Effect of Nutrients and Salinity on Growth of
Temperate Mangroves (Avicennia marina var

australasica) in Northern New Zealand

lana Gritcan

A thesis submitted to Auckland University of Technology
in fulfilment of the requirements for the degree of
Doctor of Philosophy (PhD)

2018

Institute for Applied Ecology New Zealand
School of Sciences
Faculty of Health & Environmental Sciences
AUT



Abstract

Estuarine environmental conditions in New Zealand have changed greatly due to human
catchment activity (e.g., deforestation, intensive agricultural activity, and urbanisation).
These factors have led to additional accretion of sediment (sedimentation) and nutrients
(eutrophication) throughout New Zealand waterways and coast waters. In recent years, New
Zealand mangroves (Avicennia marina var australasica) have shifted their distribution
within estuaries and rapidly spread into areas where they have never been found before.
Many local communities and councils are worried that mangroves have replaced sandy bare
tidal flats and other estuarine habitats (i.e., seagrass beds, marshlands) and will turn them
into muddy sites. Researchers have proposed several reasons for the spread of temperate
mangroves, including estuary infilling, increased nutrient inputs, climate warming, changes
in sea level and a combination of some of these factors. Indeed, it has been shown that
increased sedimentation correlates well with rapid mangrove accretion in New Zealand
through the emergence of additional mangrove habitat space, but the effect of the nutrient
uploads has received less attention. Additionally, there is almost no information on the
salinity levels that are characteristic for temperate New Zealand mangrove ecosystems.
Indeed, it is well documented that salinity is an important controlling factor for mangrove
growth in tropical mangrove ecosystems, but there is almost no such studies in temperate

mangrove areas.

Current research is highly relevant to on-going controversial discussions regarding
management versus conservation of New Zealand mangroves, because it provides the
review and experimental work on the cycling of nutrients in temperate mangrove and
ecosystems as well as how salinity levels affect mangrove growth. This study presents
previously missing information on the sources of nutrients in New Zealand estuarine
ecosystems, as well as how these nutrients are conserved and stored in below ground
biomass of A. marina. Field fertilisation experiments were conducted to describe nutrient
availability as a primary driver for the difference in growth forms of mangrove plants (tall
plants at the edge and stunted inland) in temperate New Zealand conditions. Controlled
laboratory experiments were conducted to demonstrate how nutrient availability changes
metabolite profiles of individual mangrove plants. The present research also provides novel
information on how seasonal changes in salinity distribution patterns across the intertidal
gradient in temperate mangrove ecosystems affect sodium composition of mangrove leaves.
Results of the growth trial also suggest that moderate salinity has beneficial effects on A.

marina seedling growth.



Overall, results suggest that a unique combination of factors can increase growth and
spread of temperate mangroves in estuarine and coastal territories in northern New
Zealand. One of the most important factors is the cooler and wetter New Zealand climate,
which is, due to high precipitation rate and low temperature. These conditions result in
lower salinity levels, which are beneficial for A. marina growth. Another factor impinging
on these mangroves is the natural nutrient deficiency state of these coastal ecosystems,
and anthropogenic influences. These anthropogenic influences are mainly due to the
increasing nutrient input over the past 100 years, originating from fertilisation, livestock
urine runoff from dairy and meat farming, and human sewage inputs, which promotes
growth and survival of mangrove seedlings. In addition, it can be concluded that the
presence of mangrove plants at the interface between anthropogenically affected
terrestrial lands and coastal ecosystems may mangrove habitats may act as nutrient sinks,

thus mitigating coastal and marine eutrophication.
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Chapter 1. General introduction and literature review



1.1 Factors that affect plant growth

The biomass of green plants on Earth accounts for more than 50% of total live biomass.
Plants have various forms from woody trees to mosses and seaweeds, but they are
generally multicellular organisms, which carry out photosynthesis. Scientists view plants
as “small biofactories” because of their ability to convert inorganic carbon in the form of
CO2 during the course of photosynthesis, inorganic nutrients (mainly nitrogen in the form
of NOs™ and NHs") and phosphorus (PO4*), and other microelements into organic
compounds. Such transformations happen during the growth and development of a plant
and consist of multiple biochemical reactions. The efficiency, speed, and presence of

growth processes per se are determined by various environmental factors.

1.1.1 Factors that affect plant growth

Plant growth is defined as the process of accumulating dry mass, volume, length or area
(Lambers, Chapin Ill, & Pons, 2008). It results from two main processes: carbon
assimilation and carbon expenditure. Carbon assimilation happens via photosynthesis
(carbon source activity), and plants invest this carbon into biomass via various growth
processes (carbon sink activity). There are environmental and edaphic factors that control
or limit biomass accumulation by affecting both carbon source and carbon sink activities
(e.g., light, space, CO> availability, temperature, water and nutrient availability, stress

conditions; Figure 1.1).

Carbon sink: growth

Carbon source activity processes ( e.g., cell

(photosynthesis) prolifiration, tissue
expansion)

Biomass gain

Figure 1.1. Factors that can affect plant growth.



However, it has been acknowledged that these factors do not play an equal role in plant
growth and may not all act at the same time. In fact, it is usually the case that at any given
time only one factor can control plant growth, namely the most limiting one. This mode
of action was first introduced in 1840 by Justus von Liebig (reviewed in Korner, 2015).
He pointed out that crop growth is controlled not by the total amount of resources
available, but by the dominant factor that limits resource acquisition. For instance,
vegetation in a desert is mainly controlled by water limitation. However, the identification
of dominant factors that limit plant growth for any given plant tissue at a given time is
difficult, as both available resources and environmental conditions vary greatly at very
short spatiotemporal scales. For example, within the very same plant, simultaneously, the
upper canopy can be water limited and not light limited while the opposite may be the
case in lower leaves. Thus, it is necessary to evaluate the priority of growth limiting

factor/s for each type of vegetation in detail and over longer periods of time.

1.1.2 Carbon source activity generally does not limit plant growth

Carbon source activity in plants occurs via photosynthesis. In order to understand how
this process is linked to plant growth and what factors limit it, it is essential to describe
this process as it is experienced by the plant. When green leaves are exposed to solar
radiation (light; namely photosynthetically active radiation, spectral region between 400
and 700 nm), biochemical reactions are triggered in chloroplast cells. As a result, COz is
trapped in the form of photosynthates (carbohydrate molecules) that can later either be
invested into biomass production or accumulated as polysaccharides molecules (starch)
for use in future light limited periods. Substrates for photosynthesis are carbon dioxide
and water, thus, the rate of photosynthesis depends on the presence of light, CO,, and
water (Monson, 2014).

In order for plants to gain carbon, there are requirements for space, which allow the plant
to have access to light and underground resources (e.g., water, nutrients, microelements).
Nutrients are essential, as they are vital for the formation of photosynthetic enzymes (e.g.,
RuBisCo) and cell components. Despite the photosynthetic rate being dependent on
various physical and environmental factors, it has been hypothesised that carbon source
activity (carbon assimilation processes) itself does not limit biomass production (Fatichi,
Leuzinger, & Kdorner, 2013; Korner, 2013; Korner, 2015). This hypothesis has received
confirmation from multiple experimental field and laboratory trials. It was demonstrated

that plants are able to accumulate excess amounts of photosynthetic products
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(nonstructural carbohydrates, NSC), and in some cases the concentrations of NSCs are
several times higher than what the plant requires for the sole biomass accumulation
purposes (Maenpéa et al., 2001; Li, Hoch, & Korner, 2002; Hoch & Korner, 2003, as
cited in Korner, 2003). Another piece of evidence that carbon assimilation activity is not
limiting for biomass production was derived from experiments where plants were grown
under elevated CO> concentrations, in both laboratory trials and field settings (Poorter &
Nagel, 2000; Ellsworth et al., 2017). These authors showed that plants growing under
elevated CO> conditions do not accumulate more biomass compared to control plants,
unless they are supplemented with nutrients and water. Thus, CO2 addition alone did not
result in higher biomass accumulation. Furthermore, photosynthesis occurs even during
conditions when growth processes are suppressed. For instance, at air temperatures of 5-
6°C, photosynthesis is still active (Kérner, 2012), while cell expansion and cell division

activities (actual growth processes) are almost halted (as summarised in Kérner, 1999).

Thus, the amount of CO; and light are factors that generally do not affect growth and

productivity of plants, as they do not directly affect carbon sink processes (Figure 1.2).
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Figure 1.2. Factors that affect plant growth. Grey boxes and arrows indicate factors that
affect only carbon source activity, and, thus, rarely limit plant growth. Black borders and

arrows specify factors that strongly affect plant growth and biomass gain.

1.1.3 Factors that affect carbon sink (growth) processes
Unlike carbon source activity, where photosynthesis is the main biochemically process

that results in carbon accumulation, plant growth per se is a series of cellular biochemical
4



reactions, such as cell division, cell expansion, cell enlargement, cell differentiation, and
the synthesis of energy molecules, such as adenosine triphosphate (ATP). These plant cell
growth processes or carbon sink activities are more sensitive to the presence of growth
limiting factors, such as temperature, water and nutrient availability, and the presence of
stress conditions (e.g. salinity, heavy metals or pathogens) and, thus, should be considered

as the main factors affecting plant growth in general (Figure 1.2).

All plants, with some minor exception, (e.g., epiphytes) need to occupy some space (e.g.,
a patch of soil) to exist. While this patch of soil may provide the necessary resources for
the plant (e.g., access to light, water, and nutrients; Prusinkiewicz & DeReuille, 2010).
The question as to how space affects growth and productivity of the plant is not clearly
understood. Space does not directly affect any growth processes in plants, but space
limitation prohibits access to resources and affects plant performance in general. If there
Is no available space, seedling establishment will not happen, as well as juvenile progress
into mature plants. A shortage of space also causes resource-mediated competition among
plants occupying the same ecological niche (Stoll & Weiner, 2000). Because the space
that plants occupy provides resources for both carbon source and carbon sink processes,

it has an indirect limitng effect on both these activities.

Plant growth processes (carbon sink activities) are basically a series of biochemical
reactions, which have a typical optimal temperature range. From a biochemical
perspective, all growth processes, such as cell doubling or mitosis, are a series of enzyme
driven reactions, and enzyme activity, which are directly affected by temperature (Figure
1.3). At certain low temperatures, these growth processes will be almost halted. For
example, at 0°C cell doubling and duration of mitosis approaches infinity (Kérner, 2003).
On a global scale, biomass productivity decreases at both latitudinal and altitudinal scales,
and it is believed that the main driver for the variations in biomass accumulation is

temperature (Korner, 2003).
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Figure 1.3. On the right, information from the literature survey of the dependency of cell
division on temperature expressed as either cell doubling time or mitotic time (70
references, Korner, 1999); reproduced from Korner, 2003. On the left, the general

diagram of the effect of temperature on the enzyme activity.

Low-temperature stress not only inhibits biochemical processes, but freezing
temperatures also can damage cell structure due to formation of ice crystals. Despite
plants having multiple adaptations to tolerate frost, some plants are still more adapted
than others. Among the strategies that plants use for frost tolerance, the less efficient one
is to avoid frost exposure. For example, some alpine plants are shorter, so in winter they
can be covered by snow and avoid exposure to the freezing temperatures (Kdérner, 2003).
Another strategy is to avoid freezing via solute accumulation or by avoiding nucleation
(Larcher, 2003). Some true freezing tolerant plants allow freezing in the extracellular
space (apoplast-water) and keep intercellular and cell-membrane in the liquid state and

are also able to repair and replace damaged cells (Kérner, 1995).

Plant growth is also limited when the water availability is low. Water has various
functions in plant cells. The most important funstion of water in plant cells is to regulate
stomatal opening, and, thus, allow the photosynthesis to take place. It also plays a role in
the plant’s transport system as all photosynthetic products, and macro- and micronutrients
are distributed throughout the plant body in aqueous solution. Additionally, water is a
necessary component of cell elongation or enlargement processes (Heyn, 1940; Lambers,
Chapin 11, & Pons, 2008; Monson, 2014). In many experiments, plants in drought
conditions are less productive and have poorer growth rates compared to those that are
adequately watered (Nagel, Konings, & Lambers,1994; Lambers, Chapin Ill, & Pons,
2008).



Poor nutrient availability, among other factors, has the strongest effect on plant biomass
increase (Poorter & Nagel, 2000). Essential nutrients are nitrogen (in the form of nitrate
or ammonium ion) and phosphorus (in the form of phosphate ions) compounds, and they
are vital for the synthesis of enzymes, amino acids, and nucleic acids (DNA, RNA).
Nutrient resources are highly variable in different ecosystems and their availability also
declines over time. For example, low nitrogen availability is a major growth limiting
factor for many terrestrial ecosystems, and phosphorus availability also decreases during
forest ageing (Lambers, Chapin I, & Pons, 2008). It is also a common agricultural
practice to add fertiliser (in the form of nitrogen and phosphorus compounds) to improve
plant performance and crop yield. Low micronutrient (trace element) availability also
plays a role in limiting plant growth (Welch & Shuman, 1995).

Additionally, various stress conditions, such as high salinity, heavy metals, herbicide
presence, and various pathogens in many cases suppress the growth of plants. Soil
salinization is currently a global issue, since much agricultural land is affected by
increased salt content which results from poor land management, some agricultural
practices (e.g., over fertilisation, irrigation etc.), and climate change. Accumulation of
salts makes agricultural land unsuitable for crop production since many crop plants cannot
survive or sustain high productivity under elevated soil salinity (Parida & Das, 2004;
Rengasamy, 2010; Roy, Negrdo, & Tester, 2014).

Overall, carbon source processes do not limit plant growth, rather carbon sink activities
(plant growth processes) are sensitive to climatic and edaphic conditions.

1.2 Factors that affect mangrove plant growth

1.2.1 Mangrove plants

Mangroves are a group of halophytes or salt-tolerant plants that occupy intertidal habitats
within coastal areas and estuaries. This group of plants is uniquely adapted to grow under
constant salinity stress conditions, as well as constant waterlogging of sediment
(Tomlinson, 1986). There are approximately 70 species of mangroves within 19 families
(Morrisey, Beard, Morrison, Craggs, & Lowe, 2007). Despite the great diversity of
mangrove species, they share some general characteristics. Most mangrove species have
aerial roots, are viviparous, have adapted physiological mechanisms to tolerate high salt
concentrations, lack distinctive annual growth rings, and have highly efficient

mechanisms for nutrient retention (Tomlinson, 1986; Alongi, 2009).



Globally, mangrove ecosystems have great ecological value. They support high species
diversity, provide breeding and nursery habitats for a range of different terrestrial and
marine species, including bacteria, fungi, algae, invertebrates (e.g., snails, oysters,
mussels) and vertebrates (e.g., fish, birds, mammals). It also has been suggested that
tropical and subtropical mangrove ecosystems are highly productive (Bouillon et al.,
2008). They export particulate and dissolved organic carbon to adjacent coastal waters
(Alongi, 2009, Table 1.1). Jennerjahn & Ittekot (2002) indicated that while mangrove
forests cover only 0.1% of the Earth’s continental surface, they are responsible for 11%
of the total input of terrestrial carbon into the ocean. However, later studies have argued
that this number is likely to be underestimated since the annual litterfall commonly used
as an index of exported carbon is only a third of the total tree biomass (Kristensen,
Bouillon, Dittmar, & Marchand, 2008). Additionally, mangrove ecosystems play an
important role in the physical functioning within estuaries. They trap suspended
sediments, which maintain the water clarity, and they help stabilise the shoreline and

prevent erosion by reducing the wave energy (Morrisey et al., 2007).

Table 1.1. Export of particulate organic carbon (mol C m? year?) from different

mangrove stands, reproduced from Alongi, 2009.

Location Export Reference

Rookery Bay, Florida 5.3 Twilley (1985)

South Florida 155 Twilley (1985)

Tuff Crater, New Zealand 9.3 Woodroffe et al. (1985a, b)

Darwin Harbour, Australia 26.7 Woodroffe, Bardsley, Ward, & Hanley
(1988), Burford, Alongi, McKinnon, &

Trott (2008)
Matang, Malaysia 19.1 Gong & Ong (1990), Alongi et al. (2004)
Klong Ngao, Thailand 0.1 Wattayakorn, Wolanski, & Kjerfve (1990)
Itacuruca, Brazil 18.3 Lacerda (1992)

Fly River, Papua New Guinea 23.8 Robertson & Phillips (1994)
Missionary Bay, Australia 21.7 Alongi (1998)

Hinchinbrook Channel, 10.4 Ayukai, Miller, Wolanski, & Spagnol
Australia (1998)

Sawi Bay, Thailand 5.9 Alongi et al. (2000)

Caete estuary, Brazil 16.1 Dittmar, Lara, & Kattner (2001)

The latest data on mangrove distributions indicate that they are found between latitude
30° N and 30° S (Giri et al., 2011; Figure 1.4). These mangrove ecosystems are
commonly associated with tropical and subtropical areas. However, there are several

species that extend into the range of cooler warm-temperate climates typical for South



Africa, Japan, southern Australia, southern North America, and northern New Zealand
(Morrisey et al., 2007).
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Figure 1.4. Latitudinal distribution of mangrove forest of the world, from Giri et al.
(2011).

As these plants exist in the intertidal areas, growth and productivity of mangroves are
heavily affected by salinity stress adaptations, as many resources (namely nutrients) are
required for protecting carbon gain and growth processes from the harmful presence of
salt (NaCl). Thus, photosynthesis and plant growth processes in mangroves are affected
by temperature, water (freshwater), nutrient availability, and salinity stress (Alongi, 2009;

Day, Crump, Kemp, & Yanez-Arancibia, 2013; Morrisey et al., 2007).

1.2.2 Carbon assimilation processes in mangrove plants

As was mentioned previously, carbon source processes (namely photosynthesis) are not
primary growth limitation factor for plants, and this is also true for mangroves. One of
the main pieces of evidence for this can be derived from the fact that mangroves, similarly
to other plants, allocate biomass to have access to the most limiting resources (Poorter &
Nagel, 2000; Valentine & Mékeld, 2012; McMurtrie & Dewar, 2013, as presented in Gill
& Finzi, 2016). Indeed, it has been found that up to 80-90% of mangrove biomass is
allocated below ground in the form of live and dead roots, which may suggest that
mangrove growth is limited mostly by the low availability of below ground resources
(such as freshwater and nutrients) (Alongi, Clough, Dixon, & Tirendi, 2003; Komiyama,

Ong, & Poungparn, 2008; Tran, Gritcan, Cusens, Alfaro, & Leuzinger 2016).



As reviewed above, high levels of non-structural carbohydrates (NSC) in higher plant
tissue can be considered as another indication that carbon assimilation does not limit plant
growth. In fact, mangroves accumulate NSC in the same manner as other terrestrial plants
(review by Gil et al., 2013). The author also noted that extra NSC plays an additional role
as osmolytes and may help mangrove plants to mitigate salt stress. Indeed, carbohydrate
levels in salt-tolerant plants have been shown to increase with increasing salinity levels
(Doddema, Eddin, & Mahasneh, 1986; Murakebzy, Smirnoff, Nagy, & Tuba, 2002;
Murake6zy, Nagy, Duhaze, Bouchereau, & Tuba, 2003).

Further evidence that CO> assimilation processes do not limit mangrove growth is that
CO: fertilisation alone does not cause biomass increase, while nutrient fertilisation has a
strong effect on biomass accumulation. Indeed, some studies demonstrated this trend in
mangrove plants (Farnsworth, Ellison, & Gong, 1996; Ball, Cochrane, & Rawson, 1997;
McKee & Rooth, 2008; Reef, Markham, Santini, & Lovelock, 2015; Reef et al., 2017).
In addition, numerous laboratory and field nutrient fertilisation experiments strongly
suggest that nutrient availability alone plays the major limitation role for carbon
assimilation processes in mangroves (Boto, Saffigna, & Cloughl, 1985; Naidoo, 1987;
Feller, 1995; McKee, 1996; Yates, Ashwath, Midmore, 2002; Lovelock, Feller, McKee,
& Thompson, 2005; Naidoo, 2009).

Additionally, mangrove plants are uniquely adapted to grow under salinity stress. In order
to maintain growth under high salinity conditions in the sediment, mangrove plants
accumulate salt in leaves. While this adaptation helps plants to overcome osmotic
differences for water uptake, it adversely affects enzyme activity. Indeed, it has been
shown that mangrove plants that grow in hypersaline conditions demonstrated low
photosynthesis levels (Ball & Farquhar, 1984; Ball, 1988; Santiago, Lau, Melcher, Steele,
& Goldstein, 1999; Theuri, Kinyamario, & Speybroeck, 1999; Parida, Das, & Das, 2002;
Reef et al., 2015). Thus, carbon assimilation in mangrove plants does not limit mangrove
growth directly, rather climatic and edaphic conditions limit the rate of the

photosynthesis.

1.2.3 Space effect on mangrove growth
Mangroves, like other plants, need to occupy some space to have access to underground
and aboveground resources, and mangroves have unique adaptations to grow in

conditions where other terrestrial vegetation cannot (Tomlinson, 1986). They occupy a
10



very limited space of the intertidal zone, so, they can avoid competition with other
terrestrial vegetation. However, the effect of space limitation is the strongest for seedling
growth, compared to mature plants that are already established. When more suitable space
is available, mangrove stands and/or forests can spread, and this has been observed in
poleward and inland spreading of temperate mangroves caused by rising temperature and

sea level rise (Lovelock, Sorrell, Hancock, Hua, & Swales, 2010).

1.2.4 Temperature effect on mangrove growth

The main factor that restricts mangrove distribution in high latitudes is temperature
(Woodroffe & Grindrod 1991; Duke, Ball, & Ellison, 1998; Quisthoudt et al., 2012;
Hutchison, Manica, Swetnam, Balmford, & Spalding, 2014). Mangroves, like other
tropical plants, are poorly adapted to tolerate stress imposed by freezing temperatures and
generally classified as ‘tender’ (cannot tolerate temperatures below 0°C) or ‘slightly
hardy’ (can tolerate freezing temperatures up to -5°C; Levitt, 1980 [as cited in Beard,
2007]). At the ecosystem level, with increasing latitudes mangrove plants exhibit a
reduction in both tree size and species diversity compared to tropical mangroves. Low
temperatures in temperate conditions cause a decline in net primary productivity (Saenger
& Snedaker, 1993) and in annual growth increments of trees (Morrisey et al., 2010), and
success in reproduction (Duke, 1990).

At the plant level, mangrove growth is affected by low temperature, in the same way as
in terrestrial plants, for example, by affecting enzyme activity of carbon assimilation
and/or growth processes (Beard, 2006). They are also affected by direct damage of
cellular structures of leaves, branches and reproductive tissues (Saintilan, Rogers, &
McKee, 2009). Additionally, low temperatures impose anatomical constraints on water
transport in temperate mangroves, Stuart, Choat, Martin, Holbrook, & Ball (2007)
showed that in high latitudinal mangrove species xylem vessel diameters are smaller.

However, some mangrove species seem to be more frost tolerant than others. It was found
that, Avicennia marina var australasica that occurs in temperate New Zealand conditions
(at latitudes greater than 30°; Morrisey et al., 2007; Morrisey et al., 2010). Moreover,
mangrove plants of the same species, but from different latitudes can be variously adapted
to frost stress. McMillan (1974) and Markley, McMillan, & Thompson (1982)
demonstrated that Avicennia germinans (L.) L. from Belize (17° 31" N) was more

damaged by frost treatment than those from Harbor Island, Texas (27° 50" N).
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1.2.5 Salinity effect on mangrove growth

Water availability for mangrove plant uptake is inseparably linked to the salinity of the
sediment and these two factors should be reviewed together. In general, the presence of a
high amount of salt in the sediment causes osmotic imbalance and prevents plant water
uptake, creating a water shortage. This limits mangrove carbon and nutrient uptake,
affecting growth and productivity (Ball, 2002). Thus, it is necessary to consider the

mechanism of salt stress on plant performance in general.

Previous studies have shown that salt stress and water shortage (dehydration stress) have
very similar physiological effects and often synergistic effects on osmotic stress, toxic
effects, cell damage, and cell death (Mahalingam, 2015). In the early stages of salt
exposure, plants cannot uptake water because of the osmotic difference between the high
salt environment and the low salt concentration in leaves. However, if the salt stress
progresses, plants accumulate sodium ions in leaf tissues to overcome the osmotic
difference and take up water. Such ion accumulation leads to toxic effects, for example,
ion imbalance between cell compartments and accumulation of reactive oxygen species.
In severe cases, both accumulation of sodium ions in plant tissues and rising osmotic
stress causes damage to cell organelles, impeding interior and exterior cellular
biochemical reactions, and in severe cases can trigger programmed cell death (Gupta &
Huang, 2014).

Unlike glycophytes (non-salt tolerant species), mangroves are well-adapted to be
productive under constant salinity stress because of numerous physiological and
biochemical adjustments. They can overcome osmotic stress by accumulating salt in
leaves and decoupling water from ion uptake when covered by seawater (Stuart et al.,
2007; Reef & Lovelock, 2015). Under mild to mid-salinity conditions (salinity of
seawater or below) physiological mechanisms are of greatest importance for mangrove
growth and productivity. Two of the most important ones are root-exclusion and leaf-
secretion mechanisms. Krishnamurthy et al. (2014) showed that roots of mangrove plants
filter the salt out and prevent absorption of toxic ions in plant tissue. Duarte, Sleimi, &
Cacador (2014) demonstrated that leaves of mangroves can secrete salt to protect leaf
metabolic processes from damaging by excessive salt concentration. However, under
hypersaline conditions, when the salt concentration is several times higher than the

concentration of seawater, it has been shown that mangrove growth is severely suppressed
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by both water shortage and metabolic effects of salt toxicity (Ball, 1988; Martin et al.,
2010).

As an example of salinity being one of the most significant growth controlling factors for
mangrove plants growth and productivity, Ball (2002) proposed that levels of salt
concentrations in the sediment ‘dictate’ the species and height zonation in tropical
mangrove forests. The author found that with increasing distance from the sea or channel
edge, sediment and pore water salt concentration increases, which suppresses mangrove
growth and productivity. Thus, freshwater availability does not directly affect mangrove
growth, rather mangrove growth is affected and controlled by the complex equilibrium
between freshwater availability and amount of salt in the sediment.

1.2.6 Nutrient effect on mangrove growth

Mangrove ecosystems are also nutrient limited, and mangrove plants can persist in low
nutrient environments (Day et al., 2013). Nutrients, such as nitrogen and phosphorus
compounds, are the most important mineral nutrients for all forms of life (Campbell &
Farrell, 2006). Nitrogen is important for the synthesis of proteins, and it facilitates
enzymatic activity, whereas phosphorus is the essential element for energy transfer and
storage in cells in the form of adenosine triphosphate (ATP). Moreover, both these

elements are contained in DNA (deoxyribonucleic acids).

The importance of nutrient availability in growth and productivity of mangroves has been
demonstrated in numerous laboratory (Alongi, 2011; Boto et al., 1985; Naidoo, 1987;
Yates et al., 2002) and field fertilisation studies (Boto & Wellington, 1983; Feller, 1995;
Lovelock et al., 2007b; Naidoo, 2009). In these experiments, scientists have demonstrated
that mangrove plant growth and biomass production respond with great sensitivity to
variations in nutrient concentrations. There are two main conclusions that have been
reached based on such fertilisation studies. Firstly, mangroves normally exist in nutrient-
limited conditions, which means that nutrient availability plays an important role in
mangrove growth and, secondly, mangroves can be N-limited, P-limited or co-limited in
both main nutrients. The type of nutrient limitation may severely affect mangrove

metabolism and growth adaptation strategies.
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1.3 Factors that affect temperate mangrove growth

Mangroves have been characterised as tropical and subtropical plants with additional
limited distribution in temperate areas. For example, in the southern hemisphere above
30°C latitude temperate mangroves occur in New Zealand, Australia, South America, and
South Africa (Duke et al., 1998; Giri et al., 2011). Temperate New Zealand mangroves
are native plants, which grow along some coastlines and estuaries in the northern North
Island. There is only one mangrove species in New Zealand: Avicennia marina var
australasica. This species exists at the extreme southern limit of mangrove distribution
and exhibits several significant distinctions from tropical mangroves (Morrisey et al.,
2007).

In temperate mangroves, plant growth rate, productivity, the number of species, and
biological diversity of mangrove ecosystems decline with increasing latitudes (Alongi,
2009; Morrisey et al., 2007; Morrisey et al., 2010). Plant productivity (the process of
accumulation of biomass), in mangroves, is tightly correlated with mean annual
temperature and, thus, the growth rate is lower in temperate mangroves than that of
tropical counterparts. Saenger & Snedaker in 1993 showed that mangrove biomass ranges
from 5.7-43.6 kg m in the tropics (between 23°N to 23°S), to 0.8-16.4 kg m? in the
subtropics and more temperate regions (between 23 and 30° N and S). Furthermore, under
cool temperate conditions in New Zealand only one mangrove species occurs, while in
the tropical Indo-Malaysian region researchers found 48 mangrove species (Giri et al.,
2011). Also, recently it has been shown that temperate mangrove ecosystems do not
maintain high species diversity compared to tropical counterparts (Alfaro, 2010). Faunal
species (e.g., large crabs, large snails, rodents, monkeys) that normally feed on mangrove
matter in the tropics, consume only a minor amount of mangrove biomass in temperate
areas. In New Zealand, mud crabs (Helice crassa) and grazing snails consume small
amounts of mangrove leaves, and they mainly feed on microalgae within biofilms on

mangrove surfaces (Alfaro, 2010; Alfaro, Thomas, Sergent, & Duxbury, 2006).

According to geographical latitudinal zonation, New Zealand is situated in the temperate
climate zone. Although, the northern part of the country (where mangroves occur) has a
sub-tropical climate with typical summer (December to February) daytime air
temperatures (22 to 26°C) and (12°C to 17°C) in winter (June to August) with occasional
frosts at night time during the coldest month (July). Mean annual precipitation is around

1200 mm with the highest precipitation rate in winter (100 to 170 mm per month) and
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less in summer (70 to 100 mm per month) with autumn and spring precipitation being

around 100 mm and average temperature around 15°C (https://www.niwa.co.nz). These

climatic differences can affect factors that modulate mangrove growth and productivity

in temperate areas.

1.3.1 Mangrove growth under New Zealand temperate climatic conditions

How carbon source capabilities of temperate mangroves (namely photosynthesis) is
affected by the colder New Zealand climate was studied in detail by Beard in 2006. The
author found that photosynthesis rate had a seasonal trend, whereby it reached its
maximum in summer and was substantially reduced during cold winter days. The author
also found that the main reason for reduced photosynthetic activity was low temperature,
which affects the activity of photosynthetic enzyme Ribulose 1,5-bisphosphate (RuBP).
While these findings can explain why temperate mangrove plants have lower growth rates
compared to tropical mangroves, they cannot explain why temperate mangroves that grow
at the same location often exhibit significant tree form variations along the stand gradient
(taller trees at the edge and lower trees and sometimes dwarfed trees in the interior of the

mangrove stand).

Additionally, as previously discussed, low temperature reduces the rate of plant growth
processes (such as cell division, cell expansion, cell enlargement, cell differentiation, and
the synthesis of ATPs) before it affects photosynthesis. Once more, temperature effects
can be one of the reasons why temperate mangroves are less productive than tropical
counterparts, but cannot be linked to tree form variation between the edge and interior

mangroves along the stand gradient.

Another growth limiting factor for temperate mangroves, namely space availability, has
received a lot of attention in New Zealand. As was mentioned earlier, if more space
becomes available (e.g., estuary infilling, sea level rise, or global warming) mangrove
plants occupy these new areas. Indeed, it has been shown that temperate New Zealand
mangroves are rapidly spreading into areas where they have never been found before
(Green et al., 2003; Schwarz, 2003; Stokes, Healy, & Cooke, 2010). This has caused on-
going controversial discussions regarding management versus conservation of New
Zealand mangroves. There is not only scientific evidence of that fact, but also many local
communities and councils are worried that mangroves have replaced sandy bare tidal flats

and other estuarine habitats (i.e., seagrass beds, marshlands) and will turn them into
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muddy sites. Such concerns have resulted in legal and illegal management programmes,
which often include removal of mangroves (Alfaro, 2010). Such disagreement among
residents and local councils has sometimes culminated in expensive environmental
lawsuits, where the outcomes have always pointed to the lack of scientific knowledge of

these complex ecosystems.

However, this accretion of mangrove habitats is not unique to New Zealand alone. There
are studies that have shown that, although throughout the tropics mangrove plants are
endangered species, under threat and their territories are declining, temperate mangrove
stands in south eastern Australia (Bird, 1986; Saintilan & Williams, 1999), in South and
East Africa (Di Nitto et al., 2014), and in the USA (Cavanaugh et al., 2014) have been
accreting. Researchers proposed that the main reasons for temperate mangrove spread
could be global climate change and local human-derived changes. Generally, researchers
have shown that global warming and sea level rise correlate well with mangrove landward
and poleward expansion (Cavanaugh et al., 2014; Di Nitto et al., 2014; Godoy & De
Lacerda, 2015; Coldren & Proffitt, 2017).

Additionally, changes at the local scale due to human activity could be a factor promoting
mangrove growth and spread (e.g., estuary infilling, extensive agricultural activity with
runoff high in nutrients, and anthropogenic sewage inputs). For example, it has been
shown that sedimentation rate and nutrient concentrations in estuarine and coastal areas
in New Zealand have changed greatly due to human catchment activity during last 100
years (Cooper & Thomsen, 1983; Vant, 1997; Hart, Quin, & Nguyen, 2004; Heggie &
Savage, 2009; Thrush et al., 2013; Walker & Vaughan, 2013). Lovelock and colleagues
in 2007b also showed that estuary infilling promotes temperate mangrove stand
expansion in two New Zealand estuaries and, although nutrient addition did not appear to
have a direct effect on mangrove spread rate, it might play a complimentary role.

Overall, lower photosynthesis rate during cold seasons and negative temperature effects
on plant growth processes (e.g., the majority of enzymatic biochemical reactions) have
been found to limit plant biomass accretion in temperate mangroves compared to tropical
ones (Beard, 2006). However, these growth limiting factors do not explain tree form
differences along temperate mangrove stand gradients (edge vs interior). While spreading
of New Zealand mangroves associated with increasing space availability due to human-

derived estuary infilling processes (e.g., deforestation and sedimentation) has received
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some attention, there are still substantial gaps in understanding what effect human-
derived nutrient inputs can have on temperate mangrove growth and productivity.
Moreover, nutrient and salinity levels that temperate New Zealand mangroves are

exposed to have not been studied previously.

1.4 Salinity effect on temperate mangrove growth

Since environmental salinity plays a vital role in controlling mangrove plant growth, it is
important to study salinity levels in temperate New Zealand mangrove coastal and
estuarine ecosystems and to evaluate its potential effect on mangrove growth, which has
not been done previously. Salinity or presence of sodium cations and chloride anions in
the environment is toxic for most terrestrial plant species. Sodium cations are toxic
because they negatively affect potassium uptake and cytosolic enzyme activity, which
ultimately affects photosynthesis and metabolism (Tuffers, Naidoo, & Willert, 2001;
Parida & Jha, 2010).

Moreover, scientists are unsure whether salinity is a necessary condition for mangrove
species successful performance. Indeed, several years ago, there was a debate on whether
mangroves are facultative or obligate halophytes (Wang et al., 2011; Krauss & Ball,
2012). Wang et al., (2011) argued that mangroves are truly obligatory halophytes and
cannot grow and develop under solely freshwater conditions. Another opinion is that
mangroves are facultative halophytes. Indeed, Krauss & Ball (2012) suggested that
mangrove plants are just adapted to growth in the environments where the salt is present.
However, both groups agreed that more salinity-related studies on mangroves are needed

to develop a better understanding of the halophytic nature of mangrove plants.

To deeply understand the effects of salinity on mangrove growth, it is necessary to
describe types of adaptations mangrove plants have developed to combat salinity
presence in the environment. The most striking feature of mangrove plants, as halophytes
is that unlike other terrestrial vegetation types they have unique adaptations to tolerate
harsh saline environmental conditions of coastal marine settings (Flowers & Colmer,
2008). The main strategy of mangrove plants to tolerate high salinity in the sediment
and/or pore water is a range of physiological mechanisms. For instance, root-exclusion
and/or selective (fresh vs saline) water uptake and leaf-secretion was found to be
particularly important (Rozema, Gude, & Pollak, 1981; Waisel, Eshel, & Agami, 1986;

Takemura et al., 2000; Duarte et al., 2014; Krishnamurthy et al., 2014; Shabala, Bose, &
17



Hedrich, 2014; Reef et al., 2015; Santini, Reef, Lockington, & Lovelock, 2015). Another
set of mechanisms, which some of the most salt tolerant mangrove species have
developed, is accumulation of Na* and CI" ions in specialised leaf cell compartments
(vacuoles). This adaptation also helps to overcome the osmotic differences between salt-
rich sediment and salt-poor cytoplasm and extracellular fluid to uptake water (Aziz &
Khan, 2001). As the salinity of the sediment increases, these plants accumulate more salt
in leaf cells and higher total sodium concentration in leaves. Indeed, it has been described
that in hypersaline environments, sodium concentration and sodium/potassium (Na/K)
ratio in mangrove leaves is higher than in moderate or low saline conditions (Ball, Chow,
& Anderson, 1987; Ye, Tam, Lu, & Wong, 2005). Thus, measuring and comparing this
stoichiometric parameter in mangrove leaves in single stands and/or between different

stands could provide important information about the average salinity levels in the field.

Therefore, mangroves are halophyte plants that can survive in seawater because they have
physiological and biological adaptations (as salt excretion, salt accumulation, and salt
secretion; etc.), which allow them to actively regulate and handle harmful amounts of salt
(Tomlinson, 1986; Alongi, 2009; Parida & Jha, 2010). Despite extensive available
information on the effects of high salt concentration on the growth of mangrove plants
and productivity, there is little available information on mangrove strategies to tolerate a
low concentration or absence of salt that presumably is common under temperate New

Zealand conditions.

1.4.1 Salinity in tropical vs temperate mangrove environments

While salinity levels have been shown and recognised by scientists as a major reason for
species and productivity gradients in tropical mangrove forests, there is only limited
information on salinity levels in temperate mangrove ecosystems, and there is almost no
information on seasonal variations of salinity in mangrove environments under temperate
New Zealand climatic conditions (Ball, 1996; Ball, 2002). However, salinity is a highly
variable parameter, both spatially and seasonally. Salinity effects also depend on the stand
morphology, location, and proximity to freshwater sources nearby. Based on available
published information, the comparison table below was prepared to illustrate these

potential salinity differences (Table 1.2).
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Table 1.2. Table comparing sediment and/or pore water salinity among mangrove sites

at different latitudes.

Salinity, PSU  Species Geographical location Reference
(min-max) composition and coordinates
56.8+2.4 Avicennia marina Richards Bay Harbour, Naidoo (2006),
(dwarf) (28°48’S, 32°05’E), (2009)
South Africa
40 - 53 Avicennia marina Clyde River at Batemans Martin et al.
var australasica  Bay, (2010)
(32°42°S, 150°12°E),
southeastern Australia
34.9-38.8 Rhizophora Twin Cays, Feller (1995)
(x0.3) mangle (16°41°N, 88°11°W), McKee, Feller,
34 -40 Avicennia Belize Popp, & Wanek
51 -53 germinas (2002)
57 - 60 (£2) Laguncularia Lovelock, Feller,
36.9 (£1.2) racemosa Ball, Engelbrecht,
& Ewe (2006)
Feller, Lovelock &
McKee (2007)
Feller, Lovelock &
Piou (2009)
34 -50(£15)  Rhizophoracae Hinchinbrook Island, Boto & Wellington
family (18°20°S, 146°13’E), (1984)
Australia
33-54 Rhizophora North Hutchinson Island, Lovelock & Feller
45 - 55 mangle (27°33’N, 80°20°W), (2003)
49 — 55( £1) Avicennia St. Lucie County, Florida  Lovelock et