
Full citation: MacDonell, S.G. (1991) Reliance on correlation data for complexity metric use and
validation. ACM SIGPLan Notices 26(8), pp.137-144.
doi: 10.1145/122598.122613

Reliance on Correlation Data for Complexity Metric Use and Validation

Stephen G. MacDonella, b
aComputer and Information Science, University of Otago, New Zealand

bDepartment of Engineering, University of Cambridge, England
stevemac@commerce.otago.ac.nz

Abstract

This paper reports the results of an experiment to
illustrate the hazards of using correlation data as the sole
determinant for software metric use and validation.
Three widely cited complexity metrics have been
examined in relation to the frequency of software
development errors.

I. INTRODUCTION

The ultimate aim of quantitative software assessment is
the same as that for any measurement procedure, i.e. to
attain control over aspects of the operating environment.
In the domain of software development there are many
aspects over which we would like to maintain control e.g.
development time, resources required, costs incurred and
maintenance effort.

Similarly, the measurement function over many
application areas is often achieved in a common way,
particularly when estimation is a priority. Relationships
are proposed, a model or technique is developed to reflect
these relationships, prediction or estimation based on the
model is performed, comparisons are made between
actual and predicted results and the model is adjusted and
tuned (if required).

II. COMPLEXITY MEASUREMENT

TECHNIQUES

Such has been the perceived importance of software
complexity assessment that well over fifty models and
techniques which are said to quantify software
complexity have been proposed in the literature. (This in
itself is an indication of the inadequacy of many of the
methods.)

Three of the most widely cited and investigated
measurement approaches have been evaluated in this
study. These are the lines of code measures, Halstead's
software science [1] and McCabe's cyclomatic complexity
[2].

a. Lines of code measures:

Line-based measures are still widely promoted,
particularly as an easily derived baseline approach which

can be useful when applied consistently. The many
variations of this technique are based on a common
assumption; that a larger program (in terms of the number
of lines) is likely to be more difficult to understand than a
smaller counterpart. In turn this means that the larger
program will be harder to construct and change.

Five sub-techniques are widely employed to indicate
complexity in lines:

1. total lines (TLOC) - all lines excluding blank lines

2. executable lines (ELOC) - quantifying all
occurrences of program verb clauses

3. non-commentary lines (NCLOC) - all lines except
blank and comment lines

4. lines as separated by code delimiters

5. statement count - this usually has the same form as
the ELOC or delimiter-separated counting method.

Criticism of this overall approach has, however, been
widespread. Probably the most significant factor which
has impaired the use of this method is the lack of
consistency in the counting methods used - although five
counting schemes were outlined above, up to twelve
different methods have been identified [3], [4]. This
clearly reduces the likelihood of obtaining valid
comparisons for results obtained under different schemes.

This method is also susceptible to variations dependent
on the programming style employed (particularly the
TLOC and NCLOC measures). For example:

IF X = 70 THEN

GOSUB 500 TLOC = 4

ELSE NCLOC = 4

X = X + 10

IF X = 70 THEN GOSUB 500 ELSE X = X + 10

TLOC = 1

 NCLOC = 1

Furthermore, the method appears to lack some degree of
comprehensiveness, as only size is evaluated in the
assessment of complexity. In addition, LOC counts
cannot be determined until late in the project, so that
useful estimation for the current project is virtually

http://dx.doi.org/10.1145/122598.122613�

impossible.

b. Halstead's metrics:

Token counts form the basis for all of Halstead's metrics,
the collection of which is widely known as software
science. Each element in the code representation is
classified as an operand (label, constant, variable etc.) or
an operator (a symbol which affects the value or order of
an operand). Thus the basic parameters of the theory are:

n1 = number of unique or distinct operators in that
implementation
n2 = number of unique or distinct operands in that
implementation
N1 = total usage of all the operators in that
implementation
N2 = total usage of all the operands in that
implementation.

By combining psychological processing principles with
these token counts, Halstead developed a number of size
and complexity estimation formulae. For example, the
vocabulary is derived from the initial counts as:

n = n1 + n2

and the implementation length as

N = N1 + N2.

Another of the primary measures formulated was the size
measure, volume:

V = N log2 n.

Although this overall technique appears to be
comprehensive, several problems have been encountered
in its use. Significant anomalies have arisen in the
consistent classification of tokens, particularly for
languages which have emerged since the theory was
developed [5], [6]. This has resulted in a situation where
researchers have often had to use their own counting
schemes, introducing a degree of subjectivity into what is
said to be an objective quantification. This is further
compounded by the fact that many studies fail to publish
the counting rules which were employed. Thus
validation through further experimentation cannot be
performed.

Criticism of the psychological assumptions utilized in the
formulation of the theory is also widespread, particularly
relating to the model of program construction which
Halstead adopted [7], [8].

Furthermore because of the theory's actuary nature, some
very erratic results have been observed for empirical
work involving very large and very small programs [9],
[10]. This clearly lessens the general applicability of the
theory.

Halstead's work has also been criticized for failing to take
account of the many other aspects which are thought to
contribute to software complexity. For example,
software science makes no consideration of nesting levels
or control flow in the code [11], [12].

Samson et al [13] and Vessey [14] also comment that the
measures are only derivable after coding is complete.

c. McCabe's cyclomatic complexity:

McCabe's measure uses the number of execution paths
through the code as an indication of complexity, as it is
suggested that each path must be traced if the program is
to be completely understood.

All procedural programs can be represented by directed
flowgraphs, using nodes to indicate blocks of sequential
statements and edges to illustrate selection and iteration
structures. For all single-entry single-exit code modules,
McCabe's measure equates to one plus the number of
decision structures (alternation and repetition) in the
module:

v(G) = e - n + 2 ≈ v(G) = π + 1

e = number of edges π = number of decision structures

n = number of nodes.

A significant criticism of the two previous assessment
schemes (lines of code and software science) was their
failure to consider the contribution of aspects such as
code structure to the overall complexity of the program.
In comparison, McCabe's technique appears to be quite
promising, as control flow is clearly assessed. It is
evident however, that this is somewhat to the detriment of
the evaluation of other aspects. In particular, the
complexity of all functional code blocks is considered to
be equivalent, irrespective of the size or internal nature of
the blocks. This means in effect that a two-line segment
of sequential statements is considered to be as difficult to
understand as a two-hundred-line sequential code block.

Two other counting anomalies arising from the original
metric definition have also been identified. The first
concerns the consideration of multiple-exit code modules
[15]; the second is related to the consistent interpretation
of compound predicate structures [16], [17].

In addition, no recognition is made of system size,
nesting levels, data flow or program modularization. It
therefore seems doubtful that this metric can be
considered as an adequately comprehensive indicator of
total complexity. Moreover, due to its foundation in code
decisions or code-based flowgraphs, determination of the
measure can only occur after program development is
complete.

d. Summary:

All of the three techniques investigated here have positive
aspects; each has been successfully validated both
empirically and subjectively, and each is intuitively
acceptable as being in some way related to software
complexity. However, criticism of the methods is also
extensive. Several failings are evident for all of the
techniques, particularly (i) their single-aspect
consideration, (ii) the counting procedure anomalies
associated with each and (iii) the late availability of
results under each of the schemes.

(i) Since there are many attributes thought to
contribute to complexity, it would not be an easy task
to design a measure which would consider every
aspect. What is more, such a measurement scheme is
likely to be so comprehensive as to become
impractical for efficient project management. Also,
combining several approaches may have the
undesirable result of simply compounding the
problems inherent in each. It may also be difficult to
achieve an appropriate `balance' between the
approaches employed so that the scheme is not
dominated by one aspect e.g. size or module
structure.

(ii) Generally the causes of counting problems are
two-fold: the first is the lack of succinct underlying
theory behind the actual measurement techniques and
the subsequent looseness in their definition; the
second is the frequency of change in technology
which afflicts the computing industry. When the
measurement schemes were developed, they were
certainly relevant to development methods of their
day. However with new techniques for software
production constantly emerging, the appropriateness
of the metrics has been reduced.

(iii) To obtain an objective measure, the assessment of
a tangible product was considered to be necessary -
the obvious software product was the source code.
Hence this has been used in most quantification
techniques. However this does mean that
measurement extraction can only be performed very
late in the development process. Furthermore, since
design conventions and notations are still very broad
and lacking in standards, measurement from these
representations may also be difficult.

Despite these extensive problems the three metrics are
still widely supported, based solely on the very strong
empirical evidence which has been observed in many
studies. Most of this evidence has been provided using
linear correlation data, supporting the existence of linear
relationships between the metrics and various aspects of
the software development process and/or the final
software product. These aspects are said to be indicative
of complexity e.g. the number of development errors,
development time duration or the time needed for error
location or system enhancement. Using Pearson's
product-moment correlation coefficient (r), relationship
levels of greater than 0.90 have been reported [18], [19].
In many cases this has been the extent of the validation
undertaken and predictions based on these findings have
been subsequently performed.

Reliance on conclusions based solely on the correlation
data may be questionable, however. Lister [20] points out
that although the correlation procedure is appropriate for
investigating the relationship between random variables,
this random nature has been seldom proved in
measurement studies. Furthermore, a high correlation
may indicate the existence of a linear relationship, but it
provides no insight into the validity of the relationship
itself.

III. EXPERIMENTAL WORK

To examine whether such confidence should be placed
solely on correlation data, a set of twenty-eight high-level
programs were analyzed in conjunction with development
information.

(i) Sample - The software used in this investigation
was a financial database statistics extraction package
written by a professional programmer with eleven
years of programming experience. The system was
written in Clipper1

(ii) Procedure - All logical compilation errors which
occurred during the development of each program
were recorded as they arose until the program was
complete. Measures were then extracted from the
modules for the three metric techniques discussed
previously. Total and non-commentary lines of code
values were derived as representative of the line-
based measures (TLOC and NCLOC), n1, n2, N1, N2,
n and N were chosen for software science and the
number of decisions and v(G) were extracted for the
topological measures (DEC and VG). Correlation and
regression techniques were then employed to
determine the existence and significance of any
relationships.

 and consisted of twenty-eight
newly developed program modules. The smallest was
twelve lines long, the largest was 123 lines.

(iii) Results - Correlations between the number of
development errors and the values of the specific
metrics are shown in Table 1.

TABLE 1. Correlation between development errors and
complexity metrics

Apart from the two decision-based metrics (DEC and
VG) all of the metrics showed fairly good correlations
(0.65 ≤ r ≤ 0.83) with the development errors. If we were
to end the experiment there, it would be tempting to
suggest that these measures, particularly TLOC, NCLOC
and n1, were adequate indicators of complexity in terms
of development error occurrence, and that they may in
fact be used to predict the likelihood of development
errors (due to complexity) in other projects, as has been
done in the past.

Regression analysis, however, lessens the validity of such

a suggestion. Using the R
2
 statistic (the square of the r

correlation measure) as an indication of the explanatory
power of prediction models, the following levels (Table
2) were obtained for the metric-based estimation of
development errors:

1 Clipper is a trademark of Nantucket.

TABLE 2. R
2
 levels for metric-based error prediction

The explanatory capabilities of the various metrics appear
to be lower than we would require to obtain accurate
estimates of error occurrence. (This result can, of course,
be derived from the correlation statistics, because of the

direct square relationship between r and R
2
; this is

seldom performed, however.) Furthermore, the regression
procedure allows the examination of the residual plots
associated with the prediction models. These should
show a constant band of data points, evenly dispersed
about the mean (at 0 on the vertical) with a constant
variance and a random nature. All of the plots derived
from the above prediction models failed to conform to
these requirements. This is likely to be due at least in
part to the impossibility of obtaining a negative value for
the number of errors, resulting in a skewed distribution
for this variable. This suggests that this commonly used
method of complexity metric validation may be flawed,
particularly for smaller samples.

A stepwise linear regression procedure was then
performed to determine whether a combination of metrics
could provide more effective error prediction (Table 3).

TABLE 3. Summary of stepwise regression procedure for
dependent variable errors

An R
2

 of 0.88 appears promising at first; however, the
beta coefficient of the N2A variable (n2) in the predictive
equation is negative (-0.09902982). This implies that (all
other variables being held constant) the incidence of
errors should actually decrease with a corresponding
increase in the number of distinct operands in the
representation. This would seem to encourage the use of
a large number of operands in order to reduce the
incidence of errors in the code development phase. This
is an interesting finding, but one which is most counter-
intuitive.

These results provide a difficult choice. If we choose to
use single variable based predictions (such as TLOC,
NCLOC or n1), the explanatory powers are low and the
residual plots reveal a lack of adequacy in the models. If

we therefore utilize the full stepwise model, counter-
intuitive parameters are employed.

IV. CONCLUSIONS

Despite widespread acknowledgement of the problems
associated with the three techniques, support for each has
continued because of the often strong correlative
experimental evidence obtained. As a result, estimation
of process and product attributes is frequently performed
based on this data. This study has attempted to illustrate
the problems inherent in this procedure. It is
acknowledged that this study, like many others in this
area, has several limitations. Only one small system
implemented in one language by one programmer was
evaluated. This, however, does not completely invalidate
the results achieved - the same problems are likely to
occur in experiments involving large, team-developed
systems, if adequate statistical procedures are not
employed. It seems clear that the sole use of correlation
data as evidence for metric use and validation is
misdirected, and that other statistical methods should be
applied if truly valid results are to be obtained.

REFERENCES

[1] M.H. Halstead, Elements of Software Science. New
York: Elsevier North-Holland, 1977.

[2] T.J. McCabe, "A complexity measure," IEEE Trans.
Software Eng., vol. SE-2, pp. 308-320, Dec. 1976.

[3] R.W. Osborn, "Theories of productivity analysis'"
Datamation, pp. 212-216, Sept. 1981.

[4] R.E. Carlyle, "High cost, lack of standards is
slowing pace of CASE," Datamation, pp. 23-24,
Aug. 1987.

[5] J.L.F. De Kerf, "APL compared with other
languages according to Halstead's theory," ACM
SIGPlan, pp. 31-39, Jan. 1986.

[6] D.M. Miller, J.W. Howatt, R.S. Maness and W.H.
Shaw, "A software science counting strategy for the
full Ada language," ACM SIGPlan, pp. 32-41, May
1987.

[7] B. Curtis, I. Forman, R. Brooks, E. Soloway and K.
Ehrlich, "Psychological perspectives for science,"
Information Processing & Management, vol. 20, pp.
81-96, 1984.

[8] N.S. Coulter, "Software science and cognitive
psychology," IEEE Trans. Software Eng., vol. SE-9,
pp. 166-171, Mar. 1983.

[9] N. Beser, "Foundations and experiments in software
science," ACM SIGMetrics, pp. 48-72, 1982.

[10] G. Davies and A. Tan, "A note on metrics of Pascal
programs," ACM SIGPlan, pp. 39-44, 1987.

[11] B. Beizer, Software System Testing and Quality
Assurance. New York: Van Nostrand Reinhold,
1984.

[12] B. Ramamurthy and A. Melton, "A synthesis of
software science measures and the cyclomatic
number," IEEE Trans. Software Eng., vol. SE-14,
pp. 1116-1121, Aug. 1988.

[13] W.B. Samson, D.G. Nevill and P.I. Dugard,
"Predictive software metrics based on a formal
specification," Information and Soft. Tech., vol. 29,
pp. 242248, June 1987.

[14] I. Vessey, "On program development effort and
productivity," Information & Management, vol. 10,
pp. 255-266, 1986.

[15] W.A. Harrison, "Applying McCabe's complexity
measure to multiple-exit programs," Software -
Practice and Experience, vol. 14, pp. 1004-1007,
Oct.1984.

[16] G.J. Myers, "An extension to the cyclomatic
measure of program complexity," ACM SIGPlan,
pp. 61-64, Oct. 1977.

[17] E.J. Weyuker, "Evaluating software complexity
measures," IEEE Trans. Software Eng., vol. SE-14,
pp. 1357-1365, Sept. 1988.

[18] P.M. Zislis, An Experiment in Algorithm
Implementation. Purdue University CSD-TR 96,
1973.

[19] K. Christensen, G.P. Fitsos and C.P. Smith, "A
perspective on software science," IBM Syst. Jnl., vol.
20, pp. 372-387, 1981.

[20] A.M. Lister, "Software science - the emperor's new
clothes?," Australian Comp. Jnl., vol. 14, pp. 66-70,
May 1982.

