

DISTRIBUTED INCREMENTAL DATA STREAM MINING FOR
WIRELESS SENSOR NETWORK

HAKILO AHMED SABIT

A thesis submitted to

Auckland University of Technology

in fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)

2013

School of Engineering

ii

CONTENTS

1. INTRODUCTION ... 1

1.1. BACKGROUND TO THE RESEARCH ... 1
1.1.1. Association ... 2
1.1.2. Classification ... 2
1.1.3. Prediction ... 3
1.1.4. Sequential Patterns .. 3
1.1.5. Clustering .. 3
1.1.6. Wireless Sensor Network Background .. 4

1.2. MOTIVATION ... 5
1.3. RESEARCH PROBLEM ... 6
1.4. CONTRIBUTIONS ... 7
1.5. OUTLINE OF THE THESIS .. 8
1.6. PUBLICATIONS ... 9
1.7. CHAPTER SUMMARY ... 10

2. LITERATURE REVIEW .. 11

2.1. INTRODUCTION ... 11
2.2. WIRELESS SENSOR NETWORK INTRODUCTION ... 11

2.2.1. Hardware Platform ... 13
2.2.1.1. Sensor Energizing ...13
2.2.1.2. Power Mode Settings ...14
2.2.1.3. Optimal Transmission Power Setting ...14
2.2.1.4. Duty Cycling ...14

2.2.2. Operating System ... 15
2.2.3. WSN Protocol Stack .. 15

2.2.3.1. IEEE 802.15.4/ ZigBee ..16
2.2.3.2. 6LoWPAN ...17

2.2.4. Protocol Level Energy Conservation ... 18
2.2.5. Application Level Energy Conservation ... 19

2.3. DATA STREAM MINING.. 19
2.3.1. Frequent pattern mining .. 21
2.3.2. Classification Mining .. 22
2.3.3. Outlier Detection .. 23
2.3.4. Stream Clustering ... 23

2.4. DISTRIBUTED TECHNIQUES FOR WSN DATA STREAM MINING .. 24
2.5. CHAPTER SUMMARY ... 28

iii

3. RESEARCH TOOLS AND MATERIALS .. 29

3.1. TRUETIME SIMULATOR ... 29
3.1.1. The TrueTime Kernel ... 31

3.1.1.1. Tasks ..33
3.1.1.2. Code Function ..34
3.1.1.3. Code Segments ..34
3.1.1.4. Configuring Simulation ..35
3.1.1.4. Scheduling Hooks ...35
3.1.1.5. Data Logging ..36
3.1.1.6. Monitors ..36

3.1.2. The TrueTime Wireless Network ... 36
3.1.3. The TrueTime Battery ... 37
3.1.4. Limitations of TrueTime .. 39

3.2. TI’S CC2530 ZNP-MINI KIT .. 39
3.2.1. CC2530.. 39
3.2.2. MSP430F2274 ... 43

3.3. SHT15 – DIGITAL HUMIDITY SENSOR (RH&T) .. 45
3.4. SEN-08942 WEATHER METER .. 47
3.5. CONCLUSION ... 49

4. DISTRIBUTED INCREMENTAL DATA STREAM MINING WIRELESS SENSOR NETWORK FRAMEWORK
 50

4.1. INTRODUCTION ... 50
4.2. DISTRIBUTED INCREMENTAL DATA STREAM MINING ... 51
4.3. NETWORK ARCHITECTURE FOR DISTRIBUTED INCREMENTAL DATA STREAM MINING 51
4.4. DISTRIBUTED INCREMENTAL DATA STREAM MINING FRAMEWORK 53

4.4.1. Sensor Nodes Processing .. 53
4.4.2. Cluster Head Processing ... 56
4.4.3. Sink Processing ... 59

5. DEVELOPMENT OF SUBTRACTIVE FUZZY CLUSTER MEANS (SUBFCM) ALGORITHM 60

5.1. CLUSTERING .. 60
5.2. DATA STREAM MINING ALGORITHM ... 61
5.3. SUBTRACTIVE CLUSTERING METHOD .. 62
5.4. FUZZY C-MEANS CLUSTERING ... 65
5.5. THE SUBFCM ALGORITHM ... 68
5.6. IMPLEMENTATION OF SUBFCM .. 72

5.6.1. Computational Complexity of the SUBFCM Algorithm ... 76
5.6.1.1. Sensor node Computational Complexity ...77
5.6.1.2. Sensor node Communication Complexity ..78
5.6.1.3. Sensor node Energy Consumption ...78
5.6.1.4. Cluster Head Computational Complexity ...79
5.6.1.5. Cluster Head Communication Complexity ...80
5.6.1.6. Cluster Head Energy Consumption ..80

5.7. DISCUSSION ... 80

6. MODELLING AND SIMULATION OF THE DISTRIBUTED INCREMENTAL DATA STREAM MINING
WSN 81

6.1. DATA STREAM ACQUISITION (SOURCES) ... 81
6.2. WIRELESS SENSOR NODE MODEL .. 86
6.3. THE WIRELESS NETWORK MODEL ... 89
6.4. DATA STREAM MINING TASK MODELS .. 90

iv

6.4.1. Sensor Nodes sub-task Model .. 91
6.4.2. Cluster Heads sub-task Model .. 96
6.4.3. The Sink sub-task Model ... 99

6.5. SYSTEM MODEL SIMULATION ... 101
6.6. DISCUSSION ... 105

7. RESULTS AND ANALYSIS ... 106

7.1. SIMULATION RESULTS ... 106
7.2. SIMULATION SETUP ... 106
7.3. SIMULATION ENVIRONMENT AND DATASETS ... 107
7.4. SIMULATION AND ANALYSIS ... 107
7.5. SIMULATIONS 1 ... 108

7.5.1. One-Dimensional (1D) Stream Analysis .. 108
7.5.2. Two-Dimensional (2D) Stream Analysis .. 112
7.5.3. Three-Dimensional (3D) Stream Analysis ... 116
7.5.4. Four-Dimensional (4D) Stream Analysis ... 119
7.5.5. Stream Rate Analysis .. 121

7.6. SIMULATIONS 2 ... 122
7.6.1. Uniform Cluster Density Analysis .. 123
7.6.2. Non-uniform Cluster Density Analysis .. 128

7.7. SIMULATION 3 ... 129
7.7.1. Average Energy Consumption .. 129
7.7.2. Average Data Delivery Delay .. 133
7.7.3. Packet Delivery Ratio .. 134

7.8. CONCLUSIONS ... 136

8. CASE STUDY: MICRO-SCALE FOREST FIRE WEATHER INDEX AND SENSOR NETWORK 137

8.1. INTRODUCTION ... 137
8.2. FWI SYSTEM ... 138

8.2.1. Fine fuel moisture code (FFMC) .. 140
8.2.2. DUFF MOISTURE CODE (DMC) ... 140

8.2.3. Drought Code (DC) .. 141
8.2.4. Initial Spread Index(ISI) ... 142
8.2.5. Buildup Index (BUI) ... 142
8.2.6. Fire Weather Index (FWI) ... 143

8.3. LIMITATIONS OF THE STANDARD FWI SYSTEM .. 145
8.4. THE MICRO-SCALE FWI SYSTEM .. 146

8.4.1. The Weather Sensor Nodes .. 147
8.4.2. Siting and Exposure of the Sensors ... 149

8.5. THE FIRE WEATHER NETWORK .. 152
8.6. FWI INDICES PROCESSING ALGORITHM .. 153
8.7. THE NODES TASK SUBDIVISION ... 154
8.8. THE MICRO-SCALE FWI SYSTEM DATA MODEL ... 157
8.9. THE MICRO-SCALE FWI SYSTEM SIMULATION MODEL .. 158
8.10. SIMULATIONS AND RESULTS ... 161

8.10.1. Micro-scale FWI System Model Validation .. 161
8.10.2. End-to-End Delay ... 166
8.10.3. Packet Loss .. 167
8.10.4. Energy Consumption .. 168

8.11. CONCLUSIONS ... 169

v

9. CONCLUSIONS AND FUTURE WORK .. 170

9.1. CONCLUSIONS ... 170
9.3. FUTURE WORK .. 173

9.3.1. LIMITATIONS ... 174

REFERENCES ... 175

vi

Declaration

“I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person (except where explicitly defined in the acknowledgements), nor

material which to a substantial extent has been submitted for the award of any other

degree or diploma of a university or other institution of higher learning.”

Auckland, 2013

Hakilo Sabit

vii

LIST OF FIGURES

Figure 3.1: TrueTime Block Library. .. 31

Figure 3.2: The TrueTime Block Mask Dialog. ... 33

Figure 3.3: Code Segment. .. 34

Figure 3.4: The TrueTime Wireless Network Block mask dialog. 38

Figure 3.5: CC2530ZNP-Mini Kit. ... 40

Figure 3.6: CC2530ZNP board. .. 41

Figure 3.7: CC2530 ZNP Block Diagram. .. 42

Figure 3.8: MSP430F2274 Functional Block Diagram. .. 45

Figure 3.9: SHT15 Digital Humidity Sensor. .. 47

Figure 3.10: SEN-08942 Weather meter. .. 48

Figure 4.1: The hierarchical two-tiered WSN architecture for the distributed

incremental data stream mining framework. ... 52

Figure 4.2: Graphical depiction of data stream and sliding window. 55

Figure 5.1: The objective function minimization. ... 74

Figure 5.2: 2D classification of the data points from weather database. 75

Figure 5.3: 3D classification of the data points from weather database. 75

Figure 6.2: The sensor node data stream source model. ... 83

Figure 6.1: Flow chart of the sensor data stream source process. 83

Figure 6.3: Flow chart of the cluster head data stream source process. 84

Figure 6.4: The TrueTime wireless sensor node model. ... 87

Figure 6.5: The TrueTime cluster head node model. .. 88

Figure 6.6: The TrueTime sink node model. ... 88

Figure 6.7: The TrueTime Wireless Network Model. .. 90

viii

Figure 6.8: The sensor node sub-task model flowcharts. ... 93

Figure 6.9: The cluster head sub-task model flowcharts. ... 97

Figure 6.10: The sink sub-task model flowcharts. .. 100

Figure 6.11: The general distributed incremental data stream mining system model.103

Figure 6.12: Centralized flat multi-hop stream clustering architecture network. 103

Figure 6.13: Centralized cluster-based stream clustering network. 104

Figure 7.1: Cluster heads first sliding window snapshots. .. 110

Figure 7.2: The sliding windows combined to form the first stream set. 111

Figure 7.3: Cluster centers extracted during 144 simulation steps. 111

Figure 7.4: Average cluster deviations. ... 112

Figure 7.5: Cluster heads first sliding windows snapshot. .. 114

Figure 7.6: Stream sets and clusters from first simulation step. 114

Figure 7.7: Average cluster deviations with respect to K-Means for 2D streams. 115

Figure 7.8: Average cluster deviations with respect to FCM for 2D streams. 115

Figure 7.9: Cluster heads first sliding windows snapshot. .. 117

Figure 7.10: Average cluster deviations with respect to K-Means for 3D streams. 118

Figure 7.11: Average cluster deviations with respect to FCM for 3D streams. 118

Figure 7.12: Average cluster deviations with respect to K-Means for 4D streams. 119

Figure 7.13: Average cluster deviations with respect to FCM for 4D streams. 120

Figure 7.14: Average cluster deviation variation with stream period. 121

Figure 7.15: Average cluster deviation with varying cluster densities at 1sec stream

period. ... 124

Figure 7.16: Average cluster deviation with varying cluster densities at 5sec stream

period. ... 125

Figure 7.17: Average cluster deviation with varying cluster densities at 10sec stream

period. ... 126

Figure 7.18: Average cluster deviation with varying cluster densities at 15sec stream

period. ... 127

Figure 7.19: Average cluster deviation with varying cluster densities at 20sec stream

period. ... 127

Figure 7.20: Average of cluster deviations for different stream periods. 128

Figure 7.21: Average cluster deviation for non-uniform cluster density. 129

ix

Figure 7.22: Sensor nodes and cluster heads average energy consumption. 131

Figure 7.23: Sensor nodes average energy consumption. .. 132

Figure 7.24: cluster heads average energy consumption. .. 132

Figure 7.25: Packet delivery delay variation with cluster density. 134

Figure 7.26: Packet delivery ratio of sensor node-to-cluster head. 135

Figure 7.27: packet delivery ratio of cluster head-to-sink. ... 136

Figure 8.1: The general structure of the FWI system. .. 144

Figure 8.2: Wireless sensor node architecture. .. 148

Figure 8.3: Wind speed and direction sensors siting and exposure. 150

Figure 8.4: The Micro-scale FWI system WSN architecture.. 151

Figure 8.5: The fire weather network architecture. ... 153

Figure 8.6: Virtual clusters of fire hazard rating or intensity mapped onto the nodes

locations. ... 156

Figure 8.7: The stream of weather tuples. .. 157

Figure 8.8: The Micro-scale FWI system weather sensor node sub-model. 159

Figure 8.9: The Micro-scale FWI system cluster head sub-model. 160

Figure 8.10: The Micro-scale FWI system sink sub-model. ... 160

Figure 8.11: The Canterbury weather network map. ... 163

Figure 8.12: The Micro-scale FWI system model representing the Canterbury weather

network. .. 163

Figure 8.13: Micro-scale vs Actual FFMC comparison. ... 164

Figure 8.14: Micro-scale vs Actual DMC comparison. .. 164

Figure 8.15: Micro-scale vs Actual DC comparison. .. 164

Figure 8.16: Micro-scale vs Actual ISI comparison. ... 165

Figure 8.17: Micro-scale vs Actual BUI comparison. ... 165

Figure 8.18: Micro-scale vs Actual FWI comparison. .. 165

Figure 8.19: end-to-end delay of the model. .. 166

Figure 8.20: end-to-end delay of the model. .. 167

Figure 8.21: pacet loss performance. ... 168

Figure 8.22: Remaining battery power of sensors and cluster heads. 169

x

LIST OF TABLES

Table 3.1: Humidity conversion coefficients. .. 46

Table 3.2: Temperature conversion coefficients. ... 47

Table 5.1: Sample of weather database. .. 73

Table 6.1: The TrueTime wireless network parameters setting. 90

Table 7.1: uniform cluster density setup. ... 122

Table 7.2: non-uniform cluster density setup. .. 122

Table 8.1: Fire danger severity rating on FWI scale. ... 144

Table 8.2: The simulation model parameters settings. .. 159

xi

Algorithms and Code Listings

Listing 3.1: The Kernel Block initialization script. .. 35

Algorithm 4.1: Sensor processing algorithm. .. 55

Algorithm 4.2: Cluster heads processing algorithm. ... 58

Algorithm 5.1: Subtractive clustering algorithm. .. 64

Algorithm 5.2: Fuzzy C-Means clustering algorithm. .. 67

Algorithm 5.3: Subtractive fuzzy C-Means algorithm. .. 71

Listing 6.1: The TrueTime model of cluster head data stream source. 85

Listing 6.2: Timer interrupt handler model script for sensor node sub-task. 94

Listing 6.3: Network interrupt notifier model script for sensor node sub-task. 95

Listing 6.4: Network interrupt handler model script for sensor node sub-task. 96

Listing 6.5: Network interrupt notifier model script for cluster head sub-task. 98

Listing 6.6: Network interrupt handler model script for cluster head sub-task. 99

Listing 6.7: Network interrupt handler model script for sink sub-task. 101

xii

LIST OF ABBREVIATIONS

1D One Dimension
2D Two Dimensions
3D Three Dimensions
4D Four Dimensions
6LoPAN IPv6 over Low power Wireless Personal Area Networks
AASC American Association of State Climatologists
AC Alternating Current
ACK Acknowledgement
ACKL Auxiliary Clock
ADC Analog to Digital Converter
AI Artificial Intelligence
AM Active mode
AODV Ad Hoc On-Demand Distance Vector
AR Accept Ratio
ATM Automated Teller Machine
BUI Build Up Index
CH Cluster Head
CPU Central Processing Unit
CSMA/CA Carrier Sense Medium Access/Collision Avoidance
CVFDT Concept Adapting Very Fast Decision Tree
DAC Digital to Analog Converter
DC Drought Code
DCO Digitally Controller Oscillator
DMA Direct Memory Access
DMC Duff Moisture Code
DSP Digital Signal processing
DTC Data Transfer Controller
EDACH Energy-Driven Adaptive Clustering Hierarchy
EEPROM Electrically Erasable Programmable Read-Only Memory
EFDT Efficient-VFDT

xiii

EPA Environmental Protection Agency
FCM Fuzzy Cluster Means
FDI Fire Danger Index
FFMC Fine Fuel Moisture Code
FWI Fire Weather Index
GIS Geographic Information System
GSB Global Stream Base
GSM Global System for Mobile Communications
I/O Input/output
IFTF Internet Engineering Task Force
IPv6 Internet Protocol Version 6
ISI Initial Spread Index
ISM Industrial Scientific Medical
ISP In-System Programming
KB Kilo Byte
LEACH Low-Energy Adaptive Clustering Hierarchy
LED Light Emitting Diode
LF Low Frequency
LPM Low Power Mode
LSB Local Stream Base
LW-WPAN Low Rate Wireless Personal Area Network
MAC Medium Access Control
MCLK Main Clock
MCU Micro Controller Unit
MIP Million Instructions Per Second
MPH Miles Per Hour
NIWA National Institute of Water and Atmospheric Research
OS Operating System
PC Personal Computer
PCA Principal Component Analysis
QoS Quality of Service
RAM Random Access Memory
RH Relative Humidity
RISC Reduced Instruction Set Computing
RR Reject ratio
RTD Resistance Temperature Detector
SF Squash Factor
SMCLK Sub-Main Clock
SoC System on Chip
SUBFCM Subtractive Fuzzy Cluster Means
TCP Transfer Control Protocol
TI Texas Instruments

xiv

VFDT Very Fast Decision Tree
WLAN Wireless Local Area Network
WMO World Meteorological Organization
WPAN Wireless Personal Area Network
WSN Wireless Sensor Network
ZC ZigBee Coordinator
ZED ZigBee End Device
ZNP ZigBee Network Processor
ZR ZigBee Router

xv

ACKNOWLEDGEMENTS

This thesis would not have been possible without the guidance and the help of several
individuals who in one way or another contributed and extended their valuable
assistance in the preparation and completion of this study.

First and foremost, praise for the one above all of us, the Almighty Allah, for answering
my prayers for giving me the strength to complete this research.

My family, specially my mom for the absolute love and support throughout my life,
thank you so much mom.

My utmost gratitude to my Primary Supervisor Professor Adnan Al-Anbuky, Director of
Sensor Network and Smart Environment Research Centre (SeNSe), School of
Engineering, Auckland University of Technology (AUT), whose sincerity and
encouragement I will never forget. Professor Adnan Al-Anbuky has been my inspiration
as I hurdle all the obstacles in the completion this research work.

My co-supervisor Dr. Hamid Gholamhosseini for his valuable advices throughout the
research period.

I would like to thank Auckland University of Technology for the financial support in the
form of fellowship. Special thanks to the Administrators of the School of Engineering
Auckland University of Technology.

Last but not the least, my colleagues at the Sensor Network and Smart Environment
Research Centre (SeNSe) for their support and friendship thank you so much.

xvi

ABSTRACT
Wireless sensor networks (WSNs) despite their energy, bandwidth, storage, and

computational power constraints, have embraced dynamic applications. These

applications generate a large amount of data continuously at high speeds and at

distributed locations, known as distributed data stream. In these applications,

processing data streams on the fly and in distributed locations is necessary mainly due

to three reasons. Firstly, the large volume of data that these systems generate is

beyond the storage capacity of the system. Secondly, transmitting such large

continuous data to a central processing location over the air exhausts the energy of

the system rapidly and limits its lifetime. Thirdly, these applications implement

dynamic models that are triggered immediately in response to events such as changes

in the environment or changes in set of conditions and hence, do not tolerate offline

processing. Therefore, it is important to design efficient distributed techniques for

WSN data stream mining applications under these inherent constraints.

The purpose of this study was to develop a resource efficient online distributed

incremental data stream mining framework for WSNs. The framework must minimize

inter-node communications and optimize local computation and energy efficiency

without compromising practical application requirements and quality of service (QoS).

The objectives were to address the WSN energy constraints, network lifetime, and

distributed mining of streaming data. Another objective was to develop a novel high

spatiotemporal resolution version of the standard Canadian fire weather index (FWI)

system called the Micro-scale FWI system based on the framework.

The perceived framework integrates autonomous cluster based data stream

mining technique and two-tiered hierarchical WSN architecture to suit the distributed

nature of WSN and on the fly stream mining requirements. The underlying principle of

the framework is to handle the sensor stream mining process in-network at distributed

locations and at multiple hierarchical levels. The approach consists of three distinct

xvii

processing tasks asynchronously but cooperatively revealing mining the sensor data

streams. These tasks are the sensor node, the cluster head, and the network sink

processing tasks. These tasks were formulated by a lightweight autonomous data

clustering algorithm called Subtractive Fuzzy C-Means (SUBFCM). The SUBFCM

algorithm remains embedded within the individual nodes to analyze the locally

generated streams ‘on the fly’ in cooperation with a group of nodes.

The study examined the effects of data stream characteristics such as data

stream dimensions and stream periods (data flow rates). Moreover, it evaluated the

effects of network architectures such as node density per cluster and tolerated

approximation error on the overall performance of the SUBFCM through simulations.

Finally, the QoS or certain level of guaranteed performance that is supported by the

WSN architecture for applications utilizing the framework was examined.

The results of the study showed that the proposed framework is stream

dimension and data flow rate scalable with average errors of less than 12% and 11% in

reference to the benchmarks, respectively. The node density per cluster and local

model drift threshold showed significant effects on the framework performance only

for very fast streams.

The study concludes that the network architecture is an important factor for

the quality of mining results and should be designed carefully to optimally utilize basic

concepts of the framework. The overall mining quality is directly related to the

combined effect of the stream characteristics, the network architecture, and the

desired performance measures. The study also concludes that WSNs can provide good

QoS feasible for online distributed incremental data stream mining applications.

Simulations of real weather datasets indicate that the Micro-scale FWI can

excellently approximate the results obtained from the Standard FWI system while

providing highly superior spatial and temporal information. This can offer direct local

and global interaction with a few meter square spaces as against the tens of square

kilometers of the present systems.

1

Chapter 1

1. INTRODUCTION

Wireless sensor networks (WSNs) despite their energy, bandwidth, storage, and

computational power constraints, have embraced dynamic applications that generate

a large amount of data continuously at high speeds and sourced from distributed

locations, known as distributed data stream. In these applications, processing data

streams on the fly and in distributed locations is necessary mainly due to three

reasons. Firstly, the large volume of data that these systems generate is beyond the

storage capacity of the system. Secondly, transmitting such large amount of

continuous data to a central processing location over the air exhausts the energy of

the system rapidly and limits its lifetime. And thirdly, these applications implement

dynamic models that are triggered immediately in response to events such as changes

in the environment or changes in a set of conditions, hence do not tolerate offline

processing. Therefore, designing effective distributed techniques for WSN data stream

mining applications under the inherent constraints becomes important. We have

developed an efficient online distributed incremental data stream mining for WSNs

using a distributed clustering technique.

1.1. BACKGROUND TO THE RESEARCH

Data streaming is an inherent feature of a WSNs [1] and a number of research has

been dedicated in mining the data streaming from such networks [2-6]. Data mining is

a promising and relatively new technology that is defined as a process of discovering

hidden valuable and useful knowledge or information by analyzing large amounts of

2

data storing in databases or data warehouse using different techniques such as

machine learning, artificial intelligence (AI) and statistical. Data mining techniques can

discover information that many traditional business analysis and statistical techniques

fail to deliver [7]. A variety of real time applications produce distributed continuous

data streams and require data stream mining. Data stream mining is the extraction of

structures of knowledge that are represented in the case of models and patterns of

infinite streams of information [8]. There are several major data mining techniques

developed and used in data mining projects recently including association,

classification, clustering, prediction and sequential patterns. We will briefly introduce

those data mining techniques with example to have a good overview of them followed

by a brief description of WSNs and their unique characteristics and the challenges they

pose to stream mining techniques.

1.1.1. Association

Association is one of the best known data mining techniques. In association, a pattern

is discovered based on a relationship of a particular item on other items in the same

transaction. For example, the association technique is used in market basket analysis

to identify what products customers frequently purchase together. Based on this data

businesses can have corresponding marketing campaigns to sell more products to

make more profit. The patterns discovered with this data mining technique can be

represented in the form of association rules [9, 10]. The domain experts set the two

measures of rule interestingness threshold which are rule support and confidence. The

association rules are considered interesting if they satisfy minimum support threshold

and minimum confidence threshold.

1.1.2. Classification

Classification is a classic data mining technique based on machine learning. Basically

classification is used to classify each item in a set of data into one of predefined set of

classes or groups. Classification methods make use of mathematical techniques such as

3

decision trees, linear programming, neural networks and statistics. In classification, we

develop the software that can learn how to classify the data items into groups. For

example, we can apply classification in an application that “given all past records of

employees who left the company, predicts which current employees are likely going to

leave in the future.” In this case, we divide the employees’ records into two groups

that are “leave” and “stay”. Then we can ask our data mining software to classify the

employees into each group.

1.1.3. Prediction

The prediction as its name implies is one of a data mining techniques that discovers

relationships between independent variables and relationships between dependent

and independent variables. For instance, prediction analysis technique can be used in

sale to predict profit for the future if we consider sale as an independent variable,

profit could be a dependent variable. Then based on the historical sale and profit data,

we can draw a fitted regression curve that is used for profit prediction.

1.1.4. Sequential Patterns

Sequential patterns analysis is a data mining technique that seeks to discover similar

patterns in data transactions over a business period. The discovered patterns are used

for further business analysis to recognize relationships among data.

1.1.5. Clustering

Clustering is a data mining technique that makes meaningful or useful clusters of

objects that have similar characteristics using an automatic technique. Different from

classification, clustering technique also defines the classes and puts objects into them,

while in classification objects are assigned into predefined classes. To make the

concept clearer, we can take library as an example. In a library, books have a wide

4

range of topics available. The challenge is how to keep those books in a way that

readers can take several books in a specific topic without hassle. Using clustering

technique, we can keep books that have some kind of similarities in one cluster or one

shelf and label it with a meaningful name. If readers want to grab books in a topic, he

or she would only go to that shelf instead of looking through the whole library.

1.1.6. Wireless Sensor Network Background

Advances in recent technologies have allowed the development of low cost small

sensors with the capabilities of sensing physical environment, computing, data

processing and storing, and communicating wirelessly with other sensors. These

sensors can integrate with each other without any fixed or centralized infrastructure to

form a network, the WSN, that is able to monitor the environment and transmit

detected events to a well equipped node called the Sink. A WSN consists of a large

number of sensors [11], each of which are physically small devices, and are equipped

with processing capability (one or more microcontrollers, CPUs or DSP chips), multiple

types of memories (program, data and flash memories), RF transceiver (usually with a

single Omni-directional antenna), a power source (e.g., batteries and solar cells), and

various sensors and actuators. Due to size and cost constraints, sensors in WSNs have

certain intrinsic constraints on resources such as energy, memory, computational

capabilities, and communications bandwidth. WSN deployment consists of spatially

distributed autonomous sensors connected via a wireless communication

infrastructure to cooperatively monitor, record, and store physical or environmental

conditions such as temperature, humidity, light, sound, vibration, pressure, motion or

pollutants.

The sensor nodes communicate wirelessly and often self-organize after being

deployed in an ad hoc fashion whereby a group of sensor nodes spontaneously form a

network without any fixed and central infrastructure. Therefore, they can be deployed

in inaccessible locations by aerial drop to form a cooperative monitoring network.

When two nodes in a WSN wish to communicate, intermediate nodes are called upon

to forward packets to form a multi-hop wireless route. WSNs deploy a sheer number of

5

sensor nodes and due to the large probability that many of them will be sensing events

in close proximity and simultaneously, they enable multi-projection of an event and

hence open the door for several unique applications. The WSN technology is exciting

with unlimited potential for numerous application areas including environmental,

medical, military, transportation, entertainment, crisis management, homeland

defense, and smart meters [12].

With the advances in WSNs and their ability to generate a large amount of

data, data mining techniques to extract useful knowledge regarding the underlying

network have recently received a great deal of attention [11]. However, the stream

nature of the data, the limited resources, and the distributed nature of sensor

networks bring new challenges for the mining techniques that need to be addressed.

These challenges are further amplified when the data they generate is of a continuous

stream in nature.

1.2. MOTIVATION

More recently the need to process a large amount of data has motivated the field of

data mining whereby ways are investigated to process the static data sets efficiently

and algorithms are developed to compute the final static model representing the data

sets [13]. However this data mining approach despite handling large data sets does not

address the problem of a continuous supply of data. A model that was previously

induced cannot be updated as new data arrives. Instead, the entire training process

must be repeated with the new examples included. This is undesirable and inefficient

for many continuous data streaming systems.

The deployment of pervasive communication infrastructures such as short-

range wireless ad hoc sensor networks has enabled the capture of different

measurement of data in a wide range of fields. These measurements are generated

continuously and at high data rates. Such continuous flows of data grow rapidly over

time and are known as data streams. Examples include sensor networks, web searches,

phone conversations, and network traffic. Data streams necessitate the need for new

6

applications that process, analyze, and react to data streams in a near real-time

manner.

Consider for instance, a body area network [14] in a health care system

monitoring patients’ health conditions. The sensor nodes have to continuously take

vital signs measurements and feed into a model that alerts the care giver when a

health risk condition is detected. Further, consider a WSN deployed to monitor forest

Fire Weather Indices (FWI) and alert fire hazard in real-time. The sensor nodes

continuously measure weather parameters and feed into the FWI model, which

triggers fire hazard alarm whenever high fire risk conditions are detected. These

systems naturally do not tolerate offline data analysis. Therefore, the data streaming

from such systems has to be processed on the fly and in real-time.

1.3. RESEARCH PROBLEM

Given a distributed sensor system consisting of resource constrained sensor nodes and

connected via an underlying wireless network. Each node is tasked with probing its

proximity and updating the system regarding its acquired information instantly and

periodically along with all other nodes in the system. The nodes continue repeating

their task indefinitely in short periods. At each short period, the system is required to

find patterns within the update information received from all nodes in real-time and

keep up with the continuous periodic update of information arrivals. This research

aims at answering the following question: How can update information stream mining

tasks for extracting patterns in real-time from the union of all nodes’ information be

executed in the system with all nodes participating in a collaborative distributed

computation such that the energy, computational power, and communication

bandwidth resources are efficiently utilized?. The research also aims at answering the

following specific questions: How can temporal correlation of dynamic situations

dispersed over a given geographic area be continuously captured while efficiently

utilizing the scarce WSN system resource? How can the spatial correlation of dynamic

situations dispersed over a given geographic area be continuously captured while

7

efficiently utilizing the scarce WSN system resource? How these temporal and spatial

patterns capturing tasks can execute on the fly and in real-time in WSN systems?

1.4. CONTRIBUTIONS

The thesis has systematically studied the limitations of existing stream mining

techniques for WSNs in terms of their power consumption, computational power, and

communication efficiencies and provided alternative architectures for real life

applications of distributed data stream mining. The specific contributions of the thesis

are:

1. Proposing an efficient architecture for optimizing power consumption,

computational power, and communication bandwidth for distributed incremental data

stream mining for resource constrained WSNs.

2. A real-time online distributed data stream mining WSN system framework

efficiently utilizing the scarce WSN system resources.

3. A generic real-time online distributed data stream mining WSN system

simulation model, which can be used to design and analyze WSN systems for

distributed data stream mining applications before building and deploying the actual

system.

4. Proposing a high spatio-temporal resolution FWI system (Micro-scale FWI) for a

forest fire danger monitoring WSN application utilizing the distributed incremental

data stream mining WSN model.

These contributions can be applied to WSN design and deployment for online

distributed data stream mining applications utilizing a resource efficient architecture.

Furthermore, this research provides a foundation for future investigation of high

spatio-temporal resolution forest fire monitoring.

8

1.5. OUTLINE OF THE THESIS

The thesis is organized into 9 chapters, which include Introduction; Literature Review;

Research Materials; Theory of Distributed Incremental Data Stream Mining WSN;

Development of SUBFCM algorithm; Modeling and Simulation of the Distributed

Incremental Data Stream Mining WSN; Results and Analysis ; Case study; and

conclusion and future scope.

Chapter one starts with a brief introduction of WSN, data stream mining

techniques and describes the motivation behind this research, states the specific

problem addressed, highlights the contributions of the thesis and gives an overview of

the structure of the thesis.

Chapter two presents an overview of WSN architecture, multi-level energy

conservation strategies, WSN relevant data stream mining techniques, distributed data

stream mining framework; it analyses the state-of-the-art in the distributed data

stream mining techniques literature for WSN, and highlights the research gaps.

In chapter three, the hardware and software tools and materials used during

the research and their capabilities and limitations are examined.

Chapter four presents the theoretical framework of the distributed incremental

data stream mining technique for the WSN system. It describes the details of the WSN

architecture to support the distributed data stream clustering technique.

Chapter five presents the development of the core stream mining algorithm

that is embedded and runs within the cluster head nodes- the subtractive fuzzy cluster

means (SUBFCM) algorithm.

Chapter six presents a detailed description of the distributed incremental data

stream mining WSN system modeling and simulation. The implementation of the

individual modules of the system model is also presented in this chapter.

Chapter seven presents the results, performance evaluation and analysis of the

research.

9

Chapter eight presents the case study for the distributed incremental data

stream mining WSN application. The Micro-scale forest fire weather index application

of WSN is presented.

Chapter nine concludes this thesis and outlines the directions for future

research in distributed data stream mining for resource constrained systems such as

WSN.

1.6. PUBLICATIONS

During this study, the following five international peer reviewed publications have

been produced that include international journal and conference proceedings.

• Sabit, H., Al-Anbuky, A., and Gholamhosseini, H. (2011). Data stream mining for

wireless sensor networks environment: energy efficient fuzzy clustering

algorithm. International Journal of Autonomous and Adaptive Communications

Systems, 4(4):383-397.

• Hakilo Sabit, Adnan Al-Anbuky, Hamid GholamHosseini, Wireless Sensor

Network Based Wildfire Hazard Prediction System Modeling, Procedia

Computer Science, Volume 5, 2011, Pages 106-114.

• Sabit, H., Anbuky, A. A., and Hosseini, H. G. (2009). Distributed WSN data

stream mining based on fuzzy clustering. In Proceedings of the 2009 Symposia

and Workshops on Ubiquitous, Autonomic and Trusted Computing, UIC-ATC '09,

pages 395-400, Washington, DC, USA. IEEE Computer Society.

• Sabit, H., and Al-Anbuky, A. 2011. Sensor Network & Weather Data Stream

Mining. Proceedings of Bushfire CRC & AFAC 2011 Conference Science Day’ 1

September 2011, Sydney Australia, Bushfire CRC.

• Sabit, H., Al-Anbuky, A., and Gholamhosseini, H. 2011. Micro-scale Forest Fire

Weather Index and Sensor Network. Proceedings of Bushfire CRC & AFAC 2011

Conference Science Day’ 1 September 2011, Sydney Australia, Bushfire CRC.

10

1.7. CHAPTER SUMMARY

This chapter presented an introduction to data stream mining and related techniques

relevant to WSNs. The chapter also described background to the research giving

specific examples to motivate the research, as well as a problem statement and

specific research questions. It further provided a list of contributions during the

research period and outline of the thesis.

11

Chapter 2

2. LITERATURE REVIEW

2.1. INTRODUCTION

This chapter introduces and analyses the literature on distributed data stream mining

and the state of the art of the field of distributed data stream mining in the context of

WSNs. The field of WSN focuses on the design and operation of wireless personal area

network (WPAN) based sensor systems consisting of distributed autonomous devices

to cooperatively monitor an environment but with very strong constraints on

resources such as energy, memory, computational speed and bandwidth. Data stream

mining focuses on the design of processes and algorithms that enable computing

nodes to extract knowledge structures from continuous, rapid data records.

Distributed techniques for WSN data stream mining focuses on designing scalable and

reliable stream mining methods to suit the distributed nature of WSN and online

stream mining goals for large scale real-time stream mining systems. A review of the

foundations of each of these fields is presented below.

2.2. WIRELESS SENSOR NETWORK INTRODUCTION

Wireless sensor networks are networks consisting of small multimodal sensor

devices/nodes capable of limited processing power, short range communication and

12

 limited memory space. In other words, WSNs consist of hundreds or even thousands

of resource-constrained nodes. These devices are of low cost, small footprint, and

individually unreliable. However, deployed in large quantities and observing in a

spatially overlapping areas, they provide a system of high reliability and

unprecedented measurement resolution. In recent years, WSNs have found ever

increasing and diverse applications particularly in monitoring and control systems.

They have been successfully utilized in some of socially and scientifically significant

applications: water quality monitoring [15, 16], climate change modeling [17],

industrial plants monitoring [18-20], personal health monitoring [21, 22], structural

health monitoring [23-25], wild fire detection [26], etc. Source nodes and sink node(s)

constitute the basic WSN architecture. The source nodes host multimodal sensors, a

low power processor, a radio transceiver, and light weight battery. They are the

sources of the network data traffic. The sink contains a processor, a radio transceiver,

no sensors, and is usually mains powered. The sink node is the coordinator and

collection point for network data traffic. The sink is usually interfaced to the base

station PC (data management station) which could be a gateway to another external

network (e.g., the internet). Owing to their small footprint and wireless

communication capabilities, the sensor nodes can be placed in hostile and inaccessible

locations to quantify and transmit the current state of the phenomena under

observation. Due to the hostility and inaccessibility of their location, the task of battery

replacement is hard if not impossible. Hence, WSNs require an aggressive energy

conservation strategy for each battery-powered device in order to operate for a

meaningful period of time before dropping out of the network.

Dead node replacement could be a means of restoring normal network operation if

there is no minimum uninterruptible operation period requirement by the application

and as long as the application can withstand the delay during network

reconfigurations. The time and cost of redeployment and reconfiguration are however,

prohibitive for most applications. In order to obtain a good network lifetime for a WSN

application, a number of energy conservation strategies have to be considered. These

energy conservation strategies concern the WSN hardware platforms, the wireless

protocol stack, and the application.

13

2.2.1. Hardware Platform

A WSN consists of spatially distributed sensor nodes. Each sensor node is capable of

probing its environment and limited independent processing. The WSN nodes are also

capable of short range communication due to their radio transceiver which, allows

them to forward their sensed information to a central sink node. Furthermore, WSN

nodes can perform local coordination. Among the common sensor node platforms are

Crossbow technology MICAz, TMote Sky, Sun Microsystems Sun SPOT, and Texas

Instruments CC2530. The sensor nodes’ basic hardware components are an embedded

processor, a radio transceiver, memories, a power source, and sensors.

The WSN platform energy conservation strategies include efficient sensors

energizing, efficient device power mode setting, setting optimal transmission power,

duty cycling, etc.

2.2.1.1. Sensor Energizing

Sensor transducers are an integral part of sensor nodes. Sensors, either analog or

digital, translate physical phenomena into electrical signals. The sources of energy

consumption in sensor transducers can be signal sampling, conversion of physical

signals to electrical ones, signal conditioning, and analog to digital conversions [27].

Depending on the nature of their sensing mechanism, sensors consume different

amounts of energy. Passive sensors such as resistance temperature detectors (RTDs)

and photodiodes, for instance, consume much less energy than active ones such as

sonar rangers and strain gauges. The sampling rate also plays a major role in sensor

energy consumption. The higher the sampling rate, the higher is the energy

consumption [28, 29]. Another strategy in practice is employing low power and higher

error rate detector sensors before actually energizing the higher power consuming

higher quality sensors [30].

14

2.2.1.2. Power Mode Settings

The microcontroller unit is at the heart of the sensor nodes controlling the sensors and

execution of the communication protocols and signal processing algorithms [27]. The

microcontrollers support various operating modes, including active, idle, and multi

level sleep modes. Each mode is characterized by a different amount of power

consumption. The different power modes are achieved by switching off some

functional components of the microcontroller and hence, the power modes have

different functional capabilities. Depending on the application requirements, valuable

energy can be conserved by switching between the different power modes. For data

stream applications, which are the focus of this research, we consider a multi power

mode operation whereby all nodes remain in low power mode, briefly wake up,

sample their sensors periodically and send the data to their local sink.

2.2.1.3. Optimal Transmission Power Setting

In WSN, transmitting data at unnecessarily high power not only reduces the lifetime of

the nodes and the network, but also introduces excessive interference [31]. The

transmit power of the nodes determine the connectivity level of ad hoc wireless

networks [31]; however, transmitting at excessive power levels increase mutual

interference in the shared radio channel and limit the battery power. Therefore, the

optimal transmit power with respect to network lifetime and connectivity sufficient to

guarantee network connectivity [32, 33] should be a design consideration for efficient

WSNs. In [34], the optimal transmit power is derived for a random topology.

2.2.1.4. Duty Cycling

To resolve the conflict between limited energy and application lifetime requirements,

it is necessary to reduce node communication and sensing duty cycles [35]. Periodic

interval sensing is also used as sensor nodes’ energy conserving mechanism where the

nodes remain in off mode during the inactive duty cycles [35, 36]. Considering data

streaming applications, especially high speed data streaming applications, the amount

of time the nodes remain in inactive mode is very low. Therefore, duty cycling

15

becomes efficient only when the energy consumption of switching between the active

and inactive cycles is significantly low.

2.2.2. Operating System

Operating systems (OSs) for WSN nodes are typically simple and less complex than

general purpose OSs because of the resource constraints in hardware platforms and

also because of specific requirements of WSN applications. In many cases, simply

round robin based task scheduling suffices for specific WSN applications. A free and

open source component-based operating system and platform targeting wireless

sensor networks, TinyOS, is perhaps the first operating system specifically designed for

WSNs.

TinyOS programs are built out of software component libraries which include

network protocols, distributed services, sensor drivers, and data acquisition tools. The

TinyOS component libraries can be customized for application requirements. TinyOs

programming is based on an event-driven mode rather than multithreading. TinyOS

programs are composed into event handlers and tasks with run-to-completion

semantics. The TinyOS system and programs written for TinyOS are written in a special

extension of the C programming language called nesC.

Contiki is another highly portable open source OS specially developed for

WSNs. Contiki is an event-driven operating system, but it supports multithreading

unlike TinyOS. The Contiki operating system provides an IP communication stack, both

IPv4 and IPv6, with a very small memory footprint. There are also some new operating

systems for WSN such as LiteOS.

2.2.3. WSN Protocol Stack

A WSN is an ad-hoc arrangement of multifunctional sensor nodes in a sensor field,

usually to gather information regarding some phenomenon. Sensor nodes can be

densely distributed over a large even remote area and can continue to collaborate

their efforts to the benefit of the network even if a number of nodes malfunction.

16

There are two main layouts for WSNs. The first is a star layout where the nodes

communicate, in a single hop, directly to the sink whenever possible and peer-to-peer

communication is minimal. In the second, information is routed back to the sink via

data passing between nodes. This multi-hop communication is expected to consume

less power than single-hop communication because nodes in the sensor field are

densely distributed and are relatively close to each other.

A sensor network protocol stack is similar to the traditional protocol stack. The

WSN protocol stack consists of application, transport, network, data link, and physical

layers. The physical layer is responsible for frequency selection, carrier frequency

generation, signal detection, modulation and data encryption. The data link layer is

responsible for the multiplexing of data streams, data frame detection, medium access

and error control. It ensures reliable point-to-point and point-to-multipoint

connections in a communication network. The network layer takes care of routing the

data supplied by the transport layer. The network layer design in WSNs must consider

the power efficiency, data-centric communication, data aggregation, etc. The

transportation layer helps to maintain the data flow and may be important if WSNs are

planned to be accessed through the Internet or other external networks. Depending on

the sensing tasks, different types of application software can be set up and used on the

application layer.

2.2.3.1. IEEE 802.15.4/ ZigBee

The IEEE 802.15.4 Standard, introduced in 2003 is designed to address the need for a

low cost and low power wireless solutions and has become the foundation for

monitoring and control solutions, including ZigBee technology, SynkroRF technology,

the WirelessHART specification, WiMi specification as well as numerous other

proprietary network stacks.

ZigBee has been the de-facto protocol stack for low-cost, low-power WSN

devices. Based on the IEEE 802.15.4 MAC and physical layer standard [37], the ZigBee

specification defines an architecture for sensor networks that comprises a network

layer, an application support layer, as well as a security managing unit. ZigBee is a

17

wireless mesh network standard which operates in the industrial, scientific, and

medical (ISM) radio bands; 868 MHz in Europe, 915 MHz in the USA and Australia, and

2.4 GHz worldwide. ZigBee supports data transfer rate of 10Kbps, 20Kbps, and 40Kbps

at 686 MHz, 915 MHz, and 2.4 GHz bands respectively. The ZigBee network layer

natively supports star and tree networks, and generic mesh networks. Every ZigBee

network must have one coordinator device tasked with its creation, control and

maintenance. The star and mesh configurations allow use of ZigBee routers to extend

communication at the network level.

The ZigBee specification consists of three types of devices; the ZigBee

coordinator (ZC), ZigBee Router (ZR), and ZigBee End Device (ZED). ZC is a full function

device that forms the root of the network. In a ZigBee network, there will only be one

ZC. ZR is a fully functional device that can run applications functions, as well as act as

an intermediate router passing on data from other devices. A ZigBee network can have

multiple ZR devices. ZED is a reduced function device that can only talk to the parent

nodes (full function devices) and is not able to relay data from other devices. A typical

ZigBee network contains more ZigBee end devices (ZEDs) than ZigBee routers (ZRs).

ZigBee network protocols support beacon and non-beacon enabled networks.

In beacon-enabled networks, ZRs transmit periodic beacons to confirm their presence

to the other network nodes. Nodes may sleep between beacons, thus lowering their

duty cycle and extending their battery life. In non-beacon-enabled networks, an

unslotted CSMA/CA channel access mechanism is used. In non-beacon-enabled

networks, ZRs have their receiver continuously active, which allows some devices to

receive continuously and others to transmit on an external stimulus.

2.2.3.2. 6LoWPAN

More recently, the Internet Engineering Task Force (IFTF) has defined 6LoWPAN

standard which enables IPv6 connectivity over Low Power Personal Area Networks.

The 6lowpan group has defined encapsulation and header compression mechanisms

that allow IPv6 packets to be sent and received over from over IEEE 802.15.4 based

networks. The 6LoWPAN concept originated from the idea that "the Internet Protocol

18

could and should be applied even to the smallest devices," [38] and that low-power

devices with limited processing capabilities should be able to participate in the

Internet of Things [39].

2.2.4. Protocol Level Energy Conservation

The WSN protocol stack energy conservation concerns optimal topology formation,

method of packet routing, and route discovery/rediscovery.

Resource constraints are one of the major drawbacks on sensor networks.

Since sensor nodes run on battery, which cannot be replenished, it is vital that it runs

very efficiently, in terms of sensing, computation and communication. Sensing and

computation activities, compared to communication are very efficient. It is the

communication activities of transmitting and receiving which take up most of the

energy. So resource awareness should be inbuilt in the protocol architecture for

efficient communication. Enhancing power efficiency can be achieved in the entire

network protocol stack of wireless ad hoc networks [40]; topology formation, MAC

protocol, and routing protocol.

Topology formation is an important issue in a WSN. Performance parameters

such as energy consumption, network lifetime, data delivery delay, sensor field

coverage depend on the network topology [41].

MAC protocols control the communication modes in WSNs and regulate access

to the shared wireless medium such that the performance requirements of the

underlying applications are satisfied [42-45]. The major sources of energy waste in

conventional MAC protocols are Packet collision, idle listening, overhearing, and

control overhead [46].

Cluster-based routing protocols such as Low–energy adaptive clustering

hierarchy (LEACH) [47], Proxy-based adaptive clustering hierarchy (PEACH) [48],

Energy-driven adaptive clustering hierarchy (EDACH) [49] are known to minimize

sensors energy consumption.

19

2.2.5. Application Level Energy Conservation

The application level energy conservation concerns issues such as data acquisition

rate, data processing (distributed or central), data aggregation or reduction. The

specific WSN applications such as target tracking, event detection, phenomena

monitoring, actuation, and etc. determine which of these strategies can be optimal.

In WSN applications, data is acquired at a rate desired by the application

process. However, different data acquisition methods can be employed. For instance,

in target tracking application, all sensors can collect data about a moving target either

at the same rate or different rates. That is sensors at close proximity to the target can

capture data at faster rates than those at a distance from the target.

In WSNs, communication among the nodes is the major energy consuming

process. A large percentage of the nodes’ energy is spent on radio transmissions and

receptions [50, 51]. Hence, processing incoming data locally as much as possible and

transmitting only when incoming data shows significant variation can contribute to

WSN efficiency. Also when a cluster-based topology is in use, data aggregation [52] at

cluster heads can significantly enhance energy efficiency.

2.3. DATA STREAM MINING

Nowadays a growing number of applications generate streams of data characterized

by massive volume and continuous fast arrival rates. Applications such as performance

measurement in network monitoring and traffic management, call detail records in

telecommunications, transactions in retail chains, ATM operations in banks, web logs

on servers, and sensor networks generate data streams. Data stream mining gained in

importance over recent years because it is indispensable for many real applications

such as prediction and evolution of weather phenomena; security and anomaly

detection in networks; evaluating satellite data; and mining health monitoring streams.

Data stream processing systems are interested in mining patterns, processing queries,

and compute statistics on data streams in real-time. Stream mining algorithms must

take account of the unique properties of stream data: infinite data, temporal ordering,

20

concept drifts and shifts, demand for scalability, etc. Due to the nature of data

streams, the stream processing systems impose certain unique requirements; each

record (stream element) is examined once or a small number of times at most (single

pass), there is limited memory for storing summary, and per record processing time

must be low (real-time). Therefore, the key issue in mining on data streams is that only

one pass is allowed over the entire data. Moreover, there is a real-time constraint, i.e.

the processing time is limited by the rate of arrival of instances in the data stream, and

the memory and disk available to store any summary information may be bounded

[11]. Data stream processing algorithms generally compute approximate answers with

deterministic or probabilistic error bounds [53, 54]. There are many stream mining

techniques and methods proposed within the technology and knowledge discovery

community to overcome the challenges of storing and processing of fast and

continuous streams of data [55-57]. Data-based techniques and task-based techniques

are the two categories of data stream mining algorithms. Based on these two

categories, a number of clustering, classification, and frequency counting and time

series analysis have been developed [58]. Data-based solutions focus on stream

synopses computation that enables efficient processing of the data stream by the

existing mining methods to meet the requirements of data streams. Task-based

solutions focus on developing methods to address the computational challenges of

data stream processing [59, 60].

There are a number of synopsis data structures in the literature and in existing

systems. Examples include uniform and biased random samples, various types of

histograms, statistical summary information such as frequency moments, data

structures resulting from lossy compression of the data set, etc. Often, synopsis data

structures are used in a heuristic way, with no formal properties proved on their

performance or accuracy, especially under the presence of updates to the data set

[61]. A Variety of techniques can be used for synopsis construction in data streams

including sampling, histograms, wavelets, sketches, and micro-cluster based

summarization. A survey of these methods construction in data streams can be found

in [62]. Task-based techniques include approximation algorithms, sliding windows, and

algorithm output granularity [60].

21

Based on the two data stream mining techniques, data-based and task-based, a

number of methods/algorithms have been proposed for extracting knowledge from

streaming data. These mining algorithms summarize the whole or part of the incoming

stream using data-based techniques such as sampling [63], load shedding [64],

sketching [65], synopsis data structures [66], clustering [67], etc. to form the basis for

data stream mining. Based on the data stream summaries a number of task-based

stream analysis techniques have been employed including frequent pattern mining in

data streams [68], multidimensional analysis of streaming data [69], classification

analysis of data stream [70], stream clustering [67], stream outlier analysis, rare event

detection [71], and so on. Among these, the most frequently applied techniques are

described below.

2.3.1. Frequent pattern mining

Frequent pattern mining has become one of the most actively researched topics in

data mining and knowledge discovery in databases. The starting point was market

basket analysis and especially the task to mine transactional data, which describe the

shopping behavior of customers of supermarkets, mail-order companies and online

shops, for products that are frequently bought together. For this task, which became

generally known as frequent item set mining, a large number of efficient algorithms

were developed, which are based on sophisticated data structures and clever

processing schemes. Among them, Apriori [72], Eclat [73], and FP-growth [74, 75] are

most widely known. Extensions from item sets to item sequences are fairly

straightforward, but open up exciting new application areas, like genome mining [76]

and temporal pattern extraction from data describing, for instance, alarms occurring in

telecommunication networks [77]. Recently, finding frequent patterns from data

streams has become one of the important and challenging problems, since capturing

the stream content memory efficiently with a single-pass and efficient mining have

been major issues [78].

Jiawei et al. [74] developed an efficient Frequent-pattern tree (FP-tree) based

mining method, FP-growth, for mining the complete set of frequent patterns by

pattern fragment growth. They avoided the costly candidate generation-and-test

22

drawback of Apriori-like algorithms. The use of FP-growth is, however, restricted to

static data sets due to the FP-tree requirements of two database scans and prior

threshold knowledge. Leung and Khan [79] proposed a novel tree structure, called

DSTree (Data Stream Tree) that efficiently captures important concepts from the data

stream. Several frequent pattern mining algorithms in streaming data use the sliding

windows approach [80]. Carson and Fan [81, 82] proposed mining algorithms that use

the time-fading and landmark models to discover frequent patterns from streams of

uncertain data. They designed a tree structure that captures and stores frequent

patterns discovered from batches of transactions in dynamic streams for users

interested in discovering frequent patterns from a variable-size time window. Several

other stream frequent pattern mining algorithms have been proposed [83, 84].

2.3.2. Classification Mining

Classification is a data mining (machine learning) technique used to predict group

membership for data instances or is the process of automatically creating a model of

classes from a set of records that contain class labels. The Classification mining

function analyzes records that are already known to belong to a certain class, and

creates a profile for a member of that class from the common characteristics of the

records. A data mining application tool can then be used to apply this model to new

records, that is, records that have not yet been classified. Popular classification

techniques include decision trees and neural networks.

In recent years, there have been progressively several decision tree algorithms

for data stream classification emerged, such as Very Fast Decision Tree (VFDT) [85] and

Concept Adapting Very Fast Decision Tree (CVFDT) [86]. VFDT implements a decision-

tree learning system based on the Hoeffding tree algorithm. CVFDT is a decision-tree

induction system capable of learning accurate models from high speed, concept-

drifting data streams. CVFDT is an efficient algorithm for mining decision trees from

continuously-changing data streams, based on the ultra-fast VFDT decision tree

learner. CVFDT stays current while making the most of old data by growing an

alternative subtree whenever an old one becomes questionable, and replacing the old

with the new when the new becomes more accurate. Feixiong and Quan [87] have

23

extended the VFDT system to EVFDT (Efficient-VFDT) in two directions: (i) they present

Uneven Interval Numerical Pruning (UINP) approach for efficiently processing

numerical attributes. (ii) they use naive Bayes classifiers associated with the node to

process the samples to detect the outlying samples and reduce the scale of the trees.

From the experimental comparison, the two techniques significantly improve the

efficiency and the accuracy of decision tree construction on streaming data.

2.3.3. Outlier Detection

Outlier detection is a branch of data mining concerned with the discovery of data that

deviates significantly from other data. An outlier is an observation in a data set which

appears to be inconsistent with the reminder of that set of data [88]. Outliers are often

considered as an error or noise; however, they may carry important information. Their

detections prior to data modeling and analysis is usually a key to coherent analysis and

unbiased results. Outlier detection has found application in credit card fraud detection

[89], clinical trials [90], data cleansing [91], network intrusion [92], severe weather

prediction [93], geographical information systems [94], and others. Several studies

have been conducted on outlier detection for large datasets. The early work in outlier

detection employs statistical methods on the database assuming a priori knowledge of

distribution [95-97]. Clustering algorithms have also been used in outlier detection

where objects that are not located within clusters of a dataset are considered outliers

[98-101]. Recently, outlier detections for data streams are also studied using

techniques as sliding windows [102-104], auto-regressive technique for time series

data [95, 105], outlier detection for sensor networks’ multiple homogeneous data

stream [104, 106], and clustering outlier data stream techniques [107, 108].

2.3.4. Stream Clustering

Clustering in the data stream domain is partitioning of large volumes of data arriving in

a stream. The objective is to maintain a consistently good clustering of the sequence

observed so far, using a small amount of memory and time. Due to the relevance of

new classes of applications involving massive data sets, clustering in the data stream

24

model has become important. In recent years, a few one-pass clustering algorithms

have been developed for the data stream problem [109, 110]. For instance, the

algorithm in [110] extends the k-means algorithm to stream based continuous

clustering, which maintain a number of cluster centers that change or merge as

necessary throughout the execution of the algorithm. Density based clustering

algorithms specially designed for data streams have also emerged [111-114]. On the

other hand, some algorithms using micro-cluster for saving summary information

about the clusters that are not density based are designed for data streams [115, 116].

As the understanding of streaming data mature, more and more commercial stream

clustering algorithms are emerging. Among the stream clustering algorithms, STREAM

[118], BIRCH [118], and COBWEB [119] are well known.

2.4. DISTRIBUTED TECHNIQUES FOR WSN DATA STREAM MINING

The main focus of a vast majority of research in the WSN field is on energy efficiency

and network lifetime maximization. The dominance of communication power

consumption over computation power consumption in WSNs has motivated research

into a communication-computation tradeoff strategy for energy efficiencies and

network lifetime maximization. The high data rate of sensor nodes in these networks

has further raised the issue of data processing model efficiency. Distributed sensor

data stream mining systems have emerged as a result, to address both the challenges

of energy efficiency or network lifetime maximization and high data rates. This section

briefly reviews some of the existing distributed data stream mining methods with

particular emphasis on distributed sensor data stream clustering WSN systems.

To design effective distributed techniques for WSN data stream mining

applications under their inherent constraints, the above general mining techniques

have to be crafted to suit the distributed nature of WSNs and satisfy online stream

mining goals. Due to the high computational burden of analyzing such streams,

distributed stream mining systems have been recently developed [120]. It has been

shown that distributed stream mining systems transcend the scalability, reliability, and

performance objectives of large-scale, real-time stream mining systems [121-123].

25

Clustering is probably the most frequently used data mining algorithm, used as

exploratory data analysis technique [124]. The general goal of a clustering technique is

to decompose or partition data sets into groups such that both intra-group similarity

and inter-group dissimilarity are maximized [125]. For the WSN environment to

achieve significant energy conservation, clustering has to be performed in distributed

fashion within the network due to the inherent constraints. There are several recent

research works on distributed clustering.

When data is being produced at multiple locations, as in a WSN, two major

clustering frameworks are apparent in the wider literature. The first framework

consists of a process that gathers data to a central location and analyzes the stream at

the central location. The second framework consists of two level-processing; level one

clusters data at the individual sources and level two compiles the results at a central

location and defines the final clusters based on the clusters transmitted by the

individual sources. The former framework is obviously resource inefficient and

inapplicable to WSN systems. The latter framework has attracted several research

works. The cluster ensemble approach [126], for instance, follows this framework.

Distributed data mining appears to have the necessary features to apply clustering to

streaming data produced on sensor networks [127]. Although few works were directly

targeted at data clustering on sensor networks, some distributed techniques are

obviously relevant.

Continuous clustering algorithms over distributed data streams have recently

attracted the attention of the clustering research community. In [128] the authors

present a distributed majority vote algorithm, which can be seen as a primitive to

monitor a k-means clustering over peer-to-peer networks. The k-means monitoring

algorithm has two major parts: monitoring the data distribution in order to trigger a

new run of k-means algorithm and computing the centroids actually using the k-means

algorithm. The monitoring part is carried out by an exact local algorithm, while the

centroid computation is carried out by a centralization approach. The local algorithm

raises an alert if the centroids need to be updated. At this point data is centralized, a

new run of k-means is executed, and the new centroids are shipped back to all peers.

26

A different strategy to achieve the same goal, with local and global

computations, in order to balance communications costs has been proposed in [129].

They considered techniques which give an approximation for the radius and diameter

of clusters with guaranteed cost of two times the cost of the optimal clustering based

on the furthest point algorithm [130].

Kargupta et al. presented a collective principal component analysis (PCA), and

its application to distributed cluster analysis [131]. In this algorithm, each node

performs PCA, projecting the local data along the principal components, and applies a

known clustering algorithm on this projection. Then, each node sends a small set of

representative data points to the central site, which performs PCA on this data,

computing global principal components. Each site projects its data along the global

principal components, which were sent back by the central node to the rest of the

network, and applies its clustering algorithm. However, these techniques can easily

overload the system when the sensors are required to react to a query.

Klusch et al. proposed a kernel density based clustering method over

homogeneous distributed data [125], which, in fact, does not find a single clustering

definition for all data sets. It defines local clustering for each node, based on a global

kernel density function, approximated at each node using sampling from signal

processing theory. These techniques present a good feature as they perform only two

rounds of data transmission through the network. Other approaches using the K-

Means algorithm have been developed for peer-to-peer environments and sensor

network settings [132].

Considering the lack of resources usually encountered on sensor networks,

Gaber & Yu proposed Resource-Aware Clustering [133] as a stream clustering

algorithm for clustering that can adapt to the changing availability of different

resources. The system is integrated in a generic framework that enables resource-

awareness in streaming computation, monitoring main resources like memory, battery

and CPU usage, in order to achieve scalability in distributed sensor networks, by

adapting the parameters of the algorithm. Data arrival rate, sampling and number of

clusters are examples of parameters that are controlled by this monitoring process.

27

Previous works concentrate on clustering of data at local sites and compiling

the local results at the central cite to define global clustering. Some of the previous

works also considered relaying the global clusters to the local sites so that the local

sites can fine tune their local clustering to achieve better overall global cluster models.

However, none of them considered detecting and suppressing the local site

computations whenever the data acquired at these sites show no significant changes

from their previous acquisition, which is a common occurrence in dynamic systems.

This strategy reduces the global clustering computation at the central site whenever

there are no significant changes observed at the local sites. Further, few of the

previous works consider producing mining results in an on-line fashion with the

exception of [134, 135].

Qi et al. [134] proposed a suite of communication efficient algorithms for

computing approximate k-median clustering over distributed data streams under

different topology settings. Their algorithm basically considers a tree structure

whereby each node computes local summaries and refines the summaries aggregating

data from their child nodes along the path to the root. Though this guarantees low

error bounds in final summaries while significantly reducing communication, it involves

multiple merge and compression computations to achieve the final summary and

hence it is not able to handle online clustering of fast streams. This algorithm does not

feedback the global summaries into the network and hence local summaries have to

be computed continuously. Therefore, it suffers from poor computation scalability.

 Maria and Iordanis [135] proposed an online data clustering method suitable

for distributed streaming data processing and for capturing their dynamically changing

characteristics using belief propagation techniques. They considered a set of

distributed nodes that communicate directly with a central location. At each time slot

the node level identifies a set of representative data items (exemplars) based on

certain similarity matrices and sends the exemplars to the central location. The central

location computes global exemplars and feeds back to the nodes with appropriately

modified weights which reflect their importance in global clustering. Their algorithm

does not apply for multi-hop networks where some nodes cannot directly reach the

central location. Besides, the appropriate cluster weights feedback is not possible

where there is no prior knowledge of desired global exemplars. Their work, however, is

28

focused on capturing changing characteristics and does not consider resource

constraints and WSN characteristics.

 Distributed clustering of streaming data under the framework of two-level

processing -- where level-one clusters data at the individual sources and level-two

compile the results at a central location and defines the final clusters based on the

clusters transmitted by the individual sources -- has been targeted by researchers to

cope with high-speed production of data streams. Meanwhile, a gap has been left in

adapting the distributed stream clustering for the on-line mining framework in the

context of WSNs. We propose a distributed incremental stream mining framework for

WSNs consisting of a multilevel processing architecture.

2.5. CHAPTER SUMMARY

In this chapter we have first presented the architecture of WSNs. The WSN functional

components have hardware platforms, WSN operating systems, wireless protocol

stacks and applications are described. The energy conservation strategies that can be

useful at those components are also described. Following the WSN description, the

data stream mining techniques, specifically those relevant to the WSN framework are

reviewed. We have analyzed the distributed data stream mining framework based on

the literature in the context of WSN systems and identified a gap in this research area.

29

Chapter 3

3. RESEARCH TOOLS AND MATERIALS

This chapter introduces general tools and materials that are used in this research to

model and simulate the concept of distributed incremental data stream mining WSNs

and implementation of a small scale prototype system. These tools and materials

enable building models representing real life scenarios and simulate various events to

derive meaning and draw conclusions from data obtained. Analysis of the details from

the simulation provides concise descriptions and guidelines for optimal real system

counterpart development. The main tools and materials used in this research are:

1. TrueTime simulator.

2. TI’s CC2530ZNP-Mini kit.

3. Sensirion’s SHT1x Humidity/Temperature sensors.

4. Sparkfun’s SEN-08942 Weather meter.

3.1. TRUETIME SIMULATOR

TrueTime is a MATLAB/Simulink based simulator [136] for real-time networked and

embedded control systems. It facilitates co-simulation of the temporal behavior of a

multitasking real-time kernel, network transmissions, and continuous model dynamics.

The tasks are processes that are modeled as ordinary continuous-time Simulink blocks.

30

TrueTime also makes it possible to simulate models of standard MAC layer network

protocols, and their influence on the network. Further details can be found in the

TrueTime kernel Reference Manual [137].

TrueTime has been studied thoroughly by researchers in the embedded

networked control systems society. Its reliability has been validated in different

studies, including simulation of computer nodes and communication networks

interacting with continuous time dynamics of the real world [138], time-triggered and

event-based networked control and AODV routing in wireless ad-hoc networks [139],

and WirelessHART communication system clock drift, delay, and packet loss [140].

TrueTime is MATLAB-based and requires MATLAB 7.0(R14) with Simulink 6.0

(R14) or later. TrueTime has been tested under Linux, Windows, and Mac operating

systems. The TrueTime simulator, as shown in Figure 3.1, contains a block library with,

TrueTime Kernel block, TrueTime Network block, TrueTime wireless network block,

TrueTime ultrasound network block, TrueTime Battery block, and TrueTime Send and

Receive standalone blocks. The blocks are variable-step, discrete, MATLAB S-functions

written in C++ [141]. The user writes code functions to configure and initialize these

blocks for a specific simulation. The code functions for tasks and the initialization

commands may be written either as C++ functions or as MATLAB M-files. During the

simulation, User defined tasks and interrupt handlers representing, e.g., I/O tasks,

process algorithms, and network interfaces are executed on the kernel block according

to a user defined scheduling policy. The TrueTime blocks are event-driven where the

executions are determined by events (both internal and external). Internal events

correspond to events such as scheduled timer interrupts, message transmission

completione, etc. External events correspond to arrivals of over the air messages,

sensor readings, etc.

31

Figure 3.1: TrueTime Block Library.

3.1.1. The TrueTime Kernel

TrueTime implements a complete real-time kernel with a ready queue for tasks ready

to execute, a time queue for tasks waiting to be released and waiting queues for

monitors and events. Queues are manipulated by the kernel or by calls to kernel

primitives. The simulated kernel is ideal such that no interrupt latency and no

execution time associated with real-time primitives, however possible to specify a

constant context switch overheads. TrueTime utilizes the Simulink zero-crossing

function to enable event-based simulation.

The TrueTime kernel block S-function simulates a computer or controller with a

simple flexible real-time kernel, including A/D and D/A converters, network interface,

and external interrupt ports. The kernel abstracts several data structures that are

commonly found in a real-time kernel such as ready queue, time queue, tasks records,

interrupt handlers, monitors and timers created for simulation. The execution of tasks

and interrupt handlers is defined by code functions, written in C++ or MATLAB code.

Process algorithms may be defined graphically using ordinary discrete Simulink block

diagrams.

The kernel is configured through the block mask dialog (Figure 3.2) with

parameters; Init function, Init function argument, Battery, Clock drift, and Clock offset.

32

A single run-time parameter to configure the kernel on the fly is also available. At the

moment dynamic CPU scaling and energy consumption can be set through the run-

time configuration command.

The init function parameter defines the name of the initialization script which

must be on the same path as the simulation model file. The Init function argument is

an optional argument to the initialization script. The Battery parameter sets whether

the kernel should depend on a power source. The Clock drift defines the desired time

drift between the local time and the actual simulation time. The Clock offset sets a

constant time offset from the nominal time.

In this research, the kernel block simulates a sensor node platform i.e. the

controller that hosts the sensor interface library, wireless protocol stack and data

stream mining algorithm.

33

Figure 3.2: The TrueTime Block Mask Dialog.

3.1.1.1. Tasks

In TrueTime, tasks are used to model the execution of user codes. The release of task

instances (jobs) may be periodic or aperiodic. For periodic tasks, the jobs are created

by an internal periodic timer. For aperiodic tasks, the jobs (e.g. to respond to set

interrupts) must be created by the user. When there are multiple jobs of the same

task, pending jobs are queued. Each job has an execution-time budget. Dynamic task

attributes such as release time, absolute deadline, and execution time are updated by

the kernel as simulation progresses. However, static task attributes such as period,

priority, and relative deadline are kept constant unless explicitly changed by the user.

Communications between tasks is supported by mailboxes. A finite ring buffer is used

to store incoming messages.

34

3.1.1.2. Code Function

The user task code is represented by a code function in the format shown in Equation

3.1. Discrete Simulink blocks may be called from within the code functions. Block

states are stored in the kernel between calls.

ሾ݁݁݉݅ݐܿ݁ݔ, ሿܽݐܽ݀ ൌ ,ݐ݊݁݉݃݁ݏሺ݁݀݋ܿݕ݉	݊݋݅ݐܿ݊ݑ݂	 ሻ (3.1)ܽݐܽ݀

 where data is an input/output argument representing local memory of the

task. Segment is an input argument representing the program counter, and exectime is

an output argument representing the execution time of the current code segment.

3.1.1.3. Code Segments

A code segment models a number of statements that are executed sequentially as

shown in Figure 3.3. Multiple code segments are required to simulate input-output

delays, self-suspensions, waiting for events or monitors, and loops or branches.

 Real time Simulation time

0 statement 1; 0

 statement 2;

 . . .

 t statement n; t

Figure 3.3: Code Segment.

The execution time t must be supplied by the user and it may be constant, random or

data-dependent. A return value of -1 for exectime means that the job has finished. All

statements in a segment are executed sequentially; non-preemptively, in zero

 Delay

35

simulation time, and no local variables are saved between segments. Only the delay

can be preempted by other tasks.

3.1.1.4. Configuring Simulation

Each kernel block is initialized in a script (block parameter) as in listing 3.1 below. The

scheduling policy of the kernel is defined by a priority function, which is a function of

task attributes. Pre-defined priority functions exist for fixed-priority, rate-monotonic

priority, deadline-first priority, and earliest-deadline-first scheduling.

nbrInputs = 3;
nbrOutputs = 3;
ttInitKernel(nbrInputs, nbrOutputs, prioFP);
periods = [0.01 0.02 0.04];
code = myCtrl;

for k = 1:3

data.u = 0;
taskname = [Task num2str(k)];
offset = 0; % Release task at time 0
period = periods(k);
prio = k;
ttCreatePeriodicTask(taskname,offset,period,prio,

code,data);
end

Listing 3.1: The Kernel Block initialization script.

3.1.1.4. Scheduling Hooks

Scheduling hook is code that is executed at different stages during the execution of a

task that facilitates implementation of arbitrary scheduling policies, such as server-

based scheduling. TrueTime supports the following six scheduling hooks; Arrival hook,

Release hook, Start hook, Suspend hook, Resume hook, and Finish hook. The Arrival

hook is executed when a job is created. Release hook is executed when the job is first

inserted in the ready queue. Start hook is executed when the job executes its first

segment. Suspend hook is executed when the job is pre-empted, blocked or voluntarily

36

goes to sleep. The resume hook is executed when the job resumes execution. The

Finish hook is executed after the last code segment.

3.1.1.5. Data Logging

A number of variables may be logged by the kernel as the simulation progresses and

are written to the MATLAB workspace when the simulation terminates. TrueTime

provides automatic logging for response time, release latency, sampling latency, task

execution time, and context switch instances. User variables may be logged as

required in the given scope.

3.1.1.6. Monitors

Monitors are used to model mutual exclusion between tasks that share common data.

Tasks waiting for monitor access are arranged according to their respective static or

dynamic priorities. The implementation supports standard priority inheritance to avoid

priority inversion.

3.1.2. The TrueTime Wireless Network

The TrueTime Wireless network block simulates medium access and packet

transmission in a wireless network. The network blocks dispatch messages between

kernel blocks according to a preferred model of a wireless network. The network block

contains a discrete-event simulator that reads incoming messages, handles the

medium access and resolves collisions, simulates the actual data transmission, and

writes outgoing messages.

It takes into account the path-loss of the radio signal through x and y inputs

that specify the true location of the nodes. The network protocols supported are

limited to IEEE 802.15.4 (ZigBee) and IEEE 802.11b/g (WLAN) at the moment. The radio

model in use includes support for: Ad-hoc wireless networks, isotropic antenna,

37

inability to send and receive messages at the same time, path loss of radio signals

modeled as ଵௗೌ where ݀ is the distance in meters and ܽ is a parameter chosen to model

the environment, and interference from other terminals.

The wireless network block is configured through the block mask dialog (Figure

3.4) with parameters; Network type, Network number, Number of nodes, Data rate,

Minimum frame size, Transmit power, Receiver signal threshold, Path-loss exponent,

ACK timeout, Retry limit, and Error coding threshold.

The Network type parameter determines the MAC protocol to be used (either

IEEE 802.15.4 or IEEE 802.11b/g). The network number parameter specifies the

number of network blocks in use. Number of nodes specifies the number of nodes

connected to the network block. Data rate determines the speed of the network in bits

per second (bits/s). Minimum frame size determines the minimum message size in bits

including protocol overhead. A message or a frame shorter than minimum frame size

will be padded to give minimum length. Transmit power determines the strength of

the radio signal and hence its reach. Receiver signal threshold determines the received

signal energy threshold above which the medium is classed as busy. Path-loss

exponent models the radio signal path loss of the environment. ACK timeout is the

time the sending node will wait for ACK (acknowledgment) before retransmitting.

Retry limit is the maximum number of times a node will try to retransmit a message

before giving up. Error encoding threshold defines the percentage of block errors

based on the signal-to-noise ratio in a message that the coding can handle.

3.1.3. The TrueTime Battery

The battery block enables simulation of battery-powered devices. The initial power of

a node is set using the battery configuration mask. The battery constitutes a simple

integrator model, so that it can be both charged and discharged. The power drains

such as kernel computation, radio transmissions, sensors and actuators must be

connected to the battery input to simulate the node’s power consumption. If the

kernel is configured to use battery and the energy input to the kernel is zero, it will not

38

execute any code. The dynamic voltage scaling scheme along with the battery block

allows simulations with changing CPU speed and proportional energy consumption

scenarios.

Figure 3.4: The TrueTime Wireless Network Block mask dialog.

39

3.1.4. Limitations of TrueTime

TrueTime cannot express tasks and interrupt handlers directly using production code.

The code is modeled using TrueTime MATLAB code or TrueTime C code and there is no

automatic translation. Further code execution times or distributions are assumed to be

known. There is no built-in support for network and transport layer protocols such as

TCP and AODV, however, these two are implemented as an example and included in

the package. The code segments in the code function are non pre-emptive, as

MATLAB does not allow functions to be pre-empted/resumed.

3.2. TI’s CC2530 ZNP-MINI KIT

The CC2530ZNP-Mini kit is Texas Instruments (TI) ZigBee network development kit. The

CC2530ZNP-Mini kit is the successor to the EZ430-RF2480 and uses the ZigBee network

processor (ZNP) firmware on the CC2530 system-on-chip (SoC). The CC2530ZNP allows

separating the ZigBee stack from the application processor. The ZigBee Network

Processor development kit (Figure 3.5) is a typical introduction to ZigBee WSNs. The

hardware consists of a CC2530 ZigBee device programmed with ZigBee software and

an MSP430F2274 microcontroller that controls the ZigBee device. The kit enables

existing applications to add a serial interface to a ZigBee processor that takes care of

all protocol handling for ZigBee communication. The kit sensor boards include an

accelerometer, temperature sensor, and light sensor that can be used in conjunction

with LED lights and push buttons to develop simple demo applications. The Kit board is

shown in Figure 3.6 below.

3.2.1. CC2530

TI’s CC2530 is a true system-on-chip solution tailored for IEEE 802.14.5, ZigBee

applications. The CC2530 combines a fully integrated, high-performance RF transceiver

with an 8085 MCU, 8 KB of RAM, 32/64/128/256 KB of Flash memory, and powerful

supporting features and peripherals. Combined with TI’s low power microcontroller,

MSP430F2274, CC2530ZNP provides a very easy way of deploying and testing low

40

power sensor networks. The block diagram of the CC2530 is shown in Figure 3.7 below.

Refer to datasheet [143] for more details of the CC2530. The kit provides some typical

features for low power WSN based on the ZigBee standard;

• 2.4-GHz IEEE 802.15.4 Compliant RF transceiver.

• Excellent Receiver Sensitivity and Robust to Interference.

• Programmable Output Power up to 4.5 dBm

• High-performance and Low-Power 8085 Microcontroller core with Code

Prefetch.

• Low Power

o Active mode RX (CPU Idle): 24 mA.

o Active mode TX at 1 dBm(CPU Idle): 29 mA.

o Power mode 1 (4 ߤs wake-up): 0.2 mA.

o Power mode 2 (Sleep Timer Running): 1 ߤA.

o Power mode 3 (External Interrupt): 0.4 ߤA.

o Wide Supply-Voltage Range (2 V – 3.6 V).

• ISP communication to host controller

Figure 3.5: CC2530ZNP-Mini Kit.

41

Figure 3.6: CC2530ZNP board.

42

Figure 3.7: CC2530 ZNP Block Diagram.

43

3.2.2. MSP430F2274

The Texas Instruments MSP430F2274 is an ultra-low-power mixed signal

microcontroller. It features a powerful 16-bit RISC CPU, 16-bit registers, and constant

generators that contribute to maximum code efficiency. The MSP430F2274 peripherals

include two built-in 16-bit timers, a universal serial communication interface, 10-bit

A/D converters with integrated reference and data transfer controller (DTC), two

general-purpose operational amplifiers, and 32 I/O pins. The architecture combined

with five low-power modes is optimized to achieve extended battery life in portable

applications. Refer to the datasheet [142] for more information. The functional block

diagram of the device is shown in Figure 3.8.

The clock system of the MSP430F2274 is supported by the basic clock module that

includes support for a 32768-Hz watch crystal oscillator, an internal very-low-power

low-frequency oscillator, an internal digitally-controlled oscillator (DCO), and a high-

frequency crystal oscillator. The basic clock module is designed to meet the

requirements of both low system cost and low power consumption. The internal DCO

provides a fast turn-on clock source and stabilizes in less than 1 ߤs. The basic clock

model provides the following clock signals:

• Auxiliary clock (ACKL), sourced from a 32768-Hz crystal, a high-frequency

crystal, or the internal very-low-power LF oscillator

• Main clock (MCLK), the system clock used by the CPU

• Sub-main clock (SMCLK), the sub-system clock used by the peripheral modules

The MSP430F2274 microcontroller has an active mode and five software-selectable

low-power modes of operation. An interrupt event can wake up the device from any of

the five low-power modes, service the request, and restore back to the low-power

mode on return from the interrupt programme.

The operation modes of the MSP430F2274 are:

• Active mode (AM)

o All clocks are active.

• Low-power mode 0 (LPM0)

44

o CPU is disabled.
o ACLK and SMCLK remain active. MCLK is disabled.

• Low-power mode 1 (LPM1)

o CPU is disabled ACLK and SMCLK remain active. MCLK is disabled.
o DCO dc-generator is disabled if DCO not used in active mode.

• Low-power mode 2 (LPM2)

o CPU disabled.
o MSCL and SMCLK are disabled.
o DCO dc-generator remains enabled.
o ACLK remains active.

• Low-power mode 3 (LPM3)

o CPU is disabled.
o MCLK and SMCLK are disabled.
o DCO dc-generator is disabled.
o ACLK remains active.

• Low-power mode 4 (LPM4)

o CPU is disabled.
o ACLK is disabled.
o MCLK and SMCLK are disabled.
o DCO dc-generator is disabled.
o Crystal oscillator is stopped.

The MSP430F2274 has four 8-bit I/O ports implemented—ports P1, P2, P3, and P4.

Only three I/O pins are implemented from port P2, therefore bits [5:1] of all port P2

registers read as 0 and write data is ignored.

• All individual I/O bits are independently programmable.

• Any combination of input, output, and interrupt condition is possible.

• Edge-selectable interrupt input capacity for all eight bits of port P1 and P2.

• Read/write access to port-control registers is supported by all instructions.

• Each I/O has an individually programmable pull-up/pull-down resistor.

45

Figure 3.8: MSP430F2274 Functional Block Diagram.

3.3. SHT15 – DIGITAL HUMIDITY SENSOR (RH&T)

SHT15 digital humidity and temperature sensor integrates sensor elements plus signal

processing on a tiny footprint (Figure 3.9) and provides a fully calibrated digital output.

A capacitive sensor element is used for measuring relative humidity while temperature

is measured by a band-gap sensor. Both sensors are seamlessly coupled to a 14-bit

analog to digital converter (ADC) and a serial interface circuit. It is calibrated with its

own calibration coefficients saved on the sensor’s own EEPROM. The two-wire serial

interface and internal voltage regulation allows for easy and fast system integration.

The SHT15 features;

1. Energy consumption: 800uW (at 12-bit, 3V, 1 measurement/s)

2. RH operating range: 0 -100 % RH

3. T operating range: -40 - +125 Ԩ (-40 - +257 Ԭ)

4. RH response time: 8 sec (߬ 63%)

5. Output: digital (2-wire interface)

46

where ߬ is the time for reaching 63% of a step function, valid at 25Ԩ and 1m/s

airflow.

Relative humidity from 0% to 100% can be measured in typical steps of 2 % RH.

Temperature sensor has a range of -40 degree Celsius to 123.8 degree Celsius with +-

0.03 degree Celsius resolution.

The relative humidity (RH) sensor is non-linear. For compensating the non-

linearity of the humidity sensor and obtaining the full accuracy of the sensor it is

recommended to convert the humidity readout ሺܱܵோுሻ with the following formula

(3.2) with coefficients given in Table 3.1.

௟௜௡௘௔௥ܪܴ ൌ ଵܥ	 ൅	ܥଶ ∗ ܱܵோு ൅	ܥଷ ∗ 	ܱܵோுଶ (%RH) (3. 2)

Table 3.1: Humidity conversion coefficients. ࡯ ࡴࡾࡻࡿ૚ ࡯૛ ࡯૜

12 bit -2.0468 0.0367 -1.5955E-6

8 bit -2.0468 0.5872 -4.0845E-4

The band-gap proportional to the absolute temperature is very linear by design.

Equation 3.3 should be used to convert digital readout ሺ்ܱܵሻ to temperature value,

with coefficients given in Table 3.2.

 ܶ	 ൌ 	݀ଵ ൅	݀ଶ ∗ ்ܱܵ (3.3)

47

Table 3.2: Temperature conversion coefficients.

VDD ࢊ૚	ሺԨሻ ࢊ૚ ሺԬሻ
 5V -40.1 -40.2

4V -39.8 -39.6

3.5V -39.7 -39.5

3V -39.6 -39.3

2.5V -39.4 -38.9

Figure 3.9: SHT15 Digital Humidity Sensor.

3.4. SEN-08942 WEATHER METER

SEN-08942 is Sparkfun Electronics’ weather station that includes an anemometer, wind

vane, and rain gauge (Figure 3.10). The sensors contain no active electronics, instead

using sealed magnetic reed switches and magnets to take measurements. A voltage

must be supplied to each instrument to produce an output. The anemometer uses a

reed switch, so simple frequency detection can be used to measure wind speed. The

wind vane uses a potentiometer to detect wind direction. The rain gauge acts as a

switch that closes at measured increments.

The rain gauge is a self-emptying tipping bucket type. Each 0.011’’ (0.2794mm)

of rain causes one momentarily contact closure that can be recorded with a digital

counter or microcontroller interrupt input.

૛ࢊ ࢀࡻࡿ ሺԨሻ ࢊ૛	ሺԬሻ
14 bit 0.01 0.018

12 bit 0.04 0.072

48

The cup-type anemometer measures wind speed by closing a contact as a

magnet moves past a switch. A wind speed of 1.492 MPH (2.4 km/h) causes the switch

to close once per second.

The wind vane has eight switches, each connected to a different resistor. The

vane’s magnet may close two switches at once, allowing up to 16 different positions to

be indicated. An external resistor can be used to form a voltage divider, producing a

voltage output that can be measured with an analog to digital converter.

Figure 3.10: SEN-08942 Weather meter.

49

3.5. CONCLUSION

TrueTime is capable of investigating behavior of time or event-triggered processes

(such as control loops) subject to sampling jitter, input-output latency, and lost

samples caused by real-time scheduling and networking effects. It is also capable of

investigating the performance of various scheduling methods, and wired or wireless

MAC protocols. It can further simulate scenarios involving battery-powered and mobile

nodes communicating using wireless ad hoc networks.

The CC2530ZNP-Mini kit is a perfect tool to add low-power wireless capability

to an existing system with minimum porting as it provides separate application

processor and ZigBee communication protocol processor.

The SHT15 Humidity and Temperature Sensor provides stable and high

resolution digital output, which is ideal for applications that require long term

untethered operation.

SEN-08942 weather meter is simple to implement, cost-effective, and low-

power, well suited for energy constrained WSNs.

50

Chapter 4

4. DISTRIBUTED INCREMENTAL DATA STREAM MINING WIRELESS
SENSOR NETWORK FRAMEWORK

4.1. INTRODUCTION

This chapter describes the theory of distributed incremental data stream mining WSNs

based on the hybrid fuzzy clustering technique. The proposed framework enables

mining of continuously streaming WSN data on the fly and in-network with limited

resource requirements, thus expands the scope of applications for WSNs. The basic

concept is to develop a distributed sensor data stream mining algorithm that

minimizes inter-node communications, maximizes local computation and energy

efficiency without compromising practical application requirements and quality of

service (QoS).

 WSNs consist of spatially distributed autonomous sensor nodes equipped to

sense specific information and hence can be considered as distributed data sources

(database). In several WSN applications, physical variables such as temperature,

relative humidity, and light are generated in continuous streams. In such applications

the WSN can be modeled as distributed data stream base and different distributed

data stream management techniques can be utilized for analysis of the WSN.

In several WSN applications, physical variables such as temperature, relative

humidity, and light are monitored continuously along the network operation. WSNs

usually generate data continuously in an online fashion as time progresses. Thus, data

arrival to the sink is more or less continuous and unordered. Data with such features

51

are commonly referred to as data streams [57], which are also known as sensor

streams for data streams generated by sensor networks [144].

WSN nodes, besides being data stream sources, are also capable of limited

processing, storing, and transmitting their data short distances wirelessly. This work

leverages these limited capabilities of sensor nodes and their distributed nature to

implement a distributed sensor stream mining system. The framework aims to achieve

energy-efficiency, communication-efficiency, and computation-efficiency as a result of

the incremental in-network distributed data stream clustering before transmission-

commonly known as the computation-communication tradeoff [145].

4.2. DISTRIBUTED INCREMENTAL DATA STREAM MINING

Most WSN applications envisage large deployments of wireless sensor nodes at high

redundancy to account for the unreliability of individual nodes. In order for large

deployments to be cost-effective, sensor nodes are resource-constrained in terms of

energy capacity, radio transmission, processing capabilities, and memory storage

[146]. Transmitting data to a certain distance results in consuming several orders of

larger energy than processing. Therefore, distributed local processing can offer

tremendous advantages to WSNs in general. However, WSN nodes are limited in

processing capability to individually accomplish computational requirements of certain

applications on the acquired sensor data. Further, certain applications require

simultaneous acquisition and computation of data from several nodes at distributed

locations. Under these circumstances, distributed and organized cooperative

processing is required.

4.3. NETWORK ARCHITECTURE FOR DISTRIBUTED INCREMENTAL DATA
STREAM MINING

The proposed distributed incremental data stream mining system is coupled to a

hierarchical two-tiered communication architecture of WSN. Hence, the data stream

52

clustering algorithm assumes that the network nodes or sensor nodes are organized in

distinct hierarchical clusters of nodes with each cluster under a predefined cluster

head (CH). WSN nodes under this scheme organize themselves in clusters and

cooperate to perform an assigned task autonomously without intervention.

We assume a two-tiered communication architecture. The first tier consists of

sensor nodes to cluster heads communication. The sensor nodes are only able to

communicate two ways with their cluster heads and no sensor to sensor

communication is assumed. The sensor nodes are sources of the streaming data. The

second tier consists of cluster heads to Sink communication. Here, the cluster heads

can communicate to one another besides communication with the Sink. Cluster heads

can send data packets multi hop to the Sink via other cluster heads, therefore the

network reach is extended. The cluster heads do not any data, but are purely tasked

with computations and communications of sensor node data. The network

architecture of the distributed incremental data stream mining system is shown in

Figure 4.1.

Figure 4.1: The hierarchical two-tiered WSN architecture for the distributed

incremental data stream mining framework.

53

4.4. DISTRIBUTED INCREMENTAL DATA STREAM MINING FRAMEWORK

A detailed description of the distributed incremental data stream mining framework is

presented in this section. The underlying principle of distributed incremental stream

mining is to handle the sensor stream mining process in-network at distributed

locations and incrementally at multiple hierarchical levels. This involves starting from

simple local processing at sensor nodes to fair regional mining at intermediate nodes

(CHs) and through to complete global mining at the network sink. The approach is such

that as the sensor streams traverse up the network from sensor nodes via

intermediate nodes and finally to the network sink, the stream processing complexity

increases while the total amount of transmitted bits decreases.

This approach consists of three distinct stream processing tasks asynchronously

but cooperatively revealing the underlying structure in distributed sensor data

streams. These tasks are the sensor nodes, the cluster heads, and the network sink

processing tasks.

4.4.1. Sensor Nodes Processing

The basic idea is for the sensor nodes to process the incoming stream locally and

minimize data transmission as much as possible without compromising the accuracy of

the information hidden in the stream.

Under this scheme, the sensor nodes initially transmit an item of their stream

(tuple) to their respective cluster heads and wait for their cluster head’s response. The

Cluster heads respond to each sensor node by transmitting cluster prototypes that are

computed from the received tuple and tuples received from other members of the

group. Following this initial transmission, the sensor nodes continuously compare their

incoming tuples to the received local cluster prototype. If their input tuples fall within

their local cluster prototype with a deviation less than a predetermined threshold,

from now on referred to as local the model drift threshold, then the sensors categorize

the tuples as belonging to the local cluster prototype and avoid transmission.

However, if the new input tuples deviate significantly from the local model drift

threshold, then they transmit the new tuple to their cluster head and wait to receive

54

the new local cluster prototype. The sensor nodes, following the initial transmissions,

only transmit their input tuples whenever there is significant drift in their acquired

stream information.

Consider a general model of a data stream where data values are generated as

stream of tuplesሺݔ௜ሻ. Let ܵ ൌ ሺݔଵ, … , ݊ ,௡ሻݔ ൌ 1,2,3,…∞ be the data stream that is

continually generated at sensor nodes as time progresses, where ݊ is the stream tuple

number. Let ሺݔଵሻ be the first tuple of a data stream. For a cluster of ܯ member nodes,

there will be ሼ ଵܵ, ܵଶ, ܵଷ, … , ܵெሽ data streams being generated simultaneously within

the cluster.

We assume unordered, unaggregated model (cash register) of data arrivals i.e.

the general case where data arrives unordered and the same value may appear

multiple times within the stream [66]. The processing of massive data streams requires

the use of a more restricted model of computation where data streams must be

processed with the demand that each tuple in the stream must be processed

completely and discarded before the next is received [147]. In this model, once a tuple

has been seen, it cannot be retrieved unless it is explicitly stored in the main memory

which is extremely limited for WSN nodes.

During initial transmission, the first tuple of all streams ሺݔଵ௜ , ݅ ൌ 1,2,3,… ሻ isܯ,

sent to the cluster head. The cluster head will use the SUBFCM (described in Chapter 5)

algorithm to partition the first tuples into cluster prototypes ሺܿ௜, ݅ ൌ 1,2,3, … , ሻ ofܥ

“similar” tuples, where ܥ is the number of cluster prototypes at the moment. The

word “Similar” is context specific (i.e. two tuples are considered similar when the

measure of their distance metric taken in all dimensions is a minimum). Hence each

sensor node will have a cluster structure ሺܿ௜ሻ that its stream currently belongs to. The

tuple that is then generated ሺݔ௡ሻ by a sensor node, will be compared to the received

local cluster structureሺܿ௜ሻ. If the deviation of tuple ሺݔ௡ሻ is within a given local model

drift thresholdሺ݄ܶሻ, then the stream is considered in line with the local cluster

structure and its transmission will be suppressed. However if its deviation exceeds the

local model drift threshold ሺ݄ܶሻ given, then the tuples will be transmitted to the

cluster head and local cluster structure update is requested. Graphical depiction of the

data stream and sliding window is shown in Figure 4.2.

55

The sensor nodes compute the deviation of their current stream from the local

cluster prototype as:

 ݀ሺ௫೙,௖೔ሻ ൌ ݊_ݔ‖ െ ܿ_݅ ‖஽^ (4.1)

 where ܦ is the dimension of the tuple.

Algorithm 4.1: Sensor processing algorithm.

1

2
3
4
5

6
7
8

9
10
11
12

13
14
15
16
17

18

Input stream: ܵ ൌ ൫ݔଵ, ,ଶݔ ݄ܶ = ஶ൯, set thresholdݔ,…,ଷݔ

 ݅ ൌ 1
 ݊	 ൌ 	1
 ଵݔ௡ୀݔ	݉ܽ݁ݎݐݏ	ݐݏݎ݂݅		ܴ݀ܽ݁
 ܪܥ	݋ݐ		ଵݔ		݀݊݁ܵ

WHILE ݈ܿݎ݁ݐݏݑ	݁݌ݕݐ݋ݐ݋ݎ݌	ሺܿ௜ሻ	݊ݐ݋	݀݁ݒ݁݅ܿ݁ݎ
 Wait to receive ܿ௜
ENDWHILE

WHILE (1) //loop forever

 ݊ ൌ ݊ ൅ 1
 ௡ݔ	ܴ݀ܽ݁
 ݀ሺ௫೙,௖೔ሻ ൌ ௡ݔ‖ െ ܿ௜‖஽ //D is dimension of the input stream elements

 WHILE ݀ሺ௫೙,௖೔ሻ ൒ ݄ܶ
 ܪܥ	݋ݐ	௡ݔ	݀݊݁ܵ
 ݁ݐܽ݀݌ݑ		௜ܿ	ݐݏ݁ݑݍܴ݁
 ݅ ൌ ݅ ൅ 1
 ENDWHILE

ENDWHILE

Figure 4.2: Graphical depiction of data stream and sliding window.

Processing
node Tuple n + 1 Tuple n Tuple 4

Incoming stream

Tuple 3 Tuple 1Tuple 2

N n-3 n-2 n-1 0 1 2 3 4 5 6

Sliding window

56

4.4.2. Cluster Head Processing

The basic idea of stream processing at this level is to compute local cluster prototypes

of the streams generated by all member nodes. Processing here assists sensor nodes

to optimize communication by sending them their local cluster prototypes so that

sensors will only transmit new input streams when they detect significant deviation in

their streams and request update. Cluster head processing also optimizes CH-to-Sink

communication by transmitting cluster summary of their local streams to the Sink

rather than the whole local stream.

Cluster heads form and maintain a short table of Tuples of their member

nodes- from now on known as Local Stream Base (LSB). Initially the CHs cluster the

Tuples in the Local Stream Base using the SUBFCM algorithm and multicast the local

cluster prototypes to the associated member nodes. CHs further send local cluster

prototypes and associated node ID’s to the Sink for computation of global cluster

prototypes for location based event cluster mapping. During subsequent stages, if CHs

receive a stream Tuple from member nodes (i.e. a local cluster prototype update is

requested), then they update the LSB. If certain number of set update requests, ∈ , are

received, then the CHs re-compute local cluster prototypes and transmit updated local

models to each member node and the Sink as well.

Consider a single cluster of the network under consideration which contains ܯ

member sensor nodes each generating a data stream. At every time instance, the

cluster head, CH, receives ܯ streams, one from each of its members. The CH maintains

a sliding window of size LSB which updates randomly as local tuples are received from

member nodes which also represent local cluster prototype update requests.

Initially, the sliding window will be filled by the first tuples of all member nodes

as:

 ሺݔଵ௜ , ݅ ൌ 1,2,3, … ሻ (4.2)ܯ,

The tuples in (4.2) are the first entry for streams being generated at ܯ

geographic locations within the cluster and are given as:

57

 ሼ ଵܵ, ܵଶ, ܵଷ, … , ܵெሽ (4.3)

Subsequently, the sliding window will be updated only when the member

nodes detect changes in their local stream concept and send their current tuples.

Therefore the sliding window update is randomly based on the local stream concept

drift. The subsequent sliding window content can be represented as:

 ሺݔ௡௜ , ݅ ൌ 1,2,3, … ሻ (4.4)ܯ,

Upon receiving a set local cluster prototype update requests, ∈ , the CH,

recomputes local cluster prototypes, ሺܿ௜, ݅ ൌ 1,2,3, … , ሻ, using the SUBFCM algorithmܥ

and sends the updated local models to each member nodes and the Sink.

58

Algorithm 4.2: Cluster heads processing algorithm.
1

2
3
4

5

6
7
8
9

10

11
12
13

14

15
16

17

18

19

20
21
22
23
24
25

26

27

INPUT: initialize LSB, set maximum update request ∈
 ݊ ൌ 1 ݅ ൌ ݐݏ݁ݑݍ݁ݎ	݁ݐܽ݀݌ݑ 1 ൌ 0 //update request is no. of update requests
received

WHILE ݅ ൏ M is no. of active cluster members // ܯ

 IF ݔ௡௜ ௡௜ݔ// ݀݁ݒ݅݁ܿ݁ݎ	ݏ݅	 is the ݊௧௛ stream item from ݅௧௛ cluster
member
ሾ݅ሿܤܵܮ ൌ ௡௜ݔ
 ݅ ൌ ݅ ൅ 1
 ENDIF

ENDWHILE
	݇݊݅ݏ	݋ݐ	௜ܿ	݀݊݁ݏ	ݏ݁݀݋݊	ݎܾ݁݉݁݉	݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ	݋ݐ	௜ܿ	݀݊݁ݏ	ܤܵܮ	݉݋ݎ݂	ሺܿ௜ሻ	݁݌ݕݐ݋ݐ݋ݎ݌	ݎ݁ݐݏݑ݈ܿ	݁ݐݑ݌݉݋ܿ
 ݅ ൌ 1

WHILE (1) // loop forever
 ݊ ൌ ݊ ൅ 1

 IF ݔ௡௜ ݀݁ݒ݅݁ܿ݁ݎ	ݏ݅	

ሾ݅ሿܤܵܮ ൌ ௡௜ݔ

ݐݏ݁ݑݍ݁ݎ	݁ݐܽ݀݌ݑ ൌ ݐݏ݁ݑݍ݁ݎ	݁ݐܽ݀݌ݑ ൅ 1	

 IF ݁ݐܽ݀݌ݑ	ݐݏ݁ݑݍ݁ݎ ൌ	∈
 ܤܵܮ	݉݋ݎ݂	௜ܿ	݁ݐݑ݌݉݋ܿ݁ݎ
 ݏ݁݀݋݊	ݎܾ݁݉݁݉	݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ	݋ݐ	௜ܿ	݀݊݁ݏ
 ݇݊݅ݏ	݋ݐ	௜ܿ	݀݊݁ݏ
ݐݏ݁ݑݍ݁ݎ	݁ݐܽ݀݌ݑ ൌ 0
 ENDIF

 ENDIF

ENDWHILE

59

4.4.3. Sink Processing

The network sink as being the most capable node undertakes the most

computationally intensive task. Sink processing is mainly to extract the global stream

cluster prototypes based on the local cluster prototypes received so far and present

the sensor stream mining results and facilitate sensor stream analysis for a user.

The sink maintains a table of stream clusters and associated node IDs of all

previous transactions- now on known as Global Stream base (GSB). On every

communication with CHs the Sink updates its GSB and performs global stream

clustering.

Assume the network contains a total of ܰ sensor nodes organized under ܯ

clusters. As described above, at each time instance, every cluster head sends the local

cluster prototypes to the Sink given as:

 ሺܿ௜, ݅ ൌ 1,2,3,… , ሻ (4.5)ܥ

Each of the local cluster prototypes represent the ܯ data streams given in

Equation 4.3. Therefore the GSB at any time instance contains ܯ such local cluster

prototypes given as

 ሼሺܿ௜, ݅ ൌ 1,2,3, … , ݉,ሻ௠ܥ ൌ 1,2,3, ሽ (4.6)ܯ…

The Sink computes global cluster prototypes using the SUBFCM algorithm every

time there is an update to its GSB entry. The sink node possesses abundant

computational, energy, and memory resource due to its physical connection to a base

station. Therefore, besides handling the global cluster prototype model computations,

it also stores all the local prototypes for historical analysis. Due to the same reason of

abundance of resource, the Sink computational, communication complexities and

energy consumption are not analyzed.

60

Chapter 5

5. DEVELOPMENT OF SUBTRACTIVE FUZZY CLUSTER MEANS (SUBFCM)
ALGORITHM

This chapter describes the Subtractive Fuzzy Cluster Means (SUBFCM) algorithm

developed for distributed incremental data stream mining in a resource-limited

environment such as WSN. The SUBFCM algorithm is designed to be embedded and

run on resource (such as computation, memory and power) limited nodes of WSNs. It

builds a base for cluster mining techniques. SUBFCM combines subtractive clustering

with fuzzy c-means algorithms to achieve clustering without the need of the number of

partitions within the data space to be known a priori. SUBFCM is implemented as an

autonomous unsupervised learning algorithm that feeds on distributed streaming data

within a WSN. Its primary purpose is to minimize energy consumption of individual

WSN nodes and consequently extend network lifetime. Following the strategy of

computation-communication trade-off, the algorithm performs local pattern discovery

within individual nodes and sends only the necessary information over the network.

5.1. CLUSTERING

Clustering has been one of the most widely studied topics in the data-mining field. K-

means and fuzzy C-means clustering algorithms have been two of the most popular

algorithms in this field. Fuzzy c-means (FCM) is a method of clustering developed by

Dunn [148] and later improved by Bezdek [149]. FCM allows a piece of data to belong

61

 to two or more clusters with varying degree of memberships. In real applications

there is very often no sharp boundary between clusters so that fuzzy clustering is often

better suited for the data. Membership degrees between zero and one are used in

fuzzy clustering instead of crisp assignments of the data to clusters. The most

prominent fuzzy clustering algorithm is the fuzzy c-means, a fuzzification of k-means.

The Fuzzy C-Means (FCM) algorithm is the most widely used clustering algorithm in the

field of data mining. It allows one piece of information to belong to two or more

clusters. One of the drawbacks of FCM in exploratory data analysis is that it requires

the number of clusters within the data space to be known beforehand. When the

purpose of clustering is to automatically partition multivariate data coming from a

dynamic source, the number of partitions in the data space is typically unknown.

Hence in this research, subtractive clustering and FCM algorithms are combined to

implement an algorithm that does not require prior information about the number of

clusters in the data space. The proposed algorithm is called Subtractive Fuzzy Cluster

Means algorithm (SUBFCM) [150], and is described below.

5.2. DATA STREAM MINING ALGORITHM

Data stream mining is the process of extracting knowledge structures from continuous

data streams. A data stream is an ordered sequence of instances that in many

applications of data stream mining can be read only a small number of times using

limited computing and storage capabilities. Examples of data streams include, among

others, computer network traffic, phone conversations, ATM transactions, web

searches, and sensor data. In data mining we are interested in techniques for finding

and describing structural patterns in data as a tool for helping to explain that data and

make predictions from it [151]. One of the popular data mining techniques in a

centralized environment is data clustering. The general goals of a clustering technique

is to decompose or partition data sets into groups such that both intra-group similarity

and inter-group dissimilarity are maximized [125].

WSNs can benefit a great deal from stream mining algorithms in terms of

energy conservation and efficient services. However, for WSNs to achieve significant

62

energy conservation, the data stream mining has to be distributed within the network

due to their resource constraints [150, 152].

Data mining applications place special requirements on clustering algorithms

including: the ability to find clusters embedded in subspaces of high dimensional data,

scalability, available to the WSN nodes. The algorithm is also required to produce

frequent summaries of the corresponding inputs from the network sensor nodes. In

stream mining [153, 154], WSN data mining applications further place strict

requirements on the underlying algorithm. Collecting data generated in a WSN to a

central location and performing data mining is undesirable due to the energy and

bandwidth limitations. Therefore, the data mining algorithm has to perform in-

network and autonomously on limited-resource applications, and the algorithm has to

converge as fast as possible over the limited data sets so that the processor can take

on the next set of streams.

5.3. SUBTRACTIVE CLUSTERING METHOD

The subtractive clustering method was developed by Chiu [155]. It is a modification of

mountain clustering [156] with improved computational complexity. The subtractive

clustering method assumes that each data point is a potential cluster center

(prototype). A data point with more neighboring data will have a higher potential to

become a cluster center than points with fewer neighboring data. In the subtractive

clustering method, the computation is proportional to the number of data points and

is independent of the dimension of the problem. Subtractive clustering considers a

data point with the highest potential as a cluster center and penalizes data points close

to the new cluster center to facilitate the emergence of new cluster centers. Based on

the density of surrounding data points, the potential value for each data point is

calculated as follows:

 ∑
=

−−=
n

j

uu
i

jiepot
1

2
α

 (5.1)

63

where ݑ௜, ݑ௝ are data points and
2

4

ar
=α , ar is a positive constant defining a

neighborhood. Data points outside this range have little influence on the potential.

Following the potential calculation of every data point, the point with the

highest potential is chosen as the first cluster center. Let ku be the location of the first

cluster center and kpot be its potential value. The potential of the remaining data

points ݑ௜ is then revised by

௜ݐ݋݌ ൌ ௜ݐ݋݌ െ ௞݁ିఉ‖௨೔ି௨ೖ‖మݐ݋݌

 (5.2)

 where
2

4

br
=β and br is a positive constant (ݎ௕ ൐ .(௔ݎ

Thus, the data points near the first cluster center will have greatly reduced

potential, and therefore are unlikely to be selected as the next cluster center. The

constant ݎ௕is the neighborhood defining radius and will have significant reduction in

potential. br is set to be greater than ar to avoid closely spaced centers. The ratio

between ar and br is called the Squash factor (SF) which is a positive constant greater

than one.

The potential update process (5.2) will continue until no further cluster center

is found. The parameters known as acceptance ratio (AR) and rejection ratio (RR)

together with the influence range and squash factor set the criteria for the selection of

cluster centers. The accept ratio and reject ratio are upper acceptance threshold and

lower rejection threshold, respectively and they take a value between zero and one.

The accept ratio should be greater than the reject ratio.

First criterion: if the potential value ratio of the current data point to the original first

cluster center is larger than the acceptance ratio, then the current data point is chosen

as a cluster center.

64

Second criterion: if the potential value falls in between that of the acceptance and

rejection ratios, then the compensation between the magnitude of that potential value

and the distance from this point to all the previously chosen cluster centers (relative

distance) is taken into consideration. If the sum of the potential value and the ratio of

the shortest distance between the current data point and all other previously found

cluster centers to the influence range is greater than or equal to one, then the current

data point is accepted as a cluster center.

Third criterion: If the sum of the potential value and the ratio of the shortest distance

between the current data point and all other previously found cluster centers to the

influence range is less than one, then the current data point is rejected as a cluster

center.

Fourth criterion: if the potential value ratio of the current data point to the original

first cluster center is less than the rejection ratio, then the potential value of the

current data point is revised to zero and the data point with the next highest potential

is tested.

Summary:

Algorithm 5.1: Subtractive clustering algorithm.

Initialize parameters; ݎ௔, ݎ௕ , ܴܣ, and ܴܴ

1 Calculate potential of each data point ݐ݋݌௜ using equation (5.1)

2 Set the maximum potential as ݐ݋݌௞

3 Choose data point corresponding to ݐ݋݌௞ as the cluster center candidate

4 If ݐ݋݌௜ ൐ ܴܣ ∗ ௜ as a cluster centerݑ ௞, then acceptݐ݋݌

5 update the potential of each point using equation (5.2) and continue

6 else if ݐ݋݌௜ ൏ 	ܴܴ ∗ ௜ as a cluster centerݑ ௞, then rejectݐ݋݌

7 else

8 Let ݀௥ be relative distance

9 If ௗೝ௥ೌ ൅ ௣௢௧ೖ௣௢௧೔ 	൒ 1 accept ݑ௜ as a cluster center

10 update the potential of each point using equation (5.2) and continue

11 else

65

12 reject ݑ௜ and set the potential ݐ݋݌௜ ൌ 0

13 select the data point with the next highest potential as the new

 candidate and re-test

14 endif

15 endif

5.4. FUZZY C-MEANS CLUSTERING

Fuzzy clustering algorithms are based on minimization of the fuzzy c-means objective

function formulated as:

 ∑∑
= =

−=
C

c

m

i
iicio AvuvJ

1 1

2)(θ (5.3)

 where ݒ௖௜ is a fuzzy partition matrix of ݑ,

ݒ ൌ ሾݒଵ, ,ଶݒ … , ௖ሿ (5.4)ݒ

 is a vector of cluster centers, which have to be determined,

)()(22
ii

T
iiAiiciA vuAvuvud −−=−= (5.5)

 is a squared inner-product distance norm, and

ߠ ∈ ሾ1,∞ሻ (5.6)

 is a parameter which determines the fuzziness of the resulting clusters.

The conditions for a fuzzy partition matrix are given as:

௖௜ݒ ∈ ሾ0,1ሿ, 1 ൑ ܿ ൑ ݅, 1 ൑ ݅ ൑ ݊ (5.7)

66

 ෍ݒ௖௜௖
௜ୀଵ ൌ 1, 1 ൑ ݅ ൑ ݊ (5.8)

 0 ൏෍ݒ௖௜ ൏ ܰ, 1 ൑ ݅ ൑ ܿ௡
௜ୀଵ (5.9)

The value of the objective function (5.3) can be seen as a measure of the total

variance of ݑ௜ from ݒ௜.
The minimization of the objective function (5.3) is a nonlinear optimization

problem that can be solved by iterative minimization, simulated annealing or genetic

algorithm methods. The Simple iteration method through the first-order conditions for

stationary points of (5.3) is known as the fuzzy c-means (FCM) algorithm.

The stationary points of the objective function (5.3) can be found by adjoining

the constraint (5.8) to ܬ௢ by means of Lagrange multipliers:

ܬ ൌ෍෍ሺݒ௖௜ሻఏ݀ଶ௖௜஺ ൅෍ߣ௜ ൥෍ݒ௖௜ െ 1஼
௖ୀଵ ൩௡

௜ୀଵ
௡
௜ୀଵ

஼
௖ୀଵ

 (5.10)

 By setting the gradient of ܬ with respect to the fuzzy partition matrix ݑ, the

vector of cluster matrix ݒ, and λ to zero.

Now if ݀௖௜஺ଶ ൐ 0, ∀݅, ܿ and ߠ ൐ 1, then ሺݑ, ሻ may minimize the objective function (5.3)ݒ

only if

௖௜ݒ ൌ ଵ∑ ൫ௗ೎೔ಲ ௗ೎ೕ೔ಲ⁄ ൯మ ሺఏିଵሻ⁄಴ೕసభ , 1 ൑ ݆ ൑ ,ܥ 1 ൑ ݅ ൑ ݊ (5.11)

 and

௖ݒ ൌ ∑ ሺݒ௖௜ሻఏݑ௜௡௜ୀଵ∑ ሺݒ௖௜ሻఏ௡௜ୀଵ ; 1 ൑ ܿ ൑ (5.12) ܥ

67

This solution also satisfies the constraints (5.7) and (5.9). Equations (5.11) and

(5.12) are the first-order necessary conditions for stationary points of the objective

function (5.3). The FCM algorithm iterates through (5.11) and (5.12). Sufficiency of the

necessary conditions (5.11) and (5.12) as well as the convergence of the FCM algorithm

is proven in [157].

Before using the FCM algorithm, the parameters: number of clusters,ܥ,

fuzziness exponent, ߠ, termination tolerance, ߝ, the norm-inducing matrix, ܣ, and the

fuzzy partition matrix, ݑ, must also be initialized suitably. Note that the FCM algorithm

converges to a local minimum of the objective function (5.3) if these parameters are

not initializationed suitably. Therefore different initializations may lead to different

performance results.

Summary:

Algorithm 5.2: Fuzzy C-Means clustering algorithm.

Initialize parameters: ܣ ,ߝ ,ߠ ,ܥ, and ݑ

1 Repeat for ݈ ൌ 1,2,3, …

2 Compute cluster centers (prototypes):

௖ݒ 3 ൌ ∑ ሺ௩೎೔ሻഇ௨೔೙೔సభ∑ ሺ௩೎೔ሻഇ೙೔సభ ; 									1 ൑ ܿ ൑ ܥ

4 Compute distances:

5 ݀௖௜஺ଶ ൌ ሺݑ௜ െ ௜ݑሺܣ௖ሻ்ݒ െ 1				௖ሻ,ݒ ൑ ܿ ൑ 1					,ܥ ൑ ݅ ൑ ݊

6 Update the partition matrix:

7 For 1 ൑ ݅ ൑ ݊

8 If ݀௖௜஺ ൐ 0 for all ܿ ൌ 1,2, … , ܥ

௜௖ݒ 9 ൌ ଵ∑ ሺௗ೎೔ಲ ௗ೎ೕಲ⁄ ሻଶ ሺఏିଵሻ⁄಴ೕసభ

10 else

௖௜ݒ 11 ൌ 0 if ݀௖௜ ൐ 0, and ݒ௖௜ߝሾ0,1ሿ with ∑ ௖௜ݒ ൌ 1஼௖ୀଵ

12 Until ቛݒ௖௜ሺ௟ሻ െ ௖௜ሺ௟ିଵሻቛݒ ൏ ߝ

68

5.5. THE SUBFCM ALGORITHM

Embedding an autonomous cluster mining algorithm in WSN nodes requires that the

algorithm take data sets as input and generate output without data preprocessing. In

applications where the number of clusters in a data set must be discovered, the FCM

algorithm cannot be used directly. For clustering WSN data autonomously, the number

of cluster prototypes (categories) has to be determined from the data sets. Hence in

this research, Subtractive clustering and FCM algorithms are combined to implement

an algorithm that determines the number of clusters in the data space from the input

data sets- Subtractive Fuzzy Cluster Means (SUBFCM).

The SUBFCM algorithm uses a subtractive clustering approach to determine the

number of cluster prototypes C and the prototype centersc . The algorithm then

partitions the stream into C fuzzy clusters using the prototype centers from the above

step as initial fuzzy cluster centers.

Initially, the SUBFCM algorithm assumes each D-dimensional data point

niui ,...,3,2,1, = as a potential cluster center with a measure of potential (pot) of data

points in the stream as;

 ∑
=

−−=
n

j

uu
i

jiepot
1

2
α

 (5.13)

where 2
4

ar
=α and ar is a positive constant defining cluster radius. A large value of ar

results in fewer large clusters, while smaller values result in a greater number of

smaller diameter clusters. ‖	‖ Denotes the Euclidean distance, which defines the

distance between two points ݑଵሺݔ௜, ,ଶݔଶሺݑ ଵሻ andݖ,ଵݕ ଶሻ as being equal to theݖ,ଶݕ

length of vector ‖ ଵܺ െ ܺଶ‖ ൌ 	ඥሺݔଵ െ ଶሻଶݔ ൅ ሺݕ െ ଶሻଶݕ ൅ ሺݖଵ െ ଶሻଶ whereݖ

ଵܺ ≡ ൥ݔଵݕଵݖଵ൩ and ܺଶ ≡ ൥ݔଶݕଶݖଶ൩

69

The measure of potential for a given data point is a function of its distances to

all other points. A data point with many neighboring points will have a high potential

value. After computing the potential for every point, the point ku with the highest

potential kpot will be selected as the first cluster center 1c . The potential for every

other point is then updated by (5.14):

2

ki uu
kii epotpotpot −−−= β (5.14)

where
2

4

br
=β and br is a positive constant that can be set to a value which is

greater than ar . After the first cluster center is determined, the value of br determines

the potential of data points becoming subsequent cluster centers. Setting br > ar
reduces the potential of data points close to the first cluster center and hence avoids

closely spaced cluster centers [158]. The parameter ߝis a stopping criterion and should

be selected within (0, 1) [159]. α with a value close to zero will result in a large ߝ

number of hidden centers whereas α .close to one leads to a small network structure ߝ

Following the update process, the data point with the highest remaining

potential is selected as the next cluster center 2c , and the process repeats until a given

threshold ε for the potential is reached and C such centers are computed. SUBFCM

then uses the clustering criterion of squared distance 2
cid between the thi − stream

sample and the thc − prototype and defines the objective function (0J) as:

 ∑∑
= =

=
C

c

n

i
cicio dvJ

1 1

2θ (5.15)

where the squared distance function is given as:

70

 22
cici cud −= (5.16)

where civ represents the membership degree of the thi − stream sample to the

thc − cluster.

Membership is determined under the conditions:

 []1,0∈civ , ,,...,3,2,1 Cc = ni ,...,3,2,1= (5.17)

 1
1

=∑
=

C

c
civ , ni ,...,3,2,1= (5.18)

where θ is a weighing exponent or fuzziness measure. If 1=θ , the clustering

model is reduced to the hard K-means model. The larger θ , the fuzzier the

memberships is. θ is usually set to 2 [149].

The stream partitioning takes place by optimizing the criterion function (5.15)

through iteration updating the cluster prototype centers jc and the membership

function civ as (5.19) and (5.20) respectively:

()
()∑

∑
=

== n

i ij

n

i iij
j

v

uv
c

1

1
θ

θ

 (5.19)

71

()

1

1

1
2 −

= ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

= ∑
−

C

l li

ji
ci cu

cu
v

θ

 (5.20)

The iteration should stop when;

 () (){ } ε<−= + l
ci

l
ci vv 1max (5.21)

where ε is the termination criterion, 10 << ε and l is the iteration step.

SUBFCM takes the fuzzy radius (ar) and fuzziness measure (θ) as inputs and

autonomously reveals the structures in the data stream space. The parameter ar

determines the granularity of the structures. The smaller it is, the higher the resolution

of the structures and the more computation overhead. The SUBFCM Algorithm steps

are shown in Algorithm 3.

Algorithm 5.3: Subtractive fuzzy C-Means algorithm.

 Step0: Specify fuzzy radius ar , α, ε, and fuzziness measureθ

Step1: For each data object iu ;

{1.1 Calculate potential measure -eq (5.13)

 1.2 Choose max (ipot) as first cluster Center cj

 1.3 Revise the potential measures –eq (5.14)

 1.4 If max α>ipot , j=j+1, go to 1.2

 Else end; Set jC =

 }

Step2: Calculate cid -eq (5.16) ad Initialize

 cici dv = ; Set iteration no. to l

72

Step3: Increment l (1+= ll)

 3.1 Calculate Cluster center jc -eq (5.19)

 Set centers to jl cc =+)1(

 3.2 Calculate membership civ -eq (5.20)

 Set membership to cilci vv =+)1(

Step4: If ε>−+)()1(lcilci vv

 go to step3

 else end; Output [cic], [jc]

5.6. IMPLEMENTATION OF SUBFCM

The SUBFCM algorithm was initially implemented in MATLAB to understand and

investigate its characteristics. MATLAB provides toolbox functions readily available for

clustering analysis. It also provides visual output of the clustering statistics for user to

validate and debug the algorithm. The SUBFCM algorithm’s response to continuously

streaming data has been analyzed. The main constraints of low power wireless sensor

nodes, computation complexity, processing time and energy requirements were

considered before porting the SUBFCM algorithm as an embedded task suitable for

WSN nodes.

Given the desired fuzzy radius ݎ௔ for the particular application under

consideration and fuzziness measure ߐ, the algorithm reveals clusters hidden in the

streaming data. As soon as a certain number of elements from the stream enter the

buffer of the processing task, the subtractive clustering method will be invoked calling

the subclust function from the MATLAB toolbox. The subclust function takes as a

minimum, the set of vector data ܺ to be clustered and fuzzy radius ݎ௔. It returns the

Cluster centers ܥ, and range of influence of the cluster centers ܵ in each of the data

dimensions. The cluster centers returned by the subclust function are used to initialize

the fuzzy clustering method. The MATLAB FCM function performs the fuzzy clustering

of the input vector data ܺ. The FCM function takes inputs data ܺ and ܥ as initial

73

cluster centers and produces fuzzy cluster centers ܿ, and the fuzzy membership matrix ܷ as well as the values of the objective function ܱܾ݆_݂݊ݑ during the iterations.

The MATLAB toolbox subclust function format:

Inputs: [ܺ, ݎ௔] Outputs: [ܥ, ܵ]

[C,S] = subclust (X, ݎ௔)

The MATLAB toolbox FCM function format:

Inputs: [ܺ, ,ܿ] :Outputs [ܥ ܷ, ܱܾ݆_݂ܿ݊]

[ܿ, ܷ, ܱܾ݆_݂ܿ݊] = fcm(ܺ, (ܥ

A database consisting of 200 instances each containing weather parameters

were clustered using SUBFCM algorithm. Each instance of the database has its

classification of fire weather index (FWI) rating. There are five FWI ratings in the

instances of the database; low, moderate, high, and extreme. Each of the FWI ratings

present in the database has 50 samples that in total summarize the 200 instances of

the database. Table 5.1 below shows a small sample of the instances contained in the

weather database. The number of iterations required to partition the sample weather

data sets is shown In Figure 5.1.

Table 5.1: Sample of weather database.

Instance Temperature Rel. HumidityWind Speed Rain fall FWI class
1 26 50 11 0 13.65 M
2 14.1 89 14.9 0 6.938 M
3 26.9 37 16.4 0 19.57 H
4 15.6 78 18.5 0 12.55 M
5 26.1 32 39.8 0 57.63 E
6 10.9 76 12.9 5.2 0.629 L
7 18.4 55 28.8 0 10.64 M
8 20.4 43 45.3 0 42.23 E
9 26.8 40 35 0 42.05 E

74

The results obtained by running the SUBFCM on the database are:

Cluster centers:

C1 13.9 76.62 4.1 3.97

C2 17.53 64.38 21.37 0.435

C3 21.28 46.69 21.36 0.136

C4 24.05 33.55 32.26 0.334

Figure 5.1: The objective function minimization.

The graphs below show the classification of each instance by comparing each

pair of attributes present in the database. The SUBFCM algorithm generated classes

are shown in different colors; blue for low FWI class, red for moderate FWI class, green

for high FWI class, and magenta for extreme FWI class. The database described above

contains four attributes (dimensions); temperature, relative humidity, wind speed and

rainfall. The different clusters do not seem to be well separated in 2D depictions.

However, they are clearly separate clusters in 3D graph.

0 2 4 6 8 10 12 14 15
1.5

2

2.5

3

3.5

4
x 104

Number of iterations

O
bj

ec
tiv

e
fu

nc
tio

n

75

Figure 5.2: 2D classification of the data points from weather database.

Figure 5.3: 3D classification of the data points from weather database.

20 40 60 80 100
0

10

20

30

40

50

60

Rel. Humidity [%]

W
in

d
S

pe
ed

 [K
m

/h
]

0 10 20 30 40
0

10

20

30

40

50

60

Temperature [oC]

W
in

d
S

pe
ed

 [K
m

/h
]

Weather Data (blue=low fwi, red=moderate fwi, green=high fwi, magenta=extreme fwi

0 10 20 30 40
0

10

20

30

40

50

Temperature [oC]

R
ai

n
Fa

ll
[m

m
]

0 10 20 30 40
20

40

60

80

100

Temperature [oC]

R
el

. H
um

id
ity

 [%
]

20 40 60 80 100
0

10

20

30

40

50

Rel. Humidity [%]

R
ai

n
Fa

ll
[m

m
]

0 20 40 60
0

10

20

30

40

50

Wind Speed [Km/h]

R
ai

n
Fa

ll
[m

m
]

0

20

40

0

50

100
0

50

100

Temperature [oC]Rel. Humidity [%]

FW
I r

at
in

g

0

20

40

0
20

40
60

0

50

100

Wind Speed [Km/h]

Temperature [oC]

Weather data (blue=low, red=moderate, green=high, magenta=extreme

FW
I r

at
in

g

0

20

40

0
20

40
60

0

50

100

Temperature [oC]Rain Fall [mm]

FW
I r

at
in

g

0

50

100

0
20

40
60

0

50

100

Rel. Humidity [%]Wind Speed [Km/h]

FW
I r

at
in

gs

0

50

100

0
20

40
60

0

50

100

Rel. Humidity [%]Rain Fall [mm]

FW
I r

at
in

g

0

50

100

0
20

40
60

0

50

100

Wind Speed [Km/h]Rain Fall [mm]

FW
I r

at
in

g

76

5.6.1. Computational Complexity of the SUBFCM Algorithm

The computational complexity of the iterations of the SUBFCM algorithm is assumed to

be constant as it computes the distance calculations and centroid recalculations.

Distance calculations require approximately (3݊ܿ݀ ൅ ݊ܿ ൅ ݊݀ ൅ ܿ݀) floating point

operations (flops) per iteration [160], where ݊ denotes the number of total data

objects, ܿ denotes the number of clusters, and ݀ denotes the dimension of data

objects. Each centroid recalculation requires approximately (ܿ݀) flops per iteration.

Therefore, we can estimate the computational complexity of the SUBFCM algorithm

as:

 ௖ܶ௢௠௣ ൌ ሺ3݊ܿ݀ ൅ ݊ܿ ൅ ݊݀ ൅ ܿ݀ሻܫ ௙ܶ௟௢௣ (5.22)

where ௖ܶ௢௠௣ is the computational time of implementing the algorithm, ܫ is the

number of iterations, and ௙ܶ௟௢௣ denotes the time for each floating point operation.

Under the condition that ݊ is large compared to both 	ܿ and ݀, ௖ܶ௢௠௣ reduces to:

 ௖ܶ௢௠௣ ൌ ሺ3݊ܿ݀ሻܫ ௙ܶ௟௢௣ (5.23)

In our experiments, fixed point arithmetic is used instead of floating point

arithmetic for all computations without compromising the accuracy significantly.

Therefore, the complexity of the algorithm is:

 ௖ܶ௢௠௣ ൌ ሺ3݊ܿ݀ሻܫ ௙ܶ௜௫௢௣ (5.24)

where ௙ܶ௜௫௢௣ is the time for each fixed point operation.

77

In Figure 5.1, the number of iterations required to partition a typical weather

data sets is shown to be very low. Hence, for a wireless sensor node with reasonable

amount of millions of instructions per second (MIP) this is a fairly light operation.

5.6.1.1. Sensor node Computational Complexity

The Computational complexity of the sensor node processing task described above can

be expressed as the combination of complexities of sensor stream acquisition,

similarity calculation, and determining send or suppress operations. Sensor stream

acquisition takes the form of linear time complexity which may be expressed as:

 ܱሺ݊ሻ

(5.25)

where the tuples dimension D determines the upper and lower bounds of n.

The similarity calculation task goes through sequential comparison of the newly

generated tuples to a constant value. The dimensionality of the tuple influences the

complexity of this task. For a given tuple dimension the complexity of this task is

linearithmic time expressed as:

 ܱሺ݊ log ݊ሻ

(5.26)

The determination to send or suppress the incoming sensor stream average is a

constant time complexity given as:

 ܱሺ1ሻ

(5.27)

 Therefore, the time complexity ܶሺ݊ሻ of the sensor node processing is:

78

 ܶሺ݊ሻ ൌ ܱሺ݊ logሺ݊ሻሻ ൅ ܱሺ݊ሻ ൅ ܱሺ1ሻ

(5.28)

5.6.1.2. Sensor node Communication Complexity

The communication complexity of the sensor nodes processing task obviously grows

with the dynamics of the situation under observation. When the newly incoming

stream tuples are more frequently dissimilar to the current tuples the algorithm

directs more send operations than suppress. This will have an effect of increasing the

computational complexity of the next level of processing tasks. The worst case

communication complexity of this task reduces the sensor nodes process to a simple

acquire-and-transmit mode.

5.6.1.3. Sensor node Energy Consumption

The sensor nodes processing task energy consumption analysis is based on the

simplified microcontroller unit model of [161] of equation (5.29).

௣ܧ ൌ ௖ܰ௬௖ ∗ ௔௩௕ܥ ∗ ܸଶ ൅ ܸሺܫ௢݁ ௏௡௏೟ሻ ௖ܰ௬௖݂

(5.29)

where ௖ܰ௬௖is the average number of clock cycles needed for the task, ܥ௔௩௚ is

the average capacitance switched per cycle, ܸ is supply voltage, ܫ௢ is the leakage

current, and ݂ is the clock frequency.

The second term of the Equation 5.29 is eliminated as the leakage current is

insignificant at high clock frequencies.

For the similarity calculation task, if the number of clock cycles required for the

subtraction operation is ݏ, and the number of clock cycles required for multiplication

operation is ݈݉, then the total energy consumption of this task can be calculated as:

79

௣ܧ ൌ ௖ܰ௬௖ ∗ ௔௩௚ܥ ∗ ܸଶ ∗ ܦ ሺݏ ൅ ݈݉ଶሻ

(5.30)

The task to determine sending or suppressing the current average tuple is an

obvious compare operation given as:

௣ܧ ൌ ௖ܰ௬௖ ∗ ௔௩௚ܥ ∗ ܸଶ ∗ ܦ ∗ ܿ

(5.31)

Where c is the number of clock cycles for the compare operation.

Therefore the total energy consumption of the sensor nodes task are

dominated by the components of Equation 5.30 and Equation 5.31 as given by:

௣ܧ ൌ ௖ܰ௬௖ ∗ ௔௩௚ܥ ∗ ܸଶ ∗ ܦ ሺܿ ൅ ݏ ൅݈݉ଶሻ

(5.32)

5.6.1.4. Cluster Head Computational Complexity

The computational complexity of the cluster head processing task is that of the

SUBFCM algorithm given in section 5.6.1 with an added term of constant time

complexity ܱሺ1ሻn in the worst case. Computational complexity of the cluster head processing task

is directly proportional to the communication complexity of the sensor nodes

processing task.

80

5.6.1.5. Cluster Head Communication Complexity

The communication complexity of the cluster head processing task also grows with the

dynamics of the situation being observed. The communication complexity of this task

is expected to increase whenever the change in situation observed spans multiple

sensor nodes. This task updates both the sensor nodes and the sink about the current

state of the situation and hence the worst case scenario communication complexity of

this task is double that of the sensor nodes’ processing task.

5.6.1.6. Cluster Head Energy Consumption

Energy consumption of the cluster head processing task can also be derived from the

fundamental equation of [161] given in Equation 5.29. Energy consumption of the

cluster head processing task is dominated by that of the SUBFCM algorithm’s number

of iterations required to converge to optimal number of cluster prototypes.

௣ܧ ൌ ௖ܰ௬௖ ∗ ௔௩௚ܥ ∗ ܸଶ ∗ ܦ ∗ ሺܥ ൅ ݄ ൅ ݃ሻ (5.33)

 where ܥ is the number of cluster prototypes, ݄ is the number of iterations it

takes to determine the number of prototypes ܥ, and ݃ is the number of iterations to

converge to the optimal cluster prototypes.

5.7. DISCUSSION

The SUBFCM algorithm is a light unsupervised method for the analysis of data and

construction of models from data. It has been shown that a systematic combination of

subtractive clustering and fuzzy c-means clustering algorithms-SUBFCM is a light data

clustering algorithm computationally suited for low resource systems like WSN. Its

implementation in MATLAB environment has been discussed.

81

Chapter 6

6. MODELLING AND SIMULATION OF THE DISTRIBUTED INCREMENTAL
DATA STREAM MINING WSN

This chapter presents a detailed description of the distributed incremental data stream

mining WSN system modeling and simulation. The various components of the

distributed incremental data stream mining approach for WSN systems were

theoretically analyzed in chapter 4. The data stream sources, the data stream mining

algorithm, the algorithm processing units, and the communication between the

processing units are individually expressed in terms of mathematical and simulation

models to characterize and analyze their various features. The characteristics of the

models would be used to explain the overall system performance and integration.

Results from the integration of the models into a system and simulations should

provide design guidelines for an actual WSN system design to enable distributed

incremental data stream mining applications and determine the system capacity

bounds.

6.1. DATA STREAM ACQUISITION (SOURCES)

Data streams represent input data that comes at a very high rate that stresses

communication and computing infrastructures and storage infrastructures to some

extent. Data streams have features that describe the nature of their source, which

influence the complexity of the process handling them. Typical data stream features

82

are rate of arrival, dimensionality of its instances, and the model used to describe the

underlying source.

 In WSNs, the data sources are either sensor probes onboard the nodes or over-

the-air data packets received from other nodes of the network. The way in which the

nodes are set to access their onboard sensor probes and/or set to receive network

packets over-the-air, therefore, determines the data stream feature rate of arrival. The

number of onboard sensor probes and the number of physical phenomena of interest

the node is subscribed to receive over-the-air also determines the dimensionality of

the data stream instances. Moreover, when the system is serving applications such as

continuous environmental monitoring, the data stream model can be time series.

Here, for the purpose of facilitating the system simulations, the data stream

sources are modeled as processes that access stored data files in a specific manner.

Two types of data stream source model processes are defined. One process

representing the sensor nodes data stream source model and the other representing

the cluster heads data stream source model.

The sensor nodes data stream source process periodically accesses a data file

to form a periodic time series. The data files, one for each sensor node, contain

multidimensional data captured from a continuous stream source for a specific time

period to acquire a sufficient number of instances that can last for the duration of the

simulations. Starting from the first instance in the file, the process accesses the data

instances each period sequentially.

The sensor nodes data stream source model generates a stream as:

 ܷ: ሾݑ௜, ,௜ାଵݑ ,௜ାଶݑ ,௜ାଷݑ …∞ሿ (6.1)

 where for each period, ܶ, the ݅௧௛ instance from the data file is inserted

into the input data stream. The sensor data stream source process chart is shown in

Figure 6.1.

83

Figure 6.2 below shows the Simulink model of the sensor node data stream source.

The Logical operator block “AND” combines the Pulse Generator and the Step blocks to

form a periodic timer that fires every specified period. The counter block increments

an index value every time the periodic timer event occurs as long as the end of file,

specified by the Constant block, is not reached. The Embedded MATLAB Function block

implements a set of low-level MATLAB native file (.mat) read functions. The Embedded

MATLAB Function block reads data sets from the From File block pointed to by the

index variable each timer event and continually updates the sensor node’s input data

buffer. This Model forms a data stream source for the simulation model. The data

stream rate is determined by the timer period.

Figure 6.2: The sensor node data stream source model.

Figure 6.1: Flow chart of the sensor data stream source process.

start t=t+T?
Update the

stream
Y

N

84

The cluster head data stream sources are the sensor nodes that subscribe to

membership of the cluster head. The cluster head data stream source process handles

the network interrupts for incoming over-the-air data packets. Each network interrupt

for incoming data packet is an instance of the stream. This process is therefore

modeled as a Callback function to handle the interrupts and form a data stream that

the cluster head node acts upon. The data streams at the cluster heads form a sliding

window model where a function of interest is computed over a fixed-size window in

the stream. As time progresses, instances (items) from the end of the window are

removed from consideration while new instances from the stream take their place.

Therefore, only the last ܹ (window size) items to have arrived are considered relevant

at any moment.

The cluster heads data stream source model generates a stream as:

 ܷ: ሾݑ௜, ,௜ାଵݑ ,௜ାଶݑ ,௜ାଷݑ … , ,ௐሿݑ ,௜ାௐݑ ,௜ାଵାௐݑ …,௜ାଶାௐݑ .∞ (6.2)

 where ݑ௜ is the most recent item and ݑௐ is the oldest item of the sliding

window. At every instance ݅ with the arrival of a new item, the oldest item will be

displaced from the sliding window. Flow chart of the cluster head data stream model

is shown in Figure 6.3.

start Interrupt?
Callback
function

Y

N

Update the
sliding window

Return

Figure 6.3: Flow chart of the cluster head data stream source
process.

85

The cluster head data stream source model is implemented in TrueTime. The

model subscribes to receive an interrupt upon over-the-air data packet arrival event

using the TrueTime functions; ttCreateHandler('nw_handler', priority, 'codefcn') and

ttAttachNetworkHandler('nw_handler'). The function ttCreateHandler('nw_handler',

priority, 'codefcn') creates a TrueTime interrupt handler named ‘nw_handler’ with a

priority ‘priority’ and callback function ‘codeFcn’. The function

ttAttachNetworkHandler('nw_handler') attaches the interrupt handler to a network

interface so that any network event triggers the callback function. The call back

function ‘codeFcn’ handles the network event; if the network event is data packet then

it pushes the packet received into the sliding window and updates the position of each

element of the sliding window. The code snippet in Listing 6.1 below shows the

TrueTime modeling of the cluster head data stream source.

% subscribe to network event interrupt

ttCreateHandler('nw_handler', 1, 'codeFcn');

ttAttachNetworkHandler('nw_handler');

% an interrupt that notifies msg has been received over a network

function [exectime, data] = codeFcn(seg, data)

global temp

temp = ttGetMsg;

ttTryPost('chReceiveBox', temp);

sensor_data = [sensor_data temp];

end

Listing 6.1: The TrueTime model of cluster head data stream source.

86

6.2. WIRELESS SENSOR NODE MODEL

A wireless sensor node is composed of various specialized hardware and software

components. The hardware components are the microcontroller, the sensors, the

radio, and the energy sources. The microcontroller is a microprocessor along with

some specific purpose peripherals such as timers, analogue to digital converters (ADC),

digital to analogue converters (DAC), serial I/O controllers, direct memory access

(DMC) etc. The microcontroller is the main host for the application software and

firmware that determine its operational purpose. The microcontroller component of

the sensor node can be modeled to study its operational behavior through simulation.

The sensors are the sources of real world physical quantity measurement data input to

the sensor nodes. There are several different types of sensors for probing the same

physical quantity. The system modeling here therefore considers a general

mathematical model of data input sources described in the previous section. The radio

component of the node is a device used to link the network nodes over a wireless

radio communication channel. The energy source of a wireless sensor node is usually a

battery and occasionally an energy harvesting unit, e.g. a solar cell, is used to support

energy demanding applications.

The wireless sensor node hardware components are modeled in TrueTime by

the Kernel block, and the Battery block. In this study, TrueTime Kernel block, and the

TrueTime Battery block are used to model a sensor node comprising a TI’s MSP430

processor, a Chipcon’s CC2530 radio transceiver, and a generic dry cell battery,

respectively.

The TI’s MSP430 based sensor node uses an event-driven programming model

with interrupt handlers for handling timer interrupt, network interrupt, etc., in which a

single non-terminating task acts as the main program and the event-handling is

performed in interrupt handlers. The TrueTime Kernel block implements this

programming model. The TrueTime Kernel block also configures a fixed number of

analogue/digital inputs and a fixed priority task scheduling policy. Further, the Kernel

block models the Chipcon’s CC2530 transceiver, initializes the send/receive buffers and

network event handlers used by the transceiver. Figures 6.4, 6.5, and 6.6 show the

TrueTime model of the wireless sensor node model, cluster head node model and Sink

87

node model respectively. The energy source of the node is modeled by the TrueTime

Battery block. The initial energy available to each node at the start of the system is

provided by the Battery block to the Kernel Block through the energy input port of the

kernel. The sink node is interfaced to the Base station PC or Laptop, therefore it is

considered to be supplied from mains AC.

Figure 6.4: The TrueTime wireless sensor node model.

88

Figure 6.5: The TrueTime cluster head node model.

Figure 6.6: The TrueTime sink node model.

89

6.3. THE WIRELESS NETWORK MODEL

The wireless network linking the sensor nodes for the distributed incremental data

stream mining is based on the ZigBee wireless network protocol. ZigBee specifies a

high level communication protocol using small, low-power digital radios based on the

IEEE 802.15.4 standard for low-rate wireless personal area networks (LR-WPAN). The

wireless network model for the purpose of this application is built based on the

TrueTime ZigBee model. The wireless network model linking the sensor nodes

therefore includes definitions for the CSMA/CA medium access protocol based ad-hoc

wireless network, isotropic antenna, half-duplex communication, interference from

other nodes, and signal path-loss (1/݀௔), where ݀ is distance and ܽ is path-loss

exponent.

The true location of the nodes is specified through the x and y inputs of the

model to take into account the path-loss of the radio signal. Communication power

drain of individual nodes is also specified through the wireless network model port p.

The TrueTime Wireless Network block is shown in Figure 6.7 below.

The Higher layer communication protocol, specifying the wireless network

architecture suitable for the distributed incremental data stream mining application, is

built on top of the TrueTime IEEE 802.15.4 protocol. The higher layer communication

protocol organizes the network into a two-tiered architecture where the first tier

forms clusters of sensor nodes in a simple star network and the second tier consists of

the cluster heads forming a mesh network. In each cluster of the first tier there is a

prefixed node serving as the cluster head. In this architecture, a single sink node serves

as the coordinator of the whole network. The Data packets generated at the cluster

members are always directed to the respective cluster heads; however, cluster head

generated packets are directed to their members or to the sink or both. The data or

control packets from the sink are always directed to the cluster heads, which forwards

them to the member nodes. Table 6.1 below shows the model parameter settings.

90

Table 6.1: The TrueTime wireless network parameter settings.

No Parameter Value no Parameter value

1 Network type IEEE802.15.4/ZigBee 6 Receiver signal threshold -90 dBm

2 No. of nodes 226 7 Path-loss exponent 2.1

3 Data rate 250000 Kbit/s 8 ACK timeout .0003 ms

4 Minimum frame size 256 bit/s 9 Retry limit 5

5 Transmit power 0 dBm 10 Error coding threshold .05

Figure 6.7: The TrueTime Wireless Network Model.

6.4. DATA STREAM MINING TASK MODELS

The distributed incremental data stream mining task is approached through the

collaboration of three distinct sub-tasks running on different network nodes; namely,

the sensor nodes sub-task, the cluster heads sub-task, and the sink sub-task. These

sub-tasks share information over the wireless network to cooperatively implement the

data stream mining task utilizing the limited resource available at individual nodes. The

91

MATLAB/TrueTime implementation of the functions that model these sub-tasks will be

described in this section.

We assume that each sensor node sub-task running within a senor node only

communicates with the cluster head sub-task running within the cluster head of its

host sensor node. The cluster head sub-tasks communicate either to their member

node’s sub-tasks or to the sink sub-task.

6.4.1. Sensor Nodes sub-task Model
The sensor node sub-task first initializes the host kernel, constants (deviation

threshold,ݐܦ), sensors (data stream sources), mail boxes, stream buffer, radio

transceiver, radio receive/send buffers, and timers. It then subscribes to network and

timer interrupts, defines the handlers of the interrupts, and enters themain

programme.

Let ݑଵ be the first instance of the current data stream of a sensor node. The

main programme of the sensor sub-task starts by sending this instance of the current

stream to the cluster head sub-task and enters low-power model till it receives a local

cluster structure, ܿ௜. When it receives the local cluster structure, the sensor node sub-

task starts a stream sampling timer and enters low-power mode until it is woken up by

either a timer interrupt or a network interrupt to which is has subscribed. If it is woken

up by the timer interrupt then it will call the timer interrupt handler and return back to

the low-power mode. Else if it is woken up by the network interrupt then it will call the

network interrupt handler and return back to the low-power mode. Figure 6.8 shows

the sensor node sub-task model flowcharts.

The timer interrupt handler samples the sensors at a specified rate and records

the current instance ݑ௜ into the data stream buffer and computes the current instance

deviation, ݀ሺ௨೔,௖೔ሻ between the current instance, ݑ௜ and the local cluster structure, ܿ௜ as

(6.3).

 ݀ሺ௨೎ି௖೔ሻ ൌ ௖ݑ‖ െ ܿ௜‖஽ (6.3)

92

where ‖	‖ is Euclidean metric distance between the two instances, and ܦ is the

dimension of the two instances. The dimensions of the two instances must be same.

The handler then determines if the current instance deviation, ݀ሺ௨೔,௖೔ሻ is greater

than the deviation threshold, ݐܦ as (6.4):

 ݀ሺ௨೔,௖೔ሻ ൑ ݐܦ (6.4)

If (6.4) returns False (1) then the handler writes the instance, ݑ௜ to the send

buffer and schedules it for transmission. Upon successful transmission or if (6.4)

returns True (0), the handler returns from interrupt. The timer interrupt handler model

script is shown in Listing 6.2.

The network interrupt handler upon call gets the message from receive buffer,

checks if the message is a non-empty data packet, if so, sets the flag “rcv”, and posts

the message to the mailbox of the node. The handler then updates the local

structure,ܿ௜, with the received data from the mailbox and starts periodic timer. Listing

6.3 and Listing 6.4 show the network interrupt notifier and the network interrupt

handler model scripts, respectively.

93

Figure 6.8: The sensor node sub-task model flowcharts.

%Timer interrupt handler

function [exectime, data] = TimerIntrpt(seg, data)

global indx index inx indxx u[] d Dt

index + 1;

switch seg,

 case 1,

 u(indx,1) = ttAnalogIn(1);

 u(indx,2) = ttAnalogIn(2);

 u(indx,3) = ttAnalogIn(3);

 u(indx,4) = ttAnalogIn(4);

 exectime = 0.0001;

 case 2, %Keep the sensor_stream updated periodically

 inx = 2

 if index <= 5

 sensor_stream(index) = u(index);

94

 else

 for indxx = inx:index -1

 sensor_stream(indxx -1) = sensor_stream(indxx);

 end

 sensor_stream(indxx) = u(index)

 inx +1;

 end

 exectime = 0.00015;

 case 3,

 d = [sqrt(((u(indx,1) - c(1,1))^2) + ...

 ((u(indx,2) - c(1,2))^2) + ...

 ((u(indx,3) - c(1,3))^2) + ...

 ((u(indx,4) - c(1,4))^2)];

 exectime = 0.0008;

 case 4,

 if d > Dt

 ttCreateJob('snsendTask');

 end

 exectime = -1;

end

Listing 6.2: Timer interrupt handler model script for sensor node sub-task.

%Network interrupt notifier

function [exectime, data] = NwkIntrpt(seg, data)

global temp

95

 switch seg,

 case 1,

 %Call the network interrupt handling task

 ttCreateJob('NwkIntrptHndlr');

 exectime = -1;

 end

Listing 6.3: Network interrupt notifier model script for sensor node sub-task.

%Network interrupt handler

function [exectime, data] = NwkIntrptHndlr(seg, data)

global temp temp2 strt_timer

switch seg,

 case 1,

 temp = ttGetMsg;

 if(isfeild(temp, 'data'))

 if(isempty(temp.msg.data))

 else

 ttTryPost('snReceiveBox', temp);

 rcv =1;

 end

 end

 exectime = 0.0018;

 case 2,

 temp2 = ttTryFetch('snReceiveBox');

 c1 = temp2.msg.data; %set received data as local cluster structure

96

 ttCreateJob('TimerstartTask'); % start periodic timer

 exectime = -1;

end

Listing 6.4: Network interrupt handler model script for sensor node sub-task.

6.4.2. Cluster Heads sub-task Model
The cluster head sub-task initializes the host kernel, constants, counters, mailboxes,

sliding window buffer, receive/send buffer, and tasks. It then subscribes to the

network interrupt handler and enters the main programme loop. In the main

programme loop, counter1 is set to zero and counter2 is set to the number of member

nodes. The main programme then enters sleep mode or low-power mode until a

network interrupt wakes it up, upon which it calls the network interrupt handler and

returns back to sleep mode. The network interrupt handler services most of the

cluster head sub-task functions; transfers the received message from the receive

buffer to the node’s receive mailbox after inspecting the received message integrity,

increments counter1 on every successful message reception, updates sliding window

content with the received data, and evaluates a conditional statement, counter1 ==

counter2’. If the evaluation results in false then do nothing and return from interrupt.

Otherwise if the evaluation results in true, which means a message from all the

member nodes has been received, then calls SUBFCM algorithm model code

(function), schedule the returned cluster structures for transmission to member nodes

and the sink and return from interrupt. The cluster head sub-task model flowcharts are

shown in Figure 6.9.

97

Figure 6.9: The cluster head sub-task model flowcharts.

%Network interrupt notifier

function [exectime, data] = NwkIntrpt(seg, data)

global temp

 switch seg,

 case 1,

 %Call the network interrupt handling task

 ttCreateJob('NwkIntrptHndlr2');

 exectime = -1;

98

 end

Listing 6.5: Network interrupt notifier model script for cluster head sub-task.

%Network interrupt handler

function [exectime, data] = NwkIntrptHndlr2(seg, data)

global temp temp2 counter1 indx index inx indxx v nummember

index + 1;

switch seg,

 case 1,

 temp = ttGetMsg;

 if(isfeild(temp, 'data'))

 if(isempty(temp.msg.data))

 else

 ttTryPost('chReceiveBox', temp);

 end

 end

 counter1 = counter1 + 1;

 exectime = 0.0018;

 case 2,

 temp2 = ttTryFetch('chReceiveBox');

 v = temp2.msg.data; %Receive an element sliding window

 inx = 2

 if index <= nummember

 Sld_wndw(index) = v(index);

 else

99

 for indxx = inx:index -1

 Sld_wndw(indxx -1) = Sld_wndw(indxx);

 end

 Sld_wndw(indxx) = v(index)

 inx +1;

 end

 exectime = .00019;

 case 3,

 if counter1 == counter2

 ttCreateJob('SUBFCM_Task');

 ttCreateJob('chsend_Task');

 counter2 = nummember/3;

 else

 end

 exectime = -1;

end

Listing 6.6: Network interrupt handler model script for cluster head sub-task.

6.4.3. The Sink sub-task Model

The sink sub-task initializes the host kernel and radio transceiver. It subscribes to

network interrupt handler to receive incoming data from cluster heads. It also

initializes data transfer to the base station PC. The network interrupt handler caries

out firstly, instant data transfer from receiver buffer to the sink mailbox, then from

sink mailbox to the base station PC. The resource on the PC can be used to perform

complex analysis of the collected information and present the results to the end user

in real-time. The results could be stored to a database for historical analysis whenever

required.

100

Figure 6.10: The sink sub-task model flowcharts.

%Network interrupt handler

function [exectime, data] = NwkIntrptHndlr3(seg, data)

global temp temp2 flag1 flag2

switch seg,

 case 1,

 temp = ttGetMsg;

 if(isfeild(temp, 'data'))

 if(isempty(temp.msg.data))

 else

 ttTryPost('sinkReceiveBox', temp);

101

 end

 end

 exectime = 0.0018;

 case 2,

 temp2 = ttTryFetch('sinkReceiveBox');

 exectime = .0001;

 case 3,

 set flag1;

 set flag2;

 exectime = -1;

end

Listing 6.7: Network interrupt handler model script for sink sub-task.

6.5. SYSTEM MODEL SIMULATION

In this section, the models implementing different components of the distributed

incremental data stream mining WSN described in previous sections are assembled

into a complete system model to evaluate its performance through simulation.

The general system model can be assembled as shown in Figure 6.11 where the

stream mining code models are embedded into the node models and communication

is accomplished through the wireless network model.

A series of simulation setups with varying stream complexities and network

parameters are designed to analyze the system performance in terms of cluster quality

and validity. Network service qualities for the mining application such as energy

consumption, data delivery delay, and packet delivery ratio are also evaluated. An

evaluation of the simulation results based on the benchmark systems described below

is presented in the results and analysis chapter (Chapter 7).

102

A centralized flat multi-hop stream clustering WSN architecture (Figure 6.12)

and a centralized cluster-based stream clustering WSN architecture (Figure 6.13) with

similar scale are built and used as a benchmark to compare the performance of the

distributed incremental clustering architecture.

The centralized flat multi-hop stream clustering architecture setup involves

nodes taking data from onboard sensors and sending them to a sink node multi-hop. In

this setup every node participates in relaying other sensors’ data to the sink node

besides sending its own data. Clustering is performed at the sink every time a data

element from all nodes in the network has arrived and this repeats for subsequent

data elements of the stream.

The centralized cluster-based stream clustering setup involves cluster heads

collecting data elements from their members and forwarding them to the sink every

period. The cluster heads in this setup collect and forward their members’ data

elements, one element at a time from every member, to the sink and the sink carries

out the clustering.

The distributed incremental clustering setup involves cluster heads carrying out

local clustering before forwarding their local structures to the sink where the global

clustering will be carried out. The difference between this setup with the centralized

clustering cluster-based setup is in their internal working models. However, their

topology set up is exactly the same.

103

Figure 6.11: The general distributed incremental data stream mining system model.

Sensor Node
Sink

Figure 6.12: Centralized flat multi-hop stream clustering
architecture network.

104

Sensor Node
Cluster Head
Sink

Figure 6.13: Centralized cluster-based stream clustering network.

105

6.6. DISCUSSION

A WSN model for distributed data stream mining applications is presented. The

performance of the system model is evaluated through the TrueTime simulator in the

MATLAB environment utilizing the Simulink discrete event simulation engine. Different

components of the system are modeled separately and integrated as a whole system

model.

The Streaming data is modeled as a combination of real data sets stored in a

specific file and a process accessing the data sets one element at a time. The wireless

sensor nodes are modeled as sensors, radio transceivers, and energy sources along

with their application hosting microcontroller based on TrueTime base models and

MATLAB programs. The TurTime ZigBee wireless network protocol model is utilized to

model the wireless radio link among the sensor nodes. The distributed data stream

mining application is modeled as MATLAB task scripts distributed throughout the

network nodes.

Benchmark clustering algorithms and network architectures are built and used

in evaluation of the performance of the distributed incremental data stream mining

WSN model through simulation.

106

Chapter 7

7. RESULTS AND ANALYSIS

This chapter will elaborate on the model performance evaluation results gathered

from the distributed incremental data stream mining WSN system model simulation.

Based on the results and analysis, the model capabilities and limitations will be

discussed.

7.1. SIMULATION RESULTS

The evaluation of the distributed incremental data stream mining WSN is performed

through simulation using the TrueTime simulator 2.0 Beta 6. The results presented in

this chapter regarding performance evaluation of the application and the network

services are based on averages of 10 to 15 simulation runs with 95% confidence limits

taking realistic parameters obtained from experimental tests.

7.2. SIMULATION SETUP

The simulations were implemented in a Simulink environment using the basic models

in the TrueTime block library. The standard Simulink library blocks are utilized for all

other blocks necessary for the modeling. All node functionalities including the mining

algorithm within the nodes were programmed in MATLAB scripts. Cluster based

107

network topologies shown in Chapter 6 Figures 6.12, 6.13, and 6.14 are used. All

simulations involve only stationary nodes. Even though node mobility is supported in

TrueTime, node mobility is not considered in this research.

For the purpose of evaluating the distributed incremental data stream mining

WSN system we consider two parts: evaluation of data stream mining quality and

evaluation of network service quality.

7.3. SIMULATION ENVIRONMENT AND DATASETS

To evaluate the performance of distributed incremental data stream mining WSN, we

use real datasets on a PC with 3.20GHz i5 core CPU and 4GB memory running Windows

XP. The TrueTime simulation programmes are implemented using MATLAB M-file

scripts.

The real dataset that we used contains 10 minutely weather observations of

200 days at Sydney, Australia, recorded from June 2011 to January 2012 [162]. Each

day is regarded as a data stream and each stream has 144 points (24 x 60/10). Each

data stream instance (stream object) consists of temperature, relative humidity, wind

speed, and rainfall. The data streams are known to represent three levels of forest fire

danger ratings (Low, Moderate and High) on the McArthur Fire Danger Index (FDI)

scale [163].

7.4. SIMULATION AND ANALYSIS

Initially, we evaluate the cluster quality of the distributed incremental data stream

mining WSN model using benchmark standard clustering algorithms; the K-Means and

the FCM. Using the same data stream sets, we vary the stream dimension (number of

data features), and stream periods to investigate the nature and the complexity of the

streams that the distributed incremental data stream mining WSN model can handle.

The performance of the model compared to the benchmark models should highlight

the validity of the model under the simulated conditions and guidelines for optimal

system design.

108

The first set of simulations considers the system performance on different

stream dimensionality (i.e. stream elements with different number of feature space)

and stream rates. Stream sets with single to four dimensions are used to investigate

the mining performance with respect to the benchmark models. Sources generating

streams as slow as every minute to as fast as every second are used to investigate the

effect on cluster quality and validity.

The second set of simulations investigates the effect of network architectural

variances on the mining performance. The variables considered in this simulation are

cluster density, local model drift threshold (i.e. the maximum amount of local model

drift before the system starts updating the global model), and non-uniform clusters.

The third and final sets of simulations consider the impact of the distributed

incremental data stream mining WSN model by evaluating the network services

behavior. This evaluation considers the average energy consumption, the average data

delivery delay, and the packet delivery ratio.

7.5. SIMULATIONS 1

The setup for this simulation consists of a network of 200 sensor nodes, 25 cluster

heads, and a sink node. The network is organized under 25 uniform clusters of 8 nodes

each. Each node is configured to transmit an element of its stream at a period of 5

seconds. The other network parameters are as in Table 6.1 of chapter 6. The data

stream source for this simulation consists of the weather data stream described in

section 7.3. The first sets of simulations take only temperature streams and make up

single dimensional streams. The 2D, 3D and 4D streams are formed in the same

manner taking two, three and four features from the original data stream consisting of

temperature, relative humidity, wind speed, and rainfall features, respectively.

7.5.1. One-Dimensional (1D) Stream Analysis

Figure 7.1(a) shows a snapshot of the first elements of the eight member nodes to

have arrived at the first cluster head (CH1). This makes up the first sliding window of

109

the first cluster head stream on which the SUBFCM algorithm runs and extracts local

cluster models. Figure 7.1 (b-f) show similar snapshots of cluster heads two to six (CH2

to CH6).

Therefore, there is a stream of 200 elements distributed within the network

(eight stream elements at each of the 25 cluster heads) at each simulation step. The

first stream elements from all clusters are combined and shown in Figure 7.2 below.

The combined stream set at each simulation step is passed on to the benchmark

clustering algorithms to extract the ideal reference clusters to compare to the clusters

from the distributed model.

Global cluster models are computed at the sink by re-clustering the local cluster

models obtained from all cluster heads at every simulation step. Figure 7.3 shows

cluster centers obtained from the distributed model and the reference cluster centers

during 144 simulation steps for the single dimensional data stream.

We captured the stream sets at each simulation step (total of 144 steps) for

running K-Means and FCM systems offline. However, the SUBFCM is run distributed

and online. As described before, the datasets are known to consist of elements

belonging to three classes of Forest Fire danger levels on the McArthur scale [163].

However, in this particular simulation, we only take a single variable (Temperature)

from each data stream element to form a single dimensional stream. Therefore, the

number of clusters in each step is pre-set to three for K-Means and FCM clustering,

whereas for the SUBFCM clustering, the cluster radius variable is calibrated via offline

testing on the same datasets and fixed to ݎ௔ ൌ 0.10 that partitions 97.3% of the

stream sets into three clusters.

The Analysis of clusters obtained from the distributed SUBFCM system taking

into account 144 simulation steps shows that the temperature cluster centers

obtained deviate by 0.42 °C and 0.21 °C on average in reference to the central K-

Means and FCM systems, respectively. The maximum cluster centers displacement

observed are 0.59 °C and 0.46 °C compared to K-Means and FCM systems, respectively.

Figure 7.4 shows the model cluster deviations with reference to K-Means and FCM for

110

the total 144 simulation steps. The maximum deviation is only 2.8% of the maximum

temperature in the stream.

The results indicate that the distributed incremental data stream clustering

WSN model can extract clusters comparable in quality to those obtained from batch

clustering of data streams gathered at a central location using standard K-Means and

FCM algorithms. A deviation of 2.8% of the maximum value is tolerable by several

applications given the added advantages of distributed clustering.

(a) (b)

 (c) (d)

 (e) (f)

Figure 7.1: Cluster heads first sliding window snapshots.

1 2 3 4 5 6 7 8
0

5

10

15

20

25

Stream element number

Te
m

pe
ra

tu
re

 [o
C

]

Ch 1

Stream window instance

1 2 3 4 5 6 7 8
0

5

10

15

20

25

Stream element number

Te
m

pe
ra

tu
re

 [o
C

]

Ch 2

Stream window instance

1 2 3 4 5 6 7 8
0

5

10

15

20

25

Stream element number

Te
m

pe
ra

tu
re

 [o
C

]

Ch 3

Stream window instance

1 2 3 4 5 6 7 8
0

5

10

15

20

25

Stream element number

Te
m

pe
ra

tu
re

 [o
C
]

Ch 4

Stream window instance

1 2 3 4 5 6 7 8
0

10

20

30

Stream element number

Te
m

pe
ra

tu
re

 [o
C

]

Ch 5

Stream window instance

1 2 3 4 5 6 7 8
0

5

10

15

20

25

Stream element number

Te
m

pe
ra

tu
re

 [o
C

]

Ch 6

Stream window instance

111

Figure 7.2: The sliding windows combined to form the first stream set.

Figure 7.3: Cluster centers extracted during 144 simulation steps.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

Stream element number

Te
m

pe
ra

tu
re

 [o
C

]

Stream set 1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

10

12

14

16

18

20

22

Simulation step

Te
m

pe
ra

tu
re

 c
lu

st
er

 c
en

te
rs

 [o
C

]

Kmeans
FCM
SUBFCM

C3

C2

C1

112

Figure 7.4: Average cluster deviations.

7.5.2. Two-Dimensional (2D) Stream Analysis

This simulation involves similar settings and the same data stream source as the

previous section; however, two features (temperature and relative humidity) from

each stream element are considered to make up 2D data streams. Figure 7.5 (a-f)

shows a snapshot of the first sliding windows of cluster head one to cluster head six.

The first stream set, taken at the first simulation step, along with the cluster centers

obtained using the distributed SUBFCM system and reference systems K-Means and

FCM are shown in Figure 7.6 below. The cluster radius for our distributed system for

the 2D data stream case is set to ݎ௔ ൌ 0.15 after calibrating offline using the same

datasets. In 98% of the 144 steps, the distributed system produced three distinct

clusters similar to the K-Means and FCM clusters. Figure 7.7 shows the average cluster

centers deviation of distributed SUBFCM compared to the K-Means system. The

average cluster centers deviation with respect to the FCM system is shown in Figure

7.8.

Analysis of the results obtained shows that the distributed system cluster

centers deviate by 3.86% and 1.46% of the cluster radius on average with respect to

the K-Means and FCM cluster centers respectively. The maximum cluster deviation

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation step

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n
[o

C
]

error w.r.t KMEANS
error w.r.t. FCM

113

observed in this simulation is 13.22% with respect to K-Means and 5.16% with respect

to FCM.

(a) (b)

(c) (d)

 (e) (f)

15 16 17 18 19 20
60

65

70

75

80

Temperature [oC]

R
. H

um
id

ity
 [%

]

Stream set 1 clusters

kMEANS
FCM
SUBFCM

10 11 12 13 14 15 16
40

50

60

70

80

Temperature [oC]

R
. H

um
id

ity
 [%

]

Stream set 2 clusters

kMEANS
FCM
SUBFCM

11 11.5 12 12.5 13 13.5 14
70

75

80

85

90

95

Temperature [oC]

R
. H

um
id

ity
 [%

]

Stream set 3 clusters

kMEANS
FCM
SUBFCM

10 11 12 13 14 15 16
40

50

60

70

80

90

Temperature [oC]

R
. H

um
id

ity
 [%

]

Stream set 4 clusters

kMEANS
FCM
SUBFCM

10 12 14 16 18 20
30

40

50

60

70

80

Temperature [oC]

R
. H

um
id

ity
 [%

]

Stream set 5 clusters

kMEANS
FCM
SUBFCM

10 12 14 16 18 20
40

50

60

70

80

90

Temperature [oC]

R
. H

um
id

ity
 [%

]

Stream set 6 clusters

kMEANS
FCM
SUBFCM

114

Figure 7.5: Cluster heads first sliding windows snapshot.

Figure 7.6: Stream sets and clusters from first simulation step.

10 12 14 16 18 20 22
50

55

60

65

70

75

80

85

Temperature [oC]

R
. H

um
id

ity
 [%

]

A stream window elements
k-means Clusters
SUBFCM Clusters
FCM Clusters

115

Figure 7.7: Average cluster deviations with respect to K-Means for 2D streams.

Figure 7.8: Average cluster deviations with respect to FCM for 2D streams.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

5

10

14

Simulation step

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n
[%

]

Average cluster deviation w.r.t. K-Means

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

1

2

3

4

5

6

Simulation step

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n
[%

}

Average cluster deviation w.r.t. FCM

116

7.5.3. Three-Dimensional (3D) Stream Analysis

Three-dimensional stream analysis simulation considers three variables (temperature,

relative humidity, and wind speed) from the same data sources used in previous

simulations for 1D and 2D cases. The cluster radius for the distributed clustering is

calibrated to ݎ௔ ൌ 0.065. Other settings are as in previous simulations. The Snapshot

of the first sliding windows of cluster head one to cluster head three are shown in

Figure 7.9 (a-c). The second stream set in Figure 7.9 (b) shows the maximum cluster

centers deviation.

Simulation results analysis shows that the average cluster deviations of the

distributed SUBFCM system is 11.63% and 6.05% compared to the K-Means and FCM

systems respectively. Maximum observed cluster deviation is 15.52% compared to K-

Means system. Figure 7.10 and Figure 7.11 show average cluster deviations for the 144

simulation runs with respect to K-Means and FCM respectively.

(a)

10

15

20

25

50

60
70

80

90
0

10

20

30

40

50

Temperature [oC]

Stream set 1

R.Humidity [%]

W
in

d
sp

ee
d

[K
m

/h
]

Stream set elements
KMEANS Cluster
FCM Cluster
SUBFCM Cluster

117

 (b)

 (c)

Figure 7.9: Cluster heads first sliding windows snapshot.

8
10

12
14

16
18

40

60

80

100
5

10

15

20

25

30

35

Temperature [oC]

Stream set 2

R.Humidity [%]

W
in

d
sp

ee
d

[K
m

/h
]

Stream set elements
KMEANS Cluster
FCM Cluster
SUBFCM Cluster

8
10

12
14

16

60

70

80

90

100
10

15

20

25

30

35

Temperature [oC]

Stream set 3

R.Humidity [%]

W
in

d
sp

ee
d

[K
m

/h
]

Stream set elements
KMEANS Cluster
FCM Cluster
SUBFCM Cluster

118

Figure 7.10: Average cluster deviations with respect to K-Means for 3D streams.

Figure 7.11: Average cluster deviations with respect to FCM for 3D streams.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
7

8

9

10

11

12

13

14

15

16

17

18

Simulation step

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n
[%

]

Average cluster deviation w.r.t.KMEANS

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

1

2

3

4

5

6

7

8

9

10

Simulation step

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n
[%

]

Average cluster deviation w.r.t. FCM

119

7.5.4. Four-Dimensional (4D) Stream Analysis

Four-dimensional stream analysis simulation considers all the four variables

(temperature, relative humidity, wind speed, rainfall) in the data source. The cluster

radius for the distributed clustering is calibrated to ݎ௔ ൌ 0.09. Other settings are as in

previous simulations.

Simulation results analysis shows that the average cluster deviation of the

distributed SUBFCM system is 7.74% and 6.29% compared to the K-Means and FCM

systems respectively. Maximum observed cluster deviation is 14.6% compared to K-

Means system. Figure 7.12 and Figure 7.13 show average cluster deviations for the 144

simulation runs with respect to K-Means and FCM respectively.

Figure 7.12: Average cluster deviations with respect to K-Means for 4D streams.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
2

4

6

8

10

12

14

16

Simulation step

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n
[o

C
]

Average cluster deviation w.e.t. K-Means

120

Figure 7.13: Average cluster deviations with respect to FCM for 4D streams.

The above analysis shows that the distributed incremental data stream mining

WSN model generally performs well with data streams of different dimensions. The

percentage deviation observed throughout is around 11% which is a tolerable margin

for several applications. The average cluster deviations increase smoothly with

increased stream dimensions. However, maximum and average cluster deviations

decrease for 4D stream sets with reference to the K-Means. This may be due to the

existence of three distinct non-overlapping classes when all the four features of the

stream elements are considered. The data streams used are pre-known to contain

three fire danger level classes when all the four features are considered. Further, the

K-Means algorithm is known to outperform the FCM algorithm when the datasets

contain non-overlapping classes.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

2

4

6

8

10

12

14

16

18

Simulation step

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n
[%

]

Average cluster deviation w.r.t. FCM

121

7.5.5. Stream Rate Analysis

This simulation involves releasing constant size stream elements from their sources at

varying periods. Their release periods are varied to control the stream rates. A number

of simulation runs are averaged for every case varying the stream periods. The

simulation is then repeated for the different stream dimensions discussed in previous

sections. We simulated stream periods of 20 seconds, 15 seconds, 10 seconds, 5

seconds, and 1 second. The effect of stream periods on cluster deviation is shown in

Figure 7.14. The streams with the higher dimensions show higher deviations as a

function of stream period. 4D stream sets show the highest standard deviation of 3.23

around the mean deviation of 10.13%, while 1D stream sets exhibit the least standard

deviation of 0.85 with a mean cluster deviation of 2.42%.

The results indicate that when the data streams consist of higher than 2D

elements, the average cluster deviations increase with an increase in the stream

periods. Based on 144 simulations runs, the distributed model’s cluster deviations for

4D streams are 10.13% +/- 3.23. For the 1D stream, the deviations are bound to 2.42%

+/-0.85.

Figure 7.14: Average cluster deviation variation with stream period.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

Stream period [s]

A
ve

ra
ge

 C
lu

st
er

 d
ev

ia
tio

n
[%

]

4D
3D
2D
1D

122

7.6. SIMULATIONS 2

Here we analyze the cluster deviations with varying number of nodes per cluster

(cluster density), local model drift thresholds, and stream periods. We consider

uniform and non-uniform cluster densities.

The simulations for uniform cluster densities consist of six cases of different

cluster densities and seven different local model drift thresholds. A non-uniform

clusters case is also simulated. In all cases, the total number of nodes is 200. The

number of clusters is varied to accommodate the 200 sensors.

For each of the six uniform node density setups, seven simulations are

performed one per local model drift threshold. For the non-uniform cluster density

case too, seven simulations are performed: one per local model drift threshold.

Table 7.1: uniform cluster density setup.

Case No clusters No. of nodes per cluster Total no. of nodes per network

1 25 8 200

2 20 10 200

3 10 20 200

4 5 40 200

5 4 50 200

6 2 100 200

Table 7.2: non-uniform cluster density setup.

Case No. of clusters No of node per cluster Total no. of nodes

1 2 50 100

1 40 40

2 20 40

2 10 20

Total no. of nodes per network 200

123

As shown in Table 1, the simulation cases considered are 25 clusters of eight

nodes each, 20 clusters of 10 nodes each, 10 clusters of 20 nodes each, five clusters of

40 nodes each, four clusters of 50 nodes each, and two clusters of 100 nodes each.

Local model drift thresholds of 10%, 20%, 30%, 40%, 50%, 60%, and 70% are simulated

for each of the above cluster densities in each case keeping the stream periods

constant. The stream periods considered are 1sec, 5sec, 10sec, 15sec, and 20sec. Table

2 shows a single case of non-uniform cluster density setup consisting of two clusters of

50 nodes each, a cluster of 40 nodes, two clusters of 20 nodes each, and two clusters

of 10 nodes each. The data for this simulation considers all the four features (4D) of

the data streams.

7.6.1. Uniform Cluster Density Analysis

When the cluster density is uniform, each cluster contains the same number of nodes.

The amount of computation load on every cluster head is therefore similar. In the

uniform cluster density setup, the cluster heads compute the local models in more or

less similar time periods and hence achieve better global coordination of the model.

Therefore the uniform cluster density architecture should perform better than the

non-uniform architecture case.

124

Figure 7.15: Average cluster deviation with varying cluster densities at 1sec stream
period.

Figure 7.15 shows simulation results of average cluster deviations as a function

of varying cluster densities when the stream period is set to 1 second. For all the local

model drift thresholds, the average cluster deviations decrease as the cluster density

increases until 40 nodes per cluster is reached and then starts to increase again. The

minimum average cluster deviation of 24.15% is observed for the local model drift

threshold of 30% and cluster density of 40 nodes per cluster.

Figure 7.16 shows simulation results of average cluster deviations as a function

of varying cluster densities when the stream period is 5 seconds. For all local model

drift thresholds the average cluster deviations decrease as the cluster density increases

in similar fashion as in Figure 7.15. However, in this case, the average deviations are

lower and increase proportionally to the local model drift thresholds. The minimum

average cluster deviation of 4.55% occurs again at cluster density of 40 nodes per

0 10 20 30 40 50 60 70 80 90 100
20

25

30

35

40

45

50

55

60

No. of nodes per cluster

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n
[%

]

Stream period = 1sec

10%
20%
30%
40%
50%
60%
70%

125

cluster. The minimum average cluster deviation however corresponds to the local

model drift threshold of 10% rather than 30% as in previous simulation.

Figure 7.16: Average cluster deviation with varying cluster densities at 5sec stream
period.

Increasing the stream period to 10 seconds, 15 seconds, and further to 20

seconds, the average cluster deviations show similar patterns as in Figure 7.16. The

average cluster deviations decrease with increase in cluster densities until a minimum

is reached at 40 nodes per cluster and starts to increase for further increases in cluster

densities. The simulation results for stream release rates of 10 seconds, 15 seconds

and 20 seconds are shown in Figures 7.17, 7.18, and 7.19 respectively.

In Figure 7.20, the average cluster deviations for the stream periods of 1sec,

5sec, 10sec, 15sec, and 20sec are averaged at each cluster density. The average cluster

deviations remain below 11% at 40 nodes per cluster for all stream periods except in

the case of stream period of 1 sec which is 27.73%.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

No. of nodes per cluster

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n
[%

]
Stream period = 5sec

10%
20%
30%
40%
50%
60%
70%

126

The above observations reveal that the optimum cluster density for best

clustering results under the given network architecture and distributed incremental

stream mining model is 40 nodes per cluster. The ability of the model to handle data

streams arriving in periods of longer than 1 second is also observed. The stream period

of 1 second or lower is however too fast for the model as manifested in relatively

higher average cluster deviations.

High cluster deviations at a very low number of nodes per cluster in all

simulations show that by dividing a given large quantity of datasets into smaller sets,

mining these smaller sets at distributed locations simultaneously and incrementally

extracting the hidden global structures can yield results comparable to that of mining

the whole dataset at a central location. However, as the number of divisions increases,

the number of distributed mining locations increase with very small sub-sets of data

and the mining results start to degrade in comparison to the central mining results.

Figure 7.17: Average cluster deviation with varying cluster densities at 10sec stream
period.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

No. of nodes per cluster

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n
[%

]

Stream period = 10sec

10%
20%
30%
40%
50%
60%
70%

127

Figure 7.18: Average cluster deviation with varying cluster densities at 15sec stream
period.

Figure 7.19: Average cluster deviation with varying cluster densities at 20sec stream
period.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

No. of nodes per cluster

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n
[%

]

Stream period = 15sec

10%
20%
30%
40%
50%
60%
70%

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

No. of nodes per cluster

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n
[%

]

Stream period = 20sec

10%
20%
30%
40%
50%
60%
70%

128

Figure 7.20: Average of cluster deviations for different stream periods.

7.6.2. Non-uniform Cluster Density Analysis

For the case of non-uniform cluster density, the average cluster deviation as a function

of local model drift threshold for the different stream periods is plotted in Figure 7.21

below. The cluster deviations are generally higher compared to the uniform node

densities per cluster. The stream periods exhibit different minimum and maximum

cluster deviations for different local model drift thresholds. The minimum cluster

deviation is 31.36% at 40% local model drift threshold when the stream period is 15

sec. The maximum cluster deviation at 40% local model drift threshold is 39.95% when

the stream period is 1sec. The average cluster deviation for the non-uniform cluster

density of 35.3% at 40% local model drift threshold is noticeably higher than the

uniform cluster density counterpart at similar local model drift threshold where the

average remained below 10%.

The irregular cluster deviation pattern is due to the assignment of the same

stream period for clusters of different densities.

0 10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

30

35

40

45

50

No. of nodes per cluster

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n
[%

]

1sec
5sec
10sec
15sec
20sec

129

Figure 7.21: Average cluster deviation for non-uniform cluster density.

7.7. SIMULATION 3

This simulation setup aims to evaluate the cost and quality of service that the network

can provide for the mining application. Average energy consumption, average data

delivery delay, and packet delivery ratio impacts are analyzed.

7.7.1. Average Energy Consumption

The energy consumption of a node includes the energy consumed during the sleep

state and active states. The active states are the transmit state, receive state, and

algorithm processing state. These different states consume different amounts of

energy and last for different lengths of time. The average energy consumption of a

node over a given time period is the mean of the energy consumptions of the above

states. The base energy consumption of the nodes during all the states except the

10 20 30 40 50 60 70
25

30

35

40

45

50

55

60

65

Local model drift threshold [%]

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n
[%

]

Non-uniform cluster deviation

1sec
5sec
10sec
15sec
20sec

130

algorithm processing state is given in the node hardware datasheet. Based on this we

model the nodes’ average energy consumption incorporating the algorithm processing

state. By logging the time duration of every state during simulation, we calculate the

average energy consumption of the sensor nodes and the cluster heads.

The average energy consumption of a typical node taking the average of all

nodes in a cluster for a single step of simulation run is shown in Figure 7.22. Similarly,

the average energy consumption of a typical cluster head taking the average of all

cluster heads in the network for a single simulation step is shown in Figure 7.23. The

average energy consumption for the entire simulation run can be found by multiplying

this with the number of simulation steps.

In Figure 7.22, the average energy consumption for the sensor nodes and

cluster heads is presented. This simulation averages data logged from a network of 25

clusters of eight sensor nodes each. The energy consumption of both the sensor nodes

and the cluster heads diminish with increasing stream period. The average energy

consumption in both types of nodes decreases rapidly as the stream period increases

from one second to five second periods. After the five second stream period the

average energy consumption decreases smoothly. This shows the impact of frequent

data transmission on the average energy consumption. Increasing the stream period

beyond 10 seconds does not significantly decrease the average energy consumption.

This indicates that the increased energy consumption at shorter stream periods is

partly due to increased packet collisions and retransmissions at faster stream arrival

rates. The specific distributed incremental stream mining WSN model energy

consumption performance is optimal for stream periods of 5 seconds or more.

The impact of cluster density per cluster on average power consumption of

both sensor nodes and cluster heads are shown on Figure 7.23 and Figure 7.24

respectively. In Figure 7.23, the average energy consumption impact due to different

node densities per cluster are plotted for a range of stream periods. It can be observed

that the impact of stream periods on the average energy consumption of sensor nodes

is significantly higher than the impact of node densities per cluster. Figure 7.24 shows

the plot of average energy consumption of cluster heads as a function of node density

per cluster for the same range of stream periods as in Figure 7.23. The impact of node

131

densities per cluster on the average energy consumption of the cluster heads is as

significant as the impact of stream periods. The impact of cluster density on the cluster

heads’ average energy consumption at shorter stream periods are more significant.

The increased average energy consumption by the cluster heads at higher node

densities can be explained by the increased number of packet receptions from their

member nodes. Packet collisions and new datasets catching up with unprocessed

previous datasets account for increased average energy consumption of cluster heads

at fast stream rates.

Figure 7.22: Sensor nodes and cluster heads average energy consumption.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Stream period [sec]

A
ve

ra
ge

 e
ne

rg
y

co
ns

um
pt

io
n

[m
Jo

ul
e]

Sensor node
Cluster head

132

Figure 7.23: Sensor nodes average energy consumption.

Figure 7.24: Cluster heads average energy consumption.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Node density per cluster

A
ve

ra
ge

 E
ne

rg
y

(m
Jo

ul
e)

sensor node average energy

5sec
10sec
15sec
20sec
1sec

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Node density per cluster

A
ve

ra
ge

 E
ne

rg
y

(m
Jo

ul
e)

Cluster head average energy

1sec
5sec
10sec
15sec
20sec

133

The average energy consumption of the sensor nodes and the cluster heads

largely vary with the stream periods and node densities per cluster. The results in

Figure 7.22 show that streams with shorter periods, i.e. streams arriving fast, result in

higher average energy consumption than those with longer periods. This is because for

longer stream periods the nodes spend more time in sleep mode. The sensor nodes

and cluster heads consume above 90% less energy when mining data streams with a

period of 20 second compared to mining the same data streams with a period of one

second. This could also be due to higher packet collision and lower data delivery ratio

at such fast speeds.

7.7.2. Average Data Delivery Delay

The packet delivery delay is defined as the time elapsing between the instant at which

a packet is generated at a source, and the instant at which a copy of the packet is first

received by the destination [164]. In our model, we define the data delivery delay as

the time elapsed between the instant a data packet is generated at a source, and the

instant at which the local cluster models generated at the cluster heads, corresponding

to the data packet, arrives at the sink.

The average data delivery delay of a typical sensor node taking the average of

data delivery delays of every sensor node in the network for that instance is shown in

Figure 7.25. From the plot of average data delivery delays as a function of cluster

density in Figure 7.25, we can observe that the average data delivery delay increases

as the number of nodes per cluster increases. For a stream period of one second, the

average data delivery delay exceeds the stream period when more than 40 nodes exist

per cluster. This situation indicates saturation of the system due to streams arriving at

a rate higher than the rate at which the system can process them. However, for stream

periods of five seconds or more, the average data delivery delays are well below 500

ms with the exception of 5 seconds stream period at more than 50 nodes per cluster

density.

134

Figure 7.25: Packet delivery delay variation with cluster density.

7.7.3. Packet Delivery Ratio

The packet delivery ratio is the ratio of packets received at the sink to the packets

generated by all other nodes [165]. In our model, using cluster architecture and in-

network processing, we define two packet delivery ratios: the sensor node-to-cluster

head packet delivery ratio and the cluster head-to-sink packet delivery ratio. The

sensor node-to-cluster head packet delivery ratio is the ratio of packets received by

cluster heads to the packets sent by cluster members, whereas the cluster head-to-

sink packet delivery ratio is the ratio of packets received by the sink to the packets sent

by the cluster head.

The packets delivery ratios are observed to vary with stream period and cluster

density variations. Packet delivery ratios of between 96.7 - 99% are observed when

every cluster contains less than 20 nodes, no matter what the stream periods are, as

exhibited in Figure 7.26. However, packet delivery ratios drop rapidly to as low as 93.7

to 96.8% when the node density is increased to 50 nodes per cluster, especially at

faster stream periods. The stream periods have significant impact on the rate of packet

delivery ratio drop as node density increases. This indicates that for optimal

performance, applications utilizing the distributed model should limit the cluster

density to below 20 if a packet delivery ratio of above 96% is desired. Conversely, a

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Node density per cluster

D
at

a
de

liv
er

y
de

la
y

[s
]

1s
5s
10s
15s
20s

135

packet delivery ratio drop should be expected if 50 or a higher cluster density is

desired.

The packet delivery ratios of cluster head-to-sink are shown in Figure 7.27.

Packet delivery ratios drops of 99.5 – 96.5 are observed for node densities of eight to

50 nodes per cluster for all stream periods, except for one second stream period which

further drops to 96%. The lowest packet delivery ratio observed is about 96% for node

density of 100 nodes per cluster. For the case of cluster head-to-sink packet delivery

ratio, the stream periods do not show significant impact on the rate of packet delivery

ratio drop as in sensor node-to-cluster head packet delivery ratio drop.

Applications that can tolerate stream packet delivery ratios as low as 94% at

sensor node-to-cluster head and 96% at cluster head-to-sink can deploy as much as

100 nodes per cluster given that the increased energy consumption and data delivery

delays as a consequence are acceptable.

Figure 7.26: Packet delivery ratio of sensor node-to-cluster head.

0 10 20 30 40 50 60 70 80 90 100
93

94

95

96

97

98

99

Node density per cluster

P
ac

ke
t d

el
iv

er
y

ra
tio

 [%
]

1s
5s
10s
15s
20s

136

Figure 7.27: packet delivery ratio of cluster head-to-sink.

7.8. CONCLUSIONS

In this chapter, the distributed incremental data stream mining WSN model is

evaluated through simulations. The robustness of the model to different data stream

dimensions and data stream rates is demonstrated through the first set of simulations.

Benchmarking on standard mining algorithms, the K-Means and the FCM algorithms,

we have demonstrated that the model can perform high quality distributed data

stream mining tasks comparable to centralized data stream mining. The second set of

simulations have shed light on the network architectural design guidelines required to

satisfy desirable applications demands without compromising the distributed data

stream mining task integrity. The third and final set of simulations have also discussed

the energy cost and network quality of service impacts for optimal system

performance.

0 10 20 30 40 50 60 70 80 90 100
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Node density per cluster

P
ac

ke
t d

el
iv

er
y

ra
tio

 [%
]

1s
5s
10s
15s
20s

137

Chapter 8

8. CASE STUDY: MICRO-SCALE FOREST FIRE WEATHER INDEX AND
SENSOR NETWORK

8.1. INTRODUCTION

The Micro-scale Forest fire Index (FWI) system is an attempt to implement a scaled-

down version of the Canadian FWI system for fire danger monitoring of a relatively

smaller geographic area. It considers an area as small as a few square meters or as

large as many square kilometers. It is specifically important for local forest zones

where the nature of the vegetation and topography largely differs from the

surrounding forest area. It is based on deployment of large number of low-cost, low-

power, and small-sized weather sensor nodes linked by a low-power wireless

communication network.

A Micro-scale FWI system locates impending bushfires to their exact locations

well before their occurrence, and remotely alerts the authorities with detailed fire

management information. It enables high temporal and spatial resolution of

information on bushfire activity. This is considered ideal for an early-warning systems

of bushfire-prone regions. A large number of low-cost, intelligent and wireless sensors

are deployed within the area of interest with the sensors located at short distances

apart. These sensors intimately interact with the physical environment of the

bush/forest floor and gather the necessary information which is shared among the

neighboring sensors wirelessly. The information is fed to the hazard prediction

algorithm embedded into each sensor unit to generate an alarm for any fire hazard

138

and for data management. The system could be organized to alert the fire

management authority timely via the available backbone communication (GSM,

Internet or satellite) link.

The Micro-scale FWI system, developed during this research work is used as a

case study to demonstrate the merits of the distributed incremental data stream

mining WSN system.

8.2. FWI SYSTEM

Fire Weather Index (FWI) is an estimation of the risk of wildfire based on the Canadian

empirical model developed by Van Wagner [166]. It is one of the most

comprehensively used forest fire danger rating systems in North America based on

several decades of forestry research [167, 168]. FWI is used to estimate fuel moisture

content and generate a series of relative fire behavior indices based on weather

observations. The fuel moisture and fire behavior indices are used by operational

personnel to aid in the estimation of expected daily fire occurrence, potential fire

behavior and difficulty of suppression across a fire management district, region or

province [169].

The FWI system takes current weather parameters, elevation data and

produces the indexes of the FWI system daily at noon local time. The FWI indexes are

indicators of daily potential and behavior of bushfires. The FWI system relies on

sparsely distributed meteorological stations as its current weather parameters’ data

sources. Data from several meteorological stations is transferred to a central

processing and repository center via satellite communication. At the central processing

and repository center, weather parameter grids for the entire national area will be

produced. Geographic Information Systems (GIS) software is used to interpolate the

weather data between stations taking into account elevation data to produce gridded

weather maps. The FWI System components are then calculated on a cell-by-cell basis

according to a set of equations to produce the FWI maps [170].

The FWI system models the complex relationships between the forest weather

variables (fire weather observations), the forest floor moisture profiles known as Fuel

139

Moisture Codes, and the Fire Behavior Indices. Six standard components of the FWI

System provide numerical ratings of relative wild land fire potential. The first three

components are fuel moisture codes that follow daily changes in the moisture

contents of three classes of forest fuel with different drying rates. For each, there are

two phases - one for wetting by rain and one for drying - arranged so that the higher

values represent lower moisture contents and hence greater flammability. The final

three components are fire behavior indices, representing rate of spread, amount of

available fuel, and fire intensity; their values increase as fire weather severity worsens.

The system is dependent on weather parameters only and does not consider

differences in risk, fuel, or topography. It provides a uniform method of rating fire

danger across wild land. The six components of the FWI system are described below.

The first three indices are the Fine Fuel Moisture Code (FFMC), the Duff

Moisture Code (DMC), and the Drought Code (DC). The FFMC relates the fire weather

observations to ease of ignition of the litters and other cured fine fuels at top layer of

the forest floor, hence a good indicator of likeliness of forest fire ignition at the

observed locations. The DMC relates fire weather observations to the rate of fire fuel

consumption at the loosely compacted organic layers of moderate depth duff layers.

The DMC is indicative of the amount of fuel that would have been consumed in this

layer, had the fire materialized. The DC relates the fire weather observations to the

seasonal drought effects on the deep compact organic layers. The DC is an indication

of the amount of smoldering in deep duff layers and large logs.

The last three indices are the Initial Spread Index (ISI), The Build Up Index (BUI),

and the Fire Weather Index (FWI). The ISI is a numeric rating of the expected rate of

fire spread. The BUI is a numeric rating of the total amount of fuel available for

combustion. The FWI is the numeric rating of the fire intensity, and it’s a general index

of fire danger of a given forest area.

The model equations of the fuel moisture codes and fire behavior indices are

described below based on the general structure of the FWI system as shown in Figure

8.1. The fire danger severity rating on FWI scale is shown in Table 8.1.

140

8.2.1. Fine fuel moisture code (FFMC)

FFMC is a numerical rating of the moisture content of litter and other cured fine fuels.

It indicates the relative ease of ignition and flammability of fine fuel. Calculation of

FFMC requires the current moisture condition m of the fuel, which is determined by

the combined effect of rainfall and absorption/desorption of atmospheric moisture.

The rainfall effect is described as the rain modified moisture content rm . The

absorption/desorption of atmospheric moisture is described as diffusion of the

gradient of the initial moisture from its wetting equilibrium (wE)/drying equilibrium (

dE) moisture content. The wetting and drying diffusion coefficients (wK and dK ,

respectively) are functions of relative humidity (RH) in %, temperature (T) in 0C, and

wind speed (v) in km h-1. The wetting equilibrium and drying equilibrium moisture

contents of the fuel are given by relative humidity and temperature in reference to

noon temperature of 21.1 0C.

m
mFFMC

+
−=

2.147
2505.59 (8.1)

8.2.2. Duff Moisture Code (DMC)

DMC is a numerical rating of the average moisture content of loosely compacted

organic layers of moderate depth. This code gives an indication of fuel consumption in

moderate duff layers and medium-size woody material.

The DMC is a combined effect of rainfall modified duff moisture code rDMC

and evaporation from the duff layer dDMC which are functions of temperature (T),

relative humidity (RH) and effective day length (Leff).

 dr DMCDMCDMC += (8.2)

141

 where

)20ln(43.4372.244 −−= rr mDMC

410)100)(1.1(894.1 −−+= effd LRHTDMC

 rm is the rain modified moisture code.

8.2.3. Drought Code (DC)

DC is a numerical rating of the average moisture content of deep, compact, organic

layers. This code is a useful indicator of seasonal drought effects on forest fuels, and

amount of smoldering in deep duff layers and large logs.

The DC is determined by estimating the change in a moisture equivalent scale

caused by a source term (i.e. the effective rainfall) and loss term (evapotranspiration

and drainage). During the rainfall phase, the rainfall modified drought code rDC is a

function of rain modified moisture equivalent scale rQ . During the drying phase, the

moisture loss from the duff layer is approximated by dDC , which is a function of

temperature (T) and seasonal day length adjustment, fL .

 dr DCDCDC += (8.3)

where)/800ln(400 rr QDC = and))8.2(36.0(5.0 fd LTDC ++=

142

8.2.4. Initial Spread Index(ISI)

ISI is a numerical rating of the expected rate of fire spread. It combines the effects of

wind and FFMC on rate of spread without the influence of variable quantities of fuel.

The ISI is related to FFMC and wind speed, v , limited to a maximum of 100 km

h-1. It has the wind speed component, FW and the FFMC component, FF , related

through the current moisture condition m .

ܫܵܫ ൌ 0.208ሺܹܨሻሺܨܨሻ (8.4)

where veFW 5039.0= and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

+= −
7

31.5
1386.0

1093.4
19.91 meFF m

8.2.5. Buildup Index (BUI)

BUI is a numerical rating of the total amount of fuel available for combustion that

combines DMC and DC.

The BUI is calculated by combining DMC and DC. A form of the harmonic mean

of the DMC and the DC is used to calculate the BUI [168], to ensure that changes about

smaller values of either the DMC or the DC will receive a greater weight.

[]
⎪
⎪
⎩

⎪⎪
⎨

⎧

+⎟
⎠
⎞

⎜
⎝
⎛

+
−−

+
⋅

=
7.1)0114.0(92.0

4.0
8.01

4.0
8.0

DMC
DCDMC

DCDMC

DCDMC
DCDMC

BUI
DCDMC

DCDMC

4.0

4.0

>

≤
 (8.5)

143

8.2.6. Fire Weather Index (FWI)

FWI is a numerical rating of fire intensity that combines ISI and BUI. It is suitable as a

general index of fire danger throughout the forest areas. Table 8.1 below shows the

range of fire danger severity rating of each component.

The FWI is a function of both the BUI and the ISI and is given as;

⎪⎩

⎪
⎨
⎧

= 647.0)ln434.0(72.2 Be

B
FWI

1
1

≥
<

B
B (8.6)

 where,))((1.0 ISIFDB = and
⎪⎩

⎪
⎨
⎧

+

+
=

− BUIe

BUI
FD

023.0

809.0

64.10825
1000

2626.0

80

80

>

≤

BUI

BUI

144

Figure 8.1: The general structure of the FWI system.

Table 8.1: Fire danger severity rating on the FWI scale.

Index Low Moderate High Extreme

FFMC 0.0 - 80.8 80.9 - 86.8 86.9 - 89.9 90.0+

DMC 0.0 - 15.8 15.9 - 30.8 30.9 - 50.9 51.0+

DC 0.0 - 139.9 140.0 - 239.9 240.0 - 340.9 341.0+

ISI 0.0 - 2.1 2.2 - 4.9 5.0 - 9.9 10.0+

BUI 0.0 - 19.9 20.0 - 35.9 36.0 - 60.9 61.0+

FWI 0.0 - 2.9 3.0 - 9.9 10.0 - 22.9 23.0+

145

8.3. LIMITATIONS OF THE STANDARD FWI SYSTEM

The main limitations of the standard FWI system are its fire danger rating time and

space resolution. The standard FWI system rates relative mid-afternoon fire danger

from noontime weather data [171]. Hence, the fire danger rating is on a daily or 24

hours cycles. The effect of fluctuations in weather parameters on the fire danger rating

within the 24 hours period is thus ignored by the system. The FWI system does not

account for the differences in forest cover types and relies on interpolated point-

source weather records [171]. Further, the FWI weather data sources, which are

meteorology stations, are sparsely distributed and hence weather records of a large

area between the stations is estimated based on interpolation. This shows that the

spatial resolution of the fire danger rating is very low. In unfortunate events of station

failures, due to either lightning strike or technical fault, the spatial resolution degrades

further as interpolation values are directly proportional to the number of reference

points.

another limitation of the FWI system is that the system does not allow real-

time querying of specific forest domain at specific times for hazard rating. This may be

necessary when there are specific domains of the forest that require special attention

such as urban-rural-interface, national parks, and nuclear facility. A new station start-

up and integration also involves high cost, expensive labor and long time.

The above mentioned limitations of the standard FWI system can potentially be

overcome by the Micro-scale FWI system.

In the micro-scale FWI system, the forest zone is divided into grids of small

square cells (e.g. 20m x 20m) and a low-cost weather sensor node is placed in each

cell. Since the size of the square cells can be as small as possible, high spatial resolution

weather parameter measurements can be made by taking a large number of

measurement points in the region. The fire danger rating values’ accuracy is robust to

a single or a few sensor failures due to the dense measurement points. The size of the

forest zone that can be monitored using a Micro-scale FWI system is determined by

146

the WSN which usually employs numerous low cost nodes communicating over

multiple hops to cover a large geographical area.

The micro-scale FWI system also provides high temporal resolution fire danger

rating as the system can make low-power frequent measurements and transmit (e.g.

hourly) to base station. The system can also operate in event detection mode, in which

the individual sensor nodes instantaneously send information to the base station upon

detection of a predetermined danger rating threshold.

The micro-scale FWI system allows intermittent interaction to the normal (e.g.

hourly) operation for querying a specific region’s situation. Such queries can be

generated and injected into the network at the base station. The Micro-scale FWI

system deployment is fast as the weather sensor nodes have self-configuration and

healing capabilities to automatically link and form a robust network.

8.4. THE MICRO-SCALE FWI SYSTEM

This work implements a scaled down version of the standard Canadian FWI System-

the Micro-scale FWI system. Its main purpose is to provide high temporal and spatial

monitoring of forest zones spanning as small as few square meters or as large as few

square kilometers referred to as micro-scale area. The Micro-scale FWI system

produces the FWI rating map of a micro-scale area based on wireless weather sensor

nodes deployed throughout the micro-scale area in large numbers. The weather

sensors and FWI System components are carefully analyzed and calculations are

transposed to suit a high temporal and spatial resolution micro-scale area fire danger

rating system.

The Micro-scale FWI system consists of a large number of low-cost, low-power,

and small-sized weather sensor nodes linked via a low-power wireless communication

network. At the root of the wireless network is a sink node, which is physically

connected to a base station computer. The base station computer acts as a gateway to

an external networks (e.g. Internet, GSM) for remote management of the system.

147

The Micro-scale FWI system can be described based on the main three

components of the system; the weather sensor nodes, the FWI indices processing

algorithm embedded within each weather sensor node, and the wireless

communication network linking these nodes.

8.4.1. The Weather Sensor Nodes

The weather sensor nodes are the basic building blocks of the micro-scale FWI system.

They are the sources of the weather data for the system and play a similar role to that

of meteorology stations in the standard FWI system. They are capable of individually

probing their surroundings and acquire weather parameters such as temperature,

relative humidity, wind speed, and rainfall. They are also capable of minor data

processing and short range wireless communication with other nearby nodes.

A weather sensor node is a wireless node also known as a mote [172] with

weather parameter sensing capability. It is a small low-power electronic device that

combines programmable general-purpose computing with multiple weather

parameter sensing and wireless communication capabilities. The basic components of

a wireless sensor node are microcontroller, transceiver, sensors, and power source.

A Robust weather sensor node can be constructed based on state-of-the-art

wireless node platforms such as MEMSIC’s low-power platforms (IRIS, MICAz/MICA2,

TelosB, Cricket) and Texas Instrument’s system-on-chip (CC2430/31, CC2480, CC2530).

All of these platforms provide a low-power Micro Controller Unit (MCU) and an IEEE

802.15.4 compliant radio transceiver on a small-size device onto which sensor boards

can be plugged for specific applications.

The Power source for the nodes are often batteries. The sheer number of

sensor nodes required for most applications makes battery replacement expensive

[173]. Therefore, using dynamic power management schemes and using batteries

rechargeable through solar cells are often recommended. Sensors are used by the

node as its means of interacting with the physical world. The continual analog signal

produced by the sensors is digitized by the analog-to-digital converter (ADC) unit of the

microcontroller and is passed on to the application for further processing. As wireless

148

sensor nodes are typically very small electronic devices, they can only be equipped

with a limited power source. Hence, sensors have to have extremely low energy

requirements in probing the environment. A typical sensor node architeture is shown

in Figure 8.2.

Figure 8.2: Wireless sensor node architecture.

In the Micro-scale FWI system application there are three classes of sensor

nodes; the weather sensor nodes, the cluster heads, and the sink.

The weather sensor nodes are the most elementary devices of the three

classes. They host atmospheric temperature and relative humidity sensors. Their

primary purpose is to probe their environment for the two physical parameters, minor

data processing and regularly transmit the information to the cluster heads while

keeping their energy consumption as low as possible.

The cluster heads are better equipped devices with more processing power and

energy source than the weather sensor nodes. They host wind speed and rainfall

sensors. The cluster heads take regular measurements of wind speed and rainfall and

make these data available for their member weather sensor nodes. They regularly

receive information from their member weather sensor nodes and undergo

information processing before transmitting to the sink. They also act as relay nodes for

other cluster heads’ data to the sink.

The sink is a root node of the network responsible for creating and maintaining

the network. It is a general harvesting point of the information produced by the

Analog
Sensor

A/D

Digital
interfa

ce

Micro-
controller

Flash

RAM EEPROM

802.15.4
Transcie

ver

Digital
Sensor

Power

Periph
erals

SPI

149

network. The raw data and information collected by the individual weather sensor

nodes is fused, in stages, and forwarded to the sink node that provides the interface to

the outside world. The sink is physically connected to a base station computer and

hence has constant power supply.

8.4.2. Siting and Exposure of the Sensors

Selecting an appropriate site for weather station is critical for obtaining accurate

meteorological data that represents the general area of interest. There are guidelines

on weather station sitings and sensor placements defined by regulatory bodies such as

World Meteorological Organization (WMO), other standard climatologists such as the

American Association of State Climatologists (AASC), and research agencies such as the

Environmental Protection Agency (EPA).

According to the EPA, wind speed and direction sensors should be located at a

distance of at least 10 times the height of nearby objects [174]. The standard

measurement height for wind speed and direction also should be 10m [174, 175]. See

Figure 8.3 for reference.

150

Figure 8.3: Wind speed and direction sensors siting and exposure.

Temperature and relative humidity sensors should be housed in a ventilated

radiation shield and be sited no closer than four times the nearest obstruction’s height

[174]. The recommended standard measurement height is 1.25 to 2.0 meters [175].

The AASC and EPA suggest tipping buckets for precipitation measurement be

no closer than four times the height of an obstruction [174, 176]. Typically, tipping

buckets are sited on level ground covered with short grass or gravel. WMO and EPA

recommend standard precipitation measurement height of 30cm minimum [174, 175].

The guidelines described above on siting and exposure of the weather stations

is based on standard meteorological stations whose readings are required to be

general representatives of a large area. Thus the sensors should be sited such that

their readings closely correlate with the readings of the large area in general. However,

in distributed dense point weather parameter measurement systems such as the

Micro-scale FWI system, the objective is to measure the actual weather parameters at

151

a large number of locations in close proximity. Therefore, these guidelines can only be

used as general guidelines in Micro-scale FWI system’s sensor siting and do not directly

apply. The optimal location and orientation of the nodes of Micro-scale FWI system are

according to the manufacturer specifications of the sensors used and consider

connectivity, coverage, and reading accuracy.

Figure 8.4: The Micro-scale FWI system WSN architecture.

152

8.5. THE FIRE WEATHER NETWORK

A Micro-scale FWI system acquires current weather parameters data simultaneously

from a large number of sources (weather sensor nodes) densely distributed on a given

forest zone. The weather sensor nodes, cluster heads and sink are linked via wireless

communication to form a structured fire weather network. The fire weather network

structure consists of weather sensor nodes as data sources, cluster heads as points of

data aggregation and false alarm filtering, and a sink as a gateway to the base station

and external network. The data acquired by a large number of weather sensor nodes

at different locations in the area monitored will be transmitted to a base station to be

processed and provide fire potential, prediction, and behavior information to fire

managers. In an integrated system, where nodes are placed around a metrology

station, the metrology station can replace the cluster head. The general system

architecture is depicted in Figure 8.4 above.

The fire weather network is based on IEEE 802.15.4 LR-WPAN - ZigBee. The IEEE

802.15.4 LR-WPAN is designed to be used in applications requiring simple wireless

communication links over short-ranges with limited power and low throughput. ZigBee

defines a high-level communication protocol using the IEEE 802.12.4 based small, low-

power digital radios. The fire weather network, based on ZigBee wireless network,

operates in the unlicensed ISM band of 2.4 GHz.

The fire weather network is configured to operate in a two-tiered architecture.

In the first tier, the weather sensor nodes form a star topology with their cluster head

as the central coordinator. In the second tier, the cluster head nodes and the sink form

a mesh topology utilizing the peer-to-peer communication feature of the ZigBee

protocol. The fire weather network architecture is shown in Figure 8.5 below.

153

8.6. FWI INDICES PROCESSING ALGORITHM

The Micro-scale FWI system utilizes the distributed incremental in-network computing

of the FWI indices for two main purposes. First, the distributed in-network computing

will reduce the amount of raw data transmissions, which will in effect conserve the

limited energy resource of the nodes and consequently extend the network lifetime.

Second, computing the FWI indices close to the data sources and transmitting a

compact summary to the base station will reduce the information latency.

The different nodes of the fire weather network (sensor nodes, cluster heads,

and sink) are assigned different tasks of computing parts of the FWI indices. The fire

weather network architecture (Figure 8.5) facilitates the coordination of the individual

nodes’ tasks so that the complex computation of the FWI indices can be achieved

through minor local computations.

Sink

Cluster Head

Weather Sensor Node

Cl
us

te
r

Figure 8.5: The fire weather network architecture.

154

The Micro-scale FWI system is designed to handle streaming weather data in

near real-time and produce fire rating information dynamically as weather parameters

change. The weather parameters can change unpredictably and drastically causing the

fire danger rating concept drift. The fire weather network’s response to such drastic

changes may cause the computational and communication complexity to grow beyond

what the fire weather network is designed to handle. To mitigate this, the system

further embeds the distributed subtractive fuzzy clustering algorithm-SUBFCM [152]

onboard each cluster head to contain computational and communication complexity

growth as a result of FWI concept drift.

8.7. THE NODES TASK SUBDIVISION

The weather sensor nodes periodically acquire ambient temperature and relative

humidity data locally as well as receive wind speed and rainfall data over the air from

their cluster head. They instantly compute local fuel moisture codes (FFMC, DMC, DC)

using the weather data acquired. If their local fuel moisture codes exceed a set fuel

moisture code threshold then they will send the set of new values to their cluster head

and request an update. However, if their local fuel moisture codes are within the set

threshold, then they enter the low power mode until the next period and repeat this

cycle.

The cluster heads periodically acquire wind speed and rainfall data and send to

their member weather sensor nodes. They receive fuel moisture code data from

member nodes and cluster them using the SUBFCM clustering algorithm whereby each

cluster contains associated member nodes. On the first run, the cluster heads send this

information to their member nodes so that the member nodes can use them as a

reference to decide either to send their subsequently computed fuel moisture codes to

their cluster head or do nothing and return to the low power mode. Following the first

run, the cluster heads receive fuel moisture codes from their member nodes and

categorize them into compact clusters. The cluster heads further compute fire

behavior indices (ISI, BUI) using the compact clusters of fuel moisture codes and send

them to the sink. In case there are a set number of update requests from member

155

nodes, the cluster heads send fuel moisture code cluster information to their member

nodes.

The sink computes the FWI index based on the fire behavior indices received

from the cluster head nodes. It merges clusters of information received from the

cluster heads and weather sensor nodes into global information regarding the

monitoring area. The sink also maintains the global locations of all the network nodes

and physical node clusters.

The Base station, hard wired to the sink, carries out computation and energy

intensive analysis of the global information produced by the sink. The base station is

the first point of user interaction with the sensor network. It provides graphical

information output and well as data statistics results.

One of the graphical outputs by the base station is dynamic virtual clusters. The

virtual clusters are clusters of fire hazard rating or intensity mapped onto the exact

physical node locations as shown in Figure 8.6. The virtual clusters provide a spatial

map of the hazard distribution as an overlay to the physical nodes clusters. The virtual

cluster is, in effect, a fire hazard situation distribution and the associated sensors. The

virtual cluster viewed periodically can provide fire hazard situation dynamics such as

speed and direction of hazard movements. The virtual cluster information can further

be utilized to reconfigure the physical cluster for better and more efficient WSN

resource utilization.

156

Sink

Cluster Head

Sensor Node
Virtual clusters

Figure 8.6: Virtual clusters of fire hazard rating or intensity mapped onto the
node locations.

157

8.8. THE Micro-scale FWI SYSTEM DATA MODEL

Data sourced by the sensor nodes is modeled as a data stream. A data stream is a real-

time, continuous, ordered (implicitly by arrival time or explicitly by timestamp)

sequence of tuples. It is not possible to control the order in which tuples arrive, nor

feasible to locally store the stream in its entirety [177]. A tuple is similar to a row in a

database table. Each tuple in a stream has fields which contain payload, ID, data type,

size, etc. The weather data stream of interest for this work consists of air temperature ሺܶሻ, relative humidity ሺܴ݄ሻ, wind speed ሺܸሻ, and rainfall or precipitation ሺܴ݂ሻ fields. A

stream of weather tuples is shown in Figure 8.7 below.

The time difference between generation of a tuple and the next tuple in a

stream determines the speed of the stream. The lower the time difference the higher

is the speed of the stream. In this context, a weather data stream ܹ is an unbounded

sequence of elements 〈ݓ, is a monotonically ݐ is weather data, and ݓ where ,〈ݐ

increasing timestamp indicating the arrival time of the elements. ݓ is a vector of

weather values, ݓ ൌ ሺܶ, ܴ݄, ܸ, ܴ݂ሻ.

ࢎࡾ ࢀ ࡰࡵ ࢂ ࢌࡾ ࡰࡵ ࢀ ࢎࡾ ࢌࡾ ࢂ

FIELD

NEXT TUPLE ONE TUPLE

STREAM of TUPLES

Figure 8.7: The stream of weather tuples.

158

8.9. THE Micro-scale FWI SYSTEM SIMULATION MODEL

The Micro-scale FWI system model is developed using the MATLAB environment. The

three different types of weather data processing model objects are created using

MATLAB representing weather sensor node, cluster head, and sink sub-tasks. The

modular algorithms running within these objects describing the FWI indices

computation and SUBFCM clustering are also programmed using the MATLAB script

language.

TrueTime 2.0 beta 6 is used to model and simulate the fire weather network.

TrueTime is a MATLAB/SIMULINK based network modeling and simulation tool that

provides a customizable Kernel model, analogue input model, wireless network

protocol model, location, and battery models. For the purpose of this study, the Kernel

model is customized to represent the Texas Instruments (TI) MSP430F2274

Microcontroller used to host the weather data stream mining application. The wireless

network model is also customized to represent Chipcon’s CC2530 IEEE 802.15.4 radio

transceiver along with the ZigBee wireless protocol stack. The analogue input model is

used to represent temperature, relative humidity, precipitation, and wind speed

sensor inputs. The sensor nodes battery model is made to represent two standard AAA

size alkaline batteries, which normally power the physical TI’s MSP430 and Chipcon’s

CC2530 radio transceiver. The Kernel model further provides a simple interface for

algorithms and models developed in MATLAB or Simulink to run on. The location of

each node can also be set through the x and y inputs or can be interfaced to GPS

modules for dynamic localization. However, for this purpose we determined the

locations as no mobile nodes are considered. The simulation parameter settings are

shown in Table 8.2 below. The TrueTime models of Sensor node, Cluster head, and Sink

are shown in Figures 8.8, 8.9 and 8.10 below.

159

Table 8.2: The simulation model parameter settings.

Model parameter Value Model parameter Value

Network type ZigBee

Network number 1

Number of nodes 6

Data rate (bits/s) 250 000

Minimum frame size (bits) 16

Transmit power (dBm) 0

Receiver signal strength (dBm) -85

Path-loss exponent 3.5

ACK timeout (sec) .0004

Retry limit 5

Error coding threshold 0.03

Figure 8.8: The Micro-scale FWI system weather sensor node sub-model.

A/D

Energy

D/A

Schedule

Power

1: 1

Weather Sensor Node

P E

TrueTime Battery

Schedule

Remaining Battery

y1

x1

Humi_sensor

Temp_sensor

A1

From

160

Figure 8.9: The Micro-scale FWI system cluster head sub-model.

Figure 8.10: The Micro-scale FWI system sink sub-model.

P E

TrueTime Battery

Schedule

Remaining Battery

y6

x6

Rain_sensor

WindSpeed_sensor

TR

From

A/D

Energy

D/A

Schedule

Power

1: 3

Cluster Head

Schedule

D/A

Schedule

1: 4

PAN SINK

y7

x7

161

8.10. SIMULATIONS AND RESULTS

8.10.1. Micro-scale FWI System Model Validation

System Model validation is an essential part of the model development process if the

model is to be adopted and tried in a real-world setting. Model validation involves

ensuring that the model meets its intended requirements in terms of the methods

employed and the results obtained. The Micro-scale FWI system model is validated

based on real world FWI system setup data. Real weather network data set containing

all critical cases that the real system could exhibit, is used in the validation of the

Model.

Real weather data sets recorded at several meteorology stations (Darfield,

Ashburton, Burnham, Aero, and Snowdon) in South Island, New Zealand, obtained

from the National Institute of Water and Atmospheric Research (NIWA) are used as

benchmarks to validate the system performance. The geographic locations of the five

stations are shown in Figure 8.11. These data sets consist of 3653 records of weather

parameters (Temperature, relative humidity, Rainfall and Wind speed) along with their

corresponding Canadian FWI indices (FFMC, DMC, DC, ISI, BUI, and FWI) collected

hourly for the years 1994 to 2004. The data contains a burst mode weather stream as

each element is acquired periodically at one hour time intervals. However, for

simulations and for the purpose of model validation it is treated as a continuously

incoming weather data stream rather than the burst mode, the data is fed to the

sensor nodes in shorter periods.

The Micro-scale FWI system model representing the Canterbury weather

network, shown in Figure 8.12, is configured and fed the real data sets from these

stations. The model computed the fire danger ratings in-network in a distributed

incremental fashion and logged results at the base station. The Model generated daily

fire danger ratings that are then analyzed in comparison to those of the actual

Canterbury weather network.

Initially some part of the real wild fire case data is fed to the model to verify

model sanity. The simulation scenario comprises distributed sensor nodes collecting

weather data sets and computing FFMC, DMC, and DC indices to be sent to their

162

cluster heads. The cluster heads compute ISI and BUI indices for each data set received

and forward the aggregated results to the network sink. The simulation runs for 1960

seconds, whereby sensor nodes periodically transmit data packets every 20 seconds.

The Micro-scale model simulation results are in close agreement with the

known actual FWI indices. The indices from both systems are plotted for about 100

real weather dataset records in Figures 8.13 to 8.18, where the fire predictions are

processed in-network and transmitted to the sink every 20 seconds. Figure 8.13 shows

a plot of the wildfire FFMC index produced by the model along with the corresponding

known FFMC index. Figure 8.14 shows a sample plot of the wildfire DMC index

produced by the model along with the corresponding known DMC index. Figure 8.15

shows a sample plot of the wildfire DC index produced by the model along with the

corresponding known DC index. Figure 8.16 shows a sample plot of the wildfire ISI

index produced by the model along with the corresponding known ISI index. Figure

8.17 shows a sample plot of the wildfire BUI index produced by the model along with

the corresponding known BUI index. Figure 8.18 shows a sample plot of the wildfire

FWI index produced by the model along with the corresponding known FWI index.

From the wildfire hazard prediction point of view all the Micro-scale FWI model indices

errors are insignificant. Figure 8.15 shows the highest variation between the two

systems. This is because the DC index reflects the longest term fuel drying and the

Micro-scale model is computing very frequent (hourly) fuel drying effect. Analyzing the

general error thresholds produced by the Micro-scale FWI model, we can see that no

fire situation is wrongly classified.

163

Figure 8.11: The Canterbury weather network map.

Figure 8.12: The Micro-scale FWI system model representing the Canterbury weather
network.

164

Figure 8.13: Micro-scale against Actual FFMC comparison.

Figure 8.14: Micro-scale against Actual DMC comparison.

Figure 8.15: Micro-scale against Actual DC comparison.

0

20

40

60

80

100

1 11 21 31 41 51 61 71 81 91

FF
M

C
 S

ca
le

Simulation step

FFMC Micro-scale

FFMC Actual

0

5

10

15

20

25

30

35

1 11 21 31 41 51 61 71 81 91

DM
C

sc
al

e

Simulation step

DMC Micro-scale

DMC Actual

0

50

100

150

200

250

1 11 21 31 41 51 61 71 81 91

DC
 sc

al
e

Simulation step

DC Micro-scale

DC Actual

165

Figure 8.16: Micro-scale against Actual ISI comparison.

Figure 8.17: Micro-scale against Actual BUI comparison.

Figure 8.18: Micro-scale against Actual FWI comparison.

0

5

10

15

20

25

30

35

1 11 21 31 41 51 61 71 81 91

IS
I s

ca
le

Simulation step

ISI Micro-scale

ISI Actual

0
5

10
15
20
25
30
35
40

1 11 21 31 41 51 61 71 81 91

BU
I s

ca
le

Simulation step

BUI Micro-scale

BUI Actual

0

5

10

15

20

25

30

35

40

1 11 21 31 41 51 61 71 81 91

FW
I s

ca
le

Simulation step

FWI Micro-scale

FWI Actual

166

The main objective of further simulation is to try to find the model behavior

such as end-to-end delays, packet loss characteristics, and energy efficiency.

8.10.2. End-to-End Delay

The average end-to-end delay of the Micro-scale model is shown in Figure 8.19 below.

This is the sum of transmission, propagation, FWI indices processing and queuing

delays. In this simulation, the sensor nodes transmit their partial prediction

information every 60 seconds. The cluster heads process semi-prediction and queue

packets for transmission as soon as the channel is available. 18 weather sensor nodes

and 2 cluster head nodes competing for the wireless channel, the maximum delay

observed is 10 seconds, with an average delay of 5.0747 seconds. This has been

repeated for 54 weather sensor nodes and 6 cluster heads node and similar results

have been observed as shown in figure 8.20.

Figure 8.19: end-to-end delay of the model.

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

Number of packets transmitted

Ti
m

e
[s

ec
on

ds
]

y = 0.049*x + 4

end-to-end delay
 linear

167

Figure 8.20: end-to-end delay of the model.

8.10.3. Packet Loss

The Micro-scale model is evaluated for the number of data packets lost under different

sensors data transmit periods and whether the number of packets dropped has a

significant impact on the hazard prediction results. The simulation scenario involves

sensor nodes transmitting data packets with varying data transmit periods. The results

obtained shown in Figure 8.21 show that the number of packets lost decreases

exponentially as sensors transmit data packets less frequently for a network of 16, 54

and 90 weather sensor nodes. The prediction results obtained under this scenario

indicate that data collision is not an issue at such network scales as long as the number

of packet losses are not significantly high for a given cluster of sensor nodes. This also

shows the fault tolerance of the Micro-scale model under the specific conditions.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
0

2

4

6

8

10

12

Number of packets transmiitted

D
el

at
 ti

m
e

 [s
ec

on
ds

]

y = 0.014*x + 4.6

End-to-end delay
 linear

168

Figure 8.21: packet loss performance.

8.10.4. Energy Consumption

The model energy consumption is analyzed based on the TrueTime battery model. The

battery model computes energy consumption due to kernel data processing, packet

transmission/reception, and idle waiting consumption. The battery performance of the

model is shown in Figure 8.22. The energy source is two AAA batteries of each

1200mAh (2*1200mAh). The figure shows a simulation of the Micro-scale application

that continues to run until the remaining battery power is below 300mAh for both the

weather sensor nodes and cluster head nodes.

0 15 30 45 60 75 90 105 120 135 150 165 180
0

5

10

15

20

25

30

35

Data transmit cycle interval [seconds]

N
o.

 o
f p

ac
ke

t l
os

s

16 sensor nodes
54 sensor nodes
90 sensor nodes

169

Figure 8.22: Remaining battery power of sensors and cluster heads.

8.11. CONCLUSIONS

This chapter presented a WSN based FWI system through TrueTime modeling and

simulation software. The Micro-scale FWI model sanity has been verified through real

wildfire datasets. Distributed in-network processing of FWI indices based on WSN has

several advantages while producing similar results to a satellite communication based

FWI system. The end-to-end delay, packet loss and energy consumption performance

of the WSN model have been observed through simulations. The simulation results

indicate that for a multi-tiered WSN architecture, the influence of end-to-end delay,

energy consumption and packet loss on the FWI results are insignificant. This system

provides a high spatial and temporal resolution wildfire hazard prediction system

which is cost-effective, energy efficient, easily deployable for emergency situations and

provides for user interaction.

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

Time [Hours]

B
at

te
ry

 c
ur

re
nt

[m
A

]

Cluster head
Weather sensor

170

Chapter 9

9. CONCLUSIONS AND FUTURE WORK

This chapter concludes the work that has been done to achieve the research objectives

as specified in Chapter one and the solutions to the research problems and questions

stated in the same chapter. Suggestions for possible advancement of the research,

limitations, and future work are also discussed in this chapter.

9.1. CONCLUSIONS

The field of data stream mining in WSNs has seen considerable research interest

recently. The development of resource efficient WSN design has been the central focus

of most research in this field. The advancement of WSNs has made it possible to

deploy low-cost networked sensors to address many distributed monitoring

application challenges. As a result, WSNs are becoming increasingly appealing to data

streaming applications. However, the resource constraints of WSNs and the resource

demands by these applications have posed huge challenges for the research

community. This thesis presents some of the challenging areas of the WSNs and

distributed data stream mining.

The ultimate goal of this research is to develop an efficient distributed data

stream mining framework for WSN systems. This is to address the resource constraint

problem and demonstrate the real world adaptability of the framework using a case

171

study. The perceived framework integrates autonomous cluster based data

stream techniques and wireless network architecture. The objectives are to address

the problems of WSN energy constraints, network lifetime, and distributed mining of

data streaming. The process requirement for a relevant case study from both spatial

and temporal coverage resolution needs have also been considered.

This research has investigated the possibilities of employing WSNs for mining

distributed data streams “on the fly” and extract useful information. The research has

taken advantage of the distributed-architecture nature of the WSNs and the individual

data processing capabilities of their nodes to implement the distributed data stream

mining framework.

This thesis has formulated a lightweight autonomous data clustering algorithm

called SUBFCM. The SUBFCM algorithm remains embedded within the individual nodes

to analyze the locally generated streams ‘on the fly’ in cooperation with a group of

nodes. The simulation results suggest that a SUBFCM algorithm can autonomously

cluster streaming data and produce results comparable to standard batch clustering

algorithms such as K-Means and Fuzzy C-Means algorithms. Simulation results have

also highlighted the capability of the SUBFCM algorithm to incrementally produce very

good approximate clustering results on the fly while proportionally utilizing the system

resource. This capability of the algorithm has been the core driver that has enabled

multiple local nodes stream mining tasks and hence has greatly minimized the quantity

of data that has to be transmitted. In contrast to K-Means and FCM, the SUBFCM

algorithm does not require prior knowledge of the number of clusters within the

dataset and can function autonomously.

The thesis has studied the effects of data stream characteristics such as stream

dimensions or feature spaces and stream periods or data flow rates. The study has also

covered the effects of the network architecture such as node density per cluster (both

uniform clusters and non-uniform clusters) on the overall performance of the SUBFCM.

These studies have concluded that WSNs can provide good quality of service (QoS)

feasible for online distributed incremental data stream mining applications.

172

The integrated distributed incremental data stream mining WSN framework

has showed that its mining results are not significantly affected by the dimensionality

of the streams and that it is stream dimension scalable. In the simulations, the average

mining results deviation from the benchmark remained below 12% for as high as four

dimensional streams.

The stream rate effect analysis has shown that the average cluster deviations

increased smoothly with increasing stream rate. The streams with high dimension have

higher cluster deviations at very fast stream rates. However, the average cluster

deviations have never exceeded 10.13%.

The network architecture is an important factor in mining results quality and

should be designed carefully to optimally utilize the basic concept of the distributed

incremental data stream mining framework. For both uniform and non-uniform cluster

densities, the effect on the quality of the mining results is significant only when mining

very fast streams. The tolerated approximation error bounds, determined by the local

model drift threshold parameter, plays a significant role in the cluster density effect.

The thesis has analyzed the quality of service, or a certain guaranteed level of

performance that the WSN architecture can provide to applications utilizing the

framework. The research has considered the average energy consumption, average

data delivery delay, and packet delivery ratio of the proposed framework.

The average energy consumption of the framework largely varies with the

stream rate and node density per cluster. Simulation results show that an average

energy consumption of as low as 0.1 milliJoule per stream period can be achieved for

40 nodes per cluster at a stream period of 10 seconds or longer. However, the average

energy consumption can rise to 1.3 milliJoule per stream period when the stream

period is decreased to 1 second.

It is observed that the average data delivery delay generally increases as the

number of nodes per cluster increases, which is obviously due to the increased packet

colliusions and retransmissions. Also stream periods shorter than the average data

delivery delay saturate the system with datasets and eventually cause loss of

coordination among the nodes.

173

The stream periods have significant impact on the rate at which the packet

delivery ratio drops as the node density increases. This indicates that for an optimal

performance, applications utilizing the framework should determine the cluster

density if certain packet delivery is desired. Hence, the thesis concludes that the

overall mining quality is directly related to the combined effect of the stream

characteristics, the network architecture, and the desired performance measures.

The thesis has also developed a novel high spatiotemporal resolution version of

the standard Canadian fire weather index (FWI) system called the Micro-scale FWI

based on the distributed incremental data stream mining framework. Simulations on

real weather datasets indicate that the Micro-scale FWI implemented based on the

framework can closely approximate the results obtained from the Standard FWI

system while providing highly superior spatial and temporal information. This can offer

direct local and global interaction with the few meter square space as against the tens

of kilometers square of the present systems.

9.3. FUTURE WORK

While this study delivered promising results within the particular goals and framework,

further study should explore other dimensions to extending performance, scope, and

application of this research. The following is a list of suggestions for future work in the

research:

1. Synchronized WSN: Future research developments should investigate the

framework in a time-synchronized WSN architecture.

2. Combination of Mining Strategies: This study explored one of the most

prominent stream mining techniques, namely, stream clustering. There are several

techniques discussed in the literature which are adopted for WSN requirements.

Combining more than one stream mining technique at different levels and exploring

their potential in distributed mining frameworks are recommended.

3. Mobile Nodes: This study considers stationary WSN nodes to perform the

distributed stream mining task. Especially with the advent of ubiquitous computing

applications using mobile networks, this framework will find prominent applications in

174

mobile computing. We therefore recommend extending this framework using mobile

nodes. This may extend the concept such that existing mobile nodes relevant to other

applications may contribute to the process. Applications like wildlife monitoring and

that of bushfire may be one of the most relevant associated ones. Here the nodes used

for monitoring animal movement may also contribute to the Bush fire hazard condition

monitoring.

4. Platform: This study has focused on a very low power embedded

microcontroller based design, specifically the MSP430 family of microcontrollers from

Texas Instruments. These low power microcontrollers are designed for very limited

computational power requiring control applications. The main advantage of these

microcontrollers is that they allow very low power sleep modes. Most WSN

applications take advantage of these low power modes by switching off the

microcontroller and associated peripherals when not performing any operations.

However, due to their low computational capabilities, these controllers take a long

time when engaged in intensive computations; thereby, extending the time they

remain in full power mode and consequently consuming more power. To this end, we

recommend exploring the use of Advanced RISK Machines (ARM) based

microcontrollers such as that used in smart phone technologies. The ARM based

microcontrollers boast more computational capability compared to the

microcontrollers currently in use in WSNs and they further include low power sleep

modes.

9.3.1. LIMITATIONS

This thesis has investigated the distributed incremental data stream mining WSN

framework basing on hierarchically clustered sensor nodes. Even though the nodes

compute parallel cooperating tasks, they are not time synchronized. The cooperative

tasks that are computed at distributed nodes introduce slight delays between results in

order to produce the final results.

175

References

[1] S. Misra, M. Reisslein, and X. Guoliang, "A survey of multimedia streaming in
wireless sensor networks," Communications Surveys & Tutorials, IEEE, vol. 10,
pp. 18-39, 2008.

[2] C. Song, "Mining and visualising wireless sensor network data," Int. J. Sen.
Netw., vol. 2, pp. 350-357, 2007.

[3] V. Cantoni, L. Lombardi, and P. Lombardi, "Challenges for Data Mining in
Distributed Sensor Networks," in Pattern Recognition, 2006. ICPR 2006. 18th
International Conference on, 2006, pp. 1000-1007.

[4] A. Kulakov and D. Davcev, "Data mining in wireless sensor networks based on
artificial neural-networks algorithms," in Workshop on Data Mining in Sensor
Networks in conjunction with 2005 SIAM International Conference on Data-
Mining, Newport Beach, CA, USA, 2005, pp. 10-16.

[5] S. M. McConnell and D. B. Skillicorn, "A distributed approach for prediction in
sensor networks," in Workshop on Data Mining in Sensor Networks in
conjuction with 2005 SIAM International Conference on Data-Mining, NewPort
Beach, CA, USA, 2005.

[6] G. Bontempi and Y. L. Borgne, "An adaptive modular approach to the mining of
sensor network data," in Workshop on Data Mining in Sensor Networks in
conjunction with 2005 SIAM International Conference on Data-Mining, Newport
Beach, CA, USA, 2005.

[7] A. A. Hatim, M. H. Alaaeldin, and M. R. A. Ghazy, "An efficient stream mining
technique," WSEAS Trans. Info. Sci. and App., vol. 5, pp. 1272-1281, 2008.

[8] M. Kholghi and M. Keyvanpour, "An analytical framework for data stream
mining techniques based on challenges and requirements," International
Journal of Engineering Science and Technology (IJEST), vol. 3, pp. 2507-2513,
March 2011.

176

[9] H. Jiawei and F. Yongjian, "Discovery of Multiple-Level Association Rules from
Large Databases," in Proceedings of the 21th International Conference on Very
Large Data Bases: Morgan Kaufmann Publishers Inc., 1995.

[10] S. Ramakrishnan and A. Rakesh, "Mining Generalized Association Rules," in
Proceedings of the 21th International Conference on Very Large Data Bases:
Morgan Kaufmann Publishers Inc., 1995.

[11] O. Zhenzheng, W. Quanyuan, and W. Tao, "An Efficient Decision Tree
Classification Method Based on Extended Hash Table for Data Streams Mining,"
in Fuzzy Systems and Knowledge Discovery, 2008. FSKD '08. Fifth International
Conference on, 2008, pp. 313-317.

[12] S.Prasanna and S. Rao, "An Overview of Wireless Sensor Networks Applications
and Security," International Journal of Soft Computing and Engineering (IJSCE),
vol. 2, pp. 538-540, 2012.

[13] A. Bifet and R. Kirkby, "Data stream mining: a practical approach," The
University of Waikato, 2009.

[14] S. Ullah, H. Higgins, B. Braem, B. Latre, C. Blondia, I. Moerman, S. Saleem, Z.
Rahman, and K. S. Kwak, "A Comprehensive Survey of Wireless Body Area
Networks: On PHY, MAC, and Network Layers Solution," Journal of Medical
Systems, vol. 36, pp. 1065-1094, 2012.

[15] B. O'Flyrm, R. Martinez, J. Cleary, C. Slater, F. Regan, D. Diamond, and H.
Murphy, "SmartCoast: A Wireless Sensor Network for Water Quality
Monitoring," in Local Computer Networks, 2007. LCN 2007. 32nd IEEE
Conference on, 2007, pp. 815-816.

[16] T. Kotsilieris and G. T. Karetsos, "A Mobile Agent Enabled Wireless Sensor
Network for River Water Monitoring," in Wireless and Mobile Communications,
2008. ICWMC '08. The Fourth International Conference on, 2008, pp. 346-351.

[17] S. Subana, G. Akbar, and S. Philip, "Sensor data acquisition for climate change
modeling," WSEAS Trans. Cir. and Sys., vol. 7, pp. 942-952, 2008.

[18] K. Lakshman, A. Robert, B. Phil, C. Jasmeet, F. Mick, K. Nandakishore, N. Lama,
and Y. Mark, "Design and deployment of industrial sensor networks:
experiences from a semiconductor plant and the north sea," in Proceedings of
the 3rd international conference on Embedded networked sensor systems San
Diego, California, USA: ACM, 2005.

177

[19] B. Lu, T. G. Habetler, R. G. Harley, and J. A. Gutierrez, "Applying wireless sensor
networks in industrial plant energy management systems. Part I. A closed-loop
scheme," in Sensors, 2005 IEEE, 2005, p. 6 pp.

[20] L. Bin, T. G. Habetler, R. G. Harley, and J. A. Gutierrez, "Applying wireless sensor
networks in industrial plant energy management systems. Part II. Design of
sensor devices," in Sensors, 2005 IEEE, 2005, p. 6 pp.

[21] R. Jafari, A. Encarnacao, A. Zahoory, F. Dabiri, H. Noshadi, and M. Sarrafzadeh,
"Wireless sensor networks for health monitoring," in Mobile and Ubiquitous
Systems: Networking and Services, 2005. MobiQuitous 2005. The Second Annual
International Conference on, 2005, pp. 479-481.

[22] E. Lawrence, K. F. Navarro, D. Hoang, and Y. Y. Lim, "Data Collection,
Correlation and Dissemination of Medical Sensor Information in a WSN," in
Networking and Services, 2009. ICNS '09. Fifth International Conference on,
2009, pp. 402-408.

[23] W. Dai-Hua and L. Wei-Hsin, "Wireless transmission for health monitoring of
large structures," Instrumentation and Measurement, IEEE Transactions on, vol.
55, pp. 972-981, 2006.

[24] S. Kundu, S. Roy, and A. Pal, "A power-aware wireless sensor network based
bridge monitoring system," in Networks, 2008. ICON 2008. 16th IEEE
International Conference on, 2008, pp. 1-7.

[25] K. Chintalapudi, J. Paek, O. Gnawali, T. S. Fu, K. Dantu, J. Caffrey, R. Govindan, E.
Johnson, and S. Masri, "Structural damage detection and localization using
NETSHM," in Information Processing in Sensor Networks, 2006. IPSN 2006. The
Fifth International Conference on, 2006, pp. 475-482.

[26] T. Antoine-Santoni, J. F. Santucci, E. de Gentili, and B. Costa, "Using Wireless
Sensor Network for Wildfire detection. A discrete event approach of
environmental monitoring tool," in Environment Identities and Mediterranean
Area, 2006. ISEIMA '06. First international Symposium on, 2006, pp. 115-120.

[27] V. Raghunathan, C. Schurgers, S. Park, M. Srivastava, and B. Shaw, "Energy-
Aware Wireless Microsensor Networks," in IEEE Signal Processing Magazine,
2002, pp. 40-50.

[28] K. Holger and W. Andreas, Protocols and Architectures for Wireless Sensor
Networks: John Wiley & Sons, 2005.

178

[29] A. M. Jafari and W. Lang, "Optimal Sample Rate for Wireless Sensor Actuator
Network," IAENG International Journal of Computer Science, vol. 36, pp. 387-
393 2009.

[30] V. Raghunathan, S. Ganeriwal, and M. Srivastava, "Emerging techniques for
long lived wireless sensor networks," Communications Magazine, IEEE, vol. 44,
pp. 108-114, 2006.

[31] S. Panichpapiboon, G. Ferrari, and O. K. Tonguz, "Optimal Transmit Power in
Wireless Sensor Networks," Mobile Computing, IEEE Transactions on, vol. 5, pp.
1432-1447, 2006.

[32] S. Narayanaswamy, V. Kawadia, R. S. Sreenivas, and P. R. Kumar, "Power
Control in Ad-Hoc Networks: Theory, Architecture, Algorithm and
Implementation of the COMPOW Protocol," in in European Wireless
Conference, 2002, pp. 156-162.

[33] S. Agarwal, R. H. Katz, S. V. Krishnamurthy, and S. K. Dao, "Distributed power
control in ad-hoc wireless networks," in Personal, Indoor and Mobile Radio
Communications, 2001 12th IEEE International Symposium on, 2001, pp. F-59-F-
66 vol.2.

[34] A. Nandi and S. Kundu, "Optimal transmit power and energy level performance
of random WSN in Rayleigh fading channel," in Computer and Communication
Technology (ICCCT), 2011 2nd International Conference on, pp. 556-561.

[35] G. Yu and H. Tian, "Data forwarding in extremely low duty-cycle sensor
networks with unreliable communication links," in Proceedings of the 5th
international conference on Embedded networked sensor systems Sydney,
Australia: ACM, 2007.

[36] R. R. Brooks, "Handbook of Sensor Networks: Compact Wireless and Wired
Sensing Systems," International Journal of Distributed Sensor Networks, vol. 4,
pp. 369-369, 2012/08/02 2008.

[37] J. T. Adams, "An introduction to IEEE STD 802.15.4," in Aerospace Conference,
2006 IEEE, 2006, p. 8 pp.

[38] M. Geoff, "The 6LoWPAN architecture," in Proceedings of the 4th workshop on
Embedded networked sensors Cork, Ireland: ACM, 2007.

[39] Z. Shelby and C. Bormann, "6LoWPAN: The wireless embedded internet - part 1
" in EE Times, 2011.

179

[40] F. Liu, K. Xing, X. Cheng, S. Rotenstreich, M. Cardei, I. Cardei, and D.-Z. Du,
"Energy-Efficient MAC Layer protocols in Ad Hoc Networks” Resource
Management in Wireless Networking." vol. 16, D.-Z. Du and C. Raghavendra,
Eds.: Springer US, 2005, pp. 300-341.

[41] C. Francesca, C. Emanuele, and A. Anna, "Performance analysis of IEEE 802.15.4
wireless sensor networks: An insight into the topology formation process,"
Comput. Netw., vol. 53, pp. 3057-3075, 2009.

[42] B. Vaduvur, D. Alan, S. Scott, and Z. Lixia, "MACAW: a media access protocol for
wireless LAN's," in Proceedings of the conference on Communications
architectures, protocols and applications London, United Kingdom: ACM, 1994.

[43] D. Tijs van and L. Koen, "An adaptive energy-efficient MAC protocol for wireless
sensor networks," in Proceedings of the 1st international conference on
Embedded networked sensor systems Los Angeles, California, USA: ACM, 2003.

[44] D. Jin, K. Sivalingam, R. Kashyapa, and C. Lu Jian, "A multi-layered architecture
and protocols for large-scale wireless sensor networks," in Vehicular
Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, 2003, pp. 1443-
1447 Vol.3.

[45] P. Karn, "MACA a new channel access method for packet radio," in Computer
Networking Conference, 1990, pp. 134-140.

[46] L. Koen and H. Gertjan, "Energy-efficient medium access control," in Embedded
systems hand book, C. press, Ed., 2005.

[47] H. Wendi Rabiner, C. Anantha, and B. Hari, "Energy-Efficient Communication
Protocol for Wireless Microsensor Networks," in Proceedings of the 33rd
Hawaii International Conference on System Sciences-Volume 8 - Volume 8: IEEE
Computer Society, 2000.

[48] K. T. Kim and H. Y. Youn, "PEACH: Proxy-Enable Adaptive Clustering Hierarchy
for Wireless Sensor network," in The 2005 International Conference On Wireless
Network, 2005, pp. 52-57.

[49] J. Kyu-Tae and C. Dong-Ho, "A new MAC algorithm based on reservation and
scheduling for energy-limited ad-hoc networks," Consumer Electronics, IEEE
Transactions on, vol. 49, pp. 135-141, 2003.

[50] N. Arastouie, M. Sabaei, and H. S. Shahreza, "A novel approach for trade-off
between computation and communication cost in wireless sensor networks," in
Advanced Communication Technology (ICACT), 2010 The 12th International
Conference on, pp. 820-825.

180

[51] S. K. Singh, M. P. Singh, and D. K. Singh, "Energy Efficient Homogenous
Clustering Algorithm for Wireless Sensor Networks," International Journal of
Wireless & Mobile Networks (IJWMN), vol. 2, pp. 49-61, 2010.

[52] T. Pham, K. Eun Jik, and M. Moh, "On data aggregation quality and energy
efficiency of wireless sensor network protocols - extended summary," in
Broadband Networks, 2004. BroadNets 2004. Proceedings. First International
Conference on, 2004, pp. 730-732.

 [53] W. Hoeffding, "Probability Inequalities for Sums of Bounded Random
Variables," Journal of the American Statistical Association, vol. 58, pp. 13-30,
1963.

[54] O. Maron and A. W. Moore, "Hoeffding races: Accelerating model selection
search for classification and function approximation," in Advances in Neural
Information Processing Systems, 1994, pp. 59-66.

[55] B. Brian, B. Shivnath, D. Mayur, M. Rajeev, and W. Jennifer, "Models and issues
in data stream systems," in Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems Madison,
Wisconsin: ACM, 2002.

[56] S. Muthukrishnan, "Data streams: algorithms and applications," in Proceedings
of the fourteenth annual ACM-SIAM symposium on Discrete algorithms
Baltimore, Maryland: Society for Industrial and Applied Mathematics, 2003.

[57] S. Muthukrishnan, "Data Streams: Algorithms and Applications," Foundations
and Trends® in Theoretical Computer Science, vol. 1, pp. 117-236, 2005.

[58] H. H. O. Nasereddin, "Stream Data Mining," International Journal of Web
Applications (IJWA), vol. 3, pp. 90-97, 2011.

[59] M. Kholghi and M. Keyvanpour, "An analytical framework for data stream
mining techniques based on challenges and requirements," International
Journal of Engineering Science and Technology (IJEST), vol. 3, pp. 2507-2513,
March 2011.

[60] G. Mohamed Medhat, Z. Arkady, and K. Shonali, "Mining data streams: a
review," SIGMOD Rec., vol. 34, pp. 18-26, 2005.

[61] B. G. Phillip and M. Yossi, "Synopsis data structures for massive data sets," in
External memory algorithms, M. A. James and V. Jeffrey Scott, Eds.: American
Mathematical Society, 1999, pp. 39-70.

181

[62] C. C. Aggarwal and P. S. Yu, "A Survey of Synopsis Construction in Data
Streams.," in Data Streams - Models and Algorithms. vol. 31: Springer, 2007,
pp. 169-207.

[63] D. Pedro and H. Geoff, "A General Method for Scaling Up Machine Learning
Algorithms and its Application to Clustering," in Proceedings of the Eighteenth
International Conference on Machine Learning: Morgan Kaufmann Publishers
Inc., 2001.

[64] T. Nesime, U, ur, etintemel, Z. Stan, C. Mitch, and S. Michael, "Load shedding in
a data stream manager," in Proceedings of the 29th international conference on
Very large data bases - Volume 29 Berlin, Germany: VLDB Endowment, 2003.

[65] S. Muthukrishnan, "Data streams: algorithms and applications," in Proceedings
of the fourteenth annual ACM-SIAM symposium on Discrete algorithms
Baltimore, Maryland: Society for Industrial and Applied Mathematics, 2003.

[66] C. G. Anna, K. Yannis, S. Muthukrishnan, and S. Martin, "Surfing Wavelets on
Streams: One-Pass Summaries for Approximate Aggregate Queries," in
Proceedings of the 27th International Conference on Very Large Data Bases:
Morgan Kaufmann Publishers Inc., 2001.muth

[67] C. A. Charu, H. Jiawei, W. Jianyong, and S. Y. Philip, "A framework for clustering
evolving data streams," in Proceedings of the 29th international conference on
Very large data bases - Volume 29 Berlin, Germany: VLDB Endowment, 2003.

[68] M. Gurmeet Singh and M. Rajeev, "Approximate frequency counts over data
streams," in Proceedings of the 28th international conference on Very Large
Data Bases Hong Kong, China: VLDB Endowment, 2002.

[69] C. Yixin, D. Guozhu, H. Jiawei, W. W. Benjamin, and W. Jianyong, "Multi-
dimensional regression analysis of time-series data streams," in Proceedings of
the 28th international conference on Very Large Data Bases Hong Kong, China:
VLDB Endowment, 2002.

[70] C. A. Charu, H. Jiawei, W. Jianyong, and S. Y. Philip, "A framework for projected
clustering of high dimensional data streams," in Proceedings of the Thirtieth
international conference on Very large data bases - Volume 30 Toronto,
Canada: VLDB Endowment, 2004.

[71] J. Gao, W. Fan, J. Han, and P. S. Yu, "A general framework for mining concept-
drifting data streams with skewed distributions," in 2007 SIAM Int. Conf. Data
Mining (SDM'07), Minneapolis, MN, April, 2007.

182

[72] A. Rakesh and S. Ramakrishnan, "Fast Algorithms for Mining Association Rules
in Large Databases," in Proceedings of the 20th International Conference on
Very Large Data Bases: Morgan Kaufmann Publishers Inc., 1994.

[73] J. Z. Mohammed, P. Srinivasan, O. Mitsunori, and L. Wei, "New Algorithms for
Fast Discovery of Association Rules," University of Rochester 1997.

[74] H. Jiawei, P. Jian, and Y. Yiwen, "Mining frequent patterns without candidate
generation," SIGMOD Rec., vol. 29, pp. 1-12, 2000.

[75] H. Jiawei, P. Jian, and Y. Yiwen, "Mining frequent patterns without candidate
generation," in Proceedings of the 2000 ACM SIGMOD international conference
on Management of data Dallas, Texas, United States: ACM, 2000.

[76] I. R. Mohammed, J. O. C. Martin, and K. D. Amar, "Computational Method for
Temporal Pattern Discovery in Biomedical Genomic Databases," in Proceedings
of the 2005 IEEE Computational Systems Bioinformatics Conference: IEEE
Computer Society, 2005.

[77] S. Hou and X. Zhang, "Alarms Association Rules Based on Sequential Pattern
Mining Algorithm," in Fuzzy Systems and Knowledge Discovery, 2008. FSKD '08.
Fifth International Conference on, 2008, pp. 556-560.

[78] T. Syed Khairuzzaman, A. Chowdhury Farhan, J. Byeong-Soo, and L. Young-Koo,
"Efficient frequent pattern mining over data streams," in Proceedings of the
17th ACM conference on Information and knowledge management Napa Valley,
California, USA: ACM, 2008.

[79] C. K. S. Leung and Q. I. Khan, "DSTree: A Tree Structure for the Mining of
Frequent Sets from Data Streams," in Data Mining, 2006. ICDM '06. Sixth
International Conference on, 2006, pp. 928-932.

[80] L. Carson Kai-Sang and H. Boyu, "Mining of Frequent Itemsets from Streams of
Uncertain Data," in Proceedings of the 2009 IEEE International Conference on
Data Engineering: IEEE Computer Society, 2009.

[81] L. Carson Kai-Sang and J. Fan, "Frequent pattern mining from time-fading
streams of uncertain data," in Proceedings of the 13th international conference
on Data warehousing and knowledge discovery Toulouse, France: Springer-
Verlag 2011, pp. 252-264.

[82] L. Carson Kai-Sang and J. Fan, "Frequent itemset mining of uncertain data
streams using the damped window model," in Proceedings of the 2011 ACM
Symposium on Applied Computing, TaiChung, Taiwan, 2011, pp. 950--955.

183

[83] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu, "Mining Frequent Patterns in
Data Streams at Multiple Time Granularities," in Data Mining: Next Generation
Challenges and Future Directions: AAAI/MIT Press, 2004, ch. 6, 2002.

[84] Y. Jeffery Xu, C. Zhihong, L. Hongjun, and Z. Aoying, "False positive or false
negative: mining frequent itemsets from high speed transactional data
streams," in Proceedings of the Thirtieth international conference on Very large
data bases - Volume 30 Toronto, Canada: VLDB Endowment, 2004.

[85] D. Pedro and H. Geoff, "Mining high-speed data streams," in Proceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery and data
mining Boston, Massachusetts, United States: ACM, 2000.

[86] H. Geoff, S. Laurie, and D. Pedro, "Mining time-changing data streams," in
Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining San Francisco, California: ACM, 2001.

[87] L. Feixiong and L. Quan, "An Improved Algorithm of Decision Trees for
Streaming Data Based on VFDT," in Proceedings of the 2008 International
Symposium on Information Science and Engineering - Volume 01: IEEE
Computer Society, 2008.

[88] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis:
Pearson Prentice Hall, 2007.

[89] S. Benson Edwin Raj and A. A. Portia, "Analysis on credit card fraud detection
methods," in Computer, Communication and Electrical Technology (ICCCET),
2011 International Conference on, pp. 152-156.

[90] T. Siu-Keung and X. Liming, "Outlier Detection in Clinical Research," in
Encyclopedia of Biopharmaceutical Statistics, pp. 933-939.

[91] C. Manuel, L. n, Joaqu, B. O. M. n, J. M. Francisco, P. nez De, A. n, P. V. G. Eliseo,
and lez, "Outlier Detection and Data Cleaning in Multivariate Non-Normal
Samples: The PAELLA Algorithm," Data Min. Knowl. Discov., vol. 9, pp. 171-187,
2004.

[92] T. N. David, M. Gokhan, and C. Alok, "A reconfigurable architecture for network
intrusion detection using principal component analysis," in Proceedings of the
2006 ACM/SIGDA 14th international symposium on Field programmable gate
arrays Monterey, California, USA: ACM, 2006.

184

[93] Z. Jiang, L. Chang-Tien, and K. Yufeng, "Detecting region outliers in
meteorological data," in Proceedings of the 11th ACM international symposium
on Advances in geographic information systems New Orleans, Louisiana, USA:
ACM, 2003.

[94] L. Anselin, "Local Indicators of Spatial Association—LISA," Geographical
Analysis, vol. 27, pp. 93-115, 1995.

[95] V. Barnett and T. Lewis, Outliers in Statistical Data: John Wiley & Sons, 1994.

[96] R. Sridhar, R. Rajeev, and S. Kyuseok, "Efficient algorithms for mining outliers
from large data sets," SIGMOD Rec., vol. 29, pp. 427-438, 2000.

[97] R. Sridhar, R. Rajeev, and S. Kyuseok, "Efficient algorithms for mining outliers
from large data sets," in Proceedings of the 2000 ACM SIGMOD international
conference on Management of data Dallas, Texas, United States: ACM, 2000.

[98] T. N. Raymond and H. Jiawei, "Efficient and Effective Clustering Methods for
Spatial Data Mining," in Proceedings of the 20th International Conference on
Very Large Data Bases: Morgan Kaufmann Publishers Inc., 1994.

[99] M. Ester, H. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise," in Second
International Conference on Knowledge Discovery and Data Mining, 1996, pp.
226-231.

[100] Z. Tian, R. Raghu, and L. Miron, "BIRCH: an efficient data clustering method for
very large databases," SIGMOD Rec., vol. 25, pp. 103-114, 1996.

[101] G. Sudipto, R. Rajeev, and S. Kyuseok, "CURE: an efficient clustering algorithm
for large databases," SIGMOD Rec., vol. 27, pp. 73-84, 1998.

[102] A. Fabrizio and F. Fabio, "Detecting distance-based outliers in streams of data,"
in Proceedings of the sixteenth ACM conference on Conference on information
and knowledge management Lisbon, Portugal: ACM, 2007.

[103] B. Sabyasachi and M. Martin, "Automatic outlier detection for time series: an
application to sensor data," Knowl. Inf. Syst., vol. 11, pp. 137-154, 2007.

[104] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D.
Gunopulos, "Online outlier detection in sensor data using non-parametric
models," in Proceedings of the 32nd international conference on Very large
data bases Seoul, Korea: VLDB Endowment, 2006.

185

[105] D. l. Curiae, O. Banias, F. Dragan, C. Volosencu, and O. Dranga, "Malicious Node
Detection in Wireless Sensor Networks Using an Autoregression Technique," in
Networking and Services, 2007. ICNS. Third International Conference on, 2007,
pp. 83-83.

[106] I. Kozue and K. Hiroyuki, "Detecting Current Outliers: Continuous Outlier
Detection over Time-Series Data Streams," in Proceedings of the 19th
international conference on Database and Expert Systems Applications Turin,
Italy: Springer-Verlag, 2008.

[107] L. Duan, L. Xu, Y. Liu, and J. Lee, "Cluster-based outlier detection," Annals of
Operations Research, vol. 168, pp. 151-168, 2009.

[108] T. N. Raymond and H. Jiawei, "Efficient and Effective Clustering Methods for
Spatial Data Mining," in Proceedings of the 20th International Conference on
Very Large Data Bases: Morgan Kaufmann Publishers Inc., 1994.

[109] S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan, "Clustering data streams,"
in Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium on, 2000, pp. 359-366.

[110] L. O'Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani, "Streaming-
data algorithms for high-quality clustering," in Data Engineering, 2002.
Proceedings. 18th International Conference on, 2002, pp. 685-694.

[111] F. Cao, M. Ester, W. Qian, and A. Zhou, "Density-based clustering over an
evolving data stream with noise," in In 2006 SIAM Conference on Data Mining,
2006, pp. 328-339.

[112] R. Carlos, M. Ernestina, and S. Myra, "C-DenStream: Using Domain Knowledge
on a Data Stream," in Proceedings of the 12th International Conference on
Discovery Science Porto, Portugal: Springer-Verlag, 2009.

[113] R. Jiadong and M. Ruiqing, "Density-Based Data Streams Clustering over Sliding
Windows," in Fuzzy Systems and Knowledge Discovery, 2009. FSKD '09. Sixth
International Conference on, 2009, pp. 248-252.

[114] L.-x. Liu, J. Kang, Y.-f. Guo, and H. Huang, "A three-step clustering algorithm
over an evolving data stream," in Intelligent Computing and Intelligent Systems,
2009. ICIS 2009. IEEE International Conference on, 2009, pp. 160-164.

[115] P. Kranen, I. Assent, C. Baldauf, and T. Seidl, "The ClusTree: indexing micro-
clusters for anytime stream mining," Knowledge and Information Systems, vol.
29, pp. 249-272.

186

[116] C. A. Charu, H. Jiawei, W. Jianyong, and S. Y. Philip, "A framework for clustering
evolving data streams," in Proceedings of the 29th international conference on
Very large data bases - Volume 29 Berlin, Germany: VLDB Endowment, 2003.

[117] G. Sudipto, M. Adam, M. Nina, M. Rajeev, and O. C. Liadan, "Clustering Data
Streams: Theory and Practice," IEEE Trans. on Knowl. and Data Eng., vol. 15, pp.
515-528, 2003.

[118] Z. Tian, R. Raghu, and L. Miron, "BIRCH: an efficient data clustering method for
very large databases," in Proceedings of the 1996 ACM SIGMOD international
conference on Management of data Montreal, Quebec, Canada: ACM, 1996.

[119] F. Doug, "Iterative optimization and simplification of hierarchical clusterings," J.
Artif. Int. Res., vol. 4, pp. 147-179, 1996.

[120] F. Brian and S. Mihaela Van Der, "A rules-based approach for configuring chains
of classifiers in real-time stream mining systems," EURASIP J. Adv. Signal
Process, vol. 2009, pp. 1-17, 2009.

[121] E. S. Robert, "A brief introduction to boosting," in Proceedings of the 16th
international joint conference on Artificial intelligence - Volume 2 Stockholm,
Sweden: Morgan Kaufmann Publishers Inc., 1999.

[122] Z. Yongluan, "Scalable and Adaptable Distributed Stream Processing," in Data
Engineering Workshops, 2006. Proceedings. 22nd International Conference on,
2006, pp. x148-x148.

[123] B. Magdalena, B. Hari, M. Samuel, and S. Michael, "Fault-tolerance in the
Borealis distributed stream processing system," in Proceedings of the 2005
ACM SIGMOD international conference on Management of data Baltimore,
Maryland: ACM, 2005.

[124] H. Maria, B. Yannis, and V. Michalis, "On Clustering Validation Techniques," J.
Intell. Inf. Syst., vol. 17, pp. 107-145, 2001.

[125] K. Matthias, L. Stefano, and M. Gianluca, "Distributed clustering based on
sampling local density estimates," in Proceedings of the 18th international joint
conference on Artificial intelligence Acapulco, Mexico: Morgan Kaufmann
Publishers Inc., 2003.

[126] S. Alexander and G. Joydeep, "Cluster ensembles --- a knowledge reuse
framework for combining multiple partitions," J. Mach. Learn. Res., vol. 3, pp.
583-617, 2003.

187

[127] B.-H. Park, H. Kargupta, and N. Ye, "Distributed Data Mining: Algorithms,
Systems, and Applications," in The handbook of data mining: Routledge, 2003,
pp. 341-358.

[128] D. Souptik, B. Kanishka, G. Chris, W. Ran, and K. Hillol, "Distributed Data Mining
in Peer-to-Peer Networks," IEEE Internet Computing, vol. 10, pp. 18-26, 2006.

[129] G. Cormode, S. Muthukrishnan, and Z. Wei, "Conquering the Divide: Continuous
Clustering of Distributed Data Streams," in Data Engineering, 2007. ICDE 2007.
IEEE 23rd International Conference on, 2007, pp. 1036-1045.

[130] T. F. Gonzalez, "Clustering to minimize the maximum intercluster distance,"
Theoretical Computer Science, vol. 38, pp. 293-306, 1985.

[131] K. Hillol, H. Weiyun, S. Krishnamoorthy, and J. Erik, "Distributed clustering using
collective principal component analysis," Knowl. Inf. Syst., vol. 3, pp. 422-448,
2001.

[132] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu, and S. Datta,
"Clustering distributed data streams in peer-to-peer environments,"
Information Sciences, vol. 176, pp. 1952-1985, 2006.

[133] G. Mohamed Medhat and S. Y. Philip, "A framework for resource-aware
knowledge discovery in data streams: a holistic approach with its application to
clustering," in Proceedings of the 2006 ACM symposium on Applied computing
Dijon, France: ACM, 2006.

[134] Z. Qi, L. Jinze, and W. Wei, "Approximate Clustering on Distributed Data
Streams," in Data Engineering, 2008. ICDE 2008. IEEE 24th International
Conference on, 2008, pp. 1131-1139.

[135] M. Halkidi and I. Koutsopoulos, "Online Clustering of Distributed Streaming
Data Using Belief Propagation Techniques," in Mobile Data Management
(MDM), 2011 12th IEEE International Conference on, pp. 216-225.

[136] D. Henriksson, A. Cervin, and K.-E. Arzen, "TrueTime: Real-time Control System
Simulation with MATLAB/Simulink," in Proceedings of the Nordic MATLAB
Conference, Copenhagen, Denmark, October 2003.

[137] A. Cervin, D. Henriksson, and M. Ohlin, "TrueTime 2.0 beta 5 - Reference
Manual," Department of Automatic Control, Lund University Jun 2010.

188

[138] M. De Biasi, C. Snickars, K. Landernas, and A. J. Isaksson, "Simulation of process
control with WirelessHART networks subject to packet losses," in Automation
Science and Engineering, 2008. CASE 2008. IEEE International Conference on,
2008, pp. 548-553.

[139] A. Cervin, M. Ohlin, and D. Henriksson, "Simulation of Networked Control
Systems Using TrueTime " in 3rd International Workshop on Networked Control
Systems: Tolerant to Faults Nancy, France Jun 2007.

[140] M. Andersson, D. Henriksson, A. Cervin, and K. Arzen, "Simulation of Wireless
Networked Control Systems," in Decision and Control, 2005 and 2005 European
Control Conference. CDC-ECC '05. 44th IEEE Conference on, 2005, pp. 476-481.

[141] C. G. Cassandras, C. Seatzu, and D. Henriksson, "Truetime: Simulation of
networked computer control systems," in 2nd IFAC Conference on Analysis and
Design of Hybrid Systems Hotel Calabona, Alghero, Italy, 2006, pp. 272-273.

[142] Texas Instruments “MSP430F22x4 Mixed signal Microcontroller (Rev. F)
Datasheet” www.ti.com.product/msp430f2274, 14 July, 2011.

[143] Texas Instruments “CC2530 (Rev. B) Datasheet” www.ti.com.product/CC2530,
05 October, 2010.

[144] L. L. d. A. Andr, M. S. F. Carlos, F. N. Eduardo, S. B. Luciana, A. F. L. Antonio, F.
Antnio Otvio, and J. N. J. C. Claudionor, "Data Stream Based Algorithms For
Wireless Sensor Network Applications," in Proceedings of the 21st International
Conference on Advanced Networking and Applications: IEEE Computer Society,
2007.

[145] S. Ullah, J. J. Ahmad, J. Khalid, and S. A. Khayam, "Energy and distortion analysis
of video compression schemes for Wireless Video Sensor Networks," in
MILITARY COMMUNICATIONS CONFERENCE, 2011 - MILCOM 2011, pp. 822-
827.

[146] M. Ilyas and I. Mahgoub, Handbook of Sensor Networks: Compact Wireless and
Wired Sensing Systems: Taylor & Francis, 2004.

[147] C. Graham, D. Mayur, I. Piotr, and S. Muthukrishnan, "Comparing Data Streams
Using Hamming Norms (How to Zero In)," IEEE Trans. on Knowl. and Data Eng.,
vol. 15, pp. 529-540, 2003.

[148] J. C. Dunn, "A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters," Journal of Cybernetics, vol. 3, pp. 32-57,
2011/11/23 1973.

[149] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms:
Kluwer Academic Publishers, 1981.

189

[150] H. Sabit, A. Al-Anbuky, and H. Gholamhosseini, "Data stream mining for
wireless sensor networks environment: energy efficient fuzzy clustering
algorithm," International Journal of Autonomous and Adaptive Communications
Systems, vol. 4, pp. 383-397, 2011.

[151] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition (Morgan Kaufmann Series in Data Management
Systems): Morgan Kaufmann Publishers Inc., 2005.

[152] H. Sabit, A. Al-Anbuky, and H. Gholam-Hosseini, "Distributed WSN Data Stream
Mining Based on Fuzzy Clustering," in Ubiquitous, Autonomic and Trusted
Computing, 2009. UIC-ATC '09. Symposia and Workshops on, 2009, pp. 395-400.

[153] A. Rakesh, G. Johannes, G. Dimitrios, and R. Prabhakar, "Automatic subspace
clustering of high dimensional data for data mining applications," SIGMOD Rec.,
vol. 27, pp. 94-105, 1998.

[154] A. Rakesh, G. Johannes, G. Dimitrios, and R. Prabhakar, "Automatic subspace
clustering of high dimensional data for data mining applications," presented at
the Proceedings of the 1998 ACM SIGMOD international conference on
Management of data, Seattle, Washington, United States, 1998.

[155] S. Chiu, "Fuzzy Model Identification based on cluster estimation," Journal of

Intelligent Fuzzy Systems, vol. 2, pp. 267-278, 1994.

[156] R. R. Yager and D. P. Filev, "Generation of Fuzzy Rules by Mountain Clustering,"

Journal of Intelligent and Fuzzy Systems, vol. 2, pp. 209-219, 1994.

[157] J. C. Bezdek, "A Convergence Theorem for the Fuzzy ISODATA Clustering
Algorithms," Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. PAMI-2, pp. 1-8, 1980.

[158] J. Chen, Z. Qin, and J. Jia, "A Weighted Mean Subtractive Clustering Algorithm,"
Information Technology Journal, vol. 7, pp. 356-360, 2008.

[159] P. Yang, Q. Zhu, and X. Zhong, "Subtractive Clustering Based RBF Neural
Network Model for Outlier Detection," Journal of Computers, vol. 4, pp. 755-
762, 2009.

[160] J. Tian, L. Zhu, S. Zhang, and L. Liu, "Improvement and Parallelism of k-Means
Clustering Algorithm," Tsinghua Science and Technology, vol. 10, pp. 277-281,
2005.

190

[161] M. N. Halgamuge, S. M. Guru, and A. Jennings, "Energy efficient cluster
formation in wireless sensor networks," in Telecommunications, 2003. ICT
2003. 10th International Conference on, 2003, pp. 1571-1576 vol.2.

[162] Commonwealth of Australia 2011, Bureau of Meteorology “Climate Data Online
Service.” ABN 92 637 533 532, 2011. [Online]. Available:
http://www.bom.gov.au/climate/data-services/. [Accessed Feb. 18, 2011

[163] A. G. McArthur, "Fire Behaviour in Eucalypt Forests.," CommonW. Aust. For.
And Timber Bur. Leaflet Number 107. 36pp, 1967.

[164] G. Resta and P. Santi, "A Framework for Routing Performance Analysis in Delay
Tolerant Networks with Application to Noncooperative Networks," Parallel and
Distributed Systems, IEEE Transactions on, vol. 23, pp. 2-10, 2012.

[165] P. Kumar, Gu, x, nes, M., Q. Mushtaq, and J. Schiller, "Optimizing Duty-Cycle for
Delay and Energy Bound WSN Applications," in Advanced Information
Networking and Applications Workshops (WAINA), 2010 IEEE 24th International
Conference on, 2010, pp. 692-697.

[166] C. E. v. Wagner, Development and structure of the Canadian forest fire weather
index system / C.E. van Wagner. Ottawa :: Canadian Forestry Service, 1987.

[167] M. Hefeeda and M. Bagheri, "Forest Fire Modeling and Early Detection using
Wireless Sensor Networks," Ad Hoc and Wireless Sensor Networks, vol. 7, pp.
169-224, 2009.

[168] T. Kevin, J. San-Miguel-Ayanz, S. Richard, D. Murray, A. Martin, J. D. Carlson,
and M. Gary, "Current Methods to Assess Fire Danger Potential," in Wildland
Fire Danger Estimation And Mapping. vol. Volume 4, ed: WORLD SCIENTIFIC,
2003, pp. 21-61.

[169] B. D. Amiro, K. A. Logan, B. M. Wotton, M. D. Flannigan, J. B. Todd, B. J. Stocks,
and D. L. Martell, "Fire weather index system components for large fires in the
Canadian boreal forest," International Journal of Wildland Fire, vol. 13, pp. 391-
400, 2004.

[170] C. E. VanWagner and T. L. Pickett, Equations and FORTRAN program for the
Canadian forest fire weather index system. Ottawa: Minister of Supply and
Services Canada, 1985.

[171] B. Leblon, M. Alexander, J. Chen, and S. White, "Monitoring fire danger of
northern boreal forests with NOAA-AVHRR NDVI images," International Journal
of Remote Sensing, vol. 22, pp. 2839-2846, 2001.

191

[172] Wikipedia article on sensor node, http://en.wikipedia.org/wiki/Sensor_node,
[cited 2011-08-22].

[173] H. Qi, P. T. Kuruganti, and Y. Xu, "The development of localized algorithms in
wireless sensor networks," Sensors, vol. 2, pp. 286-293, 2002.

[174] EPA(1987). On-Site Meteorological Program Guidance for Regulatory Modeling
Applications, EPA-450/4-87-013. Office of Air Quality Planning and Standards,
Research Triangle Parks, North Carolina 27711.

 [175] O. World Meteorological, Guide to meteorological instruments and methods of
observation. Geneva, Switzerland: Secretariat of the World Meteorological
Organization, 1996.

[176] The state Climatologist (1985). Publication of the American Association of State
Climatologists: Height and Exposure Standards for Sensor on Automated
Weather Stations, v. 9, No, 4, October, 1985.

[177] L. Golab and M. T. Özsu, "Issues in data stream management," SIGMOD Rec.,
vol. 32, pp. 5-14, 2003.

