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Abstract

Deep convolutional neural networks are state-of-the-art for image classification and

significant strides have been made to improve neural network model performance

which can now even outperform human-level abilities. However, these gains have

been achieved through increased model depths and rigorous specialized manual fine-

tuning of model HyperParameters (HPs). These strategies cause considerable over-

parameterization and elevated complexity in Convolutional Neural Network (CNN)

model training. Training over-parameterized CNN models tend to induce afflictions

like overfitting, increased sensitivity to noise and decreased generalization ability

which contribute to deterioration of model performance. Furthermore, training over-

parameterized CNN models require specialized regimes and vast computing power

subsequently increasing the complexity and difficulty of training.

In this thesis, we develop several novel entropy-based techniques to abate the

effects of over-parameterization, reduce the number of manually tuned HPs, increase

generalization ability and, enhance performance of CNN models. Specifically, we

examine information propagation and feature extraction/generation & representation in

CNNs. Armed with this knowledge, we develop a heuristic and several optimization

strategies to simplify model training and improve model performance by addressing the

problem of over-parameterization in CNNs. We cultivate the techniques in this thesis

utilizing quantitative metrics such as Shannon’s Entropy (SE), Maximum Entropy (ME)

and Signal-to-Noise (SNR) ratio.
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Our methodology involves a multi-faceted approach of incorporating iterative and

continuous integration of quantitatively defined feedback loops which allows us to

test numerous research hypotheses efficiently using the design science research frame-

work. We start off by exploring and understanding the hierarchical feature extraction

& representational capabilities of CNNs. Through our experimentation we were able

to explore the sparsity of feature representations and analyze the underlying learning

mechanisms in CNNs for non-convex optimization problems such as image classifica-

tion. Equipped with this knowledge, we were able to experimentally demonstrate and

validate the notion that for low and high quality input data (determined through ME and

SNR measures) using deeper and shallower networks could lead to the phenomena of

information underflow and overflow respectively, degrading classification performance.

To mitigate the negative effects of information underflow and overflow in the context

of kernel saturation, we propose and evaluate a novel hypothesis of augmenting the

data distribution of the input dataset with negative images. Our experimental results

generated a classification accuracy increase of 3-7% on various datasets. One of the

limitations argued against the validity of our novel augmentation was model training

time, in particular, models require large amounts of computing power and time to train.

In order to address these criticisms, we theorize a SE-based heuristic to resolve the

problem of over-parameterization by forcing feature abstractions in the convolutional

layers up to its theoretic limit as defined by their SE measure. The SE-based model

trained 45.22% faster without compromising classification accuracy when compared

to deeper models. Further arguments were posed relating to model training afflictions

such as overfitting and generalizability.

To mitigate the speculations raised around model training afflictions such as overfit-

ting and generalizability in deep CNN models, we introduce a Maximum Entropy-based

Learning raTE enhanceR (MELTER), to dynamically schedule and adapt model learn-

ing during training, and a Maximum Categorical Cross-Entropy (MCCE) loss function
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derived from the commonly used Categorical Cross-Entropy (CCE) loss function, to

reduce model overfitting. MELTER and MCCE utilize a priori knowledge of the input

data to curtail a few risks encountered during model training which affect performance

such as, sensitivity to random noise, overfitting to the training data and lack of gener-

alizability to new unseen data. To this extent, MELTER outperforms manually tuned

models by 2-6% on various benchmarking datasets by exploring a larger solution space.

MCCE-trained models showed a reduction in overfitting by up to 5.4% and outperform

Categorical Cross-Entropy (CCE) trained models in terms of classification accuracy by

up to 6.17% on two facial (ethnicity) recognition datasets, colorFERET and UTKFace,

along with standard benchmarking datasets such as CIFAR-10 and MNIST.

Through these series of experiments, we can conclude that, entropy-based optimiza-

tion strategies for tuning HPs of deep learning models are viable and either maintain

or outperform baseline classification accuracies achieved by networks trained using

traditional methods. Furthermore, the entropy-based optimization methods outlined

in this thesis also mitigate several well-known training afflictions such as overfitting,

lack of generalizability and rate of convergence while eliminating manual fine-tuning

of HPs.
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Chapter 1

Introduction

In the late 20th century, an epochal and expeditious shift from an era shaped by the

Industrial Revolution to economies based largely upon information technology was

witnessed. The computer/digital/information age as it is referred to, relies primarily on

a knowledge economy that rewards critical thinking and problem solving to generate

economic value. Since the advent of the first micro-processors in 1971 and fuelled

by modern inventions such as the fiber-optic cable and the internet, we generate an

estimated 2.5 quintillion bytes of digital data per year (Marr, 2018). Analyzing this

stored data is beneficial for numerous real-world applications, such as marketing, enhan-

cing industrial and commercial processes, demand forecasting, improving healthcare

services and broadening the reach of educational courses. These are just a few areas

where Big-Data analysis is valuable. However, the predominant challenge in exploiting

Big-Data to provide advantageous business insights is the need for complex processing

in specific application domains.

Recent trends in technological innovation extensively relies on automating the

process of analyzing digital data using complex computer algorithms. Traditional ap-

proaches using statistical analyses or signal processing are incapable of accommodating

such large amounts of data (D. J. Becker et al., 1995) and lack adequate information

16



Chapter 1. Introduction 17

extraction capabilities (Wiatowski & Bölcskei, 2018). Therefore, to quote Marshall

McLuhan (McLuhan & Gordon, 2013),

‘Faced with information overload, we have no alternative but pattern recognition.’

Writing a pattern recognition algorithm for computers is especially challenging

since the underlying patterns in digital data are indistinct and unnoticeable using

traditional techniques. Humans are especially proficient in pattern recognition and in

some instances going so far as to decipher patterns in random noise. To quote Michael

Shermer (Shermer, 2011),

‘Humans evolved brains that are pattern recognition machines, adept at detecting

signals that enhance or threaten survival amid a very noisy world, but there is only one

surefire method of proper pattern recognition, and that is science.’

Collectively, humans can help analyze the vast amount of data generated, as evid-

enced by the Amazon Mechanical Turk project where digital images are manually

annotated by humans, but this process is financially infeasible. Enabling computers to

learn patterns from a given set of digital data through the use of learning algorithms can

help with the economic feasibility of analyzing data.

Over the past decade, through the utilization of increased high-compute infra-

structure (primarily Graphics Processing Units (GPUs)), availability of Big-Data and

development of novel machine learning algorithms, the world has witnessed an explo-

sion in applications of machine learning pattern recognition systems (Ardakani, Condo,

Ahmadi & Gross, 2018). Law enforcement, social networking websites, internet search

engines, weather predictions, disaster mitigation and credit scoring systems all deploy

some form of machine learning. The task of digital image classification/recognition is

widely used in disciplines such as facial detection, medical diagnoses and automotive

driving-automation systems which have huge social, economic and cultural significance.

The implementation of machine learning algorithms for these diverse set of application

domains has led to the acceleration in complexity of machine learning algorithms.
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Continuous increments in the complexity of machine learning algorithms and models

has led to a real-world problem of exponentially growing computational requirements.

The complexity of algorithms is a function of the input data presented to the algorithms.

As applications of machine learning models become increasingly varied and complic-

ated, a subsequent growth in the complexity of the machine learning algorithms and

models is required to satisfactorily identify any implicit patterns in the data. Compu-

tational overhead is the penalty and trade-off for analyzing progressively increasing

complex data. Compression methods can help alleviate such trade-offs using tried

and tested mathematical techniques (Shannon, Weaver & Burks, 1951), but they are

imprecise and could result in undesired information losses. Active research is being

undertaken in exploring alternate techniques for big-data processing.

Entropy can help distinguish useful information from random noise (Donoho, John-

stone, Stern & Hoch, 1990), which is critical for successful signal processing (Gull &

Skilling, 1984). Furthermore, different entropy measures such as Shannon’s Entropy

(SE) (Shannon et al., 1951) and Maximum Entropy (ME) (Petrovici, Damian & Coltuc,

2018) are used in various applications to determine the theoretical limit for digital

compression and signal reconstruction (Tsai, Lee & Matsuyama, 2008) respectively.

ME is especially useful to reconstruct signal information from lossy sources (Macqueen

& Marschak, 1975), or as a monitoring function to correct variational drifts in data

(Rathore, Kumar, Rajasegarar & Palaniswami, 2017) warranting its application across

diverse domains. In this thesis, we primarily focus and constrain our research to

explore how SE and ME measures can be utilized to improve machine learning

pattern recognition.
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1.1 Overview of the Research Domain

Taking inspiration from the human brain which is especially proficient in pattern recog-

nition, mathematical abstractions of biological neurons and their neural connections

paved the way for a new computing paradigm, dubbed Artificial Neural Networks

(ANNs) illustrated in Figure 2.1. ANNs have enabled rapid progress to be made in the

field of pattern recognition and gave rise to the current state-of-the-art Neural Networks

for computer vision using convolution operations (or simply, Convolutional Neural

Networks (CNNs)), illustrated in Figure 2.2 and explained thoroughly in Chapter 2.

Leading CNN architectures and models outperform even human-level image recognition

ability (LeCun, Bengio & Hinton, 2015).

Although state-of-the-art CNN models can outperform human-level abilities in

image recognition, they have numerous limitations, such as misclassification, general-

ization errors (where the network cannot accurately identify new unseen images) and

overfitting (where the network performance is significantly reduced for slight variances

in the underlying dataset data distribution in the same set of image classes). Such

limitations are addressed in this thesis, but it is imperative that we look at a high-level

overview of the domain.

Challenges: Images are encoded in arrays of brightness intensities as pixels, which

range from a few hundred to millions of pixels in an image. Machine learning algorithms

need to analyze, transform and interpret patterns inside these arrays of brightness

intensities to generate high-level semantic concepts to recognize images such as dogs or

cats. The problem becomes more complex when similar patterns form part of the same

high-level semantic concepts (as an example, let’s say a feature, tail is part of a dog and

cat). In these instances, fine-grained hierarchical features are needed (as an example,

the fur, shape or size of the tail, might help distinguish the two classes). High-level

semantic information can be obtained by combining multiple learning layers making
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the model ‘deep’.

Progress: There has been encouraging progress in the area of computer vision with

state-of-the-art deep CNN architectures such as Residual Networks (ResNets) (K. He et

al., 2016), aggregated residual transformations (ResNeXt) (Xie, Girshick, Dollár, Tu

& He, 2017) and densely connected convolutional networks (DenseNets) (Huang et

al., 2017) (discussed in Section 2.3.1) maintaining or even outperforming human-level

abilities in classification tasks.

Unresolved challenges: Although there has been rapid progress in the field of

computer vision, there are a few drawbacks that persist. Current CNN architectures

are highly susceptible to structural noise and sensitive to the data distributions of the

input dataset. CNN models are sparse in their feature representations and due to their

sparsity, exploration of larger parameter spaces is required, adding to the immense

computational power demanded for model training. Furthermore, manual optimization

of HyperParameters, such as the model learning rate, is both time consuming and

can lead to convergence issues for improper configurations. Finally, all CNN models

suffer from overfitting on the training dataset to a certain degree which could become

problematic for unrefined tasks on complex datasets such as ethnicity detection on facial

datasets, where a propensity for misclassification is greatly induced. To test our novel

hypotheses we restrict the scope of evaluation on a limited set of datasets, which are

selected for their representational characteristics for various application domains.

Datasets: Several standard image benchmarking datasets have been collated and are

used to measure relative performance improvements for machine learning algorithms. In

this thesis, we primarily utilize three types of benchmarking datasets, namely character

recognition, natural image recognition and facial (race/ethnicity) recognition. The

MNIST dataset is a modified version of all available documents (to include only numbers

from 0-9) sourced from the National Institute of Standards and Technology (NIST) used

for handwritten character recognition. Various natural image datasets (CIFAR-10/100,
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STL-10 and ImageNet32) are employed for image classification which include natural

images of cats, dogs, automobiles and so on. Finally, two facial recognition datasets

(UTKFace and colorFERET) are used for ethnicity recognition. The datasets used for

each set of experiments are included in individual chapters addressing unresolved issues

such as sensitivity to structural noise and data distributions (Chapters 3 - 4), sparse

feature representations (Chapter 5), optimization of HyperParameters (Chapter 6) and

reducing the tendency of CNN models to overfit on the training data (Chapter 7).

1.2 Motivation

The rapid progress in CNN model performance has been achieved through increasingly

complex architectures and training regimes. The trade-off from this attrition-based

approach on increasing performance is that the barriers for entry into deep learning

research are getting higher and harder to reach. Research publications in top-tier confer-

ences and practice is increasingly becoming a function of access to adequate computing

and data resources along with narrower domain expertise which are progressively being

concentrated into a few research institutions and high-technology companies. The

research in this thesis was born out of necessity as our access to large computing

infrastructures was severely limited. Therefore, the research in this thesis sought to

exploit the opportunity to reduce the computational burden required for CNN model

training. In our endeavor to reduce computational resources required for model training,

we explore and propose several CNN optimization techniques using entropy (SE and

ME) as the cornerstone for our research. To quote Albert Einstein (Einstein, 1933),

‘It can scarcely be denied that the supreme goal of all theory is to make the irredu-

cible basic elements as simple and as few as possible without having to surrender the

adequate representation of a single datum of experience.’
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The question now resolves into, how can CNN models be optimized without com-

promising representational/learning capacity? Using entropy measures is quite intuitive

since Shannon and Maximum Entropy measures quantitatively determine the theoretical

compression limits in digital systems and the total amount of information in a given

series of data respectively. Using apriori knowledge of these entropy measures, we

employ ME-based monitoring functions to enhance CNN model training, which is both

logically and mathematically sound. To quote Stephen Hawking (Hawking, 2009),

‘Just like a computer, we must remember things in the order in which entropy

increases. This makes the second law of thermodynamics almost trivial. Disorder

increases with time because we measure time in the direction in which disorder increases.

You can’t have a safer bet than that!’

Therefore, the core premise for our research is to answer the following underlying

question: how could entropy measures, specifically Shannon and Maximum entropy,

be utilized to optimize CNN model training?. This high-level research question can

be deconstructed to investigate several lower-level issues in the domain of computer

vision. The topics for examination in this thesis addresses how entropy measures

could be utilized to enhance classification performance, decrease model training times,

accelerate the rates of convergence and reduce overfitting without adversely impacting

model performance. Our research methodology involves a multi-faceted approach

incorporating an iterative and continuous integration of quantitatively driven feedback

loops, which allows us to test numerous research hypotheses efficiently using the design

science research framework. Detailed descriptions of the experimental design and CNN

model HyperParameters (HPs) are included in each of the individual experimental

chapters (i.e. Chapters 3-7).
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1.3 Contributions and Thesis Outline

Through this thesis, we contribute to the body of knowledge several CNN optimization

techniques/strategies/methods that address some of the persistent challenges of current

CNN models, detailed as follows:

In Chapter 2, we provide a mathematical foundation for pattern recognition using

deep learning. We introduce early Artificial Neural Networks (ANNs) and describe

model loss calculation for classification tasks. We also discuss high-level optimization

paradigms using first order derivatives, Stochastic Gradient Descent (SGD) and Back-

Propagation (BP) algorithms for non-convex optimization problems such as image

classification. We then introduce regularization and normalization methods to help

improve model performance. We examine the benefits and drawbacks of Convolutional

Neural Networks (CNNs), analyze their high classification performance and conclude

by reviewing several state-of-the-art deep CNN architectures.

In Chapter 3, we quantitatively examine the feature extraction and information

propagation properties of CNNs using two metrics, Maximum Entropy (ME) and Signal-

to-Noise Ratio (SNR). Using ME and SNR measures, we identify two characteristic

phenomena (information overflow and underflow) that affect classification performance.

CNN models are able to extract only a certain degree of information and if the extracted

feature information is lower or higher than the input dataset it can lead to inaccurate

model convergence. The two key takeaway points in this chapter are that high SNR and

ME measures help in information propagation within the hidden layers and as such a

CNN model’s size should be tailored to the input dataset.

In Chapter 4, we examine the relatively unexplored phenomenon of kernel saturation

in the convolutional block of a CNN model. Kernel saturation is well understood for

ANNs but remains largely unstudied for convolutional kernels. We utilize the same ME

and SNR metrics to quantify and mathematically hypothesize that augmenting standard
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datasets with structurally and semantically similar negative images will help mitigate

the effect of kernel saturation on classification accuracy. This chapter strengthens the

findings presented in Chapter 3.

In Chapter 5, we explore CNN model over-parameterization and specifically in-

vestigate the sparsity of feature extraction in CNNs. We propose a heuristic based on

Shannon’s Entropy (SE) measure to force feature abstraction and artificially compress

the solution space. Restricting unnecessary exploration of the search space should signi-

ficantly decrease model training time and increase model convergence efficiency. This

chapter further strengthens the findings presented in Chapter 3 along with providing

insights into the relative sparsity of the network, suggesting further optimization might

be warranted.

In Chapter 6, we propose an automatic entropy-based inner-loop optimization of

CNN models, specifically the learning rate HyperParameter (HP). Our novel automatic

optimization increases the rate of model convergence and delivers a more efficient

exploration of the search space using the ME and SNR metrics. This chapter presents

evidence to suggest that CNN models do not undertake a complete exploration of the

solution space and thus indicates CNN models might not generalize well for datasets

where the underlying data distributions do not represent a rich feature set, strengthening

the findings presented in Chapter 5.

In Chapter 7, we propose a novel L2 regularization term based on ME measures

as a noise-robust technique to the commonly used Categorical Cross-Entropy (CCE)

loss function to enhance model performance and mitigate overfitting. We hypothesize

and verify that the CCE loss function is highly susceptible to structural noise in the

input data. This Chapter addresses one of the main challenges faced through all of the

previous optimizations proposed in the previous chapters (Chapters 3 - 6)

Finally, in Chapter 8, we conclude the thesis, we identify limitations in our experi-

mental study and discuss potential areas for future contributions.
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Background

A summary list of notations adopted in this thesis is provided in Appendix A along

with hyperlinks to access the source code.

2.1 Deep Learning

Most deep learning tasks involve mapping a function f ∶ X → Y , where X is the input

space and Y is the output space. In computer vision tasks like image classification,

the input space X is complex, comprised of n number of d-dimensional input vectors

i.e. digital images which can be represented in the form X = {x1,x2,⋯,xn} where

xi = ⟨x1
i , x

2
i ,⋯, xdi ⟩∣x

j
i ∈ X and i, j ∈ Z>0 (Maiorov, 2006). The output space Y is

the probability interval from [0,1] for an input image vector xi which classifies the

input image. Simplified, X is the input dataset with n number of d-dimensional input

images i.e. x1−d
1−n with a corresponding class label y1−n ∈ Y , i is the index referring to

any individual image in X∣i ∈ Z>0. This thesis is constrained to supervised learning

where each input vector xi has an associated label yi such that, (xi, yi) ∈ X × Y

i.e. the input dataset consists of n number of images with associated class labels

{(x1, y1), (x2, y2),⋯, (xn, yn)}.

25
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In most cases specifying the function f linearly is improbable using conventional

methods due to the high-dimensional interpolated characteristics of the input data space.

It is relatively easy to obtain samples of data which can be annotated by humans with

corresponding class labels enabling an approximation (f̂ ) of the function f . Adopting

the standard probabilistic assumption (Goodfellow, Bengio & Courville, 2016) that

there exists an underlying data distribution D over the collection of labelled input data

{X, Y }∣{xi, yi} ∼ D ∀i ∈ Z>0, the approximated function, f̂ would be the learned

representation of the mapping f ∶ X → Y . Furthermore, {xi, yi} are all identical and

independently distributed data samples generated from a distribution D.

In an ideal scenario where the input space can be linearly separated, f̂ would have

learned the underlying representation of the mapping f ∶ X → Y . Due to the complexity

involved in learning the mapping of high-dimensional interpolated input data, the

predicted class label ŷi could be different to the ground truth class label yi for an input

image xi∣{xi, yi} ∈ {X × Y }. A loss function L(Ŷ , Y ) quantifies the average error in

classification for the collection of n input samples.

The primary objective of deep learning is to minimize the loss function such that f̂

is a close approximation to the underlying representation of the mapping f ∶ X → Y .

Once a close approximation is achieved, the training data samples can be disregarded

and the learned function f̂ can be used to predict mapping of new sample data. Note that

the search space for f can possibly be only a subset of all possible classes of functions

F that maps X → Y ∣f ∈ F . In a very simple scenario, F could just be y =mx + c, an

equation for a straight line. The approximation of f̂ is over F and not f , therefore the

general average loss function for deep learning can be given as Equation 2.1 (Karpathy,

2016).

f̂ ≈min
f∈F

1

n

n

∑
i=1

L(f(xi), yi) (2.1)
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2.1.1 Difficulty in Functional Approximation

Functional Regularization

Optimizing Equation 2.1 is theoretically non-linear and challenging; consider a simple

solution where the function f maps xi to its corresponding yi and zero in all other

instances, achieving a minimum regret in terms of the loss function L. While this

solution might be acceptable, it is highly ungeneralizable and would produce a high loss

for any sample data that is not represented byD. In other words, an additional parameter

(regularization) is needed in Equation 2.1 to account for optimizing f regardless of the

fact that some functions in F might not fit the training data D. Regularization can be

achieved by introducing a scalar-valued function R(f), which can limit overfitting to

the training set, Equation 2.1 can be rewritten using R(f) as Equation 2.2.

f̂ ≈min
f∈F

1

n

n

∑
i=1

L(f(xi), yi) +R(f) (2.2)

The Bias-Variance Trade-off

Belkin, Hsu, Ma and Mandal (2019) present the Bias-Variance Trade-off for functional

approximation. The authors assert that, functional approximation f̂ for a function f

mapping an input space X to an output space Y where xi, yi ∈ X, Y &i ∈ Z>0 should be

rich enough to express the underlying structural information in the data yet, be simple

enough to avoid approximating spurious patterns. In other words, f̂ should not underfit

or overfit f for a given input X. Further discussion around the Bias-Variance Trade-off

from a neural network perspective is presented in Section 2.2.3.

The Role of Noise in Functional Approximation

The complexity of determining accurate approximations of f̂ for f is further compoun-

ded by the fact that, if there is insufficient information on the structure or topology of X
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then, constructing accurate approximations of f̂ fails for even binary representations

of Y (Shwartz-Ziv & Tishby, 2017). This lack of approximation is due to invariance

of information measures to invertible transformations such that, distinguishing low

complexity classes from high complexity classes comes at a high cost (Moshkovitz &

Tishby, 2017).

A simple solution to the aforementioned problem is to introduce a small amount of

noise such that the function f can be approximated using stochastic methods. Discus-

sions around noise and information measures are discussed throughout the thesis and

more specifically in Chapters 3-4.

2.1.2 Neural Networks (NNs)

Evaluating f̂(X) outputs a predicted class label Y , which is a vector of all class posterior

probabilities for each input xi ∈ X. As f is non-linear due to the high-dimensional input

space, closer approximations to f can be achieved by reducing the dimensionality of

the input space such that it can be linearly separated. In lack of any a priori knowledge

of the structure of X, repeated multiplication of matrices and introducing element-wise

non-linearities can help in linear separation (X. Zhang et al., 2019).

In Figure 2.1, for any given d-dimensional input image xi ∈ X, the output yi ∈ Y is a

vector of class posterior probabilities in the interval [0,1], i.e. f(xi) = σ(Wxi). W is the

weight matrix for the neural connections and σ is an element-wise non-linearity such as

a Rectified Linear Unit (ReLU) which is of the form max(0,xi). Other non-linearities

include sigmoid, which is of the form 1/1+e−xi and tanh of the form, tanh = sinh(X) /

cosh(X) = (eX - e−X) / (eX + e−X).

Utilizing additional hidden layers in a NN increases its representational/learning

capacity and enables the network to expand on its exploration of the search space thus

a narrower convergence in the solution space. A two-hidden layer NN would have an
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Figure 2.1: Illustration of a single hidden layer Neural Network (NN), adopted from
(X. Zhang et al., 2019)

effective functional representation capacity as defined by f(xi) = W2σ(W1xi) and a

three-hidden layer NN f(xi) = W3σ(W2σ(W1xi))∣Wi ∈ W (layer weights).

2.1.3 Classification

Instead of assigning continuous scalar-values for each input; in a classification task, the

values are discretized into a single class from all available classes. As an example, take

the binary classification problem of classifying images of dogs and cats. The output

of f will be a 2-dimensional vector for which the class posterior probabilities can be

computed. The output of f is dependent on the values of K and χ, where K is the

number of classes and χ is the number of neurons in a hidden layer of a NN. In other

words, χi(hi) is the number of neurons for a given hidden layer hi where, i is the index

for any hidden layer in the total number of hidden layers H where, hi−H ∈H;χiinχ.

A softmax function is commonly used to calculate the required probability distri-

butions (Goodfellow et al., 2016). The softmax function takes a vector input α and

outputs a vector of the same size β, where βi = eαi/∑Kj=1 e
αj ∣αi;βi ∈ α;β. The output
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vector β for the input vector α is normalized such that the logits are in the interval of

[0,1] and sum to 1. In our binary classification example, say for an input image xi the

softmax outputs are ([0.8,0.2]) i.e. an 80% confidence that the input image contains a

dog. Using a threshold function the softmax output can be reduced down to a one-hot

encoded vector of yi = [1,0].

2.1.4 Categorical Cross-Entropy (CCE) Loss

The most commonly used loss function is the Categorical Cross-Entropy (CCE) loss

given in Equation (2.3), which is a measure of difference between the probability

distributions of one-hot encoded CNN computed class labels and ground truths. CNN

classification uses a softmax function to calculate the required probability distributions

(Goodfellow et al., 2016).

E(p, q) =
n

∑
i=1

= p(xi) log q(xi) Where,xi ∈ X (2.3)

In Equation (2.3), q(xi) and p(xi) represent the probability distributions of the

one-hot encoded CNN predicted class labels and ground truths respectively for an input

data vector xi.

2.1.5 Summary

Supervised deep learning involves approximating the functional representation f̂ of an

underlying mapping function f ∶ X→ Y , where X is the input space and Y is the output

space for a given collection of n, d-dimensional input vectors where, X = {x1,x2,⋯,xn}.

The search space for approximation of f̂ is the problem space of F , where each

f ∈ F ∣F ∶ X→ Y implying f̂ ∶ X→ Y . A loss function L(ŷ, y) quantifies the error in the

ground truth class labels Y and predicted class labels Ŷ = f̂(X). Closer approximations

of f is dependent on the total number of classes K and the number of neurons d′ in the
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hidden layer hi. The total number of hidden layers is denoted as H and each specific

hidden layer is indexed using hi i.e. the first hidden layer after the input layer in a NN

2.2 Optimization

The aim of any supervised deep learning task is to optimize a function f̂ which is the

functional representation obtained by exploring the search space for a problem space F

that can accurately capture an underlying mapping of a function f ∶ X→ Y for a given

input space X with output space Y and solution space Y . Assume that the optimization

is of the form θ̂ =min
θ

g(θ).

2.2.1 Non-Convex Optimization

As discussed in Section 2.1, a linear separation of f is improbable using conventional

methods due to the high-dimensional interpolated characteristics of the input data space.

Closer approximations to f capturing the learning and classification problems accurately

involves imposing structural constraints such as sparsity or low rank or assuming the

objective is the optimization of a non-convex function. A convex optimization problem

is where both the objective function and the constraint set are convex, if either are

non-convex they can be categorized as non-convex. Formal definitions for both can be

found in (P. Jain & Kar, 2017).

Simply put, in a non-convex optimization problem, there are multiple local optima

(minima for loss minimization functions and maxima for generalization functions) and

the optimization of non-convex functions can converge to any local optima. Changing

the constraint set or enhancing the learning of the functional representations can yield

convergence to a global optima. Image classification is an example of a non-convex

optimization problem. Optimizing the non-convex problem can be achieved using a

stochastic trial-and-error method checking a range of θ values and selecting the one
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that greatly minimizes the function g(θ). Due to the large search space involved, this

method will prove ineffective and impractical.

2.2.2 First Order Derivative Optimization

Constraining the optimization of g to only differentiable functions allows us to compute

gradient∇θ for g using a well known back-propagation algorithm, presented as Equation

2.4 (Van Ooyen & Nienhuis, 1992). The gradient is a vector constructed using the

partial derivatives for the first order approximation of g to judge the direction of

slopes along all the dimensions of θ. A gradient search using a Stochastic Gradient

Descent (SGD), presented as Equation 2.5 (Bottou, 1991) can be employed to adjust

the weight parameters W1,W2,⋯WH , where H is the number of hidden layers (depth)

of the neural network using back-propagation to get closer approximations of g. The

weight adjustments are calculated for each neuron ω1, ω2,⋯, ωχ∣χ << d ∈ Z>0 and

ωi ∈ W∣i ∈ [1 − χ]&W ∈ [1 −H], where χ is the number of neurons in a given hidden

layer.

Full theoretical proofs for non-convex optimization including first and second order

derivative optimization are provided by Soltanolkotabi, Javanmard and Lee (2018).

Back-Propagation (BP)

Back-propagation is the recursive application of the chain-rule from calculus, gradients

of θ for the function g (∇θg) are computed for each instance of {xi, yi} ∈ {X, Y } i.e.

the n number of samples in the training dataset using the parameter vector θ. Since the

problem at hand is a function approximation in high-dimensional vector spaces, partial

derivatives are most appropriate.

Assume that the NN needs to approximate a simple linear function y =mx + c, in

this instance ∂y/∂x would yield a method to optimize the global optima; ∂x would
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be the input data vector and network parameters, while ∂y would be the total loss.

Intermediate functions (local optima) can be calculated using the chain rule, ∂y
∂x =

∂y
∂b

∂b
∂a

∂a
∂x . Intermediate functions help the NN to reduce the dimensionality for the search

space of xi by calculating the intermediate matrices which can be multiplied using

dot products to yield a final gradient ∂yi and adjust the parameter vector θ for a given

weight parameter vector W to minimize the error. The simplified weight update rule for

a single hidden layer NN using back-propagation is given as Equation 2.4 (Van Ooyen

& Nienhuis, 1992).

∆ωi = −η
∂f̂ ′

∂ωi
(2.4)

Where, ωi ∈ W is the old weight, ∆ωi is the new weight, η is the learning rate which

influences the magnitude of weight updates and f̂ ′ is the error function being optimized.

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) can be used to optimize a NN model for any set of

differentiable functions f that maps an input vector X to a predicted output Ŷ . SGD

can be considered as an inner-loop for optimization whereas optimizing other network

parameters, referred to as HyperParamters (HPs) such as learning rate, depth of the

NN, input data vector size used for training and so on, can be thought of as outer-loop

for optimization. The permutation and combination of HPs order in the millions and

optimization of these HPs are critical in establishing model performance (Bebis &

Georgiopoulos, 1994). The equation for NN parameter weight updates is given as

Equation 2.5 (Bottou, 1991).

ωt+1 = ωt − ηt∇ωJ(Z, ωt) (2.5)

Where, J(Z, ωt) is the cost function being optimized with Z computed using some
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fixed function for a given {xi, yi} pair, say Z = xi ● yi. ∇ω is the vector of weights for

the NN, ωt+1 is the updated weight matrix for the old weight matrix ωt ∈W at a given

instance of time t.

2.2.3 L1 and L2 Regularization for Neural Networks

The intuition behind regularization is that of Ockham’s razor to promote simpler func-

tional representations by penalizing overly complex functions during model training.

Unlike empirical risk minimization where loss minimization is the only consideration,

regularization minimizes structural risk by considering both model complexity and loss

optimization. In other words, simpler and prominent functions which contribute to

loss minimization are preferred and selected (Bilgic et al., 2014). Model complexity

can be considered in two ways, as a function of the total number of non-zero feature

weights (L1) or as a function of all the feature weights in a model (L2). The most

commonly used regularization method for computer vision tasks is L2 regularization.

Model complexity for a L2 regularization is computed using Equation (2.6). The L2

regularization term can be defined as the sum of squares of all the feature weights

(Cortes, Mohri & Rostamizadeh, 2012).

∣∣ω∣∣2 = ω2
1 + ω2

2 + ω2
3 + ω2

χ (2.6)

In Equation (2.6), the absolute magnitude of the feature weights ω quantifies model

complexity. Feature weights approaching zero have little significance in determining

model complexity in contrast to large outlier weights which have a more pronounced

significance. The size of the feature weight matrix H ×K × χ representing the number

of trainable model parameters contribute significantly towards determining model

complexity.
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The Bias-Variance Trade-off revisited from a neural network perspective

As previously discussed in Section 2.1.1, functional approximation should neither

overfit or underfit to the input data. Neural Network (NN) models are typically trained

to interpolate the input data. Thus in theory, the models would severely overfit and as

such should fail when unseen data (i.e. generalization) is presented (Belkin et al., 2019).

However, contrary to theory, neural network models in practice provide impressive

classification accuracy.

Achieving a good balance between empirical/training risk and true/test risk is

dependent on model learning capacity. Usually NN models are over-parameterized to

capture rich feature information and then subsequent techniques such as normalization

and regularization of weight matrices are conducted to achieve high accuracy. The

approach of utilizing severely over-parameterized models might work well in certain

instances but, comes with several risks and sub-optimal performance. Mitigating severe

over-parameterization is explored in depth in Chapter 5.

2.2.4 Batch Normalization (BN)

Batch normalization was introduced to reduce internal covariate shift (Ioffe & Szegedy,

2015). As discussed in Section 2.2.3, over-contribution of large outlier weights reduces

stability of NN models and increases model learning saturation. BN normalizes model

weight distributions across a hidden layer for a given mini-batch input, consisting of

multiple input data vectors rather than a single input data vector. The mini-batch size is a

HP consisting of a subset of the total n number of input training images. Equation 2.7 is

used to implement BN for hidden layers, which can be understood as, x̂ = Norm(xi,X)

where, xi is a single input data vector for the mini-batch selected from X∣xi ∈ X.

x̂k = xk − f̂ ′[xk]√
V ar[xk]

Where, f̂ ′[xk] = 1

n
Σn
i=1xi. (2.7)
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Equation 2.7 applies BN for a given hidden layer with a d-dimensional input

xd = ⟨x1,⋯, xd⟩ ∈ R, each scalar feature is normalized by setting the mean to zero and

variance to one for a given input xi. Recursive application of Equation 2.7 for all inputs

of the mini-batch selected from X where xi ∈ X offers reduced overfitting, increased

learning rates and limited regularization.

Overfitting occurs when the network parameters are precisely tuned to the unique

variances of the input training data that the model fails to generalize for new unseen

data (Hawkins, 2004), essentially memorizing the input training data (C. Zhang, Bengio,

Hardt, Recht & Vinyals, 2016). BN requires large mini-batch sizes of 64 or 128 to

be effective, constraining a full exploration of the search space due to memory and

computational constraints for a NN model. Furthermore, using BN does not eliminate or

account for a NN model’s susceptibility to noise introduced during feature computations

or determination of a class label.

2.2.5 Summary

In this section, we explored the supervised image classification problem in the context of

non-convex optimization problems. Due to the high-dimensional interpolated character-

istic nature of the input space for image data, structural constraints such as sparsity need

to be accounted in order to achieve closer functional approximations of the underlying

mapping function f . The vastness of the search space relative to the input space might

result in a convergence to a suboptimal local minima/maxima. Utilizing traditional

optimization methods such as linear programming or derivative-free optimizations are

impractical due to the higher-order search space involved. Non-traditional techniques

such as using first order derivatives to compute gradients enables the problem to be

reformulated into a hill-climbing, more specifically gradient descent problem.

Exploiting the non-linear characteristics of NNs, the underlying mapping function
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f can be approximated by minimizing the error of a cost function using algorithms

such Stochastic Gradient Descent (SGD) with Back-Propagation (BP) to adjust the NN

parameter space to achieve closer approximations to f . As the problem is non-convex

in nature, the NN might optimize the cost function to any of the numerous local optima

leading to overfitting to the training data causing performance degradation on new

unseen data sampled from the same distribution D. Regularization and Normalization

methods can help alleviate the problem of overfitting and suboptimal convergence to a

local optima but cannot eliminate the issue.

2.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are the state-of-the-art for complex com-

puter vision tasks such as image classification (Szegedy et al., 2015) and localization

(Krizhevsky, Sutskever & Hinton, 2012). CNNs are primarily used to learn functional

representations from data with underlying interpolated spatial structures using a input

data vector xi also known as a tensor. The CIFAR-10 dataset (Krizhevsky & Hinton,

2009) consists of a 32 × 32 × 3 (RGB) tensor color images with three color channels,

Red (R), Green (G) and Blue (B) color channels sampled from ten natural image classes

such as cars, cats, dogs and so on. Whereas, handwritten black and white images in the

MNIST dataset consist a 28 × 28 × 1 (grayscale) tensor belonging to the ten number

(0-9) classes. Intuitively, classification of natural images requires the exploration of

a wider search space relative to handwritten character recognition. Implementing a

fully-connected NN as illustrated in Figure 2.1 even with multiple hidden layers for

such high-dimensional data will invariably yield suboptimal classification performance.

The goal of any CNN as illustrated in Figure 2.2 is to reduce the higher d-dimensional

input vector xi into a lower-dimensional feature vector, say φ(xi) = ⟨φj(x1),⋯, φχ′(xd)⟩,

where i, j, d, χ′ ∈ Z>0∣xji ∈ X can be linearly separated using the CNN feature weight
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vector W = ⟨ωj,⋯ωχ′⟩ (Mallat, 2016). In other words, a CNN weight vector W is

constructed using χ′ convolutional kernels/filters/channels each with a weight ωj−χ′ in

order to further construct a lower-dimensional feature map vector ϕ(xi)∣ϕ(xi) ∈ ϕ(X)

can be linearly separated using W for an input data vector X formed from n number of

training images.

A linear separation of f(X) can be accomplished by using φ(xi) = Σχ′
j=1ϕj(x) ∈ R,

where the computed feature map collection D, such that, ∣D∣ = χ′ is much larger than

the d-dimensional input vector xi where, ∣xi∣ = d i.e. 1 ≤ d ≪ χ′. In other words,

the underlying mapping function can be linearly separated if the feature collection is

sufficiently reduced in dimensions and a rich feature collection D is constructed using

the χ′ convolutional kernels/filters/channels such that the n number of images sampled

from the distribution of D correctly map the input space X to the output space Y .

Assuming a constant f(X), evaluation of f̂(X) is given by Equation 2.8,

f̂(X) =
n

∑
i=1

⟨φ(xi),W⟩ =
n

∑
i=1

χ′

∑
j=1

⟨ϕ(xi), ωj⟩ i, j ∈ Z>0. (2.8)

In Figure 2.2, the convolutional layers C1−H′ ∈ C generating lower-dimensional

feature maps ϕ is the essence of a CNN i.e. the number of convolutional layers H ′

is a subset of the total number of hidden layers H which produces Ci∣Ci ∈ C feature

maps from χ′i−H′′(Ci−H′)∣χ′i−H′′ ∈ χ,Ci ∈ C convolutional units/kernels/channels. In

other words, the first convolutional layer C1 with χ′1 number of convolutional kernels

produces D1 collection of feature maps such that, C1−H′ ∈ C, where H ′ is the total

number of convolutional layers with χ′i−H′′(Ci−H′) number of convolutional kernels

producing D1−χ′
i−H′′ ∣D1−χ′

i−H′′ ∈ D, χ′i−H′′ ∈ χ, where H ′′ is the number of convolutional

kernels for a given convolutional layer.

The convolutional layer takes a tensor input and produces a lower dimensional tensor

output by convolving the input with a collection of much smaller kernels/filters/channels.
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Figure 2.2: Illustration of a (5×5×3) convolving kernel/filter/channel over an input
data vector xi (32×32×3) and stride 1 with no padding and a (2×2×1) pooling ker-
nel/filter/channel, yielding a weight vector W and a class output yi, adopted from
(LeCun et al., 2010).

Consider the 5×5×3 convolving kernel/filter/channel, ωi,j ∣ωi,j ∈ W where ω1,1 is the

weight for (i.e. the weight of the convolving kernel) which has a parameter space of

75 (5*5*3) representing its learning capacity. ω slides with the specified stride size

in pixels across the whole input tensor and computes a dot product at each position

producing an activation map characterizing the features of the input tensor xi yielding

a c1 feature map, subsequent convolutional layers will c2, c3,⋯, cχ′ feature maps for a

network depth of H and convolutional depth of H ′.

The pooling layers, p1−(H′−1) ∈ P where pi is the number of pooling layers for

a total of H ′ − 1 convolutional layers. Pooling layers simply spatially reduce the

size of feature maps to increase computational efficiency. Pooling layers have fixed

downsampling transformations (no trainable parameters, commonly a MAX operation)

in the figure using a 2×2 pooling kernel/filter/channel, a downsampling ratio of 2 is

achieved. Optimizing/training the weight vector W = {ω1, ω2,⋯, ωχ′} using back-

propagation for all χ′ convolutional kernels/filters/channels facilitates localized spatial

features to be learned from the input tensor. Finally, a Fully-Connected (FC) NN with
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single or multiple hidden layers as illustrated in Figure 2.1 is utilized in conjunction

with a softmax function to calculate the class posterior probabilities.

Theoretically, deeper CNNs have an increased capacity to compute a much closer

approximation of ϕ(X) compared to shallower CNNs with no other variances in HP

configurations. The drawbacks of using very deep CNNs is discussed in later chapters

of this thesis. The enumeration of the feature map collection D exponentially grows

for a given function f(X). A richer and lower-dimensional feature map collection D

can also be achieved using a shallower yet broader model since they are functionally

equivalent to a deeper yet narrower model in terms of generating a larger feature map

collection D which is explored in later chapters (Chapters 4 - 5).

Advantages of CNNs

CNNs are primarily feature extractors, unlike traditional Deep NNs (DNNs) which

specialize in function mapping as explained in Section 2.1. This key distinction allows

CNNs to outperform other types of DNNs on high-order non-linear spatially interpolated

data. This is because, DNNs are highly susceptible to subtle spatial variations in

the input data leading to poor non-linear maps (Bebis & Georgiopoulos, 1994). In

other words, the resiliency of CNNs arises due to their decreased sensitivity to noise,

feature information is preferred over simple direct mapping between the two spaces and

feature abstraction can be increased through localized spatial detection and optimization

(LeCun, Huang & Bottou, 2004). Abstraction in CNNs can be forced since convolutional

layers have sparse structural connectivity and employ a shared weight architecture.

Increasing network depth subsequently increases feature extraction and inturn results

in specialized feature maps optimized for the given input data vector (Krizhevsky &

Hinton, 2010).

These specialized feature maps are primarily characterized by a limited degree

of feature variance consisting of a small set of features contributing significantly to
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classification performance neglecting any subtle changes in the input data (Krizhevsky

& Hinton, 2009). Unlike DNNs which need to account for a vast range of variations for

accurate function mapping (Hartigan & Wong, 1979), the process of feature extraction

eases these constraints.

Drawbacks of CNNs

CNNs are computationally expensive for less demanding tasks like linear regression

or clustering (Ardakani et al., 2018) in these instances, DNNs are much more efficient

(LeCun et al., 2015; D. J. Becker et al., 1995). Furthermore, in problems where little do-

main knowledge is required using deep CNNs unnecessarily increase the computational

requirements and exposes the model to significant training afflictions like overfitting

(Hawkins, 2004). Due to the large number of HPs involved in CNNs training deep

CNNs is both time consuming and difficult (Simonyan & Zisserman, 2014; Glorot &

Bengio, 2010).

2.3.1 Convolutional Neural Network Architectures

VGGNet

The VGGNet architecture developed by the University of Oxford’s Visual Geometry

Group (VGG) (Simonyan & Zisserman, 2014) is similar to a traditional CNN illustrated

in Figure 2.2 but with multiple stacked convolutional layers. VGGNet primarily fo-

cuses on investigating the effects of network depth on classification accuracy with the

standard error minimization function computed using the combination of feature and

weight vectors ⟨φ(X),W⟩. The VGG-16 model has fourteen convolutional layers, with

intermediate pooling layers to reduce computational complexity, and two final fully

connected classification layers.
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The stacked consecutive convolutional layers in the VGGNet architecture are de-

signed to enable feature hierarchy and increase the effective receptive field in a convolu-

tional block without significant trade-offs in computational performance. The major

limitation of the VGGNet architecture is that it suffers from training afflictions such

as exploding/vanishing gradients (Caruana, Lawrence & Giles, 2001) during back-

propagation where the differentiable parameters do not propagate back to the initial

layers. Another challenge of VGGNets which affect information propagation is its

limited architectural and spatial constraints which become significant and affect clas-

sification performance, especially in complex datasets, where strict feature hierarchy

might impede convergence.

Residual Network (ResNet)

The Residual Network (ResNet) architecture was first proposed by (K. He et al., 2016)

utilizing skip connections between convolutional layers as a way to solve the degrada-

tion/saturation problem where the back-propagation mechanism becomes ineffective for

greater network depths and strict architectural constraints, a problem that is persistent

in any deep NN. The ResNet architecture is an arrangement of residual learning blocks,

where multiple convolutional layers are stacked to enhance feature extraction effective-

ness. Although stacking layers and adopting skip connections or shortcut paths is not

new and has been researched since the introduction of Multi-Layer Perceptrons (MLPs)

(Ripley, 2007), initial implementations offered little improvements and suffer from the

problem of vanishing/exploding gradients during back-propagation as discussed and

witnessed in the VGGNet architecture. ResNet models obey the f̂(X) = ⟨φ(xi + x), ωi⟩,

where i ∈ Z>0 function approximation for a single input data vector, where the identity

mappings are of the form f(xi) = xi (K. He et al., 2016). The general form for ResNets

is presented as Equation 2.9.
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Figure 2.3: Example of a ResNet architecture. Left: A residual block. Right: A
Residual network with 8 convolutional layers. The dashed lines represent an increase in
dimensions, while the pooling operations are indicated by (/2), adopted from (K. He et
al., 2016).
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yl = h(xi) +F(xi,Wl) & f(yl) = xl+1 l ∈H ′ ∈ Z>0 (2.9)

Aggregated Residual Transformations (ResNeXt)

A neuron can be thought of as an aggregation of signal transformations along all

the kernel/filter/channel inputs ζ given as ∑ζi=1 ωixi, where i ∈ Z+
1 . The working

principle of aggregated residual transformations called ResNeXt proposed by (Xie

et al., 2017) is to replace the computation of ωi with the transformation of a lower-

dimensional projection of xi as τ(xi). ResNeXt models can be represented using

the f̂(X) = ⟨∑ζi=1 φ(X),W⟩ error minimization function, where ζ (cardinality) is the

set size of aggregated transformations. Cardinality is an important HyperParameter

affecting model capacity similar to network depth. The error minimization function for

ResNext given in Equation 2.10.

f̂(X) = ⟨
ζ

∑
i=1

τ(Xζ
n),W⟩ n ∈ Z>0, ζ ∈ R (2.10)

where ζ (cardinality) is the set size of aggregated transformations. ResNeXt in practice,

implements a split-transform-merge paradigm where a pointwise grouped convolutional

layer splits the input into sets of feature maps and performs convolution operations

(transform step) on these sets independently with the outputs being merged or con-

catenated depthwise with a final bottleneck convolutional layer (1×1) producing the

output.

Densely Connected Convolutional Network (DenseNet)

Densely Connected Convolutional Networks (DenseNets or DNs) proposed by (Huang

et al., 2017) and illustrated in Figure 2.4 were envisioned from a simple concept that the

input of final feature vector with a layer depthH ′ should include the concatenation of all
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Figure 2.4: Example of a DenseNet architecture, adopted from (Huang et al., 2017).

preceding feature maps produced fromH ′-1 layers rather than just the feature maps from

the H ′-th layer. The distinction of DN from ResNet and ResNext CNN architectures is

that the feature maps generated from the first convolutional layers contribute equally to

the creation of the final feature vector φ, instead of the first layers being abstracted into

deeper layer feature maps. Although this distinction limits the depth of DN models due

to practical considerations like memory constraints, DN models outperform ResNets on

several benchmarking datasets, discussed in later chapters of this thesis. DN models

obey the f̂(xi) = ⟨φ(xi),Wi⟩ = ⟨ϕ([x0, x1, ...xl]),W1⟩ error minimization function for

a single input data vector, a more general form is presented as Equation 2.11. DNs also

requires the computation of a lower dimensional vector representation φ(X) from the

input data X. Growth rate is an important HP in DNs, which influences the contribution

of an individual convolutional layer to the final feature vector φ(X).

f̂(X) = ⟨φ([X1
i ,⋯,Xl−1

n ]),W⟩ i, l ∈ Z>0 (2.11)
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2.3.2 Summary

In this section, the working principle of CNNs were investigated where the creation of

lower-dimensional feature maps is the primary distinction from traditional DNNs. The

convolution operation in CNNs can resolve spatial variances in the input data vector

more effectively however, a CNNs ability to create an adequate feature vector ϕ relies

upon the fine-tuning of HPs such as stride size, kernel/filter/channel size, number of

convolutional kernels/filters/channels along with similar HPs as traditional HPs such

as network depth and batch size. A major factor explaining the state-of-the-art classi-

fication performance of CNNs in image classification problems is due to convolution

operation being able to accurately reduce a high-order non-linear spatially interpolated

data into lower-dimensional feature maps while preserving spatial topological integrity.

Consistent with traditional DNNs a deep CNN with no skip connections suffer from

the same training afflictions like exploding/vanishing gradients during back-propagation

where the differentiable parameters do not propagate back to the initial layers causing

suboptimal convergences. The distinction of residual network CNN architectures using

skip connections compared to a simple stacked VGGNet architecture helps alleviate the

problem of exploding/vanishing gradients but ensure that the feature maps generated

from the initial convolutional layers in a CNN are abstracted into later convolutional

feature maps.

The aggregated residual transformation architecture known as ResNeXt aimed to

preserve initial feature map information through the use of a split-transform-merge

paradigm on the signal transformations along the kernel/filter/channel inputs. A stricter

constraint was imposed by the DenseNet CNN architecture where the feature maps are

concatenated before transitioning to the next convolutional layer.
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Examining Feature Extraction in CNNs

In the previous chapter (Chapter 2), in Section 2.3, we explored the working principle of

CNNs and the convolution operation which creates richer internal feature representations

compared to a traditional DNN. A simple CNN is illustrated in Figure 2.2. Section 2.3.1

explored how stacking multiple consecutive convolutional layers within a single block

and stacking these convolution blocks increase the feature representational capacities of

CNNs. In this chapter we quantitatively examine the effectiveness of consecutive layer

stacking in both the convolution and classification blocks. We analyze the effectiveness

of varied neural breadth configurations specifically in the classification block of simple

CNN models. In the next chapter (Chapter 4), we investigate the nature of semantic

feature extraction and abstraction for more complex residual architectures such as

ResNet, ResNeXt and DenseNets, explained previously in Section 2.3. Furthermore, we

investigate the nature of convolutional kernel saturation and its correlation to information

overflow and underflow.

This chapter is published in the 46th Annual Conference of the IEEE Industrial

Electronics Society, IECON-2020; © 2020, IEEE.
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3.1 Introduction

As stated earlier, CNNs are the state-of-the-art for image classification tasks verified

on standard benchmarking image datasets such as MNIST (LeCun, Bottou, Bengio &

Haffner, 1998) and CIFAR-10 (Krizhevsky & Hinton, 2009). Achieving these state-of-

the-art performance is predicated upon complex fine-tuning of the HyperParameters

(HPs), such as network depth and breadth in both the classification and convolution

blocks of a CNN with improper HP configurations leading to suboptimal classification

performance (Coates, Ng & Lee, 2011). In this chapter, we quantitatively measure,

examine and present evidence to support the use of Signal-to-Noise Ratio (SNR) and

Maximum Entropy (ME) measures in understanding information propagation within

CNNs.

Our approach is based on the understanding that Maximum Entropy (ME) measures

can be used to accurately quantify the total amount of signal information in a given series

of data (Gull & Skilling, 1984). The degree of corruption of the signal i.e. the usable

component can be estimated by calculating the signal-to-noise ratio (SNR) (Gonzalez

& Woods, 2007) which is commonly used in digital image processing to enhance and

restore degraded images (Krbcova & Kukal, 2017; Petrovici et al., 2018). Through

our experiments and analyses we show that the use of these measures to tailor CNN

model HPs, specifically network depth, breadth and configuration yields statistically

significant and improved classification performance in a simple CNN model.

3.2 Background

3.2.1 Maximum Entropy of Image Data

Entropy measures are widely used for digital image enhancement such as de-noising

and image restoration/reconstruction using de-convolutions (Petrovici et al., 2018; Gull
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Figure 3.1: Difference in ME measurement for changes in the radius r used to measure
the complexity contained in a local neighborhood.

& Skilling, 1984; Krbcova & Kukal, 2017). A method to approximate ME for digital

images is through the use of distributed normalized histograms (Gonzalez & Woods,

2007; A. K. Jain, 1989). The open-source SciKit-image processing library written in

Python can be used to calculate the ME measures for images (Virtanen et al., 2020).

Entropy in images is related to the complexity contained in a given neighborhood,

computed by using a circular disk with a radius of r. The disk is used to measure minute

variations in local grayscale level distribution. The maximum entropy for an image

depends on the number of gray levels, an 8 bit image has 256 gray levels (0-255) which

has a theoretical maximum entropy of log2(28) = 8 bits per pixel. Changing the value

of r can invariably produce higher or lower ME measure as illustrated in Figure 3.1.

Similarly higher or lower ME values will be obtained while measuring convolutional

kernel weights. A decrease in ME divergence can be observed in Figure 3.1 for r values

of 5 and 50 relative to r values of 1 and 5. A significant difference in spatial/semantic

information in the images can be seen with greater r values, which suggests a loss in

precision during approximation.

ME measures for color images require the computation on each of the three color

channels, Red (R), Green (G) and Blue (B) i.e. RGB separately and averaging the results.

The averaged ME measures for images in the MNIST and CIFAR-10 datasets are 1.04

and 2.2 bits per pixel and 2.41 and 5.28 respectively for r values of 1 and 5 respectively.
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The amount of time taken to calculate the ME measures is insignificant as the ME

calculation script can be executed in parallel on the CPU, while CNN model training

occurs on the GPU. Solutions other than ME for image reproduction/reconstruction

from noisy or incomplete measurements such as, the use of non-linear variations on

fourier transformations fail when convolutional kernels are incorporated (Donoho et

al., 1990), which is implemented for CNN optimization in later chapters of this thesis.

Furthermore, ME reconstruction has been shown to provide superior noise suppression

while mostly preserving de-emphasized structural noise near the baseline (relative to

high signal information) (Donoho et al., 1990).

3.2.2 Signal and Noise Ratio of Image Data

Accurate quantifiable estimation of image quality regardless of variances in lighting

conditions, depth of field and noise to name a few properties play an important role in

processing digital images. While numerous methods exist to calculate digital image

quality such as Mean Square Error (MSE), Root Mean Square Error (RMSE), Signal-

to-Noise (SNR) and Peak Signal-to-Noise (PSNR), there are no perceivable distinct

advantages between these methods for applications incorporating the Human Visual

System (HVS), the biological inspiration for CNNs (Wang & Bovik, 2002).

Due to the stochastic distribution of image data in the MNIST and CIFAR-10

datasets, PSNR, MSE or RMSE values will yield imprecise measurements. Therefore,

the conventional SNR calculations are employed to measure image quality. According

to authors in (Gonzalez & Woods, 2007), SNR is a relative measure of the intensities of

the usable signal to the environmental noise.

To be specific, SNR with respect to feature information represents the probability

that unique and effective features can be extracted relative to noise. In other words, a

higher SNR ensures that there is a greater chance to extract effective features which
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should help mitigate overfitting to the input dataset.

In digital images, SNR is defined as the ratio of the average signal intensity to the

standard deviation in the noise (Welvaert & Rosseel, 2013), given by equation 3.1.

SNR = µ(S)/σnoise (3.1)

Where, SNR is the signal-to-noise ratio (unit-less), µ(S) is the mean of signal data and

σnoise is the standard deviation of the signal data with respect to the random noise.

The equation for calculating the mean of signal data given in equation 3.2,

µ(S) =
n

∑
i=1

S/n ∀S ∈ (0 − 255). (3.2)

Where, µ(S) is the mean of signal data, when the pixel values for S is in between 0-255

for MNIST and 0-255 for red, green and blue color channels for CIFAR-10 and n is the

total number of pixels.

The equation for calculating standard deviation of signal data with respect to the

noise is given by,

σnoise =
¿
ÁÁÀ(1/n)(

n

∑
i=1

(xi − µ(S))2) ∀S ∈ (0 − 255). (3.3)

Where, σnoise is the standard deviation of the data, i.e. the signal data with respect to

the noise, µ(S) is the mean of signal data calculated using equation 3.2, n is the total

number of pixels in the data, xi is the value of ith pixel in the image.

Using Equation 3.1, we can calculate SNR for the MNIST and CIFAR-10 datasets

with the mean of signal data calculated using Equation 3.2 and standard deviation

computed using Equation 3.3.

As an example, lets assume a simple 3×3 grayscale image consists of an array of
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pixel values,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

255 128 238

0 116 145

98 128 56

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above 2d array is converted to a 1d array using row-wise serialization as

[255,128,238,0,116,145,98,128,56]. Inbuilt functions in the Python 3.7 environment

computes a mean of 129.33 and a standard deviation of 75.36.

Using Equation 3.2, the mean can be computed as the sum of all elements in the 1d

array divided by 9 (i.e. number of pixels). Using Equation 3.3, the standard deviation

can be calculated as the square root of the average of squared deviations from the mean,

explained as follows.

We compute the squared deviations from the mean as, (255 − 129.33)2 + (128 −

129.33)2 + (238 − 129.33)2 + (0 − 129.33)2 + (116 − 129.33)2 + (145 − 129.33)2 +

(98 − 129.33)2 + (128 − 129.33)2 + (56 − 129.33)2 = 15792.95 + 1.77 + 11809.17 +

16726.25 + 177.69 + 245.55 + 981.57 + 1.77 + 5377.29 = 51114.01.

Calculate the average of squared deviations from the mean as, 51114.01/9 or

51114.01 * (1/9) = 5679.28

Finally, the standard deviation is the square root of average of squared deviations

from the mean, i.e.
√

5679.28 = 75.36.

SNR can then be computed assuming the standard deviation is greater than 0 as

SNR = mean/std = 1.7162.

A key point to note is that the SNR measures are averaged across all of the images

in the dataset to calculate an average SNR measure for the entire dataset. Furthermore,

color images have 3d arrays (the third dimension being the color channels) which

get converted to a 1d array exactly as discussed in the above example i.e. row-wise

serialization for the first color channel followed by the second and third.

Therefore, the SNR values for MNIST and CIFAR-10 datasets are 0.44 and 2.40
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respectively.

3.3 Relation Between ME, SNR and CNNs

As explored in Section 2.3, the first convolution layer is only able to extract a limited

quantity of signal information dependent on the breadth χ′′ of the layer and every

subsequent convolution layer gradually builds hierarchical abstractions over these

initial feature maps and extracted signal information. Ideally, with perfect information

extraction the input image can be reconstructed using the signal information propagated

through the layers of a CNN in this instance the classification performance would be

very high. However in practice, due to random noise and other non-ideal characteristics,

the classification performance of CNNs can be substantially affected.

The feature extraction capabilities of CNNs is dependent on the amount of usable

information extracted in conjunction with the quality and complexity of the extracted

information. Using SNR and ME measures as a proxy to measure information propaga-

tion in CNNs provides valuable insights into the effectiveness of the feature extraction

process. High SNR and ME measures indicate a greater degree of usable and total

amount of signal information respectively and suggests the feature extraction process is

effectively being captured by the CNN.

Similarly, images that have high ME scores contain larger amounts of information,

thus requiring a broader network for sufficient initial layer information extraction,

whereas images with high SNR measures indicate that the usable signal information is

not greatly corrupted by noise and therefore facilitates the use of deeper networks.

In instances where images have low SNR and ME measures like those images present

in the MNIST dataset, any attempts made to recover the original signal information

using inverse filtering and other such methods produce outputs of unacceptable quality.

This is because, according to authors in (Pierce, 1980), noise and signal are interpolated,



Chapter 3. Examining Feature Extraction in CNNs 54

signifying that artificially amplifying a single characteristic such as the signal in the

data introduces distortions and errors which leads to uncertainties. Therefore, adopting

deep network architectures on such datasets is not advisable. In Section 3.4 we put forth

two arguments that tend to explain this non-ideal performance of CNNs using ME and

SNR and present our experimental findings in Section 3.4.4.

3.4 Understanding Information Extraction Capabilities

of CNNs

3.4.1 Information Overflow

Information overflow is the phenomenon when there is a discrepancy between the

amount or quality of information extracted by the CNN to the inherent information in

the input data. Overflow occurs when the first convolutional layer has saturated and

extracted its maximum, but is still lower than the information present in the input image

(i.e. ME and SNR measures after the first convolutional layer are lower than that of

the input image). This phenomenon is usually persistent when the breadth of the first

convolutional layer is insufficient or if there are deficient number of convolutional layers

to completely abstract the signal information after the last convolutional layer.

As an example, according to authors in (Krizhevsky et al., 2012), for high clas-

sification performance, a relatively deeper network is required when classifying the

CIFAR-10 dataset compared to the MNIST dataset. Assessing the properties of the

MNIST dataset indicates lower SNR and ME values when compared to CIFAR-10,

thus it is intuitive that the more complex CIFAR-10 dataset would require a deeper and

broader network compared to the MNIST dataset.

If the same narrow and shallow configuration (breadth and depth) was used for

both datasets, it would lead to convolutional saturation causing information overflow in
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CIFAR-10. However the inverse also holds when a deeper and broader network is used

for the MNIST dataset where an alternate phenomenon of information underflow would

occur, explained in Section 3.4.2.

3.4.2 Information Underflow

Information underflow is the inverse of overflow where the network attempts to extract

and abstract more information than is present in the input images. Information underflow

is relatively less severe in terms of affecting classification accuracies. Information

underflow can be characterized by overfitting (Caruana et al., 2001), while there are

several methods proposed by authors in (Hawkins, 2004; Srivastava, Hinton, Krizhevsky,

Sutskever & Salakhutdinov, 2014) and to mitigate this problem by using dropout,

stochastic gradient descent and hyper-parameter tuning, it persists to a certain degree in

all NNs. We also propose a few techniques based on this understanding of information

underflow and overflow to mitigate the problem of overfitting in Section 3.5.

3.4.3 Experimentation

The tests were conducted with an objective to understand the effect that SNR and ME

measures have on numerous neural configurations with respect to information underflow

and overflow. The experimental results are presented in Section 3.4.4 were all conducted

using a TFLearn front-end and a Tensorflow back-end written in python on a single

2080ti and Tesla P100 GPU with 12GB and 16GB of VRAM, generously provided by

InfuseAI Limited and New Zealand eScience Infrastructure respectively. The datasets

used are detailed comprehensively in 3.4.3.

Similar to the VGGNet model discussed in 2.3.1, a simpler model using the principle

of stacked convolutional layers was implemented. The variations on the VGGNet model

included smaller convolutional kernel sizes, shorter stride sizes, the use of a dropout
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layer and a shallower depth. A dropout layer was included since it has shown to

significantly reduce overfitting (Srivastava et al., 2014) for image classification tasks.

No preprocessing of the data was conducted and the training-validation split was

established to be 50,000-10,000 images for MNIST and 40,000-10,000 images for

CIFAR-10 datasets. Experiments were performed for CNN architectures having a

limited amount of convolutional layers in-line with the initial AlexNet CNN model

(Krizhevsky et al., 2012) which has only five convolutional layers (Krizhevsky & Hinton,

2009).

Datasets

The MNIST dataset (LeCun et al., 1998), consists of ten black and white handwritten

numerical classes (0-9) of 28×28 dimensional. The images present in CIFAR-10 dataset

(Krizhevsky & Hinton, 2009) consist of ten natural image classes of 32×32 dimensional

color (RGB) images, differentiated by the type of object in the images, for example

cars, cats, dogs and so on. The pixel intensity values for both the datasets range from

0-255 i.e. 0 is a black pixel and 255 is white in the instance of MNIST and Red, green

or Blue for CIFAR-10.

3.4.4 Results

All experiments were repeated three times and the test-set classification accuracy was

averaged across the three experimental runs. The mean results are presented in Table

3.1.
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MNIST Dataset
Configuration Epochs Acc. in %
32 Convolutional kernels and
784 neuron FC layer

10, 500, 1,000, 1,500,
2,000

93.3, 97.0, 97.0, 97.1,
97.2

32-64 Convolutional kernels
and 784 neuron FC layer

10, 500, 1,000, 1,500,
2,000

94.5, 96, 98.5, 97.7,
96.5

32 Convolutional kernels and
784-392 neuron FC layers

10, 500, 1,000, 1,500,
2,000

94.2, 96.6, 96.3, 96.89,
97.3

32-64 Convolutional kernels
and 784-392 neuron FC layers

10, 500, 1,000, 1,500,
2,000

95.4, 97.4, 98.2, 98.4,
98.9

32 Convolutional kernels and
784-512 neuron FC layers

10, 500, 1,000, 1,500,
2,000

93.5, 97.5, 97.39, 97.2,
98.1

32-64 Convolutional kernels
and 784-512 neuron FC layers

10, 500, 1,000, 1,500,
2,000

93.89, 97.5, 97.5, 98.1,
97.9

32 Convolutional kernels and
784-784 neuron FC layers

10, 500, 1,000, 1,500,
2,000

95.19, 96.6, 96.7, 97.5,
97.39

32-64 Convolutional kernels
(2 layers) and 784-784 neuron
FC layers

10, 500, 1,000, 1,500,
2,000

94.19, 96.0, 98.0, 98.4,
97.6

CIFAR-10 Dataset
32 Convolutional kernels and
3072 neuron FC layer

10, 500, 1,000, 1,500,
2,000

21.4, 10.9, 10.2, 10.1,
10.0

32-64 Convolutional kernels
and 3072-3072 neuron FC lay-
ers

10, 500, 1,000, 1,500,
2,000

43.5, 52.4, 57.12, 55.19,
53.35

32-64 Convolutional kernels
and 3072-1536 neuron FC lay-
ers

10, 500, 1,000, 1,500,
2,000

45.5, 56.64, 59.43,
61.30, 60.82

32-64-128 Convolutional
kernels and 3072-1024-512
neuron FC layers

10, 500, 1,000, 1,500,
2,000

43.5, 51.0, 55.2, 58.5,
61.5

32-64-128 Convolutional
kernels and 3072-1536-768
neuron FC layers

10, 500, 1,000, 1,500,
2,000

60.1, 67.2, 67.45, 68.58,
68.49

32-64-128 Convolutional
kernels and 3072-3072-3072
neuron FC layers

10, 500, 1,000, 1,500,
2,000

44.1, 53.8, 55.2, 60.0,
53.4

Table 3.1: Table of results comparing the average test-set classification performance for
the MNIST and CIFAR-10 datasets on varied neural configurations
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3.5 Discussion

The results from Section 3.4.4 suggest that certain neural configurations significantly

affect image classification performance. To ensure reproducibility and draw meaningful

insights which could not be attributed to random variances, statistical analyses of the

experimental data were conducted using a two-tailed paired t-test. p-values below

0.05 were used to highlight statistical significance and two-tailed t-test were employed

since no prior knowledge or estimates on the direction of significance were be able to

determined with the null hypothesis being, no statistical significance exists between the

tests.

We acknowledge that the sample size for statistical testing is low. Due to the

immense computational power required for computer vision tasks along with the fact

that typically the variance between multiple neural network runs on the same dataset is

insignificant, extensive statistical testing is often not possible in the field of computer

vision and pattern recognition. Therefore, the rest of the thesis also includes statistical

testing for a small sample size.

On the MNIST dataset, increasing depths for the convolutional block while keeping

the Fully Connected (FC) layer/s constant at one layer with a breadth of one neuron

for every pixel i.e. 784 (28×28) produced no observable difference with a p-value

of 0.558. Tests where the convolutional layer was kept constant at one layer with a

breadth of 32 kernels and varying the FC depth of the classification block also yielded

no observable differences with p-values of 0.0816, 0.2065, 0.9046 in the order presented

in Table 3.1. The only statistical difference was observed when the breadth, depth of

the convolutional layers were increased and the breadth, depth of the FC layer was

decreased by a factor of two obtained a p-value of 0.0018 and an accuracy of 98.9%.

Clear statistical differences were observed for variances in both the convolutional

and classification blocks. Between depths of two, three convolutional layers and two,



Chapter 3. Examining Feature Extraction in CNNs 59

three FC layers yielded a p-value of 0.0382. Keeping the convolutional and FC depth

constant at two but varying the breadth of the FC layers between 3072-3072 and 3072-

1536 produced a p-value of 0.0142. The same patterns emerge for network depths of

three and varied FC configurations with p-values of 0.0027 and 0.0006 when using

FC layers and a reduction factor of two in the order of results presented in Table 3.1,

the highest accuracy obtained was 68.49%. There were no other observable statistical

differences.

Based on these observations, we recommend adopting a broader convolutional and

FC layers with halving the number of units for each subsequent layer/s added until the

phenomenon of underflow is observed. the depth of the network is restricted to the

initial breadth and thus might become a limiting factor for more complex datasets due

to the associated memory and computational constraints.

3.5.1 Limitations

The key limitation of the study is that the relationship between ME, SNR and information

propagation of CNNs along with the phenomena of information overflow and underflow

were studied only on simple non-residual architectures where skip connections are not

implemented. Further, the ME and SNR measures for the multi-class image datasets

were computed for image individually and then averaged across the entire dataset.

The averaging of SNR and ME measures prompt further investigation into if there

exists a correlation of individual classes contributing to the phenomenon of information

underflow or overflow. These limitations pose an intriguing research area for possible

exploration in future publications.
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3.6 Conclusion

We can infer from the results that our hypothesis that information underflow and over-

flow characteristics are influenced by the ME and SNR measures of the input data

vectors. Classification performance of CNNs are regulated by these phenomena and

during instances where information underflow is predominant, variations in topolo-

gical configurations play an inconsequential role since the information propagation

is unimpeded. Topological variations play a prominent role only when information

overflow is more pronounced where statistically significant differences in classification

performance can be observed.

Furthermore, the best classification accuracies were obtained when the neurons

in the FC layers were halved for additional layer. We can postulate that in order to

enhance classification performance, forced abstractions might play an important role as

abstractions are encoded and decoded along the full depth of the CNN model (Hinton &

Salakhutdinov, 2006). Furthermore, due to the topological and informational sparsity,

theoretical performance gains could be achieved by augmenting the datasets to increase

the feature extraction capability of the convolutional block in a CNN. We explore this

concept along with studying convolutional kernel saturation in the next chapter (Chapter

4).

In conclusion, experimental evidence was presented to support the claim that CNNs

have limited informational feature extraction and abstraction capabilities. These lim-

itations were theorized to occur when either phenomena of information overflow or

underflow were predominant. ME and SNR measures were established as accurate

heuristics to quantify the magnitude and influence of either phenomena on information

propagation in CNNs.

The understanding and insights gained from this chapter around information propaga-

tion in CNNs lead us to examine ways of improving information propagation. In the next
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chapter (Chapter 4), we investigate and propose a novel data augmentation technique to

improve classification performance by mitigating convolutional kernel saturation.



Chapter 4

Examining and Mitigating Kernel

Saturation in CNNs

In the prior chapter (Chapter 3), we examined the feature extraction process of CNNs

and discovered that images that have low ME and SNR values lead to a phenomenon

of information underflow. The opposite is true for input images having high SNR and

ME scores, causing information overflow. In this chapter we explore neural saturation

in DNNs, more specifically convolutional kernel saturation in CNNs. We hypothesize

greater semantic feature information can be extracted when the input data vector is

augmented/supplemented with a bitwise NOT operation on the input dataset, producing

an exact negative representation of the input vectors. These negative images have the

same structural information as the standard images but differ significantly in their data

representations. Our assumption is that the distinct data representation of the negative

images decreases the probability of kernel saturation and thus increases the effectiveness

of feature extractions in CNNs.

Furthermore, in the last chapter (Chapter 3), the primary limitation was that the

study was conducted on simple non-residual architectures where skip connections were

not implemented. In this chapter we bridge this gap by studying convolutional kernel

62
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saturation and the effect of negative image augmentation on classification performance

for a residual CNN architecture such as the ResNet-50 model explained previously in

Section 2.3.1.

This chapter is published in the 46th Annual Conference of the IEEE Industrial

Electronics Society, IECON-2020; © 2020, IEEE.

4.1 Introduction

The working principle of CNNs was discussed previously in Section 2.3 and illustrated

in Figure 2.2. Some of the main drawbacks in training deep CNN models such as

ResNet-50 with forty-eight convolutional layers is limited feature extraction capabilities

(Mallat, 2016) for such a deep network. A possible explanation for this lack of feature

extraction capability is attributable to the effects of neural saturation (van Hemmen &

Zagrebnov, 1987). The effect of saturation on classification performance was alluded to

in the previous chapter (Chapter 3), where there was a marked decrease in classification

performance when the neurons were saturated.

In this chapter, we limit the scope of the study to examine neural saturation in

the convolutional block primarily for two reasons, enhanced feature extraction in the

convolutional block will invariably increase classification performance, and there is

extensive research conducted for DNNs used in the classification block (van Hemmen

& Zagrebnov, 1987; Cogswell, Ahmed, Girshick, Zitnick & Batra, 2015).

Neural saturation predominantly presents itself during the back-propagation step,

when a non-linear differentiable activation function ρ is applied to an input d-dimensional

vector xi = ⟨x1, x2⋯xd⟩ and is said to be fully saturated when the output yi = ρ(∑ni=1 ωixi+

bi), acquires values close to the minimum of a bounded subset of ρ, where bi is the bias,

ωi is the weight of the computed convolutional kernels/filters/channels, such that, xi ∈ X

and ωi ∈ W.
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If a convolutional kernel is fully saturated, when the gradient calculations ∇ (dis-

cussed in Section 2.2.2) for the output yi relative to the input xi i.e. ∂yi/∂xi approaches

the minimum (near zero) of ρ for a non-linear activation function. In other words, a

convolutional kernel is saturated when the output yi approaches non-differentiability at

a point where the computed future weight updates are negligible causing no apparent

change affecting model convergence.

Our hypothesis is that supplementing the training data with similar semantic and

structural information but significantly different data representations will lead to a

more accurate feature map generation. Due to the contrasting data representations of

the standard and negative images we ascertain that convolution kernel saturation will

be partially offset. Furthermore, the logical bit-wise NOT operation used to create

negative images can be performed in real-time on the CPU while model training occurs

simultaneously on a GPU, reducing computational overheads.

We evaluate our research hypothesis using the ResNet-50 model, initially pro-

posed by (K. He et al., 2016) on two well known benchmarking datasets, CIFAR-10

(Krizhevsky & Hinton, 2009) and STL-10 (Coates et al., 2011). The ResNet architec-

ture is chosen as it introduces stacked convolutional layers and skip connections which

ensures feature maps can always resolve into identity transformations limiting the extent

of saturation and promoting only the most important feature information contributing to

classification performance is retained.

The CIFAR-10 and STL-10 datasets are chosen since they exhibit similar spatial

information but differ in their image resolutions thus enabling a better understanding

of the saturation phenomenon for varied image resolutions. We also employ two

quantitative measures, Maximum Entropy (ME) and Signal to Noise Ratio (SNR) to

measure the informational content contained in the input datasets, discussed previously

in Sections 3.2.1 and Section 3.2.2.
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4.2 Utilizing ME and SNR measures in understanding

weight updates

The accuracy of any Neural Network (NN) depends on generating adequate internal

feature representations from the input data. In CNNs, the feature representations are

separated into N feature maps generated from the input image of pixel size R×R using

χ′ convolutional kernels from H ′ convolutional layers with weight matrices ωi−χ′ ∈ W.

The feature maps are hierarchical, meaning the feature maps generated at a given layer

hi∣hi ∈H ′ are computed from the data propagated from the preceding layer hi − 1.

The three-dimensional input color images (2D image of size R ×R with 3 color

channels) are dimensionally reduced down to φ(χ′) 2D feature maps of size S ×S, such

that R ≥ S. Dimensionality reduction of a higher-order non-linear complex function

into a collection of lower-order linearly separable feature maps is not always accurate

and may exclude critical information. This limitation can be mitigated by introducing

a non-linear activation function ρ (Arora, Basu, Mianjy & Mukherjee, 2016) to retain

structural information and preserve only the most important features contributing to

linear separation i.e. classification performance.

Assuming the input image is fed at the input layer denoted by pixels R0,0 −R32,32

for CIFAR-10 images and R0,0 −R96,96 for STL-10 images with a color channel depth

of 3. The individual pixels can be accessed using the indices R0
i,j , where the 0 denotes

the input layer. The first convolutional layer output can be denoted as y1 for the n

number of input images. Similar indexing for the hthi layer can be denoted as yhi for a

convolutional depth of H ′ layers. The back-propagation error can be calculated using

the H ′th layer gradient ∂yH′/∂RH′−1
0,0 , where the input to the final convolutional layer

are the feature maps generated from the H ′ − 1th convolutional layer.

The loss function L can be denoted as ∂L/∂yH′
0 , applying the chain rule to the

error function for the total number χ′ convolutional kernels/filters/channels, we get
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∂L/∂yH′ = ∑χ
′
i (∂RH′

i /∂yH′−1)(∂yH′/∂RH′−1
i ) (W. Luo, Li, Urtasun & Zemel, 2016).

Weight updates are performed using the backpropagation of errors using a partial

derivative of the neural output computed using the gradient descent approach for error

minimization of a loss function L. The loss function is calculated using the difference

between the initial random kernel weights W and the output yi for a given input xi,

i.e. L(W, yi(xi)) = (W − yi)2 for a Mean Squared Error function. Classification

performance is predicated upon future weight updates, which are calculated using the

gradients for all χ′ convolutional kernels/filters/channels. Therefore, if some or most

of the χ′ convolutional kernels become saturated, the learning process is restricted and

future weight updates increasingly deviate from the optimal causing convergence issues.

ME and SNR scores previously explored in Sections 3.2.1 and 3.2.2 accurately

measure and quantify the information contained in the input data which aids in the

qualitative analysis of the weight update mechanism. Larger ME/SNR values indicate

greater usable signal information in the data, suggesting the signal can be abstracted

to a higher degree using deeper networks without significant corruption. Furthermore,

larger ME/SNR scores indicate greater information can be extracted without causing

unexpected events such as overflow or underflow, discussed earlier in Sections 3.4.1

and 3.4.2 to occur.

Mathematically, if CNNs are sensitive to kernel saturation on standard datasets, real-

time data augmentations such as rotating or cropping, which inevitably produces images

with the same information characteristics will not significantly enhance the feature

extraction process. It is intuitive to suggest that augmenting the input dataset with

similar spatial and structural characteristics, quantified through ME measures but with

high SNR values should yield increases in classification performance. Other methods

to amplify the SNR characteristics will yield outputs of unacceptable quality (Pierce,

1980), which would become problematic if a conventional NN was implemented. As

CNNs primarily focus on feature extraction, augmenting input data with negative images
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should not adversely affect classification performance, verified through experimentation

on the MNIST dataset.

4.3 Experimental Design

The experimentation revolved around establishing if different ME and SNR measures

contributed to convolutional kernel saturation and its effect on model convergence.

Three standard benchmarking datasets were used, MNIST (LeCun et al., 1998), CIFAR-

10 (Krizhevsky & Hinton, 2009) and STL-10 (Coates et al., 2011). The research

hypothesis is that supplementing the training dataset with negative images increases

classification accuracies by mitigating convolutional kernel saturation.

The hypothesis was examined by training ResNet-50 models with different variations

of the input datasets, while keeping all other HPs such as learning rate and batch size

constant with no data excluded or pre-processing steps applied to images in the datasets

for three evaluation runs of 500 epoch instances. Learning rate was set to 0.001 using

an adaptive optimizer (ADAM) and a batch size of 128 based on the example script

provided by Keras (The software framework used).

4.3.1 Datasets

The MNIST and CIFAR-10 datasets are the standard benchmarking datasets used

previously and discussed in Section 3.4.3. The STL-10 dataset includes 500 training

and 800 test natural color images split into much of the same classes of natural images

as the CIFAR-10 datasets but in a higher 96×96 pixel resolution, derived from the

ImageNet dataset (Russakovsky et al., 2015). The standardized testing protocol for

the STL-10 dataset is not adopted in this chapter, as the scope of this thesis is limited

to supervised learning tasks in the domain of computer vision. To obtain the negative

images of all the samples in the standard datasets, a logical bit-wise NOT operation on
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Figure 4.1: Illustration of random negative sample images for two classes in the STL-10
and CIFAR-10 datasets

every pixel in the images and separately on the three color channels, Red (R), Green

(G) and Blue (B) was conducted using the OpenCV python library. An illustration of

the negative images obtained is presented in Figure 4.1.

4.3.2 Experimental Setup

All experimentation was performed using a single NVIDIA 2080ti and Tesla P100 GPU

with 12GB and 16GB of VRAM generously provided by InfuseAI Limited and the

New-Zealand e-Science Infrastructure (NeSI) respectively. The models were trained

from scratch and saved after 500 epochs and the saved models were tested using the

standard test-set, the process was repeated three times and averaged to produce the final

results provided in Table 4.1. The training-validation allocation for the models was kept

constant at 80%-20% for all the datasets and a batch-size of 128 was employed based

on the original ResNet paper (K. He et al., 2016).

The learning rate of 0.001 and the decision to implement an adaptive optimizer

(ADAM) was derived from the standard test script published by Keras (the software
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framework utilized for experimentation). No modifications were made to the network

architecture, no real-time data augmentation methods or pre-processing of the images

were implemented to ensure reproducibility of the results.

4.4 Results

The mean results from the experimentation are presented in Table 4.1. Three experi-

mental runs were deemed sufficient as any significant differences could only realistically

arise if the augmented datasets affect model convergence. The activation maps after the

last convolutional layer for a test image of a cat in the CIFAR-10 dataset is visualized

in Figure 4.3 and the convolutional kernel weight maps are illustrated in Figure 4.2.

4.4.1 Statistical Analysis

To determine if the raw data was normally distributed, the Shapiro-Wilk test for nor-

mality was employed with a p-value threshold of 0.05. The data was established to be

normally distributed with all p-values greater than 0.05. To remove any incorrect inter-

pretations of the data which might be due to random chance, we select the parametric

paired t-test for statistical analysis. A paired two-tailed t-test is most appropriate since

no assumptions on the direction of improvement are made.

Analysis was performed with the independent variable fixed as the input training

dataset i.e. standard, augmented with negative images or negative images only and

classification accuracy as the dependent variable. Significance was established at the

standard p-value cut-off level of 0.05. The default null hypothesis is ascertained that

no observable differences in accuracy can be established when the training dataset is

augmented with negative images.

Both the natural image datasets (CIFAR-10 and STL-10) on the ResNet-50 showed

statistical significance with p-values of 0.0013 and 0.0158 with means and variances of
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Table 4.1: Summary table of results without pre-processing or real-time data augmenta-
tions

CNN Model Dataset Accuracy
Standard datasets

ResNet-50 MNIST 99.41 %
ResNet-50 CIFAR-10 80.65 %
ResNet-50 STL-10 56.08 %

Datasets augmented with negative images
ResNet-50 MNIST 99.35 %
ResNet-50 CIFAR-10 83.81 %
ResNet-50 STL-10 63.06 %

Datasets with only negative images
ResNet-50 MNIST 33.95 %
ResNet-50 CIFAR-10 43.73 %
ResNet-50 STL-10 27.96 %

The standard test-set was used for measuring performance

(80.65, 83.81), (56.08, 63.06) and (0.0121, 0.0157), (3.5087, 0.1905) respectively for the

standard and negative augmented datasets. Experiments on the MNIST dataset yielded

no statistical significance with a p-value of 0.0762 along with means of (99.41, 99.35)

and (0.0021, 0.0002) for the standard and negative augmented datasets respectively.

Figure 4.2: Visualized convolutional kernel weights with epoch instances for two
experimental datasets extracted from a trained ResNet-50 architecture
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Figure 4.3: Visualized activation maps after the final convolutional layer for a trained
ResNet-50 architecture (89 epochs)

4.5 Discussion

As there were no significant differences in the classification performance on the MNIST

dataset, we will explore only the CIFAR-10 and STL-10 datasets for further discussion.

Through experimentation on the MNIST dataset it can be established that there are no

adverse impacts from negative image augmentation. The worst case scenario is that

of the MNIST dataset where negative image augmentation offers no improvements on

classification performance.

A visual representation of the convolutional kernel weights for the first layer of the

ResNet-50 CNN architecture is presented in Figure 4.2 for the standard experimental

datasets and the negative image augmented datasets. The visualizations are generated

across multiple epoch instances where the model convergence improved from previous

instances. Figure 4.2 illustrates the kernel weight adjustments for the CIFAR-10 dataset

are more varied and spread out across a larger set of epochs, but this alone cannot

verify our hypothesis that augmenting training datasets with negative images reduces

convolutional kernel saturation. Therefore, visualization of the activation maps for a
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random test image of a cat in the CIFAR-10 dataset is presented in Figure 4.3. We

can clearly establish that much of the structural information is preserved relative to

the unaugmented dataset. Furthermore, the feature extraction is smoother and more

controlled for the datasets supplemented with negative images compared to the standard

datasets.

The negative images are quite indistinguishable in terms of their structural and

semantic information but only vary in data representations. The ME (r=image size) and

SNR measures for the negative only CIFAR-10 and STL-10 datasets are 3.452 and 3.02

respectively. The standard CIFAR-10 and STL-10 datasets have ME and SNR measures

of 3.139 and 0.44 respectively. Weight changes are highly tuned towards converging

on a single collection of images (standard or negative) with others being neglected as

they offer little significance in the back-propagation error. In other words, optimizing

the loss function L to account for either the standard or negative only image datasets

would yield high errors when evaluating classification performance on the other set, as

evidence from experimentation using only negative images.

The lack of significantly increases in the ME values for the augmented datasets can

be attributed to the relatively similar amounts of semantic information in the datasets.

However, SNR measures for the augmented datasets show significant differences. This

difference in SNR measures for the standard and augmented datasets indicate the true

signal variance σS which forces convolutional kernel weight updates closer to the mean

ignoring pseudo-random variances. The average ME measures for the augmented

MNIST, CIFAR-10 and STL-10 datasets are 3.295, 6.850 and 6.907 respectively with

corresponding SNR measures of 1.729, 2.562 and 2.323 respectively.

Assume that the elements of the convolutional kernel weight matrix W = ωi−N

for N number of feature maps can represent the feature information in only a 2-

dimensional space, then the loss function L(W, yi(xi)) can be trivially optimized for

linear separation in a 3-dimensional space. If the loss function remains unchanged and
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the weight matrix saturates, the back-propagation error calculated using the H ′th layer

gradient ∂yH′/∂RH′−1 will decrease the loss function L as ∂L/∂yH′ to ever-smaller

values for a similar collection of input data (negative only or standard datasets) thus the

loss function will also saturate.

Now assume the loss function for a weight matrix for negative augmented dataset,

denoted as x−1
i is L(W, yi(x−1

i )). The H ′th layer gradient for this new dataset would

have similar semantic information (indicated by the corresponding maximum entropy

measure) but would require different feature representations. Therefore, the back-

propagation error would be equivalent to maximizing the previous loss function. In

other words L(W, yi(x−1
i )) = 1 / L(W, yi(xi)). The effect of feeding in standard and

negative images would thus be an alternating Loss function between the maximization

and minimization of L(W, yi(xi)), making neural saturation less likely.

4.6 Conclusion

In this chapter, we validated our hypothesis that augmenting standard datasets with

negative images can significantly increase classification performance for natural image

datasets such as CIFAR-10 and STL-10 by 3.16% and 6.98% respectively. Exploration

into convolutional kernel saturation yielded the same results as neural saturation in

conventional DNNs that convolutional kernel saturation lead to premature convergence

to local optima.

Similar to other approaches used to enhance learning algorithms, augmenting data-

sets with negative images does not guarantee model convergence or improve classifica-

tion accuracies in all instances, as witnessed through experimentation on the MNIST

dataset. While the proposed negative image data augmentation technique has a solid

mathematical basis for being implemented, it does not guarantee mitigation of convo-

lutional kernel saturation. Further experimentation using large scale datasets such as
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ImageNet or MS COCO is reserved as future work. Augmenting datasets with negative

images however does have a major drawback of increasing the time required for model

training.

In the next chapter (Chapter 5), we look into increasing model training effect-

iveness by exploiting the sparsity of feature maps and investigate forced abstraction

through compression of residual CNN architectures such as ResNet, ResNeXt and

DenseNet (discussed previously in Section 2.3.1). As most CNN models are heavily

over-parameterized, increasing model training efficiency should subsequently decrease

training time.



Chapter 5

Forced Feature Compression With an

Entropy-Based Heuristic

In prior chapters (Chapter 3 and 4), we looked at the properties of feature map generation

and propagation in the context of information underflow and overflow. Different neural

configurations were examined to study their effects on the classification performance

of simple CNN models. A few discoveries made from Chapter 3 included identifying

the topological and informational sparsity in CNNs. In that chapter (Chapter 3), the

primary limitation was that the study was conducted on simple non-residual architectures

where skip connections were not implemented. In this chapter we bridge this gap by

conducting our study on residual CNN architectures such as ResNet, ResNeXt and

DenseNet explained previously in Section 2.3.1.

In the previous chapter (Chapter 4), we examined convolutional kernel saturation

and investigated the effects of augmenting standard datasets with negative images

to enhance the feature extraction process. Although the experimental results were

promising, a major drawback of the study is the direct consequence of expanding the

number of input data vectors, subsequently increasing model training time. The results

from previous chapters suggested significant performance gains could be achieved by

75
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compressing the topology or limiting the number of trainable parameters in a CNN.

Due to the topological and informational sparsity, forcing abstractions in a CNN model

should not have a significant negative impact on classification performance, since

abstractions are encoded and decoded along the full depth of the CNN model.

In this chapter, we explore the topological and informational sparsity in CNNs along

with the effects of forced abstractions and over-parameterization of CNN models. We

go on to propose an entropy-based heuristic to determine if model training time can be

drastically reduced by limiting the number of convolutional layers/blocks and forcing

feature compression, abstraction without adversely affecting classification performance.

This chapter is published in the Pattern Recognition Journal, Volume 119, November

2021, 108057; © 2021, Elsevier Ltd.

5.1 Introduction

A key challenge in designing CNN models is estimating their appropriate size (depth

& breadth) since these parameters are critical in establishing a CNN’s representational

capacity (Krizhevsky et al., 2012). Initially, designing a CNN model seems trivial

as there exists mathematical proof, that any decision boundary can be approximated

with a single sufficiently broad hidden layer (Cybenko, 1989). Training a CNN model

with a single broad layer is difficult, introducing afflictions like overfitting (Caruana et

al., 2001) or underfitting, increased susceptibility to spatial variances in the input data

(Wiatowski & Bölcskei, 2018) and ineffective feature extractions (Mallat, 2016).

Training deeper CNN models with stacked hidden layers can help mitigate training

afflictions and improve model performance since deeper layers learn more complex

feature representations. In the worst-case deeper layers can resolve into identity trans-

formations (K. He et al., 2016) without incurring any performance penalties. Although

training very deep CNNs with up to a thousand layers can be achieved, utilizing current
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computational hardware, practical limitations such as time and cost for training such

very deep CNN models become prohibitively expensive relative to shallower models.

Furthermore, training very deep, yet narrow CNN models present similar training

afflictions when compared to a shallow, yet very broad CNN model (Schmidhuber,

2015). Training inefficiencies also become especially apparent when empirically shal-

lower models learn the same functional representations and characteristics as deeper

models (Ba & Caruana, 2014). Diminishing returns for the ResNet architecture with an

exponential increase in layer depth results in marginal gains of accuracy as indicated

in (H. Zhao, Shi, Qi, Wang & Jia, 2017) where a nominal increase in classification

accuracy of 1.1% is achieved from an additional 117 convolutional layers.

While deeper CNNs are extensively employed for computer vision problems like

image classification, efficient CNN architectures optimizing CNN depth (Z. Wu, Shen

& Van Den Hengel, 2019), breadth (H. Zhao et al., 2017) or both (Tan & Le, 2019) are

gaining prominence, with some architectures achieving good results even with limited

computing infrastructures (X. Zhang, Zhou, Lin & Sun, 2018). New and emerging

research trends are focussing on compression and pruning of very deep CNNs to reduce

the associated computational overheads arising in training excessively deep models

(Canziani, Paszke & Culurciello, 2016).

Diminishing model performance with exponential increases in the total number of

model parameters can be witnessed in all CNN architectures employing skip connections

as these shortcut paths essentially produce an ensemble of shallower networks (Veit,

Wilber & Belongie, 2016). Therefore, experimental data suggests there might be

an upper bound to model depth beyond which there is an insignificant contribution

of feature abstraction from the additional layers and could even be detrimental to

model performance as these additional layers might induce overfitting. The absence

of a general framework to effectively determine a CNN model’s size stems from an

incomplete understanding of the underlying mechanisms of action.
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The lack of a thorough understanding of the internal workings of CNNs have led

to conjecture and opinionated postulations of researchers in justifying architecture

selections. The rapid progress in the domain of computer vision has also created hurdles

for performance evaluations of broader and deeper residual networks. A conclusive

determination of optimal CNN HyperParameters (HPs) cannot be ascertained due to

the inherent immense complexity and variability involved in computer vision tasks. HP

optimization is currently dominated by practitioners knowledge on the subject matter,

the computer vision task at hand and available computational resources. Scientific

evaluations of model performance with regards to network depth suggests, diminishing

returns in model performance for excessive network depths (Z. Wu et al., 2019) and as

such, more investigation is needed to regulate CNN model depth.

Contemporary compression and pruning techniques sacrifice classification accuracy

for decreasing model training times. Forcing feature abstraction and compression by

constraining model depth to the entropic data distribution of the input dataset should

prove be a targeted solution since critical feature information is retained compared to

stochastic methods of pruning or compression.

In this chapter, we highlight CNN model training inefficiencies in deep CNNs

and propose an Entropy-Based Convolutional Layer Estimation (EBCLE) heuristic to

eliminate residual depth redundancies improving feature compression. Adequate feature

compression enhances hierarchical feature abstraction and reduce model training time.

The proposed EBCLE heuristic provides an upper bound value for model depth in CNN

architectures based on the a priori knowledge of the entropic data distribution of the

input dataset.

A heuristic is justified since it is well understood that optimality in terms of hidden

layers cannot be accurately determined for CNN models (K. He et al., 2016). Further-

more, using entropy-based approaches for effective feature extraction is well grounded

in literature (Zheng & Wang, 2018). However, the problem with using entropy measures
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is that, there are numerous entropy measurements for digital data and it is imperative

that a suitable entropy measure is utilized.

Shannon’s Entropy (SE) (Shannon, 2001) is a measure used primarily in digital

communication to improve the latency between information transmission through

compression. We hypothesize that, feature compressibility and abstraction in CNNs

can only ever meet but not exceed the SE measure, since it is the theoretic limit of

digital data compressibility. Thus, a function of SE is justified for estimating the upper

bound of convolutional depth in CNNs as these layers are principally involved in feature

extraction/information processing.

As CNNs disregard the spatial orientation of the features in an image (Sabour, Frosst

& Hinton, 2017), utilizing SE measures for information measurement is warranted since

SE measures are independent of spatial variances in the data. The inherent problem in

limiting network depth of CNNs is that, it invariably restricts the information extraction

capability i.e. decreases learning capacity of the network since representational power

of a CNN is proportional to its size (i.e. depth × breadth).

CNN models using simplistic datasets (MNIST) do not suffer significantly from a

decrease in learning capacity due to severe model over-parameterization but, a more

pronounced effect can be witnessed for complex natural image datasets such as CIFAR-

100 or ImageNet due to their associated feature complexities. In order to alleviate the

decrease in learning capacity from constraining network depth, a subsequent increase in

convolutional breadth is necessary as discussed in Section 5.2. In our experimentation,

shallower yet broader CNN models are shown to maintain or even outperform baseline

test-set classification accuracies for all the five benchmarking datasets (MNIST, CIFAR-

10, CIFAR-100, STL-10 and ImageNet32), while model training time decreased by

45.22% on average across three different CNN architectures (ResNet (K. He et al.,

2016), DenseNet (Huang et al., 2017) and ResNeXt (Xie et al., 2017)). Furthermore,

our proposed EBCLE heuristic outperforms dynamically scaling approaches utilizing
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depth and breadth co-efficients (Tan & Le, 2019).

The contributions of this chapter are as follows:

• We propose an accurate heuristic to determine an upper bound to convolutional

depth using Shannon’s entropy measure for forced feature compression and

abstraction.

• We provide empirical evidence to demonstrate that EBCLE-based shallow neural

networks can learn similar high-level feature maps compared to deeper models,

as presented in Figure 5.3.

• Our proposed entropy-based heuristic reduces CNN model training times by

24.99%-78.59% across three different CNN architectures and five benchmarking

datasets without compromising model performance.

• We show that competitive results can be achieved using shallow yet broader CNN

models relative to baseline models.

• Our experiments empirically validate and support the findings presented in (Z. Wu

et al., 2019) that, deep CNN models behave as a collection of ensemble networks

and the conclusions found in (Zagoruyko & Komodakis, 2016) that, wider yet

shallower CNN models can learn the same functional representations as deeper

yet narrower CNN models with a reduction in the associated trade-off of relative

model training time.

The impact of contributions made in this chapter are apparent, EBCLE-based

CNN models substantially reduce CNN model training time, democratizing research

in the domain of computer vision to researchers or practitioners with limited compute

capabilities. Accelerated research outputs with the opportunity to test hypotheses

rapidly can be achieved through our proposed EBCLE-based heuristic. Furthermore,
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researchers or practitioners can analytically justify their HyperParameter (HP) choices

rather than arbitrarily selecting HP configurations. In general, all Deep Neural Networks

(DNNs) exhibiting asymmetries in generalization ∆G and complexity ∆C (discussed in

Section 5.2.2) should greatly benefit from feature compression to reduce model training

time, regardless of the associated task such as image classification or segmentation.

5.2 Background

Consider the task of classifying high-dimensional interpolated data such as images,

which can be represented by an underlying function say, f(X) from a collection of

n number of d-dimensional input image vectors, X = {x1,x2,⋯,xn} where, xi =

⟨x1,⋯, xd⟩∣i, d ∈ Z>0; f(X) ∈ R. All the images in X have an associated class label de-

noted as, Y = {y1, y2,⋯, yn} such that, (xi, yi) ∈ X×Y . The goal of image classification

is to learn the underlying functional representation of X using the n number of input

images such that, all images in X can be linearly separated. Traditional statistical tech-

niques will fail in some classification tasks if the data is represented in high-dimensional

vector space and as such alternate methods are needed for accurate classification.

A typical deep CNN model comprises of a convolutional block containing stacked

convolutional layers, followed by a pooling layer which is followed by a classification

block consisting of multiple fully connected layers with an ultimate softmax activated

classification layer. The softmax layer converts all real vector values into class posterior

probabilities which sum to 1. Convolutional Neural Networks (CNNs) approximate the

underlying functional representation of X denoted as f̂(X) by projecting the higher-

dimensional input vectors of X into a lower-dimensional vector space say, φ(X) =

{φ(x1), φ(x2),⋯, φ(xn)}. A simple regression vector ϑ at the final classification layer

(predominantly softmax activated) can be utilized for linear separation of images in X.

The lower-dimensional feature map vector ϕ produced from φ are critical for classifying
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higher-dimensional interpolated data (Krizhevsky et al., 2012). Functions f and f̂

outputs continuous scalar values in the set of rational numbers R i.e. class posterior

probability values provided each input vector in X has an associated single class label

in Y .

As output values of f̂(X) are continuous scalar values, they need to be discretized

into a single class from all available classes i.e. the number of classes K for the input

dataset. Discretization can be achieved using a softmax layer which takes an input

vector α and outputs a vector of same size β, where βi = eαi/∑Kι=1 e
αι ∣αi;βi ∈ α;β.

The output vector β for the input vector α is normalized such that the logits are in the

interval of [0,1] and sum to 1. Consider a binary classification example, lets say for an

input image xi the softmax outputs are ([0.8,0.2]) i.e. an 80% confidence that the input

image belongs to class one and a 20% confidence that the image belongs to class two.

A threshold function can encode the logits into a one-hot vector such that, yi = [1,0].

Model performance is dependent on an accurate dimensional reduction of the input X

denoted as φ(X) as this is challenging for traditional statistical or function mapping

techniques, alternatives need to be explored.

Computing φ(X) could be achieved through feature extraction rather than map-

ping the underlying function of X. CNNs are state-of-the-art for feature extraction

as they utilize convolutional kernels/channels/units/filters which are scanned across

the input image in X producing feature maps. The number of convolutional ker-

nels/channels/units/filters can be denoted as χ′∣χ′ ∈ Z>0. The χ′ number of convo-

lutional kernels have an associated weight vector W = {ω1,⋯ωχ′ ∣W ∈ R} extract

lower-dimensional feature information for the input vectors in X to produce a feature

map vector φ(X) = ⟨∑ni=1 φj(xi),⋯, φχ′(xi)⟩, illustrated in Figure 5.2. Closer approx-

imations to f(X) can be accomplished by adjusting the weight vector W of the χ′

number of conv. kernels until f̂(X) can approximate a one-dimensional projection of

f(X). A full-linear separation of f(X) can be achieved for the regression vector ϑ given
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an optimal weight selection for W where, ∣φ∣ = d′ is much larger than the d-dimensional

input vector ∣X∣ = d i.e. 1 ≤ d≪ d′.

Assuming a constant f(X) for X, computing f̂(X) is given by Equation 5.1 (Mallat,

2016),

f̂(X) = ⟨φ(X),W⟩ =
χ′

∑
j=1

φ(X), ωj. (5.1)

W is the weight vector for which the regression vector ϑ is optimized utilizing the n

number of training images in X and φ(X) is the feature map vector computed using

the feature vector φ(X) for an input vector xi ∈ X. Theoretically, deeper CNNs have

an increased capacity to compute a much closer approximation to f(X) compared

to shallower CNNs, since deeper networks can abstract more complex feature maps.

This is the reason why the enumeration of the feature map vector φ(X) exponentially

grows for a given underlying function f(X) for a given dataset. A larger feature map

vector φ(X) can also be achieved using a shallower yet broader model since they are

functionally equivalent to a deeper yet narrower model in terms of generating feature

maps shown, discussed later in this chapter and illustrated in Figure 5.3.

It is worth emphasizing that the dimensionality of feature map vector ∣φ∣ = d′ can

only be reduced by increasing the convolutional depth, validating the arguments made

for using ever deeper CNN models (K. He et al., 2016). An oversight to this argument

is that, reductions in dimensionality increasingly deviate the computed f̂(X) from the

ideal functional representation since activation functions apply approximations at each

layer and residual models behave as an ensemble of smaller networks (Z. Wu et al.,

2019) thus increasing redundant feature extractions.

In Section 5.3, we mathematically deduce that increasing convolutional depth

beyond Shannon’s entropy measure adds to redundancies, which is consistent with the

findings presented in (Z. Wu et al., 2019). Furthermore, in Equation 5.1, the problems
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of using deeper networks become especially apparent as χ′ plays a parallel role to φ(X),

which conforms to the conclusions presented in the previous work of (Z. Wu et al.,

2019) and is the reason why wider residual networks (Zagoruyko & Komodakis, 2016)

perform better than a thousand layer deep network. The dimension of the feature map

vector, ∣φ(X)∣ = d′ is often why CNN models overfit or underfit to the input data.

5.2.1 Convolutional Neural Network Architectures

Residual Network (ResNet)

Residual Network (ResNet) (K. He et al., 2016) using skip connections was proposed

to solve the degradation problem existing in deep CNNs. The ResNet architecture is

a deployment of residual learning-oriented blocks. The goal of using these blocks is

to integrate nonlinear convolutions into residual operations, which greatly reduce the

difficulty of linear separation in pattern classifications.

Research into shortcut paths to address the problems of vanishing/exploding gradi-

ents has been undertaken since the days of Multi-Layer Perceptrons (MLPs) but, offered

little improvements. Variations on the shortcut connection paths have since been used in

state-of-the-art CNN models (Szegedy et al., 2015) such as ResNets with skip connec-

tions between hidden layers to allow for retention of the initial features. ResNet follows

the function of error minimization for the input training data X given in Equation 5.2

f̂(X) =< φ(X) +X,W > (5.2)

Densely Connected Convolutional Network (DenseNet)

Densely connected convolutional network (DenseNet) (Huang et al., 2017), was con-

ceived from a simple idea that the output of any hidden layer hi∣hi ∈H; i ≥ 2 where, H

is the depth, should include the concatenation of all preceding feature maps produced
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from hi-1 layers. DenseNet also obeys the error minimization function given in Equa-

tion 5.3, which requires the computation of a lower dimensional feature vector from the

input data X.

f̂(X) = ⟨φ([xi(1),⋯,xn(hi − 1)]),W⟩ (5.3)

Growth rate is a critical parameter in DenseNet, viewed as the total amount of

feature information contributed by an individual layer to the entire network. DenseNets

with similar capacity can have varying classification performance by adjusting the

growth rate HyperParameter.

Aggregated Residual Transformations (ResNeXt)

A neuron can be thought of as an aggregation of signal transformations from all the

input data. The principle of ResNeXt (Xie et al., 2017) is to replace the computation of

ϕ(X) with the transformation of input X as τ(X). ResNeXt, i.e., aggregated residual

transformations, can be represented by the error minimization function given in Equation

5.4.

f̂(X) = ⟨
L

∑
i=1

τ(XL
n),W⟩, n,L ∈ Z>0 (5.4)

Cardinality L is the fixed size of aggregated transformations. Cardinality is an important

HyperParameter affecting model capacity similar to network depth.

5.2.2 CNN Optimization

Parameter compression and pruning

Compressing CNN models either through spatial or channel decomposition (Denton,

Zaremba, Bruna, LeCun & Fergus, 2014) is extensively adopted in practice to increase
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training efficiency by removing depth redundancies. While channel (Y. He, Zhang &

Sun, 2017) and spatial (J.-H. Luo & Wu, 2017) pruning show significant reduction in

model training time, they inevitably offer lower classification performance compared

to a deeper un-pruned CNN models. In Section 5.2.2, the ineffectiveness of spatial

compression is discussed. In Section 5.3, the variances in convolutional outputs from

channel pruning are highlighted. CNN parameter pruning is also challenged, as broader

models with greater numbers of trainable parameters outperform narrower yet deeper

models with lower numbers of trainable parameters in terms of training time as they

can be more efficiently computed in parallel.

Efficient Convolutional Neural Network (EfficientNet)

The premise behind EfficientNet is that, CNN models are developed with a fixed

resource budget and are then scaled up to improve model performance. A uniform

compound co-efficient is introduced as an alternative to single-dimension scaling (Tan

& Le, 2019). The authors argue that compound scaling is warranted for increasing

the receptive field important to capture fine-grained patterns in large images. In this

chapter, in Section 5.5, we present empirical evidence to support targeted depth scaling

(utilizing Shannon’s entropy measure) and manual width scaling constrained only by

computational resource budgets offers similar or even enhanced model performance

compared to uniform scaling approaches while significantly decreasing training time.

Information theory and Entropy

Information theory has wide-ranging applications in interdisciplinary domains such

as communication systems and complexity theory. Information theory is a derivative

of probability theory where the probability measures of particular events are used to

determine the complexity of information contained in events (Reza, 1994). The equation

to determine the total amount of information contained in an input X for a given event
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E is presented in Equation 5.5.

I(X) = ln(1/pE) = −ln(pE) (5.5)

Where, I(X) is the total amount of information contained in the event for the input

dimensional vector X. The number of states or independent symbols that a single

element for a single instance of X , denoted as xji , where i, j ∈ Z>0 can exist in is

denoted by a for an event E with the natural log ln(⋅) representing the probability p. As

a natural log is used, the unit of measurement is NATural units (nats). A natural log with

base e = 2.7182... is appropriate in this context as selecting any other logarithm base

would restrict the true measurement of representational power. According to (Shannon,

2001), the total amount of information contained in any given data is expressed through

its entropy (E), which can be calculated using Equation 5.6.

E(X) = −
n

∑
1

a

∑
i=0

pE lnpE =
n

∑
1

a

∑
i=0

pE I(xi), n, a ∈ Z>0 (5.6)

In Equation 5.6, E is the Shannon’s Entropy (SE) measure in NATural units (nats),

pE the probability of choice for a distinct independent symbols and n is the number of

training data/images. Equation 5.6 also implies that the entropy measure is dependent

on the total amount of information in an event and the probability of its stochastic

source. In other words, if new events yield no new information, the entropy would be

zero. In digital images, the a value for a grayscale image would be 256 for 8-bit images,

i.e. 28 = 256 or 0 to 255 distinct gray values. pE is the probability of a pixel possessing

the gray value a.

As determining probability and relative probability measures for digital images is

impractical due to the high-dimensional interpolated nature of images, histograms or

frequency of pixel intensities are computed instead to calculate close approximations to

actual probabilities utilizing the open-source scikit-image library written in python. The
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same process can be applied for color images but probability measures are computed

for every color channel i.e. Red(R), Green(G) and Blue(B) color channels.

It is worth highlighting that images with different spatial configurations have the

same entropy measures. The loss of accountability in measuring spatial configurations

is a drawback of CNNs in general (Sabour et al., 2017). SE calculations also disregard

spatial variations during measurement and as such, the SE measure is a perfect metric

for quantifying the amount of information I(X) in an image.

Using the skikit-image library, we calculate the entropy measures for all the train-

ing images present in the MNIST, CIFAR-10/100, STL-10 and ImageNet32 datasets,

described further in Section 5.4.1. The SE measures of all the training images are then

averaged (as the CNN should be able to generalize between all classes of images) across

the entire training set and rounded to two digits. The averaged entropy measures are

MNIST: 2.14, CIFAR-10 and STL-10: 5.03, CIFAR-100: 4.97 and ImageNet32:

4.97. As most of the natural image datasets contain images from much of the same

classes, it is not surprising that they have similar entropy measures.

5.3 Entropy-Based Layer Estimation

There are multiple methods proposed to estimate layer/neural configurations of networks

as discussed in Sections 5.3 and 5.3. In this chapter, we primarily focus on feature

extraction, abstraction and compression to determine the upper and lower bounds

for the input vector and a heuristic upper bound to estimate the number of hidden

layers required in a CNN. As computation of φ(X) is predicated upon the information

extracted within the hidden layers of a CNN, discussions around information theory

and its principles are warranted and most appropriate.
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Mutual Information Neural Estimation (MINE)

Authors in (Belghazi et al., 2018) empirically demonstrate that Shannon’s entropy-based

measures to determine mutual information of images (xi, yi) ∈ X × Y decreases the

uncertainty in approximating the underlying function f(X) given the computation of

conditional entropy. The equation to determine mutual information between two vectors

X and Z is given in Equation 5.7,

I(X;Z) ∶= E(X) −E(X∣Z) (5.7)

Where, E is Shannon’s entropy measure and E(X∣Z) is the conditional entropy

of X given Z. Theoretic proofs of MINE exhibit strong consistency for multi-variate

information estimation while capturing non-linear dependencies. Furthermore, MINE

has been empirically validated to outperform non-parametric estimation in (Kraskov,

Stögbauer & Grassberger, 2004). MINE performs well for adversarial networks and

proves tractable for applications utilizing the principle of Information Bottleneck

(IB) but, no evidence is presented in terms of its applications in Deep Neural Networks

(DNNs). Furthermore, MINE is used as an objective function in adversarial setting

to maximize I(X;Z). IB has shown to approximate optimal representations of X

with respect to Y in a discrete setting and with the addition of a small noise in a

stochastic setting for both adversarial networks and DNNs (Shwartz-Ziv & Tishby,

2017). Therefore, MINE’s application is limited for DNNs but offers strong empirical

evidence that SE can be utilized as a quantitative metric for information compression in

neural networks outperforming other estimation methods.

Mutual Information of Layers in Deep Neural Networks

According to the authors in (Shwartz-Ziv & Tishby, 2017), the commonly used

Stochastic Gradient Descent (SGD) optimizer in DNNs behaves in two different and
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distinct phases, Empirical erroR Minimization (ERM) and representation compression,

with the phases characterized by variations in the gradients Signal to Noise (SNR)

ratios of individual layers. The ERM phase results in a rapid increase of the mutual

information I(X;Y ) with respect to the class label Y and the compression phase (the

majority of model training is utilized in this phase) is marked by a slow compression

of the feature representation of X. Furthermore, the authors in (Shwartz-Ziv & Tishby,

2017) empirically demonstrate that the optimized layers approach the optimal IB bound

which plays a pivotal role for computational and accuracy trade-offs.

In a multi-class classification problem a single-objective optimization Tε of the

hidden network layers (H ′) between 1 ≤ ε ≤ H ′ is dependent on a multi-objective

optimization of IX = I(X;Tε) and IY = I(Tε;Y ). The ERM phase of model training

minimizes the cross-entropy loss characterized by IY while the compression phase

optimizes IX which can be represented as IX = E(X) −E(X ∣Tε), If the input entropy

E(X) is invariant, optimizingE(X ∣Tε) is sufficient, also known as stochastic relaxation.

As CNNs are fundamentally differentiated by their convolutional operations to extract

feature representations from input X, authors in (Shwartz-Ziv & Tishby, 2017) assert the

entropy growth ∆E for convolutions is logarithmic in the number of time steps i.e.

∆E α log(Dt) where, D is the underlying data distribution from which the independent

input samples X are obtained.

There is an exponential decrease in model training time with reduced network

depths due to stochastic relaxation. In other words, the IB bound is greatly responsible

in optimizing I(X;Tε) and since shallower networks have fewer number of hidden

layers the representation of I(X) is subsequently constrained and thus will train faster

given identical computational resources relative to deeper networks. The decrease in

representational capacity and methods of mitigating representational losses for shallower

networks are explored in Section 5.3.1.

A search on the information plane (illustrated as Figure 5.1) i.e. IX and IY could
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Figure 5.1: Information plane with a hypothesized layer path in a DNN for finite set of
samples in X. ∆C is the complexity gap and ∆G is the generalization gap, DIB is the
optimal achievable IB limit for samples in X, R = I(X; X̂) and UB is the upper bound
on the out-of-sample IB distortion. Figure reproduced from

(Tishby & Zaslavsky, 2015)

yield an upper bound for convolutional layer estimation but, this method involves a

pre-training step which is both computationally and time sensitive. In other words, a

trial-and-error approach could be adopted to get an ideal curve for Ŷ to minimize ∆C

and ∆G by evaluating R and varying DIB but, this is time consuming and requires

additional computational resources.

We propose a logical upper bound and heuristic convolutional depth in Section

5.3.3 using only the a priori knowledge of the SE measure of X i.e. E(X) without

pre-training.



Chapter 5. Forced Feature Compression With an Entropy-Based Heuristic 92

5.3.1 Entropy and convolutional depth

As discussed in Section 5.3, authors in (Shwartz-Ziv & Tishby, 2017) assert that ex-

ponential decreases in model training times are achieved with a reduction in network

depth since the majority of model training time is dedicated to feature compression.

However, as discussed in Section 5.2.2, compression or pruning inevitably results in

adverse model performance due to the associated loss in model learning capacity. The

characteristic nature of deep Convolutional Neural Networks (CNNs) using skip con-

nections (such as the ResNet, DenseNet and ResNeXt architectures discussed in Section

5.2.1) resolve into an ensemble of shallower networks (Veit et al., 2016) suggesting

limiting convolutional depth to enhance feature compression could potentially decrease

training time without a significant impact on model performance.

Limiting convolutional depth will invariably constrain the formation of ensembles

of shallower networks and a corresponding expansion of the convolutional breadth (i.e.

the number of convolutional kernels/channels/filters/units in a hidden layer) should

counteract the problem of decreased model learning capacity. While limiting convo-

lutional depth is in stark contrast to the work done by authors in (J.-H. Luo & Wu,

2017) proposing convolutional channel pruning, there is empirical evidence (Ba &

Caruana, 2014) supporting the fact that shallower networks can learn similar complex

feature representations as deep networks, primarily because majority of model train-

ing is dedicated to feature compression (Shwartz-Ziv & Tishby, 2017) during which

redundant information is compressed and only the most important features improving

model performance are retained.

An ideal determination of network depth is impractical due to the fact that residual

connections propagate information non-sequentially between layers and they can always

learn identity transformations allowing for training of very deep CNNs with up to and

beyond a thousand layers (K. He et al., 2016). Heuristic optimization of the network
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depth is desirable since lowering architectural complexity decreases the generalization

gap but increases the informational complexity gap, as illustrated in Figure 5.1 i.e.

allows for a broader representation of X in the information plane, IX and IY . Ideally,

the level of abstraction within a CNN should be equal to the informational complexity

of the input dataset. Although this would be ideal, there are no methods of estimating

when this level of abstraction is achieved.

The abstraction capability of CNNs is reliant on the representational power of the

model, which refers to the ability of the network to accurately extract and represent

information in feature maps. Increasing the representational capacity in CNNs acts as

a compensation mechanism for the loss of spatial information during the abstraction

process. The representational capacity of CNN models discussed in Section 5.2.1

is increased with each additional convolutional layer. Note that however, although

each additional convolutional layer increases the representational capacity of a CNN,

these additional layers might be performing identity transformations which do not

contribute in enhancing model performance. Furthermore, the compression phase of

model training for deep CNN models require an exponential increase in computational

resources and training time.

Input compression bound

Authors in (Shwartz-Ziv & Tishby, 2017) proposed a new input compression bound

presented as Equation 5.9, to replace the generalization bounds defined by classic

learning theory presented as Equation 5.8.

ε2 < log∣Hε∣ + log1/δ
2n

(5.8)

Where, ε is the difference in errors between training ∆C and generalization ∆G

as illustrated in Figure 5.1. Hε is the ε-cover for a depth hypothesis assuming the
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size ∣Hε∣ ∼ (1/ε)d. d, the dimensionality of n number of input samples in X. δ, the

confidence interval of Ŷ is between [0,1].

∣Hε∣ ∼ 2∣X∣ → 2Tε (5.9)

Where, the size of input vector X is E(X) given X is large. Tε is the single-objective

optimization as an ε-partition of the input vector X of size 2E(X∣Tε), assuming 2Tε is the

cardinality for a depth hypothesis Hε∣Tε ∈ 1 ≤ ε ≤ H ′. Furthermore, ∣Tε∣ ∼ 2E(X)
2E(X∣Tε) =

2I(Tε;X), discussed in Section 5.3. Simplifying Equation 5.9, the input compression

bound can be presented as Equation 5.10,

ε2 < 2I(Tε;X)+log1/δ

2n
(5.10)

Assuming an absolute confidence and a finite number of samples images (in-bound

disregarding out-of-bound distortions), the compression bound in Equation 5.9 is

dependent on I(Tε;X), therefore maximizing I(Tε;X) should be sufficient for enhanced

feature compression.

Stochastic relaxation: As discussed in Section 5.3, Layer compression can be

computed as ∆Ei = I(X;Ti) − I(X;Ti−1) for a given hidden layer hi ∈ H ′. Implying

an exponential decrease in training time for decrements in the number of hidden layers.

Our hypothesis is that redundant information in the input vector X can be compressed as

XE for which the resultant feature maps generated by the hidden layers of a CNN cannot

exceed Shannon’s Entropy measure E(X). In other words, limiting convolutional depth

(H ′) with a corresponding increase in convolutional breadth (χ′) for a CNN should

exponentially decrease training time without compromising model performance. The

progressive increase in spatial convolutions is exponential for H ′ ×χ′ and is in the order

of 2H
′χ′ (Mallat, 2016) i.e. 2H

′χ′ ≤ I(XE) ≤ E(X), the CNN compressed feature vector

cannot exceed the theoretical limit compression of the input vector. Furthermore, the
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representational capacity of a CNN is proportional to its size (depth × breadth) and

its size is 2Tε (from Equation 5.9) i.e. I(XE;H ′) ≤ 2E(X), the information contained

in a H ′ deep CNN is distributed among all of the convolutional kernels which is its

representational capacity obtained after the compression phase of model training.

5.3.2 Upper bound of convolutional depth

Determining an adequate convolutional depth for which the model provides sufficient

dimensionality reductions without introducing inefficiencies or redundancies is a chal-

lenging problem. Assume the d-dimensional input vector X has no redundancies i.e.

stochastic noise, in this instance there are no practical ways to apply stochastic relaxa-

tion without compromising model performance. This can be considered the lower-limit

for hidden layer compression where a convolutional depth estimation is impossible

since additional layers will increase model performance significantly.

As most information captured in the real-world has some redundancy, the n samples

in input X can be compressed up to the theoretical limit i.e. Shannon’s Entropy (SE)

measure E (computed using Equation 5.6). Lets denote the compressed input vector as

XE ∣XE ≤ X. Increasing the number of input samples will in effect reduce the suboptimal

IB bifurcations as illustrated in Figure 5.1. As discussed in Section 5.3, in instances of

stochastic relaxation, optimizing IX, specifically E(X∣Tε) is adequate for exponential

decreases in model training times. We know that entropy growth ∆E is logarithmic,

particularly ln (From Equations 5.5 and 5.6) and ∆Ei = I(X;Ti) − I(X;Ti−1) (From

Section 5.3.1).

The final convolutional layer output for a CNN model of depth H ′ is dependent on

the previous layer H ′ − 1 and the output for layer H ′ − 1 is determined by the output

from its previous H ′ − 2 layer and so on until the first input layer. Therefore, entropy

growth ∆E can be rewritten for the entire convolutional depth of a CNN as Equation
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5.11,

∆E = ln(
H′

∑
i=2

I(X;hi) − I(X;hi−1)) (5.11)

A unique characteristic of information propagation in the hidden layers is that

I(X;hi) ≤ I(X;hi−1) ≤ I(XE) ≤ I(X). In other words, any information lost in the

initial layer/s cannot be recovered in deeper layers (Shamir, Sabato & Tishby, 2010).

Furthermore, for any i ≥ j, I(Y ; X) ≥ I(Y ; XE) ≥ I(Y ;hj) ≥ I(Y ;hi) ≥ I(Y ; Ŷ )

holds true. I(Y ; Ŷ ) quantifies the predictive features in X for Y , determining I(X;H ′)

i.e. the final convolutional layer should yield an upper bound for depth estimation.

The feature map outputs of any convolutional layer is governed by the non-linear

activation function ρ(⋅), most commonly the Rectified Linear Unit (ReLU), ρ(Z) =

max(0, Z) for some vector input Z (Arora et al., 2016). The activation function

essentially bottlenecks information propagation within the hidden layers, such that,

E(X) ≥ E(XE) and I(Ŷ ; XE) ≤ ρ(I(XE)). The final layer output for a convolutional

depth H ′ requires as an input the compressed vector XE (because only the first con-

volutional layer can accept the uncompressed input vector X, all other layers have the

feature map output from the first layer as an input) and is constrained by the activation

function i.e. ρ(I(XE;H ′)).

Equation 5.11 can be rewritten and reduced as Equation 5.12,

∆E = ln(ρ(I(XE;H ′))) (5.12)

I(XE) = 2H
′χ′ and I(XE;H ′) ≤ 2E(X) (from Section 5.3.1 applying stochastic

relaxation). The activation function ensures to maximize I(XE;H ′) and equality is

achieved if and only if X̂ = X. Therefore, the relationship is invariant for I(XE;H ′)

i.e. ρ(I(XE;H ′)) ≤ 2E(X). In other words, the final compressed feature vector cannot

exceed the theoretical compressibility of the input vector X and equality is achieved in
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the best case when X̂ = X. Therefore, Equation 5.12 can be rewritten as an upper bound

of convolutional depth (which is the Entropy-Based Convolutional Layer Estimation or

EBCLE equation) as Equation 5.13

∆E = ln(2E(X)) (5.13)

Where, ∆E ∈ R+
1 is the objective function for maximizing feature compression

within the hidden layers of a CNN, given the Shannon’s Entropy measure E(X) for an

input dataset X.The complexity of X determined by its entropy measure E, indicates

higher degree of data complexity requires CNN models with corresponding complexity

for dimensionality reduction and linear separation.

Note that since the EBCLE heuristic for feature compression belongs to R+
1 , upper

and lower bound values are mandatory. It is safe to assume that the upper bound should

be used, as using the lower bound might lead to premature feature complexity growth.

Utilizing Equation 5.13, we can determine the upper bound heuristic for the selected

input datasets CIFAR-10/100, STL-10 and ImageNet32 as 4 and the MNIST dataset

as 2.

5.3.3 Using EBCLE for CNN Architectures

The EBCLE heuristic or ∆E offers a way to maximize feature compression by utilizing

minimal number of hidden convolutional layers and as such this upper bound measure

behaves differently for various static CNN architectures due to their architectural

constraints. All the CNN architectures employed in this chapter have residual learning

blocks with stacked convolutional layers, these stacked convolutional layers should not

degrade model performance since they can always perform identity transformations

(K. He et al., 2016). Since stacked convolutions reduce dimensions exponentially,

shortcut paths are introduced after each learning block to ensure model performance
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(feature learning capacity) is not impeded. Therefore, an architectural design lower-

bound is placed on model depth.

The design limitations proposed by the authors are, ResNet v1: Depth = N × 6 + 2

(K. He et al., 2016); DenseNet: Depth = N × 3 + 4 (Huang et al., 2017) and ResNeXt:

Depth = N × 9 + 2 (Xie et al., 2017). N ∣N>1+ is the EBCLE value derived earlier in

Section 5.3.2, i.e. 4 for CIFAR-10/100, STL-10, ImageNet32 and 2 for MNIST. As

such, the lower bound for model depth that can be employed for these architectures are,

ResNet v1: 8, DenseNet: 7 and ResNeXt: 11.

5.4 Experimental Design

To validate EBCLE as a heuristic, we employ a quantitative approach using five

well-known benchmarking datasets, MNIST (LeCun et al., 1998), CIFAR-10/100

(Krizhevsky & Hinton, 2009), STL-10 (Coates et al., 2011) and ImageNet32 (Chrabaszcz,

Loshchilov & Hutter, 2017). The selected comparison criteria are, test-set classification

accuracy and the model training time. We test the efficacy of EBCLE against deeper

ResNet-50, ResNeXt-56 and DenseNet-28 models (deeper, broader models could not

be evaluated due to memory constraints), while keeping other HPs such as learning rate

and batch size constant with no data excluded or pre-processing steps applied to images

in the datasets for three independent evaluation runs. Learning rate and batch size were

selected based on configurations by the original authors of the proposed architectural

models.

The current consensus is that, using a trial and error methodology to vary HP

configurations and using expert domain knowledge, fine-tuning of deep CNN models

yield enhanced model performance (K. He et al., 2016). Our primary objective for this

study is to investigate the relative classification performance of deeper yet narrower and

shallower yet broader CNN models with an emphasis placed on training time.
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5.4.1 Datasets

The MNIST dataset includes 28×28 pixel resolution black and white handwritten digits.

MNIST consists of 60,000 training and 10,000 test images split equally into ten classes

for each numeric digit. The CIFAR-10/100 datasets includes 50,000 training and 10,000

testing natural color images with a 32×32 pixel resolution, split equally into ten/hundred

classes for CIFAR-10/100 respectively, which include pictures of airplanes, automobiles,

birds and other such natural image classes. The STL-10 dataset includes 500 training

and 800 test natural color images split into much of the same classes of natural images

but in a higher 96×96 pixel resolution, derived from the ImageNet dataset (Russakovsky

et al., 2015). The ImageNet32 dataset is a downsampled (32×32 pixel resolution)

version of the original ImageNet dataset (Russakovsky et al., 2015), consisting of a

thousand natural image classes.

5.4.2 Experimental Setup

The first set of experiments presented in Table 5.1 were conducted using a single Nvidia

2080ti GPU with an AMD Threadripper 1920x CPU and 32GB of RAM, generously

provided by InfuseAI Limited (New Zealand). The second set of experiments presented

in Table 5.2 and evaluation of the transfer learning performance were conducted using

a single 3070 GPU with a AMD Ryzen R5 2600 CPU with 64GB of RAM, yet again

generously provided by InfuseAI Limited (New Zealand). The training-validation

split for every model was kept constant at 80%-20% across all datasets. There were

no modifications made to the CNN architectures and to ensure reproducibility, no

image augmentation techniques were used. HP configuration included using the Adam

optimizer with a batch size of 128 and a constant learning rate of 0.001 for 100 epochs.

Where possible, official Github repositories were cloned for the four CNN architectures

built on the target software platform (Keras with a tensorflow backend) utilized in this
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chapter.

All the models were trained from scratch on the specified hardware utilizing the

same source code and libraries. Only the model depth (H ′) and breadth (χ′), presented in

Table 5.1 had to be modified for baseline comparisons against EBCLE models. In other

words, the baseline ResNet-50 model had 50 hidden layers (H ′) with 16 convolutional

units for the first hidden layer (χ′) whereas, EBCLE-models had 26 hidden layers with

24 convolutional units.

5.5 Our Results

The first set of experiments in this chapter is to examine model performance for static

CNN architectures with an emphasis on training time with respect to EBCLE-based

models, presented as Table 5.1.

The second set of experiments focused around examining model performance for

dynamically scaling CNN architectures such as EfficientNet (EN). The HP configuration

used was similar to the settings proposed in (Tan et al., 2019); an RMSprop optimizer

with the default learning rate of 0.001 and momentum of 0.9 for 100 epochs with no

weight decays or custom layers/objects used to ensure reproducibility. Furthermore,

the image resolution for CIFAR-10 is 32×32 but, authors in (Tan & Le, 2019) trained

models on the ImageNet dataset with 224×224 resolution images, therefore model

performance will deteriorate significantly. All models were trained from scratch on the

specified hardware.

Finally, we examine the transfer learning performance of EBCLE models relative

to baseline. The objective is to investigate if limiting depth omits important feature

information from being retained that might be pertinent for model performance. The

results for transfer learning for STL-10 and CIFAR-10 datasets for the ResNet models

were on average 15.75% and 16.93% for the ResNet-50 and ResNet-EBCLE models
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CNN Model H ′ χ′ Params. Acc. (%) Time (h:m:s) REL. ∆ (%)
MNIST dataset

ResNet-50 50 16 760,266 99.44 0:43:31 -65.68
ResNet-EBCLE 14 24 400,474 99.42 0:14:56

DenseNet-40 40 12 1,058,866 99.60 1:03:46 -78.59
DenseNet-EBCLE 10 20 210,050 99.54 0:13:39

ResNeXt-56 56 16 11,003,712 99.15 3:48:01 -63.12
ResNeXt-EBCLE 20 16 3,893,056 99.21 1:24:05

CIFAR-10 dataset
ResNet-50 50 16 765,098 79.85 0:38:33 -36.27

ResNet-EBCLE 26 24 830,698 80.85 0:24:34
DenseNet-40 40 12 1,059,298 87.22 1:05:38 -62.09

DenseNet-EBCLE 16 20 692,690 86.35 0:24:53
ResNeXt-56 56 16 11,004,864 87.08 3:38:47 -30.08

ResNeXt-EBCLE 38 16 7,449,536 87.29 2:32:59
STL-10 dataset

ResNet-50 50 16 765,386 56.56 0:16:35 -32.73
ResNet-EBCLE 26 24 838,378 60.17 0:12:30

DenseNet-40 40 12 1,059,298 74.45 1:05:33 -59.50
DenseNet-EBCLE 16 20 692,690 77.44 0:26:33

ResNeXt-56 56 16 11,004,864 58.25 3:25:21 -24.99
ResNeXt-EBCLE 38 16 7,449,536 60.65 2:34:09

CIFAR-100 dataset
ResNet-50 50 16 766,116 40.09 0:38:15 -34.99

ResNet-EBCLE 26 24 839,428 48.57 0:24:52
DenseNet-40 40 12 1,100,428 59.27 1:07:17 -62.30

DenseNet-EBCLE 16 20 725,180 58.43 0:25:22
ResNeXt-56 56 16 11,097,024 58.89 3:43:03 -29.57

ResNeXt-EBCLE 38 16 7,541,696 60.45 2:37:06
ImageNet32 dataset

ResNet-50 50 16 824,616 33.52 14:34:16 -35.67
ResNet-EBCLE 26 24 926,728 33.57 9:22:23

DenseNet-40 40 12 1,511,728 36.72 25:43:49 -33.00
DenseNet-EBCLE 16 40 1,050,080 36.39 17:14:25

ResNeXt-56 56 16 12,018,624 36.32 85:20:45 -43.21
ResNeXt-EBCLE 38 16 8,463,296 35.77 59:35:47

Table 5.1: Table of results comparing different CNN models on various benchmarking
datasets.
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CNN Model H ′ χ′ Params. Acc. (%) Time (h:m:s)
ResNet-50 50 16 765,098 79.85 0:38:33

ResNet-EBCLE 26 24 830,698 80.85 0:24:34
EfficientNet-B0 1.0* 1.0* 4,020,358 71.29 0:25:31
EfficientNet-B1 1.1* 1.0* 6,525,994 75.78 1:09:05
EfficientNet-B2 1.2* 1.1* 7,715,084 75.83 1:10:25

Table 5.2: Summary table of results highlighting the relative efficacy of the ResNet mod-
els trained adopting the EBCLE heuristic and a dynamic compound scaling approach
on the CIFAR-10 benchmarking dataset. EfficientNet-B3-B7 could not be evaluated
due to the required memory constraints.
* H ′ = depth and χ′ = breadth co-efficients for EfficientNet models.

respectively. These specific datasets were selected because of their similar constituent

class information. All images in the CIFAR-10 dataset were upsampled to normalize

pixel resolutions for equalization with the STL-10 dataset. Other models could not be

evaluated due to the lack of video memory on the new commissioned hardware.

5.5.1 Statistical testing

First, the Shapiro-Wilk test for normality was used to establish if the collected raw

data were normally distributed. The data were normally distributed with all p-values

less than 0.05, Table 5.3 present the mean results over three experimental runs. As

the distribution of data is normal, we select the parametric one-tailed paired t-test for

statistical testing of the data. A one-tailed paired t-test is the most applicable since we

want to question if there was an observable difference in accuracy and training time

for EBCLE models on the same CNN architectures relative to deeper models. In other

words, is there a statistical difference in the classification accuracies and training costs

when EBCLE models are used instead of the standard CNN models.

Tests were performed with the independent variable as the CNN depth and classific-

ation accuracy as the dependent variable. The interpretation was done at the standard

significance p-value threshold of 0.05 for a one-tailed test, with the assumption that
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deeper models should provide higher accuracies when compared to shallower EBCLE

models. The default null hypothesis is that no observable differences are present.

5.6 Our Analysis

In this chapter, conventional wisdom advocating the use of deeper CNN models

(Schmidhuber, 2015) for enhancing classification accuracy has been challenged, with

empirical data supporting the validity and efficacy of our proposed novel EBCLE

heuristic to significantly reduce model training time without compromising model per-

formance. Examining the input test images in Figures 5.2 and 5.3, the EBCLE models

exhibit identical high-level abstractions after the last convolutional layer compared to a

deeper ResNet-50 model.

The SE values, measured after the first and last convolutional layer of the ResNet-

EBCLE and ResNet-50 models, as visualized in Figures 5.2 and 5.3 are 5.2735 and

5.5625 for the first convolutional layer and 5.3668 and 6.0959 for the last convolutional

layer respectively. The difference is more pronounced for the MNIST dataset where

the SE measures of the activation maps for the EBCLE and ResNet-50 models after the

first convolutional layer are 4.9176 and 4.2341 and after the last convolutional layer are

1.9172 and 2.3010 respectively. The lower SE values in the EBCLE model indicate a

higher degree of feature compression in the ResNet-EBCLE model compared to the

standard ResNet-50 model with similar higher dimensional feature maps using only

half as many convolutional layers thereby maintaining or even outperforming deeper

networks.

In a few instances (CIFAR-100 and STL-10), the broader EBCLE models outper-

formed deeper models by a statistically significant margin, implying that the perform-

ance improvements in both accuracies and training times of the EBLCE models are not

random. Furthermore, in all instances, the average EBCLE model training time and cost
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CNN Models p-value Mean Variance (p < 0.05)?
MNIST dataset

ResNet-EBCLE
ResNet-50

0.38 99.44
99.42

0.0086
0.0003

No

DenseNet-EBCLE
DenseNet-40

0.14 99.60
99.54

0.0064
0.0020

No

ResNeXt-EBCLE
ResNext-56

0.42 99.15
99.21

0.1159
0.0741

No

CIFAR-10 dataset
ResNet-50
ResNet-EBCLE

0.29 80.85
79.85

5.3479
0.4723

No

DenseNet-40
DenseNet-EBCLE

0.08 86.35
87.22

0.1657
0.1922

No

ResNeXt-56
ResNext-EBCLE

0.32 87.29
87.08

0.8660
0.4510

No

STL-10 dataset
ResNet-50
ResNet-EBCLE

0.03 56.56
60.17

0.3796
2.1576

Yes

DenseNet-40
DenseNet-EBCLE

0.04 74.45
77.44

0.1657
0.1922

Yes

ResNeXt-56
ResNext-EBCLE

0.08 58.25
60.65

0.6175
1.7851

No

CIFAR-100 dataset
ResNet-50
ResNet-EBCLE

0.002 40.09
48.57

0.0409
1.2637

Yes

DenseNet-40
DenseNet-EBCLE

0.02 59.27
62.40

0.01163
0.8481

Yes

ResNext-56
ResNeXt-EBCLE

0.081 58.89
60.45

0.0134
1.8388

No

ImageNet-32 dataset
ResNet-50
ResNet-EBCLE

0.44 33.52
33.57

0.3141
0.0007

No

DenseNet-40
DenseNet-EBCLE

0.21 36.72
36.43

0.1876
0.0030

No

ResNext-56
ResNeXt-EBCLE

0.16 36.32
35.77

0.3685
0.4832

No

Table 5.3: Table of paired one tailed t-test results to validating the EBCLE heuristic.
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reduction was 45.22%. The reason is due to the efficient minimization in the trade-off

between complexity and information gaps for EBCLE-based models. To discrimin-

ate between images related to ships and cars, simple edge detectors that can abstract

salient features such as wheels, bow and stern are sufficient to achieve a high classi-

fication accuracy. Overly complex abstractions start to increase the information gap

while minimizing the complexity gap causing overfitting and detrimental classification

performance.

Utilizing an EBCLE model ensures sufficient dimensionality reduction has occurred

before the final classification layer allowing greater fine-grained features to be learned.

However, optimality in depth for any CNN model cannot be accurately determined, as

asserted by authors in (K. He et al., 2016). The proposed EBCLE, at the very least,

offers a mathematically sound way to justify HP choices and optimizations affecting

classification performance while mitigating untrained features, a characteristic of deep

models (Z. Wu et al., 2019).

A significant contribution of the EBCLE heuristic is the reduction in model training

time while maintaining or outperforming baseline classification performance, inline

with wider residual network architectures (Zagoruyko & Komodakis, 2016). Other

compression, quantization or pruning methods discussed in Section 5.2.2 are accompan-

ied by a statistically significant decrease in classification performance and thus are not

studied extensively in this chapter.

5.6.1 Exponential increase in trainable parameters leads to mar-

ginal gains in performance

The number of trainable parameters increases exponentially for additional convolu-

tional layers, as there is a 2χ
′ increment in convolutional kernels/units in the model to

compensate for the reduction of model capacity (Mallat, 2016). As gradients are in
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Figure 5.2: Feature/Activation maps visualized after the first convolutional layer for a
test image of a horse in the CIFAR-10 dataset, EBCLE depth = 26

Figure 5.3: Feature/Activation maps visualized after the last convolutional layer for a
test image of a horse in the CIFAR-10 dataset, EBCLE depth = 26
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the direction of the steepest descent in back-propagation (Veit et al., 2016), utilizing

unnecessarily deep networks will lead to untrained features (Z. Wu et al., 2019). The

EBCLE heuristic presented in Section 5.13 provides an adequate depth estimation using

Shannon’s entropy for measuring the theoretical limit for feature compression by the

convolutional layers after which feature representations resolve into identity transform-

ations which are ineffective in enhancing model performance. Further credence for

shallower yet wider models is provided by the data presented in (H. Zhao et al., 2017),

where a classification improvement of 1.1% was achieved from an 117 additional depth

increase.

Training CNN models by varying the depths and widths on the same CIFAR-10

dataset while keeping all other HyperParameters constant resulted in the EBCLE model

outperforming deeper models. It is noteworthy to mention that additional increases in

the initial convolutional width (χ′) caused overfitting at extremely large values (256)

and resulted in decreased classification performance. Moderate values of χ′ (128)

produced the best classification accuracy (with an increment of 0.75%) but resulted in

an exponential increase in the number of trainable parameters. In other words, models

with a χ′ value of 128 had 23,493,130 number of trainable parameters compared to

a narrower model with a χ value of 24 with only 830,698 i.e. a 96.46% decrease in

the number of trainable parameters resulted in only a 0.75% decrease in classification

performance. This decrease in the number of parameters suggests excessive model

width increases do not offer huge improvements in classification performance similar to

very deep models.

Counter-intuitive decrease in model training time

A marked increase in the time required to compute gradients for some EBCLE models

due to increase in the total number of parameters can be witnessed relative to baseline

models. However, since most of the model training time is consumed during the feature
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compression phase (discussed in Section 5.3.1), EBCLE-based models are inherently

restricted in terms of their feature compressibility and as such a corresponding decrease

in the solution space with yields the observed training time reductions. The increased

breadth of the EBCLE-models enables optimal utilization of the computing hardware

due to enhanced data loading and parallel processing, relative to deeper networks which

experience frequent information processing bottlenecks.

Results presented in Tables 5.1 and 5.2 indicate that EBCLE-based models show

slight to significant increases in model performance even with decrease in model

parameters due to more effective feature extraction, abstraction and compression relative

to baseline models. As discussed earlier in Section 5.6.1, exponential increases in

model parameters lead to only marginal gains in performance. As such, more effective

training regimes provide significant performance gains compared to simply increasing

model sizes. This is due to the tendency of deeper layers to resolve into identity

transformations.

5.6.2 Limitations

A key limitation for employing EBCLE is that, the heuristic is limited in applications

where the entropic variance of constituent classes in the input dataset is high, as there

are no practical ways to determine relative effective variances for individual classes

to optimize feature compression. In other words, if some of the constituent classes in

the input dataset have high entropy and others have low entropy, EBCLE would not be

applicable since mean entropic measures are utilized in this chapter.

Another limitation for a comprehensive evaluation of the EBCLE heuristic presented

in this chapter is that, although the principles of optimizing feature compression should

hold true for different application domains or tasks such as audio classification or

segmentation; empirical evidence is critical in drawing any meaningful conclusions and
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as such EBCLE remains confined to CNN image classification in this article.

5.7 Conclusion and Future Work

To overcome the problems posed by severe over-parameterization concerning model

training time and architecture selection, we proposed an entropy-based heuristic that

imposes feature abstraction and compression restricting over-parameterization with

regards to convolutional depth in CNNs. The proposed heuristic employs a priori

knowledge of data distribution for the input dataset to simplify and accelerate CNN

model training. Using the EBCLE heuristic, we provided empirical evidence utilizing

several well-known benchmarking datasets and CNN architectures against established

baselines to validate the efficacy of EBCLE-based models with respect to training

time and classification accuracy. Results for the EBCLE heuristic adopting a shallow

yet broad CNN model indicate a 24.99% - 78.59% reduction in model training time

compared to deeper yet narrower CNN models for the same HyperParameter (HP)

configurations without significant performance degradation.

The results presented in this chapter support the independent findings obtained

in (Z. Wu et al., 2019), where the authors assert that wider, yet shallower models

outperform deeper, yet narrower CNN models. Furthermore, the authors in (J. Zhao,

Liang, Dong, Tang & Liu, 2020) establish both theoretically and empirically that

entropy-based heuristics can simplify and accelerate inner and outer loop calculations

for feature selection. Additional validation for our EBCLE heuristic regrading forced

feature abstraction and compression can be corroborated by the findings presented in

(H. Zhao et al., 2017), where the authors establish experimentally, that shallower CNN

models can learn the same functional representations as deeper networks.

Our proposed EBCLE heuristic offers a simplified approach to select CNN architec-

tures and accelerate model training by utilizing the a priori entropy of input the dataset.
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Additionally, our EBCLE heuristic is architecturally agnostic facilitating application

in multiple domains. The empirical data presented in this chapter allude to the same

phenomenon of over-parameterization for convolutional widths χ′, suggesting further

gains could be achieved with regards to decreasing model training times. This is an

important area for exploration and future publications. Empirical validation for our

proposed EBCLE heuristic is conducted on five benchmarking datasets (ImageNet32,

CIFAR-10/100, STL-10, MNIST) and three network architectures (DenseNet, ResNet,

ResNeXt) along with a dynamically scaling network architecture (EfficientNet).

Wider but shallower residual networks have shown to outperform narrow yet deeper

networks (Zagoruyko & Komodakis, 2016), corroborating the findings presented in

this chapter. Furthermore, very deep CNN architectures resolve into a collection of

independent feature extractors making the process of feature extraction redundant since

skip connections facilitate only the most important features to be captured (Z. Wu

et al., 2019). The EBCLE heuristic could be employed to introduce forced feature

abstraction and compression enhancing the efficiency of model training. Empirical

evidence supports the fact that shallow residual networks can learn the same functional

representations as deeper networks (H. Zhao et al., 2017), providing further independent

validation that the EBCLE heuristic could help optimize model training, in terms of

addressing severe over-parameterization with regards to training time and simplified

CNN model selection.

Finally, the theory behind EBCLE for CNN architectures supports the fact that the

same principles governing feature compression should apply to other deep learning

tasks such as segmentation or regression but, empirical evidence is essential to draw

any meaningful conclusions and as such it is reserved as future work.

Through this chapter, we have gained a more comprehensive understanding of the

feature extraction process in CNNs and investigated the effects of over-parameterization

on model training times. In the next chapter (Chapter 6), we explore a novel method of
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automatically tuning the model learning rate HyperParameter to further reduce model

training times by increasing the rate of model convergence.



Chapter 6

Entropy-Based Inner-Loop

Optimization

In the previous chapter (Chapter 5), we verified that over-parameterized CNN models

could be compressed without significant adverse impacts on classification performance,

due to their informational and topological sparsity. An ongoing problem in CNN

training is the vast number of HyperParameters(HPs) that need to be optimized which

can greatly affect model classification performance.

In this chapter, we focus on inner-loop fine-tuning of the Learning Rate (LR) HP.

Optimizing the LR will accelerate the rate of model convergence and decrease model

training time. We propose the use of Maximum Entropy (ME) measures as a monitoring

function to assess variational drifts in the CNN feature extraction properties, thus

reducing training complexity by offering an entropy-based optimization algorithm.

6.1 Introduction

Machine learning algorithms have numerous HyperParameters (HPs) that are critical for

model training influencing the effectiveness of model learning. HPs need to be adjusted

112
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either manually or automatically to ensure model convergence for high classification

accuracies. Manual tuning of HPs is time-consuming and often requires expert domain

knowledge, whereas automatic tuning might lead to sub-optimal HP configurations. HP

tuning unnecessarily increases the complexity of model training and is often considered

as a nuisance (Snoek, Larochelle & Adams, 2012). Most machine learning algorithms

aim to update a weight matrix ω representing the trainable parameters of a Neural

Network (NN) such that an objective function f(ω) is optimized for a given task.

The weight updates ∆ω are performed after each iteration based on a simple rule,

ωt+1 = ωt +∆ωt, where t is the iteration index (Robbins & Monro, 1951). Calculating

∆ωt using Stochastic Gradient Descent (SGD) is given in Equation 6.1.

∆ωt = −η∇ωf[ωt,xt] (6.1)

Where, η is the learning rate which dictates the magnitude of weight updates and ∇ω

is the gradient of the weight matrix optimized for the objective function at iteration t

using the input data vector xt. The SGD algorithm is computationally efficient since

the weight updates are calculated using only the first-order partial derivatives, which

is computationally equivalent to a function evaluation. Adjusting HPs often requires a

time-consuming process of experimentation using trial and error, manual fine-tuning or

random searches of the HP space (Bergstra & Bengio, 2012), which are computationally

expensive and imprecise. The sensitivity of optimizers to learning rates is the key

determining factor for network convergence. It is well established that excessively high

learning rates cause model divergence, whereas lower learning rates induce unusually

slower rates of convergence (Bengio, 2012). Adding to the selection of an optimizer,

the determination of an optimal learning rate η is essential for faster and more accurate

convergences in NNs.

In this chapter, we propose a Maximum Entropy-Based Learning RaTe EnhanceR
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(MELTER). MELTER is a real-time adaptive learning rate scheduler to improve the

SGD optimizer utilizing Maximum Entropy (ME) measures of the input training data in

conjunction with the ME measures of the convolutional kernels during model training,

detailed further in Section 6.2.5. We limit the scope of this research to computer vision

and Convolutional Neural Network (CNN) model training as they are state of the art

for image recognition/classification (Simonyan & Zisserman, 2014) and stochastic

optimizers, specifically Residual Networks and SGD, as they are most commonly used

by computer vision practitioners. The proposed MELTER algorithm uses a threshold to

reset the learning rates periodically for enhanced exploration of the domain/solution

space using the input data vector, significantly extending the work done in (Loshchilov

& Hutter, 2016).

Empirical validation of MELTER on well known benchmarking datasets such as

MNIST, CIFAR-10/100 and STL-10 establishes superior performance compared to

ResNet models trained using manually-tuned learning rates and other existing tuning-

free optimization methods. The proposed MELTER solution as Algorithm 6.3.1, is

noise averse in terms of image distortions, requires no pre-training or manual fine-tuning

and is applicable across multiple datasets. We observe an improvement of 2.67% and

2.06% for the ResNet-20 and ResNet-56 CNN models respectively compared against a

piecewise constant training method (Rolinek & Martius, 2018). On the MNIST dataset

MELTER achieved state-of-the-art accuracy of 99.75% using the ResNet-32 model

without real-time data augmentation, outperforming all other training regimes compared

in this chapter (Smith & Topin, 2019; Smith, 2017; Snoek et al., 2012; Vaswani et al.,

2019; Rolinek & Martius, 2018). On the CIFAR-100 and STL-10 datasets, MELTER

outperformed manually tuned models by 5.58% and 2.77% respectively.
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6.2 Background and Related Work

Calculating optimal Learning Rates (LR) through the use of a Hessian matrix of second-

order partial derivatives (Yu, Efe & Kaynak, 2002) guarantees model convergence, but

the required computational resources for calculating such matrices prove impractical.

Due to these immense computational limitations for calculating the entire Hessian

matrices, proposals for optimization methods using only the first-order information

for approximations are widely adopted (S. Becker, Le Cun et al., 1988; Duchi, Hazan

& Singer, 2011). Sub-optimal LRs either induce overfitting when the rate is small or

conversely promote model divergence when the LR is high. Conducting grid searches

(Smith, 2018) or line searches (Vaswani et al., 2019) prior to LR initialization can

help alleviate the problem of sub-optimal LR calculations, but these methods are time-

consuming and precision cannot be guaranteed.

6.2.1 Cyclical Learning Rate Optimization

A Cyclical Learning Rate (CLR) solution (Smith, 2017) using bounded minimum and

maximums with a stepsize to form cycles of linearly increasing and decreasing LRs up

to the bounded values, assists in broader solution space explorations aiding in model

convergence to the global optimum. The maximum bound value could be determined

by performing a range test by pre-training a model with an initial small LR and linearly

increasing it to establish the maximum LR realized through model divergence. Similarly,

the minimum bound can be established by adopting a trial and error methodology using

a factor of 3 to 4 less than the maximum LR and analyzing model convergence. Our

proposed MELTER algorithm incorporates similar bounded minimum and maximum

values for LR, but eliminates the need for trial and error methods, pre-training or range

tests by utilizing the a priori knowledge of the entropical data distributions for the input

dataset.
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6.2.2 Super-Convergence and 1Cycle Optimization

Super-Convergence is a phenomenon witnessed in CIFAR-10/100 datasets by (Smith

& Topin, 2019) for deep ResNets where the test loss and accuracy remain relatively

constant for large LRs. The phenomenon was used to propose a 1Cycle policy by

slightly modifying the cyclical learning rate scheduling using different HPs. The authors

claim of achieving superior performance with orders of magnitude fewer iterations

of model training seem promising; however, the reproducibility of these methods is

not consistent or independently validated. The principle of Super-Convergence also

contradicts the assertion made by (Hoffer, Hubara & Soudry, 2017) that training models

for longer improves generalization. Furthermore, the effect of Super-Convergence was

only witnessed in specific datasets such as CIFAR-10/100. Our proposed MELTER

algorithm does not have such specific requirements and can be adopted for a wider

range of datasets.

6.2.3 Linearized Loss-Based Optimal Learning Rate Optimization

Linearized Loss-based optimaL Learning rate (L4) (Rolinek & Martius, 2018) optimizes

the step-size during model training to achieve a minimum attainable loss. The results

presented achieve high accuracies in relatively short periods of time during model

training. However, achieving these high accuracies is predicated upon the introduction

and optimization of several additional HPs, requiring further manual or automatic

fine-tuning. Our proposed MELTER algorithm achieves superior performance over L4

in the same number of iterations/epochs on the same datasets without the introduction

of additional HPs avoiding requirements for further fine-tuning or optimizations.



Chapter 6. Entropy-Based Inner-Loop Optimization 117

6.2.4 Energy-Based Optimization

An energy-based solution for learning rate scheduling (Battiti, 1989) starts with an

initial learning rate and employs a specified energy function E(ω) for monitoring weight

updates. The learning rates are varied proportionally by an arbitrary factor inverse to the

functional evaluation result of E(ω). Searches are made on the negative gradient to find

a step that decreases the energy function, and a step is guaranteed if learning rates are

allowed to approach zero. While this method accelerates weight updates, the correctness

of weight updates cannot be guaranteed if the input is noisy. Correctness cannot be

guaranteed because noisy inputs result in non-steady decreases of the energy function,

leading to sub-optimal convergences to local optima, causing performance degradation.

In our proposed MELTER algorithm, a monitoring function based on ME measures is

used instead which makes the approach robust and resilient to noise, since calculation

of ME is independent of noise and relies extensively on the amount of disorder of the

data. Table 6.1 summarizes existing optimization methods with MELTER.
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6.2.5 Convolution Kernel Analysis and Maximum Entropy (ME)

Data transformation is of vital importance in the domain of machine learning, the aim

of which is to reduce higher dimensional data into lower dimensional linearly separable

representations of the data. In CNN models, feature extraction and data transformation

are performed through convolutional kernels, where linear input vectors are reduced

to lower-dimensional linearly separable weight matrices through non-linear activation

functions.

Kernel analysis is widely used in different application domains (Jenssen, 2009;

Collins & Duffy, 2002) but currently, it is not utilized for real-time CNN model

optimization. As feature extraction in any CNN is imperfect, the convolution kernel

weights are updated based on noisy or inadequate feature information from the input

vectors. A solution to counteract the noisy or insufficient feature information data is

to utilize ME measures, which are used widely for image reconstruction from noisy or

deficient data.

In this chapter, we calculate the ME measures of convolutional kernels after every

epoch during model training and employ the entropic difference between the training

data and convolutional kernels to dynamically adjust learning rates. The use of entropic

differences as monitoring functions has precedent in correcting instrumentation drifts

and re-calibration of poorly known parameters (Skilling & Bryan, 1984) in different

application domains. The use of ME for kernel analysis is further justified since ME is

the only consistent way of selecting a single discrete data point from a given set of data

which best fits the data, proven axiomatically in (Shore & Johnson, 1980; Johnson &

Shore, 1983).

Theoretical calculations of ME using the equations proposed by Hartley (Hartley,

1928) is impractical to calculate in CNNs for image classification since the relative

probabilities of image pixels in a given neighborhood causes state-space problems for
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current computing hardware. To counteract this problem, an open-source scikit-image

processing library written in python could be used to calculate the ME measures for

color and grayscale images employing disk of radius r scanned across the image which

returns the color level histograms for the given bins. Frequency measures could then be

calculated to determine relative probabilities.

The ME measures for color images require independent ME calculations for each of

the Red (R), Green (G) and Blue (B) color channels which are then averaged to get the

final ME measure for a single image. The mean ME measure for the entire training set

is computed using individual ME scores for the training images which is then rounded

to two digits to secure the final reported ME measure for the dataset. The mean ME

measures for MNIST, CIFAR-10, CIFAR-100 and STL-10 datasets are 1.04, 2.2, 2.18 and

2.15 bits per pixel respectively. The amount of time taken to calculate the ME measures

is insignificant, since the ME calculation script can be executed in parallel on the CPU,

while CNN model training occurs on the GPU.

6.3 Maximum Entropy-Based Learning RaTe EnhanceR

(MELTER)

In Equation 6.1, assume that the gradients for ω are computed using a function g(xi)

for an input vector xi. Therefore, Equation 6.1 can now be reduced as Equation 6.2,

∆ωit = −ηg(xi) (6.2)

Now, assume an exaggerated scenario that the learning rate η keeps decreasing every

epoch and that an epoch has only a set of ten mini-batch vector inputs. An online

deep learning algorithm which has no a priori knowledge of the input feature vector

space can determine a finite number of features, f1(θ), f2(θ), ..., fn(θ). The goal of
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a deep learning algorithm is to perform weight updates to adjust the available model

parameters such that θ can ideally linearly separate the input vector space.

Learning rate η is paramount in accurate separation of the linear space since incor-

rect updates can fail to separate all of the feature vectors and might cause premature

convergence. Assume that η is initialized with a high value which is able to classify

only half of the features. Progressing ten epochs (based on the exaggerated scenario),

without modifying η, the direction and magnitude of the gradients and weight updates

for ∆ωit can be disregarded as the model would diverge. Therefore, we can imply that

at this point in time, the CNN has ceased learning either due to insignificant weight

updates or convergence to a local optima. A decreasing learning rate/decay over time

can mitigate premature model convergence and, given an infinite model training time, a

true convergence using stochastic optimizers like SGD and ADAM (L. Luo, Xiong, Liu

& Sun, 2019; Kingma & Ba, 2014) could achieve a general convergence. Problems arise

when model learning is constrained to a local minima or saddle points with insignificant

weight updates. In these circumstances a decreasing learning rate is detrimental to

performance and could implicitly lead to premature model convergence.

Premature convergence can be mitigated but not completely eliminated using resets

and threshold values. ResNets ensure that if model learning is constrained to a local

optima, a higher learning rate for the next epoch would force significant gradient and

weight updates imposing a search for other minima in the input vector space. During

this step, however model accuracy will fall significantly but could recover quickly since

the learning rates keep decreasing linearly. Thresholds ensure that the model does

not fall into saddle points prematurely, allowing for persistent learning. Dynamic LR

schedulers discussed in Section 6.2 can mitigate the problem of premature convergences

by increasing and decreasing the learning rates automatically but are limited as they

cannot accurately account for noisy or insufficient data in the input data or feature

extractions requiring time-consuming manual optimizations or pre-training.
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Using Maximum Entropy (ME) (as discussed in Section 6.2.5) for re-calibrating

any variational drifts caused by structural noise during model training in the next

epoch, utilizing the entropic difference ∆ for the convolutional kernels and input image

dataset allows a robust monitoring function to automatically update learning rates after

each epoch, which theoretically can search for the best fit for the given data, proven

axiomatically in (Shore & Johnson, 1980).

Assume that the ME of the input dataset at any given instance of time τ is δdataset

and the kernel entropy is δkernel. ∆ is calculated as ∆ = ∣δdataset − δkernel∣ which can

now be employed to monitor variational drifts during model learning. If ∆ increases,

it would suggest that the model might be stuck in a local minima since the number of

micro-states γ that the kernel weights can exist in has reduced. A decrease in ∆ would

imply that the model is converging to the global minima.

To clarify further, the number of micro-states of a randomly initialized convolutional

kernel can exist in is γ. To accurately reproduce the same amount of information as

the input image using the kernel would require the ME of all the γ bits be equal to

δdataset in other words, δkernel = ME(γ) ≥ δdataset. During model training, some of the

micro-states γ exists in need to be dimensionally reduced for a linear separation of

the input space, but, δkernel = ME(γ) ≥ δdataset. Therefore, monitoring ∆ during model

training would provide a more accurate and robust method of dynamically optimizing

LRs, since LR invariably affects weight updates. Adjusting LRs significantly within

the pre-defined bounds computed through a priori data distribution of the input dataset

enables a faster and comprehensive exploration of the solution space. As discussed

in Section 6.2, the upper and lower bounds are critical in ensuring efficient model

convergence; surprisingly, the MELTER algorithm performs competitively even with

unoptimized bounds for different datasets.
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6.3.1 Algorithm

Algorithm 1 presents the pseudo-code for our proposed dynamic LR scheduler, MELTER.

The primary objective is to update the global learning rate variable ηMELTER discussed

in Equation 6.2 for an SGD optimizer. The MELTER algorithm has four inputs, total

number of training epochs κtotal, the input dataset X as a set of images with vectors

xi ∈ X, the lower bound β and reset value ξ. Lower bound is determined using the ME

of X i.e. SGD performs well for LRs less than 1, therefore the lower bound β is set

as 0.5e−ceil(ME(X)) and the reset value ξ as 1e−1. The reset value could be adjusted to

any arbitrary value which would increase the search space but does not considerably

affect model performance. Tests for MELTER adopting reset values of 1 showed similar

results.

Threshold resets using an epoch count variable κ and bounded values allow for

a comprehensive search space exploration. While the MELTER algorithm utilizes

threshold resets as a multiplicative factor, adopting a logarithmic function provided

similar results but negatively affected rates of convergence. The algorithm outputs

learning rates as ηMELTER for the next training epoch i.e. κcurrent + 1 using the current

epoch’s model parameters κcurrent.

The ME calculation function E(yi) is used to calculate the ME measures for the

convolution kernels where yi = ⟨y1, y2, ..., yn⟩ as discussed in Section 6.2.5. The

function ω(t) returns the convolutional kernel weight matrix for an input data vector

xi = ⟨x1,x2, ...,xn⟩ at an instance of time τ . The algorithm sets variables ω with the

kernel weights and µ represents the ME measure for the set of finite χ′ convolutional

kernel weight vectors computed as E(ω(τ)) for an instance of time τ such that ω =

⟨ω1, ω2, ..., ωm⟩. The algorithm is called every epoch up to the total number of epochs

κtotal while each step count is changed using the variable κ.
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Algorithm 1 Pseudo-Code for the proposed Maximum Entropy-Based Learning RaTe
EnhanceR (MELTER)

Input: κtotal, X, ξ, β
Output: Learning Rate, ηMELTER

Initialize: Λ← E(xi), κcurrent ← 1, κ← 1
while κcurrent ≠ κtotal do
ω ← ω(τ)
µ← E(ω)
∆← (∣Λ − µ∣)
ηMELTER ← (ηMELTER × (1/∆))/κ

if ηMELTER < β then
ηMELTER ← ξ
κ← 0

end if
κ← κ + 1
κcurrent ← κcurrent + 1
return ηMELTER

end while

6.3.2 Contribution

Others (X. Wu, Ward & Bottou, 2018) assert that, in a stochastic setting, such as

CNN model training for image classification, there are no clear best choices where

convergence can be guaranteed in practice. Computer vision practitioners often test

multiple different learning rate schedules/schedulers using a trial-and-error approach for

different tasks, which is time-consuming and requires expert domain knowledge. The

MELTER solution proposed as Algorithm 1 in Section 6.3.1 addresses this limitation

and offers an entropy-based optimization of CNNs for different tasks reducing the

complexity involved in model training. MELTER achieves competitive results against

manually tuned or existing tuning-free approaches presented in Section 6.5.
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6.4 Experimental setup

Experimentation revolved around testing the efficacy of MELTER as an entropy-based

inner-loop optimizer for dynamic learning rate scheduling. A quantitative methodology

was employed to collect the test-set classification accuracies for four well-known

benchmarking datasets such as MNIST (LeCun et al., 1998), CIFAR-10/100 (Krizhevsky

& Hinton, 2009) and STL-10 (Coates et al., 2011). Our hypothesis is that using an

entropy-based dynamic and adaptive learning rate scheduler presented as MELTER as

Algorithm 1 will provide automatic LR optimization with classification performance

outperforming existing approaches. The HPs are in-line with the compared literature and

any changes made are mentioned in Section 6.5. Due to limitations of the computing

hardware used, the batch size of 128 was adopted, similar to authors in (K. He et

al., 2016) and could not be increased without incurring a memory penalties. Slight

variations in performance are expected and can be attributed in due part to the loss in

precision (float64 to uint8) of the library/hardware function used to calculate the ME

measures of convolutional kernels.

6.5 Results

Preliminary experimentation for this chapter was carried out using a single Tesla P100

GPU with 12GB of VRAM and the results presented in this chapter were carried out with

a single RTX 2080ti with 11GB of VRAM, generously provided by the New Zealand

eScience Infrastructure (NeSI) and InfuseAI Limited (New Zealand) respectively. The

software framework consists of scripts written in python which made use of Keras and

a tensorflow backend. All experiments were carried out in three separate instances

with the reported results being averaged across all the experimental runs to remove any

biases in the data, presented in Tables 6.2-6.4.
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LR method Acc. (%) Epochs Data Aug.
ResNet-20

Piecewise Const. (Rolinek & Martius, 2018) 88.6 N/A N/A
CLR (Smith, 2017) 90.4 N/A N/A

Manually Tuned 90.65 200 True
MELTER 91.27 200 True

MELTER w/out ME◇ 90.68 200 True
MELTER 89.02 200 False

GP EI MCMC (Coates & Ng, 2011) 85.02 N/A False
ResNet-56

1Cycle (Smith & Topin, 2019) 92.1* N/A N/A
Piecewise Const. (Rolinek & Martius, 2018) 91.2 205 N/A
Super-Convergence (Smith & Topin, 2019) 92.4* 25 N/A

Manually Tuned 93.48 200 True
Manually Tuned 88.02 200 False

MELTER 92.65 200 True
MELTER 90.46 200 False

MELTER w/out ME ◇ 91.37 200 True

Table 6.2: Table of results comparing CNN models trained using the MELTER LR and
Existing LR methods on the CIFAR-10 dataset
* independent reproduction of the results are inconsistent,
◇ a small constant decay is used instead of ME calculations

The experimental results are restricted to small batch datasets to derive comparative

studies; larger datasets were not considered due to a lack of accurate comparative

studies in existing literature. Table 6.2 highlights the relative improvement of our

MELTER algorithm over existing techniques for ResNet-20 models on the CIFAR-10

dataset. While the MELTER algorithm does not provide a large uptick in classification

performance, but the main aim of MELTER is to reduce model training complexity

without requiring time-consuming manual fine-tuning. A similar observation can be

witnessed for ResNet-56 models on the CIFAR-10 dataset.

Interestingly, in Table 6.4, on the MNIST dataset, the MELTER algorithm exhibits

superior performance at very-low epochs compared to the L4 and manually tuned

ResNet-32 models without real-time data augmentation. Extending model training-time
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LR method Acc. (%) Epochs Data Aug.
L4 98.5 30 unknown

MELTER 99.63 30 False
Manually Tuned 99.44 30 False
Manually Tuned 99.30 200 True
Manually Tuned 99.40 200 False

MELTER 99.71 ± 0.04 200 False
MELTER 99.39 200 True

Table 6.3: Table of results comparing ResNet-32 CNN models trained using the
MELTER LR and Existing LR methods on the MNIST dataset

LR method Acc. (%) Epochs Data Aug.
CIFAR-100

MELTER 66.07 200 False
Manually tuned 60.49 200 False

MELTER 69.75 200 True
Manually tuned 69.20 200 True

STL-10
MELTER 68.68 200 False
MELTER 80.61 ± 0.85 200 True

Manually tuned 68.55 200 False
Manually tuned 78.69 200 True

Table 6.4: Table of results comparing ResNet-32 CNN models trained using the
MELTER LR and Existing LR methods on the CIFAR-100 and STL-10 dataset

to 200 epochs provides a top-10 state-of-the-art classification performance of 99.75%.

Furthermore, for all of our experimentation, the absence of the ME monitoring function

degraded model performance even with the introduction of a small constant decay

and threshold resets, which provides credence in establishing the validity of MELTER.

Furthermore, criticism around the gains in classification performance achieved through

decays can be extinguished by observing the results in Table 6.2, where the ME

monitoring function played an important role in increasing model performance.
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6.5.1 Data Augmentation

In cases where optimal regret minimization is achieved, MELTER might find it difficult

to optimize or even in some cases, impede the proper domain/solution space exploration.

This impedance can be attributed to restricted semantic information extraction and

propagation in the convolutional kernels leading to improper ∆ calculations. An ex-

ample of this is evident in MELTER’s performance on the STL-10 dataset which shows

a statistically significant improvement when real-time data augmentations are disabled

compared to existing optimization methods even at low model training iterations of

ten-thousand. However, there were no significant classification performance gains when

real-time data augmentation was enabled in all instances primarily due to the fact that a

priori entropy measures of the input images were calculated on the unaugmented data-

sets, providing justification and validity for our hypothesis that using entropy measures

is an accurate and robust optimization method for model HP optimization.

It is worthy of mentioning that on a cursory evaluation, the rate of convergence of

MELTER models was significantly faster than manually tuned models and comparable

to super-convergence and 1Cycle methods. A thorough study of this enhanced rate of

convergence will be explored in future iterations of the thesis. Therefore, for prototyping

or fast evaluation of classification performance on novel datasets or CNN architectures,

MELTER would be an ideal choice since it can easily be reproduced. The MELTER

algorithm is designed to explore and exploit any variational drifts in the convolutional

kernel data before penalizing model learning to ensure domain/solution space resilience

against convolutional kernel learning saturation. Furthermore, MELTER removes the

arbitrary choices made by deep learning practitioners in deciding learning rates for

CNN model training and can resist sub-optimal configurations as evidenced in Tables

6.2-6.4.
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Figure 6.1: Automatically adjusted LR for a ResNet-32 CNN model using the MELTER
algorithm for different datasets without real-time data augmentations.

6.5.2 Analysis

Analyzing the data presented in Tables 6.2-6.4, we can conclude that MELTER out-

performs existing optimization techniques without the need for manual fine-tuning or

the introduction of additional HPs. Furthermore, Figure 6.1 illustrates the automatic

LR adjustments made by the MELTER algorithm and the extent of a more compre-

hensive domain/solution space exploration. Figure 6.2 visualizes the convolutional

kernel entropy measures in real-time during model training, highlighting the change in

information extracted by the convolutional kernels over time.

There is a clear distinction in the variation of entropic distribution for different

datasets. The MNIST dataset for example, shows relatively fewer declines in entropy

measures, suggesting optimal minimization is easily reached and thus implying the

effectiveness of model learning capacity. The automatic fine-tuning ability of the

MELTER algorithm also implicitly provides some regularization but its impact is

limited when accurate a priori data distribution of the input dataset cannot be established,

subsequently inducing improper LR calculations. Re-calculating and re-initializing
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Figure 6.2: The averaged convolutional kernel entropy values for the ResNet-32 CNN
model across the total number of kernels used during model training on different
datasets.

the convolutional kernel weights using the a priori data distribution of the augmented

dataset should increase model performance but since these augmentations are performed

in real-time it falls outside the scope of this chapter/thesis.

Figure 6.1 highlights the different LR adjustments required for different entropic

distributions of the input dataset. Figure 6.1 also alludes to progress in model learning

by mitigating any adverse convergences to saddle points due to periodic high LR values,

which should constrain premature convergence. An interesting observation evident

from Figure 6.1 is that the LR bounds are unique for each of the benchmark datasets.

Relatively less complex datasets such as MNIST have a shallow band of LRs

throughout the learning process, which is in stark contrast to more complex datasets

such as CIFAR-10/100, STL-10, where there are greater variations in the learning cycles

during model training. Evidence of slight divergence in solution space exploration

and subsequently the enhancement of learning rates can be witnessed in Tables 6.2 -

6.4. Although the MELTER algorithm deviates in performance gains compared with

an unaugmented dataset, final classification performance is competitive with existing
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Figure 6.3: The validation loss of the ResNet-32 CNN models using the MELTER
algorithms on MNIST, CIFAR-10 and STL-10 dataset without real-time data augmenta-
tions.

methods as evidenced by the results presented in Tables 6.2 - 6.4 where no significant

compromises are observed.

Figure 6.3 shows periodic negative validation loss spikes for some datasets indicating

the model’s retreat from a saddle point, but as training progresses, the model recovers

quickly and reconvenes to additional local optima, indicating a through exploration of

the solution space. Analyzing Figure 6.3 also demonstrates the intuitive knowledge that

higher-dimensional complex data have multiple saddle points (STL-10 and CIFAR-10)

compared to simplistic datasets (MNIST), for which the CNN can easily converge to

the global optimum.

6.5.3 Limitations

The primary limitation of this chapter is that the experimentation is limited in evaluating

the efficacy of MELTER for only image classification/recognition. While the authors

are confident that MELTER will provide the same if not better results on other NN

domain problems such as natural language processing or audio/speech classification,

the results need to be experimentally validated independently.
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Maximum Entropy (ME) measures of the training data and real-time convolutional

kernel data vary only when there is sufficient change in the underlying convolutional

kernel weight data. While this invariability in kernel data offers greater stability and

resistance to noisy or sparse input data, improper kernel data approximations during ME

calculations (loss of precision from float64 to int32/uint8) also inhibit MELTER CNN

models from guaranteed convergence to the global optimum. Furthermore, improper ∆

calculations could lead to undesirable outcomes and therefore Λ needs to re-evaluated

while using data augmentations or any other computer vision task prior to model

training.

6.6 Conclusion and Future Work

To overcome the problem posed to researchers and practitioners for CNN model training

concerning the complexities involved in determining model hyperparameters such as

Learning Rate (LR) and training regimes, we proposed a Maximum Entropy-based

(ME-based) inner loop optimizer for residual neural networks using stochastic gradient

descent. The algorithm presented in this chapter is a dynamic and adaptive Maximum

Entropy-based Learning raTe EnhanceR or MELTER, which automatically calibrates

the LRs during CNN model training. The proposed MELTER algorithm utilizes only the

a priori ME measure of the input dataset to monitor and detect variational drifts in the

entropic difference in the data distributions of the input dataset and convolutional kernels.

MELTER recalibrates the LR in real-time after every epoch for regret minimization

of the two entropical data distributions, enabling a more thorough exploration of the

solution space and assisting in feature selection by capturing only the most important

features thereby improving classification accuracy.

MELTER removes the arbitrary choices made by deep learning practitioners while

determining learning rates for CNN model training. Use of ME measures for real-time
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convolutional kernel analysis ensures a high degree of stability, and the invariability of

kernel data calculations establishes ME as an ideal measure for monitoring variational

drifts, which reduces time-consuming pre-training or manual optimizations. MELTER

was empirically validated to outperform the test-set classification performance of ResNet

models optimized using existing methods such as manual fine-tuning, cyclical learning

rates, super-convergence and 1Cycle policies. MELTER provided a top-10 state-of-the-

art performance on the MNIST dataset achieving an accuracy of 99.75% without data

augmentation or manual fine-tuning using a ResNet-32 model at relatively low epochs.

Similarly, MELTER outperformed existing methods on various benchmarking datasets

without real-time data augmentation and manual fine-tuning.

As real-time data augmentations are performed during model training, a priori

entropical data distribution of the input dataset cannot be ascertained and is out of

scope for this chapter/thesis. In future iterations of the research, we aim to improve the

MELTER algorithm to become an online algorithm which makes a priori entropical data

distribution estimation obsolete. We also aim to address the limitations of improper ∆

calculations by exploring other ME calculation libraries and we will use computational

hardware capable of performing tensor operations directly on 64-bit floating point

numbers eliminating the need for integer casting.

Finally, the use of adequate high-performance computational resources would assist

in further empirical validation of the MELTER algorithm for different application

domains, employing a wider range of CNN architectures and a larger more diverse set

of experiments.

The previous chapter (Chapter 5) focused primarily on optimizing model training

times, while this chapter focused around an entropy-based inner-loop optimization

of the LR HyperParameter with a subfocus around increasing rate of convergence

and thus subsequently decreasing model training times. Both the previous Chapters

(Chapter 5 and Chapter 6) does not address the tendency of CNN models to overfit on
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the training data which remains unresolved. In the next chapter (Chapter 7) we propose

a novel entropy-based regularization utilizing the knowledge gained from the preceding

chapters (Chapters 3 - 6) around sensitivity of CNN models to structural noise.



Chapter 7

Entropy-Based Loss for Regularization

of Optimization Problems

In the previous chapter (Chapter 6), we validated the idea that fine-tuning and inner-loop

optimization of the Learning Rate (LR) HyperParameter with a Maximum Entropy

(ME) monitoring function to assess variational drifts in the CNN feature extraction

properties can accelerate the rate of model convergence and decrease model training

time. Chapter 6, introduced a novel entropy-based optimization algorithm capable of

reducing model training complexity. While an inner-loop optimization of the LR HP

improves the rate of convergence, the persistent challenge of mitigating overfitting

remains.

In this chapter, we focus on mitigating overfitting and improving classification

accuracy by exploring Maximum Entropy (ME) and convolutional kernel analysis as

an L2 regularization technique for non-convex optimization problems. ME measures

can be utilized as a calibration method to investigate and penalize complex models for

excessive deviation of the convolutional kernels relative to the a priori ME measure

of the input dataset. Similar to standard L1 and L2 regularization involving statist-

ical analyses, we hypothesize that by promoting simpler weight characteristics of the

135
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convolutional kernels with respect to a priori data distributions of the input dataset,

and by penalizing overly complex representations, overfitting can be mitigated and

classification performance can be enhanced.

7.1 Introduction

Non-convex optimization problems such as multi-class image classification have com-

plicated underlying functional representations compared to Convex optimization prob-

lems which have clearly defined structures to their functional outputs. Generalized

solutions for convex problems can be easily computed/predicted as they satisfy known

a priori knowledge of the input data. Solutions to non-convex optimization problems

usually involve numerical differentiation of a cost function where a guaranteed solution

exists for Hessian matrices of second order partial derivatives. While, computation of

Hessian matrices guarantees model convergence (Yu et al., 2002), practically however,

it resolves into an intractable problem limited by the computational resources of current

hardware. Therefore, research emphasis is placed on methods optimizing first order

partial derivatives (Duchi et al., 2011).

Convolutional Neural Networks (CNNs) and more specifically Residual Neural

Networks (ResNets) (K. He et al., 2016) offer state-of-the-art results in computer vision

tasks such as image classification (Szegedy et al., 2015) but, susceptible to structural

noise corruption for the input training data; a visualization of is illustrated as Figure 7.1.

Introduction of noise either in the input data or during information propagation inside

hidden layers exacerbate the problem of overfitting. The fundamental learning theory

behind CNNs is to approximate an underlying d-dimensional interpolated function

f(X) ∈ Rd using information from n number of d-dimensional input vectors X =

{x1,x2,⋯,xn} where xi = ⟨x1, x2,⋯, xd⟩ and i, d ∈ Z>0 (Maiorov, 2006). The problem

of functional approximation for high-dimensional interpolated data is theoretically
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Figure 7.1: Visualization of a random image in the CIFAR-10 dataset displaying
Gaussian Structural noise corruption. Left: 0% noise, Middle: 10% noise, Right: 25%
noise

non-linear and there is empirical evidence to support the assertion that CNNs simply

memorize the input training data (C. Zhang et al., 2016).

CNN models trained without accounting for the unique variances of the input

training data are more susceptible to overfitting as the CNN models internal parameters

are finely tuned to represent the characteristics of these unique variances (Hawkins,

2004). Misclassification is another problem that occurs when overfit models are unable

to distinguish between overlapping variances for different classes of images. Reducing

overfitting is also difficult since establishing a theoretical understanding or analyzing

the mechanisms of learning in CNNs for non-convex optimization problems such as

image classification is generally not well understood (Shamir, 2018).

A simple way to reduce overfitting is to train models using a very large number

of images (Shorten & Khoshgoftaar, 2019) such as, the ImageNet dataset consisting

of millions of training images used for natural image classification. While using big

data solutions might mask the underlying problem of model overfitting, acquisition of

clean/noise-free labeled data for supervised model training is challenging. The problem

of data acquisition is compounded further by ethical, societal, and practical concerns

when dealing with facial datasets, especially for the task of race or gender classification.

Another key challenge while creating datasets are the considerations that need to be

made on the distribution of data amongst multiple classes, along with the variability
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of data within an individual class. Unbalanced datasets where the data distribution of

images is not equal for all the classes introduces unintentional biases during model train-

ing (Ganganwar, 2012). The only viable solution to rectify imbalanced datasets is to

augment or supplement datasets with new images but, as mentioned before this solution

remains an ongoing challenge. To the best of our knowledge, there is no research/work

undertaken to regularize entropic data distribution of the convolutional kernel weights

using the a priori knowledge of the input dataset in real-time during model training.

We hypothesize that regularizing the entropic distribution of the convolutional kernel

data during model training, could aide in enhancing classification performance through

alleviating the severity of structural noise. Furthermore, L2 regularization methods ad-

opting entropy measures remains relatively unexplored with existing research focusing

on improving kernel learning generally adopting statistical techniques (Cortes et al.,

2012).

In this chapter, we propose and empirically validate a novel L2 regularization

technique which utilizes the a priori knowledge of the entropic distribution of the input

dataset using Maximum Entropy (ME) (Hartley, 1928) measures and optimizes the

entropic distribution of convolutional kernel weights in real-time during model training.

Maximum Entropy (ME) measures are widely utilized for monitoring variational drifts

and re-calibration of precise, highly sensitive equipment which are affected by structural

noise. The novel technique proposed in this chapter is dubbed Maximum Categorical

Cross-Entropy (MCCE), which acts as an additional regularization term to the existing

and commonly used CCE loss function. MCCE loss calculations are determined by

taking into account the entropic distribution of the input dataset proportional to the

convolutional kernel weights during model training along with the traditional CCE loss.

The pseudo-code for calculating MCCE loss is presented as Algorithm 2 in Section 7.3.

The contributions of this chapter are as follows:
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• We propose a novel additional L2 regularization technique in conjunction with the

Categorical Cross Entropy (CCE) loss function using Maximum Entropy (ME)

measures to compute a novel Maximum Categorical Cross Entropy (MCCE) loss

to enhance classification performance and mitigate model overfitting.

• We empirically validate the MCCE loss function relative to existing loss functions

such as CCE, Categorical Hinge and Focal (Lin, Goyal, Girshick, He & Dollár,

2017) on four benchmarking datasets, colorFERET, UTKFace, MNIST and

CIFAR-10 with a simple Residual CNN model architecture.

• We demonstrate that the proposed MCCE loss is robust to introduced structural

Gaussian noises in the input data compared to the traditional CCE loss.

7.2 Background

As discussed previously in Section 2.1.4, an understanding of how CCE loss is cal-

culated was obtained. Section 7.2.3 details how kernel regularization influence CCE

loss with its limitation. Section 7.2.4 provides the theoretical background of Maximum

Entropy (ME) and methods to calculate ME along with estimating the reconstruction

loss. Given that CNN model training introduces noises during convolutional opera-

tions or information propagation and that any inherent noise present in the input data

can significantly affect model performance, a noise-robust alternative to CCE could

help improve classification performance and mitigate overfitting. This is because, the

model could potentially learn to ignore the structural noise of the input data and thus

preventing convolutional kernels from being fine-tuned to the unique variances or noise

characteristics of the input dataset.
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7.2.1 Focal loss

Focal loss described in (Lin et al., 2017), primarily addresses the extreme imbalance in

foreground and background object detection. The focal loss function is derived from

the previously described Cross-entropy loss in Section 2.1.4. While the authors (Lin et

al., 2017) describe introducing a weight factor to address class imbalance, we reserve

skepticism around such a simple solution as an accurate determination of the proposed

weight factor without affecting overfitting, generalizability and model convergence

properties remains elusive. Furthermore, our experimental data presented in Section 7.4

adds credence to our skepticism.

7.2.2 Hinge loss

Hinge loss is primarily reserved for margin classifiers such as support vector machines

but, as authors (Jin, Fu & Zhang, 2014) point out, hinge loss can provide enhanced

classification performance for traffic detection systems utilizing CNNs. We aim to

explore and analyze the performance of models trained using hinge loss in relation

to our proposed novel entropy-based loss to establish its efficacy across a wide range

of application domains. Quantitative data for such an analysis is collected from our

experimental setup and presented in Table 7.1 and discussed in Section 7.5.

7.2.3 Kernel Regularization

The intuition behind regularization is that of Ockham’s razor to penalize complex models

and to promote simpler models during training with the intention of strengthening

model generalizability. Unlike empirical risk minimization which only considers loss

minimization, regularization was proposed to minimize structural risk which considers

both complexity and loss minimization. The most prominent and simple ker nels that

greatly minimize loss are selected (Bilgic et al., 2014). Model complexity is represented
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in two ways, as a function of the total number of features with non-zero weights (L1) or

as a function of all the weights of all the features in a model (L2). L2 regularization is

most commonly used in computer vision tasks for CNN models such as ResNet. Model

complexity can be quantified using the L2 regularization formula given in Equation

(7.1), defined by using the sum of squares of all the feature weights as the regularization

term (Cortes et al., 2012).

∣∣ω∣∣2 = ω2
1 + ω2

2 + ω2
3 + ω2

H′χ′ (7.1)

In Equation (7.1), the magnitude of the absolute value of the weight ω indicates

complexity. Feature weights close to zero have no significant impact on model complex-

ity, while large outlier weight values have a more pronounced impact on ω. The quantity

of feature weights H ′χ′ determined using the number of trainable model parameters

(a product of the convolutional depth H ′ and breadth χ′) contribute greatly to ω and

model complexity. Furthermore, kernel regularization as it is implemented currently for

CCE loss utilizes CNN computed label errors and does not take into account the data

distribution of the convolutional kernel weights. We hypothesize that, optimizing the

kernel data distribution utilizing the a priori knowledge of the input dataset could help

enhance classification performance.

7.2.4 Maximum Entropy and Reconstruction Loss

The use of Maximum Entropy (ME) for applications such as convolutional kernel

analysis is justified since ME is the only consistent way of selecting a single discrete

data point from the set of input data vectors to best fit the regression curve, proven

axiomatically in (Shore & Johnson, 1980) and expanded in (Johnson & Shore, 1983).

A method of approximating ME for digital images is achieved through the use of

distributed normalized histograms (Gonzalez & Woods, 2007; A. K. Jain, 1989). The
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open-source SciKit-image processing library written in Python can be used to calculate

the ME measures for images (Virtanen et al., 2020).

Entropy in images is related to the complexity contained in a given neighborhood,

computed by using a circular disk with a radius of r. The disk is used to measure minute

variations in local grayscale level distribution. The maximum entropy for an image

depends on the number of gray levels, an 8 bit image has 256 gray levels (0-255) which

has a theoretical maximum entropy of log2(28) = 8 bits per pixel. Changing the value

of r can invariable produce higher or lower ME measure as illustrated in Figure 3.1.

Similarly higher or lower ME values will be obtained while measuring convolutional

kernel weights. A decrease in ME divergence can be observed in Figure 3.1 for r values

of 5 and 50 relative to r values of 1 and 5. A significant difference in spatial/semantic

information in the images can be seen with greater r values, which suggests loss in

precision during approximation.

ME measures for color images require the computation on each of the three color

channels, Red (R), Green (G) and Blue (B) i.e. RGB separately and averaging the result.

The averaged ME measures for images in the colorFERET and UTKFace datasets are

2.09 and 2.25 bits per pixel respectively using an r value of 1. The amount of time

taken to calculate the ME measures is insignificant as the ME calculation script can

be executed in parallel on the CPU, while CNN model training occurs on the GPU, as

evidenced in the supplementary data uploaded. Solutions other than ME for image

reproduction/reconstruction from noisy or incomplete measurements such as, the use

of non-linear variations on fourier transformations fail when convolutional kernels are

incorporated (Donoho et al., 1990). Furthermore, ME reconstruction has been shown to

provide superior noise suppression while mostly preserving de-emphasized structural

noise near the baseline (relative to high signal information) (Donoho et al., 1990).

Accurate reconstructions can be approximated using a 1D projection of any underly-

ing function which is reduced to g(X) ∈ Rd such that xi ∈ X (Reis & Roberty, 1992). As
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discussed in Section 7.1, the underlying functional representation of the input dataset is

f(X), the difference between the true representation f(X) and the ME reconstruction

approximation g(X) is the reconstruction loss for the input dataset. Results presented in

(Reis & Roberty, 1992), indicate that reconstructions using accurate and noisy data had

insignificantly small variations compared to the original, attesting to the noise-robust

ability of using ME measures for reconstruction. This noise averse characteristic of

ME is especially important for image classification as lighting or ISO parameters of

the physical hardware can significantly affect the performance of CNN models. Recon-

struction loss is described as the convolutional kernel data loss whereas CCE can be

characterized as a class label loss.

7.3 Maximum Categorical Cross-Entropy (MCCE)

The classification of data in CNNs primarily depends on the convolutional kernels

represented by their weights. Optimization of kernel weights using a loss function

is performed to ensure a closer approximation to the underlying function f(X) is

achieved. As discussed in Section 2.1.4, CCE is a measure of difference between two

probability distributions, the ground truth and CNN computed label for a class C. The

drawback of CCE is that it only considers class label errors and does not account for

the distribution of the convolutional kernel weights. The estimation of kernel weight

probability distributions is critical in knowing the state of model training and learning

capacities which could enhance classification performance, and MCCE is proposed to

rectify this limitation.

The Maximum Categorical Cross-Entropy (MCCE) loss function monitors the data

distribution of convolutional kernel weights using ME measures along with traditional

CCE loss and penalizes models which are overly complex. A priori knowledge of the

entropic distribution of the input data can be computed using ME measures which is used
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as a baseline to monitor convolutional kernel weight distributions and penalize models

with greater divergences. It is well understood that maximizing entropy measures using

even partial information (such as from convolutional kernel weights) can enhance the

estimation of probability distributions (Macqueen & Marschak, 1975) used extensively

to calculate CCE loss.

The main criterion for producing high quality reconstruction approximation is the

incorporation of two-dimensional convolutions, which is traditionally a computational

burden (Wernecke et al., 1977). CNN models implicitly use two-dimensional convolu-

tions to produce feature maps therefore, the computational overheads are eliminated

making the computation of MCCE loss very efficient. Furthermore, using MCCE loss a

L1 difference can be calculated between the reconstruction approximation g(X) and

ground truth f(X) (CCE error).

Reconstruction error can be calculated using the a priori determined ME of the input

dataset and reconstruction approximation g(X). Monitoring the divergence between

the CCE error and reconstruction error provides an indication in the degree of deviation

of convolutional kernel weights and predicted class labels to the deviation of f(X) to

determine if the convolutional kernels are stuck in a global minima/maxima and thus

indicating model learning has saturated.

7.3.1 Algorithm

The pseudo-code for MCCE loss is presented as Algorithm 2, which requires the

calculation of a 1D linear interpolation output for reconstruction loss is provided in

Section 7.3.2.



Chapter 7. Entropy-Based Loss for Regularization of Optimization Problems 145

Algorithm 2 Pseudo-Code for the proposed Maximum Categorical Cross Entropy
(MCCE) loss function

1: Input: One-hot encoded ground truth (Y ) and CNN predicted (Ŷ ) class labels, a
priori ME of training images in the dataset (i.e. ME(X)).

2: Output: Probabilistic logarithmic loss of Ŷ with respect to the ground truth Y .
3: Initialize: Λ ←ME(X), µ ←ME(W | ω ∈W )
4: γ = -log( esp

ΣCj e
sj ) {CCE loss, sp is the CNN score and sj the ground truth for the

class C}
5: κ = Λ − µ {Convolutional Reconstruction (CR) loss}
6: κ = Interpolation(κ, (0,Λ), (0,1)) {1d linear interpolation to output κ between 0 and

1 rather than in the range of 0 to Λ}
7: ∆ = γ + κ {Maximum loss = CCE loss + CR loss}
8: return ∆

7.3.2 1D Linear Interpolation Computation

A one-dimensional interpolation of the reconstruction error/loss is required as the

MCCE loss is an extension of CCE loss which outputs values between 0 and 1. A linear

interpolant is the straight line between the two known points given by their coordinates

(a0, b0) and (b1, b1) (Davis, 1975). For any value i in the interval (a0, a1), the value of j

along the straight line can be calculated using the equation of slopes given in Equation

7.2

j − b0

i − a0

= b1 − b0

a1 − a0

or j = b0(a1 − i) + b1(i − a0)
a1 − a0

(7.2)

7.4 Experimentation

Experimentation revolved around quantitatively measuring classification performance

and train-test divergence to determine the degree of overfitting for our proposed novel

MCCE loss in conjunction with existing loss functions (such as CCE, Focal and Cat-

egorical Hinge) highlighted in Section 7.2. No modifications were made to our CNN

model training regime compared to the original implementation presented in (K. He et
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al., 2016) apart from using different testing hardware and software frameworks (Keras

with a tensorflow backend). Only a single evaluation run could be performed due to the

limited computing infrastructure available.

7.4.1 Datasets

To determine the effect of racial bias and the efficacy of our novel MCCE loss function,

we select a balanced dataset (UTKFace (Z. Zhang, Song & Qi, 2017)) where each class

of race/ethnicity has an equal number of images and an unbalanced dataset (colorFERET

(Phillips, Wechsler, Huang & Rauss, 1998)) where the distribution of data across all of

the classes is unequal.

The colorFERET dataset contains 11,338

semi-controlled color images of 512×768 pixel size with 13 different poses from 994

test subjects. Due to our limited computing infrastructure, the images needed to be

downsampled to 96×96 pixel resolution using cubic interpolation. The original dataset

contains nine classes (Asian, Asian-Southern, Asian-Middle-Eastern, Black-or-African-

American,

White, Hispanic, Native-American, Other and Pacific-Islander). Due to the very limited

number of test subjects and images for four of the nine classes, the dataset was re-

duced to five classes (Asian, Asian-Middle-Eastern, Black-or-African-American, White,

Hispanic) containing a total of 11,172 images.

The original UTKFace dataset contains 23,708 in-the-wild color images of 200×200

pixel size with five ethnic classes (White, Black, Asian, Indian and Others) of all age

groups. Only the OECD definition for working age population (15-64) consisting of

18,095 images are considered since the facial variations are not severe enough to cause

any unexpected errors like misclassification or underfitting. The images used in our

experimentation were downsampled to 96×96 pixel resolution using cubic interpolation.
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Finally, classification performance of the models on two additional and commonly

used benchmarking datasets, MNIST and CIFAR-10 were analyzed to determine if the

proposed MCCE loss is generalizable across different image data. The MNIST dataset

(LeCun et al., 1998) includes 28×28 pixel resolution black and white handwritten

digits. MNIST consists of 60,000 training and 10,000 test images split equally into

ten classes for each numeric character. The CIFAR-10 (Krizhevsky & Hinton, 2009)

dataset includes 50,000 training and 10,000 testing natural color images with a 32×32

pixel resolution, split equally into ten classes, which include pictures of airplanes, birds

and other such natural image classes.

7.4.2 Experimental Setup and Results

All experiments presented in this chapter were carried out with a single RTX 3070 GPU

with 8GB of VRAM, generously provided by InfuseAI Limited (New-Zealand). All

models were trained from scratch with the datasets randomly shuffled when reading

from storage into memory. The training data was again randomly shuffled during model

training to mitigate any variability in the input data. The model parameters utilized for

model training are, a ResNet-8 model with a batch size of 128; an SGD optimizer with

a learning rate of 0.1 and a dynamic epoch count with an early stopping patience of 10,

monitored on the training accuracy. The results presented in Table 7.1, highlight the

classification performance of models trained with different loss functions.

7.5 Discussion

Analyzing the data presented in Table 7.1, we clearly identify the effectiveness of

classification performance when models are trained with the novel MCCE loss with

respect to overfitting (train-test ∆) and test-set classification accuracy. Expanded tests

using either Focal or Categorical Hinge losses on all the datasets were not justified
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Table 7.1: Results validating the efficacy of training models using the proposed MCCE
loss function to enhance performance and mitigate overfitting

Loss Function Dataset Train Acc. Test Acc. Train-Test ∆ Training Time

Gaussian Noise: 0%
MCCE colorFERET 94.39 90.56% 3.83% 0:42:23
CCE colorFERET 95.66% 89.22% 6.44% 0:53:29
Focal colorFERET 86.72% 83.76% 2.96% 1:06:23
Hinge colorFERET 63.66% 62.19% 1.47% 0:03:14

Gaussian Noise: 10%
MCCE colorFERET 91.33 88.94% 2.39% 0:50:50
CCE colorFERET 87.93% 83.09% 4.84% 0:28:36
Focal colorFERET 78.49% 78.08% 0.41% 0:46:38
Hinge colorFERET 63.18% 64.12% -0.94% 0:03:11

Gaussian Noise: 25%
MCCE colorFERET 83.47% 77.9% 5.57% 0:37:17
CCE colorFERET 79.19% 75.35% 3.84% 0:20:24
Focal colorFERET 75.43% 76.2% -0.77% 1:00:47
Hinge colorFERET 63.53% 62.69% 0.84% 0:03:25

Gaussian Noise: 0%
MCCE UTKFace 83.59% 78.28% 5.31% 1:35:48
CCE UTKFace 80.82% 77.07% 3.75% 1:01:24

Gaussian Noise: 10%
MCCE UTKFace 80.51% 74.61% 5.9% 0:48:13
CCE UTKFace 80.56% 76.29% 4.27% 0:50:19

Gaussian Noise: 25%
MCCE UTKFace 76.16% 70.93% 5.23% 0:50:47
CCE UTKFace 74.97% 66.93% 8.04% 0:42:09

Gaussian Noise: 0%
MCCE CIFAR-10 83.75% 78.33% 5.42% 0:58:35
CCE CIFAR-10 83.37% 75.88% 7.49% 0:48:52

Gaussian Noise: 10%
MCCE CIFAR-10 77.5% 73.24% 4.26% 1:03:23
CCE CIFAR-10 76.76% 67.07% 9.69% 0:50:05

Gaussian Noise: 25%
MCCE CIFAR-10 67.28% 59.68% 7.6% 0:47:31
CCE CIFAR-10 65.94% 59.00% 6.94% 0:48:04

Gaussian Noise: 0%
MCCE MNIST 99.16% 98.92% 0.24% 0:27:44
CCE MNIST 99.31% 98.86% 0.45% 0:34:24

Gaussian Noise: 10%
MCCE MNIST 99.19% 98.82% 0.37% 0:32:16
CCE MNIST 99.2% 98.01% 1.19% 0:38:56

Gaussian Noise: 25%
MCCE MNIST 98.71% 98.17% 0.54% 0:26:08
CCE MNIST 98.86% 98.03% 0.83% 0:38:40
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Figure 7.2: Average maximum entropy measures for the convolutional kernel weights
during model training computed using r = 1 for the colorFERET dataset when 0% (N0)
and 25% (N25) Gaussian structural noise is introduced
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Figure 7.3: Average maximum entropy measures for the convolutional kernel weights
during model training computed using r = 1 for the UTKFace dataset when 0% (N0)
and 25% (N25) Gaussian structural noise is introduced
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Figure 7.4: Loss curves during CNN model training with MCCE and CCE loss functions
on the colorFERET and UTKFace datasets when 0% (N0) and 25% (N25) Gaussian
structural noise is introduced
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since models trained using these loss functions failed to adequately converge relative

to MCCE and CCE trained models. Hinge loss was evaluated on the MNIST dataset

inline with the discussion in Section 7.2.2. Generally, MCCE performed slightly better

compared to CCE when no structural Gaussian noise was introduced and fared markedly

superior when 10% and 25% noise was implemented.

Analyzing Figures 7.2 and 7.3 in conjunction with the data presented in Table

7.1, we can determine there exists a strong correlation between divergences from the

baseline average convolutional ME and model performance. Examining Figure 7.2,

we can assert that the CNN models trained with the MCCE loss function exhibit a

tendency to deviate from the ME baseline of 1.85 less frequently and to a smaller

degree relative to models trained with CCE loss. Furthermore, when no structural noise

is introduced, MCCE models displayed a steady-state condition to the baseline ME

whereas, CCE models were unsteady and thus required a greater number of epochs to

fully converge. Although deviations from the baseline ME does not in itself indicate

non-ideal convergence patterns, it does highlight exploration of the search space as is

necessary for non-convex optimization problems.

Figure 7.4 visualizes the loss curves for both MCCE and CCE trained CNN models

on both the colorFERET and UTKFace datasets. MCCE trained models had a relatively

higher loss of 1.17 and 1.45 compared to 0.18 and 0.61 for the colorFERET and

UTKFace datasets respectively, when no noise was introduced. The introduction of 25%

noise produced losses of 1.45 and 1.62 for MCCE trained models relative to 0.63 and

0.75 for CCE trained models on the colorFERET and UTKFace datasets respectively.

These high losses for MCCE trained models suggests a greater degree of L2 kernel

regularization is being employed by the algorithm. Higher loss also indicate MCCE

trained models have not fully converged and greater performance enhancements can

be achieved with manual HyperParameter fine tuning. MCCE models also converged

faster in some instances highlighting learning capacity of the MCCE models, which can
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be improved with exploration of additional techniques to improve convergence such as

dynamic learning rates.

Results in Table 7.1 also emphasize the noise-robustness of MCCE trained models

relative to CNN models trained with CCE loss. On the colorFERET dataset, MCCE

trained models demonstrated on average a 3.25% enhancement in classification perform-

ance with a 1.11% reduction in overfitting relative to CCE trained models. However, on

the UTKFace dataset, although MCCE trained models performed on average 1.18% bet-

ter in terms of test-set classification accuracy; there was a slight increase in overfitting

of 0.13% compared with CCE trained models. This marked increase in overfitting can

be attributed to an anomaly in the experimental data when a 10% Gaussian noise was

introduced where, the MCCE model’s performance deteriorated by 1.68%. Increasing

the sample size should resolve this anomaly as it could be simply due to sub-optimal

weight initialization of the convolutional kernels.

On the CIFAR-10 dataset, MCCE trained models in general showed leading clas-

sification performance compared to CCE trained models with an average accuracy

improvement of 2.65% and a 2.72% reduction in overfitting. A similar trend of broad

advancements for MCCE trained models for the MNIST dataset can be observed where

a 0.34% increase in classification performance and a 0.44% decrease in overfitting was

achieved in comparison to CCE trained models. Overall, CNN ResNet-8 models trained

with the proposed MCCE loss implemented as Algorithm 2 and described in Section 7.1

demonstrated on average a 1.85% enhancement in test-set classification accuracy with a

1.04% reduction in model overfitting across the four benchmarking datasets detailed in

Section 7.4.1.
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7.6 Conclusion and Future Work

In this chapter, we proposed a novel L2 regularization technique utilizing a priori

knowledge of the entropic distributions of the input datasets; in conjunction with the

commonly used Categorical Cross Entropy (CCE) loss function dubbed, Maximum

Categorical Cross Entropy (MCCE). While CCE evaluates the probability distributions

of the CNN predicted and ground truth class labels, MCCE extends this evaluation to

include the entropic distribution of convolutional kernel weights during model training.

MCCE provides a robust noise-averse method of calculating model loss since

partial knowledge of the entropic distribution of the input data is determined a priori.

Furthermore, large divergences of the entropy measures of the convolutional kernel

weights from that of the input dataset are penalized in real-time during model training

promoting simpler representations.

In other words, MCCE loss takes into account the label loss and convolution kernel

weight distribution or reconstruction loss, penalizing model training if either of these

distributions greatly diverge from each other. MCCE loss has been empirically validated

on ResNet-8 models for four benchmarking datasets; colorFERET, UTKFace, CIFAR-

10 and MNIST datasets to enhance classification accuracy by up to 6.17% and minimize

overfitting by up to 5.43%. MCCE trained models also offered leading classification

performance when structural Gaussian noise was introduced in the input training data

compared with models trained with the traditional CCE loss.

Finally, reproducibility and implementation of the MCCE loss function is com-

paratively effortless since, the MCCE algorithm (provided as Algorithm 2 in Section

7.3) leverages existing publicly available computational libraries (Scipy, Numpy, Keras

and Tensorflow) thereby involves minimal modifications to existing code bases. Ad-

ditionally, the required calculations for evaluating MCCE loss such as computation

of entropy measures are accelerated functional evaluations with extremely efficient
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scientific computational libraries.

Furthermore, the general improvements in rate of convergence of MCCE trained

models tend to offset any additional computational overheads that might influence

model training times. As such, the authors are confident that integrating the proposed

MCCE loss function by deep learning practitioners pose no significant challenge to the

community.

This chapter concludes the experimental chapters of this thesis by addressing CNN

model overfitting, the final unresolved challenge outlined in the introduction chapter

(Chapter 1, Section 1.1). The next chapter (Chapter 8), presents a contextual summary

of the contributions, implications and limitations of the research presented in this thesis.



Chapter 8

Conclusion

8.1 Summary

In this thesis, we empirically evaluated the key underlying principles of Convolutional

Neural Networks (CNNs) and their effectiveness as feature extractors in achieving

state-of-the-art performance in image classification tasks. We set out to address a few

of the unresolved challenges outlined in Section 1.1 utilizing quantitative metrics for

optimization, primarily in answering our overarching research question: how could

entropy measures, specifically Shannon’s Entropy (SE) and Maximum Entropy (ME) be

utilized to optimize CNN model training?.

In Chapter 3, we quantitatively examined the process of feature extraction with

respect to neural configurations. We utilized two metrics, Maximum Entropy (ME) and

Signal-to-Noise Ratio (SNR) to aid us in understanding information propagation within

the hidden layers of a CNN. We found that, convolutional feature extraction and thereby

classification accuracy is limited through two different mechanisms, information under-

flow and overflow. These phenomena can be characterized by a relative discrepancy

between the amount (quantified through ME) and quality of information (calculated

by SNR) extracted through the convolutional layers with respect to the input dataset.

154
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Although both these mechanisms restrict adequate feature extraction, we empirically

demonstrated that, information underflow is preferable which predominantly occurs

with input datasets having high ME and SNR measures. The research evidence also

indicated that, convolutional kernels (basic units of CNN feature extraction) might

prematurely saturate for datasets with low ME and SNR measures.

In Chapter 4, we evaluated the predominance of kernel saturation for datasets with

low ME and SNR measures. We found that, by augmenting datasets with images

containing similar semantic information but different structural data representations,

kernel saturation could be mitigated. Based on this observations, we proposed a

novel data augmentation technique to mitigate saturation, thereby improving model

performance. Quantitative examination on different datasets produced an average model

performance improvement of 5.07%. Through our experimental findings, the problem

of neural sparsity due to over-parameterized CNN models became apparent, implying

training times could be decreased by optimizing feature extraction and abstraction.

In Chapter 5, we delved into the working principle behind feature extraction and

abstraction in CNNs, specifically, CNN architectures utilizing residual/skip connections.

We found that, CNN architectures incorporating residual connections behave as a

collection of ensemble networks with over-parameterized deep CNN architectures

resolving into a collection of independent feature extractors, making the process of

feature extraction redundant since, skip connections facilitate only the most prominent

features to be retained. We proposed an entropy based heuristic utilizing the apriori

data distributions of input the dataset to offer a simplified approach in restricting CNN

model depth. Constrained convolutional layers enforces feature compression, thereby

mitigating the problem of over-parameterization, aiding in accelerating model training.

Our empirical results demonstrate that, a CNN model’s depth can be constrained up to

its maximum compressibility factor determined through SE without affecting model

performance with an average of 45.22% reduction in training time. While model
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depth is an important HyperParameter (HP), model Learning Rate (LR) dictates the

convergence or divergence patterns for CNN models and as such fine-tuning the LR HP

could improve model performance and further decrease training times.

In Chapter 6, we investigated the problem of manually fine-tuning model LR

especially when CNN architectures are complex and sub-optimal determination of

model LR could induce divergent behavior. We found that, dynamically adjusting a

model’s LR based on the entropic distribution of the convolutional kernels and the

input dataset during model training maintains if not outperforms other existing fine-

tuning methods. As such, to eliminate unintentional sub-optimal configuration of the

learning rate parameter, we proposed a maximum entropy-based inner loop optimizer

for residual neural networks. Furthermore, our novel entropy-based optimizer produces

top-10 state-of-the-art model performance without the need for manual fine-tuning

or real-time data-augmentation techniques. However, the fundamental problem of

employing optimization techniques for a single objective (classification accuracy) is

that, it can induce unintentional overfitting to the internal parameters of a CNN.

In Chapter 7, we analyzed a method of optimization which provides a more com-

prehensive and robust optimization of HPs without introducing significant overfitting.

We found that, the susceptibility of CNN models to structural noise in the input dataset

or introduced during information propagation within the hidden layers significantly

affects model performance and overfitting. By utilizing additional L2 regularization

of the convolutional kernels with respect to the entropic data distribution of the input

dataset we could improve the accuracy of loss calculations with respect to overfitting,

improving generalization by up to 5.4.% with an enhancement in model performance

by up to 6.17%.
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8.2 Significance and Implications

8.2.1 Classification Performance

Classification/recognition of digital data is heavily utilized in multiple application

domains such as content filtering, Fraud detection, anomaly identification, medical

diagnoses, data organization and so on. The real-world implications of enhanced

classification accuracy in the aforementioned application domains is quite intuitive and

obvious. In instances where false positives/negatives could mean the difference between

life and death with respect to medical diagnoses or guilt and innocent in terms of crime

scene investigations, having accurate deep learning models is critical. We believe that

our proposed algorithms could help in this regard.

8.2.2 Training Time

The rapid progress in CNN model performance has been achieved through increasingly

complex architectures and training regimes requiring an exponential increase in compu-

tational resources. The direct effect of this attrition-based approach in increasing model

performance is that most research is unable to be independently verified due to the lack

of access to high-performance computational resources. Our research has shown to

significantly reduce model training times with no additional computational demands or

detriment to model classification performance. Utilizing our proposed heuristic and al-

gorithms, practitioners can deploy deep learning models in computationally constrained

environments such as embedded and mobile systems which have far reaching benefits.

Researchers similarly can expeditiously test novel hypotheses which can accelerate

research in the domain.
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8.2.3 Generalization

Most deep learning models overfit on the training data to some extent, limiting their

applicability in different domains or requiring the collation of large data samples.

Increased generalizability also serves to mitigate the problem of unintentional biases

in sensitive applications such as facial recognition where, deep learning models could

have a skewed representation favoring a specific sub-class, primarily due to overfitting.

Our proposed algorithms and loss functions can help mitigate the problem of bias and

enable implementation of deep learning models in a more diverse set of application

domains where, data procurement is limited due to privacy or other restrictions that

might be imposed.

8.3 Limitations and Future work

Although we have made significant strides in trying to optimize CNNs, the methods

outlined in this thesis might not be effective for different CNN architectures, dissimilar

datasets such as time-series or distinct computer vision tasks like image captioning,

object detection or segmentation. Furthermore, the methods and algorithms presented in

thesis are validated empirically only for a limited set of benchmarking datasets and CNN

architectures. The rapid progress in the field of computer vision could possibly render

CNN models obsolete which makes it imperative to apply the principles proposed in this

thesis to different domains and state-of-the-art architectures which is reserved as future

work. Furthermore, the process of feature extraction, abstraction and classification in

CNN models is still not well understood especially with respect to structural, topological

and semantic characteristics respectively. Analyzing these areas from a mathematical

perspective with regards to the convolution operation is both intriguing and exciting

which is reserved as future work.
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Appendix A

Notations

Data distribution D The underlying data distribution from which the independent

input vectors xi are sampled.

Input Space The input dataset X consists of n number of input images denoted as

x1−n sampled from an underlying data distribution D. Each of the n number of

images x1−n has an associated class label yi−n, whose aggregated collection is

denoted as Y, such that, xi, yi ∈ X × Y .

Output Space Ŷ is the computed class probability in the interval [0,1] for Y using X.

Multi-Dimensional Data The images are interpolated and multi-dimensional (con-

strained to a finite d-dimensions), represented as x1−d
1−n.

Underlying functional representation The underlying functional representation of

X can be denoted by some function f , which maps the input to the output for

each of the n number of images i.e. f ∶ X → Y .

Computed Approximation Function f̂ is the computed approximation function cal-

culated from the input dataset X with the ground truth Y.

Search or Problem Space The underlying function f for X could be any of the finite

set of possible functions F which is the search space.

Solution Space Every possible function in F has an associated solution in the solution
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space Y . Ideally, f̂ = f therefore, Ŷ = Y for X, this solution is the global

optimum. If f̂ is approximated to any of the possible functions in F other than

the glabal optimum, it has converged to a local optimum.

Non-Convex Optimization Problems Non-convex optimization problems can be char-

acterized by the presence of multiple local optima (minima for loss minimization

functions and maxima for generalization functions) and the optimization of non-

convex functions can converge to any local optima.

Loss Function The loss function L(Ŷ , Y ) is used to quantitatively determine the error

in approximation between f̂ and f .

True Functional Approximation f̂ is computed over F and not the actual underlying

function f since f is a hypothetical function which exists in the set of all possible

functions F . Therefore, a neural network or any traditional function solver must

traverse the whole search space which exponentially increases as a function

of complexity and converge to an approximation which is generally a local

optimum. True convergence to the global optimum is theoretically possible but, it

is impractical in the real-world due to noise and representational limitations of

digital data.

Function Mapping Computing algorithms traverse the search space (i.e. learn) by

mapping/evaluating the approximated function f̂ using X and generating Ŷ ,

subsequently calculating the error L(Ŷ , Y ) utilizing the ground truths and min-

imizing this error by adjusting the internal parameters to converge to a global

optimum and achieve a closer approximation.

Mathematical Representation of The Human Brain Humans have excellent pattern

recognition skills developed through decades of evolution, mimicking nature,

mathematical abstractions of the brain’s synapses and neural architecture was

proposed dubbed Artificial Neural Networks (ANNs). ANNs have neurons with

weights (W) to signify the strength of the synapses and interconnected hidden
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layers to achieve the goal of function mapping, illustrated in Figure 2.1.

ANN Notations The total number of hidden layers or depth of the network is denoted

as H . The total number of neurons in any given hidden layer hi∣hi ∈H is denoted

as χ. Collection of all the weights for a given hidden layer is represented as

Wi∣Wi ∈ W with individual neural weights of a given layer as ωi−χ∣ωi−χ ∈ W.

Parameter Space The total number of trainable parameters for a neural network

model usually W and other HyperParameters (HPs) discussed below.

Functional Optimization Optimizing the computed approximation function f̂ is car-

ried out by constraining f̂ to only differentiable functions allowing the computer

to compute gradients ∇ and using these gradients to update internal parameters.

Non-Linearty An ANN performs well for linear approximations but, since F contains

non-linear functions, a method to introduce non-linear functional approximations

are needed. Non-linear activations are introduced to allow for closer approx-

imations to F . Non-linear activation functions σ such as the commonly used

Rectified Linear Unit (ReLU) thresholds all negative value to zero and behaves

as a linear function for all positive inputs.

Back-Propagation Weight adjustments/updates for W to minimize the loss function

L are performed using the first order partial derivatives of f̂ to achieve closer

approximations to F . The chain-rule is applied to compute the gradients θ for f̂

provided the inputs X, Y.

Learning Rate The learning rate η for a neural network is the scaling factor for

weight updates which determines the rate of convergence to closer functional

approximations.

Stochastic Gradient Descent (SGD) SGD is the algorithm most commonly used to

optimize the various HPs of the neural network such as the learning rate, gradient

step-size i.e. the direction and magnitude for traversing the problem space.

Cnvolutional Neural Network (CNN) A CNN typically consists of a convolutional
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block which uses the convolution operation to extract feature information along

with a classification/fully connected block, which is a traditional ANN as illus-

trated in Figure 2.2.

Neural Breadth (χ) and Convolutional Breadth (χ′) The number of neurons in a

given hidden layer and convolutional filters/kernels/units in a given hidden layer

respectively.

Neural Network Depth (H) and Convolutional Depth (H ′) The number of hidden

layers in a given NN model and the number of convolutional layers in a given

CNN model respectively.

Weight vector W The collection of weight matrices associated with all (breadth×depth)

the neurons, convolutional kernels/units/channels omegai

Feature Collection The collection of feature vectors D extracted using the convolu-

tional block in a CNN.

Overfitting A function mapping method of converging to a closer approximation has

a major drawback of learning the underlying functional representations for only

the given input space. The error is minimized to such a degree that when a new

set of inputs (more generalized) are provided which is close to the original input

images (as an example, assume different species of cats or dogs are provided.

Humans can easily distinguish these new images to their respective categories

as cats or dogs) the computer fails to recognize these new images. The error in

recognition/classification accuracy is the generalization error.

Regularization To mitigate overfitting, regularization is used to optimize some para-

meters such as complexity of the model and feature weights which allow for

better generalization to unseen examples.

Dimensionality Reduction As image data is d-dimensional, reducing the dimensions

could reduce the search space significantly and allow for faster and accurate
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convergence. Dimensionality reduction is achieved in a CNN employing nu-

merous lower-dimensional convolutional kernels which extract a single feature

but, when multiple of these convolutional kernels are utilized in single layer,

multiple feature vectors can be extracted. More complex features are abstracted

by increasing the convolutional layers which take as an input the previous layer’s

feature extractions rather than the input image allowing for hierarchical feature

abstractions.

Feature Space The lower-dimensional subspace of the search space which contains

different functional representations of the input space.

Vector Space A vector space is a collection of vectors, which may be added together

and multiplied by scalars.

Lower-Dimensional feature vector φ The hypothetical vector space which can pre-

cisely reduce the input space linearly to the output space. In other words, the

collection of all the vectors extracted from the feature space which can accurately

reduce the input space to the output space.

Feature Map Vector (ϕ) The collection of all feature map vectors generated using

the feature vectors φ to compute closer approximations to f from all possible

functional representations in F .

Training afflictions The obvious problem with stacking multiple convolutional layers

in series is that computing gradients for the initial layers becomes challenging

since error propagation and weight updates are performed from the final layer

to the initial layers. This could lead to afflictions like vanishing and exploding

gradients, where the computed gradients are either insignificant so that they can

essentially be ignored or large enough that it would induce model divergence.

Residual or Skip Connections To enhance error propagation to the initial layers,

residual connections which allow for gradients to skip intermediate hidden layers

and in the later layers perform identity mapping. These connections enable very
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deep networks to be trained.

Regression Vector (ϑ) A linear vector at the final classification layer (predominantly

SoftMax) which separates the computed lower-dimensional feature vectors φ(X)

using the n number of input image vectors xi−n∣xi ∈ X.
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