

This experiment is repeated for all three layers extracting ten components each layer and the 

results obtained with various combinations of middle layer weights are presented in Table 5-1.  
 

Table 5-1: Experimental Results: classification experiments carried out on a Deep 
autoencoder network for four different scenarios.  

Scenario Nodes Classification 
Accuracy (%) 

Random weights 50,50,50 81.77 

Random weights 10,10,10 27.55 

Extracted Weights of the weights (WofW), all layers 10,10,10 75.65 

Extracted WofW for middle layer, random weights for 
the other two layers 

10,10,10 58.25 

 

In the first two scenarios, random weights are used for the experiments, and an accuracy of 

81.77% is achieved with 50 hidden nodes but only 27.55% with ten hidden nodes. In the next 

set of experiments, the weights of the weights (WofW), extracted using autoencoder are used. 

With WofW replacing the random weights in all the three layers, the classification accuracy is 

improved by around 50% reaching a value of 75.65% when compared to the experiment using 

random weights. However, when the WofW are used only for the middle layer, the 

classification accuracy is reduced to 58.25% which is 17.4% less than the value when WofW 

weights are used for all the three layers. 
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When the proposed model is applied to extract knowledge components, the number of weights 

extracted that are present in the knowledge components are obviously not the same as WofW, 

since DAE can be dictated to extract required number of components whereas the proposed 

model cannot. To overcome this, the number of components is ignored, and the layers are 

updated with the components attained through proposed model and the classification 

accuracies are presented in Table 5-2.  

 

Table 5-2: Classification accuracies: Comparison of deep autoencoder, WofW and proposed 
Knowledge Component Model 

Scenario Nodes Accuracy (%) 

Random weights 50,50,50 81.77 

Weights of the weights 10,10,10 75.65 

Knowledge Component Model 10,10,10 77.93 

Knowledge Component Model Full components 
On transfer learning  

28,30,30 81.28 

 

The classification accuracies achieved for random weights, WofW and knowledge component 

model are 81.77%, 75.65% and 77.93% respectively. The experiments results show that the 

proposed model outperformed WofW by 2%. It is interesting to see that the classification 

accuracy achieved using the proposed knowledge component model is in between the accuracy 

values of WofW and the best accuracy (with 50 nodes rather than 10 nodes) random weights 

model. The small difference in the classification accuracy may be due to the fact that the 

number of nodes is forced to 10. When the knowledge component is transferred without forcing 

them to be 10 nodes, the classification accuracy is 81.28%, reaching almost the best accuracy 

when transferred to an untrained DAE.  

 

Apart from experiments stated above, there are two alternative scenarios that can be used for 

implementation. Firstly, replacing the weights of each layer of the DAE with the components 

extracted using the knowledge component model presented in Section 5.1. Secondly, WofW 

in the middle layer should be replaced with the knowledge components.  
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5.7. Chapter Summary 

This chapter presents the mathematical expression for the proposed Transferable Knowledge 

Component model using standard statistical approaches for feature extraction and 

dimensionality reduction. The existence of the Blossom Effect is also demonstrated through 

the experiment results of knowledge component model. The comparative analysis between the 

various experiment results show that the proposed model is able to retain the efficiency of the 

DNN for transfer learning experiments.  

 

The next chapter consists of experiment results and reconciliation of the proposed component 

model on number of diversified datasets of multiple domains. Further, the experiment results 

are assessed and analysed to provide a conclusive evidence for the existence of the Blossom 

Effect in DNNs.  
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The previous chapter presented the Transferable Knowledge Component model and the results 

obtained from the initial experiment conducted to test the proposed component model. This 

chapter presents the evaluation of the proposed model using a variety of datasets from multiple 

domains. 

 

This chapter is divided into three parts, and each part has an overview section to provide a brief 

explanation on the contents of that section. The first part presents the details of various datasets 

used for the experiments along with the results of the classification experiments performed on 

them. The second part presents the extensive evaluation of proposed Transferable Knowledge 

Component model followed by the third section with the analysis and discussion where the 

proposed hypothesis is validated. 
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PART I: Datasets & Technical specifications  

Overview of the section 

This section provides the details of various datasets used for the experiments and the technical 

specifications pertaining to both software and hardware. This section also provides the 

technical details of experiment setup and various parameters and their values. Firstly, the 

details of datasets like type of domain, attributes, number of samples, resources from the 

literature and other particulars are presented. The results from the classification experiments 

are also presented in this section. The transferable model is extracted from the deep 

architectures that have attained the highest possible classification accuracy on their respective 

datasets.  

 

6.1. Hardware and Software specifications 

The hardware and software specifications are very important for mitigating technology specific 

bias if any, and to evaluate the consistency in the experiment results. For any experimental 

evaluation, it is necessary to mention the hardware and software specifications to provide 

clarity on execution time for ML framework / libraries used for the experiments. The 

experiments reported in this thesis are carried out on a variety of hardware from a simple laptop 

(Microsoft Surface) to powerful GPU based systems. The details of hardware configurations 

are presented in Appendix I.  

 

The experiments are carried out using Weka, MATLAB, TensorFlow, Keras libraries for 

Python, and Microsoft C#. Open source code (Matlab) is used for some feature extraction 

experiments. Open source Matlab libraries for t-Distributed Stochastic Embedding is used for 

visualisations. The detailed software specifications are presented in Appendix I. 

 

In principle, there are three types of deep architectures that are used. Other than the number of 

layers, the parameter values for majority of the ANN and deep architectures are the same. The 

technical details of various deep architectures used for the experiments are presented in 

Appendix I. 
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6.2. Datasets 

The experiment setup is one of the most important parts of both inductive and deductive 

research. Choosing the correct type of evaluation method and experiment design is a crucial 

and critical aspect of validating the hypothesis. This chapter provides the specifications for the 

various types of deep neural networks used, their parameters and other technical details.  

 

To enable variety, veracity, volume, correlation, overlapping and dependency, the datasets are 

chosen from different domains and applications. The details of the datasets used in the 

experiments are presented in Table 6-1. There are several customised datasets derived from 

these standard datasets and their details are presented in later sections. The datasets are used 

for classification experiments on various deep architectures that are fine-tuned to achieve the 

highest possible classification accuracy.  

 

Table 6-1: List of datasets used for the experiments: The properties of various datasets used 
for the experiments categorised based on the domain of application.  

Dataset 
Category 

Dataset 
Name Category No. 

samples Attributes Classes Comments 

Generic 
benchmark 
datasets for 

testing 

IRIS Flowering 
plant 150 4 3 

Modified 
versions of 

IRIS (3) 
datasets are 
also used 

Wine Wine 
classification 178 13 3  

Image 

MNIST Character 
recognition 60,000 785 10 

7 variants of 
MNIST are 
used later 

ImageNet Image 
recognition 60,000 20 20 

A subset of the 
original dataset 

is used 

CIFAR-10 Image 
Recognition 60,000 785 10  

NLP 
(speaker) 

TIMIT Speaker / 
Speech 6300 39 630  

AN4 Speaker 1154 16 84 Total samples 
available 94816 
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MFCC 
Features 

Air 
Pollution CASTNET Air Pollution 

spatiotemporal 8700 13 2 Total samples 
9358 

High 
dimensional 

Prostate 
Cancer 

Gene 
expression 102 12600 2 

variant of 
dataset with 

random values 
is also used 

Hierarchical Synthetic Synthetic 
Hierarchical 90 16 2 Distributed 

representations 

6.3. IRIS 

6.3.1. Datasets 

The IRIS dataset is one of the widely known datasets in pattern recognition particularly for 

classification [219]. The dataset consists of four attributes with 150 instances classified into 

three classes of iris plant. One class is linearly separable from the other two which are not 

linearly separable from each other. This creates an associative relationship that influences the 

classification. Figure 6-1 presents a pictorial representation of the class clusters for the IRIS 

dataset. The feature distribution across the classes for each attribute is presented in Figure 6-2. 

For the class iris-setosa, petal length and petal width are clearly separable and can be 

considered as the most influential and determining factor variants. Further, it can be observed 

that two of the four features are correlated with the iris class value which makes the results 

highly predictable. 

 

 
Figure 6-1: Plot of IRIS dataset indicating the classes clustered across the 2D feature space.  
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Figure 6-2: Plot for the IRIS dataset representing the class distribution for its four attributes. 
This figure illustrates that classes are clustered within an attribute. For some attributes such as 
sepal length and sepal width, all the classes are closely associated whereas for petal length and 
petal width, one class is clearly separated (Iris-verginica). The count of Y-axis represents the 
index of the sample.   

 

M-IRIS is a modified version of the IRIS dataset, developed specifically for this research, 

where attributes are tweaked so that more overlapping is exhibited when compared to regular 

IRIS dataset as shown in the Figure 6-3. The highest possible accuracy that can be achieved 

for IRIS is 99% since one sample consists of ambiguous values that are not specifically 

associated to a single class. These values are tweaked to create M-IRIS with which a clear 

accuracy of 100% can be achieved. Further, there are two more versions of this modified 

dataset where one of the three attributes are replaced by an independent or associative attribute 

based on type of experiment.  
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Figure 6-3: Feature/attribute values distribution for Modified IRIS dataset (M-IRIS) dataset. 
The plot indicates the classes being overlapped for all 4 attributes. The count represents the 
index of the sample. 

The modified IRIS datasets can be used to examine the impact of modifying input values on 

neural network weights. The tweaking is also performed by adding or deleting attributes in the 

input dataset that represent features. 

 

M-IRIS1: The values of attributes are tweaked to achieve 100% accuracy. 

M-IRIS2: An attribute is added which is correlated to all the original four attributes. 

M-IRIS3: An independent attribute is added which has no correlation with original four 

attributes. 

 

The feature distribution of the M-IRIS1 dataset is presented with a clear association of values 

in attributes three & four when compared to regular unmodified IRIS dataset. The feature maps 

of MIRIS2 & MIRIS3 are presented later (Sections 6.14.2) along with the feature extraction.  

6.3.2. Classification Experiments 

Classification experiments were carried out using ANNs with 3, 5, 9 and 13 hidden layers using 

gradient descent layer-wise training with BP for overall fine-tuning. The experiments are 

carried out using MATLAB 2017a and Weka and the technical details of the experiments 

carried out on IRIS and its variants are presented in Appendix A.1. The experiment results are 

presented in Table 6-2 and a graphical representation in Figure 6-4. 
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Table 6-2: Classification Accuracies for IRIS and modified IRIS datasets for four different 
topologies 

No. of 
Layers 

Classification Accuracy 

IRIS M-IRIS1 M-IRIS2 M-IRIS3 

3 78.3 98.6 58.4 28.9 

5 79 99.8 43.7 43.8 

9 84.5 88.3 45.5 45.3 

13 27.1 41.8 16.4 11.2 
 

The classification results indicate that increasing the number of layers may not always produce 

efficient results. With more layers, the DNN learning mechanism may indulge in deeper 

segregation of features at discreate levels which will end up with more similarities at the 

discrete level resulting in confusion while matching classes. This is the case where the 13-

layered DNN produced the least accuracy which is an observation that lead to removing this 

topology for feature extraction. M-IRIS1 is able to achieve over 99% accuracy. Therefore, can 

be used to compare representation in other IRIS datasets. Detailed results for these experiments 

are tabulated in Appendix A.2. 

 
Figure 6-4: Classification results for IRIS and M-IRIS datasets with three, five, nine and 13-
layered deep neural networks  
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6.4. Wine Dataset 

The wine dataset is a collection of data obtained from the chemical analysis of wines from 

different cultivars [230]. The wine dataset consists of 178 instances and 13 attributes with real 

and integer values and contains three classes as summarised in Table 6-3. The attributes 

contribute to the overall chemical composition. The wine dataset is considered as a well-

structured and poised dataset with high consistency. However, this dataset is not challenging 

because of its controlled behaviour.   

 

Table 6-3: Details of Wine Dataset 

Data Set  
 

Multivariate Number of Instances: 178 

Attribute  
 

Integer, Real Number of Attributes: 13 

Associated Tasks: Classification Missing Values? No 

 
 
The three classes can be segregated using simple clustering as shown in Figure 6-5.  

 

 
Figure 6-5: The plot for cluster analysis on wine dataset: The 2D scatter shows the 
distribution of the 3 classes of wine dataset samples.  
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The clustering is based on Mahalanobis distance. There are discrepancies in some classes, for 

example, five instances of class 1 (Red wine) values are located quite far from the cluster. 

However, ANNs are able to learn these minor issues and are able to classify the examples due 

to the strong relationship between the attributes. 

 

The classification experiments are carried out using Weka and MATLAB MLP (NN) toolbox 

based custom code. A one-layered ANN is enough to achieve 100% accuracy for the wine 

dataset due to its simplicity. However, two more topologies are used for the experiments to 

investigate the influence of size and other topological factors on the internal structure of the 

features. The one-layered and 3-layered based experiments are carried out using Weka and the 

9-layered DNN experiments using MATLAB and the results are presented in Figure 6-6. The 

9-layered DNN has given the worst classification accuracy, while the one-layered ANN gave 

the best accuracy. 

 

 
Figure 6-6: Experiment results from the classification experiments for Wine dataset with 
one, three and 9-layered DNNs. 

6.5. MNIST 

6.5.1. Dataset 

The MNIST dataset is very critical to this research and has been one of the important datasets 

used at the initial stages of the research. The variety and veracity of the MNIST dataset makes 

it ideal for testing new hypothesis particularly on feature extraction.  

 



 

 132 

The database is a large image dataset, the most acclaimed dataset among ML datasets for 

training and testing image processing systems. MNIST consists of images of handwritten digits 

(0-9) predominantly used for character recognition and widely accepted as benchmark dataset 

in the ML community (Figure 6-7). The dataset is owned by The National Institute of 

Standards and Technology (NIST), and the total size of the dataset is unknown. However, the 

training and testing dataset that is used for benchmark tests is 60,000 samples for training and 

10,000 samples for testing and is a subset of the NIST dataset. This original black and white 

dataset is standardized to 28 x 28 pixels and subjected to grey scale levelling to reduce 

distortion (anti-aliased). The structure and various technical details of the MNIST dataset are 

presented in Appendix C.1. 

 

 
Figure 6-7: Sample data of handwritten character recognition data (MNIST) dataset 

 

MNIST was first used in 1998 by Lecun with SVMs as a classifier that achieved high accuracy 

with an error of 0.8% [24]. In 2012, an error rate of 0.23% was achieved with CNNs [231] 

whereas in 2016 an error rate of 0.21% was achieved using an ensemble of five CNNs [232].  

 

An extended version of MNIST called EMINST was published in 2017 which consists of 

240,000 training and 40,000 testing images with the same characteristic features as that of 

MNIST [233]. The visual diagram of the original MNIST digits is presented in Figure 6-7. 
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Figure 6-8:MNIST Training samples remonstrated from the weights 

 

From the training samples, a set of digits are extracted to provide a view of what exactly the 

DNN is trained on. This reconstruction of training samples is presented in Figure 6-8. It can 

be observed that the training data are quite good and are often able to achieve over 95% of 

accuracy for majority of classifiers. Figure 6-9 shows the samples extracted from testing data. 

The majority of the samples are easily recognisable and are identified correctly by the classifier. 

It can be observed that some of the samples are not complete or stopped abruptly. However, 

this has no effect on classifiers, particularly the DNNs which can identify the characters even 

though the data is incomplete or distorted. Furthermore, some of the digits have uneven 

rotations and angles which might create issues for some classifiers.  

 

 
Figure 6-9:  MNIST samples reconstructed from the weights (testing samples) 
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Modified versions of MNIST were created by applying different types of changes to MNIST 

dataset. For instance, M-MNIST1 is created by removing all digits except ‘1’ and ‘7’. The 

modified versions are designed to test the impact of changes in the input features on the pattern 

of hidden weights. The variants of MNIST and their details are presented below:  

 

o M-MNIST1: Digits 1 and 7 

o M-MNIST2: Digits 6 and 9 

o M-MNIST3: Digits 0 and 8 

o M-MNIST4: Digits 1, 7 modified by greying out the top bar of digit 7 

o M-MNIST5: Digits 1 and 9 (for similarities) 

o M-MNIST6: Digits 0,2,7,4 

o M-MNIST7: Digits 0,8,6,9 

 

6.5.2. Classification Experiments  

The experiments were carried out using three types of deep architectures.  

 

 DNN: ANN with multiple layers trained using greedy layer-wise training. 

 DBN: RBM based deep belief network proposed by Hinton [27]. 

 DAE: Multiple autoencoders stacked together. 

 

There are multiple topologies used based on the type of DNN. For DNN and DBN, the initial 

number of layers for the experiments are set at 7 layers followed by 13, 17, and 33 layers. Since 

the arrangement of layers is different for DAE networks, initially the experiments are carried 

out by stacking three autoencoders followed by five and nine.  

 

The topologies and number of neurons are fairly decided based on prior literature [234] in 

which high accuracy results is achieved on MNIST with DNNs, DBNs and DAEs.  

 

The number of neurons used for various topologies is in the pattern of 10-785-1024-

2048...2048-1024-785, followed by the output layers. The intermediate layers are fixed at 2,048 

neurons. This is followed across all the experiments. The results from the classification 

experiments are presented in Table 6-4. The detailed results with training and testing errors 

and other details are presented in Appendix C.  
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Table 6-4: Classification accuracies for MNIST and modified MNIST datasets for all 
architectures and topologies 

 
 

From the results it can be noted that the best classification accuracy for DNNs and DBNs is 

achieved for the 7-layered and 13-layered networks. This is in line with benchmark results for 

DNNs & DBNs obtained from the literature but still fall short of the best accuracies achieved 

using CNNs.  

 

 

A graphical representation of classification accuracies for DNN is presented in Figure 6-10. 

The bar graph indicates that the 33-layered DNN performs worst in terms of classification 

accuracies which reiterates that increasing ‘depth’ may not relate to an increase in accuracy. 

The classification accuracy achieved for the 7-layered and 13-layer topologies (Blue & Red 

bars Figure 6-10) are very similar and this is a point of interest.  

 

Type of 
DNN 

No. of 
Layers 

Classification Accuracies (%) 

MNIST 
Modified MNIST 

1 2 3 4 5 6 7 

DNN 

7 99.27 99.53 99.70 99.40 98.41 98.24 98.29 98.25 

13 97.87 98.83 96.01 96.88 97.27 97.25 98.85 96.27 

17 73.02 72.68 76.14 81.74 74.56 78.99 76.04 74.49 

33 58.46 64.74 57.09 62.17 60.04 60.46 63.04 59.57 

DBN 

7 99.72 98.52 99.02 98.14 98.06 98.99 99.31 99.51 

13 97.65 97.36 98.72 98.27 98.76 97.79 98.24 98.92 

17 76.70 82.60 73.00 80.33 86.15 84.83 72.38 73.67 

33 58.50 61.72 54.00 57.17 53.44 64.56 66.21 55.31 

DAE 

3 97.96 97.30 96.80 95.33 97.40 97.72 97.90 95.24 

5 99.43 98.45 98.71 98.21 99.77 99.50 98.00 99.79 

9 79.69 81.91 75.37 76.31 82.19 78.83 84.63 80.52 
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Figure 6-10: Classification Results for MNIST and MMNIST Datasets using DBN 

The results from the RBM based DBNs presented in Figure 6-11 are similar to that of the 

DNNs with the exception of the 17-layered DNN with MMNIST1, MMNIST3, MMNIST4, 

MMNIST5 which achieved better accuracies when compared to DNNs. For overall accuracies 

on MNIST6, DBN achieved better results than DNNs.  

 

Figure 6-12 presents the classification experiment results for three, five and 7-layered DAE 

networks. DAE based experiments achieved better results for 5-layered topologies with least 

being with 7-layered topologies.  

 

 
Figure 6-11: Classification Results for MNIST and MMNIST Datasets using DNN 
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Figure 6-12: Classification Results for MNIST and MMNIST Datasets using DAE 

6.6. Image Datasets 

6.6.1. ImageNet 

The ImageNet database consists of over 14 million images with hand-annotated labels for 

categorisation. It consists of more than 20,000 categories of which most of them are familiar 

and common objects [235]. The annotation in ImageNet is framed as whether an object exists 

or not in the image e.g., ‘there is a balloon’ or ‘there is no balloon.’  

 

ImageNet is considered as one of the challenging datasets for visual recognition. An 

international competition on ImageNet called the ‘ImageNet Challenge’ was initiated in 2010 

that aims at developing and evaluating efficient ML algorithms. The ImageNet challenge uses 

a subset of 1000 classes with 90 dog breed classes since the dog breed classes are considered 

to be the most challenging to classify. The challenge at the initial stages was to be able to 

achieve an error rate of 16% (in 2012). This target started decreasing with the rise of deep 

learning. By 2017/2018, the majority of the teams in the competition were able to achieve over 

95% classification accuracy. AlexNet [236] achieved the highest accuracy on ImageNet with 

just a 3.57% error rate in 2016, a significant reduction in value compared to the winner of 

ImageNet challenge 2015 (6.7%) [237]. Recently a classification accuracy of 97% (top five 

runs) was achieved using giant (very deep and large) DNNs [238]. However, in an article 

published in the google blog, Google AML project claimed to achieve highest accuracy on 

ImageNet2012 dataset using ‘AI child bot’, outperforming all existing models [239].   
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For this research, a subset of ImageNET with 200,000 images in 50 categories is used. The 

dataset and topologies are chosen to achieve over 98% of accuracy after a number of trial and 

error experiments.  

6.6.2. CIFAR-10 

The CIFAR-10 is a 10-class image dataset with 60,000 images of size 32 x 32 pixels with 

typically 50,000 images for training and the remaining 10,000 for testing. The classes are 

mutually exclusive in spite of overlapping naming conventions. For instance, there are two 

classes of trucks and automobiles, but automobiles exclude big trucks which are categorised as 

trucks. When CIFAR-10 was used for the first time, in 2010, a two layer convolutional deep 

belief network could achieve a classification accuracy of only 79%  [240]. Recently in 2018, 

the Google brain project was able to achieve 98.5% on CIFAR-10 [241]. CIFAR-100 is an 

extended dataset based on CIFAR-10 and extended to include a larger number of classes, 100 

instead of 10.  

6.6.3. Classification Experiments  

Classification experiments are carried out using 7, 12, and 18-layered DNNs and DBNs on a 

subset of ImageNet and CIFAR-10 datasets. A set of randomly selected images are modified 

by changing perceptual image characteristics like colour. The experiments with DNNs are 

carried out using Google’s TensorFlow library [242] (python library). The other experiments 

are carried out using MATLAB 2018a open source script customised for dataset and 

experiments. The classification accuracies for DNNs are presented in Figure 6-13 followed by 

the results for DBN experiments in Figure 6-14.  

 
Figure 6-13: Classification results for CIFAR-10 and ImageNet Datasets using DNNs 
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Figure 6-14: Classification results for CIFAR-10 and ImageNet Datasets using DBNs 

6.7. Speech and Speaker Datasets  

6.7.1. AN4 Speech Data 

The speakers’ data are extracted from Census (AN4) speech database provided by Carnegie 

Mellon University [243]. The database comprises of 1158 speech samples collected form 84 

subjects of both genders sampled at a bit rate of 16KHz using 16-bit linear sampling. However, 

this research uses the publicly available dataset with only 948 samples for training (from 53 

males and 21 female subjects) and 130 samples for testing (from seven male and three female 

subjects). All the samples are combined (both training and testing) and 600 random samples 

are selected for the experiments.  

6.7.2. TIMIT 

The speech recognition data, used to verify the proposed approach, was extracted from TIMIT 

Acoustic-Phonetic Continuous Speech Corpus that includes 630 speakers of eight different 

dialects of American English [244]. The database provides ten phonetically rich utterances of 

different statements for each speaker, making a total of 6300 samples. The data are recorded 

in a closed environment at a bit rate of 16 kHz with 16-bit linear sampling. The training and 

testing datasets are divided in the ratio of 70% to 30%. TIMIT is one of the speech databases 

that has been widely used as a benchmark to validate speech recognition algorithms and 

methods [245]. High levels of accuracy have been achieved by normalizing the speaker level 

mean and variance using strong voice active detection or VAD [246]. The research reported in 

[247] extracted 39 MFCCs and fed them into a feed forward neural network and a less than 6% 
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error rate was reported. However, technical details such as topology and parameters are missing 

in the work which makes it difficult to analyse or compare the results. Further, in [247], the 

complete TIMIT dataset was not used whereas in this research the full dataset is employed. 

The highest classification and verification accuracies reported for the TIMIT dataset was 

achieved using an ANN implementation [247]. 

6.7.3. Classification Experiments  

For NLP, particularly speaker identification, DAEs are predominately successful and produced 

efficient results [248]. For the AN4 dataset, speech features are presented as MFCCs using 

MATLAB libraries [222]. 16 MFCCs are extracted from the inputs for each source from the 

dataset. Once the features are extracted, different type of classifiers are defined using three 

DAEs with one, three, and five layers. Usage of multiple and divergent DAEs is necessary to 

test the accuracy rates and to determine the importance of the number of hidden layers in DNNs 

as discussed in the literature [52, 182, 248]. 

 

Though, three different topologies with one, three and five autoencoders are used to create a 

DAE for both AN4 and TIMIT datasets, for TIMIT dataset an extra 7-layered DAE is also 

used. The classification accuracies are presented in Figure 6-15. The detailed results are 

presented in Appendix D for the AN4 dataset and Appendix E for the TIMIT dataset. The 

details of number of nodes, training and testing errors are also presented in Appendix D and E.  

 
Figure 6-15: Classification results for AN4 and TIMIT datasets 

6.8. Air Pollution (CASTNET) 

Air pollution data is spatio-temporal in nature which makes it difficult to analyse due to the 

complexity of features. The dataset CASTNET is the air pollution dataset for the year 2010 
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obtained from the Environment Protection Agency of USA [224]. The dataset consists of 8700 

samples, 13 attributes with two classes based on air quality as being ‘good’ and ‘moderate.’ 

There is about 6% missing values in the dataset. This missing data has minimal influence in 

classification.  

 

The classification experiments are carried out using three topologies 7, 13 and 18-layered 

DNNs and the results obtained indicate that a 7-layered DNN produces highest classification 

accuracy among all three topologies. The classification results are presented in Figure 6-16 

and the details results are presented in Appendix G. 

 
Figure 6-16: Classification results for Air Pollution dataset 

6.9. Gene Expression Dataset 

The gene expression data is multivariant and often considered as difficult to classify due to the 

complex associations among attributes. The datasets that have been considered up until this 

point in this research have more samples than attributes which is a regular practise in designing 

datasets. However, it is important to test the new hypotheses on datasets, such as gene 

expression where number of attributes are higher than number of samples. Among all cancer 

datasets, the prostate cancer gene expression dataset is considered to be the most challenging 

with 12533 attributes and only 102 samples with 52 normal and 50 tumour cases [249]. The 

feature map of all 12533 attribute values is presented in Figure 6-17.  
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Figure 6-17: Feature Map of the prostate cancer dataset 

The classification of such datasets is typically accomplished through attribute selection and 

evaluation using ML and statistical methods. One such approach is presented in [73] where 

ANN was used for classification and diagnostic prediction of prostate cancer which achieved 

a classification accuracy of 100% for classification and 95.1% for predicting whether a given 

sample is a tumour or not. 

 

The experiments for this research are carried out using 1 to 5-layered topologies starting with 

one layer. The ANN is not trained using layer-wise training, but instead conjugate gradient-

based scale algorithm is used with a learning rate of 0.1 and a momentum of 0.3. The layer-

wise training is not used since the experiment topology starts from one layer and it is 

impractical to implement this on one or two layered topologies. Moreover, the experiments are 

carried out to optimise the neural network for classification rather than testing training 

algorithm. A traditional sigmoid function was used as the activation function with BP as the 

training algorithm. Apart from using the original dataset, this thesis incorporates the testing 

with a variant of the gene expression dataset GeneExpM. This GeneExpM is created by 

replacing the original values of significant attributes identified in [73] with random numbers.  

  

 
Figure 6-18: Classification results for the Prostate cancer gene expression dataset 
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The classification results are shown in Figure 6-18 as bar graphs and detailed numeric values 

along with the technical details are presented in Appendix H. The results from the experiments 

performed indicate that best accuracy was achieved for a three-layered ANN for both GeneExp 

and GeneExpM datasets. This result reiterates that increasing the number of layers may not 

necessarily improve accuracy.  

  

6.10.  Synthetic Hierarchical Dataset 

A Synthetic dataset consisting of 90 samples with known feature hierarchies was created. The 

details of the dataset and the experiment results are presented in Chapter 3. 

6.11. Random Values Dataset 

In some cases, it is important to investigate how a DNN reacts to a dataset of random values. 

There are two experimental scenarios followed for the classification of random data. In the first 

scenario, the attribute values in the existing datasets are replaced with random values. In the 

second scenario, a synthetic dataset is created and populated with random values. The 

experiments are carried out on both datasets. In either of the cases, the data in the dataset is 

purely random with no correlation. This dataset is used to demonstrate the ability of proposed 

knowledge component model to extract components from the random values with unknown 

features. It is important to see whether the proposed model could extract meaningful 

information by which the underlying patterns in a random dataset could be analysed. The 

classification of these random valued datasets yields no results; hence these were not 

mentioned. The dataset is used in the experiments is presented in the Section 6.17 and 

Appendix C.4.  

6.12. Summary 

This section presented the details of the datasets used in this research to facilitate an insight 

into the data’s characteristics. The results of classification experiments using different 

ANN/DNN topologies and datasets are also presented. The accuracy of the classification 

results will assure that the extracted Knowledge Components are efficient since the weights 

are optimised to achieve best possible accuracies.   
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PART II: Experimental Evaluation of Proposed Transferable Knowledge 
Component Model  

Overview of the section 

Part II of this chapter presents the experimental appraisal of the proposed component-based 

model to establish a relationship between input features and DNN weights. The experiments 

are carried out for extracting components, and the results are evaluated for validating the 

hypotheses.  

 

Transfer of knowledge (transfer learning) experiments are carried out to endorse the 

importance of the middle layer that contain significant knowledge as proposed in the 

hypothesis. Initial experiments presented in earlier chapters (Chapter 3 and Chapter 4) are 

confined to one dataset and typically to one type of topology. The experiments in this chapter 

explore the importance of the middle layer in more depth and breadth.  

  

Part II experiments fall into one of two categories. The first is a set of experiments for 

evaluating the hypothesis H2 on proposed knowledge component model. The second set is 

comprised of transfer learning experiments designed to reiterate the importance of the middle 

layer (hypotheses H1 & H2) which supports the proposed Blossom Effect.  

6.13.  t-distributed Stochastic Embedding: Visualisation 

Data Visualisation is widely accepted as the one of the best methods to analyse data [250, 251]. 

Traditional visualisation techniques use dimensional projection to present data and are quite 

consistent for normal and undistorted data [250, 252, 253]. However, for complex data like 

high dimensional data, several new tools and approaches are adopted.  

 

The fundamental aim of this research is to show how features are represented in the weights 

and how these representations are changed according to changes in the input. To demonstrate 

the influence as clearly as possible, it is necessary to adopt efficient visualisation technique. 

The volume of data, complexity and dimensionality used in this research poses a challenge for 

any visualisation technique. Dimensionality reduction is also necessary for high volume data 

like DNN weights.  
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t-distributed stochastic neighbour embedding or t-SNE is an ML algorithm for visualisation 

using nonlinear dimensionality reduction [23]. t-SNE is suitable for visualising high 

dimensional data in two or three dimensions without much information loss. The objects are 

projected using probabilistic distance points. For similar objects the points are nearby and 

closely associated whereas for dissimilar objects they are distinct and far. t-SNE shows the 

representations based on data values (similarity or distinctiveness).  An efficient visualisation 

will show separated clusters. The values of the parameters for t-SNE are left as default values 

for all the experiments in this thesis. 

 

 
Figure 6-19: Visualization of IRIS dataset using t-SNE for four different types of distance 
measurements. 

The importance of distance between the clusters or object points is very significant in t-SNE 

visualisations.  t-SNE supports four types of distance measurements namely Mahalanobis, 

Cosine, Chebychev and Euclidean. Figure 6-19 represents the visualisation of IRIS data using 

t-SNE all four types of distance measurements presented earlier.   

6.14.  Experiment Results for Hypothesis 1 

Scenario 1 of the hypothesis (Section 4.2.1) is based on the assumption that the input attributes 

that constitute feature are clearly independent and do not possess any relationship. With such 

dataset with independent features, 100% classification accuracy can be achieved. There are no 

existing benchmark datasets with these features. Therefore, the existing benchmark datasets 

are modified to make them suitable for the experiments. There are four datasets that are used 
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for this experiment from different domains and categories. These datasets are described in the 

Sections from 6.11 to 6.14. 

 

6.14.1. Modified IRIS (M-IRIS)   

The experiments were carried out on M-IRIS dataset with four independent features. Any 

attribute correlation that exists in IRIS is removed by replacing correlated values with random 

values as explained in the Section 6.11.  

 

Four types of topologies: three, five, nine and 13-layered DNNs are used for the experiments 

and the weights of the three middle layers, the hypothetical knowledge components, are 

extracted. These weight values (aka knowledge components) are fed as input, one layer at a 

time, to produce a visualisation.  

 

 
Figure 6-20: Plot of knowledge components extracted from Weights for the M-IRIS dataset. 

 

According to Hypothesis (H1), in case of independent components, number of attributes (n) 

must be equal to the number of components C extracted for the layers. In this case, therefore, 

𝑛𝑛 = 𝐶𝐶 = 4. Figure 6-20 shows the components that are extracted from the layers, layer by 

layer, with variance in the x-axis and components in the y-axis. Each layer has four 

components.  It can be noted that the components in the middle layer (denoted by the blue dots) 

show the least variance between them when compared to those of layer 4 (green) and 6 
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(orange). This is the reduced variance of components in the middle layer that can be related to 

the learning mechanism of the DNN. In the middle layer, components are purer (cleaner) with 

least noise thus, significantly contribute to the overall accuracy of the DNN. 

 

The original IRIS dataset consists of three classes and can attain a maximum accuracy of 99.8% 

since one sample has inconsistent data that disturbs the correlation. The 2D and 3D 

visualisation of the IRIS classes is shown in Figure 6-21 and Figure 6-22. 

 

 
Figure 6-21: 2D visualisation of IRIS dataset (all samples) showing the distance between the 
classes 

 

 

Figure 6-22: 3D visualisation of IRIS dataset (all samples) showing the distance between the 
classes. The classes appear closer when compared to 2D visualisation (Figure 6-21).  

 

However, when looking into the component visualisation for IRIS through the weights of the 

middle layer of ANN dataset, as presented in Figure 6-23, it can be observed that two 
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components are nearly overlapping, similar to the raw attributes of the IRIS Dataset. However, 

when the dataset is tweaked to make the variables independent (random values), the 

visualisation of the extracted components is different as shown in Figure 6-23. 

 

 
Figure 6-23: 3D Visualisation of attributes (Features) values of IRIS dataset for all samples 

 
Figure 6-24: 3D Visualisation of the attributes of the M-IRIS dataset. The fourth attribute 
values (yellow cluster) are adjusted in such a way that it becomes completely isolated which is 
reflected in the plot. 

 

The representation of components when the dataset is tweaked to create complete 

independence between the attributes is shown in Figure 6-24. To present the notable indication 

of distance between the clusters and to confirm the independence more clearly, a 2D flat 

representation as shown in Figure 6-25.      
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Figure 6-25: Visualisation (flat) of attributes of M-IRIS dataset. It can be noticed that the 
isolated attribute (with modified values) (yellow) is clearly separated from the rest of the 
attributes. However, a purple dot can be noticed in the yellow cluster which looks quite close 
compared to 3D visualisation (Figure 6-24). 

These visualisations show that when the input (attribute) values are tweaked to make a set of 

attributes separated, the distinction will be reflected in the projection of weights. This further 

confirms the presence of underlying representations in the weights that are directly associated 

with input. Further, to obtain a clear interpretation on the separation between the features, it is 

necessary to observe the projections in both 2D and 3D spaces with a proper distance measuring 

function.   

6.14.2. MNIST Character Recognition Dataset (M-MNIST)   

In case of M-MNIST, the experimental results show a component distribution pattern that is 

similar to M-IRIS results. Since there are ten independent classes, it is important to observe the 

behaviour for all three types of topologies that are used in the experiment. Each class is directly 

attributed to 28 x 28 pixel images (a 784-valued representation per digit).  

 

The topologies used for both DNN and DBN consists of the same structure whereas for DAE 

it is lesser number and comprised of stacked autoencoders in the form of layers. The number 

of weights in this case are the same but the number of layers is different. The middle layer for 

DAE was chosen to be the same as for other two topologies.  

 

The selection of topologies for component extraction is based on the classification accuracy 

achieved for that topology as reported in Chapter 3 and in this case topology with highest 
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classification accuracy are selected. Among all the topologies used for DNN, DBN and DAE, 

the 13-layered topology is selected for DNN and DBN and 5-layered DAE is selected for 

extracting components. The MNIST dataset has overlapping features since they are 

handwritten digits with some visible similarities between digits, for example 1 and 7, or 6 and 

8. These similarities are considered as underlying commonalities in features and therefore, 

provide a challenging testing ground for The Blossom Effect. 

 

Table 6-5: MNIST Dataset – Number of components extracted from the weights of various 
layers for the three types of deep architectures. The number of components is based on the 
input features which is determined by the component extraction model.   

Layer No. 
No. of Components 

DNN DBN DAE 

1 19 23 29 

2 16 19 15 

3 14 25 11 

4 10 22 14 

5 9 17 28 

6 9 14 

XXX 

7 7 9 

8 11 14 

9 12 15 

10 14 18 

11 19 23 

12 21 22 

13 26 25 
 

The results from the experiments carried out for extracting knowledge components is presented 

in Table 6-5. From these results, it is evident that the middle layer has a minimum number of 

components in accordance with the Hypothesis H2 proposed in the Chapter 4 Section 4.3. This 

is in line with the first part of proposed Blossom Effect which is features folding into the middle 

layer. The folding is similar to the results of encoding the input into the middle layers of 

autoencoders.  The results of the component extraction are presented in Figure 6-26. This is 
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similar to the weight variance graph (reverse bell) which shows that the middle layer has a 

minimum variance which is responsible for the number of components extracted being 

minimum. For all three types of architectures, the results are the same. However, the pattern 

for the number of components is different for DBN, where its value is reduced in the second 

layer compared to the other two architectures. Further, the number of components extracted 

from the input data are 8. This reiterates the fact that the middle layer is able to produce a same 

number of knowledge components. 

 

 

 

Figure 6-26: MNIST: Component representation for various layers for DNN, DBN and 
DAE. This figure indicates the components being less in number as they approach middle 
layer (as proposed and experimentally evaluated in Chapter 3).  

 

The next visualisations are presented in order to provide an insight on the feature patterns for 

the various modified MNIST datasets. To start with, the visualisation of classification results 

for the original MNIST dataset is shown in Figure 6-27. It can be noted that the input digits in 

the form of images are clearly separated.  
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Figure 6-27: Input cluster visualisation of MNIST dataset for all ten digits (0-9) with 
different colour for each digit. Each component represents the individual digits. This 
demonstrates that the weights associated with individual class been separable.  

 

From the weights of the middle layer, seven components are obtained which indicates that the 

input features are represented in seven knowledge components. When the input data are used 

to extract features, 12 feature components are extracted to represent the features. Since MNIST 

consists of overlapping features, the number of knowledge components extracted can be 

trusted. The extracted input components closely match with the number of components in the 

middle layer. This difference is due to the fact that the components extracted from the middle 

layer do not resemble  the input features completely (100%) due to the nature of the DNN’s 

capability to learn features efficiently [15, 16]1. Many variants of MNIST datasets are also used 

in the experiments (see Section 6.12 for details of these modified datasets). These datasets help 

to demonstrate how weights are represented in the middle layer. There are seven components 

extracted from the middle layer of the DNN weights and the weight projection is presented in 

the Figure 6-28. The component extraction for M-MNIST4 where the only digits 1 and 

modified 7 are used is shown in Figure 6-28.  

 
1 A similar set of experiments was conducted with the Wine dataset. For this dataset, the number of 
input features extracted matched the number of components extracted from the middle layer This match 
is not unexpected since the classification accuracy achieved for that dataset is nearly 100%. The details 
of these experiments are presented, for completeness, in Appendix C. 
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The digit ‘7’ is modified in such a way that the top line is lightened to make it nearly resemble 

‘1’. Since the digits ‘1’ and modified ‘7’ are very similar, the overlapping of the features is 

clearly visible.  

 
Figure 6-28 : The visualisation of component extraction from the weights for the M-
MNIST1(digits ‘1’ & ‘7’)  depicting a clear overlapping due to the similarities in the features 
of digit ‘1’ and digit ‘7’. 

Another important aspect is checking experiment results using dataset with two digits with 

almost no visible resemblance. The digits selected for this experiment are ‘1’ and ‘9’, and the 

M-MNIST1 dataset. From the weights of the middle layer, two components are extracted. The 

experiment is carried out multiple times and the results for selected experiments are presented 

in Figure 6-29. 

 

 
Figure 6-29: The visualisation of component extraction from the weights for M-MNIST5. 
The components are clearly separated indicating very few overlapping features exist in digit 
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‘1’ and digit ‘9’. The size of the component shows the strength of the features in terms of 
number of weights strongly associated.   

 

The datasets M-MNIST5 (digits 1 & 9) and M-MNIST6 (0, 2, 7, & 4) are then tested to identify 

the component structure for data with less similarities in features when compared to other 

digits2. These experiments are carried out with reference to the hypothesis H2 (Chapter 5, 

Section 4.4). The component diagram for these datasets is shown in Figure 6-29.  

 

 
 

Figure 6-30: The plot indicating the average number of components extracted from each 

layer of DNN and DBN for modified MNIST Datasets (M-MNIST5 and M-MNIST6) 

 

The M-MNIST2 dataset consists of the digits 6 and 9, and it is possible to reconstruct one from 

the other. Thus, a similar component model to the M-MNIST1 dataset can be expected which 

has digits 1 and 7 and 0 and 8. The component diagrams for these datasets are provided in 

Appendix C.  

 

Hypothesis H1 is further evaluated on image datasets and the results are presented in Appendix 

F. The experiments result with modified datasets shows that the accuracy varies based on the 

input feature values and the noise present in the dataset as stated in the hypothesis H1. 

 
2 Similar results are attained for the random number dataset, see Appendix C. 
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6.15.  Experiments for Hypothesis 2: 

The experiments described in this section are carried out to evaluate the importance of the 

various layers of a DNN and to assess the prominence of the middle layer. The experiments 

are grouped into two sections. In the first section a set of experiments are undertaken where 

the classification accuracy of a trained DNN is compared to with and without the middle 

layer(s), as per the experiments carried out to identify the importance of a particular layer in 

Chapter 3 (Preliminary Investigation). The experiment results for IRIS, MNIST and the 

Synthetic hierarchical dataset are presented in Chapter 3 along with the execution times. The 

key observation is that the execution time was less when the middle layer(s) from the untrained 

network is replaced with a trained network.  

 

 
Figure 6-31: Classification results for ImageNet and CIFAR-10 datasets when various layers 
in the untrained 13-layer network are replaced with components extracted from the layers of a 
trained network 

The classification results for these experiments are considered from the perspective of the 

highest achieving topologies for DNN and DBN, the 13-layered topology. For ImageNet and 

CIFAR-103, the comparison of classification accuracies of an untrained network with the 

accuracies when various layers are replaced with the components from a trained network is 

presented in Figure 6-31. It can be observed that there is a considerable improvement in 

classification accuracies, when the untrained weights are replaced by the component weights 

extracted from the trained network. Before converging, the highest accuracy is achieved for 

the network with the middle layer being replaced. These results are similar to the classification 

 
3 The experiment results using the TIMIT dataset produced similar results to ImageNet and CIFAR. The results 
for the TIMIT dataset are presented in Appendix F. 
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results achieved for the initial experiments on IRIS, Synthetic dataset and MNIST datasets (see 

Chapter 3). 

 

This shows that the transfer of components in the middle layer has given a warm start for the 

experiment and produced better accuracy and reduced execution time, which is presented in 

Figure 6-32. The full details of the experiment results are presented in Appendix F.  

 

 
Figure 6-32: Execution time for classification experiments on ImageNet and CIFAR-10 
datasets with and without replacing the middle layer. 

The second set of experiments are carried out to compare the input feature components with 

the number of components extracted at each layer. Further, when selected features are removed 

from the input, the number of weight components extracted from the middle layer must show 

a clear indication or impact. Figure 6-33 presents the number of weight components extracted 

from the middle layer when the input dataset has 100% of features, 70% of features and 50% 

of features respectively.  
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Figure 6-33: Number of components extracted from the middle layer for various topologies 
and datasets. Three strategies: Full features, Strategy 1: removing 30% of features, strategy 2: 
removing 50% of features (randomly) 

The feature removal is purely at random using open source MATLAB code for removing n/3, 

n/2 attributes from the total number of attributes n. To maintain the consistency with the other 

experiments carried out for this research, three types of architectures (DNN, DBN and DAE) 

are used for the experiments. The experiment results show that transfer of the middle layer 

produces significant impact on accuracy of the deep architectures (DNN, DBN and DAE) and 

the component extraction follows same pattern i.e. middle layer has minimum number of 

components as shown in Appendices E, F and G. 

6.16. Application of the Proposed Knowledge Component Model 

The prospect of transferring knowledge from one system(trained) to a new system(untrained)  

will provide a warm start to the new system and will help in reducing training time. Since 

DNNs are recently categorised as connectionist systems [254], the possibility of having two 

different systems for training and testing cannot be ruled out. Since the execution time for DNN 

based AI systems is high, it is practical to have a faster testing system which utilises the 

knowledge from the training systems. For instance, a DNN system with 13 layers is optimised, 

the same sized 13-layered network may not be necessary for the testing system. Therefore, a 

reconstruction of a DNN with a smaller number of layers based on knowledge components / 

middle layers could be used for testing. This is a type of knowledge transfer approach method 

being practically implemented.  

 

A second approach that might be worked out in the future is using trained deep architectures 

in portable form as deployable models. Since the knowledge is concentrated in the middle 
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layers, the layers near the input may not be necessary. So, these insignificant layers (if fully 

identified) can be either removed or combined with the previous or next layers. The layers may 

have been useful to build-up the knowledge at the middle layer, but their importance will be 

diminished once the middle layer has enough knowledge. The approaches proposed above are 

implemented in three applications which are presented below. 

6.16.1. Deep Autoencoder Model for Digital Watermarking Analysis 

Digital watermarking has been used to authenticate documents, images, videos and other e-

resources. The case of identifying whether or not a watermark exists is an identification/pattern 

recognition problem. This identification of the watermark gets more complicated when the 

source is a scanned documents/images, and particularly for distorted sources where only a 

portion of the watermark may exist. The NWND dataset of 444 images is watermarked with 

text, image (logo) and shape, making the total sample size 1776. A three-layered DAE network 

is used for the identification experiments against traditional feed-forward ANNs. For both 

classification and identification, the DAEs outperformed the ANNs with 77.9%, 82.1% and 

64.2% for classification of different watermarks and 86% of accuracy for identification. This 

work, which was published in 2018 [255] was extended in this doctoral research to provide the 

possibility of portable DAE for identification. After training the three-layered DAE for 

classification, a new DAEtest is created with one layer extracted from the original three-layered 

DAE. A simple fine tuning is performed on the new DAEtest which has taken about one-third 

of original training time. When the DAEtest is used in the identification experiment, 86 out of 

100 images are identified to be correctly producing exactly the same accuracy rate of the 

original 3-layered DAE. The results from this experiment further affirms the transfer of 

knowledge through aspect proposed in this thesis. However, there is a marginal difference in 

error values (rmse) for 28 images (average rmse = 0.134) where in transfer modal (DAEtest) 

had less error ratio compared to original DAE.  

6.16.2. A CNN based Model for Image Analysis  

The experimental evaluation on CNNs is excluded since this thesis is based on only feed 

forward networks. This section is a preliminary investigation for implementing an approach 

similar to transfer learning for image analysis. Though this work is published, this is not in the 

scope of the thesis but could be considered for future work (as presented in future work section 

of Chapter 7).  
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The second set of experiments was performed using CNNs on the CIFAR-10 dataset. Initially, 

a CNN with six convolution layers is trained with a subset of 5000 images from the CIFAR-

10 dataset. The experiments are performed using TensorFlow with the keras library 

(cifar10_trained_model.h5) [256] which achieved 89% accuracy. 

Max pooling is then adopted for pooling layers and the experiment performed for 100 epochs. 

The pooling layers consist of 32 x 32 pixel for de-dimensioning with a batch size of 32 and the 

final Softmax layer with ten nodes (number of classes). After the CNN was trained, the testing 

experiments are performed and attained an accuracy of 79%.  

 

Further experiments are performed for modelling a portable-CNN by removing one layer at a 

time, starting from the first layer and without any new training. For the 5, 4 and 3-layered 

CNNs, the model is able to produce a prediction accuracy of 79%, 76.5% and 78.6% 

respectively. These results clearly show the influence of the different layers. With a simple 

fine-tuning, the 3-layer network is able to achieve 79% accuracy with only 12% of additional 

time for training. The execution time was about 39% of the time required original 6-layer CNN 

since the number of layers are reduced, which makes this portable model a workable model.  

6.16.3. A Transfer of Knowledge Applications  

Transfer of knowledge, or in some cases referred as transfer learning, has attained success for 

various applications. As a part of this research, experiments are carried out to extract a 

transferable model instead of merrily transferring the entire layer. The application of such a 

model provides a clear view of whether or not what is being transferred is significant 

knowledge (that is ‘sufficient’ to provide required results). The transfer of knowledge 

components approach has high potential in industrial applications due to reduction in the size 

and amount of parameters/values to be transferred. This transferable component method is 

applied on three different types of deep architectures with different datasets and domains.  

 

DAE approach for classification of corrupt datasets 

In line with the experiment results mentioned in the previous chapters and the publication 

referring to the knowledge transfer approach using DAE [56], the proposed transfer learning 

component model is applied to this work. A synthetic hierarchical dataset is used for this 

experiment which is the same dataset that is used for the initial experiments reported in Chapter 

3. With the initial model of transferring the layers from a trained DAE to an untrained DAE, 

the classification accuracy improved to 78.9% from 56.7%. The current experiment is 
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performed by extracting transferable components from the original DAE and transferring them 

to a new trained DAE. The component model achieved a classification accuracy of 72.1% 

without fine-tuning. When fine-tuned, it was able to achieve the original accuracy of 78.9%. It 

is noteworthy to observe that the training time has reduced considerably since the entire 

network is not re-trained. The testing data is independent and is not included in the training 

dataset.  

 

CNN model for the approach for identification of digits classification in MNIST Dataset 

The experiments are carried using keras modelled CNN with 6 layers on the MNIST dataset 

using TensorFlow. Firstly, a CNN called CNNTrain is trained on all 50,000 training samples and 

when tested, it achieved an accuracy of 94.5%. The test data is provided to a three-layered 

CNN called CNNTest which is not previously trained and the classification accuracy at the first 

run is recorded as 19.8%. This is followed by transferring all the parameters and values of the 

last three layers from the trained CNNTrain to CNNTest and running the testing experiment. This 

approach achieved an improved accuracy of 78.3% with fine-tuning using an additional 

Softmax layer.  

 

A further experiment with the replacement of weights of the three-layered CNNTest by the 

component values extracted from CNNTrain, achieved an accuracy of 74.4% after fine-tuning 

for 13 times. This decrease in accuracy (~4%) is attributed to the complexity of the CNN 

structure and its learning procedure. The pooling layers are the controlling factor in the case of 

CNN. Therefore, the proposed component model requires special type of extraction method 

for these layers since they are not just regular weights. However, the significant reduction in 

the training time in spite of fine-tuning the CNN multiple times indicates that this approach 

cannot be ruled out. CNNs are always considered as a special case of deep architectures and 

their limitations, particularly their restriction to image analysis and weakness in learning 

mechanism is a point of debate. Well known deep learning expert Hinton has expressed the 

same opinion in his recent work and proposed a new approach called matrix capsules to 

overcome the limitations of CNNs [257]. 

 

Transfer of knowledge for evolving DBN 

The research on evolving DNNs using evolutionary strategies while working on this thesis [52] 

has inspired to work on evolving DBNs. However, instead of starting from scratch which was 
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the earlier approach adopted in this research for DNNs, the experiments detailed in this chapter 

are carried out to evolve problem specific DBN test networks which can be deployed and can 

run with minimal hardware requirements. The approach has been tested on small datasets with 

significant success but achieved less, but still notable success due to longer training times rather 

than lower accuracy on larger datasets.  

6.17. Summary 

Part II of this chapter provided the experimental evaluation of the proposed Transferable 

Knowledge Component model. The experiment results provide decisive evidence in support of 

the Blossom Effect proposed in the hypothesis. The next section provides assessment and 

reconciliation of the proposed approach which is utilised in these experiments.     
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PART III: Assessments and Reconciliation 

Overview of the section 

This section presents the reconciliation on how the proposed hypothesis is tested and validated 

through the experimental evaluation and analysis of the results. The principle findings based 

on the relationship between the input features and the weights in the hidden layers are presented 

in this chapter. Finally, the Blossom Effect proposed in this thesis is justified by the findings 

obtained through the experiment results. This concept instigated a re-thinking of the research 

directions on the internals of neural network learning.  
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6.18.   Validity of Research Hypotheses 

The validity of the hypotheses is carried out by analysing the experimental results detailed in 

this thesis. The hypotheses presented in Chapter 4 are revisited here.   

 

Hypothesis 1 

H1: For a given input with n features with x% of least relevant information (noise or distortion) 
that significantly effects the accuracy, x is distributed among L/2 layers in which there exists c 
components in the middle layer (Lm) such that when x is minimised, c ≤ n.  
 

There are three scenarios were detailed for H1 and these are considered here. 

The first scenario of H1 states that “the number of components extracted from the layers must 

equal the number of input variables when the attributes/features in the input are not 

overlapping.”  

 

Scenario 1 is validated through the experiments carried out on the modified MNIST datasets. 

The results of the experiments on M-MNIST5 (digits 0, 9) and M-MNIST6 (digits 0, 2, 7, 4) 

supported the hypothesis. This is further validated on datasets with independent variables such 

as the random values dataset and the experiment results are presented in Appendix C.4.  

 

For the modified IRIS dataset, when the dependency/correlation of attributes is removed 

(removing the correlation for the class), the number of components extracted are same as the 

number of attributes as proposed in Hypothesis 1. The independence of these features is 

reflected in a clear separation of feature components, as shown in Figure 6-23 and Figure 

6-24. The number of components for different input feature-based strategies is presented in 

Figure 6-33. The number of components extracted is based on structure of the input features. 

Similarly, when the relationships are removed from the Synthetic hierarchical dataset, the 

feature association becomes distracted and the overlapping of features is reduced as presented 

in the previous section. 

 

When the number of components is the same across all layers, a ‘pipe’ like structure is 

produced. Thus, Hypothesis 1 is validated across four different types of datasets and after 

analysis of results, H1 has tested to be true. 
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Considering the results from the MNIST experiments, the second scenario of Hypothesis 1 can 

be verified. The hypothesis states that the middle layer has significant features and that number 

of middle layer features matches closes to the number of input features. The initial experiments 

carried out in Chapter 3 produced affirming results. Further, the experiments carried out on 

other datasets have reasserted the ‘reverse bell graph’ principle, presented in Chapter 3, Figure 

3-2 (Chapter 3 Section 3.7), which is the results obtained for the MNIST dataset. The 

experiment results for rest of the datasets including Wine, AS4 are presented in Appendices C 

and D.  

 

The third scenario is presented for Hypothesis 1 to cover all possible combinations of input 

features that influence the component arrangement in the layers of a DNN. The first two 

scenarios test the possibility of features being either fully independent or partially dependent. 

The third scenario checks the case where the features are 100% overlapping. i.e. every input 

attribute is associative. This scenario helps to reject the possibility of the null hypothesis. The 

most suitable datasets for these types of experiments are ImageNet, CIFAR1-0, TIMIT and the 

Synthetic (hierarchical) dataset with known FHs. The experiment results presented in Chapter 

6 part II confirm the truth of the statement presented in scenario three. Thus, all the scenarios 

are assessed and proven to be correct which combined to validate Hypothesis 1. 

 

6.19. Principle Findings on the Relationship between Input Features and 
Neural Network Weights  

The evaluation of Hypothesis 2, the Blossom Effect, through various experiments paved the 

way for the observation of the weight patterns in a neural network’s hidden layers. This 

research provides an insight into the neural network weight patterns.  

 

The experiment results presented in Part II of this chapter indicate that the number of 

components extracted from the weights is directly dependent on input features. Figure 6-34 

presents the visualisation of weights from the middle layer for the experiments carried out 

using the M-MNIST2 dataset with two digits, ‘6’ and ‘9’.  
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Figure 6-34: Visualisation of weights for digits 6 & 9: M-MNIST2 dataset. The commonalities 
represented by weights that are closely banded. 

The reduced dimensional weights of digit ‘6’ are indicated in red with component 1, whereas 

the digit ‘9’ is indicated in cyan with component 2. The weight pattern indicates a separation 

between the components of ‘6’ & ‘9’, with one set of weights of digit ‘6’ being close to that of 

digit ‘9.’ This indicates the commonality of features for ‘6’ & ‘9’, that may be of shape or area.  

 

When the contrasting case of digits ‘1’ and ‘7’ (M-MNIST1) is considered, the visual 

representation of weights indicates a different picture as shown in Figure 6-35 where the red 

colour indicates digit ‘1’ and the cyan colour indicates digit ‘7’. The features are clearly 

overlapping with a minimum distinction which indicates the overlapping of the attribute 

values/input features.  

 

To pursue the validation of Hypothesis 2 further, it is important to test the results by repeating 

the experiments and modifying the same dataset. This modification of M-MNIST1 carried out 

by greying out the top bar of images of the digit ‘7’, this makes it appear more similar to the 

digit ‘1.’ M-MNIST4 is the dataset with this modification, and the weight component 

visualisation in a reduced dimensionality is presented in Figure 6-36. The figure, where 

instances of digit ‘1’ are represented by red dots and instances of the grey-out digit ‘7’ are 

shown in cyan, clearly shows the overlapping of features when the top bar of the digit seven is 

greyed out.  
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Figure 6-35: Visualisation of weights for digits 1 & 7: M-MNIST1 dataset. The is considerable 
overlapping between the two digits and the isolated cyan indicates the difference in the features 
probably the upper part of digit ‘7’ and the lack of angle in digit ‘1.’ 

 

The experiment results are a strong indication of how input features affect the weight patterns. 

The visualisation indicates the reason for the number of feature components that are extracted 

from weights.   

 

 
Figure 6-36: Visualisation of the weights for digits ‘1’ (Red) & ‘7’ greyed out (Cyan): M-
MNIST4 dataset. The overlapping in the majority of the parts indicates that when the upper 
part of digit ‘7’ is greyed out, the majority of the representations in the weights are common 
and overlapping in digits ‘1’ and ‘7.’  

 

In the case of distinctive features, a clear separation can be observed. 60 samples were extracted 

from the ImageNet creating two categories of images with distinctive characteristic features. 

Some of the images were handcrafted so that there are no known similarities. One such example 
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is a triangle and a circle where the triangle was created with dashed lines. Category one has 

coloured images excluding the colours black and white, whereas the images in the category 

two are black and white. Category one has images of animals and living organisms whereas 

category two has transportation vehicles. When trained on a DBN, the initial projection of the 

weights with four components in the middle layer is presented in Figure 6-36. There are some 

commonalities at the discrete level which are exposed in red and cyan colours, whereas the two 

other components are almost invisible.  

 

  

Figure 6-37: Component projection for 
weights from the middle layer of DBN for 
modified ImageNet Dataset with 60 
handpicked samples 

Figure 6-38: Component projection for 
weights from the middle layer of DBN for 
modified ImageNet Dataset with 30% of 
samples modified 

 
When the 30% of the random pictures from category two are replaced with coloured images, 

there is a change in the manifestation of weights with an increasing presence in component A. 

With a few more experiments, the projection of the middle layer components could provide 

low level information on which characteristic feature influences which component, as shown 

in Figure 6-38. 

 

Similarly, fine-tuning the DNN has an immense effect on placement of weights in the 

component model which is presented below. Two speaker corpuses are selected from the AN4 

dataset and trained on a DNN without a Softmax layer. The features that are extracted from the 

middle layer after layer-wise training are shown in Figure 6-39. When the DNN is fine-tuned 

with a Softmax layer utilising the traditional BP algorithm, one may observe the change in the 

patterns of the feature components. A change in the scale can also be noticed. The key 
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difference in the representations is highlighted in the Figure 6-39. It can be noticed that some 

of the weight groups have been disbanded as shown in Figure 6-40. 

 

 
Figure 6-39: Before fine-tuning : component 
projection of weights from the middle layer of 
one speaker data from AN4 dataset 

 
Figure 6-40: After fine-tuning : component 
projection of weights from the middle layer 
of one speaker data from AN4 dataset 

 
 

Sometimes, the variety in the characteristics of the input attribute creates a confusion of 

classification. However, the middle layer in the DNN can differentiate and segregate these 

characteristics. The components extracted from the middle layer might have only one pattern, 

but the representations vary based on the input features. For instance, consider a randomly 

generated dataset of three attributes with a minimum variance of 0.001 between the values. The 

dataset consists of two classes with overlapping attribute values. For the first experiment, when 

the DNN is trained using this random data, the DNN was able to achieve an accuracy of 69%. 

It is possible to achieve a 100% accuracy when the DNN is fine-tuned and some values in the 

dataset are adjusted. When the components are extracted from the middle layer of this 7-layered 

DNN, there is only one component isolated with multiple features (groups) as presented in 

Figure 6-41. Only a single component is derived due to the fact that the classes are not 

separated due to the presence of overlapping (attribute values) features. Despite this 

overlapping, the DNN is able to differentiate the classes which indicates the unique capability 

of deep learning.  

 

When the dataset is adjusted to ensure that there is no overlapping of features, the middle layer 

now consists of clearly differentiable features and a single component. The components 

features are shown in Figure 6-42. Thus, the extracted component is a set of the same features 
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in both of these experiments. The patterns of the weights in the hidden nodes are not just a 

reflection of input features but possess an underlying representation in the form of features 

which the DNN is learning and passing over to the next layer as knowledge. It is noteworthy 

to observe that this process of understanding the representations in the weights gets more and 

more complex with the increasing number of samples, classes as well as hidden nodes.  

  

 
Figure 6-41: Component extraction from the 
middle layer of a 7-layered DNN. Random 
value dataset with fully overlapping variables 

 
Figure 6-42: Component extraction from the 
middle layer of a 7-layered DNN: Random 
value dataset with two classes 

 
 

The impact can be seen with the help of visualisations, but it is hard to reason out what exactly 

is responsible for this functionality and how the DNN is gaining this expertise. However, the 

layer-wise training has a high impact and may be responsible in providing ‘clarity’ for the 

DNN. 

 

To throw more light on this aspect, the visualisation of the weights extracted from the middle 

layer of a DNN trained on a random value dataset is used. The random value dataset is a 

modified version of gene expression dataset with 102 samples and about 12500 attributes with 

two classes. To construct random values dataset, the original values in the attributes are 

replaced by random numbers and the number of classes is increased to ten.  For the first 

experiment, the dataset is modified such that there is 90% of attribute values belonging to all 

ten classes (90% overlapping). This is followed by reducing the overlapping to 75%, 60% and 

finally 50%. The DNN is trained to achieve highest possible accuracy of 90%. 
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Figure 6-43: Attribute overlapping 90%: 
visualisation of middle layer for random 
dataset 

 

Figure 6-44: Attribute overlapping 75%: 
visualisation of middle layer for random 
dataset 

 
Figure 6-45: Attribute overlapping 65%: 
visualisation of middle layer for random 
dataset 

 

Figure 6-46: Attribute overlapping 50%: 
visualisation of middle layer for random 
dataset 

 
 

The projection of weights is presented in Figure 6-43, Figure 6-44, Figure 6-45 and Figure 

6-46. The transformation of weights based on the degree of attribute overlapping which in turn 

is feature overlapping can be observed. The segregation or grouping of features is based on 

variance values and represents the underlying components. 
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6.20. Conclusive Assessments: The Blossom Effect 

The process of identifying how underlying features are represented has been the most 

challenging part of this research and has a direct relationship with the research problem as well 

as exploring the behaviour of neural networks.  

 

The initial experiments are able to prove the importance of the middle layer(s) which has been 

evaluated through further theoretical (literature) and experimental (as part of this thesis) 

evidence.  

 

The experimental results presented in this thesis have proven the existence of a funnel effect 

i.e., number of components exacted keeps reducing towards the middle layers and then 

increases after the middle layers, creating a funnel.  

 

It is evident that in traditional ANNs with only one layer, the features are condensed in the 

hidden units of that (single) hidden layer. However, with DNN using layer-wise training across 

multiple layers the features are spread across the layers. The decrease in the number of 

components at the middle layer indicates that the features are condensed in the middle layer 

and then are expanded towards the output layer (classifier). This phenomenon encourages the 

researcher community to rethink the functionality of autoencoders. An autoencoder encodes 

the features into the low dimension and then decodes them as the original features for 

reconstructing the input patterns. Genuine dimensionality reduction which will remove 

insignificant/low profile features, will make it impossible to recover and reconstruct after the 

middle layer. So, the dimensionality reduction can be applicable for the funnel in, but it cannot 

be applicable for the funnel out because once lost, the features cannot be recovered. This is a 

simple principle similar to removing unnecessary or less significant pieces from a carving 

which cannot be recovered once they are removed.  

 

However, with the functionality of autoencoders and other deep architecture models, it is 

evident that the features are actually getting reconstructed. In case of deep architectures, the 

learned features are forming more high-level ‘super features’ that resemble high-level 

representations which assist in classification. The clearer (more precise and accurate without 

noise) these high-level features are the more accurate the classifier.  
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6.20.1. The Blossom Effect: 

The Blossom Effect can be verified through exploring the weights in the layers of 

autoencoders. To explore the phenomenon of The Blossom Effect, it is significant to know how 

weights and features are represented in autoencoder. This is followed by the necessity to 

observe the difference between weights extracted from the middle layer of DAE and the feature 

values provided by the DAE for the same layer. This comparison will procure a solid evidence 

on the underlying representation in the condensed weights. This experiment is performed using 

some randomly selected samples from the CIFAR-10 dataset and the visualisation is presented 

below.  

 

 
Figure 6-47: Cluster analysis of weights for 
projection of weights: DAE trained on 
CIFAR-10 dataset: middle layer components 
based on variance 

 

Figure 6-48: Cluster analysis of feature 
values with colour coding: DAE trained on 
CIFAR-10 dataset: middle layer components 
based on features in autoencoder 

 
Figure 6-47 represents the clusters with two components from the middle layer of a 3-layered 

DAE. The architecture of DAE provides the values of the features attached to that layer which 

is presented in Figure 6-48. CIFAR-10 consists of a variety of images with complex 

overlapping features. In the Figure 6-47, there are two components representing the section of 

features extracted from the middle layer. The high-level component based representation based 

on variance has some inbuilt hidden representations (features) which can be observed when 

these weights are used to plot a feature based projections as presented in Figure 6-48. 

 

In case of a simple dataset such as IRIS, similar representations can be observed. A one layer 

autoencoder is used for the experiment on IRIS dataset and the projection of weights and 
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features are presented in Figure 6-49 and Figure 6-50. The representations in the Figure 6-49 

presence the variance component and the Figure 6-50 presents the feature representation of 

weights.  

 

 
Figure 6-49: Cluster analysis of weights for 
projection of weights: DAE trained on IRIS 
dataset: middle layer components based on 
variance 

 
Figure 6-50: Cluster analysis of feature 
values with colour coding: DAE trained on 
IRIS dataset: middle layer components 
based on features in autoencoder 

 
 

The conclusions on importance of the middle layer and the process of features getting folded 

into one component are not based on assumptions but on the evaluation of results from various 

experiments presented in this thesis. The proposed Blossom Effect may challenge the 

traditional definition of the autoencoder to some extent, however, the autoencoders can be 

considered as a special case of the proposed Blossom Effect. This aspect definitely needs and 

warrants further investigation with a view of exploring weight patterns in the hidden layers. 

 

6.21. Chapter Summary 

This chapter presents the implementation and evaluation of the transferable knowledge 

component model proposed in Chapter 5. The key outcomes of this chapter can be summarised 

as follows: 

 

o The number and the diversity of the datasets used for the experiments provide assurance 

on the adoptability of the model and validation of the hypothesis. 
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o The potential for technological bias was tested by implementing the model on a variety 

of deep architectures using various hardware and software setups.  

o The results obtained from the classification experiment presented in this chapter 

provides evidence for the extracted knowledge component model. 

o The experimental results show that the number of components extracted from the layers 

of a DNN follows The Blossom Effect in principle. At the layers closet to the input, the 

number of components is greater, and these components become reduced towards the 

middle layer as the features are conceptually folded into the middle layer. As the 

features pass through the middle layer, the number of components increases as the 

features are transformed into high-level and problem specific features. 

 

The hypotheses proposed in this thesis which drove the design of the experiments and selection 

of datasets are thus validated (and definitively proven, at least in the context of the experiments 

presented herein). The next chapter presents the final conclusion and suggested directions for 

future work.  
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Chapter 7 Conclusions & Prospects  
The opaque nature of neural networks inspired this research quest to find answers to some of 

the fundamental questions about neural network learning and the knowledge that neural 

networks possess. While exploring the basic concepts of ANNs and DNNs in order to develop 

a complete understanding of the technicalities of neural networks, my intuition directed me 

towards the idea of the Blossom Effect. This thesis validated the proposed Blossom Effect 

hypothesis through systematic research and provided evidence that allowed comparison of the 

process of neural network learning with the postulated Blossom Effect.  

 

Initial experiment results provided enough confidence to continue the research. The 

preliminary investigation (Chapter 3) provided the answers to my initial research questions on 

the importance of neural network layers and the existence of transferable knowledge. The 

proposed Transferable Knowledge Component model is shown to be efficient through a 

stringent experimental evaluation on different types of dataset and deep architectures.  

  

For any future research, it is important to start with the dataset with scalable and independent 

features which will provide a clear insight on representations in the neural network weights.  

 

7.1. Key Contributions 

o The Blossom Effect provides an insight into the working principle of widely used 

neural networks such as autoencoders. 

o This research provides a new direction for the future researchers guiding them towards 

creating generalised neural network models that are transferable.  

o This thesis provides an insight into the operation of deep learning and how neural 

networks are able to learn efficiently.  

o The relationship established in this thesis between input features and neural network 

weights provides a new approach in neural network optimisation through transferring 

a knowledge model rather than traditional transfer learning of copying or moving the 

layers altogether. This will help to implement a portable deep learning model and 

transferable models for applications.  

o A transferable knowledge component model which provides a wide range of 

implementations for various industrial applications.  
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o DNN optimisation through reducing layers and providing a separate deployable DNN 

model will be of research interest.  

o The Blossom Effect may be a challenging concept for orthodox neural network 

researchers but might encourage other less traditional neural network researchers to 

explore and possibly define the nature of this effect further.  

o It is anticipated that this research will have some impact on how transfer learning is 

implemented in future research and development.  

7.2. Research Limitations 

There are a number of limitations related to the research presented in this thesis. These are: 

o There is no known work on generalising neural network models for multiple problems. 

While this thesis may not be generalised to all datasets, in spite of using different types 

of datasets and deep architecture, it is a step towards demonstrating the presence of a 

generic core knowledge that exists in the middle layer. This would help to work towards 

a generalised neural network model based on underlying common knowledge that 

exists in the form of representations.  

o Due to their unique nature and peculiar implementation, Convolutional Neural 

Networks (CNNs) are tested with only one dataset and thus the results are limited to 

image analysis presented in this thesis and a further exploration is required for 

proposing a transferable model for CNNs.  

o Each deep architecture is primarily used for a particular type of problem. For instance, 

CNNs are used for image recognition and autoencoders are used for speech and speaker 

classification and identification. Comprehensive research is required to test all cross 

domain across all deep architectures (CNNs, DBF and other models) to draw fully 

generalised conclusions. Some experiments are performed to address this issue but due 

to limitations of PhD study, all deep architectures are not covered.  

o All the datasets used for the experiments are static and the impact for dynamic and 

temporal or streaming datasets is out of scope of this thesis.  

o Hybrid deep architectures (unconventional) are not tested hence the implementation 

implications are unknown.  
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7.3. Future Work 

There are a number of opportunities for future work:  

 

o Convolutional Neural Network based implementations on a wide range of datasets. 

o Assessing the capability of the Transferable Knowledge Component model for 

temporal data. 

o Industrial level implementation of a separate training and testing model for deep neural 

networks. 

o Evaluation and implementation of the knowledge component transfer model for offline 

and mobile neural network based on Transferable Knowledge Component Model.  
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APPENDICES 

A. IRIS Dataset 

A.1. Technical details 

Table A-1: Technical details of various parameters used for the experiments using IRIS 
Dataset 

Parameter Value 

Training algorithm  Stochastic gradient descent (SGD) 

Number of epochs 500 

Learning rate 0.32 

Momentum 0.48 

Softmax (training) Back Propagation 

Training and testing ratio 70:30 

Resampling  Cross validation (3-fold) 

Software  MATLAB 2014a, Weka 3.9.3 (custom 
library), .NET Library 

Average number of runs 25 (weka) 40 (MATLAB & .NET) 

Topology 30. Number of hidden nodes are same 
across all layers 

 
 

   

  



 

 III 

A.2 Classification Results 

Table A-2: Classification results for IRIS and modified IRIS datasets 

Experiment 
No Dataset 

No. of  
Hidden Layers 

Root Mean  
Squared 

Error 

Accuracy 
(%) T-Test 

1 

IRIS 

3 2.64 78.3 0.023 

2 5 1.9 79.0 0.019 

3 9 0.41 84.5 0.013 

4 13 5.53 27.1 0.24 

      

5 

M-IRIS1 

3 0.024 98.6 0.02 

6 5 0.0092 99.8 0.011 

7 9 0.48 88.3 0.02 

8 13 3.21 41.8 0.89 

      

9 M-IRIS2 3 5.5 58.4 0.12 

10 5 4.24 43.7 0.18 

11 9 4.09 45.5 0.06 

12 13 11.9 16.4 0.08 

      

13 M-IRIS3 3 7.43 28.9 0.069 

14 5 4.44 43.8 0.072 

15 9 4.682 45.3 0.012 

16 13 13.81 11.2 0.63 
 

 

 

 

 

  



 

 IV 

B. Wine Dataset 

B.1 Technical details 

Table B-1: Technical details of various parameters used for the experiments using WINE 
Dataset 

Parameter Value 

Training algorithm  Stochastic gradient descent (SGD) 

Number of epochs 500 

Learning rate 0.32 

Momentum 0.48 

Softmax (training) Back Propagation 

Training and testing ratio 70:30 

Resampling  Cross validation (3-fold) 

Software  MATLAB 2014a 

Average number of runs 50 

Topology 30. Number of hidden nodes are same 
across all layers 

 

B.2 Classification Results 

Table B-2: Classification results for WINE Dataset 

Experiment 
No 

No. of  
Hidden Layers 

Root Mean  
Squared Error 

Accuracy 
(%) T-Test 

1 1 0.0012 100.0 0.029 

2 3 1.29 63.2 0.037 

3 9 7.94 24.0 0.022 
 



 

 V 

C. MNIST Dataset 

C.1 Properties of MNIST dataset 

 
Figure C-1: Technical details of MNIST Dataset 

 

 



 

 VI 

C.2 DNN 

C.2.1 Technical details 

Table C-1: Technical details of various parameters used for the experiments using DNN for 
experiments using MNIST dataset 

Parameter Value 

Training algorithm  Stochastic gradient descent (SGD) 

Number of epochs 500 

Learning rate 0.31 

Momentum 0.38 

Softmax (training) Back Propagation 

Training and testing ratio 70:30 

Resampling  Cross validation (3-fold) 

Software  MATLAB 2014a, MATLAB 2016b, 
Python 

Average number of runs 50 

Topology 785-1024-2048.2048-1024-785 
 

 

C.2.2 Classification Results 

Table C-2: Classification results for MNIST and modified MNIST datasets using DNNs 

Experiment No Dataset 
No. of 

Hidden 
Layers 

Root Mean 
Squared 

Error 

Classification 
Accuracy 

(%) 
T-Test 

1  7 0.0419 99.27 0.885 

2 MNIST 13 0.0544 97.87 0.057 

3  17 3.050 73.02 0.805 

4  33 5.531 58.46 0.678 

 

5 
M-

MNIST1 

7 0.140 99.53 0.056 

6 13 0.091 98.83 0.176 

7 17 2.179 72.68 0.854 



 

 VII 

8 33 3.015 64.74 0.202 

 

9 

M-
MNIST2 

7 0.0695 99.7 0.397 

10 13 0.88 96.01 0.595 

11 17 2.24 76.14 0.896 

12 33 1.737 57.09 0.113 

 

13 

M-
MNIST3 

7 0.886 99.7 0.490 

14 13 1.2901 96.01 0.473 

15 17 3.267 76.14 0.125 

16 33 4.351 57.09 0.557 

 

17 

M-
MNIST4 

7 1.035 98.41 0.315 

18 13 1.489 97.27 0.669 

19 17 2.610 74.56 0.280 

20 33 2.994 60.04 0.125 

 

21 

M-
MNIST5 

7 1.654 98.24 0.357 

22 13 1.246 97.25 0.437 

23 17 3.362 78.99 0.965 

24 33 3.864 60.46 0.609 

 

25 

M-
MNIST6 

7 0.565 98.29 0.253 

26 13 0.311 98.85 0.824 

27 17 1.112 76.04 0.733 

28 33 2.223 63.04 0.633 

 

29 M-
MNIST7 

7 0.827 98.25 0.085 

30 13 0.972 96.27 0.388 



 

 VIII 

31 17 1.77 74.49 0.878 

32 33 2.940 59.57 0.242 
 

C.3 DBN 

C.3.1 Technical Details 

Table C-3: Technical details of various parameters used for the experiments using DBN for 
experiments using MNIST dataset 

Parameter Value 

Training algorithm  Contrastive Divergence (CD) 

Number of epochs 500 

Learning rate 0.5 

Momentum 0.5 

Softmax (training) Back Propagation 

Training and testing ratio 70:30 

Resampling  Cross validation (3-fold) 

Software  MATLAB 2015a, Python 

Average number of runs 50 

Topology 785-1024-2048..2048-1024-785 
 

  

  



 

 IX 

C.3.2 Classification Results 

Table C-4: Classification results for MNIST and modified MNIST datasets using DBNs 

Experiment 
No Dataset 

No. of  
Hidden 
Layers 

Root Mean  
Squared 

Error 

Accuracy 
(%) T-Test 

1 

MNIST 

7 0.0596 99.72 0.885 

2 13 0.0981 97.65 0.057 

3 17 2.236 76.7 0.805 

4 33 3.458 58.5 0.678 

 

5 

M-
MNIST1 

7 0.989 98.52 0.056 

6 13 1.247 97.36 0.176 

7 17 2.200 82.6 0.854 

8 33 6.048 61.72 0.202 

 

9 

M-
MNIST2 

7 0.0938 99.02 0.397 

10 13 0.985 98.72 0.595 

11 17 2.014 73 0.896 

12 33 4.036 54 0.113 

 

13 

M-
MNIST3 

7 0.692 98.14 0.490 

14 13 0.564 98.27 0.473 

15 17 1.582 80.33 0.125 

16 33 5.810 57.17 0.557 

 

17 

M-
MNIST4 

7 0.601 98.06 0.315 

18 13 0.436 98.76 0.669 

19 17 1.244 86.15 0.280 

20 33 4.070 53.44 0.125 

 

21 7 0.773 98.99 0.357 



 

 X 

22 M-
MNIST5 

13 0.920 97.79 0.437 

23 17 1.115 84.83 0.965 

24 33 2.269 64.56 0.609 

 

25 

M-
MNIST6 

7 0.0565 99.31 0.253 

26 13 1.128 98.24 0.824 

27 17 2.064 72.38 0.733 

28 33 3.143 66.21 0.633 

 

29 

M-
MNIST7 

7 0.0888 99.51 0.085 

30 13 0.550 98.92 0.388 

31 17 2.059 73.67 0.878 

32 33 4.747 55.31 0.242 
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C.4 DAE 

C.4.1 Technical Details 

Table C-5: Technical details of various parameters used for the experiments using DAE 

Parameter Value 

Training algorithm Greedy layer wise 

Number of epochs 500 for first and last autoencoders, 

1000 for the middle autoencoders 

Learning rate 0.4-0.6 

Momentum 0.2-0.4 

Softmax (training) Unsupervised 

Back Propagation (only for validation) 

Training and testing ratio 70:30 

Resampling Cross validation (3-fold) 

Software MATLAB 2014a, MATLAB 2017a 

Average number of runs 50 

Topology 500-1000….500 

 
 

  



 

 XII 

C.4.2 Classification Results 

Table C-6: Classification results for MNIST and modified MNIST datasets using DAEs 

Experiment 
No Dataset 

No. of  Root Mean  Accuracy 
T-Test Hidden 

Layers 
Squared 

Error (%) 

1 

MNIST 

3 0.0684 99.72 97.96 

2 5 0.550 97.65 99.43 

3 9 1.144 76.7 79.69 

  

4 

M-MNIST1 

3 0.0474 98.52 97.3 

5 5 0.739 97.36 98.45 

6 9 1.171 82.6 81.91 

  

7 

M-MNIST2 

3 0.0423 99.02 96.8 

8 5 0.262 98.72 98.71 

9 9 1.740 73 75.37 

  

10 

M-MNIST3 

3 0.084 98.14 95.33 

11 5 0.034 98.27 98.21 

12 9 1.130 80.33 76.31 

  

13 

M-MNIST4 

3 0.095 98.06 97.4 

14 5 0.0760 98.76 99.77 

15 9 1.772 86.15 82.19 

  

16 

M-MNIST5 

3 0.0596 98.99 97.72 

17 5 0.0897 97.79 99.5 

18 9 0.963 84.83 78.83 

  

19 
M-MNIST6 

3 0.0296 99.31 97.9 

20 5 0.278 98.24 98 



 

 XIII 

21 9 1.462 72.38 84.63 

  

22 

M-MNIST7 

3 0.0105 99.51 95.24 

23 5 0.67 98.92 99.79 

24 9 2.022 73.67 80.52 
 

 

C.4 Components (Variance based) 

Table C-7: Experimental results of variance based component extraction 

Layer No. 
Average Variance 

Components M-
MNIST5 

M-
MNIST6 

1 2.40 4.31 2 

2 2.74 4.00 2 

3 2.80 4.79 2 

4 2.86 4.45 2 

5 2.20 4.90 2 

6 2.42 4.46 2 

7 2.34 4.59 2 

8 2.37 4.23 2 

9 2.94 4.58 2 

10 2.18 4.32 2 

11 2.34 4.49 2 

12 2.64 4.90 2 

13 2.15 4.10 2 
 

 

 

  



 

 XIV 

D. AN4 Dataset 

D.1 Technical Details 

Table D-1: Technical details of various parameters used for the experiments using AN4 
Dataset 

Parameter ANN DAE 

Training algorithm  Back Propagation Greedy layer wise 

Number of epochs 500 100 

Learning rate 0.05 0.05 

Momentum 0.2 0.2 

Softmax (training) - Back Propagation 

Training: Validation: 
Testing 

70:15:15 

Resampling  Cross validation (3-fold) 

Software  MATLAB 2017a MATLAB 2017a 

Average number of runs 30 40 
 

  



 

 XV 

D.2 Classification Results of AN4 Datasets  

Table D-2: Classification results for AN4 speaker dataset 

Experiment 
No Classifier 

No.       
of 

Hidden 
Layers 

Hidden 
Layer 

Number 

Number 
of 

Neurons 

Root 
Mean 

Squared 
Error 

Accuracy 
(%) 

T-
Test 

1 

ANN 

1 1 16 0.24 83.7 0.015 

2 2 
1 16 

0.39 71.15 0.029 
2 22 

3  
3 

1 16 

4.15 39.0 0.03 2 12 

3 22 

4 

DAE 

1 1 16 0.19 79.4 0.027 

5 3 

1 16 

0.112 98.8 0.003 2 20 

3 20 

6 5 

1 16 

0.34 69.16 0.022 

2 20 

3 20 

4 20 

5 20 
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E. TIMIT dataset 

E.1 Technical Details 

 

Table E-1: Technical details of various parameters used for the experiments using TIMIT 
Dataset 

Parameter ANN DAE 

Training algorithm  Back Propagation Greedy layer wise 

Number of epochs 500 500 

Learning rate 0.05 0.05 

Momentum 0.2 0.2 

Softmax (training) - Back Propagation 

Training: Validation: 
Testing 

70:15:15 

Resampling  Cross validation (3-fold) 

Software  MATLAB 2017a MATLAB 2017a 

Average number of runs 40 
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E.2 Classification Results 

Table E-2: Classification results for TIMIT speaker dataset 

Exp. 
No Classifier 

No.       of 
layers 

Layer 
numbe
r 

No. of 
neurons 

Trainin
g 
Error 

Testing 
Error 

Accuracy 
(%) 

T-
Test 

1 

ANN 

1 1 124 0.19 0.312 86.5 0.031 

2 2 
1 124 

0.51 0.476 81.1 0.025 
2 200 

3  
3 

1 124 

1.15 1.845 63.15 0.038 2 88 

3 124 

4 

DAE 
 
 
 

1 1 780 0.42 0.31 91.2 0.029 

5 3 

1 780 

0.13 0.116 98.2 .0091 2 1024 

3 780 

6 5 

1 780 

0.24 0.27  
89.5 0.014 

2 1024 

3 1024 

4 1024 

5 780 

7 
 
 
 
 

7 
 
 
 
 
 

1 780 

0.85 0.65 57.61 0.081 

2 824 

3 1024 

4 1024 

5 1024 

6 824 

7 780 
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F. Image Datasets 

F.1 Technical Details 

Table F-1: Technical details of various parameters used for the experiments using Image 
Datasets 

Parameter DNN DBN 

Training algorithm  SGD CD 

Number of epochs 500 500 

Learning rate 0.05 0.05 

Momentum 0.2 0.2 

Softmax (training) Back Propagation 

Training: Validation: 
Testing 

70:15:15 

Resampling  Cross validation (3-fold) 

Software  MATLAB 2018a, Python (Tensor Flow) 

Average number of runs 50 

Topology 500-750-1000..2000..1000-750-500 
 

F.2 Classification Results for CIFAR10 

Table F-2: Classification results for CIFAR-10 image dataset 

Experiment No Classifier 
No. of 
Hidden 
Layers 

Root Mean 
Square Error 

Classification 
Accuracy (%) 

T-
Test 

1 

DNN 

7  6.53 50.24 0.092 

2 12  0.72 86.9 0.081 

3 18  2.45 72.6 0.073 

4 

DBN 

7  6.01 51.9 0.071 

5 12 0.45  84.3 0.051 

6 18  2.2 70.9 0.073 
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F.3 Classification Results for CIFAR10-M 

Table F-3: Classification results for modified CIFAR-10 image dataset 

Experiment No Classifier 
No. of 

Hidden 
Layers 

Root Mean 
Square Error 

Classification 
Accuracy (%) T-Test 

1 

DNN 

7 3.89 69.1 0.082 

2 12 1.13 88.6 0.064 

3 18 5.57 53.09 0.085 

4 

DBN 

7 6.24 43.2 0.006 

5 12 0.85 89.8 0.085 

6 18 4.1 64.7 0.057 
 

F.4 Classification Results for ImageNet 

Table F-4: Classification results for ImageNet image dataset 

 

 
 

 

Experiment 

No 
Classifier 

No. of 

Hidden 

Layers 

Root 

Mean 

Square 

Error 

Classification 

 Accuracy (%) 
T-Test 

1 

DNN 

7  8.78 39.5 0.083 

2 12  1.3 81.8 0.044 

3 18  3.34 66.8 0.081 

4 

DBN 

7  8.88 39.2 0.011 

5 12 1.19  86.4 0.043 

6 18 1. 56 81.4 0.099 



 

 XX 

F.5 Classification for layer Transfer: layer replacement  

Table F-5: Experimental results for transfer of layers experiments on ImageNet and CIFAR-
10 datasets 

Architecture 
ImageNet CIFAR-10 

DNN DBN DAE DNN DBN DAE 

Untrained 24.6 19.6 11.1 32.1 38.6 14.8 

First Layer 25.1 20.2 14.5 39.4 41.3 16.5 

Fifth Layer 37.8 45 29.9 42.2 49.2 33.1 

Middle Layer 65.3 78.3 90.6 79.5 78.6 89.4 

 
 

F.6 Classification for layer Transfer: middle layer  

Table F-6: Experimental results for transfer of middle layer experiments on ImageNet and 
CIFAR-10 datasets 

Architecture 
ImageNet CIFAR-10 

DNN DBN DAE DNN DBN DAE 

Untrained 48.3 47.5 16.5 33 32.4 8.34 

Middle Layer 36 34.76 11 26.6 29 6.6 
 
 

F.7 Results of Component Model 

Table F-7: Experiment results for component extraction experiments using image datasets 
(CIFAR-10, ImageNet) 

n features 
ImageNet CIFAR-10 

DNN DBN DAE DNN DBN DAE 

Full 
features 24 21 16 20 21 14 

Strategy1 19 17 12 17 17 11 

Strategy2 11 9 3 14 15 8 
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G. Air Pollution Dataset 

G.1 Technical Details 

Table G-1: Technical details of various parameters used for the experiments using Air 
Pollution Dataset 

Parameter Value 

Training algorithm  SGD 

Number of epochs 500 

Learning rate 0.4-0.6 

Momentum 0.2-0.4 

Softmax (training) Back Propagation  

Training and testing ratio 70:30 

Resampling  Cross validation (3-fold) 

Software  MATLAB 2017a, .NET 

Average number of runs 50 

Topology 300 (selected after several 
experiments) 

 

G.2 Classification Results  

Table G-2: Classification results for Air Pollution dataset 

Experiment 
No 

No. of  
Hidden Layers 

Root Mean  
Squared Error 

Accuracy 
(%) T-Test 

1 7 0.62 90.85 0.035 

2 13 2.29 68.15 0.017 

3 18 4.94 54.86 0.082 
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H. Gene Expression Dataset (Prostate Cancer) 

H.1 Technical Details 

Table H-1: Technical details of various parameters used for the experiments using Gene 
expression Dataset 

Parameter Value 

Training algorithm  SGD 

Number of epochs 500 

Learning rate 0.4-0.6 

Momentum 0.1-0.3 

Softmax (training) Back Propagation  

Training and testing ratio 70:30 

Resampling  Cross validation (3-fold) 

Software  MATLAB 2017a, .NET 

Average number of runs 50 

Topology 30 (selected after several experiments) 
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H.2 Classification Results 

Table H-2: Classification results for Gene expression dataset 

Experiment 
No Dataset 

No. of  
Hidden 
Layers 

Root Mean  
Squared Error 

Accuracy 
(%) T-Test 

1 

Gene 

1 0.34 93.1 0.02 

2 2 0.193 94.7 0.013 

3 3 0.013 100 0.017 

4 4 0.021 97.0 0.014 

5 5 0.055 96.1 0.03 

      

6 

Gene-M 

1 15.1 34.6 0.021 

7 2 10.9 43.1 0.11 

8 3 2.6 75.3 0.13 

9 4 4.33 62.9 0.27 

10 5 5.32 51.2 0.14 
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I. Hardware and Software Specifications 

I.1 Hardware Specifications 

Table I-1: Technical details of the hardware used for the experiments 

Desktop (GPUs) 

GTX1080Ti(GPU) GTX 1060 LINUX 
RTX 2080  

• CPU Family: Intel Core i7  

• GPU Model:RTX2080  

• SSD Capacity:256 GB  

• Memory Size:32GB Memory  

• HDD Capacity:2TB HDD  

• Operating System: Linux  

• Optical Drive: DVD-Drive  

• VR Ready: Yes  

University Desktop Windows 10 
Inter I5 CPU, 3.3 
16 GB DDR3 RAM, 8GB Cache 
1TB Hard Disk 

Laptops 

Microsoft Surface Book, Windows 10 
Intel i7-465OU 1.7GH up to 3.3 GHz, 4MB Cache 
8GB LPDDR3 RAM 1600 MHz,  
256 GB SSD Storage 
Intel Integrated HD5000 CPU 

Microsoft Surface Pro 2, Windows 10 
Intel i5-4300U 1.9GH up to 2.9 GHz, 4MB Cache 
4GB LPDDR3 RAM 1600 MHz,  
128GB SSD Storage 
Intel Integrated HD4400 CPU 

MacBook pro 2015 
1.2GHz dual-core Intel Core M processor (Turbo Boost up to 
2.6GHz) with 4MB shared L3 cache 
8GB of 1600MHz LPDDR3 onboard memory 
1.2GHz 
512GB PCIe-based onboard flash storage 
Intel HD Graphics 5300 
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I2.  Software Specifications 

               Table I-2: Technical details of various software used for the experiments 

Software Technical details  

Weka 
Ver. 3.8.3 (stable) and 3.9.3 (developer) 
Windows and Mac 
IA-32, x86-64; Java SE 

MATLAB R2013b through R2018b 
Windows and Linux 

Python Python 3.7.2 
NumPy 1.5 

TensorFlow (Keras) TensorFlow 1.1 
Keras neural network io framework  

Microsoft .NET ML.NET framework (Machine Learning framework by 
Microsoft) Auto ML. 

 

  

https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Java_SE
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J.  Experiment Results: Initial Experiments 

J1.  Classification accuracy for MNIST, SYN and IRIS Dataset 

 

Table J-1: Classification accuracy and T-Test values for MNIST, Synthetic and IRIS Dataset 

 Original Replacing M T-Test 
MNIST 90.2 93.8 0.002 
SYN 91.4 96.5 0.0012 
IRIS 89.2 98.6 0.012 

 

J2.  Execution time for MNIST, SYN and IRIS Dataset 

 

Table J-2: Execution time for MNIST, Synthetic and IRIS Dataset 

Dataset 
Training time 

in hours 
MNIST 76 
MNIST(M) 41 
SYN 124 
SYN(M) 87 
IRIS 49 
IRIS(M) 29 

 

J3.  Execution time for MNIST, SYN and IRIS Dataset 

 

Table J-3: Classification accuracies and T-Test values for MNIST, Synthetic and IRIS 
Datasets 

No.  
of 

Layers 

Classification Accuracies (%) 
IRIS MNIST Synthetic 

No training Transferred Random Transferred Random Transferred 

% T 
Test % T 

Test % T 
Test % T 

Test % T  
Test % T 

Test 
5 51.2 0.037 76.5 0.002 33.5 0.022 80.2 0.006 44.6 0.004 85.2 0.003 
9 43.5 0.046 7.1.2 0.032 45.3 0.081 76.8 0.0058 57.4 0.006 79.7 0.008 
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