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I. Abstract
The aim of this thesis was to understand variation in microbial aerosol (or bioaerosol) 

communities at differing spatial and temporal scales. Bioaerosols in urban parks were 

shown to vary as a result of location, sampled air-mass source and, for fungi in particular, 

time. Modelling was able to explain 38% of the fungal variation and 19% of the bacterial 

variation. Urban sampling over two years confirmed that bioaerosol communities varied 

over time in a non-linear fashion, exhibiting marked seasonality, which was especially 

pronounced for fungi. Non-linear diel variation was detected for Antarctic fungi. Bacteria in 

common between Antarctica and New Zealand increased markedly when New Zealand air 

was coming from Antarctica, suggesting intercontinental transport for bacteria at notable 

rates. Fungi appeared to undergo much less long-range atmospheric transport. This thesis 

research contributes innovative, validated data collection and processing pipelines for 

sparse microbial community data to our body of information. Novel patterns in bioaerosol 

spatiotemporal variation have been revealed that lead to new questions about bioaerosol 

community structure and ecosystem connectivity via bioaerosols. As understanding of the 

drivers of bioaerosol variation improves, predictions can be made regarding future 

ecosystem changes and spread of infectious microorganisms. This will be crucial for 

managing the impacts of these increasingly likely events in the face of climate change.  
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1.1 Abstract 

Microorganisms are a globally ubiquitous component of the atmosphere, of vital 

importance to climate, human health, and environmental processes. Bioaerosols (which 

include viable fungi, prokaryotes, pollens and viruses as well as biologically derived 

remnants) are suspected to have a fundamental role in structuring the composition and 

function of ecosystems globally. Urban aero-microbiomes are poorly understood, yet a 

majority of the global population is exposed to them on a daily basis. Antarctica presents a 

tractable opportunity to study the dispersal of airborne microorganisms due to its isolation 

and its simple, microbially dominated ecosystems. Recent advances in technology have 

begun to shed light on the poorly understood aerosphere, with most research focusing on 

bacteria. This chapter summarises the current knowledge regarding the movement and 

behaviour of bioaerosols in the global atmosphere and drivers of bioaerosol spatiotemporal 

variation. Urban aero-microbiomes are characterised and the role that the air plays as a 

vector of microbes to Antarctica is described, with an overview of Antarctic bioaerosol 

research. Survival mechanisms of microbes in the atmospheric environment are outlined, 

followed by a discussion of the potential effects that aerial input to vulnerable Antarctic 

ecosystems may have in the face of climate change. Bioaerosols are highly changeable over 

space and time, with concentrations and compositions influenced by a myriad of variables, 

particularly climatic factors such as wind speed and temperature. Although studies of 

bioaerosols have confirmed the low biomass predicted in the atmosphere, greater 

biodiversity has been discovered as technology has improved. Multiple lines of evidence 

indicate that bioaerosols have been globally transported over great distances. While many 

microbes are believed to survive in the atmosphere as spores, some species may remain 

metabolically active and could contribute to certain atmospheric processes. The evidence of 

continual bioaerosol deposition and theorised significance to current ecosystem structuring 

suggests that as the climate changes, deposited microorganisms could drive rapid 

community shifts. This chapter identifies numerous knowledge gaps in the field, including 

the variability, environmental drivers, source (where) and extent (how many) of airborne 

microorganisms. Given the predicted importance of airborne transportation to global 

ecosystems, it is essential to substantially increase research effort to gain a more 

comprehensive view of the extreme aerosphere. 

1.2 Introduction 

Microorganisms (including fungi, bacteria and viruses) are numerous and ubiquitous in the 

atmosphere and are an important component of bioaerosols, which include all particles of 

biological origin (Burrows, Elbert, Lawrence, & Poschl, 2009b; Pearce et al., 2016; Reche, 

D’Orta, Mladenov, Winget, & Suttle, 2018). Bioaerosols within the natural environment are 

poorly understood, due to a lack of standardised methodology and little data, resulting in 

abundant conjectures (Burrows et al., 2009b; Pearce et al., 2016). Recent technological 
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innovations have enabled DNA recovery and interrogation of airborne microorganisms from 

a wide range of environments, which allows researchers to address fundamental questions 

regarding the importance of this biosphere.  

 

 The urban aero-microbiome has a disproportionately large effect on the global 

human population, due to concentration of settlement in urban areas. The research which 

has been performed to date indicates that various factors can influence urban bioaerosols, 

but also suggests significant variation over space and time and no consistent urban aero-

microbiome. As for bioaerosols in general, the urban aerial biome is affected by seasonal 

variations, likely to be driven by changes in meteorological variables such as temperature 

and wind speed. Local bioaerosol emission sources are thought to be more important than 

distant ones and pathogens are often present. Spatial and temporal coverage remains 

sparse, and knowledge gaps persist. The Antarctic aerial biome represents one of the most 

challenging environments on Earth. As a result, the aerosol biomass is one of the lowest and 

is the least understood in the world (Burrows et al., 2009b). There is strong evidence that 

bioaerosols use the atmosphere as a long-distance transport vector; for example, South 

American pollen is frequently found in Antarctica (Smith, 1991; Vincent, 2000; Wynn-

Williams, 1991). Continental Antarctica provides an excellent natural laboratory to study 

global aerial transport processes as it is isolated by the Southern Ocean and prevailing wind 

and water currents (Pearce et al., 2016). The reduced human and other animal vectoring 

means the atmosphere becomes virtually the sole transport mechanism available for 

microbes (Pearce et al., 2016) and understanding transport processes is a tractable problem 

due to Antarctica’s simple, microbially-dominated ecosystems (Bottos, Woo, Zawar-Reza, 

Pointing, & Cary, 2014). In a warming world, shifts in microbial communities may result in 

the extinction of unique endemic species. Microbes are first responders to change. 

Therefore, understanding how Antarctic communities may shift informs what can be 

expected globally in the future (Bottos et al., 2014). Despite technological developments, 

the study of bioaerosols is challenged by their stochasticity in distribution, variability and 

low biomass (Womack, Bohannan, & Green, 2010), which is accentuated in Antarctica 

(Pearce et al., 2016). Very little is known about bioaerosols, and methodology development 

remains a barrier to widespread investigation (Pearce et al., 2016). 

 

Most researchers believe that the majority of passively transported bioaerosols are 

in a dormant form (Pearce et al., 2016; Womack et al., 2010); however, there is growing 

evidence that some may continue to metabolise whilst in transit. These organisms may 

represent atmospheric residents (Womack et al., 2010) and could substantially alter the 

chemical constituents of the atmosphere. Most bacteria in the atmosphere are thought to 

act as cloud condensation nuclei (Burrows et al., 2009b) and ice nucleation activity could 

increase cloud formation, precipitation and fundamentally affect global weather patterns 

(Behzad, Gojobori, & Mineta, 2015; Burrows et al., 2009b; Pearce et al., 2016; Sattler, 

Puxbaum, & Psenner, 2001). Many important plant and animal diseases are also aerially 
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transmitted, such as foot and mouth disease and Legionnaires disease (Nguyen, Ilef, Jarraud, 

Rouil, & Desenclos, 2006), highlighting the need to understand atmospheric microbial 

transfer. It was once thought that “everything is everywhere and the environment selects” 

(put by Dutch microbiologist Lourens G. M. Bass Becking (O'Malley, 2008)), however more 

recent research has revealed bioaerosols are highly variable over space and time (Bowers et 

al., 2013; Bowers, McLetchie, Knight, & Fierer, 2011a; Fierer, Liu, & Rodríguez-Hernández, 

2008; Woo et al., 2013). Many microbes appear to display biogeography (varying species 

distribution over space), despite their ease of dispersal (Bahl et al., 2011; O'Malley, 2008; 

Pointing et al., 2015; Womack et al., 2010). A microbe’s propensity for aerial transport is 

thought to be a key influencer of its ability to disperse (Pearce et al., 2016; Sokol, Herbold, 

Lee, Cary, & Barrett, 2013; Sommaruga & Casamayor, 2009).  

 

This chapter explores what is known about the aero-microbiome and some of the 

questions that remain. The global atmosphere is defined and described, followed by the 

process of bioaerosol launching and elucidation of aerosol behaviour once in suspension. 

Mechanisms of long-range aerial dispersal are discussed, followed by the processes that 

remove particles from suspension. What is known regarding variation of bioaerosols over 

space and time is summarised, with a focus on urban areas. Bioaerosol sampling challenges 

and solutions to difficulties are listed. The importance of the atmosphere as a vector to 

Antarctica, as well as the status of Antarctic bioaerosol research, is described. The 

mechanisms that microbes use to survive in the atmosphere are then reviewed and the 

existence of aerial residents is explored. The chapter finishes with effects of aerial vectoring 

on Antarctic ecosystem structuring and how microbial communities may respond to 

continued climate change. The chapter content represents a comprehensive review of the 

field of bioaerosol study, with a focus on the small body of work that has been performed in 

urban environments and in Antarctica. Given the hypothesised importance of aerial 

vectoring to global ecosystems, understanding the aerial contribution is crucial to 

understanding ecosystem structuring. 

 

1.3 The Aerosphere and Bioaerosol Particles 
 

1.3.1 Particle Movement in the Atmosphere 
The atmosphere consists of a layer of gases which surrounds the Earth, containing particles 

of various sizes and types, such as water droplets, inorganic particles like mineral dust and 

particles of biological origin. Particles suspended in air are called aerosols, those of 

biological origin are termed bioaerosols. Most aerosol particle monitoring is focused on 

human health and as a result uses two health-relevant size classifications, PM2.5 and PM10, 

which refer to the aerodynamic diameter of the particle (< 2.5 µm and < 10 µm). Bioaerosol 

particles vary widely in size, from pollen which can be up to 1000 µm in diameter, bacteria 

which range between 0.25 and 8 µm in diameter, to viruses at < 0.3 µm in diameter, and 

fragments of biological material thereof. Air is in constant motion, driven by differences in 
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atmospheric pressure, which cause its constituents to be highly variable over time and 

space. The concentration of aerosol particles in the atmosphere is influenced by a complex 

set of variables not comprehensively understood, including local biological sources and 

changes in meteorological conditions (Burrows et al., 2009b). 

The vertical structure of the atmosphere is divided into layers which are driven by 

temperature (Figure 1-1), although the altitude at which layers transition varies (Pearce et 

al., 2009). At greater altitude wind speeds typically increase and conditions become less 

favourable for survival (Pearce et al., 2009). The characteristics of the atmosphere 

determine both the transport range (Archer & Caldeira, 2009) and the viability of 

bioaerosols (Womack et al., 2010). The troposphere stretches from the ground to about 10 

km and is where the majority of atmospheric mass, including bioaerosols, is located. The 

troposphere also contains the atmospheric boundary layer, the region of the atmosphere 

that transitions from turbulent air flow from the Earth’s surface to a calmer, laminar flow 

layer. The boundary layer mediates exchange of particles between the Earth and the 

atmosphere and its altitude varies depending on atmospheric conditions and terrestrial 

topography (Rotach et al., 2015). At between around 10 km and 50 km altitude sits the 

stratosphere, where airflow is fast, predictable and horizontal. The troposphere and the 

stratosphere are of most interest for the purposes of bioaerosol research, as most microbial 

isolates are from these levels (Burrows et al., 2009b), although some studies have found 

culturable organisms in the mesosphere, at up to 77 km altitude (Imshenetsky, Lysenko, & 

Kazakov, 1978).  
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Figure 1-1 – a) Altitude ranges of each atmospheric layer (in km), layer height varies based 
on temperature and latitude  (b) Names of atmospheric layers, (c) Adjusted logarithmic 
scale by height and density with cumulative area as in (d), (d) Speculative proportions of 
bioaerosols found in each layer, showing 75% of bioaerosols are expected to remain in the 
troposphere. Artwork by Chris King, data from Pearce et al. (2009). 

The process of aerosolisation of particles is known as launching (Pepper, 2015) and 

can be either active or passive. Active launching includes forcible ejection of biological 

material as seen with fungal spores or the process of sneezing. Passive launching results 

from abiotic processes acting on a reservoir of particles, such as wind blowing over soil or 

plants, waves breaking on a beach or the bursting of bubbles in water (Burrows et al., 

2009b). Rates of passive emission vary based on density of particles on a surface, and local 

meteorological conditions. Turbulence from the Earth’s surface creates chaotic air 

movement in the atmospheric boundary layer, including vertical movement, which can 

propel particles to higher atmospheric regions. Turbulence disrupts the flow of particles 

when air is forced around an object, or subjected to excessive shear. The Reynolds number 

(velocity x dimension/viscosity) can estimate the amount of turbulence and is based on 

wind velocity, viscosity of the air and dimensions of the interfering surface (Pepper, 2015). 

Any result over 2000 is deemed to be turbulent air flow (Pepper, 2015). The higher this 

number, the more movement of particles will occur in a given time, and the higher the 

extent of aerosolisation. As events that propel particles to high altitudes are rarer, the 

majority of particles are thought to remain in the atmospheric boundary layer (Figure 1-1) 

and as a result have short transport ranges. The minority of particles that do escape the 
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boundary layer, to the tropopause, or stratosphere where the airflow is much faster and 

more uniform, can be rapidly transported on a global scale. Reche et al. (2018) estimated 

downwards viral flux above the atmospheric boundary layer of 0.26 × 109 to >7 × 109 m−2 

viral particles per day. They found downwards flux of bacteria of 0.3 × 107 to >8 × 107 m−2 

per day. So, although this represents a minority of bioaerosols, significant numbers still 

escape the boundary layer. There are few studies of vertical distribution of bioaerosols and 

most of these are qualitative, only indicating the presence or absence of microbes (Maki et 

al., 2017; Maki et al., 2008; Wainwright, Wickramasinghe, Narlikar, & P., 2003). Much of the 

current research supports reductions in concentration with altitude (Fulton, 1966a; Fulton, 

1966b; Fulton & Mitchell, 1966), however some studies do not show a clear relationship 

between concentration and altitude (Andreeva et al., 2002; Matsuki, Iwasaka, & Osada, 

2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2 - Mechanisms of microbial movement into the atmosphere (Griffin, 2004), 
artwork by Betsy Boyton. Storms can launch aerosols into the tropopause, volcanoes to 
the stratosphere, and rockets or meteorites can propel particles as far as space. 

Various events can propel particles to different atmospheric layers (Figure 1-2). 

Storms are a good example of frequent processes which transport bioaerosols upwards. 

DeLeon-Rodriguez et al. (2013) found hurricanes in the Caribbean created large amounts of 

bioaerosols that were launched into the tropopause. Dust storms in desert areas also launch 
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large quantities of aerosols, with increases in number and diversity of microbes evident 

during dust events (Kellogg & Griffin, 2006; Maki et al., 2011). Volcanic eruptions are less 

frequent in occurrence but have the potential to propel substantial numbers of particles to 

the stratosphere and some cases even the mesosphere (Diallo et al., 2017). Krakatoa 

erupted in 1883 and observers at the time estimated that ash was ejected to an altitude of 

80 km (O'Connell, 2006). The effective transportation of thermophilic organisms over large 

distances through volcanic eruption is supported by the detection of similar organisms in 

widely dispersed geothermal sites (Herbold, Lee, McDonald, & Cary, 2014). Other impact 

events such as meteorites landing are rarer still but could feasibly transport particles 

throughout the atmosphere. Survival at these high altitudes is possible, with some 

experiments showing bacterial survival alongside space craft lift off and re-entry (Rettberg 

et al., 2002). There is evidence that Bacillus subtilis, a spore-forming, Gram-positive 

bacterium, that is frequently found in bioaerosols, can survive in space for at least six years 

(Horneck, 1993). 

Although large scale movements are driven primarily by air currents, small scale 

movements of airborne particles depend on Brownian motion (the random movements in a 

fluid from collisions with fast moving molecules and other suspended particles). Particles 

diffuse from a source down a concentration gradient, with trajectory and speed of diffusion 

influenced by air currents and gravity (Pepper, 2015). Particles with high mass require more 

force to change direction (force = mass x acceleration) meaning that they are more likely to 

impact on a surface and be removed from the air (Pepper, 2015).  

Figure 1-3 - Storms are capable of transporting large numbers of particles (Kellogg & 
Griffin, 2006). The three main sources of worldwide desert dust are shown (Australia, the 
Sahel in Africa and China) along with their typical seasonal movements. 
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Particles from deserts are small in size, have long residence times and are likely to be 

significant contributors to global transportation of bioaerosols (Figure 1-3) (Hara & Zhang, 

2012; Kellogg & Griffin, 2006). The transport of dust and associated organisms is supported 

by similarities of dust in different areas. Caribbean and African isolates show very high 

ribosomal RNA gene sequence similarity, suggesting a common source of bioaerosols 

(Kellogg & Griffin, 2006; Kellogg et al., 2004). Reche et al. (2018) found Saharan particles in 

Spanish air and particles in Florida in summer are often of African origin (Prospero, 1999). 

Maki et al. (2011) studied Asian kosa dust and found that after dust events in China, there 

were significantly more culturable bacteria in snows in Japan, which had been contaminated 

by the dust. 

 

 

Figure 1-4 - Diagram of the major air cells and wind currents in the Troposphere (Kaidor, 
2013). These winds influence trajectory of airborne transport of microbes. 

Air cells are created by differential heating of the Earth between the equator and the 

poles, and the Earth’s rotation. Predictable air cells above the boundary layer facilitate 

movement in the atmosphere horizontally in the prevailing wind direction of the cell (Figure 

1-4). For long distance transport, bioaerosols need to get above the atmospheric boundary 

layer, to these air cells, where wind speeds have been estimated to be up to 90 km/h 

(Miller, Gans, & Kleidon, 2011). Bacterial residence times (the time that a bacterial cell, on 

average, is expected to remain aloft in the atmosphere) are modelled to be between three 

to seven days, although this may differ for other bioaerosols (Burrows et al., 2009b). In 

seven days at 90 km/h, there is sufficient time for a microorganism to be transported over 

15,000 km (the distance from the South Pole to London is 15,710 km).  
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Particles are removed from aerial suspension through particle deposition. 

Gravitational settling is the gravitational pull of any particle heavier than air downwards and 

is the most common cause of deposition. Therefore, bioaerosols with lower mass will tend 

to stay aloft longer, have longer residence times and consequently greater transport range. 

Gravitational settling can be described by Stokes’s law, which considers gravity, particle 

density, particle diameter and air viscosity. 

V = [D2 x (pp - p1) x g]/18p 

V = velocity of fall (m/s), g = gravity (9.8m/s2), D = diameter of particle (m), pp = density of 

particle (kg/m3), p1 = density of dispersion medium (kg/m3), p = viscosity of dispersion 

medium (kg/m*s) 

Particles can be deposited on a surface through impaction (when they collide with 

the surface), also known as dry deposition. The particle loses kinetic energy and can come to 

rest on the surface, or deflect and return to the air flow with reduced kinetic energy, 

increasing the chance of settling. Probability of impaction on a surface depends on velocity, 

particle diameter and the size of the surface. Wet deposition is mediated by rain or other 

precipitation. As rain or snow falls, it collides and combines with aerosols creating particles 

of greater mass that can settle faster. Efficiency of wet deposition depends on the spread 

area of the particle plume, with diffused plumes experiencing stronger impaction. 

Electrostatic deposition can also occur when particles with opposing charges are attracted 

to one another, creating particles with greater mass. Bacteria are often negatively charged 

and therefore have a tendency to become attracted to positively charged particles in the 

atmosphere or surfaces, which increases deposition (Pepper, 2015). 

1.3.2 Bioaerosol Particles: Temporal and Spatial Variation 
Bioaerosols constitute a significant and variable portion of aerosol particles, up to 28% of 

total aerosol volume (Matthias-Maser, Obolkin, Khodzer, & Jaenicke, 2000). Bioaerosols are 

thought to frequently exist in assemblages with other inorganic or organic particles 

(Burrows et al., 2009b). A bacterium is around 1 µm in diameter, whereas typical bacterial-

associated particles are 2 – 4 µm, suggesting that multiple cells clump together or associate 

with other particles (Shaffer & Lighthart, 1997). Huffman, Treutlein, and Poschl (2010) 

observed bioaerosol particle sizes of 1.5 µm, 3 µm, 5 µm and 13 µm. 1.5 µm is likely to 

represent single bacteria, 3 µm is likely to be multiple bacterial cells or fungal spores, 5 µm 

is likely to be fungal spores and 13 µm is likely to be pollen (Huffman et al., 2010). Several 

authors have proposed particle association could improve bioaerosol viability (see section 

1.4 Microbial Survival Mechanisms in the Atmosphere onwards). 

The broad and rapid dispersal of particles from a source in the air means that 

experimental determination of microbial residence times remains infeasible, leaving much 

of our understanding related to atmospheric modelling. Burrows et al. (2009a) modelled the 

aerosol concentration of bacteria in the global atmosphere for six simulated years, using 

global meteorological models, estimated emissions from different ecosystems, estimated 
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residence times and estimated deposition rates (Figure 1-5). In the simulation, a mean 

microbial residence time of around one week was calculated. There was significant 

variation, with some particles staying aloft for months. Meteorological variables significantly 

affect residence times, for instance turbulence in the atmosphere will increase residence 

times, while precipitation in an area reduces residence times. Dry regions have longer 

expected residence times due to increased vertical movement in the boundary layer, related 

to greater turbulence from heating and reduced wet deposition. As the number of 

bioaerosol studies increases across a range of spatial, temporal and environmental 

variables, our understanding of microbial residence time influences will increase. Physical 

characteristics of particles, such as size or surface structure, also affect residence time. 

Particles with a smaller diameter or lower mass tend to have greater residence times, due to 

reduced deposition. It is thought that particles under 1 µm in diameter (which include 

viruses and some free-living bacteria) fall within the “scavenger gap” and have the longest 

residence times (Burrows et al., 2009a). This assumption is one of the bases for Burrows’ 

simulation. The surface structure of pollen can alter its aerodynamic properties and aid its 

dispersal by wind (Niklas, 1985). Given similar selective pressures apply to other types of 

bioaerosol, they may use similar mechanisms to enhance dispersal. Some bacteria, such as 

Pseudomonas spp., have cell surface ice nucleation proteins (Pearce et al., 2009) and are 

believed to act as cloud condensation nuclei (Bauer et al., 2002). It is thought that organisms 

which act as cloud condensation nuclei have increased wet deposition in the atmosphere 

and therefore have reduced residence times (Burrows et al., 2009a). 

Reliable estimates of bioaerosol concentrations from all ecosystems are not available 

and variable methodologies make comparison difficult. Estimates based on available 

information show that there is significant variation in bioaerosol concentration by 

ecosystem. Generally higher concentrations are observed over more productive ecosystems 

(grassland and crops), likely due to larger microbial source populations from which microbes 

can be aerosolized (Harrison et al., 2005; Tong & Lighthart, 2000). Desert areas have low 

estimated concentrations of bioaerosols by mass due to low source biomass. However, due 

to the ease of aerosolisation of particles from desert surfaces and long residence times of 

desert particles, desert dust is still thought to play a significant role in global microbial 

dispersal (Bowers, Sullivan, & Costello, 2011b; Kellogg & Griffin, 2006; Maki et al., 2017; 

Shaffer & Lighthart, 1997).  
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Figure 1-5 - Heat map of the simulated concentration of 1 µm bacteria in the troposphere 
according to modelling by Burrows et al. (2009a). 

Burrows’ model shows that after three years, bacteria reach an effective distribution 

equilibrium and are present in all locations. This suggests that short and long range 

atmospheric transportation are highly effective at dispersing microorganisms globally 

(Figure 1-5). Later studies of bioaerosols support the high concentration heterogeneity 

predicted by the model (Barberán, Henley, Fierer, & Casamayor, 2014; Bowers et al., 2013; 

Bowers et al., 2011b; Grantham et al., 2015). The application of the model to urban areas is 

discussed in 1.3.3 Spatiotemporal Variation of Urban Bioaerosols and Antarctic bioaerosols, 

the other focus of the thesis, is discussed in 1.3.4 The Antarctic Aerosphere.  

Bioaerosols are highly variable over various time scales with stochasticity in 

concentration and community structure over a short timeframe frequently more 

pronounced than seasonal changes (Burrows et al., 2009b; Fierer et al., 2008). Some 

cultivation-based studies have shown that seasonal variation is very likely to be driven by 

changes in meteorological conditions, occurring predictably over the course of the year. The 

highest average concentration of bioaerosols is thought to be at times of maximum 

productivity, generally in the summer (Lighthart & Stetzenbach, 1994; Tong & Lighthart, 

2000). However, this could be confounded by significant seasonal variations in culturability 

of microbes (Burrows et al., 2009b). A molecular study, (Woo et al., 2013) found the highest 

microbial loading occurred during summer. This variation extends to observed diurnal 

patterns linked to solar heating as net upwards flux was highest in the warmest part of the 

day (Chen et al., 2001; Shaffer & Lighthart, 1997; Tong & Lighthart, 2000). Higher 
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temperatures increase turbulence, wind speeds, vertical mixing, residence times and 

division rates, increasing the microbial load and aerosolisation.  

1.3.3 Spatiotemporal Variation of Urban Bioaerosols 

Understanding characteristics of urban bioaerosols is particularly pertinent, given the 

majority of the world's population reside in urban areas and this is forecast to increase (UN, 

2018). A majority of the bioaerosol studies which investigated differences in land-use and 

levels of urbanisation detected differences in the urban and rural aero-microbiome. When 

culturable bacteria were investigated in Oregon using city, field, forest and coastal sites, it 

was found that bacteria varied by location and time (Shaffer & Lighthart, 1997). The highest 

concentrations were detected at the urban site. Bacillus spp. were frequently present and 

the majority of bacteria were associated with particles greater than 3 µm aerodynamic 

diameter (Shaffer & Lighthart, 1997), supporting predicted spatiotemporal variation and 

suggesting a distinctive urban aero-microbiome. DNA sequencing in Germany detected 

plants, protists, fungi and bacteria at urban, rural and high alpine locations. Bacterial T-RFLP 

analysis found Shannon-Weaver diversity was highest at the rural location compared to the 

urban or the alpine location. Ascomycota and Basidiomycota fungi were detected along with 

proteobacteria, actinobacteria and firmicutes (Després et al., 2007). This indicated that the 

urban aero-microbiomes may be less diverse, possibly due to fewer different microbial 

sources in a more homogenised built environment. Bowers et al. (2011a) performed 

bioaerosol sampling in Colorado across three land use types: field, suburban and forest. 

They found no differences in bacterial cell concentration but more biological ice nuclei over 

agricultural areas. Pyrosequencing revealed that bacterial communities were significantly 

related to land use type, driven by local sources, again supporting the idea that urban aero-

microbiomes differ to others, but not the higher urban concentrations previously observed. 

Tanaka et al. (2020) reported greater alpha diversity at a suburban site in Japan compared 

to an urban site and distinctive organisms were detectable at the different locations. The 

urban site harboured human skin-associated bacteria such Propionibacterium, 

Staphylococcus, and Corynebacterium, while soil and plant-associated bacteria were 

abundant at the suburban site (Methylobacterium and Sphingomonas). This was consistent 

with previous findings in terms of the presence of urban microbial signatures and reduced 

urban diversity. Metabolite fingerprinting performed in the UK in urban parks, industrial 

areas and farms found seasonal and land use differences in the sampled aerosols and that 

different compounds were associated with different land uses, signifying the presence of 

different organisms between locations (Garcia-Alcega et al., 2020). Bowers et al. (2013) 

found that at two urban and two rural sites, the airborne bacteria varied significantly 

between sites and displayed seasonality, further supporting spatial variation and in addition 

predictable temporal variation. 

In contrast to these findings, Woo et al. (2013) sampled along an urbanisation 

gradient in tropical Hong Kong and detected no effect on the bacterial or fungal bioaerosol 

communities. However, they confirmed distinctive seasonal changes which were attributed 
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to a different predominant wind source between the summer and winter. In a study of 

continental wide distribution of bacteria and fungi across the US, external house dust from 

1,200 homes was subjected to 16S rRNA (16S) and Internal Transcribed Spacer (ITS) DNA 

sequencing. Fungi and bacteria were found to be highly spatially variable, driven by climatic 

and soil variables. A distinctive urban versus rural community was not reported, but they did 

find that urbanisation tended to lead to homogenisation, with urban communities being less 

geographically variable than rural ones (Barberán et al., 2015), in some agreement with the 

notion that sources of bioaerosols could be less diverse in urban areas.  

Taken together, it seems that bioaerosols in urban areas can be less diverse than 

non-urbanised areas. Urban areas do sometimes display higher concentrations of airborne 

microorganisms. There is evidence for different compositions of bioaerosols in different 

areas but there does not seem to be a common worldwide urban aerial community. The 

urban aero-microbiome appears to vary by city, depending on local sources and climatic 

variables and varies over time. Unfortunately, the areas in which the urban aero-

microbiome has been studied are geographically limited, most studies having been 

performed in the USA, Europe and Asia.  

Cultivation studies have been conducted in Beijing. Three sites within the city were 

compared: a roadside, a human activity enriched area and a park. Bacterial concentrations 

in the park were found to be significantly lower, postulated to be due to fewer vehicular 

movements aerosolising microorganisms. Micrococcus was the dominant genus detected, 

along with Staphylococcus, Corynebacterium, Bacillus and Pseudomonas (Fang, Ouyang, 

Zheng, Wang, & Hu, 2007a). The lower concentrations in parks were somewhat consistent 

with Shaffer and Lighthart (1997) observing higher urban concentrations. Later, a 

metagenomics study was performed in Beijing, with smog analysed for bacteria, archaea, 

fungi and double-stranded DNA viruses. The organisms detected were mostly soil related 

and non-pathogenic, however human allergens and pathogens were found and their 

abundance seemed to increase with pollution levels (Cao et al., 2014). This indicated 

pollution is important, and may be a driver of urban bioaerosol variability between cities, 

but application to less polluted areas may be debatable. In the USA, DNA microarrays were 

used to characterise the bacterial bioaerosol community in two cities. 1,800 types were 

found, with a diversity similar to soil. Some of the groups detected had pathogenic 

members. The authors found temporal and local meteorological influences can be stronger 

than location in influencing bioaerosol composition (Brodie et al., 2007b). When the aero-

microbiome of 96 sites in North American cities were characterised, they were highly 

seasonal with microbial sources identified including soils, leaves and dog faeces (Bowers et 

al., 2011b), again supporting importance of local sources and seasonality. Metagenomics 

techniques applied in the US National Capital Region detected bacteria, plants, fungi, 

invertebrates, and viruses in the air. Temporal shifts were evident, with bacteria peaking in 

the summer and fungi in the spring. The bacterial genera Ralstonia, Cupriavidus, and Bacillus 

were abundant throughout the year (Be et al., 2015), strengthening observations of 
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seasonality in previous studies. Cultivatable bacteria and fungi were characterised along the 

New York waterfront. Microbial counts were found to be higher when the wind was 

offshore, and bacteria were dominant. When the wind was onshore, fungi were dominant. 

Microbes were associated with coarse aerosols, which signified importance of local sources 

and there was a significant correlation between wind speed and microbial culturable aerosol 

concentrations. Actinobacteria were dominant, specifically the genera Streptomyces spp. 

and Bacillus spp. (Montero, Dueker, & O’Mullan, 2016). This again suggests urban areas may 

have higher bioaerosol concentrations, and dominance of local sources. Urban German 

fungal communities confirm global consistency of seasonal changes. Plant pathogens were 

associated with coarse particulates and human pathogens and allergens associated with fine 

particulates. Cladosporium spp., Alternaria spp., Penicillium spp. and the plant pathogen 

Blumeria graminis (mildew) were found (Fröhlich-Nowoisky, Pickersgill, Després, & Pöschl, 

2009). In Milan, pyrosequencing was used to interrogate bacterial bioaerosols. Seasonality 

was evident, with plant associated bacteria more common in summer and spore formers 

more prevalent in the winter. Species richness was comparable to soil but species evenness 

was low (Franzetti, Gandolfi, Gaspari, Ambrosini, & Bestetti, 2010). Low evenness is 

expected with variable bioaerosol populations, and again seasonality was evident. Diurnal 

variation was detected in Melbourne bioaerosols, with peaks in abundance at midday of 

four times the mean night-time values (Jamriska, DuBois, & Skvortsov, 2012), suggesting 

finer grain temporal variation as thought from modeling. 16S sequencing was performed on 

bacterial bioaerosols sampled at an elevated site in Tokyo. The air-mass source changed 

over the sampling period but that did not affect the bioaerosol community, or alpha or beta 

diversity. There were significant correlations between relative humidity and wind speed and 

both alpha and beta diversity. Local sea water and soil were identified as constant and 

predominant sources. Relative humidity appeared to be the most influential variable, due to 

its correlation with soil moisture and negative correlation with soil emissions (Uetake et al., 

2019). This again indicated the importance of local sources versus distant ones, and the 

impact of meteorological conditions on the aero-mircobiome, suggesting these as a driver of 

commonly observed seasonal variation. Mhuireach, Wilson, and Johnson (2020) applied 16S 

metabarcoding sequencing to bioaerosol samples passively deposited in urban parks in 

Eugene, Oregon. Some sites were forested, and others were grass covered. They defined a 

core aero-microbiome of plant and soil associated genera. The forested sites were 

significantly more diverse than the grass covered ones. Seasonal and site-specific effects 

were detected; vegetation type explained 14% of the differences in communities and site in 

total accounted for 41% of the variance. The genera Sphingomonas, Acidiphilium, 1174-

90112, Ralstonia, Lactococcus, Methylobacterium, Pantoea, Granulicella, Pseudomonas, 

Hymenobacter and Terriglobus were common. Increased diversity in forests was consistent 

with diversity varying by land-use, and seasonality and local effects were in agreement with 

earlier studies, supporting variation within the urban biome (i.e. between parks and more 

trafficked areas) previously noted by Fang et al. (2007a).    
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The urban bioaerosol studies emphasise the spatiotemporal variability of the aero-

microbiome. While some genera such as Bacillus spp. are very commonly observed, others 

are inconsistently found, suggesting no consistent global urban aero-microbiome.  Climatic 

variables, seasonality and local sources appeared to be reliably important to the urban aero-

microbiome, and land-use within the urban space affected bioaerosols. The multitude of 

techniques used and varying target organisms make comparison difficult and unifying 

theories elusive. Bioaerosol communities appear to be driven by many factors, but further 

research, in different areas and over longer time scales, is needed to understand them in 

more detail. 

1.3.4 The Antarctic Aerosphere 
Bacterial concentrations over Antarctica were estimated to be very low from Burrows’s 

simulation and this has since been verified (Bottos et al., 2014; Pearce et al., 2016). Polar 

areas are thought to have low concentrations of bioaerosols, due to a lack of microbial 

activity in those areas and the physical stability of frozen surfaces reducing emissions. 

Pearce et al. (2009) found a large variation of microbial concentrations in different polar and 

ice ecosystems, although all showed evidence of life. Since there is a lack of data from ice 

environments Burrows’ simulation used average background estimates of bioaerosol 

concentration as a maximum. The other relevant ecosystem for consideration of Antarctic 

bioaerosols is the sea, since it surrounds Antarctica. Seas are estimated to have low 

bacterial concentrations of 1×104m-³ based on cultivation studies (Bauer et al., 2002; 

Harrison et al., 2005; Kellogg & Griffin, 2006) although this could be an underestimate given 

marine bacteria are on average less culturable than terrestrial bacteria (Parks et al., 2017). 

In nutrient rich marine regions, such as those found around Antarctica (Fripiat et al., 2017), 

concentrations of bacteria are often much higher, likely resulting in higher emissions (Cho & 

Azam, 1990). Bioaerosol sampling in Antarctica is insufficient to reveal the level of marine 

aerial input, although a couple of studies show limited marine taxa despite proximity to 

water (Bottos et al., 2014; Pearce, Hughes, Lachlan-Cope, Harangozo, & Jones, 2010). In 

Burrows’ simulation, Antarctica was decoupled from the rest of the world, due to its 

isolation by the Southern Ocean. However, residence times of particles in Antarctica were 

estimated to be high, despite low emissions and most particles that circulated in Antarctica 

were expected to originate there. Some of these predictions have since been supported by 

other authors, based on later Antarctic bioaerosol research (Bottos et al., 2014; Crawford et 

al., 2017; Pearce et al., 2010). Estimates of the bioaerosol fraction of Antarctic aerosols 

indicate that they constitute only a small proportion of total aerial particles (under around 

2%), but also that they can vary significantly (Crawford et al., 2017). This low biological 

particle fraction in Antarctica is likely driven by low ecosystem productivity and large 

amounts of dust and other aerosols in the atmosphere. 

Westerlies move air from Africa and South America towards Antarctica (Figure 1-6). 

Frequent discoveries of temperate pollen (Wynn-Williams, 1991) in Antarctica indicate that 

these winds could facilitate intercontinental transport. Within the Antarctic continent there 
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are also characteristic air movement patterns such as the circumpolar vortex, which is a ring 

of low-pressure systems that creates circular air movement around the continent and 

provides a barrier to entry to the continent (Figure 1-6). Powerful Antarctic katabatic winds, 

created as cold high density air flows downwards towards the sea under the force of gravity 

(Parish & Cassano, 2003), combined with local weather cells, are thought to distribute 

microorganisms effectively around the continent (Nkem et al., 2006; Pearce et al., 2009). 

Deuterated methane was released from a plane at 5.5 km altitude in the Maritime Antarctic, 

and within a week was detected all around Antarctica, indicating rapid dispersal on a 

continental scale (Mroz et al., 1989). For the purposes of bioaerosol movements, the 

Antarctic Peninsula can be thought to be somewhat isolated from the rest of the continent, 

as the Peninsula sits outside of these typical wind patterns and forms a distinct 

biogeographic zone (Chong, Pearce, & Convey, 2015).  
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Figure 1-6 - Predominant wind movements over Antarctica during summer at 4 km 
altitude. Adapted by Chris King from Wynn-Williams (1991). Dark blue arrows are 
frequent cyclone tracks, lighter blue ones are more occasional tracks. The circum-polar 
vortex is shown. 

1.3.5 Importance of Aerial Transport of Microorganisms to and within 

Antarctica 
Three lines of evidence support the atmosphere as a long-range vector to Antarctica. Firstly, 

exotic propagules found in Antarctica, secondly isolated thermophiles at remote geothermal 

sites, and thirdly the presence of globally ubiquitous microorganisms. Exotic propagules 

have consistently been found in remote locations (Marshall, 1996a; Marshall, 1997; Smith, 

1991; Wynn-Williams, 1991). These include lichen spores and pollen granules from 

Patagonia that have been found at King George Island off the coast of the Antarctic 

Peninsula (minimum approx. 1,200 kilometres away) (Wynn-Williams, 1991); and exotic 
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species in Antarctica in ice sheets up to 400,000 years old (Vincent, 2000); as well as plant 

pollen and fungal spores at Halley Bay (Gregory, 1961), Signy Island and South Georgia 

Island (Gregory, 1961; Smith, 1991). The lack of alternative transport pathways strongly 

suggests these propagules arrived via the air and have travelled thousands of kilometres 

from their source populations in temperate areas of South America (Marshall, 1996a; 

Vincent, 2000). These propagules could be transported continually from high altitude 

weather systems or by stochastic powerful low pressure systems capable of translocating 

large bioaerosol loads from South America, to the Antarctic (Marshall, 1996b), (Figure 1-7). 

These low-pressure systems occur periodically (approximately 1.5 times a year), suggesting 

that Antarctica has the potential to experience regular microbiological exchange with other 

land masses.  

 

Figure 1-7 - A synoptic chart of 11/11/1993 showing a large low pressure system between 
South America and the South Orkney Islands (Marshall, 1996b). 

As thermophiles are incapable of surviving in the below-freezing temperatures 

surrounding Antarctic geothermal features, the presence of thermophilic organisms at 

remote geothermal locations indicate either ancient refugia or recent aerial dispersal. The 

volatile nature of geothermal sites makes them ideal launchers of material into the upper 

atmosphere (Figure 1-2). A recent molecular study on Mt Erebus microorganisms supports 
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atmospheric vectoring as a likely contributor to geothermal environments in Antarctica 

(Herbold et al., 2014). Researchers identified a diverse thermophilic community including 

Mastigocladus laminosus, a thermophile previously isolated from Yellowstone National Park 

in the USA. This is further supported by thermophiles being identified in a bioaerosol study 

near Mt Erebus (Bottos et al., 2014). A similar distribution has been observed in 

multicellular organisms that surround fumaroles (volcanic vents), which are found nowhere 

else in Antarctica but are common in South America.  

 
The abundance of ubiquitous microorganisms in Antarctic air and terrestrial samples 

suggests a propensity for aerial transportation and establishment in Antarctica where other 

means of dispersal are limited. The McMurdo Dry Valleys have been well studied as one of 

the largest ice-free areas in Antarctica, with comparatively high microbial biomass (Pearce 

et al., 2016). The valleys are located on the coast, to the west of McMurdo Sound and the 

ice shelf. Bioaerosol samples taken in the McMurdo Dry Valleys showed that the most 

prolific bacterial taxa are consistent with bioaerosols from other continents (Bottos et al., 

2014). Microorganisms of exotic origin have also been detected in a range of terrestrial and 

aquatic environments in Antarctica (Archer, McDonald, Herbold, & Cary, 2014; Herbold et 

al., 2014; Lee, Barbier, Bottos, McDonald, & Cary, 2012; Sokol et al., 2013). Interestingly, 

many Antarctic studies noted a high sequence similarity between samples within Antarctica, 

suggesting organisms which reach Antarctica can be effectively distributed around the 

continent (Bottos et al., 2014; Pearce et al., 2016; Vincent, 2000).  

 

There is evidence that most organisms detected in Antarctica originated there 

(Bottos et al., 2014; Crawford et al., 2017; Pearce et al., 2010), which can be expected due 

to Antarctica’s extreme isolation. This is consistent with the decoupling of the Antarctic 

from the rest of the world predicted by modelling (Burrows et al., 2009a). Therefore, it 

seems long-range aerial dispersal to Antarctica, although present, is rare and acts with more 

common short-range transport to fundamentally affect Antarctic microbial communities. 

Local wind is important for local dispersal of cyanobacteria and small eukaryotic organisms 

(Nkem et al., 2006; Wood, Rueckert, Cowan, & Cary, 2008). Dry Valleys with lakes had more 

cyanobacteria in nearby soils than valleys without lakes (Wood et al., 2008), (Figure 1-8) and 

wind-borne dispersal of faecal coliforms and avian-associated bacteria has been detected 

downwind of research stations and bird colonies (Hughes, 2003; Kobayashi et al., 2016; 

Pearce et al., 2010). Nkem et al. (2006) observed frequent short-range wind dispersal of 

rotifers and tardigrades (small multicellular invertebrates) in the McMurdo Dry Valleys. 

Additionally, large volumes of dust are relocated (typically under 30 km but up to 120 km) 

onto sea ice in the McMurdo Sound, from the Dry Valleys (Atkins & Dunbar, 2009). Given 

microbes are known to frequently associate with dust and other particles (Burrows et al., 

2009b), it is reasonable to assume substantial numbers of microbes would also be 

transferred.  
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Figure 1-8 - a) cyanobacterial mat in an Antarctic lake b) These mats can dry out when 
water levels drop. When dry they break up and are easily transported by the wind. 

1.3.6 Bioaerosol Sampling: Challenges and Solutions 
The extremely low biomass of the air presents a significant challenge to the collection and 

analysis of an unbiased representative bioaerosol community. Most air sampling to date 

either uses passive gravitational settling or active pumping, with impaction or liquid 

impingement to capture aerosol particles. Although early work on bioaerosols was a critical 

basis for later study, it drastically underestimated microbial biodiversity (Burrows et al., 

2009b; Pearce et al., 2009). Early description of microorganisms in air was based on 

cultivation or microscopic identification, however a large majority of microorganisms (70 – 

99%) have resisted cultivation to date (Burrows et al., 2009b) and microscopic identification 

cannot differentiate organisms with similar morphologies (Haig, Mackay, Walker, & 

Williams, 2016). Recent culture independent community analysis based on nucleic acid 

(DNA or RNA) sequencing has revealed a plethora of diversity not apparent from microscopy 

or culture. Molecular analysis can provide information on total community identity 

(amplicon sequencing), whole genomes (metagenomics) or gene transcription 

(metatranscriptomics) of bioaerosols (Behzad et al., 2015; Yoo et al., 2016).  

Aerial sampling challenges are exacerbated in Antarctica where biomass sources in 

all systems are typically far lower and logistical constraints for studies are greater (Bottos et 

al., 2014), resulting in a marked lack of data. The current best practice for Antarctic 

bioaerosol sampling is to pump air through a 0.2 µm polycarbonate filter (Pearce et al., 

2016). These filters are easy to run and can be left for long periods of time to collect 

samples, however they have low flow rates and can take from 24 hours to two months to 

collect sufficient biomass for analysis (as with Bottos et al. (2014) Figure 1-9). The long 

sample duration on polycarbonate filters disproportionately degrades the DNA of Gram-

negative bacteria in under 24 hours due to desiccation stress (Luhung et al., 2015), 

indicating serious sample bias in existing Antarctic air sampling methodology. Samplers with 

liquid collection media and higher flow rates have been developed, which aim to reduce 

sample time and bias but are limited in their use in sub-zero temperatures (Dybwad, 

Skogan, & Blatny, 2014). Comparative testing reveals different samplers work best for 
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capturing different types of bioaerosol, so careful choice of sampler for the desired 

application is crucial (Dybwad et al., 2014; Haig et al., 2016).  

Figure 1-9 - Bottos is pictured setting up the air pump that was used to take the sample 
leading to the published paper “Airborne Bacterial Populations Above Desert Soils of the 
McMurdo Dry Valleys, Antarctica” (Bottos et al., 2014). 

1.3.7 Bioaerosol Research in Antarctica 
Between 1994 and 2014, 12 studies were conducted (both published and unpublished) on 

bioaerosols in Antarctica (Pearce et al., 2016) (Table 1-1, Figure 1-10). Most aerobiological 

studies to date have identified limited biodiversity, however as techniques and resolution 

have advanced, more recent molecular studies (Archer et al., 2019; Bottos et al., 2014; 

Hughes, 2003; Pearce et al., 2010) have shown an increasingly diverse and distinctive 

bioaerosol community, compared to local soils. Unfortunately, the limited studies 

conducted, samples collected and information gained from the samples have resulted in 

persistent knowledge gaps. Additionally, the lack of standardised techniques and restricted 

spatial and temporal coverage mean that it is difficult to make any broad inferences on the 

significance or extent of bioaerosol transportation to Antarctic ecosystems (Pearce et al., 

2016). The studies in Table 1-1, and other terrestrial based work in Antarctica strongly 

suggest that the atmosphere is crucial to both inter and intracontinental Antarctic transport 

and a distinct microbial community may reside in Antarctic air. Future studies will be able to 

utilise current knowledge and techniques to conduct bioaerosol sampling in Antarctica that 

is higher resolution, less biased, inclusive of viruses that may be more abundant in 

bioaerosols than bacteria (Reche et al., 2018) and determine how these organisms survive 

and where they originate (see section 1.4 Microbial Survival Mechanisms in the 

Atmosphere).  
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Figure 1-10 - Aerobiological study sites in Antarctica published 1994 – 2014. Adapted from 
Pearce et al. (2016). Circle width indicates number of sites per study. Most data come 
either from the Peninsula or the McMurdo Dry Valleys. 

Table 1-1 - Summary of aerobiological studies undertaken in Antarctica 1994 – 2021 
available on Google Scholar – search terms “Antarctic Aerobiology”, “Antarctica 
Bioaerosol” and “Airborne microorganisms, Antarctica”. 



42 
 

Reference Study area Sampling Method Analysis Method Summary of Findings 

(Cao et al., 

2021) 

The researchers 

circumnavigated 

Antarctica, taking 25 

bioaerosol samples 

over coastal waters. 

A high-volume air 

sampler and 

quartz filters. 

Sample duration 

was 24 hours. 

Molecular 16S rRNA 

sequencing. Air mass 

back trajectory.   

Proteobacteria dominated bioaerosols, including 

Sphingomonas spp.. They found low alpha diversity, 

high spatial and temporal variability but consistency 

in major groups collected over the study. They 

postulated immigration through long range 

atmospheric transport. Wind speed, temperature 

and organic carbon significantly affected the 

bacterial community. Richness and diversity did not 

significantly differ due to weather conditions. 

(Trout-

Haney, 

Heindel, & 

Virginia, 

2020) 

Greenland and the 

McMurdo Dry Valleys 

above freshwater and 

soil. 

A pump and a dry 

filter with a 

sample duration 

of five days.  

Epifluorescence 

microscopy on 

picocyanobacterial 

aerosols only to count 

the cells captured. 

Picocyanobacterial cells in near surface air were 

present at a concentration of 2,431 to 28,355 cells 

m-3 air and no significant differences were detected 

between substrate or regions. Concentrations were 

lower than temperate areas.  

(Archer et 

al., 2019) 
McMurdo Dry Valleys 

Soil sampling and 

air sampling with 

a Coriolis sampler 

and a RNAlater 

collection 

medium, as 

designed in 

Appendix A 

Method 

Development 

Molecular 16S rRNA 

sequencing and ITS 

sequencing. Air mass 

back trajectory.   

Proteobacteria, bacterioids and firmicutes 

dominated the bacterial bioaerosols, fungal 

bioaerosols contained yeasts and ascomycetes. 

These organisms are frequently spore formers and 

tolerant to extreme conditions. Bacterial bioaerosols 

showed marine influence. In ecological network 

analysis, bacterial communities were clustered by 

habitat, fungi clustered by geographic distance, 

indicating more dispersal limitations for fungi. No 

significant distance-decay detected. Nestedness 

analysis showed fungi were more nested, suggesting 

dispersal limitations. Intercontinental connectivity to 

the McMurdo Dry Valleys is limited, in line with 

previous modelling indicating infrequent 

microbiological exchange with the rest of the world. 

(Weisleitner, 

Perras, 

Moissl-

Eichinger, 

Andersen, & 

Sattler, 

2019) 

Lake Untersee,  

A Coriolis took 

seven samples 

over three days. 

These samples 

were then pooled. 

Molecular 16S rRNA 

sequencing. 

Bioaerosols were dominated by firmicutes, 

proteobacteria and actinobacteria, while 

cyanobacteria only constituted 0.9% of the 

community. They found Staphylococcus, Bacillus, 

Corynebacterium, Micrococcus, Streptococcus and 

Neisseria and noted similar composition to Bottos et 

al. (2014) and other Antarctic bioaerosol studies. 

(Kobayashi 

et al., 2016) 

Hukuro Cove, 

Langhovde 

Sampled for one 

hour near Adelie 

penguins on to 

0.45 µm filter. 

One sample 

upwind and one 

downwind of the 

colony.  

Molecular 16S rRNA 

sequencing. Air mass 

back trajectory. 

19.4 times more Bacillus downwind of penguins 

from penguin faeces. 

(Bottos et 

al., 2014) 

McMurdo dry Valleys 

- Miers Valley 

Air filtered on to 

0.2 m 

polycarbonate 

filters, total 

sample air volume 

75,000 L at each 

Molecular 16S rRNA 

sequencing. Air mass 

back trajectory. 

Aerosols dominated by firmicutes suggesting 

volcanic activity. Most abundant taxa common to 

aerosols from other continents, representing a 

distinct widely dispersed bioaerosol community. 

Minimal marine input. Air masses originated from 

Antarctic Plateau. Some taxa in common with Halley 
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of two locations. 1 

m elevation. 55 

day sample time,  

summer. 

station work. Input likely from within Antarctica 

rather than intercontinental. 

(Pearce et 

al., 2010) 

Halley V Research 

Station 

Two-week 

sampling in 

summer and 

winter with Hivol 

sampler with 0.2 

µm polycarbonate 

filter. 

Molecular 16S rRNA 

sequencing. Air mass 

back trajectory. 

Low diversity, many sequence replicates and 

sequences from uncultivated organisms. No 

significant patterns detected between summer and 

winter. Few marine sequences irrespective of the 

distance to water. 1/3 sequences similar to those 

found in human studies indicating possible 

contamination of local environment from research 

station. 

(Hughes, 

McCartney, 

Lachlan-

Cope, & 

Pearce, 

2004) 

Rothera Point 

(Antarctic Peninsula). 

Hivol sampler with 

0.2 µm 

polycarbonate 

filter. 

Molecular 16S rRNA 

sequencing.  Air mass 

back trajectory. 

Microorganisms, including cyanobacteria, 

actinomycetes, diatom plastids and other 

uncultivated bacterial groups were detected. 

Matches for microorganisms indicative of human 

contamination were not found. The closest matches 

were from Antarctic clones or from other cold 

environments. The majority of the sequences are 

likely to be of local origin. Back trajectory 

calculations showed that the sampled air may have 

travelled over the Antarctic Peninsula immediately 

prior to reaching the sample site, a proportion of the 

detected biota may be of non-local origin. 

(Hughes, 

2003) 

Rothera Research 

Station 

Exposed agar 

plates. 

Plate counts. Faecal coliform bacteria detected 75m downwind of 

the sewage outfall. Within one hour of deposition 

UV and desiccation kills most bacteria.  

(Marshall, 

1997) 

Signey Island, South 

Orkney Islands 

Rotorod Samplers. 

Three sites. 1 m 

and 0.15 m above 

ground level. Four 

rotorods at two 

separate 24 hour 

periods each week 

at all three sites 

for 14 months.  

Microscopy. Low concentrations of fungal spores in the air 

compared to the rest of the world. Concentrations 

increased in summer. Chlamydospores and 

Vladospoirum spp. were most and second most 

abundant spores respectively. Evidence of long-

distance transport of spores. 

(Marshall, 

1996a) 

Signey Island, South 

Orkney Islands 

Rotorod Samplers. 

Three sites. 1 m 

and 0.15 m 

elevation. Four 

rotorods for two 

separate 24 hour 

periods each week 

at all three sites 

for two years. 

Microscopy.  Lichen soredia most abundant bioaerosols. 

Dominance of soredia over ascospores decreases 

with more mature fell field sites. No correlation with 

temperature, humidity or wind speed. 1 m elevation 

not significantly different to ground level. Soredia 

peak in numbers after winter snow melt, 

demonstrating they are produced at sub-zero 

temperatures.  
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1.4 Microbial Survival Mechanisms in the Atmosphere 
Microorganisms are highly resilient to environmental stressors, as shown by their successful 

colonisation of almost every niche explored by humans to date (Nuwer, 2014). The global 

atmosphere and terrestrial Antarctica are both extreme environments which share many 

survival challenges including high ultra violet (UV) irradiance, low temperature, low 

humidity and low nutrients (Womack et al., 2010). The extreme selective pressures 

experienced by microorganisms in the atmosphere should result in microbes that survive 

transport to Antarctica being well suited to colonise Antarctic ecosystems (Pearce et al., 

2009). Dormancy (through spore formation) is thought to be the principle bioaerosol 

survival mechanism (Bottos et al., 2014; Pearce et al., 2016; Womack et al., 2010). 

Spore formation: To survive transportation in the air, microorganisms can expend 

energy to counteract each stressor individually and remain metabolically active, or they can 

become dormant through spore formation, becoming resistant to all stressors with a single 

strategy. Species which become inactive therefore use the atmosphere as a vector only and 

are not considered to be residents of the aerial habitat. Spore formation is thought to be the 

most common mechanism for airborne survival, given that the majority of culturable 

isolates from high altitudes are spore-forming bacteria and fungi (Griffin, 2004; Smith, 

Griffin, McPeters, Ward, & Schuerger, 2011). Several authors have suggested that the air is 

dominated by Firmicutes (Bottos et al., 2014; Pearce et al., 2009), a bacterial phylum in 

which spore formers are common. Bacterial spores are small cells with a highly reduced 

cytoplasm and a tough outer coating, allowing them to remain dormant for millions of years 

and rapidly reactivate when conditions are appropriate for growth (Cano & Borucki, 1995). 

Their DNA is bound with various proteins to protect from UV, heat, cold, desiccation and 

any other stressors the organism might be likely to encounter (Lennon & Jones, 2011). 

Suspension of cellular metabolism protects against nutrient starvation and the toughened 

outer coating may protect from desiccation and UV (Lennon & Jones, 2011). Single-cell 

eukaryotes and fungi also form spores or cysts which operate on a similar principle. Small 

multicellular eukaryotes, like rotifers and tardigrades, undergo anhydrobiosis (desiccation of 

their bodies and significant reduction or suspension of their metabolism). Anhydrobiosis 

similarly facilitates survival in disadvantageous conditions and aerial dispersal (Nkem et al., 

2006). However, multicellular organisms have a much more limited transport range due to 

their larger body sizes. 

UV tolerance: UV is the limiting factor determining survival of aerial microbes (Smith 

et al., 2011) deactivating foreign microorganisms in Antarctic samples in under an hour 

(Hughes, 2003). UV intensity rises with altitude in the aerosphere and is elevated in 

Antarctica, due to its thin atmosphere and the localised depletion of the ozone layer (Pearce 

et al., 2009). UV radiation is highly damaging to most molecules in cells, but mediates its 

lethal impacts through DNA damage, which interrupts all cellular functions. UV causes harm 

to DNA in various ways, the most significant being cyclobutane pyrimidine dimers, where 

adjacent bases bind together. This erroneous binding causes destruction of normal base 
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pairing, resulting in mutation and distorts the DNA double helix, preventing genes from 

being transcribed (Sinha & Häder, 2002). As UV damage has such serious consequences, all 

organisms have developed defences against it. Pigmentation or carotenoids are commonly 

employed by microorganisms to absorb UV radiation before it can cause damage within a 

cell (Sinha & Häder, 2002). Isolates of culturable bacteria and fungi from the stratosphere 

often show pigmentation, indicating it could be an important factor for their survival (Smith 

et al., 2011; Womack et al., 2010). Bioaerosols generally exist as aggregates of particles, 

often including organic and inorganic matter bound together. Several authors have 

suggested that this might protect against UV radiation, as could persistence within clouds 

(Burrows et al., 2009b; Pearce et al., 2009; Womack et al., 2010). Microorganisms in 

challenging environments often grow in biofilms, which are layered communities of 

microbes that likely provide protection from UV in a similar fashion (Pointing et al., 2015). 

DNA repair mechanisms, which correct UV induced damage, are ubiquitous in living 

organisms. They include use of enzymes such as photolyases, which harvest energy from 

light to repair damaged DNA. Photolyases have been found in UVC-resistant Antarctic 

microorganisms (Marizcurrena et al., 2017). Excision repair is another very common 

pathway, which works by cutting out the damaged portion of DNA and resynthesizing it 

using the complementary strand as a template (Sinha & Häder, 2002). Some microorganisms 

such as Deinococcus have highly efficient DNA repair mechanisms, which confer extreme 

resistance to UV radiation (Pepper, 2015). 

Cold resistance: Most organisms have growth optima well above temperatures 

commonly experienced in Antarctica and the aerosphere. With increased altitude 

temperature drops to below zero towards the tropopause, to around -60 oC, before 

recovering to approximately zero in the stratosphere (NASA, 1962). Antarctic winter 

temperatures become as low as -93.2 °C and summer temperatures reach up to 15 °C, with 

a summer mean of around zero (Pointing et al., 2015). Below-freezing temperatures cause 

ice crystal formation on cell surfaces and slowing of metabolic processes, which can either 

kill cells or severely limit their growth rates (Pepper, 2015). Psychrophilic (cold-loving) 

microorganisms grow successfully down to -18 °C (Rothschild & Mancinelli, 2001) and 

various adaptions allow these organisms to remain metabolically active. Ratios of 

unsaturated to saturated fatty acids in cell membranes can be increased to counteract 

reductions in membrane fluidity at lower temperatures. Some organisms have developed 

enzymes with optimal activity at lower temperatures and some employ antifreeze proteins, 

which help prevent crystallization (Laybourn-Parry, 2002). Cold-tolerant organisms can be 

isolated from bacterial communities in temperate environments (Wilson & Walker, 2010), 

indicating psychrotolerant organisms likely originated outside Antarctica, transported from 

warmer clines. Although there has been no evidence of airborne microorganisms employing 

these mechanisms to tolerate cold environments, with increasing molecular studies of 

bioaerosols, similar survival mechanisms are likely to be detected. 
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Low humidity tolerance: While microorganisms differ in their responses to changes 

in humidity, very low humidity seems universally intolerable (Pepper, 2015). Both Antarctic 

and high-atmospheric relative humidity levels are low, with desiccation-tolerant organisms 

frequently found in both environments (Luhung et al., 2015; Pearce et al., 2009). Low 

humidity causes damage to the lipid bilayers in the cell membrane and can change the 

membrane from a crystalline structure to a gel structure. This affects configuration of cell 

surface proteins, interrupting their function and deactivating the cell (Pepper, 2015). Viral 

survival is also thought to vary in a way which is dependent on humidity, with encapsulated 

viruses showing better resilience to lower humidity (Mohr, 2007). As with protection from 

UV, associations with clouds or other aerosol particles are thought to help protect against 

low humidity (Pearce et al., 2009; Womack et al., 2010). Biofilms with extracellular matrices 

adhering the organisms are also thought to reduce water loss (Pointing et al., 2015). Gram-

positive cells tend to be more resilient to desiccation (Mohr, 2007), thought to be due to a 

number of factors such as a thicker peptidoglycan layer, ability to accumulate magnesium 

and linkages to radiation tolerance (probably due to strong DNA repair capability conferring 

protection against desiccation as well as UV) (Makarova et al., 2001). Accordingly, the 

majority of bacterial bioaerosols found to date are Gram-positive (Bottos et al., 2014; 

Griffin, 2004; Smith et al., 2011). However, this observation could be confounded by sample 

bias noted against Gram-negative bacteria (Luhung et al., 2015), or the fact that Gram-

positive bacteria are also frequently spore formers. 

Oligotrophy resistance: Another shared characteristic and challenge to survival, in the 

aerosphere and Antarctica generally, is low nutrient concentrations. The atmosphere is 

generally assumed to be lacking in the nutrients required by microorganisms, however key 

nutrients for microbial survival such as carbon, sulphate and nitrate can be found in cloud 

water, at similar levels to lake water (Pearce et al., 2009). Bauer et al. (2002) observed 

carbonaceous material constituted up to 20% of total aerosol mass in atmospheric aerosol 

samples. In addition to metabolising nutrients in the atmosphere, photosynthetic microbes 

that can independently fix carbon have been found in air samples, such as cyanobacteria 

and Chloroflexi (Brodie, DeSantis, & Parker, 2007a). Aerosolised bacteria can multiply and 

metabolise organic compounds generally present in clouds, some even at super cooled 

temperatures (Dimmick, Straat, Wolochow, & Levin, 1975; Dimmick & Wolochow, 1979; 

Sattler et al., 2001) . Vaïtilingom and Deguillaume (2013) and Amato et al. (2007) showed 

microorganisms are capable of degrading formaldehyde and carboxylic acids, carbon 

sources that are often present in cloud water. Current bioaerosol work is insufficient to 

determine the extent of metabolism and division in the atmosphere and what portion of the 

bioaerosol community typically remains metabolically active. It is assumed that there is 

unlikely to be significant reproduction of bacteria within clouds (Burrows et al., 2009a), 

given that most bioaerosols likely only spend a tiny fraction of their time suspended within 

cloud droplets (Lelieveld & Heintzenberg, 1992). The ability to remain metabolically active is 

the key differentiator between dormant microbes using the atmosphere as a vector and 

active microbes using the air as a habitat.  
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1.5 Impact of Aerial Dispersal on Antarctic Microbial Populations 
Long-range aerial transportation of microorganisms has long been suspected to play a 

significant role in structuring the Antarctic biological community (Horowitz, Cameron, & 

Hubbard, 1972). We have suggested that the air is likely to be the dominant vector for 

microbes to Antarctica (see section 1.3 The Aerosphere and Bioaerosol Particles) and that 

microorganisms transported via the atmosphere are likely to be preselected to colonise 

Antarctica, with sporulation the likely main survival mechanism (see section 1.4 Microbial 

Survival Mechanisms in the Atmosphere). Most Antarctic environments have a relatively low 

turnover rate (Cary, McDonald, Barrett, & Cowan, 2010) so aerially deposited 

microorganisms are unlikely to be consumed by the resident community. This implies that a 

large pool of atmospherically vectored temperate organisms is present in Antarctica, which 

will come out of dormancy when conditions become favourable under continued global 

warming (Kussell, Kishony, Balaban, & Leibler, 2005). Therefore it is likely that 

atmospherically vectored microbes have the potential to substantially impact Antarctic 

ecosystems and understanding the potential impacts from this shifting microbial landscape 

to the continent is paramount. 

1.5.1 The Propagule Bank  
The propagule bank describes a reservoir of dormant microorganisms awaiting favourable 

conditions to reactivate (Wynn-Williams, 1991). It represents the adaptive potential of an 

ecosystem, allowing microbial communities to rapidly respond to change. Up to 80% of 

microbial cells in soil are estimated to be in a dormant state (Lennon & Jones, 2011), with no 

published equivalent figure for the atmosphere. The presence of many dormant organisms 

represents a significant risk to the existing microbial community, which could change 

drastically, resulting in biodiversity loss (Lennon & Jones, 2011). In Antarctica, aerially 

deposited microbes are thought to comprise a large proportion of the propagule bank. An 

example of this is found at Lake Vostok (Figure 1-11), located below the central East 

Antarctic ice sheet and named for the Russian research station on its surface. Here, viable 

microorganisms were recovered at different depths. The lake itself is sealed under the ice 

sheet and remains liquid due to the enormous pressure from the weight of ice above 

(Vincent, 2000). Ice cores collected from above the lake contained a continuous chronology 

of microbial deposition since the lake was covered around 400,000 years ago (Sinha & 

Krishnan, 2013). From the ice cores, viable propagules were found, with culturable yeasts, 

fungi and bacteria present up to around 3,000 years old. At around 10,000 years old, 

microbial communities became dominated by spore formers (Vincent, 2000). At around 

3.6km depth, ice was derived from the underlying lake water and contains viable bacteria 

(Karl et al., 1999). In 1998 (around the time Figure 1-11 was published), drilling was 

temporarily halted due to concerns about contaminating the pristine ecosystem. In 2012 

drilling was completed and sampling revealed unique microbial life, however concerns 

remained regarding contamination from the drilling process (Bulat, 2016). It is speculated 
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that as Antarctic ice melts, a multitude of ancient organisms could reactivate from 

dormancy (Fox-Skelly, 2017), and alter microbial community composition.  

 

Figure 1-11 - Different types of microorganisms present in cross section of ice layers above 
Lake Vostok. Adapted from Vincent (2000) by Chris King. 

To model changes in ecosystems from the revival of dormant species, several cloche 

experiments have been performed in Antarctica (Convey & Wynn-Williams, 2002; Kennedy, 

1994; Smith, 1991; Smith, 1994; Wynn-Williams, 1996). A cloche is a cover placed on the 

ground designed to warm the ground beneath and, sometimes, to reduce UV exposure or 

increase humidity. Although this changes multiple variables simultaneously in an unnatural 

manner, these experiments provide insight into the potential effects of climate change. 

Such experiments have shown similar rapid increase in biodiversity and abundance of 

nematode worms, cyanobacteria, bryophytes and microarthropods (Convey & Wynn-

Williams, 2002; Kennedy, 1994; Smith, 1991; Smith, 1994; Wynn-Williams, 1996). The 

increase in abundance of particular species can be driven by increased reproduction of 
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existing populations. However, increased diversity can only be driven by activation and 

reproduction of dormant organisms in the propagule bank. The rapid increase in abundance 

and diversity in these cloche experiments demonstrated that substantial changes can occur 

quickly, and furthermore display both the latent potential and the speed at which the 

propagule bank can respond to even slight increases in average temperature. The outcome 

of these complex cascading ecological interactions could have rapid and fundamental 

effects on Antarctic ecosystems. 

1.5.2 Future Changes to Antarctica 
It is highly likely that climate change will induce substantial changes to Antarctic microbial 

communities, fuelled by the propagule bank and aerial input (Convey & Wynn-Williams, 

2002; Cowan et al., 2011). However, current understanding about the rate and direction of 

change in microbial communities is limited due to lack of studies in this field (Kennicutt et 

al., 2014). The warming of Antarctica is providing a more hospitable environment to 

temperate species. The Antarctic Peninsula has experienced an average temperature 

increase of 3 C in the last 50 years (Turner et al., 2005) which has led to an increase in free 

water availability, an extension of the growing season (Convey, 2006) and precipitation 

being more frequently observed as rain rather than snow (Pearce et al., 2009). These 

changing conditions are believed to be responsible for the increased range and abundance 

of the only two known native vascular plants in Antarctica over the last 25 years (Fowbert & 

Smith, 1994). 
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Figure 1-12 - Projected increase in annual cumulative degree days, measuring increase in 
growing season, between 2007 and 2100 (Chown et al., 2012), indicating risk of alien 
species establishment. 

The Peninsula acts as an early warning indicator to forecast impacts from climate 

change for the rest of the continent, as it experiences more temperate conditions and is the 

least isolated part of Antarctica. In the near future, the Antarctic continent is expected to 

experience widespread cooling, followed by warming as the ozone hole recovers. Generally, 

coastal or ice free areas are expected to warm first, as they are most exposed to a warming 

maritime influence, and are less affected by glacial cooling (Figure 1-12) (Chown et al., 

2012). Observed changes and cloche experiments indicate increase in ground cover and 

surface greening will occur, as the conditions become more amenable to plants. Lichens and 

cyanobacteria will likely grow more optimally, given many are psychrotolerant rather than 

psychrophilic. These changes could create positive feedback effects on atmospheric carbon 

levels and climate change (Pointing et al., 2015). A green Antarctica reflects less light, and 

increased carbon fixing from higher photosynthetic rates may be more than offset by 

increased release of carbon in soils, through greater decomposition (Pointing et al., 2015). 

Antarctica’s future changes continue to make it increasingly hospitable to temperate 

organisms, therefore dormant bioaerosols originating in nearby regions are likely to 

activate, as are other temperate microbes previously deposited in soil and water via the 

atmosphere and other vectors. 



51 
 

1.6 Study of Bioaerosols: Filling the Gaps 
This chapter has outlined the evidence for and mechanisms of airborne transportation of 

microorganisms. The limited studies to date have confirmed speculation that bioaerosols 

are extremely variable. Although most microorganisms likely originate from local species 

pools, at least some originate from foreign areas. Given the sensitivity of global biomes to 

non-local organisms, addressing key knowledge gaps of airborne transportation is essential 

to understand future responses to climate change. In the future we hope that technological 

advancements will allow studies to shed more light onto the extent, sources (local or 

intercontinental), survival mechanisms and significance of airborne microorganisms to 

global ecosystem structuring. With the technological advancements made in the past few 

years, we have an unprecedented opportunity to resolve these core biological questions. 

However, to understand the underlying physical processes discussed in this chapter that 

drive this transportation, interdisciplinary studies must be conducted. The foci of the 

remainder of the thesis are urban bioaerosols, as so many people worldwide dwell in cities, 

and Antarctic bioaerosols, due to the fragility, uniqueness and isolation of Antarctica. 

1.7 Thesis Objectives 
This thesis had three main objectives: 

1.7.1 Quantify Spatiotemporal Bioaerosol Variability in Urban Parks in 

Auckland, Aotearoa New Zealand 
The aim of this research was to understand spatiotemporal variation in bioaerosol 

communities across city parks, and to determine if it is possible to predict community 

variation based on environmental variation. Nine parks in Auckland’s metropolitan area 

were repeatedly sampled in autumn and winter to quantify the relative contributions of 

environmental variables to fungal and bacterial bioaerosol communities and understand 

bioaerosol exposure in urban parks at a city-wide spatial scale. This is important to 

understand the microbial exposure of people visiting city parks and to begin to predict and 

model how this might change over space and time.  

1.7.2 Characterise Seasonal Variability of Bioaerosols in Aotearoa New Zealand 

over a Two-year Period 
The aim of this research was to determine if there is detectable seasonal variation in urban 

bioaerosols and whether this variation was predictable based on measurable environmental 

variables. Air samples were collected in the centre of Auckland, every week for two years, to 

understand seasonal variation of bacterial and fungal bioaerosols. This sampling represents 

the longest continuous urban bioaerosol study to date and is vital for shedding light on the 

exposure of city dwellers to airborne pathogens and allergens. The relative contributions of 

different environmental factors to bioaerosol diversity were quantified and insights were 

gained into temporal dynamics of urban bioaerosols in a sub-tropical climate. 
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1.7.3 Quantify Diel Variation and Test for Intercontinental Connectivity of 

Antarctic Bioaerosols 
The aims of this research were, firstly, to determine if there is detectable diel variation in 

Antarctic bioaerosols and if this can be predicted based on environmental variation, and 

secondly, if connectivity between bioaerosol communities is detectable at very large spatial 

scales. Sampling of ambient air was performed in the McMurdo Dry Valleys of Antarctica, in 

two-hourly increments for several days to quantify temporal variation of Antarctic 

bioaerosols at a fine scale. These samples were compared to those collected at Baring Head 

Lighthouse, near Wellington in Aotearoa New Zealand, to assess levels of intercontinental 

bioaerosol exchange between Antarctica and the rest of the world. This research is crucial to 

understanding bioaerosols in Antarctica’s unique and vulnerable environment and 

predicting ecosystem changes in a warming world. 

The general discussion synthesises the main themes and findings across studies and 

discusses potential future directions for research. Aerobiology is a relatively new sub-field 

within microbial ecology. Due to this, significant effort was put into developing the 

protocols followed throughout this thesis. Various sample collection protocols, sample pre-

processing, DNA extraction protocols and bioinformatics pipelines were compared for their 

ability to operate in temperate and cold environments, the quantity of DNA recovered, and 

the quality of data generated for further analysis. This work provided methods that 

dramatically reduced sampling times in cold environments and increased assurance over 

bioaerosol community data generated from bioinformatic analysis. The thesis finishes with 

supplementary information which pertains to the previous experimental chapters and the 

reference list.  
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Chapter 2  - Spatiotemporal Bioaerosol Variability in Urban 

Parks 
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2.1 Abstract 
The atmosphere provides a conduit to almost all worldwide ecosystems for microorganisms 

that can exploit it, including invasive species, and organisms that can be pathogenic to 

humans. Understanding ecosystem connectivity via the atmosphere is crucial to 

understanding worldwide ecosystem structuring and for predicting changes which may 

occur in a warming world. Bioaerosols in urban parks have been subjected to almost no 

molecular interrogation, despite the fact they are poorly understood and are known to 

harbour pathogens and allergens. Here, the spatiotemporal variation and relative 

importance of putative drivers of bioaerosol variation were quantified for the first time. 

Nine parks in Auckland, New Zealand were sampled in multiple blocks between July 2017 

and June 2018 with a Coriolis liquid cyclone air sampler, and their fungal and prokaryotic 

(bacterial and archaeal) communities assessed through internal transcribed spacer (ITS) and 

16S rRNA (16S) gene amplicon sequencing. Bioaerosols in urban parks varied as a result of 

many factors; in particular, location, time and sampled air-mass source. Modelling was able 

to explain 38% of the fungal variation and 19% of the bacterial variation. Time was more 

important for fungi than bacteria. Likely due to their ease of dispersal, bioaerosol 

communities did not show typical microbial distance-dissimilarity patterns, but did display 

local differentiation, probably due to differences in local sources. This work sheds important 

light on the scales of variation in bioaerosol communities and the relative contributions of 

measurable environmental variables to bioaerosol community structure and microbial 

exposure of city-dwellers. 

2.2 Introduction 
The aerosphere has been identified as the last unexplored biome on Earth (Pointing, Fierer, 

Smith, Steinberg, & Wiedmann, 2016) and contains a diverse microbiological component 

including bacteria, fungi and viruses with putative impacts on atmospheric chemistry, cloud 

formation, human health and biogeography (Kellogg & Griffin, 2006; Smith et al., 2011; 

Womack et al., 2010). Very little is known, however, about the dispersal and connectivity of 

airborne microbial populations. Bioaerosols vary markedly over space and time (Burrows et 

al., 2009b), but information is lacking on the relative importance of the factors that drive 

this spatiotemporal variation, and scales over which they operate (Archer et al., 2020; 

Womack et al., 2010). Addressing this knowledge gap is important as many bacterial and 

fungal bioaerosols have the potential to be allergens or pathogens (Yoo et al., 2016), or are 

environmental organisms that affect the ecosystems in which we reside (Burrows et al., 

2009b). Understanding movement of aerial microorganisms informs the potential for 

connectivity among microbial communities in disparate ecosystems. Urban parks represent 

a tractable opportunity to understand bioaerosols in the urban environment, to which 

millions of people worldwide are exposed. Recent evidence suggests that exposure to 

greater microbial diversity has a multitude of health benefits (Mhuireach et al., 2020). Parks 

are consistently managed ecosystems, spatially discrete, similar in environmental conditions 
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and numerous, providing natural replication of data points within the same urban area. This 

ease of replication provides the opportunity to explore the relative effects of factors which 

are predicted to be important based on previous aerosol research (Burrows et al., 2009b; 

Pearce et al., 2016) or previous research in other microbial communities such as soil or 

water (Carini et al., 2020; Lear et al., 2013). These factors include elements in the local 

environment that emit bioaerosols, meteorological conditions and the effect of wind 

direction. Further, parks in urban areas represent fine scale land-use changes and thus 

provide a chance to extend our knowledge on effects of land use patterns on bioaerosols at 

a coarser scale. 

Bioaerosol concentrations and composition vary with different land-use types or 

biomes (Bowers et al., 2011a; Burrows et al., 2009a). Earlier research focussed on 

cultivatable numbers of airborne microbes. Bioaerosol concentrations appeared to be 

highest over more productive areas, such as grassland or crops, and in cities, and lowest 

over deserts, ice and seas (Burrows et al., 2009b; Harrison et al., 2005; Shaffer & Lighthart, 

1997). Very little research has been done on city parks specifically. Fang et al. (2007b) noted 

lower concentrations of culturable bioaerosols in the single Beijing park sampled compared 

to surrounding urban areas. This was postulated to be due to fewer vehicle movements 

aerosolising microorganisms. In the UK, three urban parks were subjected to metabolite 

fingerprinting (Garcia-Alcega et al., 2020). The results showed seasonal differentiation in 

microbial communities, and the bacterial genera Bacillus and Pseudomonas and Penicillium 

fungus, frequently detected in bioaerosols, were identified (Garcia-Alcega et al., 2020). 

Later, molecular approaches continued to improve understanding of urban bioaerosols. 

Airborne bacteria in two urban green space areas in Eugene, Oregon were characterised 

with high throughput metabarcode sequencing (Mhuireach et al., 2020). A core aero-

microbiome of plant and soil-associated genera was observed, and the forested site was 

more diverse than the grass-covered one. Seasonal and other site-specific effects (site 

explained 41% of the bioaerosol variance) were also detected (Mhuireach et al., 2020). 

Barberán et al. (2015) showed geographical differentiation of fungal and bacterial species 

detected in dust gathered from the outside of houses across the US. They reported no 

distinct urban versus rural community or effect on diversity, but that urban samples were 

more similar to each other than rural ones. A recent study in Japan, however, reported 

greater alpha diversity of taxa at suburban compared to urban sites (Tanaka et al., 2020). 

Some urban molecular bioaerosol studies report diversity comparable to soil (Brodie et al., 

2007b). Woo et al. (2013) sampled along an urbanisation gradient in Hong Kong and did not 

find a significant relationship between bioaerosols and urbanisation. As the number of 

studies was so limited, and the majority of environmental microbes do not grow in culture 

(Pearce et al., 2009), there is a need to apply molecular methods to get a more complete 

picture of bioaerosol diversity in city parks. This study is the first molecular characterisation 

of fungal bioaerosols (and only the second for bacteria) in urban parks. The number of parks 

sampled (nine) is well above most other comparable studies, helping to address the 

knowledge gaps apparent in the literature. No Southern Hemisphere parks appear to have 
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been studied, so this work is also the first to gather data in this region, and in a sub-tropical 

climate. 

Seasonality has repeatedly been demonstrated to affect bioaerosols. There tends to 

be higher concentrations of culturable microbes in warmer and wetter periods, but this 

pattern is not universal (Burrows et al., 2009b; Lighthart & Stetzenbach, 1994; Woo et al., 

2013). Long-term observations in the Northern Hemisphere showed higher concentrations 

of culturable microorganisms in autumn and lower concentrations in winter (Burrows et al., 

2009b). Every molecular study of bioaerosol seasonality reviewed detected seasonal 

variation and, frequently, a relationship with temperature (see section 3.2 Introduction). 

Higher summer concentrations of bioaerosols are posited to be due to warmer 

temperatures, increasing microbial reproduction and aerosolisation (see section 1.3.2 

Bioaerosol Particles: Temporal and Spatial Variation). 

Air-mass source is thought to be another key driver of bioaerosol communities. In January 

2020, the New Zealand sky turned sepia, when smoke from the Australian bushfires was 

carried thousands of kilometres across the Tasman Sea. This observation is supported by 

several recent molecular studies indicating that air-mass source is a driver of the aero-

microbiome (Archer et al., 2020; Maki et al., 2017; Woo et al., 2013). Bottos et al. (2014) 

detected no local ocean bioaerosol influence in their Antarctic sampling but did observe 

influence from nearby volcanic activity. Correlation is thought to occur between time of year 

and air mass origin (Woo et al., 2013). Woo et al. (2013) detected seasonal patterns in alpha 

diversity and temperature effects on diversity as estimated using the UniFrac distance 

metric. The driver for the observed seasonal patterns was postulated to be seasonal 

changes in air mass origin from continental to marine.  

Little research has addressed the relevant temporal scales for the influence of wind 

on bioaerosol concentration and community structure. The source of sampled air can be 

estimated using back-trajectory analysis. Three-day back-trajectories (revealing the 

movements of sampled air for the previous three days) are normally used as predictors of 

bioaerosol variation in the literature (Archer et al., 2020; Archer et al., 2019). It is untested, 

to date, if three days is the best predictor of variation in bioaerosol community structure. 

Bacteria have been simulated to remain airborne for a mean of one week, with substantial 

variation either way (Burrows et al., 2009a), so it is possible another trajectory length may 

be more informative.   

 A further factor thought to influence aerial microbial populations is weather. For 

instance, rain is thought to increase deposition of suspended microorganisms and reduce 

concentrations of bioaerosols (Burrows et al., 2009b). Species such as Pseudomonas, which 

possess ice nucleation proteins, are thought to be particularly affected by patterns of 

precipitation. Other meteorological variables such as temperature, humidity and turbulence 

also impact bioaerosol communities (also see section 1.3.2 Bioaerosol Particles: Temporal 

and Spatial Variation and section 3.2 Introduction).  
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The aim of this chapter is to use bioaerosol communities in urban parks within 

Auckland, in Aotearoa New Zealand to ask two research questions: (1) What is the 

relationship between temporal scale of wind back-trajectories and variation in bioaerosol 

community structure? (2) What are the effects of environmental variation among different 

parks on bioaerosol community structure and population densities? To characterise 

community structure, bacteria/archaea were identified using 16S rRNA gene sequencing 

and fungi using sequencing of the ITS gene.  

2.2.1 Hypotheses 
1. Temporal wind hypothesis: Air-mass trajectories of differing spatiotemporal lengths

differ in their ability to predict variation in bioaerosol community structure.

Specifically, one-week trajectories provide the greatest explanatory power, as

indicated by modelling.

2. Environmental drivers hypothesis:

a. Spatial variation in bioaerosol community structure (composition and

diversity) at Auckland parks can be predicted by time, geographic origin of

sampled air, altitude, distance to sea, temperature, relative humidity and

park size (small, medium, large).

b. Relative abundances of common and rarer taxa fluctuate by location, time,

and air mass source.

3. Distance-dissimilarity hypothesis: Similarity in community composition of parks

declines with their increasing geographic distance.

2.3 Methods 

2.3.1 Field Sampling and Environmental Data Collection 
Nine Auckland parks were selected for sampling (Figure 2-1). The Auckland parks were 

predominantly grassland, with varying numbers of deciduous and coniferous trees, and 

subtropical ferns. Some parks had bodies of water in them, such as Western Springs. The 

parks had differing numbers of pedestrian and vehicular movements. Livestock, such as 

sheep and cattle, were kept in some parks. The presence of birds and dogs was also variable 

among parks. The parks differed markedly in area and altitude, with several Auckland parks 

encompassing volcanic summits.  
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Figure 2-1 – Map of Auckland metropolitan area with the nine urban parks selected for 
sampling indicated. Aotea Square was a control sampling location. 

Each location was visited in a randomised order between 10 am and 4 pm to account 

for any diurnal effects. The sample was taken in the same location each time, as close to the 

centre of the park as practicable and at minimal elevation (avoiding effects from change in 

altitude or being close to an edge confounding results). Each park was visited three times (to 

provide sample replication) in the first sampling window (12 July 2017 to 14 September 

2017) and three times in the second sampling window (20 March 2018 to 1 June 2018). This 

was to replicate the sampling within two seasons, so that temporal differences could be 

characterised. The dates of visits were selected based on practical considerations for 

performing the sampling, such as traffic at particular times and availability of the sample 

locations on different dates. The timing and order of visits was varied to control for any 

unforeseen effects related to sampling order or timing. The exact location was saved on 

Google Maps (Google) and a photo was taken of the Coriolis (see section A.1 Introduction) 

and location. Sampling was performed 1.8 m above ground level. Gloves were worn and the 

extender and Coriolis unit cleaned with bleach. The Coriolis neck, head and cone were 

cleaned with bleach, ethanol and three rinses of milli-Q H2O (MQH2O). The cone was filled 

with 15 mL of phosphate buffered saline (PBS). A negative was taken (PBS put into the cone 

without running the Coriolis) before running the Coriolis for two – four minutes with 

MQH2O to ensure all bleach residue in the head and neck was removed. The MQH2O was 

discarded and replaced with 15 mL of PBS and the Coriolis was run at 300 L/m for one hour. 

The PBS in the cone was topped up to 15 mL after 30 minutes and sampling was completed 

with 10 mL PBS remaining in the cone. Samples were transferred into a 15 mL falcon tube, 
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transported in an insulated box with ice blocks and stored at -20 C within four hours. 

During sampling, observations were recorded of weather conditions (with a Kestrel 3000) 

and particle counts were taken (with an AeroTrak particle counter). If rain occurred the 

Coriolis was sheltered with an umbrella. If rain was heavy the Coriolis was packed up until 

rain abated. 

Air-mass back-trajectories were generated hourly over the sampling periods using 

the NOAA HYSPLIT model (v5. 0. 0 Ubuntu), (Stein et al., 2016) with GDAS meteorological 

data. Clustering was performed in HYSPLIT (see Appendix B HYSPLIT Clustering Procedure 

for details). The number of clusters selected (six) was based on a marked increase in total 

spatial variance as clusters reduced. The cluster for each sample was manually entered into 

the metadata, which was imported into R. Back-trajectories were generated for one-day, 

three-day and one-week durations. 

2.3.2 Laboratory Processing 
For details on DNA extraction and DNA sequencing methods see section C.1 Laboratory 

Methods – DNA Extraction, and section C.3 Laboratory Methods – DNA Sequencing.  

2.3.3 Bioinformatics 
For details on bioinformatic processing see Appendix D Optimising Bioinformatics Protocols 

for Aerosol Microbial Community Data – a Case Study Using an Urban Parks Dataset. The 

outputs, the decontaminated amplicon sequence variant (ASV) table (with read counts 

adjusted to remove contaminant sequences) and combined taxonomy and relevant 

metadata were further analysed in R with respect to the hypotheses for this study.  

2.3.4 Data Analysis 
The 16S (the gene for the RNA component of the 30S small subunit of the prokaryotic 

ribosome) and ITS (spacer DNA situated between the small-subunit RNA and large-subunit 

ribosomal RNA genes in the fungal genome) ASV tables were prepared for analysis in two 

ways: (1) with all ASVs (unfiltered ASV tables) and (2) with a filter applied for only ASVs with 

more than either 100 reads (for 16S) or 500 reads (for ITS) and a coefficient of variation of 

greater than three (filtered ASV tables). These filters were used to improve any signal which 

would be masked by invariant taxa and/or low-level stochastic variation. Read counts for ITS 

were higher, hence the greater stringency of the filter applied.  

Next generation sequencing (NGS) data are inherently ‘compositional’ (Gloor, 

Macklaim, Pawlowsky-Glahn, & Egozcue, 2017), meaning that read counts generated are 

quantitative descriptions of part of a whole and only reflect relative, not absolute, 

abundances. Compositionality in NGS data arises because sequencing machines have limited 

slots and once saturated cannot count further reads. Even with low biomass bioaerosol 

samples, other steps in the sequencing process including PCR amplification, standardisation 

and stochastic variation in the read depth for different samples, mean that raw read count is 

not an accurate measure of microbial abundance. Various problems occur when non-
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compositional tools are used on compositional data. Distance matrices are confounded by 

differences in read depth, spurious correlation upon subsetting occurs and relative 

abundance measures show a high false-positive rate (Gloor et al., 2017). Compositional 

tools typically use a log transformation (Aitchison, 1982). Since the log of zero is undefined, 

zeros in the ASV table present a problem. To address this, Bayesian multiplicative 

replacement was performed (Gloor et al., 2017; Quinn et al., 2019) and implemented using 

the function cmultRepl (Aitchison, 1982; Templ, Hron, & Filzmoser, 2011) in the R package, 

“zCompositions” (v1. 3. 4) (Palarea-Albaladejo & Martín-Fernández, 2015). 

“RobCompositions” (v2. 2. 1) (Templ et al., 2011) was used to generate the Aitchison 

distance matrix, which was fed into downstream analysis functions. Hill numbers, D0, D1 

and D2, were calculated using the R package “hillR” (v0. 5. 0) (Li, 2018; Oksanen et al., 2012) 

based on the unfiltered ASV table to quantify alpha diversity. A Bray-Curtis (BC) distance 

matrix, Hellinger-transformed ASV table and Jaccard presence/absence matrix were also 

generated using the R package “vegan”. Results from non-compositional data analysis were 

generally consistent with the results from compositional tools, and so are not presented in 

the main text (see section E.1.3 Results from Non-Compositional Data Analysis for details).  

Variance partitioning of the Aitchison distance-based redundancy analysis (db-RDA) 

of the compositional data using the three different lengths of back trajectories as 

explanatory variables was used to determine which back trajectory length would be used for 

the remainder of the analysis. Variance partitioning provided quantification of the relative 

importance of alternative trajectory lengths to the sampled bioaerosol communities. For 

these purposes, a higher R2 indicated better correlation of a trajectory. Variance partitioning 

was also performed on an RDA of the matrix of Hill numbers related to each sample using 

the three different back trajectory lengths as explanatory variables. Hill numbers calculated 

were qD where D equals 0 or D0 (raw diversity, i.e. the number of ASVs), D1 (exponential of 

Shannon’s entropy index) and D2 (inverse of Simpson’s concentration index) (Chao, Chiu, & 

Jost, 2016). 

Db-RDA with variance partitioning was used to quantify the relative importance of 

measured variables for predicting bioaerosol variation, including time, wind direction, 

temperature, relative humidity, distance to sea, altitude, and park size (small, medium or 

large) and a Euclidean geographical distance matrix to account for any effects of spatial 

proximity of parks, using the UTM coordinates of each sample site (Table 2-1). In addition to 

quantifying the relative importance of the different variables, this procedure quantified the 

portion of explained variation that is shared among variables. Firstly, forward selection of 

variables was performed to reduce the number of explanatory variables in each db-RDA 

analysis. This was implemented in R using the capscale and ordistep functions in “vegan” 

(v2. 5. 6) (Oksanen et al., 2012). Variables were included with a P-value of 0.01 or lower. 

Forward selection was run with 999 permutations. Selected variables were included in the 

db-RDA with variance partitioning (varpart function in “vegan”) alongside location and time, 

which were included to account for spatiotemporal autocorrelation. All numerical variables 
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were standardised as Z-scores prior to analysis so that any effect sizes would be 

comparable.  

Table 2-1 – Summary table of variables showing their inclusion in the db-RDA  

Variable Variable 

type 

Description Included in 

16S model? 

Included in 

ITS model? 

1-day back 

trajectory 

cluster 

Categorical Path of sampled air-mass 

in previous 24 hours 

Yes Yes 

3-day back 

trajectory 

cluster 

Categorical Path of sampled air-mass 

in previous 72 hours 

No No 

1-week back 

trajectory 

cluster 

Categorical Path of sampled air-mass 

in previous 168 hours 

No No 

Time Categorical Time of year during which 

sampling took place  

Yes Yes 

Location Numerical Euclidean distance matrix 

of UTM coordinates of 

park sampled 

Yes Yes 

Weather Categorical Weather during sampling No No 

Temperature Numerical Temperature during 

sampling 

No No 

Humidity Numerical Humidity during sampling No Yes 

Size Categorical Park area – small, medium 

or large  

Yes Yes 

Elevation Numerical Elevation above sea level 

of sampling location 

No Yes 

Distance to sea Numerical Distance from sampling 

location to sea 

No Yes 

 

Further visualisation of compositional variation among samples was achieved by 

generating Non-metric Multidimensional Scaling (NMDS) plots using the package “vegan” 

and the Aitchison distance matrix. The stress for two to six dimensions was compared, with 

500 random starts and 999 iterations per run. The lowest dimensional solution with a stress 

under 0.2 was selected (McCune, Grace, & Urban, 2002). The function stat-ellipse in 

“ggplot2” (v3.3.2) (Wickham, 2016) was used to create ellipses, assuming a multivariate t-

distribution. To assess patterns by location, time and trajectory for different taxa, 

differences in relative read counts were quantified to generate taxon bar plots using 

“ggplot2” and “phyloseq” (v1.30.0) (McMurdie & Holmes, 2013). The percentage of total 

read count was calculated on data filtered as follows. For 16S, samples and ASVs with less 
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than 100 reads were filtered out. Relative abundance by genus for each category included 

only genera with at least 0.5% of the reads. For ITS, samples with less than 100 reads and 

ASVs with less than 500 reads were filtered out. Relative abundance by genus for each 

category included only genera with at least 1% of the reads.  

Scatter plots and box plots of Aitchison dissimilarity values were generated for each 

explanatory variable (Baselga & Orme, 2012). To assess if dissimilarity increased with 

geographic distance, distance-dissimilarity plots were generated using Aitchison distances 

with “betapart” (v1. 5. 1) (Baselga & Orme, 2012).  

2.4 Results 

2.4.1 One-Day Wind Back-Trajectories Correlate Best with the Bioaerosol 

Community  
More compositional variation was explained for ITS (fungi) than for 16S (bacteria) (Figure 

2-2). For 16S, the wind trajectories overall explained no significant variation in composition, 

but one-day wind had an R2 of 6%. For ITS, there was a notable amount of shared variation 

explained by all three tested trajectory lengths. One-day and one-week wind had a similar 

R2, suggesting either trajectory length would be suitable. Results from the Hill number-based 

RDA indicated one-day wind trajectories consistently had the highest R2. Based on these 

results, the one-day back-trajectories were selected for both amplicons for the db-RDAs 

with variance partitioning. 
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a) 

b) 

Figure 2-2 – Variance partitioning of the results from a distance-based redundancy 

analysis on the Aitchison distances among samples in the filtered ASV tables for (a) 16S 

and (b) ITS (abundance over 100 reads for 16S or 500 reads for ITS, and a coefficient of 

variability greater than three) showing the variance explained by one-day, three-day, and 

one-week back trajectories. The 16S variance partitioning shows an R2 of 6% for one-day 
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wind. The total R2 for the model was greater than one due to negative R2 values 

associated with several of the other variables. Negative R2 values occur in RDA analysis 

where most of the explanatory variables in a model explain very little information and are 

thus interpreted as zero explained variance (values not shown). 

2.4.2 Bioaerosol Community Structure is Noisy, but Partially Explained by Wind, 

Spatial Location and Time 
Wind, location and time were consistently important in explaining compositional variation 

among samples in bacterial and fungal aerosol communities (Figure 2-3). ITS had a much 

higher R2 than 16S for the overall model (38% for ITS compared to 19% for 16S). Both 

amplicons showed shared explained variation between wind and location. There was also 

consistent shared variation between size and location, elevation, relative humidity and 

distance to sea where present. Time appeared to be important for ITS but its importance 

was less evident for 16S. Weather, park area and temperature were consistently not 

included in the db-RDAs, as they were not identified by the forward selection procedures. 

Location and one-day wind appeared to be similarly important and the time was also 

important in some analyses, particularly for ITS. Location was less important for both 

amplicons when the unfiltered ASV tables (including all ASVs) were used. Strong temporal 

clustering was confirmed in NMDS analysis of ITS (Figure 2-5), whereas 16S showed much 

weaker temporal differentiation (Figure 2-4). Some clustering is present by both location 

and wind trajectory, and this was more pronounced for ITS than 16S. 
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a) 

 

b) 

 

Figure 2-3 - Variance partitioning of the results from a db-RDA on the Aitchison distances 

among samples in the filtered ASV tables for (a) 16S and (b) ITS (abundance over 100 

reads for 16S or 500 reads for ITS, and a coefficient of variability greater than three) 

showing the variance explained by location, time (referred to as season), one-day back-

trajectory and other variables as indicated by forward selection procedures.  
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Figure 2-4 - NMDS ordination of the 16S Aitchison distance matrix of the filtered ASV 
table. Time (season) is indicated by ellipses representing the t-distribution of the autumn 
and winter points. Locations are denoted by colour and each sample is numbered with the 
trajectory cluster to which it belongs. Stress on 16S NMDS was 0.15 (dimensions one and 
two are presented above); the three-dimensional solution was selected as the two-
dimensional solution had stress greater than 0.2 so could not be relied upon. Dimensions 
one and three, and two and three are presented in Supplementary Materials (E.1.1). 
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Figure 2-5 - NMDS ordination of the ITS Aitchison distances among samples in the filtered 
ASV tables. Time (season) is indicated by ellipses representing the t-distribution of the 
autumn and winter points. Locations are denoted by different colours and each sample is 
numbered with the trajectory cluster to which it belongs. The stress on the ITS NMDS was 
0.15 (dimensions one and two are presented above); the three-dimensional solution was 
selected as the two-dimensional solution had stress greater than 0.2 so could not be relied 
upon. Dimensions one and three, and two and three are presented in Supplementary 
Materials (E.1.2). Higher dimensional solutions had lower stress values for both 
amplicons. 

2.4.3 Differences Visible Among Locations, Wind Trajectory Clusters, and Time 

in Relative Taxon Abundances 
Unfiltered bacterial reads numbered 607,740, with 3,828 ASVs inferred. Unfiltered fungal 

reads numbered 1,796,883, comprised of 5,311 ASVs. 
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Relative Abundance by Location – 16S 
Each sample location had a distinctive aero-microbiome (Figure 2-6). While similar genera 

tended to be abundant in most places, this was not universal. For instance, 

Methylobacterium was abundant at the museum but was largely absent from other areas. 

An unclassified family of enterobacteria was only present in any significant number at 

Cornwall Park. Bacillus was present at about half of the sites. Listeria spp., which can include 

human pathogens, were widespread. Filtering criteria are described in Figure 2-6 legend 

below. 

 

Figure 2-6 -  Relative abundance by genus by sample location for 16S. Samples and ASVs 
with less than 100 reads were filtered out. Only genera with at least 0.5% of the reads per 
location are included in the bar plot.  
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Relative Abundance by Location – ITS 
Fungal genera present were highly variable by location (Figure 2-7). There was a greater 

number of variable genera, and more differentiation between locations compared to 16S 

data. Khuskia spp. were only present at Mount Eden. Many Trametes spp. and 

Saccharomyces spp. were present at Fijoa Forest compared to other areas. Ganoderma spp. 

were much more common at Albert Park than elsewhere. Filtering criteria are described in 

Figure 2-7 legend below.  

 

Figure 2-7 - Relative abundance by sample location for ITS. Samples with less than 100 
reads and ASVs with less than 500 reads were filtered out. Only genera with at least 1% of 
the reads per location are included in the bar plot.  
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Relative Abundance by Time – 16S 
The bacterial community composition visibly shifted between autumn and winter (Figure 

2-8). Methylobacterium was present in winter only. Unclassified Chloroplasts were more 

dominant in winter. Filtering criteria are described in Figure 2-8 legend below. 

 

 

Figure 2-8 – Relative abundance by genus by time (season) for 16S. Samples and ASVs with 
less than 100 reads were filtered out. Only genera with at least 0.5% of the reads for each 
time were included in the bar plot.  
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Relative Abundance by Time – ITS 
The fungal community varied markedly between autumn and winter (Figure 2-9). Phoma 

spp. were much more dominant in autumn, as were Leptosphaerulina, Rhodotorula and 

Khuskia spp. In contrast, Trametes, Botryotinia and Ganoderma spp. were more common in 

winter. Filtering criteria are described in Figure 2-9 legend below. 

 

Figure 2-9 - Relative abundance by genus by time (season) for ITS. Samples with less than 
100 reads and ASVs with less than 500 reads were filtered out. Genera with at least 1% of 
the reads for each time were included in the bar plot. 
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Relative Abundance by Wind Back-Trajectory Cluster – 16S 
Bacterial genera were variable depending on the weather system sampled (Figure 2-10). 

Clusters one, two, four and five had reasonably consistent assemblages of microbes. Cluster 

six had a distinctive assemblage dominated by Methylobacterium spp, an unclassified 

chloroplast and an unclassified mitochondrion. Another unclassified organism (likely a 

chloroplast from the plant species Cryptomeria japonica) was present only in cluster one. 

Filtering criteria are described in Figure 2-10 legend below. 
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a) 

b) 

Figure 2-10 – Relative abundance by back trajectory cluster 16S. Samples and ASVs with 
less than 100 reads were filtered out. a) Relative abundance by genus for each wind 
trajectory. Only genera with at least 0.5% of the reads for each wind source included in 
the bar plot. b) Paths of the six clusters identified over the sampling period in the previous 
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24 hours before sampling, generated by the NOAA HYSPLIT model based on GDAS 
meteorological data. % next to each cluster indicates proportion of trajectories assigned 
to that cluster. 

Relative Abundance by Wind Back-Trajectory Cluster – ITS 
Fungal abundance and diversity varied by back-trajectory of the sampled air mass (Figure 

2-11). Relative genus abundances in clusters one, two, and six appeared reasonably 

consistent, while the other clusters appeared quite different. Khuskia and Cerrena spp. were 

strongly associated with cluster four. Cluster three was dominated by Saccharomyces spp. 

Resiniciuem spp. were associated with cluster six. Filtering criteria are described in Figure 

2-11 legend below. 
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a) 

 

b) 

 

Figure 2-11 - Relative abundance by back trajectory cluster for ITS. Samples with less than 
100 reads and ASVs with less than 500 reads were filtered out. a) Relative abundance by 
genus for each wind trajectory. Only genera with at least 1% of the reads each wind 
source were included in the bar plot. b) Frequency plot of air source over the sampling 
period in the previous 24 hours before sampling, generated by the NOAA HYSPLIT model 
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based on GDAS meteorological data. Colours indicate % of air coming from indicated area 
on the map. 

Distance-Dissimilarity not Evident for Bacteria (16S) or Fungi (ITS) 

There was no evidence of distance-dissimilarity across the 8 km study range, as genetic 

dissimilarity between samples appeared to be unrelated to physical separation of sample 

locations (Figure 2-12) (with dispersal limitations a positive correlation between distance 

and dissimilarity would be expected). Both amplicons show a consistent lack of distance-

dissimilarity when using both filtered and unfiltered ASV tables as a basis for the Aitchison 

distance matrix.  
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a) 

b) 

Figure 2-12 - Distance-dissimilarity plots for a) 16S and b) ITS of Aitchison sample 
distances calculated from the filtered ASV table against Euclidean spatial distances among 
sample locations.  

2.5  Discussion 

2.5.1 Summary  
The aim of this chapter was to use bioaerosol communities in urban parks within Auckland, 

Aotearoa New Zealand to answer two research questions: (1) What is the relationship 
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between temporal scale of wind back-trajectories and variation in bioaerosol community 

structure? (2) What are the effects of environmental variation among different parks on 

bioaerosol community structure? Bioaerosols varied depending on spatial location, but wind 

source and, for fungi, time was of similar or greater importance. Urban parks harboured a 

diverse range of microorganisms and showed consistency with genera identified in similar 

bioaerosol studies. Some of the genera detected contained obligate or opportunistic 

pathogens. Air-mass trajectories of differing spatiotemporal lengths differed in their ability 

to predict variation in bioaerosol community structure. However, one-day, rather than one-

week, trajectories provided the greatest explanatory power for Auckland parks. The 

temporal wind hypothesis 1 (air-mass trajectories of differing spatiotemporal lengths differ 

in their ability to predict variation in bioaerosol community structure. Specifically, one-week 

trajectories provide the greatest explanatory power, as indicated by modelling) therefore 

partially failed to be rejected. Spatial variation in bioaerosol community structure 

(composition and diversity) at Auckland parks was correlated with location, time, 

geographic origin of sampled air and park size for 16S. For ITS, the same factors as for 16S 

were important, and additionally distance to sea, relative humidity and elevation were 

correlated with the bioaerosol community. Temperature and weather were not correlated 

with the bioaerosol community for either amplicon. Environmental drivers hypothesis 2 a) 

(spatial variation in bioaerosol community structure (composition and diversity) at Auckland 

parks can be predicted by time, geographic origin of sampled air, altitude, distance to sea, 

temperature, relative humidity, park size (small, medium, large)), partially failed to be 

rejected. Relative abundances of common and rarer taxa fluctuated by location, time and air 

mass source, therefore environmental drivers hypothesis 2 b) (relative abundances of 

common and rarer taxa fluctuate by location, time, and air mass source) failed to be 

rejected. Similarity in community composition of parks did not decline with their increasing 

geographic distance, therefore the distance-dissimilarity hypothesis 3 (similarity in 

community composition of parks declines with their increasing geographic distance) was 

rejected. This study is important because urban bioaerosols remain poorly understood yet 

are thought to have noteworthy impacts on us and the environments we inhabit (Mhuireach 

et al., 2020). Understanding spatiotemporal variation on a city-wide scale is crucial for 

modelling microbial exposure in cities. 

2.5.2 Wind Back-Trajectory Duration 
Back trajectories of differing durations varied in their correlation to the bioaerosol 

community. One-day trajectories had the highest R2 values in the wind db-RDAs with 

variance partitioning (Figure 2-2). One or three-day trajectories were generally better than 

one-week trajectories, suggesting that the standard trajectory length of three days per the 

literature (Archer et al., 2020) is reasonable. This was supported by frequency back-

trajectory analysis, which showed more than 10% of source air over the sample period was 

from Auckland or close by, and the air coming from outside New Zealand was under 0.1% 

(Figure 2-11). Collinearity between the different trajectory lengths was observed, as air 
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coming from a certain direction would generally be expected to continue in that direction as 

it moves towards its destination. In accordance with this, cluster assignments for each 

sample were reasonably consistent for different trajectory lengths. The data suggest one-

day trajectories could have better predictive value than three-day trajectories, and that 

consideration of alternative trajectory lengths to three days is prudent.   

2.5.3 Spatiotemporal Variation in Bioaerosol Community Structure 
Wind source and location (geographic proximity) were consistently identified as the most 

important variables correlated with variation in bioaerosol community structure ( 

Figure 2-3), with time being additionally important for ITS. The ITS finding is consistent with 

patterns in the existing literature. Temporal variation is observed in all bioaerosol 

community studies to date that have investigated temporal patterns for bacteria and fungi 

(see section 3.2 Introduction for full details). The lack of temporal variation for the 16S data 

was unexpected given this context, but perhaps a bigger sample size was needed to detect a 

smaller effect. Other bioaerosol studies have shown that location or land-use can also be 

correlated with the bioaerosol community (Balyan, Ghosh, Das, & Banerjee, 2019; Burrows 

et al., 2009b; Mhuireach et al., 2020; Tanaka et al., 2020). A small number of studies 

considered the effect of air-mass source; some postulated it to be of key importance (Archer 

et al., 2020; Woo et al., 2013), while others suggested local sources were the determinants 

of the bioaerosol community (Bowers et al., 2013). For the first time, the relative 

importance of wind source, location and time were quantified. Modelling predicted 38% of 

the variation in fungal communities (ITS) and 19% of the variation in bacterial communities 

(16S), which is comparatively high for microbial community data (Carini et al., 2020). Some 

spatial effects were evident in the data; bacteria were mostly correlated with location, 

followed by one-day wind source. However, differences were not predictable using 

geographic distance between sample locations in the study area, as evidenced by the lack of 

a distance-dissimilarity relationship. For fungi, the most important variable driving 

community variation was time, with one-day wind and location of secondary importance. 

The greater importance of temporal variation for fungi was not evident in the bioaerosol 

literature reviewed, but few studies have surveyed both bacteria and fungi. Greater 

temporal variation for fungi has been demonstrated in studies of soil microbiota (Shigyo, 

Umeki, & Hirao, 2019). This is possibly due to the fungal genera identified being largely soil 

and plant associated and wood rotting organisms, so their abundances could be expected to 

be linked more closely to plant growth cycles, while bacterial genera tended to be more 

generalist. Shigyo et al.(2019) proposed that greater fungal temporal variation was due to 

environmental factors like plant traits, somewhat supporting this idea. Weather and 

temperature were not identified as influential variables in any analysis. Given that 

precipitation is known to affect the deposition of microorganisms (Burrows et al., 2009b), 

and temperature has been frequently found to affect bioaerosol communities (Woo et al., 

2013), this is a surprising result. 
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2.5.4 Effect of Location, Time, and Wind Direction on Fungal and Bacterial 

Genera Identified 
All bacteria and fungi observed are known environmental microbes or are associated with 

plants, humans or other animals. Many bacterial genera identified included pathogens such 

as Listeria spp. Fungal genera present were predominantly plant or soil associated, with 

many wood rotting species. Some yeasts were present, and some genera contained 

opportunistic human pathogens and allergens such as Khuskia spp. The genera detected, 

such as bacterial Pseudomonas, Ralstonia and Methylobacterium spp. and fungal 

Penicillium, Alternaria and Cladosporium spp. were consistent with previous bioaerosol 

studies (Barberán et al., 2015; Be et al., 2015; Garcia-Alcega et al., 2020). While 

Pseudomonas, Ralstonia and Burkholderia are commonly reported contaminants, their 

consistency with other bioaerosol studies, biological niches and presence despite stringent 

decontamination procedures indicate they also represent a genuine constituent of the 

bioaerosol community. Chloroplasts were commonly observed, presumably from pollen and 

other plant fragments, and are abundant in similar bioaerosol studies (Brodie et al., 2007b; 

Franzetti et al., 2010; Woo et al., 2013).  

Fungal genera were observed to be more diverse and variable than bacterial genera 

(see section 2.4.3 Differences Visible Among Locations, Wind Trajectory Clusters, and Time 

in Relative Taxon Abundances). Bacterial and fungal genera varied by location. For instance, 

Methylobacterium (an opportunistic human pathogen and soil and water associated 

bacterium (Lai et al., 2011)), was only present at the museum. Bacillus spp., which are 

frequently present in bioaerosols (Bottos et al., 2014), were interestingly only detected at 

about half of locations sampled. The fungal genus Khuskia, which consists of one species, K. 

oryzae, a known human allergen (Wang, Liu, Crous, & Cai, 2017) was detected only at 

Mount Eden. The fungal genus, Phoma, which is a notable plant pathogen (Bennett, Ponder, 

& Garcia-Diaz, 2018), however, was more dominant in autumn. This could be due to more 

rapid plant growth at that time of year. The effect of time at different scales is investigated 

in later thesis chapters. It was unclear if bacteria were less affected by time, or if the data 

did not reveal the relationship in this study.  

2.5.5 Distance-Dissimilarity of Bioaerosols 
No distance-dissimilarity relationships were apparent in either bacterial or fungal bioaerosol 

communities (Figure 2-12). This is not unreasonable since the atmosphere is a fluid medium 

which could be expected to be well mixed at the scale which sampling was performed (8 km 

between the most distant Auckland parks). Back-trajectory analysis also placed all sample 

locations in the same cluster at the same time, supporting consistency in weather patterns 

across the city. This is in stark contrast to the often very strong distance-dissimilarity 

patterns generally observed for soil and water microorganisms (Feng et al., 2019; Lear et al., 

2013). As noted above, this lack of distance-dissimilarity relationship did not preclude local 

spatial differentiation. This is likely due to the majority of bioaerosols remaining close to the 

ground, and having short transport ranges and local differentiation as a result (see section 

1.3.1 Particle Movement in the Atmosphere). A minority of bioaerosols are propelled higher 
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into the atmosphere and easily transported on a regional scale (Kellogg & Griffin, 2006). The 

idea of there being distinct groups of organisms, some good at regional dispersal and 

showing little distance-dissimilarity and some being restricted to certain parks, is supported 

by spatial differentiation only being apparent for the filtered ASV table (with widely 

dispersed invariant taxa removed). The extent to which mixing of this scale occurs is 

presently unclear, and different spatial scales are the subject of later chapters of this thesis. 

Two common threads emerge through all the preceding analyses. ITS data displayed 

clearer patterns, and higher R2 values than 16S data. This is likely due to the presence of 

many more reads and a greater number of ASVs for ITS. Higher quality information for ITS 

would have made any relationships easier to detect. Higher numbers of ASVs for ITS are 

expected since ITS is more variable in length than 16S (Callahan, 2020). Fungi, being 

eukaryotic, are frequently multicellular and have larger cells in contrast to prokaryotic, 

smaller, unicellular bacteria. Some of the abundant fungi identified in the study are 

macroscopic fungi which have relatively large spores. Thus, cells could be expected to be 

clumped together more often than bacteria, which could explain why more reads were 

present for ITS. Fungal cells being part of larger assemblages than bacterial cells would 

result in shorter average atmospheric residence times for fungi (Burrows et al., 2009b), 

which could also be an explanation for the greater observed variability for ITS. The other 

notable feature is the high degree of consistency in ecological conclusions reached between 

the different amplicons tested and between various methods (both compositional and non-

compositional) employed for data analysis. This suggests that the relationships detected are 

ecologically sound. 

2.6 Conclusions 
Different durations of back trajectories showed different predictive potential for bioaerosol 

communities. Bioaerosols varied as a result of many factors, but in particular location, time 

and air mass source. Temporal variation was especially important for fungi. These key 

findings were consistent with the body of literature on bioaerosols. Due to their ease of 

dispersal, bioaerosol communities did not show distance-dissimilarity, yet still displayed 

local differentiation. The type and number of fungal and bacterial bioaerosols detected 

varied by location, time and air-mass source. The persistence of these patterns at different 

spatial and temporal scales requires further investigation. However, this study shows that 

ecological factors can predict community structure of microbial aerosol communities in 

urban landscapes. 
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Chapter 3 - Two-Year Seasonal Study of Temporal Bioaerosol 

Variability 
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3.1 Abstract 
Microbes are a fundamental component of Earth’s ecosystems, thus knowledge of 

ecosystem connectivity through microbial dispersal is key to understanding how ecosystems 

will change in a warming world. However, microbial dispersal through the air remains poorly 

understood. Relatively few studies have been performed on bioaerosols in urban areas, 

despite them housing the majority of the world’s human population and harbouring 

important aerial pathogens and allergens. To shed further light on this, weekly sampling was 

performed in Auckland, Aotearoa New Zealand for two years. Sampled bacterial and fungal 

communities were characterised through sequencing of 16S rRNA (16S) and internal 

transcribed spacer (ITS) marker genes. In general, shorter (one to three-day) air-mass back-

trajectories correlated more strongly with the bioaerosol community than longer (one-

week). However, more importantly, the bioaerosol communities varied over time in a non-

linear fashion, exhibiting marked seasonality, which was especially pronounced for fungi. 

This differential response of fungi and bacteria was possibly due to differences in size and 

consequent atmospheric residence times. 

3.2 Introduction 
Microbial communities drive functioning of all terrestrial and aquatic ecosystems worldwide 

(Pointing et al., 2016). Their composition and function vary dramatically, and this variation 

has important impacts on ecosystem functions (Fierer et al., 2012). ‘Priority effects’ in 

microbial communities can be important in determining composition and functioning over 

time (Evans, Martiny, & Allison, 2017; Fukami, 2015), therefore understanding how 

microbes move around ecosystems is crucial (Zhou & Ning, 2017). Understanding microbial 

dispersal is fundamental within the context of climate change driving ecosystem changes, as 

selective pressures in both source and destination habitats shift (Chown et al., 2012). 

Aerosol microbial communities are an excellent case study system to examine 

microbial movement because air is easy to sample at a variety of temporal and spatial scales 

in a highly replicated way. As the aerosphere links all ecosystems, organisms that can utilise 

it for dispersal appear to have unfettered access to all global habitats (Pearce et al., 2016) 

but the extent to which “everything is everywhere” holds true for microbes remains unclear 

(O'Malley, 2008). Aerosol community composition influences composition of novel 

terrestrial and aquatic habitats, thus bioaerosols provide the source populations for Earth’s 

ecosystems (Kellogg et al., 2004; Šantl-Temkiv et al., 2020; Sokol et al., 2013). The behaviour 

of microbes in the air follows particle physics in a fluid (Burrows et al., 2009b; Pepper, 2015) 

(see 1.3.1), therefore predictions can be made about how microbes move in air based on 

their properties, further supporting bioaerosols as an excellent model system for microbial 

dispersal. 

Insights from urban aerosols specifically are important, since 55% of the world’s 

population currently resides in urban areas, which is projected to increase to 68% by 2050 

(UN, 2018), and microbial exposure is emerging as an important human health influence 
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(Mhuireach et al., 2020). Urban aerosol communities vary across spatiotemporal scales, but 

fewer studies have been conducted with high replication at scales with fine temporal grain 

(less than one week between samples and/or sample duration under one day) over a large 

temporal extent (more than one year between samples) (Mathieu et al., 2020). Shorter 

duration and coarser grain studies have repeatedly demonstrated temporal variability over 

daily, seasonal and yearly scales (Bowers, McCubbin, Hallar, & Fierer, 2012; Burrows et al., 

2009b; Els et al., 2019). Patterns vary, but generally warming, cooling and precipitation 

cycles affect bioaerosol communities (Woo et al., 2013). The effect of temperature can be 

variable, but more studies show increasing concentrations with temperature (Tong & 

Lighthart, 1999). Spatial variability is ubiquitous, with climate, land-use, population, 

ecosystem, vegetation and altitude all thought to influence bioaerosols (Burrows et al., 

2009a; Burrows et al., 2009b). Very few molecular studies have been performed on seasonal 

variation in outdoor urban bioaerosols, despite their ability to harbour human pathogens 

and allergens (Bowers et al., 2011b; Franzetti et al., 2010; Fröhlich-Nowoisky et al., 2009; 

Priyamvada et al., 2017; Woo et al., 2013). Most work on urban bioaerosols has been 

limited to Europe, Asia, and the USA, over periods of around a year or less. Every bioaerosol 

study detected seasonal variability in the micro-organisms surveyed, but how universal 

these patterns are is unknown.  

Many factors have been demonstrated to affect urban bioaerosols, but the relative 

contribution of each has yet to be quantified. Factors thought to be important drivers of 

observed seasonal variability are air-mass source, temperature, relative humidity, wind 

speed, air pressure, particulate load and precipitation. Woo et al.(2013) observed distinctive 

fungal and bacterial assemblages at different times of year in Hong Kong and postulated the 

reason for this change was a shift from marine air in summer to continental air in winter. 

Other recent bioaerosol studies have also suggested air mass source is the key determinant 

of bioaerosol communities (Archer et al., 2020). In contrast, Bowers et al.(2012), in their 

non-urban seasonal study, found wind trajectories were not of significant importance for 

the composition of the sampled bioaerosol communities and postulated that local bacterial 

emission sources were key. Temperature is the environmental factor most consistently 

identified as a correlate with the bioaerosol community in studies to date (Bowers et al., 

2013; Bowers et al., 2012; Fröhlich-Nowoisky et al., 2009; Woo et al., 2013). This is thought 

to be due to the indirect effects of warmer temperatures, increasing microbial reproduction 

and aerosolisation (see section 1.3.2 Bioaerosol Particles: Temporal and Spatial Variation). 

For the other factors, some studies observed significant effects, and some did not, so their 

importance is less conclusive (Brodie et al., 2007b; Fröhlich-Nowoisky et al., 2009; 

Priyamvada et al., 2017). Few studies have compared the seasonal responses of fungi and 

bacteria, although Woo et al. (2013) hint that while there may be more local influence for 

fungi, there is currently insufficient data to conclude if systematic differences exist in the 

responses of bacterial and fungal bioaerosols to seasonality. The results in 2.5.4 Effect of 

Location, Time, and Wind Direction on Fungal and Bacterial Genera Identified suggest 

differences are likely, with indications of greater seasonality for fungi. The drivers for this 
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are presently unclear but could be related to greater size of fungal particles and resulting 

shorter atmospheric residence times, or fungal life history strategies being more host-

specific and less generalist than those of bacteria (Shigyo et al., 2019). 

To contribute to filling this knowledge gap, weekly samples were taken in the CBD of 

Auckland, Aotearoa New Zealand for two years (May 2017 to May 2019), in the longest 

continuous urban bioaerosol study to date. Samples were subjected to 16S (for bacteria and 

archaea) and ITS (for fungi) gene amplification and sequencing. Abundance and composition 

of microorganisms were analysed with respect to air-mass source, temperature, relative 

humidity, weather conditions and a variety of non-linear functions were compared to 

quantify the scale and pattern of the temporal variation. Distance-based redundancy 

analysis (db-RDA) with variance partitioning was used to quantify, for the first time, the 

relative correlation of each variable with the variation in diversity and composition of the 

observed bioaerosol community. 

3.2.1 Hypotheses 
1. Temporal wind hypothesis: Air-mass trajectories of differing spatiotemporal lengths 

differ in their ability to predict variation in bioaerosol community composition. 

Specifically, one- or three-day trajectories provide the greatest explanatory power 

relative to one-week back-trajectories (based on findings in Chapter 2  - 

Spatiotemporal Bioaerosol Variability in Urban Parks).  

2. Time-dissimilarity hypothesis: Similarity in community composition of samples 

declines with their increasing temporal separation in a non-linear fashion, due to 

seasonality. 

3. Environmental drivers hypothesis:  

a. Temporal variation in bioaerosol community structure (composition and 

diversity) at the Auckland CBD can be predicted by season, geographic origin 

of sampled air, temperature, weather and relative humidity. 

b. Relative abundances of common and rarer bacterial and fungal taxa fluctuate 

by season and air mass source. 

4. Taxonomic differences: Temporal patterns of 16S bacterial and ITS fungal microbial 

aerosol communities are expected to be different. Specifically, fungi display more 

variability in general and greater seasonality. 

3.3 Methods  

3.3.1 Field Sampling and Environmental Data Collection 
Sampling with the Coriolis into phosphate buffered saline (PBS) was performed for one 

hour, once a week, for two years on the roof of a 16-floor building in central Auckland. This 

elevated location was chosen to avoid disruption from stochastic ground level events (e.g. a 

street sweeper or large vehicle going past) that could mask seasonal trends. The day of the 

week was randomised to avoid weekends biasing results. These protocols were based on 

methods in the similar study by Woo et al. (2013). Samples were collected in a designated 
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corner of the roof at a height of 1.8 m. Gloves were worn and the extender and Coriolis unit 

cleaned with bleach. The Coriolis neck, head and cone were cleaned with bleach, ethanol 

and three rinses of milli-Q (MQ) H2O. The cone was filled with 15 mL of PBS. A negative was 

taken (PBS put into the cone without running the Coriolis) before running the Coriolis for 

two – four minutes with MQH2O to ensure all bleach residue in the head and neck was 

removed. The MQH2O was discarded and replaced with 15 mL of PBS and the Coriolis was 

run at 300 L/m for one hour. The PBS in the cone was manually topped up to 15 mL after 30 

minutes and sampling was completed with at least 10 mL of PBS remaining in the cone. 

Samples were transferred into a 15 mL falcon tube and stored at -20 C within one hour. 

During sampling, observations were recorded of weather conditions (with a Kestrel 3000) 

and particle counts were taken (with an AeroTrak particle counter). If rain occurred, the 

Coriolis was sheltered with an umbrella. If rain was heavy it was packed up until the rain 

abated. 

Air-mass back-trajectories were generated hourly over the sampling periods using 

the NOAA HYSPLIT model (v5. 0. 0 Ubuntu), (Stein et al., 2016) with GDAS meteorological 

data. Clustering was performed in HYSPLIT (see Appendix B HYSPLIT Clustering Procedure 

for details). The number of clusters selected (four) was based on a marked increase in total 

spatial variance as clusters reduced. The cluster for each sample was manually entered into 

the metadata, which was imported into R. Back-trajectories were generated for one day, 

three day and one week durations. 

3.3.2 Laboratory Processing 
For details on DNA extraction and DNA sequencing methods see section C.1 Laboratory 

Methods – DNA Extraction, and section C.3 Laboratory Methods – DNA Sequencing  

3.3.3 Bioinformatics 
For details on bioinformatic processing see D.3.3 Data Analysis in Appendix D 

Optimising Bioinformatics Protocols for Aerosol Microbial Community Data – a Case Study 

Using an Urban Parks Dataset. The process recommended as a result of that piece of work 

was followed for the seasonal study dataset presented in this chapter. The decontaminated 

amplicon sequence variant (ASV) table (with read counts adjusted to remove contaminant 

sequences) and combined taxonomy and relevant metadata were analysed in R with respect 

to the hypotheses for this study.  

3.3.4  Data Analysis 
The 16S (the gene for the RNA component of the 30S small-subunit of the prokaryotic 

ribosome) and ITS (spacer DNA situated between the small-subunit RNA and large-subunit 

ribosomal RNA genes in the fungal genome) amplicon sequence variant (ASV) tables were 

prepared for analysis by retaining only ASVs with more than either 300 reads (for 16S) or 

500 reads (for ITS) and a coefficient of variation (CV) of greater than four. This filter was 

used to improve any signal which could be masked by invariant taxa and/or low-level 
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stochastic variation. Any problematic samples were completely removed, for instance 

duplicates or samples contaminated by flying insects. Metadata associated with each 

sample were adjusted to remove redundant variables (incomplete measurements or 

variables which were not analysed further), numerical variables were standardised using Z-

scoring in R (with the function scale in base R). Additional variables to indicate time were 

included. These were days since the start of the study (DSS), whether a sample related to 

year one or two of the study, days from the beginning of the study year in circular degrees 

(count of days into the respective sampling year converted to degrees of a circle, with 180° 

being six months into either year one or year two) and a categorical variable for season 

(summer being December to February, autumn being March to May, winter being June to 

August and spring being September to November). 

Bayesian multiplicative replacement was performed on the ASV tables (Gloor et al., 

2017; Quinn et al., 2019) using the function cmultRepl (Aitchison, 1982; Templ et al., 2011) 

in the R package “zCompositions” (v1. 3. 4) (Palarea-Albaladejo & Martín-Fernández, 2015). 

“RobCompositions” (v2. 2. 1) (Templ et al., 2011) was used to generate an Aitchison 

distance matrix, which was fed into downstream analysis functions.  

Variance partitioning of an Aitchison distance matrix calculated on pairwise 

comparisons of compositional samples was conducted following a distance-based 

redundancy analysis (db-RDA) to compare the relative amount of compositional variation 

explained by the three different lengths of back-trajectories. This result was used to 

determine which length would be used for the remainder of the analyses; a higher R2 

indicated greater variation explained by a given trajectory. 

A pairwise Euclidean distance matrix was calculated using the number of days 

between samples (days since start; DSS). The Aitchison compositional dissimilarities were 

plotted against the Euclidean temporal dissimilarities for each pair of samples to visualise 

the time-dissimilarity relationship. The time-dissimilarity plot using pairwise compositional 

dissimilarity showed a cubic-non-linear relationship, so a cubic transformation of the DSS 

variable was added to the db-RDA to model this non-linearity. A non-linear correlation 

between the Aitchison compositional dissimilarities and the Euclidean temporal 

dissimilarities was calculated using the R package “nlcor” (v.1.3.2) (Ranjan, 2020). This 

correlation results in a coefficient that varies between zero and one, and reflects the 

strength of the non-linear correlation whereby higher values demonstrate a stronger 

correlation than lower values; a P-value is also provided which reports the statistical 

significance of the correlation. 

Forward selection of variables was performed to determine which explanatory 

variables to include in further db-RDA analysis. This was implemented in R using the 

capscale and ordi2step functions in “vegan” (v2. 5. 6) (Oksanen et al., 2012). Variables were 

included with a p in parameter of 0.2 and 999 permutations. 
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Significant variables resulting from the forward selection procedure were included in 

the db-RDA with variance partitioning to quantify strength of relationship with bioaerosol 

community composition (Table 3-1). These variables were season and wind-source for 16S. 

For ITS, variables included were season, DSS to powers one through to three, weather and 

temperature. In addition to quantifying the relative importance of the different variables, 

db-RDA quantified the portion of explained variation that was shared among variables.  

Table 3-1 - Explanatory variables and whether they were included in modelling 
compositional variation in bioaerosol communities sampled in urban Auckland.   

Variable Variable 

type 

Description Included in 

16S model? 

Included in 

ITS model? 

1-day back 

trajectory 

cluster 

Categorical Path of sampled air-mass in 

previous 24 hours 

Yes No 

3-day back 

trajectory 

cluster 

Categorical Path of sampled air-mass in 

previous 72 hours 

No Yes 

1-week back 

trajectory 

cluster 

Categorical Path of sampled air-mass in 

previous 168 hours 

No No 

Season Categorical Season sampling during 

which took place 

Yes Yes 

Days since start 

(DSS) 

Numerical Number of days since 

sampling began 

No Yes 

Days since start 
2 – 3 (DSS2 - 3) 

Numerical Number of days since 

sampling began to the power 

of 2 and 3 

No Yes 

Days in degrees 

(DD) 

Numerical Number of days into 

sampling year converted into 

circular degrees 

No No 

Weather Categorical Weather during sampling No Yes 

Temperature Numerical Temperature during 

sampling 

No Yes 

Humidity Numerical Humidity during sampling No No 

Month Categorical Month sampling took place 

during 

No No 

Year Categorical Year of study sampling took 

place during (year 1 or 2) 

No No 
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Visualisation of compositional variation among samples was achieved by generating 

Non-metric Multidimensional Scaling (NMDS) plots on Aitchison distance matrix, 

implemented in the R package “vegan”. The function stat-ellipse in “ggplot2” (v3.3.2) 

(Wickham, 2016) was used to create ellipses, assuming a multivariate t-distribution. The 

stress for two to six dimensions was compared, with 500 random starts and 999 iterations 

per run. The lowest dimensional solution with a stress under 0.2 was selected (McCune et 

al., 2002). 

To assess patterns by month and back-trajectory for different genera, the 

percentage of total read count were calculated on data filtered as follows. For 16S, samples 

with less than 100 reads and ASVs with less than 300 reads were filtered out. Relative 

abundance by genus for each category included only genera comprising at least 1.2% of the 

reads. For ITS, samples with less than 100 reads and ASVs with less than 500 reads were 

filtered out. Relative abundance by genus for each category included only genera with at 

least 1% of the reads. Stacked bar plots showing relative abundances of these key taxa in 

different categories (month, wind) were generated using “ggplot2” (v3.3.2) (Wickham, 

2016) and “phyloseq” (v1.30.0) (McMurdie & Holmes, 2013).  

3.4 Results 

3.4.1 One or Three-Day Back-Trajectories Selected for Air-Mass Source Variable 

in db-RDA 
Wind back trajectories showed similar overall predictive value of community composition 

for both amplicons (R2 of 2-3%) (Figure 3-1). The different trajectory lengths explained 

similar variation in community composition. One or three-day trajectories appeared to have 

the strongest relationships with the bioaerosol communities. One-day trajectories were 

selected for ongoing 16S analysis and three-day trajectories were selected for the 

remainder of the ITS analysis. 
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a) 

  

b) 

 

Figure 3-1 - Variance partitioning from a distance-based redundancy analysis on the 
pairwise Aitchison compositional distances among bioaerosol samples for (a) 16S and (b) 
ITS showing the variance explained by one-day, three-day, and one-week back 
trajectories. 
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3.4.2 Time-Dissimilarity was Non-Linear 
Non-linear time-dissimilarity relationships were evident for both amplicons (Figure 3-2). The 

relationships were close to cubic in shape, both showing inflexion points at around 200 days 

and 400 days, suggesting a cyclical seasonal relationship. The non-linear correlation 

coefficient for 16S was 0.1 and ITS was 0.244, both were statistically significant (P-16S = 

0.002, P-ITS < 0.0001). The patterns for year one of the study (0 to 365 DSS on the x-axis) 

were similar for both amplicons, but year two showed a flattening in 16S, and a steepening 

for ITS.  
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a) 

 

b) 

 

Figure 3-2 - Time-dissimilarity plots for a) 16S and b) ITS of Aitchison compositional sample 
distances against Euclidean temporal dissimilarities between sample times (number of 
days). Blue lines show the fit of a loess smoother and the 95% confidence interval (grey 
envelope). 

3.4.3 Strong Temporal Patterns in Bioaerosol Community Composition 
Season and DSS1 - 3 were the most important correlates with the bioaerosol community for 

both amplicons, explaining the greatest amount of variation in the db-RDAs (6% for 16S, and 
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23% for ITS) (Figure 3-3). Wind (and temperature and weather for ITS) were of secondary 

importance. The R2 of the model was substantially higher for ITS than 16S (33% versus 8%). 

Seasonality and a difference between year one and year two in composition measured for 

ITS were evident in the NMDS ordination. The 16S ordination showed minimal 

differentiation between years, consistent with the time-dissimilarity and the db-RDA 

analysis (Figure 3-4). Both NMDS ordinations showed clustering of the day-degree variable 

over the course of the year, with yellow and dark purple often being adjacent as they 

represent January and December, respectively.  
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a) 

 

b) 

 

Figure 3-3 - Variance partitioning of the results from a db-RDA on the Aitchison 
compositional distances among samples for (a) 16S and (b) ITS, showing the variance 
explained by season, days since start (DSS1 - 3), one-day wind (16S) or three-day wind (ITS), 
and temperature and weather for ITS only.  

  



95 

a) 

b) 

Figure 3-4 - NMDS ordination of the a) 16S or b) ITS Aitchison distances among samples. 
The study year is indicated by polygons representing the t-distribution of the year one and 
year two points. Days in circle degrees are indicated by the gradient colour. Stress on 16S 
NMDS was 0.18 (dimensions one and two are presented above), the three-dimensional 
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solution was selected as the two-dimensional solution had stress greater than 0.2 so was 
unreliable. Dimensions one and three and two and three are presented in Supplementary 
Materials (E.2.1). The two-dimensional solution for the ITS NMDS was selected, as stress 
was 0.18. Higher dimensional solutions had lower stress values for both amplicons. 

3.4.4  Differences Visible Among Months and Wind Trajectory Clusters, in 

Relative Taxon Abundances 
Unfiltered bacterial reads numbered 1,171,139, with 5,235 ASVs inferred. Unfiltered fungal 

reads numbered 2,760,306, comprised of 3,419 ASVs. 

Relative Abundance by Month – 16S 
Many of the common bacterial genera (defined as per filtering described in Figure 3-5 

legend below) showed clear seasonal trends, for instance Ralstonia spp. were common early 

in the year and much less prevalent between July and October. Conversely, 

chloroplasts/plastids were much more common in winter months. Methylobacterium spp. 

were much more prevalent in August and September in year one. Listeria spp. peak in 

relative abundance between August and October 2018. Some genera, however, did not 

show marked seasonal patterns, and were found throughout the two-year sampling period, 

such as Pseudomonas spp. and an unclassified organism in the genus Cyathea poeppigii (in 

red, likely a chloroplast from a tree fern). Sampling year one and two were reasonably 

consistent. 
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Figure 3-5 - Relative abundance by month for 16S. ASVs with less than 300 reads and samples with less than 100 reads were filtered out. 

Genera with greater than 1.2% of reads for each season were included in the bar plots. 
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Relative Abundance by Month – ITS 
Marked seasonal variation was observed amongst the fungal genera (Figure 3-6). The 

dominant genera totally shifted several times over the course of the two years (filtering 

criteria described in Figure 3-6 legend below). Phoma spp. were very common from 

December 2018 until May 2019 and in June 2017.  Gibberella spp. dominated the bioaerosol 

samples in August 2017, December 2017, and most months between February 2018 and 

September 2018. Meyerozyma spp. dominated in January 2018, while Botryotinia spp. were 

dominant around October in both years. Leptosphaerulina spp. were common between 

February and April 2019.  Fungi displayed greater variability between year one and year two 

than bacteria.  
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Figure 3-6 - Relative abundance by genus by month for ITS. ASVs with less than 500 reads and samples with less than 100 reads were 
filtered out. Only genera with at least 1% of the reads were included in the bar plot. 
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Relative Abundance by Wind Back-Trajectory Cluster – 16S 

The four back-trajectory clusters appeared to have similar bacterial compositions (Figure 

3-7). Cluster two had a greater proportion of Burkholderia spp., fewer Methylobacterium 

spp. and more Listeria spp. Filtering criteria described in Figure 3-7 legend below. 
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a) 

b)
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Figure 3-7 - Relative abundance by back-trajectory cluster for 16S. ASVs with under 300 
reads and samples with less than 100 reads were filtered out. a) abundance by genus for 
each wind trajectory. Only genera with at least 1.2% of the reads were included in the bar 
plot. b) Paths of the four clusters identified over the sampling period in the previous 24 
hours before sampling, generated by the NOAA HYSPLIT model based on GDAS 
meteorological data. % next to each cluster indicates proportion of trajectories assigned 
to that cluster. 

Relative Abundance by Wind Back-Trajectory Cluster – ITS 
Fungal assemblages showed some variability for different trajectory clusters (Figure 3-8). 

Hypholoma and Ganoderma spp. were more prevalent in cluster one, while Meyerozyma 

spp. were more prevalent in clusters two and three. Filtering criteria described in Figure 3-8 

legend below. 
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Figure 3-8 - Relative abundance by back-trajectory cluster for ITS. ASVs with under 500 
reads and samples with less than 100 reads were filtered out. a) abundance by genus for 
each wind trajectory. Only genera with at least 1% of the reads were included in the bar 
plot. b) Paths of the four clusters identified over the sampling period in the previous 72 
hours before sampling, generated by the NOAA HYSPLIT model based on GDAS 
meteorological data. % next to each cluster indicates proportion of trajectories assigned 
to that cluster. 

3.5 Discussion 
Urban aerosol microbial community composition varied strongly and, to some extent, 

predictably in time, showing clear seasonal variation. Air-mass trajectories of differing 

spatiotemporal lengths differed in their ability to predict variation in bioaerosol community 

structure and one or three-day trajectories provided the greatest explanatory power in this 

dataset. Therefore, hypothesis 1 - Temporal wind hypothesis (air-mass trajectories of 

differing spatiotemporal lengths differ in their ability to predict variation in bioaerosol 

community composition. Specifically, one- or three-day trajectories provide the greatest 

explanatory power relative to one-week back-trajectories) failed to be rejected. Similarity in 

community composition of samples declined with their increasing temporal separation in a 

non-linear fashion, therefore hypothesis 2 - Time-dissimilarity hypothesis (similarity in 

community composition of samples declines with their increasing temporal separation in a 

non-linear fashion, due to seasonality) failed to be rejected. Temporal variation in 

bioaerosol community structure (composition and diversity) at the Auckland CBD was 

correlated with season, days since the start of the study cubed, geographic origin of 

sampled air and temperature. Relative humidity and other measured variables were not 

correlated with bioaerosol communities recovered in this study. Therefore, hypothesis 3. a) 

environmental drivers (temporal variation in bioaerosol community structure (composition 

and diversity) at the Auckland CBD can be predicted by season, geographic origin of sampled 

air, temperature, weather and relative humidity) failed to be rejected with respect to 

seasonality, temperature and air mass source only. The relative abundances of common and 

rarer taxa fluctuated by season and air mass source. Therefore, the alternative hypothesis 3. 

b) (relative abundances of common and rarer bacterial and fungal taxa fluctuate by season

and air mass source) failed to be rejected. Fungi displayed greater seasonality, therefore,

hypothesis 4 (temporal patterns of 16S bacterial and ITS fungal microbial aerosol

communities are expected to be different. Specifically, fungi display more variability in

general and greater seasonality) failed to be rejected. This study represents the longest

continuous time series data currently available on urban bioaerosols. Their variability is

substantial and correlated with measurable factors (from 8% for 16S, to 33% for ITS), so it is

now possible to make predictions regarding future changes. This means that estimates of

microbial exposure of pathogens and allergens of city dwellers can be improved and that we

can begin to understand ecosystem connectivity via the atmosphere.
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3.5.1 One and Three-Day Wind Back-Trajectories were not Strongly Correlated 

to the Bioaerosol Community 
The overall correlation of air mass source only with bioaerosol communities sampled was 

low for both amplicons, with an R2 of 2-3%, which contrasts with some of the body of 

literature suggesting that air mass source is the key determinant of bioaerosol variation 

(Archer et al., 2020; Woo et al., 2013), but is consistent with other studies which suggest 

local sources are more important than distant ones (Bowers et al., 2013; Bowers et al., 

2012). One and three-day trajectories had higher R2 values than one-week trajectories, (see 

section 2.5.2 Wind Back-Trajectory Duration), consistent with the standard practice in the 

literature of using a three-day trajectory (Archer et al., 2020). These results suggest that 

one-day trajectories may have better predictive value for fine-scale temporal compositional 

variation than three-day trajectories, and that certainly comparison of alternative trajectory 

lengths would be prudent for all studies.   

3.5.2 Time-Dissimilarity was Non-Linear 
ITS and 16S showed similar cubic trends in the time-dissimilarity analysis, suggesting 

seasonal variability, as expected. Sampling began in May 2017, and the inflexion point at 

200 days (samples more dissimilar than expected if a linear relationship with time existed) is 

the following November or December. A larger difference between summer and winter 

supports seasonality. A dip in the line of best fit occurs at 370 days – May again, where 

samples are more similar than expected with a linear relationship. Given this is the same 

season, this also suggests seasonal effects. From 400 days, or June 2018 onwards, samples 

become increasingly dissimilar, again this is moving from the same to different seasons 

being compared; increasing differences suggest seasonality. Clear seasonality was consistent 

with the body of literature (Bowers et al., 2013; Bowers et al., 2012; Els et al., 2019; 

Franzetti et al., 2010; Mhuireach et al., 2020; Woo et al., 2013). Although no other urban 

bioaerosol studies sampled across multiple years, seasonal variations were always reported 

within the sampling period. The possibly more pronounced temporal variation for fungi was 

also suggested in literature that looked at both bacteria and fungi (Woo et al., 2013). 

3.5.3 Clear Temporal Patterns in Bioaerosol Variability 
Season and DSS1 - 3 had an R2 of 6% for 16S, and 23% for ITS in the db-RDA, and were the 

most important correlates of variation in microbial composition, as hypothesised. DSS3 

modelled cyclical changes in the data, as well as the year-on-year change. The season 

categorical variable appeared to model more complex relationships in the data, as it 

explained further variation on top of the DSS3 variable. NMDS ordination was consistent 

with the db-RDA result for both amplicons. Separation of communities based on the day 

degree variable supporting seasonal variation over the year was present and more 

pronounced with ITS. Differentiation between the first and second year of study was evident 

with ITS but not 16S. Both ordinations, particularly 16S, are clumped towards a central 

distribution. Wind (and weather and temperature for ITS) were of secondary importance. 

Both the seasonality, and lesser influences from temperature, are consistent with previous 
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research (Franzetti et al., 2010; Woo et al., 2013), but weather was not noted as a correlate 

in the literature reviewed. Franzetti et al. (2010) pooled samples for three-month periods 

representing summer and winter only, whereas Woo et al. (2013) sampled weekly for one 

year, for 24 hours at a time. These differing approaches converging on the same result lend 

it strong support. The secondary importance of wind origin is consistent with some 

literature (Bowers et al., 2013; Bowers et al., 2012), but contrasts with other studies which 

postulated wind being the key driver behind bioaerosol variation (Archer et al., 2020; Woo 

et al., 2013). The studies suggesting wind is of greater importance tend to be over a much 

shorter duration; however, Woo et al. (2013) had a very similar protocol to the one adopted 

here. While it is well known that some bioaerosols can be transported over great distances 

in the atmosphere (Burrows et al., 2009a), it is more intuitive that local sources of 

bioaerosols have greater impact than distant ones. Other variables, which were not 

observed to correlate with the bioaerosol community, were of inconsistent importance in 

the literature (Fröhlich-Nowoisky et al., 2009; Woo et al., 2013).  

3.5.4 Bacterial and Fungal Genera Show Different Relative Abundances over 

Time and by Wind Back-Trajectory Cluster 
The bacterial and fungal genera detected were consistent with previous bioaerosol studies 

and known to be environmental organisms or associated with plants, humans or other 

animals. Genera frequently identified included pathogens such as Listeria spp. and allergens 

such as Alternaria spp. (Priyamvada et al., 2017). While Pseudomonas, Ralstonia and 

Burkholderia are commonly reported contaminants, their consistency with other bioaerosol 

studies, biological niches and presence despite stringent decontamination procedures 

indicate they also represent a genuine constituent of the bioaerosol community. 

Several bacterial genera showed monthly trends, for instance Ralstonia spp. (a 

widely distributed soil and water bacterium) were common early in the year while 

chloroplasts/plastids were much more common in winter months. Chloroplasts, presumably 

from pollen and other plant fragments, are abundant in similar bioaerosol studies, and have 

been observed to be seasonally variable (Brodie et al., 2007b; Franzetti et al., 2010; Woo et 

al., 2013). Generally, they are most common in spring or summer (Woo et al., 2013), which 

is inconsistent with the data from this study. It is likely that Auckland’s mild sub-tropical 

climate results in flowering less tied to a season. Other genera had variable distribution 

through the year. Bradyrhizobium spp., a plant-associated nitrogen fixing bacterium 

(Ormeño-Orrillo & Martínez-Romero, 2019) peaked in September 2017, at a time of rapid 

plant growth. Methylobacterium spp. (an opportunistic human pathogen and soil and water 

associated bacterium (Green, 2006)) was much more prevalent in August and September 

2017. Listeria spp. peaked in relative abundance between August and October 2018. Many 

of the above peaks were around late winter or early spring, when the Auckland climate is 

mild and damp, encouraging bacterial growth (Dannemiller, Weschler, & Peccia, 2017; De 

Silvestri, Ferrari, Gozzi, Marchi, & Foschino, 2018). Thus, these results support the 

conclusion that bioaerosol communities display strong seasonality and that this relates 
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directly to the responses of microbes to environmental conditions such as temperature and 

humidity. 

Fungal genera showed marked monthly variation, with the dominant genera 

changing several times, in line with previous analyses suggesting greater seasonal variation 

in fungi (Bowers et al., 2013; Shigyo et al., 2019). Meyerozyma spp. yeasts dominated in 

January 2018, Phoma spp. plant pathogens from December 2018 until May 2019 and in June 

2017, Gibberella spp. (a plant pathogenic mould) dominated the bioaerosol samples in 

August 2017, December 2017, and most months between February 2018 and September 

2018, and another plant pathogen, Botryotinia spp. was dominant around October in both 

years. Leptosphaerulina spp., a further plant pathogen, were common between February 

and April 2019. Many fungi sporulate at particular times of the year (Lagomarsino Oneto, 

Golan, Mazzino, Pringle, & Seminara, 2020) and it is supposed that each different genus 

sporulating at different times causes shifts in the dominant genera. The case of the between 

year variation is unclear. 

Bacterial genera showed slight differentiation by back-trajectory cluster. A Tasman 

Sea-sourced trajectory (cluster one) was associated with Ralstonia and Pseudomonas spp., 

while Bradyrhizobium spp. was associated with clusters approaching from the Pacific Ocean 

and the east coast of New Zealand (clusters two and four). No associations between certain 

wind paths and genera were apparent. Fungal assemblages showed some variability for 

different trajectory clusters. Hypholoma and Ganoderma spp. were more prevalent in the 

Tasman Sea cluster (cluster one), while Meyerozyma spp. were more prevalent in the Pacific 

and Tasman clusters (two and three). Cluster one transited over much of the North Island 

whereas the other clusters were marine, suggesting possible associations between a 

terrestrial path and Hypholoma and Ganoderma spp.  

3.5.5  Bacterial and Fungal Genera Show Differential Responses to Time and 

Other Factors 
The non-linear correlation coefficient was greater for ITS than 16S. The first year of the 

study looked consistent for both amplicons, but interestingly, the second year showed 

greater variation for ITS, whereas there was not much visible year-on-year variation for 16S, 

which was consistent with the species bar plots. This could be due to the apparent greater 

variability overall with ITS, emphasising trends which are more subtle for 16S. Since the 

ecological niches of fungi can be quite different to those of bacteria, it is also possible that 

fungi responded differently to environmental changes between year one and year two to 

bacteria. Bacteria are smaller than fungi, so likely have longer residence times in the 

atmosphere (Archer et al., 2019; Burrows et al., 2009a), which could have reduced their 

observed temporal variability. In agreement with a greater non-linear correlation coefficient 

for ITS, the R2 of the db-RDA was substantially higher for ITS than 16S (33% versus 8%). This 

could be driven by differences in read counts between bacteria and fungi. While more 

bacterial ASVs were identified, the fungal read counts were more than double the bacterial 
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ones. This was caused by several fungal samples with very high read counts, while the 

bacterial samples had a narrow range of read counts. As many fungi are multicellular, versus 

unicellular bacteria, fragments with many cells could sometimes be sampled for fungi, 

creating this pattern. Fungi may also be more seasonally dependant, which could explain 

some of the differences in observed R2 values. Increased seasonal dependence for fungi has 

been previously observed (Shigyo et al., 2019), and this is supported by the large shifts in 

dominant genera, visible in the genus bar plots for fungi. 

3.6  Conclusions 
Different durations of back-trajectories can show different predictive potential for 

bioaerosol communities, with shorter trajectories showing higher R2 values in this case. 

Different back-trajectory lengths should be considered based on the characteristics of the 

study they are used for. From this work, it appears that back-trajectory cluster is of 

secondary importance to the bioaerosol communities compared to local variables 

(particularly temperature), in contrast to some recent literature. Fungi in particular, exhibit 

marked seasonality, probably due to timing of sporulation events. Fungi also seem to have 

higher read counts and correlation coefficients from modelling than bacteria. Biological 

features appear to influence patterns of bioaerosol variation, with fungi and bacteria 

responding differently to the variables measured, possibly due to differences in size and 

presumed atmospheric residence times.  
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Chapter 4  - Diel Variation and Intercontinental Connectivity of 

Antarctic Bioaerosols 
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4.1 Abstract 
The isolated continent of Antarctica provides an ideal model system for understanding long-

range bioaerosol transport, of crucial importance in a rapidly warming world undergoing 

unprecedented ecosystem change. Antarctic air is little studied and poorly understood, due 

to technical and logistical constraints, but harbours a surprising diversity of microorganisms. 

Here, the first Antarctic high-temporal resolution bioaerosol dataset is presented. The aim 

of this work was to understand the nature and drivers of diurnal variation in Antarctic 

bioaerosols and the level of atmospherically mediated microbial transport from Antarctica 

to Aotearoa New Zealand. A Coriolis high-volume air-sampler was specially modified to 

operate in sub-zero temperatures, dramatically reducing required sampling durations. Non-

linear temporal variation was detected for fungi; bacterial data, however, were inconclusive, 

with no obvious correlations detected with any measured variable. Bacteria and fungi 

showed little variance in composition over time. Fungal temporal variation was unlinked to 

measured variables thought to affect bioaerosols (i.e. wind speed, UV, temperature), 

suggesting a need for further understanding of influences of Antarctic bioaerosols. Bacteria 

consistant between Antarctica and New Zealand (NZ) increased noticeably when NZ air was 

coming from Antarctica, suggesting intercontinental transport for bacteria at notable rates. 

Fungi did not show this pattern, postulated to be due to their larger size and suspected 

shorter atmospheric residence times resulting in reduced rates of long-range transport. 

4.2 Introduction 
Antarctica’s pristine and unique landscape is highly vulnerable to climate change and is 

rapidly warming. Antarctica is extremely isolated, due to minimal human and animal 

movements, physical distance and air and water currents, which further reduce movement 

from the open air and sea onto the continent (Pearce et al., 2016). This means that the 

atmosphere is the key transit route for colonising microbes to the Antarctic (Pearce et al., 

2009). Urgent understanding of the current ecosystems and processes is needed, before 

they change forever (Smith, 1994). Understanding of propagule pressure from the 

atmosphere is essential for projecting ecosystem change in the future under a warming 

climate. As temperatures increase, less selective environmental filters will allow more 

temperate organisms to gain a foothold (Kennedy, 1994). The dominance of the atmosphere 

for microbial transport to Antarctica, coupled with the simple microbial ecosystems in-situ 

also provide a fantastic model system to understand global bioaerosol circulation. Since 

bioaerosols include pathogens and invasive species and ecosystem change is accelerating, 

this understanding is crucial (Pearce et al., 2009). The ongoing COVID-19 pandemic is a 

salient case in point. It demonstrates how an aerially transmitted pathogen can wreak havoc 

in our day-to-day lives and how understanding of transmission via the atmosphere can be 

crucial to limiting the spread of microorganisms across spatiotemporal scales. 

Despite its importance, the Antarctic aerosphere and intercontinental connectivity 

remain poorly understood, due to technical and logistical constraints (see section 1.3.6 

Bioaerosol Sampling: Challenges and Solutions). Only seven DNA-based studies have been 
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performed on Antarctic bioaerosols to date. Just one of these studies included fungi, with 

the rest limited to bacteria. Antarctica represents a very challenging environ to inhabit. 

Temperature, UV exposure, wind and relative humidity are extreme (Pearce et al., 2009). As 

a result, the continent harbours very few vascular plants or land animals. This limited 

biological activity and stability of frozen surfaces reducing emissions, results in low 

bioaerosol concentrations and diversity (Burrows et al., 2009a). There is evidence for 

atmospheric biological transfer from elsewhere, particularly South America to the Antarctic 

peninsula (Smith, 1991), and the bioaerosol studies that have been done to date 

consistently find globally distributed taxa (Bottos et al., 2014). However, extra-continental 

exchange appears to be limited for bacteria and fungi (Archer et al., 2019; Bottos et al., 

2014), which is in line with previous estimates from modelling (Burrows et al., 2009a). 

Further, data available suggest that bacteria are more able to undergo long-distance 

transport than fungi, because they have greater residence times in the atmosphere (Archer 

et al., 2019). There is minimal evidence of distance-decay with airborne bacteria or fungi 

(Archer et al., 2019). Marine influence on terrestrial aerosols appears to be variable, with 

one study detecting marine taxa, while others did not (Archer et al., 2019; Bottos et al., 

2014). Proteobacteria and firmicutes (such as Bacillus spp.) and basidiomycetes yeasts 

dominate Antarctic bioaerosols sampled (Archer et al., 2019; Bottos et al., 2014). These 

organisms are often spore formers, which could facilitate their survival in the atmosphere 

(Bottos et al., 2014). Thermophiles were present, thought to be launched by steam from 

vents at local volcanic sites (Bottos et al., 2014). This limited literature shows more studies 

at a greater range of spatiotemporal scales are required to develop a basic understanding of 

how the Antarctic aero-microbiome varies and what the drivers are. 

It is understood that wind source affects bioaerosols (Archer et al., 2020; Woo et al., 

2013), but optimal trajectory lengths for correlation with Antarctic bioaerosols remain 

unclear. Studies which considered air-mass source have used either three-day and two-

week back-trajectories or one-week back-trajectories (Archer et al., 2019; Bottos et al., 

2014), but no comparison of the different trajectory lengths is available. It has been 

suggested that Antarctic bioaerosols may have longer residence times than average (Archer 

et al., 2019; Bottos et al., 2014; Burrows et al., 2009b), so possibly longer trajectory lengths 

may be more informative. Sampling performed by Bottos et al. (2014) used dry filters and 

took 55 days per sample. Archer et al. (2019) improved on this by sampling for four hours on 

different days in several locations, but no datasets exist at higher temporal resolutions. 

Therefore, we do not know how Antarctic bioaerosols change at a fine temporal scale – 

hour-by-hour or even day-by-day. Diel variation is expected, as although the sun does not 

set in summer, nor rise in winter, predictable changes in temperature, wind direction, UV, 

etc. occur over a 24-hour period. These factors are known to influence bioaerosols in other 

parts of the world (Burrows et al., 2009b). No quantification of the relative impacts of the 

different environmental variables which are thought to affect Antarctic bioaerosols has 

occurred, such as wind speed, temperature, and humidity. Understanding of global 

connectivity of Antarctic aerial microbes requires enhancement, particularly for fungi, which 
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often outnumber bacterial reads in aerosol samples but are far less studied. Sampling 

locations in Antarctica are also extremely limited (Figure 1-10). 

To start to address some of these gaps, bioaerosol sampling was performed in 

January 2018 at Taylor Valley in the McMurdo Dry Valleys, one of the largest-ice free and 

most biologically diverse areas in Antarctica (Archer et al., 2019). A modified Coriolis high-

volume liquid impinger (Carvalho et al., 2008) was run for several days with samples 

removed every hour. Modifications were required to prevent freezing of the collection 

liquid during sampling (see section A.2.1 Methods for Operation in Sub-Zero Environments). 

Samples were then pooled in two-hour blocks. Sampling occurred close to camp at 

Spaulding Pond in the Taylor Valley and about a kilometre from camp in the centre of Taylor 

Valley (referred to as the Remote Location or the Deposition Zone). In order to assess extra-

continental exchange, sampling was also performed in Aotearoa New Zealand. Baring Head 

lighthouse, near Wellington, was selected, as air masses from the Southern Ocean 

frequently arrive there. Therefore, it was thought that this would be the best place in New 

Zealand to detect microorganisms of Antarctic origin. The number of taxa (amplicon 

sequence variant or ASVs and genera) that were the same between Antarctica and Baring 

Head air of Antarctic origin, and between Antarctica and Baring Head air of non-Antarctic 

origin, was calculated. This was used to assess the degree of microbial exchange between 

the two locations, and if shared ASVs increased when air was coming from Antarctica. ASVs 

in common were expected as globally dispersed bioaerosols are consistently detected in 

bioaerosol studies (Bottos et al., 2014), so does not necessarily provide evidence for 

substantial biological exchange between the regions. However, an increase in shared ASVs 

when wind was from Antarctica would strongly suggest wind-mediated transport was 

occurring between the two locations.  

4.2.1 Hypotheses 
The aims of this research were to understand the nature and drivers of fine-temporal scale 

variation of Antarctic bioaerosols and to quantify the level of microbial transport mediated 

by the wind between Antarctica and Aotearoa New Zealand. To address these aims, the 

following hypotheses were tested:  

1. Temporal wind hypothesis: Biological (i.e. particle size) and environmental 

characteristics (affecting atmospheric residence times) affect optimal spatiotemporal 

lengths of air-mass trajectories in relation to their ability to predict fine scale 

temporal variation in related bioaerosol community structure. Specifically, Antarctic 

bioaerosols were expected to have longer optimal trajectory lengths than elsewhere 

(one week), and longer trajectory lengths were anticipated for bacteria. 

2. Time-dissimilarity hypothesis: Changes in environmental variables that are known to 

affect bioaerosols (such as UV and temperature) were expected to drive temporal 

variation in the bioaerosol community, within a 24-hour period, and between 

different days studied. The relationship between pairwise sample dissimilarity and 

time was expected to be non-linear due to cyclical day-night periods.  
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3. Environmental drivers hypotheses:

a. Geographic origin of sampled air, sample location, temperature, relative

humidity, wind speed and amount of ultraviolet light (UVA, UVB and UVC)

drive fine-scale (hourly and daily) temporal variation in Antarctic bioaerosol

community structure (composition and diversity), with differing levels of

relative importance.

b. Relative abundances of taxa fluctuate by day, time of day and air mass

source.

4. Intercontinental connectivity hypotheses:

a. A minority of globally distributed ASVs (identical sequences) were expected

to be observed in both Antarctica and New Zealand. Bacteria were expected

to show a higher propensity for long-range aerial transport due to their

longer atmospheric residence times and smaller size than fungi, therefore

higher numbers of bacterial globally distributed ASVs and genera were

expected.

b. Aerial transport was expected to occur from Antarctica to New Zealand, at

greatest rates for bacteria, resulting in more ASVs/genera in common

(greater overlap in taxa) between Antarctica and New Zealand when Baring

Head air came from Antarctica.

c. Bacterial composition was expected to be more affected by air mass source

than fungal composition, and fungi were expected to be more dependent on

local environmental variables (temperature, relative humidity and weather)

than bacteria.

d. Relative abundance of bacteria and fungi were expected to vary depending

on air mass source, as different trajectories passed over different regions

with variable microbial emissions.

4.3 Methods 

4.3.1 Field Sampling and Environmental Data Collection 
Sampling was performed in the McMurdo Dry Valleys, Antarctica and at Baring Head 

Lighthouse, Wellington, NZ. Baring Head was sampled continuously in one-hour increments 

using the Coriolis into phosphate buffered saline (PBS) for a period of three days in July 

2017. In the Dry Valleys, the Coriolis was used to sample continually in one-hour increments 

in PBS for one day. This was repeated three times at the Spaulding Pond location, and for 

one whole day and two partial days at the remote sample location (Deposition Zone) in 

Taylor Valley in January 2018 (Figure 4-1). Partial days occurred due to snowfall halting 

sampling. Two sites were used in Antarctica to control for site specific effects, in particular 
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proximity to the camp at Spaulding pond. 

 

Figure 4-1 - Map of Antarctic sampling locations 

The sample sites were pre-determined, and the exact location was saved in a GPS 

locator. Baring Head was sampled at table height (0.75 m) and the Coriolis extender and 

tripod at 1.8 m were used in the Dry Valleys. A photo was taken of the machine and 

location. Gloves were worn and the extender and Coriolis unit cleaned with bleach. The 

Coriolis neck, head and cone were cleaned with bleach, ethanol and three rinses of milli-Q 

water (MQH2O). The cone was filled with 15 mL of PBS. A negative was taken (PBS put into 

the cone without running the Coriolis) before running the Coriolis for two – four minutes 

with MQH2O to ensure all bleach residue in the head and neck was removed. The MQH2O 

was discarded and replaced with 15 mL of PBS and the Coriolis was run at 300 L/m for one 

hour. In the Dry Valleys, the extender was used at the maximum top up rate. The heating rig 

was set to 20 C, but windchill meant it was always heating at maximum rate and 

maintained a temperature around 5 C depending on the weather conditions. No heating 

was required at Baring Head. After one hour the sample was transferred to a 15 mL falcon 

tube and stored in an insulated bin with ice. 15 mL of PBS was loaded into the Coriolis cone 

and the machine restarted. Antarctic samples were filtered in two-hour pools in the field 

and stored in CTAB buffer in the insulated bin until they were transported to Scott Base. At 

Scott Base they were stored at -20 C before being transported to Auckland in an insulated 

box containing dry ice. Once they were received in Auckland, they were stored at -20 C. 

Baring Head samples were transported by road back to Auckland in the insulated box with 
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ice then stored at -20 C. Samples were pooled in two – four-hour increments. Observations 

of temperature, wind chill, relative humidity, max wind speed, mean wind speed and 

weather conditions were recorded at each sample changeover (with a Kestrel 3000). Particle 

counts were taken (with an AeroTrak particle counter) in New Zealand (NZ). It was too cold 

for the particle counter to function in Antarctica. In Antarctica UVA, B and C were measured 

with a UVC radiometer (UVP Inc, Upland, CA). If light rain occurred during sampling, the 

Coriolis was sheltered with an umbrella. If rain was heavy, the unit was packed up until the 

rain abated. 

Air-mass back-trajectories were generated hourly over the sampling periods using 

the NOAA HYSPLIT model (v5. 0. 0 Ubuntu), (Stein et al., 2016) with GDAS meteorological 

data. Clustering was performed in HYSPLIT (see Appendix B HYSPLIT Clustering Procedure 

for details). The number of clusters selected (two - three) was based on a marked increase 

in total spatial variance as clusters reduced. The cluster for each sample was manually 

entered into the metadata, which was imported into R. Back-trajectories were generated for 

one-day, three-day and one-week durations.  

4.3.2 Laboratory Processing 
For details on DNA extraction and DNA sequencing methods see section C.1 Laboratory 

Methods – DNA Extraction, and section C.3 Laboratory Methods – DNA Sequencing.  

4.3.3 Bioinformatics 
For details on bioinformatic processing see Appendix D Optimising Bioinformatics Protocols 

for Aerosol Microbial Community Data – a Case Study Using an Urban Parks Dataset. FastQ 

files pertaining to Baring Head and Antarctica were analysed as per the recommended 

protocols. The decontaminated amplicon sequence variant (ASV) table (with read counts 

adjusted to remove contaminant sequences) and combined taxonomy and relevant 

metadata were analysed in R with respect to the hypotheses for this study. 

4.3.4  Data Analysis 
The 16S (the gene for the RNA component of the 30S small-subunit of the prokaryotic 

ribosome) and internal transcribed spacer (or ITS, which is spacer DNA situated between the 

small-subunit RNA and large-subunit ribosomal RNA genes in the fungal genome) ASV tables 

were prepared for analysis by removing duplicate or reattempted samples (some samples 

did not sequence well, so sequencing was repeated). Samples with the highest read counts 

were retained. The ASV table was filtered with variable stringency, and the results 

submitted to redundancy analysis (RDA) and compared to determine the optimal level of 

filtering. An unfiltered ASV table was created. These filters were used to improve any signal 

which could be masked by invariant taxa and/or low-level stochastic variation. For 

Antarctica 16S, an ASV table with only ASVs with over 300 reads and a coefficient of 

variation (CV) over three, and an ASV table with only ASVs with over 400 reads and a CV 

over four was created. For Antarctica ITS, an ASV table with only ASVs with over 500 reads 

and a CV over three, and an ASV table with only ASVs with over 500 reads and a CV over 
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four was created. Filtering was often performed at a higher read count threshold for ITS as 

ITS read counts were generally higher than 16S, and CV also tended to be higher. The 

thresholds were set based on the characteristics of each dataset. For Baring Head 16S, an 

ASV table with only ASVs with over 100 reads and a CV over three, and an ASV table with 

only ASVs with over 200 reads and a CV over four was created. For Baring Head ITS, an ASV 

table with only ASVs with over 100 reads and a CV over three, and an ASV table with only 

ASVs with over 200 reads and a CV over four was created. Days five and six in the Antarctic 

dataset were filtered out of all downstream analysis, as they were not full days, so 

represented very few sampling points and were not comparable with the remainder of the 

dataset so risked distorting the result. Metadata associated with each sample were adjusted 

to remove redundant variables (incomplete measurements or variables which were not 

analysed further). Numerical variables were standardised as Z-scores in R (with the function 

scale in base R). An additional numerical variable was included to indicate time of day using 

“lubridate” (v. 1.7.9, (Grolemund & Wickham, 2011)) - hours since midnight. As time on a 

24-hour clock is a circular variable, this was subjected to both sine and cosine

transformations, and a Euclidean distance matrix was calculated using the transformed

variables to model temporal cyclicity (London, 2017). Additional categorical variables

representing different temporal scales of variation were added – day/night (day 8am – 8pm,

night 8pm – 8am), time window (1am – 3am, 3am – 5am, 5am – 7am, 7am – 9am, 9am –

11am, 11am – 1pm, 1pm – 3pm, 3pm – 5pm, 5pm - 7pm, 7pm – 9pm, 9pm – 11pm, 11pm –

1am), time of day (morning 8am – 12pm, afternoon 12pm – 4pm, evening 4pm – 8pm, night

8pm – 12am, late night 12am – 4am, early morning 4am – 8am).

To adjust zeros in the ASV table, which prevent log transformations (as used in the  

Aitchison distance matrix), Bayesian multiplicative replacement was performed on the ASV 

tables (Gloor et al., 2017; Quinn et al., 2019) using the function cmultRepl (Aitchison, 1982; 

Templ et al., 2011) in the R package “zCompositions” (v1. 3. 4) (Palarea-Albaladejo & 

Martín-Fernández, 2015). “RobCompositions” (v2. 2. 1) (Templ et al., 2011) was used to 

generate an Aitchison distance matrix, which was fed into downstream analysis functions.  

Variance partitioning of the Aitchison distance matrix was conducted using distance-

based redundancy analysis (db-RDA) to compare the three different lengths of back-

trajectories to determine which length would be used for the remainder of the analysis. 

Variance partitioning provided quantification of the relative correlation of alternative 

trajectory lengths with the sampled bioaerosol communities; a higher R2 indicated greater 

variation explained by a given trajectory. For the Antarctic and Baring Head data, the 16S 

unfiltered ASV table with a one-week trajectory had the highest R2. For ITS, an unfiltered 

ASV table with a one-day back-trajectory had the highest R2, therefore these parameters 

were chosen for the remainder of the analysis. 

The Aitchison compositional dissimilarities were plotted against the Euclidean cos-

sin transformed temporal dissimilarities for each pair of samples to visualise the time-

dissimilarity relationship. The time-dissimilarity plot showed a linear relationship once 
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transformed. Non-linear correlation was calculated using the R package “nlcor” (v.1.3.2) 

(Ranjan, 2020). 

Forward selection of variables was performed to determine which explanatory 

variables to include in further db-RDA analysis. This was implemented in R using the 

capscale and ordi2step functions in “vegan” (v2. 5. 6) (Oksanen et al., 2012). Variables 

(other than wind and time, as these were pre-selected) were included if indicated by 

forward selection. Forward selection was run with 999 permutations with a P-value 

parameter of one or lower for all amplicons. Variables were further excluded if all their 

variation was shared with other variables, so the simplest RDA with the highest R2 value was 

accepted as the solution.  

Significant variables resulting from the forward selection procedure were included in 

the db-RDA with variance partitioning to quantify strength of relationship with bioaerosol 

community composition. These variables were one-week wind, day and the Euclidean time 

matrix (time matrix) for Antarctica 16S, one-day wind, day and the time matrix for 

Antarctica ITS (Table 4-1). For Baring Head 16S, one-week wind and temperature were 

included. For Baring Head ITS, temperature, humidity and weather were included (Table 

4-2). In addition to quantifying the relative importance of the different variables, db-RDA 

quantified the portion of explained variation that was shared among variables.  

Table 4-1 - Explanatory variables and whether they were included in modelling 
compositional variation in bioaerosol communities sampled in Antarctica   

Variable Variable 

type 

Description Included in 

16S model? 

Included in 

ITS model? 

1-day back 

trajectory 

cluster 

Categorical Path of sampled air-mass in 

previous 24 hours 

No Yes 

3-day back 

trajectory 

cluster 

Categorical Path of sampled air-mass in 

previous 72 hours 

No No 

1-week back 

trajectory 

cluster 

Categorical Path of sampled air-mass in 

previous 168 hours 

Yes No 

Location Categorical Location where sampling 

took place 

No No 

Day/night Categorical Time of sampling No No 

Time of day Categorical Time of sampling No No 

Time window Numerical Time of sampling No No 

Max. wind 

speed 

Numerical Maximum wind speed in 

observation window 

No No 
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Mean wind 

speed 

Numerical Mean wind speed in 

observation window 

No No 

Wind chill Numerical Wind chill during sampling No No 

UVA/B/C Numerical UV measurements during 

sampling 

No No 

Weather Categorical Weather during sampling No No 

Temperature Numerical Temperature during 

sampling 

No No 

Humidity Numerical Humidity during sampling No No 

Day Categorical Day sampling took place 

during 

Yes Yes 

Time matrix Categorical Euclidean distance matrix on 

cos and sin transformed hour 

since midnight variable 

Yes Yes 

 

Table 4-2 - Explanatory variables and whether they were included in modelling 
compositional variation in bioaerosol communities sampled at Baring Head  

Variable Variable 

type 

Description Included in 

16S model? 

Included in 

ITS model? 

1-day back 

trajectory 

cluster 

Categorical Path of sampled air-mass in 

previous 24 hours 

No No 

3-day back 

trajectory 

cluster 

Categorical Path of sampled air-mass in 

previous 72 hours 

No No 

1-week back 

trajectory 

cluster 

Categorical Path of sampled air-mass in 

previous 168 hours 

Yes No 

Weather Categorical Weather during sampling No Yes 

Temperature Numerical Temperature during 

sampling 

Yes Yes 

Humidity Numerical Humidity during sampling No Yes 

 

Visualisation of compositional variation among samples was achieved by generating 

Non-metric Multidimensional Scaling (NMDS) plots on the Aitchison distance matrices, 

implemented in the R package “vegan” (Oksanen et al., 2012) for the Antarctic data. The 

stress for two to six dimensions was compared, with 500 random starts and 999 iterations 

per run. The lowest dimensional solution with a stress under 0.2 was selected. No NMDS 

was presented for Baring Head, as R was unable to compute an NMDS for 16S due to 

insufficient data.  
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To assess patterns over time and by back-trajectory for different genera, for 

Antarctic data, the percentage of total read count were calculated for the relatively more 

common genera. Bar plots were generated using “ggplot2” (v3.3.2) (Wickham, 2016) and 

“phyloseq” (v1.30.0) (McMurdie & Holmes, 2013) on data filtered as follows. For 16S, 

samples with less than 100 reads were filtered out. Relative abundance by genus for each 

category included only genera with at least 2% of the reads. For ITS, samples with less than 

100 reads were filtered out. Relative abundance by genus for each category included only 

genera with at least 2% of the reads. To assess patterns by back-trajectory for different 

genera, for Baring Head data, the percentage of total read count were calculated for the 

relatively more common genera. Bar plots were generated using “ggplot2” (v3.3.2) 

(Wickham, 2016) and “phyloseq” (v1.30.0) (McMurdie & Holmes, 2013) on data filtered as 

follows. For 16S, samples with less than 100 reads were filtered out. Relative abundance by 

genus for each category included only genera with at least 2% of the reads. For ITS, samples 

with less than 100 reads were filtered out. Relative abundance by genus for each category 

included only genera with at least 2% of the reads.  

The number of ASVs (exact sequence match) and genera shared between Antarctica 

and Baring Head was calculated using the R package “zetadiv” (v. 1.2.0 (Latombe, McGeoch, 

Nipperess, & Hui, 2018)). A presence/absence matrix was created for Antarctica, Baring 

Head air of Antarctic origin and Baring Head air of non-Antarctic origin including any 

ASV/genera identified at that site in any sample. The number of overlapping taxa between 

Antarctic air and Baring Head air of Antarctic origin was calculated and compared to the 

number for the comparison of Antarctic air and Baring Head air of non-Antarctic origin. A 

comparison of air sampled in Antarctica of NZ and non-NZ origin with NZ air could not be 

performed as no air sampled in January 2018 appeared to be of New Zealand origin, based 

on one-week back-trajectories run. 

4.4 Results 

4.4.1 One-Week and One-Day Back-Trajectories Selected for Air-Mass Source 

Variable in Antarctic db-RDA 
Wind back-trajectories correlated with similarly low levels of variation in community 

composition for 16S (R2 = 2%), and ITS (R2 = 1%) (Figure 4-2). The different trajectory lengths 

showed consistent shared variation. For 16S, one-week trajectories had the highest R2 value. 

For ITS, one-day trajectories had the highest R2 values. One-week trajectories were selected 

for the remainder of the analysis for 16S, and one-day trajectories were selected for ITS. 
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a) 

 

b) 

 

Figure 4-2 - Variance partitioning of the results from a distance-based redundancy analysis 
on the Aitchison compositional distances among samples for (a) 16S and (b) ITS showing 
the variance explained by one-day, three-day, and one-week back-trajectories. Only R2 
above 1% are displayed, and negative values offset the positive values resulting in the low 
overall R2 values for the model. 

4.4.2 Time was Transformed to Reflect Cyclicity 
A Euclidean distance matrix calculated from time in hours since midnight and the Aitchison 

dissimilarity matrix were non-linearly related for both amplicons, with significant non-linear 

correlation coefficients overall for days one to four (16S: 0.19, ITS: 0.22). The plots for 

individual days show noticeable variation between days and non-linearity persisting over 

the 24-hour period despite the transformation. However, these variations appeared to 

cancel out overall, as the Euclidean distance matrix of the sine and cosine transformed fine 
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scale temporal variables for days one to four in aggregate appeared to have little obvious 

relationship with Aitchison dissimilarity in the time-dissimilarity plots (Figure 4-3). 
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a)       b) 

   

c)         d)

 

e) 
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f) g) 

h) i) 

j)
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Figure 4-3 - Distance time-lag plots for a) 16S day one b) 16S day two c) 16S day three d) 
16S day four e) 16S days one to four and f) ITS day one g) ITS day two h) ITS day three i) 
ITS day four j) ITS days one to four of Aitchison compositional sample distances against 
Euclidean time temporal dissimilarities between sine and cosine transformed sample 
times (number of hours since midnight). 

4.4.3 Time of Day, Air-Mass Source and Location Affect ITS Bioaerosol 

Community Composition 
The 16S data appeared to be too sparse, with a negative R2 from modelling, and no 

convincing relationships with time and air-mass source detected (Figure 4-4). However, the 

ITS model had an R2 of 25%, and indicated that time of day, air-mass source and sampling 

day were correlated with variability in the Antarctic bioaerosol community. Variation over 

the course of a day appeared to be much greater than between days for ITS. Temperature, 

relative humidity, wind speed and UVA, UVB and UVC were not correlated with the 

bioaerosol community per forward selection procedures. Location was autocorrelated with 

day (as different locations were sampled on different days), so only day was included. Both 

NMDS ordinations showed clustering of samples with different air-mass sources, the hours 

since midnight variable, with blue and red often being adjacent as they represent midnight 

and 1am respectively, and sampling day. Clustering appeared to be more pronounced for 

ITS. 
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c) 

 

d) 

  

Figure 4-4 - Variance partitioning of the results from a db-RDA on the Aitchison 
compositional distances among samples for (a) 16S and (b) ITS, showing the variance 
explained by time matrix, wind and day. NMDS ordination of the c) 16S and d) ITS 
Aitchison distances among samples. The back-trajectory cluster is indicated by ellipses 
representing the t distribution of the points relating to each cluster. Hours are indicated 
by the gradient colour. Sampling day is indicated by shape. Stress on 16S NMDS was 0.17 
(dimensions one and two are presented above), the three-dimensional solution was 
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selected as the two-dimensional solution had stress greater than 0.2 so could not be relied 
upon. Dimensions one and three, and two and three are presented in Supplementary 
Materials (Figure E-10). Stress on ITS NMDS was 0.15 (dimensions one and two are 
presented above), the three-dimensional solution was selected as the two-dimensional 
solution had stress greater than 0.2. Dimensions one and three, and two and three are 
presented in Supplementary Materials (Figure E-11). Higher dimensional solutions had 
lower stress values for both amplicons. 
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Relative Abundance by Time Window – 16S 
Unfiltered bacterial reads numbered 897,244, with 2,276 ASVs inferred. Unfiltered fungal 

reads numbered 1,579,022, comprised of 1,569 ASVs.  

Stenatrophomonas spp., Acetinobacter spp. and Pseudomonas spp. were common in 

Antarctic bioaerosols (Figure 4-5). Genera were consistently relatively abundant over a 24-

hour period. Filtering criteria described in Figure 4-5 legend below. 

  

Figure 4-5 - Relative abundance by genus by time window for 16S. Samples with less than 
100 reads were removed. Only genera with at least 2% of the reads were included in the 
bar plot.  
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Relative Abundance by Time Window – ITS 
Peniophora spp., an unclassified organism in the family Polyporaceae and Rigidoporus spp. 

were common in Antarctic bioaerosols (Figure 4-6). Community composition appeared to be 

reasonably consistent over a 24-hour period. Filtering criteria is described in Figure 4-6 

legend below. 

 

Figure 4-6 - Relative abundance by genus by time window for ITS. Samples with less than 
100 reads were removed. Only genera with at least 2% of the reads were included in the 
bar plot.  
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Relative Abundance by Sampling Day – 16S 
Genera were reasonably consistently abundant on different days (Figure 4-7). Filtering 

criteria is described in Figure 4-7 legend below.  

Figure 4-7 - Relative abundance by genus by sampling day for 16S. Samples with less than 
100 reads were removed. Only genera with at least 2% of the reads were included in the 
bar plot.  



131 
 

Relative Abundance by Sampling Day – ITS 
Genera were consistently relatively abundant on different days (Figure 4-8). Filtering criteria 

is described in Figure 4-8 legend below. 

 

Figure 4-8 - Relative abundance by genus by sampling day for ITS. Samples with less than 
100 reads were removed. Only genera with at least 2% of the reads were included in the 
bar plot.  
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Relative Abundance by Back-Trajectory Cluster – 16S 
Clusters one and two harboured consistent assemblages of bacteria (Figure 4-9). Cluster 

three appeared to be distinct, but that was likely driven by low total reads from few samples 

mapping to cluster three, which affected apparent community composition. Filtering criteria 

is described in Figure 4-9 legend below. 
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a) 

  

b) 

 

Figure 4-9 – a) Relative abundance by genus by back-trajectory cluster for 16S. Samples 
with less than 100 reads were removed. Only genera with at least 2% of the reads were 
included in the bar plot. b) Map of routes taken by one-week back-trajectory clusters. % 
next to each cluster indicates proportion of trajectories assigned to that cluster. 
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Relative Abundance by Back-Trajectory Cluster – ITS 
Clusters one and two harboured consistent assemblages of fungi (Figure 4-10). Cluster three 

had such low numbers of fungal reads that no genera passed the filters used for genus bar 

plots. Filtering criteria is described in Figure 4-10 legend below. 
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a) 

  

b) 

 
Figure 4-10 - a) Relative abundance by back-trajectory cluster for ITS. Samples with less 
than 100 reads were removed. Abundance by genus for each cluster, only genera with at 
least 2% of the reads were included in the bar plot. b) Map of routes taken by one-day 
back-trajectory clusters. % next to each cluster indicates proportion of trajectories 
assigned to that cluster. 
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4.4.4  Taxonomic Overlap Between Antarctica and Baring Head Increased when 

Baring Head Air was of Antarctic Origin 
ASVs with identical sequences for both bacteria and fungi were found in Antarctica and New 

Zealand (Table 4-3). For bacteria, 150 - 212 ASVs were shared between the two locations, 

and 144 – 153 fungal ASVs were shared, depending on wind direction. There were more 

ASVs in Baring Head air of non-Antarctic origin, than in Baring Head air of Antarctic origin. 

The pattern was similar for genera, with 174 – 247 bacterial genera in common, and 205 – 

208 for fungi. There were greater numbers of genera in Baring Head air of non-Antarctic 

origin, than in Baring Head air of Antarctic origin. As a proportion of ASVs present, bacterial 

shared ASVs increased from 11.8% to 18.9% when the sampled air mass originated in 

Antarctica. Fungal shared ASVs increased from 3% to 3.4% when sampled air was from 

Antarctica. Unsurprisingly, the number of genera shared between locations was much 

greater than ASVs. As a proportion of genera present, bacterial shared genera increased 

from 61.4% to 72.2% when the sampled air mass originated in Antarctica. Fungal shared 

genera increased from 41.3% to 41.8% when sampled air was from Antarctica. 

Table 4-3 – Table showing shared numbers of ASVs or genera between Antarctica and New 
Zealand, and the change in shared diversity depending on origin of air sampled in New 
Zealand. 

ASV 
    

Amplicon Antarctica v Baring 

Head Antarctic air 

(BHA) 

Antarctica v 

Baring Head 

Antarctic air 

Antarctica v Baring 

Head non-Antarctic 

air (BHnA) 

Antarctica v 

Baring Head non-

Antarctic air  
Shared ASVs/total 

ASVs BHA 

 % zeta diversity/total 

ASVs BHnA 

 % 

16S 150/793 18.9 212/1,793 11.8 

ITS 153/4,555 3.4 144/4,860 3.0      

Genus 
    

Amplicon Antarctica v Baring 

Head Antarctic air 

Antarctica v 

Baring Head 

Antarctic air 

Antarctica v Baring 

Head non-Antarctic 

air 

Antarctica v 

Baring Head non-

Antarctic air  
Shared ASVs /total 

genera BHA 

 % zeta diversity/total 

genera BHnA 

 % 

16S 174/241 72.2 247/402 61.4 

ITS 205/491 41.8 208/504 41.3 
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4.4.5 One-Week (16S) or One-Day (ITS) Back-Trajectories Selected for Air-Mass 

Source Variable in Baring Head db-RDA 
Wind back-trajectories correlated with more of the variation in community composition for 

ITS (R2 11%), than for 16S (R2 4%) overall (Figure 4-11). The different trajectory lengths 

showed consistent shared variation. For 16S, one-week trajectories had the highest R2 value 

(15%). For ITS, one-day trajectories had slightly higher R2 values (7%). One-week trajectories 

were selected for the db-RDA for bacteria, and one-day trajectories were selected for the 

db-RDA for fungi. 
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a) 

b) 

Figure 4-11 - Variance partitioning of the results from a distance-based redundancy 
analysis on the Aitchison compositional distances among samples for (a) 16S and (b) ITS 
showing the variance explained by one-day, three-day, and one-week back trajectories. 
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4.4.6 Air-Mass Source, Temperature, Humidity and Weather Affected Baring 

Head Bioaerosol Community Composition 
The 16S model had an R2 of 17%, suggesting that air-mass source and temperature were the 

principal correlates with the Baring Head bioaerosol community for bacteria (Figure 4-12) 

and that weather and relative humidity had little impact. The ITS model had a lower R2 of 

13%, and indicated that temperature, relative humidity and weather were correlated with 

variability in the Baring Head bioaerosol community. One-day wind was all shared variation 

for ITS, so was not included as it did not independently explain any of the variation. 
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a) 

 

b) 

 

Figure 4-12 - Variance partitioning of the results from a distance-based redundancy 
analysis on the Aitchison compositional distances among samples for (a) 16S showing 
variance explained by one-week wind and temperature and (b) ITS showing the variance 
explained by temperature, relative humidity and weather. 
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Relative Abundance by Back-Trajectory Cluster for Baring Head – 16S 
Unfiltered bacterial reads numbered 310,354, with 2,009 ASVs inferred. Unfiltered fungal 

reads numbered 2,470,453, comprised of 5,469 ASVs.  

Methylobacterium spp., an unclassified bacterium, an unclassified chloroplast, 

Actinobacteria spp., Chrysobacterium spp. and Pseudomonas spp. were common in Baring 

Head bioaerosols (Figure 4-13). Community composition was similar in the different back-

trajectory clusters. Chrysobacterium spp. were more prevalent in cluster three. Filtering 

criteria are described in Figure 4-13 legend below. 
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a) 

 

b) 

 

Figure 4-13 – a) Relative abundance by back-trajectory cluster for 16S. Samples with less 
than 100 reads were removed. Only genera with at least 2% of the reads were included in 
the bar plot. b) Map of routes taken by back-trajectory clusters. % next to each cluster 
indicates proportion of trajectories assigned to that cluster. 
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Relative Abundance by Back-Trajectory Cluster for Baring Head – ITS 
Pleurotus spp., an unclassified organism in the class Agaricomycetes and Flammulina spp. 

were common in Baring Head bioaerosols (Figure 4-14). Cluster two was distinctive, with  

higher relative abundances of Peniophora spp. and fewer Pleurotus spp. Filtering criteria are 

described in Figure 4-14 legend below. 
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a) 

b) 

Figure 4-14 - a) Relative abundance by genus by back-trajectory cluster for ITS. Samples 
with less than 100 reads were removed. Only genera with at least 2% of the reads were 
included in the bar plot. b) Map of routes taken by back-trajectory clusters. % next to each 
cluster indicates proportion of trajectories assigned to that cluster. 
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4.5 Discussion 
The purpose of this study was to understand the nature and drivers of diel variation in 

Antarctic bioaerosols, and the frequency of intercontinental exchange with Aotearoa New 

Zealand. Antarctic fungal bioaerosols were correlated with one-day wind and exhibited diel 

variation that was independent of measured variables such as temperature, which is known 

to vary within a 24 hour period and affect bioaerosols (Burrows et al., 2009b). Relationships 

between environmental variables and the 16S amplicon data for bacteria were less 

conclusive. Antarctica and New Zealand have distinct bioaerosol communities but share a 

portion of bacterial ASVs that varies, depending on air source. Taxonomic overlap between 

Antarctica and New Zealand increased when New Zealand air was coming from Antarctica, 

suggesting frequent intercontinental transport for bacteria and much less frequent 

transport for fungi. This research suggests that diel variation is present in Antarctic fungi, 

but the drivers remain unclear. Bacterial diel variation was less apparent. Bacteria appear to 

have longer atmospheric residence times and transport ranges than fungi and, as a 

consequence, undergo wind-mediated intercontinental transport to Aotearoa New Zealand 

more often.  

4.5.1 Optimal Back-Trajectory Lengths were Longer for Bacteria than Fungi 
Air back-trajectories of different lengths varied in their correlation with bioaerosol 

community structure. Therefore, hypothesis 1 (Biological (i.e. particle size) and 

environmental characteristics (affecting atmospheric residence times) affect optimal 

spatiotemporal lengths of air-mass trajectories in relation to their ability to predict fine scale 

temporal variation in related bioaerosol community structure) failed to be rejected. 

Specifically, one-week trajectories appeared best (highest R2) for Antarctic bacteria. This 

trajectory length was longer than is typical in the worldwide literature (three days is often 

used (Archer et al., 2020)). For Antarctica specifically, Bottos et al. (2014) used seven days 

and Archer et al. (2019) used three days and two weeks. Antarctic fungi had an optimal 

trajectory length of one-day, consistent with other areas globally. Shared variation indicated 

other trajectory length choices are acceptable. Longer trajectory lengths for bacteria are 

supported by suggestions in the literature of greater bioaerosol residence times in 

Antarctica (Archer et al., 2019; Burrows et al., 2009b) and greater propensity for aerial 

dispersal of bacteria opposed to fungi (Archer et al., 2019). Greater residence times could be 

due to high average wind speeds, keeping particles in suspension for longer (Parish & J., 

2003), although why that would affect bacteria more than fungi is unclear. Fungal spores are 

generally larger than bacteria (Bowers et al., 2013). Larger particles would be expected to 

move out of suspension more easily due to increased gravitational settling and increased 

chance of wet or dry deposition (see section 1.3.1 Particle Movement in the Atmosphere), 

so shorter predicative trajectory lengths and presumed residence times make intuitive 

sense. However, interpretation of these findings must be tempered, since both bacterial and 

fungal models had low overall R2 values (16S – 2%, ITS - 1%). Further, bioaerosols are 
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thought to often persist in an aggregate form (Huffman et al., 2010), so the size of the 

whole particle may not be larger for fungi.  

4.5.2 Time was Non-Linearly Correlated with Bioaerosol Communities due to 

Daily Cyclicity and Bioaerosol Communities Varied on Different Days 
Dissimilarity in Antarctic bioaerosol communities increased with time over a 24-hour period 

in a non-linear fashion due to daily cyclicality. Differences in time-dissimilarity plots were 

evident between different sampling days, with variation in the pattern between days. 

Therefore, hypothesis 2 (time-dissimilarity hypothesis: Changes in environmental variables 

that are known to affect bioaerosols (such as UV and temperature) were expected to drive 

temporal variation in the bioaerosol community, within a 24-hour period, and between 

different days studied. The relationship between pairwise sample dissimilarity and time was 

expected to be non-linear due to cyclical day-night periods) failed to be rejected. The 

transformed time variable was convincingly correlated with ITS variation (R2 = 17%) and 

both amplicons had significant non-linear correlation coefficients with transformed time of 

day. Transformation of the time variable improved R2 in ITS db-RDA, supporting 

transformational validity. Other time variables displayed only shared variation with the 

transformed variable so were excluded. While the db-RDA for 16S was inconclusive, some 

clustering by time in the NMDS was visible. Clear diel variation for ITS is consistent with 

bioaerosol literature, with several studies detecting variation over the course of a day in 

culturable bioaerosol concentrations. Multiple studies observed higher concentrations in 

the morning and evening (Burrows et al., 2009b; Tong & Lighthart, 1999), while studies of 

continental bacterial flux detected highest upwards movement in the warmest part of the 

day (Chen et al., 2001; Shaffer & Lighthart, 1997; Tong & Lighthart, 2000), thought to be 

driven by higher temperatures increasing turbulence, wind speeds, vertical mixing, 

residence times and division rates, increasing the microbial load and aerosolisation. Given 

this background, minimal evidence of diel variation for bacteria was unexpected. While 

Antarctic read counts were lower for bacteria than fungi, relationships should be detectable 

with the available data (based on the R2 values for Baring Head data discussed below, which 

were much more conclusive with a lower bacterial read count and ASV number than 

Antarctica). For ITS, variation within a day appeared to be greater than between days (R2 – 

6% between days, versus 17% within days), while the 16S relationship was less clear. 

Bioaerosol literature indicates patterns in bioaerosol variability can be obscured by 

stochasticity over short time scales (Burrows et al., 2009b), sampling days one through four 

also had similar weather conditions, with less variation than over each day so this finding 

was consistent with field observations. Due to the inherent variability of bioaerosols and the 

lack of comparable molecular data over short timescales, further fine-grain sampling is 

needed to crystallise this understanding.  
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4.5.3 Day, Time of Day and Air-Mass Source Affected ITS Bioaerosol Community 

Composition 
Wind source, time and day were correlated with variation in Antarctic ITS communities. 

Hypothesis 3 a. (Environmental drivers hypotheses: diel variation in Antarctic bioaerosol 

community structure (composition and diversity) can be predicted by time of day, 

geographic origin of sampled air, sample location, temperature, relative humidity, wind 

speed and UVA, UVB and UVC) therefore failed to be rejected for ITS. It could be rejected for 

16S, as the R2 values for the 16S data were very low. As noted above, 16S reads were lower 

than ITS meaning bacterial relationships, if they exist, would be harder to detect. Whether 

due to minimal relationship or insufficient read counts to detect them, the data do not 

support correlation of Antarctic bacterial bioaerosol communities with any of the measured 

variables. There was no correlation of temperature, humidity, UV or wind speed with 

Antarctic bioaerosols for either amplicon. This is in contrast to temperature and humidity 

being observed to be frequently correlated with bioaerosols elsewhere (Els et al., 2019; 

Woo et al., 2013), thus is somewhat surprising, and indicates that further Antarctic studies 

across more days and in more locations are required to confirm this observation. Hypothesis 

3 a. is rejected for these variables. Diel variation was expected, as it is known that 

temperature, humidity, and UV exposure vary predictably over the course of the day and 

these variables affect bioaerosol concentrations (Burrows et al., 2009b; Els et al., 2019; 

Hughes, 2003; Woo et al., 2013). Here, diel variation has been observed but does not 

appear to be linked to any of the variables measured which are thought to drive it. This 

suggests that some other variables could be affecting Antarctic bioaerosols on a daily 

cyclical basis, but their nature is unclear from available literature (Burrows et al., 2009b). 

Identification of further relevant variables which could be measured in a more intensive 

sampling regime would be prudent. Interrogation of sampling protocols to remove any 

sources of contamination would be beneficial, as although the samples were processed to 

correct for contamination, it is possible that this or some other stochastic event could be 

causing the unexplained temporal variation. 

4.5.4  Relative Bioaerosol Abundance did not Vary by Day, Time of Day and 

Wind Source 
Common bacterial genera, such as Stenotrophomonas spp. and Pseudomonas spp., are 

found in other bioaerosol studies. They are widely dispersed environmental bacteria. Some 

more surprising genera are abundant, for instance, Astreloplasma spp., which is obligately 

anaerobic and associated with the bovine rumen (Weisburg et al., 1989). Brasilomema spp. 

is a cyanobacterium, which inhabits water, and the leaves of bromeliads (Fiore et al., 2007). 

It could have been aerosolised and transported from Spaulding Pond or the nearby sea. 

Finding marine associated bacteria is consistent with Archer et al. (2019) but not Bottos et 

al. (2014). Chloroplasts were much less prevalent than in bioaerosol studies in more 

temperate areas, which is consistent with the lack of higher plant life in Antarctica. Common 

fungal genera included widespread fungi (such as Peniophora spp.) and, interestingly, plant 
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associated fungi and yeasts (Rhodosporidium spp.). Yeasts were identified as the most 

common fungi in Antarctica by Archer et al. (2019). 

Hypothesis 3 b. (relative abundances of common and rarer taxa fluctuate by day, 

time of day and air-mass source) is rejected for relative abundance, as there was not much 

evidence of substantial variations in relative abundances. Genera seemed to stay consistent 

between samples. Changes in microbial source populations which could affect the mix of 

genera present would be expected to take longer (for instance, bacterial population 

turnovers tend to be measured in days at a minimum rather than hours (Kevorkian, Bird, 

Shumaker, & Lloyd, 2018)). Differences in air-mass source could rapidly affect relative 

abundances, but this did not seem to be the case here. Cluster three appeared distinctive, 

but this was likely due to few samples mapping to it, skewing the relative abundance data.  

4.5.5 Taxonomic Overlap Between Antarctica and Baring Head Increased when 

Baring Head Air was of Antarctic Origin 
Since ASVs with identical sequences were found in Antarctica and New Zealand, at greater 

rates for bacteria, hypothesis 4 a. (intercontinental connectivity hypotheses: a minority of 

globally distributed ASVs (identical sequences) were expected to be observed in Antarctica 

and New Zealand. Bacteria were expected to show a higher propensity for long-range aerial 

transport due to their longer atmospheric residence times and smaller size than fungi, 

therefore globally distributed ASVs and genera were expected to be higher for bacteria) 

failed to be rejected. Bacterial ASVs of 11.8% and 3% of fungal ASVs were shared between 

all New Zealand and Antarctica samples. This suggested a minority of bioaerosols are very 

widely dispersed, presumably due to being well adapted to aerial dispersal; this is consistent 

with observations by Bottos et al. (2014) and Archer et al. (2019) in Antarctica, as well as in 

other locations (Be et al., 2015; Maki et al., 2017). 

Taxonomic overlap in ASVs and genera increased when air sampled in New Zealand 

transited from Antarctica. Hypothesis 4 b. (aerial transport was expected to occur from 

Antarctica to New Zealand, at greatest rates for bacteria, resulting in more ASVs/Genera in 

common (greater overlap in taxa) between Antarctica and New Zealand when Baring Head 

air came from Antarctica) failed to be rejected. Approximately 7% more ASVs and 11% more 

genera were identical for 16S when air was coming from Antarctica. There were greater 

numbers of shared genera than shared ASVs for both amplicons, as an exact sequence 

match was not required for different ASVs to be placed in the same genus. ITS did not share 

the same degree of change, only 0.4% more ASVs and 0.5% more genera matching when air 

was coming from Antarctica. Given samples were taken during one continuous block of time 

in each location and other variables changing was reasonably controlled for through 

repeats, this suggests that there could be aerial transport via the wind between Antarctica 

and New Zealand, in addition to the widely dispersed ASVs always present. Bacteria had 

many more ASVs in common between the locations, and a bigger increase when the wind 

was coming from Antarctica, suggesting that they are possibly more adept at long distance 
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transport, which is in line with the observations in Archer et al. (2019). They found in an NRI 

(net relatedness index) analysis that fungi were more nested and had less non-local input 

than bacteria. They inferred greater dispersal limitation for fungi and, therefore, less long-

range transport. Few other studies compared bacteria and fungi in this manner, although as 

previously noted smaller particle size would make long-range transport more likely (Burrows 

et al., 2009b) and this is consistent with longer back-trajectories correlating with bacterial 

variation already discussed.  

There was a temporal delay between the Antarctic and the Baring Head sampling of 

approximately six months. The result above however is still relevant for discussion here for 

various reasons. Modeling and bioaerosol sampling in Antarctica consistently suggest that 

bioaerosol transport from elsewhere to Antarctica is uncommon and that most bioaerosols 

sampled in Antarctica originated there (Archer et al., 2019; Bottos et al., 2014; Burrows et 

al., 2009b). It follows that the ASVs present in Antarctica would be consistent over time, 

particularly relatively short time scales of a few months. Since it is reasonable to expect 

consistency over these time periods in the ASVs present in Antarctica it remains reasonable 

to perform a comparison with New Zealand with a temporal difference between sampling 

dates. The mismatch in timing however does represent a limitation in the current work. It 

would be beneficial to perform sampling during an overlapping time window at both 

locations to strengthen the case for intercontinental transport between them. Observation 

of consistent ASVs, even with concurrent sampling, would only suggest that transport could 

be occurring, and could not prove transport. In order to do that, a marked tracer would 

need to be released and re-captured at the distant location, which would be another 

potentially fruitful area to focus future effort.   

Bacteria were more affected by air-mass source than the fungi, which were more 

affected by local variables. Therefore, hypothesis 4 c. (bacterial composition was expected 

to be more affected by air-mass source than fungal composition, and fungi were expected 

to be more dependent on local environmental variables (temperature, relative humidity and 

weather) than bacteria) failed to be rejected. Db-RDA with variance partitioning for the 

three different wind back trajectory lengths indicated that one-week wind was the best 

correlate with the bioaerosol community for bacteria, and one-day wind was the best 

correlate for fungi. The complete db-RDA with variance partitioning for Baring Head showed 

an R2 of 11% for one-week trajectories for bacteria, and also indicated temperature was 

important. For ITS, one-day wind was all shared variation with local variables so did not 

feature in the final model. Temperature, humidity and weather were indicated as the best 

correlates with the bioaerosol community. This suggested that local sources were more 

dominant for fungi and distal sources were more important for bacteria, which is consistent 

with Archer et al. (2019) and the higher observed bacterial taxonomic overlap in this study. 

Relative abundances of bacteria and fungi varied depending on back trajectory 

cluster. Therefore, hypothesis 4 d. (relative abundance of bacteria and fungi were expected 

to vary depending on air mass source, as different trajectories passed over different regions 
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with variable microbial emissions) failed to be rejected. Common bacterial bioaerosols 

reflecting widespread environmental organisms featured in Baring Head samples. 

Chloroplasts were again common, expected since there are many more higher plants in New 

Zealand than Antarctica. Fungal species also reflected common bioaerosol associated 

organisms. Cluster two had a distinctive species composition and transited over the sea, 

which may have caused this variance (Amend et al., 2019). 

4.6 Conclusions 
The first fine-temporal-grain bioaerosol dataset collected in Antarctica revealed notable diel 

variation for fungi but not bacteria, and comparison to samples taken in Aotearoa New 

Zealand hinted at surprisingly frequent long-distance intercontinental bacterial transport. 

Several key questions have emerged from this: (1) Do Antarctic bacteria vary within a 24-

hour period at all? (2) What factors drive the observed temporal variation in the fungi? (3) 

How does the biology and size of an organism relate to its ability to undergo long-range 

aerial transport? (4) How microbially connected is Antarctica to the rest of the world? (5) 

How can sampling protocols be improved to get the data needed to answer those questions 

quickly and easily? Further hourly sampling in Antarctica and surrounding areas is 

recommended, with measurement of additional variables. Concurrent sampling with New 

Zealand is also suggested to shed more light on the potential intercontinental transport that 

could be occurring. This research makes a tantalising start that highlights pertinent future 

research directions. 
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Chapter 5  - General Discussion 
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Earth’s atmosphere provides a habitat and conduit linking all global ecosystems for 

microorganisms which can tolerate its inhospitable conditions (Womack et al., 2010). 

Bioaerosols can be pathogens, or allergens, invasive species, or affect atmospheric 

chemistry, and yet are little studied (Burrows et al., 2009b; Pearce et al., 2009). Quantifying 

variation and connectivity of the aero-microbiome and understanding its drivers is crucial 

for predicting future ecosystem changes and managing outbreaks of dangerous 

microorganisms, such as the SARS-CoV-2 coronavirus that is the causative agent of COVID-

19 (Pearce et al., 2016). In this thesis, I explored the variation in bioaerosol communities 

over varying spatial and temporal scales to begin to understand what variation in 

community structure there is, and how and why it changes over space and time. Sampling 

methods, DNA extraction methods and bioinformatics pipelines were optimised and used to 

describe the aero-microbiome of urban parks in Auckland, Aotearoa New Zealand. This work 

provided insights into microbial exposure of city-dwellers and bioaerosol variation over 

smaller spatial scales, revealing spatial differentiation despite local population connectivity. 

In the longest seasonal study of urban bioaerosols to date, Auckland bioaerosols were 

sampled continuously for two years, which provided information on how bioaerosols vary 

over longer timescales. Fungi showed correlation with temperature and pronounced 

seasonality, while bacterial bioaerosols were less temporally variable. Finally, the aero-

microbiome of pristine Antarctica was described, and its fine-grain temporal variation and 

intercontinental connectivity were quantified for the first time. Antarctic fungi exhibited 

marked diel variation and bacteria showed evidence of regular intercontinental transport to 

New Zealand. In this final chapter, the overarching themes emerging from the body of work 

presented are teased out and put into wider context, before potential avenues for future 

research are described. 

5.1 Optimisation of Research Methods 
Appendix D Optimising Bioinformatics Protocols for Aerosol Microbial Community Data – a 

Case Study Using an Urban Parks Dataset and Appendix A Method Development detail the 

method development work underpinning the sampling, laboratory processing and 

bioinformatic inference procedures for the experimental chapters of the thesis. Method 

improvement was important since a large portion of the bioaerosol studies reviewed in 

previous chapters of this thesis relied upon dated non-molecular methods, generally either 

cultivation or microscopy. However, it is known that 70 to 90% (Burrows et al., 2009b) of 

environmental microbes do not grow in culture, and it can be difficult to distinguish 

morphologically similar organisms through microscopy. As a result, it is very likely that 

diversity is underestimated when these methods are employed, and use of next generation 

sequencing (NGS) approaches is preferred to capture more of the diversity present (see 

section 1.3.6 Bioaerosol Sampling: Challenges and Solutions). NGS approaches allow 

characterisation of large numbers of samples at a reasonable cost and produce millions of 

reads for analysis. Unfortunately, bioaerosol work presents particular challenges for NGS, as 

air typically has very low biomass, which tends to result in very long sampling durations (24 
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hours to two months) in order to collect enough material (Bottos et al., 2014). As a result, 

no fine-scale NGS temporal data existed in the bioaerosol literature reviewed, as sampling 

bioaerosols on an hour-by-hour basis was not feasible. Dry filters are often used to capture 

microorganisms, but these are biased against Gram-negative bacteria due to the desiccation 

stress over the long sample durations (Luhung et al., 2015). Using a liquid impinger 

circumvents these issues, with much higher flow rates and reduced desiccation stress on the 

sampled microorganisms.  

The Coriolis µ (Haig et al., 2016) liquid cyclone impinger was investigated for 

generating the data for this thesis. It has high flow rates (300 L/min), allows sample 

durations from 10 minutes to six hours, and it has been utilised in a small number of very 

recent studies (Archer et al., 2020; Archer et al., 2019; Els et al., 2019). However, water 

based liquid collection media are problematic in cold environments, like Antarctica, due to 

freezing. Following recommendations based on work performed in Appendix A Method 

Development, Archer et al. (2019) used the Coriolis with an RNAlater collection medium 

(which has a depressed freezing point) in Antarctica, collecting samples in two – four hours. 

I thought it beneficial to invest time in further method development for this thesis, as 

preliminary testing indicated DNA recovered from RNAlater was approximately half that 

recovered from PBS. It was also beneficial to have a consistent approach for the whole PhD 

to allow comparisons to be made across datasets and for the convenience of one sample 

processing pipeline. A modification to the Coriolis including heating elements was 

developed, which kept the liquid collection medium from freezing in cold conditions (see 

section A.2.1 Methods for Operation in Sub-Zero Environments). A sampling duration of one 

hour was found best to reliably return quantifiable DNA in New Zealand, which is a 

significant improvement on previous studies. For some studies, the samples were pooled 

later on into two-hour windows to improve biomass (Antarctic and Baring Head studies). 

DNA extraction methods were optimised to work with the new sampling protocols (see 

section A.3.1 Collection Liquid and Sample Processing and Appendix C Laboratory Methods). 

These approaches were used consistently for all samples collected for this PhD thesis.  

Optimisation was also performed in relation to bioinformatic pipelines used for 

inferring ASVs present and taxonomy from the NGS data produced (see Appendix D 

Optimising Bioinformatics Protocols for Aerosol Microbial Community Data – a Case Study 

Using an Urban Parks Dataset). Tools used for bioinformatics and taxonomy databases can 

markedly affect the outputs produced (Edgar, 2018). USEARCH was chosen as it was 

observed to produce fewer spurious ASVs. ITS data, in particular, often has a high 

percentage of ASVs which cannot be assigned taxonomy based on one database (Archer et 

al., 2020). It is much harder to make inferences about an ASV without taxonomic 

information. Therefore, a combined taxonomy approach was developed for this PhD thesis, 

which utilised information in multiple taxonomy databases simultaneously and improved 

the rate of taxonomic assignments by 12 – 15%.  
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Removal of contamination is very important for bioaerosol studies, as members of 

the aero-microbiome are often contaminants as well (presumedly due to their ease of 

atmospheric dispersal). Similar studies used whole ASV deletion (Archer et al., 2020), but an 

approach calculating a background contamination profile and deducting that from each 

sample was assessed as more appropriate for this work. 

Consideration of compositionality is important for all NGS based studies, as data 

generated are inherently compositional (Gloor et al., 2017). Methods that account for 

compositionality were not seen in any of the literature reviewed for this PhD. 

Compositionality means that read counts represent part of a whole and only contain relative 

not absolute abundance information (Aitchison, 1982). This occurs due to standardisation 

steps in the sequencing process and random variation in the read depth during sequencing. 

Using non-compositional methods on compositional data causes various problems, such as 

confounding distance matrices, like Bray-Curtis (BC), which are very commonly used (Gloor 

et al., 2017). In this PhD, data from the Urban Parks study were analysed with a range of 

compositional and non-compositional methods and the outputs compared. The 

compositional approach utilised an Aitchison distance matrix (a centred log ratio 

transformation) and the non-compositional approach used BC distance matrices, a Jaccard 

presence-absence matrix and Hill numbers for diversity. The Jaccard presence-absence 

matrix circumvents the non-compositional/compositional issue, as read counts are 

converted to presence or absence data so problems with inaccurate raw read counts 

disappear, providing a good reference point. The results from all tools were broadly 

ecologically consistent and the main themes did not change, suggesting choice of method at 

this stage was not of critical importance. Compositional tools were used for the remainder 

of the PhD. Consideration of approach and comparison of different tools made the results 

reported more robust. 

Method enhancements have broad applications outside of this PhD thesis, as 

bioaerosol methods in even relatively recent literature are often dated, inconsistent and 

slow (Bottos et al., 2014; Pearce et al., 2016). The methods used in this thesis are consistent, 

fast, flexible in different environments and accurate in inferring ASVs, removing 

contamination and assigning taxonomy. They allow improvement in the data generated and 

conclusions drawn and future comparisons of data on a global scale. 

5.2 Bacterial and Fungal Genera Identified 
Fungal and bacterial genera identified included common environmental organisms (plant, 

soil, water and animal associated). Some surprising genera were identified in Antarctica, 

such as Astreloplasma spp., which is associated with the cow rumen. This could be due to 

contamination or incomplete understanding of this organism’s biological niche. Genera 

containing pathogens (such as Listeria) and allergens (such as Khuskia spp.) were identified 

in Auckland. Fungi were largely wood or plant associated or yeast species. Common genera 

identified consistent with previous bioaerosol studies were Pseudomonas, Ralstonia, 

Penicillium and Alternaria spp. A large proportion of chloroplasts were identified in New 
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Zealand, which is consistent with previous bioaerosol studies in temperate locations, likely 

from plant pollen. The lack of higher plants in Antarctica explains the absence of 

chloroplasts there. 

5.3 Spatial Variation in Bioaerosol Communities 
Over small distances, bacteria and fungi appeared to disperse effectively via the 

atmosphere, whereas long-distance dispersal appeared to be much more frequent for 

bacteria than fungi. Local spatial differentiation was apparent despite this ease of dispersal. 

The Urban Parks study showed local differentiation within one city, likely due to differences 

in local sources in each sample location (variation in bacterial composition explained by 

location was 9% plus 7% was shared with park size; for fungal composition, 7% was 

explained by location plus 8% shared variation with other variables). As predicted, there was 

minimal evidence of distance decay in compositional similarity over the 8km study range. 

This was likely because some organisms were not adept at aerial dispersal and remained 

local, differentiating the parks, while others were good at aerial disposal and easily 

dispersed at that scale. Filtering out invariant (presumably well dispersed) ASVs prior to 

analysis was required to detect local differentiation, supporting the idea of different 

members of the community having different propensities for aerial dispersal. Lack of 

distance decay has been observed in other small scale bioaerosol studies (Archer et al., 

2019). The Antarctic study revealed indications of surprisingly common bacterial exchange 

with New Zealand; 12 to 19% of ASVs were shared between the two locations dependent on 

wind direction, although few fungi appeared to disperse effectively at these scales. This is 

consistent with a very small amount of literature which has compared bacterial and fungal 

bioaerosols, which suggested that bacterial bioaerosols showed less evidence of local 

nesting and hypothesised that bacteria are more adept at long range aerial dispersal (Archer 

et al., 2019). Diversity and species assemblages varied between Antarctica and New Zealand 

as expected. Surprising diversity was found in Antarctica, which was comparable to New 

Zealand in terms of numbers of ASVs/reads and in species accumulation curves (Figure 5-1 

and Table 5-1). More Antarctic sampling would be needed to draw more detailed inferences 

about differences between locations.  

Table 5-1 – Read count and ASV numbers (raw alpha diversity/Hill D0) and sample number 

comparison for each study 

 Reads ASVs Samples Reads/Sample ASVs/Sample 

Antarctica 16S 897,244 2,276 58 15,470 39 
Antarctica ITS 1,579,022 1,569 55 28,709 29 
Baring Head 16S 310,354 2,009 29 10,702 69 
Baring Head ITS 2,470,453 5,469 28 88,230 195 
Parks 16S 607,740 3,828 68 8,937 56 
Parks ITS 1,796,883 5,311 66 27,226 80 
Seasonal study 16S 1,171,139 5,235 100 11,711 52 

Seasonal study ITS 2,760,306 3,419 100 27,603 34 
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Figure 5-1 – ASV accumulation curves for each study. ASV accumulation curves were 

calculated on unfiltered data with the function specaccum in the R package “vegan” 

(Oksanen et al., 2012), using random sample order and 999 permutations.   

5.4 Temporal Variation in Bioaerosol Communities 
Fungal bioaerosols were highly variable over time across all timescales measured. Bacterial 

bioaerosols appeared to show much less temporal variability overall. The results in the 

urban parks study suggested much more temporal variation for fungi than bacteria 

(variation in bacterial composition explained by time was 0%; for fungal composition, 18% 

was explained by time). The seasonal study revealed a non-linear temporal response for 

fungi and bacteria, showing seasonal and annual variation. Again, fungi responded more 

than bacteria (variation in bacterial composition explained by time was 6%; for fungal 

composition, 23% was explained by time). The Antarctic study revealed diel variation for 

fungi only, and had somewhat inconclusive results for bacteria (variation in bacterial 

composition explained by time was 0%; for fungal composition, 18% was explained by time 

of day and 6% was explained by day). The diel variation did not appear to dramatically affect 

composition. Over longer timescales, variation in composition was observed. This was 

especially true for fungi, where the dominant genera changed multiple times over the 

course of the year. Changes in microbial source populations, which are needed to alter 

composition, would be expected to occur more slowly over time, based on bacterial 

population turnover times (Kevorkian et al., 2018). Temporal variation was expected to be 

observed as factors which are thought to affect bioaerosols (such as temperature) vary over 

time, and seasonality is very frequently detected in bioaerosol literature (Burrows et al., 

2009b; Mhuireach et al., 2020; Woo et al., 2013). The lack of seasonality in bacterial 

bioaerosols was surprising given this context. The importance of variables appeared to differ 

over different timescales, suggesting investigation at multiple timescales is pertinent. Wind 

appeared to be more important at shorter timescales, while season was the main driver of 

temporal variation for longer timescales. There also appeared to be an interaction between 

the timescale of the study and optimal filtering applied to ASVs. The shorter timescale 

studies appeared to require no filter to best extract signal from the bioaerosol data, while 

for longer studies filtering was required to reduce noise in the data. Perhaps over longer 

timescales there is more time for stochastic events to occur, disrupting observed patterns, 

making filtering more valuable. This consideration will be useful for future studies. 

5.5 Relative Importance of Environmental Variables Measured to the 

Sampled Bioaerosol Communities 
Variability was observed in the effect of environmental variables thought to be important to 

bioaerosols on the aero-microbiomes recovered. In the Urban Parks study, all variables that 

were indicated by forward selection as correlated with the bioaerosol community were 

related to each location, wind trajectory or time. Temperature, weather and relative 

humidity were not correlated with bioaerosols. However, in the seasonal study, 

temperature and weather were correlated with the bioaerosol community, but relative 
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humidity was not. The Antarctic data showed no correlation with relative humidity, 

temperature, weather, wind speed or UV with bioaerosols. Baring Head sampling suggested 

that 16S was correlated with temperature but not relative humidity, while ITS was 

correlated with temperature, relative humidity and weather. From these data, it seems that 

temperature is likely to impact bioaerosols, which is consistent with the literature 

(Priyamvada et al., 2017; Woo et al., 2013). The other variables remain somewhat 

inconclusive, relative humidity and weather may be impactful to fungi as per this thesis but 

they seem unlikely to be key drivers of bioaerosol communities. This was surprising but is 

also consistent with the body of literature reviewed (Mhuireach et al., 2020; Priyamvada et 

al., 2017). All models had large unexplained residual values (which is not unusual for these 

types of studies (Mhuireach et al., 2020)) so it is likely variables yet to be identified are 

important. Variation occurred over time that was not explained by the measured variables 

(such as temperature) which are thought to drive changes. Some of this variability could be 

the effects of stochasticity, but the data suggest uncharacterised variables are at play.  

5.6 Relative Importance of Back-Trajectory Cluster to the Aero-

Microbiome 
The bioaerosol literature is divided on the importance of wind back-trajectory to aerial 

microbial communities. Several recent papers postulate it is the “key determinant” or 

similar of the bioaerosol community (Archer et al., 2020; Woo et al., 2013). Table 5-2 below 

does not suggest that wind origin is the key driver of sampled bioaerosols. Wind source has 

consistent low measurable R2 values across most studies. The 16S amplicon does seem to 

have more dependence on wind source than ITS, and wind source appears to be more 

important in the shorter duration studies (Antarctica and Baring Head). Wind source is not 

likely to be the key determinant in the longer-term studies. This could be understood as it is 

possible to rapidly alter microbial input over short time frames with a wind source change 

(potentially thousands of kilometres shift in air-mass origin in a matter of hours). Over a 

longer timescale, local influences are more impactful as microbial populations change and 

the majority of bioaerosols are thought to be locally dispersed (Bowers et al., 2013). Wind 

should be considered among the variables which affect bioaerosols, but especially for longer 

term studies, does not appear to be the key driver of the bioaerosol community. 

Table 5-2 – Comparison of the R2 in db-RDA with variance partitioning models in each 
study pertaining to wind versus other variables to indicate relative importance of wind as 
a driver of the bioaerosol community. 

Study 
Amplicon 

R2 wind back-trajectories (%) Highest non-wind R2 in db-RDA 
(%) 

Baring Head 16S 19 7 
Parks 16S 6 9 
Antarctica 16S 5 2 
Parks ITS 2 18 

Antarctica ITS 2 17 
Seasonal study ITS 2 13 
Seasonal study 16S 1 7 
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Baring Head ITS 0 8 
 

5.7 Differences Between Bacterial Bioaerosols (16S) and Fungal 

Bioaerosols (ITS) 
Multiple differences in the behaviour of bacterial and fungal bioaerosols were observed. 

This was not unexpected given they are very different types of organisms and few studies in 

the literature have sequenced both, so this is one of the first opportunities to make 

comparisons (Archer et al., 2020; Archer et al., 2019; Bowers et al., 2013; Woo et al., 2013). 

Fungal read counts were consistently higher (by two times or more), but the number of 

ASVs were not always greater. R2 values for fungal modelling were reliably higher than for 

bacterial models (other than from Baring Head) (Table 5-4). Other coefficients, for example 

the non-linear correlation coefficient, were also higher for ITS. It is unclear if fungi were 

more variable and more responsive to changes in conditions or if the R2 values were higher 

due to the higher read counts. It is likely that both factors played a part, as fungi are known 

to be highly seasonal and have more host linked niches and supposed variability (Shigyo et 

al., 2019). Higher read counts could have occurred due to fungal spores being larger than 

bacteria, and as they are multicellular more incidents of clumping of multiple cells together 

are likely to occur (Lagomarsino Oneto et al., 2020). Wind was observed to be more 

important for 16S, season was more important for ITS. These observations are likely linked, 

as it is thought that the assumed larger size of the fungal particles mean lower atmospheric 

residence times, and therefore more abrupt changes in fungi over time and increased local-

source importance. This is supported by the observation that bacteria generally are linked to 

longer wind back-trajectories than fungi (Table 5-3). Less long-range fungal dispersal has 

been suggested in the literature. To investigate, with the data available, whether fungal 

bioaerosols sampled are larger than bacterial bioaerosols, the read counts for bacteria and 

fungi for the seasonal study were correlated against two size fractions of aerosol particles 

measured at the time of sampling. 0.3 to 3 µm in diameter were assumed to be likely 

bacterial and 5 to 10 µm in diameter were assumed likely to be fungal, based on available 

literature (Tanaka et al., 2020). Neither size fraction correlated with either bacterial or 

fungal read counts, with very low R2 values and insignificant P values, and this failed to shed 

any light on the relative sizes of bacterial and fungal bioaerosols. 

Table 5-3 – Optimal back-trajectory (highest R2 from db-RDA) chosen for further modelling 
for each study 

Study 
Amplicon 

Trajectory 
chosen for 
analysis 

Antarctica 16S One-week 
Antarctica ITS One-day 
Baring Head 16S One-week 

Baring Head ITS One-day 
Parks 16S One-day 
Parks ITS One-day 
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Seasonal study 16S One-day 
Seasonal study ITS Three-days 

Table 5-4 – Comparison of R2 values of the full db-RDA model for each study 

Study 
Amplicon 

Overall R2 in db-
RDA 

Parks ITS 38 

Seasonal study ITS 33 

Antarctica ITS 25 

Parks 16S 19 

Baring Head 16S 17 

Baring Head ITS 13 

Seasonal study 16S 8 

Antarctica 16S 0 

5.8 Future Directions 
This thesis presents foundational insights into how bioaerosols vary over different spatial 

and temporal scales, bringing threads together from existing research and augmenting them 

with new information, to create an overview of current knowledge and emerging patterns. 

The research reveals intriguing observations, which raise further questions, as well as 

inconclusive information or surprising lack of relationships which require confirmation or 

suggest missing information. These avenues for further research are: 

1. Study of bioaerosol variability at further spatial and temporal scales. The studies in

this thesis show that the nature of bioaerosol sampling performed, in terms of time

scale or spatial location, affects not only the results, but the drivers of the

community (i.e. wind is important over short time scales, such as days, but a much

less important driver over longer scales like months or years). In order to understand

drivers of bioaerosol communities, it holds that further investigation of spatial and

temporal scale is needed. In particular, further years in the Seasonal study would

reveal if patterns persisted over three or more years, and if bacteria and fungi

aligned more in response over longer time scales. The Antarctica study accumulated

four full 24-hour periods of samples, each day varied and it would be very beneficial

to have several more days to understand this variation better, and to have more

conclusive information for the bacteria. It would be valuable to perform sampling in

the same time window in Antarctica and New Zealand to strengthen the case for

intercontinental transport between them. Observation of consistent ASVs, even with

concurrent sampling, only suggests that transport could be occurring, and does not

prove transport. A marked tracer could be released in Antarctica and re-captured in

New Zealand to provide this proof.  The field will also benefit from much more data

in general, which covers more areas globally, to confirm the validly of patterns

identified in differing sets of circumstances. Further molecular studies are needed, as

still much of the literature informing this thesis was based on outdated methods for

which we now have much better alternatives (Burrows et al., 2009b). In particular,

more fine temporal scale molecular work is needed, as this area is particularly
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depauperate due to the technical difficulties of sampling sufficient biomass in a short 

time (Pearce et al., 2016).  

2. Identification of novel variables that impact bioaerosols and measuring them 

alongside future sampling to confirm their degree of impact. Every chapter of this 

thesis showed large amounts of unexplained variation in the models produced, and 

even when variation was associated with time of day, or location or day or season, it 

was not shared with measured variables which were predicted to drive this 

variability (Womack et al., 2010). These observations confirm that bioaerosol 

communities can be highly stochastic (Burrows et al., 2009b), but they also suggest 

that our current picture is incomplete and further work is needed to understand the 

drivers of variation in the aero-microbiome. New technology may be needed to 

identify and measure these variables. 

3. The studies in this thesis revealed consistent and dramatic differences in the 

bacterial and fungal results. As few studies compared these types of organisms side 

by side, little insight exists in the current literature as to possible causes of these 

differences (Archer et al., 2020; Archer et al., 2019; Woo et al., 2013). There were 

some suggestions of reduced fungal population connectivity, residence times and 

atmospheric transport range, due to their larger size, but this has not been 

empirically tested (Archer et al., 2019). Larger size of fungal particles could explain 

most of the differences, in terms of greater read counts and also more local 

influence and less evidence for long-distance aerial transport. Few attempts have 

been made to understand the size range of bioaerosol particles, for example Tanaka 

et al. (2020) sampled bacterial bioaerosols using a size resolved sampler from 11 µm 

to 0.43 µm and found different species in different size fractions. As a starting point 

for understanding the fungal and bacterial differences, further work is necessary to 

determine if environmental fungal bioaerosols are larger than bacterial ones. Similar 

methods with staged samplers could be employed with fungal and bacterial 

amplification performed from each size fraction and differences understood. Further 

follow up work could then investigate if bacteria do have longer atmospheric 

residence times than fungi in practice, perhaps by using labelled particles in a 

controlled environment. Based on the observed patterns fungal particles are likely to 

be larger and persist in the atmosphere for shorter periods of time. 

4. Further consideration of different types of bioaerosols are needed. The existing 

literature focusses very heavily on bacteria, with fungal work in the minority and 

very few studies assessing both types of organisms (Burrows et al., 2009b). Viral 

bioaerosols are thought to be extremely numerous and potentially important but 

have been studied even less (Reche et al., 2018; Whon, Kim, Roh, Shin, & Lee, 2012). 

Other types of bioaerosols, such as viruses, pollen (using molecular methods, some 

work with microscopy has been performed), cell fragments, toxins and protists 

represent a largely ignored black box, for which technology now allows investigation 

(per below), and which need to be understood to place the existing bioaerosol data 

in context. 

5. Usage of more advanced molecular techniques to resolve further questions about 

bioaerosol communities other than presence of particular 16S and ITS sequences. 
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While NGS has revolutionised studies of environmental microorganisms, single 

amplicon studies, as used in this thesis and commonly in the literature have various 

drawbacks (Archer et al., 2020). Since bacteria, in particular, are adept at horizontal 

gene transfer and can have multiple copies of their 16S gene, the 16S taxonomy may 

not represent the taxonomy of the organism as a whole (Behzad et al., 2015). 

Quantitative PCR provides information on absolute abundances and would be very 

useful to understand shifts in absolute, as well as relative abundance. Metagenomics 

allows retrieval of the whole genome of an organism, and a much better 

understanding of its phylogeny and metabolic capability. This has been attempted a 

handful of times for bioaerosols, but low biomass remains a challenge (Jiang et al., 

2015). Metagenomics detects all DNA, so encompasses a much wider range of 

organisms, helping to address the knowledge gaps outside bacteria discussed above. 

Transcriptomics (retrieval of mRNA) could also be extremely useful to resolve further 

questions about bioaerosols. It would allow detection of RNA viruses and 

understanding of which genes are actively being expressed in the air. To my 

knowledge, this has rarely been applied to environmental bioaerosols (Amato et al., 

2019), but would be invaluable to shed light on uncertainties surrounding their 

existence either in a dormant state, purely transiting as spores, or if they are 

metabolically active in the atmosphere such that it represents a further microbial 

habitat (Womack et al., 2010). Using new methods for removal of relic DNA (DNA 

from dead cells or extracellular DNA) to clarify its impact on observed temporal and 

spatial patterns would also be a valuable avenue for further investigation of 

bioaerosol communities (Carini et al., 2020).  

5.9 Concluding Remarks 
The research in this thesis built upon existing bioaerosol literature and explored bioaerosol 

communities at different spatial and temporal scales in an attempt to understand broad 

patterns of variation, key community drivers, and dispersal abilities of microorganisms 

through the atmosphere. Methods from sampling to bioinformatics were improved and 

optimised for a wider range of conditions, ease, comparability and accuracy. The 

enhancement of methods provides further options for future study. I demonstrated that 

bioaerosols vary on a local scale yet show minimal city-wide distance-dissimilarity and 

substantial seasonal variation, especially for fungi. I also showed that wind back-trajectory 

was an influence on the aero-microbiome, but unlikely to be the key determinant. I 

demonstrated diurnal variation in Antarctic fungal bioaerosols and indications of regular 

transport of bacteria from Antarctica to New Zealand. This thesis contributes to our 

understanding of the aero-microbiome, and highlights promising future research directions. 

As understanding moves from what is there, to how and why it changes, we can begin to 

make predictions about future events, which will be of crucial importance in mitigating 

potential future ecosystem changes and disease spread in an increasingly uncertain world.  
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Appendix A. Method Development 
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 Introduction 
Air has extremely low biomass, so high-volume sampling is critical to ensure adequate DNA 

is recovered to understand the microbial community present. Volumes used in typical next-

generation sequencing surveys vary widely, but it can take as much as 75,000 L of air (Bottos 

et al., 2014) to gain sufficient biomass for molecular analysis. While dry filters and long 

exposure times (24 hours +) have been recommended for use in these studies (Pearce et al., 

2009), a recent survey has shown this method of sampling may cause significant loss (up to 

98%) of selected microbes, particularly more vulnerable Gram-negative bacteria (Luhung et 

al., 2015). Therefore, method improvement to address these known issues was pertinent. 

Investigation of cold regions is critical to complete the picture of world-wide 

microbial distribution and transport, given such regions are typically more isolated, warming 

rapidly and have wide-ranging impacts on the rest of the world (for example through ice cap 

melt)(Pearce et al., 2016). 

The use of high-volume cyclone samplers has been investigated to address the issues 

of both the long sample duration and DNA loss of certain types of microbes. The Coriolis  

(Haig et al., 2016) high-volume liquid-cyclone air sampler was selected. The Coriolis 

processes air at a rate of 300 L/min and can theoretically capture sufficient biomass for 

molecular analysis in just over four hours. Comparative trials were performed to determine 

optimal sampling durations. The Coriolis’ liquid collection medium reduces shearing forces 

and desiccation experienced by microbes during the collection process, which should 

improve DNA recovery for more fragile microbes. However, most liquids commonly used 

have a freezing point of 0 C so are not suitable for very cold environments. Various 

collection media and heating of the sampling apparatus were investigated with the aim of 

expanding usage of the Coriolis in sub-zero locations by preventing freezing of the collection 

liquid.  
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Figure A-1 - Labelled image of a Coriolis high-volume liquid cyclone air sampler. Red 
arrows indicate air flow.

 Methods 

A.2.1 Methods for Operation in Sub-Zero Environments
Trials to determine the most appropriate collection liquid were carried out by adding 100 µl 

of Escherichia coli broth to a 15 mL sample (this is the volume in the collection cone of the 

Coriolis) of the various collection liquids tested. The collection mediums included ethanol, 

glycerol, ethylene glycol and RNAlater. They all have a freezing point below 0 C and were 

expected to remain liquid in polar and high-altitude conditions. The sample was processed 

via several methods and the DNA concentration returned by each quantified via Qubit 

(Invitrogen, 2010). Testing was performed in triplicate. A more easily damaged Gram-

negative bacterium was chosen, to confirm the method did not discriminate against these 

types of bacteria. The Coriolis sampler was tested in a shipping container refrigerated to -20 

C (under the standard operating instructions) for nearly an hour, to confirm that the 

battery and sampler were able to withstand those conditions.  

The optimal method as described below (collection in RNAlater, filtration of sample 

fluid and CTAB DNA extraction) was fully field tested in Antarctica in January 2017 and the 

resulting data and analysis have been published (Archer et al., 2019). Various methods were 

tested to separate the microbial cells for DNA extraction from the collection liquid. The 
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superior method used a vacuum flask that had been treated with bleach and rinsed with 

70% ethanol and milli-Q H2O (MQH20) to remove any traces of DNA. The E. coli spiked liquid 

was run through a 0.2 μm polycarbonate filter and the filter was washed with phosphate 

buffered saline (PBS) to remove any residual liquid that may interfere with the downstream 

DNA extraction process. The filters were cut up into small pieces and half was put through a 

manual CTAB extraction protocol (see details in C.1 Laboratory Methods – DNA Extraction) 

and half through a Power Soil kit using the standard protocol as per the manufacturer’s 

instructions (Qiagen, 2017). On-filter DNA extractions were performed in line with methods 

previously described (Archer et al., 2014). The DNA concentration in each sample was 

assessed using Qubit as per the manufacturer’s instructions, with 2 l of the sample added 

to the assay tubes (Invitrogen, 2010). 

A heated head for the Coriolis was developed that allowed the use of any collection 

liquid in the Coriolis cone, greatly increasing the flexibility and ease of operation of the 

machine. This was field tested in Antarctica in January 2018 with the methods and results of 

this work described in Chapter 4  - Diel Variation and Intercontinental Connectivity of 

Antarctic Bioaerosols. 

A.2.2 Optimisation of Sample Duration 
The Coriolis was run for one, two, three and four hours in temperate NZ conditions 

(operating the unit as per field methods in section 2.3 Methods) and DNA extracted via 

filtration, CTAB and quantification via Qubit as described above. 

 Results and Discussion  

A.3.1 Collection Liquid and Sample Processing 
DNA concentrations were highest for ethanol, using filtration for pre-processing with either 

a Power Soil kit or CTAB extraction (Figure A-2). Ethanol was difficult to use as its low 

viscosity and volatility caused it to be thrown out of the sample cone and evaporate rapidly. 

Therefore, RNAlater was chosen as the sample collection liquid. Filtration was chosen for 

pre-processing the samples as it had the highest DNA concentrations recovered. A CTAB 

DNA extraction protocol was determined to be optimal since it returned highest DNA 

concentrations, on average. While for the RNAlater the Power Soil kit performed slightly 

better, the small sample size of the test extractions meant that the difference seen for 

RNAlater between Power Soil and CTAB was unlikely to be statistically significant. The test 

extractions were spiked, and were therefore an imperfect replication of air samples, as their 

biomass was likely to be higher. Previous experience with DNA extractions indicated the 

CTAB extraction protocol performed better than a kit on average when biomass is very low, 

which is usual for air samples.  
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Figure A-2 - Comparison of the DNA concentration recovered from three of the collection 
mediums tested (RNAlater, Ethanol, Ethylene Glycol), with different combinations of 
sample pre-processing (filtration or centrifugation) and DNA extraction protocols (Power 
Soil kit, CTAB or on-filter extraction using CTAB). Glycerol is not included as it was found 
to be too viscous to function properly in the Coriolis so trials stopped at that point. 

A.3.2 Sample Duration  
Sampling for an hour reliably yielded quantifiable DNA and therefore this sample duration 

was selected (Figure A-3). This allows for fine temporal resolution while having a reasonable 

chance of returning acceptable microbial community data. A shorter sample duration 

increases flexibility, as samples can be combined later if needed to improve DNA 

concentrations, but samples cannot be separated if longer durations are used. These data 

also allowed for direct comparison between various sampling mediums, and PBS was found 

to yield approximately twice the DNA concentration of RNAlater. Dry collection yielded 

similar amounts of DNA to RNAlater, so that was selected as a back-up option for cold 

environments, given a liquid medium was preferred if possible to preserve Gram-negative 

bacteria and maintain normal operation of the cyclone and resulting size range of captured 

particles. Glycerol performed well in terms of DNA concentrations recovered but was not 

chosen as it became distributed around the Coriolis cone, head and neck and was difficult to 

remove effectively. For high temporal resolution sampling this means it would be difficult to 

separate one sample from the next and risk of contamination increases. PBS has a freezing 

point of 0 C, so is well suited to sampling in NZ but not in very cold environments. The clear 

superiority of PBS as a collection medium led to interest in application of heat to the sample 

liquid, to allow PBS or a wide range of other liquids to be used in cold environments. 
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Figure A-3 - Results of trials of different sampling times averaged across various collection 
mediums (RNAlater, dry, glycerol and PBS) run in NZ temperate conditions. The 
relationship is linear as expected but sampling for twice as long does not appear to yield 
twice the average DNA concentration for all collection liquids. Sampling for one hour 
appears to reliably yield quantifiable DNA. 

A.3.3 Development of Heated Coriolis Head and Cone Clip-Ons
Between the Antarctic field seasons of January 2017 and 2018 a heating solution for the 

Coriolis was developed. This consisted of replicating the sampling head exactly in 

aluminium, and machining aluminium clip-ons to wrap around the Coriolis cone (Figure A-4). 

The aluminium blocks had heating elements and temperature sensors embedded in them, 

attached to a control box with simple firmware to heat the blocks to the desired 

temperature and switch the heaters on or off as needed to maintain temperature.   
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Figure A-4 - The heater – showing the aluminium head (top left) and one of the two cone 
clip-ons (top right) with the collection cone inside. This is used with two identical clip-ons 
which surround the cone and heat the liquid inside. 

The Coriolis unit and heater were field tested in Taylor Valley, Antarctica in January 

2018 and allowed PBS to be used successfully to take samples. Wind chill was found to be a 

significant cooling factor which meant the heated head was only able to reach a 

temperature of 3 – 8 C despite the heating elements being at maximum output. To sample 

at lower ambient temperatures further heating elements would need to be added to the 

head. When sampling was carried out overnight some freezing in the top up reservoir and 

piping occurred. This was only an issue for prolonged sampling, and could be addressed by 

extending the heater to apply heat to these additional areas, see section 4.3 Methods for 

full details of sampling protocols and results of Antarctic field sampling.  

 Conclusion 
The method development work supports the methods used for this PhD. This was needed 

since aerobiology is a relatively new area of study without an extensive literature base to 

draw from. The toolkit now exists to sample in sub-zero conditions using both RNAlater and 

the heater with any liquid in the Coriolis. Both methods have been field proven. Air samples 

in the lowest biomass and most challenging environments can be taken in an hour or two 

versus days to weeks with reduced bias. This work represents a significant method 

advancement for aerobiology studies. 
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Appendix B. HYSPLIT Clustering Procedure 
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The back-trajectories generated by Hybrid Single-Particle Lagrangian Integrated Trajectory 

(HYSPLIT) were simplified through cluster analysis. Clustering created a mean trajectory 

which represented each cluster. A simple categorical variable for each mean trajectory was 

included in the db-RDA. Trajectories are assigned to clusters by minimising the differences 

between trajectories within a cluster, while maximising the differences between clusters 

(Stein et al., 2016). The clustering equations are as follows: 

The spatial variance (SV) is computed between each endpoint (k) along trajectory (j) within 

its cluster (i):  

SVi,j = Σk (Pj,k - Mi,k)2 

The sum is taken for all endpoints along the trajectory. P and M are position vectors for the 

individual trajectory and its cluster mean trajectory. The cluster spatial variance (CSV) is the 

sum of the spatial variance of all trajectories within the cluster:  

CSVi = Σj SVi,j  

The total spatial variance (TSV) is the sum of the CSV over all clusters:  

TSV = Σi CSVj,k (NOAA, 2021) 

HYSPLIT starts by assigning each trajectory its own cluster and then combines the two 

together which are most similar (computes TSV for all combinations of trajectories and 

chooses the lowest), so that the total clusters are now number of trajectories minus one. 

The clusters are then merged in this fashion until there is only one, or the specified cluster 

number is reached. The TSV rises initially, then levels through intermediate iterations, 

before rising at the end when combining dissimilar clusters (NOAA, 2021). There is 

subjectivity in deciding on the cluster number and HYSPLIT produces a plot of TSV against 

cluster number to aid in this judgment. The optimal number of clusters (lowest TSV) is 

indicated by the position of the final peak in TSV. In the example TSV plot below (Figure B-1) 

either six or four clusters appeared appropriate, as TSV increased at five and three. If there 

was any lack of clarity on review of the TSV plot, clustering would be performed with each 

cluster number and visually inspected. If two cluster means appeared very similar on the 

map, then a lower cluster number was selected. In Figure B-1 clusters one and five looked 

very similar, as did clusters two and four. Therefore, four clusters were selected.  
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a)                                                               b) 

 

Figure B-1 - HYSPLIT outputs for 72-hour clusters in the Urban Parks study. a) TSV plot 
showing increasing % change in TSV as cluster number reduced b) Plot of cluster means 
when six clusters were selected. Percentages next to each cluster mean indicate the 
percentage of trajectories assigned to each cluster. 
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 Laboratory Methods – DNA Extraction 
The aim of this PhD was to understand and compare bioaerosol community diversity and 

composition between samples taken across various temporal and spatial scales. DNA 

analysis of the samples was chosen as it has been shown to reveal a more complete picture 

of the bioaerosol community than culture or microscopy based studies (Yoo et al., 2016). 

The bacterial 16S rRNA gene (16S) was sequenced as it is a well conserved marker across the 

bacteria and archaea and the most commonly used approach in the literature (Pearce et al., 

2016). The internal transcribed spacer region (ITS) was also analysed, so fungal sequences 

could be detected, per the literature (Archer et al., 2019). Samples were stored at -20 C 

and defrosted overnight at 4 C. The liquid was passed through a 0.2 m GTTP 

polycarbonate filter using a disposable sterile syringe. The filter holder was cleaned in 

bleach, ethanol and milli-Q H2O (MQH2O) between each sample. The liquid was discarded 

and the filter processed using a CTAB based DNA extraction protocol. A positive extraction 

control (spiked with 100 L Escherichia coli suspension in phosphate buffered saline or PBS) 

and a negative extraction control (no filter added) was used for each DNA extraction run. 

The CTAB extraction protocol entailed placing the filter in a 2 mL nucleospin bead tube, 

filled with 0.2 – 0.4 mL of Qiagen 1.4 mm ceramic beads. 270 µL of phosphate buffer (PBS) 

(100 mM NaH2PO4) and 270 µL of SDS lysis buffer (100 mM NaCl, 500 mM Tris pH 8.0, 10% 

SDS) was added to the tube. Tubes were vortexed at top speed for 15 seconds each, then 

shaken horizontally on a Vortex Genie 2 for 10 minutes. Samples were centrifuged at 13,200 

rpm (19,627 rcf) for 3 minutes. 8 L of BME was added per 1 mL of CTAB buffer and 

vortexed. 180 l of the CTAB buffer and BME solution was added to the samples and 

incubated at 300 rpm at 60 °C for 30 minutes in a S1-300R Lab Companion shaker-incubator. 

The samples were centrifuged at 13,200 rpm for 1 minute to reduce bubbles. 350 µL 

chloroform: isoamyl alcohol (24:1) was added, the samples were vortexed for 15 seconds 

then centrifuged at 13,200 rpm for 5 minutes.  The upper aqueous layer was transferred 

into a new 1.5 mL sterile Eppendorf tube. 500 µL chloroform: isoamyl alcohol (24:1) was 

added and the samples were vortexed for 10 seconds, then left on a rocking bed (Life 

Technologies HulaMixer) for 20 minutes at room temperature. The samples were 

centrifuged at 13,200 rpm for 5 minutes and the upper aqueous layers moved into a new 

1.5 mL sterile Eppendorf tube. Ten M ammonium acetate to a final conc. of 2.5 M (an 

amount equal to 1/3 of tube volume) was added.  The samples were mixed gently by 

repeated inversion (25 times) and centrifuged at 13,200 rpm for 5 minutes. The upper layer 

was transferred to a new sterile Eppendorf tube and 0.5 times the tube volume of isopropyl 

alcohol was added. The samples were mixed by repeated inversion (20 times) then 

incubated at -80 C for 48 hours. The samples were centrifuged at 14,000 rpm (20,817 rcf) 

for 20 minutes at 4 C and the supernatant discarded, leaving a pellet of DNA. The pellets 

were washed with 1 mL 70% ethanol (at -20 C) and centrifuged at 14,000 rpm at 4 C for 5 

minutes. 70% ethanol was gently pipetted off (firstly with a 1000 µL pipette, then 

recentrifuged at 14,000 rpm at 4 C for 5 minutes, then a 20 µL pipette used to remove 

remaining liquid). The pellets were dried in an Eppendorf concentrator plus for 8 - 12 
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minutes. DNA was re-suspended in 20 µL ultra-pure H2O (Invitrogen Ultra-Pure Distilled 

Water – DNAase, RNAase, Free) by pipetting up and down 25 times and scraping the pipette 

tip on the side of the tubes. The samples were heated at 55 C for 10 minutes, vortexed for 

10 seconds and stored at -20 C. The DNA was quantified using Qubit (as per the 

manufacturer’s instructions, with 2 µl of the sample added to the assay tubes (Invitrogen, 

2010) and test PCRs were performed for two samples (using the same protocol as described 

for the 16S PCR in section C.3 Laboratory Methods – DNA Sequencing below) in each batch 

to determine if further processing was needed before sequencing.  All samples in batches 

that failed to amplify were purified with AMPure XP beads using the standard protocol (in 

section C.2 AMPure XP Beads Protocol below) and PCR reattempted to ensure they 

amplified. Sample filtration and DNA extraction were performed in a Biosafety cabinet 

(Gelman Sciences BioHazard-Protection class II) where possible. 

  AMPure XP Beads Protocol 
Beads were removed from the fridge 30 minutes before use to allow them to heat up to 

room temperature. The beads were vortexed for one minute until homogenous. For clean-

up of DNA samples before PCR a ratio of 1.8 mL of beads to 1 mL of sample was used (a high 

ratio to capture all DNA). For clean-up of DNA samples after PCR a ratio of 0.8 mL of beads 

to 1 mL of sample was used (a lower ratio to capture longer pieces of DNA only). The beads 

were added to the DNA samples and mixed by pipetting up and down 10 times. The mixture 

was incubated at room temperature for five minutes. The 96 well tray was placed on a 

magnetic stand and left for three – five minutes until the solution had cleared. With the tray 

still on the magnetic stand the liquid was carefully pipetted off and discarded. The tray 

remained in the stand and the bead pellet was washed twice with 80% ethanol (enough 

volume was added to cover the beads). Each time the ethanol was left for one minute then 

pipetted off. The tray was then left for a few minutes for the remaining ethanol to 

evaporate. When the bead pellets were dry the 96 well tray was moved off the magnetic 

rack and 20 (pre-PCR) or 30 µL (post-PCR) of nuclease free water (Ultra-Pure H2O) was 

added. The water and beads were mixed by pipetting up and down 10 times and left to 

incubate for three minutes. The tray was moved back on to the magnetic rack and left for 

three – five minutes for the solution to clear. 25 µL of the liquid was taken off post-PCR and 

as much as possible (with a 0.1 µL tip) was removed from the pre-PCR samples, up to 

around 20 µL.  

  Laboratory Methods – DNA Sequencing 
The bacterial and fungal community structure was determined using MiSeq DNA 

sequencing, the following method was adapted from Maki et al. (2017). Fragments of 16S 

rDNA (approximately 460 bp) were amplified from the extracted gDNA by PCR using the 

universal 16S rDNA bacterial primers 314F and 785R (IDT Forward 5’- TCG-TCG-GCA-GCG-

TCA-GAT-GTG-TAT-AAG-AGA-CAG-CCT-ACG-GGN-GGC-WGC-AG IDT Reverse 16S 5’- G-TCT-

CGT-GGG-CTC-GGA-GAT-GTG-TAT-AAG-AGA-CAG-GAC-TAC-HVG-GGT-ATC-TAA-TCC) and the 

ITS fungal primers (ITS 1 Forward, 5’-TCG-TCG-GCA-GCG-TCA-GAT-GTG-TAT-AAG-AGA-CAG-
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CTT-GGT-CAT-TTA-GAG-GAA-GTA-A ITS2, Reverse 5’-G-TCT-CGT-GGG-CTC-GGA-GAT-GTG-

TAT-AAG-AGA-CAG-GCT-GCG-TTC-TTC-ATC-GAT-GC). The section of the primer in italics is 

the Nextera adapter region, for binding of the primers for the indexing PCR. The remainder 

of the primer is for binding to the target area in the genome for amplification. The PCR 

amplicon sequences covered the variable regions V3 and V4 of the 16S rRNA gene and the 

fungal ITS1 region between the 18S and 5.8S rRNA genes. Thermal cycling on an Eppendorf 

vapo protect was performed under the following conditions for both 16S and ITS: initial 

denaturation at 95 C for three minutes then 35 cycles of 95 C for 30 seconds, annealing at 

55 C for 30 seconds, and extension at 72 C for 30 seconds. Finally, the sample was held at 

72 C for five minutes then the temperature was reduced to 4 C.  KAPA Hi-Fi Hot Start 

ReadyMix (KAPA) of 12.5 µL was used, with 5 µL of each primer (at 1 mM concentration) and 

5 µl of DNA in a 27.5 µL reaction. A total amount of 20 ng DNA was targeted in the PCR 

reaction. DNA was diluted if needed, therefore input concentration was variable and was 

often so low as to be unquantifiable, due to the minimal biomass in aerosol samples. Small 

DNA fragments were removed with AMPure XP beads (per protocol in section C.2 AMPure 

XP Beads Protocol) then PCR products were quantified using Qubit , with 2 µl of the sample 

added to the assay tubes (Invitrogen, 2010). Dilution was performed to standardise DNA 

concentrations of each sample (16S at 5 ng/µL and ITS at 1 ng/µL) before samples were 

indexed to allow identification after sequencing. 16S and ITS rDNA in PCR products were 

amplified again using the indexing PCR primer pair, sequences binding to the regions in 

italics above with the addition of a unique 8 nucleotide barcode. The samples for this PhD 

were included on two sequencing runs, each position in the 96 well plates were coded by a 

unique pair of Nextera indexing primers that were consistent for 16S and ITS. The Antarctic 

and Baring Head samples were sequenced on the first run, and Urban Parks and the 

Seasonal study on the second run. Thermo-cycling on the GeneAmp PCR System 9700 was 

performed under the following conditions: initial denaturation at 95 C for three minutes, 

then (8 cycles for 16S and 12 cycles for ITS) of 95 C for 30 seconds, annealing at 55 C for 30 

seconds, and extension at 72 C for 30 seconds. Finally, the samples were held at 72 C for 

five minutes then at 4 C. For the indexing PCR 12.5 µL KAPA was used, 2.5 µL for each 

indexing primer, for ITS 2.5 µL of ultra-pure H2O was added and 5 µL of sample and for 16S, 

5 µL of ultra-pure H2O and 2.5 µL of sample was used in a reaction totalling 25 µL. PCR 

amplicons from each sample were pooled, mixed, sub-sampled, purified with AMPure XP 

beads (as per section C.2 AMPure XP Beads Protocol), quantified (2 µl of the sample added 

to the assay tubes (Invitrogen, 2010)), tested with a Bioanalyzer (to check for 

presence/absence of primers and correct library size)  and included at approximately equal 

amounts into a single sequencing run on a MiSeq Genome Sequencer (Illumina, MiSeq CA, 

USA) machine. The sequences obtained for each sample were demultiplexed based on the 

8-nucleotide barcode in the indexing primers. Negative controls were sequenced so

contamination could be identified and corrected for during data analysis.
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Appendix D. Optimising Bioinformatics Protocols for Aerosol 

Microbial Community Data – a Case Study Using an 

Urban Parks Dataset 
A modified form of this appendix has been accepted for publication with revisions by PeerJ as 

at 5 July 2021. 
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 Abstract 
Microbes are fundamental to Earth’s ecosystems, thus understanding ecosystem 

connectivity through microbial dispersal is key to predicting future ecosystem changes in a 

warming world. However, aerial microbial dispersal remains poorly understood. Few studies 

have been performed on bioaerosols (microorganisms and biological fragments suspended 

in the atmosphere), despite them harbouring pathogens and allergens. Most environmental 

microbes grow poorly in culture, therefore molecular approaches are required to 

characterize aerial diversity. Bioinformatic tools are needed for processing the next 

generation sequencing (NGS) data generated from these molecular approaches; however, 

there are numerous options and choices in the process. These choices can markedly affect 

key aspects of the data output including relative abundances, diversity, and taxonomy. 

Bioaerosol samples have relatively little DNA, and often contain novel and proportionally 

high levels of contaminant organisms, that are difficult to identify. Therefore, bioinformatics 

choices are of crucial importance. A bioaerosol dataset for bacteria and fungi based on the 

16S rRNA gene (16S) and internal transcribed spacer (ITS) DNA sequencing from parks in the 

metropolitan area of Auckland, Aotearoa New Zealand was used to develop a process for 

determining the bioinformatics pipeline that would maximize the data amount and quality 

generated. Two popular tools (Dada2 and USEARCH) were compared for amplicon sequence 

variant (ASV) inference and generation of an ASV table. A scorecard was created and used to 

assess multiple outputs and make systematic choices about the most suitable option. The 

read number and ASVs were assessed, alpha diversity was calculated (Hill numbers), beta 

diversity (Bray-Curtis distances), differential abundance by site and consistency of ASVs 

were considered. USEARCH was selected, due to higher consistency in ASVs identified and 

greater read counts. Taxonomic assignment is highly dependent on the taxonomic database 

used. Two popular taxonomy databases were compared in terms of number and confidence 

of assignments, and a combined approach developed that uses information in both 

databases to maximize the number and confidence of taxonomic assignments. This 

approach increased the assignment rate by 12 – 15%, depending on amplicon and the 

overall assignment was 77% for bacteria and 47% for fungi. Assessment of decontamination 

using “decontam” and “microDecon” was performed, based on review of ASVs identified as 

contaminants by each and consideration of the probability of them being legitimate 

members of the bioaerosol community. For this example, "microDecon’s" subtraction 

approach for removing background contamination was selected. This study demonstrates a 

systematic approach to determining the optimal bioinformatics pipeline using a multi-

criteria scorecard for microbial bioaerosol data.  

 Introduction 
Next Generation Sequencing (NGS) of microbial marker genes has revolutionized 

microbiome studies (Pearce et al., 2016). Modern techniques are extremely sensitive, and 

can detect even one copy of a target gene (McKnight et al., 2019). Most environmental 

microorganisms grow poorly in culture and can be present in very small numbers (Burrows 

et al., 2009b). NGS circumvents these issues, as different genetic variants present can be 

inferred, and their taxonomy predicted. The microbiome of the aerosphere is challenging to 

decode, even with these new approaches. It is a very low biomass environment, and many 
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common contaminants (microbial taxa that are not true constituents of the environmental 

population) are naturally present in air. Indeed, these microbes are probably contaminants 

themselves due to their ease of atmospheric dispersal. Study of the aero-microbiome is 

relatively recent, and unknown taxa are frequently detected (Bottos et al., 2014). The low 

biomass and many ubiquitous taxa present make identification and removal of 

contamination difficult. While biomass can be improved with greater sample durations 

(Pearce et al., 2009),  DNA degradation and practical considerations can preclude prolonged 

sampling campaigns (Luhung et al., 2015). Furthermore, it is challenging to tell which taxa 

represent true variants and to assign taxonomy to them with existing databases. Due to 

these difficulties, single amplicon sequencing (commonly 16S, 18S ribosomal RNA or ITS) has 

been used for the majority of NGS bioaerosol studies to date (Archer et al., 2020; Barberán 

et al., 2015; Bottos et al., 2014; Smith et al., 2018; Tanaka et al., 2020; Woo et al., 2013). 

However, bioaerosol metagenomic and transcriptomic techniques have been developed 

(Jiang et al., 2015) and successfully applied in a handful of very recent studies. (Amato et al., 

2019; Amato et al., 2017; Jaing et al., 2020). Jaing et al. (2020) performed metagenomic 

sequencing on bioaerosols above the Sierra Nevada mountains in the US and obtained 

5,000,000 reads, although only 640,000 were successfully assigned at the genus level. 

Transcriptomics on microbial communities in clouds has been performed for rRNA genes 

(Amato et al., 2017) and untargeted amplification has been applied to full cloud 

metagenomes and transcriptomes to compensate for low biomass (Amato et al., 2019).  

These omics approaches represent the cutting edge of NGS based bioaerosol research and 

this study focused on a process for method optimization for the frequently used 16S and ITS 

amplicons.  

The information produced by single amplicon NGS and conclusions drawn are 

sensitive to choices made when performing bioinformatic processing (Edgar, 2013, 2017). A 

constantly evolving multitude of environments and tools exist to process 16S or ITS NGS 

data (Callahan, 2020; Edgar, 2010, 2013). A typical dataset contains millions of reads, and 

thousands of unique sequences (Amplicon Sequence Variants or ASVs). Sequencing errors 

and artefacts, even if they occur at low rates, can become significant over large datasets 

(Edgar, 2013). There is total reliance on automated processing and algorithms which make 

assumptions and introduce bias (Callahan et al., 2016). It is very difficult to objectively verify 

the results and determine the “true” aero-microbiome. If the environment is well 

understood, mock community sequencing can be performed alongside experimental 

samples (Hermans, Buckley, & Lear, 2018). For less well understood environments like the 

aerosphere, more surety can be gained where results from multiple bioinformatics 

approaches converge. Choosing amongst the plethora of data processing options at each 

stage can become challenging. Especially in somewhat specialized fields, with unusual data 

characteristics, such as the study of bioaerosols, standard pipelines or assumptions about 

data can be hazardous. For instance, most decontamination pipelines assume relativity low 

levels of contaminating DNA compared to target DNA, which is not necessarily the case for 

the aero-microbiome (Pearce et al., 2016). Further, when tools are constantly being updated 

and “best practice” in an area can be outdated or undefined, method selection is not 

necessarily straightforward. An approach to select an optimal pipeline for specialized 
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datasets, using defined selection criteria, is critically useful in the challenge to extract signal 

out of noise in NGS data. 

D.2.1 Bioinformatic data processing
Processing of 16S and ITS NGS data is a complex, multi-stage procedure and is further 

complicated by the necessary choices among many alternative tools available (Edgar, 2017) 

(Figure D-1). With so many modifications being made to the data, it is crucial to ensure each 

step is improving quality rather than introducing bias or errors. The key stages of the 

process are summarized in Figure 1 and begin with sampling, DNA extraction, amplification 

of target genes and sequencing of PCR products. The sequence data is processed by 

separating amplicons using their respective primer sequences, trimming to remove primers, 

merging forward and reverse reads, quality filtering and denoising (ASV inference). 

Chimeras and low abundance sequences are removed. An ASV table is constructed and 

taxonomy is predicted with reference to sequence databases (Callahan et al., 2016; Edgar, 

2017). Finally, contaminants should be filtered out of the dataset (Davis, Proctor, Holmes, 

Relman, & Callahan, 2018; McKnight et al., 2019). 
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Figure D-1 - Process flow for sampling and data analysis of microbial aerosol communities at urban parks. Hr is hour. PBS is phosphate 
buffered saline. E. coli is Escherichia coli. No. is number. ID is identified.
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Inferring the presence of the true sequence variants requires care. Approximately 

0.5% (Mardis, 2013) to 0.24% (Pfeiffer et al., 2018) of base calls during Illumina sequencing 

are incorrect. This means that for the V3 to V4 region of the prokaryotic 16S gene, which is 

around 450 nucleotides long, each sequence could be expected to have two wrong 

nucleotides. As there is only one correct sequence but many incorrect versions (as base call 

errors are random (Edgar, 2013)) the correct variant is present at high abundance in 

sequence data, with many incorrect versions of the same sequence at low abundance. Most 

processing pipelines attempt to filter out low abundance sequences to try to remove these 

spurious ASVs, but filtering risks removing true low abundance organisms as well. Other 

sequencing artefacts, like chimeras and cross-talk (incorrect sample bar codes causing 

sequences to be assigned to the wrong sample) can also introduce error (Callahan et al., 

2016). Comparative studies show that some tools produce many more spurious variants 

than others (Edgar, 2017). Two of the most popular tools currently used in bioaerosol 

research (Archer et al., 2020; Archer et al., 2019) are “Dada2” in R (Callahan et al., 2016) and 

USEARCH (Edgar, 2010). The use of ASVs has been recommended for bioaerosol studies, as 

this helps increase the resolution of the data produced (Archer et al., 2019). Operational 

taxonomic units (or OTUs, normally matched at 97% sequence identity) reduce the 

information quality compared to ASVs but lower the chance of spurious variants being 

detected, as low abundance incorrect variants are merged into higher abundance OTUs 

(Callahan et al., 2016).  

The taxonomy database selected can significantly impact the number, nature and 

confidence of taxonomic assignments of ASVs that can be achieved. There is a trade-off 

between the size and the accuracy of the databases available. Larger ones, such as SILVA 

(Quast et al., 2012) and Greengenes (Balvočiūtė & Huson, 2017) for 16S rRNA gene, contain 

many uncultivated environmental sequences with taxonomy algorithmically predicted. 

There are thousands of conflicts in assignment of identical sequences between SILVA and 

Greengenes (Edgar, 2018). It is unclear which one is right, but at least one of them must be 

wrong. As a result, 17% of the taxonomy annotations in these databases are estimated to be 

incorrect (Edgar, 2018). The smaller Ribosomal Database Project training set database (RDP) 

is considered to be more reliable as most taxonomy is assigned based on authoritative 

examination of isolate strains (Edgar, 2018). However, using a smaller database, especially 

with novel taxa, is more likely to result in many unassigned ASVs. In addition, this does not 

improve the situation for unculturable organisms. 

Removal of contaminant microbial taxa is critical. In addition to the challenges 

presented by the aero-microbiome, limited decontamination tools are available. 

Contaminants (especially bacteria) are ubiquitous in many reagents (McKnight et al., 2019). 

Clean sampling, laboratory protocols and thorough use of negative controls help. However, 

reads still exist in negative controls which need to be addressed. There are two principal 

approaches to deal with the contamination bioinformatically. Identification and removal of 

entire ASVs that appear to be contaminants, for example, with the R package, “decontam” 

(Davis et al., 2018). Contaminating ASVs are identified in “decontam” by their higher 

abundance in negative controls compared to samples (prevalence method) and by their 

concentrations inversely correlating with sample DNA concentration (frequency method) 
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(Davis et al., 2018). Alternatively, negative controls can be used to calculate a background 

contamination profile, which can then be deducted from each sample, in this case with the 

R package “microDecon” (McKnight et al., 2019). 

The aim of this protocol development study was to define a process for optimizing the 

bioinformatics approach for future bioaerosol studies. To achieve this, a dataset from 

microbial aerosol communities in urban parks was used to systematically investigate the 

effects of different bioinformatics choices on the amplicon ASV table and taxonomic 

assignments of organisms present. An optimal approach based on this information was 

developed. R code for the bioinformatics pipelines investigated is presented. 

 

 Methods 

D.3.1 Field Sampling 
Ten parks in urban Auckland, and a reference rural location north of Auckland, New Zealand 

were selected for sampling (Figure 2-1). The vegetation at these parks was primarily 

cultivated lawns, with variable cover of deciduous and coniferous trees, shrubs and ferns. 

Some parks had bodies of water in them, such as Western Springs. The parks differed in 

occurrences of pedestrians, rates of vehicular movements and the abundance of birds and 

dogs. Livestock, such as sheep and cattle, were present at some. The parks differed 

markedly in area and altitude, as several encompassed volcanic cones. Each park was visited 

three times in the first sampling window (12 July 2017 to 10 August 2017) and three times in 

the second sampling window (20 of March 2018 to 1 June 2018). On different days during 

the sampling window, a single sampling location within each park was visited in a 

randomized order between 10 am and 4 pm and was sampled for 1 hour with the Coriolis µ 

liquid cyclone impinger (Haig et al., 2016) at 300L/m into phosphate buffered saline (PBS) at 

1.8 m. The total volume of air in each sample was approximately 18m3, which sits 

comfortably in the range of volumes (2.7 – 144m3) used in similar bioaerosol studies (Amato 

et al., 2017). The sample was taken in the same location each time, as close to the center of 

the park as practicable and at minimal elevation (avoiding effects from change in altitude at 

volcanic peaks or being close to an edge confounding results). The exact location was saved 

on Google Maps (Google; Stein et al., 2016) and a photo was taken of the Coriolis aerosol 

sampling unit and location. During sampling, gloves were worn and the extender kit and 

Coriolis neck, head and cone (Figure A-1) were cleaned with bleach, ethanol and three 

rinses of MilliQ water (MQH2O). The cone was filled with 15 mL of PBS. A negative control 

was taken (PBS put into the cone without running the Coriolis) referred to as a “sampling 

control”. The Coriolis was run for 2 – 4 minutes with MQH2O. The MQH2O was discarded 

and replaced with 15 mL of PBS and the Coriolis was run at 300 L/m for 1 hour. The PBS in 

the cone was topped up to 15 mL after 30 minutes and sampling was completed with 10 mL 

of PBS remaining in the cone. Samples were transferred into a 15 mL falcon tube, 

transported in an insulated box with ice blocks and stored at -20 C within 4 hours. During 

sampling, observations of weather conditions were recorded (with a Kestrel 3000) and 

particle counts were taken (with an AeroTrak particle counter). If light rain occurred during 

sampling, the Coriolis was sheltered with an umbrella. If rain was heavy, the unit was 
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packed up until the rain abated. While precipitation can affect bioaerosol communities 

(Reche et al., 2018), only 12 of the 66 samples in the example dataset were affected by 

precipitation, and therefore the data was considered representative for the purposes of 

defining a process for optimizing the bioinformatics approach for bioaerosol NGS data.  

D.3.2 Laboratory Processing
For details on DNA extraction and DNA sequencing methods see section C.1 Laboratory 

Methods – DNA Extraction, and section C.3 Laboratory Methods – DNA Sequencing.  

D.3.3 Data Analysis
Data analysis was performed in R 3.6.3 x86_64 (R Development Core Team, 2010) and 

USEARCH (11.0.667_i86linux32 and  9.0.2132_i86linux64 ) (Edgar, 2010). Details of all code 

and packages used are in the supplementary materials. Demultiplexed FastQ files were 

generated. Cutadapt 2.6 (Martin, 2011) with python 3.6.9 (Van Rossum, 2009) was used to 

separate the two amplicons based on their primer sequences. 16S and ITS were analyzed 

with “Dada2 1.14.1” (Callahan et al., 2016) in R and USEARCH (Edgar, 2010) with 

recommended workflows (Callahan; Edgar). USEARCH outputs were imported into R using 

“RDPutils 1.4.1” (Quensen, 2018). Metrics were calculated for comparison between 

pipelines. These included numbers of reads, numbers of ASVs, alpha diversity, specifically 

Hill numbers, (Chao et al., 2016) in “phyloseq 1.30.0” (McMurdie & Holmes, 2013), beta 

diversity (Bray-Curtis distance or BC) in “vegan 2.5.6” (Dixon, 2003) and differential 

abundance using “DESeq2 1.26.0” (Love, Huber, & Anders, 2014).  

ASVs inferred from USEARCH and Dada2 were compared. ASVs identified by 

USEARCH were used to compare different taxonomy databases. Consistent and conflicting 

taxonomic assignments were considered to identify the most appropriate strategy for the 

data. For 16S, RDP 16 (Balvočiūtė & Huson, 2017) and SILVA 132 (Quast et al., 2012) were 

used. For ITS, RDP 2 (Balvočiūtė & Huson, 2017)  and UNITE UTAX02.02.2019 (Abarenkov et 

al., 2010) were used. Metrics were calculated for comparison of databases. The number of 

genera identified, alpha and beta diversity as above, and number of unassigned ASVs were 

determined. Statistical significance of differences in these metrics between pipelines was 

tested in base R using a non-parametric Mann-Whitney U test. The taxonomic assignment of 

each ASV with both databases was compared. A taxonomy file was created, which used 

classification from both databases and included a confidence measure. "High confidence" 

(assignments where both databases agreed at the genus level). "Medium confidence" 

(different assignments from each database). "Low confidence" (assignments only in one 

database). The RDP database annotation was used in preference for both ITS and 16S. If no 

RDP classification at the genus level was available, the alternative database was used.  

The taxonomy table created was imported into “phyloseq” and subsequently 

processed with “decontam 1.6.0” (Davis et al., 2018). For comparison, the same dataset was 

also run with “microDecon 1.0.2” (McKnight et al., 2019) on default settings. The three main 

methods to identify contaminants available in “decontam” are: frequency, prevalence and 

combination (Davis et al., 2018). The combination method in “decontam” was chosen for 

comparison to “microDecon” as it considers the most data (both the frequency and 



185 

prevalence methods combined) (Davis et al., 2018). The ASV table, after removal of 

contaminants, was compared to the contaminant ASVs identified by “decontam” to check 

consistency and identify if any ASVs highly likely to be contaminants remained. Metrics were 

calculated from both datasets: ASVs identified as contaminants by both tools, the number of 

high probability contaminants missed by “microDecon”, alpha and beta diversity and 

differential abundance, as above. 

 Results 

D.4.1  ASV Inference
USEARCH detected 25% to 33% (significantly for 16S) more reads than “Dada2”(Table D-1) . 

USEARCH was expected to return higher read counts since it matches the pre-filtered reads 

to ASVs if the read quality is sufficient (Edgar, 2013) while “Dada2” matches reads post-

filtering (Callahan et al., 2016). More reads also meant that more samples passed through 

all stages in USEARCH, while in the “Dada2” pipeline several samples failed to complete the 

pipeline. “Dada2” consistently identified significantly many more ASVs than USEARCH, but 

USEARCH detected more ASVs per sample, and returned generally higher alpha and beta 

diversity metrics as a result. Observed alpha diversity was significantly higher for USEARCH 

and exponential Shannon and inverse Simpson were generally greater for USEARCH also. 

USEARCH data, once processed with “DESeq2”, showed slightly more ASVs were significantly 

differentially abundant between sample locations. Significantly differentially abundant ASVs 

by location were significantly higher for USEARCH. On consideration of consistency between 

approaches, for 16S, 50% of the “Dada2” ASVs were also present in the USEARCH data 

(Figure D-2). Of the ASVs inferred by USEARCH, 85% were supported by “Dada2”. A similar 

pattern was apparent with ITS, with 56% of “Dada2” ASVs supported by USEARCH and 76% 

of USEARCH ASVs supported by “Dada2”. 
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Table D-1 - Summary of metrics computed for datasets derived from the USEARCH and 
“Dada2” pipelines for ITS and 16S amplicons for microbial aerosol communities at urban 
parks. SD is the standard deviation. Observed (D0) is the raw diversity or number of 
unique ASVs detected. ExpShannon (D1) refers to the exponential of the Shannon 
diversity index and invSimpson (D2) refers to the inverse of the Simpson diversity index. 
No. is number, sig. is significantly. Ranges are not appropriate for statistical testing so an 
N/A appears instead of a P value for them. P values that are significant at the 0.05 
threshold appear in bold. 

 
 

 16S   ITS  
  

Metrics  
16S 
Dada2 

16S 
USEARCH 

P value 16S 
Dada2 v 
USEARCH 

ITS Dada2 
ITS 
USEARCH 

P value   ITS 
Dada2 v 
USEARCH 

Raw 
abundance  

Total reads 507,586 754,752 0.03 1,687,012 2,222,530 0.10 
Mean (SD) 
reads per 
sample 

9,399 
(7,808) 

10,938 
(9,381) 

0.37 
(0.3) 

25,179 
(26,742) 

33,172 
(35,256) 

0.09 
(0.07) 

Raw diversity Total ASVs 7,503 4,400 0.01 7,507 5,519 0.02 
Samples with no reads 
completing pipeline 3 0 0.08 1 0 0.36 
Alpha 
diversity (Hill 
numbers) 

Observed (D0) 151 315 0.00 255 441 0.01 
Exp Shannon 
(D1) 16.46 23.8 0.19 1 8. 88 29.48 0.10 

 
Inv Simpson 
(D2) 17.25 16.66 0.90 14.8 17.15 0.61 

Beta diversity 
(Bray-Curtis) 

Mean 0.84 0.87 0.37 0.9 0.9 0.70 
Median 0.89 0.91 0.95 0.94 0.93 0.57 
Range 0.12-1 0.13-1 N/A 0.17-1 0.22-1  N/A 
Standard 
deviation 0.16 0.15 0.40 0.12 0.11 0.90 

No. ASVs sig. differentially 
abundant (by location) 174 180 0.01 41 51 0.25 
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a)                                                                                      b)  

 

Figure D-2 - Venn diagrams showing the number of ASVs inferred from USEARCH and 
Dada2 for (a) 16S and (b) ITS. ASVs identified by both pipelines are very likely to be true 
variants. ASVs identified by both pipelines are very likely to be true variants. 

More genera were identified with larger databases (UNITE for ITS and significantly more 

with SILVA for 16S), as expected (Table D-2) (Edgar, 2018). 16S showed greater alpha and 

beta diversities with a larger database. ITS showed an inconsistent pattern of alpha and beta 

diversities with database size (most differences were statistically insignificant other than 

exponential Shannon and inverse Simpson for ITS, where UNITE was less diverse). Larger 

databases showed significantly fewer unassigned ASVs; RDP 16S had 56% ASVs unassigned, 

RDP ITS had 71% ASVs unassigned compared to SILVA with 38% unassigned ASVs and UNITE 

with 64% unassigned ASVs. ITS suffered more overall from unassigned ASVs than 16S. For 

both amplicons, roughly half of the genera identified in the dataset matched (Figure D-3). 

When assignments for individual ASVs were reviewed, only 5% of 16S taxonomic 

assignments were consistent between RDP and SILVA at the genus level. However, for the 

top 100 ASVs by read count, 58% of the assignments were consistent at the individual ASV 

level and therefore, high confidence. For ITS, 31% of assignments were consistent between 

RDP and UNITE, and high confidence. When both databases were employed together to 

provide taxonomic information, unassigned ASVs were substantially lower for both 

amplicons than the largest individual database (23% for 16S and 53% for ITS ASVs remined 

unassigned). 
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Table D-2 - Comparison of taxonomy assignments of 16S and ITS USEARCH ASVs for urban 
parks bioaerosol communities with the RDP and SILVA (16S)/UNITE(ITS) taxonomy 
databases, and with a combined database approach. Observed (D0) is the raw diversity or 
number of unique ASVs detected. ExpShannon (D1) refers to the exponential of the 
Shannon diversity index and invSimpson (D2) refers to the inverse of the Simpson 
diversity index. Ranges are not appropriate for statistical testing so an N/A appears 
instead of a P value for them. P values that are significant at the 0.05 threshold appear in 
bold.

Taxonomy database used RDP 
training 
set 
(16S) 

SILVA 
(16S) 

P-value
between
16S
databases

RDP 
training 
set (ITS) 

UNITE (ITS) 

P-value
Between
ITS
databases

Metrics 

Total genera identified by 
pipeline 

517 694 0.02 501 696 0.06 

Alpha 
diversity of 
genera (Hill 
numbers) 

Observed 
(D0) 

112 127 0.30 121 123 0.75 

expShannon 
(D1) 

11.31 12.56 0.52 14 8.56 0.02 

invSimpson 
(D2) 

7.99 8.98 0.56 8.71 5.3 0.00 

Beta 
diversity of 
genera 
(Bray-Curtis) 

Mean 0.78 0.8 0.56 0.84 0.82 0.61 

Median 0.8 0.83 0.52 0.86 0.85 0.75 

Range 0 .08– 1 0.09 – 1 NA 0.17 – 1 0.10 – 1 NA 

Standard 
deviation 

0.19 0.18 0.44 0.14 0.18 0.17 

Unassigned 
ASVs at 
genus level 

 Number 2,479 1,681 0.02 3,899 3,559 0.28 

% total ASVs 56% 38% 0.00 71% 64% 0.01 

Unassigned 
ASVs at 
genus level 
with both 
databases 

 Number 1,011 2,871 

% total ASVs 23% 53% 
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a)        b) 

Figure D-3 - Venn diagrams showing the number of genera identified in the RDP database 
only compared to a) SILVA for 16S and b) UNITE for ITS. This is a comparison of the total 
list of genera and does not address how individual ASVs are mapped, which was 
addressed separately below. Venn diagrams showing the number of genera identified in 
the RDP database only compared to a) SILVA for 16S and b) UNITE for ITS. 

D.4.2  Decontamination 
ASVs identified as contaminants were reasonably consistent between “microDecon” and 

“decontam”(Table D-3). The large numbers of negative controls used in this study (around 

1/3 of total samples) appeared useful in robust identification of contamination. 16S had 350 

ASVs adjusted in “microDecon” and 344 flagged as contaminants by “decontam”. For ITS, 

303 ASVs were adjusted by “microDecon” compared to 251 identified by “decontam”. Alpha 

and beta diversity metrics dropped slightly after processing with “microDecon”, as would be 

expected with removal of reads. For 16S, the number of significantly differentially abundant 

ASVs by location declined, while for ITS it increased slightly post decontamination.  
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Table D-3 - Contamination correction method tested on post USEARCH data for microbial 
aerosol communities at urban parks measured using 16S and ITS DNA sequencing with a 
combined taxonomy table. For both ITS and 16S “microDecon” was used on default 
settings. The decontaminated ASV table produced was checked for consistency against 
contaminant ASVs identified in “decontam” on a range of its options (frequency, 
prevalence and combination). Observed (D0) is the raw diversity or number of unique 
ASVs detected. ExpShannon (D1) refers to the exponential of the Shannon diversity index 
and invSimpson (D2) refers to the inverse of the Simpson diversity index. 

Dataset 16S  ITS  

Metrics   

ASVs flagged as contaminates 

“microDecon” adjusted 350 ASVs for 
contamination. “decontam” flagged 

frequency – 117  combination – 340, 
prevalence 13 – 217 ASVs depending 

on threshold. 

“microDecon” adjusted 303 for 
contamination, “decontam” 

flagged frequency – 104 
combination – 251 prevalence 1 – 
77 ASVs depending on threshold. 

Alpha diversity 
(Hills numbers)  

Observed 
(D0) 

236 388 

expShannon 
(D1) 

15.92 28.2 

invSimpson 
(D2) 

10.45 18.03 

Beta diversity 
(Bray-Curtis) 

 Mean 0.86 0.91 

Median 0.91 0.94 

Range 0.21-1 0.25-1 

Standard 
deviation 

0.14 0.1 

Number of ASVs significantly 
differentially abundant (by 
location) 

144 54 

 

 Discussion 
Bacteria and fungi observed were broadly consistent between pipelines and known to be 

environmental microbes or are associated with plants, humans or other animals. Fungal 

genera present were predominantly plant or soil associated, with many wood rotting 

species. Bacterial Pseudomonas, Ralstonia and Methylobacterium spp. and fungal 

Penicillium, Alternaria and Cladosporiudum spp. were consistent with previous bioaerosol 

studies (Barberán et al., 2015; Be et al., 2015; Garcia-Alcega et al., 2020). Chloroplasts were 

commonly observed, presumably from pollen and other plant fragments, and are abundant 

in similar bioaerosol studies (Brodie et al., 2007b; Franzetti et al., 2010; Woo et al., 2013). 

Abundance and type of bacterial and fungal genera varied by location. For instance, Bacillus 

spp., which are frequently present in bioaerosols (Bottos et al., 2014), were interestingly 

only detected at about half of locations sampled. The results from both pipelines appeared 

consistent with previous bioaerosol studies. 
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D.5.1  ASV Inference 
Low biomass is a particular problem for bioaerosol studies (Amato et al., 2019; Pearce et al., 

2016). Therefore, preserving as many reads as possible is invaluable. The higher read counts 

consistently detected by USEARCH due to matching pre-filtering were preferred, since less 

information was lost, and raw read counts should be more accurate. Greater numbers of 

samples completing the pipeline for USEARCH was beneficial, since this provides more data 

to work with. Fewer ASVs were identified in total for USEARCH, but more per sample, such 

that alpha and beta diversities were generally greater than for “Dada2” (Table D-1). Fewer 

ASVs may indicate that USEARCH is missing variants, but it may also mean that “Dada2” is 

detecting spurious ASVs. Greater alpha and beta diversities are likely to be desirable as 

more information should be available to answer the research questions posed. The number 

of ASVs identified as significantly differentially abundant by location was significantly higher 

for USEARCH, suggesting it is likely to be more informative, with the objective in mind for 

this dataset of detecting differences in the aero-microbiome among locations. Consistency 

between pipelines can offer support for the ASVs inferred, or not inferred, and indicate 

whether an ASV might be spurious. USEARCH ASVs appeared to be much more likely to be 

supported by “Dada2” than the inverse. This provided further indications that “Dada2” ASVs 

may be spurious. To shed light on this, read counts identified as ASVs exclusive to “Dada2” 

were compared to those exclusive to USEARCH. Very low abundance ASVs are likely to 

represent sequencing errors or artefacts, although with low biomass data genuine 

singletons are possible (Edgar, 2010). The more common an ASV is, the more likely it is to be 

a true variant. “Dada2” identified 3,766 unique 16S ASVs and just 25 had more than 100 

reads in the entire dataset. A large number of very low abundance sequences made up this 

total. USEARCH identified 663 unique 16S ASVs and 22 of them had more than 100 reads in 

the entire dataset. There were also far fewer very low abundance sequences. ITS showed a 

similar pattern, 29 “Dada2” ASVs had over 500 reads, whereas 40 USEARCH ASVs had over 

500 reads in total. Higher abundance ASVs were identified consistently by both pipelines. 

USEARCH appeared to be a superior choice, as it lost fewer reads, appeared to identify 

fewer extraneous ASVs and a much higher percentage of USEARCH ASVs were supported by 

“Dada2” than the inverse. On some levels the differences are minor, as most later filtering 

would remove all the low abundance sequences from further analysis (or they would be 

unlikely to impact it significantly), but the differences in diversity metrics and differentially 

abundant ASVs are potentially more impactful. This result demonstrates the value of 

assessing different pipelines for the users’ specific NGS datasets, as the recent literature 

typically uses “Dada2” and has moved away from USEARCH on the assumption that newer 

equals better (Archer et al., 2020; Archer et al., 2019; Mhuireach et al., 2020). While 

“Dada2” performs well in test community sequencing trials (Callahan et al., 2016), and is 

easy to implement as part of the R environment (Callahan, 2020), it doesn’t appear to be 

universally superior for all kinds of data. Especially when a biome diverges from the typical 

test community, testing a tool for the data on hand, with the specific research questions in 

mind, is advisable. 
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D.5.2  Taxonomic Assignments
Fewer unassigned ASVs are desirable as more inferences can be made about identified 

ASVs. As with ASV inference, consistency of classification between databases can lend 

support to the taxonomy predicted for an ASV. The trade-off between database size and 

accuracy is problematic (Edgar, 2018). While unassigned ASVs are disadvantageous, 

incorrect assignments are potentially disastrous (Edgar, 2018). Unassigned ASVs is a 

particular problem for fungi (Archer et al., 2020). In this dataset, ITS had up to 71% 

unassigned ASVs, which makes inference about the fungi difficult, but more, potentially 

inaccurate, assignments could lead to the wrong conclusions being drawn (Table D-2). The 

results showed that when more genera are assigned to ASVs, alpha and beta diversity using 

genera generally improve, and any biological signal should be more apparent. Combining 

assignments from both databases was investigated to circumvent the trade-off. When 

information from both databases was used only 23% of 16S and 53% of ITS ASVs remained 

unassigned (Table D-2). The process was fully automated in R to reduce error and it would 

be possible to add information from additional databases if more assignments and certainty 

were desired. With two databases, 12% to 15% more ASVs were assigned depending on 

amplicon, at the same or greater confidence, than in the larger database alone. A combined 

database approach was able to circumvent the trade-off. It performed better than 

classification with either database alone, and provided additional confidence information 

about assignments. All recent bioaerosol studies have only used a single database (Archer et 

al., 2020; Archer et al., 2019; Maki et al., 2017; Mhuireach et al., 2020; Woo et al., 2013), 

while suffering from a lower rate of assignments, particularly for fungi, even while using a 

larger and less accurate database (Archer et al., 2020). A further benefit of multi-database 

use arises as different databases cover different domains of life, for instance SILVA covers all 

three domains of life (Bowers et al., 2013). If a target region amplified is one that is shared 

across multiple domains, it could be beneficial to use multiple specialized databases to 

assign as many sequences accurately as possible, and not have to default to using the 

database that covers all the relevant domains. Even without using multiple databases, 

having an understanding of the differences in the taxonomic output when different 

databases are used is valuable to inform the subsequent discussion of results, and 

confidence placed in taxonomic conclusions, which is not the approach taken in the current 

literature (Archer et al., 2020; Archer et al., 2019; Maki et al., 2017; Mhuireach et al., 2020; 

Woo et al., 2013). Use, or at least consideration of, information in different taxonomic 

databases is suggested, as it is clear from this result that database choice can substantially 

alter taxonomic inference. 

D.5.3  Decontamination
ITS data were less contaminated overall, which is consistent with other studies (McKnight et 

al., 2019). ASVs identified by each approach were compared to understand the degree of 

differentiation between whole ASV deletion (“decontam”) or background contamination 

deduction (“microDecon”) approaches. At a higher level, the number of ASVs identified as 

potential contaminants with each tool (“microDecon” and the combination method in 

“decontam”) was similar (Table D-3). Common ASVs, such as Ralstonia spp., were partially 

removed by “microDecon” and flagged as potential contaminants by “decontam”. These 
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ASVs appeared to be both genuine contaminants and genuine constituents of the bioaerosol 

population (Waugh, Granger, & Gaggar, 2010). This supports the subtraction approach in 

“microDecon”, as opposed to the whole ASV deletion with “decontam” for use with this 

dataset. There was no evidence that “microDecon” had missed contaminant ASVs. All 

contaminant ASVs per “decontam” with over 400 reads in the whole dataset were adjusted 

by “microDecon”, suggesting that no ASV deletion was required after processing with 

“microDecon”.  

This conclusion was further tested by considering the two different types of controls 

that were used. Sampling controls went through the entire process and should therefore 

identify environmental and laboratory contamination. Laboratory controls (unused filters 

which went through the described protocols from DNA extraction onwards) should identify 

contaminating ASVs which were not present in the sampled environment. These ASVs were 

likely to entirely be contaminants and should therefore be deleted from the data, rather 

than partially subtracted. Very few ASVs in each dataset were definitive laboratory 

contaminants according to “decontam”. Of the few identified, they were either totally 

removed by “microDecon” or had under 100 total reads remaining in the whole dataset 

after correction. Decontamination with “microDecon” alone is likely to be the superior 

approach for these data, due to the cross-over between contaminating ASVs and legitimate 

members of the bioaerosol community and no evidence of “microDecon” omitting 

important contaminants. The large numbers of controls used in this study, of the two types 

(laboratory and sampling) proved useful in both packages for robustly identifying potential 

contaminating sequences, and this procedure is recommended (Davis et al., 2018; McKnight 

et al., 2019), particularly for the aero-microbiome or similar, where the ratio of legitimate to 

contaminating sequences is likely to be higher than other biomes. While ASVs were 

consistently identified by each package, the output ASV tables could be very different if a 

high abundance sequence was flagged as a contaminant and totally deleted (“decontam”) 

verses being partially a contaminant so that ASV was only partly adjusted (“microDecon”). 

Instances of this occurrence were seen in the test data used here. Therefore, these results 

indicate that consideration of the decontamination removal in NGS data is important and 

can have a large impact on the reported results and conclusions drawn. This difference is 

particularly marked in situations where ASVs could be both contaminants and community 

members, and where contaminants are prevalent. Background subtraction does not appear 

to be considered in the existing literature for bioaerosols, with solely the use of “decontam” 

appearing to be the dominant approach (Archer et al., 2020; Archer et al., 2019; Maki et al., 

2017; Mhuireach et al., 2020; Woo et al., 2013). This work highlights the value of 

considering contamination correction with reference to the nature of the data set and 

research questions posed of it. 

 Conclusions 
While metagenomics and transcriptomics approaches have recently been applied to 

bioaerosol communities, single amplicon NGS remains the most common method used to 

interrogate these communities. Therefore, consideration of the process chosen to analyse 

single amplicon NGS data is pertinent. This study has demonstrated a methodical approach 
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to selecting an optimized bioinformatics pipeline from a plethora of available options. 

Further, it has confirmed that bioinformatic data processing choices can make substantial 

differences in the ASV table and the taxonomy produced from 16S and ITS NGS data. Key 

differences were in the number of reads, ASVs inferred and ASVs remaining after 

decontamination. However, at a high level, datasets processed with varying combinations of 

approaches showed similar high abundance ASVs and taxonomic assignments. Microbiome 

datasets are very hard to verify, especially for poorly characterised environments like air. 

The utility of comparison of different approaches to sense check aero-microbiome sequence 

data was demonstrated. Explicit consideration of optimal approaches and use of multiple 

taxonomic databases, for example, were not noted in bioaerosol literature reviewed. Here, 

a process is laid out that researchers can step through and use to develop their own 

protocol, which is justified by the use of the statistics and comparisons. 

D.6.1  Recommendations 
This study shows that understanding the characteristics of the dataset to be analysed and 

choosing a bioinformatics approach using a systematic procedure is crucial for generating a 

high-quality dataset. For bioaerosol data, in particular, it is important to have large numbers 

of negative controls, with different types of controls at different times during sample 

collection and processing. Stringent laboratory practices are advised to reduce 

contamination and allow easier identification of contaminating reads in data. Comparing a 

wide variety of diversity metrics and outputs from multiple bioinformatics pipelines for the 

relevant dataset in a systematic way is recommended. 
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Appendix E. Supplementary Information 
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 Chapter 2 Supplementary Information 

E.1.1  NMDS Ordination for 16S
a) 

b) 

Figure E-1 - NMDS ordination of the a) 16S dimensions one and three and b) 16S 
dimensions two and three of the Aitchison distances among samples. Season is indicated 
by ellipses representing the t distribution of the autumn and winter points. Locations are 
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denoted by colour and each sample is numbered with the trajectory cluster to which it 
belongs. 
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E.1.2  NMDS Ordination for ITS 
a) 

  

b) 

  

Figure E-2 - NMDS ordination of the a) ITS dimensions 1 and 3 and b) ITS dimensions 2 and 
3 of the Aitchison distances among samples. Season is indicated by ellipses representing 
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the t distribution of the autumn and winter points. Locations are denoted by colour and 
each sample is numbered with the trajectory cluster to which it belongs. 
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E.1.3  Results from Non-Compositional Data Analysis 
Comparison of Wind Back-Trajectory Effect to a Non-Compositional Dataset 

a) 

  

b) 
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c) 

  

d) 

 

Figure E-3 - db-RDA with variance partitioning for one day, three day and one-week back 
trajectories for 16S. a) uses Bray-Curtis dissimilarities, b) uses richness data, measured by 
Hill D0 or raw diversity, c) uses Hill number D1 and d) uses Hill number D2. The Bray Curtis 
metrics were calculated based on the filtered ASV table. The Hill numbers were based on 
the unfiltered data, given the need to account for rare species which would be disrupted 
by the filtering applied. These non-compositional analyses indicate that three-day wind 
has the greater predictive value of the bioaerosol community for 16S. The frequency of 
shared variation, however, also indicates that multiple trajectory lengths have a similar 
predictive value. 
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a) 

  

b) 
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c) 

d) 

Figure E-4 - db-RDA with variance partitioning for one day, three day and one-week back 
trajectories for ITS. a) uses Bray-Curtis dissimilarities, b) uses richness data, measured by 
Hill D0 or raw diversity, c) uses Hill number D1 and d) uses Hill number D2. The Bray Curtis 
metrics were calculated based on the filtered ASV table. The Hill numbers were based on 
the unfiltered data, given the need to account for rare species which would be disrupted 
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by the filtering applied. For ITS one-day wind has the highest R2 value in comparison to the 
other trajectory lengths in almost all the analyses. As with 16S there was frequent shared 
variation, demonstrating the predictive potential of multiple trajectory lengths. Both 
amplicon’s results from non-compositional and compositional tools are broadly similar. 
For ITS an optimal trajectory length of one day is supported. For 16S non-compositional 
tools suggested that three-day trajectory could be better for predicting bioaerosol 
communities, whereas compositional tools suggested that one-day trajectories were 
superior. These results generally suggest that either one or three-day length trajectories 
would be reasonable predictors for bioaerosol communities. 
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Non-Compositional NMDS Ordination 

a) 

 

b) 

 

Figure E-5 - NMDS ordination of BC dissimilarities on a filtered Hellinger transformed ASV 
table for a) 16S and b) ITS. Seasons were indicated by an ellipse based on the t distribution 
of the summer and winter points. Colour of the points denotes the location and the 
number next to each point indicates which trajectory cluster it belongs to. The non-
compositional analyses showed generally reduced levels of clustering in comparison to 
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compositional tools, with quite substantial variation in the location of individual points. 
Seasonal patterns remained evident. ITS appeared to be more clumped than its 
compositional equivalent, while 16S was less clumped. It was necessary to apply a 
Hellinger transformation before generating BC distances in order to resolve a large degree 
of clumping which was present with BC distances alone. No additional transformations 
were required with the Aitchison distance matrix. Both non-compositional analyses are 
generally consistent with the results of the compositional tools, supporting the 
importance of season, location and trajectory cluster. 
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Non-Compositional db-RDA with Variance Partitioning 

a) 

 

b) 

 

Figure E-6 - BC distance-based redundancy analysis with variance partitioning of the 
filtered ASV table for a) 16S and b) ITS. Season, location, and one-day wind source are 
consistently estimated to have comparatively high R2 values for both amplicons, in broad 
agreement with compositional methods. As with the compositional methods the ITS 
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model has greater predictive power, and lower overall residuals (unexplained variation). 
While the importance of seasonality was less apparent with compositional methods for 
16S, it has a comparatively high R2 in this analysis. 
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a) 

  

b) 

 

Figure E-7 - Jaccard distance-based redundancy analysis with variance partitioning of the 
filtered ASV table for a) 16S and b) ITS. Season, location, and one-day wind source 
consistently have comparatively high R2 values for both amplicons, in broad agreement 
with the previous non-compositional and compositional methods presented. As with the 
compositional methods the ITS model has greater predictive power, and lower overall 
residuals (unexplained variation). While the importance of seasonality was less apparent 
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with compositional methods for 16S, it had a comparatively high R2 in the Jaccard based 
analysis. 
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No Evidence of Distance-Dissimilarity from Non-Compositional Analysis 

a) 

  

b) 

 

Figure E-8 - Distance-dissimilarity plots for a) 16S and b) ITS of BC distances calculated 
from the filtered ASV table against Euclidean spatial distances. In agreement with 
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compositional methods, non-compositional based distance-dissimilarity is not apparent 
for either bacteria or fungi across the distances sampled. 
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 Chapter 3 Supplementary Information 

E.2.1  NMDS Ordination for 16S 
a) 

 

b) 
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Figure E-9 - NMDS ordination of the a) 16S dimensions one and three and b) 16S 
dimensions two and three of the Aitchison distances among samples. The study year is 
indicated by ellipses representing the t distribution of the year one and year two points. 
Days in circle degrees are indicated by the gradient colour. 
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 Chapter 4 Supplementary Information 

E.3.1  NMDS Ordination for Antarctica 16S 
a) 

 

b) 

 

Figure E-10 - NMDS ordination of the a) 16S dimensions one and three and b) 16S 
dimensions two and three of the Aitchison distances among samples. The back-trajectory 
cluster is indicated by ellipses representing the t distribution of the points relating to each 
cluster. Hours are indicated by the gradient colour, sampling day is indicated by shape. 
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E.3.2  NMDS Ordination for Antarctica ITS
a) 

b) 

Figure E-11 - NMDS ordination of the a) ITS dimensions one and three or b) ITS dimensions 
two and three of the Aitchison distances among samples. The back-trajectory cluster is 
indicated by ellipses representing the t distribution of the points relating to each cluster. 
Hours are indicated by the gradient colour, sampling day is indicated by shape. 
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