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ABSTRACT 
Wireless sensor networks (WSNs) despite their energy, bandwidth, storage, and 

computational power constraints, have embraced dynamic applications. These 

applications generate a large amount of data continuously at high speeds and at 

distributed locations, known as distributed data stream. In these applications, 

processing data streams on the fly and in distributed locations is necessary mainly due 

to three reasons. Firstly, the large volume of data that these systems generate is 

beyond the storage capacity of the system. Secondly, transmitting such large 

continuous data to a central processing location over the air exhausts the energy of 

the system rapidly and limits its lifetime. Thirdly, these applications implement 

dynamic models that are triggered immediately in response to events such as changes 

in the environment or changes in set of conditions and hence, do not tolerate offline 

processing. Therefore, it is important to design efficient distributed techniques for 

WSN data stream mining applications under these inherent constraints.  

The purpose of this study was to develop a resource efficient online distributed 

incremental data stream mining framework for WSNs. The framework must minimize 

inter-node communications and optimize local computation and energy efficiency 

without compromising practical application requirements and quality of service (QoS). 

The objectives were to address the WSN energy constraints, network lifetime, and 

distributed mining of streaming data. Another objective was to develop a novel high 

spatiotemporal resolution version of the standard Canadian fire weather index (FWI) 

system called the Micro-scale FWI system based on the framework.  

The perceived framework integrates autonomous cluster based data stream 

mining technique and two-tiered hierarchical WSN architecture to suit the distributed 

nature of WSN and on the fly stream mining requirements. The underlying principle of 

the framework is to handle the sensor stream mining process in-network at distributed 

locations and at multiple hierarchical levels. The approach consists of three distinct 
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processing tasks asynchronously but cooperatively revealing mining the sensor data 

streams. These tasks are the sensor node, the cluster head, and the network sink 

processing tasks. These tasks were formulated by a lightweight autonomous data 

clustering algorithm called Subtractive Fuzzy C-Means (SUBFCM). The SUBFCM 

algorithm remains embedded within the individual nodes to analyze the locally 

generated streams ‘on the fly’ in cooperation with a group of nodes.  

The study examined the effects of data stream characteristics such as data 

stream dimensions and stream periods (data flow rates). Moreover, it evaluated the 

effects of network architectures such as node density per cluster and tolerated 

approximation error on the overall performance of the SUBFCM through simulations. 

Finally, the QoS or certain level of guaranteed performance that is supported by the 

WSN architecture for applications utilizing the framework was examined.  

The results of the study showed that the proposed framework is stream 

dimension and data flow rate scalable with average errors of less than 12% and 11% in 

reference to the benchmarks, respectively. The node density per cluster and local 

model drift threshold showed significant effects on the framework performance only 

for very fast streams.  

The study concludes that the network architecture is an important factor for 

the quality of mining results and should be designed carefully to optimally utilize basic 

concepts of the framework. The overall mining quality is directly related to the 

combined effect of the stream characteristics, the network architecture, and the 

desired performance measures. The study also concludes that WSNs can provide good 

QoS feasible for online distributed incremental data stream mining applications.  

Simulations of real weather datasets indicate that the Micro-scale FWI can 

excellently approximate the results obtained from the Standard FWI system while 

providing highly superior spatial and temporal information. This can offer direct local 

and global interaction with a few meter square spaces as against the tens of square 

kilometers of the present systems. 
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Chapter 1 
 

1. INTRODUCTION 

Wireless sensor networks (WSNs) despite their energy, bandwidth, storage, and 

computational power constraints, have embraced dynamic applications that generate 

a large amount of data continuously at high speeds and sourced from distributed 

locations, known as distributed data stream. In these applications, processing data 

streams on the fly and in distributed locations is necessary mainly due to three 

reasons. Firstly, the large volume of data that these systems generate is beyond the 

storage capacity of the system. Secondly, transmitting such large amount of 

continuous data to a central processing location over the air exhausts the energy of 

the system rapidly and limits its lifetime. And thirdly, these applications implement 

dynamic models that are triggered immediately in response to events such as changes 

in the environment or changes in a set of conditions, hence do not tolerate offline 

processing. Therefore, designing effective distributed techniques for WSN data stream 

mining applications under the inherent constraints becomes important. We have 

developed an efficient online distributed incremental data stream mining for WSNs 

using a distributed clustering technique.  

 

1.1. BACKGROUND TO THE RESEARCH 
 

Data streaming is an inherent feature of a WSNs [1] and a number of research has 

been dedicated in mining the data streaming from such networks [2-6]. Data mining is 

a promising and relatively new technology that is defined as a process of discovering 

hidden valuable and useful knowledge or information by analyzing large amounts of 
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data storing in databases or data warehouse using different techniques such as 

machine learning, artificial intelligence (AI) and statistical. Data mining techniques can 

discover information that many traditional business analysis and statistical techniques 

fail to deliver [7]. A variety of real time applications produce distributed continuous 

data streams and require data stream mining. Data stream mining is the extraction of 

structures of knowledge that are represented in the case of models and patterns of 

infinite streams of information [8]. There are several major data mining techniques 

developed and used in data mining projects recently including association, 

classification, clustering, prediction and sequential patterns. We will briefly introduce 

those data mining techniques with example to have a good overview of them followed 

by a brief description of WSNs and their unique characteristics and the challenges they 

pose to stream mining techniques.  

 

1.1.1. Association 
 

Association is one of the best known data mining techniques. In association, a pattern 

is discovered based on a relationship of a particular item on other items in the same 

transaction. For example, the association technique is used in market basket analysis 

to identify what products customers frequently purchase together. Based on this data 

businesses can have corresponding marketing campaigns to sell more products to 

make more profit. The patterns discovered with this data mining technique can be 

represented in the form of association rules [9, 10]. The domain experts set the two 

measures of rule interestingness threshold which are rule support and confidence. The 

association rules are considered interesting if they satisfy minimum support threshold 

and minimum confidence threshold.  

 

1.1.2. Classification 
 

Classification is a classic data mining technique based on machine learning. Basically 

classification is used to classify each item in a set of data into one of predefined set of 

classes or groups. Classification methods make use of mathematical techniques such as 
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decision trees, linear programming, neural networks and statistics. In classification, we 

develop the software that can learn how to classify the data items into groups. For 

example, we can apply classification in an application that “given all past records of 

employees who left the company, predicts which current employees are likely going to 

leave in the future.” In this case, we divide the employees’ records into two groups 

that are “leave” and “stay”. Then we can ask our data mining software to classify the 

employees into each group. 

 

1.1.3. Prediction 
 

The prediction as its name implies is one of a data mining techniques that discovers 

relationships between independent variables and relationships between dependent 

and independent variables. For instance, prediction analysis technique can be used in 

sale to predict profit for the future if we consider sale as an independent variable, 

profit could be a dependent variable. Then based on the historical sale and profit data, 

we can draw a fitted regression curve that is used for profit prediction. 

 

1.1.4. Sequential Patterns 
 

Sequential patterns analysis is a data mining technique that seeks to discover similar 

patterns in data transactions over a business period. The discovered patterns are used 

for further business analysis to recognize relationships among data. 

 

1.1.5. Clustering 
 

Clustering is a data mining technique that makes meaningful or useful clusters of 

objects that have similar characteristics using an automatic technique. Different from 

classification, clustering technique also defines the classes and puts objects into them, 

while in classification objects are assigned into predefined classes. To make the 

concept clearer, we can take library as an example. In a library, books have a wide 
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range of topics available. The challenge is how to keep those books in a way that 

readers can take several books in a specific topic without hassle. Using clustering 

technique, we can keep books that have some kind of similarities in one cluster or one 

shelf and label it with a meaningful name. If readers want to grab books in a topic, he 

or she would only go to that shelf instead of looking through the whole library. 

 

1.1.6. Wireless Sensor Network Background 
 

Advances in recent technologies have allowed the development of low cost small 

sensors with the capabilities of sensing physical environment, computing, data 

processing and storing, and communicating wirelessly with other sensors. These 

sensors can integrate with each other without any fixed or centralized infrastructure to 

form a network, the WSN, that is able to monitor the environment and transmit 

detected events to a well equipped node called the Sink. A WSN consists of a large 

number of sensors [11], each of which are physically small devices, and are equipped 

with processing capability (one or more microcontrollers, CPUs or DSP chips), multiple 

types of memories (program, data and flash memories), RF transceiver (usually with a 

single Omni-directional antenna), a power source (e.g., batteries and solar cells), and 

various sensors and actuators. Due to size and cost constraints, sensors in WSNs have 

certain intrinsic constraints on resources such as energy, memory, computational 

capabilities, and communications bandwidth. WSN deployment consists of spatially 

distributed autonomous sensors connected via a wireless communication 

infrastructure to cooperatively monitor, record, and store physical or environmental 

conditions such as temperature, humidity, light, sound, vibration, pressure, motion or 

pollutants.  

The sensor nodes communicate wirelessly and often self-organize after being 

deployed in an ad hoc fashion whereby a group of sensor nodes spontaneously form a 

network without any fixed and central infrastructure. Therefore, they can be deployed 

in inaccessible locations by aerial drop to form a cooperative monitoring network. 

When two nodes in a WSN wish to communicate, intermediate nodes are called upon 

to forward packets to form a multi-hop wireless route. WSNs deploy a sheer number of 



5 
 

 
 

sensor nodes and due to the large probability that many of them will be sensing events 

in close proximity and simultaneously, they enable multi-projection of an event and 

hence open the door for several unique applications. The WSN technology is exciting 

with unlimited potential for numerous application areas including environmental, 

medical, military, transportation, entertainment, crisis management, homeland 

defense, and smart meters [12].  

With the advances in WSNs and their ability to generate a large amount of 

data, data mining techniques to extract useful knowledge regarding the underlying 

network have recently received a great deal of attention [11]. However, the stream 

nature of the data, the limited resources, and the distributed nature of sensor 

networks bring new challenges for the mining techniques that need to be addressed. 

These challenges are further amplified when the data they generate is of a continuous 

stream in nature.   

 

1.2. MOTIVATION 
 

More recently the need to process a large amount of data has motivated the field of 

data mining whereby ways are investigated to process the static data sets efficiently 

and algorithms are developed to compute the final static model representing the data 

sets [13]. However this data mining approach despite handling large data sets does not 

address the problem of a continuous supply of data. A model that was previously 

induced cannot be updated as new data arrives. Instead, the entire training process 

must be repeated with the new examples included. This is undesirable and inefficient 

for many continuous data streaming systems.   

The deployment of pervasive communication infrastructures such as short-

range wireless ad hoc sensor networks has enabled the capture of different 

measurement of data in a wide range of fields. These measurements are generated 

continuously and at high data rates. Such continuous flows of data grow rapidly over 

time and are known as data streams. Examples include sensor networks, web searches, 

phone conversations, and network traffic. Data streams necessitate the need for new 
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applications that process, analyze, and react to data streams in a near real-time 

manner.  

Consider for instance, a body area network [14] in a health care system 

monitoring patients’ health conditions. The sensor nodes have to continuously take 

vital signs measurements and feed into a model that alerts the care giver when a 

health risk condition is detected. Further, consider a WSN deployed to monitor forest 

Fire Weather Indices (FWI) and alert fire hazard in real-time. The sensor nodes 

continuously measure weather parameters and feed into the FWI model, which 

triggers fire hazard alarm whenever high fire risk conditions are detected. These 

systems naturally do not tolerate offline data analysis. Therefore, the data streaming 

from such systems has to be processed on the fly and in real-time. 

 

1.3. RESEARCH PROBLEM  
 

Given a distributed sensor system consisting of resource constrained sensor nodes and 

connected via an underlying wireless network. Each node is tasked with probing its 

proximity and updating the system regarding its acquired information instantly and 

periodically along  with all other nodes in the system. The nodes continue repeating 

their task indefinitely in short periods. At each short period, the system is required to 

find patterns within the update information received from all nodes in real-time and 

keep up with the continuous periodic update of information arrivals. This research 

aims at answering the following question: How can update information stream mining 

tasks for extracting patterns in real-time from the union of all nodes’ information be 

executed in the system with all nodes participating in a collaborative distributed 

computation such that the energy, computational power, and communication 

bandwidth resources are efficiently utilized?. The research also aims at answering the 

following specific questions: How can temporal correlation of dynamic situations 

dispersed over a given geographic area be continuously captured while efficiently 

utilizing the scarce WSN system resource? How can the spatial correlation of dynamic 

situations dispersed over a given geographic area be continuously captured while 
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efficiently utilizing the scarce WSN system resource? How these temporal and spatial 

patterns capturing tasks can execute on the fly and in real-time in WSN systems?          

 

1.4. CONTRIBUTIONS  
 

The thesis has systematically studied the limitations of existing stream mining 

techniques for WSNs in terms of their power consumption, computational power, and 

communication efficiencies and provided alternative architectures for real life 

applications of distributed data stream mining. The specific contributions of the thesis 

are: 

1.  Proposing an efficient architecture for optimizing power consumption, 

computational power, and communication bandwidth for distributed incremental data 

stream mining for resource constrained WSNs.  

2. A real-time online distributed data stream mining WSN system framework 

efficiently utilizing the scarce WSN system resources. 

3.  A generic real-time online distributed data stream mining WSN system 

simulation model, which can be used to design and analyze WSN systems for 

distributed data stream mining applications before building and deploying the actual 

system.   

4.  Proposing a high spatio-temporal resolution FWI system (Micro-scale FWI) for a 

forest fire danger monitoring WSN application utilizing the distributed incremental 

data stream mining WSN model.   

These contributions can be applied to WSN design and deployment for online 

distributed data stream mining applications utilizing a resource efficient architecture. 

Furthermore, this research provides a foundation for future investigation of high 

spatio-temporal resolution forest fire monitoring.     
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1.5. OUTLINE OF THE THESIS 
 

The thesis is organized into 9 chapters, which include Introduction; Literature Review; 

Research Materials; Theory of Distributed Incremental Data Stream Mining WSN; 

Development of SUBFCM algorithm; Modeling and Simulation of the Distributed 

Incremental Data Stream Mining WSN; Results and Analysis ; Case study; and 

conclusion and future scope.  

Chapter one starts with a brief introduction of WSN, data stream mining 

techniques and describes the motivation behind this research, states the specific 

problem addressed, highlights the contributions of the thesis and gives an overview of 

the structure of the thesis. 

Chapter two presents an overview of WSN architecture, multi-level energy 

conservation strategies, WSN relevant data stream mining techniques, distributed data 

stream mining framework; it analyses the state-of-the-art in the distributed data 

stream mining techniques literature for WSN, and highlights the research gaps. 

In chapter three, the hardware and software tools and materials used during 

the research and their capabilities and limitations are examined.  

Chapter four presents the theoretical framework of the distributed incremental 

data stream mining technique for the WSN system. It describes the details of the WSN 

architecture to support the distributed data stream clustering technique.  

Chapter five presents the development of the core stream mining algorithm 

that is embedded and runs within the cluster head nodes- the subtractive fuzzy cluster 

means (SUBFCM) algorithm.  

Chapter six presents a detailed description of the distributed incremental data 

stream mining WSN system modeling and simulation. The implementation of the 

individual modules of the system model is also presented in this chapter. 

Chapter seven presents the results, performance evaluation and analysis of the 

research.  
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Chapter eight presents the case study for the distributed incremental data 

stream mining WSN application. The Micro-scale forest fire weather index application 

of WSN is presented.  

Chapter nine concludes this thesis and outlines the directions for future 

research in distributed data stream mining for resource constrained systems such as 

WSN. 

 

1.6. PUBLICATIONS 
 

During this study, the following five international peer reviewed publications have 

been produced that include international journal and conference proceedings.   

• Sabit, H., Al-Anbuky, A., and Gholamhosseini, H. (2011). Data stream mining for 

wireless sensor networks environment: energy efficient fuzzy clustering 

algorithm. International Journal of Autonomous and Adaptive Communications 

Systems, 4(4):383-397. 

• Hakilo Sabit, Adnan Al-Anbuky, Hamid GholamHosseini, Wireless Sensor 

Network Based Wildfire Hazard Prediction System Modeling, Procedia 

Computer Science, Volume 5, 2011, Pages 106-114. 

• Sabit, H., Anbuky, A. A., and Hosseini, H. G. (2009). Distributed WSN data 

stream mining based on fuzzy clustering. In Proceedings of the 2009 Symposia 

and Workshops on Ubiquitous, Autonomic and Trusted Computing, UIC-ATC '09, 

pages 395-400, Washington, DC, USA. IEEE Computer Society. 

• Sabit, H., and Al-Anbuky, A. 2011. Sensor Network & Weather Data Stream 

Mining. Proceedings of Bushfire CRC & AFAC 2011 Conference Science Day’ 1 

September 2011, Sydney Australia, Bushfire CRC.  

• Sabit, H., Al-Anbuky, A., and Gholamhosseini, H. 2011. Micro-scale Forest Fire 

Weather Index and Sensor Network. Proceedings of Bushfire CRC & AFAC 2011 

Conference Science Day’ 1 September 2011, Sydney Australia, Bushfire CRC.  
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1.7. CHAPTER SUMMARY 
 

This chapter presented an introduction to data stream mining and related techniques 

relevant to WSNs. The chapter also described background to the research giving 

specific examples to motivate the research,  as well as a problem statement and 

specific research questions. It further provided a list of contributions during the 

research period and outline of the thesis. 
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Chapter 2 
 

2. LITERATURE REVIEW 
 

2.1. INTRODUCTION 

This chapter introduces and analyses the literature on distributed data stream mining 

and the state of the art of the field of distributed data stream mining in the context of 

WSNs. The field of WSN focuses on the design and operation of wireless personal area 

network (WPAN) based sensor systems consisting of distributed autonomous devices 

to cooperatively monitor an environment but with very strong constraints on 

resources such as energy, memory, computational speed and bandwidth. Data stream 

mining focuses on the design of processes and algorithms that enable computing 

nodes to extract knowledge structures from continuous, rapid data records. 

Distributed techniques for WSN data stream mining focuses on designing scalable and 

reliable stream mining methods to suit the distributed nature of WSN and online 

stream mining goals for large scale real-time stream mining systems. A review of the 

foundations of each of these fields is presented below. 

 

2.2. WIRELESS SENSOR NETWORK INTRODUCTION 

Wireless sensor networks are networks consisting of small multimodal sensor 

devices/nodes capable of limited processing power, short range communication and
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 limited memory space. In other words, WSNs consist of hundreds or even thousands 

of resource-constrained nodes. These devices are of low cost, small footprint, and 

individually unreliable. However, deployed in large quantities and observing in a  

spatially overlapping areas, they provide a system of high reliability and 

unprecedented measurement resolution. In recent years, WSNs have found ever 

increasing and diverse applications particularly in monitoring and control systems. 

They have been successfully utilized in some of socially and scientifically significant 

applications: water quality monitoring [15, 16], climate change modeling [17], 

industrial plants monitoring [18-20], personal health monitoring [21, 22], structural 

health monitoring [23-25], wild fire detection [26], etc. Source nodes and sink node(s) 

constitute the basic WSN architecture. The source nodes host multimodal sensors, a 

low power processor, a radio transceiver, and light weight battery. They are the 

sources of the network data traffic. The sink contains a processor, a radio transceiver, 

no sensors, and is usually mains powered. The sink node is the coordinator and 

collection point for network data traffic. The sink is usually interfaced to the base 

station PC (data management station) which could be a gateway to another external 

network (e.g., the internet). Owing to their small footprint and wireless 

communication capabilities, the sensor nodes can be placed in hostile and inaccessible 

locations to quantify and transmit the current state of the phenomena under 

observation. Due to the hostility and inaccessibility of their location, the task of battery 

replacement is hard if not impossible. Hence, WSNs require an aggressive energy 

conservation strategy for each battery-powered device in order to operate for a 

meaningful period of time before dropping out of the network.  

Dead node replacement could be a means of restoring normal network operation if 

there is no minimum uninterruptible operation period requirement by the application 

and as long as the application can withstand the delay during network 

reconfigurations. The time and cost of redeployment and reconfiguration are however, 

prohibitive for most applications. In order to obtain a good network lifetime for a WSN 

application, a number of energy conservation strategies have to be considered. These 

energy conservation strategies concern the WSN hardware platforms, the wireless 

protocol stack, and the application.  
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2.2.1. Hardware Platform 

A WSN consists of spatially distributed sensor nodes. Each sensor node is capable of 

probing its environment and limited independent processing. The WSN nodes are also 

capable of short range communication due to their radio transceiver which, allows 

them to forward their sensed information to a central sink node. Furthermore, WSN 

nodes can perform local coordination. Among the common sensor node platforms are 

Crossbow technology MICAz, TMote Sky, Sun Microsystems Sun SPOT, and Texas 

Instruments CC2530. The sensor nodes’ basic hardware components are an embedded 

processor, a radio transceiver, memories, a power source, and sensors.  

The WSN platform energy conservation strategies include efficient sensors 

energizing, efficient device power mode setting, setting optimal transmission power, 

duty cycling, etc.  

 

2.2.1.1. Sensor Energizing 

Sensor transducers are an integral part of sensor nodes. Sensors, either analog or 

digital, translate physical phenomena into electrical signals. The sources of energy 

consumption in sensor transducers can be signal sampling, conversion of physical 

signals to electrical ones, signal conditioning, and analog to digital conversions [27]. 

Depending on the nature of their sensing mechanism, sensors consume different 

amounts of energy. Passive sensors such as resistance temperature detectors (RTDs) 

and photodiodes, for instance, consume much less energy than active ones such as 

sonar rangers and strain gauges. The sampling rate also plays a major role in sensor 

energy consumption. The higher the sampling rate, the higher is the energy 

consumption [28, 29]. Another strategy in practice is employing low power and higher 

error rate detector sensors before actually energizing the higher power consuming 

higher quality sensors [30].  
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2.2.1.2. Power Mode Settings 

The microcontroller unit is at the heart of the sensor nodes controlling the sensors and 

execution of the communication protocols and signal processing algorithms [27]. The 

microcontrollers support various operating modes, including active, idle, and multi 

level sleep modes. Each mode is characterized by a different amount of power 

consumption. The different power modes are achieved by switching off some 

functional components of the microcontroller and hence, the power modes have 

different functional capabilities. Depending on the application requirements, valuable 

energy can be conserved by switching between the different power modes. For data 

stream applications, which are the focus of this research, we consider a multi power 

mode operation whereby all nodes remain in low power mode, briefly wake up, 

sample their sensors periodically and send the data to their local sink.  

 

2.2.1.3. Optimal Transmission Power Setting 

In WSN, transmitting data at unnecessarily high power not only reduces the lifetime of 

the nodes and the network, but also introduces excessive interference [31]. The 

transmit power of the nodes determine the connectivity level of ad hoc wireless 

networks [31]; however, transmitting at excessive power levels increase mutual 

interference in the shared radio channel and limit the battery power. Therefore, the 

optimal transmit power with respect to network lifetime and connectivity sufficient to 

guarantee network connectivity [32, 33] should be a design consideration for efficient 

WSNs. In [34], the optimal transmit power is derived for a random topology.   

 

2.2.1.4. Duty Cycling 

To resolve the conflict between limited energy and application lifetime requirements, 

it is necessary to reduce node communication and sensing duty cycles [35]. Periodic 

interval sensing is also used as sensor nodes’ energy conserving mechanism where the 

nodes remain in off mode during the inactive duty cycles [35, 36].  Considering data 

streaming applications, especially high speed data streaming applications, the amount 

of time the nodes remain in inactive mode is very low. Therefore, duty cycling 
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becomes efficient only when the energy consumption of switching between the active 

and inactive cycles is significantly low. 

 

2.2.2. Operating System 

Operating systems (OSs) for WSN nodes are typically simple and less complex than 

general purpose OSs because of the resource constraints in hardware platforms and 

also because of specific requirements of WSN applications. In many cases, simply 

round robin based task scheduling suffices for  specific WSN applications. A free and 

open source component-based operating system and platform targeting wireless 

sensor networks, TinyOS, is perhaps the first operating system specifically designed for 

WSNs.  

TinyOS programs are built out of software component libraries which include 

network protocols, distributed services, sensor drivers, and data acquisition tools. The 

TinyOS component libraries can be customized for application requirements. TinyOs 

programming is based on an event-driven mode rather than multithreading. TinyOS 

programs are composed into event handlers and tasks with run-to-completion 

semantics. The TinyOS system and programs written for TinyOS are written in a special 

extension of the C programming language called nesC.  

Contiki is another highly portable open source OS specially developed for 

WSNs.  Contiki is an event-driven operating system, but it supports multithreading 

unlike TinyOS. The Contiki operating system provides an IP communication stack, both 

IPv4 and IPv6, with a very small memory footprint. There are also some new operating 

systems for WSN such as LiteOS. 

 

2.2.3. WSN Protocol Stack 

A WSN is an ad-hoc arrangement of multifunctional sensor nodes in a sensor field, 

usually to gather information regarding some phenomenon. Sensor nodes can be 

densely distributed over a large even remote area and can continue to collaborate  

their efforts to the benefit of the network even if a number of nodes malfunction. 
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There are two main layouts for WSNs. The first is a star layout where the nodes 

communicate, in a single hop, directly to the sink whenever possible and peer-to-peer 

communication is minimal. In the second, information is routed back to the sink via 

data passing between nodes. This multi-hop communication is expected to consume 

less power than single-hop communication because nodes in the sensor field are 

densely distributed and are relatively close to each other.         

A sensor network protocol stack is similar to the traditional protocol stack. The 

WSN protocol stack consists of application, transport, network, data link, and physical 

layers. The physical layer is responsible for frequency selection, carrier frequency 

generation, signal detection, modulation and data encryption. The data link layer is 

responsible for the multiplexing of data streams, data frame detection, medium access 

and error control. It ensures reliable point-to-point and point-to-multipoint 

connections in a communication network. The network layer takes care of routing the 

data supplied by the transport layer. The network layer design in WSNs must consider 

the power efficiency, data-centric communication, data aggregation, etc. The 

transportation layer helps to maintain the data flow and may be important if WSNs are 

planned to be accessed through the Internet or other external networks. Depending on 

the sensing tasks, different types of application software can be set up and used on the 

application layer. 

 

2.2.3.1. IEEE 802.15.4/ ZigBee 

The IEEE 802.15.4 Standard, introduced in 2003 is designed to address the need for a 

low cost and low power wireless solutions and has become the foundation for 

monitoring and control solutions, including ZigBee technology, SynkroRF technology, 

the WirelessHART specification, WiMi specification as well as numerous other 

proprietary network stacks. 

ZigBee has been the de-facto protocol stack for low-cost, low-power WSN 

devices. Based on the IEEE 802.15.4 MAC and physical layer standard [37], the ZigBee 

specification defines an architecture for sensor networks that comprises a network 

layer, an application support layer, as well as a security managing unit. ZigBee is a 
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wireless mesh network standard which operates in the industrial, scientific, and 

medical (ISM) radio bands; 868 MHz in Europe, 915 MHz in the USA and Australia, and 

2.4 GHz worldwide. ZigBee supports data transfer rate of 10Kbps, 20Kbps, and 40Kbps 

at 686 MHz, 915 MHz, and 2.4 GHz bands respectively. The ZigBee network layer 

natively supports star and tree networks, and generic mesh networks. Every ZigBee 

network must have one coordinator device tasked with its creation, control and 

maintenance. The star and mesh configurations allow use of ZigBee routers to extend 

communication at the network level.  

The ZigBee specification consists of three types of devices; the ZigBee 

coordinator (ZC), ZigBee Router (ZR), and ZigBee End Device (ZED). ZC is a full function 

device that forms the root of the network. In a ZigBee network, there will only be one 

ZC. ZR is a fully functional device that can run applications functions, as well as act as 

an intermediate router passing on data from other devices. A ZigBee network can have 

multiple ZR devices. ZED is a reduced function device that can only talk to the parent 

nodes (full function devices) and is not able to relay data from other devices. A typical 

ZigBee network contains more ZigBee end devices (ZEDs) than ZigBee routers (ZRs).  

ZigBee network protocols support beacon and non-beacon enabled networks. 

In beacon-enabled networks, ZRs transmit periodic beacons to confirm their presence 

to the other network nodes. Nodes may sleep between beacons, thus lowering their 

duty cycle and extending their battery life. In non-beacon-enabled networks, an 

unslotted CSMA/CA channel access mechanism is used. In non-beacon-enabled 

networks, ZRs have their receiver continuously active,  which allows some devices to 

receive continuously and others to transmit on an external stimulus.  

 

2.2.3.2. 6LoWPAN 

More recently, the Internet Engineering Task Force (IFTF) has defined 6LoWPAN 

standard which enables IPv6 connectivity over Low Power Personal Area Networks. 

The 6lowpan group has defined encapsulation and header compression mechanisms 

that allow IPv6 packets to be sent  and received over from over IEEE 802.15.4 based 

networks. The 6LoWPAN concept originated from the idea that "the Internet Protocol 
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could and should be applied even to the smallest devices," [38] and that low-power 

devices with limited processing capabilities should be able to participate in the 

Internet of Things [39].      

 

2.2.4. Protocol Level Energy Conservation 

The WSN protocol stack energy conservation concerns optimal topology formation, 

method of packet routing, and route discovery/rediscovery.  

Resource constraints are one of the major drawbacks on sensor networks. 

Since sensor nodes run on battery, which cannot be replenished, it is vital that it runs 

very efficiently, in terms of sensing, computation and communication. Sensing and 

computation activities, compared to communication are very efficient. It is the 

communication activities of transmitting and receiving which take up most of the 

energy. So resource awareness should be inbuilt in the protocol architecture for 

efficient communication. Enhancing power efficiency can be achieved in the entire 

network protocol stack of wireless ad hoc networks [40]; topology formation, MAC 

protocol, and routing protocol.  

Topology formation is an important issue in a WSN. Performance parameters 

such as energy consumption, network lifetime, data delivery delay, sensor field 

coverage depend on the network topology [41].  

MAC protocols control the communication modes in WSNs and regulate access 

to the shared wireless medium such that the performance requirements of the 

underlying applications are satisfied [42-45]. The major sources of energy waste in 

conventional MAC protocols are Packet collision, idle listening, overhearing, and 

control overhead [46].  

Cluster-based routing protocols such as Low–energy adaptive clustering 

hierarchy (LEACH) [47], Proxy-based adaptive clustering hierarchy (PEACH) [48], 

Energy-driven adaptive clustering hierarchy (EDACH) [49] are known to minimize 

sensors energy consumption.  
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2.2.5. Application Level Energy Conservation   

The application level energy conservation concerns issues such as data acquisition 

rate, data processing (distributed or central), data aggregation or reduction. The 

specific WSN applications such as target tracking, event detection, phenomena 

monitoring, actuation, and etc. determine which of these strategies can be optimal.  

In WSN applications, data is acquired at a rate desired by the application 

process. However, different data acquisition methods can be employed. For instance, 

in target tracking application, all sensors can collect data about a moving target either 

at the same rate or different rates. That is sensors at close proximity to the target can 

capture data at faster rates than those at a distance from the target. 

In WSNs, communication among the nodes is the major energy consuming 

process. A large percentage of the nodes’ energy is spent on radio transmissions and 

receptions [50, 51]. Hence, processing incoming data locally as much as possible and 

transmitting only when incoming data shows significant variation can contribute to  

WSN efficiency. Also when a cluster-based topology is in use, data aggregation [52] at 

cluster heads can significantly enhance energy efficiency.     

 

2.3. DATA STREAM MINING 

Nowadays a growing number of applications generate streams of data characterized 

by massive volume and continuous fast arrival rates. Applications such as performance 

measurement in network monitoring and traffic management, call detail records in 

telecommunications, transactions in retail chains, ATM operations in banks, web logs 

on servers, and sensor networks generate data streams. Data stream mining gained in 

importance over recent years because it is indispensable for many real applications 

such as prediction and evolution of weather phenomena; security and anomaly 

detection in networks; evaluating satellite data; and mining health monitoring streams.  

Data stream processing systems are interested in mining patterns, processing queries, 

and compute statistics on data streams in real-time. Stream mining algorithms must 

take account of the unique properties of stream data: infinite data, temporal ordering, 
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concept drifts and shifts, demand for scalability, etc. Due to the nature of data 

streams, the stream processing systems impose certain unique requirements; each 

record (stream element) is examined once or a small number of times at most (single 

pass), there is limited memory for storing summary, and per record processing time 

must be low (real-time). Therefore, the key issue in mining on data streams is that only 

one pass is allowed over the entire data. Moreover, there is a real-time constraint, i.e. 

the processing time is limited by the rate of arrival of instances in the data stream, and 

the memory and disk available to store any summary information may be bounded 

[11]. Data stream processing algorithms generally compute approximate answers with 

deterministic or probabilistic error bounds [53, 54].  There are many stream mining 

techniques and methods proposed within the technology and knowledge discovery 

community to overcome the challenges of storing and processing of fast and 

continuous streams of data [55-57]. Data-based techniques and task-based techniques 

are the two categories of data stream mining algorithms. Based on these two 

categories, a number of clustering, classification, and frequency counting and time 

series analysis have been developed [58]. Data-based solutions focus on stream 

synopses computation that enables efficient processing of the data stream by the 

existing mining methods to meet the requirements of data streams. Task-based 

solutions focus on developing methods to address the computational challenges of 

data stream processing [59, 60].      

There are a number of synopsis data structures in the literature and in existing 

systems. Examples include uniform and biased random samples, various types of 

histograms, statistical summary information such as frequency moments, data 

structures resulting from lossy compression of the data set, etc. Often, synopsis data 

structures are used in a heuristic way, with no formal properties proved on their 

performance or accuracy, especially under the presence of updates to the data set 

[61]. A Variety of techniques can be used for synopsis construction in data streams 

including sampling, histograms, wavelets, sketches, and micro-cluster based 

summarization. A survey of these methods construction in data streams can be found 

in [62]. Task-based techniques include approximation algorithms, sliding windows, and 

algorithm output granularity [60].  
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Based on the two data stream mining techniques, data-based and task-based, a 

number of methods/algorithms have been proposed for extracting knowledge from 

streaming data. These mining algorithms summarize the whole or part of the incoming 

stream using data-based techniques such as sampling [63], load shedding [64], 

sketching [65], synopsis data structures [66], clustering [67], etc. to form the basis for 

data stream mining. Based on the data stream summaries a number of task-based 

stream analysis techniques have been employed including frequent pattern mining in 

data streams [68], multidimensional analysis of streaming data [69], classification 

analysis of data stream [70], stream clustering [67], stream outlier analysis, rare event 

detection [71], and so on. Among these, the most frequently applied techniques are 

described below.  

 

2.3.1. Frequent pattern mining  

Frequent pattern mining has become one of the most actively researched topics in 

data mining and knowledge discovery in databases. The starting point was market 

basket analysis and especially the task to mine transactional data, which describe the 

shopping behavior of customers of supermarkets, mail-order companies and online 

shops, for products that are frequently bought together. For this task, which became 

generally known as frequent item set mining, a large number of efficient algorithms 

were developed, which are based on sophisticated data structures and clever 

processing schemes. Among them, Apriori [72], Eclat [73], and FP-growth [74, 75] are 

most widely known. Extensions from item sets to item sequences are fairly 

straightforward, but open up exciting new application areas, like genome mining [76] 

and temporal pattern extraction from data describing, for instance, alarms occurring in 

telecommunication networks [77]. Recently, finding frequent patterns from data 

streams has become one of the important and challenging problems, since capturing 

the stream content memory efficiently with a single-pass and efficient mining have 

been major issues [78].  

Jiawei et al. [74] developed an efficient Frequent-pattern tree (FP-tree) based 

mining method, FP-growth, for mining the complete set of frequent patterns by 

pattern fragment growth. They avoided the costly candidate generation-and-test 



22 
 

 
 

drawback of Apriori-like algorithms. The use of FP-growth is, however, restricted to 

static data sets due to the FP-tree requirements of two database scans and prior 

threshold knowledge. Leung and Khan [79] proposed a novel tree structure, called 

DSTree (Data Stream Tree) that efficiently captures important concepts from the data 

stream. Several frequent pattern mining algorithms in streaming data use the sliding 

windows approach [80]. Carson and Fan [81, 82] proposed mining algorithms that use 

the time-fading and landmark models to discover frequent patterns from streams of 

uncertain data. They designed a tree structure that captures and stores frequent 

patterns discovered from batches of transactions in dynamic streams for users 

interested in discovering frequent patterns from a variable-size time window. Several 

other stream frequent pattern mining algorithms have been proposed [83, 84].     

 

2.3.2. Classification Mining 

Classification is a data mining (machine learning) technique used to predict group 

membership for data instances or is the process of automatically creating a model of 

classes from a set of records that contain class labels. The Classification mining 

function analyzes records that are already known to belong to a certain class, and 

creates a profile for a member of that class from the common characteristics of the 

records. A data mining application tool can then be used to apply this model to new 

records, that is, records that have not yet been classified. Popular classification 

techniques include decision trees and neural networks.  

In recent years, there have been progressively several decision tree algorithms 

for data stream classification emerged, such as Very Fast Decision Tree (VFDT) [85] and 

Concept Adapting Very Fast Decision Tree (CVFDT) [86]. VFDT implements a decision-

tree learning system based on the Hoeffding tree algorithm. CVFDT is a decision-tree 

induction system capable of learning accurate models from high speed, concept-

drifting data streams. CVFDT is an efficient algorithm for mining decision trees from 

continuously-changing data streams, based on the ultra-fast VFDT decision tree 

learner. CVFDT stays current while making the most of old data by growing an 

alternative subtree whenever an old one becomes questionable, and replacing the old 

with the new when the new becomes more accurate. Feixiong and Quan [87] have 
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extended the VFDT system to EVFDT (Efficient-VFDT) in two directions: (i) they present 

Uneven Interval Numerical Pruning (UINP) approach for efficiently processing 

numerical attributes. (ii) they use naive Bayes classifiers associated with the node to 

process the samples to detect the outlying samples and reduce the scale of the trees. 

From the experimental comparison, the two techniques significantly improve the 

efficiency and the accuracy of decision tree construction on streaming data. 

 

2.3.3. Outlier Detection 

Outlier detection is a branch of data mining concerned with the discovery of data that 

deviates significantly from other data. An outlier is an observation in a data set which 

appears to be inconsistent with the reminder of that set of data [88]. Outliers are often 

considered as an error or noise; however, they may carry important information. Their 

detections prior to data modeling and analysis is usually a key to coherent analysis and 

unbiased results. Outlier detection has found application in credit card fraud detection 

[89], clinical trials [90], data cleansing [91], network intrusion [92], severe weather 

prediction [93], geographical information systems [94], and others. Several studies 

have been conducted on outlier detection for large datasets. The early work in outlier 

detection employs statistical methods on the database assuming  a priori knowledge of 

distribution [95-97]. Clustering algorithms have also been used in outlier detection 

where objects that are not located within clusters of a dataset are considered outliers 

[98-101]. Recently, outlier detections for data streams are also studied using 

techniques as sliding windows [102-104], auto-regressive technique for time series 

data [95, 105], outlier detection for sensor networks’ multiple homogeneous data 

stream [104, 106], and clustering outlier data stream techniques [107, 108].       

 

2.3.4. Stream Clustering 

Clustering in the data stream domain is partitioning of large volumes of data arriving in 

a stream. The objective is to maintain a consistently good clustering of the sequence 

observed so far, using a small amount of memory and time. Due to the relevance of 

new classes of applications involving massive data sets, clustering in the data stream 
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model has become important. In recent years, a few one-pass clustering algorithms 

have been developed for the data stream problem [109, 110]. For instance, the 

algorithm in [110] extends the k-means algorithm to stream based continuous 

clustering, which maintain a number of cluster centers that change or merge as 

necessary throughout the execution of the algorithm. Density based clustering 

algorithms specially designed for data streams have also emerged [111-114]. On the 

other hand, some algorithms using micro-cluster for saving summary information 

about the clusters that are not density based are designed for data streams [115, 116]. 

As the understanding of streaming data mature, more and more commercial stream 

clustering algorithms are emerging. Among the stream clustering algorithms, STREAM 

[118], BIRCH [118], and COBWEB [119] are well known.   

 

2.4. DISTRIBUTED TECHNIQUES FOR WSN DATA STREAM MINING 

The main focus of a vast majority of research in the WSN field is on energy efficiency 

and network lifetime maximization. The dominance of communication power 

consumption over  computation power consumption in WSNs has motivated research 

into a communication-computation tradeoff strategy for energy efficiencies and 

network lifetime maximization. The high data rate of sensor nodes in these networks 

has further raised the issue of data processing model efficiency. Distributed sensor 

data stream mining systems have emerged as a result, to address both the challenges 

of energy efficiency or network lifetime maximization and high data rates. This section 

briefly reviews some of the existing distributed data stream mining methods with 

particular emphasis on distributed sensor data stream clustering WSN systems.  

To design effective distributed techniques for WSN data stream mining 

applications under their inherent constraints, the above general mining techniques 

have to be crafted to suit the distributed nature of WSNs and satisfy online stream 

mining goals. Due to the high computational burden of analyzing such streams, 

distributed stream mining systems have been recently developed [120]. It has been 

shown that distributed stream mining systems transcend the scalability, reliability, and 

performance objectives of large-scale, real-time stream mining systems [121-123].  
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Clustering is probably the most frequently used data mining algorithm, used as 

exploratory data analysis technique [124]. The general goal of a clustering technique is 

to decompose or partition data sets into groups such that both intra-group similarity 

and inter-group dissimilarity are maximized [125]. For the WSN environment to 

achieve significant energy conservation, clustering has to be performed in distributed 

fashion within the network due to the inherent constraints. There are several recent 

research works on distributed clustering. 

When data is being produced at multiple locations, as in a WSN, two major 

clustering frameworks are apparent in the wider literature. The first framework 

consists of a process that gathers data to a central location and analyzes the stream at 

the central location. The second framework consists of two level-processing; level one 

clusters data at the individual sources and level two compiles the results at a central 

location and defines the final clusters based on the clusters transmitted by the 

individual sources. The former framework is obviously resource inefficient and 

inapplicable to WSN systems. The latter framework has attracted several research 

works. The cluster ensemble approach [126], for instance, follows this framework. 

Distributed data mining appears to have the necessary features to apply clustering to 

streaming data produced on sensor networks [127]. Although few works were directly 

targeted at data clustering on sensor networks, some distributed techniques are 

obviously relevant. 

Continuous clustering algorithms over distributed data streams have recently 

attracted the attention of the clustering research community. In [128] the authors 

present a distributed majority vote algorithm, which can be seen as a primitive to 

monitor a k-means clustering over peer-to-peer networks. The k-means monitoring 

algorithm has two major parts: monitoring the data distribution in order to trigger a 

new run of k-means algorithm and computing the centroids actually using the k-means 

algorithm. The monitoring part is carried out by an exact local algorithm, while the 

centroid computation is carried out by a centralization approach. The local algorithm 

raises an alert if the centroids need to be updated. At this point data is centralized, a 

new run of k-means is executed, and the new centroids are shipped back to all peers. 
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A different strategy to achieve the same goal, with local and global 

computations, in order to balance communications costs has been proposed in [129]. 

They considered techniques which give an approximation for the radius and diameter 

of clusters with guaranteed cost of two times the cost of the optimal clustering based 

on the furthest point algorithm [130]. 

Kargupta et al. presented a collective principal component analysis (PCA), and 

its application to distributed cluster analysis [131]. In this algorithm, each node 

performs PCA, projecting the local data along the principal components, and applies a 

known clustering algorithm on this projection. Then, each node sends a small set of 

representative data points to the central site, which performs PCA on this data, 

computing global principal components. Each site projects its data along the global 

principal components, which were sent back by the central node to the rest of the 

network, and applies its clustering algorithm. However, these techniques can easily 

overload the system when the sensors are required to react to a query.  

Klusch et al. proposed a kernel density based clustering method over 

homogeneous distributed data [125], which, in fact, does not find a single clustering 

definition for all data sets. It defines local clustering for each node, based on a global 

kernel density function, approximated at each node using sampling from signal 

processing theory. These techniques present a good feature as they perform only two 

rounds of data transmission through the network. Other approaches using the K-

Means algorithm have been developed for peer-to-peer environments and sensor 

network settings [132]. 

Considering the lack of resources usually encountered on sensor networks, 

Gaber & Yu proposed Resource-Aware Clustering [133] as a stream clustering 

algorithm for clustering that can adapt to the changing availability of different 

resources. The system is integrated in a generic framework that enables resource-

awareness in streaming computation, monitoring main resources like memory, battery 

and CPU usage, in order to achieve scalability in distributed sensor networks, by 

adapting the parameters of the algorithm. Data arrival rate, sampling and number of 

clusters are examples of parameters that are controlled by this monitoring process. 
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Previous works concentrate on clustering of data at local sites and compiling 

the local results at the central cite to define global clustering. Some of the previous 

works also considered relaying the global clusters to the local sites so that the local 

sites can fine tune their local clustering to achieve better overall global cluster models. 

However, none of them considered detecting and suppressing the local site 

computations whenever the data acquired at these sites show no significant changes 

from their previous acquisition, which is a common occurrence in dynamic systems. 

This strategy reduces the global clustering computation at the central site whenever 

there are no significant changes observed at the local sites. Further, few of the 

previous works consider producing mining results in an on-line fashion with the 

exception of [134, 135].  

Qi et al. [134] proposed a suite of communication efficient algorithms for 

computing approximate k-median clustering over distributed data streams under 

different topology settings. Their algorithm basically considers a tree structure 

whereby each node computes local summaries and refines the summaries aggregating 

data from their child nodes along the path to the root. Though this guarantees low 

error bounds in final summaries while significantly reducing communication, it involves 

multiple merge and compression computations to achieve the final summary and 

hence it is not able to handle online clustering of fast streams. This algorithm does not 

feedback the global summaries into the network and hence local summaries have to 

be computed continuously. Therefore, it suffers from poor computation scalability.

 Maria and Iordanis [135] proposed an online data clustering method suitable 

for distributed streaming data processing and for capturing their dynamically changing 

characteristics using belief propagation techniques. They considered a set of 

distributed nodes that communicate directly with a central location. At each time slot 

the node level identifies a set of representative data items (exemplars) based on 

certain similarity matrices and sends the exemplars to the central location. The central 

location computes global exemplars and feeds back to the nodes with appropriately 

modified weights which reflect their importance in global clustering. Their algorithm 

does not apply for multi-hop networks where some nodes cannot directly reach the 

central location. Besides, the appropriate cluster weights feedback is not possible 

where there is no prior knowledge of desired global exemplars. Their work, however, is 



28 
 

 
 

focused on capturing changing characteristics and does not consider resource 

constraints and WSN characteristics.  

 Distributed clustering of streaming data under the framework of two-level 

processing -- where level-one clusters data at the individual sources and level-two 

compile the results at a central location and defines the final clusters based on the 

clusters transmitted by the individual sources -- has been targeted by researchers to 

cope with high-speed production of data streams. Meanwhile, a gap has been left in 

adapting the distributed stream clustering for the on-line mining framework in the 

context of WSNs. We propose a distributed incremental stream mining framework for 

WSNs consisting of a multilevel processing architecture. 

 

2.5. CHAPTER SUMMARY 

In this chapter we have first presented the architecture of WSNs. The WSN functional 

components have hardware platforms, WSN operating systems, wireless protocol 

stacks and applications are described. The energy conservation strategies that can be 

useful at those components are also described. Following the WSN description, the 

data stream mining techniques, specifically those relevant to the WSN framework are 

reviewed. We have analyzed the distributed data stream mining framework based on 

the literature in the context of WSN systems and identified a gap in this research area.    
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Chapter 3 
 

3. RESEARCH TOOLS AND MATERIALS 
 

This chapter introduces general tools and materials that are used in this research to 

model and simulate the concept of distributed incremental data stream mining WSNs 

and implementation of a small scale prototype system. These tools and materials 

enable building models representing real life scenarios and simulate various events to 

derive meaning and draw conclusions from data obtained. Analysis of the details from 

the simulation provides concise descriptions and guidelines for optimal real system 

counterpart development. The main tools and materials used in this research are: 

1. TrueTime simulator.  

2. TI’s CC2530ZNP-Mini kit.  

3. Sensirion’s SHT1x Humidity/Temperature sensors. 

4. Sparkfun’s SEN-08942 Weather meter.  

 

3.1. TRUETIME SIMULATOR 

TrueTime is a MATLAB/Simulink based simulator [136] for real-time networked and 

embedded control systems. It facilitates co-simulation of the temporal behavior of a 

multitasking real-time kernel, network transmissions, and continuous model dynamics. 

The tasks are processes that are modeled as ordinary continuous-time Simulink blocks. 
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TrueTime also makes it possible to simulate models of standard MAC layer network 

protocols, and their influence on the network. Further details can be found in the 

TrueTime kernel Reference Manual [137].  

TrueTime has been studied thoroughly by researchers in the embedded 

networked control systems society. Its reliability has been validated in different 

studies, including simulation of computer nodes and communication networks 

interacting with continuous time dynamics of the real world [138], time-triggered and 

event-based networked control and AODV routing in wireless ad-hoc networks [139], 

and WirelessHART communication system clock drift, delay, and packet loss [140].    

TrueTime is MATLAB-based and requires MATLAB 7.0(R14) with Simulink 6.0 

(R14) or later. TrueTime has been tested under Linux, Windows, and Mac operating 

systems. The TrueTime simulator, as shown in Figure 3.1, contains a block library with, 

TrueTime Kernel block, TrueTime Network block, TrueTime wireless network block, 

TrueTime ultrasound network block, TrueTime Battery block, and TrueTime Send and 

Receive standalone blocks. The blocks are variable-step, discrete, MATLAB S-functions 

written in C++ [141]. The user writes code functions to configure and initialize these 

blocks for a specific simulation. The code functions for tasks and the initialization 

commands may be written either as C++ functions or as MATLAB M-files. During the 

simulation, User defined tasks and interrupt handlers representing, e.g., I/O tasks, 

process algorithms, and network interfaces are executed on the kernel block according 

to a user defined scheduling policy. The TrueTime blocks are event-driven where the 

executions are determined by events (both internal and external). Internal events 

correspond to events such as scheduled timer interrupts, message transmission 

completione, etc. External events correspond to arrivals of over the air messages, 

sensor readings,  etc.  
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Figure 3.1: TrueTime Block Library. 

 

3.1.1. The TrueTime Kernel  

TrueTime implements a complete real-time kernel with a ready queue for tasks ready 

to execute, a time queue for tasks waiting to be released and waiting queues for 

monitors and events. Queues are manipulated by the kernel or by calls to kernel 

primitives. The simulated kernel is ideal such that no interrupt latency and no 

execution time associated with real-time primitives, however possible to specify a 

constant context switch overheads. TrueTime utilizes the Simulink zero-crossing 

function to enable event-based simulation.  

The TrueTime kernel block S-function simulates a computer or controller with a 

simple flexible real-time kernel, including A/D and D/A converters, network interface, 

and external interrupt ports. The kernel abstracts several data structures that are 

commonly found in a real-time kernel such as ready queue, time queue, tasks records, 

interrupt handlers, monitors and timers created for simulation. The execution of tasks 

and interrupt handlers is defined by code functions, written in C++ or MATLAB code. 

Process algorithms may be defined graphically using ordinary discrete Simulink block 

diagrams.  

The kernel is configured through the block mask dialog (Figure 3.2) with 

parameters; Init function, Init function argument, Battery, Clock drift, and Clock offset. 
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A single run-time parameter to configure the kernel on the fly is also available. At the 

moment dynamic CPU scaling and energy consumption can be set through the run-

time configuration command. 

The init function parameter defines the name of the initialization script which 

must be on the same path as the simulation model file. The Init function argument is 

an optional argument to the initialization script. The Battery parameter sets whether 

the kernel should depend on a power source. The Clock drift defines the desired time 

drift between the local time and the actual simulation time. The Clock offset sets a 

constant time offset from the nominal time.  

In this research, the kernel block simulates a sensor node platform i.e. the 

controller that hosts the sensor interface library, wireless protocol stack and data 

stream mining algorithm.  
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Figure 3.2: The TrueTime Block Mask Dialog. 

 

3.1.1.1. Tasks 

In TrueTime, tasks are used to model the execution of user codes. The release of task 

instances (jobs) may be periodic or aperiodic. For periodic tasks, the jobs are created 

by an internal periodic timer. For aperiodic tasks, the jobs (e.g. to respond to set 

interrupts) must be created by the user. When there are multiple jobs of the same 

task, pending jobs are queued. Each job has an execution-time budget. Dynamic task 

attributes such as release time, absolute deadline, and execution time are updated by 

the kernel as simulation progresses. However, static task attributes such as period, 

priority, and relative deadline are kept constant unless explicitly changed by the user. 

Communications between tasks is supported by mailboxes. A finite ring buffer is used 

to store incoming messages. 
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3.1.1.2. Code Function 

The user task code is represented by a code function in the format shown in Equation 

3.1. Discrete Simulink blocks may be called from within the code functions. Block 

states are stored in the kernel between calls.   

ሾ݁݁݉݅ݐܿ݁ݔ, ሿܽݐܽ݀ ൌ ,ݐ݊݁݉݃݁ݏሺ݁݀݋ܿݕ݉	݊݋݅ݐܿ݊ݑ݂	  ሻ                                           (3.1)ܽݐܽ݀

 where data is an input/output argument representing local memory of the 

task. Segment is an input argument representing the program counter, and exectime is 

an output argument representing the execution time of the current code segment.   

 

3.1.1.3. Code Segments 

A code segment models a number of statements that are executed sequentially as 

shown in Figure 3.3. Multiple code segments are required to simulate input-output 

delays, self-suspensions, waiting for events or monitors, and loops or branches. 

 

 

                Real time         Simulation time 

0  statement 1;                                                                             0         

 statement 2; 

  . . .  

     t  statement n;                                                                             t          

Figure 3.3: Code Segment. 

 

The execution time t must be supplied by the user and it may be constant, random or 

data-dependent. A return value of -1 for exectime means that the job has finished. All 

statements in a segment are executed sequentially; non-preemptively, in zero 

    Delay 
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simulation time, and no local variables are saved between segments. Only the delay 

can be preempted by other tasks.  

 

3.1.1.4. Configuring Simulation 

Each kernel block is initialized in a script (block parameter) as in listing 3.1 below. The 

scheduling policy of the kernel is defined by a priority function, which is a function of 

task attributes. Pre-defined priority functions exist for fixed-priority, rate-monotonic 

priority, deadline-first priority, and earliest-deadline-first scheduling.   

 

nbrInputs = 3; 
nbrOutputs = 3; 
ttInitKernel(nbrInputs, nbrOutputs, prioFP); 
periods = [0.01 0.02 0.04]; 
code = myCtrl; 
 
for k = 1:3 

data.u = 0; 
taskname = [Task  num2str(k)]; 
offset = 0; % Release task at time 0 
period = periods(k); 
prio = k; 
ttCreatePeriodicTask(taskname,offset,period,prio,

code,data); 
end 

 

Listing 3.1: The Kernel Block initialization script. 

 

3.1.1.4. Scheduling Hooks 

Scheduling hook is  code that is executed at different stages during the execution of a 

task that facilitates implementation of arbitrary scheduling policies, such as server-

based scheduling. TrueTime supports the following six scheduling hooks; Arrival hook, 

Release hook, Start hook, Suspend hook, Resume hook, and Finish hook. The Arrival 

hook is executed when a job is created. Release hook is executed when the job is first 

inserted in the ready queue. Start hook is executed when the job executes its first 

segment. Suspend hook is executed when the job is pre-empted, blocked or voluntarily 
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goes to sleep. The resume hook is executed when the job resumes execution. The 

Finish hook is executed after the last code segment.   

 

3.1.1.5. Data Logging 

A number of variables may be logged by the kernel as the simulation progresses and 

are written to the MATLAB workspace when the simulation terminates. TrueTime 

provides automatic logging for response time, release latency, sampling latency, task 

execution time, and context switch instances. User variables may be logged as 

required in the given scope.  

 

3.1.1.6. Monitors 

Monitors are used to model mutual exclusion between tasks that share common data. 

Tasks waiting for monitor access are arranged according to their respective static or 

dynamic priorities. The implementation supports standard priority inheritance to avoid 

priority inversion.  

 

3.1.2. The TrueTime Wireless Network 

The TrueTime Wireless network block simulates medium access and packet 

transmission in a wireless network. The network blocks dispatch messages between 

kernel blocks according to a preferred model of a wireless network. The network block 

contains a discrete-event simulator that reads incoming messages, handles the 

medium access and resolves collisions, simulates the actual data transmission, and 

writes outgoing messages.  

It takes into account the path-loss of the radio signal through x and y inputs 

that specify the true location of the nodes. The network protocols supported are 

limited to IEEE 802.15.4 (ZigBee) and IEEE 802.11b/g (WLAN) at the moment. The radio 

model in use includes support for: Ad-hoc wireless networks, isotropic antenna, 
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inability to send and receive messages at the same time, path loss of radio signals 

modeled as ଵௗೌ where ݀ is the distance in meters and ܽ is a parameter chosen to model 

the environment, and interference from other terminals.  

The wireless network block is configured through the block mask dialog (Figure 

3.4) with parameters; Network type, Network number, Number of nodes, Data rate, 

Minimum frame size, Transmit power, Receiver signal threshold, Path-loss exponent, 

ACK timeout, Retry limit, and Error coding threshold.   

The Network type parameter determines the MAC protocol to be used (either 

IEEE 802.15.4 or IEEE 802.11b/g). The network number parameter specifies the 

number of network blocks in use. Number of nodes specifies the number of nodes 

connected to the network block. Data rate determines the speed of the network in bits 

per second (bits/s). Minimum frame size determines the minimum message size in bits 

including protocol overhead. A message or a frame shorter than minimum frame size 

will be padded to give minimum length. Transmit power determines the strength of 

the radio signal and hence its reach. Receiver signal threshold determines the received 

signal energy threshold above which the medium is classed as busy. Path-loss 

exponent models the radio signal path loss of the environment. ACK timeout is the 

time the sending node will wait for ACK (acknowledgment) before retransmitting. 

Retry limit is the maximum number of times a node will try to retransmit a message 

before giving up. Error encoding threshold defines the percentage of block errors 

based on the signal-to-noise ratio in a message that the coding can handle.  

 

3.1.3. The TrueTime Battery 

The battery block enables simulation of battery-powered devices. The initial power of 

a node is set using the battery configuration mask. The battery constitutes a simple 

integrator model, so that it can be both charged and discharged. The power drains 

such as kernel computation, radio transmissions, sensors and actuators must be 

connected to the battery input to simulate the node’s power consumption. If the 

kernel is configured to use battery and the energy input to the kernel is zero, it will not 



38 
 

 
 

execute any code. The dynamic voltage scaling scheme along with the battery block 

allows simulations with changing CPU speed and proportional energy consumption 

scenarios.       

 

 

Figure 3.4: The TrueTime Wireless Network Block mask dialog. 
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3.1.4. Limitations of TrueTime  

TrueTime cannot express tasks and interrupt handlers directly using production code. 

The code is modeled using TrueTime MATLAB code or TrueTime C code and there is no 

automatic translation. Further code execution times or distributions are assumed to be 

known. There is no built-in support for network and transport layer protocols such as 

TCP and AODV, however, these two are implemented as an example and included in 

the package.  The code segments in the code function are non pre-emptive, as 

MATLAB does not allow functions to be pre-empted/resumed.  

 

3.2. TI’s CC2530 ZNP-MINI KIT 

The CC2530ZNP-Mini kit is Texas Instruments (TI) ZigBee network development kit. The 

CC2530ZNP-Mini kit is the successor to the EZ430-RF2480 and uses the ZigBee network 

processor (ZNP) firmware on the CC2530 system-on-chip (SoC). The CC2530ZNP allows 

separating the ZigBee stack from the application processor. The ZigBee Network 

Processor development kit (Figure 3.5) is a typical introduction to ZigBee WSNs. The 

hardware consists of a CC2530 ZigBee device programmed with ZigBee software and 

an MSP430F2274 microcontroller that controls the ZigBee device. The kit enables 

existing applications to add a serial interface to a ZigBee processor that takes care of 

all protocol handling for ZigBee communication. The kit sensor boards include an 

accelerometer, temperature sensor, and light sensor that can be used in conjunction 

with LED lights and push buttons to develop simple demo applications. The Kit board is 

shown in Figure 3.6 below. 

 

3.2.1. CC2530 

TI’s CC2530 is a true system-on-chip solution tailored for IEEE 802.14.5, ZigBee 

applications. The CC2530 combines a fully integrated, high-performance RF transceiver 

with an 8085 MCU, 8 KB of RAM, 32/64/128/256 KB of Flash memory, and powerful 

supporting features and peripherals. Combined with TI’s low power microcontroller, 

MSP430F2274, CC2530ZNP provides a very easy way of deploying and testing low 
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power sensor networks. The block diagram of the CC2530 is shown in Figure 3.7 below. 

Refer to datasheet [143] for more details of the CC2530. The kit provides some typical 

features for low power WSN based on the ZigBee standard; 

• 2.4-GHz IEEE 802.15.4 Compliant RF transceiver.  

• Excellent Receiver Sensitivity and Robust to Interference. 

• Programmable Output Power up to 4.5 dBm 

• High-performance and Low-Power 8085 Microcontroller core with Code 

Prefetch. 

• Low Power 

o Active mode RX (CPU Idle): 24 mA. 

o Active mode TX at 1 dBm(CPU Idle): 29 mA. 

o Power mode 1 (4 ߤs wake-up): 0.2 mA. 

o Power mode 2 (Sleep Timer Running): 1 ߤA. 

o Power mode 3 (External Interrupt): 0.4 ߤA. 

o Wide Supply-Voltage Range (2 V – 3.6 V). 

• ISP communication to host controller  

 

Figure 3.5: CC2530ZNP-Mini Kit. 
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Figure 3.6: CC2530ZNP board. 
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Figure 3.7: CC2530 ZNP Block Diagram. 
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3.2.2. MSP430F2274 

The Texas Instruments MSP430F2274 is an ultra-low-power mixed signal 

microcontroller. It features a powerful 16-bit RISC CPU, 16-bit registers, and constant 

generators that contribute to maximum code efficiency. The MSP430F2274 peripherals 

include two built-in 16-bit timers, a universal serial communication interface, 10-bit 

A/D converters with integrated reference and data transfer controller (DTC), two 

general-purpose operational amplifiers, and 32 I/O pins. The architecture combined 

with five low-power modes is optimized to achieve extended battery life in portable 

applications. Refer to the datasheet [142] for more information. The functional block 

diagram of the device is shown in Figure 3.8.  

The clock system of the MSP430F2274 is supported by the basic clock module that 

includes support for a 32768-Hz watch crystal oscillator, an internal very-low-power 

low-frequency oscillator, an internal digitally-controlled oscillator (DCO), and a high-

frequency crystal oscillator. The basic clock module is designed to meet the 

requirements of both low system cost and low power consumption. The internal DCO 

provides a fast turn-on clock source and stabilizes in less than 1 ߤs. The basic clock 

model provides the following clock signals: 

• Auxiliary clock (ACKL), sourced from a 32768-Hz crystal, a high-frequency 

crystal, or the internal very-low-power LF oscillator 

• Main clock (MCLK), the system clock used by the CPU 

• Sub-main clock (SMCLK), the sub-system clock used by the peripheral modules 

The MSP430F2274 microcontroller has an active mode and five software-selectable 

low-power modes of operation. An interrupt event can wake up the device from any of 

the five low-power modes, service the request, and restore back to the low-power 

mode on return from the interrupt programme. 

The operation modes of the MSP430F2274 are: 

• Active mode (AM) 

o All clocks are active. 

• Low-power mode 0 (LPM0) 
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o CPU is disabled. 
o ACLK and SMCLK remain active. MCLK is disabled. 

• Low-power mode 1 (LPM1) 

o CPU is disabled ACLK and SMCLK remain active. MCLK is disabled. 
o DCO dc-generator is disabled if DCO not used in active mode. 

• Low-power mode 2 (LPM2) 

o CPU disabled. 
o MSCL and SMCLK are disabled. 
o DCO dc-generator remains enabled. 
o ACLK remains active. 

• Low-power mode 3 (LPM3) 

o CPU is disabled. 
o MCLK and SMCLK are disabled. 
o DCO dc-generator is disabled. 
o ACLK remains active. 

• Low-power mode 4 (LPM4) 

o CPU is disabled. 
o ACLK is disabled. 
o MCLK and SMCLK are disabled. 
o DCO dc-generator is disabled. 
o Crystal oscillator is stopped. 

 

The MSP430F2274 has four 8-bit I/O ports implemented—ports P1, P2, P3, and P4. 

Only three I/O pins are implemented from port P2, therefore bits [5:1] of all port P2 

registers read as 0 and write data is ignored. 

• All individual I/O bits are independently programmable. 

• Any combination of input, output, and interrupt condition is possible. 

• Edge-selectable interrupt input capacity for all eight bits of port P1 and P2. 

• Read/write access to port-control registers is supported by all instructions. 

• Each I/O has an individually programmable pull-up/pull-down resistor. 
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Figure 3.8: MSP430F2274 Functional Block Diagram. 

 

3.3. SHT15 – DIGITAL HUMIDITY SENSOR (RH&T) 

SHT15 digital humidity and temperature sensor integrates sensor elements plus signal 

processing on a tiny footprint (Figure 3.9) and provides a fully calibrated digital output. 

A capacitive sensor element is used for measuring relative humidity while temperature 

is measured by a band-gap sensor. Both sensors are seamlessly coupled to a 14-bit 

analog to digital converter (ADC) and a serial interface circuit. It is calibrated with its 

own calibration coefficients saved on the sensor’s own EEPROM. The two-wire serial 

interface and internal voltage regulation allows for easy and fast system integration.   

The SHT15 features; 

1. Energy consumption: 800uW (at 12-bit, 3V, 1 measurement/s) 

2. RH operating range: 0 -100 % RH 

3. T operating range: -40 - +125 Ԩ (-40 - +257 Ԭ) 

4. RH response time: 8 sec (߬ 63%) 

5. Output:  digital (2-wire interface) 
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where ߬ is the time for reaching 63% of a step function, valid at 25Ԩ and 1m/s 

airflow. 

Relative humidity from 0% to 100% can be measured in typical steps of 2 % RH. 

Temperature sensor has a range of -40 degree Celsius to 123.8 degree Celsius with +-

0.03 degree Celsius resolution.    

The relative humidity (RH) sensor is non-linear. For compensating the non-

linearity of the humidity sensor and obtaining the full accuracy of the sensor it is 

recommended to convert the humidity readout ሺܱܵோுሻ with the following formula 

(3.2) with coefficients given in Table 3.1. 

௟௜௡௘௔௥ܪܴ             ൌ ଵܥ	 ൅	ܥଶ ∗ ܱܵோு ൅	ܥଷ ∗ 	ܱܵோுଶ (%RH)                                            (3. 2)  

 

Table 3.1: Humidity conversion coefficients. ࡯ ࡴࡾࡻࡿ૚ ࡯૛ ࡯૜ 

12 bit -2.0468 0.0367 -1.5955E-6 

8 bit -2.0468 0.5872 -4.0845E-4 

 

The band-gap proportional to the absolute temperature is very linear by design. 

Equation 3.3 should be used to convert digital readout ሺ்ܱܵሻ to temperature value, 

with coefficients given in Table 3.2. 

                                      ܶ	 ൌ 	݀ଵ ൅	݀ଶ ∗ ்ܱܵ                                                                         (3.3) 
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Table 3.2: Temperature conversion coefficients. 

VDD ࢊ૚	ሺԨሻ ࢊ૚ ሺԬሻ
  5V -40.1 -40.2

4V -39.8 -39.6

3.5V -39.7 -39.5

3V -39.6 -39.3

2.5V -39.4 -38.9

  

 

Figure 3.9: SHT15 Digital Humidity Sensor. 

 

3.4. SEN-08942 WEATHER METER 

SEN-08942 is Sparkfun Electronics’ weather station that includes an anemometer, wind 

vane, and rain gauge (Figure 3.10). The sensors contain no active electronics, instead 

using sealed magnetic reed switches and magnets to take measurements. A voltage 

must be supplied to each instrument to produce an output. The anemometer uses a 

reed switch, so simple frequency detection can be used to measure wind speed. The 

wind vane uses a potentiometer to detect wind direction. The rain gauge acts as a 

switch that closes at measured increments.  

The rain gauge is a self-emptying tipping bucket type. Each 0.011’’ (0.2794mm) 

of rain causes one momentarily contact closure that can be recorded with a digital 

counter or microcontroller interrupt input. 

૛ࢊ ࢀࡻࡿ ሺԨሻ ࢊ૛	ሺԬሻ 
14 bit 0.01 0.018 

12 bit 0.04 0.072 
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The cup-type anemometer measures wind speed by closing a contact as a 

magnet moves past a switch. A wind speed of 1.492 MPH (2.4 km/h) causes the switch 

to close once per second.  

The wind vane has eight switches, each connected to a different resistor. The 

vane’s magnet may close two switches at once, allowing up to 16 different positions to 

be indicated. An external resistor can be used to form a voltage divider, producing a 

voltage output that can be measured with an analog to digital converter. 

 

Figure 3.10: SEN-08942 Weather meter. 
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3.5. CONCLUSION 

TrueTime is capable of investigating behavior of time or event-triggered processes 

(such as control loops) subject to sampling jitter, input-output latency, and lost 

samples caused by real-time scheduling and networking effects. It is also capable of 

investigating the performance of various scheduling methods, and wired or wireless 

MAC protocols. It can further simulate scenarios involving battery-powered and mobile 

nodes communicating using wireless ad hoc networks.  

The CC2530ZNP-Mini kit is a perfect tool to add low-power wireless capability 

to an existing system with minimum porting as it provides separate application 

processor and ZigBee communication protocol processor.  

The SHT15 Humidity and Temperature Sensor provides stable and high 

resolution digital output, which is ideal for applications that require long term 

untethered operation.  

SEN-08942 weather meter is simple to implement, cost-effective, and low-

power, well suited for energy constrained WSNs. 
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Chapter 4 
 

4. DISTRIBUTED INCREMENTAL DATA STREAM MINING WIRELESS 
SENSOR NETWORK FRAMEWORK 

 

4.1. INTRODUCTION 

This chapter describes the theory of distributed incremental data stream mining WSNs 

based on the hybrid fuzzy clustering technique. The proposed framework enables 

mining of continuously streaming WSN data on the fly and in-network with limited 

resource requirements, thus expands the scope of applications for WSNs.  The basic 

concept is to develop a distributed sensor data stream mining algorithm that 

minimizes inter-node communications, maximizes local computation and energy 

efficiency without compromising practical application requirements and quality of 

service (QoS). 

  WSNs consist of spatially distributed autonomous sensor nodes equipped to 

sense specific information and hence can be considered as distributed data sources 

(database). In several WSN applications, physical variables such as temperature, 

relative humidity, and light are generated in continuous streams. In such applications 

the WSN can be modeled as distributed data stream base and different distributed 

data stream management techniques can be utilized for analysis of the WSN. 

In several WSN applications, physical variables such as temperature, relative 

humidity, and light are monitored continuously along the network operation. WSNs 

usually generate data continuously in an online fashion as time progresses. Thus, data 

arrival to the sink is more or less continuous and unordered. Data with such features 
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are commonly referred to as data streams [57], which are also known as sensor 

streams for data streams generated by sensor networks [144].  

 

WSN nodes, besides being data stream sources, are also capable of limited 

processing, storing, and transmitting their data short distances wirelessly. This work 

leverages these limited capabilities of sensor nodes and their distributed nature to 

implement a distributed sensor stream mining system. The framework aims to achieve 

energy-efficiency, communication-efficiency, and computation-efficiency as a result of 

the incremental in-network distributed data stream clustering before transmission- 

commonly known as the computation-communication tradeoff [145]. 

 

4.2. DISTRIBUTED INCREMENTAL DATA STREAM MINING 
 

Most WSN applications envisage large deployments of wireless sensor nodes at high 

redundancy to account for the unreliability of individual nodes. In order for large 

deployments to be cost-effective, sensor nodes are resource-constrained in terms of 

energy capacity, radio transmission, processing capabilities, and memory storage 

[146]. Transmitting data to a certain distance results in consuming several orders of 

larger energy than processing. Therefore, distributed local processing can offer 

tremendous advantages to WSNs in general. However, WSN nodes are limited in 

processing capability to individually accomplish computational requirements of certain 

applications on the acquired sensor data. Further, certain applications require 

simultaneous acquisition and computation of data from several nodes at distributed 

locations. Under these circumstances, distributed and organized cooperative 

processing is required.    

  

4.3. NETWORK ARCHITECTURE FOR DISTRIBUTED INCREMENTAL DATA 
STREAM MINING  
 

The proposed distributed incremental data stream mining system is coupled to a 

hierarchical two-tiered communication architecture of WSN. Hence, the data stream 
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clustering algorithm assumes that the network nodes or sensor nodes are organized in 

distinct hierarchical clusters of nodes with each cluster under a predefined cluster 

head (CH). WSN nodes under this scheme organize themselves in clusters and 

cooperate to perform an assigned task autonomously without intervention.  

We assume a two-tiered communication architecture. The first tier consists of 

sensor nodes to cluster heads communication. The sensor nodes are only able to 

communicate two ways with their cluster heads and no sensor to sensor 

communication is assumed. The sensor nodes are sources of the streaming data. The 

second tier consists of cluster heads to Sink communication. Here, the cluster heads 

can communicate to one another besides communication with the Sink. Cluster heads 

can send data packets multi hop to the Sink via other cluster heads, therefore the 

network reach is extended. The cluster heads do not  any data, but are purely tasked 

with computations and communications of sensor node data. The network 

architecture of the distributed incremental data stream mining system is shown in 

Figure 4.1. 

 

 
Figure 4.1: The hierarchical two-tiered WSN architecture for the distributed 

incremental data stream mining framework. 



53 
 

 
 

4.4. DISTRIBUTED INCREMENTAL DATA STREAM MINING FRAMEWORK  

A detailed description of the distributed incremental data stream mining framework is 

presented in this section. The underlying principle of distributed incremental stream 

mining is to handle the sensor stream mining process in-network at distributed 

locations and incrementally at multiple hierarchical levels. This involves starting from 

simple local processing at sensor nodes to fair regional mining at intermediate nodes 

(CHs) and through to complete global mining at the network sink. The approach is such 

that as the sensor streams traverse up the network from sensor nodes via 

intermediate nodes and finally to the network sink, the stream processing complexity 

increases while the total amount of transmitted bits  decreases.  

This approach consists of three distinct stream processing tasks asynchronously 

but cooperatively revealing the underlying structure in distributed sensor data 

streams. These tasks are the sensor nodes, the cluster heads, and the network sink 

processing tasks.   

 

4.4.1. Sensor Nodes Processing 

The basic idea is for the sensor nodes to process the incoming stream locally and 

minimize data transmission as much as possible without compromising the accuracy of 

the information hidden in the stream.  

Under this scheme, the sensor nodes initially transmit an item of their stream 

(tuple) to their respective cluster heads and wait for their cluster head’s response. The 

Cluster heads respond to each sensor node by transmitting cluster prototypes that are 

computed from the received tuple and tuples received from other members of the 

group. Following this initial transmission, the sensor nodes continuously compare their 

incoming tuples to the received local cluster prototype. If their input tuples fall within 

their local cluster prototype with a deviation less than a predetermined threshold, 

from now on referred to as local the model drift threshold, then the sensors categorize 

the tuples as belonging to the local cluster prototype and avoid transmission. 

However, if the new input tuples deviate significantly from the local model drift 

threshold, then they transmit the new tuple to their cluster head and wait to receive 
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the new local cluster prototype. The sensor nodes, following the initial transmissions, 

only transmit their input tuples whenever there is significant drift in their acquired 

stream information.   

Consider a general model of a data stream where data values are generated as 

stream of tuplesሺݔ௜ሻ. Let ܵ ൌ ሺݔଵ, … , ݊ ,௡ሻݔ ൌ 1,2,3,…∞ be the data stream that is 

continually generated at sensor nodes as time progresses, where ݊ is the stream tuple 

number. Let ሺݔଵሻ be the first tuple of a data stream. For a cluster of ܯ member nodes, 

there will be ሼ ଵܵ, ܵଶ, ܵଷ, … , ܵெሽ  data streams being generated simultaneously within 

the cluster.  

We assume unordered, unaggregated model (cash register) of data arrivals i.e. 

the general case where data arrives unordered and the same value may appear 

multiple times within the stream [66]. The processing of massive data streams requires 

the use of a more restricted model of computation where data streams must be 

processed with the demand that each tuple in the stream must be processed 

completely and discarded before the next is received [147]. In this model, once a tuple 

has been seen, it cannot be retrieved unless it is explicitly stored in the main memory 

which is extremely limited for WSN nodes.  

During initial transmission, the first tuple of all streams ሺݔଵ௜ , ݅ ൌ 1,2,3,…  ሻ isܯ,

sent to the cluster head. The cluster head will use the SUBFCM (described in Chapter 5) 

algorithm to partition the first tuples into cluster prototypes ሺܿ௜, ݅ ൌ 1,2,3, … ,  ሻ ofܥ

“similar” tuples, where ܥ is the number of cluster prototypes at the moment. The 

word “Similar” is context specific (i.e. two tuples are considered similar when the 

measure of their distance metric taken in all dimensions is a minimum). Hence each 

sensor node will have a cluster structure ሺܿ௜ሻ that its stream currently belongs to. The 

tuple that is then generated ሺݔ௡ሻ by a sensor node, will be compared to the received 

local cluster structureሺܿ௜ሻ. If the deviation of tuple ሺݔ௡ሻ is within a given local model 

drift thresholdሺ݄ܶሻ, then the stream is considered in line with the local cluster 

structure and its transmission will be suppressed. However if its deviation exceeds the 

local model drift threshold ሺ݄ܶሻ given, then the tuples will be transmitted to the 

cluster head and local cluster structure update is requested. Graphical depiction of the 

data stream and sliding window is shown in Figure 4.2. 
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The sensor nodes compute the deviation of their current stream from the local 

cluster prototype as: 

 ݀ሺ௫೙,௖೔ሻ ൌ ݊_ݔ‖ െ ܿ_݅ ‖஽^                      (4.1)

 

                               where ܦ is the dimension of the tuple.  

 

 

 

 

 

Algorithm 4.1: Sensor processing algorithm. 

1 
 
2 
3 
4 
5 
 
 
6 
7 
8 
 
9 
10 
11 
12 
 
13 
14 
15 
16 
17 
 
18 
 
 

Input stream: ܵ ൌ ൫ݔଵ, ,ଶݔ  ݄ܶ = ஶ൯, set thresholdݔ,…,ଷݔ
 
 ݅ ൌ 1 
 ݊	 ൌ 	1 
        ଵݔ௡ୀݔ	݉ܽ݁ݎݐݏ	ݐݏݎ݂݅		ܴ݀ܽ݁ 
  ܪܥ	݋ݐ		ଵݔ		݀݊݁ܵ 
 

WHILE  ݈ܿݎ݁ݐݏݑ	݁݌ݕݐ݋ݐ݋ݎ݌	ሺܿ௜ሻ	݊ݐ݋	݀݁ݒ݁݅ܿ݁ݎ 
    Wait to receive  ܿ௜ 
ENDWHILE 

WHILE  (1)                 //loop forever 

          ݊ ൌ ݊ ൅ 1  
 ௡ݔ	ܴ݀ܽ݁          
          ݀ሺ௫೙,௖೔ሻ ൌ ௡ݔ‖ െ ܿ௜‖஽             //D is dimension of the input stream elements

          WHILE    ݀ሺ௫೙,௖೔ሻ ൒ ݄ܶ 
 ܪܥ	݋ݐ	௡ݔ	݀݊݁ܵ        
 ݁ݐܽ݀݌ݑ		௜ܿ	ݐݏ݁ݑݍܴ݁        
        ݅ ൌ ݅ ൅ 1 
          ENDWHILE 
 
ENDWHILE 

Figure 4.2: Graphical depiction of data stream and sliding window. 

Processing 
node Tuple n + 1 Tuple n Tuple 4

Incoming stream 

Tuple 3 Tuple 1Tuple 2

N n-3 n-2 n-1 0 1 2 3 4 5 6 

Sliding window



56 
 

 
 

4.4.2. Cluster Head Processing 

The basic idea of stream processing at this level is to compute local cluster prototypes 

of the streams generated by all member nodes.  Processing here assists sensor nodes 

to optimize communication by sending them their local cluster prototypes so that 

sensors will only transmit new input streams when they detect significant deviation in 

their streams and request update. Cluster head processing also optimizes CH-to-Sink 

communication by transmitting cluster summary of their local streams to the Sink 

rather than the whole local stream. 

Cluster heads form and maintain a short table of Tuples of their member 

nodes- from now on known as Local Stream Base (LSB). Initially the CHs cluster the 

Tuples in the Local Stream Base using the SUBFCM algorithm and multicast the local 

cluster prototypes to the associated member nodes. CHs further send local cluster 

prototypes and associated node ID’s to the Sink for computation of global cluster 

prototypes for location based event cluster mapping.  During subsequent stages, if CHs 

receive a stream Tuple from member nodes (i.e. a local cluster prototype update is 

requested), then they update the LSB. If certain number of set update requests, ∈ , are 

received, then the CHs re-compute local cluster prototypes and transmit updated local 

models to each member node and the Sink as well.   

Consider a single cluster of the network under consideration which contains ܯ 

member sensor nodes each generating a data stream. At every time instance, the 

cluster head, CH, receives ܯ streams, one from each of its members. The CH maintains 

a sliding window of size LSB which updates randomly as local tuples are received from 

member nodes which also represent local cluster prototype update requests.  

Initially, the sliding window will be filled by the first tuples of all member nodes 

as: 

 ሺݔଵ௜ , ݅ ൌ 1,2,3, … ሻ                    (4.2)ܯ,

 

The tuples in (4.2) are the first entry for streams being generated at ܯ 

geographic locations within the cluster and are given as: 
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 ሼ ଵܵ, ܵଶ, ܵଷ, … , ܵெሽ                    (4.3)

 

Subsequently, the sliding window will be updated only when the member 

nodes detect changes in their local stream concept and send their current tuples. 

Therefore the sliding window update is randomly based on the local stream concept 

drift. The subsequent sliding window content can be represented as: 

 

 ሺݔ௡௜ , ݅ ൌ 1,2,3, … ሻ                    (4.4)ܯ,

 

Upon receiving a set local cluster prototype update requests, ∈ , the CH, 

recomputes local cluster prototypes, ሺܿ௜, ݅ ൌ 1,2,3, … ,  ሻ, using the SUBFCM algorithmܥ

and sends the updated local models to each member nodes and the Sink.     
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Algorithm 4.2: Cluster heads processing algorithm. 
1 
 
2 
3 
4 
 
5 
 
6 
7 
8 
9 
 
10 
 
11 
12 
13 
 
14 
 
15 
16 
 
17 
 
18 
 
19 
 
20 
21 
22 
23 
24 
25 
 
 
26 
 
27 

INPUT: initialize LSB, set maximum update request ∈ 
 ݊ ൌ 1                          ݅ ൌ ݐݏ݁ݑݍ݁ݎ	݁ݐܽ݀݌ݑ 1 ൌ 0                       //update request is no. of update requests 
received 
 
WHILE  ݅ ൏  M is no. of active cluster members //                                    ܯ
 

     IF     ݔ௡௜ ௡௜ݔ//       ݀݁ݒ݅݁ܿ݁ݎ	ݏ݅	   is the ݊௧௛ stream item from ݅௧௛  cluster 
member 
ሾ݅ሿܤܵܮ                ൌ ௡௜ݔ  
                ݅ ൌ ݅ ൅ 1 
      ENDIF 
 
ENDWHILE 
	݇݊݅ݏ	݋ݐ	௜ܿ	݀݊݁ݏ	ݏ݁݀݋݊	ݎܾ݁݉݁݉	݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ	݋ݐ	௜ܿ	݀݊݁ݏ	ܤܵܮ	݉݋ݎ݂	ሺܿ௜ሻ	݁݌ݕݐ݋ݐ݋ݎ݌	ݎ݁ݐݏݑ݈ܿ	݁ݐݑ݌݉݋ܿ 
 ݅ ൌ 1 
 
WHILE (1)                             // loop forever 
           ݊ ൌ ݊ ൅ 1   
  
           IF  ݔ௡௜  ݀݁ݒ݅݁ܿ݁ݎ	ݏ݅	
 
ሾ݅ሿܤܵܮ           ൌ ௡௜ݔ  
  
ݐݏ݁ݑݍ݁ݎ	݁ݐܽ݀݌ݑ           ൌ ݐݏ݁ݑݍ݁ݎ	݁ݐܽ݀݌ݑ ൅ 1	 
 
                  IF   ݁ݐܽ݀݌ݑ	ݐݏ݁ݑݍ݁ݎ ൌ	∈ 
 ܤܵܮ	݉݋ݎ݂	௜ܿ	݁ݐݑ݌݉݋ܿ݁ݎ                
 ݏ݁݀݋݊	ݎܾ݁݉݁݉	݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ	݋ݐ	௜ܿ	݀݊݁ݏ                
 ݇݊݅ݏ	݋ݐ	௜ܿ	݀݊݁ݏ                
ݐݏ݁ݑݍ݁ݎ	݁ݐܽ݀݌ݑ                 ൌ 0 
                  ENDIF 
 
  
 ENDIF 
 
ENDWHILE 
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4.4.3. Sink Processing  

The network sink as being the most capable node undertakes the most 

computationally intensive task. Sink processing is mainly to extract the global stream 

cluster prototypes based on the local cluster prototypes received so far and present 

the sensor stream mining results and facilitate sensor stream analysis for a user.  

The sink maintains a table of stream clusters and associated node IDs of all 

previous transactions- now on known as Global Stream base (GSB). On every 

communication with CHs the Sink updates its GSB and performs global stream 

clustering.     

Assume the network contains a total of ܰ sensor nodes organized under ܯ 

clusters. As described above, at each time instance, every cluster head sends the local 

cluster prototypes to the Sink given as: 

 ሺܿ௜, ݅ ൌ 1,2,3,… , ሻ                    (4.5)ܥ

 

Each of the local cluster prototypes  represent the ܯ data streams given in 

Equation 4.3. Therefore the GSB at any time instance contains ܯ such local cluster 

prototypes given as  

 ሼሺܿ௜, ݅ ൌ 1,2,3, … , ݉,ሻ௠ܥ ൌ 1,2,3, ሽ                    (4.6)ܯ…

 

The Sink computes global cluster prototypes using the SUBFCM algorithm every 

time there is an update to its GSB entry. The sink node possesses abundant 

computational, energy, and memory resource due to its physical connection to a base 

station. Therefore, besides handling the global cluster prototype model computations, 

it also stores all the local prototypes for historical analysis. Due to the same reason of 

abundance of resource, the Sink computational, communication complexities and 

energy consumption are not analyzed. 
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Chapter 5 
 

5. DEVELOPMENT OF SUBTRACTIVE FUZZY CLUSTER MEANS (SUBFCM) 
ALGORITHM 

 

This chapter describes the Subtractive Fuzzy Cluster Means (SUBFCM) algorithm 

developed for distributed incremental data stream mining in a resource-limited 

environment such as WSN.  The SUBFCM algorithm is designed to be embedded and 

run on resource (such as computation, memory and power) limited nodes of WSNs. It 

builds a base for cluster mining techniques. SUBFCM combines subtractive clustering 

with fuzzy c-means algorithms to achieve clustering without the need of the number of 

partitions within the data space to be known a priori. SUBFCM is implemented as an 

autonomous unsupervised learning algorithm that feeds on distributed streaming data 

within a WSN. Its primary purpose is to minimize energy consumption of individual 

WSN nodes and consequently extend network lifetime. Following the strategy of 

computation-communication trade-off, the algorithm performs local pattern discovery 

within individual nodes and sends only the necessary information over the network. 

 

5.1. CLUSTERING 
 
Clustering has been one of the most widely studied topics in the data-mining field. K-

means and fuzzy C-means clustering algorithms have been two of the most popular 

algorithms in this field. Fuzzy c-means (FCM) is a method of clustering developed by 

Dunn [148] and later improved by Bezdek [149]. FCM allows a piece of data to belong
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 to two or more clusters with varying degree of memberships. In real applications 

there is very often no sharp boundary between clusters so that fuzzy clustering is often 

better suited for the data. Membership degrees between zero and one are used in 

fuzzy clustering instead of crisp assignments of the data to clusters. The most 

prominent fuzzy clustering algorithm is the fuzzy c-means, a fuzzification of k-means. 

The Fuzzy C-Means (FCM) algorithm is the most widely used clustering algorithm in the 

field of data mining. It allows one piece of information to belong to two or more 

clusters. One of the drawbacks of FCM in exploratory data analysis is that it requires 

the number of clusters within the data space to be known beforehand. When the 

purpose of clustering is to automatically partition multivariate data coming from a 

dynamic source, the number of partitions in the data space is typically unknown.   

Hence in this research, subtractive clustering and FCM algorithms are combined to 

implement an algorithm that does not require prior information about the number of 

clusters in the data space. The proposed algorithm is called Subtractive Fuzzy Cluster 

Means algorithm (SUBFCM) [150], and is described below. 

 

5.2. DATA STREAM MINING ALGORITHM 
 
Data stream mining is the process of extracting knowledge structures from continuous 

data streams. A data stream is an ordered sequence of instances that in many 

applications of data stream mining can be read only a small number of times using 

limited computing and storage capabilities. Examples of data streams include, among 

others, computer network traffic, phone conversations, ATM transactions, web 

searches, and sensor data. In data mining we  are interested in techniques for finding 

and describing structural patterns in data as a tool for helping to explain that data and 

make predictions from it [151]. One of the popular data mining techniques in a 

centralized environment is data clustering. The general goals of a clustering technique 

is to decompose or partition data sets into groups such that both intra-group similarity 

and inter-group dissimilarity are maximized [125].  

WSNs can benefit a great deal from stream mining algorithms in terms of 

energy conservation and efficient services. However, for WSNs to achieve significant 
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energy conservation, the data stream mining has to be distributed within the network 

due to their resource constraints [150, 152]. 

Data mining applications place special requirements on clustering algorithms 

including: the ability to find clusters embedded in subspaces of high dimensional data, 

scalability, available to the WSN nodes. The algorithm is also required to produce 

frequent summaries of the corresponding inputs from the network sensor nodes. In 

stream mining [153, 154], WSN data mining applications further place strict 

requirements on the underlying algorithm. Collecting data generated in a WSN to a 

central location and performing data mining is undesirable due to the energy and 

bandwidth limitations. Therefore, the data mining algorithm has to perform in-

network and autonomously on limited-resource applications, and the algorithm has to 

converge as fast as possible over the limited data sets so that the processor can take 

on the next set of streams.   

 

5.3. SUBTRACTIVE CLUSTERING METHOD 
 
The subtractive clustering method was developed by Chiu [155]. It is a modification of 

mountain clustering [156] with improved computational complexity. The subtractive 

clustering method assumes that each data point is a potential cluster center 

(prototype). A data point with more neighboring data will have a higher potential to 

become a cluster center than points with fewer neighboring data. In the subtractive 

clustering method, the computation is proportional to the number of data points and 

is independent of the dimension of the problem. Subtractive clustering considers a 

data point with the highest potential as a cluster center and penalizes data points close 

to the new cluster center to facilitate the emergence of new cluster centers. Based on 

the density of surrounding data points, the potential value for each data point is 

calculated as follows: 
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where ݑ௜, ݑ௝ are data points and 
2

4

ar
=α  , ar  is a positive constant defining a 

neighborhood. Data points outside this range have little influence on the potential.  

Following the potential calculation of every data point, the point with the 

highest potential is chosen as the first cluster center. Let ku  be the location of the first 

cluster center and kpot  be its potential value. The potential of the remaining data 

points ݑ௜ is then revised by 

௜ݐ݋݌ ൌ ௜ݐ݋݌ െ  ௞݁ିఉ‖௨೔ି௨ೖ‖మݐ݋݌

                       (5.2)

 

            where 
2

4

br
=β  and br  is a positive constant (ݎ௕ ൐   .(௔ݎ

Thus, the data points near the first cluster center will have greatly reduced 

potential, and therefore are unlikely to be selected as the next cluster center. The 

constant ݎ௕is the neighborhood defining radius and will have significant reduction in 

potential. br  is set to be greater than ar to avoid closely spaced centers. The ratio 

between ar  and br  is called the Squash factor (SF) which is a positive constant greater 

than one.  

The potential update process (5.2) will continue until no further cluster center 

is found. The parameters known as acceptance ratio (AR) and rejection ratio (RR) 

together with the influence range and squash factor set the criteria for the selection of 

cluster centers. The accept ratio and reject ratio are upper acceptance threshold and 

lower rejection threshold, respectively and they take a value between zero and one. 

The accept ratio should be greater than the reject ratio.  

First criterion: if the potential value ratio of the current data point to the original first 

cluster center is larger than the acceptance ratio, then the current data point is chosen 

as a cluster center. 
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Second criterion: if the potential value falls in between that of the acceptance and 

rejection ratios, then the compensation between the magnitude of that potential value 

and the distance from this point to all the previously chosen cluster centers (relative 

distance) is taken into consideration. If the sum of the potential value and the ratio of 

the shortest distance between the current data point and all other previously found 

cluster centers to the influence range is greater than or equal to one, then the current 

data point is accepted as a cluster center.  

Third criterion: If the sum of the potential value and the ratio of the shortest distance 

between the current data point and all other previously found cluster centers to the 

influence range is less than one, then the current data point is rejected as a cluster 

center. 

Fourth criterion: if the potential value ratio of the current data point to the original 

first cluster center is less than the rejection ratio, then the potential value of the 

current data point is revised to zero and the data point with the next highest potential 

is tested. 

Summary: 

Algorithm 5.1: Subtractive clustering algorithm. 

   

Initialize parameters; ݎ௔, ݎ௕ ,  ܴܣ, and ܴܴ 

1 Calculate potential of each data point ݐ݋݌௜ using equation (5.1) 

2 Set the maximum potential as ݐ݋݌௞ 

3 Choose data point corresponding to ݐ݋݌௞ as the cluster center candidate 

4 If ݐ݋݌௜ ൐ ܴܣ ∗  ௜ as a cluster centerݑ ௞, then acceptݐ݋݌

5  update the potential of each point using equation (5.2) and continue 

6 else if ݐ݋݌௜ ൏ 	ܴܴ ∗  ௜ as a cluster centerݑ ௞, then rejectݐ݋݌

7 else 

8  Let ݀௥ be relative distance 

9  If   ௗೝ௥ೌ ൅ ௣௢௧ೖ௣௢௧೔ 	൒ 1 accept ݑ௜  as a cluster center 

10  update the potential of each point using equation (5.2) and continue 

11 else 



65 
 

 
 

12  reject ݑ௜ and set the potential ݐ݋݌௜ ൌ 0 

13  select the data point with the next highest potential as the new  

                           candidate and re-test 

14 endif 

15 endif 

 

 

5.4. FUZZY C-MEANS CLUSTERING 
 
Fuzzy clustering algorithms are based on minimization of the fuzzy c-means objective 

function formulated as: 

 ∑∑
= =

−=
C

c

m

i
iicio AvuvJ

1 1

2)( θ                       (5.3)

 

             where ݒ௖௜ is a fuzzy partition matrix of ݑ,  

ݒ  ൌ ሾݒଵ, ,ଶݒ … , ௖ሿ                      (5.4)ݒ

 

            is a vector of cluster centers, which have to be determined,                

 )()(22
ii

T
iiAiiciA vuAvuvud −−=−=                       (5.5)

 

            is a squared inner-product distance norm, and  

ߠ  ∈ ሾ1,∞ሻ                      (5.6)

 

            is a parameter which determines the fuzziness of the resulting clusters.  

The conditions for a fuzzy partition matrix are given as: 

௖௜ݒ  ∈ ሾ0,1ሿ, 1 ൑ ܿ ൑ ݅, 1 ൑ ݅ ൑ ݊                      (5.7)
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 ෍ݒ௖௜௖
௜ୀଵ ൌ 1, 1 ൑ ݅ ൑ ݊                      (5.8)

 

 0 ൏෍ݒ௖௜ ൏ ܰ, 1 ൑ ݅ ൑ ܿ௡
௜ୀଵ                       (5.9)

 

The value of the objective function (5.3) can be seen as a measure of the total 

variance of ݑ௜ from ݒ௜. 
The minimization of the objective function (5.3) is a nonlinear optimization 

problem that can be solved by iterative minimization, simulated annealing or genetic 

algorithm methods. The Simple iteration method through the first-order conditions for 

stationary points of (5.3) is known as the fuzzy c-means (FCM) algorithm.  

The stationary points of the objective function (5.3) can be found by adjoining 

the constraint (5.8) to ܬ௢ by means of Lagrange multipliers: 

ܬ  ൌ෍෍ሺݒ௖௜ሻఏ݀ଶ௖௜஺ ൅෍ߣ௜ ൥෍ݒ௖௜ െ 1஼
௖ୀଵ ൩௡

௜ୀଵ
௡
௜ୀଵ

஼
௖ୀଵ  

                   (5.10)

 

                   By setting the gradient of ܬ with respect to the fuzzy partition matrix ݑ, the 

vector of cluster matrix ݒ, and λ  to zero.  

Now if ݀௖௜஺ଶ ൐ 0, ∀݅, ܿ and ߠ ൐ 1, then ሺݑ,  ሻ may minimize the objective function (5.3)ݒ

only if 

௖௜ݒ  ൌ ଵ∑ ൫ௗ೎೔ಲ ௗ೎ೕ೔ಲ⁄ ൯మ ሺఏିଵሻ⁄಴ೕసభ , 1 ൑ ݆ ൑ ,ܥ 1 ൑ ݅ ൑ ݊                     (5.11)

 

                                             and 

௖ݒ  ൌ ∑ ሺݒ௖௜ሻఏݑ௜௡௜ୀଵ∑ ሺݒ௖௜ሻఏ௡௜ୀଵ ; 1 ൑ ܿ ൑ (5.12)                    ܥ
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This solution also satisfies the constraints (5.7) and (5.9). Equations (5.11) and 

(5.12) are the first-order necessary conditions for stationary points of the objective 

function (5.3). The FCM algorithm iterates through (5.11) and (5.12). Sufficiency of the 

necessary conditions (5.11) and (5.12) as well as the convergence of the FCM algorithm 

is proven in [157].  

Before using the FCM algorithm, the parameters: number of clusters,ܥ,  

fuzziness exponent, ߠ,  termination  tolerance, ߝ,  the norm-inducing matrix, ܣ, and the 

fuzzy partition matrix, ݑ, must also be initialized suitably. Note that the FCM algorithm 

converges to a local minimum of the objective function (5.3) if these parameters are 

not  initializationed suitably. Therefore different initializations may lead to different 

performance results. 

Summary: 

Algorithm 5.2: Fuzzy C-Means clustering algorithm. 

  

Initialize parameters: ܣ ,ߝ ,ߠ ,ܥ, and ݑ   

1 Repeat for ݈ ൌ 1,2,3, … 

2  Compute cluster centers (prototypes): 

௖ݒ     3 ൌ ∑ ሺ௩೎೔ሻഇ௨೔೙೔సభ∑ ሺ௩೎೔ሻഇ೙೔సభ ; 									1 ൑ ܿ ൑  ܥ

4  Compute distances: 

5  ݀௖௜஺ଶ ൌ ሺݑ௜ െ ௜ݑሺܣ௖ሻ்ݒ െ 1				௖ሻ,ݒ ൑ ܿ ൑ 1					,ܥ ൑ ݅ ൑ ݊ 

6  Update the partition matrix: 

7  For 1 ൑ ݅ ൑ ݊ 

8   If ݀௖௜஺ ൐ 0 for all ܿ ൌ 1,2, … ,  ܥ

௜௖ݒ    9 ൌ ଵ∑ ሺௗ೎೔ಲ ௗ೎ೕಲ⁄ ሻଶ ሺఏିଵሻ⁄಴ೕసభ  

10   else 

௖௜ݒ    11 ൌ 0  if ݀௖௜ ൐ 0, and ݒ௖௜ߝሾ0,1ሿ with ∑ ௖௜ݒ ൌ 1஼௖ୀଵ  

12 Until ቛݒ௖௜ሺ௟ሻ െ ௖௜ሺ௟ିଵሻቛݒ ൏  ߝ
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5.5. THE SUBFCM ALGORITHM 
 
Embedding an autonomous cluster mining algorithm in WSN nodes requires that the 

algorithm take data sets as input and generate output without data preprocessing. In 

applications where the number of clusters in a data set must be discovered, the FCM 

algorithm cannot be used directly. For clustering WSN data autonomously, the number 

of cluster prototypes (categories) has to be determined from the data sets. Hence in 

this research, Subtractive clustering and FCM algorithms are combined to implement 

an algorithm that determines the number of clusters in the data space from the input 

data sets- Subtractive Fuzzy Cluster Means (SUBFCM).  

The SUBFCM algorithm uses a subtractive clustering approach to determine the 

number of cluster prototypes C and the prototype centersc . The algorithm then 

partitions the stream into C fuzzy clusters using the prototype centers from the above 

step as initial fuzzy cluster centers. 

Initially, the SUBFCM algorithm assumes each D-dimensional data point 

niui ,...,3,2,1, =  as a potential cluster center with a measure of potential ( pot ) of data 

points in the stream as; 
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                    (5.13)

 

where 2
4

ar
=α  and ar is a positive constant defining cluster radius. A large value of ar

results in fewer large clusters, while smaller values result in a greater number of 

smaller diameter clusters. ‖	‖ Denotes the Euclidean distance, which defines the 

distance between two points ݑଵሺݔ௜, ,ଶݔଶሺݑ ଵሻ andݖ,ଵݕ  ଶሻ as being equal to theݖ,ଶݕ

length of vector ‖ ଵܺ െ ܺଶ‖ ൌ 	ඥሺݔଵ െ ଶሻଶݔ ൅ ሺݕ െ ଶሻଶݕ ൅ ሺݖଵ െ  ଶሻଶ     whereݖ

ଵܺ ≡ ൥ݔଵݕଵݖଵ൩  and ܺଶ ≡ ൥ݔଶݕଶݖଶ൩ 
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The measure of potential for a given data point is a function of its distances to 

all other points. A data point with many neighboring points will have a high potential 

value. After computing the potential for every point, the point ku with the highest 

potential kpot will be selected as the first cluster center 1c . The potential for every 

other point is then updated by (5.14): 

 

 
2

ki uu
kii epotpotpot −−−= β                     (5.14)

 

where 
2

4

br
=β and br is a positive constant that can be set to a value which is 

greater than ar . After the first cluster center is determined, the value of br  determines 

the potential of data points becoming subsequent cluster centers. Setting br  > ar  
reduces the potential of data points close to the first cluster center and hence avoids 

closely spaced cluster centers [158]. The parameter ߝis a stopping criterion and should 

be selected within (0, 1) [159]. α  with a value close to zero will result in a large ߝ

number of hidden centers whereas α  .close to one leads to a small network structure ߝ

Following the update process, the data point with the highest remaining 

potential is selected as the next cluster center 2c , and the process repeats until a given 

threshold ε for the potential is reached and C such centers are computed. SUBFCM 

then uses the clustering criterion of squared distance 2
cid between the thi − stream 

sample and the thc − prototype and defines the objective function ( 0J ) as: 
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where the squared distance function is given as: 
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cici cud −=                     (5.16)

 

where civ represents the membership degree of the thi − stream sample to the 

thc − cluster.  

 

Membership is determined under the conditions: 

 

 [ ]1,0∈civ ,  ,,...,3,2,1 Cc = ni ,...,3,2,1=                     (5.17)

 

 1
1

=∑
=

C

c
civ ,         ni ,...,3,2,1=                     (5.18)

 

where θ is a weighing exponent or fuzziness measure. If 1=θ , the clustering 

model is reduced to the hard K-means model. The larger θ , the fuzzier the 

memberships is. θ  is usually set to 2 [149]. 

The stream partitioning takes place by optimizing the criterion function (5.15) 

through iteration updating the cluster prototype centers jc and the membership 

function civ as (5.19) and (5.20) respectively: 
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The iteration should stop when; 

 

 ( ) ( ){ } ε<−= + l
ci

l
ci vv 1max                     (5.21)

 

where ε  is the termination criterion, 10 << ε and l is the iteration step. 

SUBFCM takes the fuzzy radius ( ar ) and fuzziness measure (θ ) as inputs and 

autonomously reveals the structures in the data stream space. The parameter ar  

determines the granularity of the structures. The smaller it is, the higher the resolution 

of the structures and the more computation overhead. The SUBFCM Algorithm steps 

are shown in Algorithm 3. 

 

Algorithm 5.3: Subtractive fuzzy C-Means algorithm. 

 

 Step0: Specify fuzzy radius ar , α, ε, and fuzziness measureθ  

Step1: For each data object iu ; 

{1.1 Calculate potential measure -eq (5.13) 

 1.2 Choose max ( ipot ) as first cluster Center cj  

 1.3   Revise the potential measures –eq (5.14) 

 1.4   If max α>ipot ,   j=j+1, go to 1.2 

 Else end;          Set jC =  

 } 

Step2:  Calculate cid  -eq (5.16) ad Initialize 

 cici dv = ;         Set iteration no. to l  
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Step3:  Increment l ( 1+= ll ) 

 3.1 Calculate Cluster center jc -eq (5.19) 

 Set centers to jl cc =+ )1(  

 3.2 Calculate membership civ  -eq (5.20) 

 Set membership to cilci vv =+ )1(  

Step4: If ε>−+ )()1( lcilci vv  

 go to step3 

 else end;          Output [ cic ], [ jc ] 

 

 

5.6. IMPLEMENTATION OF SUBFCM 
 
The SUBFCM algorithm was initially implemented in MATLAB to understand and 

investigate its characteristics. MATLAB provides toolbox functions readily available for 

clustering analysis. It also provides visual output of the clustering statistics for user to 

validate and debug the algorithm. The SUBFCM algorithm’s response to continuously 

streaming data has been analyzed. The main constraints of low power wireless sensor 

nodes, computation complexity, processing time and energy requirements were 

considered before porting the SUBFCM algorithm as an embedded task suitable for 

WSN nodes. 

Given the desired fuzzy radius ݎ௔ for the particular application under 

consideration and fuzziness measure ߐ, the algorithm reveals clusters hidden in the 

streaming data. As soon as a certain number of elements from the stream enter the 

buffer of the processing task, the subtractive clustering method will be invoked calling 

the subclust function from the MATLAB toolbox.  The subclust function takes as a 

minimum, the set of vector data ܺ to be clustered and fuzzy radius ݎ௔. It returns the 

Cluster centers ܥ, and range of influence of the cluster centers ܵ in each of the data 

dimensions. The cluster centers returned by the subclust function are used to initialize 

the fuzzy clustering method. The MATLAB FCM function performs the fuzzy clustering 

of the input vector data ܺ. The FCM function takes inputs data ܺ and ܥ as initial 
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cluster centers and produces fuzzy cluster centers ܿ, and the fuzzy membership matrix ܷ as well as the values of the objective function ܱܾ݆_݂݊ݑ during the iterations.   

The MATLAB toolbox subclust function format: 

Inputs: [ܺ, ݎ௔]               Outputs: [ܥ, ܵ] 

[C,S] = subclust (X, ݎ௔) 

 

The MATLAB toolbox FCM function format: 

Inputs: [ܺ, ,ܿ] :Outputs  [ܥ ܷ, ܱܾ݆_݂ܿ݊] 

[ܿ, ܷ, ܱܾ݆_݂ܿ݊	] = fcm(ܺ,  (ܥ

 

A database consisting of 200 instances each containing weather parameters 

were clustered using SUBFCM algorithm. Each instance of the database has its 

classification of fire weather index (FWI) rating. There are five FWI ratings in the 

instances of the database; low, moderate, high, and extreme. Each of the FWI ratings 

present in the database has 50 samples that in total summarize the 200 instances of 

the database. Table 5.1 below shows a small sample of the instances contained in the 

weather database. The number of iterations required to partition the sample weather 

data sets is shown In Figure 5.1. 

 

Table 5.1: Sample of weather database. 

Instance Temperature Rel. HumidityWind Speed Rain fall FWI class
1 26 50 11 0 13.65 M
2 14.1 89 14.9 0 6.938 M
3 26.9 37 16.4 0 19.57 H
4 15.6 78 18.5 0 12.55 M
5 26.1 32 39.8 0 57.63 E
6 10.9 76 12.9 5.2 0.629 L
7 18.4 55 28.8 0 10.64 M
8 20.4 43 45.3 0 42.23 E
9 26.8 40 35 0 42.05 E  
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The results obtained by running the SUBFCM on the database are: 

Cluster centers: 

C1 13.9 76.62 4.1 3.97 

C2 17.53 64.38 21.37 0.435 

C3 21.28 46.69 21.36 0.136 

C4 24.05 33.55 32.26 0.334 

 

 

Figure 5.1: The objective function minimization. 

 

The graphs below show the classification of each instance by comparing each 

pair of attributes present in the database. The SUBFCM algorithm generated classes 

are shown in different colors; blue for low FWI class, red for moderate FWI class, green 

for high FWI class, and magenta for extreme FWI class. The database described above 

contains four attributes (dimensions); temperature, relative humidity, wind speed and 

rainfall. The different clusters do not seem to be well separated in 2D depictions. 

However, they are clearly separate clusters in 3D graph.      
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Figure 5.2: 2D classification of the data points from weather database. 

 

 

Figure 5.3: 3D classification of the data points from weather database. 
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5.6.1. Computational Complexity of the SUBFCM Algorithm 
 
The computational complexity of the iterations of the SUBFCM algorithm is assumed to 

be constant as it computes the distance calculations and centroid recalculations. 

Distance calculations require approximately (3݊ܿ݀ ൅ ݊ܿ ൅ ݊݀ ൅ ܿ݀) floating point 

operations (flops) per iteration [160], where ݊ denotes the number of total data 

objects, ܿ denotes the number of clusters, and ݀ denotes the dimension of data 

objects. Each centroid recalculation requires approximately (ܿ݀) flops per iteration. 

Therefore, we can estimate the computational complexity of the SUBFCM algorithm 

as: 

 ௖ܶ௢௠௣ ൌ ሺ3݊ܿ݀ ൅ ݊ܿ ൅ ݊݀ ൅ ܿ݀ሻܫ ௙ܶ௟௢௣                    (5.22)

 

where ௖ܶ௢௠௣ is the computational time of implementing the algorithm, ܫ is the 

number of iterations, and ௙ܶ௟௢௣ denotes the time for each floating point operation. 

Under the condition that ݊ is large compared to both 	ܿ  and ݀, ௖ܶ௢௠௣ reduces to: 

 

 ௖ܶ௢௠௣ ൌ ሺ3݊ܿ݀ሻܫ ௙ܶ௟௢௣                    (5.23)

 

In our experiments, fixed point arithmetic is used instead of floating point 

arithmetic for all computations without compromising the accuracy significantly. 

Therefore, the complexity of the algorithm is: 

  

 ௖ܶ௢௠௣ ൌ ሺ3݊ܿ݀ሻܫ ௙ܶ௜௫௢௣                    (5.24)

   

where ௙ܶ௜௫௢௣ is the time for each fixed point operation.  
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In Figure 5.1, the number of iterations required to partition a typical weather 

data sets is shown to be very low. Hence, for a wireless sensor node with reasonable 

amount of millions of instructions per second (MIP) this is a fairly light operation.   

5.6.1.1. Sensor node Computational Complexity  

The Computational complexity of the sensor node processing task described above can 

be expressed as the combination of complexities of sensor stream acquisition, 

similarity calculation, and determining send or suppress operations. Sensor stream 

acquisition takes the form of linear time complexity which may be expressed as: 

 

 ܱሺ݊ሻ               

(5.25) 

 

where the tuples dimension D determines the upper and lower bounds of n. 

The similarity calculation task goes through sequential comparison of the newly 

generated tuples to a constant value. The dimensionality of the tuple influences the 

complexity of this task. For a given tuple dimension the complexity of this task is 

linearithmic time expressed as: 

 

 ܱሺ݊ log ݊ሻ               

(5.26) 

 

The determination to send or suppress the incoming sensor stream average is a 

constant time complexity given as: 

 ܱሺ1ሻ               

(5.27) 

 

 Therefore, the time complexity ܶሺ݊ሻ of the sensor node processing is: 
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 ܶሺ݊ሻ ൌ ܱሺ݊ logሺ݊ሻሻ ൅ ܱሺ݊ሻ ൅ ܱሺ1ሻ               

(5.28) 

 

5.6.1.2. Sensor node Communication Complexity 

The communication complexity of the sensor nodes processing task obviously grows 

with the dynamics of the situation under observation. When the newly incoming 

stream tuples are more frequently dissimilar to the current tuples the algorithm 

directs more send operations than suppress. This will have an effect of increasing the 

computational complexity of the next level of processing tasks. The worst case 

communication complexity of this task reduces the sensor nodes process to a simple 

acquire-and-transmit mode.  

 

5.6.1.3. Sensor node Energy Consumption  

The sensor nodes processing task energy consumption analysis is based on the 

simplified microcontroller unit model of [161] of equation (5.29). 

 

௣ܧ  ൌ ௖ܰ௬௖ ∗ ௔௩௕ܥ ∗ ܸଶ ൅ ܸሺܫ௢݁ ௏௡௏೟ሻ ௖ܰ௬௖݂  
              

(5.29) 

 

where ௖ܰ௬௖is the average number of clock cycles needed for the task, ܥ௔௩௚ is 

the average capacitance switched per cycle, ܸ is supply voltage, ܫ௢ is the leakage 

current, and ݂ is the clock frequency.  

The second term of the Equation 5.29 is eliminated as the leakage current is 

insignificant at high clock frequencies. 

For the similarity calculation task, if the number of clock cycles required for the 

subtraction operation is ݏ, and the number of clock cycles required for multiplication 

operation is ݈݉, then the total energy consumption of this task can be calculated as: 
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௣ܧ  ൌ ௖ܰ௬௖ ∗ ௔௩௚ܥ ∗ ܸଶ ∗ ܦ ሺݏ ൅ ݈݉ଶሻ               

(5.30) 

 

The task to determine sending or suppressing the current average tuple is an 

obvious compare operation given as: 

 

௣ܧ  ൌ ௖ܰ௬௖ ∗ ௔௩௚ܥ ∗ ܸଶ ∗ ܦ ∗ ܿ 
              

(5.31) 

 

Where c is the number of clock cycles for the compare operation. 

Therefore the total energy consumption of the sensor nodes task are 

dominated by the components of Equation 5.30 and Equation 5.31 as given by: 

 

௣ܧ  ൌ ௖ܰ௬௖ ∗ ௔௩௚ܥ ∗ ܸଶ ∗ ܦ ሺܿ ൅ ݏ ൅݈݉ଶሻ               

(5.32) 

 

5.6.1.4. Cluster Head Computational Complexity  

The computational complexity of the cluster head processing task is that of the 

SUBFCM algorithm given in section 5.6.1  with an added term of constant time 

complexity  ܱሺ1ሻn in the worst case. Computational complexity of the cluster head processing task 

is directly proportional to the communication complexity of the sensor nodes 

processing task. 
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5.6.1.5. Cluster Head Communication Complexity 

The communication complexity of the cluster head processing task also grows with the 

dynamics of the situation being observed. The communication complexity of this task 

is expected to increase whenever the change in situation observed spans multiple 

sensor nodes. This task updates both the sensor nodes and the sink about the current 

state of the situation and hence the worst case scenario communication complexity of 

this task is double that of the sensor nodes’ processing task.  

5.6.1.6. Cluster Head Energy Consumption  

Energy consumption of the cluster head processing task can also be derived from the 

fundamental equation of [161] given in Equation 5.29.  Energy consumption of the 

cluster head processing task is dominated by that of the SUBFCM algorithm’s number 

of iterations required to converge to optimal number of cluster prototypes.  

௣ܧ  ൌ ௖ܰ௬௖ ∗ ௔௩௚ܥ ∗ ܸଶ ∗ ܦ ∗ ሺܥ ൅ ݄ ൅ ݃ሻ                    (5.33)

 

 where ܥ is the number of cluster prototypes, ݄  is the number of iterations it 

takes to determine the number of prototypes ܥ, and ݃ is the number of iterations to 

converge to the optimal cluster prototypes.  

 

 

5.7. DISCUSSION  
 
The SUBFCM algorithm is a light unsupervised method for the analysis of data and 

construction of models from data. It has been shown that a systematic combination of 

subtractive clustering and fuzzy c-means clustering algorithms-SUBFCM is a light data 

clustering algorithm computationally suited for low resource systems like WSN. Its 

implementation in MATLAB environment has been discussed. 
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Chapter 6 
 

6. MODELLING AND SIMULATION OF THE DISTRIBUTED INCREMENTAL 
DATA STREAM MINING WSN 

 

This chapter presents a detailed description of the distributed incremental data stream 

mining WSN system modeling and simulation. The various components of the 

distributed incremental data stream mining approach for WSN systems were 

theoretically analyzed in chapter 4. The data stream sources, the data stream mining 

algorithm, the algorithm processing units, and the communication between the 

processing units are individually expressed in terms of mathematical and simulation 

models to characterize and analyze their various features. The characteristics of the 

models would be used to explain the overall system performance and integration. 

Results from the integration of the models into a system and simulations should 

provide design guidelines for an actual WSN system design to enable distributed 

incremental data stream mining applications and determine the system capacity 

bounds.  

 

6.1. DATA STREAM ACQUISITION (SOURCES) 

Data streams represent input data that comes at a very high rate that stresses 

communication and computing infrastructures and storage infrastructures to some 

extent. Data streams have features that describe the nature of their source, which 

influence the complexity of the process handling them. Typical data stream features 
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are rate of arrival, dimensionality of its instances, and the model used to describe the 

underlying source. 

  In WSNs, the data sources are either sensor probes onboard the nodes or over-

the-air data packets received from other nodes of the network. The way in which the 

nodes are set to access their onboard sensor probes and/or set to receive network 

packets over-the-air, therefore, determines the data stream feature rate of arrival. The 

number of onboard sensor probes and the number of physical phenomena of interest 

the node is subscribed to receive over-the-air also determines the dimensionality of 

the data stream instances. Moreover, when the system is serving applications such as 

continuous environmental monitoring, the data stream model can be time series.  

Here, for the purpose of facilitating the system simulations, the data stream 

sources are modeled as processes that access stored data files in a specific manner. 

Two types of data stream source model processes are defined. One process 

representing the sensor nodes data stream source model and the other representing 

the cluster heads data stream source model.  

The sensor nodes data stream source process periodically accesses a data file 

to form a periodic time series. The data files, one for each sensor node, contain 

multidimensional data captured from a continuous stream source for a specific time 

period to acquire a sufficient number  of instances that can last for the duration of the 

simulations. Starting from the first instance in the file, the process accesses the data 

instances each period sequentially.         

The sensor nodes data stream source model generates a stream as: 

 

 ܷ: ሾݑ௜, ,௜ାଵݑ ,௜ାଶݑ ,௜ାଷݑ …∞ሿ                      (6.1)

 

               where for each period, ܶ, the ݅௧௛ instance from the data file is inserted 

into the input data stream. The sensor data stream source process chart is shown in 

Figure 6.1. 
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Figure 6.2 below shows the Simulink model of the sensor node data stream source. 

The Logical operator block “AND” combines the Pulse Generator and the Step blocks to 

form a periodic timer that fires every specified period. The counter block increments 

an index value every time the periodic timer event occurs as long as the end of file, 

specified by the Constant block, is not reached. The Embedded MATLAB Function block 

implements a set of low-level MATLAB native file (.mat) read functions. The Embedded 

MATLAB Function block reads data sets from the From File block pointed to by the 

index variable each timer event and continually updates the sensor node’s input data 

buffer. This Model forms a data stream source for the simulation model. The data 

stream rate is determined by the timer period.  

 

Figure 6.2: The sensor node data stream source model. 

Figure 6.1: Flow chart of the sensor data stream source process. 

start t=t+T?
Update the 
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The cluster head data stream sources are the sensor nodes that subscribe to 

membership of the cluster head. The cluster head data stream source process handles 

the network interrupts for incoming over-the-air data packets. Each network interrupt 

for incoming data packet is an instance of the stream. This process is therefore 

modeled as a Callback function to handle the interrupts and form a data stream that 

the cluster head node acts upon. The data streams at the cluster heads form a sliding 

window model where a function of interest is computed over a fixed-size window in 

the stream. As time progresses, instances (items) from the end of the window are 

removed from consideration while new instances from the stream take their place. 

Therefore, only the last ܹ (window size) items to have arrived are considered relevant 

at any moment. 

The cluster heads data stream source model generates a stream as: 

 

 ܷ: ሾݑ௜, ,௜ାଵݑ ,௜ାଶݑ ,௜ାଷݑ … , ,ௐሿݑ ,௜ାௐݑ ,௜ାଵାௐݑ …,௜ାଶାௐݑ .∞               (6.2)

       

               where ݑ௜ is the most recent item and ݑௐ is the oldest item of the sliding 

window. At every instance ݅ with the arrival of a new item, the oldest item will be 

displaced from the sliding window.  Flow chart of the cluster head data stream model 

is shown in Figure 6.3.                

 

                            

 

 

 

 

 

 

start Interrupt?
Callback 
function 

Y

N

Update the 
sliding window 

Return 

Figure 6.3: Flow chart of the cluster head data stream source 
process. 
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The cluster head data stream source model is implemented in TrueTime. The 

model subscribes to receive an interrupt upon over-the-air data packet arrival event 

using the TrueTime functions; ttCreateHandler('nw_handler', priority, 'codefcn') and 

ttAttachNetworkHandler('nw_handler'). The function ttCreateHandler('nw_handler', 

priority, 'codefcn') creates a TrueTime interrupt handler named ‘nw_handler’ with a 

priority ‘priority’ and callback function ‘codeFcn’. The function 

ttAttachNetworkHandler('nw_handler') attaches the interrupt handler to a network 

interface so that any network event triggers the callback function. The call back 

function ‘codeFcn’ handles the network event; if the network event is data packet then 

it pushes the packet received into the sliding window and updates the position of each 

element of the sliding window. The code snippet in Listing 6.1 below shows the 

TrueTime modeling of the cluster head data stream source.  

 

% subscribe to network event interrupt 

ttCreateHandler('nw_handler', 1, 'codeFcn'); 

ttAttachNetworkHandler('nw_handler'); 

 

% an interrupt that notifies msg has been received over a network 

function [exectime, data] = codeFcn(seg, data) 

global temp  

 

temp = ttGetMsg; 

ttTryPost('chReceiveBox', temp); 

sensor_data = [sensor_data temp]; 

 

end 

 

Listing 6.1: The TrueTime model of cluster head data stream source. 
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6.2. WIRELESS SENSOR NODE MODEL 

A wireless sensor node is composed of various specialized hardware and software 

components. The hardware components are the microcontroller, the sensors, the 

radio, and the energy sources. The microcontroller is a microprocessor along with 

some specific purpose peripherals such as timers, analogue to digital converters (ADC), 

digital to analogue converters (DAC), serial I/O controllers, direct memory access 

(DMC) etc. The microcontroller is the main host for the application software and 

firmware that determine its operational purpose. The microcontroller component of 

the sensor node can be modeled to study its operational behavior through simulation.  

The sensors are the sources of real world physical quantity measurement data input to 

the sensor nodes. There are several different types of sensors for probing the same 

physical quantity. The system modeling here therefore considers a general 

mathematical model of data input sources described in the previous section. The radio 

component of the node is a device used to link the network nodes over a wireless 

radio communication channel. The energy source of a wireless sensor node is usually a 

battery and occasionally an energy harvesting unit, e.g. a solar cell, is used to support 

energy demanding applications.  

The wireless sensor node hardware components are modeled in TrueTime by 

the Kernel block, and the Battery block. In this study, TrueTime Kernel block, and the 

TrueTime Battery block are used to model a sensor node comprising a TI’s MSP430 

processor, a Chipcon’s CC2530 radio transceiver, and a generic dry cell battery, 

respectively.   

The TI’s MSP430 based sensor node uses an event-driven programming model 

with interrupt handlers for handling timer interrupt, network interrupt, etc., in which a 

single non-terminating task acts as the main program and the event-handling is 

performed in interrupt handlers. The TrueTime Kernel block implements this 

programming model. The TrueTime Kernel block also configures a fixed number of 

analogue/digital inputs and a fixed priority task scheduling policy. Further, the Kernel 

block models the Chipcon’s CC2530 transceiver, initializes the send/receive buffers and 

network event handlers used by the transceiver. Figures 6.4, 6.5, and 6.6 show the 

TrueTime model of the wireless sensor node model, cluster head node model and Sink 
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node model respectively. The energy source of the node is modeled by the TrueTime 

Battery block. The initial energy available to each node at the start of the system is 

provided by the Battery block to the Kernel Block through the energy input port of the 

kernel. The sink node is interfaced to the Base station PC or Laptop, therefore it is 

considered to be supplied from mains AC.   

 

 

Figure 6.4: The TrueTime wireless sensor node model. 
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Figure 6.5: The TrueTime cluster head node model. 

 

 

 

Figure 6.6: The TrueTime sink node model. 
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6.3. THE WIRELESS NETWORK MODEL 

The wireless network linking the sensor nodes for the distributed incremental data 

stream mining is based on the ZigBee wireless network protocol. ZigBee specifies a 

high level communication protocol using small, low-power digital radios based on the 

IEEE 802.15.4 standard for low-rate wireless personal area networks (LR-WPAN). The 

wireless network model for the purpose of this application is built based on the 

TrueTime ZigBee model. The wireless network model linking the sensor nodes 

therefore includes definitions for the CSMA/CA medium access protocol based ad-hoc 

wireless network, isotropic antenna, half-duplex communication, interference from 

other nodes, and signal path-loss (1/݀௔), where ݀ is distance and ܽ is path-loss 

exponent. 

The true location of the nodes is specified through the x and y inputs of the 

model to take into account the path-loss of the radio signal. Communication power 

drain of individual nodes is also specified through the wireless network model port p. 

The TrueTime Wireless Network block is shown in Figure 6.7 below. 

The Higher layer communication protocol, specifying the wireless network 

architecture suitable for the distributed incremental data stream mining application, is 

built on top of the TrueTime IEEE 802.15.4 protocol. The higher layer communication 

protocol organizes the network into a two-tiered architecture where the first tier 

forms clusters of sensor nodes in a simple star network and the second tier consists of 

the cluster heads forming a mesh network. In each cluster of the first tier there is a 

prefixed node serving as the cluster head. In this architecture, a single sink node serves 

as the coordinator of the whole network. The Data packets generated at the cluster 

members are always directed to the respective cluster heads; however, cluster head 

generated packets are directed to their members or to the sink or both. The data or 

control packets from the sink are always directed to the cluster heads, which forwards 

them to the member nodes. Table 6.1 below shows the model parameter settings. 
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Table 6.1: The TrueTime wireless network parameter settings. 

No Parameter Value no Parameter value

1 Network type IEEE802.15.4/ZigBee 6 Receiver signal threshold -90 dBm

2 No. of nodes 226 7 Path-loss exponent 2.1

3 Data rate 250000 Kbit/s 8 ACK timeout .0003 ms

4 Minimum frame size 256 bit/s 9 Retry limit 5

5 Transmit power 0 dBm 10 Error coding threshold .05

   

 

 
Figure 6.7: The TrueTime Wireless Network Model. 

      

 

6.4. DATA STREAM MINING TASK MODELS 

The distributed incremental data stream mining task is approached through the 

collaboration of three distinct sub-tasks running on different network nodes; namely, 

the sensor nodes sub-task, the cluster heads sub-task, and the sink sub-task. These 

sub-tasks share information over the wireless network to cooperatively implement the 

data stream mining task utilizing the limited resource available at individual nodes. The 
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MATLAB/TrueTime implementation of the functions that model these sub-tasks will be 

described in this section.  

We assume that each sensor node sub-task running within a senor node only 

communicates with the cluster head sub-task running within the cluster head of its 

host sensor node. The cluster head sub-tasks communicate either to their member 

node’s sub-tasks or to the sink sub-task.   

 

6.4.1. Sensor Nodes sub-task Model 
The sensor node sub-task first initializes the host kernel, constants (deviation 

threshold,ݐܦ), sensors (data stream sources), mail boxes, stream buffer, radio 

transceiver, radio receive/send buffers, and timers. It then subscribes to network and 

timer interrupts, defines the handlers of the interrupts, and enters themain 

programme.  

Let ݑଵ be the first instance of the current data stream of a sensor node. The 

main programme of the sensor sub-task starts by sending this instance of the current 

stream to the cluster head sub-task and enters low-power model till it receives a local 

cluster structure, ܿ௜. When it receives the local cluster structure, the sensor node sub-

task starts a stream sampling timer and enters low-power mode until it is woken up by 

either a timer interrupt or a network interrupt to which is has subscribed. If it is woken 

up by the timer interrupt then it will call the timer interrupt handler and return back to 

the low-power mode. Else if it is woken up by the network interrupt then it will call the 

network interrupt handler and return back to the low-power mode. Figure 6.8 shows 

the sensor node sub-task model flowcharts. 

The timer interrupt handler samples the sensors at a specified rate and records 

the current instance ݑ௜ into the data stream buffer and computes the current instance 

deviation, ݀ሺ௨೔,௖೔ሻ between the current instance, ݑ௜ and the local cluster structure, ܿ௜ as 

(6.3).  

 ݀ሺ௨೎ି௖೔ሻ ൌ ௖ݑ‖ െ ܿ௜‖஽               (6.3) 
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where ‖	‖ is Euclidean metric distance between the two instances, and ܦ is the 

dimension of the two instances. The dimensions of the two instances must be same.  

The handler then determines if the current instance deviation, ݀ሺ௨೔,௖೔ሻ is greater 

than the deviation threshold, ݐܦ as (6.4):  

 ݀ሺ௨೔,௖೔ሻ ൑ ݐܦ               (6.4) 

 

If (6.4) returns False (1) then the handler writes the instance, ݑ௜ to the send 

buffer and schedules it for transmission. Upon successful transmission or if (6.4) 

returns True (0), the handler returns from interrupt. The timer interrupt handler model 

script is shown in Listing 6.2.   

The network interrupt handler upon call gets the message from receive buffer, 

checks if the message is a non-empty data packet, if so, sets the flag “rcv”, and posts 

the message to the mailbox of the node. The handler then updates the local 

structure,ܿ௜, with the received data from the mailbox and starts periodic timer. Listing 

6.3 and Listing 6.4 show the network interrupt notifier and the network interrupt 

handler model scripts, respectively. 
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Figure 6.8: The sensor node sub-task model flowcharts. 

 

%Timer interrupt handler 

function [exectime, data] = TimerIntrpt(seg, data) 

global indx index inx indxx u[] d Dt 

index + 1; 

switch seg, 

     

    case 1,    

      u(indx,1) = ttAnalogIn(1); 

      u(indx,2) = ttAnalogIn(2); 

      u(indx,3) = ttAnalogIn(3); 

      u(indx,4) = ttAnalogIn(4); 

      exectime = 0.0001; 

     

    case 2,   %Keep the sensor_stream updated periodically 

      inx = 2 

      if index <= 5 

        sensor_stream(index) = u(index); 
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       else 

         for indxx = inx:index -1 

           sensor_stream(indxx -1) = sensor_stream(indxx); 

         end 

        sensor_stream(indxx) = u(index) 

        inx +1; 

      end 

      exectime = 0.00015; 

       

    case 3, 

      d = [sqrt(((u(indx,1) - c(1,1))^2) + ...  

          ((u(indx,2) - c(1,2))^2) + ... 

          ((u(indx,3) - c(1,3))^2) + ... 

          ((u(indx,4) - c(1,4))^2)]; 

      exectime = 0.0008; 

     

    case 4, 

      if d > Dt 

        ttCreateJob('snsendTask'); 

      end 

      exectime = -1; 

end 

   

Listing 6.2: Timer interrupt handler model script for sensor node sub-task. 

 

 

%Network interrupt notifier 

function [exectime, data] = NwkIntrpt(seg, data) 

 

global temp 
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    switch seg, 

 

        case 1, 

        %Call the network interrupt handling task 

        ttCreateJob('NwkIntrptHndlr'); 

        exectime = -1; 

     

    end 

 

Listing 6.3: Network interrupt notifier model script for sensor node sub-task. 

 

%Network interrupt handler 

function [exectime, data] = NwkIntrptHndlr(seg, data) 

global temp temp2 strt_timer 

 

switch seg, 

 

    case 1, 

     temp = ttGetMsg; 

     if(isfeild(temp, 'data')) 

         if(isempty(temp.msg.data)) 

             else 

             ttTryPost('snReceiveBox', temp); 

             rcv =1; 

         end 

     end 

     exectime = 0.0018; 

      

     case 2, 

     temp2 = ttTryFetch('snReceiveBox'); 

     c1 = temp2.msg.data; %set received data as local cluster structure 
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     ttCreateJob('TimerstartTask'); % start periodic timer 

     exectime = -1; 

end 

 

Listing 6.4: Network interrupt handler model script for sensor node sub-task. 

 

6.4.2. Cluster Heads sub-task Model 
The cluster head sub-task initializes the host kernel, constants, counters, mailboxes, 

sliding window buffer, receive/send buffer, and tasks. It then subscribes to the 

network interrupt handler and enters the main programme loop. In the main 

programme loop, counter1 is set to zero and counter2 is set to the number of member 

nodes. The main programme then enters sleep mode or low-power mode until a 

network interrupt wakes it up, upon which it calls the network interrupt handler and 

returns back to sleep mode.  The network interrupt handler services most of the 

cluster head sub-task functions; transfers the received message from the receive 

buffer to the node’s receive mailbox after inspecting the received message integrity, 

increments counter1 on every successful message reception, updates sliding window 

content with the received data, and evaluates a conditional statement, counter1 == 

counter2’. If the evaluation results in false then do nothing and return from interrupt. 

Otherwise if the evaluation results in true, which means a message from all the 

member nodes has been received, then calls SUBFCM algorithm model code 

(function), schedule the returned cluster structures for transmission to member nodes 

and the sink and return from interrupt. The cluster head sub-task model flowcharts are 

shown in Figure 6.9.  
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Figure 6.9: The cluster head sub-task model flowcharts. 

 

%Network interrupt notifier 

function [exectime, data] = NwkIntrpt(seg, data) 

 

global temp 

 

    switch seg, 

 

        case 1, 

        %Call the network interrupt handling task 

        ttCreateJob('NwkIntrptHndlr2'); 

        exectime = -1; 
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    end 

 

Listing 6.5: Network interrupt notifier model script for cluster head sub-task. 

 

%Network interrupt handler 

function [exectime, data] = NwkIntrptHndlr2(seg, data) 

global temp temp2 counter1 indx index inx indxx v nummember 

index + 1; 

 

switch seg, 

 

    case 1, 

     temp = ttGetMsg; 

     if(isfeild(temp, 'data')) 

         if(isempty(temp.msg.data)) 

             else 

             ttTryPost('chReceiveBox', temp); 

         end 

     end 

     counter1 = counter1 + 1; 

     exectime = 0.0018; 

      

     case 2, 

      temp2 = ttTryFetch('chReceiveBox'); 

      v = temp2.msg.data; %Receive an element sliding   window  

       

      inx = 2 

      if index <= nummember 

        Sld_wndw(index) = v(index); 

       else 
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         for indxx = inx:index -1 

           Sld_wndw(indxx -1) = Sld_wndw(indxx); 

         end 

        Sld_wndw(indxx) = v(index) 

        inx +1; 

      end 

     exectime = .00019; 

      

     case 3, 

     if counter1 == counter2 

        ttCreateJob('SUBFCM_Task'); 

        ttCreateJob('chsend_Task'); 

        counter2 = nummember/3; 

        else 

    end 

    exectime = -1; 

end 

 

Listing 6.6: Network interrupt handler model script for cluster head sub-task. 

 

6.4.3. The Sink sub-task Model 

The sink sub-task initializes the host kernel and radio transceiver. It subscribes to 

network interrupt handler to receive incoming data from cluster heads. It also 

initializes data transfer to the base station PC. The network interrupt handler caries 

out firstly, instant data transfer from receiver buffer to the sink mailbox, then from 

sink mailbox to the base station PC. The resource on the PC can be used to perform 

complex analysis of the collected information and present the results to the end user 

in real-time. The results could be stored to a database for historical analysis whenever 

required.    
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Figure 6.10: The sink sub-task model flowcharts. 

 

 

%Network interrupt handler 

function [exectime, data] = NwkIntrptHndlr3(seg, data) 

global temp temp2 flag1 flag2 

 

 

switch seg, 

 

    case 1, 

     temp = ttGetMsg; 

     if(isfeild(temp, 'data')) 

         if(isempty(temp.msg.data)) 

             else 

             ttTryPost('sinkReceiveBox', temp); 
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         end 

     end 

     exectime = 0.0018; 

      

     case 2, 

     temp2 = ttTryFetch('sinkReceiveBox'); 

     exectime = .0001; 

      

     case 3, 

     set flag1; 

     set flag2; 

     exectime = -1; 

end 

 

Listing 6.7: Network interrupt handler model script for sink sub-task. 

 

6.5. SYSTEM MODEL SIMULATION  

In this section, the models implementing different components of the distributed 

incremental data stream mining WSN described in previous sections are assembled 

into a complete system model to evaluate its performance through simulation.  

The general system model can be assembled as shown in Figure 6.11 where the 

stream mining code models are embedded into the node models and communication 

is accomplished through the wireless network model.      

A series of simulation setups with varying stream complexities and network 

parameters are designed to analyze the system performance in terms of cluster quality 

and validity. Network service qualities for the mining application such as energy 

consumption, data delivery delay, and packet delivery ratio are also evaluated. An 

evaluation of the simulation results based on the benchmark systems described below 

is presented in the results and analysis chapter (Chapter 7). 
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A centralized flat multi-hop stream clustering WSN architecture (Figure 6.12) 

and a centralized cluster-based stream clustering WSN architecture (Figure 6.13) with 

similar scale are built and used as a benchmark to compare the performance of the 

distributed incremental clustering architecture.  

The centralized flat multi-hop stream clustering architecture setup involves 

nodes taking data from onboard sensors and sending them to a sink node multi-hop. In 

this setup every node participates in relaying other sensors’ data to the sink node 

besides sending its own data. Clustering is performed at the sink every time a data 

element from all nodes in the network has arrived and this repeats for subsequent 

data elements of the stream.    

The centralized cluster-based stream clustering setup involves cluster heads 

collecting data elements from their members and forwarding them to the sink every 

period. The cluster heads in this setup collect and forward their members’ data 

elements, one element at a time from every member, to the sink and the sink carries 

out the clustering.  

The distributed incremental clustering setup involves cluster heads carrying out 

local clustering before forwarding their local structures to the sink where the global 

clustering will be carried out. The difference between this setup with the centralized 

clustering cluster-based setup is in their internal working models. However, their 

topology set up is exactly the same.    

 



103 
 

 
 

 

Figure 6.11: The general distributed incremental data stream mining system model. 
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Figure 6.12: Centralized flat multi-hop stream clustering 
architecture network. 
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Figure 6.13: Centralized cluster-based stream clustering network. 
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6.6. DISCUSSION 

A WSN model for distributed data stream mining applications is presented. The 

performance of the system model is evaluated through the TrueTime simulator in the 

MATLAB environment utilizing the Simulink discrete event simulation engine. Different 

components of the system are modeled separately and integrated as a whole system 

model. 

The Streaming data is modeled as a combination of real data sets stored in a 

specific file and a process accessing the data sets one element at a time. The wireless 

sensor nodes are modeled as sensors, radio transceivers, and energy sources along 

with their application hosting microcontroller based on TrueTime base models and 

MATLAB programs. The TurTime ZigBee wireless network protocol model is utilized to 

model the wireless radio link among the sensor nodes. The distributed data stream 

mining application is modeled as MATLAB task scripts distributed throughout the 

network nodes.  

Benchmark clustering algorithms and network architectures are built and used 

in evaluation of the performance of the distributed incremental data stream mining 

WSN model through simulation. 
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Chapter 7 
 

7. RESULTS AND ANALYSIS 

This chapter will elaborate on the model performance evaluation results gathered 

from the distributed incremental data stream mining WSN system model simulation. 

Based on the results and analysis, the model capabilities and limitations will be 

discussed.  

 

7.1. SIMULATION RESULTS 

The evaluation of the distributed incremental data stream mining WSN is performed 

through simulation using the TrueTime simulator 2.0 Beta 6. The results presented in 

this chapter regarding performance evaluation of the application and the network 

services are based on averages of 10 to 15 simulation runs with 95% confidence limits 

taking realistic parameters obtained from experimental tests.   

 

7.2. SIMULATION SETUP 

The simulations were implemented in a Simulink environment using the basic models 

in the TrueTime block library. The standard Simulink library blocks are utilized for all 

other blocks necessary for the modeling. All node functionalities including the mining 

algorithm within the nodes were programmed in MATLAB scripts. Cluster based
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network topologies shown in Chapter 6 Figures 6.12, 6.13, and 6.14 are used. All 

simulations involve only stationary nodes. Even though node mobility is supported in 

TrueTime, node mobility is not considered in this research.  

For the purpose of evaluating the distributed incremental data stream mining 

WSN system we consider two parts: evaluation of data stream mining quality and 

evaluation of network service quality. 

 

7.3. SIMULATION ENVIRONMENT AND DATASETS 

To evaluate the performance of distributed incremental data stream mining WSN, we 

use real datasets on a PC with 3.20GHz i5 core CPU and 4GB memory running Windows 

XP. The TrueTime simulation programmes are implemented using MATLAB M-file 

scripts.   

The real dataset that we used contains 10 minutely weather observations of 

200 days at Sydney, Australia, recorded from June 2011 to January 2012 [162]. Each 

day is regarded as a data stream and each stream has 144 points (24 x 60/10). Each 

data stream instance (stream object) consists of temperature, relative humidity, wind 

speed, and rainfall. The data streams are known to represent three levels of forest fire 

danger ratings (Low, Moderate and High) on the McArthur Fire Danger Index (FDI) 

scale [163].    

 

7.4. SIMULATION AND ANALYSIS 

Initially, we evaluate the cluster quality of the distributed incremental data stream 

mining WSN model using benchmark standard clustering algorithms; the K-Means and 

the FCM. Using the same data stream sets, we vary the stream dimension (number of 

data features), and stream periods to investigate the nature and the complexity of the 

streams that the distributed incremental data stream mining WSN model can handle. 

The performance of the model compared to the benchmark models should highlight 

the validity of the model under the simulated conditions and guidelines for optimal 

system design.  
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The first set of simulations considers the system performance on different 

stream dimensionality (i.e. stream elements with different number of feature space) 

and stream rates. Stream sets with single to four dimensions are used to investigate 

the mining performance with respect to the benchmark models. Sources generating 

streams as slow as every minute to as fast as every second are used to investigate the 

effect on cluster quality and validity.   

The second set of simulations investigates the effect of network architectural 

variances on the mining performance. The variables considered in this simulation are 

cluster density, local model drift threshold (i.e. the maximum amount of local model 

drift before the system starts updating the global model), and non-uniform clusters.  

The third and final sets of simulations consider the impact of the distributed 

incremental data stream mining WSN model by evaluating the network services 

behavior. This evaluation considers the average energy consumption, the average data 

delivery delay, and the packet delivery ratio.  

  

7.5. SIMULATIONS 1 

The setup for this simulation consists of a network of 200 sensor nodes, 25 cluster 

heads, and a sink node. The network is organized under 25 uniform clusters of 8 nodes 

each. Each node is configured to transmit an element of its stream at a period of 5 

seconds. The other network parameters are as in Table 6.1 of chapter 6. The data 

stream source for this simulation consists of the weather data stream described in 

section 7.3. The first sets of simulations take only temperature streams and make up 

single dimensional streams. The 2D, 3D and 4D streams are formed in the same 

manner taking two, three and four features from the original data stream consisting of 

temperature, relative humidity, wind speed, and rainfall features, respectively.  

 

7.5.1. One-Dimensional (1D) Stream Analysis 

Figure 7.1(a) shows a snapshot of the first elements of the eight member nodes to 

have arrived at the first cluster head (CH1). This makes up the first sliding window of 
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the first cluster head stream on which the SUBFCM algorithm runs and extracts local 

cluster models. Figure 7.1 (b-f) show similar snapshots of cluster heads two to six (CH2 

to CH6).  

Therefore, there is a stream of 200 elements distributed within the network 

(eight stream elements at each of the 25 cluster heads) at each simulation step. The 

first stream elements from all clusters are combined and shown in Figure 7.2 below. 

The combined stream set at each simulation step is passed on to the benchmark 

clustering algorithms to extract the ideal reference clusters to compare to the clusters 

from the distributed model.  

Global cluster models are computed at the sink by re-clustering the local cluster 

models obtained from all cluster heads at every simulation step. Figure 7.3 shows 

cluster centers obtained from the distributed model and the reference cluster centers 

during 144 simulation steps for the single dimensional data stream.   

We captured the stream sets at each simulation step (total of 144 steps) for 

running K-Means and FCM systems offline. However, the SUBFCM is run distributed 

and online. As described before, the datasets are known to consist of elements 

belonging to three classes of Forest Fire danger levels on the McArthur scale [163]. 

However, in this particular simulation, we only take a single variable (Temperature) 

from each data stream element to form a single dimensional stream. Therefore, the 

number of clusters in each step is pre-set to three for K-Means and FCM clustering, 

whereas for the SUBFCM clustering, the cluster radius variable is calibrated via offline 

testing on the same datasets and fixed to ݎ௔ ൌ 0.10 that partitions 97.3% of the 

stream sets into three clusters.  

The Analysis of clusters obtained from the distributed SUBFCM system taking 

into account 144 simulation steps shows that the temperature cluster centers 

obtained  deviate by 0.42 °C and 0.21 °C on average in reference to the central K-

Means and FCM systems, respectively. The maximum cluster centers displacement 

observed are 0.59 °C and 0.46 °C compared to K-Means and FCM systems, respectively. 

Figure 7.4 shows the model cluster deviations with reference to K-Means and FCM for 
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the total 144 simulation steps. The maximum deviation is only 2.8% of the maximum 

temperature in the stream.  

The results indicate that the distributed incremental data stream clustering 

WSN model can extract clusters comparable in quality to those obtained from batch 

clustering of data streams gathered at a central location using standard K-Means and 

FCM algorithms. A deviation of 2.8% of the maximum value is tolerable by several 

applications given the added advantages of distributed clustering.  

  

(a)          (b) 

  

                         (c)           (d) 

 

  (e)            (f) 

Figure 7.1: Cluster heads first sliding window snapshots. 
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Figure 7.2: The sliding windows combined to form the first stream set. 

 

 

Figure 7.3: Cluster centers extracted during 144 simulation steps. 
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Figure 7.4: Average cluster deviations. 
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The first stream set, taken at the first simulation step, along with the cluster centers 

obtained using the distributed SUBFCM system and reference systems K-Means and 

FCM are shown in Figure 7.6 below. The cluster radius for our distributed system for 

the 2D data stream case is set to ݎ௔ ൌ 0.15 after calibrating offline using the same 

datasets. In 98% of the 144 steps, the distributed system produced three distinct 

clusters similar to the K-Means and FCM clusters.  Figure 7.7 shows the average cluster 

centers deviation of distributed SUBFCM compared to the K-Means system. The 

average cluster centers deviation with respect to the FCM system is shown in Figure 

7.8.  

Analysis of the results obtained shows that the distributed system cluster 

centers  deviate by 3.86% and 1.46% of the cluster radius on average with respect to 

the K-Means and FCM cluster centers respectively. The maximum cluster deviation 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation step

A
ve

ra
ge

 c
lu

st
er

 d
ev

ia
tio

n 
[o

C
]

 

 
error w.r.t KMEANS
error w.r.t. FCM



113 
 

 
 

observed in this simulation is 13.22% with respect to K-Means and 5.16% with respect 

to FCM.    
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Figure 7.5: Cluster heads first sliding windows snapshot. 

 

 

Figure 7.6: Stream sets and clusters from first simulation step. 
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Figure 7.7: Average cluster deviations with respect to K-Means for 2D streams. 

 

 

Figure 7.8: Average cluster deviations with respect to FCM for 2D streams. 
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7.5.3. Three-Dimensional (3D) Stream Analysis 

Three-dimensional stream analysis simulation considers three variables (temperature, 

relative humidity, and wind speed) from the same data sources used in previous 

simulations for 1D and 2D cases. The cluster radius for the distributed clustering is 

calibrated to ݎ௔ ൌ 0.065. Other settings are as in previous simulations.  The Snapshot 

of the first sliding windows of cluster head one to cluster head three are shown in 

Figure 7.9 (a-c). The second stream set in Figure 7.9 (b) shows the maximum cluster 

centers deviation.  

Simulation results analysis shows that the average cluster deviations of the 

distributed SUBFCM system is 11.63% and 6.05% compared to the K-Means and FCM 

systems respectively. Maximum observed cluster deviation is 15.52% compared to K-

Means system. Figure 7.10 and Figure 7.11 show average cluster deviations for the 144 

simulation runs with respect to K-Means and FCM respectively.   
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         (c) 

Figure 7.9: Cluster heads first sliding windows snapshot. 

8
10

12
14

16
18

40

60

80

100
5

10

15

20

25

30

35

 

Temperature [oC]

Stream set 2

R.Humidity [%]
 

W
in

d 
sp

ee
d 

[K
m

/h
]

Stream set elements
KMEANS Cluster
FCM Cluster
SUBFCM Cluster

8
10

12
14

16

60

70

80

90

100
10

15

20

25

30

35

 

Temperature [oC]

Stream set 3

R.Humidity [%]
 

W
in

d 
sp

ee
d 

[K
m

/h
]

Stream set elements
KMEANS Cluster
FCM Cluster
SUBFCM Cluster



118 
 

 
 

 

Figure 7.10: Average cluster deviations with respect to K-Means for 3D streams. 

 

Figure 7.11: Average cluster deviations with respect to FCM for 3D streams. 
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7.5.4. Four-Dimensional (4D) Stream Analysis 

Four-dimensional stream analysis simulation considers all the four variables 

(temperature, relative humidity, wind speed, rainfall) in the data source. The cluster 

radius for the distributed clustering is calibrated to ݎ௔ ൌ 0.09. Other settings are as in 

previous simulations.   

Simulation results analysis shows that the average cluster deviation of the 

distributed SUBFCM system is 7.74% and 6.29% compared to the K-Means and FCM 

systems respectively. Maximum observed cluster deviation is 14.6% compared to K-

Means system. Figure 7.12 and Figure 7.13 show average cluster deviations for the 144 

simulation runs with respect to K-Means and FCM respectively.   

 

 

Figure 7.12: Average cluster deviations with respect to K-Means for 4D streams. 
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Figure 7.13: Average cluster deviations with respect to FCM for 4D streams. 
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7.5.5. Stream Rate Analysis 

This simulation involves releasing constant size stream elements from their sources at 

varying periods. Their release periods are varied to control the stream rates. A number 

of simulation runs are averaged for every case varying the stream periods. The 

simulation is then repeated for the different stream dimensions discussed in previous 

sections. We simulated stream periods of 20 seconds, 15 seconds, 10 seconds, 5 

seconds, and 1 second. The effect of stream periods on cluster deviation is shown in 

Figure 7.14. The streams with the higher dimensions show higher deviations as a 

function of stream period. 4D stream sets show the highest standard deviation of 3.23 

around the mean deviation of 10.13%, while 1D stream sets exhibit the least standard 

deviation of 0.85 with a mean cluster deviation of 2.42%.  

The results indicate that when the data streams consist of higher than 2D 

elements, the average cluster deviations increase with an increase in the stream 

periods. Based on 144 simulations runs, the distributed model’s cluster deviations for 

4D streams are 10.13% +/- 3.23. For the 1D stream, the deviations are bound to 2.42% 

+/-0.85.    

 

Figure 7.14: Average cluster deviation variation with stream period. 
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7.6. SIMULATIONS 2    

Here we analyze the cluster deviations with varying number of nodes per cluster 

(cluster density), local model drift thresholds, and stream periods. We consider 

uniform and non-uniform cluster densities. 

The simulations for uniform cluster densities consist of six cases of different 

cluster densities and seven different local model drift thresholds. A non-uniform 

clusters case is also simulated. In all cases, the total number of nodes is 200. The 

number of clusters is varied to accommodate the 200 sensors.  

For each of the six uniform node density setups, seven simulations are 

performed one per local model drift threshold. For the non-uniform cluster density 

case too, seven simulations are performed: one per local model drift threshold.     

 

Table 7.1: uniform cluster density setup. 

Case  No clusters No. of nodes per cluster Total no. of nodes per network 

1 25 8 200

2 20 10 200

3 10 20 200

4 5 40 200

5 4 50 200

6 2 100 200

 

 

Table 7.2: non-uniform cluster density setup. 

Case No. of clusters No of node per cluster Total no. of nodes 

1 2 50 100 

1 40 40 

2 20 40 

2 10 20 

Total no. of nodes per network 200 
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As shown in Table 1, the simulation cases considered are 25 clusters of eight 

nodes each, 20 clusters of 10 nodes each, 10 clusters of 20 nodes each, five clusters of 

40 nodes each, four clusters of 50 nodes each, and two clusters of 100 nodes each. 

Local model drift thresholds of 10%, 20%, 30%, 40%, 50%, 60%, and 70% are simulated 

for each of the above cluster densities in each case keeping the stream periods 

constant. The stream periods considered are 1sec, 5sec, 10sec, 15sec, and 20sec. Table 

2 shows a single case of non-uniform cluster density setup consisting of two clusters of 

50 nodes each, a cluster of 40 nodes, two clusters of 20 nodes each, and two clusters 

of 10 nodes each. The data for this simulation considers all the four features (4D) of 

the data streams. 

 

7.6.1. Uniform Cluster Density Analysis 

When the cluster density is uniform, each cluster contains the same number of nodes. 

The amount of computation load on every cluster head is therefore similar. In the 

uniform cluster density setup, the cluster heads compute the local models in more or 

less similar time periods and hence achieve better global coordination of the model. 

Therefore the uniform cluster density architecture should perform better than the 

non-uniform architecture case.      
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Figure 7.15: Average cluster deviation with varying cluster densities at 1sec stream 
period. 
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cluster. The minimum average cluster deviation however corresponds to the local 

model drift threshold of 10% rather than 30% as in previous simulation.   

 

Figure 7.16: Average cluster deviation with varying cluster densities at 5sec stream 
period. 
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The above observations reveal that the optimum cluster density for best 

clustering results under the given network architecture and distributed incremental 

stream mining model is 40 nodes per cluster. The ability of the model to handle data 

streams arriving in periods of longer than 1 second is also observed. The stream period 

of 1 second or lower is however too fast for the model as manifested in relatively 

higher average cluster deviations.  

High cluster deviations at a very low number of nodes per cluster in all 

simulations show that by dividing a given large quantity of datasets into smaller sets, 

mining these smaller sets at distributed locations simultaneously and incrementally 

extracting the hidden global structures can yield results comparable to that of mining 

the whole dataset at a central location. However, as the number of divisions increases, 

the number of distributed mining locations increase with very small sub-sets of data 

and the mining results start to degrade in comparison to the central mining results.    

 

Figure 7.17: Average cluster deviation with varying cluster densities at 10sec stream 
period. 
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Figure 7.18: Average cluster deviation with varying cluster densities at 15sec stream 
period. 

 

Figure 7.19: Average cluster deviation with varying cluster densities at 20sec stream 
period. 
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Figure 7.20: Average of cluster deviations for different stream periods. 
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Figure 7.21: Average cluster deviation for non-uniform cluster density. 
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algorithm processing state is given in the node hardware datasheet. Based on this we 

model the nodes’ average energy consumption incorporating the algorithm processing 

state. By logging the time duration of every state during simulation, we calculate the 

average energy consumption of the sensor nodes and the cluster heads.  

The average energy consumption of a typical node taking the average of all 

nodes in a cluster for a single step of simulation run is shown in Figure 7.22. Similarly, 

the average energy consumption of a typical cluster head taking the average of all 

cluster heads in the network for a single simulation step is shown in Figure 7.23. The 

average energy consumption for the entire simulation run can be found by multiplying 

this with the number of simulation steps.    

In Figure 7.22, the average energy consumption for the  sensor nodes and 

cluster heads is presented. This simulation averages data logged from a network of 25 

clusters of eight sensor nodes each. The energy consumption of both the sensor nodes 

and the cluster heads diminish with increasing stream period. The average energy 

consumption in both types of nodes decreases rapidly as the stream period increases 

from one second to five second periods. After the five second stream period the 

average energy consumption decreases smoothly. This shows the impact of frequent 

data transmission on the average energy consumption. Increasing the stream period 

beyond 10 seconds does not significantly decrease the average energy consumption. 

This indicates that the increased energy consumption at shorter stream periods is 

partly due to increased packet collisions and retransmissions at faster stream arrival 

rates. The specific distributed incremental stream mining WSN model energy 

consumption performance is optimal for stream periods of 5 seconds or more.  

The impact of cluster density per cluster on average power consumption of 

both sensor nodes and cluster heads are shown on Figure 7.23 and Figure 7.24 

respectively. In Figure 7.23, the average energy consumption impact due to different 

node densities per cluster are plotted for a range of stream periods. It can be observed 

that the impact of stream periods on the average energy consumption of sensor nodes 

is significantly higher than the impact of node densities per cluster. Figure 7.24 shows 

the plot of average energy consumption of cluster heads as a function of node density 

per cluster for the same range of stream periods as in Figure 7.23. The impact of node 
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densities per cluster on the average energy consumption of the cluster heads is as 

significant as the impact of stream periods. The impact of cluster density on the cluster 

heads’ average energy consumption at shorter stream periods are more significant. 

The increased average energy consumption by the cluster heads at higher node 

densities can be explained by the increased number of packet receptions from their 

member nodes. Packet collisions and new datasets catching up with unprocessed 

previous datasets account for increased average energy consumption of cluster heads 

at fast stream rates.     

 

Figure 7.22: Sensor nodes and cluster heads average energy consumption. 
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Figure 7.23: Sensor nodes average energy consumption. 

 

Figure 7.24: Cluster heads average energy consumption. 
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The average energy consumption of the sensor nodes and the cluster heads 

largely vary with the stream periods and node densities per cluster. The results in 

Figure 7.22 show that streams with shorter periods, i.e. streams arriving fast, result in 

higher average energy consumption than those with longer periods. This is because for 

longer stream periods the nodes spend more time in sleep mode. The sensor nodes 

and cluster heads consume above 90% less energy when mining data streams with a 

period of 20 second compared to mining the same data streams with a period of one 

second. This could also be due to higher packet collision and lower data delivery ratio 

at such fast speeds.   

 

7.7.2. Average Data Delivery Delay 

The packet delivery delay is defined as the time elapsing between the instant at which 

a packet is generated at a source, and the instant at which a copy of the packet is first 

received by the destination [164]. In our model, we define the data delivery delay as 

the time elapsed between the instant a data packet is generated at a source, and the 

instant at which the local cluster models generated at the cluster heads, corresponding 

to the data packet, arrives at the sink.   

The average data delivery delay of a typical sensor node taking the average of 

data delivery delays of every sensor node in the network for that instance is shown in 

Figure 7.25. From the plot of average data delivery delays as a function of cluster 

density in Figure 7.25, we can observe that the average data delivery delay increases 

as the number of nodes per cluster increases. For a stream period of one second, the 

average data delivery delay exceeds the stream period when more than 40 nodes exist 

per cluster. This situation indicates saturation of the system due to streams arriving at 

a rate higher than the rate at which the system can process them. However, for stream 

periods of five seconds or more, the average data delivery delays are well below 500 

ms with the exception of 5 seconds stream period at more than 50 nodes per cluster 

density.     
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Figure 7.25: Packet delivery delay variation with cluster density. 
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packet delivery ratio drop should be expected if 50 or a higher cluster density is 

desired. 

The packet delivery ratios of cluster head-to-sink are shown in Figure 7.27. 

Packet delivery ratios drops of 99.5 – 96.5 are observed for node densities of eight to 

50 nodes per cluster for all stream periods, except for one second stream period which 

further drops to 96%. The lowest packet delivery ratio observed is about 96% for node 

density of 100 nodes per cluster. For the case of cluster head-to-sink packet delivery 

ratio, the stream periods do not show significant impact on the rate of packet delivery 

ratio drop as in sensor node-to-cluster head packet delivery ratio drop.  

Applications that can tolerate stream packet delivery ratios as low as 94% at 

sensor node-to-cluster head and 96% at cluster head-to-sink can deploy as much as 

100 nodes per cluster given that the increased energy consumption and data delivery 

delays as a consequence are acceptable.     

 

Figure 7.26: Packet delivery ratio of sensor node-to-cluster head. 
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Figure 7.27: packet delivery ratio of cluster head-to-sink. 

 

 

7.8. CONCLUSIONS 

In this chapter, the distributed incremental data stream mining WSN model is 

evaluated through simulations. The robustness of the model to different data stream 

dimensions and data stream rates is demonstrated through the first set of simulations. 

Benchmarking on standard mining algorithms, the K-Means and the FCM algorithms, 

we have demonstrated that the model can perform high quality distributed data 

stream mining tasks comparable to centralized data stream mining. The second set of 

simulations have shed light on the network architectural design guidelines required to 

satisfy desirable applications demands without compromising the distributed data 

stream mining task integrity. The third and final set of simulations have also discussed 

the energy cost and network quality of service impacts for optimal system 

performance. 

 

 

 

0 10 20 30 40 50 60 70 80 90 100
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Node density per cluster

P
ac

ke
t d

el
iv

er
y 

ra
tio

 [%
]

 

 
1s
5s
10s
15s
20s



 
 

137 
 

 
 

 

 

Chapter 8 
 

8. CASE STUDY: MICRO-SCALE FOREST FIRE WEATHER INDEX AND 
SENSOR NETWORK 

 

8.1. INTRODUCTION 

The Micro-scale Forest fire Index (FWI) system is an attempt to implement a scaled-

down version of the Canadian FWI system for fire danger monitoring of a relatively 

smaller geographic area. It considers an area as small as a few square meters or as 

large as many square kilometers. It is specifically important for local forest zones 

where the nature of the vegetation and topography largely differs from the 

surrounding forest area. It is based on deployment of large number of low-cost, low-

power, and small-sized weather sensor nodes linked by a low-power wireless 

communication network.     

A Micro-scale FWI system locates impending bushfires to their exact locations 

well before their occurrence, and remotely alerts the authorities with detailed fire 

management information. It enables high temporal and spatial resolution of 

information on bushfire activity. This is considered ideal for an early-warning systems 

of bushfire-prone regions. A large number of low-cost, intelligent and wireless sensors 

are deployed within the area of interest with the sensors located at short distances 

apart. These sensors intimately interact with the physical environment of the 

bush/forest floor and gather the necessary information which is shared among the 

neighboring sensors wirelessly. The information is fed to the hazard prediction 

algorithm embedded into each sensor unit to generate an alarm for any fire hazard 
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and for data management. The system could be organized to alert the fire 

management authority timely via the available backbone communication (GSM, 

Internet or satellite) link. 

The Micro-scale FWI system, developed during this research work is used as a 

case study to demonstrate the merits of the distributed incremental data stream 

mining WSN system.  

 

8.2. FWI SYSTEM 

Fire Weather Index (FWI) is an estimation of the risk of wildfire based on the Canadian 

empirical model developed by Van Wagner [166]. It is one of the most 

comprehensively used forest fire danger rating systems in North America based on 

several decades of forestry research [167, 168]. FWI is used to estimate fuel moisture 

content and generate a series of relative fire behavior indices based on weather 

observations. The fuel moisture and fire behavior indices are used by operational 

personnel to aid in the estimation of expected daily fire occurrence, potential fire 

behavior and difficulty of suppression across a fire management district, region or 

province [169].      

The FWI system takes current weather parameters, elevation data and 

produces the indexes of the FWI system daily at noon local time. The FWI indexes are 

indicators of daily potential and behavior of bushfires. The FWI system relies on 

sparsely distributed meteorological stations as its current weather parameters’ data 

sources. Data from several meteorological stations is transferred to a central 

processing and repository center via satellite communication. At the central processing 

and repository center, weather parameter grids for the entire national area will be 

produced. Geographic Information Systems (GIS) software is used to interpolate the 

weather data between stations taking into account elevation data to produce gridded 

weather maps. The FWI System components are then calculated on a cell-by-cell basis 

according to a set of equations to produce the FWI maps [170].  

The FWI system models the complex relationships between the forest weather 

variables (fire weather observations), the forest floor moisture profiles known as Fuel 
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Moisture Codes, and the Fire Behavior Indices. Six standard components of the FWI 

System provide numerical ratings of relative wild land fire potential. The first three 

components are fuel moisture codes that follow daily changes in the moisture 

contents of three classes of forest fuel with different drying rates. For each, there are 

two phases - one for wetting by rain and one for drying - arranged so that the higher 

values represent lower moisture contents and hence greater flammability. The final 

three components are fire behavior indices, representing rate of spread, amount of 

available fuel, and fire intensity; their values increase as fire weather severity worsens. 

The system is dependent on weather parameters only and does not consider 

differences in risk, fuel, or topography. It provides a uniform method of rating fire 

danger across wild land. The six components of the FWI system are described below. 

The first three indices are the Fine Fuel Moisture Code (FFMC), the Duff 

Moisture Code (DMC), and the Drought Code (DC). The FFMC relates the fire weather 

observations to ease of ignition of the litters and other cured fine fuels at top layer of 

the forest floor, hence a good indicator of likeliness of forest fire ignition at the 

observed locations. The DMC relates fire weather observations to the rate of fire fuel 

consumption at the loosely compacted organic layers of moderate depth duff layers. 

The DMC is indicative of the amount of fuel that would have been consumed in this 

layer, had the fire materialized. The DC relates the fire weather observations to the 

seasonal drought effects on the deep compact organic layers. The DC is an indication 

of the amount of smoldering in deep duff layers and large logs. 

The last three indices are the Initial Spread Index (ISI), The Build Up Index (BUI), 

and the Fire Weather Index (FWI). The ISI is a numeric rating of the expected rate of 

fire spread. The BUI is a numeric rating of the total amount of fuel available for 

combustion. The FWI is the numeric rating of the fire intensity, and it’s a general index 

of fire danger of a given forest area.  

The model equations of the fuel moisture codes and fire behavior indices are 

described below based on the general structure of the FWI system as shown in Figure 

8.1.  The fire danger severity rating on FWI scale is shown in Table 8.1. 
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8.2.1. Fine fuel moisture code (FFMC) 

FFMC is a numerical rating of the moisture content of litter and other cured fine fuels. 

It indicates the relative ease of ignition and flammability of fine fuel. Calculation of 

FFMC requires the current moisture condition m  of the fuel, which is determined by 

the combined effect of rainfall and absorption/desorption of atmospheric moisture. 

The rainfall effect is described as the rain modified moisture content rm . The 

absorption/desorption of atmospheric moisture is described as diffusion of the 

gradient of the initial moisture from its wetting equilibrium ( wE )/drying equilibrium (

dE ) moisture content. The wetting and drying diffusion coefficients ( wK and dK , 

respectively) are functions of relative humidity (RH) in %, temperature (T) in 0C, and 

wind speed (v) in km h-1. The wetting equilibrium and drying equilibrium moisture 

contents of the fuel are given by relative humidity and temperature in reference to 

noon temperature of  21.1 0C. 

 

 
m
mFFMC

+
−=

2.147
2505.59                       (8.1)

 

8.2.2. Duff Moisture Code (DMC) 

DMC is a numerical rating of the average moisture content of loosely compacted 

organic layers of moderate depth. This code gives an indication of fuel consumption in 

moderate duff layers and medium-size woody material. 

The DMC is a combined effect of rainfall modified duff moisture code rDMC

and evaporation from the duff layer dDMC  which are functions of temperature (T), 

relative humidity (RH) and effective day length (Leff).  

 

 dr DMCDMCDMC +=                       (8.2)
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   where 

)20ln(43.4372.244 −−= rr mDMC  

410)100)(1.1(894.1 −−+= effd LRHTDMC  

         rm  is the rain modified moisture code. 

 

8.2.3. Drought Code (DC) 

DC is a numerical rating of the average moisture content of deep, compact, organic 

layers. This code is a useful indicator of seasonal drought effects on forest fuels, and 

amount of smoldering in deep duff layers and large logs. 

The DC is determined by estimating the change in a moisture equivalent scale 

caused by a source term (i.e. the effective rainfall) and loss term (evapotranspiration 

and drainage). During the rainfall phase, the rainfall modified drought code rDC  is a 

function of rain modified moisture equivalent scale rQ . During the drying phase, the 

moisture loss from the duff layer is approximated by dDC , which is a function of 

temperature (T) and seasonal day length adjustment, fL .   

 

 dr DCDCDC +=                       (8.3)

 

where )/800ln(400 rr QDC =  and ))8.2(36.0(5.0 fd LTDC ++=  
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8.2.4. Initial Spread Index(ISI) 

ISI is a numerical rating of the expected rate of fire spread. It combines the effects of 

wind and FFMC on rate of spread without the influence of variable quantities of fuel. 

The ISI is related to FFMC and wind speed, v , limited to a maximum of 100 km 

h-1. It has the wind speed component, FW and the FFMC component, FF , related 

through the current moisture condition m . 

 

ܫܵܫ  ൌ 0.208ሺܹܨሻሺܨܨሻ                       (8.4)

 

where veFW 5039.0=  and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

+= −
7

31.5
1386.0

1093.4
19.91 meFF m   

 

8.2.5. Buildup Index (BUI) 

BUI is a numerical rating of the total amount of fuel available for combustion that 

combines DMC and DC. 

The BUI is calculated by combining DMC and DC. A form of the harmonic mean 

of the DMC and the DC is used to calculate the BUI [168], to ensure that changes about 

smaller values of either the DMC or the DC will receive a greater weight.  
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8.2.6. Fire Weather Index (FWI) 

FWI is a numerical rating of fire intensity that combines ISI and BUI. It is suitable as a 

general index of fire danger throughout the forest areas. Table 8.1 below shows the 

range of fire danger severity rating of each component. 

The FWI is a function of both the BUI and the ISI and is given as; 
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Figure 8.1: The general structure of the FWI system. 

 

Table 8.1: Fire danger severity rating on the FWI scale. 

Index Low Moderate High Extreme 

FFMC 0.0  -   80.8 80.9  -  86.8 86.9  -  89.9 90.0+ 

DMC 0.0   -  15.8 15.9  -  30.8 30.9  -  50.9 51.0+ 

DC 0.0   -  139.9 140.0  -  239.9 240.0  -  340.9 341.0+ 

ISI 0.0   -  2.1 2.2  -  4.9 5.0  -  9.9 10.0+ 

BUI 0.0   -  19.9 20.0  -  35.9 36.0  -  60.9 61.0+ 

FWI 0.0   -  2.9 3.0  -  9.9 10.0  -  22.9 23.0+ 
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8.3. LIMITATIONS OF THE STANDARD FWI SYSTEM 

The main limitations of the standard FWI system are its fire danger rating time and 

space resolution. The standard FWI system rates relative mid-afternoon fire danger 

from noontime weather data [171]. Hence, the fire danger rating is on a daily or 24 

hours cycles. The effect of fluctuations in weather parameters on the fire danger rating 

within the 24 hours period is thus ignored by the system. The FWI system does not 

account for the differences in forest cover types and relies on interpolated point-

source weather records [171]. Further, the FWI weather data sources, which are 

meteorology stations, are sparsely distributed and hence weather records of a large 

area between the stations is estimated based on interpolation. This shows that the 

spatial resolution of the fire danger rating is very low. In unfortunate events of station 

failures, due to either lightning strike or technical fault, the spatial resolution degrades 

further as interpolation values are directly proportional to the number of reference 

points.  

another limitation of the FWI system is that the system does not allow real-

time querying of specific forest domain at specific times for hazard rating. This may be 

necessary when there are specific domains of the forest that require special attention 

such as urban-rural-interface, national parks, and nuclear facility. A new station start-

up and integration also involves high cost, expensive labor and long time.    

The above mentioned limitations of the standard FWI system can potentially be 

overcome by the Micro-scale FWI system.  

In the micro-scale FWI system, the forest zone is divided into grids of small 

square cells (e.g. 20m x 20m) and a low-cost weather sensor node is placed in each 

cell. Since the size of the square cells can be as small as possible, high spatial resolution 

weather parameter measurements can be made by taking a large number of 

measurement points in the region. The fire danger rating values’ accuracy is robust to 

a single or a few sensor failures due to the dense measurement points. The size of the 

forest zone that can be monitored using a Micro-scale FWI system is determined by 
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the WSN which usually employs numerous low cost nodes communicating over 

multiple hops to cover a large geographical area.   

The micro-scale FWI system also provides high temporal resolution fire danger 

rating as the system can make low-power frequent measurements and transmit (e.g. 

hourly) to base station. The system can also operate in event detection mode, in which 

the individual sensor nodes instantaneously send information to the base station upon 

detection of a predetermined danger rating threshold.  

The micro-scale FWI system allows intermittent interaction to the normal (e.g. 

hourly) operation for querying a specific region’s situation. Such queries can be 

generated and injected into the network at the base station. The Micro-scale FWI 

system deployment is fast as the weather sensor nodes have self-configuration and 

healing capabilities to automatically link and form a robust network.    

 

8.4. THE MICRO-SCALE FWI SYSTEM 

This work implements a scaled down version of the standard Canadian FWI System- 

the Micro-scale FWI system. Its main purpose is to provide high temporal and spatial 

monitoring of forest zones spanning as small as few square meters or as large as few 

square kilometers referred to as micro-scale area. The Micro-scale FWI system 

produces the FWI rating map of a micro-scale area based on wireless weather sensor 

nodes deployed throughout the micro-scale area in large numbers. The weather 

sensors and FWI System components are carefully analyzed and calculations are 

transposed to suit a high temporal and spatial resolution micro-scale area fire danger 

rating system. 

The Micro-scale FWI system consists of a large number of low-cost, low-power, 

and small-sized weather sensor nodes linked via a low-power wireless communication 

network. At the root of the wireless network is a sink node, which is physically 

connected to a base station computer. The base station computer acts as a gateway to 

an external networks (e.g. Internet, GSM) for remote management of the system.   
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The Micro-scale FWI system can be described based on the main three 

components of the system; the weather sensor nodes, the FWI indices processing 

algorithm embedded within each weather sensor node, and the wireless 

communication network linking these nodes.  

 

8.4.1. The Weather Sensor Nodes 

The weather sensor nodes are the basic building blocks of the micro-scale FWI system. 

They are the sources of the weather data for the system and play a similar role to that 

of meteorology stations in the standard FWI system. They are capable of individually 

probing their surroundings and acquire weather parameters such as temperature, 

relative humidity, wind speed, and rainfall. They are also capable of minor data 

processing and short range wireless communication with other nearby nodes.        

A weather sensor node is a wireless node also known as a mote [172] with 

weather parameter sensing capability. It is a small low-power electronic device that 

combines programmable general-purpose computing with multiple weather 

parameter sensing and wireless communication capabilities. The basic components of 

a wireless sensor node are microcontroller, transceiver, sensors, and power source.  

A Robust weather sensor node can be constructed based on state-of-the-art 

wireless node platforms such as MEMSIC’s low-power platforms (IRIS, MICAz/MICA2, 

TelosB, Cricket) and Texas Instrument’s system-on-chip (CC2430/31, CC2480, CC2530). 

All of these platforms provide a low-power Micro Controller Unit (MCU) and an IEEE 

802.15.4 compliant radio transceiver on a small-size device onto which sensor boards 

can be plugged for  specific applications.     

The Power source for the nodes are often batteries. The sheer number of 

sensor nodes required for most applications makes battery replacement expensive 

[173]. Therefore, using dynamic power management schemes and using batteries 

rechargeable through solar cells are often recommended. Sensors are used by the 

node as its means of interacting with the physical world. The continual analog signal 

produced by the sensors is digitized by the analog-to-digital converter (ADC) unit of the 

microcontroller and is passed on to the application for further processing. As wireless 
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sensor nodes are typically very small electronic devices, they can only be equipped 

with a limited power source. Hence, sensors have to have extremely low energy 

requirements in probing the environment. A typical sensor node architeture is shown 

in Figure 8.2. 

 

Figure 8.2: Wireless sensor node architecture. 

 

In the Micro-scale FWI system application there are three classes of sensor 

nodes; the weather sensor nodes, the cluster heads, and the sink.  

The weather sensor nodes are the most elementary devices of the three 

classes. They host atmospheric temperature and relative humidity sensors. Their 

primary purpose is to probe their environment for the two physical parameters, minor 

data processing and regularly transmit the information to the cluster heads while 

keeping their energy consumption as low as possible.  

The cluster heads are better equipped devices with more processing power and 

energy source than the weather sensor nodes. They host wind speed and rainfall 

sensors. The cluster heads take regular measurements of wind speed and rainfall and 

make these data available for their member weather sensor nodes. They regularly 

receive information from their member weather sensor nodes and undergo 

information processing before transmitting to the sink. They also act as relay nodes for 

other cluster heads’ data to the sink.  

The sink is a root node of the network responsible for creating and maintaining 

the network. It is a general harvesting point of the information produced by the 
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network.  The raw data and information collected by the individual weather sensor 

nodes is fused, in stages, and forwarded to the sink node that provides the interface to 

the outside world. The sink is physically connected to a base station computer and 

hence has constant power supply.  

 

8.4.2. Siting and Exposure of the Sensors 

Selecting an appropriate site for weather station is critical for obtaining accurate 

meteorological data that represents the general area of interest. There are guidelines 

on weather station sitings and sensor placements defined by regulatory bodies such as 

World Meteorological Organization (WMO), other standard climatologists such as the 

American Association of State Climatologists (AASC), and research agencies such as the 

Environmental Protection Agency (EPA).  

According to the EPA, wind speed and direction sensors should be located at a 

distance of at least 10 times the height of nearby objects [174]. The standard 

measurement height for wind speed and direction also should be 10m [174, 175]. See 

Figure 8.3 for reference. 
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Figure 8.3: Wind speed and direction sensors siting and exposure. 

 

Temperature and relative humidity sensors should be housed in a ventilated 

radiation shield and be sited no closer than four times the nearest obstruction’s height 

[174]. The recommended standard measurement height is 1.25 to 2.0 meters [175]. 

The AASC and EPA suggest tipping buckets for precipitation measurement be 

no closer than four times the height of an obstruction [174, 176]. Typically, tipping 

buckets are sited on level ground covered with short grass or gravel. WMO and EPA 

recommend standard precipitation measurement height of 30cm minimum [174, 175].  

The guidelines described above on siting and exposure of the weather stations 

is based on standard meteorological stations whose readings are required to be 

general representatives of a large area. Thus the sensors should be sited such that 

their readings closely correlate with the readings of the large area in general. However, 

in distributed dense point weather parameter measurement systems such as the 

Micro-scale FWI system, the objective is to measure the actual weather parameters at 
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a large number of locations in close proximity. Therefore, these guidelines can only be 

used as general guidelines in Micro-scale FWI system’s sensor siting and do not directly 

apply. The optimal location and orientation of the nodes of Micro-scale FWI system are 

according to the manufacturer specifications of the sensors used and consider 

connectivity, coverage, and reading accuracy.  

 

 

 

Figure 8.4: The Micro-scale FWI system WSN architecture. 
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8.5. THE FIRE WEATHER NETWORK 

A Micro-scale FWI system acquires current weather parameters data simultaneously 

from a large number of sources (weather sensor nodes) densely distributed on a given 

forest zone. The weather sensor nodes, cluster heads and sink are linked via wireless 

communication to form a structured fire weather network.  The fire weather network 

structure consists of weather sensor nodes as data sources, cluster heads as points of 

data aggregation and false alarm filtering, and a sink as a gateway to the base station 

and external network. The data acquired by a large number of weather sensor nodes 

at different locations in the area monitored will be transmitted to a base station to be 

processed and provide fire potential, prediction, and behavior information to fire 

managers. In an integrated system, where nodes are placed around a metrology 

station, the metrology station can replace the cluster head. The general system 

architecture is depicted in Figure 8.4 above. 

The fire weather network is based on IEEE 802.15.4 LR-WPAN - ZigBee. The IEEE 

802.15.4 LR-WPAN is designed to be used in applications requiring simple wireless 

communication links over short-ranges with limited power and low throughput. ZigBee 

defines a high-level communication protocol using the IEEE 802.12.4 based small, low-

power digital radios. The fire weather network, based on ZigBee wireless network, 

operates in the unlicensed ISM band of 2.4 GHz.  

The fire weather network is configured to operate in a two-tiered architecture. 

In the first tier, the weather sensor nodes form a star topology with their cluster head 

as the central coordinator. In the second tier, the cluster head nodes and the sink form 

a mesh topology utilizing the peer-to-peer communication feature of the ZigBee 

protocol. The fire weather network architecture is shown in Figure 8.5 below. 
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8.6. FWI INDICES PROCESSING ALGORITHM 

The Micro-scale FWI system utilizes the distributed incremental in-network computing 

of the FWI indices for two main purposes. First, the distributed in-network computing 

will reduce the amount of raw data transmissions, which will in effect conserve the 

limited energy resource of the nodes and consequently extend the network lifetime. 

Second, computing the FWI indices close to the data sources and transmitting a 

compact summary to the base station will reduce the information latency.       

The different nodes of the fire weather network (sensor nodes, cluster heads, 

and sink) are assigned different tasks of computing parts of the FWI indices. The fire 

weather network architecture (Figure 8.5) facilitates the coordination of the individual 

nodes’ tasks so that the complex computation of the FWI indices can be achieved 

through minor local computations.  

Sink

Cluster Head

Weather Sensor Node

Cl
us
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Figure 8.5: The fire weather network architecture.   
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The Micro-scale FWI system is designed to handle streaming weather data in 

near real-time and produce fire rating information dynamically as weather parameters 

change. The weather parameters can change unpredictably and drastically causing the 

fire danger rating concept drift. The fire weather network’s response to such drastic 

changes may cause the computational and communication complexity to grow beyond 

what the fire weather network is designed to handle. To mitigate this, the system 

further embeds the distributed subtractive fuzzy clustering algorithm-SUBFCM [152] 

onboard each cluster head to contain computational and communication complexity 

growth as a result of FWI concept drift.  

 

8.7. THE NODES TASK SUBDIVISION 

The weather sensor nodes periodically acquire ambient temperature and relative 

humidity data locally as well as receive wind speed and rainfall data over the air from 

their cluster head. They instantly compute local fuel moisture codes (FFMC, DMC, DC) 

using the weather data acquired. If their local fuel moisture codes exceed a set fuel 

moisture code threshold then they will send the set of new values to their cluster head 

and request an update. However, if their local fuel moisture codes are within the set 

threshold, then they enter the low power mode until the next period and repeat this 

cycle.  

The cluster heads periodically acquire wind speed and rainfall data and send to 

their member weather sensor nodes. They receive fuel moisture code data from 

member nodes and cluster them using the SUBFCM clustering algorithm whereby each 

cluster contains associated member nodes. On the first run, the cluster heads send this 

information to their member nodes so that the member nodes can use them as a 

reference to decide either to send their subsequently computed fuel moisture codes to 

their cluster head or do nothing and return to the low power mode. Following the first 

run, the cluster heads receive fuel moisture codes from their member nodes and 

categorize them into compact clusters. The cluster heads further compute fire 

behavior indices (ISI, BUI) using the compact clusters of fuel moisture codes and send 

them to the sink. In case there are a set number of update requests from member 
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nodes, the cluster heads send fuel moisture code cluster information to their member 

nodes.  

The sink computes the FWI index based on the fire behavior indices received 

from the cluster head nodes. It merges clusters of information received from the 

cluster heads and weather sensor nodes into global information regarding the 

monitoring area. The sink also maintains the global locations of all the network nodes 

and physical node clusters.        

The Base station, hard wired to the sink, carries out computation and energy 

intensive analysis of the global information produced by the sink. The base station is 

the first point of user interaction with the sensor network. It provides graphical 

information output and well as data statistics results.  

One of the graphical outputs by the base station is dynamic virtual clusters. The 

virtual clusters are clusters of fire hazard rating or intensity mapped onto the exact 

physical node locations as shown in Figure 8.6. The virtual clusters provide a spatial 

map of the hazard distribution as an overlay to the physical nodes clusters. The virtual 

cluster is, in effect, a fire hazard situation distribution and the associated sensors. The 

virtual cluster viewed periodically can provide fire hazard situation dynamics such as 

speed and direction of hazard movements. The virtual cluster information can further 

be utilized to reconfigure the physical cluster for better and more efficient WSN 

resource utilization. 

 

 

 

 

 

 

 



156 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

Sink

Cluster Head

Sensor Node
Virtual clusters 

Figure 8.6: Virtual clusters of fire hazard rating or intensity mapped onto the 
node locations. 
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8.8. THE Micro-scale FWI SYSTEM DATA MODEL 

Data sourced by the sensor nodes is modeled as a data stream. A data stream is a real-

time, continuous, ordered (implicitly by arrival time or explicitly by timestamp) 

sequence of tuples. It is not possible to control the order in which tuples arrive, nor 

feasible to locally store the stream in its entirety [177].  A tuple is similar to a row in a 

database table. Each tuple in a stream has fields which contain payload, ID, data type, 

size, etc. The weather data stream of interest for this work consists of air temperature ሺܶሻ, relative humidity ሺܴ݄ሻ, wind speed ሺܸሻ, and rainfall or precipitation ሺܴ݂ሻ fields. A 

stream of weather tuples is shown in Figure 8.7 below.  

 

 

 

 

 

 

 

 

 

 

The time difference between generation of a tuple and the next tuple in a 

stream determines the speed of the stream. The lower the time difference the higher 

is the speed of the stream. In this context, a weather data stream ܹ is an unbounded 

sequence of elements 〈ݓ,  is a monotonically ݐ is weather data, and ݓ where ,〈ݐ

increasing timestamp indicating the arrival time of the elements. ݓ is a vector of 

weather values, ݓ ൌ ሺܶ, ܴ݄, ܸ, ܴ݂ሻ. 
 

ࢎࡾ ࢀ ࡰࡵ ࢂ ࢌࡾ ࡰࡵ ࢀ ࢎࡾ  ࢌࡾ ࢂ

FIELD 

NEXT TUPLE ONE TUPLE

STREAM of TUPLES

Figure 8.7: The stream of weather tuples.
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8.9. THE Micro-scale FWI SYSTEM SIMULATION MODEL 

The Micro-scale FWI system model is developed using the MATLAB environment. The 

three different types of weather data processing model objects are created using 

MATLAB representing weather sensor node, cluster head, and sink sub-tasks. The 

modular algorithms running within these objects describing the FWI indices 

computation and SUBFCM clustering are also programmed using the MATLAB script 

language.  

TrueTime 2.0 beta 6 is used to model and simulate the fire weather network. 

TrueTime is a MATLAB/SIMULINK based network modeling and simulation tool that 

provides a customizable Kernel model, analogue input model, wireless network 

protocol model, location, and battery models. For the purpose of this study, the Kernel 

model is customized to represent the Texas Instruments (TI) MSP430F2274 

Microcontroller used to host the weather data stream mining application. The wireless 

network model is also customized to represent Chipcon’s CC2530 IEEE 802.15.4 radio 

transceiver along with the ZigBee wireless protocol stack. The analogue input model is 

used to represent temperature, relative humidity, precipitation, and wind speed 

sensor inputs. The sensor nodes battery model is made to represent two standard AAA 

size alkaline batteries, which normally power the physical TI’s MSP430 and Chipcon’s 

CC2530 radio transceiver. The Kernel model further provides a simple interface for 

algorithms and models developed in MATLAB or Simulink to run on. The location of 

each node can also be set through the x and y inputs or can be interfaced to GPS 

modules for dynamic localization. However, for this purpose we determined the 

locations as no mobile nodes are considered. The simulation parameter settings are 

shown in Table 8.2 below. The TrueTime models of Sensor node, Cluster head, and Sink 

are shown in Figures 8.8, 8.9 and 8.10 below.       
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Table 8.2: The simulation model parameter settings. 

Model parameter                                  Value Model parameter                               Value 

Network type                                             ZigBee 

Network number                                            1 

Number of nodes                                           6 

Data rate (bits/s)                                     250 000 

Minimum frame size (bits)                          16 

Transmit power (dBm)                                  0 

Receiver signal strength (dBm)                  -85 

Path-loss exponent                                       3.5 

ACK timeout (sec)                                       .0004 

Retry limit                                                        5 

Error coding threshold                                 0.03 

 

 

Figure 8.8: The Micro-scale FWI system weather sensor node sub-model. 
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Figure 8.9: The Micro-scale FWI system cluster head sub-model. 

 

 

Figure 8.10: The Micro-scale FWI system sink sub-model. 
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8.10. SIMULATIONS AND RESULTS 

8.10.1. Micro-scale FWI System Model Validation 

System Model validation is an essential part of the model development process if the 

model is to be adopted and tried in a real-world setting. Model validation involves 

ensuring that the model meets its intended requirements in terms of the methods 

employed and the results obtained. The Micro-scale FWI system model is validated 

based on real world FWI system setup data.  Real weather network data set containing 

all critical cases that the real system could exhibit, is used in the validation of the 

Model. 

Real weather data sets recorded at several meteorology stations (Darfield, 

Ashburton, Burnham, Aero, and Snowdon) in South Island, New Zealand, obtained 

from the National Institute of Water and Atmospheric Research (NIWA) are used as 

benchmarks to validate the system performance. The geographic locations of the five 

stations are shown in Figure 8.11. These data sets consist of 3653 records of weather 

parameters (Temperature, relative humidity, Rainfall and Wind speed) along with their 

corresponding Canadian FWI indices (FFMC, DMC, DC, ISI, BUI, and FWI) collected 

hourly for the years 1994 to 2004. The data contains a burst mode weather stream as 

each element is acquired periodically at one hour time intervals. However, for 

simulations and for the purpose of model validation it is treated as  a continuously 

incoming weather data stream rather than the burst mode, the data is fed to the 

sensor nodes in shorter periods. 

The Micro-scale FWI system model representing the Canterbury weather 

network, shown in Figure 8.12, is configured and fed the real data sets from these 

stations. The model computed the fire danger ratings in-network in a distributed 

incremental fashion and logged results at the base station. The Model generated daily 

fire danger ratings that are then analyzed in comparison to those of the actual 

Canterbury weather network.   

Initially some part of the real wild fire case data is fed to the model to verify 

model sanity. The simulation scenario comprises distributed sensor nodes collecting 

weather data sets and computing FFMC, DMC, and DC indices to be sent to their 
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cluster heads. The cluster heads compute ISI and BUI indices for each data set received 

and forward the aggregated results to the network sink.  The simulation runs for 1960 

seconds, whereby sensor nodes periodically transmit data packets every 20 seconds.  

The Micro-scale model simulation results are in close agreement with the 

known actual FWI indices. The indices from both systems are plotted for about 100 

real weather dataset records in Figures 8.13 to 8.18, where the fire predictions are 

processed in-network and transmitted to the sink every 20 seconds. Figure 8.13 shows 

a plot of the wildfire FFMC index produced by the model along with the corresponding 

known FFMC index. Figure 8.14 shows a sample plot of the wildfire DMC index 

produced by the model along with the corresponding known DMC index. Figure 8.15 

shows a sample plot of the wildfire DC index produced by the model along with the 

corresponding known DC index. Figure 8.16 shows a sample plot of the wildfire ISI 

index produced by the model along with the corresponding known ISI index. Figure 

8.17 shows a sample plot of the wildfire BUI index produced by the model along with 

the corresponding known BUI index. Figure 8.18 shows a sample plot of the wildfire 

FWI index produced by the model along with the corresponding known FWI index. 

From the wildfire hazard prediction point of view all the Micro-scale FWI model indices 

errors are insignificant. Figure 8.15 shows the highest variation between the two 

systems. This is because the DC index reflects the longest term fuel drying and the 

Micro-scale model is computing very frequent (hourly) fuel drying effect. Analyzing the 

general error thresholds produced by the Micro-scale FWI model, we can see that no 

fire situation is wrongly classified.   
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Figure 8.11: The Canterbury weather network map. 

 

 

Figure 8.12: The Micro-scale FWI system model representing the Canterbury weather 
network. 
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Figure 8.13: Micro-scale against Actual FFMC comparison. 

 

Figure 8.14: Micro-scale against Actual DMC comparison. 

 

 

Figure 8.15: Micro-scale against Actual DC comparison. 
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Figure 8.16: Micro-scale against Actual ISI comparison. 

 

Figure 8.17: Micro-scale against Actual BUI comparison. 

 

 

Figure 8.18: Micro-scale against Actual FWI comparison. 
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The main objective of further simulation is to try to find the model behavior 

such as end-to-end delays, packet loss characteristics, and energy efficiency.  

 

8.10.2. End-to-End Delay  

The average end-to-end delay of the Micro-scale model is shown in Figure 8.19 below. 

This is the sum of transmission, propagation, FWI indices processing and queuing 

delays. In this simulation, the sensor nodes transmit their partial prediction 

information every 60 seconds. The cluster heads process semi-prediction and queue 

packets for transmission as soon as the channel is available. 18 weather sensor nodes 

and 2 cluster head nodes competing for the wireless channel, the maximum delay 

observed is 10 seconds, with an average delay of 5.0747 seconds. This has been 

repeated for 54 weather sensor nodes and 6 cluster heads node and similar results 

have been observed as shown in figure 8.20. 

 

 

 

Figure 8.19: end-to-end delay of the model. 
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Figure 8.20: end-to-end delay of the model. 

 

8.10.3. Packet Loss 

The Micro-scale model is evaluated for the number of data packets lost under different 

sensors data transmit periods and whether the number of packets dropped has a 

significant impact on the hazard prediction results.  The simulation scenario involves 

sensor nodes transmitting data packets with varying data transmit periods. The results 

obtained  shown in Figure 8.21 show that the number of packets lost decreases 

exponentially as sensors transmit data packets less frequently for a network of 16, 54 

and 90 weather sensor nodes. The prediction results obtained under this scenario 

indicate that data collision is not an issue at such network scales as long as the number 

of packet losses are not significantly high for a given cluster of sensor nodes. This also 

shows the fault tolerance of the Micro-scale model under the specific conditions.    
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Figure 8.21: packet loss performance. 

 

 

8.10.4. Energy Consumption 

The model energy consumption is analyzed based on the TrueTime battery model. The 

battery model computes energy consumption due to kernel data processing, packet 

transmission/reception, and idle waiting consumption. The battery performance of the 

model is shown in Figure 8.22. The energy source is two AAA batteries of each 

1200mAh (2*1200mAh). The figure shows a simulation of the Micro-scale application 

that continues to run until the  remaining battery power is below 300mAh for both the 

weather sensor nodes and cluster head nodes.   
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Figure 8.22: Remaining battery power of sensors and cluster heads. 

 

 

8.11. CONCLUSIONS 

This chapter presented a WSN based FWI system through TrueTime modeling and 

simulation software. The Micro-scale FWI model sanity has been verified through real 

wildfire datasets. Distributed in-network processing of FWI indices based on WSN has 

several advantages while producing similar results to a satellite communication based 

FWI system. The end-to-end delay, packet loss and energy consumption performance 

of the WSN model have been observed through simulations.  The simulation results 

indicate that for a multi-tiered WSN architecture, the influence of end-to-end delay, 

energy consumption and packet loss on the FWI results are insignificant. This system 

provides a high spatial and temporal resolution wildfire hazard prediction system 

which is cost-effective, energy efficient, easily deployable for emergency situations and 

provides for user interaction. 
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Chapter 9 

 
9. CONCLUSIONS AND FUTURE WORK  

This chapter concludes the work that has been done to achieve the research objectives 

as specified in Chapter one and the solutions to the research problems and questions 

stated in the same chapter. Suggestions for possible advancement of the research, 

limitations, and future work are also discussed in this chapter.  

 

9.1. CONCLUSIONS 

The field of data stream mining in WSNs has seen considerable research interest 

recently. The development of resource efficient WSN design has been the central focus 

of most research in this field. The advancement of WSNs has made it possible to 

deploy low-cost networked sensors to address many distributed monitoring 

application challenges. As a result, WSNs are becoming increasingly appealing to data 

streaming applications. However, the resource constraints of WSNs and the resource 

demands by these applications have posed huge challenges for the research 

community. This thesis presents some of the challenging areas of the WSNs and 

distributed data stream mining.  

The ultimate goal of this research is to develop an efficient distributed data 

stream mining framework for WSN systems. This is to address the resource constraint 

problem and demonstrate the real world adaptability of the framework using a case 
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study. The perceived framework integrates autonomous cluster based data 

stream techniques and wireless network architecture. The objectives are to address 

the problems of WSN energy constraints, network lifetime, and distributed mining of 

data streaming. The process requirement for a relevant case study from both spatial 

and temporal coverage resolution needs have also been considered.  

This research has investigated the possibilities of employing WSNs for mining 

distributed data streams “on the fly” and extract useful information. The research has 

taken advantage of the distributed-architecture nature of the WSNs and the individual 

data processing capabilities of their nodes to implement the distributed data stream 

mining framework.    

This thesis has formulated a lightweight autonomous data clustering algorithm 

called SUBFCM. The SUBFCM algorithm remains embedded within the individual nodes 

to analyze the locally generated streams ‘on the fly’ in cooperation with a group of 

nodes. The simulation results suggest that a SUBFCM algorithm can autonomously 

cluster streaming data and produce results comparable to standard batch clustering 

algorithms such as K-Means and Fuzzy C-Means algorithms. Simulation results have 

also highlighted the capability of the SUBFCM algorithm to incrementally produce very 

good approximate clustering results on the fly while proportionally utilizing the system 

resource. This capability of the algorithm has been the core driver that has enabled 

multiple local nodes stream mining tasks and hence has greatly minimized the quantity 

of data that has to be transmitted. In contrast to K-Means and FCM, the SUBFCM 

algorithm does not require prior knowledge of the number of clusters within the 

dataset and can function autonomously.  

The thesis has studied the effects of data stream characteristics such as stream 

dimensions or feature spaces and stream periods or data flow rates. The study has also 

covered the effects of the network architecture such as node density per cluster (both 

uniform clusters and non-uniform clusters) on the overall performance of the SUBFCM. 

These studies have concluded that WSNs can provide good quality of service (QoS) 

feasible for online distributed incremental data stream mining applications.  
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The integrated distributed incremental data stream mining WSN framework 

has showed that its mining results are not significantly affected by the dimensionality 

of the streams and that it is stream dimension scalable. In the simulations, the average 

mining results deviation from the benchmark remained below 12% for as high as four 

dimensional streams.  

The stream rate effect analysis has shown that the average cluster deviations 

increased smoothly with increasing stream rate. The streams with high dimension have 

higher cluster deviations at very fast stream rates. However, the average cluster 

deviations have never exceeded 10.13%.  

The network architecture is an important factor in mining results quality and 

should be designed carefully to optimally utilize the basic concept of the distributed 

incremental data stream mining framework. For both uniform and non-uniform cluster 

densities, the effect on the quality of the mining results is significant only when mining 

very fast streams. The tolerated approximation error bounds, determined by the local 

model drift threshold parameter, plays a significant role in the cluster density effect.  

The thesis has analyzed the quality of service, or a certain guaranteed level of 

performance that the WSN architecture can provide to applications utilizing the 

framework. The research has considered the average energy consumption, average 

data delivery delay, and packet delivery ratio of the proposed framework.  

The average energy consumption of the framework largely varies with the 

stream rate and node density per cluster. Simulation results show that an average 

energy consumption of as low as 0.1 milliJoule per stream period can be achieved for 

40 nodes per cluster at a stream period of 10 seconds or longer. However, the average 

energy consumption can rise to 1.3 milliJoule per stream period when the stream 

period is decreased to 1 second.    

It is observed that the average data delivery delay generally increases as the 

number of nodes per cluster increases, which is obviously due to the increased packet 

colliusions and retransmissions. Also stream periods shorter than the average data 

delivery delay saturate the system with datasets and eventually cause loss of 

coordination among the nodes.  



173 
 

 
 

The stream periods have significant impact on the rate at which the packet 

delivery ratio drops as the node density increases.  This indicates that for an optimal 

performance, applications utilizing the framework should determine the cluster 

density if certain packet delivery is desired. Hence, the thesis concludes that the 

overall mining quality is directly related to the combined effect of the stream 

characteristics, the network architecture, and the desired performance measures.     

The thesis has also developed a novel high spatiotemporal resolution version of 

the standard Canadian fire weather index (FWI) system called the Micro-scale FWI 

based on the distributed incremental data stream mining framework. Simulations on 

real weather datasets indicate that the Micro-scale FWI implemented based on the 

framework can closely approximate the results obtained from the Standard FWI 

system while providing highly superior spatial and temporal information. This can offer 

direct local and global interaction with the few meter square space as against the tens 

of kilometers square of the present systems.  

 

9.3. FUTURE WORK 

While this study delivered promising results within the particular goals and framework, 

further study should explore other dimensions to extending performance, scope, and 

application of this research. The following is a list of suggestions for future work in the 

research: 

1. Synchronized WSN: Future research developments should investigate the 

framework in a time-synchronized WSN architecture.   

2. Combination of Mining Strategies: This study explored one of the most 

prominent stream mining techniques, namely, stream clustering. There are several 

techniques discussed in the literature which are adopted for WSN requirements. 

Combining more than one stream mining technique at different levels and exploring 

their potential in distributed mining frameworks are recommended. 

3. Mobile Nodes: This study considers stationary WSN nodes to perform the 

distributed stream mining task. Especially with the advent of ubiquitous computing 

applications using mobile networks, this framework will find prominent applications in 
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mobile computing. We therefore recommend extending this framework using mobile 

nodes.  This may extend the concept such that existing mobile nodes relevant to other 

applications may contribute to the process. Applications like wildlife monitoring and 

that of bushfire may be one of the most relevant associated ones. Here the nodes used 

for monitoring animal movement may also contribute to the Bush fire hazard condition 

monitoring.  

 

4. Platform: This study has focused on a very low power embedded 

microcontroller based design, specifically the MSP430 family of microcontrollers from 

Texas Instruments. These low power microcontrollers are designed for very limited 

computational power requiring control applications. The main advantage of these 

microcontrollers is that they allow very low power sleep modes. Most WSN 

applications take advantage of these low power modes by switching off the 

microcontroller and associated peripherals  when not performing any operations. 

However, due to their low computational capabilities, these controllers take a long 

time when engaged in intensive computations; thereby, extending the time they 

remain in full power mode and consequently consuming more power. To this end, we 

recommend exploring the use of Advanced RISK Machines (ARM) based 

microcontrollers such as that used in smart phone technologies. The ARM based 

microcontrollers boast more computational capability compared to the 

microcontrollers currently in use in WSNs and they further include low power sleep 

modes.     

 

9.3.1. LIMITATIONS 

This thesis has investigated the distributed incremental data stream mining WSN 

framework basing on hierarchically clustered sensor nodes. Even though the nodes 

compute parallel cooperating tasks, they are not time synchronized. The cooperative 

tasks that are computed at distributed nodes introduce slight delays between results in 

order to produce the final results. 
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