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Abstract

This dissertation resolves a mystery in cosmic radio recombination line observa-

tions reported by Bell et al. (2000). This is accomplished by rigorously “reverse-

engineering” the novel data processing technique they used and through inde-

pendent observations of high-order RRLs (radio recombination lines) of cosmic

origin to test the theory of Stark broadening in plasmas. The findings of this

dissertation are summarized in two papers published during the dissertation and

reproduced in Chapter 4.

I discovered that the apparent hydrogen RRL narrowing first reported by Bell

et al. is an artifact of their data processing. I accomplished this by creating a

theoretical model of the multiple FS (frequency shifting) technique, originally

developed by Bell (1997), which I then implemented as a computer simulation.

This technique copies a spectral line bandpass, shifts it in frequency by an offset,

and adds it to the unshifted bandpass. The output of this process is then fed back
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to itself multiple times. I then co-created a theoretical model of the Orion neb-

ula which includes mechanisms of spectral line broadening and non-equilibrium

thermodynamics effects. This model is used to numerically solve the radiative

transfer problem to simulate hydrogen RRLs. These simulated lines are then

processed through the multiple FS model, the results of which are called “pro-

cessed” lines. Finally, I used Monte Carlo simulation to estimate how noise

influences the processed line widths and amplitudes.

From these models and simulations, I discovered that multiple FS does not pre-

serve broadening when the original line width is greater than the FS-offset. In

this case, I find the processed results manifest the narrowing reported by Bell et

al., by reducing broad spectral wings characteristic of Stark broadened RRLs. I

also discovered that the S/N of processed lines reduces weakly with the number

of overlaps as a result of adding dependent samples. This means the S/N of pro-

cessed lines as a function of ∆n (transition-order), at fixed frequency, decreases

faster than for unprocessed lines, such that a given statistical insignificance level

is reached more quickly.

Given this analysis, I argue Bell et al.’s ∆n > 11 lines are artifacts of their tech-

nique. I conclude that their reported findings, upon re-examination of their novel

data processing technique, do not indicate a need to change Stark broadening

theory.
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I present original observations of high-order RRLs from the Orion nebula to test

the theory of Stark broadening in cosmic plasmas. I use a wide 1GHz bandpass

centered at 6GHz to significantly improve the accuracy of measurements by

stacking up to eleven hydrogen RRLs of the same ∆n and find no evidence

of spectral line narrowing. I show that all statistically significant data from

my observations and four-sets of previous observations of high-order hydrogen

RRLs (Smirnov et al., 1984; Bell et al., 2011) are in agreement and demonstrate

how Stark broadening theory is consistent with these observations. I find that

Lockman and Brown (1975)’s RRL model of the Orion nebula over a large range

of radio frequencies and ∆n ≤ 2 requires the addition of small-scale density

inhomogeneities (clumps) and turbulence to adequately predict my observed

hydrogen RRLs for ∆n≤ 5.

I demonstrate that the power law predicted by electron-impact Stark broaden-

ing theory is consistent with the five-sets of high-order hydrogen RRLs analyzed

here. My data do not allow distinguishing between two approaches to the cut-off

parameters (nearest neighbor versus Debye radius) when predicting line broad-

ening from electron impacts. Specifically, the data does not allow an unambigu-

ous choice between the theoretical results of Griem (1967); Gee et al. (1976)

and Watson (2006); Peach (2015). This ambiguity arises from small differences

in the radiative transfer nebula model parameters. It is currently impossible

to independently determine turbulent velocities and other physical & geomet-
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ric parameters of the Orion nebula with enough accuracy to choose between the

two predications of electron-impact broadening theory. This situation represents

an ill-posed inverse problem that is currently unsolvable (Brown et al., 1978).

However, I am able to show that Peach’s model for electron-plus-proton impacts

significantly deviates from the Lorentz-width trend in my data.
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Prologue1

There is little in our daily experience to condition ourselves to think in terms of

the universality of space-time. Each year we become more dependent on clearly

defined boundaries within which we may live comfortably. We want to know

exactly what to expect and when. A life span of so many years, a speed limit of

so many km/hr. A salary bracket of so much money.

Space and time does not fit this pattern. It breaks down all boundaries of thought.

As a result, it is ignored by most and misunderstood by many, even those who

take time to consider it. It is accepted and understood by a relative handful of

pioneers willing to start from a mental jumping-off place beyond which most

refuse to venture.

Consider, for a moment, some statistics of space and time:

We inhabit a tiny planet about an average star which is one in a galaxy of some

1Adapted from Bell (1960).
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100 billion stars. If we had started counting at a rate of 100 stars a minute at the

time Christ was born, we would just now be finishing the count.

Traveling at 10,000 km/hr, it would take us two days to reach the Moon, two

years to reach the Sun and 80 years to arrive at Pluto. And it would take 470,000

years to reach Alpha Centauri, our next closest star system. This system is

three gravitationally-bound stars — two similar to our sun, the third a red dwarf

— with a growing number of detected planets, including an Earth-sized one

in its habitable zone. There is now nearly 3000 confirmed planetary systems

within 2000 light years of us. About one in five Sun-like stars have an Earth-

sized planet in the habitable zone. Assuming there are 200 billion stars in the

Milky Way, we can hypothesize that there are 11 billion potentially habitable

Earth-sized planets in the Milky Way, rising to 40 billion if planets orbiting the

numerous red dwarf stars are included. So, where is everybody?

These facts should not be considered prosaically, like this weeks grocery list or

mortgage payment. These are incredible statistics requiring enhanced thinking,

a mental gear-shifting necessary for the new age, the Space Age. And for a few,

this thinking has preceded the space age. This is the stuff of pioneers.

Space alone is one of the great unknowns to be explored. A dictionary tells us

that it is the interval between objects. What interval? What objects?

When scientists talk of space, they usually refer to a volume beyond 100 km al-
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titude, below which lies the majority of Earth’s atmosphere. Earth’s gravitation

is slight enough and its atmosphere thin enough that relatively low velocities

will permit escape. And space is a vacuum far greater than any attainable on

Earth.

It is from this last fact that the present dissertation begins an exploration of giant

cosmic atoms...
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1 Introduction

“No problem can be solved from the same level of consciousness

that created it.” Albert Einstein (1879-1955)

1.1 Goal

The goal of this dissertation is to deepen our understanding of matter at the

highest electron excitations, known as Rydberg atoms.1 This has been done by

resolving a mystery about cosmic atoms detected from an enormous volume of

ionized gas ∼1000 times that of our solar-system known as the Orion nebula,

located, as we are, in the Orion arm, a minor spiral arm of our Milky Way galaxy

(Brunthaler et al., 2011).2 In resolving this mystery, I have tested the theory of

spectral line broadening at the highest measurable changes in principal quantum
1Named after the Swedish physicist Johannes R. Rydberg (1854–1919) who predicted the

frequencies of light emitted/absorbed by a change in the energy level of an electron in a
hydrogen atom (Rydberg, 1890; Martinson and Curtis, 2005).

2∼460pc from Earth, this nebula is a stellar nursery containing stars ∼0.01% of the age of
our Sun.
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1.2 A cosmic laboratory

number, ∆n, where atomic dimensions reach∼105 times that of hydrogen atoms

in terrestrial laboratories and the spectral emission frequencies occur within the

radio range of the electromagnetic spectrum.

1.2 A cosmic laboratory

Danish pioneer of quantum theory, Neils Bohr (1885-1962) anticipated that the

most highly excited atoms will be cosmic in origin: “Only at very low pressures,

large electronic orbits will not be disturbed by electrical forces of neighboring

atoms... We can propose the existence of hydrogen in celestial bodies, and it

could occupy huge areas” (Bohr, 1914). It was not until just after the end of

his life that these most highly excited atoms were detected by radio astronomy

techniques. Today, we know that such cosmic atoms have up to approximately

1000 distinctly observable electronic quantum levels (Gordon and Sorochenko,

2009).

The mean density between stars is ∼1 atom per cubic centimeter (Kaplan and

Pikel’ner, 1970). That is eight orders-of-magnitude lower than that attainable in

the greatest vacuums created in terrestrial laboratories (van Atta et al., 1991).

Thus, the ISM (interstellar medium) represents a unique “laboratory” to re-

veal phenomena of, and relationships between, atoms impossible to detect on

Earth. The medium is subjected to radiation and energetic particles from astro-

24



1.2 A cosmic laboratory

physical objects and their associated processes, including stars, galactic corona,

supernova explosions, cooling supernova remnants, shock-waves driven by su-

pernova explosions, expanding H II (ionized hydrogen) regions, stellar winds,

colliding interstellar-clouds and supersonic gas flows from forming stars. As a

result, most of the matter in the ISM is a plasma characterized by populations

of electrons, ions and neutral atoms in various states of excitation. In these

voluminous and rarefied environments, atoms attain measurable dimensions ap-

proaching 0.1mm, the width of a human-hair (Gordon and Sorochenko, 2009).

Such atoms, termed Rydberg atoms, are formed from radiative recombinations

of electrons with ions into energy-levels n� 1, with subsequent de-excitations

(cascades) producing photon emission. Such Rydberg states of atomic carbon

have been observed in absorption against the supernova remnant Cassiopeia A

from levels as large as n = 1009, ∆n = 4, where the exciting-photon wavelength

is λ ∼ 12m; a frequency of ν ∼ 26MHz (Stepkin et al., 2007). Here, ∆n is

the transition order and represents the number of levels transited by electrons

which absorb the photons, the lack of which is detectable in absorption spectra

measured using radio telescopes.

Recombination lines are a powerful diagnostic of the environments they are

excited by and in which they radiate from. Spanning eight-orders in wave-

length, line-transition radiation from Rydberg atoms have been detected be-

tween λ ∼ 10−7 m (ultraviolet) and 10m (radio). Cosmic hydrogen, helium,
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1.2 A cosmic laboratory

carbon and sulfur atoms have been detected by the observations of RRLs (ra-

dio recombination lines) (Gordon and Sorochenko, 2009). These are observed

from galactic HII regions, planetary nebulae, diffuse interstellar gas, molecular

clouds, and other galaxies, both in emission and absorption. RRLs address ques-

tions about the theory of star formation, structure & evolution of our galaxy, and

primordial nucleosynthesis, as well as plasma physics & spectroscopy (Tsivilev

et al., 2016).

In addition to identifying the chemistry of the ISM, recombination lines probe

temperature and density of recombining plasmas. RRLs provide a relatively

simple and precise method of determining the electron temperature Te in HII

regions. Contrasted with optical emission lines, RRLs do not suffer from ab-

sorption by interstellar dust (Carroll and Ostlie, 1996). We can measure RRLs

even in weak astronomical sources due to population-inversion of atomic states

that produce spectral-line amplification, the basis of the “partial maser effect”

(Goldberg, 1966; Strelnitski et al., 1996a,b). The population of atomic states

and the degree of ionization, which determines the population ratio of bound to

unbound quantum domains, are specified by a single parameter, Te.3 Because

the temperature dependence of these two domains are different, the intensity ra-

tio of spectral-line to continuum emission enables an accurate determination of

Te.
3This is valid for high-frequency RRLs, where radiative mechanisms dictate the distribution

of bound states.
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The electron density Ne of an HII region may be found by measuring line-width

broadening of RRL-profiles emanating from the same volume of gas. This

broadening, known as impact Stark broadening, occurs when emitting atoms

collide with other constituents, including electrons and ions. These impacts dis-

rupt the electromagnetic wave of an emitting atom, causing effective reductions

in atomic level lifetimes. The resulting spectral line profile is broadened as

function of transition levels (n,∆n) and Ne. Fitting this function to a series of

observed Stark-broadened spectral lines and analyzing their relative line inten-

sities enables the determination of Ne.

Finally, Rydberg atoms are currently attracting the attention of those working

to realize quantum computing (Cooper, 2016). Atomic nuclei are roughly fem-

tometres in size, while the excited valance electron can travel micrometers from

the nucleus while still remaining bound. With such reach, Rydberg atoms in-

teract with nearby atoms via an electric dipole moment millions of times larger

than that of unexcited atoms. This interactive ability — controllable with a sin-

gle carefully chosen photon — makes Rydberg atoms an attractive candidate for

logic gates, the basis of modern computers (Goldschmidt et al., 2015).
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1.3 Detection of cosmic radio recombination lines

1.3 Detection of cosmic radio recombination

lines

In 1945, Dutch radio astronomer van de Hulst first considered the possibility of

detecting RRLs from highly-excited states of atoms in the ISM, but concluded

they will be too weak to observe due to significant weakening of emission-line

intensity from Stark-broadening (van de Hulst, 1945). However, a mistake in

these calculations showed Stark-broadening to be significantly larger than the

correctly estimated thermal-broadening.

Soviet astronomer Kardashev reached the opposite conclusion for excited hy-

drogen RRLs in HII regions (Kardashev, 1959). He showed Stark-broadening

will contribute insignificantly to line broadening for an electron temperature of

Te = 104 K and density Ne = 102 cm−3 at frequencies ν > 7GHz (λ < 4cm).

Soviet astronomers Sorochenko and Borodzich made the first definitive RRL

detection in 1964. Using a 22m telescope located near Moscow, they detected

the transition between principal quantum numbers n = 91 and n = 90 (spectral

line H90α according to RRL notation) at 8.9GHz from M17 (Omega nebula)

(Sorochenko and Borodzich, 1965). At about the same time, working indepen-

dently, another Soviet astronomy group marginally detected the H104α transi-

tion at 5.8GHz from M17 and M42 (Dravskikh and Dravskikh, 1964).

28



1.3 Detection of cosmic radio recombination lines

This and other detected RRL emissions gave surprising results regarding their

line intensities (Höglund and Mezger, 1965; Lilley et al., 1966). The derived

electron temperatures averaged∼ 5000K, while the accepted temperature of HII

regions in our galaxy based on forbidden optical lines was twice this (O’Dell,

1966).

The resolution of this discrepancy came from physics developed in the 1930s to

explain anomalous optical line intensities from nebulae and stellar atmospheres

by accounting for departures of a plasma from thermodynamic equilibrium,

bn = Nn/NLTE
n , where Nn is the population of level n and NLTE

n is the popula-

tion of this level predicted from thermodynamic equilibrium (Baker and Men-

zel, 1938). Leo Goldberg showed the observed RRL intensities are explained by

accounting for these departures (Goldberg, 1966). In particular, he showed that

RRL intensities are sensitive to the logarithmic derivative
dlnbn

dn
; see Chapter 2.

Another surprising result that emerged from the early observation of RRLs

was the absence of Stark broadening in detected line profiles (Sorochenko and

Borodzich, 1965; Höglund and Mezger, 1965; Lilley et al., 1966), which con-

tradicted the theory of spectral line broadening (Griem, 1960). Specifically, all

RRLs observed in M17 with principal quantum numbers up to n = 166, had

constant ratios of line-width to frequency, indicating pure Doppler broadening

(Sorochenko and Borodzich, 1965; McGee and Gardner, 1967).
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1.3 Detection of cosmic radio recombination lines

The explanation of this discrepancy was found through revision of the impact

broadening theory (Griem, 1967; Minaeva et al., 1967) and by accounting for the

non-homogeneous density structure in the observed ISM (Hoang-Binh, 1972;

Brocklehurst and Seaton, 1972; Simpson, 1973a,b; Gulyaev and Sorochenko,

1974; Lockman and Brown, 1975). The latter effect was overlooked when ap-

plying the theory of spectral line broadening based on the laboratory condi-

tion of homogeneous densities. The absence of Stark broadening for a non-

homogeneous density distribution results from the fact that optical depth in

a plasma increases with decreasing frequency, gradually leading to complete

opaqueness of high-density areas. This increase in gas opacity means that ob-

served lines at lower frequencies increasingly manifest themselves in the more

transparent, lower density outer areas of an HII region, where they are mini-

mally Stark broadened. For high n RRLs, which occur at lower frequencies,

the core of an HII region becomes opaque, and therefore, contribution of these

highly Stark broadened lines becomes negligible and Stark broadening can be

observationally undetectable (Gulyaev and Sorochenko, 1974).

The changing opacity as a function of frequency & location in HII regions and

the variations in beam-width of radio-telescopes as a function of frequency pre-

vented the detection of the predicted increase in Stark broadening as a function

of n. In order to verify the Stark broadening theory, it was suggested to observe

RRLs of increasing transition order ∆n, while maintaining a constant observing
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1.3 Detection of cosmic radio recombination lines

frequency, and thus a constant beam-width (Minaeva et al., 1967). In this case,

as ∆n increases, n also increases and lines exhibit increasing amounts of Stark

broadening compared with the contribution of pure Doppler broadening in these

line profiles.

Suitable choices of n are obtained from the Rydberg formula (Rydberg, 1890),

where emission frequency ν is related to n and ∆n as

ν = cR

(
1
n2 −

1

(n+∆n)2

)
≈ 2cR∆n

n3 , ∆n� n, (1.1)

where c is the speed of light and R is the Rydberg constant.

For example, when ν = 6GHz and ∆n = {1,2,3}, Equation 1.1 predicts the

series: H103α, H129β , H147γ .

The observational challenge with this suggestion is that RRL intensities rapidly

weaken with increasing ∆n as I ∝ ∆n−k. From the intensity data presented in

Section 3.5 on the Orion nebula at 6GHz, I find 2 < k < 3 and it grows with

increasing ∆n at fixed frequency. For example, at 6GHz, the peak intensity of

the Hnδ line is about ten-times less than the intensity of the Hnα line. This

situation made it impossible, until the early 1970s, to detect a sufficiently-long

series of higher-order lines, with adequate sensitivity, using a single telescope

to test line broadening theory.

Leveraging these theoretical and observational RRL insights, R. Davies pub-
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1.3 Detection of cosmic radio recombination lines

lished remarkable high-order RRL observations at 5GHz, that included detec-

tions of H RRLs from M42 for ∆n= 1...3 and for ∆n= 1...5 from M17 using the

140ft Greenbank telescope in West Virginia (Davies, 1971). Figure 1.1 (green

triangles) shows the variation in the observed line-widths as a function of n for

M42.4

A novel observing technique using two radio telescopes of differing diameters

enabled detections of H RRLs from M42 for ∆n≤ 6 (Smirnov et al., 1984). The

two telescopes observed at differing frequencies such that a series of higher-

order lines were observed with the same beam-width and hence from the same

volume of plasma. Figure 1.1 (red circles) shows the variation in the observed

RRL widths as a function of n at 5GHz. Taken together, Davies’ and Smirnov

et al.’s data clearly indicate broadening of RRLs with increasing n.

4These data are extracted from Davies’ published spectral line profiles using Dexter (a software
tool for extracting data from scanned figures, (GAVO Data Center, 2008) and Gaussian
profile fitting.
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Figure 1.1: RRL widths versus principal quantum number for M42 reported by
Davies (1971) (green triangles), Smirnov et al. (1984) (red circles) and Bell
et al. (2000) (black squares).

1.4 Solving a radio recombination line mystery

Figure 1.1 (black squares) also shows published RRL widths from an even greater-

and higher-range of Hn∆n transitions at 6GHz, using the same 140 ft Greenbank

used by Davies (Bell et al., 2000, 2011). It suggests that, not only is there a

limit to Stark broadening, which is not predicted by the theory, but that the es-

tablished theory of Doppler broadening is in doubt. These results, referred to as

“processed” widths by the authors, were obtained from a single telescope using

a novel technique based on multiple frequency-switching with small frequency

offsets which gives flat spectral baselines without having to fit and remove poly-

nomials or sinusoids (Bell, 1997).
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1.4 Solving a radio recombination line mystery

The first published response to these unexpected results appeared in 2002 as a

footnote in the first edition of the “bible”, Radio Recombination Lines (Gordon

and Sorochenko, 2002). There, it is stated, “These results are so different from

what had been expected, and the observing technique is so new, that prudence

requires independent confirmation before accepting a fault in the present theory

of RRL Stark broadening.”

In response to Bell et al.’s claims, Oks (2004) suggested that the model of Stark

broadening may need to change from an impact regime to a quasi-static one,

where Bell et al.’s results indicate the onset of decreasing RRL widths with in-

creasing n — see Figure 1.1. Although this is consistent with the quasi-static

model, it has been argued by Griem (2005) that Oks’ suggestion is based on an

inappropriate choice of the Weisskopf radius, which quantifies the strength of

interactions between perturbers and the emitting atom’s electromagnetic wave-

train (Gordon and Sorochenko, 2009). As a result, this choice falsely indicates a

breakdown of the impact model. Also in response to Bell et al.’s claims, numeri-

cal calculations of electron-impact broadening of RRL of hydrogen for different

∆n has been done by Watson (2006). Results indicate that widths increase mono-

tonically up to n > 300, as expected from electron-impact broadening theory.

The puzzle regarding the observed narrowing of the lines therefore remained

unsolved in the literature.

Bell (1997)’s data reduction technique is an extension of the frequency-switching
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1.4 Solving a radio recombination line mystery

technique developed by Dicke (1946) to reduce inherent receiver gain fluctua-

tions. It is used to detect weak spectral lines in the presence of baseline varia-

tions by switching the local oscillator in the receiver hardware to produce two

passbands, one slightly shifted in frequency from the other. Assuming the pres-

ence of a single spectral line feature, subtracting one passband from the other

produces an overlapped spectrum containing two lines — of equal and opposite

strength — separated by a small frequency-offset. Baseline variations with “pe-

riods” greater than the frequency-offset are significantly minimized in the sub-

traction, thereby flattening the baseline. In conventional frequency-switching,

the two lines are then co-aligned and subtracted to obtain a
√

2 improvement in

S/N (signal-to-noise ratio).

Bell’s novelty is recognizing that additional overlaps of the original overlapped

spectrum further flattens the base-line. Though more line pairs are created by

these iterative overlaps, they are systematically removed based on the number of

overlaps applied. My investigations (in Section 4.1) find that, in the presence of

baseline variations, Bell’s technique is able to accurately recover spectral lines

with residuals approaching that of the original thermal noise limit. However, my

investigations also show that application of their technique fails to accurately

recover spectral line parameters when the frequency-offset becomes less than

the width of the spectral line itself (Alexander and Gulyaev, 2012); see also

Liszt (1997). In this case, recovered line-widths depend on the frequency-offset
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only, i.e., a constant, instead of actual line-widths. I argue in Section 4.1 that

this finding explains Bell et al.’s published line-narrowing as an artifact of their

processing technique and indicates that electron-impact Stark broadening theory

remains valid.

In Section 4.2 I summarize five series of RRL observations, including my orig-

inal observations conducted with the highest (at this time) precision (Alexander

and Gulyaev, 2016). I demonstrate that Stark broadening theory is consistent

with all of these statistically significant results. I also show that (at this time) it

is not possible to distinguish between the theoretical results of Griem (1967) &

Gee et al. (1976) and Watson (2006) & Peach (2015).

1.5 Dissertation roadmap

Chapter 2 reviews the physics of plasmas and RRLs. This sets the stage for

exploring an apparent RRL mystery published by Bell et al. (2000) that is thor-

oughly explored in my first publication, reproduced in Section 4.1. Chapter 3

details the processing and analysis of my ATCA (Australia Telescope Compact

Array) radio frequency interferometry observations, which forms the basis of

all original results presented in this dissertation and which are not presented

in my second publication reproduced in Section 4.2. Chapter 4 begins with

a summary of the findings of my publications and ends with the publications
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themselves. Section 4.1 is the 2012 publication on the “reverse-engineering”

of Bell (1997)’s data processing technique and the associated findings (Bell

et al., 2000, 2011) that initiated testing models of RRL intensities and widths

at the highest detectable principal quantum number changes using observations

of cosmic plasmas. Section 4.2 is the 2016 publication which focuses on the

widths of high-order RRL detections from my 2013 Orion nebula observations.

Chapter 5 summarizes the findings of this dissertation and suggests future work

in the detection and analysis of high-order RRLs.

1.6 Approbation

The findings of this dissertation are published as two papers in the Astrophysical

Journal (Alexander and Gulyaev, 2012; Alexander and Gulyaev, 2016). These

findings were presented in seminars at AUT’s Institute for Radio Astronomy

and Space Research and at international conferences: Astronomical Society of

Australia’s annual scientific meeting (with a poster reproduced in Figure 4.1),

Sydney 2012; International Conference on Spectral Line Shapes, St. Peters-

burg 2012; Serbian Conference on Spectral Line Shapes in Astrophysics, Sre-

brno jezero 2015. These findings are generally accepted by international ex-

perts in Stark broadening and RRLs, including Goss, Griem, Peach, Smirnov,

Sorochenko and Watson.
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2 Radio recombination lines in

cosmic plasmas

“If you want to find the secrets of the universe, think in terms of energy, fre-

quency and vibration.” Nicola Tesla (1856-1943)

2.1 Intensity of radio recombination lines

The intensities, i.e., line-strengths, of RRLs emanating from a plasma at fre-

quencies predicted by Rydberg’s formula (Equation 1.1) depend essentially on

the relative populations of the atomic energy levels and probability of transition

between these levels. First, we need to determine the distribution of electrons as

a function of energy, both for free electrons (positive energy states) and electrons

bound in atoms (negative discrete energy states).
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2.1.1 Population of highly-excited atomic levels

The observed velocity distribution of electrons in plasma is accurately modeled

by a Maxwell-Boltzmann velocity distribution when electron-electron collisions

dominate (Maxwell, 1860; Boltzmann, 1868; Chapman and Cowling, 1970).

Such collisions are much more efficient at energy-redistribution than radiative

processes and inelastic collisions. Therefore, the distribution function for free

electrons is assumed to be a Maxwell-Boltzmann distribution. For bound states,

it is assumed that the level populations are determined by radiative and colli-

sional processes. At low-n levels, the probabilities of radiative processes are

much greater than the probabilities of collisional processes. However, this as-

sumption is not correct in the limit of highly excited states (n� 1), where the

populations are determined by collisional processes, resulting in a distribution

similar to that of the distribution for free electrons (Seaton, 1964).

For a plasma at a given temperature and pressure, the number of atoms in a

given principal quantum level n is given by

Nn = bnNLTE
n , (2.1)

where bn accounts for the plasma’s departure from LTE (local thermodynamic
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2.1 Intensity of radio recombination lines

equilibrium). NLTE
n is given by the Saha-Boltzmann equation,

NLTE
n =

NeNi

T 3/2

n2h3

(2πmk)3/2
exp
(

Z2En

kT

)
, (2.2)

which relates the equilibrium number density of atoms NLTE
n in bound-level n to

the population density of electrons and ions of the unbound states of hydrogenic

atoms, Ne and Ni; h is Plank’s constant, m is the mass of the electron, k is Boltz-

mann’s constant, Z is the number of protons in the atom’s nucleus (Z = 1 for

hydrogen) and En is the energy difference between level n and the continuum.

Departure coefficients bn are found by solving the system of equations (for all n

levels) describing the statistical equilibrium of a plasma, known as the equation

for statistical equilibrium (Aller, 1963). All the ways out of a quantum level n

are equated to all ways into that level,

Nn ∑
n6=n′

Pn,n′ = ∑
n6=n′

Nn′Pn′,n , (2.3)

where P represent the rates of physical processes in the directions indicated

by the subscripts. The left-hand-side of Equation 2.3 includes all processes that

depopulate level n, while the right-hand-side includes all processes that populate

it. In LTE, each rate into a level must balance exactly with the same kind of rate

out of that level. This is known as the principle of “detailed balance” (Landau
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and Lifshitz, 1980).

The physical processes of importance in a thermal plasma are radiative and col-

lisional. An excited level n is populated by,

1. collisional transitions from other bound levels,

2. spontaneous radiative cascade transitions from higher levels,

3. recombination from the continuum through radiative and three-body re-

combination processes,

and depopulated by,

1. spontaneous radiative transitions to lower levels,

2. electron collisions that cause transitions to other atomic levels,

3. collisional ionization.

Accounting for these processes leads to the following equation of statistical

equilibrium for level n,

Nn (An +Cn,n±1 +Cn, i)=Nn+1Cn+1,n+Nn−1Cn−1,n+ ∑
n′>n

Nn An′,n+Ni Ne
(
ar

i,n +Ci,n
)

(2.4)

where collisional transitions only to adjacent levels are accounted for (Dupree,

1969).
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Using words, Equation 2.4 states: in statistical equilibrium, the number of tran-

sitions per unit volume per unit time out of level n from radiative, collisional,

and ionization processes equals the number of transitions into level n per unit

volume per unit time from recombination and from radiative & collisional pro-

cesses from other levels.

An(s−1) is the rate of spontaneous emission to lower levels < n, and Cn,n′(s−1)

is the rate of inelastic collisions between levels n and n′ or the ionization rate

when n′ = i. The rate coefficient for radiative recombination is ar
i,n(cm3 s−1).

Following Dupree (1969), Equation 2.4 is written as

n+1

∑
n′=n−1

Rn,n′ bn′ = Sn (2.5)

for each level n, where

Rn,n−1 =
ωn−1

ωn
Cn−1,n exp(Xn−1−Xn) , (2.6)

Rn,n = An +Cn,n±1 +Cn, i , (2.7)

Rn,n+1 =
ωn+1

ωn
(Cn+1,n +An+1,n)exp(Xn+1−Xn) , (2.8)

Sn = 2(2πmkTe)
3/2 h−3 1

ωn
ar

i,n exp(−Xn)+Cn, i + ∑
n′>n+1

bn′ An′,n
ωn′

ωn
exp(Xn′−Xn) ,

(2.9)
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and

Xn =
hcRZ2

n2kTe
, (2.10)

where ωn = 2n2 is the statistical weight of level n.

The cascades from levels n′ > n+1 are contained in the Sn term, while interac-

tions with adjacent levels n′ = n±1 are contained in the Rn,n±1 terms.

Expanding Equation 2.4 for an atom with nmax levels results in a system of ∆ =

(nmax−nmin)+1 equations that form a tri-diagonal square matrix in R,



Rnmin, nmin Rnmin, nmin+1 0

Rnmin+1, nmin Rnmin+1, nmin+1 Rnmin+1, nmin+2

Rnmin+2, nmin+1 Rnmin+2, nmin+2 Rnmin+2, nmin+3

. . .
. . .

. . .

Rnmax−1, nmax−2 Rnmax−1, nmax−1 Rnmax−1, nmax

0 Rnmax, nmax−1 Rnmax, nmax



=



bnmin

bnmin+1

bnmin+2

...

bnmax−1

bnmax





S′nmin

Snmin+1

Snmin+2

...

Snmax−1

S′nmax


, (2.11)
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where

S ′nmin
= Snmin−Rnmin, nmin−1 bnmin−1, (2.12)

S ′nmax = Snmax−Rnmax, nmax+1 bnmax+1, (2.13)

and bnmin−1, bnmax+1 are the lower and upper boundary-values of the departure

coefficient spectrum bn.

Equation 2.11 is solved using a simplified form of Gaussian elimination that

reduces the number of required operations from ∆3 to ∆ (Riley et al., 2006). A

complication in the solution arises from the presence of bn in the cascade term,

Sn. This is addressed by an iterative procedure in which all bn are initially set

to unity and after each iteration the new bn are used to re-compute Sn. This is

repeated until successive sets of bn agree to within a percent.

The resulting bn spectrum is insensitive to the choice of the lower boundary-

condition bnmin−1 and nmin, given nmin is chosen where radiative rates domi-

nate and collisions with degenerate angular momentum states l are insignificant

(Gordon and Sorochenko, 2009). For the plasma conditions typical of HII re-

gions
(
Ne ∼ 104 cm−3, Te ∼ 104 K

)
, this is the case for nmin ∼ 40. In this case,

an asymptotic form of bn is used (Seaton, 1959):

bn (radiative) =
3lnn−4.84
3lnn−1.84

. (2.14)
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However, the choice of the upper boundary-condition bnmax+1 and the value of

nmax strongly effects the shape of the calculated bn spectrum. This fundamen-

tally affects the behavior of our plasma model, i.e., RRL intensities and widths.

Above nmax, it is assumed the levels will be in equilibrium due to collisional

coupling with the continuum. From Dupree (1969), nmax is estimated from

when the collisional ionization rate is much greater than the rate of spontaneous

emission, i.e., when Cn, i � An. Using Shaver (1975), Cn, i ≈ 10−5n2Ne and

An ≈ 1010n−5, leading to the condition nmax� 102N−
1/7

e . For Ne = 104 cm−3,

this gives nmax � 10. Another approach to estimating nmax, which assumes

atomic dimensions are no greater than the mean distance between particles, is

to calculate the mean distance between electrons from Ne and equate this to the

atomic radius at level n. Thus, r ≈ N−
1/3

e and rn ≈ a0n2 gives nmax ≈ 104N−
1/6

e ,

which predicts nmax ≈ 104 when Ne = 104 cm−3.

Together, these two approaches imply that the size of atoms and their corre-

sponding number of available/observable energy levels are huge in the ISM rel-

ative to laboratory plasmas, such as those produced in a fusion reactor where

Ne ≥ 1013 cm−3 (Garabedian, 2003).

However, there is a significant problem that arises as n grows large, namely that
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the partition function for hydrogenic atoms

Z =
nmax

∑
n=1

2n2 exp
[
−(E1−En)

kT

]
(2.15)

diverges because the Boltzmann factor approaches the constant value exp
(
−E1
kT

)
,

while n2 grows.

This physically implies that the number of atoms Nn having an electron in a

given level n, as n tends to infinity, also tends to infinity. This appears to be

unphysical. Instead, it should tend to zero. That is, the probability of finding

atoms with electrons in such an excited state should decrease the farther it is

from its nucleus.

The second approach to estimating nmax assumes that beyond nmax, atoms cease

to have more energy-levels available to populate, meaning that the probability of

bound-electrons existing beyond nmax is zero. This suggests that bnmax+1 = 0 is

more physically plausible than bnmax+1 = 1 in describing the relative populations

of atomic energy levels at large n, because now the transition from bound states

to the continuum is “lowered” from infinity to nmax.

The convergence problem of atomic partition functions and its termination is

connected with the phenomena of “lowering of the ionization potential”, which

accounts for non-ideal, collective effects in a plasma due to perturbations from

nearby charges, neutral atoms, and plasma Debye interactions (Cowley, 1970;
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Gündel, 1970, 1971). These non-ideal effects were explored in Gulyaev (1990)

to extend the theory of Stark broadening to observations of cosmic plasmas at

large principal quantum numbers.

2.1.2 Radiative transfer

A radiative transfer model is used to predict the continuum and spectral line

emission from a plasma, given its geometry, density and temperature structures.

The radiative transfer equation

dIν =−Iν κ (ν) dx+ j (ν) dx (2.16)

describes the change in intensity of radiation dIν as it traverses a distance dx

through the plasma. The first term on the right-hand-side accounts for absorp-

tion of radiation by the plasma. The second term accounts for its emission.

Integrating/Iterating Equation 2.16 from the “back” to the “front” of the plasma

calculates the emerging radiation (Chandrasekhar, 1960). Figure 2.1 illustrates

the transfer equation.

κ (ν) is the linear absorption coefficient in units of inverse-length. It accounts

for reductions of intensity along the line of sight of a detector. j (ν) is the

linear emission coefficient. It accounts for all the gains in intensity along the

line of sight of a detector. κ (ν)−1 is the mean free-path of a photon before
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Figure 2.1: Radiation transfer

it is absorbed in the plasma. The product of κ (ν) and distance is defined as

“optical depth” or τν , such that τν ≡
´ x2

x1
κ (ν) dx = 1 for a traversed-distance of

one mean free path. If τν � 1 when integrated from back-to-front through the

plasma at given frequency ν , it is known as “optically-thick”. If τν � 1 when

integrated in the same way, it is known as “optically-thin”.

κ (ν) and j (ν) are physically related. Their ratio, j (ν)/κ (ν), is an intrinsic

property of an emitting plasma. A solution of the radiative transfer Equation 2.16

requires specifying this ratio as a function of location and frequency. In thermo-

dynamic equilibrium, where the radiation field is specified by a single parame-

ter T (defined as temperature), this ratio is related through the Planck function

Bν(T ) as

j (ν)/κ (ν) = Bν(T ) (2.17)
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2.1 Intensity of radio recombination lines

from Kirchhoff’s law of thermal radiation (Kirchhoff, 1860), where Bν(T ) is a

function only of frequency and temperature.

The Planck function (Planck, 1901) is

Bν(T ) =
2hν3

c2
1

ehν/kT −1
. (2.18)

When hν/kT � 1, which often occurs at radio frequencies in astronomy, the

Rayleigh-Jeans approximation (Rayleigh, 1900; Jeans, 1905) of Bν(T ) is

Bν(T )≈
2ν2kT

c2 , (2.19)

given ehν/kT ≈ 1+hν/kT in Equation 2.18.

A plasma is populated by ions, free electrons, and neutral atoms in various states

of excitation. These components interact through collisional and radiative exci-

tation and de-excitation processes. Radiation absorbed and emitted from these

processes is usefully divided into continuous (classical) and quantum domains.

κ (ν) and j (ν) are then written as

κ (ν) = κC (ν)+κL (ν) and j (ν) = jC (ν)+ jL (ν) , (2.20)

where κC (ν) is the continuum absorption coefficient, κL (ν) is the line absorp-

tion coefficient, jC (ν) is the continuum emission coefficient, and jL (ν) is the
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2.1 Intensity of radio recombination lines

line emission coefficient.

2.1.3 Continuum emission

At radio frequencies, Bremsstrahlung or “free-free” radiation between electrons

and ions is the dominate mechanism producing and absorbing continuum ra-

diation in HII (ionized hydrogen) plasmas typical of nebulae (Gordon, 1988;

Condon and Ransom, 2016). Calculating κC (ν) requires accounting for the

electrical interactions between two charged particles and their velocity distribu-

tions. κC (ν) is determined by integrating the emission produced during each

encounter over the velocity distribution of the particles, which is assumed to

be Maxwell-Boltzmann distribution. Equation 2.94 of Gordon and Sorochenko

(2009), gives an expression for κC (ν) that is used in the plasma model of the

Orion nebula used in this dissertation,

κC (ν) = 9.770×10−3 N2
e

ν2T 3/2
e

[
17.72+ ln

(
T 3/2

e

ν

)]
, (2.21)

giving κC (ν) in units of cm−1 when the electron density Ne is in units of cm−3,

electron temperature Te is in Kelvins and ν in Hz.

An approximation to Equation 2.21 given by Altenhoff et al. (1960) is

κC (ν)≈
0.2120N2

e

ν2.1T 1.35
e

. (2.22)
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2.1 Intensity of radio recombination lines

and jC (ν) is obtained using Kirchhoff’s law, Equation 2.17.

The continuum radiation as a function of frequency from an HII region is pre-

dicted by the radiative transfer equation. Assuming a homogeneous (Ne =

constant) and isothermal (Te = constant) slab of H plasma of thickness L, the

resulting radiation intensity Iν is found by numerically iterating Equation 2.16.

Assuming the initial intensity on the far-side of the region is zero I(0)ν = 0, then

after a small distance dx into the region along the line of sight toward the ob-

server, the intensity is

I(1)ν = I(0)ν +dI(0)ν = dI(0)ν (2.23)

dI(0)ν =−I(0)ν κ (ν)dx+ j (ν) dx = j (ν) dx (2.24)

I(1)ν = j (ν) dx (2.25)

which means the intensity at this point has increased due to emission, j (ν) dx.

After the next differential step toward the observer, the intensity becomes

I(2)ν = I(1)ν +dI(1)ν = j (ν) dx− I(1)ν κ (ν) dx+ j (ν) dx (2.26)

= 2 j (ν)dx− j (ν)κ (ν)(dx)2 ,

whereby it increases by another unit of emission j (ν)dx, while decreasing by

I(1)ν κ (ν)dx = j (ν)κ (ν)(dx)2.
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2.1 Intensity of radio recombination lines

Continuing in this way for L/dx steps, the intensity emerging from the near-side

of the HII region is what is seen by the observer, assuming no other intervening

sources of significant emission and absorption.

Figure 2.2 shows a plot of intensity versus frequency numerically predicted by

the radiative transfer Equation 2.16 using parameters typical for HII regions at

radio frequencies: Ne = 104 cm−3, Te = 104 K, L = 1018 cm. It can be seen that

the continuum intensity rises rapidly at low frequencies as Iν ∝ ν2 and falls

slowly at high frequencies as Iν ∝ ν−0.1. This behavior emerges, as follows,

when solving the radiative transfer equation for an isolated slab of homogeneous

plasma at a single temperature.

Figure 2.2: Continuum emission model. Numerical simulation result of the ra-
diative transfer equation predicting brightness Iν versus frequency ν for a
typical HII region. Model parameters are Ne = 104 cm−3, Te = 104 K and
L = 1018 cm.
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2.1 Intensity of radio recombination lines

Begin by re-arranging Equation 2.16 as

dIν

κ (ν)dx
= −Iν +

j (ν)
κ (ν)

. (2.27)

Given optical depth1 is dτν = −κ (ν) dx and
j (ν)
κ (ν)

= Bν (T ) is the a source

function which assumes a radiation field in local thermodynamic equilibrium,

then

dIν

dτν

= Iν −Bν (T ) . (2.28)

This equation is solved by integrating from the far-side to the near-side of the

plasma using integration-by-parts
´ b

a pdq
dr dr = pq|ba −

´ b
a qdp

dr dr, where p = e−τν

and dq
dr =

dIν
dτν

. This leads to

ˆ 0

τν

e−τν
dIν

dτν

dτ = e−τν Iν|0τν
−
ˆ 0

τν

I
d(e−τν )

dτν

dτν =

ˆ 0

τν

e−τν (Iν −Bν (T ))dτν .

(2.29)

Further simplification gives

Iν(τν = 0)− e−τν Iν(τν) =−
ˆ 0

τν

e−τν Bν (T ) dτν (2.30)

1The negative sign indicates that from the observer’s point-of-view τν decreases as x increases
— see Figure 2.1
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2.1 Intensity of radio recombination lines

or

Iν(τν = 0) = e−τν Iν(τν)+

ˆ
τν

0
e−τν Bν (T ) dτν (2.31)

or explicitly in terms of depth within the plasma (see Figure 2.1),

Iν(x) = e−τν (x)Iν(x = 0)+
ˆ

τν (x)

0
e−τν (x)Bν (T ) dτν . (2.32)

If there is far-side background radiation Iν(x = 0), the first term on the right-

hand-side of Equation 2.32 accounts for its attenuation as it traverses the plasma.

The second term accounts for the emission and attenuation of radiation from the

plasma itself. Given this plasma is isothermal, the integral in Equation 2.32 is a

difference equation resulting in

Iν = e−τν Iν(x = 0)+Bν (T )
(
1− e−τν

)
. (2.33)

Ignoring background radiation, we have, finally, the simplest radiative transfer

model of an HII region,

Iν = Bν (T )
(
1− e−τν

)
. (2.34)
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2.1 Intensity of radio recombination lines

For an optically thick plasma, τν � 1 and Equation 2.34 simplifies to

Iν = Bν (T ) , (2.35)

predicting that the observed brightness is Planck’s brightness distribution, Equation 2.18.

Using Rayleigh-Jeans’ approximation of this distribution (Equation 2.19) pre-

dicts Iν ∝ ν2, consistent with the low-frequency portion of Figure 2.2.

For an optically thin plasma, τν � 1 and Equation 2.34 simplifies to

Iν = τνBν (T ) . (2.36)

Combining Equation 2.19 and the approximation to the continuum absorption

coefficient Equation 2.22 predicts Iν ∝ ν−0.1, which is consistent with the high-

frequency portion of Figure 2.2.

2.1.4 Spectral line emission & absorption

Equations 2.116, 2.130, 2.131 and 2.132 of Gordon and Sorochenko (2009)

give an expression for the non-LTE line absorption coefficient κL (ν) at radio
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frequencies used by our Orion nebula model,

κL (ν) = κ
∗
L (ν)bn1β (2.37)

κL (ν) = κ
∗
L (ν)bn1

1−
(

bn2

bn1

)
e−hν/kTe

1− e−hν/kTe

 (2.38)

κL (ν)≈ κ
∗
L (ν)bn1

[
1− kTe

hν

dlnbn2

dn
∆n
]

(2.39)

where

κ
∗
L (ν)≈ 3.469×10−12

φ (ν)∆n
fn1,n2

n1

(
1− 3∆n

2n1

)
N2

e

T
5/2

e

exp
(

En1

kTe

)
, (2.40)

is the LTE line absorption coefficient and φ (ν) is the line profile, ∆n = n2−n1

is the principal quantum number transition-order, fn1,n2 is the oscillator strength

of the transition, n1 is the lower electronic quantum state and En1 is the energy

of this state, where (Bohr, 1913)

En1 =−
2π2me4

(nh)2 . (2.41)

From Equation 2.133 of Gordon and Sorochenko (2009), the non-LTE line emis-

sion coefficient is

jL = κ
∗
L (ν)bn2Bν (Te) .
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A useful approximation for fn1,n2 is given by Menzel (1968) as

fn1,n2 ≈ n1M∆n

(
1+1.5

∆n
n1

)
, (2.42)

where M∆n is given in Table 2.1 for ∆n≤ 10.

Table 2.1: Oscillator strengths fn1,n2 ≈ n1M∆n

(
1+1.5

∆n
n1

)
∆n log10 (M∆n)
1 -0.7194788
2 -1.5795145
3 -2.0912138
4 -2.4569656
5 -2.7418778
6 -2.9753214
7 -3.1730976
8 -3.3446790
9 -3.4962080

10 -3.6318861

A more accurate expression for fn1,n2 is given by Menzel and Pekeris (1935) as

fn1,n2 = gn1,n2 f ′n1,n2
, (2.43)

where gn1,n2 is a correction factor for f ′n1,n2
,

f ′n1,n2
=

26

3
√

3π

1
ω
′
n

1(
1
n2

1
− 1

n2
2

)( 1
n1n2

)3

. (2.44)
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An approximation for gn1,n2 that corrects f ′n1,n2
to within 0.5% of the exact so-

lution is given by Burgess and Summers (1976) as

gn1,n2 ≈ 1−T4 (T1G1 +T2G2 +T3G3) , (2.45)

where

G1 =

(
0.203+

0.256
n2

2
+

0.257
n4

2

)
n2, (2.46)

G2 = 0.17n2 +0.18, (2.47)

G3 =

(
0.2214+

0.1554
n2

2
+

0.37
n4

2

)
n2, (2.48)

T1 = (2n1−n2)(n1−n2 +1) , (2.49)

T2 = 4(n1−1)(n2−n1−1) , (2.50)

T3 = (2n1−n2−0.001)(n1−0.999) , (2.51)

T4 =
1

(n2−1.999)2
1

n2n
2/3
1

(
n2−1
n2−n1

)2/3

. (2.52)

Feron (2013) has verified the 0.5% claim for ∆n < 103 using arbitrary precision

arithmetic (Fousse et al., 2007) to exactly calculate the hypergeometric function

that arises when finding fn1,n2 (Hoang-Binh, 1990).
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2.2 Broadening mechanisms of radio recombination lines

2.2 Broadening mechanisms of radio

recombination lines

Three known spectral line broadening mechanisms determine the shapes and

widths of spectral lines, whether in emission or absorption. In the following sec-

tions I review natural, Doppler, and Stark broadening mechanisms. It is shown

that the contribution of natural broadening to the measured widths of RRLs is

negligibly small compared with the other two mechanisms.

2.2.1 Natural broadening

Before the development of quantum mechanics theory, atoms were modeled as

oscillating electric dipoles. The energy of an oscillator decreases as E(t) =

E0 exp(−Γt/2), where the damping constant is Γ =
8π2e2

3mec3 ν0 and ν0 is the os-

cillation frequency. Lorentz (1906) showed that this damping determines the

frequency spectrum of the oscillator to be

φ(ν) ∝
Γ/π

π

[
4(ν−ν0)

2 +

(
Γ

2π

)2
] , (2.53)

where the FWHM (full width at half maximum) of this profile is ∆νL = Γ/2π .

Quantum mechanics predicts that spectral lines have a natural width imposed by
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2.2 Broadening mechanisms of radio recombination lines

Heisenberg’s uncertainty principle (Heisenberg, 1927). This principle predicts

that the uncertainty in time and energy measurements are related by

∆E∆t & h̄. (2.54)

If the lifetime of an excited electronic state is ∆t, the energy of this state can

be determined with an uncertainty of ∆E h
h̄
∆t

. The uncertainty in the energy

depends on the lifetimes of the upper and lower states, n2 and n1. The natural

width of a spectral line is defined as

γ =
∆En2

h̄
+

∆En1

h̄
=

1
tn2

+
1

tn1

≡ Γn2 +Γn1 (2.55)

The total spontaneous rates out of levels n2 and n1 are

Γn2 =
n2−1

∑
n1=1

An2,n1, (2.56)

Γn1 =
n1−1

∑
n0=1

An1,n0, (2.57)

where An′,n(s−1) is the rate of spontaneous emission from upper level n′ to lower

level n.
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The FWHM is

∆νL =
Γ

2π
=

1
2π

(Γn2 +Γn1) =
1

2π

(
n2−1

∑
n1=1

An2,n1 +
n1−1

∑
n0=1

An1,n0

)
, (2.58)

which is the quantum mechanical form of the Lorentz width found by Weis-

skopf and Wigner (1930). Given Γn are approximately the same for lower and

upper levels of RRLs at large n, with (n2−n1)� (n2,n1), Equation 2.58 can be

approximated as

∆νL ≈
1
π

n2−1

∑
n1=1

An2,n1. (2.59)

From Sobel’man et al. (1995), the sum in this equation can be approximated as

An =
n2−1

∑
n1=1

An2,n1 ≈ 2.4×1010 lnn
n5 , n > 20. (2.60)

Using this equation and Equation 1.1 with ∆n = 1 as an approximation for RRL

frequency ν0, then Equation 2.59 estimates the natural width of RRLs:

∆νL

ν0
≈ 2.4×1010

2πRc
lnn
n2 ≈ 1.2×10−6 lnn

n2 , n > 20. (2.61)

As an example, this predicts that the fractional natural width for the H100α line

is ∆νL/ν0 ≈ 5.3×10−10. Using Equation 2.63, the natural width of this line is
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∆vL = 1.6×10−4 km/s, which, as is shown below, is negligibly small compared

with Doppler and Stark broadening.

2.2.2 Doppler broadening

2.2.2.1 Thermal broadening

Excluding turbulence, cosmic thermal gases are modeled as Maxwell-Boltzmann

velocity distributions. Given the high rate of collisions between electrons and

ions, any perturbation in the velocity distribution will get thermalized in minutes

for typical HII regions, Te = 104 K and Ne = 104 cm−3 (Gordon and Sorochenko,

2009).

For a Maxwell-Boltzmann velocity distribution, the probability of a gas atom

having a velocity component between vx and vx + dvx along a line of sight

through the nebula is

N (vx) dvx = N

√
M

2πkT
exp
(
−Mv2

x

2kT

)
dvx, (2.62)

where N is the total number of atoms contributing spectral line photons and M

is the atom mass (Gordon and Sorochenko, 2009). Using the Doppler formula
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to relate the observed frequency shift to the line-of-sight velocity shift

dvx = c
dν

ν0
, (2.63)

Equation 2.62 is converted to line intensity Iν . This assumes that the total in-

tensity in the line is proportional to the number of emitters N in the antenna

beam and that the gas is optically thin, which means the intensity dIν is propor-

tional to dN (vx). The result is Iν = I0φG (ν), where the line profile φG of the

Doppler-broadened line is

φG (ν) =

√
4ln2

π

1
∆νG

exp

(
−4ln2

(
ν0−ν

∆νG

)2
)
, (2.64)

where ∆νG is the FWHM of the thermally broadened Gaussian line.

∆νG is found by equating the exponential arguments of Equation 2.62 and Equation 2.64.

Using Equation 2.63 to relate velocity to frequency, the width is

∆νG =
√

4ln2

√
2kT
Mc2 ν0. (2.65)

For a typical HII region of T = 104 K and using the mass of hydrogen, Equation 2.65

gives a fractional Doppler width of ∆νG/ν0 ≈ 7×10−5. This is 100,000 times

greater than the corresponding fractional natural width of the H100α line cal-

culated above and corresponds to a Doppler width of ∆vG ≈ 21km/s using
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Equation 2.63.

2.2.2.2 Turbulence

Turbulence also contributes to the Doppler component of RRLs (Strelnitski

et al., 2002). HII regions contain cells of gas moving relative to one another.

If these cells are unresolved by a radio telescope, it is called microturbulence.

Given that the velocity distribution of these cells are found to be Gaussian, the

observed width can be modeled as the convolution of thermal and turbulence

Gaussians. This results in another Gaussian profile whose width is

(∆vG′)
2 = (∆vG−thermal)

2 +(∆vG−turbulence)
2 , (2.66)

such that the Doppler line width can be expressed as

∆VG ≡ ∆vG′ =
√

4ln2

√
2kT
M

+V 2
T , (2.67)

where VT is turbulence velocity (Gordon and Sorochenko, 2009). For example,

if VT = 15km/s and T = 104 K, the resulting FWHM of H100α due to the

Doppler mechanism is ∆VG ≈ 25.8km/s, instead of ≈ 21km/s calculated in the

previous subsection.
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2.2.3 Stark broadening

Also known as pressure broadening, Stark broadening arises from the Stark ef-

fect discovered by Stark (1913). When an atom is in the presence of an external

electric field, it’s atomic energy levels are observed to split and displace. The

Stark effect appears differently depending on the strength of the electric field.

When a bound electron is in a non-circular orbit (a Rydberg state), an elec-

tric dipole moment results which interacts with the electric field. This is called

a linear Stark effect when the observed displacement of emission lines is lin-

early proportional to the electric field strength. It is called a quadratic Stark

effect when the displacement is proportional to the square of the electric field

strength. Weak fields produce a linear Stark effect, while strong fields produce

a quadratic Stark effect.

If the atomic energy levels n of an atom are based on the quantization of the

orbital angular momentum of its electrons, Bohr (1913) showed that

En =
2π2me4

h2
Z2

n2 , (2.68)

where m is the mass of the electron, e is its charge and Ze is the charge of the

nucleus.

Using Equation 2.68, Bohr (1922) predicted that an applied external electric
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field E causes the energy level of an atom to change by

∆E =
3h2E

8π2em
nnf, (2.69)

where nf = 0,±1,±2, . . . ,±n. This leads to 2n−1 sublevels with the maximum

energy change proportional to n2 for each energy level En. Stark shifted lines

are modeled as transitions from the split upper-energy levels Enu ±∆E to the

split lower-energy levels Enl ±∆E (Gulyaev, 1976).

In the ISM, Stark broadening is more complex. Plasmas associated with the

ISM are characterized by ultra low density compared with terrestrial plasmas

and stellar cores. The electric field experienced by emitting atoms in the ISM

is modeled as a series of brief, weak and time varying transient fields induced

by successive collisions with electrons,2 instead of a constant field as described

above. The former scenario is called electron-impact Stark broadening and the

latter is called quasi-static Stark broadening. Here, I focus on impact broaden-

ing.3

2The importance of electron collisions in many environments is well known, arising from the
fact that electrons are always the most abundant charged particle and have a much higher
thermal velocity than atoms, leading directly to a higher collision rate (Barklem et al., 2011).

3In-depth discussion of the quasi-static Stark broadening approximation is found, among oth-
ers, in Peach (1975); Mihalas (1978).
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2.2.3.1 Impact broadening

Impact broadening can be interpreted as a consequence of finite lifetimes in

quantum states owing to collisions. In subsection 2.2.1 I considered natural

broadening and showed that the lifetime for an unperturbed atom in state n is de-

termined by the probability of spontaneous decay An, Equation 2.60. When col-

lisions are important, it is the probability of collisions that determines the life-

time of an atom in a given state, i.e., the coefficients Cn,n′ and Cn,i in Equation 2.7.

Considering collisions with radiating atoms, not only strong collisions that in-

terrupt radiation should be taken into account, but also multiple weak collisions,

which cause deformation of the wave train in the sense of its phase disruption.
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Figure 2.3: Impact broadening model. Bottom: the dotted line is an unperturbed
sinusoidal wave train as function of time. The solid line is the wave train
perturbed by brief collisions. Top: cumulative phase shifts in radians as a
function of time. Figure from Gordon and Sorochenko (2009). The circles
are added showing when collisions occur.

Figure 2.3 shows the effect of brief small phase shifts upon a sinusoidal wave-

train. The effect of these collisions redistributes power about the central fre-

quency of the electromagnetic wave, thereby increasing the associated spectral

line width. The Fourier transform relationship between the phase-shift time-

history and frequency dispersion is the spectral line profile.

As an example, consider the spectral line shape resulting from an oscillator of

constant amplitude that is briefly interrupted due to successive collisions. If

the oscillation is f (t) = exp(i2πν0t) over the duration T between successive

collisions that briefly halt the oscillator, then the frequency spectrum of the os-
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cillation is the Fourier transform of f (t):

F (ν) =

ˆ
∞

−∞

f (t)e−i2πνtdt =
ˆ T

0
ei2πν0te−i2πνtdt =

ˆ T

0
ei2πt(ν0−ν)dt

=
ei2πT (ν0−ν)−1

i2π (ν0−ν)
, (2.70)

where F (ν) is the complex spectrum for the duration T .

If collisions are Gaussian distributed during time T with a mean time τ between

collisions, then the probability of a collision is P(T ) = exp(−T/τ)/τ . The

resulting spectral profile φ (ν) is the average power spectrum
∣∣F2P

∣∣ over the

distribution of T :

φ (ν) ∝

ˆ
∞

0
F∗ (ν ,T )F (ν ,T )

e(−T/τ)

τ
dT =

2∆νL

π

[
4(ν−ν0)

2 +(∆νL)
2
] (2.71)

after normalization,
´

∞

−∞
φ (ν)dν = 1.

Like Equation 2.53, Equation 2.71 is a Lorentz profile with FWHM ∆νL =
Γ

2π
,

where Γ is related to probabilities of collisional transitions Cn,n′ and Cn,i (see

subsection 2.1.1 and Equation 2.7). Therefore, this model of an emitting atom

disrupted by collisions predicts a Lorentzian spectral line profile.

The phase disruption ∆φ induced by a perturber is modeled in terms of a min-

imum distance or “impact parameter” between the perturber and atom (Weis-

skopf, 1932). Figure 2.4 shows a charged particle passing an emitting atom at
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constant velocity v and minimum distance ρ .

  

Figure 2.4: Impact geometry. Perturber of velocity v passing within a distance
ρ of an emitting atom.

At any instant of time, it is assumed that the shift in the angular frequency of

emission ∆ω is modeled by a power law

∆ω =
Cs

Rs , (2.72)

where R(t) is the distance between the atom and perturber, s is the strength

of the relationship between distance and frequency shift, and C the constant

of proportionality. From Figure 2.4, R =

√
ρ2 +(vt)2, where vt is the linear

distance traveled by the perturber since its closest approach along a straight-line

trajectory.

A shift in the angular frequency of emission is ∆ω =
∆φ

∆t
. Therefore, the total
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phase shift of the wave train caused by a perturbation event is

∆φ =

ˆ
∞

−∞

∆ω dt =
ˆ

∞

−∞

Cs

(ρ2 + v2t2)s/2 dt = αs
Cs

vρs−1 , (2.73)

where αs = π,2,π/2,4/3,3π/8, . . . for s = 2,3,4,5,6, . . ..

The value of the impact parameter ρ for ∆φ = 1 radian follows from Equation 2.73

as

ρ0 =

(
αsCs

v

)1/(s−1)

(2.74)

and is called the Weisskopf radius. s = 2,3,4,6 corresponds to the linear Stark

effect, resonance broadening, the quadratic Stark effect, and van der Waals

broadening, respectively. The Weisskopf radius is used to quantitatively dis-

tinguish between strong and weak perturbations of the emitting atoms.

A unified theory of Stark broadening that subsumes quasi-static and impact

approximations does not yet exist due to diverse conditions observed within

cosmic plasmas. Of the two approximations, electron-impact Stark broadening

is found to predict the observed behavior of high-order RRLs (Alexander and

Gulyaev, 2016), reproduced in Section 4.2.4

If the total phase shift ∆φ is caused by an accumulation of discrete phase shifts

4In-depth discussion of the Stark broadening quasi-static approximation is found, among oth-
ers, in Peach (1975); Mihalas (1978).
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2.2 Broadening mechanisms of radio recombination lines

while an atom radiates, then the impact model describes perturbations due to

collisions. The impact approximation model makes the following assumptions

(Sobel’man et al., 1995):

1. An impact involves one perturber and one atom at a time, a binary inter-

action.

2. While an atom is radiating, it experiences a series of discrete and weak

collisions. The duration of each collision is much less than the interval

between them.

3. Each collision causes an instantaneous phase shift in the electromagnetic

wave train. Between collisions, the wave-train oscillation continues un-

perturbed.

4. The temporal distribution of the collisions is described by a probability

function.

The theory of impact broadening for spectral lines in plasmas originated in

the 1950’s to address optical transitions (Anderson, 1949; Griem et al., 1959;

Griem, 1960). These works indicate that collisions with electrons cause line

broadening at low electron densities characteristic of cosmic plasmas. Calcula-

tions from these works were used to predict Stark broadening effects in RRLs

shortly before their detection in 1964. It was found that electron-impact Stark

broadening would be significant for n > 100 RRLs (Sorochenko and Borodzich,
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2.2 Broadening mechanisms of radio recombination lines

1965). In Section 4.2 I show that electron-impact broadening theory accurately

predicts observed RRL widths.

This theory (Griem, 1967) predicts the Lorentzian width of a RRL to be

wL ∝ n4 ln
(

ρmax

ρmin

)
∝ nβ , (2.75)

where β depends on the choice of maximum, ρmax, and minimum, ρmin, cut-off

radii (impact parameters). The minimum cut-off radius is typically chosen as

ρmin =

√
5
6

n2h̄
mve

, (2.76)

where h̄ is Planck’s constant, and m and ve are electron mass and velocity

(Griem, 1967).

There are different approaches with respect to the choice of ρmax leading to

different dependences of the electron-impact width on n. If

ρmax =
ve

ωn,n±1
∝ n3, (2.77)

where ωn,n±1 = 2πνn,n±1 is the angular frequency of transition n→ n±1 (Griem,

1967), substitution of Equation 2.76 and Equation 2.77 into Equation 2.75 re-

sults in ρmax/ρmin ∝ n and β > 4. For a typical HII region electron temperature
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2.2 Broadening mechanisms of radio recombination lines

of Te = 104 K, Equation 2.75 predicts

wL ∝ n4.4 (2.78)

for n→ n±1 transitions (n� 1) (Griem, 1967).

If the Debye radius RD is used instead as the maximum cut-off radius, then

ρmax = RD =

√
kTe

8πNee2 , (2.79)

where k is the Boltzmann constant and e is the elementary charge (Hey, 2012;

Peach, 2015); in this case, ρmax/ρmin ∝ n−2 and β < 4.

For a typical HII region electron density of Ne = 104 cm−3, Equation 2.75 pre-

dicts wL ∝ n3.97 (Peach, 2015). Watson (2006) provides a theoretical expression

for electron-impact widths valid for n ≤ 70. His proposed formula for n > 70

(Equations (16) and (17) in Watson (2006) results in wL ∝ n3.97, consistent with

theoretical results of Peach (2015).

Peach (2015) also tests a stronger condition, the NN (nearest neighbor) radius

RNN as the maximum cut-off radius,

ρmax = RNN =

(
3

4πNe

)1/3

. (2.80)
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2.2 Broadening mechanisms of radio recombination lines

Gee et al. (1976) provides a useful approximation for collisional cross-sections

for inelastic electron impacts. Using a power law presentation, one can write

〈σ(n)v〉 ∝ nγ . (2.81)

The collisional line width for the transition n+∆n→ n is then

wL =Ne [〈σ(n+∆n)v〉+ 〈σ(n)v〉]∝ Ne nγ

(
1+

γ

2
∆n
n

+
γ(γ−1)

2 ·2!

(
∆n
n

)2

+ . . .

)
,

(2.82)

using a Taylor series expansion (Sobel’man et al., 1995). The first two terms of

this expansion in Equation 2.82 were used by Smirnov et al. (1984) in their

approximate formula for the Lorentz width (Equation (2.60) in Gordon and

Sorochenko (2009)),

wL = 8.2Ne

( n
100

)γ
(

1+
γ

2
∆n
n

)
∝ nβ . (2.83)

For Hnα lines, one can ignore the difference between exponents β and γ used in

different presentations of the line width (cf. Equation 2.75 and Equation 2.82);

for example, if n = 100 the exponent β = 4.41 when γ = 4.40. However, when

considering the widths of the sequence of high-order RRLs, the difference be-

tween β and γ should be taken into account. For example, for my sequence
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2.2 Broadening mechanisms of radio recombination lines

of RRLs at 6 GHz, β = 4.50 when γ = 4.40. For the interval β = 3.8...4.5

considered here, the relationship

β − γ = 0.10 (2.84)

holds for the high-order RRL series. This is used below when comparing my

results with theoretical findings of Griem (1967); Gee et al. (1976); Watson

(2006); Peach (2015) and with observational data of Smirnov et al. (1984); Bell

et al. (2011).

To extract Lorentz widths wL (FWHM) from the observed high order RRL pro-

files, I use the approximate formula of Kielkopf (1973) presented by Smirnov

(1985) as

wL = 7.786wV

[
1−
√

1−0.240
(

1− (wD/wV)
2
)]

, (2.85)

where wV is the Voigt width (FWHM) of the spectral line determined by the

fitting procedure and wD is the Doppler width (FWHM). Given Lockman and

Brown (1975)’s Orion nebula model has a temperature gradient, Doppler widths

are different for different regions, so the Doppler width wD used in Equation 2.85

is an “effective” Doppler width. For my observations at 5.5− 6.5GHz, the in-

termediate (second) region of the modified and original (Lockman and Brown,
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2.2 Broadening mechanisms of radio recombination lines

1975) models dominates in terms of RRL and continuum flux, so the effective

Doppler width is close to that of the intermediate region.
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3 Methodology: observations &

processing of ATCA/CABB

data

“A man should learn to detect and watch that gleam of light which

flashes across his mind from within, more than the lustre of the fir-

mament of bards and sages. Yet he dismisses without notice his

thoughts, because it is his. In every work of genius we recognize our

own rejected thoughts...” Ralph Waldo Emerson (1803-1882)

3.1 Observations

We observed the central brightest continuum region of M42 (RA = 05:35:17.3,

Dec = −05:23:28, J2000) at 6 GHz using the ATCA between 2013 late June
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3.1 Observations

and early July. Over three consecutive days of observing, we obtained about

17 hours of integration. Accounting for calibration overheads, I obtained about

15 hours of integration on M42. The upper plot in Figure 3.1 shows the 5.5→

6GHz bandpass without bandpass calibration from day two of a total of three

days of observations. The three circles in this upper plot, from left to right,

indicate bright H(n,α) and weaker He(n,α) & C(n,α) RRL detections of the

(105,1), (104,1) and (103,1) transitions. These narrow lines, and all other de-

tected higher-order RRLs, have widths (FWHM) between ∼ 17 channels and

∼ 30 channels. This bandpass contains a noticeable ripple with a “period” of

∼ 1000 channels. This period is > 30 times greater than the width of the widest

RRL we detected (30 channels). The subplot in the bottom right part of the

figure is the power spectrum of the bandpass spectrum. The 1000-channel rip-

ple period manifests itself in the power spectrum as a triple peak marked with

a large circle. There is also a short-period (∼ 14 channels) ripple shown in the

bottom-left subplot in the figure. In the powers spectrum, it corresponds to a

peak we mark with a small circle. The shadowed region in the power spectrum

corresponds to the range of detected RRL widths (18...40 channels). There are

no “competing” statistically significant periodic signals in the shadowed region,

which can cause confusion when extracting the detected RRL from the uncali-

brated spectrum.

It is suspected that the 1000-channel ripple in the spectrum is due to the standing
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3.1 Observations

waves introduced on all antennas between the focus cabin and the dish surface.

It’s not surprising to see this on a source which has strong continuum emission.

There is no explanation yet for the 14-channel ripple. If it was also due to a

standing wave, the required distance between reflections would be around 370m

(Warwick Wilson, 2014, private communication).

We used a 1 GHz bandpass option of the ATCA’s Compact Array Broadband

Backend (CABB) (Wilson et al., 2011). CABB’s wideband mode uses two

simultaneous IF (intermediate frequencies), providing two bandpasses, each

544 MHz wide. One IF was centered on 5744 MHz and the other on 6260 MHz,

creating a 28 MHz overlap. This enormous bandpass allowed simultaneous ob-

servations of multiple RRL with the same ∆n including six α-lines, seven β -

lines, and so on, up to eleven ∆n = 5 lines. The choice of frequency range was

dictated by the intention to minimize the number of overlapping RRL in the

band.
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Figure 3.1: Bandpass and its power spectrum without bandpass calibration,
M42. Shows one of two 0.5 GHz-wide bandpasses without bandpass cali-
bration (upper plot). The x-axes are frequency in GHz and y-axes are flux
density, Jy; output of Miriad postprocessing. Bright Hnα and weaker Henα

& Cnα lines are circled and shown as magnified subplots. The spectrum con-
tains a noticeable ripple with a “period” of∼ 1000 channels. The bottom-right
subplot shows the power spectrum of the bandpass. The 1000-channel ripple
“period” manifests itself as a peak in the power spectrum and is marked with
a large circle. There also is a short-period (14-channel) ripple clearly visi-
ble in the bottom-left sublpot. Its corresponding peak in the power spectrum
is marked with a small circle. The shadowed region in the power spectrum
corresponds to the range of detected RRL widths (18...40 channels).

For maximum brightness sensitivity, we used the compact H75 configuration

with a beam-size of 7.8′ per telescope and synthesized beam-size of 1.8′×2.1′

at 6 GHz. At the start of each observation time slot, we observed a primary

calibrator, the unresolved (for ATCA) quasar PKS 1934-638 (RA = 19:39:25.0,

Dec =−63:42:46, J2000; ∼ 5Jy at 6GHz ) for ∼ 15 min and used it to correct
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3.1 Observations

(prior to observing M42) residual delays due to differences in signal propaga-

tion times through ATCA’s electronic pathways (Fomalont and Perley, 1999).

After every 30 min of integration on M42, we observed a secondary calibra-

tor, the quasar PKS 0539-057 (RA = 05:41:38.1, Dec =−05:41:49.43, J2000;

∼ 1Jy at 6GHz) for ∼ 2 min, to correct time-dependent gain and phase changes

over the course of these multi-hour/multi-day observations. Postprocessing was

done using Miriad (Sault et al., 1995) and Python’s Astropy package (Astropy

Collaboration et al., 2013).

Bandpass calibration was initially obtained using the primary calibrator, but find

that its S/N, relative to that of the source, M42, is too low for detecting the weak-

est (highest ∆n) RRL reported here. Figure 3.2 shows a photocopy from one of

my notebooks showing M42 bandpass results before and after bandpass calibra-

tion when using the PKS 1934-638 data. The relatively low S/N of 1934-638

causes all H(∆n> 1) RRLs to be undetectable when used as bandpass calibrator.

Though smoothing the PKS 1934-638 data significantly improves the resulting

bandpass calibration, a superior solution was suggested by Peter Thomasson

(private communication, 2014). For this reason, PKS 1934-638 is not used as a

bandpass calibrator in the analysis presented here.
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Figure 3.2: M42 bandpass using PKS 1934-638 as bandpass calibrator. Band-
pass result from day one of three before (upper plot) and after (lower plot)
bandpass calibration of M42 data using the unsmoothed PKS 1934-638 data;
x-axes are spectral channels (≈ 31kHz per channel) and y-axes are flux den-
sity, Jy; xx and yy polarizations are indicated, as are the predicted positions
of H100α , H101α , H102α RRLs; Red lab book, pages 92-3, August 2013.

83



3.1 Observations

Instead, we used the unresolved (for ATCA) quasar PKS 1253-055 (RA = 12:

56:11.2, Dec = −05:47:21.5; ∼ 15 Jy at 6 GHz) observed a day prior to the

start of the observations reported here — see Section 5.2. Signal-to-noise of

this calibrator was further improved by smoothing with a 16 channel moving

average window. Flux calibration was obtained using the primary calibrator.

The yy polarization M42 data is significantly noisier than the xx polarization,

as shown in Figure 3.2 and Figure 3.3. It is noisier from a channel-to-channel

prospective, but more importantly, the yy polarization data contains ripples over

a range of wavelengths that are significantly greater in amplitude than the xx

polarization data, which do not reduce with time integration. When the yy po-

larization data is included, sensitivity to the weakest/broadest recombination

lines is significantly compromised. For this reason, the yy polarization data is

excluded from the analysis reported here.1

1Because free-free and H bound-bound radiation from HII regions is not significantly polar-
ized, excluding one orthogonal of polarization does not effect spectral line shapes.
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3.1 Observations

  

Results when using 1253-055 unsmoothed as the bandpass calibrator
(1253-055 was observed 27 June 2013 to calibrate our M17 observations in EW352 configuration )

OrionA Bandpass, IF3, day3, XX & YY polarizations
Figure 3.3: M42 bandpass 5.5→ 6GHz using PKS 1253-055 as the bandpass

calibrator that resulted from the final day of three consecutive observation
days. Black curve is the xx polarization and turquoise curve is the yy polar-
ization. The x-axis is spectral channels, where 1 channel width is ≈ 31kHz
and y-axis is flux density, Jy.

As discussed in Westpfahl (1999), the S/N of the bandpass calibrator must be

similar or greater than the S/N of the source of interest. To improve the S/N of

PKS 1253-055 as a bandpass calibrator, a moving average smoothing algorithm

was applied to the data. Channel-by-channel data smoothing using a moving-

average is not supported by Miriad. To overcome this limitation, we imported

the ATCA/CABB data into the interactive high-level general-purpose program-

ming language, Python. This required exporting the data as FITS formatted

files from within Miriad and then importing these files into a Python session

using the Astropy package (Astropy Collaboration et al., 2013). Finally, the

FITS formatted smoothed data were imported back into Miriad to generate the
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3.2 Data structure

final bandpasses using the uvspec task to generate vector averaged spectra of the

smoothed complex visibility datasets. Figure 3.4 shows a pipeline of the RRL

data processing implemented in this dissertation.

  

Data

Despike

Smooth

Stack Fit

Figure 3.4: RRL data processing pipeline. Spectral data is exported from
Miriad into Python using FITS formatted files where each ten-second long
integration record is despiked and smoothed in a multi-step process. All pro-
cessed records are imported back into Miriad to generate final bandpasses. All
spectra of a given H∆n transition are then isolated and stacked after removing
those few spectra containing blends with other competing RRL transitions.
Stacked results are then fit with Voigt profiles to extract spectral line parame-
ters and their uncertainties.

3.2 Data structure

Every ten seconds, the ATCA/CABB produces a ten-second-long integration of

the complex visibility data recorded from each of its fifteen baselines. Each

record, or spectrum, consists of real and imaginary amplitudes versus 17,409

frequency channels per baseline for xx, yy, xy and yx polarizations. An imported

data cube within Python is a multidimensional array; Table 3.1 indicates the

structure of this array.
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3.3 Despiking

Table 3.1: Data cube structure imported into Python from Miriad

Dimension 0 1 2 3 4 5
quantity baseline(time) N/A N/A spectral

channel
polarization amplitude

# of indices 15 * (total
integraton
time) /10 s

0 0 17,409 4; xx, yy,
xy, yx

3; real,
imag, N/A

3.3 Despiking

Figure 3.5 shows a typical raw visibility spectrum, which sparsely contains sin-

gle bad channels, or “spikes”, of enormous amplitude that must be removed be-

fore smoothing with a moving average. For example, in Figure 3.5 the spike at

channel 4096 will significantly increase the amplitudes of neighboring channels

when smoothed, if not initially removed.2 Spikes are removed by first calculat-

ing the median of a given record to find the MAD (median absolute deviation).

MAD is significantly less influenced, than the STD (standard deviation), by the

enormous spiked deviations present in the visibility data. For example, given

that

MAD(y)≡median(|yi−median(y)|) , (3.1)

2Spikes on the edges of spectra are unimportant as these data are ignored given the
ATCA/CABB data is consistently unreliable here — see Figure 3.5.
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where yi is the amplitude at channel i, then, for the spectrum in Figure 3.5, the

MAD is more than an order-of-magnitude less than the STD.
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Figure 3.5: Typical raw ten second visibility record (real amplitude, xx polar-
ization) showing single bad channels prior to removal and smoothing; am-
plitudes outside the range of this plot at channels 0 and 4096 are -7317 and
-87, respectively. The x-axis is spectral channels, where 1 channel width is
≈ 31kHz and y-axis is flux density, Jy.

Leveraging this statistic, the following algorithm is used for despiking and then

smoothing the visibility data:

1. Estimate fluctuations as “S/N” per MAD of each channel i using,

S/Ni =

∣∣∣∣yi−median(y)
MAD(y)

∣∣∣∣ (3.2)

2. Coarse despiking: locate channels with S/Ni greater than some cutoff1 and
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3.3 Despiking

set the value of those channels to their nearest-neighbor channel means.

3. Smooth resulting spectrum using a moving average of some window width.

Amplitudes of remaining spikes to be removed add significant amplitude

to channels within half a window-width centered about each spike during

this smoothing step; these artifacts are removed in step 6.

4. Subtract the smoothed spectrum from the unsmoothed spectrum to ap-

proximate a spectrum of zero median. Artifacts generated in step 3 are

now inverted.

5. Fine despiking: Locate channels with S/Ni greater than cutoff2 < cutoff1

and set the value of these channels to zero.

6. Recover despiked and smoothed bandpass by adding result of step 3 to

result of step 5. Artifacts generated in step 3 are significantly removed in

this step.

Using the raw spectrum in Figure 3.5, this algorithm is demonstrated as follows.

Figure 3.6 shows the result of step 2 and 3, where cutoff1 = 10 and the window

width is 16 channels.
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Figure 3.6: Raw ten second visibility record (blue line) after coarse despiking
and moving average smoothing (red line). Inset plot reveals how moving
average is effected by a spike. The x-axes are spectral channels, where 1
channel width is ≈ 31kHz and y-axes are flux density units, Jy.

Results of step 4, 5 and 6 are shown in Figure 3.7.
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Figure 3.7: Raw ten second visibility record (blue line) after fine despiking and
updated moving average smoothing (red line). Inset plot reveals how moving
average is effected by a spike. The x-axes are spectral channels, where 1
channel width is ≈ 31kHz and y-axes are flux density, Jy.
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3.4 Spectral line stacking

3.4 Spectral line stacking

Given the enormous bandpass of the data from 5.5 to 6.5GHz, the presence

of 63 RRLs is predicted for ∆n ≤ 7 — Section 4.2, Figure 1. However, given

that RRL intensities decrease rapidly as roughly I∆n ∝ ∆n−2.5 (see section 3.5),

statistically significant detections at the highest ∆n lines require averaging or

“stacking” together of individual RRLs of equal ∆n. It turns out that frequency

dependent artifacts introduced by stacking are negligible — see Section 4.2,

part 2.

In Figure 3.8 to Figure 3.14, I show all bandpasses where RRLs of equal ∆n≤ 7

are predicted, including the stacked bandpasses for each H∆n family of principal

quantum numbers, n. In the case of H ∆n = 6 and ∆n = 7 RRLs, I struggled to

convince myself of their detections. The extraction of RRL shape parameters

was from fitting Gauss or Voigt functions to spectral features in each bandpass,

including each stacked bandpass. Although I found that polynomial plus Voigt

profiles resulted in the lowest residuals, extracted line widths were insensitive

to the choice of Gauss or Voigt fitting functions.

The fitting results shown in Figure 3.8 to Figure 3.14 are from analysis tools

I developed using Scilab, an open-source software for numerical computation

(Scilab Enterprises, 2012). Non-linear least squares optimization of parameters

use the Levenberg-Marquardt method (Bevington and Robinson, 2003). The
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3.4 Spectral line stacking

parameter uncertainties are estimated using bootstrap statistics (Efron and Tib-

shirani, 1994).

I explored different fitting approaches applied to the stacked spectra, including

(a) varying all fitting parameters during least-squares minimization, or (b) fix-

ing line centers to those Doppler corrected frequencies predicted by Rydberg’s

formula (Equation 1.1), or (c) fixing line widths to those expected by spectral

line broadening theory, or (d) fixing line intensities to those also expected from

spectral line broadening theory. For the ∆n = 1 to ∆n = 5 bandpasses, all three

cases gave self-consistent results, within the limits of statistical significance.

However, this was not the case for the ∆n = 6 and ∆n = 7 bandpasses, including

combinations of (b), (c) and (d). On this basis, I rule out the detection of H

∆n = 6 and ∆n = 7 RRLs.
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3.4 Spectral line stacking

  

Figure 3.8: H(n,∆n = 1) RRL bandpasses and stacked result (blue lines). The
x-axes are frequency in GHz and y-axes are flux density, Jy. Vertical lines
are predicted line-center frequencies from Rydberg’s formula for hydrogen.
Stacked result appears without a vertical line. Each two rows of numbers
above each plot lists the best-fit linear plus Guassian profile (red-line) param-

eters: a+ bx+ cexp

[
−
(

x−d
f

)2
]

. Upper row lists these five parameters,

with the last value being the standard deviation of the difference between the
data and fit. Lower row lists the parameter’s one standard deviation uncertain-
ties. Helium RRLs are just outside the high frequency end of each bandpass,
so they do not appear here.

  

Figure 3.9: As in Figure 3.8: H(n,∆n = 2) RRL bandpasses.
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3.4 Spectral line stacking

  
Figure 3.10: As in Figure 3.8: H(n,∆n = 3) RRL bandpasses.

  
Figure 3.11: As in Figure 3.8: H(n,∆n = 4) RRL bandpasses.
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Figure 3.12: As in Figure 3.8: H(n,∆n = 5) RRL bandpasses.

  
Figure 3.13: As in Figure 3.8: H(n,∆n = 6) RRL bandpasses.

95
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Figure 3.14: As in Figure 3.8: H(n,∆n = 7) RRL bandpasses.

3.5 Measured spectral line intensities

At fixed frequency, integrated line intensities decrease with increasing ∆n as a

power law,

I∆n ∝ ∆n−k, (3.3)

where k ranges approximately between 2 for pure Doppler broadening and 3 for

pure Stark broadening; see Section 4.2, part 1. Using the intensity of the ∆n = 1

line as the constant of proportionality, where Stark broadening is expected to

be minimal, gives I∆n = I1∆n−k. A log-log plot of I∆n/I1 versus ∆n is shown in

Figure 3.15. Also shown are power law fits to the data with fit results shown
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3.5 Measured spectral line intensities

in Table 3.2. We compare the option of a constant power k with k = a+ b∆n,

which is more suitable for a transition from Doppler to Stark broadening. I find

that at 6GHz, the relative intensities of high-order RRLs from M42 are better

modeled by a power law whose power depends linearly on ∆n — see Table 3.2,

3rd column.

1 2 3 4 5 6
∆n

10−2

10−1

100

I ∆
n
/
I 1

∆n−k

∆n−(a+b∆n)

Figure 3.15: RRL intensity versus ∆n for M42. Error bars are 3σ . Line inten-
sity values are from Voigt fits shown in Figure 2 of Section 4.2. Red line is a
weighted fit to the data using a power law with a constant power law index.
Blue line is a weighted power law fit using an index that is a linear function
of ∆n. Fits include intensity data from ∆n = 1 to ∆n = 4 and are extrapolated
to ∆n = 5.

Table 3.2: Power-law index values for fits shown in Figure 3.15. Uncertainties
are 3σ .

∆n k k = a+b∆n
1 2.3±0.2
2 2.4±0.2
3 2.5±0.2 2.6±0.3
4 2.7±0.3
5 2.9±0.3
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4 Published papers

“Black hole spit me out; You better move over; Find your shades;

You’ll be amazed; ’Cause I’m going Super Nova.”

Kate Stone (1962 — ....)

In this chapter, I summarize two papers published during the dissertation, which

are reproduced in Sections 4.1 and 4.2.

In the first paper (Alexander and Gulyaev, 2012), I demonstrate that the ob-

served RRL narrowing first reported by Bell et al. (2000) is an artifact of their

data processing. I accomplish this by creating a theoretical model of the multiple

FS (frequency shifting) technique, originally developed by Bell (1997), which I

then implemented as a computer simulation.1 I co-created a theoretical model

of the Orion nebula which includes mechanisms of spectral line broadening and

non-equilibrium thermodynamics effects. This model was then used to numer-
1This technique copies a spectral line bandpass, shifts it in frequency by an offset, and adds it

to the unshifted bandpass. This process is called an overlap. The output of this process is
then fed back to itself multiple times. Six overlaps where used by Bell et al. (2000).
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ically solve the radiative transfer problem to simulate RRLs. These simulated

lines are then processed through the multiple FS model, the results of which are

called “processed” lines. I then used Monte Carlo simulation to estimate how

simulated noise influences the processed line widths and amplitudes.

From these models and simulations, I demonstrate that multiple FS does not

preserve broadening when the original line width is greater than the FS-offset.

In this case, I find the processed results manifest the narrowing reported by Bell

et al. (2000), by reducing broad spectral wings characteristic of Stark broadened

RRLs. I also find that the S/N of processed lines reduces weakly with the num-

ber of overlaps as a result of adding dependent samples. This means the S/N

of processed lines as a function of ∆n, at fixed frequency, decreases faster than

for unprocessed lines, such that a given statistical insignificance level is reached

more quickly.

Given this analysis, I argue Bell et al. (2000)’s ∆n> 11 lines are artifacts of their

technique. I now suggest in the second paper that these artifacts are present for

their ∆n > 7 lines. I conclude that their reported findings, upon re-examination

of their novel data processing technique, do not indicate a need to revise Stark

broadening theory.

In the second paper (Alexander and Gulyaev, 2016) I present original obser-

vations of high-order RRLs from the Orion nebula to test the theory of Stark

99



Published papers

broadening in cosmic plasmas. I use a wide 1GHz bandpass centered at 6GHz

to significantly improve the accuracy of measurements by stacking up to eleven

RRLs of the same ∆n. I find no evidence of spectral line narrowing, confirm-

ing the conclusion of my first paper. I show that all statistically significant

data from my observations and four-sets of previous observations of high-order

RRLs (Smirnov et al., 1984; Bell et al., 2011) are in agreement and demonstrate

how Stark broadening theory is consistent with these observations. I find that

Lockman and Brown (1975)’s H RRL model of the Orion nebula over a large

range of radio frequencies and ∆n≤ 2 requires the addition of small-scale den-

sity inhomogeneities (clumps) and turbulence to adequately predict my observed

H RRLs for ∆n≤ 5.

I demonstrate that the power law predicted by electron-impact broadening the-

ory is consistent with the five-sets of high-order RRLs analyzed here. My data

do not allow distinguishing between two approaches to the cut-off parameters

(nearest neighbor versus Debye radius) when predicting line broadening from

electron impacts. Specifically, these data do not allow an unambiguous choice

between the theoretical results of Griem (1967); Gee et al. (1976) and Wat-

son (2006); Peach (2015). This ambiguity arises from small differences in

the radiative transfer nebula model parameters. It is currently impossible to

independently determine turbulent velocities and other physical & geometric

parameters of the Orion nebula with enough accuracy to choose between the
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two predications of electron-impact broadening theory. This situation represents

an ill-posed inverse problem that is currently unsolvable (Brown et al., 1978).

However, I show that Peach (2015)’s model for electron-plus-proton impacts

significantly deviates from the Lorentz-width trend in my data. Reassessing this

model is incumbent on plasma theorists.
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Figure 4.1: Poster, J. Alexander et al. 2012
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ABSTRACT

We critically analyze the Bell et al. findings on “anomalous” widths of high-order hydrogen radio recombination
lines in the Orion Nebula at 6 GHz. We review their method of modified frequency switching and show that the
way this method is used for large Δn is not optimal and can lead to misinterpretation of measured spectral line
parameters. Using a model of the Orion Nebula, conventional broadening theory, and Monte Carlo simulation, we
determine a transition zone n = 224, . . . , 241 (Δn = 11, . . . , 14), where measurement errors grow quickly with n
and become comparable with the measurement values themselves. When system noise and spectrum channelization
are accounted for, our simulation predicts “processed” line narrowing in the transition zone similar to that reported
by Bell et al. We find good agreement between our simulation results and their findings, both in line temperatures
and widths. We conclude, therefore, that Bell et al.’s findings do not indicate a need to revise Stark broadening
theory.

Key words: H ii regions – line: profiles – methods: data analysis – methods: statistical – radio lines: ISM –
techniques: spectroscopic

1. INTRODUCTION

In the 1990s, Morley Bell and coauthors developed a tech-
nique for measuring weak spectral lines by reducing broad base-
line variations (Bell 1997). This technique was referred to as
“modified frequency switching” and was used to detect weak
atomic and molecular/maser lines in spectra of gaseous neb-
ulae, circumstellar envelopes, and star formation regions (see,
e.g., Bell & Feldman 1991; Bell et al. 1992, 1993).

Bell and coauthors used this technique to measure ra-
dio recombination line (RRL) widths and temperatures (Bell
et al. 2000, hereafter BASV). At 6 GHz, they found that the
“. . .[processed H] lines at large n are both narrower and
stronger than expected from theory. . .” and suggested, “This
behavior is. . . inconsistent with Griem’s theory. . ..” This pub-
lication, with its subtitle: “Confrontation with theory at high
principal quantum numbers” induced a wave of publications
where BASV’s finding was called an “anomaly,” “puzzle,” and
even “mystery.” For example, Oks (2004) paper is titled “On
the puzzle of the observed narrowing of radio recombination
lines,” Griem (2005) concludes his paper by writing that the re-
sult “. . .remains a mystery. . .,” Gavrilenko & Oks (2007) calls
the result a “dramatic discrepancy,” and Watson (2006) con-
cludes his abstract with “Thus this mystery is not resolved by
the present calculations.”

While some authors have sought an explanation of these find-
ings in the revision of Stark broadening theory (e.g., Oks 2004;
Watson 2006), some remain skeptical about the modified fre-
quency switching technique or suggest that it requires verifica-
tion. For example, von Procházka et al. (2010) writes “. . .it is
easy to distort the RRL line shape using data reduction tech-
niques (Bell et al. 2000).” Griem (2005) referred to private
communication with Bell stressing that “. . .measurement er-
rors related to large reduction factors from unprocessed to
processed Voigt profile widths can probably not be excluded
(M. B. Bell 2004, private communication).” In their book,
Gordon & Sorochenko (2009) concluded: “The Bell et al. (2000)
results are so different from what had been expected, and the

observing technique is so new, that we suggest waiting for an
independent confirmation of the observations before accepting
a fault in the present theory of RRL Stark broadening.”

BASV’s findings are based on frequency switched or “pro-
cessed” observational data, which were recently presented in
Bell et al. (2011) and re-interpreted in Bell (2011). Their find-
ings result from recursive frequency switching, in software, of
observational data that were initially recorded at the telescope
using hardware frequency switching.

In this paper, we investigate the frequency switching tech-
nique and demonstrate that, if applied correctly, it has a number
of advantages. Frequency switching removes many gain vari-
ations and does not require subjective estimates of the zero
level of a spectrum. Though the technique helped BASV to
detect RRLs with Δn greater than Δn = 6 (Smirnov et al.
1984), the way the method was used was not optimal and, as
such, cannot be used to test the theory of spectral line broad-
ening. We present simulations based on the Lockman & Brown
(1975) model of the Orion Nebula and conventional theory of
spectral line broadening. We apply observational specifications
from BASV and Bell et al. (2011), including frequency range,
channel width, frequency switching offset, number of frequency
switching overlaps, and noise temperature rms. Results of our
simulation demonstrate good agreement with BASV’s findings,
both in line width and temperature. The computed “processed”
widths exhibit narrowing similar to that reported in BASV. We
show that BASV’s spectral line “narrowing” is the result of the
way the observational data were processed and that BASV’s
findings do not contradict the existing Stark broadening theory.

2. SOFTWARE FREQUENCY SWITCHING

In this section, we introduce the data reduction technique
used by BASV to systematically acquire information about
weak spectral features in the presence of baseline fluctuations.
Bell (1997) established and named this technique SOFMOR
(“small-offset frequency switching multiple overlap reduc-
tion”). This technique was then called “modified frequency

1
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switching” (MFS) in BASV. SOFMOR and MFS are frequency
switching techniques that use a frequency offset fixed in the
receiver hardware (see, e.g., Robinson 1964), followed by re-
cursive frequency switching in software. Here, we refer to this
technique (whether conducted in hardware or software) as FS
(frequency switching).

In FS, the original spectrum is subtracted from a copy which
is shifted by a number of channels (an offset). Mathematically,
it can be related to a finite difference iteration.

If the offset is h, then the notation

fp = f (x + p h) (1)

can be used. Formulae for the results of m FS iterations (m finite
differences) are then

f (1) = f1 − f0

f (2) = f2 − 2f1 + f0

f (3) = f3 − 3f2 + 3f1 − f0

f (4) = f4 − 4f3 + 6f2 − 4f1 + f0

and so on (see, e.g., Beyer 1987, p. 449; Zwillinger 2002,
p. 705), therefore

f (m) =
m∑

k=0

fk

(
m

k

)
(−1)m+k. (2)

When f (x) is given with uncertainty ±σ0, where σ0 is
standard deviation, the resulting uncertainty in f (m) can be
derived from the error propagation rule (see, e.g., Taylor 1997,
p. 75) as

σm = σ0

√√√√ m∑
k=0

(
∂f (m)

∂fk

)2

= σ0

√√√√ m∑
k=0

(
m

k

)2

= σ0

√(
2m

m

)
.

(3)

Given that an FS spectrum overlaps with itself, the case of
dependent samples must be applied (see below).

If f (x) is a single channel feature (digital analog of
δ-function), that is

f (x) = δ(x0) =
{

1, x = x0
0, otherwise,

following Equation (2), m FS-overlaps generate a series of
equidistant peaks with amplitudes

(
m

k

)
(−1)m+k . This is illus-

trated in the following Pascal’s triangle for six consecutive over-
laps or three cycles:

overlap, m cycle,i
0 1 0
1 −1 1
2 1 −2 1 1
3 −1 3 −3 1
4 1 −4 6 −4 1 2
5 −1 5 −10 10 −5 1
6 1 −6 15 −20 15 −6 1 3

.

Each cycle of two overlaps results in a symmetric pattern with
a prominent central feature. The amplitude of the central feature
after i FS-cycles is the central binomial coefficient:

|Ai | =
(

2i

i

)
= 2, 6, 20, . . . (i = 1, 2, 3, . . .). (4)

According to Equation (3), the standard deviation after i
FS-cycles

σi =
√(

4i

2i

)
=

√
6,

√
70,

√
924, . . . (i = 1, 2, 3, 4, . . .),

(5)

resulting in a signal-to-noise ratio (S/N) of

S/Ni =
(2i

i

)
√(4i

2i

) = 0.82, 0.72, 0.66, . . . (i = 1, 2, 3, . . .).

(6)

Using Stirling’s formula (see, e.g., Abramowitz & Stegun 1965)
we obtain

S/Ni ≈
(

2

πi

)1/4

= 0.89 i−1/4. (7)

Therefore, BASV’s S/N tends to decrease with the number of
FS-cycles, i, as i−1/4.

When independent samples are superimposed, the standard
deviation is scaled as σi = 2, 4, 8, . . ., which results in the
growth of the S/N: S/Ni = (2i

i

)
/2i = 1, 1.5, 2.5, . . . (i =

1, 2, 3, . . .). This common approach is not applicable to the FS
technique used in BASV. Instead, they overlap the once recorded
spectrum with itself and therefore the case of dependent samples
must be used, as derived in Equations (5)–(7).

Though the first overlap in BASV occurs in hardware,
where two independent samples are mixed, the S/N remains
unchanged because the first overlap of two samples produces
a

√
2 increase in the resulting standard deviation regardless

of whether the two samples are dependent (software FS) or
independent (hardware FS).

Figure 1 shows a Gaussian feature characterized by its full
width at half-maximum (FWHM), w, and its transformation
after 2, 4, and 6 FS-overlaps are applied to the initial feature.
The frequency offset or FS-offset, h, is chosen to be much
greater than the width, h � w. Additional features appear offset
from the central feature, whose offsets are multiples of h. All
the features are shifted relative to the position of the original
feature, x0. After i FS-cycles, the central feature is located at
x = x0 − i h. These shifts are removed in Figures 1 and 2, such
that all features are centered vertically. Additionally, all features
are normalized and inverted (where necessary) to compare their
shapes and widths.

If h � w, the additional features (referred to as “reference
images” in Bell 1997) can be removed by adding or subtracting
scaled versions of the central feature to them—a process
referred to as “cleaning” in Bell (1997). For example, after two
FS-overlaps, the additional features shown in Figure 1 can be
removed by adding the central feature divided by 2. Dividing
this result by −2 recovers the original feature exactly. After four
overlaps, shown in Figure 1, the additional features are removed
by adding −1/6 and 4/6 of the central feature to them. Dividing
the central feature by 6 recovers the original feature exactly.

This normalization procedure keeps the central feature’s
amplitude unchanged regardless of the number of FS-cycles,
i. However, according to Equation (7), the noise level grows as
i1/4.

NRAO’s 140 ft telescope was used by BASV to observe the
Orion Nebula at 6 GHz. Based on the 140 ft data archive of the
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Gaussian

2 overlaps

4 overlaps

6 overlaps

Frequency

Figure 1. Transformation of a Gaussian shape after 2, 4, and 6 FS-overlaps.
The initial width, w, is much less than the FS offset, h; w/h = 0.2. This plot
is a graphical depiction of Pascal’s triangle in Section 2. To compare the shapes
and widths, we invert (where necessary) the resulting spectra and normalize the
peak intensity of the central feature to the intensity of the initial Gaussian.

Lorentzian

2 overlaps

4 overlaps

6 overlaps

Frequency

Figure 2. Transformation of a Lorentzian shape after 2, 4, and 6 FS-overlaps.
The initial width, w, is greater than the offset, h. The ratio w/h = 4 is used,
which corresponds to BASV’s Δn = 20 case. To compare the shapes and
widths, we invert (where necessary) the resulting spectrum and normalize the
peak intensity of the central feature to the intensity of the initial Lorentzian.

1992 April observation (integration time of ∼48 hours, system
temperature of ∼120 K, and channel width of ∼78 kHz), a noise
temperature Trms ≈ 1 mK could be achieved. Given that BASV
used six overlaps (one hardware and five software FS-overlaps)
or three cycles, Equation (7) implies an “frequency-switched”
temperature rms of Trms ≈ 1.5 mK.

Figure 2 illustrates the case when the FS-offset is less than the
original line width, h < w, specifically h = w/4. This figure
shows the transformation of a Lorentzian feature after 2, 4, and
6 FS-overlaps. To compare the shapes and widths, we normalize
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Figure 3. Reduction factors (processed over unprocessed) for the peak line
temperature (top plot) and the line width (bottom plot) as a function of
the normalized unprocessed width, w/h. Both plots are calculated for six
FS-overlaps. Vertical lines show minimal and maximal values of w/h for
BASV’s observations: 1 � w/h � 4.5. Crosses show reduction factors
predicted by the three-component Orion Nebula model of Lockman & Brown
(1975). Horizontal dashed lines in the bottom plot are the asymptotes for
Gaussian and Lorentzian curves as w/h → ∞. These plots demonstrate that,
for a fixed FS-offset h, significant reduction in spectral line intensity and width
results from FS as the unprocessed line width increases due to Stark broadening.

the peak intensity of the central feature to the intensity of the
initial feature. Figure 2 shows that the central feature of the
processed line is much narrower than the width of the original
Lorentzian. Given that FS processing reduces line widths and
amplitudes when h < w, BASV refer to them as “processed”
widths and amplitudes.

The Voigt profile, which models the RRL shape, is a
convolution of Gaussian and Lorentzian profiles, where the
Gaussian represents the Doppler-broadened contribution and
the Lorentzian represents the impact-broadened contribution
(Gordon & Sorochenko 2009). Figure 3 shows how the am-
plitudes and widths of FS-processed Gaussian and Lorentzian
profiles vary as a function of the normalized unprocessed
width, w/h. These plots show amplitude and width reduc-
tion factors (processed to unprocessed ratio) calculated for six
FS-overlaps. The vertical lines show the limits of BASV’s
experiment: 1 � w/h � 4.5. Crosses are reduction factors pre-
dicted by the Lockman & Brown (1975) Orion Nebula model
(see the next section). Horizontal dashed lines in the bottom
plot are the asymptotes for Gaussian and Lorentzian cases as
w/h → ∞.

3. APPLICATION OF FS TO MODEL SPECTRA

The frequency switching technique used in BASV consists
of two independent steps: (1) overlapping the spectrum and
(2) “cleaning” the overlapped spectrum. Overlapping six times
creates a set of “reference images” for each line feature in the
spectrum. The result of overlapping (step 1) is illustrated in
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Figure 4. Processed width vs. n for different numbers of FS-overlaps at 6 GHz.
Simulation is conducted for the Orion Nebula model of Lockman & Brown
(1975); no noise is taken into account. Dashed line shows BASV’s FS-offset
(eight channels = 31.2 km s−1). The upper (thick) curve shows the unprocessed
width w vs. n. The lower curve corresponds to the BASV’s case of six FS-
overlaps. This plot demonstrates that when h < w, the processed width is
increasingly insensitive to the significantly changing unprocessed width as the
number of overlaps increase. This indicates that the FS technique in BASV’s
case is a poor probe of line broadening.

Figures 1(h � w) and 2 (h < w). When h < w (BASV’s case),
overlapping reduces the line widths to below the FS-offset, h.

After overlapping, the reference images are removed. In Bell
(1997) and BASV, this “cleaning” procedure was done manually,
one line at a time, starting with the strongest line and working
to the weakest. BASV’s reported line widths after cleaning are
in the range of 18–30 km s−1, which is less than or about the
Doppler width and less than the FS-offset (Figures 2 and 4 in
BASV). The conclusion made in BASV about line “narrowing”
is based on interpretation of these “processed” widths.

A multi-component non-LTE radiative transfer simulator was
created to explore the effect of FS on model RRL spectra. For the
Orion Nebula we use the three-component model of Lockman
& Brown (1975), which simulates the beam size of the 140 ft
radio telescope. The model consists of a compact (0.043 pc)
dense (Ne = 104.5 cm−3) symmetric core located behind two
extended (0.56 and 2.50 pc) layers of gas of lower density
(Ne = 103.5 and 102.3 cm−3). The corresponding temperatures
are Te = 7500 K (core), 10,000 K, and 12,500 K (outer layer).
This model predicts continuum emission and Hnα and Hnβ
spectra in agreement with observations between 1 and 90 GHz
(Lockman & Brown 1975).

Figures 4–6 show the model results for processed line
temperatures and processed widths versus principal quantum
number, n, for the Orion Nebula model at 6 GHz. To avoid
ambiguity associated with the cleaning procedure, we process
each modeled spectral line separately. The processed line width
is the FWHM of the central feature measured above the zero
level (see Figure 2).

Figure 4 shows the processed widths (FWHM) for 2, 4,
and 6 FS-overlaps (1, 2, and 3 cycles). Following BASV, we
used six overlaps and an offset of 625 kHz = 31.2 km s−1,
which corresponds to eight spectral channels (channel width of
78.13 kHz = 3.9 km s−1). Noise was not added to the model
spectra when computing these curves. The dashed line shows
BASV’s FS-offset (eight channels = 31.2 km s−1). After six
FS-overlaps, the processed width (FWHM) remains at the level
of ∼70%, . . . , 85% of the offset, reaching a maximum at
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atures after six FS-overlaps (Bell et al. 2011). The theoretical curves result
from the Lockman & Brown (1975) model. Upper and lower solid curves
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findings for (n, Δn) � (224, 11). Above this limit, our model suggests BASV’s
results are dominated by noise fluctuations.
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1 mK noise fluctuations. It agrees well with BASV’s processed findings for
(n, Δn) � (241, 14). In the transition zone (between the two vertical lines), the
modeled width behavior imitates “narrowing” of the processed spectral lines
reported by BASV.

n 	 260, then drops down to 81% at higher n. This behavior
reflects a growing contribution to the line shape from the
nebula’s low-density outer layer at very high n. The greater
contribution of the outer low-density layer at high n also explains
the deviation of the reduction factors (crosses) in Figure 3 from
the “Lorentzian” behavior.

Figure 5 shows the line temperature, TL, versus n for the
Orion Nebula. Open circles are BASV’s processed TL. Solid
curves show unprocessed (upper curve) and processed TL for
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the model spectra without noise. Dashed curves show processed
TL for model spectra with 1 and 3 mK noise added. These
curves are obtained using the following Monte Carlo method.
For each modeled spectral line feature, normally distributed
noise is added, then FS-overlapped six times. TL and w of
this processed feature are then estimated by a Gaussian fit, as
done by BASV. The least-squares-fitting algorithm searches for
the best fit within a ±2 channel interval about the central line
frequency. These steps were trialed 1000 times to determine
the mean and standard deviation values of TL and w for each
processed spectral line feature. This method was carried out for
the expected 1 mK noise rms and, additionally, a 3 mK noise
rms. Two vertical lines in Figure 5 are positioned at n values
corresponding to the processed, noise-free model temperatures
TL = 3 mK (left line) and TL = 1 mK (right line). Given
BASV’s Trms ∼ 1mK, the vertical lines represent the 3σ and 1σ
limits. The corresponding limiting values of n = 224 (Δn = 11)
and n = 241 (Δn = 14) are also indicated by vertical lines in
Figure 6.

Processed widths versus n for 8, 14, and 20 channel offsets
are shown in Figure 6 for the 6 GHz Orion Nebula model.
For comparison, the thick upper solid curve is unprocessed
noise-free model widths. Dashed curves in Figure 6 correspond
to processed noise-free model widths, while solid curves are
the corresponding processed widths resulting from the Monte
Carlo method described above using 1 mK noise added to the
model spectra. Open and filled circles in Figure 6 are BASV’s
processed widths for the Orion Nebula and W51 (see also Bell
et al. 2011). The left and right vertical lines show the 3σ and
1σ confidence limits from Figure 5.

4. DISCUSSION

The multiple frequency switching technique reduces ampli-
tudes of broad baseline variations and therefore can be used to
systematically “flatten” baselines (Bell & Feldman 1991; Bell
et al. 1992, 1993). Compared to standard spline/polynomial
baseline fitting, which allows for subjective decisions, the FS
technique reduces baseline variations objectively. For spectral
features that are much wider than the offset, h, FS can be likened
to differentiation, which acts as a high-pass filter in the fre-
quency domain (see, e.g., Hamming 1998; Owen 1995). In this
case, six overlaps approximates the sixth derivative with re-
spect to frequency, which makes FS an efficient high-pass filter.
This not only reduces broad variations in the spectrum, but in
BASV’s case (six overlaps, h < w), it also reduces broad spec-
tral line wings larger than the FS-offset, which manifests as line
narrowing (see, e.g., Figure 2).

We use the Lockman & Brown (1975) model of the Orion
Nebula and simulate the conditions of BASV’s observations
at 6 GHz: telescope beam size, frequency range, channel
width, offset, number of overlaps, and noise temperature. When
modeling, we can avoid some difficulties that BASV faced
when they processed the real spectrum. The real spectrum is
abundant with spectral lines; after overlapping six times, the
resulting spectrum is crowded with lines and reference lines.
This situation is further complicated when significant noise
fluctuations are present, which is BASV’s case when Δn > 11,
so cleaning becomes a non-trivial and subjective procedure. In
our case cleaning is trivial as we can model and clean each RRL
individually, with and without noise.

For all HnΔn lines studied in BASV, the unprocessed width
(i.e., before FS) is greater than the FS-offset used. We show
that the processed width weakly depends on n and Δn (see

Figure 4, the six FS-overlaps case). In fact, it remains about
0.8 h for a wide range of n and Δn. This property of the FS
technique makes it insensitive to changes in RRL widths when
h < w. (It is for this reason that we justify the inclusion of
BASV’s processed widths for W51 at 6 GHz in Figure 6.) The
FS technique can be used to systematically eliminate broad
baseline variations to detect weak lines, however, in BASV’s
case (six overlaps, h < w), this technique is not well suited to
study RRL broadening. If one’s purpose is to test the theory of
spectral line broadening, the choice of the offset made in BASV
(h < w) is not optimal.

It is shown in the previous sections that FS reduces the S/N
(see Equation (6)) and spectral line amplitudes (Figure 3). As a
result of amplitude reduction, the processed line temperature
drops rapidly to the noise temperature Trms = 1 mK as n
and Δn grow (the lower solid curve in Figure 5). The model
processed line amplitude reaches 3 mK (3σ level) at n = 224
(Δn = 11) and 1 mK (1σ level) at n = 241 (Δn = 14). The
interval between n = 224 and 241 (between Δn = 11 and
14) is a transition zone between observable spectral lines and
noise. Figure 6 shows that the processed width behavior in the
transition zone imitates “narrowing” of the processed spectral
lines observed by BASV in spectra of the Orion Nebula and W51
at 6 GHz. This “narrowing” is the result of “forcing” a program
to fit Gaussians to features dominated by noise fluctuations—the
procedure used by BASV.

Spectra presented in Bell (1997), BASV and Bell et al. (2011)
result from the overlapping and cleaning steps explained in
Section 3. Though BASV applied overlapping to the entire
spectrum, cleaning was applied selectively to features located
near the expected spectral line frequencies, even if the processed
line temperatures were below 3σ . This subjective and selective
approach could create “spectral lines” from random fluctuations
at the �3 σ level, which are abundant in the spectrum.

For Δn � 14, the width errors predicted by our Monte Carlo
simulation are comparable to the widths themselves. Therefore,
BASV’s data points for Δn � 14 shown in Figures 5 and 6 are
likely to be misinterpreted noise features.

In conclusion, FS is a useful technique for detecting and
measuring weak spectral features, if required corrections are
minimal, that is if the FS offset is greater than the line width:
h � w. Based on our simulation results, we argue that BASV’s
Trms ≈ 1 mK observations of hydrogen RRLs from the Orion
Nebula at 6 GHz are limited to Δn < 14. Within this limit, we
find good agreement between their results and a Monte Carlo
simulation based on conventional Stark broadening theory and,
therefore, we argue that BASV’s findings do not necessitate
a revision of RRL Stark broadening theory. We suggest that
further tests of line broadening theory above this limit will
require observations with sub-mK sensitivity and improved
baseline stability.

We thank Morley Bell for helpful communications when
learning about FS. We thank Johannes Buchner for enlightening
discussions about FS and various software tools. We thank Ron
Maddalena for assistance with NRAO’s 140 ft data archive.
Finally, we thank Miller Goss for many encouraging and
valuable discussions.
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4.1 Alexander, J. & Gulyaev, S. 2012, ApJ, 745, 194

Errata

1. In Equation 5, the left-hand-side should be
σi

σ0
, instead of σi.

2. The first citation of the REFERENCES section should read:

“Abramowitz, M. and Stegun, I. A. 1965. Handbook of mathematical

functions with formulas, graphs, and mathematical tables. Dover, New

York, corrected edition”

3. I discovered an earlier (the first?) published reference to the apparent nar-

rowing of cosmic RRLs: Bell et al. (1991).
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ABSTRACT

We report the results of observations and analyses of 41 D = ¼n 1, ,5 hydrogen radio recombination lines from
the Orion nebula (M42) at 5.5 to 6.5 GHz, with a spectral sensitivity (channel-to-channel standard deviation) of
»2 mJy. Observations were conducted at the Australia Telescope Compact Array. A 1 GHz bandwidth allowed
simultaneous detection of up to 11 spectral lines of equalDn that were stacked to enable accurate measurement of
line widths. Collisional widths in the range of principal quantum numbers n from 100 to 179 are found to be
consistent with predictions of electron impact Stark broadening theory. An Orion nebula model with density
inhomogeneities (clumps) and gradients of temperature and density is consistent with our data. We reanalyze the
data of Smirnov et al. and Bell et al. and find excellent agreement between all statistically significant measurements
and theory. Our findings confirm the absence of line narrowing for n=100...179.

Key words: H II regions – ISM: atoms – methods: data analysis – radio lines: ISM – techniques: spectroscopic

1. INTRODUCTION

Rydberg atoms and Stark broadening of hydrogen and
hydrogen-like spectral lines continue to attract the attention of
atomic physicists and astrophysicists, given their use in
quantum computer gates (Goldschmidt et al. 2015) and probing
cosmic and laboratory plasmas, including thermonuclear
reactor plasma (Lisitsa et al. 2012). Since the pioneering work
of Griem (e.g., Griem 1960), theoretical approaches for
computing spectral line widths have been refined (see e.g.,
Watson 2006; Peach 2015), and so have the ways of testing
them in space and laboratory observations (see, e.g., Peach
et al. 2009; Lisitsa et al. 2012). Radio recombination lines
(RRLs) have been used for testing Stark broadening theory
since the 1960s (Gordon & Sorochenko 2009). Initially,
observations of RRLs stimulated significant improvement in
the theory (Griem 1967; Minaeva et al. 1967). Observations
generally confirmed the revised theory (Smirnov et al. 1984)
with the exception of one observational result of Bell et al.
(2000), later explained by Alexander & Gulyaev (2012).

Galactic H II regions are suitable objects for testing spectral
line broadening theory. However, their complex geometry with
gradients of density and temperature (Lockman & Brown 1975;
Wilson et al. 2011), small-scale inhomogeneities (Gulyaev &
Sorochenko 1974; Matsakis et al. 1982), and turbulence
(Sorochenko & Berulis 1969; Wink et al. 1983; Castaneda
1988; Wilson et al. 2012) complicate the interpretation of
observational data. Thus, careful modeling is needed when
interpreting observations over a wide range of frequencies.
Such modeling requires solving the non-LTE radiation transfer
problem for a nebula model for each spectral line that accounts
for beamwidth dependence of a radio telescope on principal
quantum number n and the frequency dependence of optical
depth t n( ). Extraction of Stark broadening is therefore
ambiguous, given these free parameters.

High-order RRLs offer the best solution for minimizing
these difficulties. In a narrow range of frequencies, a number of
RRLs with different n and Dn can be observed because
µ Dn n1 3 when n » constant, therefore, e.g., aH100

(Δn=1) and qH200 (Δn=8) lines have close frequencies.
A constant frequency means an unchanging telescope

beamwidth and continuum optical depth, allowing direct
comparison of RRLs with different n and a simple extraction
of the dependence of the Stark widths on n without complex
modeling, particularly if continuum and line optical
depths t t , 1C L( ) .
Rapid decrease of line peak intensity with Dn makes

observations of high-order RRLs challenging. Line-to-conti-
nuum integral intensity for t t , 1C L( ) is given by
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where +Dfn n n, is the oscillator strength, Te is electron
temperature, and »F 0.925 corrects for the contribution of
ionized helium (Gordon & Sorochenko 2009). Assuming a
constant frequency and using an expression for the oscillator
strength as a function of n and Dn (Menzel 1969), it follows
that the line integral intensity is ò n µ D -I d nL

1.9. For small n,
Doppler broadening dominates with the Doppler width,

nµ =wD constant, so the line peak intensity drops as
approximatelyD -n 1.9. For large n, Stark broadening dominates
with line width, wL, growing as µ µ Dw n nL

4 4 3, so the line
peak intensity drops rapidly, as approximately D -n 3.2. There-
fore, detecting high Dn n,( ) RRLs requires low system noise,
baseline stability and a careful data reduction procedure.
Smirnov et al. (1984) observed high-order RRLs for
= ¼n 90, ,174 and D = ¼n 1, ,6. They used different radio

telescopes at different frequencies such that the RT beamwidths
remained nearly constant. They used high-frequency RRLs

aH56 and aH66 to estimate the Doppler width to be removed
from the higher-n spectral lines to extract Lorentz widths from
the assumed Voigt profiles, and then analyzed them to test
Stark broadening theory.
Rood et al. (1984) searched for the 8.7 GHz hyperfine line of
+He3 in the Orion nebula and other galactic H II regions. In this

The Astrophysical Journal, 828:40 (7pp), 2016 September 1 doi:10.3847/0004-637X/828/1/40
© 2016. The American Astronomical Society. All rights reserved.

1



search they detected high-order RRLs from bH114 to qH178 ,
but did not address Stark broadening.

Bell et al. (2000, 2011) observed high-order RRLs at 6 and
17.6 GHz using a novel frequency switching (FS) method.
Mathematically, this method is equivalent to applying a finite
difference—a discrete analog of differentiation—to the
observed spectrum (Alexander & Gulyaev 2012). In Bell
et al. (2000, 2011), FS was applied to the same spectrum six
times successively (a 6th order finite difference), which made
their method increasingly insensitive to line broadening as the
line width increased and exceeded the FS offset parameter.
Alexander & Gulyaev (2012) demonstrate that the narrowing of
RRLs reported by Bell et al. (2000, 2011) is apparent: their
method effectively filtered out Stark broadening for n 200.
Most of the width measurements reported in Bell et al.
(2000, 2011) for n 200 were below Doppler width and
increasingly below s3 in signal-to-noise ratio (S/N), which is a
manifestation of limitations in the use of the multiple FS
method.

Here we report on observations of high-order RRLs in the
Orion nebula (M42), obtained with the ATCA (Australia
Telescope Compact Array; Wilson et al. 2011) in the frequency
range 5.47—6.53 GHz. Within this band we identify and
analyze 41 D = ¼n 1, ,5 spectral lines of hydrogen. We
increase S/N by stacking spectral lines of equalDn detected in
the 1 GHz bandpass. We extract Lorentz widths and compare
them with the observational findings of Smirnov et al. (1984)
and Bell et al. (2000, 2011) and the predictions of electron
impact broadening theory (Griem 1967, 1974; Gee et al. 1976;
Watson 2006; Peach 2015). We find excellent agreement
between theory and our results. Our findings are consistent with
an absence of line narrowing for n=100...179.

2. OBSERVATIONS AND DATA PROCESSING

We observed the central brightest continuum region of M42
(R.A.=05:35:17.3, decl.=−05:23:28, J2000) at 6 GHz
using the ATCA between 2013 late June and early July. Three
observational time periods totaled 17 hr; accounting for
calibration overheads, we obtained 15 hr of integration on
M42. For maximum sensitivity, we used the compact H75
configuration with a beam-size of ¢7.8 per telescope and a
synthesized beam-size of ¢ ´ ¢1.8 2.1 at 6 GHz. At the start of
each observation time slot, we observed a primary calibrator,
the unresolved (for ATCA) radio source PKS1934-638 (R.
A.=19:39:25.0, decl.=−63:42:46, J2000; ∼5 Jy at 6 GHz)
for ∼15minutes, and used it to correct (prior to observing
M42) residual delays due to differences in signal propagation
times through ATCA’s electronic pathways (Fomalont &
Perley 1999). After every 30minutes of integration on M42,
we observed a secondary calibrator, the quasar PKS 0539-057
(R.A.= 05:41:38.1, decl.=−05:41:49.43, J2000; ∼1 Jy at
6 GHz) for ∼2minutes, to correct time-dependent gain and
phase changes. Postprocessing was done using Miriad (Sault
et al. 1995) and Python’s Astropy package (Astropy Collabora-
tion et al. 2013).

Bandpass calibration was initially obtained using the primary
calibrator, but we find that its S/N is too low for detecting the
weakest (highest Dn) RRLs reported here. Instead, we used
the unresolved (for ATCA) quasar PKS 1253-055 (R.
A.=12:56:11.2, decl.=−05:47:21.5; ∼15 Jy at 6 GHz),
observed a day prior to the start of the observations reported
here. The S/N of this calibrator was further improved by

smoothing with a 16 channel moving average window. Flux
calibration was obtained using the primary calibrator.
We used a 1 GHz bandpass option of the ATCA’s Compact

Array Broadband Backend (CABB; Wilson et al. 2012).
CABB’s wideband mode uses two simultaneous IF (inter-
mediate frequencies), providing two bandpasses, each
544MHz wide. One IF was centered on 5744MHz and the
other was centered on 6260MHz, creating a 28MHz overlap.
This enormous bandpass allowed simultaneous observations of
multiple RRLs with the same Dn, including 6 α-lines, 7 β-
lines, and so on, up to 11 D =n 5 lines. Our choice of
frequency range was dictated by our intention to minimize the
number of overlapping RRLs in the band.
Figure 1 shows schematically the two bandpasses (IF1 and

IF2) used in our observations. Short vertical lines show
theoretical rest frequencies of RRLs in the spectrum (x-axis) for
different Dn (y-axis).
To reliably measure line profiles and widths, in each

bandpass we concatenated 16 half-overlapped 64 MHz wide
“zoom windows” with 31.25 kHz channel-widths (CFB 64M-
32 configuration). This spectral resolution (1.5 km s−1 at
6 GHz) is noticeably higher than that in the aforementioned
works of Bell et al. (2000, 2011; 3.9 km s−1 at 6 GHz and
5.32 km s−1 at 17.6 GHz), Rood et al. (1984; 2.7 km s−1), or
Smirnov et al. (1984; 3.8 km s−1 at 5 GHz and 2.1 km s−1

at 9 GHz).
Table 1 summarizes the data presented in Figure 1 and

provides the range of principal quantum numbers for the
transitions + D n n n, and the number of hydrogen lines for
each Dn in the 1 GHz bandpass. To improve S/N, RRLs of

Figure 1. RRL frequencies and bandpasses (IF1 and IF2) used in our
observations. Short vertical lines show rest frequencies of RRLs (x-axis); the y-
axis shows Dn for these lines up to D =n 7.

Table 1
Hydrogen RRLs Recorded and Analyzed in this Paper

Dn 1 2 3 4 5

Range of n 100–105 126–132 144–151 158–166 169–179

# of
stacked
lines

6 7 8 9 11

FWHM,
kHz

538±2 610±7 694±22 798±52 920±135

Note.The last row provides measured widths (FWHM) of stacked lines for
each Dn. Errors are provided at the level of s3 .

2

The Astrophysical Journal, 828:40 (7pp), 2016 September 1 Alexander & Gulyaev



equal Dn were stacked with respect to the theoretical central
frequencies of individual lines. In the bottom row of Table 1 we
provide the measured widths (FWHM) of the resulting stacked
lines for each Dn. Statistical errors are indicated at the s3
level.

Results in Table 1 (bottom row), as well as those in
Figures 2–4 (below), are derived from and related to the
stacked line profiles. “Effective” values of principal quantum
numbers, neff , are used in these figures: we model the stacking
theoretically using the Lockman & Brown (1975) model of

M42 and find that stacked line widths correspond to the widths
of individual spectral lines near the bandpass’ center. For
example, forD =n 1, the principal quantum numbers are in the
interval = ¼n 100, ,105, so =n 102eff .
We detect a systematic shift of line centers for anH lines—

values of VLSR determined from positions of the line centers
gradually decrease from the aH100 to the aH105 line. The
VLSR trend may be explained as an optical depth effect in an
expanding nebula (Berulis & Ershov 1983; Gulyaev &
Sorochenko 1985). All RRLs across the bandpass experience

Figure 2. Profiles of stacked lines of equalDn forD = ¼n 2, ,5. For eachDn, the upper subplot shows the profile prior to baseline removal, the lower subplot shows
the profile after baseline removal, and the middle subplot shows residuals. Red lines are 5th order polynomial baseline fits and green lines are Gaussian profile fits. TL
and TC are in units of flux density, Jy; residuals are in mJy.

Figure 3. Our measurements (open circles with s3 error bars) and model the results of the widths (FWHM) of stacked high-order RRL. The dashed curves show the
results of the original Lockman & Brown (1975) model. Solid curves show the results of a modified Orion Nebula model with inhomogeneities and a filling factor. The
theoretical results of Gee et al. (1976) and Peach (2015) are used for calculating impact broadening widths.
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a similar trend, i.e., stacking leads to an increased resulting-
profile width. This increase is �1 km s−1 and may be ignored
in the analysis of spectral line broadening.

3. RESULTS

Figure 2 shows stacked line profiles after baseline removal
for D = ¼n 2, ,5. Line widths were estimated by fitting a
Gaussian profile to each stacked line and a 5th order
polynomial to approximate the stacked baseline shape.

Figure 3 shows our measurements (open circles with s3
error bars) for the FWHM widths of stacked high-order RRLs.
The dashed lines in Figure 3 correspond to the Orion Nebula
model of Lockman & Brown (1975). This model consists of
three cylindrical regions—(1) inner, (2) intermediate, and (3)
outer—with densities of =N 10e

4.5, 103.5, and 102.3 cm−3,
temperatures of =T 7500e , 10,000 and 12,500 K, dia-
meters=0.043, 0.56, and 2.5 pc (0.33, 4.3, and 19.1 arcmin),
and depths along the line of sight=0.043, 0.28, and 1.25 pc,
respectively. Two options for calculating impact broadening
widths are used: Gee et al. (1976) and Peach (2015)—see
Section 4.

The solid lines in Figure 3 correspond to the Lockman &
Brown (1975) model modified to fit our data. To fit our
observations we introduce a volume filling factor, η, for the
Lockman & Brown (1975) model’s second region, and modify
its electron density. The volume filling factor is chosen as
h = 103.5[ cm−3/Ne(region 2)]

2, so the emission measure, EM,
of the intermediate region remains as that of the Lockman &
Brown (1975) model. This model with a filling factor is similar
to an earlier three-component Orion nebula model with clumps
proposed by Gulyaev & Sorochenko (1974). Unchanged EM
means that the model continuum spectrum and line integral
intensities remain unchanged. This modification does not

noticeably effect intensities or widths of anH lines computed
in the Lockman & Brown (1975) model. However, we find that
high-order RRLs considered here are a sensitive indicator for
the presence of clumps in the central part of the Orion nebula,
which was theoretically predicted and explained by Pikel’ner
(1973) and Pikel’ner & Sorochenko (1973), and later confirmed
by high-resolution observations at optical (e.g., Hester et al.
1991; O’dell & Wen 1994) and radio wavelengths (e.g.,
Churchwell et al. 1987; Garay et al. 1987; Felli et al. 1993).
To fit the theoretical (model) widths to our data in Figure 3,

we use = -N 5000 cme
3 when applying the electron impact

broadening of Gee et al. (1976) and = -N 7500 cme
3 when

applying the impact broadening of Peach (2015). The filling
factors are, correspondingly, 0.40 and 0.18.

4. DISCUSSION

In the electron impact broadening theory (Griem 1967), the
spectral line (Lorentz) width

⎛
⎝⎜

⎞
⎠⎟

r
r

µ µ bw n nln , 2L
4 max

min

( )

where β depends on the choice of maximum, r ,max and
minimum, r ,min cutoff radii (impact parameters). The minimum
cutoff radius is typically chosen as


r =

n

mv

5

6
3

e
min

2
( )

(Griem 1967), where ÿ is Planck’s constant, and m and ve are
electron mass and velocity.
There are different approaches with respect to the choice of

rmax that lead to different dependences of the electron impact

Figure 4. Normalized Lorentz widths of high-order RRL as a function of the principal quantum number of the lower atomic level n. Our observations are shown as
filled diamonds with error bars ( s3 ). Open circles with error bars ( s3 ) show observations of Smirnov et al. (1984) at 5 and 9 GHz. Observations of Bell et al.
(2011) are shown with open squares (17.6 GHz) and open triangles (6 GHz). The upper (green) solid line shows the theoretical prediction of Gee et al. (1976), with

µw nL
4.55. The red solid line is the power law µw nL

3.97 that corresponds to Peach’s (2015) theoretical calculation for electron impact broadening. It coincides with
the trendline for our observations, µ w nL

3.97 0.08, when the modified Orion nebula model with =w 25.3D km s−1 is used. The dashed line shows Peach’s (2015)
calculation of electron-plus-proton impact broadening for D =E 0 and D ¹E 0 transitions when the Debye radius is used as a cutoff parameter. The >n 202
triangles are three of seven widths reported by Bell et al. (2011) as evidence of “narrowing”; the four remaining widths cannot be shown here, as their values are below
the Doppler width, and therefore formal use of Equation (11) leads to non-physical negative Lorentz widths.
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width on n. If

r
w

= µ


v
n , 4e

n n
max

, 1

3 ( )

(Griem 1967), where w pn= 2n n n n, 1 , 1 is the angular frequency
of transition  n n 1, substitution of (3) and (4) into (2)
results in r r µ nmax min and b > 4. For a typical H II region
electron temperature of =T 10e

4 K, Equation (2) predicts

µw n 5L
4.4 ( )

(Griem 1967) for  n n 1 transitions ( n 1). If the Debye
radius, RD, is used instead as the maximum cutoff radius, then

r
p

= =R
kT

N e8
, 6e

e
max D 2

( )

(Hey 2012; Peach 2015), where k is the Boltzmann constant
and e is the elementary charge. In this case, r r µ -nmax min

2,
and b < 4. For a typical H II region electron density of

=N 10e
4 cm−3, Equation (2) predicts µw nL

3.97 (Peach 2015).
Watson (2006) provides a theoretical expression for electron
impact widths valid for n 70. His proposed formula for
>n 70 (Equations (16) and (17) in Watson 2006) results in
µw nL

3.97, consistent with the theoretical results of Peach
(2015).1

Peach (2015) also tests a stronger condition—the NN
(nearest neighbor) radius, RNN, as the maximum cutoff radius:

⎛
⎝⎜

⎞
⎠⎟r

p
= =R

N

3

4
.

e
max NN

1 3

Gee et al. (1976) provide a useful approximation for
collisional cross-sections for inelastic electron impacts. Using
a power-law presentation, one can write:

sá ñ µ gn v n . 7( ) ( )

The collisional line width for the transition + D n n n is
then (Sobel’man et al. 1995)
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using a Taylor series expansion. The first two terms of this
expansion in Equation (8) were used by Smirnov et al. (1984)
in their approximate formula for the Lorentz width (Equation

(2.60) in Gordon & Sorochenko 2009):
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For anH lines, one can ignore the difference between
exponents β and γ used in different presentations of the line
width (see (2) and (8)). For example, for n=100, the exponent
b = 4.41 when g = 4.40. However, when considering the
widths of the sequence of high-order RRL, the difference
between β and γ should be taken into account. For example, for
our sequence of RRLs at 6 GHz, b = 4.50 when g = 4.40. For
the interval b = 3.8 ... 4.5 considered here, the relationship

b g- = 0.10 10( )

holds for the high-order RRL series. We use it below when
comparing our results with the theoretical findings of Griem
(1967), Gee et al. (1976), Watson (2006), and Peach (2015),
and with the observational data of Smirnov et al. (1984) and
Bell et al. (2011).
To extract Lorentz widths wL (FWHM) from the observed

high-order RRL profiles, we use the approximate formula
of Kielkopf (1973) presented by Smirnov (1985) as

= - - -w w w w7.786 1 1 0.240 1 , 11L V D V
2[ ( ( ) ) ] ( )

where wV is the Voigt width (FWHM) of the spectral line
determined by the fitting procedure and wD is the Doppler
width (FWHM). Given that the Lockman & Brown (1975)
Orion nebula model has a temperature gradient, Doppler widths
are different for different regions, so the Doppler width wD

used in (11) is an “effective” Doppler width. For our
observations at 5.5–6.5 GHz, the intermediate (second) region
of both the modified and the original Lockman & Brown
(1975) models dominates in terms of RRL and continuum flux,
so the effective Doppler width is close to that of the
intermediate region.
Following Watson (2006) and Peach (2015), we normalize

Lorentz widths wL to the Lorentz width of aH102 , where
n=102 corresponds to the effective n of the series of H an
lines in our case.
Using Equation (11) we re-calculate Lorentz widths from

data provided by Smirnov et al. (1984) at 5 and 9 GHz (Table 2
in Smirnov et al. 1984) and by Bell et al. (2011) at 6 and
17.6 GHz (“corrected” widths in Tables 2 and 4 of Bell et al.
2011).2 We normalize the calculated wL values by the Lorentz
width of aH102 and plot them in Figure 4.
Figure 4 shows the aforementioned theoretical trends based

on the impact broadening theory and five observational sets for

Table 2
Doppler Widths, wD, and the Exponent β from Equation (2), Computed for Five Sets of High-order RRL Observations

Frequency (GHz) Range of Dn Range of nlow wD (km s−1) β References

5 1–4 109–174 26.0±0.25 3.86±0.16 Smirnov et al. (1984)
5.5–6.5 1–5 100–179 25.3 3.97±0.08 This paper
6 1–6 102–194 25.8 3.97±0.54 Bell et al. (2011)
9 1–6 90–161 25.2±0.5 4.15±0.22 Smirnov et al. (1984)
17.6 1–17 71–177 24.0 3.97±0.18 Bell et al. (2011)

1 We find two misprints in Equation (19) of Watson (2006): there should not
be an electron charge e in the first line of the formula and the numerical
coefficient in the second line should be ´ -3.7 10 11.

2 All re-calculated values agree with those provided in Smirnov et al. (1984),
except for the widths of two lines, bH137 and bH138 , which we corrected.
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the high-order RRLs: Smirnov et al. (1984) data at 5 and 9 GHz
(open circles with error bars), our data at 6 GHz (filled circles
with error bars), and Bell et al. (2011) data at 6 GHz (open
triangles) and 17.6 GHz (open squares).

Table 2 combines our results for all five sets of the high-
order RRL data. The value of β in Equation (2) depends on the
Doppler width used for each data set (Column 4). The weighted
least-squares method is used to find the exponent β for each set
of data (Column 5).

Smirnov et al. (1984) report a best-fit parameter
g = 4.4 0.6 for their 9 GHz lines and g = 3.78 0.16 for
their 5 GHz lines, where γ is the exponent in the power law
describing the collisional cross-section for inelastic electron
impacts (7). Using the weighted least square method we
reprocess the data of Smirnov et al. (1984) and find
b = 3.86 0.16 for their 5 GHz measurements and
b = 4.15 0.22 for the 9 GHz lines when using their values
of wD (26.0± 0.25 km s−1 and 25.2± 0.5 km s−1, respec-
tively). From Equation (10), g = 3.76 0.16 for their 5 GHz
data, which agrees with g = 3.78 0.16 reported in Smirnov
et al. (1984). Using Equation (10), we find g = 4.05 0.22
for their 9 GHz data, while Smirnov et al. (1984) report
g = 4.4 0.6. This discrepancy is rather large, but remains
inside the error margins.

Normalized widths wL computed from Bell et al. (2011) at
6 GHz drop significantly for n 200 (Figure 4). This is
expected given that the multiple FS method applied in Bell
et al. (2000, 2011) is insensitive to line broadening and
produces processed widths dominated by measurement errors
when n 200. Four of seven line widths at 6 GHz with
>n 202 reported by Bell et al. (2000, 2011) cannot be shown

in Figure 4 because their widths are narrower than the Doppler
width, resulting in negative Lorentz widths when using
Equation (11). The remaining three lines are outliers. Though
they have positive Lorentz widths, they are significantly
effected by the six-times-FS applied by Bell et al. (2000) and
do not represent meaningful line widths (Alexander &
Gulyaev 2012).

Bell et al. (2000, 2011) do not provide errors for individual
width measurements. However, in their Figure 1 caption, Bell
et al. (2000) state “the measured errors in the line widths
increase from ∼8% at low n-values to 25%–30% at high n.”
Using this indication, we computed weighted fittings to their
results at 6 and 17.6 GHz. When using =w 24.0D km s−1 for
their 17.6 GHz data, we find µ w nL

3.97 0.18. Using =w 25.8D

km s−1 for their 6 GHz data and excluding the three obvious
outliers, we get µ w nL

3.97 0.54 (Table 2).
The effective Doppler widths used here to extract Lorentz

widths from our data and the data of Smirnov et al. (1984) and
Bell et al. (2011) vary between 24 and 26 km s−1 (Table 2).
The lower-frequency data show higher wD and the higher-
frequency data require lower wD, which agrees with the Orion
nebula model used here. At lower frequencies, the role of the
outer (third) region with its higher temperature becomes more
important and therefore wD increases. At higher frequencies,
the role of the central region with its lower temperature
becomes more important and therefore wD decreases.

The observational data presented in Figure 4 best agree with
the computations of Peach (2015) for electron impact broad-
ening (solid red line), with the Debye or nearest neighbor
radius as the maximum impact parameter and µ w nL

3.97 0.54.

A question arises: can Doppler widths wD in Equation (11)
be chosen such that the Lorentz widths of the five sets of high-
order RRLs satisfy the power law µw nL

4.55 predicted from
Gee et al. (1976)? The answer is probably “yes.” By slightly
changing the parameters of the nebula model, agreement with
the µw nL

4.55 law for Lorentz widths can be reached
(Figure 3). However, the Doppler widths in Table 2 agree
better with the values of wD used by Smirnov et al. (1984) to
interpret their 5 GHz ( = w 26 0.2D km s−1) and 9 GHz
( = w 25.2 0.5D km s−1) data. To get b = 4.55 for their
5 and 9 GHz data, the Doppler width in Equation (11) should
be taken as high as =w 26.7D and 25.4 km s−1 for their 5 and
9 GHz data, respectively, which does not agree well with
Doppler widths determined by Smirnov et al. (1984).
We conclude that the power law predicted by electron impact

broadening theory is consistent with the five sets of high-order
RRLs analyzed here. Our data do not allow an unambiguous
choice between the theoretical results of Griem (1967) and Gee
et al. (1976) ( µw nL

4.55) and the results of Peach (2015) and
Watson (2006) ( µw nL

3.97). This ambiguity arises from the
small difference in the nebula model parameters corresponding
to b = 3.97 and b = 4.55. It appears to currently be impossible
to determine the turbulent velocities and other physical and
geometric parameters of the Orion nebula with sufficient
accuracy to choose between the two predictions of electron
impact broadening theory.
The dashed curve in Figure 4 corresponds to Peach’s (2015)

model for electron-plus-proton impacts with the Debye radius
as the maximum impact parameter. This model significantly
deviates from experimental trends to be considered a mean-
ingful description of the high-order RRL observations.
We detected 41 high-order RRLs of hydrogen from the

Orion nebula at 6 GHz with the ATCA using a 1 GHz wide
bandpass. We stacked lines of equal Dn and extracted Lorentz
widths to test Stark spectral line broadening theory of cosmic
plasma. We analyzed the results, together with those
of Smirnov et al. (1984) at 5 and 6 GHz and the statistically
reliable data of Bell et al. (2000, 2011) at 6 and 17.6 GHz, and
demonstrate that electron impact broadening theory is con-
sistent with the five sets of measurements considered here.
These data confirm the absence of line narrowing for
n=71...179. We find that a model of the Orion nebula with
density inhomogeneities and gradients of density and temper-
ature (Gulyaev & Sorochenko 1974; Lockman & Brown 1975)
fits our measured high-order RRL data well.

We thank Miller Goss, Warwick Wilson, and Peter
Thomasson for useful discussions, and Maxim Voronkov for
help with observations and data reduction. We thank the ATCA
for providing observational time, which is funded by the
Commonwealth of Australia for operation as a National
Facility managed by CSIRO.
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4.2 Alexander, J. & Gulyaev, S. 2016, ApJ, 828, 40

Errata

1. The second to last sentence in Figure 2’s caption should read:

“Red lines are 5th order polynomial baseline fits and green lines are Voigt

profile fits.”

2. In Footnote 1, I state that there should not be electron charge in Watson

(2006), Equation 19. I thank Prof. J. D. Hey for bringing to my attention

that “e” in this equation is the base of natural logarithm, not the charge of

the electron. This footnote is thus unnecessary.

3. In addition to Hey (2012), I also add reference to Hey (2013) which ex-

plores the role of atomic polarizability in RRL spectra from HII regions. I

thank Prof. Hey for bringing this to my attention.

4. The third citation in the REFERENCES section should read:

“Bell, M. B., Avery, L. W., MacLeod, J. M. & Vallée, J. P. 2011, Ap&SS,

333, 377”
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5 Conclusion & future work

“A look into the beyond.” Anonymous

5.1 Conclusion

In Chapter 1 I introduce RRLs as a sensitive probe of laboratory and cosmic

plasmas from which they emanate. This is followed by a history of the theory

and observations of RRLs, starting with Soviet astronomer Kardashev’s pre-

diction of their detectability in 1959, then with their detection by Soviet as-

tronomers in 1964 and finishing with Canadian astronomers’ curious finding

that the behavior of high-order RRL widths are not as expected. Chapter 2

presents the modern theory of RRLs, including the distribution of excited elec-

tronic states, transition probabilities between these states, radiative transfer, and

spectral line broadening mechanisms. Chapter 3 details my original ATCA ob-

servations and processing of cosmic high-order RRLs data from the Orion neb-
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5.1 Conclusion

ula. Chapter 4 introduces and summarizes my co-published papers contained

therein. And finally, Chapter 5 concludes the dissertation by summarizing its

original contribution and suggesting future prospects.

In this dissertation, I demonstrate that the apparent hydrogen RRL narrowing

first reported by Bell et al. is an artifact of their data processing. I accomplish

this by creating a theoretical model of the multiple FS (frequency shifting) tech-

nique, which is then implemented as a computer simulation. This technique,

originally developed by Bell, copies a spectral line bandpass, shifts it in fre-

quency by an offset, and adds it to the unshifted bandpass. The output of this

process is then fed back to itself multiple times. I then co-created a theoretical

model of the Orion nebula which includes mechanisms of spectral line broaden-

ing and non-equilibrium thermodynamics effects. This model is used to numer-

ically solve the radiative transfer problem to simulate hydrogen RRLs. These

simulated lines are then processed through my multiple FS model, the results

of which are called “processed” lines — a term introduced by Bell. Finally, I

use Monte Carlo simulation to estimate how noise influences the processed line

widths and amplitudes.

From these models and simulations, I discovered that multiple FS does not pre-

serve broadening when the original line width is greater than the FS-offset. In

this case, I find the processed width results manifest the narrowing reported by

Bell et al., by reducing broad spectral wings characteristic of Stark broadened
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RRLs. I also discovered that the S/N of processed lines reduces weakly with

the number of overlaps as a result of adding dependent samples. This means

the S/N of processed lines as a function of ∆n (transition-order), at fixed fre-

quency, decreases faster than for unprocessed lines, such that a given statistical

insignificance level is reached more quickly.

Given this analysis, I argue Bell et al.’s ∆n > 11 lines are artifacts of their tech-

nique. I conclude that their reported findings, upon re-examination of their novel

data processing technique, do not indicate a need to revise Stark broadening the-

ory.

I present original observations of high-order RRLs from the Orion nebula con-

ducted by myself to test the theory of Stark broadening in cosmic plasmas. I

used a wide 1GHz bandpass centered at 6GHz to significantly improve the ac-

curacy of measurements by stacking up to eleven hydrogen RRLs of the same

∆n. As a result of stacking and spectral resolution, the uncertainties in the mea-

sured lines widths are about two-times less than was achieved before by Smirnov

et al. (1984). I find no evidence of spectral line narrowing. I show that all sta-

tistically significant data from my observations and four-sets of previous obser-

vations of high-order hydrogen RRLs (Smirnov et al., 1984; Bell et al., 2011)

are in agreement and demonstrate how Stark broadening theory is consistent

with these observations. I find that Lockman and Brown (1975)’s RRL model

of the Orion nebula over a large range of radio frequencies and ∆n≤ 2 requires

121



5.1 Conclusion

the addition of small-scale density inhomogeneities (clumps) and turbulence to

adequately predict my observed hydrogen RRLs for ∆n≤ 5.

I demonstrate that the power law predicted by electron-impact Stark broadening

theory is consistent with the five-sets of high-order hydrogen RRLs analyzed

here. Neither previous measurements nor my more precise data allow distin-

guishing between two approaches to the cut-off parameters (nearest neighbor

versus Debye radius) when predicting line broadening from electron impacts.

Specifically, these data do not allow an unambiguous choice between the the-

oretical results of Griem (1967); Gee et al. (1976) and Watson (2006); Peach

(2015). This ambiguity arises from small differences in the radiative transfer

nebula model parameters required to fit these theoretical predictions to observa-

tions. It is currently impossible to independently determine turbulent velocities

and other physical & geometric parameters of the Orion nebula with enough

accuracy to choose between the two predications of electron-impact broadening

theory. This situation represents an ill-posed inverse problem that is currently

unsolvable (Brown et al., 1978). However, I am able to show that Peach’s model

for electron-plus-proton impacts significantly deviates from the Lorentz-width

trend in my data.

In summary, the original contributions of this dissertation are as follows.

1. A mathematical theory of multiple frequency switching method is devel-
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oped.

2. Mathematical modeling of the MFS with the presence of noise is con-

ducted for the first time with the use of Monte-Carlo method. It is shown

that

a) the observed line widths depend on the main MFS parameter – the

frequency offset.

b) the apparent line widths in the MFS are not greater than the frequency

offset.

c) in the presence of noise, apparent narrowing of spectral lines can take

place when the S/N becomes small, consistent with unexpected Orion

nebula observations reported by Bell et al.

3. ATCA/CABB is used for the first time for wide-band high-resolution pre-

cision spectroscopy. High efficiency of this technique is demonstrated.

4. For the first time the method of stacking of up to eleven high-order RRLs is

used, which allowed reaching an unmatched precision in measuring spec-

tral line parameters.

5. For the first time five sets of high-order RRL observations are brought

together, and it is demonstrated that

a) all sets of observations are in accord, including statistically signifi-

cant observations of Bell et al.
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b) the high-order RRLs are broadened according to the electron-impact

Stark broadening theory.

c) Peach’s results on electron-plus-proton broadening deviates signifi-

cantly from observations.

d) Bell et al.’s results demonstrate apparent narrowing for low S/N in ac-

cordance with prediction of our MFS mathematical theory and com-

putational modeling.

6. For the first time, it was attempted to observationally distinguish between

two approaches to the choice of maximum cut-off radius of the impact

parameter: Debye radius versus nearest-neighbor. It is demonstrated that

even with the highest precision achieved in the observations, this distinc-

tion is not yet achievable. The reason for this is complex geometry and

inhomogeneity of the real nebulae, as well as sensitivity of spectral lines

to physical parameters of the model regions in which they are formed. An

important role of turbulent velocity is demonstrated.

7. A radiation transfer model of the Orion nebula with gradients of temper-

ature and density is created and numerically solved/optimized against ob-

servational data. It is demonstrated that observations and theory agree if

clumps of high density are present in the core region of the model — in ac-

cord with recent high-resolution observations of the nebula and early the-
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oretical models (Pikel’ner, 1973; Gulyaev and Sorochenko, 1974; O’Dell

and Wen, 1994).

8. The study of the Orion nebula conducted in this thesis can be considered

a case study. The results of this study and the techniques used — theoret-

ical, computational and observational — can be applied to other galactic

and extragalactic HII regions for testing spectral line theory in extreme

physical conditions of plasmas, from rarefied HII regions to dense and hot

plasmas of controlled thermonuclear fusion reactors.

5.2 Future work

More investigations can be done with the data I obtained when observing the

Orion nebula with the ATCA (Australia Telescope Compact Array). In this

dissertation, I concentrate on H RRLs and their widths & shapes. However, I

also have high quality He and C RRL data, which can be used for modeling and

determination of He and C abundances.

My H RRL data collected with ATCA and analyzed here is for n≤ 179, ∆n≤ 5

at 6 GHz. Initially, I thought I had also detected ∆n = 6 and ∆n = 7 RRLs in

the same data set. However, further analysis of the curve-fitting results indi-

cated the amplitudes and wavelengths of bandpass fluctuations due to receiver

instabilities become comparable to the RRL shapes themselves, such that these
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weak lines are “lost in the noise”. This is caused by insufficient S/N in the ob-

served bandpass calibrator compared with the S/N of the observed source, the

Orion nebula. Ideally, the S/N of a bandpass calibrator and source needs to be

comparable (Westpfahl, 1999), which was not the case for my Orion observa-

tion due to limited time-allocation at the ATCA. Although I addressed this issue

by smoothing the bandpass calibrator, residual bandpass fluctuations ultimately

limited my detection to ∆n≤ 5. Ideally, future observations of high-order RRL

from this nebula using this bandpass calibrator will require that the calibrator be

observed significantly longer.

A useful bandpass calibration requires a calibrator that does not make a signif-

icant contribution to the S/N of the uncalibrated bandpass. This requires the

ratio of the S/N of the calibrator and S/N of the source (M42, Orion nebula)

to be greater than or equal to one, i.e., (S/N)cal
(S/N)M42

≈ Fcal
FM42

√
∆tcal

∆tM42
≥ 1, where Fcal

and FM42 are the brightness of the calibrator and ∆tcal and ∆tM42 are the cor-

responding integration times (Westpfahl, 1999). In the case of a bright source

like M42, either a brighter calibrator should be used or integration time on the

calibrator should be significantly increased. If PKS1934-638 is used, where

Fcal = F1934−638≈ 5Jy and FM42≈ 30Jy at 6GHz, then (S/N)1934−638
(S/N)M42

attains unity

when ∆t1934−638 ≈ 36∆tM42. Given my ∆tM42 = 15 hour integration on M42,

540 hours of integration on PKS 1934-638 would be required! This suggests

a brighter calibrator is needed to detect ∆n > 5 RRLs in Orion at 6GHz when
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using an interferometer.

A solution to the problem of ∆n > 5 RRL detections has been found in the

weaker source M17 (Omega nebula) and brighter calibrator PKS 1253-055.1

One day prior to my scheduled M42 ATCA observations, serendipity occurred

and I was granted unscheduled observing time on M17, using PKS 1253-055

as the bandpass calibrator.2 At 6Ghz, F1253−055 ≈ 15Jy and I observed M17 to

be FM17 ≈ 10Jy. Using the approach of the previous paragraph, the integration

time required on PKS 1253-055 is about half the integration time on M17, such

that their S/N ratios are comparable.

Given this ideal combination of circumstances, after about eight hours of ob-

serving, I attained a calibrated data-set superior to that of M42, which was ob-

served over three days, totaling about 20 hours. The superiority of the M17

dataset is such that I have statistically significant, stacked H RRL detections

of ∆n = 6, ∆n = 7 and a marginal ∆n = 8 detection. Given these results and

all the observing/analysis experience developed with M42, I am now working

with undergraduate and graduate students to thoroughly re-analyze the visibil-

ity data and then publish these novel M17 high-order RRL findings. This will

include testing predictions of high-order RRL shapes & intensities, accounting

for the frequency-dependent optical depth effects on RRLs in expanding plas-
1During my M42 observations, this calibrator set below the local horizon while M42 rose,

making it unavailable as a bandpass calibrator for same-day observations.
2mm-wavelength observations were scheduled at this time, but bad weather made for terrible

observing. However, as it turned out, 5 cm observing was excellent.
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mas (Gulyaev and Sorochenko, 1985) and developing a radiative transfer model

for M17 which accounts for these high-order RRL data.

In hindsight, it can be asked why I did not originally focus on the M17 dataset?

One answer is historical: the original discrepancy between measured RRL widths

and theoretical prediction arose with M42 observations, so it was decided to

place my focus here. Also, M42’s detectability across the electromagnetic spec-

trum has generated a rich collection of publications, both in theory and observa-

tion that were utilized throughout this work. Another answer is naivety: I lacked

familiarity with correlating interferometers, like the ATCA, particularly when

choosing bandpass calibrators that minimize bandpass fluctuations to enhance

detection of weak RRLs. Although the M42 dataset has been considerably more

challenging from a data-processing point of view, resulting in a lower ∆n-upper-

limit detection than for M17, I would not have developed a deeper appreciation

of the benefits and limitations of radio interferometry, the importance and prop-

agation of statistical significance and would not have learned to write code in

Python, one the most useful open-source scripting languages for the analysis

and presentation of scientific data. From this perspective, the Orion nebula has

been a legendary teacher.
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