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ABSTRACT 

With the proliferation of relatively cheap Internet of Things (IoT) devices, 

Smart Environments have been highlighted as an example of how the IoT 

can make our lives easier. Each of these ‘things’ produces data which can 

work in unison with other devices to create an environment that can react to 

its users. Machine learning makes use of this data to make inferences about 

our habits and activities, such as our buying preferences or likely commute 

destinations. However, this level of human inclusion within the IoT relies on 

indirect inferences from the usage of these devices or services. Alternatively, 

Activity Recognition is already a widely researched domain and could 

provide a more direct way of including humans within this system. With 

intended application in the IoT, this research explores the feasibility of 

using a cost effective, unobtrusive, single modality ground-based sensor to 

track subtle direct, and indirect pressure changes. With the subsequent 

data, a number of machine learning classification approaches are utilised to 

assess the sensors performance in activity recognition. The results indicate 

that accuracy in Activity Recognition classification is generally high and 

provides a basis for further investigation as an interface to more complex 

digital systems, such as the IoT. 
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1 INTRODUCTION 

Computerised Technology has become an integral part of a modern society. 

Proof can be seen in the need for people to have such technology on their 

person at all times, with an estimated 4.77 billion smartphone users 

worldwide (“Number of mobile phone users,” n.d.). Furthermore, for the first 

time since mobile computer technology has existed, mobile platforms have 

overtaken the traditional personal computer to become the device of choice 

for those using the internet (“Mobile and tablet internet usage,” 2016). 

Computerised technology is in fact so prevalent within everyday life of a 

modern society that mental disorders and even deaths are attributed to the 

overuse and misuse of some of these technologies (Dossey, 2014; Rothberg et 

al., 2010). 

Despite the number of devices with internet connectivity already in use, the 

Internet of Things (IoT) promises to further envelop the entire globe with 

even more bits of technological wizardry than ever before. Industry experts 

estimate the IoT will consist of more than 8.4 billion connected things in 

2017, and 20.4 billion by 2020 (“Gartner Says 8.4 Billion Connected,” n.d.).  

Currently, most of the devices consisting of the IoT are used in industrial 

applications; highly automated systems, smart cities and buildings, as well 

as manufacturing and supply chain management (Da Xu, He, & Li, 2014). 

In this regard, the data produced by the IoT and its accompanying devices 

help gain further insight into the applicable domain. For example, farmers 

are using the IoT and devices to obtain data that effects the productivity of 

their crops (Yan-e, 2011). 

In 2005, the United Nations recognized the importance of this emerging 

technology by issuing their first report related to the IoT by the 

International Telecommunication Union (ITU).  In this report, they 

described the IoT as being “anytime, any place connectivity for anyone,” 

further adding that “we will now have connectivity for anything. 

Connections will multiply and create an entirely new dynamic network of 

networks – an Internet of Things” (Strategy, ITU & Unit Policy, 2005, p. 2). 



Introduction 

 

 

 2 

If this IoT definition given by the United Nations is a true description of 

what the IoT is perceived to be, the IoT cannot be limited to the domain of 

industrial applications only, but must exist in more mundane and common 

aspects of society as well. For this to occur, it means the inclusion of an 

entity that is consistently overlooked in IoT discussion; people. As Shin 

(2014) notes, “the discussion of the IoT so far has been predominantly 

focused on the technical aspect of design, such as network development” (p. 

520). Even IoT solutions focused on affecting people, such as “the design of 

products, services, and applications often are driven by technological 

opportunities rather than the underlying needs” (Salim & Haque, 2015, p. 

32).  

Incorporating people into the IoT in order to create a system true to the 

United Nations definition requires a modality shift in human and machine 

interfaces. For example, many current interfaces between humans and the 

IoT exist in the confines of object interaction, or through an objects based 

user-interface on a smartphone app. These neglect the implied ubiquity of 

the IoT and limit accessibility. Some argue that these types of interfaces are 

“particularly problematic for the mainstreaming of IoT products and 

services” creating terms such as “the “app trap”: the tendency for each 

connected thing to develop and require its own smartphone application” 

(Cerf & Senges, 2016, p. 37).  

Furthermore, these interfaces do not address the invisibility and 

subsequent era of automation and autonomy that the IoT will facilitate. In 

fact, it is suggested that interfaces which demand our attention and time 

are simply “digital chores” which have to be attended to (Krishna, 2015). 

Rather, what is required to achieve an automated and autonomous future is 

an interface that alleviates the need for conscious interaction. Therefore, it 

seems necessary that the interface between humans and the IoT should be 

created with the same attributes that define the IoT; invisibility, ubiquity, 

autonomy, and communication. 

A domain in academia that investigates automated digitisation of human 

actions into computer systems is that of activity recognition. A sub-domain 
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of the long-studied field of computer version, activity recognition 

researchers typically use image and video data to create machine 

algorithms that attempt to automatically classify a given activity (Vrigkas, 

Nikou, & Kakadiaris, 2015). However, a system that comprises of vast 

amounts of cameras may be seen as too visible and intrusive, especially if a 

requirement of the system is to be pervasive.  

Therefore, the purpose of this research is to investigate a suitable interface 

for the IoT by designing and implementing a single-modality ground-based 

activity recognition sensor that considers the findings of relevant literature 

in its iterative development. As acknowledged in the following discussion, 

research has been conducted in ground-based activity recognition already. 

However, in a similar vein to IoT discussion, the main objectives are 

technical with less consideration to domain application, and on lack of 

evidence identified in the literature through this study, research into an IoT 

interface using ground-based activity recognition has not previously been 

undertaken prior to this research. This leaves further scope for knowledge 

discovery in this regard beyond the extent of the research presented in this 

thesis. Evaluation of the sensory system will inform the suitability for such 

an implementation within the IoT. 

This thesis consists of six chapters. Chapter one provides the motivation 

and background of the research. Chapter two examines literature that 

covers relevant topics on the IoT, from early iterations to its current form in 

smart objects and smart environments. Discussion on human inclusion in 

digital systems and perceived barriers to this are also reviewed, before 

analysing literature discussing a particular subset of interfaces and the 

associated machine learning techniques used in activity recognition. This 

literature review helps inform the discussion of chapter three, which 

outlines the research objective and highlights the research methodology 

used in this study. Chapter four discusses the construction of an artefact in 

investigation of the research questions, from the physical components to the 

software components. Chapter five contains the results and discussion of 

evaluating the artefact. Finally, chapter six presents the conclusion, 
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highlights the contribution to knowledge in this domain, acknowledges the 

limitations of the research, and provides further areas of investigation going 

forward. 
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2 REVIEW OF LITERATURE 

Given that the aim of this research is to understand how activity recognition 

could be used in a smart environment of IoT devices, this literature review 

will touch upon relevant areas that include sensors and technology in 

pursuit of ubiquitous computing in the IoT, the human factors involved, 

introducing humans in systems through unobtrusive activity recognition 

(AR), existing implementations of AR, and machine learning efforts in the 

field of AR. 

2.1 IOT DEFINITIONS  

An all-encompassing definition of the IoT is given by Gubbi, Buyya, Marusic 

& Palaniswami (2013) who extensively describe their definition of the 

Internet of Things as it being the: 

Interconnection of sensing and actuating devices providing the 

ability to share information across platforms through a unified 

framework, developing a common operating picture for enabling 

innovative applications. This is achieved by seamless ubiquitous 

sensing, data analytics and information representation with Cloud 

computing as the unifying framework. (p. 1647) 

This rather comprehensive definition of a ubiquitous utopian computing 

architecture is more akin to the modern interpretations of the IoT, which is 

reflected on the redefining of the ITU’s IoT designation in 2012 as “A global 

infrastructure for the information society enabling advanced services by 

interconnecting (physical and virtual) things based on, existing and 

evolving, interoperable information and communication technologies”, 

further adding that “From a broader perspective, the IoT can be perceived 

as a vision with technological and societal implications” (“Y.2060 : Overview 

of the Internet of things,” 2012., p. 1). 

This repositioning in definition by authors is to be expected and is 

considered by Atzori, Iera, & Morabito to be attributable to two foremost 

biases concerning defining the IoT. The first bias is “The historical period, 

with all the relevant evolutionary history of ICT technologies adopted by 
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IoT, in which the definition is conceived” (Atzori, Iera, & Morabito, 2017, p. 

135). As time passes and technology evolves, the concept and therefore the 

definition of the IoT will change. Furthermore, societal pressures and 

consumer trends will also affect what the IoT may become in the future. 

The second bias in defining the IoT is dependent on the paradigm or domain 

of expertise in which the author or stakeholders’ interests lie (Atzori et al., 

2017). Further to this, in earlier work they designated three paradigms 

concerning IoT discussion as internet and network-oriented (middleware), 

things or devices oriented (sensors) and semantic-oriented (knowledge) 

(Atzori, Iera, & Morabito, 2010). Thus, bias in defining the IoT can be seen 

in the first ITU definition above, which is predominantly concerned with the 

connectivity issues within the IoT (middleware) and is to be expected given 

the focus of the ITU in telecommunications. 

Considering these two points, this research will adopt definitions provided 

by more recent literature, while focusing on the development of sensors and 

knowledge in application of activity recognition while simultaneously 

recognising the effects of middleware on both of these. 

The delineation of the IoT into three domains expressed by Atzori et al. is 

also identified by Gubbi et al. who say that “this type of delineation is 

required due to the interdisciplinary nature of the subject,” yet warned 

against as unhelpful in the realisation and direction of the IoT, and that 

“the usefulness of IoT can be unleashed only in an application domain where 

the three paradigms intersect (Gubbi et al., 2013, p. 1646). 

Thus, in an ever evolving attempt to define the IoT, the definition given by 

Atzori et al. (2017) in its current iteration is that it is: 

a conceptual framework that leverages on the availability of 

heterogeneous devices and interconnection solutions, as well as 

augmented physical objects providing a shared information base on 

global scale, to support the design of applications involving at the 

same virtual level both people and representations of objects. (p. 

137) 
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Another way in which to define the IoT is to discuss comparative features in 

literature pertaining to the IoT. Atzori et. al discuss six paramount concepts 

present in the majority of literature in some form; “a global network 

infrastructure or network connectivity”; “Everyday objects, not only ICT 

devices, are the main players of the IoT”, further adding the importance of 

“virtual representations” of these objects “within a digital overlay 

information system that is built over the physical world”; “Autonomy and 

autonomicity” allowed by smart objects and smart systems; “the design of 

effective (better if “intelligent”) interfaces both between humans and things 

and between things”; “Heterogeneity of the technologies” and the enabling of 

collaboration between them; “Services need to be associated to the objects” 

and provide value (Atzori et al., 2017, pp. 135-136).  

As such, the IoT must be recognized and considered in its entirety; a 

pervasive multi-part system and framework of sensors, things, devices and 

environments, with connectivity technology allowing communication 

between them all, and the services and frameworks that make use of the 

data and information provided by them. Each of these performing a 

necessary function in-order to offer a utopian and ubiquitous computing 

reality that will undoubtedly evolve over time. As this will be the 

terminology used within the research, a brief investigation of one of the 

most prevalent aspects of this definition will be discussed next. 

2.1.1 UBIQUITOUS COMPUTING 

The IoT therefore shares concepts in existing technological frameworks, and 

thus adds to the difficulty in understanding the IoT paradigm, a view 

expressed by Atzori et al. (2017) who recently argued that:  

if one brings into the Internet of Things many concepts derived from 

different architectures and technologies, such as 

ubiquitous/pervasive computing, Internet Protocol (IP), Machine-to-

Machine and embedded devices, Internet of People, then eventually 

this makes IoT synonymous with everything and, therefore, denies 

to IoT the specific connotation it deserves. (p. 132) 
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Importantly though, Atzori et al. in their critique are not rebuking the 

underlying existing technology used, but rather the use of the term IoT as a 

rebranding or substitute of these existing technological frameworks that are 

deficient in features compared to the IoT. Table 1 highlights these 

discrepancies as considered from their perspective. 

Table 1: Current technological frameworks: existing and missing IoT 

features (Atzori et al., 2017, p. 136) 

Technology IoT features Missing 

features 

RFID platforms Pervasiveness; often integrated 

with sensors/actuators 

Effective object 

virtualization; 

autonomy and 

autonomicity; 

interaction 

between objects 

Pervasive 

computing 

platforms 

Pervasiveness, autonomy and 

autonomicity; heterogeneity of 

technologies; association of 

services with objects 

Global network 

infrastructure; 

interfaces for 

thing to thing 

interactions 

Cyber-physical 

systems 
Pervasiveness; autonomy and 

autonomicity; interfaces between 

humans and things as well as 

between things; heterogeneity of 

technologies; association of 

services with objects 

Global network 

infrastructure 

Sensor networks Autonomy and autonomicity; 

association between services and 

physical resources 

Global network 

infrastructure; 

pervasiveness; 

heterogeneity of 

the 

technologies; 

M2M systems Connectivity and global network 

infrastructure; Interfaces between 

humans and things as well as 

between things; heterogeneity of 

the technologies 

Pervasiveness; 

autonomy and 

autonomicity 

 

One of the most obvious features that converge amongst the different 

paradigms is that of pervasiveness. In this terminology, no longer are the 

computerized technologies of tomorrow be limited to the banal screens, beige 
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boxes, or even pocket-sized computing fashion statements familiar to 

computing. In 1966 Karl Steinbuch, a German Computer Science pioneer, 

believed that computers would be inter-woven with almost every industrial 

product, and nearly three decades ago, Mark Weiser in his paper “The 

Computer for the 21st Century” anticipated the ubiquity of modern 

technology when he opened his discourse with the notion that “The most 

profound technologies are those that disappear. They weave themselves into 

the fabric of everyday life until they are indistinguishable from it” (Weiser, 

1991, p. 94). 

Unfortunately for both Steinbuch and later Weiser and his team at Xerox 

PARC, “this was a vision too far ahead of its time — the hardware 

technology needed to achieve it simply did not exist” (Satyanarayanan, 

2001, p. 10). Now, well into the 21st century at the epoch of technological 

ubiquity, with advances in both the computing technology and supporting 

systems, it could be argued that technology is indeed in the fabric of 

everyday life as indicated by the statistics of IoT and smartphone devices 

mentioned at the outset.  

However computerised technology has not largely “disappeared” or become 

“indistinguishable” from the mundane objects people rely heavily on or 

immediately associate with computerised technology, such as smartphones, 

tablets or personal computers. Or, maybe it is, and has indeed become so 

indistinguishable that most are naïve to its existence or dependence on it. 

Weiser (1991) acknowledged this when he wrote that:  

Such a disappearance is a fundamental consequence not of 

technology but of human psychology. Whenever people learn 

something sufficiently well, they cease to be aware of it. When you 

look at a street sign, for example, you absorb its formation without 

consciously performing the act of reading. (p. 94) 

Therefore, truly ubiquitous computing means more than being physically 

invisible or unseen, but more importantly can be interacted with 

unconsciously (Barbosa, 2015). Satyanarayanan provides further 

compromise to complete, literal invisibility by writing that a “reasonable 
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approximation to this ideal is minimal user distraction. If a pervasive 

computing environment continuously meets user expectations and rarely 

presents him with surprises, it allows him to interact almost at a 

subconscious level” (Satyanarayanan, 2001, p. 11). This concept of 

invisibility and minimal user distraction is very pertinent to the IoT and 

discussion within this research. 

2.2 SENSORY SYSTEMS 

The precursors to the IoT largely focused on data produced from sensors. 

Even today, it is assumed that the majority of objects within the IoT will be 

simple data acquiring modules rather than whole appliances or machines. 

Furthermore, many of the implementations of sensory based AR, rather 

than vision based AR, rely on two sensory instruments. Both have relevance 

in the history and realisation of ubiquitous computing and will be discussed 

in the next section. 

2.2.1 EARLY IOT SENSORY SYSTEMS 

Although Weiser is largely thought of as the principal champion of 

ubiquitous computing, Kevin Ashton, co-founder of the Auto-ID Centre at 

the Massachusetts Institute of Technology, is credited as having coined the 

term “Internet of Things” in a presentation to Proctor & Gamble (P&G) in 

1999 (Barbosa, 2015; Mattern & Floerkemeier, 2010). In this presentation, 

Ashton was discussing the implementation of Radio-Frequency 

Identification (RFID) for use within the supply chain at P&G. RFID tags or 

transponders, as they are also known as, are the physical part of a system 

that is used for identification purposes similar to typical printed barcodes, 

but “support a larger set of unique IDs than bar codes and can incorporate 

additional data such as manufacturer, product type, and even measure 

environmental factors such as temperature” and without the need for line-

of-sight like traditional bar codes (Want, 2006, p. 25). Atzori et.al 

acknowledged the importance of RFID in IoT development saying that 

“Radio-Frequency IDentification (RFID) technology played the role of 

founding technology for the Internet of Things” (Atzori et al., 2017, p. 126).  
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Developments were made in what Atzori et al. refer to as the “The first 

generation of the IoT: the tagged things” where the IoT was primarily 

considered to be networked RFID (Atzori et al., 2017, p. 126). In this period, 

work was conducted by various organisations and researches to integrate 

RFID as the physical component of a larger Wireless Sensor Networks 

(WSN) in order to achieve ubiquitous computing and overcome the 

limitations of RFID only platforms, along with Machine-to-Machine (M2M) 

communication to allow automated processing (Liu, Bolic, Nayak, & 

Stojmenovic, 2008; Sung, Lopez, & Kim, 2007; Welbourne et al., 2009). 

Developments are still being made in this area “With the interest of 

enabling globally interoperable data sharing, a collection of standards and 

specification have been released by GS1 EPCglobal to support supply chain 

management” (Tolcha & Kim, 2016, p. 29). 

Research was also conducted to develop more capability in the RFID tags 

themselves by extending the functionality of these simplistic devices to offer 

sensing capabilities, more memory storage, and powered RFID tags that 

rely on batteries or other technologies to power these sensors embedded in 

RFID tags and, in some instances, enhance communication abilities (Paing 

et al., 2007; Sample, Yeager, Smith, Powledge, & Mamishev, 2006). Through 

this research, integrating the functionality of RFID tags into a more 

encompassing system extends the domains in which RFID may be useful 

within an IoT system, especially as a physical or hardware component.  

Embedding these RFID tags with multiple layers of information offers far 

more flexibility and complexity than simple bar codes.  

It is interesting to note that despite all these developments and continuing 

exploration of, RFID, WSN, and their related technologies, the applicable 

domains are still largely limited to the those same ones mentioned earlier, 

namely manufacturing, processing, and logistical applications (Da Xu et al., 

2014). Having a technology which is largely “within isolated, vertically 

integrated, systems, used only for identification and/or tracking of 

objects”(Miorandi, Sicari, De Pellegrini, & Chlamtac, 2012, p. 1500) doesn’t 

bode well for the realization of a ubiquitous computing paradigm. 
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Interestingly, Miorandi et.al also offer an explanation for the limited 

domains in the application of RFID by arguing that they need to be “part of 

a larger system, where identification of an object is only a step of the work-

flow to be executed to provide a final service” (Miorandi et al., 2012, p. 

1500). A comparatively similar explanation is offered by Kortuem, Kawsar, 

Fitton, & Sundramoorthy (2010)  discussing the RFID system as a whole:  

RFID system architecture is marked by a sharp dichotomy of simple 

RFID tags and an extensive infrastructure of networked RFID 

readers. This approach optimally supports tracking physical objects 

within well-defined confines (such as warehouses) but limits the 

sensing capabilities and deployment flexibility that more 

challenging application scenarios require. (p. 44) 

This aligns with some of the limitations in RFID platforms and architecture 

that was alluded to by Atzori et al. in their list of misappropriated 

references to the IoT, namely “Effective object virtualization; autonomy and 

autonomicity; interaction between objects” (Atzori et al., 2017, p. 125). 

Therefore, the physical taxonomy of the IoT is not built on RFID alone, 

unless limited domains are to be the expected outcome, voiding the 

argument of ubiquitous computing.  

2.2.2 SMARTPHONES – THE UBIQUITOUS FUTURE? 

Smartphones are everywhere in a modern society (“Number of mobile phone 

users,” n.d.).  However, studies have shown that smartphones demand more 

attention and distract users from such simple tasks as walking, causing 

injuries and even deaths.  (Nasar & Troyer, 2013; Hatfield & Murphy, 

2007). Therefore, if the IoT is considered to be the epitome or at the very 

least shares principles of ubiquitous computing, then recounting views 

discussed earlier such as Gubbi et al. (2013)  who realise the importance 

ubiquity plays in the IoT, and Satyanarayanan’s (2001) reasoning on 

minimal user distraction, devices such as the smartphone or personal 

computers should not be acknowledged as part of the IoT paradigm. To 

describe these technologies as the ubiquitous computing future that Weiser 

envisioned would then seem to be erroneous. 
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Many industry stakeholders agree with this viewpoint, such as 

MacGillivray, IDC program vice president for mobile services, IoT and 

infrastructure; “The key words in our definition is that it’s communicated 

without human interaction. So, at the simplest level, we are not including 

smartphones, tablets, PCs, etc.”, and Dennis Ward, Internet of Things 

analyst at ACG agrees with this sentiment, saying that IoT devices are “not 

designed for direct human interaction, connectivity or control” (Duffy, 2014). 

However, others disagree with the exclusion of smartphones from the IoT 

ecosystem; “Using your smartphone’s range of sensors (accelerometer, gyro, 

video, proximity, compass, GPS, etc.) and connectivity options (cell, Wi-Fi, 

Bluetooth, NFC, etc.) you have a well- equipped Internet of Things device in 

your pocket that can automatically monitor your movements, location, and 

workouts throughout the day” (Weber, 2016, p. 44). While a smartphone’s 

primary function can be arguably seen as a human to human 

telecommunication device, its various sensors and network communication 

technology changes functionality so that it can produce data with or without 

conscious human interaction. This delineation between the devices 

functionality and the device itself is fundamental in consideration of the 

smartphone as part of ubiquitous computing paradigm and as physical 

component of the IoT.  

Acknowledging this separation between designed intentions and actual 

capabilities, consider the description of ubiquitous computing in relation to 

the IoT given by Gubbi et al. (2013): 

There are three IoT components which enables seamless ubicomp: 

(a) Hardware—made up of sensors, actuators and embedded 

communication hardware (b) Middleware—on demand storage and 

computing tools for data analytics and (c) Presentation—novel easy 

to understand visualization and interpretation tools which can be 

widely accessed on different platforms and which can be designed for 

different applications. (p. 1647) 

Therefore, according to Gubbi et al., a smartphone has to be an IoT device 

with its sensors and communication hardware, with the ability to interact 
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and facilitate physical interaction though its interface. Furthermore, it 

could be argued that a smartphone is all three components of this paradigm 

in one, not only being able to provide the sensory components, but also 

storage and computing as well as provide the necessary tools to aid with 

presentation and visualization. However, it is paramount to acknowledge 

smartphones as part of a system, which becomes evident in environments 

which leverage aspects of the IoT. 

2.2.3 SMART ENVIRONMENTS 

A Smart Environment (SE) is simply a “physical environment enriched with 

sensing, actuation, communication and computation capabilities aiming at 

acquiring and exploiting knowledge about the environment so as to adapt 

itself to its inhabitants’ preferences and requirements” (Franco Cicirelli, 

Fortino, Guerrieri, Spezzano, & Vinci, 2017, p. 274). SE’s do so by using the 

sensors such as RFID and Smartphones as well as others to enable this 

adaptability not possible in conventional static environments. They are 

arguably an extension of the paradigm of Weiser’s ubiquitous computing 

vision by being “richly and invisibly interwoven with sensors, actuators, 

displays, and computational elements, embedded seamlessly in the 

everyday objects of our lives, and connected through a continuous network’’  

(M. Weiser, Gold, & Brown, 1999). 

This concept of SE shares aspects with Ambient Intelligent (AmI) systems 

with “sensing/computing capabilities embedded in the environment”, but 

differing in that “AmI applications have been mainly developed for ‘‘closed’’ 

environments (e.g., a room, a building), whereby a number of specific 

functions (known at design time) can be accommodated and supported” 

(Miorandi et al., 2012, p. 1500). However, it is the ability to communicate 

data away from the closed environment and send “information to the cloud 

so that it can access remotely” services, combined with the inoperability of 

the larger system that warrants the discussion of SE in relation to IoT 

(Raun, 2016, p. 4).  

Smart Homes are a very popular topic for researchers  in the field of SE’s 

with many published papers appearing since 2010 (Alaa, Zaidan, Zaidan, 
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Talal, & Kiah, 2017). It is apparent that research in this area is primarily 

“made up of technical and prospective studies that focus on security and 

control, with a secondary emphasis on activity”, ignoring the fact that a 

home is “ a place of security and control; activity; relations and continuity; 

identity and values” (Gram-Hanssen & Darby, 2018, p. 98). Taking a more 

human-centred approach in discussing Smart Home Technology (SHT), a 

study found that “Prospective users of SHTs more strongly perceive 

potential risks in the increasing dependence of domestic life on systems of 

technology provision (77% agree or strongly agree) and electricity networks 

(63%),” but also found that these perceived risks could be overcome by 

creating a system that is “easy to use, controllable, and easy to over-ride” 

adding that they “should guarantee privacy, confidentiality, and secure data 

storage. SHTs should also be provided by credible companies with resources 

to provide performance warranties” (Wilson, Hargreaves, & Hauxwell-

Baldwin, 2017, p. 44). Indeed, human perception is an important facet of 

emerging and disruptive technology acceptance, which will be discussed 

later. 

Commenting on Large Smart Environments (LSE), F. Cicirelli et al. (2017) 

discuss how these can be “longtime running systems where new devices can 

be dynamically added and removed, and new functionalities can be added, 

removed or replaced by exploiting the available devices and/or composing 

the existing services” (p. 738). Therefore, the notion of adaptability and 

flexibility of a SE in not only a comment on the physical aspects of the 

environment itself but on the changeability of the system as well, as 

potential participants interact and transit, their presence and 

accompanying technology (smartphones, fitness bracelets etc.) changing the 

environment and system parameters accordingly. A system of fixed sensors, 

such as RFID, as well as mobile devices, such as smart-phones, need to be 

accounted for in such a system.  

This is a complicated dilemma for LSE to remedy in regard to the 

ubiquitous invisibility mentioned earlier, “Since motion is an integral part 

of everyday life, such a technology must support mobility; otherwise, a user 
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will be acutely aware of the technology by its absence when he moves” 

(Satyanarayanan, 2001, p. 2). The success of LSE or even smaller SE will 

rely heavily on the intelligence of an AmI and as such relies heavily on 

autonomy, a field discussed later. Further to this point of mobility of such 

objects or Things is the fact that they may need to exist and operate beyond 

the bounds of an encapsulating SE, particularly in the present time where 

such SE implementations are limited, a view is supported by 

Satyanarayanan (2001) who acknowledges that “Smartness may also extend 

to individual objects, whether located in a smart space or not” (p. 11). This 

notion of smartness in objects will be discussed next. 

2.3 SMART OBJECTS 

Refrigerators that automatically order milk when low or thermostats that 

control the heating and cooling appliances in your home are usually the 

examples given as intrinsically being the Internet of Things (IoT). However 

as already explored, this layman notion of the IoT is obviously flawed; given 

the estimates of 20.4 billion IoT devices by 2020, there simply isn’t such 

demand for that many refrigerators or thermostats. Apart from the 

definitions already provided, a description that includes physical aspects to 

the definition of the IoT gives more understanding to the heterogeneity of 

these ‘Things’ and the need for interoperability, as described by Atzori, Iera, 

& Morabito, (2010): 

The basic idea of this concept is the pervasive presence around us of 

a variety of things or objects – such as Radio-Frequency 

Identification (RFID) tags, sensors, actuators, smartphones, etc. – 

which, through unique addressing schemes, are able to interact with 

each other and cooperate with their neighbours to reach common 

goals. (p. 2787) 

Indeed, while stocked refrigerators or temperate homes may be desirable 

and perceived by some as the epitome of the IoT, the physical taxonomy of 

the IoT seems just as ambiguous and undefined as the use of the word 

‘Things’, making it hard to describe what a physical IoT device should be. In 

fact, some use the term Internet of Everything (IoE) coined by Information 



Review of Literature 

 

 

 17 

and Communications Technology (ICT) company Cisco as a synonym for the 

IoT (Schatten, Ševa, & Tomičić, 2016) adding even more confusion to this 

debate. In spite of this, some authors hold views that the direction of the IoT 

is driven primarily by these Things or Smart Objects (SO), describing a 

model for IoT architecture “as a loosely coupled, decentralized system 

of smart objects – that is, autonomous physical/digital objects augmented 

with sensing, processing, and network capabilities” (Kortuem et al., 2010, p. 

44). 

However, with Aztori et al. (2017) insisting that “Everyday objects, not only 

ICT devices, are the main players of the IoT“ (p. 135), than the IoT must be 

ubiquitous in not only the proliferation of simple standalone sensory 

devices, but through the inconspicuousness  of technology laden appliances 

and objects that are commonplace to everyone but aren’t currently part of 

this IoT paradigm. However, this introduces an issue related to the reliable 

integration of these everyday objects or things into the IoT framework. 

2.3.1 VIRTUAL REPRESENTATION  

The abstraction of necessary attributes and functionality of the physical 

object into its virtual representation is a crucial procedure if an everyday 

object intends to move from an analogue to digital presence and participate 

practically in the IoT. Van Kranenburg (2008) describes this necessity for 

digital representation; “physical and virtual ‘things’ have identities, 

physical attributes, and virtual personalities and use intelligent interfaces, 

and are seamlessly integrated into the information network” (p. 10). Atzori 

et al. (2017) further extend the importance of a virtual intermediary:  

sensors and actuators shall be embedded into physical objects to 

enable them to operate through their virtual representations within 

a digital overlay information system that is built over the physical 

world. (p. 135) 

The benefit of this layer is that it provides an interface between the physical 

world of SO with possible actions or services, both local and remotely 

through a global network. This enhancement occurs by making 
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“heterogeneous objects interoperable through the use of semantic 

descriptions; enable them to acquire, analyse and interpret information 

about their context in order to take relevant decision and act upon the 

virtual objects” (Nitti, Pilloni, Colistra, & Atzori, 2016, p. 1228). 

There is much literature on the abstraction of key elements of a physical 

object into its virtual representation, with the majority of focus on the 

integration between the physical object and the web, as well as attempts to 

standardize related architectures for the realisation of interoperability of 

heterogeneous SO’s, with organisations such as European 

Telecommunications Standards Institute (ETSI) M2M Common Service 

Layer and projects such as Collaborative Open Market to Place Objects at 

Your Service (COMPOSE) and iCORE, among others (Bergesio, Bernardos, 

& Casar, 2017; Gračanin, Matković, & Wheeler, 2015; Han & Crespi, 2017; 

Stecca, Moiso, Fornasa, Baglietto, & Maresca, 2015). 

Fortino, Guerrieri, Russo, & Savaglio (2015) suggest a “High-Level Smart 

Object Metamodel” in construction of a SO, and identify six key 

characteristics that should be implemented in a virtual layer for a 

successful SO shown in Table 2. 
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Table 2: High-Level Smart Object Metamodel (Fortino, Guerrieri, Russo, 

& Savaglio, 2015, p. 1298) 

Characteristic Function 

Status represents the SO status 

FingerPrint contains the information of the SO such as its 

identifier, its creator, its type (e.g. smart pen, smart 

office, etc.) and its associated quality of service 

parameters (e.g. trustness, reliability, availability, 

etc.) 

PhysicalProperty describes the physical properties of the original 

object without any hardware augmentation and 

embedded smartness 

Service describes a provided digital SO Service, by 

specifying its identifier, description, input/output 

parameters 

Device defines the hardware/software characteristics of a 

device (e.g. sensors, actuators, etc.) that allows to 

augment the physical object and makes it smart 

Location expresses the SO geophysical position 

 

2.4 HUMAN-CENTRED IOT  

While important use of models to enable  virtualisation of physical objects 

enable easier instantiation of these objects with “smart” technology, it 

doesn’t particularly address the ‘meatspace’ discussed by Atzori et al; “The 

interesting definition of IoT as an “intersection of people (meatspace), 

systems (cyberspace) and physical world (atomspace)” (Atzori et al., 2017, p. 

135). This intersection that Atzori et al. describes is a complicated 

amalgamation of spaces, as each space must interact with each other. This 

means the virtual representation of a device must coherently represent the 

objects own functionality for both human and machine agents, important in 

the concepts of autonomy and autonomicity (discussed later), as well as 

translate between the two without inhibiting the communication or use of 

the object between the other two spaces, or the ‘meatspace’ and ‘atomspace’, 

as traditional analogue activity between object and human occurs.  

Creating this harmonious intermediary then requires thought and 

consideration to include humans within the system, and while not all 
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definitions of the IoT include humans as part of the system, it seems only 

logical that a system aimed at creating a utopian ubiquitous computing 

environment at the very least includes humans as a factor of that 

environment, and must therefore account for the addition of biological 

agents within this digital system along with all this entails. Therefore, 

research regarding human inclusion into the IoT from adoption, creation 

and design, and the removal of human elements will be discussed. 

2.4.1 ADOPTION 

Salim & Haque, (2015) in their discussion of ubiquitous urban computing 

noted that there has to be “a strong compelling reason or clear benefit” for 

users to engage in this technological future” (p. 35), which they reason is 

possible as long as “the needs are greater than the dilemmas” (p. 43).  

One such dilemma to consumers is cost to benefit ratio. Even at the dawn of 

technological ubiquity, Want (2006) discusses that one of the major 

inhibitors of mass adoption of early RFID technology was cost, because 

“Although RFID tags are now potentially available at prices as low as 13 

cents each, this is still much more expensive than printed labels” (p. 32). 

Therefore, the perceived usefulness and benefit of RFID tags had to 

overcome the cost barrier of traditional barcodes, and while prices of 

technology tend to reduce over time, Salim & Haque’s argument remains 

applicable in that the perceived usefulness of SO’s and sensors in 

conjunction with the IoT must outweigh the cost in the mind of the 

consumer (Meyers, Williams, & Matthews, 2010) . 

Perceived usefulness correlates with many aspects of Human and Computer 

Interaction (HCI) and not just SO’s within the IoT but should be more 

prevalent in SO discussions simply because of the necessary ubiquity and 

pervasiveness given the IoT paradigm. This importance of user perception is 

supported by Marangunić & Granić’s (2015) review of literature on the 

Technology Acceptance Model (TAM), a model proposed by Fred Davis in 

1986 for investigating user behaviour in relation to new technology. They 

wrote that the “The TAM presumes a mediating role of two variables called 

perceived ease of use and perceived usefulness in a complex relationship 
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between system characteristics (external variables) and potential system 

usage” (p. 15). Aside from perceived usefulness, TAM also introduces the 

perceived ease of use as another aspect that needs to be taken into 

consideration in creating SO’s for the masses. If an object or system is 

intrinsically difficult to use or benefit from, this negatively impacts 

acceptance, and thus will reduce the uptake of SO by those with this view.  

Furthermore, Parasuraman (2000) introduced the idea of Technology 

Readiness (TR), describing TR as “people’s propensity to embrace and use 

new technologies for accomplishing goals in home life and at work” (p. 308). 

In this day and age of ubiquitous computing, where computing devices have 

become part of the compulsory school stationary list, and smart phone usage 

has reached record numbers, people’s readiness to use technology is already 

apparent. However, Parasuraman highlights two major negative emotions 

affecting TR. These are discomfort, stemming from a user’s lack of control 

and confidence, discussed in the previous section, and insecurity in the 

technologies ability to be reliable and accurate (Parasuraman, 2000). 

In relation to the latter point, there are real issues regarding Smart Objects 

and the IoT, such as privacy and security (Hu, 2016; Miorandi et al., 2012; 

Williams, 2016). A study conducted by HP showed that on average, 25 

vulnerabilities existed on each of the most common devices found within the 

IoT, with 80% of devices not requiring sufficiently complex passwords and 

70% not using encryption for communication, with a further 60% of these 

devices containing vulnerabilities within its own firmware or user interface 

(“HP News", n.d.). 

It is no surprise then that hackers have already reportedly used SO’s and 

IoT devices to attack large corporations “thanks to everyday gadgets, like 

baby monitors and webcams. The hackers gained access to these innocent-

looking objects and turned them into an army to take down the internet” 

(Batchelor, 2017, p. 6). A recent report also showed that this concern is held 

in the business and industry environment as well, where “The findings of 

the underlying study revealed that even though over 69 percent of 

organizations have adopted, or plan to adopt, IoT solutions within the next 
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year, 40 percent of companies have serious concerns around cybersecurity” 

(Cradlepoint, 2017). It is out of the scope of this thesis to discuss the 

security and privacy factors and possible solutions in-depth, sufficed to say 

these issues of SO’s, sensors, and data privacy and security within the IoT 

are known, and impact negatively on public and industry perceptions, thus 

affecting TR by validating these insecurities.  

Further to the discussion of SO acceptance in application of a Smart Home, 

Balta-Ozkan, Davidson, Bicket, & Whitmarsh, (2013) summarises literature 

that covers the points raised above, namely “fit to current lifestyles; 

technological complexity; interoperability and standards; reliability; privacy 

and security”, but found that human perceptions were also negatively 

affected by “loss of control and apathy; reliability; viewing smart home 

technology as divisive, exclusive or irrelevant” further adding to the latter 

point that “deeper, moral concerns about human nature, inequality, and 

trust were a stronger feature of public discussions” (p. 371). These succinctly 

describe the issues that will need to be addressed for people to change their 

perception and willingly adopt these emerging technologies. 

2.4.2 AUTONOMY 

Autonomy is not a recent goal of computing, and frameworks for 

implementing computing autonomy have been introduced by  major 

industry stakeholders, including IBM who in the early 2000’s designed such 

a framework (Kephart & Chess, 2003).  

As Atzori et al. (2017) discuss in one of the features apparent in literature 

regarding the IoT:  

Autonomy and autonomicity are two recurrent features which are 

claimed to characterize the objects that populate the IoT. This has 

not to surprise, as it clearly emerges from the literature that system 

complexity can be controlled through the achievement of self-

governance (autonomy) and self-management (autonomicity). (p. 

135) 
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Adding automation to this statement, automation, autonomicity, and 

autonomy are seen as being the obligatory and unavoidable component of a 

ubiquitous computing future. Regardless of which is being discussed, at the 

forefront of these terminologies is the removal of human intervention in 

various parts of a system. For example, many studies focus on the 

application of automation within different domains, removing humans from 

menial tasks. (Bello & Zeadally, 2017; Delsing, Eliasson, Van Deventer, 

Derhamy, & Varga, 2017; Giri, Dutta, & Neogy, 2017; C. Wang, Bi, & Xu, 

2014). Other investigate autonomy and autonomicity in the IoT, further 

removing human intervention by negating the need to manually manage 

systems (Iannacci, Sordo, Serra, & Schmid, 2015; Le, Liao, & Yang, 2017; 

Lee et al., 2016).  

Gubbi et al. (2013) comment on the insignificance time has had on this 

ambition of automation and autonomy, saying “Although the definition of 

‘Things’ has changed as technology evolved, the main goal of making a 

computer sense information without the aid of human intervention remains 

the same” (Gubbi et al., 2013, p. 1646). To have devices gather information 

without human interference is relatively simple, however, the goal of 

making a computer not only sense but make sense of information aligns 

more toward the goal of autonomy. This has become a real possibility with 

the advent of machine learning techniques, which will need to make 

inferences about human objectives if the completely autonomous IoT future 

is to be realised. 

Khan et al. (2012), in establishment of a three part IoT workflow, 

acknowledge that automation and autonomy of some level is required saying 

that “object information is processed by a smart device/system that then 

determines an automated action to be invoked”, however also commenting 

that “The smart device/system provide rich services and includes a 

mechanism to provide feedback to the administrator about the current 

system status and the results of actions invoked” (p. 258). Thus, they argue 

that autonomy shouldn’t necessarily remove humans altogether, but have 

some feedback mechanism showing vital system information. This is a view 
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which would seem to support a semi-autonomous rather than a fully 

autonomous architecture. This is because feedback of the current system 

status seems unnecessary if the mechanisms for a system are completely 

autonomous and manual intervention in this system by a human is 

unavailable. It may ease some of the psychological issues such as loss of 

control by allowing a human user to know a systems current status in an 

autonomous environment, but it would be akin to having a normal 

dashboard of a current car (speedometer, revolutions per minute, fuel 

gauge) visible in a completely autonomous car where a human user is 

unable to influence the system; interesting for information and 

psychological sake but useless and ultimately unnecessary from an 

operational perspective.  

While the importance of information presentation or feedback to humans in 

a fully autonomous system are debatable, it is argued that autonomy in the 

IoT is a necessity “due to the large number of devices involved. Specifically, 

there exists an inefficiency that can be resolved by minimizing user 

intervention”  (Ashraf & Habaebi, 2015, p. 215). This is valid argument and 

would ultimately create a more beneficial IoT by optimizing efficiency. 

Importance of a feedback mechanism to a governing machine system in a 

Machine to Machine operation, such as a smart-device to a cloud autonomy 

service, are less debatable as this communication is required for effective 

IoT operation between heterogeneous devices. Some however debate the 

efficiency of cloud based versus edge based autonomous services, due to 

latency and bandwidth issues (Hernández & Reiff-Marganiec, 2016).  

While these are only some of the issues regarding automation and autonomy 

in the IoT, these alone demonstrate the complexity of normalizing machine 

control within the general human population, a view expressed by Verame, 

Costanza, & Ramchurn (2016), who describe “the design of interaction 

mechanisms that enable users to understand the operation of autonomous 

systems and flexibly delegate or regain control is currently an open 

challenge for HCI” (p. 1). Thus, creating effective automation, autonomy, 

and autonomicity may remove some of the human inhibitions related to 
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technological complexity, but exacerbate those notions related to loss of 

control, apathy and trust, affecting TR as discussed earlier. 

2.4.3 CREATION AND DESIGN 

There have been numerous studies highlighting the need and recognition of 

the human importance within the IoT (Fauquex, Goyal, Evequoz, & Bocchi, 

2015; Nazari Shirehjini & Semsar, 2017; Nuamah & Seong, 2017).  Atzori et 

al. (2017) noted the importance saying “Particular attention has to be paid 

to the design of effective (better if “intelligent”) interfaces both between 

humans and things and between things” (p. 135). Design of Smart Objects 

(SO) or Things should therefore include consultation with all human 

stakeholders, not just the creators of the technology. It would be more 

advantageous to identify and create SO’s through the objectives they are 

designed to achieve by these stakeholders, instead of simply bestowing 

objects with some technological capabilities or finding ways to implement 

objectives with existing solutions “driven by technological opportunities 

rather than the underlying needs” (Salim & Haque, 2015, p. 32). Related to 

this view, Kranenburg (2008) mentions that “‘things’ are expected to become 

active participants in business, information and social processes” (p. 10). To 

become active participants in multiple domains therefore, these SO’s and 

the encompassing systems will need to be designed by those with expertise 

in these domains who may require a specific service, or with an objective 

that could be filled by these objects, not by the technologists who, at this 

point in time, seem to be the proponents of SO’s and the integration into the 

IoT. Collaboration is key. 

This human-centric approach, with domain experts at the fore, is not new to 

ubiquitous computing, and is reflected in Rogers (2006) view who writes: 

In terms of who should benefit, it is useful to think of how ubicomp 

technologies can be developed not for the Sal’s of the world, but for 

particular domains that can be set up and customized by an 

individual firm or organization, such as for agricultural production, 

environmental restoration or retailing. (p. 412) 
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Following this ethos would create a ubiquitous computing environment that 

was more accessible to those in specific domains, but also for the general 

public and their everyday activity by following the same principles of user-

led design. 

Another recent study investigated the need for alternative views of thought 

in the construction and design of these SO’s. By using children in their 

experiments, Uğur Yavuz, Bonetti, & Cohen (2017) showed that “children as 

“design partners” can bring novel ideas, expanding the notions of smart 

objects through the use of storytelling technique” because of “their unbiased 

and free-spirited imagination towards the creation of ‘the new’, of new 

future scenarios” (p. 3800). From this, some of the ideas generated were 

smart food plates that could identify the food being served and change its 

form to suit the food accordingly, or smart refrigerators that not only keep 

stock of its contents but are able to share unused or unneeded contents with 

other remote smart refrigerators, reducing waste. While there are some 

obvious logistic implications with some of the ideas, it shows that “Design 

for emerging technologies can benefit from game based fictioning methods in 

which constrains of real world has less influence on idea generation and 

thereby can lead to originality” (Uğur Yavuz, Bonetti, & Cohen, 2017, p. 

3800). 

It may be possible that the design of these SO’s may not be realised by 

industry at all, but by individuals. For example, the “Maker Culture has 

been considered as a possible new industrial revolution, as more people than 

expected demonstrated their interest in creating things with electronics 

toolkits” (Mazzei, Fantoni, Montelisciani, & Baldi, 2014, p. 294). However, 

to date there is no standardised platform or model for individuals in 

building a SO, especially one that could integrate with the IoT. There is 

research regarding possible implementations of models which look to ensure 

individuals are able to design and build their smart object and integrate it 

within a cloud-based services (Z. Li & Point, 2015). However, this problem 

isn’t isolated to the maker community, as the heterogeneous nature of SO’s 

and sensors in the IoT reflects the issues around standardisation in 



Review of Literature 

 

 

 27 

commercially available products too. As such, the framework suggested by 

Fortino et al. earlier could be applicable to bespoke SO and commercial 

products alike, and by leveraging the benefits of the virtualisation proposed 

in the model, along with protocol standardisation, the physical technological 

implementation, whether commercial or bespoke, becomes irrelevant. This 

would enable greater participation within the IoT. 

In conclusion of this section, including humans into the IoT system requires 

implementation of an unobtrusive, ubiquitous computing paradigm using 

sensory technology that is indistinguishable from non-smart objects, able to 

fit current modes of human interaction. It would need to integrate 

successfully with the wider IoT system, using virtual layers for digital 

representation that would interact with autonomous services in conjunction 

with other SO’s to provide adaptable SE’s. While there are other possible 

directions to consider in implementation of such an interface, reflecting on 

the literature discussed thus far serves as justification for the 

implementation chosen as the focus of this research, and will be discussed 

next. 

2.5 SMART FLOORS 

One way in which to create a harmonious intermediary is to provide an 

interface to a technological system or service, such as the IoT or AmI, using 

a surface that everyone interacts with naturally during their daily 

activities. As Cheng, Sundholm, Zhou, Hirsch, & Lukowicz (2016) discuss, 

the “vast majority of human activities are associated with certain types of 

surface contact (walking, running, etc. on the floor; sitting on a chair/sofa; 

eating, writing, etc. at a table; exercising on a fitness mat, and many 

others)” (p. 97). Therefore, it seems logical that a floor’s role of being a 

potential interface to the SE and IoT is researched thoroughly. Before the 

turn of the century in 1997, the idea of incorporating technology into floor 

systems using piezoelectric wires (Paradiso, Abler, Hsiao, & Reynolds, 1997) 

and pressure sensitive tiles (Addlesee, Jones, Livesey, & Samaria, 1997) 

were proposed. Both were fundamentally limited to the current technologies 
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capabilities, and though some of the principles remain relevant, 

investigation of more modern approaches is needed. 

More recent research has been conducted regarding a Smart Floor (SF) in 

applications ranging from entertainment (Chang, Ham, Kim, Suh, & Kim, 

2010), to elderly healthcare and monitoring (Muheidat & Tyrer, 2016), 

mental health (Tanaka, Ryu, Hayashida, Moshnyaga, & Hashimoto, 2015), 

identification and tracking (Al-Naimi & Wong, 2017), indoor navigation 

(Gonçalves et al., 2013), as an enabler of SE’s (Gonçalves, Carvalho, Pinho, 

& Roselli, 2014), as well as uses as a non-human interface for robots (Kang 

et al., 2011) and livestock (Vaughan, Green, Salter, Grieve, & Ozanyan, 

2017). Others have looked at the intricacies of human anatomy, and in 

particular the feet, in regard to HCI (Velloso, Schmidt, Alexander, 

Gellersen, & Bulling, 2015). 

As one paper acknowledges, a lot of this work is aimed at “identifying a user 

based on gait pattern recognition supported by piezoelectric sensing devices 

and performing personal identification through estimating body-weight and 

footsteps” (Chang et al., 2010, p.290). Their implementation involved LCD 

panels on the floor “and LED light and multiple pressure sensors within a 

specially designed and fabricated steel-frame module” (Chang et al., 2010, p. 

291). However, such fabricated solutions requiring bespoke structural 

flooring elements would not seem to be an eloquent or viable option for a 

ubiquitous SF solution, although it must be acknowledged that their 

application was aimed at engaging entertainment and therefore 

necessitated a display, differing from being simply a surface interface. Other 

implementations involve invasive and expensive multi-camera systems in 

conjunction with simple floor sensors to enable location services (Yu, Wu, 

Lu, & Fu, 2006). A similar concept using glass panels and optical interface 

such as the GravitySpace tracking system (Bränzel et al., 2013) have the 

same inhibiting features of being expensive, unsuitable as a floor used in 

everyday activities, and the use of cameras being viewed as invasive by 

users.  
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There is also an implementation using multiple RFID tags being placed 

underneath ceramic floor tiles, with RFID scanners placed in peoples shoes 

(Gonçalves et al., 2014). While cheaper than some implementations, 

requiring people to alter their wardrobe or wear special equipment to allow 

them to participate in the SE does not seem an efficient SF solution 

considering the paradigms of the IoT, AmI, and the accompanying ubiquity 

and invisibility, as the same functionality could be used by tracking 

smartphone movement. In fact, it exacerbates some of the concerns raised 

earlier of a perception of inequality by those unable to benefit from SE due 

to the lack of necessary items discussed earlier.  

Al-Naimi & Wong, (2017) summarise the current paradigms of Smart Floors 

as fitting into one of three categories: 

(I) Tagged tracking including Radio frequency, Ultrasonic, 

Infrared based approaches.  

(II) Non-tagged tracking including smart floor, machine vision, 

and wireless distributed Pyroelectric Infrared sensor (PIR) 

approaches.  

(III) Multimodal tracking including machine vision with laser 

scanners, smart floor with machine vision, and smart floor 

with Radio Frequency Identification (RFID) approaches. (p. 

34) 

Considering that an everyday smart floor concept may require as little 

deviation from the current, non-smart flooring systems as possible, for 

inclusivity, cost, simplicity, and ubiquity sake, this would deem non-tagged 

tracking architectures as being more appropriate as a floor based interface 

between humans and the IoT, with multimodal approaches offering 

precision but less ideal as they “suffer from system hardware complexity 

and unrealistic overall cost”, and that “user preference and inhabitant's 

privacy are the main weaknesses in tagged based approaches and machine 

vision respectively” (Al-Naimi & Wong, 2017, p. 34). In light of this, 

emphasis will be placed on non-tagged architectures. 
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2.5.1 CARPET INTEGRATED ARCHITECTURES 

Muheidat & Tyrer (2016) explore the possibility of IoT integration using  

a signal-scavenging technique wherein a sensor made from a 

conductive material picks up stray 60 Hz noise to detect presence of 

the person. It has sensors installed under the carpet, and the 

electronics can send sensor activation data, which is modified to 

produce notifications to cell phones or email through the Internet. 

(p. 5356)  

Rather than send the raw data to a remote location for processing apparent 

in the solutions mentioned thus far, they were able to incorporate 

computation into the carpet itself and introducing this taxonomy of edge 

computing into the SF implementation. This would enable easier 

installation in a variety of SE’s without the need for connection or 

communication to a central node for data processing. This is an important 

aspect of their research as the primary objective was to enable fall detection 

with real-time alert mechanisms.  

Communication latency for real-time and rapid applications using cloud-

based computation and servicing is considered by some as a problem in the 

IoT (Song, Yau, Yu, Zhang, & Xue, 2017), and some proponents of edge 

computing suggest “moving service provisioning back to the vicinity of IoT 

devices becomes a potential way to address the challenges of cloud 

computing and promotes the emergence and development of edge 

computing” (Ren, Guo, Xu, & Zhang, 2017, p. 96). This allows 

communication bandwidth to be used in more optimized servicing requests 

and transmission, rather than inhibited by mountainous streams of data, a 

factor that will be discussed in section 2.6. It is important to note that this, 

and other architectures reviewed in this section, require the materials to 

flex within the sensory surface, whether integrated into the carpet or as a 

separate layer beneath. Such implementations would not be suitable for 

hard floor surfaces such as tile or wood, where other architectures that do 

not require any flex in the surface perform better.  
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Another architecture, more in line with the paradigms explored above of 

ubiquity and invisibility, is presented by Savio & Ludwig (2007), where 

sensors are literally interwoven into the carpet, consisting of electronic 

sensing wire connected to a micro controller. Their study found “The 

algorithms were able to track the trajectory of a subject with an accuracy of 

98 %” (p. 6). While very accurate, there are important limitations to note. 

Firstly, working with the technology of the day, they were only investigating 

the relatively simple task of tracking user trajectory in an area of 200cm by 

240cm. Furthermore, their solution had limited sensory resolution of 180 

nodes in this space, with each node operating in a binary modality (on or off) 

over a time series. Thus, more complicated recognition tasks or multi-agent 

deployments would not be possible under this implementation. They also 

experienced failure of modules, short-circuits, and connection issues that 

would be hard to remedy in a textile version of the carpet, possibly requiring 

expensive and time-consuming solutions, especially in large instalments.  

A similar concept of embedded technologies conducted by Ceballos, 

Nurgiyatna, Scully, & Ozanyan (2011) uses optical fibres on top of  a carpet 

underlay. Light is shone through these matrices of fibres from one end, 

where the resulting light output, influenced by any bend in the surrounding 

material, is collected and analysed at the opposite end of the fibre. 

Combining and analysing the light delta readings enables reconstruction of 

the pressures placed on the surface. Borrowing from the medical field of 

Tomography, they use Guided-Path Tomography “ an indirect imaging 

method, which allows to reconstruct images only from measurements at the 

carpet’s periphery” (Ceballos et al., 2011, p. 1), instead of having sensors 

intermittently placed throughout the carpet, as is apparent in many 

implementations. Apart from the specialised carpet, this solution would 

require no major alterations to existing floor systems, meaning easier 

integration into normal environments and closer to a ubiquitous IoT 

interface. 

Another study follows similar principles of peripheral detection above, but 

uses voltage to calculate the pressure placed on the surface. Cheng, 
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Sundholm, Zhou, Kreil, & Lukowicz, (2014) implement their solution via use 

of: 

Electrostatic discharge (ESD) protection foam as the sensing 

material, where conductive carbon powder is mixed into the foam. 

The density of carbon particles grows when the foam is pressed and 

the resistance decreases. By attaching parallel conductive stripes on 

each side of the foam, the crossing points of stripes become resistive 

pressure sensors. (p. 149)  

Combined into a matrix enables additional information other than pressure, 

such as location, to be recreated and a pressure map of the entire surface 

possible. However, a major drawback of their implementation was the use of 

the electrostatic discharge (ESD) foam, which has thickness substitutional 

enough that it would impede or at less influence the typical use of the 

surface. They recognise this in the research by investigating the need to 

build “a carpet with lower height (all 3 layers overall < 0.5mm), higher 

spatial resolution (1 cm2) and high precision (24bit ADC with special 

designed power supply)” (Cheng et al., 2014, p. 152). 

They later released a paper in 2016 accounting for these factors and 

investigated the use of a general-purpose pressure sensing textile usable on 

multiple surfaces. Their implementation is simplistic yet effective, using the 

same principles before, but incorporating a commercial manufacturer to 

create bespoke textiles for all elements of the surface:  

The top and bottom layers are made of the same fabric, composed of 

evenly spaced parallel metallic stripes, separated by non-conductive 

polyethylene terephthalate. This fabric was designed by us in 

collaboration with SEFAR AG  [62] and woven by SEFAR AG on 

normal textile machinery. The middle layer is a pressure sensitive 

semi-conductive fabric also produced by SEFAR AG (SEFAR 

CarbonTex  [63]).  (Cheng et al., 2016, p. 100) 

By creating these materials as three woven fabrics, it was possible to reduce 

the thickness of the surface, resulting in a sensor surface that  was “soft, 

https://www-sciencedirect-com.ezproxy.aut.ac.nz/science/article/pii/S1574119216000092#br000310
https://www-sciencedirect-com.ezproxy.aut.ac.nz/science/article/pii/S1574119216000092#br000315
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thin, flexible and air permeable, thus less obtrusion to the user” (Cheng et 

al., 2016, p. 101). It proved to be a very efficient and effective too with 

“spacial resolution of 1 cm2” and “40 Hz sample rate” enabling the surface 

to “ detect differences from very small (e.g. ∼100 g for an empty plate) to 

very high weights (e.g. ∼100 kg when a person stands on it)” (Cheng et al., 

2016, p. 101).  

While probably one of the most effective sensory surfaces for a SF amongst 

this research, there are multiple points of discussion for this architecture. 

The cost of producing bespoke materials for use in large installations, as 

well as increased costs were this textile to remain the intellectual property 

of one specific company, may inhibit uptake of this implementation. This 

would typically mean more expense than normal carpet, and although costs 

would come down given time and mass production, cost remains an 

inhibiting factor of adoption, as discussed previously.  

Furthermore, it would work in its current form as a layer under the floor 

covering of carpet, rather than integrated into it. This would allow for 

installations of various (and pliable) covering of the persons choice above 

this sensing surface, and not be restricted to the choices were this 

technology integrated into it. However, there was no testing done between 

this sensing fabric as a layer beneath the carpet, making the suitability and 

sensitivity of such a configuration unknown. Further to this, most 

interactions within this research seemed to be directly with the surface and 

human contact beside two instances where it was placed under a thin fabric 

seat covering and under a pliable gym floor mat.  Both of these materials 

are not traditionally used as floor coverings.  

While they did test the sensory surface underneath the fabric of the chair 

cover, no tests were done analysing sensory clarity when interacted by a 

human through another object, such as human pressure through a chair on 

the floor. For an inclusive and ubiquitous SF, it would need to encompass 

these types of scenarios where a user may only have indirect interaction 

with the floor, such as a user in a wheel chair, or reclining in a sofa.  It could 

be further argued that this research was aimed at providing a clear 
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architecture for implementation of a sensory surface and the tests 

performed were to indicate performance in this regard only, not focused on 

application of the surface. As such, the various scenarios presented would be 

impractical to test for.   

Despite the fact that these architectures provide an interface for human 

agents and creating a virtual representation of them, the ability to infer 

what these agents are doing would enable more accurate representation of 

human agents and allow for more adaptable SE. The related field known as 

activity recognition aims to do this and will be discussed next. 

2.5.2 PHYSICAL ACTIVITY RECOGNITION 

Mozer, (1998) proposed the idea of a sensor-based home environment that 

would recognize the activities of its inhabitants and adapt accordingly. With 

such ambition, Kim, Helal, & Cook (2010) discuss that “The goal of activity 

recognition is to recognize common human activities in real-life settings” 

affording “societal benefits, especially in real-life, human- centric 

applications such as eldercare and healthcare” (p. 48). Some of the benefits 

of activity recognition have been identified in the objectives of various 

research, ranging from energy efficiency in buildings  (Cottone, Gaglio, Lo 

Re, & Ortolani, 2015) to patient rehabilitation (Lin, Song, Xu, Cavuoto, & 

Xu, 2017). Klack, Möllering, Ziefle, & Schmitz-Rode (2011) used 

piezoelectric sensors embedded in the floor to monitor the elderly and their 

movement, and from this deduce any abnormal activity that may be 

occurring, indicating the possible need for assistance.  

However, the task of “Accurate activity recognition is challenging because 

human activity is complex and highly diverse” (Kim et al., 2010, p. 48).  

Despite the challenges, the objective of activity recognition (AR) set by 

researchers in smart floor architectures mentioned in the previous section 

have all been achieved to varying degrees.  

Activity recognition using technology is not a new topic for researchers 

(Oliver, Horvitz, & Garg, 2002), and amongst recent literature, more 

common methods used in this endeavour have ranged from mobile devices, 
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such as smartphones and wearables, (Ahmad & Nor, 2017; Kalischewski, 

Wagner, Velten, & Kummert, 2017; Ma & Ghasemzadeh, 2016; Sun, Zhang, 

Li, Guo, & Li, 2010; Sztyler, Stuckenschmidt, & Petrich, 2017; Pham, Diep, 

& Phuong, 2017) as well as more unique methods of activity recognition 

through analysis of eye movement (Bulling, Ward, Gellersen, & Troster, 

2011) . However, fixed implementations such as those that are surface based 

or use cameras (Cheng et al., 2014; Kalischewski et al., 2017; Kolekar & 

Dash, 2016; Menicatti, Bruno, & Sgorbissa, 2017; R. Serra, Knittel, Croce, & 

Peres, 2016) seem to also be common in literature, especially when 

analysing whole body or limb movement to recognise activity.  

In regard to the importance of AR in IoT and SE, Wu, Tseng, & Fu, (2013)  

noted that:  

user activities (i.e. how users interact with the IoT-based home 

environment) are the most critical contexts existing in an IoT-based 

context-aware smart home since users are the center of homes and 

different user activities usually call for different services. Because of 

this, activity recognition (AR) becomes the most essential part in 

context inference mechanism for IoT-based context-aware smart 

homes. (p. 406) 

Interestingly, before the notion of the IoT and SO’s become fashionable, 

researchers were already looking at the implications of tagged objects 

within an environment being an indicator of human activity. Tapia, Intille, 

& Larson, (2004) highlight the efficiency of this method by saying that 

activity recognition “may be more easily recognized not by watching for 

patterns in how people move but instead by watching for patterns in how 

people move things” further explaining that “performing activities such as 

grooming, cooking, and socializing may exhibit more consistency than the 

way the person moves the limbs” (p. 159). However, a system relying on 

analysis of object and human interaction to recognise human activity may 

be more suitable in a multimodal approach, alleviating any deficiency in the 

activity recognition system due to the absence of human and object 
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interaction, but allowing more accuracy in recognition of certain activities 

where objects are involved.  

This only promotes the importance of a more general and inclusive system, 

such as a smart floor, where object use is arbitrary to successful activity 

recognition, and where all interaction, whether indirectly or directly, involve 

the ground. As Cheng et al. (2016) similarly observe, “Virtually all human 

activities involve interaction with surfaces. At the very least, due to gravity, 

some parts of the body need to be in contact with a supporting surface 

(ground, chair, bed, etc.)” (p. 97). A smart floor, acting as an interface 

between humans and the IoT though, would leverage this and have the 

ability to identify, track, and recognise human activity, allowing digitisation 

and data on an important component of the IoT. Importantly the 

development and suitability of a smart floor in activity recognition can be 

“explained through their inherent unique features including transparency 

(hidden from the user), reliability (accurate information given to the user), 

durability (system performance not decreasing over a period of time) and 

multitasking (being able to satisfy several applications at the same time)” 

(Serra et al., 2016, p. 5757). 

In this regard, activity recognition through a singular modality smart floor 

can be achieved by analysing the “vibrations, changes in centre of gravity 

and balance shifts [that] propagate throughout the entire body, causing for 

example hand actions to influence the pressure distribution of the bottom of 

the feet on the ground” (Cheng et al., 2016, p. 97). Using this methodology in 

assessing seven various activities of the upper body, they were able to 

achieve “a person dependent accuracy of 81.0% using 10-fold cross- 

validation and a person independent accuracy of 78.7” and when reduced to 

five activities “emphasising the main directions, viz. up, down, left, right 

and middle, the person dependent and independent accuracy grows to 86.3% 

and 83.6%, respectively” (Cheng et al., 2016, p. 109). 

Accurate activity recognition such as those shown above rely on analysis of 

data given by the sensors, regardless of the modality used to produce this 

data. As mentioned by one author, “a central element when designing a 
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smart system lies in the sensing elements. A second element of equal 

importance is proper control or the processing of all gathered data retrieved 

by sensors. The quality, the accuracy and the number of sensors determine 

how smart an algorithm has to be to satisfy an application with good 

performance ratios” (Serra et al., 2016, p. 5760). The next section will 

discuss techniques from which inferences on activities are determined.  

2.6 BIG DATA ANALYTICS  

IBM calculates that 2.5 quintillion bytes of data is created daily, staggering 

numbers which mean that “90 percent of the data in the world today were 

created in the past two years”, which is attributed to “the explosion of 

mobile phones and other devices that generate data, the Internet of Things 

(e.g., smart refrigerators), and metadata (data about data)” (Spencer, 2016, 

p. 27). “These massive amounts of recently created digital data are often 

referred to as big data” (Alharthi, Krotov, & Bowman, 2017, p. 285). 

According to the widely accepted definition by Gartner, (“What Is Big Data? 

- Gartner IT Glossary - Big Data,” n.d.) Big Data is characterized by three 

components; Volume, Variety, and Velocity. Alharthi et al., (2017) use the 

following descriptions to further define what these entail: 

Volume refers to the vast quantity of structured and unstructured 

data that is hard to collect, manage, and analyze with the existing 

IT infrastructure and tools; thus, these massive data sets require 

new and innovative tools and approaches for capturing, storing, and 

analyzing data. Variety refers to the fact that the data comes from 

various sources such as spreadsheets, traditional databases, text 

documents, and digital data streams. Velocity refers to the fact that 

these big data sets are often comprised of and continuously 

expanded by real-time data streams. (p. 286) 

Variety of data is already evident in the previous discussion of IoT, SE, SO, 

and SF, and relates to the lack of standardisation across IoT as well as the 

heterogeneity of ‘things’ within the IoT paradigm. 
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Velocity has also been briefly discussed, with issues relating to data 

transferal bandwidth as well computation in the cloud or at the edge: 

Big data and analytics in IoT require streaming events on the fly 

and storing streaming data in an operational database. Given that 

much of these unstructured data are streamed directly from web-

enabled “things”, big data implementations must perform analytics 

with real-time queries to help organizations obtain insights quickly, 

rapidly make decisions, and interact with people and other devices 

in real time. (Ahmed et al., 2017, p. 464) 

With classical centrally based models, latency becomes a factor in effective 

services. This is why research has been done on methods, such as 

MapReduce published by Google, that effectively decrease the need for data 

transferal bandwidth use by having the computation done by multiple nodes 

rather than a central point, explaining why edge analysis is important (Lu, 

Wang, Wu, & Qiu, 2017). Some noteworthy points on data bandwidth are 

discussed by Bakshi (2016) who writes: 

not all the data or sampled data is important, hence summarized or 

aggregated data can suffice. Additionally, in a network bandwidth 

with constrained environments, it may not be feasible to move large 

volumes of data in a timely fashion to a central location like a data 

center, where one can store and analyze. Furthermore, several use 

cases require instant access of analytics for insight at the edge 

location, which cannot wait for delays and lags for results from a 

central analytics system. (p. 2) 

Thus, a SF detecting and recognizing user activities instantly would benefit 

from an analysis at the edge, avoiding latency. Furthermore, it could be 

argued that monitoring the changes in a human’s activity would be more 

important than constant data streams if the same activity is being repeated. 

Therefore, conducting analysis at the edge would mean limiting data 

transferal to a central location for these activity changes or in events when 

more IoT system services need to be induced, keeping edge activity 

recognition instantaneous and reducing bandwidth need. It would also 
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distribute the computing power needed for analysis, able to be done at the 

edge with multiple SF embedded with appropriate computing power, scaling 

with SF size accordingly.  All these would be immensely important in large-

scale multi-user environments with multitudes of data production (Ahmed 

& Rehmani, 2017). 

Some of these factors are also relevant in Volume, which incorporates all 

points of data existence, from collection to storage to analysis. For example, 

the copious amounts of data have forced new paradigms of data storage and 

management, away from traditional organized data stores to architectures 

like data lakes. It has become impractical to structure data using existing 

paradigms, creating a necessity for evolving data stores consisting of “both 

structured and unstructured raw data. Data structures emerge with usage 

over time [and] … provides flexibility and agility to deal with business 

requirements in a dynamic environment.” (Halter, Kromer, Kutemperor, & 

Soares, 2016, p. 44).  

Even though storage of data, along with the related reliability and privacy 

issues are important, the opportunities in IoT data lie with the inferences 

drawn from the data produced by ‘Things’ through various data analytics. 

Since “the data analytics spending alone [is] estimated to be worth $500 

billion by 2020, there are real incentives for all sectors to be involved with 

this technology” (Accenture, 2015, "Introduction", para. 1). This is to be 

expected, considering the ubiquity and proliferation of things consisting of 

the IoT and the possibility of value of data extrapolation.  

Ahmed et al. (2017)  describe some of applications and benefits of data 

analysis of IoT systems shown in Table 3. 
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Table 3: Benefits of data analytics for IoT applications (Ahmed et al., 

2017, p. 466) 

IoT application Benefits of data analytics 

Smart 

transportation 
(a) Reduce the number of accidents by looking into the 

history of the mishaps 

(b) Minimize traffic congestion 

(c) Optimize shipment movements 

(d) Ensure road safety 

Smart 

healthcare 
(a) Predict epidemics, cures, and disease 

(b) Help insurance companies make better policies 

(c) Pick up the warning signs of any serious illnesses 

during their early stages 

Smart grid (a) Help design an optimal pricing plan according to 

the current power consumption 

(b) Predict future supply needs 

(c) Ensure an appropriate level of electricity supply 

Smart 

inventory 

system 

(a) Detect fraudulent cases 

(b) Strategically place an advertisement 

(c) Understand customer needs 

(d) Identify potential risks 

 

While the benefits of data analytics can be seen in this table and 

demonstrates the true value of data from the IoT, not all data is created 

equal. The IDC released a report stating: 

In 2013, only 22% of the information in the digital universe would be 

a candidate for analysis, i.e., useful if it were tagged (more often 

than not, we know little about the data, unless it is somehow 

characterised or tagged – a practice that results in metadata); less 

than 5% of that was actually analyzed. By 2020, the useful 

percentage could grow to more than 35%, mostly because of the 

growth of data from embedded systems (IDC, 2014, "New Findings", 

para. 4).  

This suggests that data is simply being collected without the current 

necessity, business intelligence, or capability to process it all. There are 

other barriers to Big Data, such as the human element, privacy, 

infrastructure, and organisational readiness among others, as well as data 

complexity (Alharthi et al., 2017). However, big data complexity can be 
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addressed by Data Mining (DM), “the process of discovering patterns in 

data” (Witten, Frank, Hall, & Pal, 2016, p. 6). In DM, there is huge potential 

for machine learning (ML) techniques, along with current computing power, 

to analyse and extrapolate these patterns from vast streams of data 

produced in the IoT, thus providing value to the data (Alharthi et al., 2017).  

In discussion of the life cycle of a DM project, Witten et al. (2016) use the 

diagram in Figure 1 to describe the various components involved; it 

demonstrates that the data itself, while central to DM as a whole, is 

superfluous to the initial development and path of the DM project lifecycle, 

as data may exist prior to or during realisation of the application or 

business understanding.  

 

Figure 1: Life Cycle of a Data Mining project (Witten et al., 2016, p. 29) 

 

Thus, their model begins with business understanding and data 

understanding, which they describe as: 

investigating the business objectives and requirements, deciding 

whether data mining can be applied to meet them, and determining 

what kind of data can be collected to build a deployable model. In 

the next phase, “data understanding,” an initial dataset is 

established and studied to see whether it is suitable for further 

processing. (p. 29) 
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Clear business objectives and understanding of data may be the instigators 

of a DM project in realisation of application, but in regard to the data itself, 

it is the data preparation and modelling where ML helps alleviate the 

challenge of analysing Big Data.  

In regard to SF Analytical algorithms for data inferences and associated 

machine learning techniques, those that can be used for SF activity 

recognition are of importance and will be discussed next. 

2.6.1 MACHINE LEARNING 

While there was undoubtedly attributing research and development 

beforehand, one of the early instances of successful Machine Learning (ML) 

is attributed to Arthur Samuel, who wrote the first computer learning 

program for the game of checkers while at IBM in 1952 (Arthur L. Samuel, 

2013). Rather than programming the steps and choices needed to for the 

computer to win, the computer adapted and improved its program with the 

more games it played, assimilating strategies that allowed it to win. This 

adapting functionality of improvement is at the core, what ML entails. 

A subset of Artificial Intelligence (AI), Machine Learning is “essentially a 

form of applied statistics with increased emphasis on the use of computers 

to statistically estimate complicated functions and a decreased emphasis on 

proving confidence intervals around these functions” (Goodfellow, Bengio, & 

Courville, 2016, p. 96). Because of this, ML applications extend to diverse 

domains where DM may provide benefit, including healthcare (Kavakiotis et 

al., 2017; Nair, Shetty, & Shetty, 2017) environmental management (Park, 

Mukherjee, & Zhao, 2017; Hsieh, Cannon, Lima, Hsieh, & Cannon, 2015) 

energy efficiency (Essl, Ortner, Haas, & Hettegger, 2017; Rajasekaran, 

Manikandaraj, & Kamaleshwar, 2017) and even in detection of art forgeries 

(Polatkan, Jafarpour, Brasoveanu, Hughes, & Daubechies, 2009), to name a 

few. Its use in uncovering value in data of different domains is in pattern 

recognition, explained succinctly by Mullainathan & Spiess, (2017) who 

write: 
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The appeal of machine learning is that it manages to uncover 

generalizable patterns. In fact, the success of machine learning at 

intelligence tasks is largely due to its ability to discover complex 

structure that was not specified in advance. It manages to fit 

complex and very flexible functional forms to the data without 

simply overfitting; it finds functions that work well out-of-sample. 

(p. 88) 

However, ML still requires thought for optimal outcomes. While specific 

algorithm discussion is out of the scope of this research, selecting the most 

appropriate Machine Learning algorithm is very dependent on the nature of 

data and objectives. As Iqbal Muhammad & Zhu Yan (2015) found in 

activity recognition applications: 

The performance of SVM and Neural Networks is better when 

dealing with multidimensions and continuous features. While logic-

based systems tend to perform better when dealing with 

discrete/categorical features. For neural network models and SVMs, 

a large sample size is required in order to achieve its maximum 

prediction accuracy whereas NB may need a relatively small 

dataset. (p. 951) 

Related to this dataset size, there are usually three categories of Machine 

Learning associated with activity recognition data analysis reliant on the 

type of data and conversely the meta-data available. These are supervised, 

unsupervised, and semi-supervised. Supervised learning has all the data 

labelled, where “The goal is to approximate the mapping function so well 

that when you have new input data (x) that you can predict the output 

variables (Y) for that data” either by predicting the category (y) of data (x) 

(classification), or where the “output variable is a real value, such as 

“dollars” or “weight”” (regression); unsupervised learning has all the data 

unlabelled and the objective is “to model the underlying structure or 

distribution in the data in order to learn more”, such as “grouping customers 

by purchasing behaviour” (clustering), or to “discover rules that describe 

large portions of your data, such as people that buy X also tend to buy Y” 
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(association) ; Semi-supervised learning contains a mixture of both 

unlabelled and labelled data, meaning both unsupervised and supervised 

learning techniques can be used (Brownlee, 2016). With this delineation of 

data in mind and noting the importance of Big Data in the IoT and ML’s 

role in data analytics, the following section will discuss these approaches in 

relation to AR in SF architectures.  

2.6.2 MACHINE LEARNING IN ACTIVITY RECOGNITION 

As one author notes “HAR [human activity recognition] can be treated as a 

typical pattern recognition (PR) problem” through the use of “machine 

learning algorithms such as decision tree, support vector machine, naive 

Bayes and k nearest neighbours” (Lara & Labrador, 2013). The majority of 

AR research to date, including floor sensory systems, uses a supervised 

approach in ML. For example, Muheidat & Tyrer (2016) used a “Naïve 

Bayes, Logistic, Multilayer perceptron, and decision tree J48 (also known as 

C4.5 classifier)” (p.5357). Cheng et al. (2014) used a “Random Forest 

classifier using 10-fold cross validation in WEKA” (p. 149). Both examples 

used labelled data. While it is out of the scope of this paper to discuss all 

possible ML algorithms other than those used in related floor sensory 

activity recognition systems, Guan, Ma, Yuan, Lee, & Sarkar, (2011)  

discuss researcher’s preference for supervised approaches in activity 

recognition research:  

Supervised learning requires labeled data. Conversely, unsupervised 

learning tries to directly construct models from unlabeled data, 

either by estimating the properties of its underlying probability 

density or by discovering groups of similar examples. Because of 

using labeled data, supervised learning usually outperforms 

unsupervised learning; therefore, supervised learning is the 

predominant approach for WSAR [wearable sensor based activity 

recognition]. (p. 423) 

Therefore, where possible, supervised learning is seen as the preferred 

appropriate approach. However, while agreeing that the majority of AR 

approaches use supervised methods, Gu, Chen, Tao, & Lu, (2010) discuss 
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the benefits of the alternative, unsupervised approach in regard to activity 

recognition: 

learning from training data typically requires human labeling. 

Application developers are required to label both the underlying 

sensor system and the activities associated with a set of training 

data. Considering a large number of activities to be recognized in 

our daily lives, manual labelling of training data may place a 

significant burden to any individual involved in data collection. 

Hence, supervised learning approaches may have limitations in real-

life deployment where scalability, applicability and adaptability are 

highly concerned. (p. 534) 

In their implementation of an unsupervised learning model for AR, they 

were able to achieve an accuracy of 91.4%, comparable to the supervised 

implementation they tested at 93.5% accuracy. While these results would 

seem to qualify the suitability of an unsupervised approach, it must be 

noted that their implementation of an unsupervised learning model for 

activity recognition was accomplished with RFID tagged objects and their 

use along with wearable readers, an issue for a ubiquitous and unobtrusive 

computing taxonomy. However, others have also successfully used 

unsupervised methods in combination with various sensors, such as 

accelerometers attached to a user’s chest (Trabelsi, Mohammed, 

Chamroukhi, Oukhellou, & Amirat, 2013) or the accelerometers in smart 

phones (Kwon, Kang, & Bae, 2014). 

However, rather than resorting to unsupervised methods, semi-supervised 

models could overcome the scalability and human domain specialist issues 

apparent in labelling. Bicocchi, Mamei, Prati, Cucchiara, & Zambonelli, 

(2008) demonstrate the use of this taxonomy in AR via two sets of sensors 

(in this case, a camera and accelerometer); the camera is trained using 

classification algorithms and “can sample data from the environment and 

produce high level events based on the classification of their inputs”, with 

labels uploaded to the tuple space; the worn accelerometer sensor is 

untrained, simply collecting data, until it “enters the camera field of view, 
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[where] it subscribes to the tuple space to receive the labels coming from the 

camera with information about the user motion state’, meaning that the 

“Acceleration data and camera-based classification are paired together and 

a model to classify the user motion state on the basis of the sampled 

acceleration data is built on the fly” (Bicocchi et al., 2008, p. 63).  This can 

then be used to further train the classification model, in essence creating a 

self-labelling learning system. However as Wu et al., (2013)  caution, “this 

method will work well only if the performance of the initial classifier is good 

enough since the wrong classification result will degrade the accuracy of the 

newly trained classifier” (p. 461), which can be an issue with such single-

classifier semi-supervised approaches.  

Therefore, increasing classifier confidence for labelling in semi-supervised 

activity recognition can be achieved through the use of multiple classifiers; 

either by using two independent classifiers in a multi-view method (where 

feature-independent classifiers are used for a single classification) and 

choosing the label for new data by the classifier with higher confidence (co-

training), or using multiple classifiers in a single-view method (with the 

same feature vector but different ML algorithms) and using the consensus of 

all the classifiers output for any new data labelling (co-learning) (Wu et al., 

2013). For both of these methods, the newly labelled data can be added to 

the training set to further increase classifier confidence.  

An example of such an implementation is conducted by Wu et al. (2013), 

who in relation to smart homes activity recognition, describe two features 

form which activities can be deduced: 

Spatial Features: refer to how an activity interacts with smart 

homes, e.g. what appliances are involved in, how these appliances 

are used, what effects are caused, ..., etc.  

Temporal Features: refer to when and how often an activity occurs in 

smart homes, e.g. the daily total occurrence duration, the average 

occurrence duration, the daily occurrence times, the usual 

occurrence time, ..., etc. (p. 461) 
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In their proposal, a supervised approach is first conducted from their 

sensory data to build an initial classification model. Any new data is first 

analysed using this classification model and labelled appropriately if 

similarity with an existing action is sufficient, further undergoing a 

temporal feature verification analysis based on the AR models. If the 

temporal analysis is not what is expected, it will be added to cluster of 

activities based on temporal features. However, if the initial classification 

failed to recognise the activity, a spatial feature analysis will be performed 

to create clusters of similar, unrecognised activities. Then, pseudo-activities 

are created by grouping both clusters together, performing spatial and 

temporal feature analysis on these, before comparing the analysis with 

known temporal and spatial features of AR models. The result can be used 

to update these models for future AR of new data. 

More recently, there has been some focus on Deep Learning methods, a 

subset of ML, to facilitate AR. Other than acknowledging work in this field, 

the topic is beyond the scope of this research. However, it is important to 

note the reasoning behind this modality shift in ML in relation to AR. As 

Chen, Hoey, Nugent, Cook, & Yu, 2012 (p. 801) note: 

Current work on activity recognition has mainly focused on 

simplified use scenarios involving single-user single-activity 

recognition. In real-world situations, human activities are often 

performed in complex manners. These include, for example, that a 

single actor performs interleaved and concurrent activities, multiple 

actors perform a cooperative activity, and/or a group of actors 

interact with each other to perform joint multiple activities. The 

approaches and algorithms described in previous sections cannot be 

applied directly to these application scenarios. As such, research 

focus on activity recognition has shifted toward this new dimension 

of investigation. (p. 801) 

In relation to a SF becoming an interface to the IoT in a ubiquitous and 

pervasive fashion, with many interactions, activities, smart-objects, and 

human and non-human agents, the challenge to compute AR accurately will 
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rely on deep learning as it “reduces the dependency on human-crafted 

feature extraction and achieves better performance by automatically 

learning high-level representations of the sensor reading” (J. Wang, Chen, 

Hao, Peng, & Hu, 2017). Future work would likely form interesting 

outcomes in this area. 

2.7 SUMMARY 

The first portion of this chapter provides the underlying inspiration for the 

research, starting with a brief history of the IoT, encompassing technologies 

and related technological paradigms and the evolving of these paradigms in 

more modern literature. While evaluating this literature, what has become 

paramount to the discussion in this research is the need for human 

inclusion in the IoT via an interface that adheres to the ubiquitous and 

pervasiveness nature prevalent in literature. Further to this, understanding 

the implications of including humans within the IoT framework warrants 

discussion of some of the factors limiting acceptance and willingness for 

such inclusion, for example autonomy. 

As demonstrated in the reasoning through the later portion of this chapter, 

this research assumes two things. Firstly, that that a ground-based 

interface overcomes the majority of factors raised in the previous discussion 

and is thus identified as being a suitable candidate for a human IoT 

interface. Secondly, that activity recognition is a vital extension in providing 

digitisation of biological, analogue mechanics via the ground-based 

interface, allowing the required interface for humans in the IoT. Analysis of 

current research within this domain highlights progress made thus far, as 

well as inefficiencies in complexity, cost, pervasiveness, and accuracy in 

some instances. Therefore, this research aims to address some of these 

inefficiencies through investigation of one possible implementation of a 

ground-based activity recognition interface.  
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3 METHODOLOGY  

This chapter discusses the research objectives and the underlying research 

question.  The methodology used and the structure of the research are also 

reviewed.  

3.1 RESEARCH OBJECTIVES 

Activity recognition (AR) is an active field of interest for many researchers. 

However, on the basis of literature reviewed in Chapter 2, there is clearly 

scope for further research in AR with specific application within the IoT 

paradigm, beyond the current existence within isolated environments or 

predominantly driven by technical opportunities. 

Therefore, this research will address AR through the IoT lens. This 

encompasses creating an AR interface that would serve the ideals of 

ubiquity, pervasiveness, unobtrusiveness, and connectivity foremost. 

Furthermore, simplicity, adaptability, and cost are factors considered to 

mitigate issues related to acceptance and deployment within the general 

public. In regard to accuracy, reliability, and timeliness related to real-time 

AR, these will be considered within an IoT framework, rather than 

determined by an exercise in technological discovery. With such a large 

scope and many varying environments for possible application, this research 

centres on investigating AR within a typical environment in the context of 

workplace scenario, and more specifically in the confines of an office desk 

space using only a ground-based surface as indicators of human activity. 

However, this focus does not limit the applicability of the approach in future 

endeavours.  

Given these factors, the question addressed by this research is as follows: To 

what extent can a simple ground-based sensor acting as an IoT device be 

used to identify human motion?  

This notion of simplicity is in regard to the sensor being easily reproducible 

and inexpensive, using freely available components rather than bespoke 

manufactured materials. It also relates to the simplicity in use, or the 
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invisibility of the sensor for the user, while considering the ability to 

reliably predict activities without user disturbance. 

3.2 RESEARCH METHODOLOGY  

While the analysis of related literature aided in the understanding of a 

particular problem with current IoT interfaces and the potential of an AR 

system to alleviate some of the problems, the development and 

implementation path of such an interface pursuant to the ideals mentioned 

in the research objective is unclear. Thus, what is needed is an approach 

that allows for iterative refinement toward development of an artefact, with 

each iteration informing the next possible approach towards realisation of 

the research objective. In this vein, Design Science Research is chosen as 

the research methodology. 

Within Information Systems (IS) Research, Design Science Research (DSR) 

is a methodology that is widely used.  Given this research focuses on the 

paradigm of IoT, DSR is used to formulate the research approach for this 

paper. Furthermore, this methodology is appropriate for use where artefacts 

are developed to provide insight into an identified problem and add to the 

knowledge of the field (Hevner, March, Park, & Ram, 2004). Because of the 

constructivist and pragmatic nature of research conducted under the 

paradigm of DSR, the pitfall of falling into routine design is evident. It is 

therefore important to consider that valid DSR research must extend 

knowledge in the related field through this iterative development and 

evaluation of an artefact.  

Development of an artefact that enables knowledge contribution is achieved 

through iterative and incremental research cycles, where a possible solution 

to the identified problem can be created and evaluated. It is viable for this 

iterative process to cease at any time, completing the research (Hevner et 

al., 2004). In the research presented in this thesis, incremental development 

of both hardware and software is undertaken in conjunction with evaluation 

of this interface. Using quantifiable statistical analysis leads to further 

understanding of the feasibility a ground-based interface provides in 

digitising human activity within a wider IoT framework.  Shown in Figure 
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2, this iterative process is defined succinctly by Peffers, Tuunanen, 

Rothenberger, & Chatterjee, (2007). 

 

Figure 2: The DSR Process (Peffers et al., 2007, p. 54) 

 

In terms of this research, identifying the problem was conducted through an 

objective-centred research entry point, this being the inclusion of humans 

more successfully into the IoT. Through consideration of the literature to 

further define the problem, obvious objectives of a potential solution became 

apparent, and these objectives were discussed within the literature review. 

Further to this, the literature informed the possibility of AR from which 

human inclusion within the IoT could be achieved and required further 

literature dissemination on this field.  The development, demonstration, and 

evaluation of the artefact are further elaborated on in the following sections. 

3.3 RESEARCH DESIGN 

The guidelines for a DSR  approach are described by Hevner, March, Park, 

& Ram, (2004) and consist of the seven elements shown in Table 4. These 

guidelines will be used to form the research design and are discussed in this 

section. 
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Table 4: Design-Science Research Guidelines (Hevner et al., 2004, p. 83) 

Guideline  Description  

Guideline 1: Design as an Artifact  
 

Design-science research must 

produce a viable artifact in the 

form of a construct, a model, a 

method, or an instantiation.  

Guideline 2: Problem Relevance  

 
The objective of design-science 

research is to develop 

technology-based solutions to 

important and relevant 

business problems. 

Guideline 3: Design Evaluation  

 
The utility, quality, and 

efficacy of a design artifact 

must be rigorously 

demonstrated via well-executed 

evaluation methods. 

Guideline 4: Research 
Contributions  

 

Effective design-science 

research must provide clear 

and verifiable contributions in 

the areas of the design artifact, 

design foundations, and/or 

design methodologies. 

Guideline 5: Research Rigor  

 
Design-science research relies 

upon the application of rigorous 

methods in both the 

construction and evaluation of 

the design artifact. 

Guideline 6: Design as a Search 
Process  

 

The search for an effective 

artifact requires utilizing 

available means to reach 

desired ends while satisfying 

laws in the problem 

environment. 

Guideline 7: Communication of 

Research  

 

Design-science research must 

be presented effectively both to 

technology-oriented as well as 

management-oriented 

audiences. 

 

3.3.1 ARTEFACT 

Foremost within the DSR approach is the construction of an artefact that 

provides new knowledge within the field, and possibly prompts further 

research into associated problems (Hevner, 2007). The proposed artefact in 
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this research is a ground-based sensory system capable of detecting 

movement within a small environment and that uses AR to digitise human 

agents for inclusion into a larger system, namely the IoT. It is important to 

note that while this artefact can operate and be evaluated independently of 

the IoT, the solution objectives outlined earlier insist on developing the 

artefact in accordance with the predetermined notion of inclusivity within 

the IoT. This is why such instantiations requiring cameras or bespoke 

flooring supports have already been discounted as possible solutions, as an 

artefact not adhering to the IoT principles discussed and only concerned 

with AR would not have these same directives or limitations to consider. 

These objectives for consideration were discussed within the literature 

review and are: Invisibility, Unobtrusive, Complexity, Accuracy, Cost, 

Reliability, Responsiveness, Adaptability, and Connectivity. These are 

applicable to the ground-based surface, software implementation, and 

human perception alike. The artefact introduced in this research will fulfil 

the guidelines in DSR by providing an instantiation of the proposed solution 

with these objectives in mind. 

3.3.2 PROBLEM RELEVANCE 

DSR dictates that technology based solutions provide knowledge on real-

world problems and further that there is emphasis on “construction of 

innovative artifacts aimed at changing the phenomena that occur” (Hevner 

et al., 2004, p. 84). As discussed, this research aims to provide insight into 

possible barriers of human inclusion within the IoT and change this by 

providing an interface that adheres to the principals of the IoT paradigm 

that arose in the literature discussion. The relevance exists in realisation of 

limited instantiations of AR in respect to the IoT, and with the IoT 

experiencing exponential growth, the importance of providing this interface 

that can be implemented in various applications is apparent. While this 

research does not intend to provide a definitive solution, it aims to address 

some of these issues and allow avenues for further discussion and research 

through its instantiation. 

3.3.3 DESIGN EVALUATION 
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Rigorous evaluation of the artefact involves analysis “in terms of 

functionality, completeness, consistency, accuracy, performance, reliability, 

usability, fit with the organization, and other relevant quality attributes” 

(Hevner et al., 2004, p. 85).  There are two components that need to be 

evaluated in this research, the physical sensory system in relation to IoT 

objectives and human integration in conjunction with the AR component. A 

typical workplace environment chosen as the usage scenario will help in 

observance of the objectives in the evaluation phase and determine the 

appropriate methods of evaluation. The qualitative assessment in the 

evaluation of the physical properties pertaining to the ground-based sensor 

are performed using video-based observation and feedback. The AR 

component uses a quantitative approach, with statistical significance 

implying accuracy of predicted activities. For both of these, it is important to 

note that:  

Because design-science artifacts are often the machine part of the 

human machine system constituting an information system, it is 

imperative to understand why an artifact works or does not work to 

enable new artifacts to be constructed that exploit the former and 

avoid the latter. (Hevner et al., 2004, p. 88) 

Useful in the initiation of DSR and a new artefact, this emphasis on 

evaluation is able to applied continuously throughout the iterative 

development of a single artefact, with each iteration able to inform 

incremental improvements until the research is completed. 

3.3.4 RESEARCH CONTRIBUTION 

Gregor & Hevner (2013) provide a simple framework for assessment of 

viable outcomes following a DSR approach. This framework is shown in 

Figure 3.  
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Figure 3: Knowledge contribution assessment (Gregor & Hevner, 2013, p. 

345) 

  

The research must show either improvement, invention, or exaptation to be 

considered as contributing knowledge. The creation of an artefact “may 

extend the knowledge base or apply existing knowledge in new and 

innovative ways”, or be “creative development of novel, appropriately 

evaluated constructs, models, methods, or instantiations that extend and 

improve the existing foundations in the design- science knowledge base” 

(Hevner et al., 2004, p. 87). The research within this paper could be 

considered to be exaptation, using the field of AR within an IoT framework, 

and improvement by further development of existing AR technology in 

respect to social inhibitors that encompass the IoT paradigm and necessary 

objectives. 

3.3.5 RESEARCH RIGOR 

While “Design-science researchers must constantly assess the 

appropriateness of their metrics and the construction of effective metrics” 

(Hevner et al., 2004, p. 88), DSR is highly pragmatic in its approach to 

research, ultimately leaving appropriate method selection to the researcher.  
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For example, Venable, Pries-Heje, & Baskerville, 2014 describe two terms 

for method application within a DSR approach; Artificial evaluation and 

Naturalistic evaluation.  Artificial evaluation “includes laboratory 

experiments, simulations, criteria-based analysis, theoretical arguments, 

and mathematical proofs” (p. 80) while Naturalistic evaluation methods 

involve “case studies, field studies, field experiments, surveys, ethnography, 

phenomenology, hermeneutic methods, and action research” (p. 81).  The 

use of seemingly dichotomous methods is apparent in pragmatic approaches 

such as DSR and while artefacts within DSR are usually evaluated using 

scientific rigor via statistical analysis and mathematical means, artefact 

evaluation within its intended environment may employ the use of more 

qualitative methods (Vaishnavi & Kuechler, 2015).  

In elaboration of Hevner’s three cycle approach to DSR (cf. A. Hevner & 

Chatterjee, 2010, p. 16), the diagram of Marheineke (2016) shown in Figure 

4 highlights the importance of using the correct methods in establishing 

rigor within the domain of Information System research.  

 

Figure 4: Information system research framework (Marheineke, 2016, p. 

14) 

 

However, this diagram shows that rigor is not only reliant on the 

appropriate choice of methods. The use of a “Rigor Cycle” in DSR “provides 

past knowledge to the research project to ensure its innovation” and is 
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“contingent on the researchers to thoroughly research and reference the 

knowledge base in order to guarantee that the designs produced are 

research contributions and not routine designs based on the application of 

known design processes and the appropriation of known design artifacts” (A. 

Hevner & Chatterjee, 2010, p. 18). The literature review and exploration of 

relevant existing solutions undertaken in the previous section are used to 

inform and ground the research, as DSR is “grounded on existing ideas 

drawn from the domain knowledge base” (A. Hevner & Chatterjee, 2010, p. 

18).  

3.3.6 DESIGN AS A SEARCH PROCESS 

A search process within DSR is primarily to “discover an effective solution 

to a problem” by “utilizing available means to reach desired ends while 

satisfying laws existing in the environment” (Hevner et al., 2004, p. 88). In 

further defining of this; “Means are the set of actions and resources 

available to construct a solution. Ends represent goals and constraints on 

the solution. Laws are uncontrollable forces in the environment” (Hevner et 

al., 2004, p. 88). Further to this, Hevner (2004) explains methods to address 

means, ends, and laws: 

Means are represented by decision variables whose values constitute 

an implementable design solution. Ends are represented using a 

utility function and constraints that can be expressed in terms of 

decision variables and constants. Laws are represented by the 

values of constants used in the utility function and constraints. 

(Hevner et al., 2004, p. 89) 

In this research, means are discussed in the following artefact design 

section, while ends are established in the research objectives and further 

elaborated in evaluation of the artefact and consideration of its suitability in 

fulfilling the objectives. Laws are the constraints placed within development 

of the artefact (including IoT constraints and use-case constraints) 

established in this section and adhered to in the development of the 

artefact. Furthermore, these three aspects are informed from the literature 

review. 
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Interestingly, while the initial scope of the research is vast and would seem 

to be implausible to address, DSR recognises that desired ends may often be 

simplifications of a “problem by explicitly representing only a subset of the 

relevant means, ends, and laws or by decomposing a problem into simpler 

subproblems” (Hevner et al., 2004, p. 89). This research does not intend to 

evaluate all possible ground-based interfaces within multiple environments, 

but as stated, abstracts principles applicable to wider environments for 

implementation in a more restricted environment within the office 

workplace to enable “constructing an artifact that works well for the 

specified class of problems (Hevner et al., 2004, p. 89). This is common 

concept known as satisficing (Simon, 1996). Assurance that the artefact 

works can be achieved through the methods of evaluation which have been 

discussed previously, and although not generalizable  across all 

environments, the purpose of the design process and implementation of the 

artefact is to “first establish that it does work and to characterize the 

environments in which it works” to allow “practitioners to take advantage of 

the artifact to improve practice and provides a context for additional 

research aimed at more fully explicating the resultant phenomena” (Hevner 

et al., 2004, p. 90). It is the intention of this research to provide avenues for 

further investigation within this field using improved implementations of 

the artefact. 

3.3.7 COMMUNICATE RESEARCH 

Research finding should be communicated to audiences who are both 

technology-orientated, such as domain experts, researchers and academics, 

as well as those who are less technology-oriented but may be stakeholders to 

some degree, such as management within specific organizational structures 

(Hevner et al. 2004). This is to enable technology practitioners to implement 

and benefit from it themselves, and for researchers to evaluate the artefact 

and to develop further based on the contribution to knowledge it provides.  

For more management-orientated audiences, the ability to understand the 

potential benefits for implementations into real-world business contexts 

adds to the importance of relevance of the artefact (Hevner et al. 2004). 



Methodology 

 

 

 59 

This research project intends, through the development of the artefact and 

this thesis, to provide insight into a cost effective, reliable, consistent and 

unobtrusive ground based interface. Communication of the successes will be 

important for both parties, allowing further evaluation and research by 

technology practitioners, while giving reason for management-oriented 

audiences to implement or at least consider appropriate inclusion of AR 

within work environments. As seen in the literature review, some 

information discussed therein may already be known by technology 

practitioners. However, as well as establishing grounds for the 

investigation, it would be an oversight to assume the audience is aware of 

these factors, and as per DSR guidelines, is required to be discussed for the 

benefit of more management-orientated audiences. 
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4 ARTEFACT DESIGN AND IMPLEMENTATION  

Given the objectives and the chosen research methodology, the following 

chapter details the implementation and development of the ground-based 

sensor and its ability in AR with respect to some IoT principles discussed 

earlier. Since this process requires iterative progression as per the DSR 

approach, each step will be detailed and analysed. Typically, evaluation 

within literature signals the conclusion of the formal portion of research and 

invites further discussion. However, as this research follows a DSR 

approach, evaluation occurs within each iteration to inform decisions within 

the next artefact implementation, and thus evaluation will be briefly 

discussed within this section. However, evaluation discussed in the next 

chapter will elaborate on the findings of the final implementation. 

Therefore, in accordance with guidelines of DSR dissertation, the following 

section will detail the design process and development of the artefact 

(Strode & Chard, 2014). 

4.1 USE-CASE: WORKPLACE ENVIRONMENT 

As discussed, a use case for implementation and evaluation of this artefact 

is dependent on a typical scenario within an office environment. No 

generalizations are intended to be discovered that would have application in 

multiple environments. However, the use-case should at least provide an 

insight into the suitability for such an artefact in this scenario with 

implications for other environments. As such, and according to the 

constraints described in section 2.4 regarding some factors of IoT usability, 

an office environment which features no extra peripherals other than the 

artefact itself are permitted. This also adheres to the notion of invisibility 

and pervasiveness previously discussed in section 2.1. Considering these 

aspects has led to the assumption that a floor based sensory system would 

be the most appropriate approach for inclusion of humans into the IoT. 

However, as discussed in section 2.5, the current SF implementations fail to 

address multiple factors of usability from an IoT perspective, providing 

opportunities for further investigation. 
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The decision to use this approach is also influenced by the need for the 

artefact to not inhibit normal human motion or activity. In the given 

scenario of an office environment, approximately 75% of an employee’s time 

involves sitting at a desk, typically in front of a computer (Buckley et al., 

2015). As evidenced in the literature review, most AR tends to involve 

spatial tracking, where variation in locations are easier to define. However, 

this type of tracking would not be suitable in the given scenario where most 

of the time is spent in one general location. Indeed, some differentiate 

between two types of recognition; activity recognition involving high-level, 

possibly multi-user tasks; and action recognition involving a single-user 

performing a single task (Aggarwal & Ryoo, 2011; Turaga, Chellappa, 

Subrahmanian, & Udrea, 2008) while others create yet more rubrics from 

which to define classes of activity recognition (Vrigkas et al., 2015). 

According to these definitions then, the artefact in this research would be 

more aligned to Action Recognition and Atomic Actions within the restricted 

environment. However, in the current use-case of this research, it is not 

important to differentiate between the terms as may be the need in larger 

environments, as no perceived large spatial movements in regard to activity 

recognition are being assessed. Furthermore, while it may be useful in 

disseminating literature, it would be irrational to disregard the relevant 

knowledge within implementations simply because of the various use of 

terminology, as most seem to use the terminology interchangeably 

(Castellano, Villalba, & Camurri, 2007). 

Accompanying the premise that the majority of time being spent in an office 

workplace is seated in front of a desk, AR in this scenario using a ground-

based sensor would have to accommodate indirect contact, typically through 

a chair. As discussed in section 2.5, while there are examples of ground-

based AR sensors and those with sensors implemented in the chair, indirect 

AR examples are rare. Therefore, in this use-case, the ability to infer human 

activity indirectly is of interest and contributes to the knowledgebase within 

AR. 
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The use-case has also influenced the choice of activities that are to be 

recognised. Since the physical dimensions of the ground sensor are of an 

appropriate size for an office desk and chair setting at slightly larger than 

one square meter, only single user activities are researched in this paper. 

While multi-user implementations are important, within the given scenario 

these situations are less likely to occur. This does not negate the reality that 

larger scale implementations would need to accommodate multi-user 

environments and high-level activities but are not covered as they are 

beyond the scope of this paper.  

Given that single-user activities are being assessed within a small space 

and based on a general observation made, the types of activities for 

recognition are as follows: 

• Neutral – Sitting upright on the chair  

• Relaxed – Leaning back on the chair 

• Typing – Using the computer keyboard with two hands while seated 

• Mouse – Using the mouse of the computer (right hand only), seated 

• Left – Any activity that requires the user to interact to the left of the 

keyboard 

• Right – Any activity that requires the user to interact to the right of 

the keyboard 

• Stand – The user is no longer seated but still within the sensors space 

• Away – The user is no longer in the space 

It is important to note that these actives are mutually exclusive and do not 

account for all activities observed in this environment. Furthermore, 

combinations of activities are categorised into either left or right and could 

have been further divided into more specific activities. However, if the 

recognition of these simple activities is successful, it is likely that more 

simple activities could be added to for recognition, and higher-level 

activities in this environment (e.g. talking on the phone) could be inferred, 

thus resulting in increased and consistent function both in environment and 

recognition mutability. Otherwise, these actions were also chosen to 

represent a different range of variance between expected sensor readings, 
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from spatially similar actions (e.g. mouse and keyboard use) and spatially 

distinct actions (e.g. left and right). 

4.2 INITIAL EXPLORATION 

Initiation of the artefact construction included investigation into existing 

instantiations into human inclusion within the IoT. As discussed in the 

literature review, the need for this inclusion is a necessary component for 

successful IoT pervasiveness, and is usually accomplished through 

interactions with smart objects, particularly the smart phone. Conversely, 

the field of AR is and has been of interest for many researchers, and while 

AR holds promise in digitisation of human activities into more complex 

systems, the emphasis on technological advancement in accuracy and 

reliability lead to instantiations that would be difficult to implement in real 

world situations. From the perspective of IoT principles, including 

pervasiveness and invisibility, the majority of these implementations are 

unsuitable. Furthermore, cost and complexity issues in some of these 

instantiations also create barriers to acceptance and therefore 

pervasiveness.  

Through investigation of other implementation in the literature review, it 

was determined that six components would need to be explored in 

realisation of the research objectives. These include a mechanism for 

pressure sensing and correlated spatial pressure awareness, materials 

enclosing the pressure sensing material and providing a surface for user and 

chair contact, as well as to stabilize the sensor on the ground. Investigation 

into data acquisition from the sensor, and visualisation or storage of the 

data are other components to consider. Finally, exploration of a suitable 

machine learning algorithm for use with the artefact as part of the sensor 

design, but as this is indicative of the sensors performance in the evaluation 

phase, this will be elaborated on separately.  
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4.2.1 SEMI-CONDUCTIVE POLYMER COMPOSITE FOR PIEZORESISTIVE 

PRESSURE SENSING 

The initial goal was to obtain a material that allowed pressure sensing that 

was both simple to implement and cheap and easy to obtain, and as 

selection of the pressure sensing material affects other decisions made, such 

as the choice of an appropriate material for enclosing the sensing layer. An 

implementation offered by J. Cheng et al. (2014) used a conductive foam 

that changed resistance when pressure is applied. Use of this material has 

advantages in cost effectiveness while displaying reliable subtle activity 

recognition. It also performed its AR functions without intrusion of the user 

motion when direct contact with the sensor occurred. As such, an 

implementation involving a piezoresistive pressure sensor based on 

conductive foam was implemented.  

The initial investigation including the use of the conductive foam material 

to provide pressure mapping provided some good insights. While the foam 

had good pliability and therefore offered the possibility of high sensitivity, 

as a surface for the given use-case in this research it was less suitable. 

When attempting to move the chair while seated, the movement was 

hampered by the thickness and pliability of the foam. This was expected as 

office chair castors typically require a more solid surface for movement. A 

new material offering the same properties but allowing for potential 

movement would need to be sourced. 

4.2.2 ELECTRODE MATRIX AND GROUND SENSOR CONFIGURATION 

A small-scale implementation using the above material was created and 

assessed for its feasibility in sensing expected pressures given the use-case 

and is shown in Figure 5.  

For quick prototyping purposes and to test the foam’s pressure sensitivity, 

the surface used to mount the copper tape consisted of two materials that 

were available, an electrostatic discharge (ESD) mat used for electrical 

components on the bottom layer, and a thin butyl-based foam for the top 

layer with the copper tape connected by soldered wires to pins on an 
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Arduino Uno. Between the intersection of each copper row and column, a 

conductive foam piece was placed forming an electrode, shown in Figure 6. 

 

Figure 5: Initial implementation, assessing the sensitivity of the sensor 

using the rolling motion of the tape 

 

 

Figure 6: A single conductive foam piece, one of many placed between the 

copper electrodes 

 

Shown in Figure 7, ten rows of copper on one surface and ten columns on 

the other were used to create a sensor with 100 individual electrodes in this 

feasibility test. 5V is provided to the matrix, and the prototype showed that 

the voltage delta was sufficient enough to provide information on the 
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varying force applied in different locations, and along with the 

microcontroller configuration, could theoretically read values between 0 and 

1023 using a 10-bit Analog to Digital Converter (ADC).  

 

Figure 7: Top layer and bottom layer with copper rows and columns 

exposed. Wires are soldered to each one and connected to the Arduino 

 

A simple measurement of voltage using a pair of electrodes is used. Voltage 

is fed to the circuit through a voltage divider with a fixed resistor of 1k ohm 

and the carbon loaded foam acting as a variable resistor. After 

experimentation with various resistors on small scale test implementations, 

it was found that a 1k ohm value is suitable for the application and provides 

a single pressure reading across the electrode position. These resistors were 

used instead of the microcontroller’s internal pullup resistors on the 

analogue pins to make experimentation with different resistor values easier 

to perform. Multiple electrodes were implemented using rows of 25mm wide 

copper tape approximately 5mm apart from each other on a separate surface 

above the foam, and a similar surface lined with copper columns orientated 

perpendicular to the above surface which is then placed underneath the 

foam so both copper surfaces are facing each other. Each of these copper 

column and rows is wired to a pin on a microcontroller. By selecting one pin 

to output to the corresponding column, the input pin on the microcontroller 

can read the values for each row consecutively. Once this is completed the 
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process can be repeated for the next column. This provides pressure 

sensitive areas at each intersection of the rows and columns, effectively 

creating a matrix of sensory nodes that is efficient in cost and construction 

time. 

The butyl-based foam, used for its availability and pliability, became the top 

layer in contact with the user and chair. With the copper matrix, it proved 

effective in allowing spatial pressure to affect the foam pieces below. 

However, it was less than durable when in contact with chair castors, as 

any pivot of the castors distorted the foam and resulting in a damaged 

surface that would not be reliably used over long durations, and the results 

are shown in Figure 8.  

 

Figure 8: Damaged exhibited on the top surface after pivoting of a chair 

castor 

 

Moreover, the ESD mat used as the bottom layer worked well in providing a 

mounting point for the copper tape but did not always stay fixed in place on 

the floor, allowing the bottom layer to shift from its initial orientation.  

4.2.3 DATA ACQUISITION AND PROCESSING 

Processing and data acquisition is done on a remote computer connected to 

the microcontroller via USB. As well as collecting the data, the main 

function of this processing phase is visualization of the data, making it 
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easier to see real-time pressure values and to diagnose any faults with the 

sensor, a preferable choice compared to viewing numeric tabular data. As it 

was on hand, an Arduino Uno was used as the microcontroller for this stage 

of the research. 

Before the electrodes are polled for pressure values, a 2-dimensional array is  

instantiated on the microcontroller as virtual representations of the sensor 

and it’s electrodes. This array holds calibration information.  This 

calibration occurs after initialisation of the microcontrollers pins and is 

implemented to account for non-zero readings and anomalies apparent in 

the electrodes when no pressure is applied. This is achieved by zeroing of 

the array first. Next, a value is obtained from each electrode once and stored 

in the calibration array. This is repeated 100 times, with each value being 

added to the existing value in the appropriate index. Once a full pass has 

been completed 100 times, the total value in each cell of the array is divided 

by 100 to assign a base value for each electrode. When pressure values are 

read, these base values are used in approximating actual pressure by 

subtracting the appropriate base value from the pressure reading.  

Furthermore, the highest value obtained among all the electrodes during 

the calibration phase is used in implementation of a minimum value filter. 

As discovered during testing, the calculated base value is not always 

accurate in ascertaining a zero pressure reading over time. This was 

expected as the base value was calculated using an average of 100 passes of 

the sensor, meaning pressure values would frequently report miniscule 

fluctuations above or below the calculated base value when no pressure was 

being applied. To accommodate this factor the actual pressure value, 

calculated after the base value correction has been applied, is then assessed 

against the minimum value filter. If a value is lower than the highest 

reading obtained during calibration, the value is passed to the processing 

program as zero. A value that is higher remains unaltered. This reduced 

many of the insignificant pressure values and noise present in the pressure 

readings prior to the implementation of this filter. 
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A program on the remote computer waits for serial information supplied by 

the microcontroller. To initiate communication, the microcontroller sends a 

single character. When this character is seen by the computer, the program 

clears the serial buffer, and as it is the first data seen from the 

microcontroller, responds with another character. When this is received by 

the microcontroller, and communication between the two established, the 

microcontroller begins the calibration phase. After this phase, a single byte 

of data is sent. This single byte is the value obtained from a single electrode 

after accounting for the calibration result, or base value, in the 

microcontrollers array described in the preceding paragraph. This value is 

stored in an array on the remote computer along with any other existing 

values passed over serial. Since this program is unaware of the highest or 

lowest value polled by the microcontroller, it determines what these values 

are twice, one for the entire length of the program execution, and for one 

each pass of the sensor. This is done to determine if there are any erroneous 

readings that may be occurring after transferal of the byte. After each byte 

is received, another is then requested from the microcontroller, and this 

continues until the storage array on the remote computer is full. 

Once this array is full, the program recognises that a full pass of the sensor 

has been completed. A visualisation phase, shown in Figure 9 and 10, takes 

the data from the array and arranges it in an easy to see form that is used 

to debug any errors. Because the occurrence of a full-read of the sensor is 

very fast (around 50ms), to a human viewer the visualisation always looks 

visible as each issuing of a screen refresh occurs. Values within the array 

are visualised by mapping each value onto separate rectangles aligned next 

to each other to form a virtual representation of the sensor. Some examples 

of errors detected were weak contact points with either the copper electrodes 

or incorrectly programmed pins. However, as the visualisation was created 

with a 3D effect to provide visual cues such as depth, it was harder to view 

information from all electrodes at the same time, as an electrode with a 

higher value would be in front of other electrodes values.  
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At this stage of the design search process, AR was not attempted as the 

pressure sensing performance and usability would need development before 

this could be realised. 

4.2.4 INITIAL ITERATION SUMMARY 

On completion of this phase, a mat is constructed consisting of a foam based 

top layer and an ESD mat as the bottom layer. These two layers are lined 

with 5 copper strips, orientated perpendicular and facing each other, with a 

piece of conductive foam placed between the intersections of each. The 

copper strips are each wired to an Arduino Uno, which is connected to a 

computer over USB. On this computer, a program stores each value 

supplied by the microcontroller. When the program has all values from each 

electrode, a graphical representation of the data is displayed on screen. This 

process repeats, displaying a graphical representation of each pass.  

The following observations were made that worked well with the current 

implementation and would require little or no modification: 

• Copper columns and rows provide good spatial recognition. 

• Microcontroller and related programming worked well with the 

copper matrix to retrieve and store data.  

• Visualisation worked well to show pressure readings, but the 3D 

effect applied to the visualisation could hide pertinent information. 

There were many aspects that did not function as intended and would need 

modification: 

• Conductive foam pieces inhibit movement. A different resistive 

material would need to be sourced. 

• Butyl-based top layer deformed and unsuitable under chair castors. A 

more resilient material is needed which would still allowed for 

pressure to reach the sensor without ruining the material. 

• Bottom layer of the mat would need to be replaced with somethings 

that provides a firm base for the sensor that stays fixed in place. 

• Visualisation needs the ability to change settings, to allow for easier 

diagnosis in different situations. 
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The following iteration would need to implement a more adequate surface as 

the primary objective, as development of other features would be irrelevant 

without a more usable mat.  

4.3 SECOND ITERATION 

The initial exploration demonstrated areas for investigation in multiple 

aspects of the sensor. Addressing of these issues are discussed below. 

4.3.1 DATA PROCESSING 

To solve the problem of electrode values inhibiting the view of other 

electrodes’ values in the visualisation, some GUI options were created. 

These allow toggling between a 3D view and 2D top down view of a plane, 

representative of the sensor itself. Also implemented is the ability to 

visually rotate the sensor to varying degrees between the 3D perspective 

and flat perspective. 

Furthermore, an option to toggle between three-dimensional pressure 

visualisation (where higher-pressure values create taller peaks) and colour-

gradient pressure-based pressure visualisation (where no height is applied 

to values, but variance is shown instead by colour indicators) was created. 

Also, the ability to toggle between showing defining lines between electrode 

spaces was added.  

None of these are essential to the operation of the sensor as an AR interface 

to the IoT, however they are very useful in helping debug issues that may be 

occurring with the sensor or software. An example of this visualisation 

process is shown in Figure 9. 
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Figure 9: Visualisation of a fist pressed onto the surface of the sensor, with 

indications of a malfunctioning copper contact within the system 

 

4.3.2 SEMI-CONDUCTIVE POLYMER COMPOSITE FOR PIEZORESISTIVE 

PRESSURE SENSING 

Referring to literature again, an implementation by Cheng et al. (2016) 

produced a solution which altered their previous design (cf. J. Cheng et al., 

2014) to include a different material with piezoresistive properties. One of 

the reasons given for this change in material use was similar to the finding 

of this research; thickness of the foam inhibiting movement and 

compactness. However, the new piezoresistive material they used in this 

later artefact was bespoke, manufactured to the researcher’s specifications. 

That approach deviated from the intended research objectives of this 

research, as a material that is simple, relatively cheap, and be readily 

available would realise these objectives more clearly. However, the use of a 

more accessible thin layer of a carbon laden material was considered as a 

viable alternative for application in this research. 

A widely available commercial material known as Velostat or Linqstat 

(dependant on manufacturer trademark) is used in this research. Typically 

Vertical pressure 
anomaly indicated 
by dark strip
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found in packaging of electric components for protection against 

electrostatic discharge, it is a volume-conductive, carbon loaded polyolefin. 

A comparison of material thickness between the previously used conductive 

foam and Velostat is shown in Figure 10. 

 

Figure 10: Comparison of material thickness, with Velostat in the 

foreground and conductive foam behind it 

 

Produced industrially allows it to be a cost effective solution for many 

applications. It is also very thin at a minimum height of 0.1mm, and 

available in various dimensions. This allows adherence to the invisibility 

parameters already discussed by being thin enough that its existence within 

the system is unnoticeable and would not impede activity or motion on the 

surface in comparison to materials with a larger volume. Volume resistance 

of Velostat is <500 ohms with surface resistance of <31,000 ohms/sq cm 

(Adafruit Industries, n.d.). As resistance through the material is less than 

across the surface, a single large sheet of the material can be used across 

multiple distinct electrodes with minimal voltage leak, an important aspect 

in simplifying the construction of the artefact as individual pieces between 

the electrodes, as used with the conductive foam, can be avoided. Due to the 

cost, minimal volume, wide availability, and piezoresistive performance, 

other researchers have used the material in various applications and 
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seemed suitable for the research objectives in this paper too (Giovanelli & 

Farella, 2016).  It is important to note that the manufactures of Velostat did 

not intend it to be used in piezoresistive applications, and as such is not 

constructed to perform consistently in this regard. However, in the use-case 

for this research, and similar applications not requiring precise pressure 

measurement and where close approximations will suffice, Velostat use as a 

piezoresistive layer provides an effective solution. Across multiple electrodes 

too, this deficiency can also be negated by increasing spatial resolution. 

4.3.3 ELECTRODE MATRIX AND GROUND SENSOR CONFIGURATION 

The second iteration used the same materials for the electrode and matrix 

configuration as these worked well, but a change in the electrode housing 

material was needed to keep the sensor in place on the floor.  The top layer 

also needed to be changed to be pliable enough to allow force to be applied 

without dispersing the pressure below, while being durable and firm enough 

as to not affect user movement underfoot or in a chair. Both the butyl-based 

foam and the ESD mat were replaced by 5mm thick rubber matting, with 

the copper tape acting as the electrodes attached directly to them, shown in 

Figure 11.  

 

Figure 11: Rubber mat used in replacement of top and bottom layers 

 

Usability testing demonstrated that they provided the required pliability to 

register spatial pressure and kept its position and orientation even under 
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movement. However, the tactile properties of the rubber used in the top 

layer felt unnatural and hindered movement, especially when pivoting on 

the matting or when the chair castors had to move.  The bottom layer 

rubber secured the orientation of the sensor to the ground firmly, and 

worked on either hard-floor surfaces, carpet tiles, and soft-pile carpets. 

However, future large-scale implementations should be able to work on bare 

floor surfaces without finishing’s too, although this will be discussed in a 

later chapter. 

Simultaneously, the spacing between each row of copper tape was reduced 

to 3mm and the width of the copper tape reduced from 25mm to 15mm, as 

shown in Figure 12. This was done in an effort to increase fidelity needed in 

AR between actions with very subtle differences in pressure and as a result 

of using a sheet of Velostat as opposed to individual conductive foam pieces. 

Furthermore, the textured surface of the rubber mat did not seem to effect 

pressure measurements when compared to those used in the previous 

iteration. 

 

Figure 12: Comparison of the width of copper columns and rows between 

the initial sensor (bottom) and the second iteration (top)  
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4.3.4 SECOND ITERATION SUMMARY 

The main objectives of this iteration were to find a more suitable pressure 

sensing material and more appropriate materials for the top and bottom 

layers. These were achieved in the following ways: 

• Velostat provides a good material for pressure sensing and does not 

inhibit movement of user or chair castors. Moreover, no alterations to 

other parts of the sensor are required, making it a direct replacement 

to the conductive foam. 

• Bottom rubber layer provides a good fixed base underneath the user 

and supports the layers above it. 

• Top rubber layer does not deform like the previous iteration.  

• Options in visualisation allow for multiple points of view, and thus 

detection of anomalies visually becomes more efficient. 

However, one aspect would need more investigation: 

• Top rubber layer inhibits movement of the chairs castors and thus the 

user, due to the tackiness of the rubber. 

While this issue is investigated in the next iteration, a simultaneous 

attempt to advance the sensor toward a more final implementation would be 

conducted in the iteration. This is predominantly the need to scale the 

sensor to a larger size and the mitigation of possible issues this presents.  

4.4  THIRD ITERATION 

Considering that the bottom rubber layer and the use of the Velostat, along 

with the matrix configuration and related software performed well in 

previous iterations, these remain unchanged. However, changes may be 

inevitable when scaled to a larger size.  

4.4.1 ELECTRODE MATRIX AND GROUND SENSOR CONFIGURATION 

In investigation of the problems with the previous iteration, the top rubber 

layer was removed and replaced with a carpet tile layer with a thin bonded 

urethane backing typically used in commercial environments, with the 

copper tape placed onto this backing, shown in Figure 13. Usability was 



Artefact Design and Implementation 

 

 

 77 

vastly improved with ease of movement apparent both directly and 

indirectly through the office chair, able to move freely and feeling neutral 

underfoot. The carpet was pliable yet less viscous than the rubber. However 

over prolonged periods, the lighter weight of this layer compared to the 

rubber layer beforehand meant it was prone to alter its orientation slightly, 

affecting the position of the electrodes and therefore the clarity and 

reliability in values.  

 

Figure 13: Carpet and backing, replacing the top rubber layer 

 

To overcome this, Velcro strips of 10mm in width along the edges of all three 

layers were used to bind them together. More permanent fixings of the 

layers were decided against and the Velcro chosen to enable easier repairs 

or changes. However, having Velcro strips in place along the edges of the 

layers deemed these areas unusable for obtaining sensor data from and 

added to the height dimensions along these edges, resulting in a height of 

approximately 12mm along these edges compared to the uncompressed 

height of the sensor elsewhere of approximately 8mm. With more 

permanent implementations, an improved fixing method binding all layers 
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together would need to be considered, although a later section will discuss 

improvements for future large-scale deployments.  

The physical dimensions of the sensor in this iteration were 1200mm by 

1000mm at a thickness of between 8mm and 12mm. The 1.2m x 1m were 

used as it is the default size in which the carpet is available from most 

manufactures, and closely fits the observed space needed for a user working 

at a desk in front of their computer. The sensor with these dimensions is 

shown in Figure 14.  

Since the initial physical implementation and copper matrix worked well, 

this configuration was kept but extended to fit the new dimensions. At 

15mm width spaced at approximately 3mm apart, there are 64 rows and 58 

columns for a total of 3968 individual nodes. Space was left between the 

layers for wires, soldering, and Velcro, meaning the copper tape fit into a 

space measuring 1150mm by 1000mm. While this creates a sensor density 

>1sq cm, more disperse than is present in many of the implementations 

discussed in the literature review, for the use-case and objectives of this 

research, the sensor density is fit for purpose.  

Moreover, it is possible that cost and energy use can be reduced by having 

less fidelity, and if no adverse effects to AR performance are seen, optimized 

to produce a cheaper and energy efficient solution, important ideals within 

the IoT paradigm. However, optimal sensor density was not explored in this 

artefact, and instead was determined primarily by the space, dimensions, 

and material available.  
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Figure 14: Sensor placed underneath chair in use-case scenario. Numbers 

indicate the relative position of electrodes 

 

4.4.2 MICROCONTROLLER AND MULTIPLEXERS 

While providing a rather rapid proof of concept, other issues were identified 

in scaling of the sensor. The use of an Arduino Uno resulted in two 

recognizable issues.  

The issue with the larger surface area meant that more copper rows and 

columns would need to be implemented to keep the spatial resolution 

constant with the previous iterations. This introduces a problem with the 

Arduino Uno; the sample rate. With a clock speed of 16Mhz, the default 

sample rate of the Arduino Uno means  a theoretical maximum sampling 
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rate of approximately 10,000 analogue reads per second, notwithstanding 

other operations the microcontroller may be performing (“Arduino 

Reference,” n.d.). This can be calculated by taking the 16 MHz clock speed 

and dividing by the default prescaler of 128 to give 125 KHz. With each 

analogue to digital conversion in the Arduino AVR taking 13 ADC clock 

cycles, 125Khz enables a  sampling rate of 9615 Hz for analogue reads 

(“Arduino Reference,” n.d.). For a sensor with 3968 individual electrodes, 

this equates to less than three passes of the entire sensor matrix every 

second, with evaluation showing a full pass approximately every half a 

second. While slower sample rates and therefore clock speed would conserve 

energy use, an important factor in IoT applications, having the 

microcontroller at maximum performance (when considering 10-bit ADC 

with no modifications from the default settings) meant no possibility of 

increasing the sample rate if this was too low to provide reliable variance in 

pressure sensor values. Instead, a microcontroller capable of higher sample 

rates that could be slowed to conserve energy but could be operated at 

higher sample rates would be optimal, able to provide a contingency in case 

the need for an increased sample rate is apparent. Further to this, with a 

default 10-bit ADC, mapping of analogue reads to digital integers was 

limited to 1024 values at 5v input. To increase bit values would require 

microcontroller modification, possibly at the expense of noise. It was 

becoming apparent that the Arduino Uno, while capable enough during the 

feasibility testing and initial iterations, may struggle with the larger and 

more accurate requirements of AR in the research artefact. 

The second obvious issue is the lack of pins available on an Arduino Uno 

which limited the rows and columns possible. By increasing the number of 

electrodes in the artefact, the number of pins would need to increase for a 

real-world implementation, and this was not possible using a single Arduino 

Uno. Eight CD74HC4067 16 channel analogue multiplexers were used to 

solve this issue. Four of these multiplexers were used for the top layer 

copper columns, and four used on the bottom layer copper rows. Each layer 

in this configuration could consist of a maximum 64 columns and 64 rows. 

However, while all eight multiplexers were used, not all channels on one of 
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the multiplexers were needed. In future implementations with a larger 

surface area or with higher electrode density, there would be no issue 

increasing the number of columns to use these channels or conversely 

increasing the number of multiplexers if required.  

Due to these two factors, the Arduino Uno was replaced with a Teensy 3.6 

shown in Figure 15. The Teensy was chosen over other suitable 

microcontrollers due to the number of available pins and ADC resolution (57 

in total, with two 13-bit ADC multiplexed to 25 analogue inputs) and a 

much faster clock speed (180Mhz compared to the 16Mhz of the Arduino 

Uno) with the ability to vary the clock speed for testing. The CD74HC4067 

multiplexers continued to be used in conjunction with the Teensy, and with 

four control pins and one signal pin used per multiplexer, the Teensy was 

easily able to accommodate all 40 pins needed to read values from the 3968 

electrodes. Another reason the Teensy was chosen was because of its 

compatibility with the Arduino development environment and many of the 

libraries too via Teensyduino, allowing the reuse of code from the previous 

iterations using the Arduino Uno with only minor changes.   

 

Figure 15: Arduino Uno replaced by the Teensy 3.6  
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The Teensy is connected to each of the CD74HC4067 multiplexers (on a 

breakout board for simplicity) in the following configuration. A single pin is 

used to enable or disable all channels, with four output pins connected to 

the multiplexers address select pins, enabling cycling through the various 

16 channels, each channel connected to a single copper column or row. 

Sending a specific combination of bits (in either high or low) from the 

microcontroller to the address select pins chooses a specific channel to read 

a value from. Four of these multiplexers are used for the rows, and four 

used for the columns, allowing a maximum 64 x 64 matrix for 4096 

electrodes. GND and VCC are wired to ground and 3V power source 

respectively. For simplicity, compactness, and explorative reasons, the 

power was supplied through the microcontroller instead of an external 

power source present in various other implementations. This arrangement 

is partially shown in Figure 16 without the microcontroller connected.  

 

Figure 16: The set of multiplexers used for connection to the sensor rows 

and columns, with multiplexers 1 – 4 used for the top layer, and 

multiplexers 5 – 8 used for the bottom layer. The microcontroller is 

removed. 
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One channel of the 64 channels (on the first group of four multiplexers) is 

selected, while one channel is selected from the other group of multiplexers. 

A value is made available to an analogue input on the microcontroller via 

the multiplexers signal out. In this application, this is value is sent to a 

computer via USB for storage and processing. The next channel is selected 

on the second group of multiplexers and the same process occurs. After each 

channel on the second group of multiplexers has been consecutively polled 

for values, the next channel on the first group of multiplexers is selected, 

and the process involving the second group of multiplexers is initiated 

again, allowing a full pass of the sensor. 

When polling each electrode via the multiplexer, a write and read process 

occurs. First a write process is initiated with a channel parameter. Then all 

multiplexer channels associated with the columns are disabled. Depending 

on the channel (0 - 63) being written to (controlled by the main program 

loop) the appropriate multiplexer will be enabled along with its signal pin, 

while the others remain disabled. An array representative of the pins 

associated with the current multiplexer’s address select pins are copied to a 

local array to be used in the write process. While the initial channel value 

passed for write indicates any one of the columns to write to, a modulo 16 

operation on the channel value allows the correct channel for a particular 

multiplexer to be selected. For example, channel 39 (the 39th column), would 

equate to multiplexer seven, channel seven in this configuration.  With the 

correct multiplexers address select pins available in the local array, a 

secondary array holding the binary value of the multiplexer’s channels (0-

15) are used in a write operation to set each of these address selection pins. 

This allows the voltage of the signal pin enabled earlier to pass through the 

necessary channel on the multiplexer. This remains static until a complete 

pass of one row finishes.  A similar process occurs when polling the rows. 

After being passed a channel value, all multiplexers for the rows are 

disabled. The appropriate multiplexer is enabled, and the address pins for 

that multiplexer are selected, along with the multiplexers signal pin. The 

channel for that multiplexer is enabled using the same techniques as the 
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write method. However, an analogue value is now read from the selected 

multiplexers channel, which is then returned for further processing. 

4.4.3 THIRD ITERATION SUMMARY 

The third iteration resulted in the following findings: 

• Carpet surface fastened with Velcro to the underlying layers provides 

good spatial pressure performance. 

• Teensy replacement of Arduino Uno is suitable, providing more pins 

and faster sampling. 

• Use of the multiplexers to extend number of electrodes extends 

functionality for larger dimensions. 

There were also issues identified through the changes in this iteration: 

• With the same amount of force exerted on the sensor, pressure values 

with the Teensy appear lower than those observed when using the 

Arduino.  

This issue is addressed in the next iteration. Furthermore, processing has 

been limited to data visualisation only while development of the physical 

sensor and related software are configured, with visualisation used for 

debugging purposes. For the final implementation, data pre-processing 

must occur in readiness for the machine learning algorithms, as these will 

be needed in AR. 

4.5 FOURTH ITERATION 

To address the first issue, it was assumed that the change in microcontroller 

caused the drop in pressure readings. However, this could have been due to 

a number of factors, such as the extra load placed on the power supply with 

the addition of the multiplexers and extra electrodes, or the effect of this 

load on the ADC reference voltage. To negate these affects, a more reliable 

and direct supply of power to the sensor could be provided, or the use of an 

external ADC, rather than relying on the microcontroller only. While the 

actual cause of the lower values was not established, the simplest solution 

which still enabled the sensor to be powered solely by the microcontroller, 

was to make use of the higher bit ADC available in the Teensy, allowing for 
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greater sensitivity and therefore produce similar pressure values as those 

seen using the Arduino. This option was chosen to solve this issue. 

Also addressed in this iteration is creation of a pre-processing mode to 

ensure the data is ready for AR, while still allowing for visualisation of the 

data in-case of further refinements.  

4.5.1 DATA ACQUISITION 

To allow for more variance between electrode values, and to negate the drop 

in analogue variance due to the decrease of supplied voltage, increasing the 

number of bits used with the conversion of analogue to digital values was 

implemented. Rather than using external ADC’s, the Teensy’s inbuilt 

components were used. Solely using the Teensy’s inbuilt ADC’s instead of 

separate ADC’s like other implementations in the literature review, as well 

as using the voltage supplied through the microcontroller itself, allows for a 

more compact and cost efficient architecture. These ADC’s within the 

microcontroller are configured to use 12-bit resolution, performing better 

than the 10-bit ADC on the Arudino Uno by allowing more variance between 

pressure values. While higher bit resolution greater than 12-bit is possible 

on the Teensy and would theoretically allow for more clarity of the pressure 

readings, the internal ADC becomes more susceptible to outside noise and 

interference, especially with higher sample rates. This was evident when 

higher bit resolutions were tried and did not provide more obvious or 

necessary clarity than 12-bit once this was accounted for. 

Changing to 12-bit values presents some problems. One problem is that the 

serial bus is only capable of sending a single byte at a time, and the remote 

computer expected only one byte as an indicator of a pressure value. Thus, 

since any 12-bit value is greater than a single byte, the value from the 

electrode is split into a hi-byte and lo-byte, and sent separately over serial. 

The computer waiting for data recognises the first byte, waits for the second 

byte, and when received reassembles this byte into a single value which is 

consequently stored in the array of values. Furthermore, the visualisation 

component needed to be altered to account for higher pressure values. 
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4.5.2 DATA PROCESSING 

While wanting to keep the data visualisation aspect of the program usable, 

the need for pre-processing of the data into appropriate forms for machine 

learning was also considered in this iteration. When the processing program 

continues to run, eventually the array holding all values read from serial 

will become full, as was present in the previous iterations, indicating a full-

pass of the sensor.  

Now, instead of simply creating the GUI and the related visualisation 

options, other options become available. The GUI enables selection of three 

different modes to operate in. The default mode, used in the previous 

iterations, is used for rapid functionality testing and ensuring the various 

parts are operating as expected by simply enabling data acquisition via 

serial and displaying this data with the above options. These options can be 

seen in Figure 17. 

 

Figure 17: Example of pressure map produced by the sensor, with further 

options to initiate different modes in the GUI 

 

The second mode is a staged mode. In this mode, the user is given a visual 

alert that a training period will begin within a period of time, and serial 

reading is halted. The visual alert will also tell the user which type of 

activity it wishes to record next out of the eight predetermined activities. 
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When the countdown has finished, and with the user performing the defined 

activity, the program will start reading input from serial and processing it 

as necessary following the procedure above. After a number of samples 

(changeable in the GUI) have been read and processed, the program will 

once again pause and display another activity for the user to begin doing. 

After another countdown allowing the person to move from one activity to 

another, the program will begin to read the next data from serial. This 

process continues until all eight predetermined activities have the same 

number of samples each. Implemented this way, data size can increase or 

decrease evenly across all activities.  

Another important aspect of this GUI is the ability to choose between data 

structures for post-processing of the pressure values. There are two file 

types that can be chosen to suite various machine-learning preferences. 

These are .arff (used for software such as WEKA) and .csv (a file format 

across many different programs). Depending on the file type selected, the 

program will create a file and write to that file any necessary header or 

meta information. At each full pass of the sensor and once the program has 

an array full of values, the array values are output to a file in the 

appropriate format. When first initiating either a staged mode or free mode, 

the file is created and the filename is timestamped. Any data collection from 

the sensor will be written to this file, until the collection is stopped. If data 

collection is started again, a new file will be created with the new 

timestamp, and data written to this file. Modularising this function allows 

other file types and corresponding analysis tools to be implemented more 

rapidly. 

To assess whether the data files were in the correct format for WEKA, a J48 

Decision tree was used on a selection of files created by the sensor. After a 

few fixes (such as correcting the header information of the .arrf files) WEKA 

was able to analyse the files, and produce a model that could be used for AR. 

Initial testing done with Zero-R produced some expected results, and further 

tests with decision trees produced results with higher than expected 

accuracy, which are discussed in section 5. 
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4.5.3 FOURTH ITERATION SUMMARY 

The iterations main alterations were to use the ADC’s of the Teensy, and to 

allow for the data to be stored and analysed by machine learning 

algorithms. This involved pre-processing of the data and creating a method 

for labelling each pass of the sensor. The following highlight the results: 

• 12-bit ADC provides higher variation between electrode values 

without the need for external components. 

• Passing two-byte values over serial and altering the software on the 

remote computer to reassemble two-byte values. 

• GUI option to enable writing of data to a file while keeping 

visualisation options available. 

• Creating a method for labelling the data when writing to a file. 

During the testing of this mat, it became apparent that the current labelling 

system was inappropriate in realising the research objective. While it was 

very useful in determining if the write function operated correctly, the 

number of instances between activities is identical and could potentially 

skew the results of algorithms that account for the occurrence of instances 

in creating a model. Thus, further development is needed that addresses the 

following issue: 

• Create an additional mode for labelling activity data that does not 

use a pre-determined number of instances but can still successfully 

label data irrespective of duration of time spent in a certain activity, 

or in transition from any activity to any other. 

This should be possible with slight variation of the existing labelling 

function. 

4.6 FINAL ITERATION 

The objective of the final iteration is to create a mode that allows for 

unrestricted recording of data and subsequent labelling. The instigating 

factor is that of realism, as the data recorded will be of a user performing 

tasks as they would normally, with no prompting from the sensor. 
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4.6.1 DATA PROCESSING 

Beside the default visualization and staged modes of the previous iteration, 

a free mode is also created. Unlike the staged mode, there is no 

predetermined number of samples collected per activity. Instead, all data is 

captured in one continuum. Because the preference is to work with labelled 

data as well as label the data in real-time to limit post-processing work, 

labelling is done by key presses of 1 to 7. This can be achieved by the user 

interacting with the sensor and pressing the corresponding key while 

switching activities, or by a second person with their own keyboard 

watching the user interact with the sensor and pressing the number 

corresponding to the activity the person changes to. There is no limit to the 

length of time recording this data and the user is able to end data capture 

via the GUI. Unlike the modes in the previous iteration, there is a 

possibility to investigate temporal analysis given the capture of time and 

frequency along with the pressure data in this mode, and although this is 

not explored in this research, may benefit algorithms which are able to 

formulate models based on variation between instance occurrences.  

4.6.2 FINAL ITERATION SUMMARY 

At the end of this iteration, the sensor is performing as envisioned. 

Rudimentary exploration of AR using machine learning algorithms also 

shows the ability to recognise activities from the sensor supplied data. As 

per the guidelines of DSR, iterative artefact development can be terminated 

after any number of iterations (Hevner et al., 2004). At this stage, no 

further development of the artefact is required. More in-depth evaluation 

will inform any further changes to the artefact, although pre-evaluation AR 

testing indicate that this will not be necessary.   
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5 ACTIVITY RECOGNITION EVALUATION VIA 

MACHINE LEARNING CLASSIFICATION  

The output data files discussed in the previous section are analysed using 

the machine learning tool Weka. Weka is used for its simplicity and 

efficiency in automating statistical analysis with various algorithms, which 

is important in this research as a range of algorithms are used to evaluate 

the performance of the sensor as an AR interface. The probability 

classification algorithms used within this research will be briefly discussed, 

followed by the evaluation results for given algorithms, the sample size, and 

selected processing mode. As all data captured by the sensor is labelled in 

the process, supervised classification models will be used to assess the 

sensor as an AR interface. As a sensor and AR interface, linearity, stability, 

hysteresis, homogeneity, and repeatability are all aspects that must be 

addressed in its evaluation, and machine learning will allow analysis of 

some of these factors and will be discussed later. Furthermore, the models 

and any inferences created can be included as part of the AR system itself 

depending on the accuracy of prediction.  

5.1 DATA ANALYSIS PRE-PROCESSING 

There are two categories of data collected from the sensor; staged mode 

data, with equal occurrence of instances for each activity; free mode data, 

with variance between the number of occurrences between activities, 

mimicking real-world scenarios e.g. where a user may be using the mouse 

more than relaxing over a period of time. Also, instance numbers between 

datasets vary while the feature vectors for these instances are constant and 

equal the number of electrodes in the sensor. Analysis of the datasets is 

initially undertaken in WEKA to select appropriate algorithms for 

classification. Many different datasets were created (>100) and from these, 

seven were chosen as being representative of the majority of the datasets, 

based on capture mode, instances, and file size.  

The use of multiple datasets with various algorithms is to ensure 

completeness in evaluation. The variation between instance totals was used 
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to evaluate algorithm accuracy under differing scenarios. This is important 

as part of an AR sensor in real-world scenarios. For example, if computation 

for AR classification in a real-world implementation is done via an 

embedded solution, energy, computational and storage limitations dominate 

performance evaluation, effecting such things as model complexity, data 

storage availability, and classification latency. However, if classification 

modelling and classification itself are performed remotely by more powerful 

computing systems, then data transferal latency becomes a bigger issue. 

Therefore, reducing dataset file size seemed a necessary step to 

optimization. As seen in Table 5, dataset four has reduced in file size 

compared to dataset three, despite containing more instances. Dataset five, 

six, and seven continue to use this file size optimization which is achieved 

by simply storing and sending a zero-pressure reading more efficiently and, 

given that a zero-pressure value is the most common value encountered, 

provided an easy way to implement file size reduction. 

Since the machine learning algorithm for AR in this artefact is decoupled 

from the sensor itself and does not assume suitability of any particular 

algorithm (apart from those suitable for classification), different scenarios 

can be evaluated to predict the best routes for future research given both lab 

and real-world implementations. 

Table 5: Overview of the seven datasets used in the machine learning 

evaluation of AR. Datasets are in the ARFF file format. 

Dataset Mode Instances File Size 

(MB) 

1 Staged 400 8.1 

2 Staged 1200 23.9 

3 Staged 2800 55.7 

4 Staged 4000 37.4 

5 Free 3966 32.9 

6 Free 5516 45.9 

7 Free 17096 153 
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While not an exhaustive analysis of the data or suitable algorithms, there 

are some general aspects of the data to note. The first aspect that is 

apparent is the sparse vector representation, with many of the nodes always 

0, indicating they never have any pressure on them at all. This means, 

when combined with the high feature space, any chosen algorithm would 

benefit from feature selection or should use dimensionality reduction to 

improve accuracy if manual data pre-processing is to be avoided. In this 

regard, a decision tree or a related ensemble approach may be useful. 

Furthermore, in the staged mode data sets there are obvious clusters 

formed within data points of the same class. Therefore, since the data is 

linearly separable, a linear classifier such as Naïve Bayes may provide good 

accuracy. However, this same attribute is not so well-defined in the 

recording mode, as transitions between activities cause more variation in 

vector values. Therefore, a Support Vector Machine capable of handling non-

linearity in the data may be more useful in this regard. On the basis of this 

evaluation, four approaches are considered as candidates for further 

investigation. 

5.1.1 J48 DECISION TREES 

A statistical classifier based on the ID3 and further C4.5 algorithms 

developed by Ross Quinlan, J48 is an open source Java implementation 

(Quinlan, Morris, Jackson, & O’Connell, 1993). Simply put, a decision tree is 

created top-down, with a training dataset split into subsets that contain 

instances of similar values. Splitting the dataset on attributes to create 

subsets that are the most homogeneous and decrease entropy provide what 

is known as information gain. The attributes with the highest information 

gain are chosen as the attributes to split the data on. When a branch has an 

entropy of 0, this leaf node signals that no further splitting is needed along 

this branch. However, any entropy value other than 0 signals uncertainty of 

target values, and another split of the subset will occur and the process of 

splitting continued. This process creates the decision tree model. New data 

can be provided to this model and it will predict the appropriate 

classification of each instance.     
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The J48 algorithm has been used extensively in a wide range of research 

applications, including analysing e-governance data (Rajput, Aharwal, 

Dubey, Saxena, & Raghuvanshi, 2011), mining software repositories 

(Finlay, Connor, & Pears, 2011), predicting fish stocks (Zarkami, 2011) and 

fault analysis (Muralidharan & Sugumaran, 2013) to name but a few. In 

general, decision trees are considered simple and fast to implement, given 

that they formulate the most important features of the data automatically 

during the search for highest information gain. However, they can also be 

problematic in overfitting, where models fit the training data so precisely 

that new data highlights any inflexibility in the model. This overfitting is 

exaggerated with the tree’s complexity. As each dataset in this research 

contains over 3000 different attributes (each electrode) for each instance 

(with some datasets having over 10,000 instances), tree depth is likely to be 

large, increasing the chances of overfitting. This could present itself as an 

issue in realising a more general model applicable across unseen datasets, 

which would be the case in real-world implementations of an AR sensor. 

Furthermore, assuming the decision tree uses a greedy approach to choosing 

optimal nodes (Hunt’s algorithm), optimal local choices are guaranteed. 

Ignorance of the rest of the tree, however, means that the local optimum 

may not be the best choice globally, and can lead to suboptimum decision 

trees, and in some cases the worst possible solution in relation to tree depth, 

requiring techniques such as tree pruning to resolve these issues (Norouzi, 

Collins, Johnson, Fleet, & Kohli, 2015).  However, as an indicator of the 

sensors appropriateness in relation to linearity, drift, hysteresis, 

homogeneity, and repeatability, testing with a decision tree should allow 

some of these important elements of any sensor to be explored and will be 

discussed later (Giovanelli & Farella, 2016).  

5.1.2 RANDOM FOREST 

Random forests is an ensemble machine learning method using decision 

trees, first implemented by Tin Kam Ho and extended by Leo Breiman and 

Adele Cutler (Breiman, 2001). Random forests, as the name suggests, uses 

multiple decision trees created from a differing random subsample of the 
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training data. Classification of a new data point happens independently on 

each tree, with each tree predicting the appropriate class. Assuming a 

majority vote, the class predicted by the majority of trees for the data point 

is chosen as the prediction.  

Further, while there are implementations of decision tree models that grow 

with the introduction of new data, online random forests enable easier 

inclusion of new data into the model by having the ability to generate new 

decision trees with subsets of training data that include these new data 

points (Cassidy & Deviney, 2014).  Decision trees that are underperforming 

and classifying consistently far from the majority could also be dropped. 

These aspects strengthen the ability for the classifier to evolve and would be 

an important aspect in long-term AR installations. However, creating 

multiple decision tree instances obviously adds to the compute time 

required for model creation. 

Beside this, the core benefit of using Random Forest classification instead of 

a single decision tree is to prevent the overfitting problem mentioned above, 

creating a more general model and increasing accuracy in unseen data 

(Breiman, 2001).  The Random Forest approach has been applied to a range 

of application areas, including gene selection (Díaz-Uriarte & De Andres, 

2006), remote sensing (Pal, 2005) and land cover classification (Rodriguez-

Galiano, Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez, 2012). 

For the data in this research, this approach will aid in realisation of a more 

general model that may help in real world applications of an AR sensor and 

is tested to show any improvement against single decision tree models. 

5.1.3 NAÏVE BAYES 

Naïve Bayes, based on the Bayes’ theorem named after Thomas Bayes, is a 

probabilistic classifier used in machine learning. Because it is a class 

conditional independent algorithm, it assumes that the occurrence of a 

feature is independent of the occurrences of other features and does not 

consider any correlation between features, therefore naive.  (Lewis, 1998).  

This is done by calculating class probabilities and conditional probabilities, 
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or the frequency of each feature value for a given class value, divided by the 

frequency of instances with that class as the value. However, the feature 

values in this research are numerical and thus continuous, where 

traditional Naïve Bayes algorithms expects categorical values. Because 

WEKA is being used to implement these algorithms, it is important to note 

that a Gaussian distribution is assumed for numerical attributes by default. 

Otherwise, converting numerical attributes to nominal attributes can be 

achieved via supervised discretization, among others.  

Implementing this algorithm to allow for continuous data has its 

disadvantages though. For example, when using supervised discretization, 

information from the data can be lost as values are “binned”. This same 

issue is also apparent in decision trees too. Furthermore, the assumption 

that the data follows a Gaussian distribution may be erroneous, however 

there is allowance for non-Gaussian distribution among features values 

using a kernel estimator among others. Knowledge of the data distribution 

is key in ensuring appropriate use of the Naïve Bayes algorithm.  The Naïve 

Bayes algorithm is also widely utilised, with many applications including 

heart disease prediction (Palaniappan & Awang, 2008), text classification 

(Kim, Han, Rim, & Myaeng, 2006) and location prediction 

(Anagnostopoulos, Anagnostopoulos, Hadjiefthymiades, Kyriakakos, & 

Kalousis, 2009). 

In relation to the data in this research, as each class is represented at least 

once (at least in staged mode), evaluation will not suffer from the zero-

occurrence issues sometimes apparent with Naïve Bayes. Because the 

staged mode data points for any given class have little deviation from the 

mean, Naïve Bayes should perform well. However, the free mode data 

having higher deviation among data points of the same class, may perform 

poorly. However, given the IoT and invisibility paradigm, a Naïve Bayes 

approach may be suitable in this application because it is able to converge 

faster than other algorithm, meaning training data size can be smaller than 

other algorithms and model creation is rapid. It also tends to have an 

advantage over other algorithms when the number of classes is large, and 
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while the datasets here only have a small number of classes, a real-world 

implementation where many different activities are possible would need to 

accommodate for this.  

5.1.4 SUPPORT VECTOR MACHINE 

An algorithm that may prove useful in evaluation of AR capabilities of the 

sensor, as well as its difference in approach from the other algorithms 

mentioned, is Support Vector Machine (SVM). Unlike the probabilistic 

method of Naïve Bayes, Support Vector Machine is a non-probabilistic 

linear classification algorithm that uses regression to form boundaries 

between data points. This boundary indicates the separation between one 

class and another. SVM creates this boundary by simply selecting a few of 

the data points (support vectors) for defining boundaries of classes (or 

hyperplanes in higher dimensions) and proceeds to find the boundary that 

fits with the highest margin between the points of different class. 

Traditionally, this is a linear boundary. However, kernel manipulation can 

create boundaries (or hyperplanes) that are non-linear, and able to fit more 

complex data with high-dimensionality making it very versatile, although 

choosing the appropriate kernel function is not always clear. This flexibility 

also bodes well for datasets that cannot be linearly separated, which is 

typically evident among the real-world datasets. There are other benefits 

too. Unlike Naïve Bayes which makes distribution assumptions, SVM is 

likely to be beneficial when data does not follow a Gaussian distribution. 

Unlike decision trees, SVM is resilient to overfitting because the 

dependence is only on the support vectors to calculate the boundaries rather 

than every data point. This also entails efficient memory usage, especially 

in larger datasets.  It does have its disadvantages though. As well as 

needing an appropriate kernel function choice, large data sets can mean 

training of the model takes longer than other algorithms.  

As with other ML algorithms, SVM is widely used in a diverse set of 

application areas that include, but are not limited to, face detection (Osuna, 

Freund, & Girosit, 1997), fault diagnosis (Widodo & Yang, 2007) and cooling 

load prediction (Q. Li, Meng, Cai, Yoshino, & Mochida, 2009). 
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It should be noted that the default mechanism for implementing SVM in 

WEKA is via John Platt’s Sequential Minimal Optimization algorithm 

(SMO). The following therefore applies: replaces missing values; nominal 

attributes are transformed into binary attributes; attributes are normalized; 

multi-class datasets are classified using pairwise classification. 

5.2 ALGORITHM COMPARISON AND EVALUATION 

This section will detail the results of executing the machine learning 

algorithms given the specific dataset. Again, this is not a comprehensive 

evaluation of all algorithms, but rather an insight into suitable algorithms 

for AR given specific types of data with respect to IoT applications. WEKA 

allows an efficient way of comparing algorithms, and unless otherwise 

stated, the default settings of WEKA in this regard are used.  

5.2.1 ACCURACY  

Each of the staged and free datasets will be evaluated using a randomized 

training set and test set split of 60% and 40% respectively. The criteria that 

will be assessed are accuracy and correct classification, elapsed training 

time, and elapsed testing time. Each evaluation is completed ten times per 

algorithm per dataset. 

For the following tables (6 – 25), the columns from left to right are (1) J48 

decision tree; (2) random forest; (3) Naïve Bayes; (4) Support Vector 

Machine (Sequential Minimal Optimization). The first four rows relate to 

the staged mode datasets (1 – 4), with free mode datasets visible in the last 

three rows (5 - 7), unless otherwise stated. 

All algorithms performed well where frequency of instances across the 

classes were identical (staged mode), with no significance difference in 

correct classifications among the smaller datasets. The results shown in 

Table 6 indicate that J48 decision trees perform universally well for any 

given dataset, able to correctly classify between 99.88% and 94.81% 

irrespective of instance number or instance frequency. 

 



Activity Recognition Evaluation via Machine Learning Classification 

 

 

 98 

Table 6: Percentage correctly classified with a significance level of 0.001 

(two-tailed confidence level of 99.9%) 

Dataset Decision 

Tree 

Random 

Forest 

Naïve 

Bayes 

SVM 

1 99.88 100.00 100.00 100.00 

2 99.79 100.00 100.00 100.00 

3 99.78 100.00 99.67 100.00 

4 99.18 99.90 97.13 99.99 

5 95.23 98.04 54.47 97.88 

6 95.68 98.11 53.62 97.50 

7 94.81 97.12 35.30 97.14 

 

This result was achieved using pruning with subtreeRaising and a two-

tailed confidenceFactor of 0.001. This reduces tree depth and at lower 

instance numbers, doesn’t seem to have an effect. As can be seen in Table 7, 

there is no difference between a pruned and unpruned tree for this dataset. 

Table 7: Staged dataset with 2800 instances and 60/40 split show 

identical tree structure irrespective of pruning. 

Pruning Root 

Node 

Tree 

Size 

Leaves Correctly 

classified 

(%) 

none 1144 15 8 99.75 

subtreeRaising 1144 15 8 99.75 

 

When evaluating the largest dataset however, the J48 algorithm using 

pruning is a little more efficient, with the size of the tree slightly smaller 

and with less leaves, but only with an insignificant increase in classification 

accuracy, as shown in Table 8. While the difference is minuscule, this could 

be useful in creating a model that is less complex and therefore is better at 

avoiding overfitting and thus more useful for generalisation. Interestingly, 

most of the tree structure is relatively similar and is not very balanced, 

regardless of the pruning occurring or not. 
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Table 8: Free dataset with 17096 instances and 60/40 split show the effect 

of pruning on more complex data 

Pruning Root 

Node 

Tree 

Size 

Leaves Correctly 

classified 

(%) 

none 544 631 316 94.0333 

subtreeRaising 544 575 288 94.1065 

 

However, to confirm that the accuracy remains similar while reducing tree 

complexity and to see if any difference can be determined as a cause of the 

dataset itself, a holdout method consisting of a randomized separate 

training and test data set from dataset 4 is used, with the results shown in 

Table 9. 

Table 9: Staged dataset with 4000 (2400 training and 1600 test) instances 

and using a holdout method of 60/40 to show the effect of pruning different 

data 

Pruning Root 

Node 

Tree 

Size 

Leaves Correctly 

classified 

(%) 

none 34 23 12 98.875 

subtreeRaising 34 19 10 99.125 

 

The results of this test with a staged dataset of 2400 instances and 1600 

test instances using the holdout method confirm earlier results, with 

accuracy not significantly changing and the tree marginally reducing in 

size.  

To reduce the tree size further and test the difference between post-pruning 

and online pruning, a smaller confidence factor of 0.001 (from the default 

0.25) was used, along with an increase in the minimum number of instance 

per leaf to 5 (from the default of 2). All trees were using subtreeRaising 

pruning. The effect of inducing more aggressive pruning to achieve a 

smaller tree is seen in Table 10. 

These evaluations with the free mode dataset reveals that varying the 

minimum instance values while keeping the confidence factor static resulted 

in accuracy decline. This was also reflected when the confidence factor was 
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altered, and overall smaller trees created fewer correctly classified 

instances. Therefore, the initial J48 decision tree with Weka’s default 

settings resulted in a relatively optimized model for this data. 

Table 10: Free dataset with 5516 (randomized exclusive 3309 training and 

1985 test) instances and using a holdout method of 60/40 to show the effect 

of different values in conjunction with pruning 

Confidence 

Factor 

Minimum 

Instances 

per leaf 

Root 

Node 

Tree 

Size 

Leaves Correctly 

classified 

(%) 

0.25 2 814 117 59 99.7985 

0.25 5 814 93 47 99.2947 

0.25 10 814 79 40 98.136 

0.25 20 814 45 23 95.1637 

0.001 2 814 103 52 99.3955 

0.001 5 814 67 34 97.3804 

0.001 10 814 55 28 96.1713 

0.001 20 814 37 19 94.3577 

 

Referring to the initial comparison in Table 6 which shows there is no 

significant difference between algorithms on lower instance datasets, there 

is a significant difference in correct classification among the free mode 

datasets consisting of more instances. Both Random Forest and SVM 

outperform J48 with this type of dataset. However, there is no significant 

difference between the Random Forest and SVM in accuracy. Again, using 

the holdout training and test dataset from before, the Random Forest 

algorithm was able to achieve 100% correct classification accuracy, and 

SVM able to achieve an accuracy of 99.49%, as noted in Table 11. No further 

optimizations of the algorithm in accuracy of classification are needed, as 

these two algorithms are performing classification well. This can be seen in 

the low Mean absolute error (MAE) and similarly the low Root mean 

squared error (RMSE). 
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Table 11: Free dataset with 5516 (randomized exclusive 3309 training and 

1985 test) instances and using a holdout method of 60/40 to show 

comparing RandomForest and SVM in WEKA’s default configuration 

Classification 

algorithm 

Kappa MAE RMSE Correctly 

classified 
(%) 

RandomForest 1 0.0858 0.0227 100 

SVM 0.9915 0.1875 0.2913 99.462 

 

Because this is a multi-class classification problem and class balance needs 

to be taken into account, the Kappa metric reflects very good performance in 

most cases against random classification. Here, almost all algorithms have 

very high kappa values > 0.93 regardless of the dataset. 

Table 12: Kappa statistic for each algorithm across all datasets when 

using a two-tailed significance of 0.001 and 10-fold cross-validation 

Dataset Decision 

Tree 

Random 

Forest 

Naïve 

Bayes 

SVM 

1 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 

4 0.99 1.00 0.97 1.00 

5 0.94 0.97 0.45 0.97 

6 0.93 0.97 0.38 0.96 

7 0.93 0.96 0.24 0.96 

 

However, this is not true for Naïve Bayes and the free mode datasets. 

Interestingly with the free mode datasets, Naïve Bayes kappa values are 

0.45, 0.38, 0.24 respectively as instance numbers increase. Accuracy drops 

dramatically to below 54% for the free mode dataset, despite having less 

instances than the largest staged mode dataset where it correctly classified 

97.13% instances. This makes Naïve Bayes the worst performing algorithm 

in real-world cases. Furthermore, it begins to incorrectly classify at a faster 

rate than the others with a lower Kappa value across four of the datasets. 

These values are probably due to the Gaussian distribution assumption 

used as the default in WEKA for continuous features.  
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Further investigation using supervised discretization shows that Naïve 

Bayes is able to correctly classify significantly better, achieving almost 

79.57% for correct classification of dataset 5 and 75.60% for dataset 7, a 

dramatic improvement from the Gaussian implementation of 54.66% and 

35.90% respectively, as shown in Table 13 and Table 14. 

Table 13: Comparison of Gaussian and Supervised Discretization Naïve 

Bayes with dataset 5 

Distribution Kappa MAE RMSE Correctly 

classified 
(%) 

Gaussian 0.4506 0.1132 0.3364 54.6658 

Supervised 

Discretization 
0.7476 0.0512 0.2255 79.57 

 

Table 14: Comparison of Gaussian and Supervised Discretization Naïve 

Bayes with dataset 7 

Distribution Kappa MAE RMSE Correctly 
classified 

(%) 

Gaussian 0.2362 0.1615 0.4019 35.905 

Supervised 

Discretization 
0.6879 0.061 0.2466 75.6069 

 

Observing the confusion matrix in Table 15  shows that despite the 

improvement, Naïve Bayes does still not perform as well as the others in 

classification. For a few classes there is a high recall value but with low 

precision, indicating that it may be identifying the majority of true positive 

cases correctly but also including false positive results too as it assumes a 

wide distribution of data points.  
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Table 15: Confusion matrix for Supervised Discretization Naïve Bayes 

using dataset 7 

Classification a b c d e f g h 

a = neutral 1407 22 117 144 174 0 44 0 

b = relaxed 42 1088 93 28 43 70 7 0 

c = typing 0 0 906 127 0 0 0 0 

d = mouse 220 7 444 1445 51 14 0 0 

e = left 1 2 2 2 81 0 0 0 

f = right 0 0 0 0 0 35 0 0 

g = standing 0 0 0 0 0 0 69 11 

h = away 0 0 0 0 0 0 2 139 

 

Interestingly, when comparing the rates of false negatives in Table 16 with 

the rates of false positives results in Table 17 across all datasets and 

accounting for class occurrence, the metrics for Naïve Bayes show higher 

rates of false negatives, indicating the models were more likely to classify an 

instance as not belonging to a particular activity, when in reality it was. 

However, for the other algorithms, particularly Random Forest and SVM, 

the models had almost similar rates of classifying instances as belonging to 

an activity when they did not. 

Table 16: False negative rates across all datasets and algorithms using a 

significance factor of 0.001(two tailed) 10-fold cross validation 

Dataset Decision 

Tree 

Random 

Forest 

Naïve 

Bayes 

SVM 

1 0.00 0.00 0.00 0.00 

2 0.01 0.00 0.00 0.00 

3 0.00 0.00 0.01 0.00 

4 0.00 0.00 0.00 0.00 

5 0.06 0.02 0.37 0.02 

6 0.03 0.01 0.30 0.02 

7 0.03 0.01 0.25 0.01 
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Table 17: False positive rates across all datasets and algorithms using a 

significance factor of 0.001(two tailed) 10-fold cross validation 

Dataset Decision 

Tree 

Random 

Forest 

Naïve 

Bayes 

SVM 

1 0.00 0.00 0.00 0.00 

2 0.01 0.00 0.00 0.00 

3 0.00 0.00 0.01 0.00 

4 0.00 0.00 0.00 0.00 

5 0.02 0.01 0.04 0.01 

6 0.04 0.02 0.10 0.02 

7 0.01 0.01 0.05 0.01 

 

When implemented, the use of a kernel estimator did not yield results as 

accurate as supervised discretization for the Naïve Bayes algorithm.  

With Naïve Bayes improvement implemented, another analysis is 

performed and compared against each other, this time using ZeroR as a 

base case to compare the algorithms against the simplest classification 

possible beside randomly assigning classes. These results are shown in 

Table 18. 

Table 18: Percentage correctly classified for all algorithms after 

optimization across all datasets with a significance level of 0.05 (two-

tailed), using 60/40 holdout train and test sets 

Dataset Zero 

R 

Decision 

Tree 

Random 

Forest 

Naïve 

Bayes 

SVM 

1 12.50 99.98 100.00 100.00 100.00 

2 12.50 99.79 100.00 100.00 100.00 

3 12.50 99.78 100.00 99.28 100.00 

4 12.50 99.18 99.90 99.01 99.99 

5 32.45 95.23 98.01 80.79 97.88 

6 56.15 95.68 98.11 72.07 97.50 

7 31.98 94.81 97.12 75.26 97.14 

 

While slightly optimizing Naïve Bayes resulted in classification 

improvement and being better than the base case offered by ZeroR, it still 

was significantly less optimal than the others. As a final test in accuracy, 
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instead of using a hold train and test sets, a 10-fold cross validation is used 

to validate the results. These are shown in Table 19.  

Table 19: Percentage correctly classified for all algorithms after 

optimization across all datasets with a significance level of 0.05 (two-

tailed), using 10-fold cross validation 

Dataset Zero 

R 

Decision 

Tree 

Random 

Forest 

Naïve 

Bayes 

SVM 

1 12.50 99.50 100.00 100.00 100.00 

2 12.50 99.83 100.00 100.00 100.00 

3 12.50 99.93 100.00 99.36 100.00 

4 12.50 99.57 99.98 99.02 100.00 

5 32.45 96.09 98.39 82.98 98.31 

6 56.15 96.19 98.71 72.95 98.01 

7 31.98 95.98 97.64 75.95 97.44 

 

These results are relatively consistent with previously completed tests, and 

therefore, choosing either of the three good performing algorithms for 

classification based on accuracy in this scenario would seem appropriate. 

However, given the requirements of this particular AR sensor in relation to 

the IoT paradigm discussed earlier, more than just analysis of accuracy and 

kappa metrics are needed. 

5.2.2 EFFICIENCY  

Because the proposed solution is to be implemented in real-world scenarios 

in the context of an AR interface for the IoT, the value of efficiency 

discussed here is concerned with more than just the algorithms accuracy. 

Considering the possibility of real-time AR and embedded solutions, or 

alternatively remote computation, there is a need to assess algorithms 

performance on training time, classification time, CPU usage, and model 

size. Using the 10-fold evaluation results, WEKA provides some metrics 

that enable this analysis. This is also not a statistical analysis of the metrics 

here, but rather a general observation of the values to guide further 

investigative work in the future. 
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Time taken to train the model is important to consider. Depending on the 

strategy, model training time may be insignificant if is only done 

sporadically.  For the given scenario, for example, data acquisition could be 

consistently active during the day as AR occurs, with models updated 

overnight while the workplace is empty and used in the consecutive days. 

For other scenarios, however, where online model training is done for 

constant improvement during the day, the time taken to compute the 

models becomes a bigger factor. This is not meant to be an indicator of the 

actual time it would take an algorithm to perform classification, as this is 

too dependent on hardware configuration and algorithm implementation. 

Rather, it is valuable in comparing the algorithms with each other in 

relation to accuracy, and helpful in establishing the use of an appropriate 

algorithm given factor other than accuracy only.  

The time taken to train each algorithm, indicated by the CPU time spent 

during training, are shown in Table 20. These results may seem 

comparatively insignificant considering that the slowest training of a model 

took only 420 seconds. However, this needs to be considered in terms of two 

aspects. The first is hardware capability, as these results were completed on 

a high clock-speed, high-core count water-cooled computer system. While 

remote model training, such as those completed here would cope with the 

variance shown in training time, an enclosed energy efficient embedded 

system without this computing power (and preferred in some IoT 

applications) would be orders of magnitude slower. Furthermore, this data 

has been collected from a single user in approximately a square meter of 

space. If a larger installation covering hundreds of square meters, with 

possibly hundreds of users simultaneously creating data (the essence of the 

IoT being available to anyone, anywhere) then this disparity in training 

time becomes increasingly important as data exponentially grows. This is 

without considering that only a limited range of activities are accounted for 

in this testing when there are possibly hundreds or thousands of activities 

that could be implemented. In the context of this research, the difference 

between Random Forest and SVM for the largest dataset is greater than 15 

times slower, which is not significant at datasets of this scale, but could be 
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in real-world applications. Thus, it is the comparison to each other that is 

being considered here, rather than just the actual CPU time spent training. 

It is fairly obvious that time spent increases as the datasets become larger, 

and as complexity of the data increases from staged mode data to free mode 

data. Interestingly, this is not necessarily true for Naïve Bayes, where 

training time increases seemed only to correspond with instance numbers, 

as seen in the decrease of training time of the smallest free mode dataset 

and the largest staged mode dataset. This is apparent too in the free mode 

datasets, where Naïve Bayes was comparatively fast at training in two of 

three datasets, and only slightly slower for the largest dataset. 

Table 20: Comparison of CPU time (seconds) taken for model training 

Dataset Decision 

Tree 

Random 

Forest 

Naïve 

Bayes 

SVM 

1 0.22 0.17 0.14 0.13 

2 1.36 0.38 0.65 0.45 

3 4.01 1.18 2.95 1.24 

4 8.42 1.97 4.84 1.99 

5 13.81 6.23 3.88 7.32 

6 36.85 9.14 5.30 29.52 

7 274.68 27.00 28.64 420.41 

 

However, it must be remembered that there was a marked drop in accuracy 

between data modes, and while it was the worst performing algorithm 

overall for accuracy, on the smallest staged mode data where accuracy 

among the algorithms was similar, it is a very fast algorithm to train being 

only slightly slower than the SVM. It is important to consider that at this 

low instance number Naïve Bayes could potentially outperform the other 

algorithms when training time is included as a metric for performance. 

However, in future work where more activities are to be classified, datasets 

are only likely to grow larger rather than smaller, and so the performance of 

algorithms on these smaller datasets may be irrelevant and is another 

factor in consideration of the importance of training time. 



Activity Recognition Evaluation via Machine Learning Classification 

 

 

 108 

Another interesting aspect is that a J48 decision tree is significantly slower 

to train than a Random Forest, seemingly unintuitive given that the 

Random Forest is an ensemble method consisting of decision trees. 

However, considering that the data points are equal for any given dataset, 

the computational expense involved in pruning and subtreeRaising to 

prevent a deep data tree and hence worse case scenarios is relatively worse 

than the Random Forest approach. Instead, creating subsets of random 

features and creating more, yet shallower trees on these subsets proves far 

more efficient, as evident in the exponentially smaller times of the Random 

Forest approach. Again, while this may not be excessively important 

depending on the AR modelling approach taken, it is a factor to consider if 

online model creation is considered or large data training sets are used.  

While SVM proved to have excellent accuracy, time taken to train a model 

using this approach seems to deteriorate on the free mode datasets, despite 

being one of the fastest algorithms on the staged datasets. This is especially 

true for the largest dataset, where the algorithm takes substantially longer 

to train than the next worst algorithm. To assess whether this could be due 

to the effect of sparse data, a single SMO model was trained using the same 

holdout train and test set used to improve Naïve Bayes, while disabling 

normalization and standardization both separately and together, as well as 

investigating an SVM with a different kernel. The results are shown in 

Table 21. 

Table 21: Time taken training an SVM model using normalization, 

standardization, and an alternative kernel, when used with the 60/40 

holdout test with dataset 5 

Normalize 

training 

data 

Standardize 

training data 

Kernel Time 

Training 

(sec) 

yes no PolyKernel 23.96 

no yes PolyKernel 23.41 

no no PolyKernel 25.44 

no no Normalized 

PolyKernel 

104.75 
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These results show that while accuracy remained relatively consistent, no 

remarkable differences in time taken to train were evident. In fact, 

disabling both normalization and standardization had an adverse effect, 

although relatively insignificant.  

However, shown in Table 22, there was more of a pronounced improvement 

on time taken to test the models when standardization was used, or when 

both standardization and normalization were disabled.  This is possibly 

more pertinent to the scenario of real time, real world AR application. For 

an AR sensor to truly reflect the activities of a user, the ability to use the 

model to quickly classify what activity the user is participating in before a 

change of activity occurs is important. This is even more paramount in an 

IoT environment where inferences about the user’s activity may influence 

and inform other components of the system, and delays in classification 

could lead to a poor performing system and frustrated users. However, 

considering that the worst model for a SVM using a PolyKernel is about 

twice as slow as the best performing model in terms of testing, the 

observable impact would be minimal given that the units of measurement 

are in seconds. It would be interesting to see the effect that weaker 

computing power would have on these metrics, and to see if there exists a 

linear correlation between the variance shown here and computing 

capability. 

Table 22: Time taken evaluating the SVM models from Table 21 

Normalize 

training 
data 

Standardize 

training data 

Kernel Time 

Testing 
(sec) 

yes no PolyKernel 0.27 

no yes PolyKernel 0.14 

no no PolyKernel 0.13 

no no Normalized 

PolyKernel 

28.36 

 

To assess this, the metrics WEKA provides are the time taken to complete 

testing and the cpu time used in testing. Again, this is not an in-depth 
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analysis but provides a good observation of the values in comparison to each 

of the algorithms. Of further note is that the values given indicate the 

length of testing all instances in the dataset, not per-instance, meaning 

classification of a single instance would be faster than those shown. 

However, it is the comparative values that are being discussed here rather 

than the values themselves, as these are too hardware and dataset 

dependant to provide any generalization about classification performance. 

The results are shown in Table 23. 

Table 23: Time taken (seconds) to classify the test set of each dataset  

Dataset Decision 

Tree 

Random 

Forest 

Naïve 

Bayes 

SVM 

1 0.00 0.00 0.09 0.00 

2 0.00 0.00 0.26 0.02 

3 0.00 0.01 0.62 0.04 

4 0.00 0.01 0.89 0.07 

5 0.00 0.03 0.88 0.05 

6 0.00 0.04 1.22 0.07 

7 0.01 0.10 3.87 0.36 

 

It is evident that J48 decision trees are by far the fastest algorithm in 

testing, followed by Random Forest, SVM, and Naïve Bayes. Decision trees 

being the fastest algorithm for classification is unsurprising in optimally 

sized trees, where classification is but a simple choice of a path. Likewise, 

Random Forest using the same procedure, but having some extra steps, 

such as the majority vote, means it is unsurprisingly efficient in classifying 

a new instance too. Naïve Bayes, while very fast at training compared with 

the other models, is much slower than the others at classifying. As seen 

with the improvements possible in testing time with SVM, it still lags 

slightly behind both of these. Therefore, when considering classification 

time, especially if data transferal latency for remote computation is to be 

considered, a decision tree-based implementation seems the most efficient. 

Another metric that should be considered is model size. This is particularly 

of interest with an embedded implementation, which may become relevant 
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in a true IoT implementation. Such an implementation would have lower 

computational capability which may exacerbate slow training and 

classification times as discussed earlier, but would also be affected by 

storage limitations. 

Shown in Table 24 are the serialized model sizes. It is evidently clear that 

J48 decision trees consistently create the smallest model regardless of the 

dataset type or size. However, for the Random Forest approach, each 

training model size gets larger with size, and there is a marked increase in 

model size between the two different types of data, with an enormous model 

for the larger dataset in comparison to the other models. Naïve Bayes rather 

interestingly starts with a much larger model that the other algorithms in 

the smaller datasets, but more or less remains around this size and even 

decreases for the smaller free mode dataset that consists of more instances, 

increasing in size for the largest dataset. After Naïve Bayes, SVM has the 

largest model for the smaller datasets, shrinking for the first few free mode 

datasets, and increasing for the last. 

Table 24: Observed average model size (bytes) for each algorithm and 

dataset (Java Serialized Objects) after ten iterations 

Dataset Decision 

Tree 

Random 

Forest 

Naïve 

Bayes 

SVM 

1 204565.00 355692.70 2987017.50 856795.20 

2 204565.00 494114.90 3093029.30 803025.00 

3 204565.00 801807.90 3548124.30 881950.20 

4 207102.80 1026173.30 3821126.50 980416.20 

5 240443.60 5199984.20 2881481.20 707916.20 

6 247750.00 6359232.30 2796980.00 657036.20 

7 364325.00 17227015.20 4526798.90 1090934.40 

 

Therefore, if model size is a factor in assessing algorithm suitability and 

assuming free mode type of datasets in a real-world implementation, a 

decision tree or SVM implementation may be an optimal solution. 
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5.3 SUMMARY 

In an AR sensor acting as an interface to the IoT, machine learning is an 

important component of the system, and accuracy of classification is the 

most important metric to consider in machine learning. Without accurate 

classification, it would not be performing its main objective, making 

discussion of the other metrics futile.  

However, selecting the correct algorithm based on accuracy is dependent on 

the datasets. Assuming a real-world implementation with moderately sized 

datasets and averaging accuracy performance on the free mode datasets, 

then of the algorithms tested the Random Forest (98.25%) or SVM (97.92%) 

approach is best, followed closely in performance by a J48 decision tree 

(96.09%). Naïve Bayes (77.29%) is much lower than these other algorithms 

even after limited tuning.  

Considering the other metrics in relation to free mode datasets, however, 

show that Naïve Bayes averaged 12.61 seconds to train, while Random 

Forests took only slightly longer at 14.12 seconds on average. J48 decision 

trees averaged 108.45 seconds, while SVM took the longest at 152.42 

seconds. For both J48 and SVM, as the instance numbers increased, the 

training time needed also increased dramatically, distorting these averages, 

and while Naïve Bayes and Random Forests training time did increase too, 

the increase in time to train was more linear. If considering this metric in 

correlation with the accuracy, a Random Forest approach may seem to be 

the optimal choice. 

If consideration of time taken to classify is more important in offering a 

responsive real-time AR classification system, then a J48 Decision tree was 

easily the faster of the algorithms (0.03 sec), followed by Random Forest 

(0.06 sec), SVM (0.16 sec), and Naïve Bayes (1.99 sec). While hardware used 

would affect these values, with the system and sensors current 

implementation, a request to the microcontroller followed by a full pass of 

the sensor and consequent write to serial was observed to take 0.04 to 0.05 

seconds. Ignoring the overheads due to processing and writing to file, only 

one algorithm is able to complete a classification within this time. This 
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means it could be possible to classify an existing instance while issuing a 

reading from the sensor, and have this classification completed before the 

next sensor reading is presented. However real time classification was not 

attempted here, and the discussion of these metrics are used to inform 

further investigation. Likewise, with the models not limited by the 

constraints of hardware or real-time classification problem, model size is 

less of a concern. However, considering the large variation between the 

serialized model size of each algorithm, it is important component for any 

future investigation. It showed that while a Random Forest approach is one 

of the better algorithms in accuracy and time taken for training and 

classification, the models produced are relatively large in comparison, 

possibly having consequences for embedded implementations or where 

hardware restrictions exist (while noting these are serialized Java Objects).  
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6 LIMITATIONS, FUTURE RESEARCH AND 

CONCLUSION 

This research has evaluated the implementation of an interface using 

readily available and cost-effective parts in an artefact that is both non-

intrusive and intuitive for a user in this particular use-case. While these 

aspects were based on fundamental principles of the IoT discussed in section 

2.1 and 2.4, the evaluation results of section 5 show that these components, 

when combined with an appropriate machine learning algorithm, are able to 

provide highly accurate recognition of a limited amount of activities.  

This was achieved by first conducting a design process to find the optimal 

construction of a suitable physical layer that would not impede activity or 

require changes to normal activity in the given scenario. The design process 

led to a base layer consisting of thin rubber with a backing lined by copper 

rows. This interfaced with the ground, and was able to stay fixed in its 

location, whether it was a soft or hard surface. The top layer consisted of a 

layer of carpet with a thin bonded urethane backing lined with copper 

columns. This layer provided the interface between a user, either directly or 

through furniture, and the base layer. A piezoresistive material 

commercially known as Velostat rests between the base layer and top layer, 

providing the change in resistance and therefore pressure applied. The 

intersections of the bottoms layers rows and the top layers columns provide 

a mechanism for locating the pressure. The layout of these columns and 

rows provide a sensing electrode every 1.8 square centimetre. The spatially 

located pressure data provided by the sensor in this configuration allowed 

for a high level of classification accuracy, as is evident in the results. 

In selection of an appropriate microcontroller to drive the sensor, a Teensy 

3.2 was used, providing ample sampling rates, sufficient pins connected to 

two ADC with appropriate high bit resolution, as well as being able to 

supply 3.3V to the sensor itself. The use of eight multiplexers was used to 

accommodate all the rows and columns of the sensor.  This microcontroller 

writes to serial, where a program is waiting for this input and is written to a 

file for machine learning processing. 
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An analysis of suitable machine learning classification algorithms was 

performed, assessing accuracy, training time, testing time, and model size. 

This showed that Naïve Bayes was not as suitable a candidate for the data 

produced from the sensor due to the lower accuracy, while J48 Decision 

Trees, Random Forests, and SVM provided remarkable accuracy, but each 

had drawbacks depending on the importance placed upon the various 

metrics. For this implementation where post processing occurred, the 

Random Forest algorithm offered the best performance among the majority 

of metrics considered, only suffering from a larger model size than that of 

the other algorithms. 

6.1 LIMITATIONS 

There are a number of limitation that are of note. 

6.1.1 SAMPLE SIZE 

While many datasets were constructed with different chair orientations and 

start points, all datasets were the result of one user’s interactions. The 

assumption is made that while variation between user data would be 

inevitable due to variables such as weight or how users perform the activity, 

as well as the variability produced by different chairs or office 

environments, if accuracy levels achieved are consistently well for one user, 

then another pattern from any other user’s activity would be identifiable by 

the machine learning algorithm, and another model created based on this 

new data. However, it is unclear whether the data produced between 

various users would produce similarly distributed data points and thus 

whether the optimal algorithm found in this research would produce 

outcomes that conclude with the same results.  

This is also evident within the testing of the physical design of the interface 

itself. While only a little different to a typical carpet mat, the conclusion 

that it was intuitive to use and non-inhibitive of general movement is only 

based on the observation of a single user. For others the experience may 

differ depending on how they operate within the given scenario space. 
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Importantly, it must be noted that the user in this research was also the 

researcher. While effort was made to ensure that activities were performed 

naturally and without bias (such as creating many different datasets and 

randomly selecting seven to use), knowledge of the sensor’s configuration 

and operation may have led to the unconscious exaggeration and positioning 

of pressure in order to amplify the differences between the activities and 

increase classification accuracy. It would be prudent in future research to 

use multiple participants in evaluation of the sensors performance.  

6.1.2 LIMITED ACTIVITIES 

The restricted number of activities for recognition were chosen based on an 

observation of office workers and their activities. The selection was further 

influenced by the spatial variation between activities and the prospect to 

assess the sensors capabilities between subtle weight shifts (e.g. from 

keyboard to mouse) and more pronounced changes in pressure distribution 

(e.g. relaxing to away). However, the activities chosen did not categorically 

represent all observed activities and were restricted to eight classes due to 

time restrictions in the research. For a ubiquitous and accurate AR sensor, 

the ability to classify from a multitude of possible activities would be 

imperative and is unfortunately not implemented nor assessed here.  In that 

regard, only the foundational work for a general AR sensor has been 

addressed. 

Related to this, the use-case of an office desk worker only offers a limited 

perspective on the effectiveness of the sensor in AR applications outside this 

scenario. While classification with only subtle pressure distribution changes 

were highly successful, other use-cases may have such minimal variation 

between activities that in the sensors current implementation, they are 

undetectable and inhibit accurate classification.  

6.1.3 DATASET AND ALGORITHM TRAINING  

While many datasets were created and could have been used in the machine 

learning process to improve classification, time restraints related to data 

complexity and training meant only a select number were chosen. While the 

chosen datasets were meant to be a representative selection of all available 
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datasets, a bias existed toward the smaller datasets. This was to enable 

faster optimization and re-training, because as the dataset sizes grew so did 

the training time, and optimization and exploration of the algorithms was 

becoming prohibitively expensive as even the slightest change meant 

creation of a new model. However, using more of the datasets to test the 

sensor’s classification ability would have provided a more comprehensive 

and significant result. 

This is also true of the chosen algorithms. While the approach is clearly one 

of classification, not every algorithm capable of classification was assessed 

in this research. The conclusion therefore can only state which of the used 

algorithms is sufficient for the task but cannot generalize about the same 

algorithm being the most efficient in this scenario.  

6.1.4 IOT INCLUSION 

The research first proposed the digitisation of human activity for inclusion 

into the IoT system. While the research used principles of ubiquitous 

computing and the IoT paradigm in informing design choices, the research 

did not investigate actual IoT inclusion or its effectiveness in an IoT system. 

Indeed, after the physical component was completed, the core consideration 

of the research become orientated toward AR strategies and feasibility for 

effective classification in an IoT paradigm. While the exploration and 

assessment in this research is required to even begin investigation into the 

effectiveness of this AR sensor as an IoT interface, concluding the research 

in this state leaves one of the more foremost questions of this research 

unanswered. 

6.1.5 REAL-TIME VS POST-PROCESSING OF DATA FOR CLASSIFICATION 

Related to effectiveness within an IoT system is the difference in real-time 

classification or delaying the classification procedure. This research, for 

simplicity and time restraints, chose classification as a post-data collection 

operation. If understanding trends or behaviours within a given 

environment are the proposed outcomes, then the sensor in this 

implementation is adequate. However, as with any interface, responsiveness 

from the view of the user would require a real-time classification approach 
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and could also extend to real-time training of new data. As prevalent in the 

literature review, the inclusion of humans within the IoT was important, 

and this sensor does not address this. While it does offer a foundational 

exploration into AR with guiding principles from the IoT paradigm, not 

implementing real-time classification further deviates away from exploring 

an IoT interface and more toward an alternative AR artefact. 

Given that vast amounts of data would be generated in a large ground-

based installation, a possible avenue to explore would be data stream 

mining. This alleviates problems associated with the storage of the 

generated data, simply accessing it once and discarding it. This would be an 

effective approach where limited capabilities are a factor, such as in small 

embedded microcontrollers with minimal storage. Furthermore, the 

possibility of online training using data stream mining to further improve 

classification in an evolving environment, could be achieved with such an 

approach, and would be interesting to investigate further. 

6.2 FUTURE RESEARCH 

As discussed, this research has explored existing domains of research and 

viewed it from another context, that of the IoT. While somewhat successful 

in creating an AR interface, the previous discussion demonstrated that 

integration into the IoT system and operation as a competent human 

interface will require further exploration. 

6.2.1 PHYSICAL ARTEFACT DESIGN 

Cost, usability, invisibility, and reliability were four factors considered in 

the physical construction of the sensor. These could be further investigated 

by addressing some of the issues mentioned in the previous section. 

However, other factors that could impact the physical design of the sensor 

should be considered as well. 

For example, the observed area of user movement in the given use-case 

dictated the physical size of the sensor. Using these dimensions, the 

assumption was made that a higher density of electrodes would offer higher 

classification accuracy, and the electrodes were consequently constructed 
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using the highest density possible. An investigation into the minimal 

number of electrodes needed to still provide high classification accuracy, 

thereby reducing complexity and cost of the sensor, would prove valuable in 

creating a more cost-effective implementation.  

Further still, this sensor used a carpet-like interface in the assumption that 

it offered the most ubiquitous and invisible properties needed for real-world 

implementation. However, hard-floor surfaces are also used in the 

commercial environments and investigating other possible surfaces in 

relation to this AR sensor system would provide a more complete evaluation 

in creating a more general and ubiquitous AR sensor. 

While this research was conducted within a short period of time, in more 

permanent installs where it replaces the current ground covering, this 

sensor may be required to operate for years. Investigation into the accuracy 

and its operating ability and accuracy drift over time would be interesting. 

6.2.2 SENSOR ARCHITECTURE 

This research consists of four distinct components; the physical sensor; 

electrical components; data acquisition; data classification. These are 

physically separate, with the last two components conducted on a remote 

computer. While no assumptions were made as to the optimal architecture 

for such an AR implementation, investigating possible alternatives could 

provide a more effective solution in context of the IoT. For example, 

exploring the merits of a fully-enclosed system from pressure detection to 

classification, rather than distinct components, would advance some of the 

principles of ubiquity discussed in the literature review, and an embedded 

implementation would help advance that ubiquitous vision. 

Further to this, architecture investigation could provide even insight into 

multiple instances of the sensor that combine their classification efforts, 

allowing assessment of the effectiveness of a modular sensor when 

cooperating in larger environments. Exploring this avenue would help 

determine feasibility and possible unknown areas for deployment.  
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Also, the sensor is limited to single-user based AR, given the use-case. 

However, as many activities outside of this scenario include multi-user 

engagement, a general, ubiquitous, and invisible AR system would need to 

have the mechanisms to allow for these types of activities. Exploration into 

multi-user AR is already a domain of interest for researchers, but again 

using more intrusive techniques such as cameras. A multi-user AR system 

more aligned with some of the principles discussed here could yield some 

interesting results. 

6.2.3 MACHINE LEARNING FOR AR CLASSIFICATION 

There are many opportunities to explore within AR in regard to machine 

learning algorithms. Of late, deep learning techniques in machine learning 

have become the fascination of many researchers from various domains, 

including AR as discussed in the literature review. While an attempt was 

made in this research, it was not successfully instantiated due to time 

constraints and complexity. However, as seen in some of the remarkable 

research to date involving this technique, investigating the performance on 

a sensor such as this would be useful. Beside investigating other machine 

learning techniques, further optimization of the current algorithms for other 

environments and use-cases would prove useful in further development of a 

general SF interface for the IoT. 

An alternative possibility would be the investigation of data stream mining 

techniques as a means to reduce the computational cost in building the 

classification models. Various techniques for mining data streams exist that 

revolve around identifying concept drift and then incrementally rebuilding 

the classifier only when the input data is different than previously observed 

in the data stream. 

Another interesting avenue for machine learning exploration would be the 

use of classification techniques within embedded instantiations. With 

specialised machine learning hardware available, the use of these within AR 

to realise a modular system could provide insight into the differences 

between the implementation presented here and a more specialised system, 

in terms of aspects such as efficiency in classification.  
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An important aspect that would provide a more responsive interface is the 

possibility of predicting activity before it occurs, with traditional AR 

machine learning more concerned with accurate classification of current or 

previously recorded activities. Investigation into this through the use of a 

sensor with the same restrictions would allow further exploration into the 

viability of the sensor as an IoT interface. 

6.2.4 STAKEHOLDER ENGAGEMENT 

While the feasibility of the sensor’s physical design was explored from a 

single end-user’s perspective, there was little discussion on the actual 

deployment of the sensor in a real-world setting, neglecting this for due to 

time restraints. Therefore, stakeholder’s perspectives would be influential in 

realisation of a ubiquitous sensor. These could include participants from 

across the spectrum, from analysis of the sensor in action with multiple end-

users, to participation from potential implementers of a large-scale sensor. 

Rather than performing this research in the lab, having these parties input 

into the development and deployment of a sensor would be both interesting 

and vital for further exploration. 

6.2.5 IOT VALUE 

As explained in the literature review, the IoT is a very encompassing 

system. While this research and consequent sensor provide an intuitive and 

non-intrusive way into digitising human activity with the intention of 

human inclusion into the IoT, more research is needed into the effectiveness 

of this solution and its role as an interface for this system. This could be 

approached from many different perspectives. For example, it could include 

exploration of low-level hardware and communication technologies between 

other devices within the IoT system. A more qualitative perspective could 

investigate the perceived value to end users of a ubiquitous AR sensor in 

providing automation among other IoT devices, or alternatively observe and 

investigate the cognitive process of users when somewhat personal 

information is being constantly shared within a larger IoT system. The 

possibilities are broad. 
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6.3 CONCLUSION 

The view of this research, based upon analysis of related literature, is that 

more investigation into a suitable way to include humans into the IoT is 

needed. This research proposes that an activity recognition, ground-based 

sensor, capable of digitising human actions and inferring activities may be a 

possible path to achieving this.  

It further proposes, based upon more literature, that such a sensor needs to 

be cost effective, invisible (unperceivable to the user), and accurate. The 

implementation of a ground-based AR sensor within this research offers an 

architecture that aims to meet these needs. 

This was attempted by assessing design choices in material and the sensors 

physical properties in construction of a sensor for an office workspace. Next 

was the use of a microcontroller and supporting software to perceive the 

pressure and position of objects on its surface, and consequently the 

digitisation of its user’s actions.  

Then, using machine learning software, these acquired data points were 

converted into a set of eight chosen activities in the workplace, and the 

performance of the mat in relation to AR was assessed. 

When combined with the right machine learning algorithm, results show 

the ground-based AR sensor in this research, produced cost effectively and 

not too dissimilar from a traditional carpet mat as to remain invisible, was 

capable of very high accuracy in recognition of a restricted number of 

activities pertinent to the given use case. Future research would investigate 

the sensors effectiveness in an IoT scenario. 
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