
CONSTRUCTING EVOLVING WEB

SERVICE SOCIAL NETWORKS FOR

WEB SERVICE DISCOVERY

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Supervisors

Associate Professor Jian Yu

Dr Ji Ruan

October 2021

By

Olayinka Adeleye

School of Engineering, Computer and Mathematical Sciences

Abstract

Web services have been one of the major drivers of distributed service economy, sup-

porting businesses on global scale. They enable cross-organisational functionality

integration over the Web and thus are the foundation of modern distributed service-

based systems. However, despite the rapid and continual increase of Web services

available on the internet, the discovery and uptake of appropriate Web services by

businesses on a Web scale is still a great challenge. The reasons for this meager uptake

include (i) isolation of Web services in their ecosystem (ii) poor scaling mechanism for

Web service ecosystem, (iii) the lack of social relationships among related Web services

and (iv) inadequate semantic information for facilitating semantic-oriented Web service

discovery, and the vocabulary gaps between the service functional descriptions given

by service providers and the user’s Web service query. To fill these research gaps, there

is a need for a Web service discovery framework which can easily be scaled, and can

simulate social interactions between Web services based on their social, functional

and non-functional attributes, and in turn improve Web services discoverability. This

thesis aims to contribute to the service computing domain by developing a service

discovery framework that can assist Web service consumers including corporations in

fulfilling their ever increasing service needs, and help them benefit maximally from the

advancements of Web service technology. In particular, the thesis has addressed the

Web service discovery challenges from the complex network perspective by constructing

evolving Web service social networks which enables social links formation among Web

2

services based on well-defined complex network theoretical procedures. This will allow

the integration of Web service ecosystem properties such as service sociability and

functionality, and Web service network properties into the discovery framework, and

thereby help in enhancing service discoverability. The thesis follows three key pathways

in addressing the Web service discovery challenges mentioned above.

In the first pathway, a critical study of Web service ecosystem which involves

investigating the underlying mechanisms that drive the evolution and interactions of

Web services in their ecosystem is conducted. This is important to understand the

structure of the Web service ecosystem, the evolving properties that characterized its

continual growth and nature of relationships or interactions withing the system. This is

achieved by using network analysis approach to study the social interactions of existing

Web services and their compositions. The study analysed the dynamical properties of

a typical Web service ecosystem, and investigated the popularity distribution of Web

services in the ecosystem in order to get clear insight into the social interactions among

Web services. Distributions of different interaction patterns that appear in form of

network motifs were also analysed . In addition, various topological properties similar

to the ones that characterised most evolving real world network systems are measured

in the service ecosystem. Then, the key attraction dimensions, specifically preferential

attachment and similarity within the Web service system are quantified.

In the second pathway, the challenge of Web service isolation and its effect on ser-

vice discoverability are addressed. Based on the results of the analysis conducted in first

pathway, two unique approaches for constructing evolving Web service social networks,

which follow the Barabási-Albert and the Popularity-Similarity Optimization complex

network theoretical procedures have been proposed. Both approaches enable simula-

tion of social links and the incorporation of social properties such as popularity, and

topological properties into the Web service discovery framework. For Barabási-Albert

based approach, the network is built solely on the principle of growth which is driven by

3

popularity attractiveness , and for the Popularity-Similarity Optimization model, certain

trade-offs which exist between the two Web services attraction dimensions including

popularity and similarity are exploited to facilitate link formation between the services.

Finally, in the third pathway, an evolving complex network-based Web service

discovery service that exploits functional, social and network properties to find, se-

lect and rank Web services was proposed. The discovery service employs a novel

motif-based page-rank feature with Google custom service to facilitate node ranking

based on the network patterns, functional descriptions and popularity information of

the Web services. The effectiveness of the proposed discovery method has been demon-

strated by conducting extensive experiments on a real-world dataset crawled from

Programmableweb.com.

4

Contents

Abstract 2

Attestation of Authorship 11

Publications 12

Acknowledgements 13

Dedication 14

1 Introduction 15
1.1 Web Service Discovery for Modern Service-Based Systems 17

1.1.1 Definition . 17
1.1.2 Challenges . 18

1.2 Social Web Service Discovery . 23
1.2.1 Web Service Sociability . 23
1.2.2 Using Social Network of Web Service for Discovery 25

1.3 Research Questions . 26
1.4 Research Methodology and Objectives 31
1.5 Research Contributions . 32
1.6 Thesis Structure . 36

2 Literature Review 39
2.1 Service-Oriented Architecture and Computing 40

2.1.1 Service-Oriented Architecture 40
2.1.2 Service-Oriented Computing 48
2.1.3 Major Advantages of Service Computing 52
2.1.4 Discussion . 53

2.2 Web Services: Concepts, Principles, Standards and Emerging Techno-
logies . 54

2.3 Mashups, Composite and Atomic Web Services 62
2.4 Web Service Discovery and Its Related Concepts 65

2.4.1 Definition . 66
2.4.2 Key Information Attributes for Service Discovery Processing 67
2.4.3 Quality of Services . 69

5

2.4.4 Requirements and Processing Steps for Service Discovery . . 69
2.5 Existing Web Service Discovery Approaches 70

2.5.1 Matching Group . 71
2.5.2 Context-Aware Web Service Discovery Approaches 85

2.6 Data Mining and Machine Learning . 90
2.6.1 Clustering-Based Web Service Discovery 91
2.6.2 Web Service Description Reconstruction And Query Enhance-

ment . 92
2.7 Social Networks For Web Service Discovery 95

2.7.1 Overview of Social Networks 96
2.7.2 Social Network of Web Services 98

2.8 Complex Network Theory and Applications 102
2.8.1 Scale-Free Network and Power-law Behaviour of Real World

Networks . 104
2.8.2 Preferential Attachment . 105
2.8.3 Node Fitness . 105
2.8.4 Small-World Networks . 106

2.9 Chapter Summary . 108

3 Analysing the Topology of Web Service Ecosystem 109
3.1 Notations and Definitions . 111
3.2 Data Acquisition and Processing . 113

3.2.1 Analysing Web-API Popularity Distribution 116
3.2.2 Measuring Preferential Attachment 120
3.2.3 Estimating Web-API Similarity for Network

Construction . 122
3.3 Chapter Summary . 129

4 Constructing Evolving Complex Networks for Web-API Discovery 130
4.1 Background and Motivation . 136

4.1.1 Complex Network Theory Applications in Modelling Evolving
Complex Systems . 137

4.1.2 Motivation - From Isolated Web-APIs Functional Islands to
Evolving Web-API Social Networks 138

4.2 Limitation of Mashup-API Affiliation and One-mode Projection Networks.141
4.3 Evolving Complex Network Models . 142

4.3.1 Popularity-Based Network Model 145
4.3.2 Fitness-Based Network Model 146
4.3.3 Popularity-Similarity Optimization Network Model 149

4.4 Constructing Evolving Web-APIs Social Networks 154
4.4.1 Node Ordering Strategy . 154
4.4.2 Strategy For Constructing Preferential Attachment-Based Web-

API Network . 155
4.4.3 Constructing Fitness-Based Evolving Web-API Network . . . 158

6

4.4.4 Constructing Popularity-Similarity Based Web-API Network 166
4.5 Network Analysis and Results . 171

4.5.1 Experimental Setup and Dataset 172
4.5.2 Mapping Web-API Ecosystem Properties with the API Net-

works Properties . 175
4.6 Chapter Summary . 184

5 Complex Network-Based Web Service for Web-API Discovery 185
5.1 Background and Motivation . 191

5.1.1 Complex Network Applications 191
5.1.2 Searchability and Navigability of Complex Networks 192
5.1.3 Exploiting Web-API’s Functionality and Sociability for Its Dis-

covery . 194
5.1.4 Motivation Example . 194
5.1.5 Problem Formulation . 196

5.2 Data Processing . 198
5.2.1 Pseudomashups − Generating synthetic mashups 199
5.2.2 Refining APIs descriptions for Web-API network nodes 201

5.3 Proposed Approach . 203
5.3.1 Network-Based Web-API Discovery with Google Custom Search

API . 203
5.4 Experiments and Results . 205

5.4.1 Evaluation Metrics . 206
5.4.2 Baseline Methods . 208
5.4.3 Results and Analysis . 210

5.5 Chapter Summary . 215

6 Conclusion and Future Directions 217
6.1 Thesis Contributions . 218

6.1.1 A Complex Network Analysis of Web-API ecosystem 219
6.1.2 Constructing and Evaluating Web-API Networks 220
6.1.3 Application of Web-API Network in API Discovery 222

6.2 Limitations and Future Direction . 222

References 224

Appendices 240

7

List of Tables

1.1 Research objective with reference to the research questions 33

3.1 A summary of notations used in this paper 113
3.2 Sample mashup and Web-API data form on ProgrammableWeb Dataset 115
3.3 Summarize Features of the ProgrammableWeb Dataset 115
3.4 Top 5 most consumed Web-APIs . 115
3.5 Preferential Attachment Measurement 122

4.1 Summary of BA-based Vs BB-based Web-APIs Network Features . . 176
4.2 Web-APIs Networks Properties and Navigation Performance 178
4.3 Plausibility of fitting different distribution models to the Web-API

Networks degree datasets . 179

5.1 Summarize Features of the Experimental Dataset. 206
5.2 Web-API Discovery Performance By Different Methods 211

8

List of Figures

1.1 Service Discovery Referenced Architecture (Dillon, Wu & Chang, 2007;
Sukkar, 2010; Schulte, 2010) . 18

2.1 A typical Service-Oriented Architecture 41
2.2 Elements of Service-Oriented Architecture (Krafzig, Banke & Slama,

2005) . 43
2.3 The Taxonomy of Web Service Discovery Approaches 71

3.1 The number of API invoked per mashup 116
3.2 The number of connected mashup per Web-API 116
3.3 Illustration of the Mashup-API bipartite graph 117
3.4 Visualization of the Mashup-API affiliation network 117
3.5 Degree distribution plot of the Web-APIs nodes in the affiliation net-

work. (a) shows the linear-binned plot of the Web-APIs degree distribu-
tion, (b) shows the CCDF plot of the distribution with Power-law (PL),
Log-normal, Exponential, and Poisson models fitted to it. 118

3.6 illustration for global service similarity computation 126

4.1 Illustrative examples of Web-APIs connections and interactions in typ-
ical Web-API ecosystem. 139

4.2 Illustration of the Mashup-API bipartite graph (left), Projected Network
of API with respect to mashups (right). 142

4.3 Placing node s in the network using polar coordinates at (rs, θs), where
rs = ln s, and θ remains the normalized Web-API functional similarity. 153

4.4 Growth-PA illustration in BA network growth procedure 156
4.5 Overview of the BA-Based Web-API Evolving network 159
4.6 Example of fitness-Values of Ai wrt Aj using RWR 162
4.7 Web-API fitness distribution in Log-Linear Binning 163
4.8 Illustration of Fitness-based Web-API Network Growth. 165
4.9 Fitness-based Web-API Network Overview. 166

9

4.10 Illustration of the PSO model growth procedure. The angular coordinate
θi abstracts the API similarity, while radial coordinate ri = 2 ln(i)
represents popularity − node birth time/degree. We start with an empty
network and initialize the network by placing the first node i = 1 on the
API node-list at angular position θ1 on the circle . At early times t ≤m
(assume m = 1), node i connects to all the existing nodes. At time
t = 3, new node at polar coordinate (r3, θ3) connects to a subset of the
existing nodes. It connects to node r2 because 2θ2,3 = 2π6 < 1θ1,3 = 7 π

12 . 169
4.11 Overview of the PSO-Based Web-API Network 172
4.12 Web-API Correlation Network with 137,902 number of edges and

ε = 0.8. The big light green and red discs are the hubs, while the visible
brown patches are the clusters. 617 nodes with k > 100 are identified in
the network. 175

4.13 Fitting Power-law (PL), Log-normal, Exponential, and Poisson models
to the Web-API Networks degree data. 178

4.14 PDF plot with log binning of the Fitness-based Web-API network degree
distribution). 179

4.15 The clustering coefficient distribution of the Web-API networks. . . . 181
4.16 Closeness distribution for Web-API Networks. 182

5.1 Complex network-based Web-API Discovery System using Google
Custom Search API. 197

5.2 Mean average precision for top-K APIs discovery results 212
5.3 Normalized discounted cumulative gain for top-K APIs discovery results212
5.4 MAP@K for Pop-API Network vs. Random-API Network 214
5.5 NDCG@K for Pop-API Network vs. Random-API Network 214
5.6 Effect of parameter m on MAP . 215
5.7 Effect of parameter m on NDCG . 215

10

Attestation of Authorship

I hereby declare that this submission is my own work and
that, to the best of my knowledge and belief, it contains no
material previously published or written by another person
nor material which to a substantial extent has been accepted
for the qualification of any other degree or diploma of a
university or other institution of higher learning.

Signature of candidate

11

Publications

Adeleye, O., Yu, J., Wang, G., Yongchareon, S. (2021). Constructing and Evaluating
Evolving Web-API Networks-A Complex Network Perspective. IEEE Transactions
on Services Computing.

Adeleye, O., Yu, J., Yongchareon, S., Han, Y., Sheng, Q. (2020). Complex Network-
Based Web Service for Web-API Discovery. In Proceedings of the Australasian
Computer Science Week Multiconference (pp. 1-10).

Adeleye, O., Yu, J., Ruan, J., Sheng, Q. Z. (2020). Evaluating Random Walk-Based
Network Embeddings for Web Service Applications. In Australasian Database
Conference (pp. 198-205).

Adeleye, O., Yu, J., Yongchareon, S., Han, Y. (2018). Constructing and evaluating
an evolving web-API network for service discovery. In International Conference on
Service-Oriented Computing (pp. 603-617). Springer, Cham.

Adeleye, O., Yu, J., Yongchareon, S., Sheng, Q. Z., Yang, L. H. (2019). A fitness-
based evolving network for web-APIs discovery. In Proceedings of the australasian
computer science week multiconference (pp. 1-10).

Adeleye, O., Yu, J., Yongchareon, S. (2021). An Evolving Complex Network-Based
Web Service for Web-API Discovery. World Wide Web, Internet and Information
System Journal. (Submitted 2021).

12

Acknowledgements

I would like to thank everyone who contributed to the successful completion of my
doctoral study. I would have never accomplished this thesis without the love and
support of many people. I would like to express my appreciation and gratitude to
my primary supervisor, Associate Professor Jian Yu, who offered valuable support,
encouragement and understanding throughout the course of my PhD journey. His
enthusiasm inspired me greatly to go extra mile in my research and I will forever be
grateful to him. In addition, I would like to thank him and also acknowledge the support
of the School of Engineering, Computer, and Mathematical Sciences (SECMS) for
funding my publications, conferences, and providing the PhD Fees Scholarship and
teaching opportunities for me in the school.
I would also like to express my sincere gratitude to my second supervisor Dr Ji Ruan for
his support, guidance and motivation. Dr Ji provided me with feedback and insightful
suggestions throughout this long journey. I am also thankful to my co-authors Professor
Guiling Wang, Professor Quan Z. Sheng, Dr Sira Yongchareon and Professor Yanbo
Han for their valuable contribution in various aspects of my research.
I thank all my research colleagues and friends in the Service and Cloud Computing
Research Lab (SCCRL) and WT Level 7 building, especially Naga Kunchala, Pinal
Shah, Khavee Botangen, Herman Wandabwa, Alan Zhang, Ashad Khan and Bryce
Anthony for the friendship and support. I would also like to say thank you to my Pastor
and guardian, Pastor Ayo Martins and his wife for their prayers and support. Finally, I
would like to express my deepest gratitude to my immediate family for their exceptional
love and support throughout the course of my PhD. I am especially grateful to my
mother Mrs Elizabeth Modupe Adeleye for her prayers and support, and my lovely wife
Alverty Stephanie for her love, care , support and sacrifice, and my siblings Temiloluwa,
Feranmi and Victor Adeleye for being my source of inspiration during this journey.
To all of you, I say many thanks, E se pupo!

13

Dedication

With great love and respect, I dedicate this work to my beloved Wife Mrs Alverty
Stephanie Olayinka and my wonderful mother Mrs Elizabeth Modupe Adeleye and my
siblings : Temiloluwa, Feranmi and Victor.

14

Chapter 1

Introduction

Service-Oriented Architecture (SOA) and its leading implementation technology called

Web services have changed the way software engineers design, develop and maintain

enterprise applications (Maamar, Hacid & Huhns, 2011). SOA brings about a paradigm

shift in software development and has revolutionized information system development

processes, transforming them from component-based to service-based (Xu, Cao, Hu,

Wang & Li, 2013). This service-based paradigm enables improvement in the time, cost

and effort required to build service-based systems and encourages reusability (He, Yan,

Jin & Yang, 2014). Central to this computing evolution is the Web service, which is char-

acterized as loosely-coupled, self-contained, self-describing, Web accessible, modular

programming functions that can be published, discovered and invoked across the Web

(Rostami, Kheirkhah & Jalali, 2013; M. P. Papazoglou, Traverso, Dustdar & Leymann,

2007). Web services enable cross-organizational functionality integration over the Web

and make functional building blocks accessible over standard Internet protocols, inde-

pendent of platforms and programming languages (Z. Wu, Deng & Wu, 2014; W. Chen,

Paik & Hung, 2015a). They have been one of the major drivers of distributed service

economy, supporting enterprises on global scale. Businesses can now dynamically

compose Web services to perform complex transactions with minimal programming.

15

Chapter 1. Introduction 16

Modern Web services with features such as RESTful architecture, JSON data, and/or

JavaScript interface are usually called Web-APIs in order to distinguish them from the

traditional SOAP-based Web services; and multiple Web-APIs can be quickly com-

posed into a Web-page or application called composite service or mashup (Benslimane,

Dustdar & Sheth, 2008). This process shortens software development life cycle and

results into the formation of the so-called Web service ecosystem (Huang, Fan & Tan,

2012a; Barros & Dumas, 2006a; Lyu et al., 2014), where new services emerge, some

old ones perish, and service vendors and developers collaborate to develop innovative

software solutions. Companies such as Google, Amazon, Twitter and Facebook have

encapsulated some of their functionalities as Web-APIs for easy consumption and

advertised or published them via Web service registry like ProgrammableWeb.com.

Many real-world applications such as online shopping, weather forecast, social media

and disaster prevention (Kavitha & Anuvelavan, 2015; Lee, Niko, Hwang, Park & Kim,

2011) invoke Web services via accessible endpoints to implement their functionalities.

Consequently, there are tens of thousands Web services currently available on the

internet and the number continues to grow rapidly.

To build a service-based system, three key stages are generally involved (N. Zhang et

al., 2018; He et al., 2014), including: (i) system planning, where requirements and tasks

required to implement the system functionalities are determined, (ii) service discovery,

where the discover and retrieval of set of candidate that can potentially meet user’s func-

tional requirements from the service registry, and (iii) service selection, which involves

selection of highly, functional relevant service from the retrieved candidate services.

Over the years, the service discovery stage have become a very challenging stage due to

the continual, rapid increase in the number and diversity of Web services, with myriads

of semantically similar service functionalities in the service ecosystem (W. Chen, Paik

& Hung, 2015b; J. Wang, Gao, Ma, He & Hung, 2017; He et al., 2017, 2014).

Chapter 1. Introduction 17

1.1 Web Service Discovery for Modern Service-Based

Systems

This section describes Web service discovery process and the state-of-the-art. In

particular, it explains service discovery processing steps with the requirements imposed

on each of the steps, other related concepts and challenges.

1.1.1 Definition

At an abstract level, Web service discovery is defined as process of finding and ob-

taining appropriate set of services which can potentially fulfil specific user’s require-

ments (Metrouh & Mokhati, 2013). The main essence of this process is to retrieve the

service description documents that satisfy the service requesters’ (service consumer

who requests for services) queries from central or distributed service repository (a

database of service description records). This process is often referred to as a ser-

vice by itself − discovery service (Sukkar, 2010). Following the discovery of set of

candidate services is the selection process, where the most suitable service(s) for the

service consumer’s request is selected and then invoked. Figure 1.1 shows the main

components of a Web service discovery process. Service consumer initiates the service

discovery process by formulating a service request in the form of query in order to

find appropriate candidate services in the Web service repository or registry. If the

service which will be invoked is already known beforehand, the requester directly binds

the service, otherwise, a service broker (usually provides the service registry where

the services are published) may be involved in the invocation process. After service

discovery, binding, invocation and execution follow. The service request is usually a

keyword-based description of service requirements (which could include functional and

non-functional capabilities of Web service) by the consumer. Service producers publish

Chapter 1. Introduction 18

the functional descriptions of their services when advertising the services through a

service broker on the registry. Matching engines are usually added to the Web service

registry to capture the consumers’ service requests and match them with the service

advertisement records available in the registry.

Figure 1.1: Service Discovery Referenced Architecture (Dillon et al., 2007; Sukkar,
2010; Schulte, 2010)

1.1.2 Challenges

The following are the basic concepts and related challenges that affect the Web service

discovery process based on Figure 1.1:

• Service Registry: The service registry is a search-able directory where service de-

scriptions can be published and searched. It enables the matchmaking, discovery,

ranking and selection process, and could be in two forms: the document-based

registry, which allows providers to publish Web service information by storing

XML-based service documents including business profiles and technical specific-

ation, and the metadata-based service registry, which captures attributes of the

Chapter 1. Introduction 19

service (M. Papazoglou, 2008). Web service registry could evolve into a logical

collection of Web services commonly called Web service ecosystem (Barros &

Dumas, 2006b), where some new services emerge, some old ones perish and ser-

vice vendors and developers collaborate to develop innovative software solutions.

A typical representation of Web service ecosystem is the ProgrammableWeb 1,

which is currently the largest online Web-API directory , with over 23000 RestFul

Web services belonging to more than 400 predefined categories and over 7,000

service compositions (mashups) as at June 2020. The perishing of some existing

Web services and the emergence of new ones coupled with their dynamic collab-

orations drive the evolution of the service ecosystem over time (Huang, Fan &

Tan, 2012b).

For most Web service ecosystems, one of the main issues is the isolation of

Web services, which in turn limits their discoverability (W. Chen, Paik & Yen,

2017; Huang et al., 2012a; Maamar, Hacid & Huhns, 2011). Web service regis-

tries like ProgrammableWeb and Mashape 2 consider Web service ecosystem as

isolated functional islands, where services are registered by diverse providers

independently and progressively without considering relevant dynamic informa-

tion or continuous social interactions that exist among the services which could

influence their discovery. For instance, in ProgrammableWeb, Web-APIs have

categories, and several Web-APIs can be invoked in a mashup, however, there is

no direct connection between two Web-APIs. The reason behind this is that Web-

APIs in ProgrammableWeb registry are registered by diverse service providers

independently over time, and the connections or social relationships between

Web-APIs are never directly created or defined. Moreover, the current state of

service-oriented architecture does not sustain the advantages of Web services as it

1https://www.programmableweb.com/
2https://rapidapi.com

Chapter 1. Introduction 20

limits the exposure and uptake of Web services, especially those complying with

the SOA paradigm. Current SOA-based applications are designed independently

and primarily for closed environment, hence, several challenges such as how to

discover the Web services, where to advertise them for high quality and immediate

exposure, and how to recommend appropriate services for composition are yet

to be resolved (Maamar, Hacid & Huhns, 2011). A handful of Web services are

related based on their co-occurrences in service compositions, however, a large

number of services which are not involved in any compositions and therefore

cannot be discovered through their social interactions or by following social

links in the service environment. For instance, in programmableWeb, as at June

2020, only about 1525 Web-APIs have ever been invoked in mashups (less than

11% of the total Web-API in the repository) (Adeleye, Yu, Yongchareon & Han,

2018). According to Duan and Tian (2017), 75% of the Web services currently

published on the internet have not been discovered or invoked . Existing Web

service discovery approaches mainly exploit Web services functional descriptions

and ignore internal social relationship that exist among these services which

could influence their discoverability (W. Chen et al., 2015a). Some existing

works (Maamar, Faci et al., 2011; Maamar, Hacid & Huhns, 2011; W. Chen &

Paik, 2013; W. Chen et al., 2015b; Metrouh & Mokhati, 2013) have emphasised

the significance of service social activities for enhancing service discoverability

and improving users interactions within Web service discovery system. Since

Web services are primarily developed to be composed with other Web services, it

important to capture the history of their social interactions with peer services, and

use this information to facilitate their discovery. The social interaction informa-

tion can provide significant insights into the drivers and micro-level dynamics of

service interactions including the properties that stimulate the evolution of the

Web service ecosystem (W. Chen et al., 2015a; Huang et al., 2012a).

Chapter 1. Introduction 21

• Service Advertisement: involves the publication of Web services by offering and

exposing their attributes including the non-functional and the functional capabilit-

ies on a service registry using textual descriptions. The service description could

be more or less formal and comprehensive, depending on the type of the registry

used and the expressiveness of the description.

One of the key factors that affects the discovery process is the ability of service

providers to describe in detail the capabilities of their services in the description.

Since most service discovery solutions mainly rely on the initial descriptions

written and published by service providers, the lack of comprehensiveness in

describing the potential application scenario of the services , and the failure to

emphasize the applicability targeted for specific requirements in the initial service

descriptions provided by the service manufacturer or provider, could limit the

overall performance of discovery system (Zhong, Fan, Tan & Zhang, 2016;

Schulte, 2010). It is worth nothing that applicability also evolves with time, that

is, certain services that used to be best match for a particular usage scenario may

not be the most suitable again as time goes by, while others may be better suited

for the scenario.

• Service Request: Service requests are formulated in service queries, where the

declaration and descriptions of the service requirements are made by the service

requester regarding the functional, non-functional and technical service capab-

ilities (Schulte, 2010). The ability of the service consumer to clearly describe

their requirements could also affect the overall discovery process. However, some

consumers may not know the right expression or keywords to use when searching

for a service.

• Matching Engines: These are usually integrated with the service registries with

the main function of matching the service profiles in the registry with the service

Chapter 1. Introduction 22

request of the user. The matching process involves a pairwise comparison of a

service function description as published by the provider and the service request.

Numerical values that express how similar the descriptions and request are often

generated during the process. The engines could be a syntactic-based or semantic-

based or an hybrid matching engine (Cardoso, 2007).

A large body of research have been committed into addressing various challenges

related to Web service discovery and recommendation. Most of these works have

focused mainly on exploiting Web services descriptions for enhancing their discoverab-

ility, and they can be classified into two large groups based on the discovery methods

used: The syntactic-oriented approaches (He et al., 2014; Dong, Halevy, Madhavan,

Nemes & Zhang, 2004; Halevy, Nemes, Dong, Madhavan & Zhang, 2004) and the

semantic-aware approaches (J. Wang et al., 2017; F. Chen, Lu, Wu & Li, 2017; Y. Wang,

Lin, Wu & Zhang, 2017; Rodriguez-Mier, Pedrinaci, Lama & Mucientes, 2015; Naim,

Aznag, Quafafou & Durand, 2016; Aznag, Quafafou & Jarir, 2014; Roman, Kopeckỳ,

Vitvar, Domingue & Fensel, 2015; Lu, Cai, Che & Lu, 2016; Garriga et al., 2018).

The syntactic-oriented approaches find and retrieve Web services by matching the

keywords in the service functional descriptions with those of service requester queries

using the various information retrieval techniques including Term Frequency-Inverse

Document Frequency (TF-IDF) technique and Vector Space Model (VSM) (He et al.,

2014, 2017; Manning, Raghavan et al., 2008). Various extensions of the syntactic

approaches exist, including the integration of information retrieval techniques with clus-

tering algorithms (Dong et al., 2004; Cong, Fernandez, Billhardt & Lujak, 2015), and

structural matching of Web Service Definition Language (WSDL) (Y. Wang & Stroulia,

2003). For the semantic-aware approaches, semantic similarities between services de-

scriptions and service requesters’ queries are used to discover services related to user’s

requirements. While some of these approaches explore ontological-based semantics

Chapter 1. Introduction 23

WSDL like OWL-S and SAWSDL with logic-based reasoning algorithms to discover

Web services, others utilize latent topic models such as Latent Dirichlet Allocation

(LDA) (Cassar, Barnaghi & Moessner, 2013)), Bi-term Topic Models (BTM) (Y. Wang

et al., 2017), and leverage the semantic relationships among words using tools like

WordNet (F. Chen, Lu et al., 2017; Lu et al., 2016).

Despite various advancements of Web service discovery approaches, the discovery

and uptake of Web services by businesses or other service consumers are still signific-

antly less than initially anticipated. Recent studies (Maamar, Faci et al., 2011; Duan &

Tian, 2017; Huang et al., 2012a; W. Chen & Paik, 2013; Lizarralde, Mateos, Rodriguez

& Zunino, 2019; Jiang, Lee & Hu, 2012) show that most services published on the

Web have not been discovered or invoked. Only very few Web services on the internet

have been discovered, composed or invoked. For instance, while there are hundred

of thousands Web services currently available in different Web service repositories

with trillions of Web pages on the Web, the number of publicly available Web services

in a service composition system is less than 8000. This meager result does not only

limits the Web service ecosystem but also leads to continuous, vicious circle of Web

service creation, publication, and composition by service provider without an effective

discovery solution for consumers to find existing services (W. Chen et al., 2015a).

1.2 Social Web Service Discovery

In this section, the motivations and challenges of using Web service social network to

facilitate service discovery is discussed.

1.2.1 Web Service Sociability

Web service sociability is one of the properties of Web services which describe the

ability of a service to interact well with other related services, and it is usually captured

Chapter 1. Introduction 24

by a network model known as Web service social network (L. Chen, Wang, Yu, Zheng

& Wu, 2013). Web services interact with each other through composition, collaboration

and substitution operations, and their functionalities with the respective Quality of

Services (QoS) are interdependent with each other. Thus, the discovery and subsequent

engagements of Web services become social activities similar to the collaboration

and competition activities found and supported in conventional social network. When

"Socialized", Web services can provide insight into their historical behaviors and how

they have been consumed in the past. Service request and service advertisements could

be seen as a reflection of how humans interact in the social world, this imposes social

dimension on how Web services must be managed in terms of description, discovery ,

binding and composition (Maamar, Hacid & Huhns, 2011). Incorporating the social

elements into the Web service processes including the discovery process symbolizes

new Social Web Services (SWSs), which will either implicitly or explicitly include

users interactions in the heart of the Web service life cycle, and enable addition of new

functionalities through collaboration and composition.

A key challenge with Web service sociability is how best to capture or model

service interactions and the evolution of Web service and their properties such as

popularity, and at thesame time retain the mechanisms that drives the consumption

of the services, which could also be exploited in supporting their discovery. Recent

research works (Maamar, Faci et al., 2011; Metrouh & Mokhati, 2013) advocated the

use of social network models for this purpose but did not provide clear theoretical

guidelines on how to construct such network.

Chapter 1. Introduction 25

1.2.2 Using Social Network of Web Service for Discovery

Web service social network is built to capture services social attributes and to help

facilitate future social interactions of services. SWS emerges as blend of social com-

puting with service computing, where on one hand, social computing facilitates the

study of collective actions, content sharing, information dissemination and the use of

information and communication technologies in social context. On the other hand,

service computing enables the application development based on the principles of

service provisioning and request, loose coupling and cross-organisation data integration.

According to Maamar, Faci et al. (2011), Web service social networks can be established

by exploiting the following service engagements:

• Collaboration : Web services interact by collaboration where different services

functionalities are combined for the purpose of satisfying complex user’s require-

ments. Thus, Web service social network can reflect collaborators historical

patterns, and a service discovery system can exploit these patterns.

• Competition : Just like people compete in a typical social network, Web services

compete against each other in their ecosystem especially when they offer similar

functionalities and can be use as substitute of each other. In such case, their

non-functional and social attributes like popularity and QoS could differentiate

and decide which service stands out in the competition. Service Social network

could leverage drivers of competition between peer services to improve discovery

process (Adeleye, Yu, Yongchareon, Sheng & Yang, 2019).

• Substitution : Eventhough Web services that offers similar functionalities compete

with each other, they can still be used to support each other when one fail.

Hence, the similarity in service functionalities can be exploited to facilitate links

formation in Web service social network. Doing this, best substitute can be

Chapter 1. Introduction 26

identify with respect to user’s requirements.

These criteria for establishing Web service social network can be consider independently

or integrated as network service social behaviours. They are usually the starting point

of constructing Web service social networks (Maamar, Wives et al., 2011). Building

a global network that can incorporate these interactions is very challenging. Unlike

the conventional social network of people, which is based on absolute cooperation and

mutual assistance between their members (no competition), Web services in service

social network are very competitive as each service competes to be part of composition

or replacement processes (Metrouh & Mokhati, 2013).

1.3 Research Questions

Social Web service discovery system demands for technique and service social network

modelling approach that can effectively model the sociability property of Web services,

and capture both the functional and non-functional attributes of Web services such that

they can exploited in enhancing service discoverability. Such approach must also be

able to preserve the properties of the services ecosystem including its evolutionary

characteristics which are relevant to service discovery.

The work presented in this thesis focuses on addressing three key challenges, which

affect the use of Web service social network for improving Web service discoverability.

1. Investigating The Dimensions of Attractiveness In Web Service Ecosystem:

To have a clear insight into the underlining mechanisms that drive the emergence

of the social behaviours and different interactions (such as composition or collab-

oration, substitution and competition) in Web service ecosystem, there is a need

for thorough investigation into the topology and dynamical mechanisms that drive

the evolution of Web service ecosystem. Such study will provide understanding

Chapter 1. Introduction 27

into the "what" stimulates service-service social interactions in Web service sys-

tems and how these mechanisms can be integrated into Web service social network

construction to improve service discovery. For instance, in the conventional social

network, one key phenomenon that breeds social interactions between individuals

is homophily (McPherson, Smith-Lovin & Cook, 2001), which describes the

tendency of individuals to associate and connect with people of similar attributes.

This emphasizes the principle that a connection or contact between individuals of

similar attributes occurs at a higher rate than among dissimilar ones. In addition

to understanding these mechanisms, it is important to know if Web service system

share some common characteristics with related real-world network systems like

the World Wide Web (WWW) and the Internet, which have explored network

capabilities and characteristics to improve the discovery of their entities (Barabási

& Albert, 1999).

Addressing this first challenge raises the research question: (RQ1) Is social

network behaviours universally existing in Web service ecosystem?

2. Constructing Evolving Web Service Social Networks: While several studies

have emphasized the significance of Web service social network in improving

service discoverability (Maamar, Faci et al., 2011; Maamar, Hacid & Huhns,

2011; Fallatah, Bentahar & Asl, 2014; W. Chen & Paik, 2013; Metrouh &

Mokhati, 2013; Huang, Fan & Tan, 2014a), there is still no clear theoretical basis

and guidelines on how to design and construct a Web service social network

such that it captures the social attributes of Web services and reflects both the

evolutionary and topological properties of the service ecosystem. For instance,

Fallatah et al. (Fallatah et al., 2014) proposed to add service-service, user-user,

and user-service links to build a service social network. Based on the network,

metrics such as user popularity, service market share, and user satisfaction can be

Chapter 1. Introduction 28

measured. Simulation was done but how to build such network from real-world

data was not discussed. Semantic information mined from service descriptions

is a good reference for adding links among services. Zakaria Maamar et al.

(Maamar, Faci et al., 2011, 2011; Maamar, Wives et al., 2011) advocated for the

use of Web service social network for services discovery and discussed various

benefits of having such discovery solutions. Similarly, Feng et al. (Feng, Lan,

Zhang & Chen, 2015) constructed three types of service networks based on the

subsume, sequential-total (the output of service A covers the input of service B),

and sequential-part (the output of service A partially covers the input of service

B) semantic relations. Clearly such networks are static without considering any

dynamical properties. Wang et al. (H. Wang, Feng, Chen, Xu & Sui, 2010) used

domain knowledge to calculate the degree of semantic match between any two

services and then a threshold can be set to determine the number of links in the

network. However, the following gaps exist in the current approaches:

• There is no clear theoretical basis or requirement for the network construc-

tion as most of the existing approaches constructed the service network

without clear insight into the mechanisms that stimulate service social in-

teractions. Therefore, it is difficult for these approaches to either preserve

relevant properties of the service ecosystem or integrate/leverage these

properties in service discovery solution.

• Networks produced by these approaches are usually static, which is contrary

to the dynamic nature of the real-world social network systems.

• They all struggle with constructing a unified, evolving service social network

that captures relevant social attributes of Web services.

• Difficult to map the universal properties of real-world social network with

the end products of these approaches. For instance, real-world networks like

Chapter 1. Introduction 29

WWW and internet evolve by addition of new link, and they also exhibit

some common properties such as small-worldliness.

• Most of these approaches only include a subset of the Web services available

in the service ecosystem and not every services. For example, some existing

works (Lyu et al., 2014; Huang et al., 2012b; Feng et al., 2015) only

include service that are involved in a specific interaction such as composition

interaction.

Addressing these gaps led to the second research question: (RQ2): How can we

construct a global evolving social service network of Web services such that it

preserves the Web service system properties and reflects the universal properties

of commonly found in similar real-world network systems?

3. Evolving Web Service Social Network for Web Service Discovery. Why

evolving Web service social network for discovery ? Web services, their composi-

tions, providers, consumers, and other service elements such as service context

including functional and location information, collectively form an evolving

service ecosystem (Huang et al., 2014a). Just like most real world networks,

this ecosystem grows and increases in size over a period of time. Thus, it is

progressively evolving to a social network-like service system, where the service

providers develop and publish or advertise Web services with their descriptions

in order to expose these services and make it easy to discover by the consumers.

Consumers like software developers cannot only interact with the services but

can also interact with one another. For instance, a developer can follow, con-

sume and comment on other developers’ services. Modern service registries like

ProgrammableWeb.com have service discovery as one of their core functionalit-

ies. Most of these registries adopted syntactic approach which enables them be

able to discover services through matching of keywords (in services consumers

Chapter 1. Introduction 30

queries) against the Web services descriptions stored in the registries, which may

contain similar keywords. They commonly use information retrieval techniques

to facilitate this process.

Eventhough there are recent improvements to the discovery capabilities of service

registries, these registries suffer some setbacks (N. Zhang et al., 2018; Maamar,

Faci et al., 2011). For instance, these registries treated Web services as isolated

functional island. They considered Web services as independent elements in

their ecosystem, ignoring their social attributes, and do not consider links among

services. Moreover, the syntactic-based registries which mainly rely on keyword

matching, and implemented by employing the traditional information retrieval

techniques, have their performances greatly affected by term-mismatch (B. Cao

et al., 2017; Zhong et al., 2016). For example, If a service consumer’s request

contains multiple function-specific keywords that are partially captured in the

service descriptions, the syntactic-based registries tend to perform well and return

good matches. However, if there is a wide vocabulary gap between service

consumer request and the provider descriptions such that the potential usefulness

of input keywords is reduced, the ability of the system to retrieve relevant services

descriptions greatly reduce because only words within the consumer’s request

are considers in the search and discovery processes. Such mismatch could stem

from: (i) same word having different meaning (polysemy), (ii) different words

with same meaning (synonyms) (iii) words that could have thesame contextual

meaning but are not synonyms (iv) inability of service consumer to use the

right expression for the required service function (use of ambiguous terms in

consumer’s request) (Lizarralde, Mateos, Zunino, Majchrzak & Grønli, 2020).

The precision of these registries is still low and they cannot address complex

service requirements (J. Wang et al., 2017). For the Semantic-based approaches,

Chapter 1. Introduction 31

producing semantic services information is very challenging and time consuming

as it requires annotating Web service descriptions including data-types, input and

output operations, messages etc. (Lizarralde et al., 2020).

Web service social network with its underlying principles and metrics can provide

solutions to these issues and other previously mentioned challenges that Web

services face today. It is expected that this approach will not only enables the in-

tegration of the service social network properties (including common topological

properties) into the discovery processes, but it would also allow service brokers

and providers to be able to scale the ecosystem dynamically and provides a link-

as-you-go, user-oriented service discovery environment for consumers where they

can browse, search, find, select and rank services based on the functional, social

and system properties.

Addressing the aforementioned service discovery challenges raises the research

question: (RQ3) How do we exploit the Web service social network proper-

ties to facilitate the discovery and selection of component services for service

compositions?

1.4 Research Methodology and Objectives

The research questions discussed in Section 1.3 are answered in remaining chapters

of this thesis. The challenges describe in RQ1 are addressed in Chapter 3, Chapter 4

answered RQ2, and RQ3 is answered in Chapter 5. Following the analytical guidelines

describe in engineering research (Wieringa, 2005), three key pathways are followed in

answering the research questions. The first pathway is the problem analysis phase where

the details of the problems to be solved as described in Section 1.3 are specified and

investigated. In this pathway, thorough investigation of relevant literature is conducted

Chapter 1. Introduction 32

and requirements are defined for the research objectives. The second pathway is where

the solution analysis is conducted. In this phase, solutions are proposed to the problems

defined in the first pathway, and the properties of these solutions are then thoroughly

investigated. In addition, a comprehensive evaluation of the proposed solutions is carried

out to determine whether these solutions can indeed solve the respective problems they

are designed to address. The final pathway is where the implementation analysis is

conducted. Here, the implementation of the proposed solutions is carried out, case

studies, baselines and experimental procedures are defined to further evaluate the

implemented solutions. The analyses of the problems associated with the research

questions enable the identification of sets of specific objectives to be achieved. Table 1.1

presents those objectives.

1.5 Research Contributions

This thesis aims to address the challenges of Web service discovery (as outlined in sec-

tion 1.1.2) from complex network perspective, and contribute towards the improvement

of Web services discoverability by studying different dimensions of attractiveness and

social interactions in Web service ecosystem, and incorporating the findings into a new

Web service discovery framework. The contributions would be realized by providing

answers to the research questions specified in section 1.3. More precisely, the major

contributions of this thesis are summarized as follow:

1. A Complex Network Analysis Approach For Characterizing The Structure

And Dynamic Evolution Of Web Service Ecosystem

This thesis proposes a comprehensive complex network analysis approach for

(i) characterizing the topology and the evolution of the Web service ecosystem

Chapter 1. Introduction 33

Table 1.1: Research objective with reference to the research questions

Research
Question Specific Objectives

RQ1

– Investigate the underlining mechanisms that drive Web ser-
vice ecosystems.

– Statistically analyze the service-service and service-
composition interactions in the service ecosystem, and study
the fitting of their popularity distributions to classical distri-
bution functions.

– Develop a strategy to identify different dimensions of attract-
iveness in Web service ecosystem.

– Evaluate the global network properties in the Web service
ecosystem using service-composition affiliation network.

– Quantify preferential attachment in the ecosystem and clas-
sify it based on the attachment exponent.

RQ2

– Investigate the requirements for constructing Web service
networks and the existing network models being used for
Web service social network construction.

– Develop Web service social network construction strategy
that captures services social interactions, preserves both the
system and network properties of the service ecosystem.

– Develop evolving complex network-based approaches for
connecting and publishing Web services including isolated
services as linked social Web services on an open Web.

RQ3

– Investigate the existing Web service discovery approaches
including network-based approaches.

– Examine how certain global network metrics and topolo-
gical properties can be exploited in facilitating Web service
discovery.

– Develop an evolving complex network-based Web service
discovery model that explores functional, topological and
system properties to facilitate the discovery and selection of
component services for a typical service composition task.

– Evaluate the performance of the complex-network-based
discovery model using real-world Web service data.

Chapter 1. Introduction 34

(ii) studying various real-world network system properties and dynamic mech-

anisms that are present and drive the progression and the structure of the Web

service ecosystem. (iii) extracting relationships among Web services such as

similarity and co-invocation relationships. and (iv) exploiting the properties of

service-composition interaction network for enhancing the discovery process.

This analysis form the basis for the proposed discovery solution. For the character-

ization of Web service ecosystem structure and evolution, the analysis provides an

insight into the dynamical processes that drives the continual growth of the Web

service system and its evolution, and provides insight into how certain topological

properties emerge in the system. The Web service system and network properties

are investigated using the network analysis approach. How these properties could

be exploited for improving Web service application like service discovery is also

considered. In addition, specific dimensions of attractiveness which govern the

relationships (including complementary and collaborative relationships) among

open APIs in the system are investigated.

2. A Statistical Approach For Evaluating Preferential Attachment In Web

Service Network

This thesis proposed a systematic approach for measuring and investigating the

form of preferential attachment (PA) presents in the Web service network. The

preferential attachment was suggested as generic driver for network evolution

that yields certain topology ubiquitous in real-world evolving network systems.

However, it is not clear if this assumptions holds for Web service interaction

network. Detecting the presence and form of PA in the service network is crucial

to the development of the Web service discovery application as it provide insights

into the preferential form of attractions (if it exits in the ecosystem), the Web

service popularity distribution, and the scaling factor that describes the growth and

Chapter 1. Introduction 35

topology of the system. The Preferential Attachment hypothesis indicates that the

rate Π(k) with which a node with k links acquires new links is a monotonically

increasing function of k. The thesis examine this hypothesis to ascertain if PA

mechanism holds in Web service context and if indeed the Π(k) depends on k.

To determine directly from the Web service data the functional form of Π(k) ,

the scaling exponent α and the relationship between the two, this thesis presents

a maximum-likelihood-based estimation for determining the functional form of

Π(k), for example if its linear (as in the related systems like internet and WWW),

or if it follows some unexplored functional form and what the scaling exponent is

for the Web service ecosystem.

3. Complex Network-based Approaches For Constructing Evolving Web Ser-

vice Social Network For Service Discovery

The thesis propose two evolving complex-network-based approaches to address

the problem of Web service isolation. These approaches are based on the findings

of the initial empirical analysis discussed in points (1) and (2) above. Two main

dimensions of attractiveness - similarity and popularity - in the Web service

ecosystem are exploited in the construction of the networks. The approaches

follow clear theoretical procedures with a well-defined strategy for growing the

Web service networks over time. The first network construction approach is

solely based popularity as one key attraction dimension that drives connectivity or

interactions in the Web services ecosystem. It utilizes the preferential attachment

kernel to simulate links between nodes in the Web service network. The second

network construction approach specify the growth of the network in hyperbolic

space. The approach exploits certain trade-offs between the two Web service

attraction dimensions to facilitate link formation among Web services over a

period of time.

Chapter 1. Introduction 36

4. Metrics For Evaluating Web Service Social Network

This thesis provides a set of metrics that are specifically defined for evaluating the

quality of Web service network with respect to the service discovery application.

The metrics are used to evaluate both the system and network properties relevant

to Web service discovery and recommendation. The use of the metrics is also

expanded for comparing the structures and properties of the proposed Web service

networks, and their suitability for service discovery purpose. This enables identi-

fication of certain correlations (relevant to service discovery) between the Web

service system properties and the network properties. Some specific metrics are

introduced during the evaluation of Web service networks to provide insightful

information that would guide the design and evaluation of the complex-network-

based Web service discovery framework. That is, identifying the network metrics

and properties that contributes most to improving service discoverability.

1.6 Thesis Structure

The remainder of the thesis is structured as follows:

• Chapter 2 provides an extensive survey of the concepts and notions considered

in this research including the state of the art. The beginning of the chapter

provides the necessary backgrounds of the underlying concepts that appear in the

Web service discovery processes. In addition, detailed discussion regarding the

conceptual perspectives of Web service sociability, and the existing approaches

used in addressing of Web services discovery challenges are presented. Further-

more, the applicability of complex network theory in solving related problems

to the ones addressed in this thesis is presented. This chapter also renders lists

of existing works on Web service discovery which are classified based on the

Chapter 1. Introduction 37

techniques used and the attribute of Web service explored in implementing their

respective discovery solutions . Survey of literature relevant to Web service dis-

covery, Complex network and its applications, and requirement for constructing a

network for Web services is performed.

• Chapter 3 presents the proposed network analysis approach for analysing the

Web service ecosystem. The chapter presents the key phases of the analysis: First,

from the complex network perspective, an investigation of composition services

and Web services interactions, as well as the analysis of Web service popularity

distribution in typical Web service ecosystem is presented. Second, the chapter

also presents a systematic approach for investigating the presence and form of

preferential attachment mechanism in Web service ecosystem, and quantitatively

measuring the dimension of attractiveness that drives various interactions in the

ecosystem. The chapter also includes discussions about the rationale of these

attraction dimensions in Web service discovery context, the various attachment

mechanisms and existing research efforts in literature that have exploit these

mechanisms to simulate product or services interactions. This chapter is based on

the works published in Adeleye, Yu ,Yongchareon and Han (2018); and Adeleye,

Yu , Ruan and Sheng (2020).

• Chapter 4 presents the proposed approaches for constructing evolving social

networks for Web service using complex network theory. This chapter provides

motivating examples, specifications, and algorithms for constructing a Web ser-

vice social network that could serve as cornerstone for Web service application

such as discovery and recommendation applications. The chapter presents three

different approaches for constructing Web services social network using different

attachment functions and network growing strategies. It also presents the topolo-

gical properties of each of the networks and map them with Web service system

Chapter 1. Introduction 38

properties. The networks evaluations (including comparisons of the networks

properties) are also presented in this chapter. The chapter also provides a compre-

hensive discussion of existing Web service network construction approaches in

the literature and their limitations, with emphasis on how the proposed approaches

address the limitations. This chapter is based on the work published in Adeleye,

Yu ,Yongchareon and Han (2018); and Adeleye, Yu , Yongchareon, Sheng, and

Yang (2019).

• Chapter 5 presents the proposed complex-network-based Web service discovery

approach. This chapter provides discussions about how the global Web service

social network properties with service functional descriptions are exploited to

enhance service discovery processes. The chapter presents a network-based

discovery algorithm that leverages motif-based page ranking and an online Google

page-ranking feature to facilitate service node ranking. The chapter also presents

a preliminary study made on a real-world Web service ecosystem to observe how

the integration of Web service social and functional attribute through complex

network impact service discoverability. The chapter also provides the procedure

and results of the experiments conducted to evaluate the proposed approach. In

addition, various related works on service discovery approaches are presented.

This chapter is based on the work published in Adeleye, Yu , Yongchareon, Sheng,

and Yang (2019),

• Chapter 6 concludes the thesis and presents challenges that will set directions

for future work.

Chapter 2

Literature Review

In this chapter, comprehensive review of frameworks, concepts, techniques and al-

gorithms that form the basis of this research work is presented. This thesis is at the

crossroads of two major research streams : complex network and service computing. In

the complex network stream, complex network theory is employ to study and model

the dynamical processes involved in Web service ecosystem in a way that the systems

properties can be preserved, and social, functional and topological properties can can

be effectively exploited to support Web service discovery application. For the service

computing stream, a focus on Web service discovery with the motivation to assist

Web service consumers in constructing Web service social networks and to use these

networks to discover Web services based on user’s requirements. This chapter presents a

review of background concepts, principles and frameworks relevant to the two research

streams considered in this thesis in order to provide context in which the research is

undertaken and understand the framework presented in later chapters . The chapter also

presents a survey of the state of the art of existing Web service discovery approaches and

discusses existing related works to the research questions outlined in Chapter 1. Sec-

tion 2.1 describes the basic concepts and terminologies related to the service-oriented

architecture and computing paradigm. Section 2.2 introduces on Web service, its related

39

Chapter 2. Literature Review 40

concepts and attributes, and elaborates on the roles of these attributes in Web service

discovery processes. Section 2.3, presents the background of composite or mashups

and atomic service. Section 2.4 provides detailed backgrounds and state-of-the-art of

Web service discovery. Moreover, the section analyzes Web service discovery existing

approaches with focus on methods, techniques and information used to enable the

discovery processes. Section 2.5 gives detailed discussion about the Web service social

network with focus on social networks, social relationships in Web service community

and existing methods used to build Web service social networks. Section 2.8 presents

the fundamentals of complex network with focus on complex network theory, models

and its existing applications in service computing domain and other related real-world

applications.The final section 2.9 provides the summary of the literature reviews and

surveys in the chapter.

2.1 Service-Oriented Architecture and Computing

This section presents the underlying architecture of service computing, its background

concepts, terminologies and other related components including Web service standards

and technologies. The section also describes the frameworks and algorithms in service

computing that have been studied as the basis of this research work.

2.1.1 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is an architectural style that service models re-

lies on in building integration-ready applications and reorganizing the capabilities of

software applications (which are previously isolated from each others) into an inter-

connected set of services, each accessible through standard interfaces and messaging

protocols (M. P. Papazoglou, 2003). SOA as a distributed software architecture aims

to allow end-users to compose diverse functionalities to form applications which are

Chapter 2. Literature Review 41

developed purely from existing services and combining them in an ad-hoc manner.SOA

implementation involves collection of loosely-coupled functional building-blocks that

are platforms and programming language independent, location-transparent services (

Web or micro services) which are capable of communicating with each other via stand-

ard interfaces (MacKenzie et al., 2006; Y. Chen, 2018). The architectural style is well

applied in software design domain where services are provisioned to other components

through a communication protocol over the network. Particularly, the style is applicable

when multiple applications running on varied technologies and platforms need to com-

municate with each other, enabling enterprises to be able to compose and match services

to perform business transactions with minimal programming effort (M. P. Papazoglou,

2003).

Figure 2.1: A typical Service-Oriented Architecture

Figure 2.1 shows the inherent relationship in a typical SOA among the three par-

ticipants (service broker, service provider, and the application builder or service

Chapter 2. Literature Review 42

requester) realized by interactions that involve specific operations: publish service

operation, find/request services operation, retrieve service description operation, and

bind/invoke service operation. The roles of the participants and the operations explore

two service objects: service description and service implementation (both described in

the later of this chapter). The manner in which these roles interact, and the sequence at

which they interact are described as follows:

1. Service provider and application builders (clients/service requester) are both

software agents and represent entities such as businesses and software developers.

The service providers develop software components inform of classes, objects

and functions. Typical service requester seeks services with certain functional

descriptions and binds with the service provider through the invocation of the

service. The application builder search, find, bind, test, verify, and execute

services in their applications dynamically at run-time (Y. Chen, 2018).

2. In general, service brokers (service brokers, service registry or service repository

are sometimes used interchangeably) are service discovery agencies that propel

the activities of providers by ensuring that they are consistent with standards

and best practices in the service industry. There principal functionality/role is

to make the information related to the web service available to any potential

service requester. Service brokers may usually utilizes standards like UDDI

and ebXML standards which provide a set of standard service interfaces for

registering, advertising and publishing services. Discrete service functionalities

are developed independently by diverse service providers based on standard

interfaces and are submitted to the service brokers.

3. The application builder searches for services through the internet, the broker’s

service registry, looking for services that matched his/her requirements and

instructions on how to invoke the services. The application builder can then

Chapter 2. Literature Review 43

use the available services to compose new value-added applications. This is

considered a high-level programming utilizing service modules to build more

complex applications. Doing this, the application builder do no necessarily have

to understand or know the low-level programming.

Such a service-oriented architecture gives the application builders the maximum

flexibility to choose the best service brokers and the best services.

Figure 2.2 describes the elements of SOA (Krafzig et al., 2005) including the four

key abstractions: application frontend, service, service repository, and service bus.

Figure 2.2: Elements of Service-Oriented Architecture (Krafzig et al., 2005)

1. The application frontends are the active elements of SOA which represent the

business process owner and help deliver the values of SOA to the end-users.

2. Services provide business functionalities such as get geo mapping, get reservation,

cancel booking and so on, which could be utilized by the application frontends and

other services. In SOA context, services are semantically well-defined abstraction

Chapter 2. Literature Review 44

of a set of computational or physical activities involving a number of resources,put

in place to fulfil a client business requirements or needs(Sheng et al., 2014).

All business functions that follows SOA architectural style are encapsulated as

services. These services exhibit the following characteristic (M. P. Papazoglou et

al., 2007; Channabasavaiah, Holley & Tuggle, 2003):

• Services in SOA includes pure business functions, business transactions

composed of lower-level functions, and as well as system service functions.

• Autonomous : All services that follows SOA architectural style are autonom-

ous. That is, the service operations are perceived as a black-box or opaque

by external components. Service opaqueness in this context indicates that

external components do not know how services perform their function,

they merely anticipate that they return the expected result. Both the imple-

mentation and execution spaces of the application providing the required

functionality are encapsulated behind the service interface.

• Invocable : Generally, services or interfaces can be invoked irrespective

of where they are located (locally or remotely), the interconnect scheme

or protocol to effect the invocation, or the infrastructure components are

required to establish the connection.

• Location-Transparent: Regardless of the location service registry , access-

ibility of services descriptions by service requester should be transparent

and must not be location constrained.

• Platform-Independent: In SOA, services are platform independent, that is,

they can be used regardless of service requester’s technological platform.

Therefore, components such as the descriptions,discovery mechanisms and

the related protocols need to follow the SOA universal standards.

• Loosely-coupled: There should be no transnational properties that would

Chapter 2. Literature Review 45

generally apply among the components. Services do not need to know

the implementation details of the clients. Loosely coupled property is a

loaded term with different dimensions including time/availability, location-

transparency and service evolution aspects (Pautasso, Zimmermann &

Leymann, 2008). An important dimension of loosely-coupling that concerns

time/availability involves the ability of service requester to interact with

the service provider even when the provider is not available, hence, in this

case , service requester or client would not be affected when services have

temporary downtime. The location dimension of loosely-coupling property

enables service requester/client to discover the location service provider

at run-time (dynamic late binding). The evolution dimension indicates the

ability to make modification to a service without affecting the client.

• Self-contained: Services are considered self-contained modules with each

service having its own state that is independent of the context and state

of another service. In thesame vein, services are designed irrespective of

the nature, the objective and purpose, and the context of use in the client’s

system environment.

Technical infrastructural services such as persistence service (Eikermann, Look,

Roth, Rumpe & Wortmann, 2017), offer functionalities like store and update data,

open cursor. Eventhough this sort of functionalities are very useful when defining

and implementing a business function, they have minimal strategic relevance

when considered from SOA perspective. More specifically, there should be no

technological impact on the high-level structure of the application landscape or

dependencies between components. SOA approach must decouple the technical

infrastructure services from the business applications, and enables enterprise

independence with respect to specific technical implementation or infrastructure

Chapter 2. Literature Review 46

(Krafzig et al., 2005)

3. Implementation: From SOA standpoint, service consist of an implementation

which defines the implementing technology and details of execution procedures

to fulfil the functionality of a service. Implementation provides business logic and

data. Implementer usually builds SOAs using various Web services standards and

service-based technologies including RESTful and SOAP and other related World

Wide Web Consortium standards (R. T. Fielding, 2000). Architectures can operate

independently of specific implementing technologies, hence implementation can

be achieved using a variety of technologies.

4. A contract specifies the functionalities, usage and constraints for the service

client (which could be an application frontend or another service).

5. Service interface physically exposes the service functionality.

6. Service bus is an inter-operability message bus for implementation, deployment,

and management of SOA-based systems, specifically between large-grained het-

erogeneous enterprise systems. The two key objectives of service bus include: (i)

to loosely couple the system taking part in the integration process. (ii) to break-up

the integration logic into distinct and easily manageable pieces (M. P. Papazoglou

et al., 2007).

SOA provides enterprise with various benefits including the following:

1. From service-based system development standpoint, SOA style advocates a

logical way of provisioning services to the end-user’s application or other services

using discoverable interfaces.

2. SOA can help businesses respond more quickly and more cost-effectively to

end-users service needs and changing market conditions (Koch, 2005).

Chapter 2. Literature Review 47

3. SOA promotes reusability at the macro (service) level rather than micro (classes)

level, by enabling the composition of value-added, more complex applications

from the micro services. It could also enables simplification of interconnection to

existing IT assets.

4. SOA indirectly simplify testing and captures many of the best practices of previous

software architectures.

In order to realize the various benefits that comes with SOA architectural style, SOA

imposes the following requirements:

1. Implementation Neutrality : the interface is what matters most and not the

implementation. Implementation details of the interacting components should

not be depend on. Specifically, the SOA cannot be specific to particular set of

programming languages (Singh & Huhns, 2005).

2. Flexibility configuration : the system is configured such that flexibility and

lateness are accommodated , that is system components are bound to each other

late in the process, so that the configuration can change dynamically.

3. Long lifetime Because the operations involves computation among autonomous

heterogeneous entities in a dynamic environment, provision must be made for

error exception handling. That is, the components must exist long enough to be

able to detect and eliminate any relevant exceptions, to take corrective action,

and to be able to respond to the corrective actions taken by others. A component

must exist long enough to be discovered, relied upon, and to generate trust in its

behavior.

4. Granularity : This is a key design concern that ensures that participants in

a typical SOA architectural style are understood at a coarse granularity. This

Chapter 2. Literature Review 48

granularity specifies the scope of business functionality and the structure of the

message payload in a service operation that is provided within a SOA. Instead of

modelling actions and interactions at detailed level, it is better to capture the key

high level qualities that are visible for the purposes of business contracts among

the participating entities. Coarse granularity requirement limits dependencies

among these entities and reduces communications to a minimal message that has

greater importance.

5. Teams : Computations in an open systems is more about business partners

working as a team rather participant commanding its partner. That is, instead of

an individual, a team of cooperating participants is a better modelling unit. A

team-oriented perspective is a result of taking seriously a peer-to-peer architecture.

SOA approach does not address several overarching concerns including manage-

ment, service orchestration, service transaction management and coordination, security

and other issues that affects all components in a service architecture (M. P. Papazoglou,

2003).

2.1.2 Service-Oriented Computing

In traditional approaches of software development, the developers takes the software

user requirements or request, translates them into specification, and then convert the

specifications into executable files that meets or satisfy the user requirements. Dif-

ferent approaches such as object-oriented (OOC), component-based computing and

waterfall model are available to translate software specification into an operational

system, with each approaches having its own engineering processes and supporting

techniques (Y. Chen, 2018). One of the main concerns of the traditional software

development approaches is that they are not designed to face the challenges of open

environments (Huhns & Singh, 2005).

Chapter 2. Literature Review 49

Service-Oriented Computing (SOC) (also refers to as service computing) emerges as

computing paradigm that provides a way to create new architecture that reflects compon-

ents’ trends toward autonomy and heterogeneity. As a computing design paradigm, SOC

utilizes services as fundamental elements for developing applications (M. P. Papazoglou,

2003). SOC has reinvented the way software applications are developed, delivered and

consumed, and changed the way enterprises work together. SOC relies on Service-

Oriented Architecture to build a service model, and seeks to provide computational

abstractions, architectures, techniques, and tools to support services broadly. It aims to

transform computing resources including hardware and software assets into a service

paradigm in which end-users and the resources establish on-demand interactions, bind-

ing resources and operations, enabling an abstraction layer that shifts the focus from

infrastructure and operation to services for the purpose of promoting cross-organisation

integration of functionalities (Bouguettaya et al., 2017). Such integration would not

only promote the rapid deployment of distributed software applications but also enables

quick and low-cost software development.

Abstractions for Service Computing

SOC can be view in terms of different levels of abstractions ranging from the ones

that capture services within an application to those that concerns cross-organisational

service applications interactions.The following are different levels of abstractions in

which SOC can be considered (Huhns & Singh, 2005) :

1. Intra-enterprise Abstraction Level : this abstraction level focus on applica-

tions inter-operation within an enterprise, which involves enabling connectivity

between interacting components, and addressing messaging and semantics prob-

lems. Connectivity among the applications could be made possible by protocols

such as HTTP. For various business components to understand each other , there

Chapter 2. Literature Review 50

is a need for a clear communicating formatting schema and procedure for en-

coding and deciphering meaning of messages from each interacting component.

XML schema can handle communication formatting but can not decipher the

meaning behind a given message. Since meaning generally depends on how

various system components processes information, developers need to uncover or

reconcile the intentions of interacting components. The reconciliation process

assumes that accurate declarative information models exists , however, such mod-

els are often poorly maintained in practice or simply are not available. Therefore,

developers have to build this models during integration. Another challenge in

here is that information models for different systems might express different

level of abstractions. Services can encapsulate component behaviour at various

levels, and yet describe the behaviour in thesame way, thereby easing process of

composing various components. Since most enterprises operate a combination of

legacy and other systems and application, different policies have to continuously

authenticated and authorized the entities involved in different interactions. Since

each of the systems in an enterprise are likely built on different platforms, clearly,

compliance to interconnection standards is important. This made interoperability

between existing new systems and existing ones challenging.

SOA architectural style addresses all the problems described above. SOA requires

that systems policies be made explicit, and thus can organizationally enforce

compliance with these policies, thereby simplifying system management. It

provide abstractions and tools to model information and relate models, develop

processes over the systems, assert and guarantee transnational characteristics, add

flexible decision-support , correlate the functioning of the component software

systems with the organisations that they represents (Huhns & Singh, 2005).

2. Inter-enterprise Abstraction Level : Traditionally, businesses have interacted

Chapter 2. Literature Review 51

and interoperated in ad hoc manner, which usually requires human intervention.

In some cases, they utilizes rigid standards such Electronic Data Interchange

(EDI), which results to difficult to maintain system. In recent time, there have

been a growing interest in the use of supply chain management systems and on-

demand manufacturing, which further increases the cross-enterprise interactions

and processes. This is because businesses that have interact together can enhance

their response to customer needs and other business related information, reduce

overhead cost, capture and satisfy individual customers preferences and exploit

emerging technologies .

SOC provides the ability for interacting parties to capture their behaviours such

that each party can apply its local policies autonomously, and still achieve effect-

ive and clear cross-organisation processes. SOC also provides support for dynamic

selection where business entities can pick business partners that offer best terms

in a flexible manner, and select the partners to optimize their quality-of-services

criteria including performance, reliability, trustworthiness and availability. In

addition, SOC enables abstractions through which the state of a business trans-

action can be captured and effectively manipulated. By enabling this, dynamic

selection is further exploited to yield application-level fault tolerance (Huhns &

Singh, 2005).

3. Infrastructure and Software Component Abstraction Levels : It is challenging

to build complex applications over distributed platforms such as grid computing

model. This has led to increasing interest in modular interfaces based on services.

The emergence of utility computing model enables provisioning of computing

resources as utility services similar to electric power. Utility computing presumes

that diverse computational resources can be aggregated on demand and the com-

putation can be realized based on the demand and service load. Enterprises can

Chapter 2. Literature Review 52

exploit this by concentrating more on their core business and outsource their

computing infrastructure to specialist companies that offer utility computing

services (Ross & Westerman, 2004). In this case, a service point of view abstracts

an application’s infrastructure level, allowing for more efficient use of grid re-

sources and promotes utility computing, especially when redundant services can

be leveraged to create fault tolerance.

Software development is aided by programming abstractions that consider soft-

ware components to be potentially autonomous. Services provide programming

abstractions that allow software engineers to design distinct software modules

using better semantic interfaces. SOC as a computational paradigm provides a

semantically rich and adaptable model for simplifying software development.

2.1.3 Major Advantages of Service Computing

The following are the major benefits of using standardized services (Y. Chen, 2018):

1. In a large-scale, open settings, services provide higher-level abstractions for

organising applications. Even if these were unrelated to standards. they would

be helpful in implementing and configuring software applications in a way that

enhanced business productivity and improved the quality of the applications that

were built.

2. The high-level abstractions are standardized. Standards allow software developed

by various programmers to interoperate. Standards thus enhance productivity in

the above-mentioned service use cases.

3. Standard enable the creation of general-purpose tools for managing the full system

life-cycle including design development, debugging and monitoring etc. This is a

major practical advantage, as it would be nearly impossible to design and field

Chapter 2. Literature Review 53

robust systems in a timely manner without extensive tool assistance. Because

tool manufacturers may validate their tools and so move part of the validation

effort from the application programmer, such tools assure that the components

generated are actually interoperable.

4. The standards feeds other standards. For example, the fundamental standards

enables other standards such as dealing with bookings, processes and transactions.

2.1.4 Discussion

Service-Oriented Computing has emerged as a key computing paradigm that provides

cross-organisational computational abstractions, technologies and architectures to fa-

cilitate and support enterprise services. It offers new way of developing, designing

and delivering and consuming software applications. It enables the software-as-a-

service concept to expand to capture the delivery of complex business processes, allow

on-demand application development, and service reusability. Service Oriented Archi-

tecture (SOA) provides an architectural model that allows services to be published,

discovered, and consumed by applications or other services, the goal of which is to

realize loosely coupled, standard-based and platform-independent distributed comput-

ing. SOC relies on SOA to build integration-ready software applications, organize the

applications and related infrastructures into a set of interacting services (Bouguettaya et

al., 2017; Bouguettaya, Sheng & Daniel, 2014; Pautasso, 2014). Services that complies

with SOA are used as fundamental elements to support rapid, low-cost development

of distributed applications in heterogeneous environments. Most of the conventional

business processes and services such as healthcare, finance, transactions,entertainment,

tourism and education can now be offered as Web services. Organisations can now

explore the availability of these services to achieve effective Business-to-Business

collaboration and interoperation such that business data, functionalities can be shared.

Chapter 2. Literature Review 54

The broad and continuous adoption of SOA and its related technologies by various

business and software community continues to encourage paradigm transformation

from component-based to service-based (N. Zhang et al., 2018). A large number of

software systems have been developed by discovering and composing loosely-coupled

Web services provided by different organisation. As the demand for service-based

system continues to grow, finding appropriate component services to compose is a

key step in developing a service-based system (He et al., 2017). Service discovery

is a critical step of service-based system development which focus on finding a set

of potential or candidate Web services for each functional requirement of a service-

based system (N. Zhang et al., 2018). Over the years, the continual growth growth of

Web service ecosystem, the diversity of Web services functionalities coupled with the

growing complexity of Web service requirements have made Service discovery a more

challenging task. This research work addresses the challenges related to the service

discovery component of service computing.

2.2 Web Services: Concepts, Principles, Standards and

Emerging Technologies

Web service technologies have evolved in a way that isn’t completely dependent on the

notion of service. The emergence of Web service technologies and standards in facilitat-

ing automated business integration have become a major driver of various advancements

in integration software domain, most notably, the SOA implementation (M. P. Papazo-

glou et al., 2007). It has become the preferred implementation technology for achieving

the SOA objectives including maximum service sharing, reusability and interoperab-

ility (Kreger, 2003). Over the past decade a lot of research efforts have centered on

Chapter 2. Literature Review 55

improving various components of Web service and its related technologies. Standardiz-

ation groups such as the World Wide Web Consortium (W3C) have led standardization

efforts for deploying to allow smooth interoperations. Nowadays, The term Web service

is frequently used nowadays in different contexts, thus the existing definitions of Web

service ranges from the very broad and all-encompassing ones to the more specific

and restrictive ones. In general, a Web service is considered any service accessible

using the Web technologies (Sheng et al., 2014). This is an open and generic definition

which implies that everything that has a Uniform Resource Locator (URL) is a Web ser-

vice. According to M. P. Papazoglou, Web services are known to exhibit the following

characteristics:

• Using standard internet languages and protocols, a web service exposes its func-

tionality programmatically over the internet.

• Web service can be implemented through a self-describing interface using open

internet standards such as XML interfaces which are published in a network-based

registry.

Other technical definition of Web services includes:

• A more specific definition given by the World Wide Web Consortium (Haas &

Brown, 2004), which defines Web services as a software systems identifiable by

Universal Resource Identifier (URI) designed to support interoperable machine-

to-machine interactions over a network, and which has an interface described in a

machine-processable format,(specifically WSDL). Other systems (for example,

systems like end-user software) interact with the Web service using Simple Object

Access Protocol known as SOAP (Mitra, Lafon et al., 2003), which is typically

conveyed using XML over HTTP and other related Web standards. The W3C

definition is quiet encompassing as it explains how Web service should function.

Chapter 2. Literature Review 56

It emphasizes that Web services should be capable of being defined, described,

invoked and discovered, thus clarifying "accessibility" and substantiating the

notion of "internet-oriented and standard-based interfaces". It also specifically

states XML as part of the solution that should be the data format used in many

Web-based interactions.

• Another formal definition of Web service given by IBM (Sheng et al., 2014) is that

Web services are "a new breed of Web applications, and they are self-contained,

self-describing, modular applications that can be published, located and invoked

across the Web" . This definition emphasizes the need for openness, which in

essence, means that a Web service has to be advertised and published such that it

can be discovered and invoked over the internet.

• The Dagstuhl service computing working group (Ludwig & Petrie, 2006), defines

Web service as a possibly remote procedure with an invocation that is described in

a standard (preferably XML-based) machine-readable syntax reachable through

standard internet protocols with a description, including at a minimum the al-

lowed I/O messages and a possible semantic annotation of the service function-

ality and data meaning. Similar to W3C definition, this definition focus on the

representation and integration of Web services via standard internet protocols and

service technologies.

The following are the descriptions of various Web service standard protocols and

technologies.

1. Simple Object Access Protocol (SOAP 1) - is a messaging protocol of the XML

specification designed for the decentralised, distributed environment, which ex-

ploit the capabilities of internet and XML to exchange of information between

1http://www.w3.org/TR/soap/

Chapter 2. Literature Review 57

nodes in a decentralised, distributed environment via Hypertext Transfer Pro-

tocol (HTTP) and Remote Procedure Call (RPC). SOAP is inherently a stateless

, one-way message exchange protocol between SOAP nodes, such as a sender

and a receiver. SOAP can be employ to generate more complex interactions

like request/response and request/multiple response, by combining one-way ex-

changes with characteristics provided by the underlying transport protocol and/or

application specific information (Box et al., 2000; Suda, 2003). SOAP exhibits

certain characteristics including being lightweight, platform and operating system

independent, which are attributes inherited from the HTTP protocol and the XML.

SOAP does not define any application semantics, such as a programming model

or implementation-specific semantics; instead, it provides a simple methodology

for expressing application semantics by providing a modular packaging model

and data encoding mechanisms for data within modules. As a result, SOAP can

be utilised in a wide range of systems, from messaging systems to RPC. SOAP as

two related applications with respect to XML messaging: the Remote Procedure

Call (RPC) and the Electronic Document Interchange (EDI). SOAP used for

EDI are also referred to as the document style SOAP , the XML style for such

SOAP could be a purchase order, tax refund, or any related document. When

SOAP is used for RPC also known as RPC-style SOAP, then the XML will be a

representation of parameter or return values (Snell, Tidwell & Kulchenko, 2001).

SOAP-based Web services depend on three important standardization initiatives:

the Universal Description, Discovery and Integration (UDDI). In addition, SOAP

Web service inherit some attributes from SOAP including protocol independent

and statefulness. But they demand more computational resources, particularly

when handling SOAP messages (Sheng et al., 2014).

2. Representational State Transfer (REST) (R. T. Fielding, 2000) - was original

Chapter 2. Literature Review 58

introduced as an architectural style for building large-scale distributed hyper-

media systems that expose data, resources, and functionality via Web services

with URIs. The RESTful Web services emphasize the correct and complete use

of the HTTP protocol to publish software systems on the Web (Richardson &

Ruby, 2008). RESTful Web services interact by exchanging request and response

messages, each of which include information that describes how the messages

should be processed. Unlike SOAP-based Web services, RESTful Web services

are lightweight and stateless, which make them suitable for ad-hoc integration

over the Web (Sheng et al., 2014). The architectural style includes the design

constraints which have been followed to define the HTTP protocol (R. Fielding

et al., 1999) and the basic standards in combination with URI and HTML which

has been a major component of the Web. The design constraints includes global

addressability through resource identification, uniform interface shared by all

resources, stateless interactions between component services, scalability of com-

ponent interactions, self-describing messages and hypermedia as a mechanism

for decentralized resource discovery by referral, use of intermediary components

to reduce interaction latency, enforce security , and encapsulate legacy systems

and reducing coupling between component (Pautasso, 2014). The constraints are

further discussed below:

• Global addressability through resource identification : Resources pub-

lished by Web service are to be given a unique identifier, which meaningful

globally such that no central authority is involved in managing them, and

they can be dereferenced independently of any context. REST has not made

any assumption of what a resource could be or not be. Resource in REST

case was intentionally kept very general and it can be used to publish some

service capability and any source of machine-processable data, which may

Chapter 2. Literature Review 59

include meta-data about the service.

• Uniform interface shared by all resources : All resources interact by using

a uniform interface, which provides a small, generic and functionality

sufficient set of methods to support all possible interactions between services.

The methods have well-defined semantics which describe their effects on the

state of the resources. In the context of the Web and its HTTP protocols, the

uniform interface composed of the methods which are fixed set of operations

including GET, POST, PUT and DELETE that can be applied to all Web

resource identifiers . This operations can be extended if necessary (Dusseault

& Snell, 2010; Goland, Whitehead, Faizi, Carter & Jensen, 1999).

• Stateless Interactions : Services do not create a permanent session between

them that last more than one interaction. This ensures that requests to a

resource are independent of each other. There is no shared state between

clients and servers at the end of each interaction. Requests could lead to

change of resource’s state, where new state are made immediately visible to

the associated clients.

• Self-describing Messages : Restful Web services interacts by exchanging

request and response messages that contains the representations of resources

and their metadata. These representations can be of various kinds, defined

according to the client, context, interests and abilities. Similarly, Web

browsers could request a representation of a Web page in a specific lan-

guage, based on the users preferences. This improves the degree of intrinsic

interoperability of RESTful architecture because a client can flexibly and

dynamically negotiate the most appropriate media type or format with the

resource as opposed to the enforcing the use of same format for the clients

and resources.

Chapter 2. Literature Review 60

• Hypermedia : this mechanism involves embedding references to associated

resources within the resource representations. Therefore, client can locate

the hyperlinks (identifier) of related resources during the representation

processing, and decide to follow the links as they navigate the network built

from the relationship that exist among the resources. Hypermedia aids in

the discovery of decentralised resources and is also utilised for the dynamic

discovery and description of service interaction protocols between services.

In spite of hypermedia utility, it is also the constraints which has been used

the least in most RESTful Web service APIs. As a result, Web service

APIs that abide by this constraint are frequently referred to as "Hypermedia

APIs."

The main design constraints of the REST architectural style can also be adopted

incrementally, leading to the definition of a maturity model for RESTful Web

services (Pautasso, 2014).

3. Open Service Gateway Initiative (Tavares & Valente, 2008): This is a frame-

work that supports the implementation of component-based, service-oriented

applications in Java. The framework manages the life-cycle of modules also refer

to as bundles in OSGi 2, which includes adding, removing and replacing bundles

at run-time, while preserving the relations and dependencies among them. It

provides means to publish,deploy, manage and search for services. In addition, it

supports the dynamic installation and un-installation of bundles.

4. Web Services Description Language WSDL (Christensen, Curbera, Meredith,

Weerawarana et al., 2001) addresses the requirement for standardization of mes-

saging format and communications protocol in Web community by defining an

2OSGi Alliance: http://www.osgi.org.

Chapter 2. Literature Review 61

XML grammar which describes network services as collections of communica-

tion end-points or ports capable of exchanging messages. Specifically, WSDL

describes the operations in a Web service, messages exchanged by the operations,

the parts that make up the message, and the protocol bindings. The abstract

definition of message and ports in WSDL is separated from their data format

bindings or network deployment.

WSDL service definitions provide documentation for distributed systems and

serve as a blueprint for automating the details involved in applications commu-

nication. (Christensen et al., 2001). A typical WSDL document utilizes the

following attributes in the description of network services : Types − represents

container for data type definitions using some type system like XML schema

specification, Message − represents an abstract type definition of the communic-

ated data. Operation − which is the abstract definition of an action supported

by the network service, Binding − which is a concrete protocol and data format

specification for a particular port type, Port − is an individual endpoint defined

as a combination of a binding and network address, Port-type − an abstract set

of operation supported by one or more endpoints , and Service − a collection of

related endpoints,

5. Universal Description Discovery and Integration (Vaddi & Mohanty, 2019).

UDDI is a universal business registry that serves as central repository in Service

Oriented Architecture for indexing Web services, where service providers can

register their service descriptions so that services can be located by developers

and applications. UDDI provides a directory-based approach where service

provider would publish their services following a specific format that is based

on the directory. Consumers can then query the directory for the published

services by using Application Programmable Interfaces. In essence, the UDDI

Chapter 2. Literature Review 62

is an industry standard for service repository developed to houses the details of

publishers, their published services and the descriptions and solve the service

discovery/search challenges. The UDDI information model composed of four

main data structures (Vaddi & Mohanty, 2019) which include business-entity,

business-service, binding-template (which contains the technical information

related to a single Web service for interacting and binding) , and t-Model (contains

the technical specification for a Web service − points to the URL where the actual

specification is available). UDDI gives access to Web Services Description

Language (WSDL) documents and interprets SOAP request message.

6. Electronic Business using eXtensible Markup Language − ebXML 3 – is an

initiative for a Business-to-Business XML framework that enables the collab-

oration of Web-based business services with set of specifications that allows

electronic trading relationships between businesses. exchange. The heterogen-

eous nature of eBusiness transactions require a flexible infrastructure/framework

that supports simple service calls and complex document. For eBusiness, key

integration patterns realize SOA benefits in a pragmatic iterative manner.

2.3 Mashups, Composite and Atomic Web Services

Web services can function as either an elementary atomic service or as a composite

Web services (Sheng, Benatallah, Dumas & Mak, 2002). An atomic service, is a single

Web accessible application that does not explicitly rely on another service functionality

to fulfill user’s application requirements. Each of the atomic services offers program-

matic interface as intermediate channel that allows two or more services to interact

with each other. Appropriate adapters can be developed for older services written in

languages such as CORBA so that they can be invoked as Web services. A composite
3http://www.ebxml.org/

Chapter 2. Literature Review 63

service (Casati & Shan, 2001; Ngu, Carlson, Sheng & Paik, 2010; Medjahed, 2004) is

a conglomeration of outsourced Web services, which brings together other composite

and atomic services that collaborate to implement a set of operations with the aim of

offering additional values. The services combined together by a composite service are

referred to as its component or participant services. A common example of a composite

service is a tourism service, which usually combines different but related services such

as flight and hotel reservation, searching for attractions, food menus etc. A Web service

is known to be defined by an Universal Resource Locator, a collection of attributes,

and a set of operations, whether it is atomic or composite. The attribute of a service

conveys information about the service to the service’s potential consumer. Composite

services offer several benefits, which include reduction in software application devel-

opment time, thereby enabling rapid time-to-market of the application, and offering

quick solution to ever-growing complexity of service consumer software requirements.

Furthermore, composing Web services enables the reduction of skills and effort required

for developing software.

A modern technique that allows service consumers to create value-added application

based on existing application is refer to as mashup. The terms mashup and compos-

ite service are sometimes used interchangeably, particularly for composite services

with components that have features such as RESTful architecture, JSON data, and/or

JavaScript interfaces. A Web mashup could be refer to as an application that integrates

multiple components services at any application layers which include data, application

logic and presentation layers (Daniel & Matera, 2014a). Mashups come in different

forms that expresses one or more layers of the stack at which the mashup components

are integrated. The following types of mashups are defined based on the application

layers (Daniel & Matera, 2014b, 2014a):

1. Data mashups: Data mashups occur at the data layer. They collect data from

Chapter 2. Literature Review 64

various data services or resources, process it, and then return an integrated result

set (the data mashup’s output). Typically, data mashups are published as Web-

accessible resources, such as RSS feeds or RESTful Web services.

2. Logic mashups: For logic mashups, components integration occur at the ap-

plication logic layer , which enable composition of functionality in any of the

logic or data component type. Logic mashups define processes that orchestrate

components and that are gain as logic components.

3. User Interface (UI) mashups : These are found at the presentation layer. They

modify user interface components and merge the native UIs of the components

into an integrated UI, in which the desperate UIs may be synchronised. Pure

UI mashups necessitate the arrangement of UI elements in a shared Web page.

Users can interact with UI mashups because they are usually published as Web

application.

4. Hybrid mashups: Hybrid mashups are made up of several levels in the application

stack. They combine a variety of components into a single mashup, with integra-

tion occurring at multiple levels. The advantage here, is that the mashups are most

feature-rich and complete, allowing full-fledged applications to be developed.

Hybrid mashups can be interactive Web services, depending on the layers where

integration takes place. Because each layer often addresses concerns that are

significantly distinct from the others, the key challenge of hybrid mashups is

mediation between the three layers, or cross-layer integration.

Web Services are ubiquitous in today’s Business-to-Business interactions, and they

are critical to the social and economic developments of both macro and micro businesses.

The rapid development of Web service technologies and related standards have help

propagate dynamic and automated business integration. Web services can be published,

Chapter 2. Literature Review 65

discovered and invoked over the web using various standards such as XML, WSDL,

UDDI, HTTP, SOAP and REST (Jalal, Yadav & Negi, 2019). There has been a

paradigm shift in software development from component-based system to a service-

based due to various advances in SOA and its related technology.The service-based

paradigm not only reduces the cost, time, and effort necessary for software development,

but also improves the system’s reusability, agility, and quality (N. Zhang et al., 2018;

Bano, Zowghi, Ikram & Niazi, 2013). The so called ’Big’ Web service technology

stack (Pautasso, 2014) provides interoperability for both the Remote Procedure Call and

messaging integration styles. Eventhough different styles are able to integrate enterprise

applications, recent technology trend in Web services domain infer that RESTful Web

services are capable of eliminating the presumed complexity associated with ’Big’ Web

service technology, especially SOAP (Pautasso et al., 2008, 2008). Since the framework

presented in these research is evaluated using RESTful Web services, specific features of

these services highlighted in this section to distinguish them from the traditional SOAP-

based Web services. It is worth nothing that this research exploit generic attributes of

Web services such as service descriptions to facilitate the service discovery processes.

2.4 Web Service Discovery and Its Related Concepts

The rapid increase in the number of Web service on the internet is being propelled by

the adoption and continual growth of Web service technologies. The last decade has

witnessed an exponential increase in number of service providers and companies that

offer their capability as Web services. These services are advertised and published via

public Web service registries. The number of registered Web services in the public

registries such as ProgrammableWeb as of January 2021 was more than 24,000. Yearly,

over 2000 new Web services are added to ProgrammableWeb repository alone (Zarei &

Gaedke, 2020). Organisations are exploring these services to develop new value-added

Chapter 2. Literature Review 66

business applications using Web service composition techniques. Discovering and

assembling loosely-coupled Web services supplied by many organisations has resulted

in the development of a huge number of software systems (He et al., 2017). The

primary requirement for developing such value-added application is discovering the

most relevant Web services capable of realising the functionalities required to complete

the new composite service. Finding and selecting the most suitable Web service from a

pool of diverse, potential candidate services that can satisfy the requirements of service

requestor are still challenging tasks (Jalal et al., 2019; N. Zhang et al., 2018). This

section presents Web service discovery and various concept and research trends related

to service discovery. An overview of existing approaches of Web service discovery are

also presented in this section.

2.4.1 Definition

F. Chen, Li, Wu and Xie defined Web service discovery as the activities related to

identifying services matching user requirements and selection as identifying the best

choices among the matching services. In this definition, discovery process mainly

involves process of searching that is expected return a list of candidate services. Other

authors refers to Web service discovery as the process that enables service requestor

or user to find existing Web services that meets their functional requirements based

on the requester’s functional and non-functional requirements presented inform of a

queries (He et al., 2017; Stein, Barchewitz & El Kharbili, 2008; Zarei & Gaedke, 2020;

N. Zhang et al., 2018). This processes returns the Web services descriptions previously

published by service providers in service registries (Obidallah, Raahemi & Ruhi, 2020).

Exploring this the discovery service, a service consumer identifies potential services or

service providers whose offerings meets and its functional requirements.

Chapter 2. Literature Review 67

2.4.2 Key Information Attributes for Service Discovery Processing

Web service discovery automation can be achieved by incorporating side information

such as semantics, QoS, and social information into a Web service functional description,

and using some service matching and selection processes. The following are Web service

attributes can be explored in service discovery processing (Kritikos & Plexousakis,

2009; W. Chen et al., 2015a; Hoschek, 2002).

Service Functional and Non-functional Attributes

Web service are usually described in terms of a their functional characteristics, which in-

clude operational characteristics that define the overall behaviour of these services. (M. P. Papazo-

glou & Dubray, 2004). Each Web service is published with its functional description

written by the service provider. When a developer builds a composite service, a func-

tional description is also created accordingly along with the service. Most descriptions

are purely syntactic, and as a result, service discovery and composition approaches

that solely rely on the textual, functional descriptions involve predominantly manual

surfing. Non-functional properties include non-functional service quality attributes such

as the performance metric including response time, cost, accuracy, integrity, availability

, security attribute, scalability and reliability.

Service Semantics

Semantic descriptions of Web services are key ingredient that can be exploited to realise

services potentials like dynamic discovery and enabling automated service composition.

Semantics annotations could be injected into service discovery processing to enrich the

attributes required for high quality discovery solution (W. Chen et al., 2015a). Semantic

information such as OWL ontologies are often used to annotate service interfaces.

Existing semantic Web Service discovery solutions have demonstrated the advantages

Chapter 2. Literature Review 68

of semantic annotations in discovering services, particularly in terms of accuracy and

when dealing with heterogeneous data models (Kanagasabai et al., 2013; Pilioura

& Tsalgatidou, 2009). One of the main challenge in exploring Ontological-based

Web service semantics is building ontologies. Building an ontological for semantic

annotation is a time consuming and complicated task that requires substantial number of

knowledge experts to cooperate with each other, resulting in a shortage of consensus and

ubiquitous ontologies (W. Chen et al., 2015a). Another challenging issue of integrating

semantic annotation to service discovery is the lack of ubiquitous ontologies (N. Zhang

et al., 2018).

Service Sociability

Service sociability is service property that characterized the ability Web service to

interacting effectively with other related services. This property is usually captured

or supported by the network models commonly referred to as Web Service Social

Networks (WSSN) (Maamar, Hacid & Huhns, 2011). By connecting Web services

into a global service social network, various social attributes such as user/service

interactions, collaboration, competition, substitution and association attributes can

be easily captured and further explored to enhance service discoverability. However,

one of the key research challenge here is how best to capture service sociability, or

model service interaction using social network models such that other service properties

are well preserved , and that both historical and future interactions can be correctly

modelled (W. Chen et al., 2015a). Most Web service discovery solutions usually ignore

the influence of Web service interactions in the discovery process.

Chapter 2. Literature Review 69

2.4.3 Quality of Services

Quality of Service (QoS) is a very important attribute of Web service that can be

exploited to improve various service solutions including Web service discovery. In

service context, It describes the capabilities of a Web service to satisfy the implied

needs or stated requirements of service consumers. QoS serves as the benchmark to

uniquely distinguish the services and service provider (Raj & Sasipraba, 2010). In

addition, QoS can be used in service computing domain to validate web service ranking

and describe operational metrics of Web service (Tran & Tsuji, 2008). As there can be

multiple Web services available for a particular requirement at a time, QoS provides a

realistic way of distinguishing, ranking and selecting most suitable services especially

when they share similar semantics and functional attributes (Lin, Lai, Wu & Lo, 2014).

QoS is usually used employed to describe some of the non-functional attributes of Webs

services mentioned in the previous subsection. Some QoS metrics used for selecting

most appropriate services in a pool of candidate services includes; availability, which is

the probability that system is up and can respond to consumer requests. reliability is the

capability of Web service to perform its required functions under stated condition over

a specific period of time, cost is the measure of the cost of requesting or consuming a

service, and performance is the measure of the speed to complete a service request. It is

measured by latency, throughput and response time (Patil & Gopal, 2010).

2.4.4 Requirements and Processing Steps for Service Discovery

In this section, generic steps required for successful service discovery are discussed.

The steps are generally classified into pre-matchmaking and matchmaking/selection

steps (Kritikos, 2008; Hoschek, 2002). The pre-matchmaking step is the step that

involves collection and pre-processing of Web service data including their descriptions,

presentation and publication of Web services. The matchmaking step is the step where

Chapter 2. Literature Review 70

the requests of service requester are matched against the available services. The steps

are discussed as follows:

• Web service description: Service provider are required to follow a specified format

by the service registries for describing the functionalities of their services,while

service requester can describe their service needs in form of query using natural

language.

• Web service Publication: This step involves making the services,and other service-

related objects available and reachable to potential service consumers through the

storage of these object descriptions in one or more well known service registries.

• Scalability is a critical issue that affects the advertisement or exposure of large

number of Web services in the service repository as well as the number of user

interacting with the repository for service request. The scalability of the service

system and that of the system’s subsystems and its sub-components must be

addressed in the discovery system design process as each of these entities could

impact the effectiveness of the discovery service. The scalability of matchmaking

engine of the discovery system is the most critical scalability factor. Hence,

the discovery process must account for large-scale scenarios, such as the web

size, and must not rely on a centralised broker, but rather enable peer-to-peer

operations.

2.5 Existing Web Service Discovery Approaches

Web service discovery is a core component of Service-Oriented Architecture that facil-

itates advertisement or exposure of services by providers for consumption, and finding

the services by consumers. The continual increase in number of web services published

Chapter 2. Literature Review 71

Figure 2.3: The Taxonomy of Web Service Discovery Approaches

on the internet that have never been used, coupled with the increasing complexity of

service consumers’ demands make the task of service discovery to continue to be very

challenging. The success of advertised or published Web services depend on how well

the service can be discovered and consumed. Over the years, different approaches have

been proposed and explored by researchers to solve discovery problem in SOC, yet,

there are still gaps to fill in terms of efficiency, accuracy, diversity , scalability and

user-experience. This section provides overview of different approaches for Web service

discovery under five different groups according to the main paradigm used in the discov-

ery process. The groups include: the matching group , the Context-Aware group, the

QoS-based, the Data Mining and Machine Learning group and Social Network-based.

Each of the approaches discussed in the groups are clearly differentiated from one

another with emphasis on their pros and cons. Related works and the state-of-the-art of

the approaches are covered.

2.5.1 Matching Group

The matching group includes the interface matching, functionality matching and process

matching. The interface of a Web service has various matching elements such as service

Chapter 2. Literature Review 72

description, service operations(operation names and number), input and output schema,

data-types. These elements are used for matchmaking in this group (Vaddi & Mohanty,

2019). This group of service discovery techniques explore service descriptions including

semantic Web service description and non-semantic Web service descriptions.The

semantic web services use ontologies to describe the services. Description language

such as OWL − S, DAML − S are used to to describe Semantic Web services, while

description languages such as WSDL2.0 or WADL (for RESTful service), WSDL (for

SOAP-based services) and plain, unstructured HTML are used for non-semantic Web

services (Christensen et al., 2001; Hadley, 2006). For Semantic Webs, both OWL − S,

DAML − S description languages include service sub-classes namely serviceProfile,

serviceModel and serviceGrounding (D.-N. Le, Nguyen & Goh, 2009; Kanagasabai

et al., 2013). Out of these sub-classes, only the serviceProfile is usually used during

Web service matching process. The serviceProfile contains information such as the

name of service, service functional description, and additional attributes. The functional

description is the most important information in the serviceProfile that is used for

matching. During the discovery process, the descriptions provided by the service

provider is matched against the service requester’s request to determine if the two

shared some similarity especially functional similarity. Web services that do not use

semantic descriptions are usually discovered on a syntactic level using Information

Retrieval (IR) techniques. Process matching was introduced in order to improve the

precision of Web service discovery and support functionality matching (F. Chen, Li et

al., 2017). Generally, this involves presenting process model of services in such a way

that the similarity of business process descriptions can be measured at either individual

component level or composite level. This group of Web service discovery approach is

further classified into subgroups : Syntactic-based and Semantic-aware Web service

discovery approaches. Each subcategory is further divided into fine-grain groups with

relevant works discussed under each group. The following sub-sections presents the

Chapter 2. Literature Review 73

elements in this group:

Syntactic-Based Web Service Discovery Approaches

These approaches search and find Web services by matching the Keywords from the Web

services with the Keywords in the service requester’s query using Information Retrieval

(IR) techniques such Term Frequency-Inverse Document-Frequency (TFIDF) (Manning

et al., 2008). A typical technique commonly used for determining the importance of

a word (or term) in a document is the TF-IDF technique. The TF-IDF is a numerical

statistic that considers how many times a term appears in a document as well as how

prevalent the term is across the corpus to determine how relevant a term is (Lizarralde et

al., 2019). The Web services registry would return some good matches that are closely

relevant to service requester’s query , if the the query contains multiple, topic/function-

specific keywords that approximate the required Web service.

Several works have explored syntactic-based approach for developing Web service

discovery. Some research works reduced the problem of Web service discovery to

a well-documented problem of finding similar service description documents for a

particular service (F. Chen, Li et al., 2017). In this case, the WSDL description

documents are processed as documents and existing information retrieval techniques

are adapted to for discovery process. Syntactic Web service discovery approaches can

be further classified into two subgroups as shown in Figure 2.3: Lexical discovery

approaches and Structural discovery approaches. The two subgroups and the related

works are discussed as follows:

1. Lexical discovery approaches : These approaches exploited the use of natural

language descriptions for describing Web services operation names, which usually

contains the services functionality descriptions (Stein et al., 2008). A typical

lexical algorithm in this case, performs some pre-processing on the descriptions

Chapter 2. Literature Review 74

like removing stop-words, tokenization, stemming and finding words with same

meaning (synonyms) using some lexical databases such as Word-Net (Miller,

1998) and so on. After this, the matching, retrieval and ranking processes are then

carried out using common IR techniques. Most traditional, keyword-based service

discovery approaches like UDDI falls in this category. A related approach to this

group was introduced in (C. Wu, 2012), where statistical methods were adopted

for WSDL document-term tokenization. These methods exploited the minimum

description length principle (MDL), transitional probability(TP) and prediction

by partial matching (PPM) for the retrieval process. Another related work was

introduced in (Kokash, 2006), where the authors employed syntactic similarity

matching technique to search for Web services using the WSDL documents. The

authors first converted both the Web service request and service documents into

vector representations using VSM, and then computed the similarity between the

two vectors to retrieve closely related services to the request. Similarly, Platzer

and Dustdar (2005) introduced a distributed scheme which integrates VSM with

cosine similarity to discover and retrieve Web services from UDDI registries.

2. Structural discovery approaches : The structural discovery approaches, exploit

the syntactic information available in the service profile such as the interface

description, the definition of the data message traded between communicating

partner or adapt TFIDF to find the most similar Web service to the service

requester’s query. In this case, the matching process requires the service requester

to specify the structural requirements such as data type. These method do not

expose the semantic relationships between web services (Fallatah et al., 2014). A

syntactic Web service discovery approach that exploit structural information was

introduced in Elshater et al. (2015) work. The work used statistical modelling and

indexing techniques. The authors integrated TFIDF with VSM and implement

Chapter 2. Literature Review 75

both as a K-dimensional tree structure. They generated TFIDF model for service

corpus and then built a K-dimensional tree-index to search the TFIDF model.

The user query is also transformed into vector using the TFIDF model. Service

retrieval process then follows by navigating the R-D tree. Hao et al. (2010)

employed similar IR technique to rank Web services for a required functional

description. The authors considered the WSDL documents in XML format as a

tree-structure, and developed schema tree-algorithm for ranking the Web services

for matchmaking process. Authors in Dong et al. (2004) and (Cong et al., 2015)

employed clustering algorithms. Particularly, in (Cong et al., 2015), the authors

applied hierarchical clustering algorithm to organize service repository into binary

tree-like clusters using distance metric, and then performed discovery process on

the binary tree (instead of linear tree) to reduce time-complexity.

In general, the syntactic nature of these approaches (especially the ones that utilize

WSDL documents) and the heterogeneity of the Web services may result to the discovery

of mostly irrelevant results than the relevant ones (Lizarralde et al., 2019). Eventhough

syntactic approaches can leverage IR techniques and incorporate several enhancement

methods, they still suffer from low recall and precision (N. Zhang et al., 2018). Because

this group of discovery approach rely mainly on the Web service descriptions, they

also suffer from any set back related to quality of service description. For example,

Zhong et al. (2018) shows that even though composite services are made up of some

atomic functionalities from participating services, and that all terms describing each

participating service in the composition are very important in describing the services

derived from them, composite services descriptions usually do not include or capture

these terms. The descriptions given to services by the providers are usually subjective,

and may not be comprehensive enough to describe the service. The authors show the

negative impact of this shortcoming on the performance of syntactic-based service

Chapter 2. Literature Review 76

discovery approaches. Another challenge of syntactic-based approach is Vocabulary

problem which includes problem related to Polysemy and Synonyms (Zhong et al.,

2016; Lizarralde, Rodriguez, Mateos & Zunino, 2017; Lizarralde et al., 2019). Service

requesters often introduce ambiguous and incomplete natural language sentences in

their requests. This also makes it challenging to retrieve relevant services because only

the terms captured in the service requester’s query would be consider in the discovery

process (Lizarralde et al., 2019). Another issue with this group of approaches (especially

the ones that rely on markup-based Web Service descriptions) is bad specification

practice which makes service discovery through this approach challenging (Palma et al.,

2015; Rodriguez et al., 2010).

Semantic-Aware Web Service Discovery Approaches

Using naive text search on service documentations for service discovery have proven

to be not so effective because natural language text is usually informal and service

textual descriptions provided by providers maybe subjective,as a result, service docu-

mentations maybe ambiguous or lack some key terms that better describe the service

functions (Kanagasabai et al., 2013; F. Chen, Li et al., 2017). In addition, the increas-

ing diversity of Web services with so many services offering similar functionalities

with diverse properties makes it more challenging to use mere keyword for discovery

process. Semantic-aware Web service discovery approaches attempt to address the

drawback of syntactic approaches by searching for semantically similar Web services

of queries (N. Zhang et al., 2018). The synergies between semantic technologies and

service discovery make it easier to create rich and formal representations of services and

agent interactions as well as to specialise and generalise service requirements. These

representations of services and the interactions are needed for capturing the semantics

of queries and service descriptions from both the service consumers and providers

respectively. The use of an explicit representation allows for principled service selection

Chapter 2. Literature Review 77

and request fulfilment, as well as dynamic engagement and negotiation with service

providers (Kanagasabai et al., 2013). Various semantic technologies help facilitate the

specialization and generalization of service needs.

A generic framework for semantic service discovery system was introduced in

(Kanagasabai et al., 2013). Typical semantic service discovery system has two key

active players; the service provider and the service requester. The service providers

advertise Web services through the system, while the service requesters search for

services that matches some specified requirements. The service repository houses the

advertised services after suitable mediation or alignment to resolve the heterogeneity (a

result of differences in service platforms, data formats and ontologies). When a service

requester initiates a service request, the request is matched against the services in the

repository using the matchmaking engine, the matched results are then retrieved. After

then, service negotiation is used to communicate with the providers and, if necessary,

get dynamic information. Lastly, the selected service (usually done based on requester’s

preferences) is consumed or invoked compositions. The formalism used for semantic

service descriptions is the framework’s main building block. The main building block

of a typical semantic-aware service discovery framework is the formalism used for its

semantic service descriptions (Kanagasabai et al., 2013). Some of the commonly used

formalisms are described below:

• OWL-S ;Formalism of Web Service Semantic Descriptions : OWL-S is an on-

tology language for describing Web services. It follows the W3C standard for

Web ontology language and comprises of three main components: (i) The service

profile component of the Web service ontology language, which is used for ad-

vertising and finding service functionalities. The OWL-S service profile provides

information required for a service consumer to discover a service (ii) The process

model, which provides the descriptions of service operation. (iii) The service

Chapter 2. Literature Review 78

grounding specifies how services can interoperate through messages.

• Web Service Modelling Ontology(WSMO) (De Bruijn et al., 2005): WSMO

provides a comprehensive conceptual framework and a formal language for

semantically describing all elements of Web services in order to automate the

discovery, composition, and invocation of services over the Internet.

• Semantic Annotation for WSDL and XML Schema (SAWSDL 4): SAWSDL

defines how to add semantic annotations to various parts of a WSDL document

such as input and output message structures, interfaces and operations. It enables

Web service semantic annotation by leveraging and building on the existing

extensible framework of Web service description language WSDL. It tries to

explore WSDL while being agnostic to the semantic representation language.

WSDL-S (Akkiraju et al., 2005) is another formalism for semantic annotation that

is similar to SAWSDL as it allows addition of semantic annotations to WSDL.

• Semantic Annotation of Web Resources(SA-REST) (Sheth, Gomadam & Lathem,

2007): Adding semantics to RESTful services is more challenging than adding

semantics to WSDL. Unlike WSDL, REST-based services are often embedded in

Web pages written largely in XHTML, on the other hand, WSDL was specifically

created to capture service descriptions and has a supporting schema for doing so,

XHTML is a more general-purpose language that adds semantic annotations only

to those page elements that wrap a service or a service description. SA-REST

adopted many concepts that were first introduced in WSDL-S 5 and then adapted

in SAWSDL — particularly, the model reference attribute that connects service

element to the ontological concepts that describe it.

4https://www.w3.org/TR/sawsdl/
5www. w3.org/Submission/WSDL-S/

Chapter 2. Literature Review 79

In general, the requirements and procedure for automating service discovery pro-

cesses can be enhanced if machine processable descriptions are incorporated in to the

discovery processes. These descriptions can be further explored to verify whether they

matched against each request with respect to the services. In addition, new knowledge

can be further deduce from existing facts which includes domain ontologies and domain

background knowledge, and this knowledge can further be incorporated into discovery

process to to enhance service discovery. Hence, the identification of the reasoning

provided via this means is critical for enabling discovery process. Generally, the key

tasks carried out by a typical semantic-aware service discovery framework include the

following:

• Service Advertisement: Web services developed by the service providers are

advertised on service repository so that the service can be exposed and consumed

by users including businesses . To facilitate their invocation, services must be

described by a description language such as OWL-S or WSMO. Similarly to what

is done in (Küster, König-Ries, Klein & Stern, 2007), provider can also develop

their own semantic description languages.

• Service Meditation In order to enable interoperability between services that

are described using different languages and avoid heterogeneity problem, se-

mantic discovery framework needs to make provision for mediation between the

languages or align the descriptions to a standard language.

• Service Storage The service repository serves as the storage for Service de-

scriptions. The semantic service repository comprises of domain and service

ontologies. The domain ontologies capture the names and terminologies used by

the providers and and service users to described the services or service queries,

while the service ontologies store information about the Web services. An effect-

ive indexing technique is required to facilitate querying the repository. Different

Chapter 2. Literature Review 80

indexing and storing technique may be used for different languages depending on

the application requirements and in cases where the description language required

specific indexing and storing technique.

• Service Request Service consumers create service requests that describe what

they want to achieve, what functionality they want to include in their application,

and send these to the service repository as queries. In cases where there are

semantic differences between the request and advertised services, especially

when different description language is used, the discovery framework must be

flexible enough to address such heterogeneous environment.

• Service Matchmaking This involves the process of matching a requested service

against the advertised services. The matchmaking results are usually returned in

form of a list or ranked list of advertised services with the coefficient or matching

degree that indicate the suitability of the matches. Service matching is one of the

most critical aspect of Web service discovery.

• Service Negotiation Because different services may offer different quality of

service attributes, effective negotiation procedure is required especially in cases

where there are trade-offs between quality and cost, or where the invocation of a

service determines the quality of another service offerings.

• Service Selection This step involves deciding which service to select for the

desire service functionality out of the resulting candidate services from the

matching stage. It explores result in matching stage.

A number of research work in service discovery have explored the semantic dis-

covery approach. Existing works in this area can be classified into two subcategories

based on the nature of reasoning algorithm/matching technique used (N. Zhang et

al., 2018; Klusch, Kapahnke, Schulte, Lecue & Bernstein, 2016): the Logic-based

Chapter 2. Literature Review 81

semantic-aware Web service discovery approaches and the Non-logic-based approaches.

The subcategories and related works are further discussed as follows:

1. Logic-Based Semantic-Aware Approaches This group of works describe Web

services using ontology-based semantic service description languages such as

SAWSDL, OWL-S and WSMO and design logic-based reasoning algorithms for

matchmaking/service retrieval. Works under this subcategories can considered

separately based on the description language used as follows:

• OWL-S-based Approaches : In general, this group of works performs logical

reasoning on semantic service descriptions. They employ the service profiles

and the domain ontologies to facilitate matching process between a service

request and a published service. The particular approach used depends on

the element of the description, that is, if the services are described by their

inputs, outputs, preconditions and effects (IOPEs) and the non-functional

properties considered (Kanagasabai et al., 2013). The logical and full func-

tional IOPEs profile matching combines the scores of logical signatures(IO)

and specification (PE) matching (Klusch et al., 2016). Notable related works

include (Klusch, Fries & Sycara, 2006), (Klusch & Kapahnke, 2012), (L. Li

& Horrocks, 2004), (Paolucci, Kawamura, Payne & Sycara, 2002), (Kiefer

& Bernstein, 2008), (Thiagarajan, Mayer & Stumptner, 2009), (C. Zhang,

Zhu, Zhang & Yang, 2007), (Rodriguez-Mier et al., 2015), (F. Chen, Lu et

al., 2017), (F. Chen, Li et al., 2017). For example, in (Klusch & Kapahnke,

2012), the authors introduced a logic-based matching approach for semantic

service discovery approach. The authors used semantic service matchmaker

iSeM to perform an adaptive semantic selection of OWL-S services. The

semantic matching process leverages the computation of strict and approx-

imated logical Input and Output concept subsumption relations, and the

Chapter 2. Literature Review 82

logical specification plugin relation. Authors in (Klusch et al., 2006) pro-

posed hybrid service matchmaker called OWLS-MX for semantic service

matching. The approach exploits logic-based semantic matching with token-

based similarity metrics (the X in OWLS-MX denotes different instances

of matching schemes-M0 −M4 which depends on the syntactic similar-

ity metric used). Thiagarajan et al. (2009), proposed an OWL-S-based

semantic-aware discovery approach that utilizes a two-staged consistency-

based matchmaking approach. The first stage involves shortlisting service

profiles that potentially match the service request. In the second stage, the

concrete information about these services is gathered by directly querying

the services to ensure that they meet the requirements (checking for consist-

ency with the requirements). C. Zhang et al. (2007) introduced an approach

that used clustering technique utilized OWL-S functional descriptions at

the peer nodes to facilitate service cluster creation. First, the published

services in the service repository are clustered into communities based on

their non-functional properties. Then, query packets move around these

communities to make rapid recognition. The query packet is then sent to

the most closely matched community. The non-functional features of each

service in this community are then examined. Finally, the most appropriate

services are selected. The work by Paolucci et al. (2002) is based on match-

ing IO descriptions of services, while the work by (L. Li & Horrocks, 2004)

proposed a service matchmaker that uses DAML-S ontology based and a

description logic reasoner to match ontology-based descriptions.

• WSMO-based Approaches : Web Service Modelling Ontology-based ap-

proaches considers service discovery as a task of fulfilling goal that abstracts

user’s requirements (Kanagasabai et al., 2013). Unlike OWL-S, WSMO

Chapter 2. Literature Review 83

is able to model mediation for addressing heterogeneity which usually

arise in an open environment. Notable works that explore this method

include (Keller, Lara, Lausen, Polleres & Fensel, 2005), (Klusch, Fries &

Sycara, 2009), (Roman et al., 2015). Authors in Klusch et al. (2009) intro-

duced an hybrid matchmaker WSMO-MX for WSML services converted to

WSML-MX. In general, WSMO-MX delivers a ranked set of services that

are semantically relevant to a given query by iteratively computing logic-

based and syntactic similarity-based matching degrees. Ontology-based

type matching, logical constraint matching, and syntactic matching are all

performed by the matching filters. Keller et al. (2005) introduced a generic

discovery model that exploits features of WSMO including its capability

to model mediation for handling heterogeneity in open environments. The

discovery model enables efficient pre-filtering of appropriate services and

accurate contracting of services that fulfil a given requester goal.

• SAWSDL and WSDL-Based Approaches : Here, related works that utilize

Semantic Annotation and the formalised semantic Service document lan-

guage to facilitate logical matching process are considered. Notably of

these works include: (Kourtesis & Paraskakis, 2008), (Hobold & Siqueira,

2012), (Stavropoulos, Andreadis, Bassiliades, Vrakas & Vlahavas, 2015)

(Wei, Wang, Wang & Bernstein, 2011), (Verma et al., n.d.). For instance,

Kourtesis and Paraskakis (2008) introduced a SAWSDL-based semantic

discovery approach that utilizes SAWSDL for annotating Web service in-

terfaces, and OWL for modelling Web service functionalities, and employs

description logic reasoner for matchmaking process. Hobold and Siqueira

(2012) proposed an approach that operates in two main stages: In the first

stage, the approach tries to find a single published Web service that meets

Chapter 2. Literature Review 84

the user’s requirement, if no service is discovered, a composition of single

Web services would be returned. The composition services are retrieved by

a technique that creates a graph of semantically matched services, based

on the information annotated on service descriptions using the SAWSDL

(Semantic Annotations for WSDL) standard. Verma et al. (n.d.) introduced

a WSDL-S-based Web service discovery approach, applied over federated

registries using METEOR-S.

Even though, it has been shown that logic-based approaches can achieve sub-

stantial performance because of the accurate descriptions of Web services and

queries. However, they are challenging to implement because establishing and

managing ontologies, as well as manually annotating services and queries using

semantic description languages, take a lot of time (Crasso, Zunino & Campo,

2011; N. Zhang et al., 2018).

2. Non-Logic-Based Semantic-Aware Approaches : These are recent non-logic

approaches design with the aim to reduce the complexity of semantic matchmak-

ing, some notable works include: (J. Wang et al., 2017), (Aznag et al., 2014),

(Cassar et al., 2013), (Naim et al., 2016), (Z. Li, He, Wang & Zhang, 2014). In

general, these approaches tend to reduce the complexities associated with logic-

based semantic-aware approaches by analysing the frequency of occurrence of

some key terms in Web service descriptions and determining the semantics which

are implicit in the descriptions(Cassar et al., 2013). These approaches rely on

techniques such as topic modelling, graph matching, natural language processing,

linguistic analysis, data mining, and information retrieval techniques (Mohebbi,

Ibrahim, Khezrian, Munusamy & Tabatabaei, 2010). For example, authors in

Cassar et al. (2013) employed Probabilistic Latent Semantic Analysis (PLSA)

and Latent Dirichlet Allocation (LDA) for extracting latent topics from Web

Chapter 2. Literature Review 85

service descriptions and introduced a service matchmaker based on the topic

distributions of the Web services. In (J. Wang et al., 2017), authors proposed

semantic discovery approach the used Biterm Topic Modeling (BTM) to learn lat-

ent topics from services and proposed a concept of "common topic group" (CTG)

for organising the services that shared multiple topics. The discovery system was

developed using CTG model. One major challenge of these approaches is that

the performance in terms of their accuracy is usually limited by the coarseness of

the learned latent topics (Cassar et al., 2013). Other non-logic-based approaches

including (F. Chen, Lu et al., 2017), (Lu et al., 2016) explore the relationship

between words in services descriptions and the hierarchy of these words.However,

common issues with this approach include unexpected semantic relationships

among descriptive words which in turn may affects the performance of these

approaches, and vocabulary gaps.

In summary, existing approaches including syntactic approaches and semantics-aware

approaches, either logic-based and non-logic-based, have various drawbacks and are

very challenging to achieve quality, highly effective and practical service discovery

system (N. Zhang et al., 2018). In addition, it is difficult for service consumers to

compose high-quality service queries, which may result to retrieval of services that

do not satisfy user request. Nevertheless, most of these approaches do not consider

the sociability of Web services or the continuous interactions among these services,

which are vital to how they are consumed overtime. All the approaches considered Web

services as an isolated functional island and ignore connections among Web services.

2.5.2 Context-Aware Web Service Discovery Approaches

In recent years, context-awareness has become an important ingredient of discovery

and recommender systems. Generally, context refers to any information that can

Chapter 2. Literature Review 86

be used to characterized the situation of an entity such as person, place or object.

According to Rong and Liu (2010), context in Web service discovery is considered as

any information that explicitly and implicitly affects the user’s Web service request

generation. Explicit context is directly provided by the user during the matchmaking

process, while the implicit contexts are collected in an automatic or semiautomatic

manner. implicit contexts is more applied in web service discovery as the user is not

directly involved. A lot of systems rely on implicit context to study and analyse the user’s

potential need. For instance, a location-based and time-based Web service system, will

consider the time and location where the user submits the service request, but the user

might be aware of this process. The ability of the matchmaking component to integrate

context information is fundamental to the development of an adaptable and personalized

service discovery system. Such system can optimize discovery results, user’s request,

and perform personalization using the context information. Hence, context-awareness in

discovery system can enables customization of services in accordance to the immediate

condition/situation without human intervention (J. Li, Zaman & Li, 2015). In order to

better satisfy service consumers’ requests in different context, the discovery system

need to understand the context in which the requests are made, especially, during when

performing the matchmaking process. Using this approach, when a user submitted a

request for Web service, the context is investigated and suitable services relevant to the

context are returned.

Context Awareness method can generally be divided into four categories based

on how the context information is collected (Rong & Liu, 2010): (i) personal profile

oriented context, (ii) user history oriented context, and (iii) process oriented context

and other context:

• Personal profile oriented context: This type of context mainly captures user’s

personal profiles, preferences, taste, and other related information that can be

Chapter 2. Literature Review 87

used for personalization. Personal information such as location, time, and user’s

situation are used as contexts decomposing the discovery goal, setting selection

criteria and supplying parameters. The main drawback of this approach is that it

makes system architecture more complicated when new features and constraints

are introduced (Mukhopadhyay & Chougule, 2012). Authors in Balke and Wag-

ner (2003) show how to create personal profile and indicate it is important in

decomposing the discovery goal, setting selection criteria and supplying para-

meters, thereby achieving personalization in Web service discovery. Nazir et

al. (2008) introduced a similar approach to capture user’s profile and then apply

it to facilitate personalization in Web service discovery. Some research works

(Sheng, Benatallah, Maamar, Dumas & Ngu, 2004; Maamar, Mostefaoui & Mah-

moud, 2005), introduced a method for building service user’s personal profile

by modelling different context attributes such as location, time, and user’s situ-

ation (Medjahed & Atif, 2007; Kuck & Gnasa, 2007). Eventhough these works

show promising results, they suffer from some drawbacks related to the core

methods used. For instance, the system architecture of would be too complex and

complicated when new constraints or attributes are included. In addition, some

application domain have their own constraints, which make these approaches less

adaptive to such application domain (Rong & Liu, 2010).

• Usage history oriented context: Since user’s data consumption pattern can

be captured and employed for predicting the user’s behaviour, context can be

constructed from user’s usage history. This the fundamental idea behind the usage

history oriented context. The assumption of this sort context is that the Web

service request of the user over a period of time becomes similar to a degree,

hence, through the collection of historical usage pattern data from a long term

observation, it practicable to discover some important information from the user’s

Chapter 2. Literature Review 88

past experience. The usage history oriented context related works in Web service

discovery can be further subdivided into two including personal usage history and

group usage history oriented contexts (Rong & Liu, 2010). For personal usage

history oriented context based works, they emphasis the usage of previous user’s

personal experience information in Web service domain to indicate user’s service

preference and domain background. The aggregated personal usage information

can theoretically be utilised to speed up and personalise the matching process.

Authors in (Kokash, Birukou & D’Andrea, 2007) proposed a usage pattern model

that captures user’s historical usage of Web services by storing the log information

of for user-system. By using this log information, the model can use this context

to facilitate service selection process. The major drawback of this approach

is that over reliance to user past usage information could amplify information

distortion as user’s historical service usage may not necessarily represent their

real behaviour or present service need.

Moreover, most historical usage-based Web service discovery solutions explore

group usage history oriented context, where other user’s behaviours in similar

context are exploited. The advancement of social networks and Web 2.0 have

made it possible to acquire shared experiences of users with other users who have

similar attributes. One popular approach used to build discovery/recommend-

ation systems that exploit user’s with similar behaviour for the matchmaking

process is collaborating filtering (CF) method (Rich, 1979). There are two

classes of CF: (i) the memory-based CF approach, and (ii) the Model-based CF

approach (Bobadilla, Ortega, Hernando & Gutiérrez, 2013). Most web service

discovery system use the memory based approach, where all users are required

to rate part of all web services in the repository based on their historical usage

experience. Then, users who share certain similarities are grouped as neighbours

Chapter 2. Literature Review 89

using some similarity algorithm such as Pearson correlation (Sheugh & Aliza-

deh, 2015; Benesty, Chen, Huang & Cohen, 2009) or cosine similarity (P. Xia,

Zhang & Li, 2015). Then, when a user submits a service request, the system

will recommend a set of candidates based on the user’s neighbours’ previous

decisions (Rong & Liu, 2010). The major difference between works that based

their service discovery solution on the CF based approaches how they define

and process user ratings for each web service. For instance, Sreenath and Singh

(2004) introduced a collaborative evaluation system for Web service selection

by utilizing agent as oppose to using user to collect the rating for each web

service. (Shao et al., 2007) adopted memory-based CF for QoS-aware Web

service discovery. The authors used QoS values as ratings and sought to identify

similar users by observing similar QoS experiences. Authors in Manikrao and

Prabhakar (2005) introduced Web service selection method that exploited users

ratings. (Kerrigan, 2006) proposed a CF-based Web service selection approach

using goal and preference together without using rating for service discovery. One

main challenge of usage-based context is that they require sufficient empirical

information to perform well otherwise the service selection and matching process

could be worse as the irrelevant experience would be pulled into the discovery

process.

• Process oriented context:

In comparison with the usage-based context, the process oriented context capture

information from the current state of discovery process (Rong & Liu, 2010). The

process oriented context focus on studying the reaction of the retrieved set of Web

service candidates and then optimize the discovery. Apart from the feedback-

based process oriented context, another perspective to this context is the Web

service composition process. Due to the increasing complexity of user’s software

Chapter 2. Literature Review 90

requirements, rarely can a single Web service fulfill the requirement, hence,

services composition provides a means to address this challenge. A handful of

Web services will be invoked in certain composition processes to fulfill users’

requirement. From this perspective, Web service discovery could be considered

from the context of service composition. Cervantes and Hall (2003) proposed an

approach to automate Web service dependency management in service-oriented

computing .

• Other context: Other attributes such as trust and reputation , goal, domain can

also be integrated with service discovery process (Rong & Liu, 2010)

2.6 Data Mining and Machine Learning

During the last few years, the method for discovering online Web services has been

evolving at a rapid pace. There is a plethora of information available on the many

techniques and approaches that have been utilised to address the problem of enhancing

web service discovery. Recently, data mining and machine learning techniques (Jordan

& Mitchell, 2015) have become popular research topics with application in various do-

mains and new methodologies developed all the time. Emerging Web service discovery

approaches are exploring these techniques to build service discovery solutions. Com-

monly used techniques for this purpose include Clustering (Agarwal, Sikka & Awasthi,

2020; Obidallah et al., 2020; Zhao, Chen & Xu, 2019), Classification (Swami Das,

Govardhan & Vijaya Lakshmi, 2020), Deep Learning (Lizarralde et al., 2020; Yang,

Ke, Wang & Zhao, 2019), Word Embedding (Lizarralde et al., 2017) and Other natural

language processing techniques such as Query Enhancement (Lizarralde et al., 2019,

2020; N. Zhang et al., 2018), topic modelling, service description reconstruction (Zhong

et al., 2018). These service discovery approaches are described below:

Chapter 2. Literature Review 91

2.6.1 Clustering-Based Web Service Discovery

Clustering algorithms have been used in many service computing research works to

boost the discovery and recommendation of Web services. They are used to group

Web services into distinct clusters in order to minimize or summarize the search space

of Web service using various similarity metrics. Obidallah et al. (2020) described

various clustering techniques used in Web service discovery, commonly used techniques

included K-Mean Clustering approach, Hierarchical Agglomerative Clustering (HAC) ,

Neural Network-based clustering. For K-mean clustering-based Web service discov-

ery approaches, Authors in (Tian, Sun, He & Ji, 2016) and (Tian, Wang, He et al.,

2016) employed K-mean clustering with Natural Language Processing technique for

functionality-based Web service clustering. In order to improve the performance of the

discovery system with respect to the clustering approach used, the authors incorporate

auxiliary long text from Wikipedia. Ma et al. (2008b) utilized modified k-means for

functional clustering and cosine-based similarity between service documents. The

approach involves two steps that decompose Web service collection and semantically

match services. A large Web service collection is divided into several clusters, then

SVD (Singular Value Decomposition) technique is applied to the clusters so as to match

the services against the user query. Liang et al. (2014) employed K-mean and T-FIDF

approaches to co-clustered WSDL documents and the words after extracting the WSDL

document features using NLP . Similarly, Rodriguez et al. (2010) used different types

of K-mean approaches for functional clustering after utilizing NLP for pre-processing

steps on the Web service documents. A topic-based clustering approach is used Shi et

al. (2017). The authors used augmented LDA model to enhance the clustering process

based on Web service functional features.They use Word2vec (Goldberg & Levy, 2014)

to train the latent topic information on online Web service descriptions, where Web

services with the same subject are grouped together, motivated by the absence of text

Chapter 2. Literature Review 92

information. Similar terms from web services documents were clustered into similar

clusters throughout the training phase. Ma et al. (2008a) utilized k-means clustering

to remove and filter out irrelevant Web services. The author also used probabilistic

latent semantic analysis (PLSA) to capture word semantics. For similarity measures,

NLP, term frequency–inverse document frequency (TFIDF), and cosine and Euclidean

distance are employed.

For Hierarchical Agglomerative Clustering (HAC), Kamath and Ananthanarayana

(2014) used HAC and WordNet in a crawler-based system to acquire service functional

descriptions and cluster them based on the functional attributes. In order to improve ser-

vice clustering using different similarities metrics, Kumara, Paik, Chen and Ryu (2014)

and (Kumara, Paik, Koswatte & Chen, 2014) employed HAC for functional clustering,

TFIDF, WordNet, and Ontology for term-similarity computation in a multiple-step

service clustering method that involved a feature extraction phase using NLP, ontology-

learning phase, similarity calculation phase, feature-integration phase, and clustering

phase. other approaches such as Neural Network-based clustering are also emerging.

For instance in (L. Chen, Yang, Zhu, Zhang & Yang, 2013) applied modified Kernel

Batch Self-Organising Map (KBSOM) neural network to cluster Web services using

Word-Net and Latent semantic index (LSI) to generate vector representation feature of

Web services. For the clustering and matching processes, the authors used Cosine and

TFIDF and Mahalanobis distance as the similarity metrics.

2.6.2 Web Service Description Reconstruction And Query Enhance-

ment

Beyond Web service discovery, other initiatives have been made in the Information

Retrieval (IR) community to deal with the vocabulary problem that affects the accuracy

of keyword-based discovery system. These developments are translating into research

Chapter 2. Literature Review 93

solution in Web service discovery domain. Method such as Service request expansion

(Mukhopadhyay & Chougule, 2012; Paliwal, Adam & Bornhovd, 2007), Query ex-

pansion (Lizarralde et al., 2019) and Service description reconstruction (Zhong et al.,

2018, 2016). These approaches are mainly employed in service discovery to reduce

the vocabulary gaps in natural language used to describe the service profiles and user

service request, and therefore , they can help in enhancing Web service discovery. In

order to enhance Web service discovery system performance, Paliwal et al. (2007)

modified user’s service request by expanding through combination of ontologies and

LSI. The authors use the domain ontology to create Web service request vectors, then

extract features from selected WSDL files to create the LSI classifier’s training set,

and finally project the description and request vectors. They use the cosine similarity

measure to compare the service description documents and requests, and then retrieve

appropriate WSDL service descriptions. The mapping of ontologies is done using

semi-automated method. The keywords used for searching the system are chosen from

service request by preprocessing the request are removing meaningless word.

Query expansion (Carpineto & Romano, 2012; Lizarralde et al., 2019) approaches

are designed specifically to solve vocabulary problem associated with keyword-based/document-

oriented service discovery systems by finding features correlated with query terms. This

expansion can be applied to both queries and documents. It involves addition of terms

that are not initially included in a query that can be derived from the other terms, for

example similar terms (synonyms). Document-oriented methods work on the same

principles, but instead, utilizes documents as a source. Although working on a document

may introduce noise due to the greater number of words to expand, it does open the door

for newer context-aware natural language processing (NLP) approaches (Lizarralde

et al., 2019). Document expansion can leverage the much higher number of terms

documents contain compared with queries. Query expansion has been applied using

different corpora including WordNet and it has been shown to be capable of improving

Chapter 2. Literature Review 94

service discoverability (Vechtomova & Karamuftuoglu, 2007). Instead of relying on

static, subjective service descriptions provided by service providers based on their

opinion of the services and language knowledge , authors in (Zhong et al., 2016, 2018)

explore service description reconstruction to improve Web service discovery. The

authors leverage service usage history information and service occurrence in mashups

to improve the service descriptions quality.

Learning-based Web discovery approaches

Recently, alternative feature learning-based approaches such as Word-Embedding

(Lizarralde et al., 2017), dimensionality reduction and Auto-encoders (Lizarralde et

al., 2020) are been used to address challenges associated with syntactic-based and

semantic-oriented Web service discovery approaches. These approaches are used to

learn features from Web service descriptions. In order to make Web services registered

in different syntactic-oriented registries available to service consumers, the registries

such as programmableWeb usually process each service description in order to make the

it available to consumers to discover. The additional processing can be divided into two

phases (Lizarralde et al., 2020): First phase is the pre-processing stage, which involves

two major tasks including tokenization of service descriptions, and creation of Bag of

Words (BoW). The process for creating the BoW involves polishing, splitting, stemming

and removing irrelevant words or stop-words from the BoW (In case where Word

Embeddings are to be employed for service description representation in the registry,

only stop-word removal process is done, no stemming − this is because in order to add

features to the BoW , the features must be converted to vectors, and once this is done, it

cannot be reverted)

The second phase involves indexing process where the pre-processed BoW are

transformed into vectors and an index is created in the service registry. Different

techniques such as LSA (Latent Semantic Analysis) (Dumais, 2004), Vector Space

Chapter 2. Literature Review 95

Models and Variation Auto-encoder (Lizarralde et al., 2020) can be used to create the

service description vector space. Most research works utilize VSM to index service

descriptions, where descriptions are transformed to vector using TF-IDF weighting

scheme (Platzer & Dustdar, 2005). The drawback of TF-IDF representation is that

it results in big sparse vectors that become ineffective as the vocabulary increases

size (Lizarralde et al., 2020), which applies to Web service registries in this case

as they contain thousands of descriptions from different providers. To address this

challenge,dimensionality reduction techniques such as LSA or Principal Component

Analysis are usually employed to find concepts in data, group terms in the vocabulary

and reduce sparsity. Recently, researchers are introducing new approaches like Word

Embedding (Lizarralde et al., 2017) and Variation Auto-Encoder (VAE) (Lizarralde et

al., 2020) for generating good, non-sparse representation of service descriptions that

can hold valuable information for improving service discovery.

2.7 Social Networks For Web Service Discovery

As new services are emerging , and the number of Web services continue to grow

rapidly with their and diversity, a wide range of similar functionalities are expected

to be offered by a vast number of Web services from different providers. More Web

services are expected to engage in outsourcing part their functionalities to other services

resulting into an increase in number of mashups (Metrouh & Mokhati, 2013). Due to the

above reasons, Web service discovery approaches like the syntactic and semantic-aware

approaches are no longer effective to discover services. One of the key reasons for

this is that most the traditional service discovery approaches consider Web services as

an isolated functional island that does not interact with one another (W. Chen et al.,

2015b). In addition, the registry-based Web service discovery approaches like UDDI

have several drawbacks because of their centralized structure and their reliance on

Chapter 2. Literature Review 96

static descriptions for discovery, which makes searching, selection, and localizing Web

services challenging. Moreover, these approaches suffer low precision because of the

way they handle Web services , that is, as an isolated functional element (Metrouh

& Mokhati, 2013). To ensure effective discovery and retrieval of appropriate Web

services, it is important to devise new mechanisms that can be scaled over time and

improve service discoverability. Recent research works (Maamar, Hacid & Huhns, 2011;

Maamar, Faci et al., 2011) in Web service discovery indicated that service engineers can

benefit from various Web services’ interactions including collaboration, substitution

and competition to construct a social network for Web service discovery. And that

through these networks, a service can be discovered based on its connection and affinity

with other Web services in the network.

This section provides a general background to the cross-path between social com-

puting and ervice oriented computing domain. It presents overview of using Social

network for Web services discovery, different network approaches and the state-of-the-

art approaches of constructing such Web service social network. In addition, existing

works based on Social Web Service discovery approach are discussed. Note that in

this section, the terms Social Web Service Network, Social Web Services and Web

Service Social Network are used interchangeably in this work.

2.7.1 Overview of Social Networks

Social networks 6 are online communities (Metrouh & Mokhati, 2013; Hafsi, Gamha,

Njima & Romdhane, 2020), which consist of "actors" (nodes) that can be businesses,

services, poeple like authors,friends, professionals, teams or any social entity or groups

interacting over the Web, and connected through set of social ties or relationships

(edges), such as friendship, co-working, knowledge or information exchange in varied

6https://en.wikipedia.org/wiki/TheSocialNetwork

Chapter 2. Literature Review 97

context like entertainment , politics, religion, dating or business. The capacity of social

networks to capture real-world events like cooperation, rivalry or competition, and

alliances or partnerships makes them a powerful instrument in several domains .

Social networking brings a new dimension to Web by providing a new novel channel

of communication between the communities on the Web. Popular social network ser-

vices such as Facebook, MySpace, Twitter and LinkedIn currently play significant roles

in the day-to-day interactions of millions of internet users across the globe (Maamar,

Wives et al., 2011). Businesses are now integrating these services into their customer

relationship systems to connect with their customers. Organisations are now capitalizing

on the social applications to attract new costumers, identify and connect with their

suppliers and other stakeholders and study their competitors. The growing interest in

social networks has opened up many new spaces of possible research in computing. En-

terprises can use social networks to collect and disclose various informal relationships

amongst their stakeholders (Maamar & Badr, 2009).

The study of these networks could provide better understanding into how and why

entities or network actors interact with each other, as well as how these interactions can

be altered, leveraged or exploited to improve other system processes. McDonald (2003)

and Konstas et al. (2009) analysed the application of social networks to recommendation

process. (J. Zhang & Ackerman, 2005), investigate search techniques that aid in the

discovery of knowledge on social network. This is very important for locating the

proper people who can provide the correct solution to a given situation. Maamar (2003)

demonstrates how the social context is important for the success of e-commerce applic-

ations. These apps have various sorts of relationships depending on the parties involved

in these relationship. Through sell, bargain, and purchase connections, shoppers and

vendors can be connected. A request-for-advice relationship can link shopper and friend

participants. The following subsection describes possible overlap between between

social networks and Web service discovery.

Chapter 2. Literature Review 98

2.7.2 Social Network of Web Services

The mix of social computing domain (exemplified by social applications including

social networks) and service oriented architecture with is main implementation being

Web services, gives birth to the notion of Social Network for Web Services (Hafsi et

al., 2020; Maamar, Wives et al., 2011). Social network of Web services or Social

Web Services is different from the conventional social networks like Facebook, Twitter

and LinkedIn (Metrouh & Mokhati, 2013). Social networks are based on the absolute

cooperation and mutual assistance between their members, that is, no competition exist

between the members. On the contrary, Web services in social networks are known

for competing as each Web service in the network wants to be: (i) part of a mashup

or composition services; (ii) a substitute or replacement for for faulty or low quality

service (iii) invoked to augment the currently invoked services (Maamar, Wives, Badr

& Elnaffar, 2009).

Constructing a Web service social network involves an incremental and continuous

process, which starts when a service is chosen for the first time to participate in as either

a partner in mashup or a replacement/substitute in case of failure. Co-invocation among

Web services and dependency interactions between a service and other services in a

given mashup scenario could initiate the links in the social network Future participation

of this Web service in other composition situations would allow it to expand its social

network, but it would also necessitate a prospective evaluation of existing edges, as new

edges may need to be introduced (Maamar et al., 2009). Additionally, the status of

Web service social network could be reviewed when a service becomes obsolete and

ceased to function. In such case, the node and the edges associated with this service are

to re-evaluated, which may affect the overall structure of the network. In this context,

as Web service ecosystem evolves and new services are continually published, it is

expected that new interactions, relationships can be formed and existing ones may

Chapter 2. Literature Review 99

become obsolete, inactive or dynamically modified. The following subsection described

the requirements for building Web service network.

Building Web Service Social Networks

The construction of social network for Web service requires the following steps (Maamar,

Faci et al., 2011):

• Identifying the Web Service Social Network Components : Generally, a typ-

ical social network’s components include the nodes and the links or edges. For

Web service network, these corresponds to the Web services and their relation-

ships or interactions such as similarity, collaboration, invocation, competition

and substitution. For collaboration-based social service network, where invoca-

tion relationships between a composition Web services and their component are

presented as edges, service requester can explore or consider other services that

are used in a composition with a particular service at hand (Lyu et al., 2014; Hafsi

et al., 2020). For a Social Web Service networks where some edges are formed

based on substitution relationships , a Web service can accept that similar peers

will replace it when it is obsolete or fails. Such substitution is possible owning

to the similarity between the services functionalities. In order to achieve a more

effective substitution of Web services, the services non-functionalities should also

be considered that is, non-functional attributes of the services should be similar

as well. And for the competition-based links , two Web services with thesame

functional properties and non-functional properties may compete for invocation

preference, and user will only consume one.

• Matching Web Services Analysis In order to determine the nature of social

interactions between Web services, their respective functional and non-functional

attributes can be matched again each other. The matching would indicate whether

Chapter 2. Literature Review 100

two adjacent services are similar or complementary.

• Social Network Management The social network management step allow for

role specification for nodes. A special type of Web service node is defined as the

root. The Web service root node is defined with respect to the three states that

constitute a social network’s life cycle; the first state is the building state, which

defines any service that will be part of future social network. Root selection

can be random or defined, and other service nodes can connect to this root. The

next state is exploitation state. When Social Web Service is used to facilitate

service composition, two cases emerges: i.) collaboration and/or competition ,

where any component service in the composition stands a chance of becoming

the root, and then potential candidates compete and collaborate to make up the

require composition functions. ii.) Then when there is a failing component,

a substitution take place where the failing component is the root service. The

expansion state occur when the Web service that is added to the network is the

root. After determining the necessary relationships between the services, the

network can be grow accordingly by adding new nodes.

• Initial Edge Weight Evaluation For a weighted service social network, the

initial weight of an edge between 2 adjacent nodes correspond to the degree of

similarity between the nodes. As the network grows, the weight values can be

updated.

• Navigating Social Service Network To effectively navigate through the service

network, service engineers or consumers require some support. Each Web service

root could serve as an entry point to initial navigation. Depending on the type

of interactions being sort for, certain factors like popularity can be used to drive

peer identification or link formation.

Chapter 2. Literature Review 101

• Ongoing Edge Weight Evaluation This involves continuous evaluation and

update of edge weight. It reflects the Social Web Service role in service discov-

ery (Maamar, Faci et al., 2011).

Existing Web Service Social Network For Service Discovery

As for the research on constructing service social networks, Fallatah et al. (Fallatah et

al., 2014) proposed to add service-service, user-user, and user-service links to build a

service social network. Based on the network, metrics such as user popularity, service

market share, and user satisfaction can be measured. Simulation was done but how

to build such network from real-world data was not discussed. Semantic information

mined from service descriptions is a good reference for adding links among services.

Wang et al. (H. Wang et al., 2010) used domain knowledge to calculate the degree of

semantic match between any two services and then a threshold can be set to determine

the number of links in the network. Similarly, Feng et al. (Feng et al., 2015) constructed

three types of service networks based on the subsume, sequential-total (the output of

service A covers the input of service B), and sequential-part (the output of service

A partially covers the input of service B) semantic relations. Clearly such networks

are static without considering any dynamical properties. From the evolving network

perspective, Chen et al. (W. Chen et al., 2015b) built a service social network partially

based on the Bianconi-Barabási (BB) model. One limitation of their work is that the

fitness parameter of an existing service node is calculated dynamically on the arrival of

a new service, while the BB model requires a quenched/fixed fitness value for a node,

which makes the closed-form solution of the BB model not applicable to this network.

Chapter 2. Literature Review 102

2.8 Complex Network Theory and Applications

Complex networks described a wide range of real-world systems including internet,

WWW, computer networks, network of chemicals linked with chemical reactions (Albert

& Barabási, 2002). The practice of network science is based on the ideology that all

systems are networks. Theoretically, networks are considered as abstract mathemat-

ical objects composed by vertices that are connected by various links. Vertices could

represent different objects, people, activities, services, systems, routers, protein, web

pages, etc., depending on domain of application. For example, the World Wide Web is

a vast example of virtual network that comprises of web pages as vertices, which are

connected by hyperlinks. Likewise, in service oriented computing, several combinations

of related services and workflows can be visualized as Networks. The study of complex

networks follows the conventional approach of graph theory, which could be imple-

mented randomly or in a regular fashion. The network is formed by continual addition

of new vertices based on some pre-defined constraints and increasing the number of

vertices added to network throughout its lifetime. Vertices could be stand-alone sys-

tems, individual system component or workflow, while edges represent the relationship

between these vertices. Although nodes and links may possess different meanings

and interpretations, nevertheless, complex networks exhibit distinctive statistical and

structural resemblances. Therefore, a generic model can be set up to capture significant

features of a complex network to enable thorough analysis of such networks.

Complex networks are usually modelled using various network theories, which are

used in studying the component interactions and topology of complex networks. Large-

scale networks with no obvious design concept were initially described as random

networks](Barabási, 2012), a model originally initiated by Paul Erdos and Alfred

Renyi ER (Erdős & Rényi, 1961) (Erdos, Rényi et al., 1960). ER model considered

start nodes N in a network and connect every pair of nodes with the probability p,

Chapter 2. Literature Review 103

creating a graph with approximately pN(N −1)/2 edges which are distributed randomly.

Recent advances in computational ability and the amount of data available in various

field provide researchers access to diverse network related databases prompting more

research in the study of complex networks. More Recently,there has been a shift from

the traditional networks models to Scale-free model proposed by Barabasi and Albert

(Bedogne & Rodgers, 2006). This was due to various studies that shows that ER model

failed to incorporate the topology of large-scale real network, which emphasis the

influence of power-law degree of distribution. The model failed to reproduce many of

the observable real world network properties (Cohen, Havlin & Ben-Avraham, 2003).

On the other hand, Scale-free model have emerged from networks of different real

world contexts, such as the World Wide Web, Protein interaction network, Scientific

citation network. Scale free networks are characterized by having power law degree of

distribution ,a phenomenon that is popularly exhibited by real world networks (Barabási,

2016). Preferential attachment mechanism is a dominant concept that is traditionally

believed to underscore the emergence of power-law degree of distribution (Nguyen

& Tran, 2012). The idea of preferential attachment is termed the a "rich-get-richer’

mechanism, where a node with higher degree is more likely to be connected by a

new node joining the network. However, various research related to network growth

(Nguyen & Tran, 2012), (Chattopadhyay & Murthy, 2017a),(Bedogne & Rodgers,

2006) , (M. Bell et al., 2017), (Caldarelli, Capocc, Rios & Munoz, 2002) have argued

that the connectivity power-law behaviour is neither related to dynamic attributes nor

preferential attachment of complex network.

Chapter 2. Literature Review 104

2.8.1 Scale-Free Network and Power-law Behaviour of Real World

Networks

Many real world network has been considered to exhibit the attributes of scale free

model as described by Babarasi and Albert. Such networks display power-law degree

of distributions (Barabási & Bonabeau, 2003), (Bedogne & Rodgers, 2006) and are

fundamentally based on two generic mechanisms commonly exhibited by real world

networks. In contrast with random network model described by ER (Erdős & Rényi,

1961), (Erdos et al., 1960), which is deeply within pure mathematics and starts with

a fixed number of vertices that are randomly connected or rewired without emphasis

on modification of number of vertices or growth (Albert & Barabási, 2002). Scale

free model introduce growth attribute into network modelling as portrayed by most

real world network. Starting with a small number of nodes and gradually increasing

over lifetime of the network. In addition, unlike other network models that assume

that the probability that two nodes are connected or rewired is independent of the

vertices’ degree, that is new links are introduced randomly, scale free model indicates

that real networks exhibits preferential attachment mechanism such that connectivity

probabilities are proportional to the degree of target node. That is the probability p that

a new node links with an existing node i with degree ki is related by:

p(ki) =
ki

∑j kj
(2.1)

After time t, the algorithm results in a network with N = t +mo nodes and mt

links, Where N is the set of nodes to which the new nodes could link. These two

fundamental ingredient (growth and preferential attachment) formed the basis to which

Scale Free Networks model exist. This research work adopted this mode because of

the suitability of its characteristics to real world network like the APIs network, it is

Chapter 2. Literature Review 105

considered suitable because of the following properties:

• It is characterized by having power-law degree distribution .

• It supports the growth characteristic experiences by most real world networks

• Various empirical studies validate its suitability to real world networks.

• It follows preferential attachment mechanism, which correlates the degree of

some nodes to their age or time of publication (M. G. H. Bell et al., 2017; M. Bell

et al., 2017).

2.8.2 Preferential Attachment

Preferential attachment concept follows a rich-get-richer mechanism, such that nodes

with higher degrees are prioritized and more likely to acquire more links. This has

been the focus of scale free network approach to growth over some period. However,

recent efforts in Complex network study (Chattopadhyay & Murthy, 2017a) (Caldarelli,

Capocci, De Los Rios & Munoz, 2002), shows that in situations where information

about degree of distribution of single nodes are not available for modelling the network

growth, it will be difficult to follow the preferential attachment assumption in such

scenario. In many real world network, there are other factors and preferential attachment

that can influence network growth and ability of a node to acquire more connections.

2.8.3 Node Fitness

It has been repeatedly shown in many context of real world network that new nodes in a

network can be relatively popular in terms of their connectivity with other nodes (Barabási,

2016) (M. G. H. Bell et al., 2017). For example, despite the fact that Google was a

late-comer, it quickly became the most preferred search engine, overtaking other search

Chapter 2. Literature Review 106

engines such as Alta Vista in quality of service, performance, number of connections,

and quickly turn out to be the biggest hub of World Wide Web. In order to make provi-

sion for this kind of behaviour in networks, researcher (Barabási, 2016; Chattopadhyay

& Murthy, 2017b; Bedogne & Rodgers, 2006; Caldarelli, Capocc et al., 2002) have

suggested a growth model such that a fitness parameter be define for such behaviour to

take into account the intrinsic property of each node. This property enables each node

to compete for edges at the expense of other nodes. The concept of fitness of nodes can

be considered as the aggregation of several attributes of a given node, which contributes

to its propensity to attract new connections. These attributes could be related to several

intrinsic quality of a node such as the quality of benefits provided by these nodes, the

rank, closeness or the between-ness (Chattopadhyay & Murthy, 2017b). The attributes

could also be the node degree as a dynamic parameter of the network that varies as the

network grows (M. G. H. Bell et al., 2017).

2.8.4 Small-World Networks

Watts and Strogatz (1998) show in their work that the topology of some real-world

networks including social networks is neither completely regular nor completely random,

they refer to this group of networks as small-world networks.These networks are

characterized as highly-clustered, like regular lattices and have small characteristics

path length like random graphs (Watts & Strogatz, 1998; Latora & Marchiori, 2001).

Numerous real-world network systems have been described as exhibiting small-world

properties including systems like the internet, social networks and groups, biochemical

pathways. Eventhough, the widely acceptable definition of small-world network indicate

that it has clustering similar to a regular lattice, and its path-length similar to that of

random network. In reality, however, small-world networks are often defined by

comparing clustering and path length to a comparable random network. Unfortunately,

Chapter 2. Literature Review 107

this means that networks with very little clustering can be classified as small-world

networks, which they are. In order to separate such not from sharing thesame definition

with an highly clustered network that behaves like small-world network, Telesford et al.

(2011) define some metrics that can used to quantify small-world properties and places

the network under consideration on a spectrum ranging from lattice to small-world to

random. Some of these metrics are defined as follows:

• High clustering: Small-world networks are differentiated from other networks

by two characteristics, the first of which is strong node clustering (C). Math-

ematically, C is the fraction of edges ei that exist between the neighbours of a

specific node i compared to the total number of potential edges between neigh-

bour (Bullmore & Sporns, 2009):

CCi =
2∣ei∣

ki(ki − 1)
(2.2)

Equation 2.2 is used to compute the value of C at an individual node of degree k.

A network’s overall clustering may be calculated by averaging the clustering of all

individual nodes. High clustering encourages specialisation because local groups

of tightly linked nodes may easily exchange information and resources.Clustering

is a simple concept to grasp from a conceptual standpoint. Clustering, in a real-

world example, shows the likelihood that one’s friends are also friends of one’s

friends.

• Short Path-Length: Small-world networks have short path lengths (L). Path

length is a measure of the distance between nodes in a network, calculated as the

average of all feasible node pairs’ shortest geodesic lengths:

L = 1

N(N − 1) ∑i≠j∈G
lij. (2.3)

Chapter 2. Literature Review 108

where lij is the shortest geodesic distance between node pairs i and j. Small L

values guarantee that information or resources travel quickly across the network.

This feature enables dispersed information processing on technical networks and

promotes the six-degrees-of-separation phenomenon that is frequently described

in social networks.

2.9 Chapter Summary

In this chapter, comprehensive review of frameworks, concepts, models, techniques

and architectures that form the basis of this research work are presented. The chapter

presented the crossroads of the two major domains of knowledge considered in this

research including complex network and service computing. For service computing,

various concepts, methods, technologies and components of the service computing and

its related architectures are discussed. For complex network stream, complex network

theory and various relevant developments in network science, particularly with respect

to complex network applications are discussed. The potentials of complex network in

solving discovery problems and related network-based discovery approaches in service

computing are discussed.

Chapter 3

Analysing the Topology of Web Service

Ecosystem

"All systems are networks," is the de facto network science maxim (Pham, Sheridan

& Shimodaira, 2015). The study and investigation of these large-scale networks (also

refers to as complex networks with emergent topological properties that are not found in

simple networks) structures with their evolution are considered a hallmark of network

science. Over the years, complex networks have been extensively studied and several

significant discoveries have been made including the well-acclaimed small-world net-

works (Watts & Strogatz, 1998) and scale-free networks (Barabási & Albert, 1999).

Large-scale network research have focused more or less on two related tasks (Pham et

al., 2015): (i) Studying the emergence of topological features in complex networks and

investigating possible mechanisms underlying the network formation. (ii) Modelling

of dynamical processes involved in complex network systems in a way that enables

effective exploitation of the known topological features.

This chapter is mainly concern with the first task. In particular, in order to get

clear insight into the structure and the dynamical mechanisms that drives a typical

Web service ecosystem, a comprehensive analysis for investigating the topological

109

Chapter 3. Analysing the Topology of Web Service Ecosystem 110

feature and dynamical mechanism of the ProgrammbleWeb registry (as a template

for Web service ecosystem) using network analysis approach is performed. The main

motivation of using complex network as a simplified representation of real-world

systems like Web service ecosystem is that they shed light on the behaviours the

systems via the study of the underlying patters of connections (Pham, Sheridan &

Shimodaira, 2017). Eventhough, this over-simplification for systems depends mainly on

domain-specific information, this approach have been shown to offer a first view of the

the system’s topological features and can serve as a corner stone for subsequent in-dept

studies or model design. Various mechanisms that governs a network’s topology and

evolution have been investigated and found ubiquitous among many real world networks.

In particular, preferential attachment and growth have garnered special attention in

evolving complex networks research (Barabási, 2016; Pham, Sheridan & Shimodaira,

2016), not only because they are fundamental to explaining the topological features

observed in many real world networks but also because they have been empirically

validated to be the drivers of many evolving networks. For instance, the topology of

the Internet, the World Wide Web and the citation network have been investigated

using evolving network models and shown to be fundamentally governed by the PA

and growth mechanisms (Albert, Jeong & Barabási, 1999; Barabási, 2016; Barabási,

2012). In terms of evolving network models, the PA and growth driven Barabási-Albert

(BA) model (Barabási, 2016) is the foundation of other models such as the fitness-based

Bianconi-Barabási model (Bianconi & Barabási, 2001b).

Moreover, this chapter presents a methodology to quantitative characterize the static

and dynamical evolution of the Web service ecosystem. Web Service ecosystem is

considered as a collection of services including mashups, their relations and associated

elements such as service consumers, provider or vendors in the service market (Huang

et al., 2012b). The richness of the correlation between elements of this ecosystem

results in a complex community structure (J. Zhang, Tan, Alexander, Foster & Madduri,

Chapter 3. Analysing the Topology of Web Service Ecosystem 111

2011; Maamar, Wives et al., 2011). Moreover, the perishing of some existing Web-

APIs and the emergence of new ones coupled with their dynamic collaborations drive

the evolution of this service ecosystem over time(Adeleye et al., 2018). Mining the

correlations between Web service domain is very important as it can help provide

answers to questions like ; what sort of Web services are most likely to be used together

in the future or in the past? What relationships are shared between connected services

and how can they be exploited? Providing answers to these sorts of questions would

help facilitate service consumers discovering suitable services for their applications. It

could also help service providers locate candidate partners to collaborate with. To study

the ecosystem topological properties, an analysis of the popularity (degree distribution)

of the Web-APIs based on the mashup-API bipartite graph is conducted.

The remaining parts of this chapters are organised into several main sections:

Section 3.1 presents the data structure, preprocessing and visualization of Web service

interactions in the ecosystem. Section 3.2 presents a comprehensive analysis of Web

service popularity distribution including fitting the distribution to some classical models

including Power-law, Poisson, exponential and log-normal distributions and determining

the goodness of fittings. Section 3.3 shows measuring of preferential attachment one of

the key mechanism that drives the real-world network systems. Section 3.4 presents

the computation of similarity in the ecosystem, which are other key measures of

attractiveness for link formation between pair Web services. Section 3.5 concludes the

chapter.

3.1 Notations and Definitions

This section describes various symbols and notation used in this work, and present

several definitions related to the data schema of Web-APIs and mashups in a typical

evolving Web-API ecosystem.

Chapter 3. Analysing the Topology of Web Service Ecosystem 112

Definition 1 - Web-API and Mashups: Web-API, Web-service and service are

used interchangeably in this paper. Web-API network comprises a collection of linked

Web-APIs denoted as A={a1, a2,..., a∣A∣}, where ∣A∣ is the total number of Web-APIs

in the network. Each Web-API ai is associated with a description document W ai ,

which represents the Web-API’s functional descriptions and original profile offered

by the Web-API’s provider. We represent M as the collection of all mashups in the

service ecosystem, where M={m1, m2,..., m∣M ∣}. Each mashup mi is associated with a

description document Wmi . A full list of notations are given in Table 3.1.

Definition 2 - Invocation Relationship: Suppose we have historical invocation

records x Web-APIs in y mashups. We define the invocation relationship between the

APIs and mashups as binary matrix R ∈ Rx×y, where each element ri,j indicates whether

or not an API ai is invoked by a mashup mj . That is , if API ai is invoked by a mashup

mj , ri,j is set to 1, otherwise 0.

ri,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if ai is invoked by mj ;

0, otherwise
(3.1)

Note that ri,j = 0 does not necessarily means API ai does not have any relationship

with mashup mj , it could be that ai is isolated in the ecosystem or/and mj is not

aware of ai during its composition. Where each mashup mi comprises of n number

of component Web-APIs represented as {ai, . . . , an}, where n ≥ 1. The invocation

relationships between mashups mi and the Web-APIs ai means that ai is a member of

mi.

Chapter 3. Analysing the Topology of Web Service Ecosystem 113

Table 3.1: A summary of notations used in this paper

Notation Description
G a service network
V Set of nodes in the given service network
E Set of edges in the given service network
M Set of mashup nodes in the given service network
A Set of API nodes in the given service network
N Network size
W Service description document
∣M ∣ Number of mashup nodes
∣A∣ Number of API nodes
∣E∣ Number of edges
W a Web-API functional description document
Wm Mashup functional description document
k Node degree
w Service description word token
d Pair-wise distance between two service nodes
α Attachment dynamic exponent
γ Power-law degree distribution exponent
θ Angular position in the metric space
Π Attraction probability
L Web service popularity-based ordered-list
Sf Web service functional similarity

3.2 Data Acquisition and Processing

This section presents the overviews of the datasets used for the analysis in this chapter,

and the pre-processing step. Time-stamped raw data was collected from Program-

mableWeb 1, which is currently the largest Web service repository, and contains in-

formation regarding Web-APIs and mashups from June 2005 to November 2020.

Since the ProgrammableWeb backend database is not publicly accessible, only its

web pages can be employed for collecting the data. Data scraping technique was em-

ployed to crawl data from ProgrammableWeb web pages, and examine the attributes of

real-world mashup-API invocations. The web pages are separated into two categories:

Web-APIs and mashups, where every Web-API has attributes including name, tags,

1www.programmableweb.com

Chapter 3. Analysing the Topology of Web Service Ecosystem 114

short descriptions,endpoint, provider information , publication date, and category;

similarly, each mashup also contains the above metadata plus the list of Web-APIs

invoked within it. Table 3.2 gives an example of the ProgrammableWeb dataset with

the attributes. Table 3.3 shows the statistics of data after the initial pre-processing.

Before pre-processing the crawling process returns a list of 17,828 Web APIs and 6,340

Mashups for our analysis, and after pre-processing and removing redundant mashup

points or mashup with less than 2 components, the data is then reduced to 17,828

Web APIs and 5,889, with 11,287 mashup-API interactions extracted along with the

dataset. Only 1,525 Web-APIs are invoked in the 5,889 mashups or involved in the

mashup-API interactions in the dataset, indicating a very low interaction matrix density

of 1.26 × 10−3.

The interaction matrix density shows how extremely sparse the mashup-API in-

teractions in the ecosystems is. The very few number of Web-APIs involved in the

interactions indicates that only few number of Web-APIs are actually exposed or con-

sumed the service consumers. Over 92% of the mashups interact with just less than 5

APIs. Figure 3.1 shows the API invocation distribution across the mashups. Only about

9% of the entire Web-API in the ecosystem are involved in any interaction or invoked

in any mashup. Majority of these interactions, frequently involve very few APIs which

are the most popular. Figure 3.2 indicate this sparsity, showing about 8 popular Web

APIs that have been invoked over 200 times.
To extract the popularity distribution of Web-APIs in ProgrammableWeb, we model

the ecosystem in the form of an affiliation network that depicts the invocation relation

between mashups and Web-APIs. As shown in Fig. 3.3, technically, the network is

a bipartite graph, where the edges indicate which Web-APIs are invoked by which

mashups: G=(M ∪A,E) where M is the set of Mashups and A is the set of Web-APIs,

and for any edge (m × a) ∈ E,m ∈M and a ∈ A.

Although there are over 19,000 Web-APIs in ProgrammableWeb, only 1,525 of them

Chapter 3. Analysing the Topology of Web Service Ecosystem 115

Table 3.2: Sample mashup and Web-API data form on ProgrammableWeb Dataset

Sample mashup and Web-API from ProgrammableWeb Dataset
Attributes/Type Mashup Web-API
Name Digireality TwitPic API
Description Real estate search engine in

Czech Republic.
The TwitPic API lets you up-
load and post images to your
Twitter account. You can up-
load an image for later posting
or upload an image to TwitPic
and automatically send it as a
status update to Twitter.

Categories Real Estate, Classifieds Photos
Related API Google AdSense, Google

Maps, Google Maps Data
−

Publication Date 01.07.2019 01.08.2009
URL/endpoints https://www.digireality.cz http://twitpic.com/api/

Table 3.3: Summarize Features of the ProgrammableWeb Dataset

Number of Web APIs acquired 17,828
Number of Mashups acquired 6,340
Average number of Web APIs invoked by Mashups 2
Number of Mashups with less than 2 services 241
Number of Web APIs invoked in at least one Mashup 1,525

Table 3.4: Top 5 most consumed Web-APIs

Web APIs Number of links
GoogleMap 2,072
Twitter 663
Youtube 557
Flickr 484
Facebook 377

Chapter 3. Analysing the Topology of Web Service Ecosystem 116

Figure 3.1: The number of API invoked
per mashup

Figure 3.2: The number of connected
mashup per Web-API

appear in one or more mashups. We found that the Google Map Web-API takes a center

stage in the affiliation network, attracting 2,072 edges(mashup-consumption), which

account for about 33% of the total mashups in the ecosystem. As shown in Table 3.3,

Popular social media Web-APIs such as Twitter, Youtube, Flickr, and Facebook also

appear 663, 557, 484, and 377 times respectively in the network. We also found that

less than 7% of the Web-APIs involved in the network are consumed more than 100

times, and over 47% of the Web-APIs are used less than 4 times.

The complete affiliation network is visualized using the Force-Atlas 2 layout in

Gephi 2 as shown in Fig. 3.4. The hubs as listed in Table 3.3 are clearly visible in the

figure as the green disks with Google-Maps API being the largest one sitting at the left

bottom.

3.2.1 Analysing Web-API Popularity Distribution

An integral part of analyzing the topology of a network system is the plotting and

fitting of its degree distribution p(k). Networks with long-tailed degree distribution

that follows a power-law are known to exhibit the scale-free topology. Most real-world

network systems such as the internet, WWW and the citation network are scale-free

2https://gephi.org/

Chapter 3. Analysing the Topology of Web Service Ecosystem 117

Figure 3.3: Illustration of the Mashup-API bipartite graph

Figure 3.4: Visualization of the Mashup-API affiliation network

Chapter 3. Analysing the Topology of Web Service Ecosystem 118

Figure 3.5: Degree distribution plot of the Web-APIs nodes in the affiliation network.
(a) shows the linear-binned plot of the Web-APIs degree distribution, (b) shows the
CCDF plot of the distribution with Power-law (PL), Log-normal, Exponential, and
Poisson models fitted to it.

networks (Barabási, 2016). On the other hand, networks with exponentially-decaying-

tail degree distribution are collectively referred to as exponential Networks.

Fitting Web-API Popularity Distribution to Classical Distribution Models

To gain insight into the popularity of Web-APIs, we plot the degree distribution of the

1,525 Web-APIs based on their degrees in the affiliation network. As shown in Fig. 3.5,

both the PDF (Probability Density Function) in log-log scale, linear binning, and the

CCDF (Complementary Cumulative Distribution Function) plot with Power-law (PL),

Log-normal, Exponential, and Poisson models fitted to it. In Fig. 3.5a, the small degree

region demonstrates a log-linear relation between p(k) and k (log p(k) ∼ −γ log k, or

p(k) ∼ k−γ) , which is a typical feature of the scale-free network; while a plateau is

formed at the large k region as typically we have only one copy of each large-degree

node and this plateau affects our ability to estimate the degree exponent γ (Barabási,

2016). One way to extract information from the tail of the distribution is to use the

Chapter 3. Analysing the Topology of Web Service Ecosystem 119

CCDF (Fig 3.5b), which enhances the statistical significance of the large-degree region,

and if p(k) follows the power-law, then the CCDF is also power-law: P (k) ∼ k−γ+1.

Fitting : In order to determine the best fit for the Web-API degree dataset, we first fit

the data to four classical models including Power-law , Exponential, Log-normal, and

Poisson. Fig 3.5b shows the result of the fitting when kmin = 3. We can see that both

the power-law and the log-normal offer a good fit to the data, while the exponential and

the Poisson fit poorly to the data.

To quantitatively measure the plausibility of each distribution, next we conducted a

goodness-of-fit test based on the Kolmogorov-Smirnov (KS) distance which measures

the difference between the model and the empirical data, and a p-value ∈ [0,1] is

calculated to measure the model plausibility. The closer p is to 1, the more likely

that the difference between the model and the empirical data is attributed to statistical

fluctuations alone. If p is very small, the model is not a good fit to the empirical

data (Barabási, 2016). Table 4.3 shows the resultant p-values for each distribution.

Clearly, power-law is the most plausible fit (p-value = 0.7841) and next to it is log-

normal (0.6871); for both exponential and Poisson, the p-values are 0.0000 and 0.0002

respectively.

Exponent Estimating: In the above, we have justified that the power-law model

provides the best fit to our data, next we use MLE (Maximum Likelihood Estimation)

to estimate the scaling parameter/degree exponent γ (Muniruzzaman, 1957):

γ̂ = 1 + n
⎡⎢⎢⎢⎢⎣

n

∑
i=1

ln
ki
kmin

⎤⎥⎥⎥⎥⎦

−1

(3.2)

where ki, i = 1...n are the observed values of k such that ki ≥ kmin, kmin represents the

minimum degree of node in the network.

The assumption for estimating the parameter is that γ > 1, since the case of γ ≤ 1

Chapter 3. Analysing the Topology of Web Service Ecosystem 120

does not exist in real world (Clauset, Shalizi & Newman, 2009).

When kmin = 1, the appropriate estimator for γ was given as:

ζ ′(γ̂)
ζ(γ̂)

= − 1

n

n

∑
i=1

lnki (3.3)

where ζ(γ̂) is the Riemann Zeta function.

Otherwise, when kmin > 1, the appropriate estimator for γ is:

ζ ′(γ̂, kmin)
ζ(γ̂, kmin)

= − 1

n

n

∑
i=1

lnki (3.4)

Using the method described in (Clauset et al., 2009), which is also based on the KS

distance, we can find the optimal kmin with respect to each data point and select the

value that gives the minimal KS distance between the CCDF of our data and the fitted

model. The resultant γ value for the CCDF is around 2.2 (or the γ value for the PDF is

3.2), which is close to that of the Internet (γ = 3.42) (Barabási, 2016).

3.2.2 Measuring Preferential Attachment

Real-world networks reach their current size by adding new nodes to the network

progressively, and a common phenomenon occurs, where new nodes tend to connect to

existing nodes with high degree. This phenomenon is called Preferential Attachment

(PA) (Barabási & Albert, 1999). If the probability that a newly arrive node connects to

an existing node i is proportional to the degree of that node ki, or

Π(ki) =
ki

∑
j
kj

(3.5)

then we call it linear-PA. The combination of growth and linear-PA play a critical role

in shaping a network’s topology and are responsible for the emergence of the scale-free

Chapter 3. Analysing the Topology of Web Service Ecosystem 121

property (Barabási, 2016).

We can use the exponent α to classify different types of PA

Π(k) ∼ kα (3.6)

if α is 1, then PA is linear; if α is less than 1, then PA is sub-linear; otherwise PA is

super-linear (Barabási, 2016).

We aim to detect the presence of PA in the Web-API node set of the affiliation

network of ProgammableWeb and also measure its α value. To do so, we can examine

the degree increase of a node i between a fixed span ∆t: ∆ki = ki(t +∆t) − ki(t). For

example, if ∆t = 5, ki(t +∆t) is the degree of node i after five new nodes joined the

affiliation network. The relative change ∆ki/∆t should follow

∆ki
∆t

∼ Π(ki) (3.7)

Actually, to reduce the noise we can measure the cumulative preferential attachment:

π(k) =
k

∑
ki=0

Π(ki) (3.8)

We employ both the PAFit method (Pham et al., 2015) and Newmans’s method (Newman,

2001) to estimate PA. As we can see in Table 3.5, Node Spans 10, 20, 50, 100, and

monthly all output consistent results of α ≈ 1, which demonstrates the existence of

linear-PA, or scale-free property, of Web-APIs in the ProgrammableWeb affiliation

network.

Chapter 3. Analysing the Topology of Web Service Ecosystem 122

Table 3.5: Preferential Attachment Measurement

Node Span α (New-
man)

α (PAFit)

10 0.97± 0.05 1.09± 0.06

20 0.96± 0.05 1.08± 0.06

50 0.95± 0.07 1.06± 0.07

100 0.94± 0.06 1.05± 0.08

Monthly 0.96± 0.09 1.03± 0.09

3.2.3 Estimating Web-API Similarity for Network

Construction

Being able to answers questions such as: "How similar are two nodes in a network" ?

or "Which other node are closely related to a particular node" ? would be very helpful

in discovery or recommendation tasks. However, hardly can a single similarity metric

captures all the required relationship in a network. There are several ways in which

two nodes could be similar. For instances, in World Wide Web, where nodes are web

pages , two web pages may be considered semantically similar if they share related

content or same words. Likewise, given the pattern of links between the web pages,

a useful structural similarity measure that reflect how similar two nodes are can be

defined (Leicht, Holme & Newman, 2006). Researches in network sciences have shown

that the topological properties of a network carries real information about the creation

of links between two nodes in the network. Therefore, it seems reasonable to consider

structural or topological similarity measure in addition with other similarity measures

in this case. Here we show methods used for quantifying both semantic and structural

similarity for Web-API node in the affiliation network.

Chapter 3. Analysing the Topology of Web Service Ecosystem 123

First, we define Web-APIs similarity measure as a function s(ai, aj) that returns a

numerical quantifier on the similarity between APIs ai and aj . In this case, the larger

the s(ai, aj) is, the more similar the two APIs are. Taking the inverse of s(ai, aj) gives

a distance measure d(ai, aj) (defined in equation 3.9), where the similarity measure

between ai and aj is considered as a transformed euclidean distance between two the

APIs: s(ai, aj) = 1 − d(ai, aj) or s(ai, aj) = 1
1+d(ai,aj)

d(ai, aj) =
¿
ÁÁÀ

n

∑
i,j=1

∣ai − aj ∣2 (3.9)

Existing Web-API applications (B. Cao et al., 2017; Bianchini, Antonellis & Mel-

chiori, 2017; Wan, Chen, Yu, Liang & Wu, 2016) utilize various deterministic measures

to compute Web-API similarity. However, recent work (Hamilton, Ying & Leskovec,

2017) show that stochastic measures node similarity can achieve superior performance.

Therefore, we define a more robust Web API similarity computation that integrate both

deterministic and stochastic similarity measures by exploiting the semantics of service

descriptions and properties of the Affiliation network . Specifically, we define a global

service similarity measure as an aggregate of two key types of similarities that exist

in the Web service ecosystem: Functional Similarity and Structural Similarity . The

functional similarity is purely a semantic-based similarity where the idea of distance

between set of descriptions (saved as documents) is based on the likeness of their

meaning as opposed to their syntactic similarity. Structural similarity measure exploits

the structure of the affiliation network, and captures service proximity.

Measuring Web service functional similarities

Since the Web service textual descriptions mainly reflect their predefined functionalities,

we measure the functional similarity as latent semantic similarity between two adjacent

services by exploiting the semantic information in the descriptions. We assume Web

Chapter 3. Analysing the Topology of Web Service Ecosystem 124

services that shared explicit functional attributes can be considered similar or serve as

substitutes in different capacities. We collect textual description of Web services includ-

ing mashups. For each service, we create a document which contains the service textual

description, category, tags and name including the service components. Consequently,

we have service documents corpus with each document in the corpus capturing the

functionality vocabularies of the service.

We employ Latent Dirichlet Allocation topic model (Blei, Ng & Jordan, 2003) to

analyze each service document and obtain the associated topic distribution. We assume

that service documents that share similar topic distributions to be functionally similar.

We compute the functional similarity of services based on the latent similarity that exist

between the service documents. Specifically, we apply LDA to analyze each service

document and extract the associated topic distribution. Prior to utilizing LDA approach,

we perform series of data pre-processing steps including tokenization, removing stop-

words and stemming to extract feature vectors representing the documents’ contents.

Detail discussion on LDA topic model component is presented in section ??. Finally,

we define the functional similarity score between two adjacent Web services ai and

aj as the similarity of the topic distributions ai ∶ θi and aj ∶ θj . We achieve this by

simply comparing the topic distribution of services ai and aj using the Jensen-Shannon

divergence method defined in equation 3.10.

JSD(θi∣∣θj) = 0.5 ×D(θi∣∣M) +D(θj ∣∣M) (3.10)

fs(ai, aj) = 1 − JSD(θi ∥ θj) (3.11)

where M = 1
2(θi + θj) and D = (. ∥ .) is the smoothed version of the Kullback–Leibler

divergence . Since the JSD is a positive definite measure of the difference between

the two distributions θi and θj , where 0 ≤ JSD(θi ∥ θj) ≤ 1 and JSD(θi ∥ θj) = 0 if

only if θi = θj , we compute the functional similarity between services ai and aj using

Chapter 3. Analysing the Topology of Web Service Ecosystem 125

equation 3.11. The similarity values were stored as matrix Fs.

Quantifying Structural Similarity.

We define Web service structural similarity from proximity perspective. We consider

both local and global network structures of the Web service affiliation network. The

local network structure characterised as first-order proximity captures the pairwise

similarity between two nodes connected by an observed edge. The drawback with this

notion of first-order proximity is that for two service nodes to be similar or close, they

have to be connected. That is, nodes that are farther away in the network or disconnected

from each other will always have zero similarity value. However, there exist some

nodes that are not connected but are structurally equivalent or similar. Therefore, a

second-order proximity is defined between pairs of nodes which captures the similarity

of the pairs’ neighborhood structures. This considers structural equivalence where two

nodes share many of thesame neighbours in the network (Leicht et al., 2006; Carstens,

Jensen, Spaniel & Hermansen, 2017). For instance, people can be consider as similar if

they share common neighbours likewise two Web services can be considered similar in

the service network if they share many common neighbours.

Common approaches for computing global proximity include Jaccard index and

Cosine Similarity define in Equation 3.13 and 3.14 respectively. Where Γi is the

neighborhood of vertex i in the network. The rudimentary measure of similarity

between nodes i and j is given in equation 3.12

σunnorm = ∣ Γi ∩ Γj ∣ (3.12)

σjaccard =
∣ Γi ∩ Γj ∣
∣ Γi ∪ Γj ∣

(3.13)

Chapter 3. Analysing the Topology of Web Service Ecosystem 126

Figure 3.6: illustration for global service similarity computation

σcosine =
∣ Γi ∩ Γj ∣√
∣ Γi ∣ ∣ Γj ∣

(3.14)

Figure 3.6 further illustrate various similarity measures consider in our network

construction. The two numeric labels are functional attributes. Node a3 and a1 are

closely functional related as they share same functional descriptions or attributes,

hence, they maximally semantically similar, but the nodes are structurally dissimilar

as their number of neighbours differ. a3, a1, a7 are somewhat semantically similar,

same applies to a2, a4, a7. Proximity-wise a5 is strongly similar to a1, even-though both

are semantically dissimilar. Structurally, a1 and a6 are strongly similar as they share

thesame number of neighbours (same node degree) even-though they are functional

attributes are different. In the global similarity setting, where all the three similarity

measures are considered, a2 will be the most similar to a1 as they both share to some

extent similar functional,proximity and structural attributes.

Chapter 3. Analysing the Topology of Web Service Ecosystem 127

Web Service Structural Similarity with SDNE

For our network construction, we employ Structural Deep Network Embedding model (SDNE)

(D. Wang, Cui & Zhu, 2016) to capture and integrate both local and global proximities

simultaneously. We use SDNE to map the Web service affiliation network data into

a low-dimensional space, where each service node in the network is represented as a

low-dimensional vector and the original network structures (both global and local prox-

imities) are preserved. The model exploits both structural levels using semi-supervised

embedding learning technique. For the local structure preservation, the model exploit

the pairwise similarity information to refine the node representations in the latent space

using a supervised learning setting. For second-order proximities which characterises

the global structure, an unsupervised learning approach was used to reconstruct the

neighbourhood structure of every node. Then, both learned components where jointly

optimized using semi-supervised deep model with loss-function defined in equation

3.18. The loss-function captures the two components. The first component shown

in equation 3.17 is the loss function for the unsupervised learning component which

captures the second-order proximity, where xi is a sparse adjacency matrix which is

the input to the model, x̂i is the output obtained by reversing the calculation process of

encoder. The encoder here consists of a nonlinear-functions that maps the input data xi

to representations space as shown in equation 3.15 and 3.16, where W k is the k − th

representation layer weight matrix, bk and yik are the k − th layer biases and hidden

representation respectively. σ (sigmoid function) is the non-linear activation function.

y1i = σ(W (1)xi + b(1)), k = 1 (3.15)

yki = σ(W (k)y
(k−1)
i + b(k)), k = 2, . . . ,K (3.16)

Chapter 3. Analysing the Topology of Web Service Ecosystem 128

L2nd =
n

∑
i=1

∣∣ (x̂i − xi) ○ bi ∣∣22 (3.17)

L =
n

∑
i=1

∣∣ (x̂i − xi) ○ bi ∣∣22 + α
n

∑
i,j=1

si,j ∣∣yi − yj ∣∣22 + vLreg (3.18)

A bias bk is introduced to reduce the reconstruction error due to data sparsity, where

bi = {bi,j}nj=1. If si,j = 0 (note xi = si and for if link exists between node i and j,

si,j = 1), then bi,j = 1, else bi,j = β > 1. For the local structure preservation characterised

by first-order proximity, second component of equation 3.18 captures that, where Lreg

is an L2 − norm regularizer term to prevent overfitting, which is defined in equation

3.19 For the model optimization, L is minimize as function of θ. Detail mathematical

form of the optimization step is shown in the original paper(D. Wang et al., 2016).

Lreg =
1

2

K

∑
k=1

(∣∣W (k)∣∣F2) + (∣∣Ŵ (k)∣∣F2) (3.19)

After getting the embeddings for each Web service node (including mashup nodes)

in the affiliation network, the vector similarity measure between a pair of service nodes

i and j is calculated as a function of the cosine of the angle between their embeddings

using equation 3.14 3, where θui,uj is the angle between embeddings ui and uj . We

store the resulting structural similarity into matrix S.

Sni,j =
cos(θui,uj) + 1

2
(3.20)

Finally, we integrate the functional (semantic-based) similarity Fs computed in

equation 3.11 and the structural similarity in equation 3.20 to get the global similarity

Gs as shown in equation 3.21.

Gs = fs(ai, aj) +ws.S(ui,uj) (3.21)

3https://documentation.sas.com

Chapter 3. Analysing the Topology of Web Service Ecosystem 129

ws is the model parameter which is estimated based on the functional similarity dataset.

3.3 Chapter Summary

This Chapter presents an empirical study of Web service ecosystem by investigating

the evolutionary properties of service ecosystems and the complementary features of

services and their compositions particularly on ProgrammableWeb. It examined the

structure of the ecosystem and looks into the forces of attractiveness in the ecosystem

using the ProgrammableWeb dataset. It presents the analysis of the relationships

between mashups and Web-APIs using a bipartite graph, and found that while the

growth rate of new Web-APIs and mashups is linear, the distribution of mashups over

APIs follows a power-law. It uses network analysis approach to study both the usage

patterns and the evolution traces of Web-APIs in the ProgrammableWeb. The analysis

were conducted on the Composition-Service network, which is the same bipartite graph

of Mashup-APIs and the Service-Service network, which is a network of services that

are used together in the same mashups. It was confirmed that the service popularity

distribution is highly concentrated, which is consistent with the findings in (Weiss &

G.R, 2010), and that the reuse rate of services is low and the advanced use of many

services together is still rare, which provides evidence to the motivation of building a

social network for services/Web-APIs in this Thesis. Different methods for computing

Web service similarity are also presented.

Chapter 4

Constructing Evolving Complex

Networks for Web-API Discovery

Web-APIs are paving the way for a new generation of loosely-coupled and cross-

organisational business applications over the Web. This is evident in the large-scale and

ever-increasing number of Web-APIs currently available the Web (Yu, Liu, Bouguettaya

& Medjahed, 2008; Adeleye et al., 2018). Many organisations like Google, Facebook,

Twitter and Amazon are encapsulating various components of their services and func-

tionalities as Web-APIs for other organisation to consumer. The continuous adoption

of Web-APIs as means of facilitating cross-enterprise operations, and a cost effective

way of creating value-added applications, have led to a rapid growth in the number

and diversity of APIs available on the internet. This incessant growth of the num-

ber of Web-APIs coupled with their diversity makes their discovery and automated

composition more challenging (Maamar et al., 2009; Sheng et al., 2014). Traditional

methods of discovery, such as the usage of registries like UDDI and ebXML, have

inherent limitations in that they only describe the functionality of one API and not how

it interacts with others (Huang, Fan & Tan, 2014b; Hafsi et al., 2020; Maamar et al.,

2009; Maamar, Wives et al., 2011; W. Chen et al., 2015a). Moreover, the complexity of

130

Chapter 4. Constructing Evolving Web-API Networks 131

user’s API requirements has made it even more difficult to find a single API that could

satisfy the user’s need.

Over the years, service compositions or mashups (Adeleye et al., 2018) have been

used to handle complex users’ API requests that cannot be satisfied by existing atomic

Web-APIs. Based on the analysis of the Web-API ecosystem (Adeleye et al., 2018;

Weiss & G.R, 2010; Huang et al., 2012a), it has been shown that only few APIs

are frequently used or invoked in such composition. For instance, 50% of the total

available composition in programmableWeb ecosystem only involve just 11 most

popular Web-APIs and 10% of Web-API in the ecosystem are involved in any sort of

composition (Adeleye et al., 2018; Botangen, 2020). This is another indication that the

not so popular APIs are not been discovered. Even-though handful of Web-APIs are

related based on their co-occurrences in mashups, there are a lot of APIs that are not

involved in any mashup and therefore cannot be discovered via the social interactions

or links in the ecosystem. At the moment, Web-API consumers including mashup

developers normally turn to Web-APIs repositories such as ProgrammableWeb and

Mashapes to discover API of their interest. However, most theses repositories are

limited because they only rely on functional descriptions of APIs, and do not perform

effectively with complex API requirements. Moreover, Web service registries like

ProgrammableWeb and Mashape1 consider Web-API ecosystem as isolated functional

islands, where APIs are registered by diverse providers independently and progressively

without considering relevant dynamic information or continuous social interactions

that exist among the services which could influence their discovery. For instance, in

ProgrammableWeb, Web-APIs have categories, and several Web-APIs can be involved

in a mashup, however, there is no direct connection between two Web-APIs. The reason

behind this is that Web-APIs in ProgrammableWeb registry are registered by diverse

service providers independently over time, and the connections or social relationships

1https://rapidapi.com

Chapter 4. Constructing Evolving Web-API Networks 132

between Web-APIs are never directly created or defined.

From a service consumer’s perspective, if a user wants to create a mashup, the first

step is to search the Web-APIs registry either by using functional descriptions of require

API components or using generic descriptive service requests, and then manually sieve

through the search result and select Web-APIs that meets the consumer’s requirements.

However, it is very challenging to sieve through large number of Web-APIs covering

diverse functionalities and select suitable Web-APIs that match the exact consumer

requirements especially when dealing with mashup-oriented user’s requests. Existing

research works in Web service discovery domain focused on how to retrieve a set of

candidate Web-APIs which can satisfy specific user’s request from the API registry.

Most of these works rely on the API textual, functional descriptions, and adopted either

the semantic-based or syntactic-based discovery approaches (N. Zhang et al., 2018).

Because there are many semantically similar functionalities in the API registries, these

methods are not sufficient to discover APIs with similar functional descriptions as the

users’ query. Relying solely on the keyword-based search approaches have been proven

ineffective be insufficient to discover Web-APIs diverse functionalities (N. Zhang et al.,

2018; W. Chen & Paik, 2013; Y. Wang et al., 2017). Another major downside of these

approaches is that they totally ignore the contribution of Web-API social dimension, and

only consider each Web-API as isolated functional islands, that does not interact with

others in the ecosystem (W. Chen et al., 2015a; Metrouh & Mokhati, 2013; Fallatah et

al., 2014; Maamar et al., 2009; Maamar, Wives et al., 2011; Hafsi et al., 2020).

To address these challenges, some recent works (W. Chen et al., 2015a; Adeleye, Yu,

Yongchareon Yongchareon, Han & Sheng, 2020; Metrouh & Mokhati, 2013; Fallatah et

al., 2014; Maamar et al., 2009; Maamar, Wives et al., 2011; Hafsi et al., 2020; Huang et

al., 2014b) indicate that the inclusion of Web service social dimension in the discovery

solution can help enhance their discoverability, and that capturing and keeping track

of how APIs interact with one another may be beneficial in a variety of ways. These

Chapter 4. Constructing Evolving Web-API Networks 133

works adopted network-based approach to capture the relationships among Web services

and enhance service discovery. Web-APIs and social networks are gaining popularity,

allowing service consumer to seamlessly and automatically search for and construct

services based on the demands of users (Metrouh & Mokhati, 2013). This combination

of two domains, social computing and service-oriented computing, allows for novel

discovery techniques to emerge. It is the beginning of a new concept known as Social

Web Services. Indeed, including social features into online services might help them

become more active entities that can collaborate, compete, or replace one another (Hafsi

et al., 2020).

However, most of the existing network-based approaches rely solely on Web-API

invocation network data which is limited to a very few numbers of APIs (Adeleye et al.,

2018). For example, authors in (Hafsi et al., 2020) used mashup-API bipartite graph

for the discovery solution. Such solution is only limited to APIs that are invoked in

mashups (detail explanation of the composition-service bipartite network is presented

in section 4.2 of this chapter). Moreover, the network is static, and does not capture the

true dynamic nature of Web-APIs (Huang et al., 2012a; Adeleye et al., 2018). Notable

among this works is the work of W. Chen et al. (2015a), who attempted to use the

Bianconi-Barabási model (Bianconi & Barabási, 2001b) complex network-model build

a network of Web services. One limitation of their work is that the fitness parameter

of an existing service node is calculated dynamically on the arrival of a new service,

while the BB model requires a quenched/fixed fitness value for a node, which makes

the closed-form solution of the BB model not applicable to this network (Adeleye et

al., 2019). Other group of works (H. Wang et al., 2010; Fallatah et al., 2014; Feng et

al., 2015) exploits semantic information and historical patterns to add links between

services. For example, Wang et al. (H. Wang et al., 2010) utilize domain knowledge

to compute the degree of semantic match between any pair of services and then set a

threshold to determine the number of links in the network. Clearly such networks are

Chapter 4. Constructing Evolving Web-API Networks 134

static without considering any dynamical properties. None of the existing works provide

a clear cut theoretical approach/explanation of "how to construct an evolving, network

representation for web services" that could be used to facilitate discovery applications.

In this research, it assumed that a Web service network should exhibit specific

properties common to most real-world network-like systems such as World Wide

Web and the Internet due to certain similarity these networks share with Web service

ecosystems. For instance, just like most real-world networks, Web service ecosystems

like ProgrammableWeb are not static but are dynamically evolving , and grow through

addition/publication of new Web services. In addition, certain service like Google Map

have high tendency to be invoked more often than others (i.e. socially, more popular)−

an attribute that could either be likened to nodes with high degree centrality in real-world

networks, and driving by popular natural phenomenon like Preferential Attachment (PA)

observed in many real-world network systems (Barabási, 2016). Capturing network

topological properties like the geodesic distance-based properties (including small-

worldness and Network navigability) and the neighbourhood-based properties like

Transitivity (clustering coefficient) that play unique roles in characterising real-world

networks (Newman, 2003) could be beneficial to improving Web service discovery.

Therefore, a typical evolving Web-API network is expected to meet (at minimum) he

following requirements:

• Capture the underlining mechanisms that drive Web-APIs ecosystems. For in-

stance, results of existing research works (Weiss & G.R, 2010; Lyu et al., 2014;

Huang et al., 2012a; Adeleye et al., 2018) on the analysis of the Web service

ecosystems indicate that popularity (captured by Preferential attachment mech-

anisms) is a key force of attractiveness that underlies service relationships or

interactions in typical service ecosystem.

• Preserve Web-APIs social properties such as their popularity, similarity and

Chapter 4. Constructing Evolving Web-API Networks 135

growth. Considering the influence of popularity, functional similarity and service

evolution in their consumption and discovery, it is important that these properties

are captured and preserved during the Web-API network simulation process.

• Incorporate other intrinsic properties of certain Web-APIs that propel them ahead

of others in the ecosystem into its growing process.

• Have a network construction strategy that follows valid theoretical procedure and

capable of replicating universal properties of real-world networks.

• Connecting all Web-APIs based on their social and functional attributes. A

global social network for Web services should enable the incorporation of both

functional and social proprieties of the services into their link formation process.

This chapter build on the results of the Web service ecosystem analysis presented

in Chapter 3 and presents three key approaches for constructing evolving network for

Web-API that enable connection of distributed API islands into a global Web-API social

network. Each network construction follows specific theoretical procedure with clearly

defined algorithm that enables the preservation of Web service system properties, and

modelling of certain network properties that are ubiquitous to real-world social networks

that could be exploited in Web service discovery. Instead of solely relying on the co-

invocation or functional relationships (as they appear on some registries) to link web

services , each network construction algorithm presented in this chapter leverages the

underlying drivers of Web service ecosystems in its link formation process. The chapter

presents: (i) Popularity-Based Web-API network which is a network construction based

on the principle that popularity is attractive in Web service ecosystem. The network

construction procedure is inspired by the Barabási-Albert complex network (BA) model

(Barabási, 2016). (ii) Fitness-based Web-API network which uses random-walk to

capture some intrinsic properties of Web-APIs called API Fitness and integrate this

Chapter 4. Constructing Evolving Web-API Networks 136

information with the API’s popularity information to facilitate the network growing and

link formation processes. (iii) Popularity-Similarity based Web-API network, which

exploits the trade-offs between Web-APIs functional similarity and the popularity of

the API to define link formation between APIs. Instead of simply connecting service

nodes based on their popularity, a balance s determined between two dimensions of

attractiveness through their local optimization. In this case, while popularity attracts

new connections, similarity is just as attractive. Nodes that are similar also have a higher

chance of getting connected even if they are not popular. This network construction

algorithm is fundamentally based on the Popularity-Similarity Optimization model

introduced by authors in (Papadopoulos, Kitsak, Serrano, Boguná & Krioukov, 2012) .

The rest of this chapter is structured as follows: Section 4.1 presents the background

and motivation for the approach used in this chapter. Section 4.2 elaborates on the

limitation of mashup-API affiliation network. Section 4.3 presents the adapted complex

network models used in this chapter to construct the evolving Web-API networks.

Section 4.4 presents the construction of the Web-API networks. The section presents

the conceptual and algorithmic descriptions of the networks, the node ordering strategy

used in the construction process and the link formation procedures. Section 4.5 presents

the network analysis of the networks. Detail comparison of the Web-API networks

topological properties is presented. In addition, each network property is mapped with

a typical discovery system properties. Section 4.6 concludes the chapter.

4.1 Background and Motivation

This section contains the background of the approach used in this chapter and the

motivating elements of works. The section uses a motivating example to illustrate the

drivers of some of the methodological decisions taken in this chapter.

Chapter 4. Constructing Evolving Web-API Networks 137

4.1.1 Complex Network Theory Applications in Modelling Evolving

Complex Systems

This research work is inspired by the recent developments in complex network the-

ory. Over the past 20 years, complex networks have been extensively studied in the

network science domain, and several significant discoveries have been made includ-

ing the well-acclaimed small-world networks (Watts & Strogatz, 1998) and scale-free

networks (Barabási & Albert, 1999). Network scientists have used generative network

models to address two related tasks (Pham et al., 2015): (i) Studying the emergence

of topological properties in complex networks and investigating possible mechanisms

underlying the network formation. (ii) Modelling of dynamical processes involved in

complex network systems in a way that enables effective exploitation of the known

topological features.

For the first tasks, various mechanisms that governs a network’s topology and

evolution have been investigated and are found ubiquitous among many real world

networks. In particular, preferential attachment (PA) and growth have garnered special

attention in evolving complex networks research (Barabási, 2016; Pham et al., 2016),

not only because they are fundamental to explaining the topological features observed

in many real world networks systems, but also because they have been empirically

validated to be the drivers of many evolving networks. For instance, the topology of the

Internet and the World Wide Web have been investigated using evolving network models

and shown to be fundamentally governed by the PA and growth mechanisms (Albert et

al., 1999; Barabási, 2016; Barabási, 2012).

For the second task, which involves modelling the dynamics of complex systems,

several generative network models that exploit certain attraction mechanisms and

can capture common topological features of complex networks have been proposed

(Barabási, 2016; J. Sun, Qu, Chakrabarti & Faloutsos, 2005; Y. Cao, Wang, Jiang

Chapter 4. Constructing Evolving Web-API Networks 138

& Han, 2006; Bianconi & Barabási, 2001a; Caldarelli, Capocci et al., 2002). The

Barabási-Albert (BA) model (Barabási, 2016) is the most widely known PA-based

evolving network model, and serve as the basis for several other models. The BA

family of models generally exploit popularity as the main dimension of attractiveness

which underlies PA phenomenon, and explain the emergence of scale-free structure

characterised by heavy-tailed degree distributions commonly found in growing networks.

However, other empirical observations universal to complex networks, particularly

the small-worldliness of real world networks characterised by strong clustering and

significant community structure are not captured or explained by BA model. For

instance, in synthetic networks generated with BA, clustering is asymptotically zero

(Barabási, 2016; Zuev, Boguná, Bianconi & Krioukov, 2015). In order to resolve the

zero-clustering issue in BA, several extensions to the original BA model have been

proposed, most notable of them all is the Bianconi-Barabási (BB) model (Bianconi

& Barabási, 2001b). However, none of the extended models totally captured all the

fundamental universal properties of complex networks. Recent works in network science

(Papadopoulos et al., 2012; Alessandro & Vittorio, 2018; Zuev et al., 2015) that exploit

latent network geometry coupled with PA of nodes addressed these shortcoming. Unlike

BA model, these works show that not only popularity contribute to PA phenomenon

but a combination of popularity and similarity. The popularity-similarity optimization

complex network model introduced by (Papadopoulos et al., 2012) provides a natural

geometric explanation for the limitations of BA model.

4.1.2 Motivation - From Isolated Web-APIs Functional Islands to

Evolving Web-API Social Networks

Figure (4.1a) illustrates typical Web service ecosystem where very few APIs are logic-

ally linked based on invocation history in mashups and majority are isolated including

Chapter 4. Constructing Evolving Web-API Networks 139

a b

Figure 4.1: Illustrative examples of Web-APIs connections and interactions in typical
Web-API ecosystem.

the new services. Fig. (4.1b) illustrates a network representation that enables creation

of direct connection among all services. Unlike (4.1a) where only functional rela-

tionship/categorisation (inform of tagging) exist, (4.1b) provides numerous potentials

including functional and social. As illustrated in Fig. (4.1a), a typical service discovery

registry like ProgrammableWeb considers Web-service ecosystem as isolated functional

island with no direct link among Web services. Only very few services are logically

connected through mashup −API invocation. Historical API invocation information

obtained from ProgrammableWeb portal and previous works (Huang et al., 2012a; Ade-

leye et al., 2018) reveal that the few APIs involved in such connections have enjoyed

far more discoverability than the isolated ones, giving evidence to the importance of

social connections to service discovery.Fig. (4.1b) illustrates how a complex network

representation could help solve this problem, and indicate how network properties

such as the highly connected hubs could be exploited to enhance service discovery.

Given a Web-API ecosystem modeled as as network G, where each API is a node with

a predefined functional description, and each API is connected to one or more other

Chapter 4. Constructing Evolving Web-API Networks 140

APIs based on : (i) its social attributes such as popularity (number of connections

with others) , role and interactions with nodes in the network. (ii) its similarity with

other nodes in the network including functional similarity and/or structural similarity.

Based on this network, an intelligent search can be achieved by exploiting not only

the functional descriptions (integrated as the node attribute) but also various network

properties including topological and social properties underlying the construction of

the network. For instance, specific real-world network properties such as high degree

distribution with highly connected hubs, certain centrality measures like closeness,

and small-world property can be exploited to identify important nodes in the network

or help discover relevant clusters. Moreover, from user-interaction perspective, nodal

and neighbourhood attributes can be utilized to facilitate effective network navigation

(Boguna, Krioukov & Claffy, 2009).

From network application perspective, authors in (Maamar, Faci et al., 2011; Huang

et al., 2014a; W. Chen & Paik, 2013) have demonstrated how Web service networks

can be applied to improve their discoverability. Fig. (4.1b) shows an example of how

the API network could be exploited. Consider the a new service consumer , who wants

to leverage different Web-APIs from different domains (say Dictionary, Translation

and Social) to create a mashup that allows users to find the meaning of a word in

English, translate to French and post it on social media. Given the Web-API network

G, a user can query the network using the functional requirement description, and get

the result in form of a subgraph (consist of the list of connected candidate Web-APIs)

shown in Fig. (4.1b). The user can further surf or navigate through the subgraph and

discover require or more interesting related Web-APIs. Further resourceful exploration

can be perform by using per-node or node-wise attributes such node degree centrality

to find most important node (could be most relevant API to the consumer’s mashup

request) e.g. Twitter in the subgraph. Pair-wise attributes like Shortest Path Length or

neighbourhood connectivity (Y. Cao et al., 2006) can be exploited. For instance, the

Chapter 4. Constructing Evolving Web-API Networks 141

consumer can zoom-in to the network, starting from Twitter API and then navigate by

following optimal number of hops require to discover potential candidate APIs such as

Instagram (IG) dictionary (OX), Oxford dictionary (OX) and Google Translate(GT) API

that are either relevant to the consumer’s mashup query or share certain feature with

the original ’important’ candidate Twitter . Such user activity pattern is very similar to

surfing the WWW (just in our case the user is surfing the service network and would

improve the chance of each node discoverability.

4.2 Limitation of Mashup-API Affiliation and One-mode

Projection Networks.

As earlier discussed, the Web-API invocation network data is limited because it only

contains very few numbers of services that are involved in mashup-APIs invocation

relationship (Adeleye et al., 2018). In order to build a social network for Web services,

a common, yet very limited approach used in many works (Huang et al., 2012a, 2014a;

Lyu et al., 2014; Weiss & G.R, 2010) is to compress the Mashup-API affiliation network

by applying one-mode projection (Zhou, Ren, Medo & Zhang, 2007) onto the API set to

derive an API-API network (as illustrated in Fig. 4.2) . The limitation of this approach is

apparent: Only Web-APIs used in mashups (suppose every mashup contains at least two

Web-APIs) will appear on the projected network. For example, the ProgrammableWeb

affiliation network contains only 1,525 Web-APIs, which is less than 10% of the total

16,959 Web-APIs on the registry. Furthermore, the popularity/number-of-links of a

Web-API node on the projected network is discounted as there are mashups that use

only one Web-API, and such links are not counted in the projected network (for example

the link between M5 and A6 in Fig. 4.2). Eventhough some existing network-based

discovery applications used bipartite network/ one-mode projected networks, issues

Chapter 4. Constructing Evolving Web-API Networks 142

M1

M2

M3

M4

M5

A1

A2

A3

A4

A5

A6

A1

A2A3

A4 A5

A6
Set of Mashups One-mode Projection of

the API set
Set of Web-APIs

Figure 4.2: Illustration of the Mashup-API bipartite graph (left), Projected Network of
API with respect to mashups (right).

such as node isolation and loss of crucial information are major setbacks to the success

these applications. Therefore, it is important to explore network modelling approach

for capturing the properties of the Web service ecosystem so that the network can be

sufficient enough to facilitate Web-API supporting applications like . This research

work based the network construction algorithms on the theoretical procedures of three

evolving network models described in Section 4.3.

4.3 Evolving Complex Network Models

Many social, technological, biological and economical systems are best described

using evolving complex network models (Barabási, 2016; Y. Cao et al., 2006). Gen-

erally, most real-world network systems evolve either by addition or removal of links

or nodes over time, and they share common characteristic such as small-worldness,

high-clustering coefficient, community structure and heavy-tail in degree distribution .

Unlike other types of networks especially static networks which are time independent,

evolving networks are time-varying and grow dynamically. That is, links and nodes

Chapter 4. Constructing Evolving Web-API Networks 143

are continuously added over period of time. Among several mechanisms that govern

the evolution of real networks and determine their topology, growth and preferential

attachment have garnered more attention (Pham et al., 2016), and have been empiric-

ally validated in many real world networks such as the WWW (Barabási, 2016), the

internet (Albert et al., 1999) and citation networks (Barabási, 2012). Various generative

network models (Easley & Kleinberg, 2010; Barabási, 2016; Dorogovtsev & Mendes,

2002) have been proposed to investigate the underlying mechanisms that define the

topology of real-world complex networks. Out of these models, the Barabási-Albert

evolving network model (Barabási, 2016) have been the most widely-known preferen-

tial attachment-based model mainly due to its simplicity. The preferential attachment

mechanism in BA model dictates that its principle of connection to any pre-existing

node will not be entirely random but linearly biased by the number of connection (node

degree) of the pre-existing nodes.

Some variations of preferential attachment-based complex network model (Choromański,

Matuszak & Mikisz, 2013; Barabási & Albert, 1999; Hébert-Dufresne, Allard, Marceau,

Noël & Dubé, 2011; Klemm & Eguiluz, 2002; Vázquez, 2003) have emerged in recent

time including the joint preferential and fitness based model (Bianconi & Barabási,

2001b; Caldarelli, Capocci et al., 2002). While preferential attachment may be a valid

assumption in many circumstances, it is not in some others. In some cases, newly

added nodes do not have access to information on the degree of each and every node,

either directly or indirectly. Instead, it is reasonable to connect two vertices if the

relationship provides a mutual advantage (in the case of bidirectional or undirected

edges) based on some of their inherent qualities such as correlation, similarity or differ-

ence, friendship, social success, scientific significance, interaction strength, and so on

(Caldarelli, Capocci et al., 2002; Barabási, 2016). As a result, it’s plausible to assume

that scale-free behaviour (when it exists) in some of these network-based systems has a

source unrelated to preferential attachment behaviour. To explore this assumption, the

Chapter 4. Constructing Evolving Web-API Networks 144

concept of node-importance or fitness was introduced by some network scientists in

complex network as an additional ingredient on top of the preferential attachment-based,

BA network with more emphasis on the node’s fitness (Barabási, 2016; Caldarelli,

Capocc et al., 2002; Caldarelli, Capocci et al., 2002; Pham et al., 2015; Adeleye et al.,

2019). In this case, each node acquires new links with the probability proportional to

a time-independent fitness value which quantifies the intrinsic excellence of the node.

While the preferential mechanism emphasis the rich-get-richer phenomenon, the fitness

mechanism is often referred to as fit-get-richer (Barabási, 2016; Caldarelli, Capocc et

al., 2002).

Recent advances in network geometry showed that global topological properties

observed in real-world complex networks can emerge from hyperbolic space (Krioukov,

Papadopoulos, Kitsak, Vahdat & Boguná, 2010; Muscoloni & Cannistraci, 2018;

Alessandro & Vittorio, 2018; Papadopoulos et al., 2012; Zuev et al., 2015), and that

preferential attachment mechanism is not entirely a degree-based event as demonstrated

in BA model but rooted in an optimization framework that exploits the trade-off between

node popularity and similarity (Papadopoulos et al., 2012; Zuev et al., 2015). The

classical preferential-attachment based generative models like the BA model mainly

capture the scale-free property of but failed to explain the emergence of community

structure and strong clustering coefficient in real-world networks. In contrast to this, the

popularity-similarity-based model is able to capture all the three universal, fundamental

properties of the networks. The following sections presents the theoretical details of

the three network models (popularity-similarity optimization, fitness-based and the

preferential attachment-based evolving network models) that the Web-API network

constructions algorithms are based on.

Chapter 4. Constructing Evolving Web-API Networks 145

4.3.1 Popularity-Based Network Model

As previously discussed, the Barabási-Albert complex network model is the most popu-

lar popularity-based network generative model defined by a simple form of preferential

connectivity in which the likelihood that a vertex vi of degree ki(t) = k acquires a link

at time-step t is defined to be proportional to a time dependent function Ak = k. Ak

is referred to as the Preferential Attachment function (Pham et al., 2016). The model

involves the two generic aspects: (i) Growth Aspect (ii) Preferential Attachment Aspect.

These aspects are described in the following section:

Growth Aspect

For the growth aspect, it involves continuous addition of new nodes (Web-APIs) into an

open network. Therefore, the number of nodes N in the network increases throughout

its life span. To achieve this, first, the network is initialized, starting with fully connected

m0 number of nodes. At each time step, a new node (Web-API) Aj with m links is

added to the network.

Preferential Attachment (PA) :

As described min Chapter 3, the PA describes the probability Π(i) that a newly arrived

link of a new node connects to existing node i as proportional to the node i′s degree (ki).

PA is dynamically measured following similar description in section 3.2.2. A new node

is free to connect to any node in the network. However, in equation 3.5, the dependence

of Πi on ki implies that higher-degree node have more visibility. For instance, if a new

node has a choice between degree-two and degree-six node, it is three-times as likely

that it links with the degree-six node.

Algorithm 4.1 described the inputs and step-by-step procedure of BA model.

Line2 − 5 of the procedure captures the two aspects. Line − 2 shows the dynamic

Chapter 4. Constructing Evolving Web-API Networks 146

Algorithm 4.1: BA Network Generative Model
Input:

1: N : total number of nodes
2: m0: number of initial nodes
3: m: number of edges added at each time step

Output:

1: GN : the preferential-attachment-based network

Procedure

1: Initialize G0 by completely connected network with m0 number of nodes
2: for t = 1 to N −m0 do :
3: Π(k(t)) ← Ak(Gt−1)
4: Gt ← SELECTneighbors(Gt−1, Π(k(t)),m)
5: end for
6: return GN

growth process for N numbers of nodes. At each time step t, a new node with m num-

ber of edges is added to the network Gt and connected to m number of already existing

nodes in the network, where m ≤m0. In Line−3, PA is dynamically computed for each

node in the network Gt−1 with the function Ak based on equation 3.5 which returns

probability distribution Π(k(t)). Finally, a selection function SELECTneighbors in

Line − 4 is used to select the m neighbours in Gt−1 based on the distribution which the

new node will connect to. After all N nodes join the network, the BA network GN is

obtained.

4.3.2 Fitness-Based Network Model

In reality, there are other factors other than age and node degree which influence

how nodes in a network acquire links. Web service, web-pages, actors (Barabási,

2016)(M. G. H. Bell et al., 2017) all posses some inherent qualities that influences

the rate at which they can attract nodes or acquire links. For instance , In the World

Chapter 4. Constructing Evolving Web-API Networks 147

Wide Web, search engines such as Alta Vista, Inktomi started earlier and dominated

the market before the arrival of Google. However, Google soon overtook these search

engines in terms of number of connections and became the leading search engine with

the largest hub of the Web. In similar fashion, Facebook took over from Google in

2011 as the biggest hub on the web. This shows that some latecomers can actually

acquire links relatively quickly and others who arrived earlier may not make it. The

Bianconi-Barabási (BB) model (Bianconi & Barabási, 2001b, 2001a), a variant of BA

model, captures this behaviour by having on top of growth and PA another concept

called the fitness. The model explains that age is not the best predictor of a node’s

success, rather latecomers with high fitness values also have the chance to attract links

to form hubs.

The BA model assumes that a node’s growth rate is determined solely by its degree k.

In order to incorporate the role of fitness, BB model consider preferential attachment to

be driven by the product of a node’s fitness η, and its degree k. Both BA and BB models

are known for their plausible explanation for the emergence of scale-free topology

characterized by heavy-tail degree distribution in real world networks. While the BA

model explains the "first mover advantage" phenomenon, the BB model explains how

latecomers can become hubs. In a fitness-driven network, a node with higher fitness

will acquire links at a higher rate than less fit nodes. The fitness values are assigned to

each node. The value embodies all the properties other than the degree (or popularity).

The higher the fitness, the higher the probability of attracting new edges. Fitness here is

a quantitative measure of a node’s ability to stay in front of the competition (Barabási,

2016). The model consists of the following two steps :

Growth:

Starting with a small number of node (m0), at every time step, a new node j with

m links and fitness ηj is added to the network and is connected to m ≤ m0 nodes

Chapter 4. Constructing Evolving Web-API Networks 148

already-existing in the network, where ηj is a random number chosen from a fitness

distribution ρ(η). Once the fitness value is assigned, a node’s fitness remains unchanged.

Random-walk with restart approach is adopted in this work to estimate the fitness value

of API nodes. Detail of this is reported in Section 4.4.3.

Preferential Attachment (PA):

The probability Π(i) that a link of the new node connects to node i depends on the

product of node i′s degree (ki) and its fitness (Barabási, 2016) :

Π(i) = ηiki

∑
j
ηjkj

(4.1)

A new node is free to connect to any node in the network. However, in equation

3.5, the dependence of Πi on ki implies that higher-degree node have more visibility.

For instance, if a new node has a choice between degree-two and degree-six node, it is

three-times as likely that it links with the degree-six node. Moreover, the dependence

of Πi on ηi captures the fact that between two nodes with same degree, the node with

higher fitness value is selected with a higher probability. Therefore, a relatively new

node with initially few connections, can acquire links rapidly if such node has larger

fitness value compare to other nodes.

Using continuum theory to predict the temporal evolution of each node (Barabási,

2016), according to equation 3.5, the degree of node i changes at the rate :

δki
δt

=m ηiki

∑j ηjkj
(4.2)

The factor m appears because each new node is expected to add m links to the network

each time. To simplify equation 4.2, it is assumed that the time evolution of ki follows

Chapter 4. Constructing Evolving Web-API Networks 149

power-law with an exponent β(ηi) that is dependent on the fitness (ηi):

k(t, ti, ηi) =m(t
ti
)β(ηi) (4.3)

where ti represent the time at which node i was introduced to the network. Plugging

equation 4.3 into equation 4.2, the dynamic exponent β(η) of BB-model satisfies:

β(η) = η

C
(4.4)

where C is :

C = ∫ dηρ(η) η

1 − β(η)
(4.5)

Equation 4.4 shows that the dynamic exponent in BB-model is proportional to

the node’s fitness η . Hence, given sufficient time t, a node’s with higher fitness will

increase its degree faster and leave behind nodes with smaller fitnesses over time. The

degree distribution p(k) given as

p(k) ≈ C ∫ dη
ρ(η)
η

(m
k
)
C
η
+1

(4.6)

Equation 4.6 is a weighted sum of multiple power-laws, which implies that pk is

dependent on the exact form of the fitness distribution,(ρη) (Barabási, 2016).

4.3.3 Popularity-Similarity Optimization Network Model

The Popularity-Similarity Optimization − PSO evolving network model introduced in

(Papadopoulos et al., 2012) is used to specify the growth of networks in an hyperbolic

space. The model sustains that topological properties like high clustering and scale-

free degree distribution commonly found in most real-networks representing complex

systems are the result of an optimisation process in which nodes seek to form ties or

Chapter 4. Constructing Evolving Web-API Networks 150

connect, not only with the popular (most connected) system components (nodes), but

also with the components similar to them. The model has a geometric interpretation

in which network evolves by optimizing certain trade-offs between node popularity

abstracted by the radial coordinate in hyperbolic space and node similarity represented

by the angular coordinate distance.

The components of the model is described as follows:

Input Parameters: In general, the model includes four input parameters: (i) N : total

number nodes in the network ; (ii)m: parameter controlling the average node degree k̄ =

2m (iii) β : popularity fading parameter, β ∈ (0,1]. (iv) T ≥ 0 : network temperature,

which controls the network clustering, where the network clustering is maximized at

T = 0, and it decreases almost linearly for T = [0,1) and it remains asymptotically 0

for any T ≥ 1;

Growth Aspect : In PSO model, node birth time is used as the proxy for popularity such

that nodes with the earliest birth time have more chances to attract new links and become

popular. If nodes join the network one at a time, then the birth time is simply the node

number t = 1,2,3, . . .N , where N is the total number of nodes. For similarity, nodes

were randomly placed in the geometrical space, and the angular distances between the

nodes in the space model their similarities.

The network is dynamically generated in the following steps: (i) Start with an

initially empty network ; (ii) at each time step t > 1, add new node t at a random angular

position θt on the geometrical space (circle) ; and (iii) connect new node t to a subset of

existing nodes s, where s < t and consist of the m previous nodes with the m smallest

values of product sθst . m is the parameter controlling the average node degree k = 2m,

and θst is the angular distance between nodes s and t. At early times t ≤ m, node t

connects to all the existing nodes. Unlike PA-based model, where new node connects

with the same probability Π(k) to any nodes of k − degree already existing in the

Chapter 4. Constructing Evolving Web-API Networks 151

network, in the PSO model, new node only connects to a specific subsets of k − degree

nodes in the network that are closest to the new node along the similarity dimension θ.

If T is set to 0, the new node t connects to the m hyperbolically closest nodes, if

T > 0, the new node t randomly selects existing node s < t, and given that t is not

already connected to the s, t connects to s with probability p(st);

p(st) = 1

1 + exp(xst−Rt2T)
(4.7)

where Rt is the current radius of the hyperbolic disk, defined in equation 4.8 and

xst is the hyperbolic distance between node s and node t defined in equation 4.9, and

θst is the angle between node s and t.

Rt = rt − 2 ln [2T (1 − e−(1−β) ln(t))
sin (Tπ)m(1 − β)

] (4.8)

xst = arcosh(cosh rt cosh rs − sinh rt sinh rs cos θst) (4.9)

This procedure will be repeated until t becomes connected to m nodes. The growing

process will stop after all the N nodes have joined the network.

Geometric Interpretation of PSO Model: As mentioned above, PSO model has a

geometric interpretation in which popularity preference emerges from local optimization

(Papadopoulos et al., 2012). Specifically, the network growing task is transformed

such that a new radial coordinate system rt = ln(t) which maps the birth time t of

a node to its radial coordinate rt is defined. Consequently, all nodes are positioned

on a plane with their associated polar coordinate (rt, θt) (the distance becomes log

scale). Then, new nodes are simply connected to the closest m nodes on the plane ,

where distances are hyperbolic. The hyperbolic distance xst between any two nodes at

polar coordinates (rs, θs) and (rt, θt) is computed as xst = rs + rt + ln(θst2) = ln(st θst2).

Chapter 4. Constructing Evolving Web-API Networks 152

Therefore, minimizing xst becomes equivalent to minimizing s θst2 when dealing with

the connectivity from a new node t. In essence, the trade-off between popularity and

similarity is abstracted as the minimization of distance between two nodes on the

hyperbolic plane.

Preferential Attachment and Popularity Fading in PSO Model:

In PSO model, preferential attachment phenomenon emerges from an optimization

framework in which new connections optimize certain trade-offs between popularity

and similarity, rather than simply preferring popular nodes as in PA-based model. A

new node will connect to the node that is most similar to it but also has the largest

degree (most popular). In this case, both popularity and similarity contribute to the PA

emergence, and are both key dimensions of attractiveness. The authors (Papadopoulos

et al., 2012) have shown that the probability Π(k) is thesame linear function of k in the

model as in PA.

PSO can also model popularity fading, another phenomenon found in many real

network. Specifically, in many network , early nodes are usually more popular, how-

ever, over time, the popularity of these nodes will continue to decrease or fade. For

example, in the World Wide Web, search engines such as Alta Vista, Inktomi started

earlier (early birth-time) and dominated the market before the arrival of Google search

engine. However, Google later became more popular (higher connection or degree)

and dominated the market, while the popularity of the earlier search engines continue

to fade with time. PSO modelled popularity fading by letting nodes drift away from

the centre of the hyperbolic space such that radial coordinate of node s at time t > s is

increasing as rs(t) = βrs + (1 − β)rt , where rs = ln(s) (an old node and its drifts) and

rt = ln t (the current node at time t), and hyper parameter β ∈ [0,1].

As β approaches 1, the nodes becomes stationary and no drifting is allowed. On the

other hand, as β approaches 0 , all the nodes move to the circle of radius rt, reducing

Chapter 4. Constructing Evolving Web-API Networks 153

the network to a random geometric network growing on the circle. Another view of

this fading is that the attraction probability Π(k) power law exponent γ changes to

γ = 1 + 1
β ≥ 2. Preferential attachment emerges at any γ = 1 + 1

β since Π(k) is a linear

function of degree k, Π(k) ∝ k +m(γ − 2) - similar to PA (Papadopoulos et al., 2012).

Figure 4.3: Placing node s in the network using polar coordinates at (rs, θs), where
rs = ln s, and θ remains the normalized Web-API functional similarity.

Figure 4.3(a) shows the transformation to new radial coordinate system where

distance becomes log scale. The short hyperbolic distance between the new node t

and the existing node s is approximated as :xst = rs + rt + 2 ln(θst2), where θst is the

angle separating node t from s, which is calculated as θst = π − ∣π − ∣θs − θt∣∣. xst

correspond to the probability of link formation. Minimizing xst becomes equivalent to

minimizing sθst during link formation process between a new node to existing ones. The

competition between popularity and similarity is simply the minimization of distance

between the two node points on the hyperbolic space. Figure 4.3(b) show sample PSO

network with m = 3 and N = 20, new node t = 20 with radial coordinate r = ln(t)

connected to three hyperbolically closest node

Chapter 4. Constructing Evolving Web-API Networks 154

4.4 Constructing Evolving Web-APIs Social Networks

This section presents the construction of the proposed evolving, Web-API complex-

networks based on the theoretical procedures of BA, BB and PSO complex network

models. First the node ordering strategy used for the network construction is discussed,

then, the algorithms for constructing the Web-API network including network growing

procedures and node ordering strategies are discussed.

4.4.1 Node Ordering Strategy

In order to preserve the popularity information of the existing Web-APIs, a node

ordering strategy that enables our network to captured API popularity information

similar to their popularity in their ecosystem is defined. For a growing network, there

are two common ways to decide which node gets into the network first, such that

the social properties like popularity are well preserved; One way is to use the node

birth time (like the publication date of Web-APIs), this is because, in principle and

without any external influence, older nodes have more chances to become popular and

attracted (Papadopoulos et al., 2012). Another and more direct proxy is to use the node

degree (Albert & Barabási, 2002), provided the information is available. For the later,

the node with higher degree are introduced into the network before the lower degree

nodes. For the Web-API network construction, a mix of both node ordering approaches

is used to order the Web-APIs. Numbers are then assigned to each API based on its

positions in the ordered node-list. Apart from preserving the popularity information

of the Web-APIs in their ecosystem, another reason for using both ordering strategies

is that, for Web-APIs with no degree information (that is, APIs that have never been

consumed or invoked in any mashup), the publication dates of these APIs as specified

in the original dataset are used to decide when they enter the network. Since, popularity

is one of the key drivers of our networks, API nodes with degree information are first

Chapter 4. Constructing Evolving Web-API Networks 155

added to the Web-API node-list, then followed by the other with no degree information,

which are ordered by publication date.

4.4.2 Strategy For Constructing Preferential Attachment-Based Web-

API Network

This section presents the construction of the Popularity-based Web-API network based

on the theoretical procedure of the Barabási-Albert evolving network model (Barabási,

2016). As discussed in Section 4.3.1, the combination of growth and PA are the two

generic mechanisms that drive many real-world networks, and the presence of both

growth and PA in the ProgrammableWeb affiliation network have been validated in

Chapter 3. Based on these findings, the focus here is to construct an evolving network of

Web-APIs that preserve both the topological properties of Web-API affiliation network

including the popularity information of the Web-API nodes, while including all the

Web-APIs in the ecosystems.

Growth Aspect

For the growth aspect, it involves continuous addition of new nodes (Web-APIs) into

an open network, therefore increasing the number of nodes in the network throughout

its life span. In order to achieve this, first, the network is initialized, starting with fully

connected m0 number of nodes. At every time step , a new node is added with m

number of edges.

Preferential Attachment Aspect

In the PA-based Web-API network, the probability that new node Aj is connected to an

existing node Ai already in the network is neither uniform nor random but depends on

the degree ki of node Ai. To incorporate PA, the probability that a link of the new node

Chapter 4. Constructing Evolving Web-API Networks 156

Figure 4.4: Growth-PA illustration in BA network growth procedure

Aj connects to an existing node Ai based on Ai’s degree ki is dynamically computed.

Figure 4.4 illustrates the growth and Preferential attachment processes: Given

m0 = 4,m = 1, at time 0, 4 fully connected nodes form the initial network; at time 1,

node 5 joins the network; based on PA, as node 1-4 each has the same degree, each of

them has the same probability to attract node 5 to connect to it, which is 1/4; at time 2,

based on PA, the probabilities for node 1-5 to attract the new node are [3
K ,

3
K ,

4
K ,

3
K ,

1
K]

where K = 13 is the total degree of the network and the numerator is the degree of each

existing node. In this case, older nodes in the open network always have better chance

to attract edges than newer nodes because they have better degree (popularity).

The node-ordering strategy discussed in 4.4.1 (specifically tfor ProgrammableWeb)

is used to preserve the popularity information in the affiliation network. it indicate when

a Web-API will join the growing network. The full list of Web-APIs in the original

dataset is sorted, and then each API is introduced into the network one-by-one (or

Chapter 4. Constructing Evolving Web-API Networks 157

step-by-step) based on their position in the ordered node-list.

A network growth strategy is defined for this as follow:

Growth Strategy for Web-API network

• First, the Web-API nodes is sorted based on their degree (or popularity) in the

affiliation network in a descending order so that higher-degree nodes are in the

front to produce L1;

• Then, for Web-APIs that do not appear in the affiliation network ,they are sorted

based on their date of publication/birth in an ascending order so that older nodes

are in the front to produce L2; (this is similar to the date-of-birth based ordering

strategy used in (Papadopoulos et al., 2012) and discussed in Section 4.4.1.)

• Finally, L2 is appended in the end of L1, and each node is introduced into the

network one-by-one based on their order in the list.

Algorithm 4.2 describes the complete construction procedure of the BA-based Web-

API evolving network. Lines 1−7 capture the procedure for creating API node-list used

for populating the network (as described above). Sortdesc takes the nodes with their

degrees (nodeDegree dictionary) as keys and values respectively, and sort the nodes

by their degrees in descending order to get L1. The date-of-birth (same as published

date) for all APIs in ProgrammableWeb is acquired. In Lines 3 − 4, function getDoB

takes the DoB information and the names of APIs with no degree information, then

returns a dictionary isolatedNode (isolated nodes from the affiliation network) with the

node’s DoBs as values. Sortasc takes the isolatedNode and sort in ascending order

based on the DoB to get L2. Line 8 − 12 similar to Line 1 − 5 of Algorithm 4.1.

An overview of the constructed ProgrammableWeb API network containing all its

Web-APIs is shown in Fig. 4.5, with popular nodes labelled. Next, the Fitness-based

Chapter 4. Constructing Evolving Web-API Networks 158

Algorithm 4.2: BA-Based Web-API Network Model
Input:

1: N : total number of API nodes
2: m0: number of initial nodes
3: m: number of edges added at each time step
4: Gaf : Affiliation network
5: nodeDoB: date-of-birth for all APIs

Output:

1: Gban: the BA-based Web-API complex network

Procedure

1: nodeDegree ← Gaf .getDegree
2: L1 ← Sortdesc(nodeDegree.keys(), degree)
3: for i in N and i not in L1 do :
4: isolateNode[i] ← getDoB(nodeDoB, i)
5: L2 ← Sortasc(isolateNode.keys(),DoB)
6: end for
7: L1. append(L2)
8: Initialize G0 by completely connected network with m0 number of nodes on top of
L1 list

9: for t =m0 to L1.getLenght −m0 do :
10: Π(k(t)) ← Ak(Gt−1)
11: Gt ← SELECTneighbors(Gt−1, Π(k(t)),m)
12: end for
13: return Gban

Web-API evolving network is considered, this model unifies the PA and fitness in a

single model.

4.4.3 Constructing Fitness-Based Evolving Web-API Network

One of the main driver of our proposed Web-APIs network is the fitness of APIs, which

represent certain intrinsic property that propel some APIs ahead of others. This section

presents the processes involved in constructing the fitness-based Web-API network.

First, the process for estimating Web-APIs fitness using random walk algorithm is

Chapter 4. Constructing Evolving Web-API Networks 159

Figure 4.5: Overview of the BA-Based Web-API Evolving network

discussed. Then, the strategy and procedure used in constructing the network using

ProgrammableWeb dataset. As mentioned earlier, the network growing procedure is

based on the BB model (Bianconi & Barabási, 2001b) described in section 4.3.2 . Details

of the network construction procedure is described in the following sections:

Web-APIs Fitness Value Estimation using Random Walk with Restart

Web-API fitness values is estimated using Random Walk with Restart (RWR) (Tong,

Faloutsos & Pan, 2006). RWR offers a strong relevance score between two nodes in a

weighted network and has been effectively utilised in a variety of situations, including

automated captioning of pictures, extensions to "connection subgraphs," customised

PageRank, and many more. The fitness value of a given API is estimated as the expected

Chapter 4. Constructing Evolving Web-API Networks 160

value of its correlation with other APIs in the service ecosystem. The RWR approach

works such that if a random particle is that starts from node i. The particle iteratively

transmits to its neighbourhood with the probability that is proportional to their edge

weights. At each step, the particle has some probability c to return to the node i. The

affinity score of node j with respect to i is defined as the steady-state probability ri,j that

the particle will finally stay at node j (Tong et al., 2006). The estimation of Web-APIs

fitness values involves three key steps: (i) Construct an interaction graph based on

Mashup-API relationship (ii) Correlation Inference (iii) Finding the mean Random walk

score for each API

Intuitively, the RWR algorithm computes a relevance score r (Ai,Aj) between two

APIs nodes Ai and Aj in an interaction network, base on the likelihood that random

walk through the network starting at Ai will ends at Aj .

For N number of nodes in the interactive network, the N-by-1 steady-state probability

vector Ð→pi , which contains the RWR scores of all API nodes with respect to node i,

satisfies the equation (4.10) below:

Where W is the column-normalized adjacency matrix of the interactive network, c

is the restart probability of the RWR from node i and Ð→ei is the N-by-1 restarting vector,

the ith element 1 and 0 for others. We further explain the detail procedure for RWR

fitness estimation in sect

Given an interactive graph G defined as G=(Mk ∪ An,E), where Mk is the set

of Mashups of size k and An is the set of Web-APIs of size n , and for any edge

(m,a) ∈ E, a ∈ A and m ∈ M . Mk={Mi∣1 ≤ i ≤ k} and An={Ai∣1 ≤ i ≤ n}. We

compute the relevance score ri between pairs elements in G using RWR, which is

formally defined in equation 4.10 . Such that, for every Mk(An) !=0 in G, a steady-state

probability r of size (k + n) ∗ n is computed.

Ð→ri = (1 − c)W Ð→ri + c Ð→ei (4.10)

Chapter 4. Constructing Evolving Web-API Networks 161

Where ri ∈Nx1, andW ∈NxN is a weighted transition matrix obtained based on graph

G , and ei ∈Nx1 is the restarting vector with ith entry set to 1 and all other entries are 0.

c is the restart probability of the random walker from node i .

Equation 4.10 can be further simplify (Yao, Sheng, Ngu, Li & Benatallah, 2015) as:

Ð→ri = c(I − (1 − c)Wm)−1ei = Qei (4.11)

where I denotes an identity matrix andWm is obtained by row-normalizing the weighted

transition matrix W using equation 4.12:

Wm =WD−1
m (4.12)

where Dm is a diagonal matrix with Dm(i, i) = ∑jW (i, j). The random walker

iteratively transits to other API nodes that have edges with the starting node Ai in the

network, with the probability proportional to the edge weight between them. At each

time step, Ai has a restart probability c to return to itself.

From equation 4.11 , Q = c(I − (1 − c)Wm)−1 = c∑∞

t=0(1 − c)tW t
m, which defines

all the steady-state probabilities of API node Ai transiting other API nodes when the

random walk process is converged. W t
m represents the tth order transition matrix with

elements wtij interpreted as the total probability for the random walker that starts at

node i (API node Ai) and ends at node j (API node Aj) after t iteration, traversing all

possible paths between i and j. When the random walker reach a convergence threshold

Cth, the steady-state probabilities for each pair of API nodes is obtained . Figure 4.6

shows a sample result of RWR estimated relevance score for 5 nodes. The resulting

probability values represent the relevance scores of pair elements in graph G i.e. the

long-term visiting rate from a given node to any other node in G . We set Cth = 10−6 for

this experiment .

Chapter 4. Constructing Evolving Web-API Networks 162

Figure 4.6: Example of fitness-Values of Ai wrt Aj using RWR
.

Finally, to get the fitness value for each API, the expected value of the relevance

score for each API node is computed, which represent the long-run average of each

API’s ri, where ri ∈Nx1 . Then, the resulting value is assigned as the fitness of each

corresponding APIs.

The plausibility of the resulting fitness distribution is then examined using the

Kolmogorov-Smirnov (KS) distance test in (Clauset et al., 2009). The test enables

the generation of p-value between 0 and 1 according to differentiation of our data

and the synthetic model. If the p-value is closer to 1, then it can be ascertained that

the data is more plausible to a given distribution. Bootstrapping approach is then

used to obtain the p-value=0.0325 and p-value=0.525 for the expected-similarity data

points fitted to power-law and log-normal respectively. This shows that the distribution

is not exceptionally plausible as power-law distribution but plausible for log-normal

distribution. Figure 4.7 shows plot of the distribution of Web-APIs fitness on a log-linear

plot.

Link formation and network grow process in the fitness-based network construction

involves three generic aspects: (i) Growth Aspect (ii) Preferential Attachment Aspect

Chapter 4. Constructing Evolving Web-API Networks 163

Figure 4.7: Web-API fitness distribution in Log-Linear Binning
.

and (iii) Competitive aspect, which involves incorporation of fitness values.

Growth Aspect :

The growth aspect is very similar to the BA-based network construction approach. it

involves continuous addition of new nodes (Web-APIs) into an open network. Therefore,

the number of nodes N in the network increases throughout its life span. To achieve

this, similar to the popularity-based network, the network is initialized, starting with

fully connected m0 number of nodes. At each time step, a new node (Web-API) Aj

with m links is added to the network.

Preferential Attachment :

In the Web-API network, the probability that new node Aj is connected to an existing

node Ai already in the network is neither uniform nor random but depend on the degree

Chapter 4. Constructing Evolving Web-API Networks 164

ki of node Ai. To incorporate PA, the probability that a link of the new node connects

to an existing node i is dynamically estimated based on node’s i degree ki .

Competitive Aspect :

Each candidate node is assigned a fitness value ηi, which enables it to compete for

edges at the expense of other nodes. As shown in Equation 3.5, the probability πi

that a new node will connect to a node i already existing in the Web-API network is

directly proportional to node i′s degree ki and fitness ηi. In general, the BB model

enables the Web-API network to account for the fact that APIs’ nodes with different

intrinsic properties acquire links at different rate. It predicts that node (API) growth

rate is determined by its fitness η and allows estimation of the degree distribution on the

fitness distribution ρ(η).

The same node ordering strategy used in the previous section is used to to preserve

the popularity information in the affiliation network. Note that the strategy is defined to

know when an API joins the growing network.

The complete network construction procedure is described below:

Network Growing Procedure

Input Parameters (N : number of nodes in the final network, m0: number of initial

nodes, m ≤m0: number of links added at each time step)

1. Creating node list: Sort Web-APIs nodes based on popularity and date-of-birth

2. Assign fitness value to each corresponding new node according to the distribution

ρ(η)

3. Initializing network: Start with a fully connected m0 number of most popular

nodes;

Chapter 4. Constructing Evolving Web-API Networks 165

Figure 4.8: Illustration of Fitness-based Web-API Network Growth.

4. Growth: At each time step, a new node with m number of links is added and

connected to m number of already existing nodes in the network, where m ≤m0;

5. Attachment Probability: With probability Π(ki) estimated dynamically based on

equation (3.5), the new node connects to an already existing node i with degree

(ki) and fitness ηi.

6. After all N nodes join the network, we obtain the fitness-driven, evolving Web-

API network.

Figure 4.8 illustrate the simple network growing procedure. Figure 4.8(a) shows

how Web-APIs published independently in service registries (b) shows new API A6

joining the open network. A6 can connect to any node in the network, but A1 has

highest probability Π(ki) = 0.27 (combination of its fitness and degree) to attract

Chapter 4. Constructing Evolving Web-API Networks 166

Figure 4.9: Fitness-based Web-API Network Overview.

A6. An overview of the constructed fitness-based ProgrammableWeb API network

containing all its Web-APIs is shown in figure 4.9. In contrast with the BA-based

network topology shown in 4.5, which is based solely on degree of nodes with many

hubs, figure 4.9 shows the fitness-based network with few hubs. Three API nodes,

google-maps, twitter and youtube with high fit and popularity attract majority of the

links, and also connected to some smaller hubs called spokes, leading to formation of

hub -spoke topology.

4.4.4 Constructing Popularity-Similarity Based Web-API Network

For Web-APIs, popularity is just one dimension of attractiveness that drives Web-

API interactions or their co-invocations. Functional Similarity is another dimension

of attractiveness. Web-APIs with similar functionality can compete in an invocation

Chapter 4. Constructing Evolving Web-API Networks 167

process as either substitutes or replacements (Maamar, Faci et al., 2011). Hence, while

popularity attracts new connections, similarity is just as attractive. For example, just

like a reader could follow a link from a blog post (say a popular or trending post)

to another interesting and related post, likewise, a service consumer could discover

a new mapping Web-API that is not as popular as Google Map API but similar to

it, if the new API node is positioned close or directly connected to the Google Map

API. As earlier discussed, the PSO model (Papadopoulos et al., 2012) has a geometric

interpretation in hyperbolic space where the trade-offs between popularity and similarity

with which new nodes are expected to optimise when joining a network system are

abstracted by the hyperbolic distance between the nodes and the existing nodes. The

hyperbolic distance constraints play a significant role in the link-formation process

between Web-API nodes. To combine the two dimensions of attractiveness in Web-

API network construction, a product metric Popularity × Similarity is used. Thus

competitions between the two dimensions determines the overall connection probability.

Even-though there is a competition between popularity and similarity, it expected that

larger popularity and small similarity (more similar), small values of Popularity ×

Similarity are more preferable connections, which takes similarity more seriously

This popularity-similarity optimization forms the basis for the construction of the

Popularity-Similarity Web API network. This enables the integration similarity (with

popularity) as another dimension of attractiveness in our network construction. The

same Web-API node ordering to the one described in section 4.4.1 is used, where

the nodes are ordered based on their date-of-birth (L2), and their popularity (L1) in

the service ecosystem (ProgrammableWeb) as captured by the degree information of

the affiliation network. The nodes were labelled based on their position in the sorted

node-list (we append L2 to the end of L1 and sort accordingly). Then, the similarity

space is defined as an hyperbolic disc of radius R and denote the time of the ith node on

the list as ti (same as the time the node joins the network) and its angular coordinate

Chapter 4. Constructing Evolving Web-API Networks 168

Algorithm 4.3: PSO-Based Web-API Network Model
Input:

1: N : total number of nodes, N > 0
2: m: parameter controlling the Avg. node degree k̄ = 2m , m > 0
3: β: popularity fading parameter , β ∈ (0,1]
4: W : Web-API functionality similarity matrix
5: nodeDoB: date-of-birth for all APIs
6: Gaf : Affiliation network

Output:

1: Gpsn: the PS-based Web-API complex network

Procedure

1: nodeDegree ← Gaf .getDegree
2: L1 ← Sortdesc(nodeDegree.keys(), degree)
3: for i in N and i not in L1 do :
4: isolatedNode[i] ← getDoB(nodeDoB, i)
5: L2 ← Sortasc(isolatedNode.keys(),DoB)
6: end for
7: L1. append(L2)
8: Compute W̃ = (D

−1
2 WD

−1
2) ∗ (−1)

9: diag(W̃) ← 0

10: η = (W̃−min(W̃)

max(W̃)−min(W̃)
)

11: Compute scaled angular distance matrix S = (1 − η)2π
12: θ = S→ Rn where n << N
13: Coords = {};
14: Initialize the network G by placing first node i at (r1, θ1) where r1 is set to 0 (at

the centre, radius is 0).
15: for i = 2 . . .L1.getLenght do :
16: for j = 1 . . . i − 1 do :
17: rj ← β ∗ 2 ∗ log(j) + (1 − β) ∗ 2 ∗ log(i)
18: ri ← 2 ∗ log(j)
19: Get Coords{ri, θi}
20: Compute p(i, j)
21: Gi ← (Gi−1, p(i, j),m)
22: Gpsn ← Gi

23: return Gpsn

Chapter 4. Constructing Evolving Web-API Networks 169

Figure 4.10: Illustration of the PSO model growth procedure. The angular coordinate θi
abstracts the API similarity, while radial coordinate ri = 2 ln(i) represents popularity −
node birth time/degree. We start with an empty network and initialize the network by
placing the first node i = 1 on the API node-list at angular position θ1 on the circle . At
early times t ≤ m (assume m = 1), node i connects to all the existing nodes. At time
t = 3, new node at polar coordinate (r3, θ3) connects to a subset of the existing nodes.
It connects to node r2 because 2θ2,3 = 2π6 < 1θ1,3 = 7 π

12 .

in the similarity space as θi. Following the procedure in section 4.3.3, we describe in

detail the processes involved in the Web-API network construction as follows:

Input Parameters:

The model parameters for the Web-API PS-based network construction were set based

on the results of the initial analysis of the Web service ecosystem described in Chapter

3 : (i) N : total number API nodes in the network (as in the original dataset); (ii)

m: parameter controlling the average node degree k̄ = 2m , m is set as the average

degree k of the original network data (API affiliation network) (iii) β : popularity

fading parameter, β ∈ (0,1]. Recall the relationship between β and the exponent γ of

the power-law degree distribution γ = 1 + 1/β. Thus, β = 1
γ−1 ; Initially, we set γ = 2.2,

which is the value obtained from our preliminary analysis of the ProgrammableWeb

data. (iv) For parameter, since high clustering is a desirable property for our API

network, we vary parameter T ∈ [0,0.2] such that the network clustering is maximized

at T = 0, and it decreases almost linearly for T = [0,0.2).

Chapter 4. Constructing Evolving Web-API Networks 170

Growth Aspect : For the growth aspect, it started with an empty network. Then, at time

t ≥ 1, API node i on the sorted node-list is placed on the circle with polar coordinates

(ri, θi). As the node i arrived at time ti, it is connected to m existing nodes j in the

network with the m smallest values of product jθij , where θij is the angular distance

between node i and j as shown in Figure 4.10 illustration. If T is set to 0, the new

node i connects to the m hyperbolically closest nodes, if T > 0, the new node picks a

randomly chosen existing node j < i, and given that i is not already connected to the j,

i connects to j with probability p(ij) defined in equation 4.7;

The procedure is repeated until i is connected to m nodes. The growth process will

stop after all the API nodes N have joined the network. Algorithm 4.3 describes the

step − by − step procedure for constructing the PSO-based Web-API network.

• Procedure Lines 1− 6 follows thesame node-list creation procedure used for BA

network.

• In Line 8, the Web-API functional similarity matrix W is normalized. Normal-

ized graph Laplacian method is applied for normalization because it produce a

symmetric similarity weight, such that wi,j = wj,i, which is a desirable property

in this case. In Line 9 , the diagonal of the normalized matrix is set to zero to

avoid self-loop.

• Instead of arranging the node over the similarity space using angular coordinates

uniformly sampled at random in [0,2π] as done in the original model, θi is

defined as the normalized Web-APIs functionality similarity − (detail of Web-

APIs functionality similarity computation is described in section 3.2.3).

• In Lines 10 − 11, the matrix is scaled with scaling factor (1 − η)2π to get the

angular distance between two data point, such that 0 ≤ θ < 2π, where η is

the normalized similarity measure for each data point (Note that the higher the

Chapter 4. Constructing Evolving Web-API Networks 171

functional similarity, the lower the distance, hence the scaling factor (1 − η)2π).

• Then, in Line − 12, dimension reduction technique described in (Tenenbaum,

De Silva & Langford, 2000) is applied to reduce the matrix dimension from N to

n, where n = 2 to get the angular coordinates θ for each data point.

• Lines 13 − 22 describe the network growing procedure in hyperbolic space. Ini-

tially, the first node (on-top of the ordered node-list) (L1) is put into the network

G1 with radial coordinate (r1 = 0) and the corresponding angular coordinate

(θ1 ∈ [0,2π]). For each node ti = 2, . . . ,N , three key operations are performed:

(i) node ti is added to the network and assigned a radial coordinate ri = 2 log(ti);

(ii) the radial coordinate of every existing node tj < ti is increased according

to rj(ti) = βrj + (1 − β)ri − the popularity fading parameter β is set based on

the resultant γ value obtained in Chapter 3 . (iii) p(i, j) is determined based

on equation 4.7, and then new node t select a randomly chosen node s < t that

is not already connected to it and connect with probability p(xi,j). Since, high

clustering is one of the desirable properties for our network, parameter T is varied

such that 0.2 ≤ T ≥ 0

• The process is repeated until node i gets linked tom different nodes . The network

growing process is repeated until N nodes are added and connected.

4.5 Network Analysis and Results

This section report the conducted experiments to analyse the Web-API networks pro-

posed in this chapter. The focus here is to analysis the networks from both topological

and user application perspectives. The Web-API networks proprieties are mapped

with typical Web-API ecosystem properties (discoverability and navigability) using

Chapter 4. Constructing Evolving Web-API Networks 172

Figure 4.11: Overview of the PSO-Based Web-API Network

ProgrammableWeb as the case study. End-user activities in ProgrammableWeb such as

searching , browsing and visualization is connected with the network properties.

4.5.1 Experimental Setup and Dataset

Five different Web-API networks are constructed : three evolving networks (BA−based,

Fitness-based and PSO−basedWeb-API networks) and two static networks as baselines:

Web-API affiliation network and a data-driven, Web-API correlation network using

thesame Web-API dataset described in Chapter 3.

Chapter 4. Constructing Evolving Web-API Networks 173

Constructing a Correlation-Based Network from Web-Service Data

This section presents one of the baseline networks used in the evaluation of the evolving

Web-API networks. It presents the data-driven correlation network , which exploits

functional relationships captured by the textual descriptions of Web-APIs. For this

network, the functional similarity between Web-APIs is exploited for creating links

between related Web-API. A dense, API-API correlation network by inducing edge sets

from Web-API data points using a distance metric d(ai, aj) to measure the distance

between node API nodes ai and aj − similar to the approach introduced in (Grady &

Polimeni, 2010). The pairwise distance dai,aj between API ai and aj is computed as the

Euclidean distance between their feature vectors learned in a semantic space . Thus,

given n points {a1, . . . , an} in Rd, a network with n nodes is built, and set of edges

connecting close (similar) nodes.

Note that nodes in this network could be either Mashups or APIs, and their cor-

relation coefficients− edge weights Eai,aj between node ai and node aj defined by

thresholded Gaussian Kernel weighing function (Shuman, Narang, Frossard, Ortega &

Vandergheynst, 2013; Grady & Polimeni, 2010).

Eai,aj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

exp(− [d(ai,aj)]
2

2θ2), if dai,aj ≤ ε

0, otherwise
(4.13)

The correlation coefficients (edge weights) reflect a cor-relationship (through sub-

stitution, association, co-invocation and functionality) between Web services across

the dataset. The assumption here is that Web service ecosystem could be represented

as a fully connected network with positive weight indicating presence of connection

between adjacent service nodes and zero-valued weight to indicate no connection.

The network construction procedure follows three algorithmic steps:

• First, a vector representation for each Web service data point including mashups

Chapter 4. Constructing Evolving Web-API Networks 174

is generated by getting a representative geometric values of their description using

doc2vec(Q. Le & Mikolov, 2014).

• To build connection between the embedding data, the distance d(ai, aj) between

the two feature vectors describing ai and aj is computed.

• Finally, nodes ai and aj are connected by an edge if they are close such that edge

set E = {Eai,aj ∣ d(ai, aj) < ε}, where ε is a free parameter. The resulting network

is naturally symmetric− a feature that is important in network-based service

discovery applications. ε is carefully selected through grid search to ensure that

no similar or close node is left isolated. Figure 4.12 shows the visualization of

the API-API network with 17,959 nodes, and 137902 edges. We set the threshold

ε very high to enable high (0.8 for our experiment) degree of correlation between

connected node in the network . The figure shows the distribution of node degree (

the number of connection that each node has) is heterogeneous such that majority

of the nodes in the network have very few links, while some hubs and spokes also

exist.

The above procedure could also be used to create a denserAPI−API network. Another

approached for inducing edges between unconnected, embedded data point is using the

k−nearest neighbour to the node (Grady & Polimeni, 2010), where a link is created

between a node and each of its its k−nearest neighbour nodes with a smaller distance

than the rest of the node set. This approach gives a guarantee on the degree structure

of the resulting network, such that degree of node i is greater or equal to its k−nearest

neighbour. As a result of this, if k > 0, then there will be no isolated Web service node

in the resulting service network.

Table 4.2 summarizes the statistics of each network constructed in this work. In

contrast to the affiliation network, which only connects 1,525 APIs, the BA-based,

Fitness-based and PSO based networks connect 17,959 Web-API data-points in the

Chapter 4. Constructing Evolving Web-API Networks 175

Figure 4.12: Web-API Correlation Network with 137,902 number of edges and ε = 0.8.
The big light green and red discs are the hubs, while the visible brown patches are the
clusters. 617 nodes with k > 100 are identified in the network.

ecosystem, thus, solving the Web-API isolation problem with 53,877 total number of

links per network. The network simulations are ran 10 times for each of the evolving

networks and the average measure of the relevant network properties is taken. For

offline analysis, we use Gephi and Python Networkx.

4.5.2 Mapping Web-API Ecosystem Properties with the API Net-

works Properties

Here, we quantitatively measure the topological properties of the evolving Web-API net-

works, and analyse the correlation between these properties and the ProgrammableWeb

system properties.

Chapter 4. Constructing Evolving Web-API Networks 176

Analysing Web-API Networks Degree Distributions

Following the same plotting, fitting and dynamic exponent γ estimation procedures

described in section 3.2.1, a check is run to see if the proposed network models

can preserve the API popularity information observed in the original dataset from

ProgrammableWeb (as in the affiliation network). this is done by comparing the degree

distributions of the networks with that of the affiliation network. The plausibility

of the degree distributions is measured and goodness-of-fit test is conducted on the

distributions .

Table 4.1: Summary of BA-based Vs BB-based Web-APIs Network Features

Comparison of PA driven and BB-based Web-API networks

Networks PA-based Web-API Net BB-Based Web-API Net

Dynamic exponents β = 1/2 β(η) = η
C

Clustering Coefficients ⟨Cc⟩ ≈ 0.006 ⟨Cc⟩ ≈ 0.048

Network Diameters⟨d⟩ ⟨d⟩ ≈ 5.81 ⟨d⟩ ≈ 4.27

Topology scale-free scale-free

Degree exponent(γ) 2.7 2.252
For the constructed Web-API network with N = 16138 and m = 3, and with η assigned

to each node, the degree exponent is γ = 2.25, which follows the theoretical value.

Fig. ?? shows a long-tailed degree distribution of the fitness-based Web-API network

on linear-log scale. In the figure, nodes with large degree (high fitness nodes) form a

plateau at the k region, the small degree regions occupy by nodes with low degree and

low fitness values, establish a log-linear relations between degree distribution p(k) and

k (log p(k) ∼ −γ log k, or p(k) ∼ k−γ). In Fig. 4.14, we extract information from the

long-tail of the distribution by binning the data points and fitting the long-dashed-line,

which represent p(k) ∼ k−2.252. As shown in the figure, the probability p(k) is roughly

proportional to k−2.252. Hence, the network topology is nearly scale-free.

The numerical solution of C = 1.255. Hence, equation 4.4 predicts that the dynamic

Chapter 4. Constructing Evolving Web-API Networks 177

exponent of each node i is different across the network, i.e. β(η) = ηi/1.255, where ηi

is quenched and different for each node in the network. BB model is reduced to BA

model when fitnesses for all nodes are taken to be equal. As shown in Table 4.1, η = 1

for each node in BA model and equation 4.4 gives C = 2, hence, β = 1
2 .

Figure 4.13 shows the results of the fitting for each network. We can see that both power-

law and log-normal distribution models offer a good fit to the degree data (in CCDF)

of Web-API affiliation (Aff), BA and PSO based networks , while the exponential and

Poisson distribution models fit poorly to the data. For the correlation-based network,

the degree data-points fit fairly well to power-law. We measure the plausibility of each

distribution following the same procedure as in Section 3.2.1, Table 4.3 shows the

resultant p-values for each distribution model. Clearly, power-law is the most plausible

fit for all the networks with Web-API affiliation (Aff), BA and PSO based networks

having high p-values scores 0.784 ,0.728 and 0.830 respectively. Moreover, the PSO

network fit significantly to the log-normal distribution with p-values = 0.636, validating

the applicability of the network data in simulating real-world API interactions (?, ?).

We apply equation 3.2 to estimate the degree exponent γ using MLE. The γ values for

the BA-based Network and the PSO-based network are 2.85 and 3.01 (close to that of

the Internet ∶ γ = 3.42 (Barabási, 2016)) respectively . For both BA and PSO-based

network, we estimate the lower cutoff for the scaling region as kmin to be 3, which is

consistent with the number of links m used to grow the networks during simulation

(the minimum degree). For m values between 2 − 10, both models produce scale-free

network with degree exponents γ between 2.8 − 3.2 when fitted to power-law model.

The exponent γ remains thesame for larger values of m.

Chapter 4. Constructing Evolving Web-API Networks 178

Figure 4.13: Fitting Power-law (PL), Log-normal, Exponential, and Poisson models to
the Web-API Networks degree data.

Table 4.2: Web-APIs Networks Properties and Navigation Performance
Properties/Networks Affiliation Correlation BA-based PSO-based
Nodes (N) 7410 17959 17959 17959
Edges (m) 13231 137902 53877 53877
Node type mashup −API API −API API −API API −API
Network type static-asymmetric static-symmetric dynamic dynamic
Avg. Degree 2 21 3 3
Avg. Path Lenght 4.3 6.2 4.45 5.9
Diameter (D) 15 23 6 11
Degree Exponent (α) 2.1 - 2.7 3.1
Clustering (C) 0.18 0.55 0.006 0.72
No of Hubs (k > 100) 15 617 8 19
Navigation Eff (EC) 0.073 0.42 0.232 0.85
Avg. Closeness 0.303 0.133 0.226 0.175

Chapter 4. Constructing Evolving Web-API Networks 179

Figure 4.14: PDF plot with log binning of the Fitness-based Web-API network degree
distribution).

Analysing Small-World Properties in Web-API Network and their Correlation

with API Discovery

We measure the two specific properties in the Web-API networks that characterised

small-worldness: average path length and local clustering coefficient.

Average Path Length : This is the mean distance between two nodes, averaged over all

pairs of nodes in the Web-API networks. From discovery perspective, a short average

Table 4.3: Plausibility of fitting different distribution models to the Web-API Networks
degree datasets

API Networks Power-law Exponential Log-normal Poisson
kmin p-value γ p-value γ kmin p-value γ p-value γ

Affiliation 1 0.7841 2.2163 0.0000 - 1 0.687 - 0.0002 -
BA-based 3 0.8301 2.8531 0.00001 - 3 0.580 - 00000 -

PSO-based 3 0.7281 3.0157 0.00001 - 3 0.673 - 0000 -
Correlation-based 21 0.259 - - - 21 0.262 - - -

Chapter 4. Constructing Evolving Web-API Networks 180

path length indicate high reachability of nodes (Borgatti, 2005), that is, most node can

be reached from others through small number of links. Table 4.2 shows the average path

length of each of the networks: Affiliation network , BA and PSO-based API networks

average path length are 4.30 , 4.45 and 5.90 respectively.

Clustering Coefficient: We measure the local clustering coefficient (CCi) of node i

with degree ki, which quantifies how close node i′s neighbours are to being a clique (a

complete graph). CCi is mathematically defined as :

CCi =
2∣ei∣

ki(ki − 1)
(4.14)

where ∣ei∣ is the number of edges shared by the direct neighbors of node i (number of

triangles formed by node i and any of its two neighbours) (Silva & Zhao, 2016). We can

see that CCi ∈ [0,1], if the neighborhood is fully connected, the clustering coefficient

is 1, and a value close to 0 means that there are hardly any triangular connections in the

neighborhood. In service discovery, high clustering values are desirable, the strongly

interconnected nodes can be exploited to create local collection of specialized clusters

which could aid discovery (W. Chen et al., 2015b). Fig. 4.15 shows the clustering

coefficient distributions across the API networks. Clearly, the PSO network has very

high number of nodes with CCi scores close to 1, while the BA-based Web-API network

has a CCi scores are close to 0 (consistent with the empirical result in (Barabási, 2016)).

Table 4.2 shows the average clustering coefficients (CC) for the networks. The PSO-

based network has very high CC score with average clustering coefficient 0.72 and

0.55 respectively − an indication that many nodes are tightly connected by sharing

common origins. On the other hand, the clustering for the BA-based API network is

very low (close to 0), with average average clustering coefficient=0.006, which shows

that most nodes did not form clique with their neighbours. This is again consistent

with the results in (Barabási, 2016). The affiliation network has an average clustering

Chapter 4. Constructing Evolving Web-API Networks 181

Figure 4.15: The clustering coefficient distribution of the Web-API networks.

coefficient= 0.18, an indication that nodes in our popularity-similarity API network is

better connected than the APIs in ProgrammableWeb system .

Analysing Path-Based Centrality in Web-API Network and their Correlation

with API Discovery

Centrality measures quantify how important nodes or edges are in a network. There are

different types of centrality measures (Silva & Zhao, 2016). Here, we only focus on

closeness as a path-based centrality measure because of its relevance to API discovery.

We measure the Closeness centrality of nodes in Web-API networks to reflects the

closeness between a node and other nodes in the network. Thus, the closer a node is to

all other nodes in the network, the higher the centrality of the node is. For the Web-API

network, the closeness centrality Ccl(i) of node i is defined as the inverse of the average

shortest path length of the node i to all other nodes:

Ccl(i) =
N − 1

∑j≠i dij
, (4.15)

Chapter 4. Constructing Evolving Web-API Networks 182

Figure 4.16: Closeness distribution for Web-API Networks.

This simply means we measure for node i the average shortest path length from i to all

other nodes j in the Web-API networks, then take the inverse of farness, where dij is the

shortest path length between nodes i and j. Nodes with low closeness scores have short

distances from others, and so will tend to be discover quicker, assuming that search

originates from all other nodes with equal probability, and also assuming that whoever

is searching manages to travel along shortest paths. Figure 4.16 shows the closeness

distribution of the Web-API networks. We note that even-though some nodes in the

affiliation network have high closeness scores (between 0.2 - 0.4), the percentage of

highly ′close′ nodes is small compare to our proposed networks due to the few number

of nodes involved in this network. As reported in Table 4.2, the average closeness scores

are 0.303, 0.226, 0.175 and 0.133 for affiliation , BA-based, PSO-based and Correlation

Web-API networks respectively.

Navigability of Web-API Networks

From API discovery standpoint, a highly navigable API-network is desirable. For

example, in a highly connected network, users can explore the network characteristics

Chapter 4. Constructing Evolving Web-API Networks 183

such as shortest paths to navigate the network starting from the hubs. Thus, we measure

the navigation performance of the Web-API network using the distance between the

network nodes. We consider navigation as a simple process of progressing from a source

node to the next node with the closest geodesic distance to a desired target node, then

terminating when the target is reached. We adopt the navigation efficiency formulation

described in (Seguin, Van Den Heuvel & Zalesky, 2018) which used the inverse of

shortest-path length to measure the navigation performance. First, we compute the

navigation efficiency Eij for transversing between nodes i and j in a given Web-API

network to be inversely proportional to the navigation length lij , that is Eij = 1
lij

, where

lij = liu + ⋅ ⋅ ⋅ + lvj where {u, . . . , v} are sequence of intermediate service nodes visited

during the navigation process. In case where there is no path between i and j, lij = +∞

with resulting Eij = 0. We compute the average navigation efficiency for each API

network G as follows:

E(G) = 1

N(N − 1) ∑i≠j∈G
1

lij.
(4.16)

Using the information in the Web-API networks, we compute the navigation matrix

{lij} as the shortest path length between two generic nodes i and j. This metric

is similar to network global efficiency which is used to generalize the small-world

behaviour (Barabási, 2016). We also compute the local navigation efficiency as the

average of efficiency of local subgraphs : Eloc = 1
N ∑i∈GE(Gi)

Table 4.2 shows both EG and Eloc for the Web-API networks. Both PSO-based and

Correlation Web-API network show relatively high local efficiency and moderate global

efficiency −the PSO-based Web-API network has 85% and the correlation network has

42.1% local efficiency.

Chapter 4. Constructing Evolving Web-API Networks 184

4.6 Chapter Summary

In summary, we conclude from the results of our analysis that the proposed evolving

Web-API networks not only solve the isolation problem associated with a typical Web-

API ecosystem but they also exhibit common topological properties found in real world

networks system like WWW, internet, biological and social networks (Barabási, 2016;

Borgatti, 2005; Albert et al., 1999) which can be exploited in API discovery. Both the

BA and PSO-based Web-API evolving networks preserved the system and network

properties of the API ecosystem (the ProgrammbleWeb modelled as Affiliation network).

The PSO-based, Web-API network enables the integration of functional similarity

into the network construction and thus induces properties such as high navigability

and clustering coefficient which can be exploited in API discovery application. The

measures of the PSO network indicate that the network clearly exhibit similar properties

commonly found in a classical small-world network. Results presented in this work will

not only provide insight into the topology of the Web-API ecosystems but also serve

as a practical guide for designing an evolving-network-based solution for Web service

discovery.

Chapter 5

Complex Network-Based Web Service

for Web-API Discovery

The emergence of Service Oriented Computing as an effective computing paradigm

for assembling complex and composite Web applications from distributed, standalone

application components like Web-APIs, have helped in simplifying software devel-

opment processes, increasing service reusability and reducing software development

cost and time (Metrouh & Mokhati, 2013). There have been a rapid growth in the

number and popularity of Web services due to the continual developments in Web

service technology, and the widespread adoption of RESTful architecture and cloud

computing. The number of service directories, portals and marketplaces where services

providers can be advertised their services is also increasing. Other emerging computing

technologies and platforms like cloud , big data technologies and mobile computing

are leveraging and exploring various service functionalities and benefits to facilitate

their respective operations (Bouguettaya et al., 2017; Tan, Fan, Ghoneim, Hossain &

Dustdar, 2016). Web-APIs such as Google-Maps, Twilio and Twitter APIs form the

building block of many mobile and web-based applications. They provide means for

simplifying cross-organisational interoperability, and enable the integration of business

185

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 186

functionalities over the Internet. Because of the wide and continuous adoption of Web

services, it is expected that they will continue to secure a core role in various com-

puting domains and increase in numbers, and thereby promoting the emerging service

economy (Tan et al., 2016). Modern Web services with features such as RESTful Web

services, JSON data, and/or JavaScript interface are usually called Web-APIs 1 in order

to distinguish them from the traditional SOAP-based Web service. These Web-APIs can

be published, discovered, selected by API consumers e.g. software developers. They

are capable of communicating with both applications and users, and can be used to

create new, value-added application − known as composition services or mashups −,

which combine multiple Web-APIs of diverse functionalities from different sources to

satisfy complex user requirements. This process shortens software development life

cycle and forms the basis for the formation of the so-called Web service ecosystem

(Barros & Dumas, 2006a; Lyu et al., 2014), where new services emerge, some old ones

perish, and service vendors and developers collaborate to develop innovative software

solutions. A typical representation of Web service ecosystem is ProgrammableWeb 2,

which is currently the largest online Web-API directory, with over 19,000 Web-APIs

belonging to more than 400 predefined categories, and over 7,000 mashups as at June

2020. The obsolescence of some existing Web-APIs and the emergence of new ones

coupled with the dynamic interactions that exist among objects of the ecosystem over

time drive Web-API ecosystems evolution (Huang et al., 2012b).

Various research efforts have been invested into advancing service computing domain,

particularly, in the context of Web service discovery. The processes for discovering, se-

lecting and composing existing Web-APIs have become more practical and reoccurring,

especially when developers aim for fast and delivery of software applications. Service

discovery as one of the key processes (N. Zhang et al., 2018) for building service-based

1https://en.wikipedia.org/wiki/Web_API. Note that in this paper, we coin "Web" and "APIs" together
as one term "Web-APIs" to emphasize the atomicity of this term.

2http://www.programmableweb.com

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 187

systems(SBS), generally, involves the process of searching/finding set of candidate

services that satisfy specific user’s requirements (Metrouh & Mokhati, 2013). Due to

the challenges associated with service discovery tasks, various approaches have been

proposed to handle or improved existing service discovery frameworks. Most of the

existing service registries are based on discovery approaches such as keyword-similarity-

based (Cong et al., 2015; He et al., 2017) and semantic-based discovery (W. Chen et

al., 2017; Lamine, Zghal, Mrissa & Guegan, 2017; J. Wang et al., 2017; N. Zhang et

al., 2018). Keyword-based technique mainly discover services via matching of user’s

queries with service description or keywords using common information retrieval tech-

niques such as Term-frequency-Inverse-Document-Frequency (TF-IDF) (Dong et al.,

2004) and Vector space model (Platzer & Dustdar, 2005). On the other hand, semantic-

based approach incorporate ontological concepts (Lamine et al., 2017), semantic

information for both users and services with keyword-based to improve discovery

performance (N. Zhang et al., 2018).

However, despite the outstanding progress made so far, the discovery and uptake of

Web-APIs on a Web scale has been significantly less than initially anticipated. The

continual increase in the number of APIs on the internet coupled with numerous number

of APIs with similar functionalities, makes it very challenging for API consumers

to discover suitable ones for software development. Most Web-APIs published on

the Web are never used; only few of them have ever been discovered by users or

invoked (W. Chen & Paik, 2013) in mashups. For instance, about 75% of Web-APIs in

ProgrammableWeb have never been invoked in any composition (Duan & Tian, 2017).

Moreover, the ever-increasing number of Web-APIs on the internet coupled with their

diversity, poses a new, challenging search/discovery problem; that is, finding suitable

Web-APIs out of the tens of thousands present on the internet. For a service consumer

who intends to compose a new-value added service (mashup), the first step is to search

some online Web-APIs repositories like ProgrammableWeb either by using functional

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 188

descriptions of require API components or using generic descriptive service requests,

and then select appropriate existing Web-API from the repository. However, it is very

challenging to sieve through large number of candidate Web-APIs covering a wide range

of functionalities in different repositories, and select suitable Web-APIs that match

the exact user requirements especially when dealing with a complex mashup-oriented

Web-API requirements. As service consumers’ needs and software requirements are

evolving and becoming more complex, it is more difficult to find a standalone service

that can satisfy the requirements. Eventhough, existing discovery approaches such as

the semantic and keyword-based approaches have been able to achieved considerable

success in tackling service discovery challenges, however, recent studies (Weiss & G.R,

2010; Duan & Tian, 2017; Huang et al., 2012a) show that the problem still persist

and main issues are yet to be resolved, with most service yet to be discovered. This

is because existing approaches do not only have their unique downsides which limit

their performances especially when the user software requirements are complex, but

also ignore some specific information in there design that help in promoting/enhancing

service discovery. A lot of efforts have been focused on indexing service repository

and matching algorithms with little or no attention the services social dimensions and

support for efficient user interaction with the service discovery systems. For example, it

is often difficult for users (especially new users with little or no software experience)

to specify high-quality query or know what keyword to use that better describe the

require service function when using a typical keyword-based discovery system. And for

semantic-based approaches, the lack of semantic information for modern web services

(especially for Restful APIs) and the complexity of building new ontology for service

discovery are the major setbacks (N. Zhang et al., 2018). As discussed in the earlier

chapter, another major reason that limits Web service discoverability (especially in the

commonly used API registries, hubs and portals) is that, Web-APIs registered on these

online directories such as ProgrammbleWeb.com are in general isolated, as they are

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 189

registered by diverse providers independently and progressively (W. Chen et al., 2017;

Huang et al., 2014b; Duan & Tian, 2017). These techniques consider web services as

isolated functional island with no direct link or interaction among each other, and ignore

the contribution of the Web service social dimension. Because of these isolated service

islands, service discovery faces the following challenges (W. Chen et al., 2015a). One

of them is that most techniques to service discovery ignore interactions with service

consumers, resulting in a high usability barrier for service users . Service consumers

can not find services by clicking on links that interest them, like they can on Web pages.

Due to the issue of service isolation, guiding service consumers to find services, starting

with the service at hand and expanding to peer services that may be integrated into more

complex functions, remains a difficult task.

Recent work on service discovery explore social networks (Hafsi et al., 2020; W. Chen

et al., 2017; Fallatah et al., 2014; Bianchini, De Antonellis & Melchiori, 2014; Kalaï,

Zayani & Amous, 2015; Maamar, Faci et al., 2011; Yao, Wang, Sheng, Benatallah &

Huang, 2018; Feng et al., 2015) to support service discovery frameworks. The integra-

tion of two domains, social computing and service-oriented computing creates a new

service discovery scheme and concept called Social Web Services (SWS). Incorporating

the social aspect into Web services can enhance their exposure and benefit them in

becoming active entities that can interact with each other through collaborative, compet-

itive and substitution processes. With social Web service, services can live in a global

interlinked network of services where they can better collaborate to satisfy complex

consumer’s needs. The majority of the existing works relied on limited network data

acquired from services repositories such as the co-invocation data and service historical

usage data to create the service networks, hence, the problem of service isolation still

persist.

This chapter address the task of Web service discovery from complex network perspect-

ive by developing an evolving, complex network-based, Web-APIs discovery service

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 190

that leverages the capabilities of Google custom search APIs 3 to recommend both

composite and single Web-APIs to users based on user’s service requirements. The

complex network-based discovery service explore various complex network properties

to support service selection for both simple and complex or composite service require-

ments . The chapter build on the findings in the previous chapters including the results

of the network analysis conducted on Web service ecosystem and the application of the

evolving networks constructed in Chapter 4 in solving service discovery. The chapter

presents the demonstration of how the evolving Web-API network can be applied to fa-

cilitate service discovery process through a prototype evolving complex network-based,

mashup-oriented Web-API discovery service.

The network-based service discovery approach presented in this chapter aims to leverage

both topological information of the proposed evolving Web service networks, and the

Web service system properties to attain better service discovery performance. The

prototype design of the complex-network-based service leveraged Google custom

search API feature to facilitate node ranking based on term frequency, functionality

and node popularity information. A strategy for aggregating candidate APIs from a

pool of search results based on the keywords in user’s query and the ranking position

of individual API in the search results is also introduced. To evaluate the accuracy of

our framework, the users’ service queries are modelled by exploiting word features and

structure of original service profiles using Latent Dirichlet Allocation (LDA) (Blei et

al., 2003). To validate the proposed discovery approach, the popular programmableWeb

dataset in a period of fourteen years (2005-2020) is used.

The rest of the chapter is structured as follows. Section 5.1 presents the background

concepts and motivation for the approach presented in this chapter. Section 52. present

the types, processing and structure of the dataset used for the experiments in this chapter.

Section 5.3 elaborates on the proposed approach; the sections also present various

3https://developers.google.com/custom-search/v1/overview

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 191

underlying techniques such as the aggregation technique and the page-Rank feature

adopted for facilitating node ranking . Section 5.4 presents the extensive experiments,

including a comprehensive analysis of results, using a real-world mashup-API invoc-

ation dataset from ProgrammableWeb. The section present the effectiveness of the

proposed approach by conducting extensive experiments on a real-world dataset crawled

from programmableweb.com. Compared with existing service discovery methods, ex-

perimental results show that our approach significantly improves API discoverability in

terms of precision and usefulness . Section 5.5 concludes the chapter.

5.1 Background and Motivation

This section provides some backgrounds about application of complex network theory

in modelling Web service system, follow by the motivating example of how this can

help solve Web-APIs isolation and improve service discovery.

5.1.1 Complex Network Applications

The method applied in this chapter is inspired by recent development in complex

network theory and its application. Over the past 20 years, complex networks have been

extensively studied in the network science domain, and several significant discoveries

have been made including the well-acclaimed small-world networks (Watts & Strogatz,

1998) and scale-free networks (Barabási & Albert, 1999). Many social, biological and

communication systems can be described or modelled using complex network models

whose nodes represents entities and edges represents the interactions among the entities.

Network scientists have used network models to address two related tasks (Pham et al.,

2015): (i) Studying the emergence of topological properties in complex networks and

investigating possible mechanisms underlying the network formation. (ii) Modelling

of dynamical processes involved in complex network systems in a way that enables

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 192

effective exploitation of the known topological features. For the first tasks, various

mechanisms that governs network topology and evolution such as preferential attach-

ment (PA) and growth have been investigated and are found ubiquitous among many

real world networks. For instance, the topology of the Internet and the World Wide Web

have been investigated using evolving network models and shown to be fundamentally

governed by the PA and growth mechanisms (Albert et al., 1999; Barabási, 2016). For

the second task, which involves modelling the dynamics of complex systems, several

network models that exploit certain attraction mechanisms and can capture common

topological features of complex networks have been proposed (Barabási, 2016; Y. Cao et

al., 2006; Caldarelli, Capocci et al., 2002). The Barabási-Albert (BA) model (Barabási,

2016) is the most widely known PA-based evolving network model, and serves as the

basis for several other models. The BA family of models generally exploits popularity

as the main dimension of attractiveness which underlies PA phenomenon, and explain

the emergence of scale-free structure characterised by heavy-tailed degree distributions

commonly found in growing networks. In order to overcome the limitation of Web

service discovery due to service isolation, this chapter presents how complex network

theory can be exploited to model the service interactions in their ecosystem, thereby

globally connect them.

5.1.2 Searchability and Navigability of Complex Networks

This research work is further motivated by key findings in network science that con-

nect certain topological characteristics of complex networks like small-worldness and

scale-freeness with functions such as searchability (Rosvall, Grönlund, Minnhagen &

Sneppen, 2005; Adamic, Lukose, Puniyani & Huberman, 2001; Watts, Dodds & New-

man, 2002; Liben-Nowell, Novak, Kumar, Raghavan & Tomkins, 2005) and navigability

of complex networks (Boguna et al., 2009; Boguná & Krioukov, 2009; X. Sun & Zhuge,

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 193

2014) which we consider important features for effective, user-aware and interactive

discovery systems. For instance, the famous Milgram’s "six degrees of separation" phe-

nomenon and small-world paradigm (Travers & Milgram, 1977) revealed something

fascinating in the structure of complex network systems−that without a global know-

ledge of the network topology, an object can reach the target node using, on average,

5.2 intermediate nodes, which practically validates the manifestation of social networks

as small-worlds. Following this interesting finding, researchers have conducted various

experiments to show that small-world phenomena exist in various real-world networks

including internet, WWW, email network, biological, transportation , citation , and

co-author networks (Albert & Barabási, 2002). Real-world networks with small-world

property exhibit certain topological properties including short average path length and

relatively high clustering coefficient, and several network generating models exist to

model the properties. Recent works (Rosvall et al., 2005; Adamic et al., 2001; Watts et

al., 2002; Liben-Nowell et al., 2005) show that small-world and scale-free properties of

networks can be exploited to improve the network node’s searchability − that is, the

property of being able to discover a target node efficiently through shortest-path with

local information. Similarly, there are algorithms (Boguna et al., 2009; Boguná & Kri-

oukov, 2009; X. Sun & Zhuge, 2014) like greedy routing that exploit network properties

like clustering coefficient,shortest-path-length and scale-free node degree distributions

to improved network navigability − a measure that describes efficient transversing from

a source node to the next node which is closest in proximity to a desired target node,

and stop if the target node is reached. We aim to replicate these developments in our

complex network-based Web service discovery framework to improve Web service

discoverability and enable effective user-interaction with Web service discovery system.

We use the two different types of network models that can generate network structures

and properties− like scale-free, small-world property and high clustering − similar to

those of real-world networks to construct Web service networks with high navigation

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 194

efficiency (E) and success ratio (Er) (Seguin et al., 2018).

5.1.3 Exploiting Web-API’s Functionality and Sociability for Its

Discovery

Web-API’s functionality is a set of functional properties that describe its operation

signatures including its input/output schema usually captured in the service textual

descriptions, while the Web-API sociability is its property or ability to interact with

other related Web-APIs (W. Chen et al., 2015a). Service models including Semantic

Web services, RESTful APIs only consider service functionality but not their social

aspect , and most Web service discovery approaches focused on using Web services

functional descriptions to facilitate discovery process and neglect the interactions among

the services. Service sociability can be enabled using network models to create social

links among services, and several authors have emphasized the importance of such

social connections for Web service discovery (Maamar, Faci et al., 2011; Maamar,

Hacid & Huhns, 2011; W. Chen & Paik, 2013).

The network-based discovery approach presented in this chapter is based on the assump-

tion that an evolving Web service social network that captures service relationships

or interactions, and preserves their social attributes such as service popularity in their

ecosystem, can be constructed to facilitate continuous service publication and discovery.

Therefore, by connecting Web services that are independently published into a global

social network, both social and functional properties of Web services can be exploited

to improve service discoverability.

5.1.4 Motivation Example

Consider a new service consumer, who wants to leverage different Web-APIs from

different domains (say Location, Jobs, Message) to create a mashup that allows users

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 195

to get current job vacancies that are close to a specified location, and display the job

vacancies as text message or notification on a device. Assume that the user enters

different functional requirements to discover most suitable set of APIs for the mashup;

First, the user query ProgrammableWeb directory by entering " recent jobs vacancies

close to location and message", the search results was 0, then, the user conduct another

search with only the keywords " recent job vacancy location message", the search result

still returns nothing. Then, user decided to use a combination of two key terms at a

time, using " recent job", "job vacancies", "job location", "job message". 5, 4, 31, 8

sets of Web-APIs were returned for each of the query respectively.

The following observations can be deduced from the simple search procedures and the

results:

• The search results of the first and second queries reflect the impact of query

length on the performance of ProgrammableWeb especially for complex user’s

requirement , that is, ProgrammableWeb performance decreases with increase

query length.

• There is clear vocabulary gap between the user’s requirements (queries) and

the service descriptions created by the providers. Many relevant Web APIs

are missing with respect to each request, and many irrelevant Web-APIs were

included in the search results.

• Manual long search and filtering through results maybe be required for users to

get results close to their requirements. User may not know what is the best choice

of words or combination of words to use in the query.

Other problem with the above illustration may include the lack of quality description,

and the subjectivity of service provider functional descriptions (Zhong et al., 2016). For

instance, in ProgrammableWeb, mashup "AllJobs.biz" have 5 component Web-APIs

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 196

- (indeed, GeoNames, Simply Hired Jobs, Bing Maps Locations, Juju Publisher) that

captured user’s initial functional requirements (say we use the first query to search the

ProgrammableWeb: "recent jobs vacancies close to location and message"). However,

the mashup was not included in the first and second search results, even-though it is

very relevant to the user’s requirement. The reason behind this shortcoming lies in the

provider’s description of the mashup : "AllJobs.biz is a job search aggregator which

lists latest job vacancies from a multitude of industries.". Though the mashup includes

location required APIs (Geoname and Bing Maps) and other relevant functionalities

, the PW discovery system could not return it because of the vocabulary differences

between the mashup’s description and the search terms. Moreover, when queries "jobs

vacancies" and "latest jobs vacancies" were used, the mashup came up because the

terms in user’s query were directly included in the providers description. Replacing

"latest" with "recent" also provides no result for query "latest jobs vacancies". These

issues are addressed in this chapter.

5.1.5 Problem Formulation

Consider a typical mashup-oriented Web-APIs discovery problem defined as follows

: Given a user’s mashup query or request (usually a less detailed, ad-hoc functional

description), the mashup-oriented Web-APIs discovery algorithm need to receive the

user query and return ranked list of Web-APIs related to the functional elements

described in the query, where higher ranked Web-APIs in the list are potential candidates

for composing mashup that meets the user request. The mashup-oriented discovery

framework can be deployed via an active Web domain or an online repository like

the ProgrammableWeb where both Web-API users and providers can interact with the

framework through a Web interface. Based on this description, the network-based,

mashup-oriented discovery task can be represented as a typical information retrieval

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 197

task that includes ranking and link-as-you-go as sub-tasks, where a newly published

service is connected with other related services mainly based on its functional and social

properties.

Figure 5.1: Complex network-based Web-API Discovery System using Google Custom
Search API.

In order to solve this problem, an evolving, popularity-similarity, network-based Web-

API discovery framework is proposed. Figure 5.1 shows the components of the proposed

framework. These include 3 key components: (i) the complex network component

with popularity (preferential attachment) and similarity as the network drivers and the

Web-API textual profiles as node attributes. (ii) Incorporating page ranking service for

node ranking process (iii) Aggregating diverse Web-APIs to facilitate mashup-oriented

API discovery. Further descriptions of these components and the workflow of the

framework based on Algorithm 5.1 are presented as follows:

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 198

Algorithm 5.1: Mashup-Oriented Web-API Discovery Algorithm
Input:

1: G(V ,E): the Web-API social network
2: Qt = {t1, . . . , tn} the n number of keywords that define the mashup the user wants

to compose.
3: k : the number of top ranked APIs that will be selected per ti ∈ Qt search result

Output:

1: Lm: Ranked list of selected component Web-APIs for Mashup m

Procedure

1: Remove stop words from Qt

2: stem Qt

3: B ← empty array
4: for i = 1 to n do
5: R = G ← Gcse(ti)
6: append R[∶ k] to B
7: end for
8: Lm ← Aggregatek(B) using ranked-choice voting into a single list
9: return Lm

5.2 Data Processing

Both raw and synthetic data are used for the experiment conducted in this chapter.

The experiment and analysis conducted in this chapter is based on the data acquired

from one of the largest Web-API registry−ProgrammableWeb. PW is used as the

testbed for the network-based Web-API discovery service. The descriptive raw data

of Web-APIs and mashups from the registry, spanning from June 2005 to January

2020. Since the backend database of ProgrammableWeb is publicly inaccessible, only

the web pages can be employed for acquiring the data. Hence, Web-APIs data from

ProgrammableWeb web pages were crawled. The acquired web pages are then separated

into two groups: Web-APIs and mashups. The textual information for each Web-API

includes name, descriptions, publication date, and category ; Likewise, each mashup

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 199

also contains the above metadata plus the list of Web-APIs invoked within it. For the

initial pre-processing, the mashup-API interaction matrix was extracted. Redundant

mashup points were removed, mashups with no information other than their names

were identified and discarded. After the pre-processing, the number of mashups is then

reduced to 5882 mashups. Even though there are over 17959 Web-APIs in our dataset,

only 1,525 are involved in the mashup-API interaction matrix, which is the total number

of APIs invoked by the mashups (i.e. only 8.5% of the total number of Web-API were

involved mashup-API interaction matrix). This indicates that only a few Web-APIs

are frequently invoked in the mashups with majority of the APIs isolated from this

community, therefore are rarely used. Moreover, there are only 11,287 mashup-API

interactions which indicates a very low matrix density of 1.26× 10−3. About 80% of the

Web-APIs involved in the interaction are consumed less than 5 times. These statistics

confirm the meagre in the uptake of Web-APIs and the lack of interactions within most

related APIs in the ecosystem.

5.2.1 Pseudomashups − Generating synthetic mashups

In order to have quality, objective and highly dense dataset as ground truth for the

experimental purpose, synthetic mashups called Pseudomashups are generated . Each

pseudomashup contains at least 3 component Web-APIs from the original mashups

dataset with their descriptions generated from the composite functional keywords from

each of the components. The pseudomashups is constructed by exploiting the historical

usage of APIs within mashups, and the features of the original descriptions (for both

APIs and mashups) crawled from ProgrammableWeb.com. The following procedure

describe the step-by-step processes involve in generating the synthetic mashups.

• First, the service interactions in ProgrammableWeb are modelled in the form of an

affiliation network, which depicts the invocation relationships between mashups

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 200

and Web-APIs.

• Then both the mashups invocation distribution and Web-APIs popularity (degree)

distribution from the network are extracted, where the Web-APIs popularity

distribution is the number of times a particular Web-API is consumed or invoked

by mashups (similar to degree distribution).

• An ordered list L of all Web-APIs in the ecosystem is then created following

similar node ordering strategy for the network construction procedure (described

in chapter 4).

• The, a weighted sampling process (W. Wu, Li, Chen & Zhang, 2017) is directly

applied. where the normalized popularity information is used as the sampling

distribution:

– First, the Web-API degree distribution is normalized to achieve a probability

distribution p, where p follows thesame sequence as in the ordered API

candidate list L.

– Then, i number of Web-APIs are chosen from L based on the p, where i

follows the mashup invocation distribution.

• Based on this strategy , it is possible to replicate thesame mashup structure similar

to the original data but more comprehensive. Since mashups descriptions are fun-

damentally generated from their component’s descriptions, new descriptions are

generated for the each pseudomashup by simply merging the textual descriptions

of their respective component APIs selected through the sampling process. We

were able to create addition 6000 sets of pseudo-mashups which were used as

ground-truth in validating our approach.

• Finally, to remove noise and redundancy, further preprocessing is conducted

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 201

on the description of each pseudomashup using natural language preprocessing

techniques. First, the tokenization of the descriptions is done and meaningless or

redundant terms are discarded. The root terms for each description are retained.

Moreover, instead of directly using the service descriptions for user’s query, a more

objective mashup queries are generated for the experiment based on the original (

since the original dataset is limited and some data points lack quality descriptions).

To do this, Latent Dirichlet allocation (Blei et al., 2003) was employed to construct

the query for each the pseudo-mashup. Technically, the functional requirement of

each pseudomashup is modelled as query using LDA by feeding collection of tokens

generated from the pseudomashup description documents into a Gibbs sampler with

predefined number of topics as described in (Blei et al., 2003), and then generate topic

distribution for each document, and also word per topic distribution. This is done

based on the assumption that each topic represents a particular functional component

of a pseudomashup. Therefore, for each topic assigned to a pseudomashup document,

a collection of dominant words (based on the probability assigned to the words) is

retrieved. For example, mashup document A with Topic 0 may contain [0.032"inten-

tionally" + 0.022"left" + 0.021"fork" + 0.021"blank" +0.020"resource" + 0.005"user"

. . .]. This shows the top 10 words that contributed to Topic 0 of a document (mashup)

with their degree of importance as weight. Finally, the document per word dictionary

for each mashup is generated. This represents a map of pseudomashups with respective

probabilistic-based generated queries.

5.2.2 Refining APIs descriptions for Web-API network nodes

The performance of keyword-based service discovery systems like ProgrammableWeb

usually rely heavily on the quality service descriptions created by the providers (Tapia,

Torres & Astudillo, 2011; Zhong et al., 2018). However, service descriptions created

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 202

by the providers are usually highly subjective, limited to the providers’ opinion of the

services functions. This often leads to vocabulary gap between user’s service functional

requirement (define in form of query) and the providers’ original service descriptions,

making it difficult for many existing service discovery algorithms to capture potential

services relevant to the user’s requirement. Service consumers can use combination of

terms totally different to the original description to search for a particular service. For

instance, a developer may use an informal term eatery to search for restaurant, while

the former will return just a single API in ProgrammableWeb, the latter term will return

more that a dozen APIs. The challenge of vocabulary gap is more pronounce when

searching for mashups or component services for mashups development. Normally,

the description of a particular mashup should reflect the key functional features of the

mashup’s component Web-APIs. For example, a mashup SongsNearMe with description

"a web application that allows a user to discover new music based on what is popular at

a local bar and college pub" would draw components based on the key words discover,

music, location, college, streaming and maybe real time. However, if the description

is lacking key terms for the component services, it would be difficult for description-

based discovery systems to retrieve the candidate services. Furthermore, mashup profile

should be consistent with the current state of the ecosystem. As Web-APIs evolves,

their names, functions and invocation history information normally change over time.

For instance, in ProgrammableWeb, some Web-APIs either have outdated profiles or

have become obsolete. These changes could lead to inconsistency in the information

provided in service registries. After the initial pre-processing of the datasets, about 20%

mashups still contain information about either depreciated APIs or APIs invoked that

have been further decomposed.

Since the proposed evolving network-based, Web-API discovery approach also explores

service functional descriptions as one of the nodes attributes used to facilitate node

ranking and retrieval, an attempt is made to improve the quality of the descriptions. To

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 203

address the discrepancies in the Web-API descriptions and improve the quality, similar

probabilistic topic-modelling approach introduced in (Zhong et al., 2016) is employed.

The approach is based on the assumption that the mashup descriptions are generated

by its component APIs. Following the procedure described in the work, the degree

of similarity between each Web-API functional features and the topic feature of the

mashups that invoked them is determined. then, the resulting similarity weights is

sorted in descending order. Then the Web-APIs descriptions are augmented with closely

similar functional information contained in the mashup descriptions where the APIs

were invoked .

5.3 Proposed Approach

This section introduces the proposed evolving, complex network-based Web-API dis-

covery framework. First, a typical Web service discovery problem considered in this

work is defined, and then the components of framework are described. As shown

in Figure 5.1, the proposed Web-API discovery framework consists of three major

components: (i) An evolving complex-network of Web-APIs. (ii) the integration of

Web-API network with Google search functionality (iii) an aggregation function for

combining services with diverse functionalities based on users query. We describe in

details of the components of the framework in following subsections:

5.3.1 Network-Based Web-API Discovery with Google Custom

Search API

This section demonstrates how to exploit the Web-API social network and semantics of

the Web-APIs descriptions to facilitate mashup-oriented Web-API discovery.

The proposed Web-API discovery service prototype utilizes the popularity-similarity

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 204

Web-API network to connect all APIs into a global network. The network is constructed

following the procedures described in chapter 5 with set of the network parameters

that are defined based on the results of the network analysis (described in chapter 4)

performed on the Web-API ecosystem datasets. In order to allow users interact with the

discovery framework, both the nodes V − the Web-APIs with their descriptions, and

edges E − as the social interactions among Web-APIs of the network G, are published

via an active Web domain. Then, the capability of Google-page ranking feature is

Incorporated into the framework through the invocation Google Custom Search API

(Gsce), which is aim at facilitating Web-API nodes ranking of the network. Therefore,

user’s can search for relevant mashup components on the network using the Google

search interface. This simplifies the retrieval and display of the search results.

Algorithm 1 provides the workflow of how each of the components and their associated

processes are interconnected. Given a user mashup requirement Qt with n number of

keywords that define the mashup the user wants to compose, after further preprocessing

including pruning, stemming and tokenization, the resulting ti ∈ Qt , where 0 < i ≤ n,

is used to search the network G via the Gsce interface. For each search process, top

k Web-API is retrieved, and stacked sequentially on preceding search result to get an

array of list B.

Then, an aggregation function inspired by ranked-choice voting procedure 4 is defined

to generate a single ranked list of candidate Web-APIs for the user’s mashup require-

ment based on frequency of occurrence and the position of each Web-APIs in the

ordered lists B. This is done to determine each Web-API position in the final top − k,

cumulative ranked list Lm for Qt. For instance, addressing the problem described

in section 5.1.4, if the network-based discovery service is queried using pair terms

(ti, ti+1), (ti, ti+2) and (ti, ti+3) where ti ∈ Qt, and get b1 = {api1, api2, api3, api4},

b2 = {api2, api5, api6, api3}, b3 = {api2, api5, api6, api3} as top − k lists for each pair

4https://en.wikipedia.org/wiki/Ranked_voting

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 205

term query respectively. Then, the following procedure explains how the aggregation

strategy works:

• First, a weight, which is computed as the inverted-rank of each elements in lists

b1, b2, b3, is assigned to each element in the list so as to preserve that rank 1 is best.

For the example, the result of the above example will be : b1 = {api1 ∶ weight =

1, api2 ∶ weight = 1
2 , api3 ∶ weight =

1
3 , api4 ∶ weight =

1
4} and thesame process

would be applied to b2, b3.

• Then, in order to get the cumulative rank score for each element in the lists,

the mean weight for each API across all lists (b1, b2, b3) is computed. For the

example, the cumulative rank for each element in B for the example above

would be {api1 ∶ weight = 1.5, api2 ∶ weight = 1.5, api3 ∶ weight = 0.58, api4 ∶

weight = 1.25, api5 ∶ weight = 0.5, api6 ∶ weight = 0.33, api7 ∶ weight =

0.33, api8 ∶ weight = 0.25}

• Then, elements in the list are ranked based on each API cumulative

weight score to create an ordered list of aggregate Web-API. The list ∶

(api1, api2), api4, api3, api5,

(api6, api7), api8

• For rank ties, such as the (api1api2) and (api6, api7), the popularity information

of the APIs in the list is used as tie breaker. Using thesame rank choice voting

procedure, the lowest scoring element from the lists can be eliminated, and then

the scores recalculated until there is a winner.

5.4 Experiments and Results

This section reports the extensive experiments conducted to demonstrate the perform-

ance of the proposed discovery framework on ProgrammableWeb dataset. Table 5.1

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 206

Table 5.1: Summarize Features of the Experimental Dataset.

Statistics Values
Number of Web-APIs 17,959
Number of original mashups 5882
Average number of Web-APIs invoked by Mashups 2.1
Number of unique terms for mashup description 22 ,626
Number of Pseudomashup used for the experiments 6000
mashup-API Interaction Matrix Density 1.26 ×10−3

shows the stats of our datasets. The experiments aim to answer the following three

research questions:

1. How does the proposed evolving network-based, Web-API discovery service

performs in comparison with the state-of-the-art service discovery methods in

both the single, API-oriented discovery and mashup-oriented discovery tasks ?

2. How does the popularity-similarity based evolving network Web-API discovery

perform in comparison with random-based Web-API network using thesame

Google page-ranking feature for both networks?

3. How does m (number of links) parameter setting affects the Web-API discovery

performance using thesame schema of the preferential-attachment based evolving

Web-API network ?

5.4.1 Evaluation Metrics

Since the proposed Web-API discovery approach returns ranked lists of Web-APIs, com-

monly used ranked-based evaluation metrics for information retrieval systems (Schröder,

Thiele & Lehner, 2011) are used to evaluate the quality of the discovery results and the

overall performance of proposed API discovery solution.

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 207

Mean Average Precision (MAP@K) :

MAP is the mean of Average Precision. Precision P also known as true positive

accuracy (Schröder et al., 2011) is the ratio between the discovered APIs in the ranked

list that are relevant and the total number of APIs in the retrieved result. Precision

estimates the probability that a recommended Web-API is the one preferred for the

user’s service composition or API request (in the case the pre-defined pseudomashup

request). P@K is a precision measured by considering only the top-k elements in the

ranked list. Mean Average Precision(MAP) at top-KWeb-APIs in the ranking list is

defined as :

MAP@K = 1

∣Pm∣ ∑m∈Pm

1

Nm

K

∑
r=1

(Nr

r
.I(r)), (5.1)

where Pm is the set of mashups in the test set (the pseudomashups). Nm represent the

number of component APIs of pseudomashup m , and ∣Pm∣ is the cardinality of Pm.

Nr denotes the number of component APIs of m that occurred in the top r APIs of the

ranking list. I(r) is a function equalling to 1 when the API at ranking position r is a

component API of pseudomashup m, otherwise equal to 0. For each pseudomashup

m, we run the description as user’s query, we get Nr number of actual Web-APIs

components of m in the top r ranking list.

Normalized Discounted Cumulative Gain (NDCG@N)

Normalized Discounted Cumulative Gain (NDCG) (Järvelin & Kekäläinen, 2002)

measures the quality of a ranked list based on the relevance of the items, discounted by

the log of their position on the ranking list. In this case, the usage of the metric is based

on two assumptions: (i) that highly relevant Web-APIs is more useful than marginally

relevant Web-APIs. (ii) that the lower the rank position of a relevant Web-API in the

ranking list, the less useful it is for the service consumer, since it is less likely to be

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 208

examined by the consumer. Therefore, gain or usefulness of Web-API is discounted at

every lower rank, penalizing relevant APIs at the lower ranks. We evaluate the Web-API

retrieval results by computing the NDCG at top-K which considers the subset of a

discovery result from rank 1 to N using the following equation:

NDCG@K = 1

∣Pm∣ ∑m∈Pm

1

Sm

K

∑
r=1

2I(r) − 1

log2(1 + r)
(5.2)

where Sm represents the ideal maximum Discounted Cumulative Gain (DCG) score

that can be achieved for m . where r is the position of a Web-API in the search result

ranked list and I(r) is the relevance score of the rth result in Web-API on the ranking

list, and 0 ≤ I(r) ≤ 1. For our experiment, the value I(r) is taken to be the normalized

popularity value of API in rth position. The higher values of NDCG indicates better

ranked lists and therefore better correctness.

5.4.2 Baseline Methods

The performance of the proposed evolving complex network, Web-API discovery

service is compared with five related information retrieval baseline methods:

• TF-IDF (B. Xia et al., 2014) : For this approach , Web-APIs are discovered or

recommended based on the similarities between the APIs in the API repository

and the mashup request provided by the service consumer. The term frequency of

each service document is extracted, and the Term-Frequency Document (TDM)

matrix is created from the Web-API corpus. Then, the matrix is transformed

to a TF-IDF weighted matrix. Web-APIs are then recommended based on their

TF-IDF weight similarities with the mashup request or query. The similarity can

be measure by Kullback-Leibler divergence.

• ProgrammableWeb (PW) : ProgrammableWeb recommend Web-APIs to users

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 209

mainly based on the popularity of the each API, and the functional similarity

of the APIs and the user request (similarity between user’s requests and the

predefined description with tags used in programmableWeb repository).

• PoP-K : This method discover Web-APIs based on popularity. The popular-

ity of an API is measured by the usage frequency by mashups from historical

information. Only the top N Web-APIs in relative the API categories (as in

programmableWeb.com) are recommended according to the mashup query. After

mapping the user query with its knowledge based, programmableWeb simply

calculates the number of times each API is consumed in the mashups and ranks

them based on their popularity. The system then recommends Web APIs based on

their popularity and the degree of similarity between use’s query and Web APIs

descriptions.

• LDA (C. Li, Zhang, Huai, Guo & Sun, 2013): The LDA-based service discov-

ery approach utilizes probabilistic model to analyse Web-API documents and

generate topics-based representation for the Web-APIs. After estimating the

model parameters, the relevance score of Web-APIs can be determined with

respect to user Web-API request by estimating the similarity between the user

request topic distribution and the topic distribution of the Web-APIs. Finally, the

recommendation list is generated based on the relevance scores.

• Random Web-API Network (R-Net) (Barabási, 2016): To evaluate the ef-

fect of popularity information in our service discovery service, the popularity-

similarity based, evolving Web-API network is compared with the randomly

generated Web-API network. The Erds−Rnyi random network model discussed

in (Barabási, 2016) is used to generate a random-network that connects all Web-

APIs. The following steps are followed in generating the random-network of

Web-APIs:

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 210

1. First, the network is initialized with N isolated Web-API nodes, where N is

the total number of Web-APIs in the original ProgrammableWeb dataset.

2. Then, a node pair is selected at random with a random number between

0 and 1. If the number exceeds probability p, the selected node pair is

connected with an edge, otherwise, they remain disconnected.

3. Repeat step (2) for each of the N(N − 1)/2 node pairs.

The same google ranking feature employed in the proposed discovery architecture

is also adopted for the random network-based discovery baseline approach to

evaluate the impact the popularity and similarity information in the proposed

network-based discovery solution.

5.4.3 Results and Analysis

This section discuss the results and analysis of the experiments conducted in this chapter,

and provide answers to the research questions.

Performance Comparison (RQ-1)

The effectiveness of the proposed popularity-similarity network-based Web-API discov-

ery approach is examine in this section. The proposed approach is compared with other

competing Web service discovery baseline approaches.

The pseudomashups dataset is used as the groundtruth for this experiment. Using

the pseudomashups descriptions as the service composition request, search request is

send through to the Web-API network for relevant component Web-APIs for each user

mashup requirements, and then the Average precision of the ranked candidate list is

measure against the groundtruth. More specifically, the following observations are

made:

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 211

Table 5.2: Web-API Discovery Performance By Different Methods
Methods MAP@5 MAP@10 MAP@15 NDCG@5 NDCG@10 NDCG@15

TFIDF 0.5845 0.5839 0.5771 0.5679 0.5696 0.5703

LDA 0.5865 0.5792 0.5769 0.5735 0.5744 0.5940

PoP-K 0.5882 0.5824 0.5786 0.5771 0.5784 0.5789

PW 0.6004 0.6185 0.6155 0.6155 0.6149 0.6112

PoP-API Net 0.6213 0.6184 0.6155 0.6079 0.6109 0.6127

• Table 5.2 reports the performance comparisons of the experimental results with

a step 5 (i.e. top-k= 5/10/15) for the competing approaches on the evaluation

metrics. Clearly, the proposed approach exhibits improvements (in terms of

precision and usefulness of the discovered Web-APIs to mashup requests) over

the competing services discovery baselines across the ranking positions. The

popularity-driven Web-API network coupled with the Google page ranking feature

significantly improves the relevance of candidate Web-APIs that were retrieved

and the precision with respect to the groundtruth.

• The MAP and NDCG results for K at 3, 5, 7, 10, 15 are shown in Figures

5.2 and 5.3 respectively, in all instance, the proposed Web-API network-based

discovery service gives quite good results, while all the baseline methods are

sometimes seriously inefficient especially for the higher K values. For instance,

the relevance and usefulness of discovered Web-API in the ranked results (which

is measured using the NDCG metric) with respect to mashup query decrease

significantly for all the baseline approaches at top 10 and 15, but increases for the

proposed approach.

Because ProgrammableWeb includes functionality based categorisation and gives

preference to popular APIs in each categories when recommending APIs, it

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 212

performs relative well for simple queries but poorly for complex mashup requests

(queries with multiple functional requirements). The advantage of the evolving,

complex network-based Web API discovery service to PW indicates that the social

dimension introduced to the discovery framework and API popularity information

have significant impact in increasing discoverability of the Web services. TF-

IDF shows poor performance because it only considers functional keywords and

cannot capture semantic similarity between two different keywords. Moreover,

the mean average precision (MAP) of the proposed significantly higher than that

of LDA, TF-IDF, PoP-K and ProgrammableWeb. The proposed network-based

discovery approach outperforms vanilla LDA-based discovery approach because

it does not only rely on the semantics of the Web-API node descriptions but also

incorporates other attributes like popularity, network/social features and node

semantics/functionality similarity .

In summary, the performance gain of the proposed approach can attributed to

the ability of the approach to exploit both the functional and social relationships

between Web-APIs.

Figure 5.2: Mean average precision for
top-K APIs discovery results

Figure 5.3: Normalized discounted cumulative
gain for top-K APIs discovery results

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 213

Impact of Preferential Attachment on Service Discovery (RQ-2)

As discussed earlier, one of the key driving mechanism of the proposed Web-API

evolving complex network is preferential attachment, where Web-APIs connect prefer-

entially to popular or already well-connected APIs. In this part, the impact of popularity

(simulated by PA mechanism) is evaluated from discovery perspective. The analysis

of how the popularity information introduced into the network construction affects

the Web-API ranking process of the ranking function incorporated with the Web-API

network-based discovery framework is conducted. This is done by comparing the

discovery performance of a random Web-API network to the proposed popularity-based,

evolving Web-API network. Using thesame number of Web-API nodes and attributes, a

random Web-API network (R-Net) is constructed, following the Erds −Rnyi random

network procedures as described in section 5.4.2 and use thesame Google-page ranking

feature as our proposed approach for node ranking.

As shown in Figures 5.4 and 5.5, the popularity-based evolving Web-API network

performs better than the random Web-API network in terms of precision and relevance

of discovery results with respect to the mashup requirement. This is because : (i) the

few very high degree Web-API nodes (popular Web-APIs that are most known and

frequently consumed) seem to be at the center of everything, while the low degree nodes

connect to the rest of the population through their high degree neighbors. From the

results, it can be observed that the node ranking feature considers both the functional

descriptions and popularity information in ranking the candidate Web-APIs for each

query. The more connection a candidate Web-API has and the closer it is to the mashup

query, the higher is rank position in the candidate list. It is worth nothing that the

popularity information does not only play a part in the automated discovery process

but also helps users in interacting with the Web-API network. For instance, users can

further zoom-in into the hubs (popular nodes) in the network and explore the Web-APIs

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 214

connected to them (similar to surfing the WWW by following interesting links).

Figure 5.4: MAP@K for Pop-API Net-
work vs. Random-API Network

Figure 5.5: NDCG@K for Pop-API Network vs.
Random-API Network

Impact of parameter m (RQ-3)

For this experiment, the impact of parameter m on the discovery performance of the

evolving Web-API network is evaluated by simply varying the value of m from 1 to 10.

Recall that parameter m represents the number of links added per node at each time step

of the network growing process. As value of parameterm increases, the average number

of links acquired by each Web-API node (average degree) in the network also increases.

Figures 5.6 and 5.7 show the discovery performances of the proposed approach with

varying m.The results show that a moderate increase in value of parameter m (from

1 to 5) improves the discovery performance of our approach. However, at m = 10,

the precision/usefulness of the results begins to drop. This is because as m increases

the probability for Web-APIs nodes with a higher degree to interact with other nodes

becomes higher, that is, the influence of the popular nodes in the network becomes

more apparent, and the average degree for all nodes in the network increases resulting

to improvement in local connectivity. However, when the value of is set to m to 10,

the precision of the discovery results decreases due to the noise introduced by the high

value m. Moreover, as the value m increases, the network navigation becomes more

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 215

difficult, and users will have more links and candidate Web-APIs to explore making

selection of desired or relevant Web-APIs more challenging.

Figure 5.6: Effect of parameter m on
MAP

Figure 5.7: Effect of parameter m on NDCG

5.5 Chapter Summary

The rapid and continual increase in the number and diversity of Web-APIs currently

available on the Web have made it more challenging for software developer to find most

appropriate Web-APIs to speed-up software development. At the moment, Web-API

consumers including mashup developers normally rely on Web-APIs repositories such

as ProgrammableWeb and Mashapes to discover API of their interest. However, these

registries are considered ineffective because: (a) Web APIs registered on these registries

are in general isolated, as they are registered by diverse providers independently and

progressively, without considering relevant dynamic information or continuous social

interactions that exist among the services, which could influence their discovery (b) they

cannot effectively respond to complex, mashup-oriented Web-API requests. Therefore,

there is need for a new Web-API discovery approach that can address these challenges

and increase Web-API discoverability. Existing approaches have mainly focus on

increasing the accuracy of discovery using hybrid of semantic and syntactic approaches

Chapter 5. Complex Network-Based Web Service for Web-API Discovery 216

without addressing the fundamental problems that are limiting the API discoverability.

Most of these approaches ignored the very important that Web-API social relationship

in their discovery. This chapter addressed the above challenges from complex network

perspective using the a popularity-similarity Web-API complex network to facilitate

API discovery. The chapter presented a complex-network based discovery service for

Web service that leverages an online Google custom search service for recommending

Web-APIs for mashup development. Google Page-Ranking feature was used to facilitate

node ranking based on term frequency, functionality and node popularity information.

An aggregation function was introduced to systematically retrieve diverse Web-APIs

to satisfy complex user request with multiple functional requirements. The chapter

demonstrated the effectiveness of the proposed complex-network based discovery

approach by presenting results of extensive experiments conducted using both synthetic

and real-world Web-API datasets. The evaluation results indicated that the proposed

connecting Web-APIs into global social Web service network with popularity-similarity

complex network can indeed improve API discovery. This is evident in the performance

gain of the proposed approach with respect to other competing information retrieval

approaches. The performance edge of the proposed approach with respect to the

baseline approaches can be attributed to introduction of the social dimension into the

discovery process, and the ability of the approach to exploit both the functional and

social relationships between Web-APIs.

Chapter 6

Conclusion and Future Directions

Web-API have had a huge influence on the Web in terms of fostering a worldwide

distributed service economy. Despite their impressive development, their Web adoption

has been much lower than expected. Poor adoption has been attributed to service

isolation, a lack of social ties among related services, insufficient trade-offs between the

expressivity and semantics of service descriptions, and poor scalability, which results in

exponentially increased search time in vast search areas. This thesis addressed various

challenges associated with Web-API discovery from complex network perspective. It

propose the used of network analysis technique and network models to study existing

Web service ecosystem, and connect all Web-APIs into a global social network. The

resulting network can then utilized to incorporate Web-APIs social dimension into their

discovery application; an ingredient that have been missing in the existing discovery

solutions. Specifically, the thesis propose linking isolated Web-API functional islands

into a global social API network to enable exploration of Web-API social properties in

Web service applications, and introduce a network-based discovery service that exploits

the network, which demonstrate the effectiveness of the proposed linked-as-you go

complex-network-based discovery service.

In general, the contributions of this thesis can be summarized into three folds; first, in

217

Chapter 6. Conclusion and Future Directions 218

Chapter 3 of the thesis presented a method for investigating the drivers of a typical Web

service ecosystem , and study its topological and social characteristics using network

analysis technique with statistics. Second, in Chapter 4, the thesis presented the pro-

posed evolving Web-API complex networks with details of their construction and evalu-

ation procedures. And in Chapter 5, the thesis presented the complex-network-based

Web-API discovery framework and demonstrated the effectiveness of the framework in

comparison to the conventional Web-API discovery approach. This chapter concludes

the thesis by summarizing the thesis contributions, the key results and outlining some

issues for future research. Section 6.1 provides a detailed discussion on the contribu-

tions of this thesis. Section 6.2 discusses the limitations and possible improvements of

proposed research. Section 6.2 also presents an overview of future research directions.

6.1 Thesis Contributions

The research emphasized four top-level challenges associated with the current Web

service discovery approaches. These challenges include: i) the isolation of Web services

in their ecosystem; ii) the poor scaling mechanism for the system ; iii) the lack of

social social relationships among related Web services; and iv) the neglect of Web

service social dimension in their discovery solutions. These research challenges are

addressed by defining fine-grain research questions including: i) "What" stimulates

service-service interactions in Web service ecosystem? and is social network behaviour

universally existing in Web service ecosystem? − these questions are addressed by

investigating the dimensions of attractiveness in Web service ecosystem, and studying

the topology of the system. ii) How to construct a global evolving social networks of

Web services such that it preserves the Web service system properties and reflect relevant

properties of real-world network systems like internet and WWW? − these questions

are addressed from complex network perspective using both network analysis, complex

Chapter 6. Conclusion and Future Directions 219

network theory and other recent findings in network science to study and construct

an evolving Web-API social network. And finally, the thesis examine how to exploit

the Web service social network to facilitate the discovery and selection of component

services for mashups?− To address this question, this thesis proposed a complex-network

based Web-API discovery services that exploited properties of the proposed Web-API

network to improve Web-API discoverability . The main contributions of this thesis are

summarized below.

6.1.1 A Complex Network Analysis of Web-API ecosystem

From complex network perspective, the Web-API ecosystem (as used in this thesis)

consist of Web-APIs and evolves as a complex network system. Multiple Web-APIs can

be quickly composed into a Webpage or application called mashup. This shortened

software development life cycle leads to the formation of the ecosystem, where new

APIs and mashups emerge, some old ones perish, and Web-API vendors and developers

collaborate to develop innovative software solutions. The perishing of some existing

Web-APIs and the emergence of new ones coupled with their dynamic collaborations

drive the evolution of this service ecosystem over time. The relationships among APIs

and mashups have become increasingly complicated and dynamic as the ecosystem has

grown over time, much like those in a complex network. As a result, complex network

analysis can be an effective technique for examining the ecosystem’s drivers including

its topological, static, and dynamical characteristics.

Chapter 3 presented and discussed a complex-network analysis oriented methodology

for investigating the topological and dynamical mechanism of the ProgrammableWeb

registry (as a template for Web service ecosystem). The Chapter presented a compre-

hensive exploration of the ecosystem, including an examination of the topology in order

to gain a clear knowledge of the current usage pattern and the use of dynamic metrics

Chapter 6. Conclusion and Future Directions 220

to track the ecosystem’s evolution. First, the topology of the Web-API ecosystem

was studied by investigating mashups and Web-APIs interactions, and analyzing their

popularity distributions. The analysis followed three key steps: visualization, model

fitting, and comparison with existing classical models including Power-law, Poisson,

exponential and log-normal distributions. All the metrics used helped established that

the Web-API ecosystem shares similar topological and dynamical properties as the

well-known , related real-world network systems like Internet and WWW. For example

properties such as small-wordiness commonly found in the real-world complex network

systems are also found in ecosystem. Second, for the investigation of the dynamical

drivers of the ecosystem, the Chapter presented an approach to quantitatively measure

the dimension of attractiveness within the ecosystem: Preferential Attachment and

Similarity. Both dimensions are deemed as the drivers of many real-world networks and

were also established to be the key drivers of the Web-API ecosystem. The significant

power-law distribution of mashups number per Web-APIs established that there is

preferential attachment for the API selection and consumption, confirming that API

consumers tend to select the popular Web-API more. This is attributed to the fact that

API users often believe that by reusing popular APIs, they may learn from previous

usage and create new mashups with potentially higher quality. For link formation

and dynamical/evolving mechanisms, preferential attachment and the pairwise simil-

arity between Web-APIs were measured and established as significant drivers of API

interactions and link formation .

6.1.2 Constructing and Evaluating Web-API Networks

Chapter 4 presented the construction and evaluation of the proposed evolving Web-API

networks with clear theoretical backgrounds and step-by-step algorithmic descriptions

of how to grow the networks. The Chapter addressed key issue of Web-API isolation

Chapter 6. Conclusion and Future Directions 221

and enhancing API sociability in their ecosystem by connecting all Web-APIs into a

global social network. Three API networks ; i.) Popularity-based Web-API network; ii.)

Fitness-based Web-API network and iii.) Popularity-Similarity Web-API network; are

constructed based on the identified dimensions of attractiveness in Web-API ecosystem,

which include Popularity (simulated by preferential attachment), Similarity (captured

by API functional similarity) , and Fitness (computed using random-walk as the correl-

ation values of Web-APIs in the ecosystem). The networks are evaluated using network

and system metrics. The network metrics are used to analyse the topological properties

of the API networks, and the properties are then compared with that of the real-network

system including that of the real world Web-API ecosystem to validate preservation

of specific properties of the API ecosystem. The Web-API networks proprieties are

mapped with typical Web-API ecosystem properties (discoverability and navigability)

using ProgrammableWeb as case study. End-user activities in ProgrammableWeb such

as searching , browsing and visualization are then connected with the API network

properties. The findings of the analysis indicated that the proposed evolving Web-API

networks not only solved the isolation problem associated with a typical Web-API

ecosystem but they also exhibited common topological properties found in real world

networks system like WWW, internet, biological and social networks, which are later

exploited in API discovery in Chapter 5. The Web-API evolving networks preserved the

system and network properties of the API ecosystem (the ProgrammableWeb modelled

as Affiliation network). The PSO-based, Web-API network enables the integration of

functional similarity into the network construction and thus induces properties such as

high navigability and clustering coefficient which can be exploited in API discovery

application.

Chapter 6. Conclusion and Future Directions 222

6.1.3 Application of Web-API Network in API Discovery

Chapter 5 presented and discussed the application of the evolving Web-API network

for Web-API discovery. The Chapter proposed a complex-network-based Web-API

discovery service to demonstrate how the evolving Web-API network can be applied

to facilitate service discovery process. For this purpose, a prototype evolving complex

network-based, mashup-oriented Web-API discovery service is designed with detailed

architectural and algorithmic description provided. The proposed discovery framework

contains three key components: (i) the complex network component with popularity

(preferential attachment) and similarity as the network drivers and the Web-API textual

profiles as node attributes. (ii) Incorporating page ranking service for node ranking

process (iii) Aggregating diverse Web-APIs to facilitate mashup-oriented API discovery.

The experimental results indicated that the social network-based service discovery

solution can indeed be used to improve service discoverability.

6.2 Limitations and Future Direction

Although the solutions mentioned above effectively met the research objectives raised

in this thesis, there are certain limitations that could be addressed in the future. This

section outlines those limitations and some of the prospective enhancements for future

research on the offered solutions.

• Enhancing Complex-Network-Based Web-API Discovery Performance with

User’s Feedback: For the network-based Web-API discovery approach , one lim-

itation is that the approach did not include side information such as API user’s

feedbacks (either negative or positive), and context information, and QoS that

might be relevant to improve API discovery service performance. Incorporating

Chapter 6. Conclusion and Future Directions 223

this information could further enhance the the quality of API discovery applica-

tion performance. In the future, interactions between Web-API users might be

examined and a trust model can be incorporated to exploit the effect of user’s

feedbacks to improve the quality of Web-API link formation for discovery pur-

pose. Another path to examine in the future study is to model the social influence

on the Web-API network and identify representative nodes in order to get insight

into the network. Another area of research is to come up with some methods for

defining service requirements for the service-based economy on a global basis.

• Exploiting Community Formation in Web-API Network for Discovery Pro-

cess: In the future, community structure in Web-API complex network would

be explored to advance the network application with advanced features such as

community-awareness introduced into the discovery solution.

• Ranking Web-API in Web-API Social Networks with Motif-based PageR-

ank: The ranking and API aggregation approach used in the thesis is limited in

terms of API result indexing, in the future, a new ranking approach that better

explore the network structure to facilitate discovery would be considered. A

motif-based ranking approach (Zhao, Xu et al., 2019) would be explored to

investigate how the network structure influences the discovery performance.

References

Adamic, L. A., Lukose, R. M., Puniyani, A. R. & Huberman, B. A. (2001). Search in
power-law networks. Physical review E, 64(4), 046135.

Adeleye, O., Yu, J., Yongchareon, S. & Han, Y. (2018). Constructing and evaluating an
evolving web-api network for service discovery. In International conference on
service-oriented computing (pp. 603–617).

Adeleye, O., Yu, J., Yongchareon, S., Sheng, Q. Z. & Yang, L. H. (2019). A fitness-based
evolving network for web-apis discovery. In Proceedings of the australasian
computer science week multiconference (pp. 1–10).

Adeleye, O., Yu, J., Yongchareon Yongchareon, S., Han, Y. & Sheng, Q. (2020).
Complex network-based web service for web-api discovery. In Proceedings of
the australasian computer science week multiconference (pp. 1–10).

Agarwal, N., Sikka, G. & Awasthi, L. K. (2020). Web service clustering approaches to
enhance service discovery: A review. In The international conference on recent
innovations in computing (pp. 23–35).

Akkiraju, R., Farrell, J., Miller, J. A., Nagarajan, M., Sheth, A. P. & Verma, K. (2005).
Web service semantics-wsdl-s.

Albert, R. & Barabási, A.-L. (2002). Statistical mechanics of complex networks.
Reviews of modern physics, 74(1), 47.

Albert, R., Jeong, H. & Barabási, A.-L. (1999). Internet: Diameter of the world-wide
web. nature, 401(6749), 130.

Alessandro, M. & Vittorio, C. C. (2018). Leveraging the nonuniform pso network
model as a benchmark for performance evaluation in community detection and
link prediction. New Journal of Physics, 20(6), 063022.

Aznag, M., Quafafou, M. & Jarir, Z. (2014). Leveraging formal concept analysis with
topic correlation for service clustering and discovery. In 2014 ieee international
conference on web services (pp. 153–160).

Balke, W.-T. & Wagner, M. (2003). Towards personalized selection of web services. In
Www (alternate paper tracks) (pp. 20–24).

Bano, M., Zowghi, D., Ikram, N. & Niazi, M. (2013). What makes service oriented
requirements engineering challenging? a qualitative study. IET software, 8(4),
154–160.

Barabási, A. (2016).
In Network science, cambridge university press.

Barabási, A.-L. (2012). Network science: Luck or reason. Nature, 489(7417), 507.

224

References 225

Barabási, A.-L. & Albert, R. (1999). Emergence of scaling in random networks. science,
286(5439), 509–512.

Barabási, A.-L. & Bonabeau, E. (2003). Scale-free networks. Scientific american,
288(5), 60–69.

Barros, A. P. & Dumas, M. (2006a). The rise of web service ecosystems. IT Professional,
8(5), 31–37.

Barros, A. P. & Dumas, M. (2006b). The rise of web service ecosystems. IT professional,
8(5), 31–37.

Bedogne, C. & Rodgers, G. (2006). Complex growing networks with intrinsic vertex
fitness. Physical Review E, 74(4), 046115.

Bell, M., Perera, S., Piraveenan, M., Bliemer, M., Latty, T. & Reid, C. (2017). Net-
work growth models: A behavioural basis for attachment proportional to fitness.
Scientific reports, 7(1), 1–11.

Bell, M. G. H., Perera, S., Piraveenan, M., Bliemer, M. C. J., Latty, T. & Reid, C.
(2017). Network growth models: A behavioural basis for attachment proportional
to fitness. CoRR, abs/1702.04046.

Benesty, J., Chen, J., Huang, Y. & Cohen, I. (2009). Pearson correlation coefficient. In
Noise reduction in speech processing (pp. 1–4). Springer.

Benslimane, D., Dustdar, S. & Sheth, A. (2008). Services mashups: The new generation
of web applications. IEEE Internet Computing, 12(5), 13–15.

Bianchini, D., Antonellis, V. D. & Melchiori, M. (2017). Wiser: a multi-dimensional
framework for searching and ranking web apis. ACM Transactions on the Web
(TWEB), 11(3), 19.

Bianchini, D., De Antonellis, V. & Melchiori, M. (2014). Link-based viewing of
multiple web api repositories. In International conference on database and expert
systems applications (pp. 362–376).

Bianconi, G. & Barabási, A.-L. (2001a). Bose-einstein condensation in complex
networks. Physical review letters, 86(24), 5632.

Bianconi, G. & Barabási, A.-L. (2001b). Competition and multiscaling in evolving
networks. EPL (Europhysics Letters), 54(4), 436.

Blei, D. M., Ng, A. Y. & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan), 993–1022.

Bobadilla, J., Ortega, F., Hernando, A. & Gutiérrez, A. (2013). Recommender systems
survey. Knowledge-based systems, 46, 109–132.

Boguná, M. & Krioukov, D. (2009). Navigating ultrasmall worlds in ultrashort time.
Physical review letters, 102(5), 058701.

Boguna, M., Krioukov, D. & Claffy, K. C. (2009). Navigability of complex networks.
Nature Physics, 5(1), 74–80.

Borgatti, S. P. (2005). Centrality and network flow. Social networks, 27(1), 55–71.
Botangen, K. A. (2020). Towards the adaptability of service-based systems (Unpub-

lished doctoral dissertation). Auckland University of Technology.
Bouguettaya, A., Sheng, Q. Z. & Daniel, F. (2014). Advanced web services. Springer.
Bouguettaya, A., Singh, M., Huhns, M., Sheng, Q. Z., Dong, H., Yu, Q., . . . others

References 226

(2017). A service computing manifesto: the next 10 years. Communications of
the ACM, 60(4), 64–72.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F., . . .
Winer, D. (2000). W3c note: Simple object access protocol (soap) 1.1. World
Wide Web Consortium.

Bullmore, E. & Sporns, O. (2009). Complex brain networks: graph theoretical analysis
of structural and functional systems. Nature reviews neuroscience, 10(3), 186–
198.

Caldarelli, G., Capocc, A., Rios, P. D. L. & Munoz, M. A. (2002). Scale-free networks
from varying vertex intrinsic fitness." physical review letters. , 258702, 89.25.

Caldarelli, G., Capocci, A., De Los Rios, P. & Munoz, M. A. (2002). Scale-free
networks from varying vertex intrinsic fitness. Physical review letters, 89(25),
258702.

Cao, B., Liu, X., Rahman, M. M., Li, B., Liu, J. & Tang, M. (2017). Integrated content
and network-based service clustering and web apis recommendation for mashup
development. IEEE Transactions on Services Computing.

Cao, Y., Wang, G., Jiang, Q. & Han, Z. (2006). A neighbourhood evolving network
model. Physics Letters A, 349(6), 462–466.

Cardoso, J. (2007). Semantic web services: Theory, tools and applications: Theory,
tools and applications. IGI Global.

Carpineto, C. & Romano, G. (2012). A survey of automatic query expansion in
information retrieval. Acm Computing Surveys (CSUR), 44(1), 1–50.

Carstens, B., Jensen, M., Spaniel, M. & Hermansen, A. (2017). Vertex similarity in
graphs using feature learning (2017).

Casati, F. & Shan, M.-C. (2001). Dynamic and adaptive composition of e-services.
Information systems, 26(3), 143–163.

Cassar, G., Barnaghi, P. & Moessner, K. (2013). Probabilistic matchmaking methods
for automated service discovery. IEEE Transactions on Services Computing, 7(4),
654–666.

Cervantes, H. & Hall, R. S. (2003). Automating service dependency management in a
service-oriented component model. In Icse cbse workshop.

Channabasavaiah, K., Holley, K. & Tuggle, E. (2003). Migrating to a service-oriented
architecture. IBM DeveloperWorks, 16, 727–728.

Chattopadhyay, S. & Murthy, C. (2017a). Generation of power-law networks by
employing various attachment schemes: Structural properties emulating real
world networks. Information Sciences, 397, 219–242.

Chattopadhyay, S. & Murthy, C. A. (2017b). Generation of power-law networks by
employing various attachment schemes: Structural properties emulating real
world networks. Inf. Sci., 397, 219–242.

Chen, F., Li, M., Wu, H. & Xie, L. (2017). Web service discovery among large service
pools utilising semantic similarity and clustering. Enterprise Information Systems,
11(3), 452–469.

Chen, F., Lu, C., Wu, H. & Li, M. (2017). A semantic similarity measure integrating

References 227

multiple conceptual relationships for web service discovery. Expert Systems with
Applications, 67, 19–31.

Chen, L., Wang, Y., Yu, Q., Zheng, Z. & Wu, J. (2013). Wt-lda: user tagging augmented
lda for web service clustering. In International conference on service-oriented
computing (pp. 162–176).

Chen, L., Yang, G., Zhu, W., Zhang, Y. & Yang, Z. (2013). Clustering facilitated web
services discovery model based on supervised term weighting and adaptive metric
learning. International journal of Web engineering and technology, 8(1), 58–80.

Chen, W. & Paik, I. (2013). Improving efficiency of service discovery using linked
data-based service publication. Information Systems Frontiers, 15(4), 613–625.

Chen, W., Paik, I. & Hung, P. C. (2015a). Constructing a global social service
network for better quality of web service discovery. IEEE transactions on services
computing, 8(2), 284–298.

Chen, W., Paik, I. & Hung, P. C. K. (2015b). Constructing a global social service net-
work for better quality of web service discovery. IEEE Trans. Services Computing,
8(2), 284–298.

Chen, W., Paik, I. & Yen, N. Y. (2017). Discovering internal social relationship
for influence-aware service recommendation. Multimedia Tools Appl., 76(18),
18193–18220.

Chen, Y. (2018). Service-oriented computing and system integration. Kendall Hunt
Publishing, Dubuque, IA.

Choromański, K., Matuszak, M. & Mikisz, J. (2013). Scale-free graph with preferential
attachment and evolving internal vertex structure. Journal of Statistical Physics,
151(6), 1175–1183.

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S. et al. (2001). Web services
description language (wsdl) 1.1. Citeseer.

Clauset, A., Shalizi, C. R. & Newman, M. E. J. (2009). Power-law distributions in
empirical data. SIAM Review, 51(4), 661–703.

Cohen, R., Havlin, S. & Ben-Avraham, D. (2003). Structural properties of scale free
networks. Handbook of graphs and networks, 4.

Cong, Z., Fernandez, A., Billhardt, H. & Lujak, M. (2015). Service discovery ac-
celeration with hierarchical clustering. Information Systems Frontiers, 17(4),
799–808.

Crasso, M., Zunino, A. & Campo, M. (2011). A survey of approaches to web service
discovery in service-oriented architectures. Journal of Database Management
(JDM), 22(1), 102–132.

Daniel, F. & Matera, M. (2014a). Mashups: concepts, models and architectures.
Springer.

Daniel, F. & Matera, M. (2014b). Quality in mashup development. In Mashups (pp.
269–291). Springer.

De Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Kifer, M., . . . others
(2005). Web service modeling ontology (wsmo). Interface, 5(1), 50.

Dillon, T. S., Wu, C. & Chang, E. (2007). Reference architectural styles for service-
oriented computing. In Ifip international conference on network and parallel

References 228

computing (pp. 543–555).
Dong, X., Halevy, A., Madhavan, J., Nemes, E. & Zhang, J. (2004). Similarity search

for web services. In Proceedings of the thirtieth international conference on very
large data bases-volume 30 (pp. 372–383).

Dorogovtsev, S. N. & Mendes, J. F. (2002). Evolution of networks. Advances in physics,
51(4), 1079–1187.

Duan, L. & Tian, H. (2017). Collaborative web service discovery and recommendation
based on social link. Future Internet, 9(4), 63.

Dumais, S. T. (2004). Latent semantic analysis. Annual review of information science
and technology, 38(1), 188–230.

Dusseault, L. & Snell, J. (2010). Patch method for http (Tech. Rep.). RFC 5789,
March.

Easley, D. & Kleinberg, J. (2010). Networks, crowds, and markets: Reasoning about a
highly connected world. Cambridge University Press.

Eikermann, R., Look, M., Roth, A., Rumpe, B. & Wortmann, A. (2017). Architecting
cloud services for the digital me in a privacy-aware environment. In Software
architecture for big data and the cloud (pp. 207–226). Elsevier.

Elshater, Y., Elgazzar, K. & Martin, P. (2015). godiscovery: Web service discovery made
efficient. In 2015 ieee international conference on web services (pp. 711–716).

Erdős, P. & Rényi, A. (1961). On the strength of connectedness of a random graph.
Acta Mathematica Hungarica, 12(1), 261–267.

Erdos, P., Rényi, A. et al. (1960). On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci, 5(1), 17–60.

Fallatah, H., Bentahar, J. & Asl, E. K. (2014). Social network-based framework for
web services discovery. In Future internet of things and cloud (ficloud), 2014
international conference on (pp. 159–166).

Feng, Z., Lan, B., Zhang, Z. & Chen, S. (2015). A study of semantic web services
network. The Computer Journal, 58(6), 1293–1305.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. & Berners-Lee,
T. (1999). Hypertext transfer protocol–http/1.1. RFC 2616, june.

Fielding, R. T. (2000). Architectural styles and the design of network-based software
architectures. University of California, Irvine.

Garriga, M., De Renzis, A., Lizarralde, I., Flores, A., Mateos, C., Cechich, A. & Zunino,
A. (2018). A structural-semantic web service selection approach to improve
retrievability of web services. Information Systems Frontiers, 20(6), 1319–1344.

Goland, Y., Whitehead, E., Faizi, A., Carter, S. & Jensen, D. (1999). Http extensions
for distributed authoring–webdav (Tech. Rep.). RFC 2518, IETF, Feb.

Goldberg, Y. & Levy, O. (2014). word2vec explained: deriving mikolov et al.’s
negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722.

Grady, L. J. & Polimeni, J. R. (2010). Discrete calculus: Applied analysis on graphs
for computational science. Springer Science & Business Media.

Haas, H. & Brown, A. (2004). Web services glossary. W3C Working Group Note (11
February 2004), 9, 784–786.

References 229

Hadley, M. J. (2006). Web application description language (wadl). Sun Microsystems,
Inc.

Hafsi, A., Gamha, Y., Njima, C. B. & Romdhane, L. B. (2020). Big-swsdm: Bipartite
graph based social web service discovery model. In International conference on
business information systems (pp. 307–318).

Halevy, A., Nemes, E., Dong, X., Madhavan, J. & Zhang, J. (2004). Similarity search
for web services. In Proceedings of the 30th vldb conference (pp. 372–383).

Hamilton, W. L., Ying, R. & Leskovec, J. (2017). Representation learning on graphs:
Methods and applications. arXiv preprint arXiv:1709.05584.

Hao, Y., Zhang, Y. & Cao, J. (2010). Web services discovery and rank: An information
retrieval approach. Future generation computer systems, 26(8), 1053–1062.

He, Q., Yan, J., Jin, H. & Yang, Y. (2014). Quality-aware service selection for service-
based systems based on iterative multi-attribute combinatorial auction. IEEE
Transactions on Software Engineering, 40(2), 192–215.

He, Q., Zhou, R., Zhang, X., Wang, Y., Ye, D., Chen, F., . . . Yang, Y. (2017). Keyword
search for building service-based systems. IEEE Transactions on Software Engin-
eering(1), 1–1.

Hébert-Dufresne, L., Allard, A., Marceau, V., Noël, P.-A. & Dubé, L. J. (2011). Struc-
tural preferential attachment: Network organization beyond the link. Physical
review letters, 107(15), 158702.

Hobold, G. C. & Siqueira, F. (2012). Discovery of semantic web services compositions
based on sawsdl annotations. In 2012 ieee 19th international conference on web
services (pp. 280–287).

Hoschek, W. (2002). Web service discovery processing steps. ICWI, 2, 255–262.
Huang, K., Fan, Y. & Tan, W. (2012a). An empirical study of programmable web: A

network analysis on a service-mashup system. In 2012 ieee 19th international
conference on web services (pp. 552–559).

Huang, K., Fan, Y. & Tan, W. (2012b). An empirical study of programmable web: A
network analysis on a service-mashup system. In 2012 IEEE 19th international
conference on web services, honolulu, hi, usa, june 24-29, 2012 (pp. 552–559).

Huang, K., Fan, Y. & Tan, W. (2014a). Recommendation in an evolving service
ecosystem based on network prediction. IEEE Transactions on Automation
Science and Engineering, 11(3), 906–920.

Huang, K., Fan, Y. & Tan, W. (2014b). Recommendation in an evolving service
ecosystem based on network prediction. IEEE Trans. Automation Science and
Engineering, 11(3), 906–920.

Huhns, M. N. & Singh, M. P. (2005). Service-oriented computing: Key concepts and
principles. IEEE Internet computing, 9(1), 75–81.

Jalal, S., Yadav, D. K. & Negi, C. S. (2019). Web service discovery with incorporation
of web services clustering. International Journal of Computers and Applications,
1–12.

Järvelin, K. & Kekäläinen, J. (2002). Cumulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS), 20(4), 422–446.

Jiang, W., Lee, D. & Hu, S. (2012). Large-scale longitudinal analysis of soap-based and

References 230

restful web services. In 2012 ieee 19th international conference on web services
(pp. 218–225).

Jordan, M. I. & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and
prospects. Science, 349(6245), 255–260.

Kalaï, A., Zayani, C. A. & Amous, I. (2015). User’s social profile–based web services
discovery. In Service-oriented computing and applications (soca), 2015 ieee 8th
international conference on (pp. 2–9).

Kamath, S. & Ananthanarayana, V. (2014). Similarity analysis of service descriptions
for efficient web service discovery. In 2014 international conference on data
science and advanced analytics (dsaa) (pp. 142–148).

Kanagasabai, R. et al. (2013). Semantic web service discovery: state-of-the-art and
research challenges. Personal and ubiquitous computing, 17(8), 1741–1752.

Kavitha, R. & Anuvelavan, S. (2015). Weather master: mobile application of cyclone
disaster refinement forecast system in location based on gis using geo-algorithm.
Int. J. Sci. Eng. Res, 6, 88–93.

Keller, U., Lara, R., Lausen, H., Polleres, A. & Fensel, D. (2005). Automatic location
of services. In European semantic web conference (pp. 1–16).

Kerrigan, M. (2006). Web service selection mechanisms in the web service execution
environment (wsmx). In Proceedings of the 2006 acm symposium on applied
computing (pp. 1664–1668).

Kiefer, C. & Bernstein, A. (2008). The creation and evaluation of isparql strategies for
matchmaking. In European semantic web conference (pp. 463–477).

Klemm, K. & Eguiluz, V. M. (2002). Highly clustered scale-free networks. Physical
Review E, 65(3), 036123.

Klusch, M., Fries, B. & Sycara, K. (2006). Automated semantic web service discovery
with owls-mx. In Proceedings of the fifth international joint conference on
autonomous agents and multiagent systems (pp. 915–922).

Klusch, M., Fries, B. & Sycara, K. (2009). Owls-mx: A hybrid semantic web service
matchmaker for owl-s services. Journal of Web Semantics, 7(2), 121–133.

Klusch, M. & Kapahnke, P. (2012). The isem matchmaker: A flexible approach for
adaptive hybrid semantic service selection. Journal of Web Semantics, 15, 1–14.

Klusch, M., Kapahnke, P., Schulte, S., Lecue, F. & Bernstein, A. (2016). Semantic web
service search: a brief survey. KI-Künstliche Intelligenz, 30(2), 139–147.

Koch, C. (2005). A new blueprint for the enterprise. CIO Magazine, 5(4), 1–8.
Kokash, N. (2006). A comparison of web service interface similarity measures. In

Stairs (pp. 220–231).
Kokash, N., Birukou, A. & D’Andrea, V. (2007). Web service discovery based on past

user experience. In International conference on business information systems (pp.
95–107).

Konstas, I., Stathopoulos, V. & Jose, J. M. (2009). On social networks and collaborative
recommendation. In Proceedings of the 32nd international acm sigir conference
on research and development in information retrieval (pp. 195–202).

Kourtesis, D. & Paraskakis, I. (2008). Combining sawsdl, owl-dl and uddi for semantic-
ally enhanced web service discovery. In European semantic web conference (pp.

References 231

614–628).
Krafzig, D., Banke, K. & Slama, D. (2005). Enterprise soa: service-oriented architec-

ture best practices. Prentice Hall Professional.
Kreger, H. (2003). Fulfilling the web services promise. Communications of the ACM,

46(6), 29–ff.
Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A. & Boguná, M. (2010). Hyper-

bolic geometry of complex networks. Physical Review E, 82(3), 036106.
Kritikos, K. (2008). Qos-based web service description and discovery.
Kritikos, K. & Plexousakis, D. (2009). Requirements for qos-based web service

description and discovery. IEEE Transactions on Services Computing, 2(4),
320–337.

Kuck, J. & Gnasa, M. (2007). Context-sensitive service discovery meets information
retrieval. In Fifth annual ieee international conference on pervasive computing
and communications workshops (percomw’07) (pp. 601–605).

Kumara, B. T., Paik, I., Chen, W. & Ryu, K. H. (2014). Web service clustering using a
hybrid term-similarity measure with ontology learning. International Journal of
Web Services Research (IJWSR), 11(2), 24–45.

Kumara, B. T., Paik, I., Koswatte, K. R. & Chen, W. (2014). Ontology learning
with complex data type for web service clustering. In 2014 ieee symposium on
computational intelligence and data mining (cidm) (pp. 129–136).

Küster, U., König-Ries, B., Klein, M. & Stern, M. (2007). Diane: A matchmaking-
centered framework for automated service discovery, composition, binding, and
invocation on the web. International Journal of Electronic Commerce, 12(2),
41–68.

Lamine, S. B. A. B., Zghal, H. B., Mrissa, M. & Guegan, C. G. (2017). An ontology-
based approach for personalized restful web service discovery. Procedia Com-
puter Science, 112, 2127–2136.

Latora, V. & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical
review letters, 87(19), 198701.

Le, D.-N., Nguyen, V.-Q. & Goh, A. (2009). Matching wsdl and owl-s web services.
In 2009 ieee international conference on semantic computing (pp. 197–202).

Le, Q. & Mikolov, T. (2014). Distributed representations of sentences and documents.
In International conference on machine learning (pp. 1188–1196).

Lee, J., Niko, D. L., Hwang, H., Park, M. & Kim, C. (2011). A gis-based design for a
smartphone disaster information service application. In 2011 first acis/jnu inter-
national conference on computers, networks, systems and industrial engineering
(pp. 338–341).

Leicht, E. A., Holme, P. & Newman, M. E. (2006). Vertex similarity in networks.
Physical Review E, 73(2), 026120.

Li, C., Zhang, R., Huai, J., Guo, X. & Sun, H. (2013). A probabilistic approach for web
service discovery. In 2013 ieee international conference on services computing
(pp. 49–56).

Li, J., Zaman, N. & Li, H. (2015). A decentralized locality-preserving context-aware

References 232

service discovery framework for internet of things. In 2015 ieee international
conference on services computing (pp. 317–323).

Li, L. & Horrocks, I. (2004). A software framework for matchmaking based on semantic
web technology. International Journal of Electronic Commerce, 8(4), 39–60.

Li, Z., He, K., Wang, J. & Zhang, N. (2014). An on-demand services discovery approach
based on topic clustering. Journal of Internet Technology, 15(4), 543–555.

Liang, T., Chen, L., Ying, H. & Wu, J. (2014). Co-clustering wsdl documents to
bootstrap service discovery. In 2014 ieee 7th international conference on service-
oriented computing and applications (pp. 215–222).

Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P. & Tomkins, A. (2005). Geo-
graphic routing in social networks. Proceedings of the National Academy of
Sciences, 102(33), 11623–11628.

Lin, S.-Y., Lai, C.-H., Wu, C.-H. & Lo, C.-C. (2014). A trustworthy qos-based
collaborative filtering approach for web service discovery. Journal of Systems
and Software, 93, 217–228.

Lizarralde, I., Mateos, C., Rodriguez, J. M. & Zunino, A. (2019). Exploiting named
entity recognition for improving syntactic-based web service discovery. Journal
of Information Science, 45(3), 398–415.

Lizarralde, I., Mateos, C., Zunino, A., Majchrzak, T. A. & Grønli, T.-M. (2020).
Discovering web services in social web service repositories using deep variational
autoencoders. Information Processing & Management, 57(4), 102231.

Lizarralde, I., Rodriguez, J. M., Mateos, C. & Zunino, A. (2017). Word embeddings
for improving rest services discoverability. In 2017 xliii latin american computer
conference (clei) (pp. 1–8).

Lu, W., Cai, Y., Che, X. & Lu, Y. (2016). Joint semantic similarity assessment with raw
corpus and structured ontology for semantic-oriented service discovery. Personal
and Ubiquitous Computing, 20(3), 311–323.

Ludwig, H. & Petrie, C. J. (2006). S ssion summary-“cross cutting concerns”. In Proc.
of dagstuhl seminar (Vol. 5462).

Lyu, S., Liu, J., Tang, M., Kang, G., Cao, B. & Duan, Y. (2014). Three-level views of
the web service network: An empirical study based on programmableweb. In Big
data (bigdata congress), 2014 ieee international congress on (pp. 374–381).

Ma, J., Zhang, Y. & He, J. (2008a). Efficiently finding web services using a clustering
semantic approach. In Proceedings of the 2008 international workshop on context
enabled source and service selection, integration and adaptation: organized with
the 17th international world wide web conference (www 2008) (pp. 1–8).

Ma, J., Zhang, Y. & He, J. (2008b). Web services discovery based on latent semantic
approach. In 2008 ieee international conference on web services (pp. 740–747).

Maamar, Z. (2003). Commerce, e-commerce, and m-commerce: what comes next?
Communications of the ACM, 46(12), 251–257.

Maamar, Z. & Badr, Y. (2009). Social networks as a service in modern enterprises. In
2009 international conference on the current trends in information technology
(ctit) (pp. 1–5).

Maamar, Z., Faci, N., Wives, L., Badr, Y., Santos, P. & de Oliveira, J. P. M. (2011).

References 233

Using social networks for web services discovery. IEEE internet computing,
15(4), 48–54.

Maamar, Z., Hacid, H. & Huhns, M. N. (2011). Why web services need social networks.
IEEE Internet Computing, 15(2), 90–94.

Maamar, Z., Mostefaoui, S. K. & Mahmoud, Q. H. (2005). Context for personalized
web services. In Proceedings of the 38th annual hawaii international conference
on system sciences (pp. 166b–166b).

Maamar, Z., Wives, L. K., Badr, Y. & Elnaffar, S. (2009). Even web services can
socialize: A new service-oriented social networking model. In 2009 international
conference on intelligent networking and collaborative systems (pp. 24–30).

Maamar, Z., Wives, L. K., Badr, Y., Elnaffar, S., Boukadi, K. & Faci, N. (2011).
Linkedws: A novel web services discovery model based on the metaphor of
“social networks”. Simulation Modelling Practice and Theory, 19(1), 121–132.

MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., Metz, R. & Hamilton, B. A.
(2006). Reference model for service oriented architecture 1.0. OASIS standard,
12(S 18).

Manikrao, U. S. & Prabhakar, T. (2005). Dynamic selection of web services with
recommendation system. In International conference on next generation web
services practices (nwesp’05) (pp. 5–pp).

Manning, C. D., Raghavan, P. et al. (2008). Schü tze h. introduction to information
retrieval. Cambridge University Press Cambridge.

McDonald, D. W. (2003). Recommending collaboration with social networks: a
comparative evaluation. In Proceedings of the sigchi conference on human
factors in computing systems (pp. 593–600).

McPherson, M., Smith-Lovin, L. & Cook, J. M. (2001). Birds of a feather: Homophily
in social networks. Annual review of sociology, 27(1), 415–444.

Medjahed, B. (2004). Semantic web enabled composition of web services (Unpublished
doctoral dissertation). Virginia Tech.

Medjahed, B. & Atif, Y. (2007). Context-based matching for web service composition.
Distributed and Parallel Databases, 21(1), 5–37.

Metrouh, A. & Mokhati, F. (2013). Social web services discovery: A community-based
approach. In Proceedings of international conference on information integration
and web-based applications & services (pp. 275–279).

Miller, G. A. (1998). Wordnet: An electronic lexical database. MIT press.
Mitra, N., Lafon, Y. et al. (2003). Soap version 1.2 part 0: Primer. W3C recommendation,

24, 12.
Mohebbi, K., Ibrahim, S., Khezrian, M., Munusamy, K. & Tabatabaei, S. G. H. (2010).

A comparative evaluation of semantic web service discovery approaches. In
Proceedings of the 12th international conference on information integration and
web-based applications & services (pp. 33–39).

Mukhopadhyay, D. & Chougule, A. (2012). A survey on web service discovery
approaches. In Advances in computer science, engineering & applications (pp.
1001–1012). Springer.

Muniruzzaman, A. (1957). On measures of location and dispersion and tests of

References 234

hypotheses in a pare to population. Calcutta Statistical Association Bulletin, 7(3),
115–123.

Muscoloni, A. & Cannistraci, C. V. (2018). A nonuniform popularity-similarity
optimization (npso) model to efficiently generate realistic complex networks with
communities. New Journal of Physics, 20(5), 052002.

Naim, H., Aznag, M., Quafafou, M. & Durand, N. (2016). Probabilistic approach for
diversifying web services discovery and composition. In 2016 ieee international
conference on web services (icws) (pp. 73–80).

Nazir, S., Sapkota, B. & Vitvar, T. (2008). Improving web service discovery with
personalized goal. In International conference on web information systems and
technologies (pp. 266–277).

Newman, M. E. (2001). Clustering and preferential attachment in growing networks.
Physical review E, 64(2), 025102.

Newman, M. E. (2003). The structure and function of complex networks. SIAM review,
45(2), 167–256.

Ngu, A. H., Carlson, M. P., Sheng, Q. Z. & Paik, H.-y. (2010). Semantic-based mashup
of composite applications. IEEE Transactions on Services Computing, 3(1),
2–15.

Nguyen, K. & Tran, D. A. (2012). Fitness-based generative models for power-law net-
works. In Handbook of optimization in complex networks (pp. 39–53). Springer.

Obidallah, W. J., Raahemi, B. & Ruhi, U. (2020). Clustering and association rules for
web service discovery and recommendation: a systematic literature review. SN
Computer Science, 1(1), 1–33.

Paliwal, A. V., Adam, N. R. & Bornhovd, C. (2007). Web service discovery: Adding
semantics through service request expansion and latent semantic indexing. In
Ieee international conference on services computing (scc 2007) (pp. 106–113).

Palma, F., Gonzalez-Huerta, J., Moha, N., Guéhéneuc, Y.-G. & Tremblay, G. (2015).
Are restful apis well-designed? detection of their linguistic (anti) patterns. In
International conference on service-oriented computing (pp. 171–187).

Paolucci, M., Kawamura, T., Payne, T. R. & Sycara, K. (2002). Semantic matching
of web services capabilities. In International semantic web conference (pp.
333–347).

Papadopoulos, F., Kitsak, M., Serrano, M. Á., Boguná, M. & Krioukov, D. (2012).
Popularity versus similarity in growing networks. Nature, 489(7417), 537.

Papazoglou, M. (2008). Web services: principles and technology. Pearson Education.
Papazoglou, M. P. (2003). Service-oriented computing: Concepts, characteristics

and directions. In Proceedings of the fourth international conference on web
information systems engineering, 2003. wise 2003. (pp. 3–12).

Papazoglou, M. P. & Dubray, J.-j. (2004). A survey of web service technologies.
Papazoglou, M. P., Traverso, P., Dustdar, S. & Leymann, F. (2007). Service-oriented

computing: State of the art and research challenges. Computer, 40(11), 38–45.
Patil, N. & Gopal, A. (2010). Ranking web-services based on qos for best-fit search.

International Journal of Computer Science & Communication, 1(2), 345–349.

References 235

Pautasso, C. (2014). Restful web services: principles, patterns, emerging technologies.
In Web services foundations (pp. 31–51). Springer.

Pautasso, C., Zimmermann, O. & Leymann, F. (2008). Restful web services vs."
big"’web services: making the right architectural decision. In Proceedings of the
17th international conference on world wide web (pp. 805–814).

Pham, T., Sheridan, P. & Shimodaira, H. (2015). Pafit: A statistical method for
measuring preferential attachment in temporal complex networks. PloS one,
10(9), e0137796.

Pham, T., Sheridan, P. & Shimodaira, H. (2016). Joint estimation of preferential
attachment and node fitness in growing complex networks. In Scientific reports,
6, 32558.

Pham, T., Sheridan, P. & Shimodaira, H. (2017). Pafit: an r package for the non-
parametric estimation of preferential attachment and node fitness in temporal
complex networks. arXiv preprint arXiv:1704.06017.

Pilioura, T. & Tsalgatidou, A. (2009). Unified publication and discovery of semantic
web services. ACM Transactions on the Web (TWEB), 3(3), 1–44.

Platzer, C. & Dustdar, S. (2005). A vector space search engine forweb services. IEEE.
Raj, R. J. R. & Sasipraba, T. (2010). Web service selection based on qos constraints. In

Trendz in information sciences & computing (tisc2010) (pp. 156–162).
Rich, E. (1979). User modeling via stereotypes. Cognitive science, 3(4), 329–354.
Richardson, L. & Ruby, S. (2008). Restful web services. " O’Reilly Media, Inc.".
Rodriguez, J. M., Crasso, M., Zunino, A. & Campo, M. (2010). Improving web service

descriptions for effective service discovery. Science of Computer Programming,
75(11), 1001–1021.

Rodriguez-Mier, P., Pedrinaci, C., Lama, M. & Mucientes, M. (2015). An integrated
semantic web service discovery and composition framework. IEEE transactions
on services computing, 9(4), 537–550.

Roman, D., Kopeckỳ, J., Vitvar, T., Domingue, J. & Fensel, D. (2015). Wsmo-lite
and hrests: Lightweight semantic annotations for web services and restful apis.
Journal of Web Semantics, 31, 39–58.

Rong, W. & Liu, K. (2010). A survey of context aware web service discovery: From
user’s perspective. In 2010 fifth ieee international symposium on service oriented
system engineering (pp. 15–22).

Ross, J. W. & Westerman, G. (2004). Preparing for utility computing: The role of it
architecture and relationship management. IBM systems journal, 43(1), 5–19.

Rostami, N. H., Kheirkhah, E. & Jalali, M. (2013). Web services composition methods
and techniques: A review. International Journal of Computer Science, Engineer-
ing & Information Technology, 3(6), 10–5121.

Rosvall, M., Grönlund, A., Minnhagen, P. & Sneppen, K. (2005). Searchability of
networks. Physical Review E, 72(4), 046117.

Schröder, G., Thiele, M. & Lehner, W. (2011). Setting goals and choosing metrics
for recommender system evaluations. In Ucersti2 workshop at the 5th acm
conference on recommender systems, chicago, usa (Vol. 23, p. 53).

References 236

Schulte, S. (2010). Web service discovery based on semantic information-query formu-
lation and adaptive matchmaking (Unpublished doctoral dissertation). Technische
Universität.

Seguin, C., Van Den Heuvel, M. P. & Zalesky, A. (2018). Navigation of brain networks.
Proceedings of the National Academy of Sciences, 115(24), 6297–6302.

Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B. & Mei, H. (2007). Personalized
qos prediction forweb services via collaborative filtering. In Ieee international
conference on web services (icws 2007) (pp. 439–446).

Sheng, Q. Z., Benatallah, B., Dumas, M. & Mak, E. O.-Y. (2002). Self-serv: A platform
for rapid composition of web services in a peer-to-peer environment. In Vldb’02:
Proceedings of the 28th international conference on very large databases (pp.
1051–1054).

Sheng, Q. Z., Benatallah, B., Maamar, Z., Dumas, M. & Ngu, A. H. (2004). Enabling
personalized composition and adaptive provisioning of web services. In Interna-
tional conference on advanced information systems engineering (pp. 322–337).

Sheng, Q. Z., Qiao, X., Vasilakos, A. V., Szabo, C., Bourne, S. & Xu, X. (2014). Web
services composition: A decade’s overview. Information Sciences, 280, 218–238.

Sheth, A. P., Gomadam, K. & Lathem, J. (2007). Sa-rest: Semantically interoperable
and easier-to-use services and mashups. IEEE Internet Computing, 11(6), 91–94.

Sheugh, L. & Alizadeh, S. H. (2015). A note on pearson correlation coefficient as a
metric of similarity in recommender system. In 2015 ai & robotics (iranopen)
(pp. 1–6).

Shi, M., Liu, J., Zhou, D., Tang, M. & Cao, B. (2017). We-lda: a word embeddings
augmented lda model for web services clustering. In 2017 ieee international
conference on web services (icws) (pp. 9–16).

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A. & Vandergheynst, P. (2013).
The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains. IEEE signal processing
magazine, 30(3), 83–98.

Silva, T. C. & Zhao, L. (2016). Machine learning in complex networks (Vol. 2016).
Springer.

Singh, M. P. & Huhns, M. N. (2005). Service-oriented computing. Wiley Online
Library.

Snell, J., Tidwell, D. & Kulchenko, P. (2001). Programming web services with soap:
building distributed applications. " O’Reilly Media, Inc.".

Sreenath, R. M. & Singh, M. P. (2004). Agent-based service selection. Journal of Web
Semantics, 1(3), 261–279.

Stavropoulos, T. G., Andreadis, S., Bassiliades, N., Vrakas, D. & Vlahavas, I. (2015).
The tomaco hybrid matching framework for sawsdl semantic web services. IEEE
Transactions on Services Computing, 9(6), 954–967.

Stein, S., Barchewitz, K. & El Kharbili, M. (2008). Enabling business experts to
discover web services for business process automation. In Emerging web services
technology, volume ii (pp. 23–39). Springer.

Suda, B. (2003). Soap web services. Retrieved June, 29, 2010.

References 237

Sukkar, M. (2010). Design and implementation of a service discovery and recommend-
ation architecture (Unpublished doctoral dissertation). University of Waterloo.

Sun, J., Qu, H., Chakrabarti, D. & Faloutsos, C. (2005). Neighborhood formation and
anomaly detection in bipartite graphs. In Data mining, fifth ieee international
conference on (pp. 8–pp).

Sun, X. & Zhuge, H. (2014). Modeling and navigation of social information networks
in metric spaces. World Wide Web, 17(4), 649–670.

Swami Das, M., Govardhan, A. & Vijaya Lakshmi, D. (2020). Web service clas-
sification and prediction using rule-based approach with recommendations for
quality improvements. In Proceedings of the third international conference on
computational intelligence and informatics (pp. 311–323).

Tan, W., Fan, Y., Ghoneim, A., Hossain, M. A. & Dustdar, S. (2016). From the
service-oriented architecture to the web api economy. IEEE Internet Computing,
20(4), 64–68.

Tapia, B., Torres, R. & Astudillo, H. (2011). Simplifying mashup component selection
with a combined similarity-and social-based technique. In Proceedings of the 5th
international workshop on web apis and service mashups (p. 8).

Tavares, A. L. & Valente, M. T. (2008). A gentle introduction to osgi. ACM SIGSOFT
Software Engineering Notes, 33(5), 1–5.

Telesford, Q. K., Joyce, K. E., Hayasaka, S., Burdette, J. H. & Laurienti, P. J. (2011).
The ubiquity of small-world networks. Brain connectivity, 1(5), 367–375.

Tenenbaum, J. B., De Silva, V. & Langford, J. C. (2000). A global geometric framework
for nonlinear dimensionality reduction. science, 290(5500), 2319–2323.

Thiagarajan, R., Mayer, W. & Stumptner, M. (2009). Semantic service discovery by
consistency-based matchmaking. In Advances in data and web management (pp.
492–505). Springer.

Tian, G., Sun, C., He, K.-q. & Ji, X.-m. (2016). Transferring auxiliary knowledge to
enhance heterogeneous web service clustering. International Journal of High
Performance Computing and Networking, 9(1-2), 160–169.

Tian, G., Wang, J., He, K. et al. (2016). Leveraging auxiliary knowledge for web
service clustering. Chinese Journal of Electronics, 25(5), 858–865.

Tong, H., Faloutsos, C. & Pan, J.-Y. (2006). Fast random walk with restart and its
applications. In Sixth international conference on data mining (icdm’06) (pp.
613–622).

Tran, V. X. & Tsuji, H. (2008). Qos based ranking for web services: Fuzzy approaches.
In 2008 4th international conference on next generation web services practices
(pp. 77–82).

Travers, J. & Milgram, S. (1977). An experimental study of the small world problem.
In Social networks (pp. 179–197). Elsevier.

Vaddi, S. & Mohanty, H. (2019). Webservice specification and discovery. In Webservices
(pp. 25–51). Springer.

Vázquez, A. (2003). Growing network with local rules: Preferential attachment,
clustering hierarchy, and degree correlations. Physical Review E, 67(5), 056104.

References 238

Vechtomova, O. & Karamuftuoglu, M. (2007). Query expansion with terms selec-
ted using lexical cohesion analysis of documents. Information processing &
management, 43(4), 849–865.

Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S. & Miller, J. (n.d.).
Meteor–s wsdi: A scalable infrastructure of registries.

Wan, Y., Chen, L., Yu, Q., Liang, T. & Wu, J. (2016). Incorporating heterogeneous
information for mashup discovery with consistent regularization. In Pacific-asia
conference on knowledge discovery and data mining (pp. 436–448).

Wang, D., Cui, P. & Zhu, W. (2016). Structural deep network embedding. In Proceed-
ings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining (pp. 1225–1234).

Wang, H., Feng, Z., Chen, S., Xu, J. & Sui, Y. (2010). Constructing service network
via classification and annotation. In Service oriented system engineering (sose),
2010 fifth ieee international symposium on (pp. 69–73).

Wang, J., Gao, P., Ma, Y., He, K. & Hung, P. C. (2017). A web service discovery
approach based on common topic groups extraction. IEEE Access, 5, 10193–
10208.

Wang, Y., Lin, X., Wu, L. & Zhang, W. (2017). Effective multi-query expansions:
Collaborative deep networks for robust landmark retrieval. IEEE Transactions on
Image Processing, 26(3), 1393–1404.

Wang, Y. & Stroulia, E. (2003). Flexible interface matching for web-service discovery.
In Proceedings of the fourth international conference on web information systems
engineering, 2003. wise 2003. (pp. 147–156).

Watts, D. J., Dodds, P. S. & Newman, M. E. (2002). Identity and search in social
networks. science, 296(5571), 1302–1305.

Watts, D. J. & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks.
nature, 393(6684), 440.

Wei, D., Wang, T., Wang, J. & Bernstein, A. (2011). Sawsdl-imatcher: A customizable
and effective semantic web service matchmaker. Journal of Web Semantics, 9(4),
402–417.

Weiss, M. & G.R, G. (2010). Modeling the mashup ecosystem: structure and growth.
In Rd management 40.1 (2010) (p. 40-49).

Wieringa, R. (2005). Requirements researchers: are we really doing research? Require-
ments Engineering, 10(4), 304–306.

Wu, C. (2012). Wsdl term tokenization methods for ir-style web services discovery.
Science of computer programming, 77(3), 355–374.

Wu, W., Li, B., Chen, L. & Zhang, C. (2017). Consistent weighted sampling made
more practical. In Proceedings of the 26th international conference on world
wide web (pp. 1035–1043).

Wu, Z., Deng, S. & Wu, J. (2014). Service computing. Elsevier.
Xia, B., Fan, Y., Tan, W., Huang, K., Zhang, J. & Wu, C. (2014). Category-aware api

clustering and distributed recommendation for automatic mashup creation. IEEE
Transactions on Services Computing, 8(5), 674–687.

References 239

Xia, P., Zhang, L. & Li, F. (2015). Learning similarity with cosine similarity ensemble.
Information Sciences, 307, 39–52.

Xu, W., Cao, J., Hu, L., Wang, J. & Li, M. (2013). A social-aware service recommend-
ation approach for mashup creation. In 2013 ieee 20th international conference
on web services (pp. 107–114).

Yang, Y., Ke, W., Wang, W. & Zhao, Y. (2019). Deep learning for web services
classification. In 2019 ieee international conference on web services (icws) (pp.
440–442).

Yao, L., Sheng, Q. Z., Ngu, A. H., Li, X. & Benatallah, B. (2015). Unveiling contextual
similarity of things via mining human-thing interactions in the internet of things.
arXiv preprint arXiv:1512.08493.

Yao, L., Wang, X., Sheng, Q. Z., Benatallah, B. & Huang, C. (2018). Mashup
recommendation by regularizing matrix factorization with api co-invocations.
IEEE Transactions on Services Computing.

Yu, Q., Liu, X., Bouguettaya, A. & Medjahed, B. (2008). Deploying and managing web
services: issues, solutions, and directions. The VLDB Journal, 17(3), 537–572.

Zarei, B. & Gaedke, M. (2020). Disco: Web service discovery chatbot. IADIS
International Journal on WWW/Internet, 18(2).

Zhang, C., Zhu, D., Zhang, Y. & Yang, M. (2007). A web service discovery mech-
anism based on immune communication. In 2007 international conference on
convergence information technology (iccit 2007) (pp. 456–461).

Zhang, J. & Ackerman, M. S. (2005). Searching for expertise in social networks: a
simulation of potential strategies. In Proceedings of the 2005 international acm
siggroup conference on supporting group work (pp. 71–80).

Zhang, J., Tan, W., Alexander, J., Foster, I. & Madduri, R. (2011). Recommend-as-you-
go: A novel approach supporting services-oriented scientific workflow reuse. In
2011 ieee international conference on services computing (pp. 48–55).

Zhang, N., Wang, J., Ma, Y., He, K., Li, Z. & Liu, X. F. (2018). Web service discovery
based on goal-oriented query expansion. Journal of Systems and Software, 142,
73–91.

Zhao, H., Chen, J. & Xu, L. (2019). Semantic web service discovery based on
lda clustering. In International conference on web information systems and
applications (pp. 239–250).

Zhao, H., Xu, X., Song, Y., Lee, D. L., Chen, Z. & Gao, H. (2019). Ranking users in
social networks with motif-based pagerank. IEEE Transactions on Knowledge
and Data Engineering.

Zhong, Y., Fan, Y., Tan, W. & Zhang, J. (2016). Web service recommendation
with reconstructed profile from mashup descriptions. IEEE Transactions on
Automation Science and Engineering, 15(2), 468–478.

Zhong, Y., Fan, Y., Tan, W. & Zhang, J. (2018). Web service recommendation
with reconstructed profile from mashup descriptions. IEEE Transactions on
Automation Science and Engineering, 15(2), 468–478.

Zhou, T., Ren, J., Medo, M. & Zhang, Y.-C. (2007). Bipartite network projection and
personal recommendation. Physical review E, 76(4), 046115.

References 240

Zuev, K., Boguná, M., Bianconi, G. & Krioukov, D. (2015). Emergence of soft
communities from geometric preferential attachment. Scientific reports, 5, 9421.

Appendix A

Appendix

241

	Abstract
	Attestation of Authorship
	Publications
	Acknowledgements
	Dedication
	Introduction
	Web Service Discovery for Modern Service-Based Systems
	Definition
	Challenges

	Social Web Service Discovery
	Web Service Sociability
	Using Social Network of Web Service for Discovery

	Research Questions
	Research Methodology and Objectives
	Research Contributions
	Thesis Structure

	Literature Review
	Service-Oriented Architecture and Computing
	Service-Oriented Architecture
	Service-Oriented Computing
	Major Advantages of Service Computing
	Discussion

	Web Services: Concepts, Principles, Standards and Emerging Technologies
	Mashups, Composite and Atomic Web Services
	Web Service Discovery and Its Related Concepts
	Definition
	Key Information Attributes for Service Discovery Processing
	Quality of Services
	Requirements and Processing Steps for Service Discovery

	Existing Web Service Discovery Approaches
	Matching Group
	Context-Aware Web Service Discovery Approaches

	Data Mining and Machine Learning
	Clustering-Based Web Service Discovery
	 Web Service Description Reconstruction And Query Enhancement

	Social Networks For Web Service Discovery
	Overview of Social Networks
	Social Network of Web Services

	Complex Network Theory and Applications
	Scale-Free Network and Power-law Behaviour of Real World Networks
	Preferential Attachment
	Node Fitness
	Small-World Networks

	Chapter Summary

	Analysing the Topology of Web Service Ecosystem
	Notations and Definitions
	Data Acquisition and Processing
	Analysing Web-API Popularity Distribution
	Measuring Preferential Attachment
	Estimating Web-API Similarity for Network Construction

	 Chapter Summary

	Constructing Evolving Complex Networks for Web-API Discovery
	Background and Motivation
	Complex Network Theory Applications in Modelling Evolving Complex Systems
	 Motivation - From Isolated Web-APIs Functional Islands to Evolving Web-API Social Networks

	Limitation of Mashup-API Affiliation and One-mode Projection Networks.
	Evolving Complex Network Models
	Popularity-Based Network Model
	Fitness-Based Network Model
	Popularity-Similarity Optimization Network Model

	Constructing Evolving Web-APIs Social Networks
	Node Ordering Strategy
	Strategy For Constructing Preferential Attachment-Based Web-API Network
	Constructing Fitness-Based Evolving Web-API Network
	Constructing Popularity-Similarity Based Web-API Network

	Network Analysis and Results
	Experimental Setup and Dataset
	Mapping Web-API Ecosystem Properties with the API Networks Properties

	Chapter Summary

	Complex Network-Based Web Service for Web-API Discovery
	Background and Motivation
	Complex Network Applications
	Searchability and Navigability of Complex Networks
	Exploiting Web-API's Functionality and Sociability for Its Discovery
	Motivation Example
	 Problem Formulation

	Data Processing
	Pseudomashups - Generating synthetic mashups
	Refining APIs descriptions for Web-API network nodes

	Proposed Approach
	Network-Based Web-API Discovery with Google Custom Search API

	Experiments and Results
	Evaluation Metrics
	Baseline Methods
	Results and Analysis

	 Chapter Summary

	Conclusion and Future Directions
	Thesis Contributions
	A Complex Network Analysis of Web-API ecosystem
	Constructing and Evaluating Web-API Networks
	Application of Web-API Network in API Discovery

	Limitations and Future Direction

	References
	Appendices
	Appendix

