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Abstract 

In this study, nonlinear autoregressive recurrent neural networks with 
exogenous input (NARX) were used to predict global solar radiation across New 
Zealand. Data for nine hourly weather variables recorded across New Zealand from 
January 2006 to December 2012 were used to create, train and test Artificial Neural 
Network (ANN) models using the Levenberg−Marquardt (LM) training algorithm, with 
global solar radiation as the objective function. In doing this, ANN models with 
different numbers of neurons (from 5 to 250) in the hidden layer as well as different 
numbers of delays were experimented with, and their effect on prediction accuracy 
was analyzed. Subsequently the most accurate ANN model was used for global 
solar radiation prediction in ten cities across New Zealand. The predicted values of 
hourly global solar radiation were compared with the measured values, and it was 
found that the mean squared error (MSE) and regression (R) values showed close 
correlation. As such, the study illustrates the capability of the model to forecast 
radiation values at a later time. These results demonstrate the generalization 
capability of this approach over unseen data and its ability to produce accurate 
estimates and forecasts. 
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1. Introduction 

Building reliable solar energy systems requires information about global solar 
radiation (GSR) in the region where the system is to be built. Recently the need for 
precise modeling, forecasting and prediction of solar irradiance has increased due to 
increased interest in renewable energy systems implementation worldwide. One 
reason for this is that predicting solar irradiance 24 hours in advance would help 
efficiently optimize energy distribution between the buildings and the local grid.  

The traditional way of determining the amount of GSR is to install pyranometers 
in as many locations as possible, significantly increasing the cost of GSR data 
collection. In most cases limited coverage of radiation measuring networks prompts 
the development of models for estimating the GSR using climatological parameters 
[1]. Several models have been developed in order to estimate and generate the solar 
irradiance data, in different scales. These models include empirical [2], analytical [3] 
and numerical models as well as neural network approaches [4]. A significant amount 
of literature has also used physics-based models [5–7] and statistical forecasting for 
solar data [8].  

Models based on statistical processes such as autoregressive, moving-average, 
autoregressive moving-average, autoregressive-integrated moving-average and 
Markov chain have been used widely for modeling and prediction of solar irradiance 
data. However, these models need some statistical transformations to the data before 
they are applied to the network to be used. Due to these transformations, we cannot 
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be sure that the results are accurate and represent a precise correlation with the 
measured solar irradiance values [9]. Therefore it is necessary to develop a more 
accurate method of modeling and predicting hourly solar irradiance [10].  

ANN techniques offer a promising alternative to conventional techniques and 
are used in a number of solar energy applications. Kalogirou [11] has reviewed the 
use of ANN in renewable energy systems applications. Similarly [12, 13] have 
reviewed ANN for sizing of photovoltaic systems and for photovoltaic applications. 

More generally, [14] predicted global solar radiation using ANN model with wind 
speed, relative humidity, air temperature and soil temperature as inputs for La Serena 
in Chile. Regression values were found to be 94%, indicating strong correlation 
between hourly global solar radiation and meteorological data. Rehman and 
Mohandes [15] used day, global solar radiation, ambient temperature and relative 
humidity as inputs to a radial basis function (RBF) network for modeling of diffuse and 
direct normal solar radiation for sites in Saudi Arabia. A mean absolute percentage 
error (MAPE) of 0.016 and 0.41 for diffuse solar radiation was achieved using 50 
hidden neurons and 0.1 spread constant in the RBF network. Finally, [16] used global 
solar irradiation on a horizontal surface, declination and hour angles as input 
parameters for generalized regression neural networks (GRNN) to predict solar 
radiation on tilted surface in Iskenderun, Turkey. Regression and MAPE were found 
to be 98.7% and 14.9Wh/m2 respectively. 

In most cases reported in the literature, measured input weather data is 
normalized and randomized to remove spikes and significant variations when training 
an ANN. It is supposed that these increase network processing times and achieve 
good correlation between measured and predicted values. This preprocessing of 
input weather data could reduce the accuracy of predicted values [9]. As such, this 
study aims to explore the accuracy of ANNs for predicting global solar radiation in 
New Zealand cities using real measured data.  
2. Methodology 

In this study seven years of hourly data for Temperature (Tmax, Tmin), Air 
Pressure (P), Relative Humidity (RH),  Solar Zenith Angle (SZA), Azimuth Angle (Az), 
Rain amount (Ra), Wind speed (Ws) and Wind direction (Wd) were taken from the 
National Institute of Water and Atmospheres CliFlo database to train the ANN with 
Global Solar Radiation as the target variable.   

The data was presented in an unprocessed format, to study the effect of real 
input variables on target and predict output. Input and target data from 1 January 
2006 to 31 December 2012 were used to train, validate and finally, test the networks 
ability to predict the global solar radiation from 1 January 2013 to 31 December 2013.  

The prediction accuracy of ANN models is found to be dependent on the 
combination of weather predictor variables, training algorithm and ANN architecture 
configuration [17]. One of the key tasks in time series prediction is the selection of the 
input variables. For the proposed non-linear ANN models there is no systematic 
approach that can be followed [18], so there is a risk of omitting important variables. 
In this study the same process is used as in [19], where a two-step technique is 
applied called “sensitivity analysis”. This technique is based on trial and error. Once 
the most significant variables are determined, the network is trained with every 
selected variable, until the training error is minimized and the influence of each 
variable is removed by replacing it with its mean value or zero. As there are 512 
possible combinations of nine weather predictor variables testing the network with all 
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combinations was not possible. Therefore, to simplify the process, the twelve most 
significant combinations of the nine weather predictor variables were tested as shown 
in Table 1 in order to investigate their effect on the global solar radiation prediction 
accuracy. 

Table 1. Models based on different combinations of input variables 

Model  Input Parameters Model  Input Parameters 
1 Tmax, Tmin, P, RH, SZA, Az, Ra, Ws, Wd 7 P, RH, SZA, Az, Ra 
2 Tmax, Tmin, P, RH, SZA, Az, Ra 8 Tmax, Tmin, SZA 
3 Tmax, Tmin, P, RH, SZA, Az 9 Tmax, Tmin, P, SZA, Az 
4 P, RH, SZA, Az, Ra, Ws, Wd 10 RH, SZA, Az, Ra 
5 Tmax, Tmin, P, RH, SZA 11 Tmax, Tmin, P 
6 Tmax, Tmin, SZA, Az 12 Tmax, Tmin, Ws, Wd 

 
Neural networks for radiation prediction 

There are two basic solar irradiance models: parametric and decomposition [20]. 
Parametric models require detailed information of atmospheric conditions and 
estimate irradiance components based on weather, time and geographical data. 
Decomposition models use irradiance values, for example global irradiance, and then 
compute other components such as direct and diffuse solar irradiance using the main 
component. In this study a parametric model for global solar irradiance was 
developed using different combinations of the weather predictor variables described 
previously. This model is known as a NARX recurrent dynamic network, with 
feedback connection.  

The NARX model is based on the linear ARX model, which is commonly used in 
time-series modeling. 

The equation for the NARX model is given by (1): 

y(t) = f �y(t − 1), y(t − 2), … , y�t − ny�, u(t − 1), u(t − 2), … , u(t − nu)� (1) 

where, the next value of the dependent output signal  y(t)  is regressed on 
previous values of the output signal and previous values of an independent input 
signal. The NARX model is implemented using a feed-forward neural network to 
approximate the function f. A diagram of the resulting network is shown in Fig. 1, 
where the y(t) output series is predicted given past values of y(t) and another input 
series x(t). 
 

x(t)                                                           y(t)           
 

Figure 1.  NARX block diagram 
There are different connection styles and learning algorithms in neural networks, 

the most common being the Back Propagation algorithm. The Back Propagation 
algorithm consists of two phases: a training phase and recall phase [21]. Before the 
training phase starts, the weights of the network are randomly initialized. Then the 
output of the network is calculated and compared to the desired value. At each step 
during training the error of the network is calculated by means of gradient methods 
and used to adjust the weights of the output layer [22]. In the case of more than one 
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network layer the error is propagated backward to adjust the weights of the previous 
layers. Once the weights are determined, after several training steps and correlation 
between different combinations of input variables with targets are finalized, the recall 
phase may run. In doing this the network output computations are performed using 
finalized iterations of input data and weights from the training phase. 

The training phase is important as it determines the success of the resulting 
network. In back propagation, there are two methods of updating the weights. In the 
first method, weights are updated for each of the input patterns using an iteration 
method. In the second method, used in this study, the mean value of input and output 
patterns of the training sets is calculated [23]. As soon as the weight update values 
are obtained, the new weights and biases can be calculated using (2) 

Wij,n =  Un +  αWij,n − 1  (2) 

where Wij,n is a vector of current weights and biases, α is the momentum factor 
rate which determines how the past weights will reflect to the current value, and Un is 
the update function which can be chosen according to the problem and data type.  

According to [20] and [23] the most commonly used equation solving algorithm 
is the LM algorithm. It can be considered as an alternative to the conjugate methods 
for second derivative optimization. In LM, the update function, Un can be calculated 
using (3) 

Un = −[JT  × J +  µI]−1  ×  JT  × e (3) 

where J is the Jacobian matrix that contains the first derivatives of the network 
errors with respect to the weights and biases, and e is a vector of network errors. The 
parameter µ is a scalar number and I is the identity matrix. Depending on when the µ 
parameter is large, the update function Un  becomes identical to the basic back 
propagation (with a small step size). During processing the µ value decreases after 
each successful step and should be increased only when a tentative step increases 
the error term or performance function. Consequently the performance function is 
guaranteed to reduce or get bounded at each iteration [24].  

A significant number of networks were designed and trained in the course of this 
study to predict global solar radiation with the lowest possible MSE values. In order to 
investigate the performance of developed ANN models quantitatively and verify 
whether there was any underlying trend in performance of ANN models, regression 
(R), the mean square error (MSE), and the mean bias error (MBE) values were 
analyzed. MSE provides information on the short term performance which is a 
measure of the variation of predicated values around the measured data. The lower 
the MSE, the more accurate is the estimation. MBE is an indication of the average 
deviation of the predicted values from the corresponding measured data and can 
provide information on long term performance of the models; the lower MBE the 
better the long term model prediction. A positive MBE value indicates the amount of 
overestimation in the predicated global solar radiation and vice versa. The 
expressions for the aforementioned statistical parameters are shown in (4) and (5): 

MBE =  
1
N
�(Ip,i − Ii)
N

i=1

 

 

 
(4) 
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RMSE = �
1
N
�(Ip,i − Ii)²
N

i=1

 

 
(5) 
 

where Ip,i is the predicted solar irradiance in MJ/m², Ii is the measured solar 
irradiance in MJ/m², and N denotes the number of observations. 
3. Results and Discussion 
Number of Hidden Neurons and Delays 

More computation is required if the number of neurons or the number of delays 
are increased and vice versa. Increasing the number of neurons and delays has a 
tendency to overfit the data when the numbers are set too high, but it allows the 
network to solve more complicated problems. During experiments both the number of 
neurons in hidden layer and the number of delays in the tapped delay lines were 
continuously increased until the network performed well in terms of the mean square 
error (MSE) and the error autocorrelation function.  

Therefore, the effect of changing the number of neurons in the hidden layer, 
increasing and decreasing the number of delays was also investigated. The number 
of hidden neurons, network delays and time steps for training, validation and test 
were varied for best performance. The number of neurons was changed between 5 
and 250 and delays between 1 and 5 were tested in order to come up with the most 
suitable ANN prediction model. Taking Model 2 as an example, Table 2 shows the 
MSE and Regression values for various numbers of neurons in the hidden layer. 
Processing time was also observed and it was noted that time increases 
exponentially with increasing number of neurons or delays. After several trials, it was 
decided that the most suitable network had 90 hidden neurons and 2 delays in the 
tapped delay lines, considering its accuracy and processing time. Processing time 
was closely monitored because if the model is implemented on a hardware platform, 
processing power and memory are very limited compared to desktop resources. 

Table 2. MSE and Regression values for different number of neurons and delays. 

Neurons Delays MSE R Model Time 
10 2 0.0774 0.951 2 0:00:24 
20 2 0.0747 0.952 2 0:00:22 
30 2 0.0709 0.955 2 0:00:48 
40 2 0.0659 0.957 2 0:00:53 
50 2 0.0689 0.956 2 0:00:50 
50 3 0.0624 0.964 2 0:01:02 
90 2 0.0591 0.963 2 0:01:20 
90 3 0.0543 0.966 2 0:02:20 
90 5 0.0486 0.969 2 0:04:42 

150 2 0.0634 0.963 2 0:02:02 
200 2 0.0632 0.963 2 0:04:33 
250 2 0.0613 0.964 2 0:05:10 

Mean Squared Error 
The MSE is the mean squared normalized error performance function which is 

the difference between the output and target values. Network training can be stopped 
early by the validation vectors if the network performance on the validation vectors 
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fails to improve or remains the same, as indicated by an increase in the mean square 
error of the validation samples. Test vectors are used as a further check that the 
network is generalizing well, but do not have any effect on training. The best 
validation performance for model 2 is 0.072828 at epoch 9 with seven input variables 
as shown in Figure 2. It is shown that training, validation and testing errors decreased 
and merges with the dotted line on epoch 9 which demonstrates the best validation 
performance.  

 
Figure 2.  The best validation performance is 0.072828 at epoch 9 with seven input 

variables (Tmax, Tmin, P, RH, SZA, Az, Ra). 
Regression Analysis 

The network outputs with respect to targets for training, validation, and test sets 
are shown in Figure 3. The dashed line in each axis represents the perfect result, that 
is: outputs = targets. The solid line represents linear best fit between the outputs and 
targets. The R value is an indication of the relationship between the outputs and 
targets. If R=1, this indicates that there is an exact linear relationship between outputs 
and targets. If R is close to zero, then there is no linear relationship between outputs 
and targets. When the network outputs are equal to the targets, the data should fall 
along a 45 degree line which will show a perfect fit. For this problem, the fit is 
reasonably good for all data sets, with the overall R values as high as 0.9633. 

 
Figure 3.  Regression analysis of the network outputs with respect to targets for 

training, validation and test sets.  
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For the twelve models described in Table 1, the NARX network architecture with 
LM training algorithm was trained, validated and tested. Values of Mean Squared 
Error (MSE) and Regression (R) were closely monitored to find the best model, Table 
3 below shows the MSE and R values for 90 neurons in the hidden layer. 

Table 3. MSE and Regression values for all 12 ANN models 

Model MSE Regression (R) Model MSE Regression (R) 
1 0.0670 0.956 7 0.0732 0.953 
2 0.0591 0.963 8 0.0733 0.953 
3 0.0659 0.957 9 0.0668 0.956 
4 0.0711 0.953 10 0.0749 0.952 
5 0.0722 0.953 11 0.0779 0.949 
6 0.0676 0.956 12 0.0769 0.950 

Figure 4 illustrates this point further, by showing for a single day, that for the first 
six models there is close correlation between the measured and ANN predicted 
values for global solar radiation in Auckland. However, in Table 3, it can be seen that 
Model 2 is the best among all 12 models with 0.0591 MSE and 0.963 Regression 
value. 
  

  

  

  
Figure 4.  Measured and predicted radiation values for Auckland 
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Radiation Prediction for New Zealand Cities 
Having determined the most suitable configuration of ANN, Model 2 was used 

for ten cities across New Zealand to predict global solar radiation in 𝐌𝐉/𝐦𝟐 as shown 
in Figure 5. In Figure 5 it can be seen that using real data to train the ANN gives 
predicted values of GSR similar to those measured for all locations. In this regard, it 
suggests that the ANN with the LM training algorithm offers a suitable predictive tool 
for GSR in New Zealand. Moreover, it shows that training neural networks with real 
data can deliver satisfactory prediction of the output variable.  
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Figure 5.  Predicted radiation for New Zealand cities 
 
Conclusion  

This paper proposed predictive model based on recurrent neural networks 
trained with Levenberg-Marquardt backpropagation learning algorithm to forecast 
global solar radiation using seven years historical weather data. Twelve different 
combinations of nine weather predictor variables were used to train, validate and test 
using twelve ANN models. Real-time input and target data were used without 
normalizing to study the real effects of input variables on outputs. One model with the 
lowest Mean Square Error and highest Regression value was used to predict global 
solar radiation in ten major cities across New Zealand. Predicted values were 
compared with measured data and showed close correlation. Based on the 
experimental results including mean squared error analysis, error autocorrelation 
function analysis, regression analysis and time series response, the proposed ANN 
model illustrated the capability to predict global solar radiation values at a later time. 
These results further demonstrated the generalization capability of this approach and 
its ability to produce accurate estimates and forecasts for GSR. 
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