

Distributed Relational Database Performance

in Cloud Computing: an Investigative Study

Awadh Saad Althwab

A thesis submitted to Auckland University of Technology

In partial fulfilment of the requirements for the degree of

Master of Computer and Information Sciences

School of Computer and Mathematical Sciences

 Auckland, New Zealand 2015

i

Abstract

Although the advancement of Cloud Computing (CC) has revolutionised the way in which

computational resources are employed and managed, it has also introduced performance

challenges for existing systems, such as Relational Database Management Systems

(RDBMS’). This research investigates the performance of RDBMS’ when dealing with large

amounts of distributed data in a CC environment.

This study employs a quantitative approach using positivist reductionist methodology. It

conducts nine experiments on two different RDBMS’ (SQL Server and Oracle) deployed in

CC. Also, this research does not employ any performance measurement tools that were not

specifically developed for CC. Data analysis is carried out using two different approaches: (a)

comparing the experiments’ statistics between the systems and (b) using SPSS software to

look for statistical evidence. Furthermore, this study relies on secondary data that indicate

distributed RDBMS’ generally perform better on n-tier architecture.

The results provide evidence that RDBMS’ create and apply execution plans in a manner that

does not fit CC architecture. Therefore, these systems do not fit well in a CC environment.

Also, the results from this investigation demonstrate that the known issues of distributed

RDBMS’ become worse in CC, indicating that RDBMS’ are not optimised to run on CC

architecture.

The results of this study show that the performance measures of RDBMS’ in CC are

inconsistent, which indicates that is how the public, and shared infrastructure affect

performance. This research shows that RDBMS’ in CC become network-bound in addition to

being I/O bound. Therefore, it concludes that CC creates an environment that negatively

impacts RDBMSs performance in comparison to n-tier architecture.

ii

The findings from this study indicate that the employment of the above-mentioned tools does

not present a complete picture about the performance of RDBMS’ in CC.

The results of this research imply there exists architectural issues with relational data model

thus these issues are worth studying in the future. Further, this study implies that applying

ACID creates a challenge for users who want to have a scalable relational database in a CC

environment because RDBMS should wait for the response over shared cloud network.

This thesis reports cases where serious performance issues were encountered and it

recommends that the design and architecture of RDBMS’ should be altered so that these

systems can fit CC environment.

iii

Table of Contents

Abstract ... i
Table of Contents ... iii
List of Figures ... vi
List of Tables .. xi
Declaration ... xii
Acknowledgements .. xiii
Copyright .. xiv

List of Abbreviations ... xv

List of Acronyms .. xvi
 .. 1

Introduction .. 1

1.0 Research problem ... 1

1.1 Aim ... 1

1.2 Background .. 2

1.3 Motivations... 3

1.4 Research methodology overview ... 4

1.5 Research contributions ... 5

1.6 Thesis structure .. 6

 .. 8

Literature Review... 8

2.0 Introduction .. 8

2.1 Definition of Cloud Computing ... 8

2.1.1 Cloud Computing features ... 9

2.2 Relational database management systems.. 10

2.2.1 Database... 11

2.2.3 Relational data model .. 12

2.2.3 The role of relational database management system ... 13

2.3 Problem identification .. 15

2.3.1 RDBMS technologies need to change ... 17

2.3.2 A new database management system is created that takes cloud technologies into
account 19

2.4 Relational database performance in CC ... 21

2.4.1 Performance measurement tools .. 21

2.4.2 RDBMS’ performance data in Cloud Computing ... 23

iv

2.5 Conclusions .. 25

 .. 27

Methodology .. 27

3.0 Introduction .. 27

3.1 Research method selection ... 28

3.2 Methodology selection ... 29

3.3 Methodology design ... 31

3.3.1 Related studies ... 31

3.3.2 Research questions and hypotheses ... 34

3.3.3 Hypotheses testing ... 36

3.4 Research framework ... 39

3.4.1 Investigation environment ... 39

3.4.2 Database architecture ... 41

3.5 Experiments descriptions ... 44

3.5.1 Experiment 1.. 44

3.5.2 Experiment 2.. 45

3.5.3 Experiment 3.. 46

3.5.4 Experiment 4.. 46

3.5.5 Experiment 5.. 47

3.5.6 Experiment 6.. 47

3.5.7 Experiment 7.. 48

3.5.8 Experiment 8.. 48

3.5.9 Experiment 9.. 49

3.6 Data collection.. 51

3.7 Data analysis .. 54

3.7.1 Statistical data analysis .. 55

3.7.1.1 Data preparation ... 55

3.7.1.2 Statistical methods selection ... 55

3.8 Theory generation .. 56

3.9 Conclusions .. 58

 .. 59

Results Analysis and Findings ... 59

4.0 Introduction .. 59

4.1 Pre-Experiment Preparation ... 60

4.2 Results and data analysis .. 62

4.2.1 Experiment 1.. 63

4.2.2 Experiment 2.. 71

v

4.2.3 Experiment 3.. 79

4.2.4 Experiment 4.. 88

4.2.5 Experiment 5.. 95

4.2.6 Experiment 6.. 100

4.2.7 Experiment 7.. 108

4.2.8 Experiment 8.. 115

4.2.9 Experiment 9.. 127

4.4 Findings .. 142

4.3.1 Performance measures in Cloud Computing ... 143

4.3.2 Performance of RDBMS’ as CDD .. 145

4.3.3 Influence of Public Cloud Computing network ... 150

4.5 Conclusion .. 153

 .. 156

Discussion .. 156

5.0 Introduction .. 156

5.1 Performance measures in Cloud Computing .. 157

5.2 Performance of RDBMS’ as CDD ... 159

5.3 Influence of Public Cloud Computing network ... 162

5.4 Cloud architecture VS n-tier architecture... 164

5.5 Implications for developers .. 165

5.6 Conclusions .. 167

 .. 168

Conclusion ... 168

6.1 Retrospective analysis .. 168

6.1.1 Performance measure in Cloud Computing ... 168

6.1.2 Performance of RDMS’ as CDD ... 169

6.1.3 Influence of Public Cloud Computing network ... 170

6.1.4 Cloud architecture vs n-tier architecture ... 170

6.2 Further work ... 170

6.3 Research limitations ... 171

6.4 Conclusion .. 171

References .. 173

Appendices ... 189

Appendix A .. 189

Appendix B .. 205

Appendix C .. 207

Appendix D .. 210

vi

Appendix E .. 213

List of Figures

Figure 1-1: Cloud computing ... 3

Figure 3-1: Investigation environment ... 43

Figure 3-2: Database ERD ... 43

Figure 4-1: The number of students enrolled in papers. .. 61

Figure 4-2: Snap shot of EXP1results ... 63

Figure 4-3: EXP1 local execution plans. ... 63

Figure 4-4: EXP1 remote execution plans... 64

Figure 4-5: EXP1 remote SQL Server table scan ... 65

Figure 4-6: EXP1 duration and CPU time in seconds ... 66

Figure 4-7: EXP1 CPU time and logical reads ... 67

Figure 4-8: EXP1 Physical reads and average I/O latency .. 67

Figure 4-9: EXP1 SQL Server wait events.. 69

Figure 4-10: EXP1 Oracle wait events .. 70

Figure 4-11: Snap shot of EXP2 results .. 71

Figure 4-12: EXP2 local execution plans .. 72

Figure 4-13: EXP2 remote execution plan .. 74

Figure 4-14: EXP2 duration and CPU time in seconds ... 75

Figure 4-15: EXP2 Number of physical reads and average I/O latency 76

Figure 4-16: EXP2 SQL Server wait events.. 77

Figure 4-17 :EXP2 Oracle wait events. ... 78

Figure 4-18: Snap shot of EXP3 results .. 79

vii

Figure 4-19: EXP3 local execution plans .. 80

Figure 4-20: EXP3 remote execution plans... 82

Figure 4-21: EXP3 duration and CPU time in seconds. .. 83

Figure 4-22: EXP3 physical read and average I/O latency. .. 85

Figure 4-23: EXP3 SQL Server wait events.. 86

Figure 4-24: EXP3 Oracle wait events. ... 87

Figure 4-25: Snap shot of EXP4 results .. 88

Figure 4-26: EXP4 local execution plans .. 89

Figure 4-27: EXP4 remote execution plans... 90

Figure 4-28: EXP4 duration and CPU time in seconds. .. 91

Figure 4-29: EXP4 logical read and CPU time. .. 91

Figure 4-30: EXP4 physical reads and average I/O latency. ... 92

Figure 4-31 : EXP4 SQL Server wait events.. 93

Figure 4-32: EXP4 Oracle wait events .. 94

Figure 4-33: Snap shot of EXP5 results .. 95

Figure 4-34: EXP5 local execution plans. .. 96

Figure 4-35: EXP5 remote execution plans... 97

Figure 4-36: EXP5 duration and CPU time in seconds. .. 97

Figure 4-37: EXP5 physical reads and average I/O latency. .. 98

Figure 4-38: EXP5 SQL Server wait events.. 99

Figure 4-39: EXP5 Oracle wait events. ... 100

Figure 4-40: Snap shot of EXP6 results .. 101

Figure 4-41 : EXP6 local execution plans. ... 101

Figure 4-42: EXP6 remote execution plans... 102

Figure 4-43: EXP6 duration and CPU time. .. 103

viii

Figure 4-44: EXP6 physical operations and average I/O latency. ... 104

Figure 4-45: EXP6 SQL Server wait events.. 106

Figure 4-46: EXP6 Oracle wait events. ... 107

Figure 4-47: Snap shot of EXP7 results ... 109

Figure 4-48. EXP7 local Oracle execution plan. ... 109

Figure 4-49: EXP7 remote execution plans.. 111

Figure 4-50: EXP7 duration and CPU time in seconds. .. 112

Figure 4-51: EXP7 I/O operations and average I/O latency.. 113

Figure 4-52: EXP7 SQL Server wait events.. 114

Figure 4-53: EXP7 Oracle wait events. ... 115

Figure 4-54: Snap shot of EXP8 results .. 116

Figure 4-55: EXP8 local SQL Server execution plan. .. 116

Figure 4-56: EXP8 ORDER BY warning. .. 117

Figure 4-57: EXP8 remote SQL Server execution plan. .. 117

Figure 4-58: EXP8 duration and CPU time in seconds. .. 118

Figure 4-59: EXP8 logical reads and CPU time. .. 119

Figure 4-60: EXP8 I/O operations and average I/O latency.. 120

Figure 4-61: EXP8 tempdb I/O operations and average latency .. 120

Figure 4-62: EXP8 SQL Server wait events.. 121

Figure 4-63: EXP8 Oracle wait events. ... 122

Figure 4-64: EXP8 OSA local Oracle execution plan .. 123

Figure 4-65: EXP8 OSA remote Oracle execution plan. .. 123

Figure 4-66: EXP8 OSA duration and CPU time in seconds. ... 124

Figure 4-67: EXP8 OSA I/O Operation and average I/O latency. .. 124

Figure 4-68: EXP8 Oracle temp I/O operation and average I/O latency. 125

ix

Figure 4-69: EXP8 OSA wait events... 126

Figure 4-70: EXP9 local Oracle execution plan. .. 127

Figure 4-71: EXP9 remote Oracle execution plan. ... 128

Figure 4-72: EXP9 remote SQL Server execution plan. .. 128

Figure 4-73: EXP9 table scan .. 129

Figure 4-74: EXP9 segment operation .. 129

Figure 4-75: EXP9 sequence project. .. 130

Figure 4-76: EXP9 clustered index insert ... 131

Figure 4-77: EXP9 compute scalar. .. 131

Figure 4-78: EXP9 RID lookup operator .. 132

Figure 4-79: EXP9 duration and CPU time in seconds. .. 133

Figure 4-80: EXP9 logical reads and CPU. ... 134

Figure 4-81: EXP9 I/O operations and average I/O latency.. 134

Figure 4-82: EXP9 TEMPDB I/O Operations and average latency. 135

Figure 4-83: EXP9 SQL Server wait events.. 136

Figure 4-84: EXP9 Oracle wait events. ... 137

Figure 4-85: EXP9 SSSA localSQL Server execution plan. ... 138

Figure 4-86: EXP9 SSSA remote SQL Server execution plan for different approach. 138

Figure 4-87: EXP9 SSSA table scan ... 139

Figure 4-88: EXP9 SSSA duration and CPU time in seconds. .. 139

Figure 4-89: EXP9 SSSA I/O Operations and average latency. ... 140

Figure 4-90: EXP9 SSSA wait events... 141

Figure 4-91: SQL Server duration v. CPU time. ... 146

Figure 4-92: Oracle duration v. CPU time ... 147

Figure 4-93: Duration v. network traffic.. 152

x

Figure 4-94: Normality of simple linear regression test. ... 153

xi

List of Tables

Table 3-1: Research environment configurations .. 40

Table 3-2: Pre-experiment commands in SQL Server. .. 51

Table 3-3: Pre-experiment commands in Oracle. .. 51

Table 3-4: Skewness test .. 55

Table 4-1: Average I/O latency V. number of physical reads. .. 143

Table 4-2: network traffic V. runtime .. 144

Table 4-3: T-test Descriptive ... 148

Table 4-4: Independent Samples Test .. 148

Table 4-5: Correlation between Duration and Network Traffic .. 151

Table 4-6: simple regression test ... 152

xii

Declaration

I hereby declare that this submission is my own work and that, to the best of my knowledge

and belief, it contains no material previously published or written by another person nor

material which to a substantial extent has been accepted for the qualification of any other

degree or diploma of a university or other institution of higher learning.

--

Awadh Althwab

xiii

Acknowledgements

My masters’ journey has come to an end. While I’m feeling great at this point of time, this

work has been very extensive and without the help from My God and then from some people,

it would not have been possible.

I’m thankfully to My God for giving me the strength to finish this thesis.

Dr. Alan, my primary supervisor, there are no words enough to describe my appreciation for

your help, advices and the commitments you made to my work. Thanks for ever.

I thank my secondary supervisor Shoba for your important help and the time you spent for

my masters’ work.

Special thanks to my family back home for standing by me during this journey.

Special thanks for my wife Afaf for your significant and big support and for your

understanding. Also, thanks to my son Saad.

To my mother, I lost you long time ago but you are still and you will always be in my mind.

Finally, thanks very much to my country Saudi Arabia for the very great support during my

journey.

xiv

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either in full, or

of extracts, may be made only in accordance with instructions given by the Author and

lodged in the library, Auckland University of Technology. Details may be obtained from the

Librarian. This page must form part of any such copies made. Further copies (by any process)

of copies made in accordance with such instructions may not be made without the permission

(in writing) of the Author. The ownership of any intellectual property rights which may be

described in this thesis is vested in the Auckland University of Technology, subject to any

prior agreement to the contrary, and may not be made available for use by third parties

without the written permission of the University, which will prescribe the terms and

conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation may take

place is available from the Librarian

xv

List of Abbreviations

Exp: Experiment

ERD: Entity Relationship Diagram

R: Remote

xvi

List of Acronyms

CC: Cloud Computing

PuC: Public Cloud

WAN: Wide Area Network

RDBMS: Relational Database Management System

CDD: Cloud-Distributed Database

IS: Information System

IT: Information Technology

OLTP: Online Transaction Processing

ACID: Atomicity, Consistency, Isolation, Durability

LAN: Local Area Network

DBMS: Database Management Systems

EC2: Amazon Elastic Cloud Computing

SSSA: SQL Server Second Approach

OSA: Oracle Second Approach

AWR: Automatic Workload Repository

Chapter 1 Introduction

1

Introduction

1.0 Research problem

CC environment creates new challenges that can negatively impact the performance of the

deployed technologies. Using virtualization, the underlying hardware such as, CPU and

Memory is shared among multiple users. Therefore, it is important that the performance of

RDBMS is investigated when deployed in a CC platform. This research asks questions which

are detailed in Section 3.3.2, p. 35-36. These questions look to examine the effect of CC on

relational databases in terms of the performance and the query optimisation.

1.1 Aim

Any distributed RDBMS requires a network and nodes. The characteristics of CC

architecture is different from architectures such as n-tier architecture. The differences appear

in that the CC architecture depends on the Internet and relies on virtualisation that abstract

the physical architecture (Ivanov, 2013, Khajeh-Hosseini, Greenwood & Sommerville, 2010).

Also, an n-tier architecture operates on a client/server model and includes a database system

that stores data, while the server application and users access the database system using the

middleware in the n-tier architecture (Frerking et al, 2004; Eriksson, 2015). In CC, the user

may obtain more direct access to data or may access data via a Services Oriented

Architecture (SOA). In n-tier architecture, these nodes exist within a data centre’s networks

between servers and racks but these have significant bandwidth (Benson, Akella & Maltz,

2010) compared to the cloud architecture where limited and shared bandwidth exists, for both

Chapter 1 Introduction

2

internal and external networks (Moens & Turck, 2015). However, distributed RDBMS’ in n-

tier architecture suffer from performance issues related to query optimisation (Chaudhuri,

2012b; Liu & Yu, 1993; Mullins, 1996 & Tewari, 2013). Therefore, since RDBMS’ normally

operate on n-tier architecture (Frerking et al., 2004), the present thesis aims to investigate

RDBMS’ performance operating on a cloud architecture.

1.2 Background

CC appears to have gained more attention in recent years. This is especially important since

the world is increasingly a witness of enormous growth in data volume. For instance, it is

extrapolated that such volume will reach the peak of 7.2 zetabytes by 2015, which is

equivalent to 7.2 trillion gigabytes (Litchfield & Althouse, 2014). Indeed, such a figure

illustrates the fact that there is a continuous need for advancing Database Management

Systems (DBMS) to handle that growth especially when the data that being created are

largely stored in databases. CC can play a central role in hosting these databases because

multiple features are provided by CC including, but not limited to, the ability to control

spending on Information Technology (IT) services (Armbrust et al., 2010).

 CC relies heavily on virtual machines (Zhan, Liu, Zhang, Li & Chung, 2015). Virtual

machines (VM) involve computer systems that emulate the processes of real computer

infrastructures. There are many commercial VM products that can support virtualisation, such

as EXC/ESXI server, Microsoft Hyper-V R2 and Proxmox Virtual Environment (Litchfield

& Althouse, 2014). This way virtualisation supports the allocation and delivery of

computation to CC users.

Chapter 1 Introduction

3

Figure 1-1: Cloud computing

This figure is obtained from (Wiggins, 2009)

CC can be thought of as a distributed system because users can access to VMs via Wide Area

Network (WAN). While such characteristics may help for achieving reduction in spending

on IT services, the network between the nodes mostly is the WAN and the loads are

unpredictable and variable (Litchfield & Althouse, 2014). Further, CC offers a method of

accessing to a shared pool of computing resources such as network, disks, servers and storage

(Ferris, 2015; Marcon et al., 2015).

This research considers CC as system with virtual memory and CPU. Moreover, CC

enable users to have more than one node so that users can distribute their system and data

across multiple nodes. CC provides a platform that this research employs to investigate the

performance of RDBMS’ in such environment. Thus this study introduces the term Cloud-

Distributed Database (CDD).

1.3 Motivations

 CC provides a platform which can be used for accommodating ever-growing data volume

using any particular DBMS. CC service provider manages configuration and privacy of the

underlying infrastructure while the DBMS is being responsible for database optimisation.

Further, Litchfield and Althouse (2014) carry out a systematic review that implies CC

increasingly becomes a mainstream technology in dealing with large datasets. Moreover,

Chapter 1 Introduction

4

McKendrick’s (2012) shows that 13% of large organisations (>10000 employees) were

currently hosting their DBMS’ on cloud-based server and 18% of them would deploy their

DBMS in CC environment by 2013.

 Secondly, RDBMS’ were established on the relational data model (Codd, 1970) and

have now existed for more than four decades. The model has gained wild popularity in the

industry and it is the standard model for business databases (Suciu, 2001). More recently,

McKendrick’s (2012) study indicates that 77% of study’s sample consider structured data as

central to their daily business activities. More importantly, RDBMS’ are still mainstream

technology as means for data management (McKendrick, 2012). The study also shows that

92% of its sample use RDBMS’ compared to 11% who employ NOSQL databases (see

Appendix E, pp. 212 – 213, for extended discussions about NOSQL systems).

 In order to identify the extent to which RDBMS’ are affected by influences from

cloud architecture and may result in inadequate performance, this research therefore

undertakes an experimental investigation into RDBMS’ performance in CDD.

1.4 Research methodology overview

Since this research attempts to examine and identify RDBMS’ performance in CDD, it needs

empirical data in order to achieve its purposes. The selection process of methodology

considers many methods and the selection arrives at adapting positivist reductionist approach.

Further, a large dataset is used to help with quantifying RDBMS’ performance in

CDD by executing a variety of experiments on two RDBMS’ namely SQL Server and Oracle.

The experimental scenarios represent real-world uses of RDBMS. However, some real-world

queries, such as arithmetic queries, could not be performed in this study because the dataset

that is used does not contain appropriate data. Of all the queries, some are relatively easy to

process with no large datasets returned, but the majority are either long processing queries

Chapter 1 Introduction

5

with a degree of complexity or the returned result is large. In all experiments, in order to

perform the query the joining of at least two tables is required. However, query conditions

that need to be satisfied are based on the parent or child tables or both of them. The systems

reside on virtual servers located in Auckland, New Zealand and Amsterdam, the Netherlands.

Each system has two VMs, one of which is located in Auckland (remote) and stores MYTABLE

and the other VM is located in Amsterdam (local) and contains the parent tables.

This research assumes the following:

1. That the RDBMS’ are optimised for use in an n-tier architecture.

2. That queries are optimised on the RDBMS to provide high performance output when

data sets are readily available on the server.

3. That large data sets would not normally be widely distributed.

4. Large datasets would normally be replicated rather than distributed.

1.5 Research contributions

The contributions of this research are as follows:

1. This study adds to Information System (IS) literature by demonstrating that current

RDBMS’ do not fit CC environment. RDBMS’ suffer from performance issues in n-

tier architecture and in cloud architecture. That is, they do not efficiently process large

datasets distributed over cloud or public network.

2. This research also verifies that RDBMS’ are optimised to be deployed over n-tier

architecture so that any issues with distributed RDBMS’ are intensified in a Cloud-

based environment.

Chapter 1 Introduction

6

3. This research provides a methodical approach to examining the performance of

RDBMS’ in a CC environment where multiple variables can affect their performance.

Such approach contributes to IS literature by showing that measuring RDBMS

performance in CC using tools that are not originally developed for use in CC does

not give a complete picture.

4. This study contributes to IS literature by showing that RDBMS’ in cloud architecture

are not only I/O bound, but also become network-bound.

1.6 Thesis structure

The thesis consists of six chapters. Chapter 1 (the current chapter) introduces the research by

giving the background of the topic and explaining the motivation behind the research. This

chapter also gives an overview of the methodology employed and concludes by outlining the

study’s contributions and the thesis’s structure.

Chapter 2 provides a review of current and past literature and a critique of the relevant

body of knowledge concerning both CC and RDBMSs. The chapter summarises the main

points of the topic so that research direction is clearly identified. One point indicates that

there is no adequate performance investigation that is related to RDBMS’ deployed in cloud-

based environment and there is a need to identify RDBMS’ performance issues this

environment. The other point indicates that most of RDBMS’ related performance data are

obtained using performance measurement tools that are not originally developed to run in the

Cloud. Therefore, this research avoids these tools and forms its performance measurement

approach which Chapter 3 describes. The conclusion of Chapter 2 specifies the research

questions and establishes its hypotheses.

Chapter 3 discusses the process whereby the methodology is selected. The research

framework is explained by describing the investigation environment where the experiments

Chapter 1 Introduction

7

are conducted and demonstrating the database architecture that is used. Chapter 3 also details

each experiment conducted in this research. The chapter moves on to outline the data

collection steps and how data analysis is conducted. Before the chapter concludes, the

process of theory generation is explained.

Chapter 4 presents the analysis of the experiments described in Chapter 3. Each

experiment is compared between SQL Server and Oracle. The comparisons use the

performance measures identified in Section 3.3.2. Chapter 4 also presents the findings of this

research. The findings section contains statistical analysis to explain these findings in

statistical manner. Moreover, the chapter shows whether or not the stated hypotheses can be

accepted or rejected

Chapter 5 evaluates the findings outlined in Chapter 4. Chapter 5 addresses the

research questions and provides answer to them. The chapter compares and contrasts the

findings with the existing body of knowledge described in the Literature Review chapter.

Chapter 6 concludes the thesis by summarising the findings of the research and also

by describing the study’s limitations. The chapter concludes by proposing some further

research direction.

Chapter 2 Literature Review

8

Literature Review

2.0 Introduction

The goal of this chapter is to critically analyse the existing body of knowledge with regards to

relational database performance issues in CDD. By identifying such issues, the chapter paves

the way to experimentally determine potential impact of CC environment on performance.

 Chapter 2 is organised into five sections that provide extended summaries of relevant

key issues and specify potential directions for the research. Section 2.1 defines cloud

computing and describes its relevant features. Section 2.2 defines RDBMS’ and relational

data model and provides a comparison between this model and preceding data models. This

section also explains the role of RDBMS’. Section 2.3 identifies the research’s direction and

illustrates that the literature creates different positions towards data management in CDD.

Section 2.4 offers an overview of works that are similar to this research. Finally, Chapter 2

concludes by providing potential research questions and establishing hypotheses.

2.1 Definition of Cloud Computing

Since this research is conducted to examine relational database performance CC, this section,

explains CC in details and its implications to relational database and large datasets.

Various definitions of CC are observed in the literature that encompass the elements

of CC in a more specific manner, although they differ considerably in which aspect of CC

they cover. For instance, definitions by Geelan (2009) and Buyya, Yeo and Venugopal (2008)

define CC based on economies of scale, especially when allowing users to choose the amount

of resources they can use and therefore reduce the overall cost of utilising cloud

Chapter 2 Literature Review

9

infrastructures. Moreover, they focus on providing service level agreements (SLA) between

service providers and consumers while maintaining a certain level of quality of services.

These definitions also imply that CC features, including scalability and the ability to optimise

the use of resources, play a key role in empowering users to have full control over their

spending on IT services (Vaquero, Rodero-Merino, Caceres & Lindner, 2008).

CC can be defined as: “a large pool of easily usable and accessible virtualised

resources. These resources can be dynamically reconfigured to adjust to a variable load

(scale), allowing also for an optimum resource utilization” (Vaquero, Rodero-Merino,

Caceres & Lindner, 2008, p.52). These resources are typically consumed by a pay-per-use

model and services providers are responsible for guaranteeing the needed infrastructure at an

agreed SLA (Geelan, 2009).

2.1.1 Cloud Computing features

Cloud computing has three models of service, namely public clouds, private clouds, and

hybrid clouds (Geelan, 2009). These models differ in terms of the management of the cloud.

Public Cloud (PuC) involves many customers accessing the cloud from different locations

using the same infrastructure (such as via the Internet). The private cloud in which the

management can either be undertaken by the organisation itself or outsourced. The

implications for an organisation with a private cloud are significant, and this is especially

important because access to its resources is more limited than a PuC. A hybrid cloud on the

other hand, involves combining public and private clouds to facilitate the expansion of the

private cloud using the resources of the public cloud.

One important feature the Cloud-based environment has to offer is a high level of

service availability (Litchfield & Althouse, 2014). This includes data availability and other IT

resources. On the other hand, moving to a cloud platform does not guarantee data to be

Chapter 2 Literature Review

10

always accessible and performance bottlenecks can potentially lead to data unavailability, be

it technical bottlenecks or network insufficiency (Litchfield & Althouse, 2014). Database

locking, lack of storage capacity (such as in Thakar, Szalay, Church and Terzis (2011)) and

cache flushing, for example, can also cause bottlenecks in cloud systems. Network

insufficiency in PuCs is an important cause for performance bottlenecks and data

unavailability especially when data move between cloud nodes within limited bandwidths

(Litchfield & Althouse, 2014).

This research conducts its experiments on PuCs and the effects of PuC use on

performance are important to consider. Li, Yang, Kandula and Zhang (2010) conduct a

comparison between PuCs and conclude that there are considerable differences between PuC

providers and this imposes challenges as to which PuC provider to go with. Further, although

Iosup et al., (2011) PuCs appear to suit small databases and show deficiencies when

employed for heavy workloads coming from the scientific field, Thakar et al. (2011) and

Hashem (2015) disagree with such claim and indicate that PuC such as Amazon Elastic

Cloud Computing (EC2) and Microsoft SQL Azure can be used for scientific tasks.

Gunarathne Wu, Qiu and Fox (2010) add that PuCs can be used in cases (such as big data

tasks) where there are complex queries request intensive computation resources that need to

be performed on high dimensional data residing on heterogeneous databases. But since PuCs

operate on shared infrastructure using VM, such configurations cause I/O performance to be

inconsistent.

2.2 Relational database management systems

The previous section defines and discusses CC. This section explains and discusses RDBMS’

that this research investigates their performance in CDD.

Chapter 2 Literature Review

11

2.2.1 Database

Database in itself implies a collection of data grouped together for at least storage purposes

(Connolly & Begg, 2005). What is stored inside have no meaning until they are put into some

context that is related to purpose of the database. This suggests that a database needs to have

a collection of related data managed by a system such as DBMS. However, this definition

seems general, and hence any related data stored in any random file can be called a database

while in the real-world situation a database reflects some restrictions, and they include the

following points (Connolly & Begg, 2005):

• A database represents a collection of data inherently holding some meaning and put

together in a logical and coherent manner. Therefore, an assortment of random data

does not directly constitute a database.

• A database represents an aspect of a real-world situation, that when changes occur to

this situation the database will reflect these changes, and this implies consistency.

• Database design serves a specific purpose and hence has related data intended to

respond to requests from a known group of users and applications to be used by these

users.

That said, a real-world database has users who are interested in accessing the contents of a

database, and interactions occur between users and the database; in other words, they are

interacting with the real-world situation itself (Connolly & Begg, 2005). Such contents are

usually generated or derived from data sources related to this situation. Thus a database can

be defined as “a shared collection of logically related data, and a description of this data,

designed to meet the information needs of an organisation” (Connolly & Begg, 2005, p. 15).

Chapter 2 Literature Review

12

2.2.3 Relational data model

The relational data model which RDBMS’ are built upon uses operators, namely permutation,

projection and join to derive relationships from other relations. A relation is table where it has

tuples that have attributes and has columns and rows. A relationship exists between two or

relations.

Hawthorn and Stonebraker (1979) examine the performance of the INGRES relational

database from overhead-intensive, data-intensive and multi-relation queries. Overhead-

intensive represents queries with little data to be returned. In this regard, performing such a

query depends on the nature of applications, whether there is a locality of reference or not.

Data-intensive queries represent the time taken to process by the database. It concludes that

buffer size is an important factor for processing queries, and this becomes an issue when the

size of the relation is larger. Bell (1988) agrees with this conclusion and adds that the buffer

manager of the database can lead to overall performance degradation, especially when there

is a divergence between the buffer manager and how the operating system handles the page

placement on the disk. Only by having a larger memory can performance improve; otherwise

it will be subject to a transaction execution requirement such as the size of the relation and

whether there is an update query (Blakely & Martin, 1990). Furthermore, Michels, Mittman

and Carlson (1976) compare the relational and network databases, and acknowledge that the

network database allows more efficient handling of queries because the programmer can

direct the system to the target piece of information, reducing the need to develop algorithms

to determine an efficient execution plan. Additionally, Stonebraker and Held (1970)

demonstrate that despite the complexity in coding optimised queries in hierarchical and

network databases (see Appendix B, pp. 204-205 for description), they have a better

performance compared with the relational database where the user does not have control over

the query optimisation process. Stonebraker et al. (1990) conclude that the complexity of

Chapter 2 Literature Review

13

coding optimised queries has in fact resulted in performance issues. However, while Michels

et al. (1976) agree that the availability of query optimisation techniques has a large influence

on improving the performance of the relational database, implying the benefit from its

mathematical foundation. Another study illustrates that a relational database cannot provide a

solution to every real-world situation and gives practical evidence that a relational database

does not necessarily suit a hierarchical structure of clinical trials data (Helms & McCanless,

1990).

In summary, databases including relational, network and hierarchical put considerable

attention on optimisation. In, network and hierarchical databases, the programmers can

intervene in choosing desirable execution plans but they lead to performance issues.

Relational databases have multiple optimisation methods that RDBMS’ control and they can

improve the performance. These databases are developed before cloud architecture comes

into existence.

 2.2.3 The role of relational database management system

RDBMS’ are involved in almost every aspect of life that requires storing or manipulating of

data where the data are to be used to conduct trade, medicine, education and so forth.

RDBMS’ operationalise relational model in which collection of tables is used to store data.

Mostly, each table has a primary key of a group or group of fields that identifies each tuple in

a table, implying that each table is unique and has only one primary key. RDBMS allows the

user to declare the rules by which the relations are to be established where there is a common

attribute (Connolly & Begg, 2005). Further, RDBMS’ put a large emphasis on data integrity

and hence employ multiple concepts such as Atomicity, Consistency, Isolation and Durability

(ACID) properties (Connolly & Begg, 2005). ACID properties include Atomicity, which

means all of a transaction’s operations are successfully done otherwise the transaction will be

rejected. Consistency means that the database moves to a new consistent state on execution of

Chapter 2 Literature Review

14

each transaction. Isolation makes sure no interference occurs between transactions. Durability

ensures that in case of database failure, committed transactions will not be undone (Connolly

& Begg, 2005).

Query optimisation is another important task that RDBMS’ have to perform. Thus

there have been a significant body of knowledge related to providing highly efficient methods

for query optimisation. The choice of an efficient plan appears to be a complex task, since

there are many variables that are computed. For instance, the RDBMS have to estimate

number of tuples that query selects and the number of tuples retrieved by every operation that

the execution plan performs. The RDBMS also needs to estimate the computational resource

required for the execution so that it uses CPU usage, I/O and memory as variable for the

estimation. Moreover, RDBMS may compare plans before it chooses one plan (Chaudhuri,

Dayal, Narasayya, 2011).

Query optimisation approaches enable RDBMS to have many ways by which query

executions can be efficiently carried out (Connolly & Begg, 2005). However, Shao, Liu, Li

and Liu (2015) believe that there appears to be issues with the existing optimisation methods

performance and, the authors present a new optimisation system for SQL Server that is based

on a hierarchical queuing network model. With this model they achieve on average a 16.8%

improvement in the performance of SQL Server compared with existing optimisation

methods, and increases transaction throughput by 40%.

Further, query optimisation in a distributed environment poses challenges that appear

persistent (Chaudhuri, 2012b). Distributed environment adds complexity for query

optimisations since it involves the possibility to move data between location(s) in order “for

intermediate operations in optimizing a query” (Chaudhuri, 1998a, p. 41) and by doing so, the

distributed system adds more variables into the equation of computing best execution plans

Chapter 2 Literature Review

15

(Mullins, 1996; M. Khan, & M. N. A. Khan, 2013). Liu & Yu (1993) recommend that more

investigation is needed in order to determine whether or not the inefficient implementation or

unsuitable execution plans chosen by the RDBMS’ cause long-processing queries. Their

work is about evaluating three algorithms using many parameters such as the number of

processing locations and the amount of data that are to be joined. It concludes, among other

factors, network overhead is observed to be a major influencer, although the study is

conducted on Local Area Network (LAN). More recently though, the issue remains unsolved

and there is a need to revisit the traditional optimisation methods since NOSQL databases

introduce new approaches for query optimisation that appear to be providing a better

performance when these methods are employed for large dataset processing in a distributed

database (Zhang, Yu, Zhang,Wang & Li, 2012; Chaudhuri, 2012b).

2.3 Problem identification

Bell, Hey, & Szalay, (2009) state that “data-intensive science has been slow to develop due to

the subtleties of databases, schemas, and ontologies, and a general lack of understanding of

these topics by the scientific community” p.1298. CC poses challenges related to the

deployments of database systems such as relational databases, which, with the emergence of

CC, have become obstacles in using database management systems in CC (Zhang, Yu,

Zhang, Wang & Li, 2012). That is, the scholarship does not in fact provide a single

exemplary design for a database management system that can fit CC environment (Agrawal,

Das, & El Abbadi, as cited in Litchfield & Althouse, 2014).

 Codd (1970) sees an opportunity that instead of storing data in a data bank, they can

be organised into tables and then related based on common data. This also helps to remove

redundancies and keep data in a consistent state. The practice of RDBMS has been on a

client-server model where systems communicate with the computer hardware (see Section

Chapter 2 Literature Review

16

1.0). Revolutionary changes that have occurred in data volume and infrastructure and

platform technology development (cloud computing) lead to revealing that such RDBMS

appear to cope less well with these changes (Zhang, Yu, Zhang,Wang & Li, 2012). The

pattern observed in the literature signals that there are conflicting views as to whether

RDBMS’ can still be used in the era of large datasets. These views indicate that architectural

issues exist with the relational data model that prevent it from being effective in combating

large datasets in CC and these issues erode relational databases’ benefit (Litchfield &

Althouse, 2014). The other view however, states that RDBMS’ are still important for many

stakeholders (banking systems and airline companies) and in order for satisfactory

performance, modifications need to be made to relational databases before deploying them on

cloud systems (Cattell, 2011; Arora & Gupta, 2012). Such changes involve taking into

account ACID properties.

Further, Zheng et al. (2014) demonstrate how the relational data model can be

extended to perform “big data” business tasks. It is proposed that with inspiration of NOSQL

data models such Key-value models (see Appendix E, p. 212-213), relational data model can

overcome performance issues when large datasets are under processing. Durham, Rosen and

Harrison (2014) indicate that large datasets pose challenges in handling them and the data

model can be a significant limiting factor in such handling. Therefore they make the claim

that RDBMS’ do not perform efficiently with “big data”. When dealing with ‘big data’,

pulling the data across the network impacts performance, implying that joins of distributed

tables should be avoided. Instead the database engine, which they believe it is capable of

handling of large datasets, can be leveraged by the use of stored procedures inside the

database (Durham, Rosen & Harrison, 2014).

Therefore, this investigation aims to identify potential performance issues and

proposes methodical assessments in regards to RDBMS’ in CDD. To achieve these goals, the

Chapter 2 Literature Review

17

investigation undertakes an experimental work on a non-optimised system and it employs

approaches including distribution of the RDBMS’ across the WAN so that distributed queries

are undertaken using a large dataset.

This research presents the argument that cloud technologies have introduced many

technical issues that affect relational database performance and these can be attributed to one

of the following propositions.

1. RDBMS technologies need to change

2. A new database management system is created that takes cloud technologies into

account.

In addition to these propositions, this research reveals that there appears inadequate data

concerned with RDBMS’ performance in CDD when a large dataset is being dealt with;

therefore this research identifies the issue and proposes the need for RDBMS performance

data in CDD, using existing measures for comparison.

2.3.1 RDBMS technologies need to change

 It is believed that RDBMS’ demonstrate less capability to meet the performance required for

handling ever-growing data in CC, and this issue becomes clearer as the amount of data

increases (Liu, X, Shroff, & Zhang, 2013). However, according to Hacigumus et al. (2010)

RDBMS performance needs further investigation to determine whether or not RDBMS’ are

sufficient to meet the challenge of large datasets. Moreover, RDBMS should not be blamed

for such performance issues; rather it is the operating technology that needs improving so

RDBMS can provide the expected performance (Feuerlicht & Pokorný, 2013). However,

although the denormalisation of relational databases appears to have introduced data

redundancy, it reduces the number of table joins and therefore easing table joining effects on

performance (Sanders & Shin, 2001).

Chapter 2 Literature Review

18

Further, this literature review notices that there is an increasing pattern towards

identifying if there is a role that RDBMS’ play behind performance struggles. For instance,

there is an extensive scholarship concerning query optimisations due to the central role that

they play in performance improvement (Liu & Yu, 1993) and therefore multiples and

different algorithms are developed including but not limited to greedy and approximation

algorithms. However, when it comes to heavy workload, query optimisation methods show

deficiencies (Kalnis & Papadias, 2003). Add to that Batra and Tyagi (2012) think RDBMS’

are no longer applying join as efficiently as required, and the study argues that as the dataset

size grows, the search for matching tuples takes a longer time and, therefore, the join

becomes a performance bottleneck. From these points, it can be concluded that query

optimisation methods in RDBMS’ suffer from shortcomings, although they are deployed over

architecture that is different from cloud architecture.

 As previously mentioned, CC poses challenges for the deployment of RDBMS’. Chen

et al. (2010) claim that while the relational data model is widely used, the model negatively

impacts performance in cloud deployment and is replaced by key-value data models that they

recently start to take the attention in data management. Leavitt (2010) adds that even if

powerful hardware is in place to for achieving high performance, the practicality of RDBMS

nearly always involves distributing the database to multiple users that are geographically

distributed, and this is where the struggle in performance emerges due to the type of queries

in which joining of distributed tables is usually necessary. When RDBMS’ deployed over

cloud architecture, the systems need optimisation techniques that fit such architecture and

facture by the ability to detect and adjust to workload fluctuations Mathur, Mathur &

Upadhyay, 2011).

In CC architecture, the lack of suitable optimisation methods can lead to suboptimal

choices made by these approaches and these choices are especially important over large

Chapter 2 Literature Review

19

datasets (Ganapathi, Chen, Fox, Katz & Patterson, 2010). As an example, while subqueries

are common in relational database, they can lead to performance issues if they are not

performed as efficient as required. Certainly, they create performance issues in data

warehouse applications (Kerkad Bellatreche, Richard, Ordonez & Geniet, 2014). Dokeroglu,

Bayir and Cosar (2015) indicate that such overheads can be reduced if subqueries are

executed only once, and propose a set of algorithms to enable cloud relational databases to

make better choices when creating an execution plan. A possible choice is to decide where to

perform the join so that the effect of the network on performance is reduced.

Therefore, current RDBMS’ appear to have significant shortcomings in performing its

key theme in large dataset management in CC, and they need to change.

2.3.2 A new database management system is created that takes cloud

 technologies into account

The discussions above present that RDBMS’ appear to have issues that preclude the ordinary

deployment in cloud technologies, thereby necessitating the development of solutions to work

around such issues. However, this section aims to discuss what the literature offers in regards

to providing RDBMS’ that fit cloud technologies.

CC can be considered as a distributed environment that allows users to have their

database distributed and be connected via the Internet, and also the promise that enables users

to add more computational resources when needed (see Section 1.0). There are many designs

that aim to provide an architecture that fits CC; mostly these designs focus on data

partitioning. For instance, inspired by the concept that web-based workloads are mostly

limited to single object access, Das, Agrawal and Abbadi (2009) describe a transactional

database for the CC that complies with ACID properties. These properties apply in this

Chapter 2 Literature Review

20

system in each partition so the system avoids applying them across partitions. In other words,

full consistency can be guaranteed when the sum of all consistent parts are added together.

Curino et al. (2011) propose a relational database for CC in which they aim to reduce

any unnecessary scanning of multiple nodes. Aimed at no more than one node should involve

the execution of queries. They want to avoid I/O overhead and reduce unneeded

communication overhead. The approach partitions the database based on a graph data

algorithm. Such approach works by analysing the complexity of workloads and mapping the

data item to appropriate nodes.

 The LogBase (Vo et al., 2012) system aims to exploit the log-only storage approach to

eliminate the write bottleneck. It deploys the log as core data storage in which updates are

appended at the end of the log file; thus there is no need for the updates to be reflected into

other files (such as in any database). The developers of the system use vertical partitioning to

improve I/O performance. That is, the columns of tables are clustered into a group of

columns that are stored separately in varying physical data partition locations in accordance

with the frequency of access requested by the workloads. This helps the LogBase benefit

from the locality of data when executing queries and to avoid the overhead of distributed

transactions. Further, the system applies ACID properties on a single row of data, similar to

some NOSQL systems such as Pnuts (Cooper et al., 2008), Cassandra (Lakshman & Malik,

2010) and HBase (http://hbase.apache.org).

 This section presents what the literature has to offer in regard to creating database

management systems that suit cloud technologies. The discussed systems focus in reducing

cloud network overhead be it, when data move between nodes or the I/O overhead.

Moreover, ACID properties can still be conformed but only within data partitions. Therefore,

Chapter 2 Literature Review

21

though there are inconsistencies in their approaches to ACID guarantee, it appears that a new

RDBMS is created that can fit cloud technologies.

2.4 Relational database performance in CC

The above discussions show that RDBMS’ need changes so they can cope with ever-

increasing data volume in CC. This section aims to explore performance-related data that are

concerned with what measuring tools are actually in use and to explain as to whether such

tools are appropriate to CC. The literature offers previous studies in regards to relational

databases in CC and this section therefore outlines them.

2.4.1 Performance measurement tools

The deployment of DBMS over cloud network appears to have introduced challenges towards

measuring the performance of such deployment. The measurements of DBMS performance in

general have been undertaken by benchmarking tools and, as an example, Transaction

Processing Performance Council tools (TPC) (TPC, n.d,). That is, some tools, such as

SPECCpu benchmark, work to evaluate any given computer system and recommend the best

CPU for the workload (Folkerts et al., 2013), while TPC-C evaluates DBMS that suit Online

Transaction Processing (OLTP) applications (Kiefer et al., 2012). Other tools serve different

purposes. For instance, in 1980, a benchmark tool named Wisconsin benchmark is developed

to evaluate and compare different relational database systems (DeWitt, 1993). It consists of

32 queries to test the performance of relational view operations, with the inclusion of

selection, aggregation, deletion and insertion queries. Following this, a tool called the debit-

credit benchmark is specifically developed for evaluating the transaction processing

capabilities of DBMS. This involves applications such as a banking application where

multiple users simultaneously access the database (Carey, 2013). Further, TPC methods cater

for measuring the performance of DBMS as a result of the advances in its underlying

Chapter 2 Literature Review

22

hardware and software. For instance, TPC-C caters for more complex applications such as

inventory management applications (Nambiar, et al., 2012). Other benchmarks are

established specifically to benchmark database systems – for example, OO7 for an object-

oriented database, Sequoia for a scientific database, and XMark for an XML database (Carey,

2013).

This research observes that there is an extensive utilisation of TPC-C to measure the

performance of the database in CC there is little attention is put in place for considering the

characteristics of CC when undertaking the measurement of RDBMS performance. These

tools are used to carry out performance evaluation for commercial cloud services (such as in

Kohler & Specht, 2014). The implications may be significant for the accuracy of these

experiments since the examination tools are developed to cater for the static environment,

which raises concerns as to their appropriateness for CC environment. Curino et al. (2011),

report on (among other features) the performance of relational cloud database scalability.

Interestingly, in Curino et al. (2011) experiment, the TPC-C instances exhibit poor

performance compared with when a relational cloud system is in place. The relational cloud

system scales fine and achieves higher throughput and experiences low latency compared to

TPC-C instances. Therefore, not only is more performance data needed for a greater level of

certainty around the performance of RDBMS in CC, but also it matters which method is used

to measure performance.

This research observes a growing interest in tackling experiments for DBMS

performance in CC using a suitable tool. Study carries out by Binnig, Kossmann, Kraska and

Loesing (2009) indicates that as TPC benchmark tools are originally developed for the static

environment tools they are not adequate for CC. Although they are still relevant to the cloud,

they lack the ability to measure the dynamic systems deployed in the cloud, and also the

feature of CC. In this regard, Yahoo! develops its own benchmarking tool for measuring

Chapter 2 Literature Review

23

cloud database performance. They claim that existing tools such as TPC-C may not match

CC characteristics. Smith (2013) argues, however, that there is a need for a cloud

benchmarking tool and proposes a method that leverages the existing TPC-C and TPC-E to

produce a TPC-VMC. The core design of this method is that the characterisation of database

performance should be based on a limited cloud environment in terms of the number of

servers, hardware footprints or system costs. This determines that the performance of DBMS

in the cloud can be measured using TPC tools but with the limitation of the cloud

environment.

2.4.2 RDBMS’ performance data in Cloud Computing

Further, there appears a pattern in the literature that inadequately demonstrates RDBMS’

performance in CDD. They also focus mainly on testing whether virtualisation technologies

such as VMware have an impact on database performance. For instance, Minhas, Yadav,

Aboulnaga and Salem (2008) examine the performance of a relational database in a

virtualised environment using TPC-H workload. The authors conclude that running a

database over virtualised environment creates I/O disk overhead but that such an overhead

does not have a large impact during the runtime of queries. The study indicates that this

overhead is an average of %10 or less of the runtime. Furthermore, Bose, Mishra,

Sethuraman &Taheri (2009) study the effect of virtualisation technology namely ESX Server

4.0 on Oracle Database 11g R1 and Microsoft SQL Server 2008. The study employs TPC

workloads to make a comparison between the performance of these database system in and

off cloud. It finds out that although these RDBMS’ perform better off cloud, they achieve

between 85% and 92% of native performance in CC and therefore it concludes that CC is

“capable of handling database-intensive workloads” p. 181. However, while Ivanov, Petrov

& Buchmann (2012) conclude that CC is more suitable for read-mostly work and for other

Chapter 2 Literature Review

24

purposes such OLTP applications and data-intensive workloads CC poses challenges;

however they work around such challenges by adding more buffer.

Recent study aims to examine how RDBMS’ perform in CDD. For instance, Kohler

and Specht (2014) conduct comparisons between two RDBMS’ in which both systems have

different configurations. Their approach is to partition a single table across multiple cloud

providers including private and PuC. Performance is generally better when the experiments

are conducted off cloud. For instance, when the experiment returns one tuple, it takes 265 ms

but with network latency the duration reaches as high as 319 ms. Since their data are

partitioned they also notice a high join overhead. However, the present study is different in

1) it does not employ any benchmark tools, 2) it uses large datasets and creates its own

experiments, 3) the used RDBMS’ are installed on identical configurations so that the

investigation becomes comparative.

Further, Thakar et al. (2011) perform analytics work on large databases using two CC

platforms, namely EC2 and Microsoft SQL Azure, and then they compare performance data

with their non-cloud system. Their database stores several TB. However, it is not possible to

migrate the whole database due to limitation on the size these platforms can host. Eventually,

they transfer 100 GB via the cloud to EC2 in this instance and only 10GB to Azure since it is

the maximum limit that an instance can store. Yet the paper reports only a comparison of

experiments conducted on 100 GB in and out of the cloud. Overall, experiments run faster on

n-tier architecture due to a “number of factors, such as the database settings on the EC2

server (memory, recovery model, tempdb size, etc.) as well as the disk speeds”; they also

indicate that “the performance in the cloud can be disappointing unless it can be tuned

properly” (Thakar et al., 2011, p.150) .

Chapter 2 Literature Review

25

2.5 Conclusions

CC platforms are of significance to the database research field and to businesses, as they

provide scalability, elasticity and availability of IT resources. However, they create

RDBMS’ appear to display performance issues and therefore other database systems such as

NOSQL gradually start to grasp the attention in data management. NOSQL avoids complex

queries that involve joining of distributed tables, while in relational databases, such practice

is commonplace. Whether RDBMS’ perform such joining operations a manner efficient that

takes into account the amount of the data is another question.

 Multiple “work-around” have emerged to improve RDBMS’ capability to be deployed

in CC. The literature also shows inadequate demonstrations of RDBMS’ performance in CC.

For example, there are performance issues with query optimisation in distributed RDBMS’

deployed in an n-tier architecture. Therefore, this research conducts an experimental

investigation aimed at identifying potential break points that RDBMS’ have when processing

large datasets in CC architecture. The results can be used to develop a database management

system that suits CC or improves the existing RDBMS solutions for clouds.

 Performance data for RDBMS in clouds appears to be derived from mostly unsuitable

tools. This research disagree with the use of such tools in CC environment. Therefore, this

research aims to carry out a performance investigation for RDBMS in CDD by using other

methods.

Therefore, this research asks the following questions accompanied with working

hypothetical statements:

RQ1: What are performance measures that can be applied to examine RDBMS’

performance in CC?

Chapter 2 Literature Review

26

RQ2: Are the measures related to Q1 valid for measuring RDBMSs in the clouds

when large datasets are being manipulated?

H1: There is no consistent measure of performance when comparing RDBMSs

operating in CC.

RQ3: What evidence exists that RDBMS’ are creating significant performance issues

 in a cloud-computing environment?

H2: RDBMS’s execution of queries does not perform as expected when a large

 dataset is distributed on a cloud network.

RQ4: What influence does CC have on relational database performance?

H3: CC impacts RDBMSs due to network incapacities compared to n-tier

 architecture.

Chapter 3 Methodology

27

Methodology

In the previous Chapter, the literature review addresses past and current literature on database

and RDBMS in CC.

3.0 Introduction

This chapter, outlines steps that the research follows in order to achieve its purpose. The aim

of this research is to carry out an investigation to determine why RDBMS’ suffer from

performance issues in cloud deployments, and in addition, to produce performance data

concerned with RDNMS’ performance with large datasets. In accomplishing these aims, new

theories are needed to be developed to illustrate the cause behind such events and to compare

performance measures in different environments. As the discussions above present that, CC

requires systems that can fit its characteristics and satisfy the type of transactions performed

in the cloud alongside ever-expanding data. What this research also tries to achieve is to have

the performance of RDBMS’ in CDD determined by using a non-optimised environment. As

such, PuC solutions such as Amazon’s EC2 is considered to conduct the experiments in;

however, since providers such as Amazon specialise in optimisation of their resources, it is

possible that expected measurable effects will be lost if these services are used, so the use of

this option is not pursued.

Chapter 2 identifies four research questions and three hypotheses and they are asked

and established to examine whether RDBMS’ performance is impacted when operating in

CC. From this, RDBMS as means for data management is deployed in CC infrastructure that

features by being different to n-tier infrastructure. Therefore, this research falls into IS

research.

Chapter 3 Methodology

28

This chapter consists of nine sections that detail the research’s methodology. Section

3.1 discusses the selection of research method and addresses what can be influential in

making the selection. This section paves the way for the actual methodology selection that

occurs in section 3.2. The methodology section presents the rationale for choosing the

methodology via a review to of methods and theoretical foundations. Section 3.3 illustrates

the design of the methodology, detailing the relevance of the research questions and how

hypothesis testing is handled. Section 3.4 describes the research environment and explains the

database architecture. Section 3.5 describes the experiments in details. Section 3.6 details

data collection method. Section 3.7 describes data analysis methods used to analyse

performance data. Section 3.8 explains theory generation, and section 3.9 provides a

concluding remark that summarises chapter 3.

3.1 Research method selection

Conducting a quantitative research in IS often poses multiple challenges for researchers. For

instance, Vessey & Ramesh (2002) undertake a review on the IS field and conclude that in

order to explain, especially with regards to organisational and individual realities,

understanding of the methods undertaken in behavioural, social sciences, and psychology and

management fields may be required. With that in mind, this research’s purpose does not in

fact lean towards any organisational or individual facets of IS nor does it examine

behavioural ones.

Typically, how the advance of research in a specific domain determines which

direction a researcher should head in, especially where the theories under research are

mature, creates new areas for researchers to investigate these theories for verification, testing

and modification purposes (Easterbrook, Singer, Storey & Damian, 2008). For instance, this

research tests the performance of RDBMS in CDD by asking what evidence exists that

Chapter 3 Methodology

29

RDBMS’ are involved in creating significant performance issues in a CDD. Such study tends

to check for relationships between many variables and is generally undertaken by quantitative

approach.

The above facets of research methods selection pose an important question as to what

are the most suitable research methods for the purpose of this research. Can one research

method be adequate for this research or should a combination of research methods be used?

Therefore, these issues are taken into account when selecting research methods for this

research and they inform the decision to select a methodology for this research.

3.2 Methodology selection

Section 1.3 indicates that this research is undertaken to reveal potential performance issues of

RDBMS in CDD. Thus for instance, H2 establishes RDBMS’ execute queries in less than

expected manner when large datasets distributed over CC infrastructure. This research also

hypothesises that CC infrastructure negatively impacts RDBMS performance. Initially

research methodologies such as case study and grounded theory are considered to conduct

this research. This research finds out that the use of case study is not suitable to its purpose

and the time required to adopt grounded theory methodology is a limiting factor, therefore

these methodologies are not used.

Also, other research methodologies are considered to carry out this research; these are

interpretivist, design sciences, and positivist approaches. The interpretivist mainly focuses on

the idea that individuals are not independent of existent knowledge, and the understanding of

any phenomena should be based on the debate between the researchers and those with whom

the research interacts (Onwengbuzie & Leech, 2005). The design science approach in IS

research mainly focuses on developing new technological artifacts to solve real world issues.

The model by which the design science approach should be undertaken differs in the

Chapter 3 Methodology

30

literature (Peffers, Tuunanen, Rothenberger & Chatterjee, 2007). For instance, March &

Smith (1995) outline four stages of research, namely build, evaluate, theorise and justify, that

the information system research should go through. Rossi & Sein (2003) adopt the build and

evaluate stages but also add two distinct stages, which are, need identification, and learn and

theorise combined.

Given the type of research questions and hypotheses, the following research methods

are considered not appropriate, as an example, intersections between individuals and the

operating technology of which research is used, may have little or no impact on conducting

the experiments. Design sciences approach does not fit this research because no artifacts are

going to be developed. For these considerations, therefore, both interpretivist and design

sciences approaches are ruled out.

In the positivist approach, knowledge exists if it is based on objective and verifiable

events so that understanding of part of this knowledge may lead to the understanding of the

whole (Onwengbuzie & Leech, 2005). With increasing data volume and the increase in the

use of CC for data management, this research attempts to understand issues regarding

RDBMS performance in CDD and therefore there is a need for empirical data that can be

analysed to derive such understanding. The research tries to observe relational database

performance in CDD when large datasets are processed. This involves experiments that aim

to achieve such observations. Experimentations of this research will first be looking to test

the research’s hypotheses. From these results, RDBMS’ can be further investigated with

performance tests to produce empirical data that can be analysed using statistical methods to

achieve the final conclusions of the research. Such a sequence demonstrates a need for

adopting a theoretical approach that allows this sequence to occur. This research, therefore,

has a positivist reductionist methodology applied.

Chapter 3 Methodology

31

3.3 Methodology design

This section aims to outline the steps that ought to be applied to address the research

questions and to test the hypotheses. In order to choose them in a critical manner, related

works are studied.

3.3.1 Related studies

This section studies previous works conducted in relation to distributed database performance

measurement and CC.

 Iosup et al. (2011) undertake performance evaluation of PuC using various

benchmarking tools. Their approach focuses on examining PuC performance for scientific

tasks. They indicate that PC has many independent variables and examine them individually

and determine if they influence each other. As performance measures, the study uses CPU

time, I/O and memory hierarchy.

 Jackson et al. (2010) investigate high performance computing applications on PuC by

employing benchmarking tools that represent these applications. Their study is largely

focused on network latency effect on performance. The study is conducted in the United

States and this enables it to determine such effects. Although their VMs are situated in the

same zone, the provider does not guarantee they are close to each other. The study concludes

that network latency is an influential factor on these applications’ performance.

 Further, measuring database performance on clouds takes three directions; one as

previously mentioned, to measure the virtualisation effect on their performance, and second

to investigate RDBMS’ partitioned over cloud network such as Kohler and Specht (2014).

The study uses two performance measures including runtime and number of tuples that are

returned upon the experiment’s completion. Their research employs two different RDBMSs,

MySQL and Oracle, and they have different configurations for these systems. The study is

Chapter 3 Methodology

32

conducted on and off cloud and with and without data partitioning. Finally, the literature

shows some works that measure large database performance doing analytical work in CC

such as Thakar et al. (2011). The study uses query runtime as a performance measure.

 Further, Lloyd et al. (2013) introduce a statistical model that aims to examine

Infrastructure-as-a-Service for multi-tier applications such as client/server application

deployments. This application includes four components namely the server, database, file

server and the logger (see Appendix B, p. 204 for full description). Thus, it employs multiple

linear regression tests so that it can predict application deployment performance. The study

concludes that CPU time and I/O operations can be used to predict performance when the

performance is middleware-bound in clouds and that their model shows the network traffic is

a weaker performance predictor.

 Furthermore, there are approaches for measuring distributed databases in non-cloud

deployment. For instance, Bacelli and Coffmann (1983) use runtime and throughput to

analyse the performance of a distributed database by looking at the effect of services

interruption that involves the update operation that had a pre-emptive privilege over read

operations. Anderson et al. (1998), among other measures, use transaction throughput to

measure the effect of three protocols concerned with serialisation and transaction atomicity to

avoid two-phase commit protocol. Born (1996) employs transaction response time and

transaction throughput as performance measures to examine the implementation of different

strategies for distributed lock management. Moreover, the calculation of transaction response

time is undertaken in more investigations than transaction throughput (Nicola & Jarke, 2000).

Further, Bouras and Spirakis (1996) utilise wait time measure to examine the performance of

timestamp ordering concurrency control. Gray et al. (1996) employs wait time to study

different replication models. Incomplete transaction is also used to measure performance

from different perspectives. For example, Tai and Meyer (1996) study two concurrency

Chapter 3 Methodology

33

control mechanisms and estimated the probability of lost transaction. Thanos et al. (1988),

among different measures, use lost transaction rate to study the effect of two-phase commit

mechanisms on distributed databases.

Nicola and Jarke (2000) do a large survey on the literature concerns with performance

modelling for distributed databases and conclude by proposing a new model for measuring

the performance of a distributed database. The study considers multiple models towards

designing its own methodology such as replication models, database site models, and

communication models. While it acknowledges the need for making assumptions when

characterising a distributed database performance, it believes there is a significant degree of

oversimplification occurs which might have an impact on the reliability of the result. For

instance, the study does not assume to have a full bandwidth; rather it assumes to have

limited one.

Since the aim of research is to examine relational databases in CC, there are multiple

factors related to the relationship between CC and RDBMS’ and resources utilisation.

Moreover, the work of Kohler and Specht, 2014, and Lloyd et al., 2013, appears to be the

most similar work to this research because 1) the former presents the results of investigating

partitioned RDBMS’ performance in clouds, and 2) although the latter does not specifically

examine relational database performance in CC, it presents empirical data that predict the

relationship between resource utilisation and performance. Therefore, the methods of these

works are adopted, although there are significant differences that this research’s direction

requires. The following section outlines these differences and shows what steps are

undertaken to test the hypotheses and to answer the research questions.

Chapter 3 Methodology

34

3.3.2 Research questions and hypotheses

This section aims to identify how research these hypotheses play a central role in leading the

research since each hypothesis will take two directions to shed light on where issues related

to relational database performance in cloud deployments come from. That is, RDBMS causes

such issues and/or the issues emerge because of other factors such as CC internetwork or

communication deficiency. Each hypothesis will therefore have two sides; one side reflects

no observable effect from the examination and vice versa.

Section 3.3.1 lists multiple performance measures of which any given distributed

databases are tested against them. Such as throughput, response time, CPU time, I/O

operations and network traffic. Further, this research requires looking at many variables since

it is conducted on PuC where there are factors that may or may not differ in impacting

RDBMS’ performance.

These performance measures are defined as follows:

1- Runtime: it is the sum of the time taken for the query until completion. This time

includes the processing time plus communication cost. This measure is an indicator

that reflects if an experiment suffers from issues, and, as general rule, the shorter it is,

the fewer issues can be involved. However, a longer duration indicates otherwise and

further investigation is required to determine the cause(s).

2- CPU time: time reported by RDBMS’ that indicates CPU consumption for the

duration of the experiment’s execution. This is an especially important measure since

it plays a central role once data arrive from disk. For instance, it executes what

RDBMSs choose as join operators to join datasets. High CPU time means long

duration.

Chapter 3 Methodology

35

3- Disk operation: the number of physical reads and writes that occur when experiments

are undertaken. Since a relational database is known to be I/O bound, this measure is

employed to observe such effect.

4- Ave I/O latency: this measure tells the average time each I/O operation takes to

finish. Since this research is conducted on a PuC environment, it is expected to reflect

whether there is an effect of disk operation on performance.

5- Logical read: represents number of reads that takes place in memory. This measure

may be partly associated with CPU time so that when there is high CPU consumption,

it is accompanied by a large number of logical reads, although it is not always

necessarily the case. Note, this measure is used when experiments reveal special

cases.

6- Network traffic: this measure means the amount of data that travels the network for

each experiment.

7- Wait events: this measure shows the events which the systems wait for some

operations to finish. As an example can be when the system waits for the cloud

network to complete I/O operation.

 By applying these measures on a relational database deployed in the cloud, this

research strives to test the following hypotheses and seeks answers for the questions posed at

the end of Chapter 2:

 QR1: What are performance measures that can be applied to examine RDBMS’

performance in CC?

QR2: Are the measures related to Q1 valid for measuring RDBMS’ in the clouds

when a large dataset is being manipulated?

H1: There is no consistent measure of performance when comparing RDBMS’

operating in CC?

Chapter 3 Methodology

36

This study aims to examine relational databases processing large datasets in CDD. Thus,

these questions aim to discover the extent to which the existing issues might need to be tested

by using different performance measures, especially with different environments being used.

Section 3.3.1 shows there are differences that appear in conducting performance

measurements and this shows the importance of identifying performance measures when a

large dataset is involved.

QR3: What evidence exists that RDBMS’ are involved in creating significant

 performance issues in a Cloud-based environment?

 H2: RDBMS’ execution of queries does not perform as expected when a large dataset

 is distributed on a cloud network.

Performance issues will always be apparent because there is no prefect system. Thus, this

question attempts to provide evidence that RDBMS’ do create significant performance

problems in CDD that lead to long-running queries.

QR4: What influence does CC have on relational database performance?

H3: CC network creates an environment in which relational databases are negatively

impacted compared to n-tier architecture.

The aim behind this question is to examine the effect of CC on RDBMS’s performance. More

specifically, there is an associated overhead with communication cost and since this research

uses a large dataset, this cost needs to be quantified. There is also CC environment overhead

associated particularly with I/O latency. However, this research has limitations (see Section

6.3) that prevent it from conducting the experiments off-cloud, and therefore this study relies

on secondary data that show relational databases performance off-cloud is generally better.

3.3.3 Hypotheses testing

This section explains each hypothesis and what aspect of the research it covers.

Chapter 3 Methodology

37

H1: There is no consistent measure of performance when comparing RDBMSs operating in

cloud computing.

This quantification of relational database performance in cloud deployment uses multiple

performance measures (see section 3.3.2). These measures have been in conventional practice

for a long period of time. PuC is a changeable environment because of relying on public and

shared network and every service provider has different infrastructure capabilities that may or

may not affect RDBMS’ performance. By testing this hypothesis, the aim is to examine such

effects on the measurement approach of performance. The testing uses average I/O latency

and network traffic to examine whether performance measures show inconsistencies. This

test therefore assumes that there is a relationship between number of I/O reads and high

average I/O latency. The test also makes an assumption that high network traffic always leads

to produce a long-running query.

 H1 is tested by making comparisons between the two cloud service providers to see if

there is a relationship between number of I/O reads and high average I/O. Network traffic is

used to compare SQL Server with Oracle to find out whether high network traffic always lead

to prolong experiment’s runtime. If the assumptions are refuted then then H1 is accepted.

H2: RDBMS’s execution of queries does not perform as expected when a large dataset is

distributed on a cloud network.

H2 aims at verifying whether RDBMS’ experience inadequacies in performance in CDD. In

testing this hypothesis, comparisons between two database systems are carried out that

consider the execution plans as a starting point. Each database system has two instances

where tables are distributed across two geographically distributed nodes and the system

provides a plan that outlines steps taken for the experiment’s execution. These steps are then

described and compared between the two systems. Additionally the steps will be explained as

Chapter 3 Methodology

38

what they mean to performance. For instance, join operators are an important part of

execution plans and therefore they are studied by considering CPU time and comparing these

operators between the two database systems. If comparisons reveal evidence, then statistical

analysis is applied when it is appropriate (see section 3.6).

H3: CC network creates an environment in which relational databases are negatively

impacted compared to n-tier architecture.

The intention of this hypothesis is to investigate whether or not the cloud network influences

RDBMS’ performance. In order to discover this effect, a large dataset is used for not only

measuring how a RDBMS performs under the condition of a large dataset but also for

determining the effect of cloud architecture on RDBMS’.

 In testing this hypothesis, the effect of CC network overhead is assessed using

network traffic and wait events to examine whether or not high network traffic produce long-

processing experiments. Each RDBMS has wait events that occur duration query executions.

Of particular interest are the wait events that are related to WAN network and by using them

they can gain an overview of WAN overheads. Statistical methods are also used to determine

if there is a causal relationship between network traffic and runtime.

Further, the effect of CC environment on I/O performance is also examined by H3.

RDBMS’ are I/O bound and since this research is undertaken on PuC then it is important to

test if the effect is significant. Conducting this research on two different PuC providers

enables it to carry out comparisons between them and this is especially important, because for

this research, each provider deals with a different workload. Therefore, average I/O latency

and wait events are used to measure the effect of PuC on RDBMS’ performance in regards to

disk latency.

Chapter 3 Methodology

39

3.4 Research framework

This research investigates to what CC contributes to RDBMS’ performance shortcomings. Up

to this point, the previous discussions have shown how the research is going to be approached

in terms of theoretical basis and how its hypotheses are going to be examined. This section

demonstrates the actual framework of the research; that is, the steps of conducting the

research will be outlined.

3.4.1 Investigation environment

In order to avoid any research bias both human and technology, this investigation employs

three database systems, namely SQL Server 2012, Oracle 11g and MySQL 6.5. However, the

manner in which MySQL distributes the query makes it impossible to run this study’s queries

without more computational resources. For instance, among other options, distributed queries

can be conducted through a federated table, which is the most feasible option for this

research. According to the MySQL documentation, federated tables work by fetching all of

the records of the remote tables and then applying any filtering clauses locally (MySQL,

2015). For instance, at least 18GB of memory is needed to host MYTABLE, and this does not

take into account the time needed for the rows to traverse the network. Given that this

research can only access VM with 8GB of memory, MySQL is therefore ruled out of this

experimental work.

 As discussed in Section 1.1, CDD is featured having a distributed database running in

VM and connected through the Internet. This indicates that both systems will have to have

two VMs per each system, and in total this research runs its experiments using 4 VMs (see

Figure 3.1). Moreover, these VM’s identical configurations (see Table 3.1 below) and

identical datasets make the results comparable, and also each VM has its memory and CPU.

Further, this investigation distributes its database across the world so that it creates a real-

Chapter 3 Methodology

40

time environment. Hence, there are two VMs in located in Amsterdam in which parent tables

are stored, and also experiments are run from there so that they are called local. The other

VMs are located in Auckland and they are named as remote. The reason behind such a setup

is that it is not known how long transferring a dataset as large as 18 GBs takes to finish and

also all parents are smaller in size than MYTABLE.

SQL Server
MYTABLE

Oracle
MYTABLE

Auckland VMs

SQL Server
Parent tables

Oracle
Parent tables

Amsterdam VMs

Internet

Figure 3-1: Investigation environment

The characteristics of the environment are as follows:

1- The research uses two database systems, namely Microsoft SQL 2012 and Oracle 11g

to run the series of experiments. Note, the configurations are identical in all VMs.

There is, however, a slight difference in terms of CPU speed between both servers as

shown in table 3.1.

Server locations Virtualisation VMs configurations
Amsterdam (local) Xenon, Quad Core x

2.13Ghz
• Microsoft Windows 7

64-bit as operating
system

• 4 CPU cores
• 8GB of RAM
• 200GB of disk space

Auckland (remote) Xenon, Quad Core x
2.26Ghz

Table 3-1: Research environment configurations

Chapter 3 Methodology

41

3.4.2 Database architecture

This research attempts to reflect real-world situations in its experiments, what can be

concluded from the experimental conduct can be generalised. The suitability of the datasets to

the investigation poses multiple issues in terms of its size and whether or not it can serve the

intended purpose. The size of the datasets matters and in addition it must be relational data.

This study attempts to reflect real-word situations in its experiments, so that what can

be concluded from experiments can be generalised. While it is not difficult to find a large

dataset, in most cases data costs money (Red-gate, 2015) or the dataset requires normalisation.

For instance, data repositories naturally keep data in un-normalised form so that they can be

used for data mining purposes (Machine Learning Repository, n.d.),

 Therefore, a dataset from AUT’s data warehouse is used because it is both large and

relational. The dataset contains anonymised student EFTS records. The obtained dataset has

the following features:

1. The database is made up of 13 tables (see Figure 3.1 for Entity Relationship

Diagram (ERD); table and columns name are provided in appendix A, pp. 188-203.

2. All tables are received as comma separated value (csv) files. While small tables

can be imported directly to both databases, insert scripts are required so that big

tables such as DIM_STUDENT and MYTABLE can be inserted into databases.

3. To write these scripts is time-consuming because some tables are bigger than what

the text editor (Notepad++) can handle, therefore a split tool is used in order to

split these files before scripts can be written.

4. MYTABLE originally contains more than 400 million tuples, a size of 80GB. The

limitation is a time constraint in that the queries are taking too long to process so

the dataset is reduced to 100 million tuples, a size of 18GB.

Chapter 3 Methodology

42

5. MYTABLE has an entry for each paper that a student is enrolled in. For instance, if one

student studies only one paper throughout the academic year, then this means that

there is a tuple for each day of the year for this student. This way projects how many

points each student consumes in the duration of his/her enrolment(s).

Chapter 3 Methodology

43

Mytable

*Dim_Class

Dim_Student

Dim_Month

Dim_Intake

Dim_Enrolment_Type

Dim_Department

*Dim_Programme

Dim_Enrolment_Status

*Dim_Paper

*Dim_TSC_Category

Dim_Classicification

Dim_Date

Student-KeyFK

Class_KeyPK

Student_KeyPK

Month_KeyPK

Teaching_Department_KeyFK

Class_KeyFK

Intake_KeyPK

Enrolment_Type_KeyPK

Department_KeyPK

Programme_KeyPK

Programme_Augement
ed_Code (BK)

Owner_Budget_Centre

Owner_Campus_Key

Stream_ID (BK)

Enrolment_Status_KeyPK

TSC_Category_KeyPK

Classification_Key PK

Date_KeyPK

Month_KeyFK

Teach_Budget_Centre

Teach_Campus_Key

Owner_Budget_Centre

Owner_Campus_Key

Teach_Budget_Centre

Teach_Campus_Key

Location_Campus_Code

Location_Campus_Desc

*Finance_Campus_Code

*Finance_Campus_Desc

Enrolment_Type_KeyFK

Paper_keyFK

Paper_KeyPK

TSC_Category_KeyFK

Intake_KeyFK

Classification_Key FK

Enrolment_Status_KeyFK

Programme_ KeyFK

Date_ KeyFK

Figure 3-2: Database ERD

Chapter 3 Methodology

44

3.5 Experiments descriptions

This section describes the experiments conducted. When the research encountered some

ambiguities resulting from the different handling of the experiments by both RDBMS’ and

from the network, different approaches are taken in some cases.

3.5.1 Experiment 1

SELECT D.STUDENT_DEMOGRAPHICS_KEY, F.TOTAL_EFTS

FROM DIM_STUDENT D

RIGHT OUTER JOIN MYLINK@MYTABLE F

ON D.STUDENT_DEMOGRAPHICS_KEY = F.STUDENT_DEMOGRAPHICS_KEY

WHERE F.TOTAL_EFTS >0

EXP1 includes a SQL query (above) that aims to join one parent table (DIM_STUDENT) with

MYTABLE to retrieve the students whose TOTAL_EFTS is higher than 0. The dataset also

contains students with a TOTAL_EFTS of zero.

EXP1 joins DIM_STUDENT with MYTABLE based on one condition in the WHERE clause. It

is assumed that both RDBMS’ will undertake a table scan because setting up an index in

MYTABLE for SQL Server is not possible, and while a Bitmap Index is created in the Oracle

table, it is less likely that the optimiser will use this index to execute the query. In carrying

out this query, one would also assume that it does not appear to have a great level of

complexity for two reasons. First, the clause is based on the child table; hence, the optimiser

will perform at least one table scan to look for tuples that fit the joining column and the

WHERE clause condition. Second, only two columns from the MYTABLE are involved in this

query.

Chapter 3 Methodology

45

3.5.2 Experiment 2

SELECT F.STUDENT_DEMOGRAPHICS_KEY,P.PAPER_KEY, D.CALENDAR_YEAR

,E.ENROLMENT_TYPE_KEY, E.ENROLMENT_TYPE_GROUP_DESC,

P.TEACH_DEPT_CODE

FROM DIM_PAPER P, DIM_DATE D ,DIM_ENROLMENT_TYPE E, MYLINK@MYTABLE F

WHERE P.PAPER_KEY = F.PAPER_KEY

AND E.ENROLMENT_TYPE_KEY = F.ENROLMENT_TYPE_KEY

AND D.DATE_KEY = F.DATE_KEY

AND F.PAPER_KEY =13362 AND F.ENROLMENT_TYPE_KEY = 33 AND D.CALENDAR_YEAR

BETWEEN 2000 AND 2013

This experiment aims to investigate the effect of joining four tables and adds a degree of

complexity. That is, three parent tables (DIM_PAPER, DIM_DATE, DIM_ENROLMENT_TYPE)

and MYTABLE. There are four WHERE conditions, two of which are based on the MYTABLE, and

one based on one of the parent tables. EXP2 features with the following : i) because there are

more WHERE conditions and more tables than in EXP1, EXP2 should take longer to run; ii) that

EXP2 should produce more data than EXP2 and that the data will be required to traverse the

network; however iii) the amount of data traversing the network will not be large because

there are two WHERE conditions that are based on MYTABLE, and an AND operator is used

between WHERE conditions so that any tuple in MYTABLE will need to satisfy these conditions.

Tuples will be tested against the condition that is based on the parent table (DIM_DATE).

Chapter 3 Methodology

46

3.5.3 Experiment 3

SELECT D.PAPER_KEY,PAPER_FULL_DESC, COUNT(DISTINCT

F.STUDENT_DEMOGRAPHICS_KEY) AS COUNTOFENROLLEDSTUDENTS FROM

DIM_PAPER D

INNER JOIN MYTABLE F

ON D.PAPER_KEY = F.PAPER_KEY

GROUP BY D.PAPER_KEY,PAPER_FULL_DESC

HAVING COUNT(DISTINCT F.STUDENT_DEMOGRAPHICS_KEY) >=5

ORDER BY COUNTOFENROLLEDSTUDENTS DESC

The aim of EXP3 is to examine, among other uses of the relational database, one common

query that produces an aggregated result set. One can expect this query to run relatively faster

than other experiments, especially when it normally returns a small dataset as its output.

Nonetheless, EXP3 involves a considerable degree of complexity as there are different

relational database operators, namely GROUP BY, HAVING and ORDER BY, in addition to

joining two tables. Thus, it is not assumed that the query will be simple and it turns out that it

is a complex query to run in Oracle. However, in SQL Server EXP3 runs as expected.

3.5.4 Experiment 4

SELECT D.STUDENT_DEMOGRAPHICS_KEY, F.PAPER_KEY, F.DATE_KEY FROM

DIM_STUDENT D

INNER JOIN MYTABLE F

ON D.STUDENT_DEMOGRAPHICS_KEY = F.STUDENT_DEMOGRAPHICS_KEY

In EXP4, this research tries to further investigate the effect of the network’s influence on

performance; therefore, this study focuses on the amount of the data, but with less complexity

in the query. This means that while there is still processing time, the main purpose of EXP4 is

to examine the network’s effect on relational database performance. This involves 100

million tuples from three columns required to traverse the network.

Chapter 3 Methodology

47

3.5.5 Experiment 5

SELECT F.STUDENT_DEMOGRAPHICS_KEY ,D.ENROLMENT_TYPE_KEY,

D.ENROLMENT_TYPE_GROUP_DESC FROM DIM_ENROLMENT_TYPE D

LEFT JOIN MYTABLE F

ON D.ENROLMENT_TYPE_KEY = F.ENROLMENT_TYPE_KEY

WHERE D.ENROLMENT_TYPE_GROUP_DESC = 'INTERNATIONAL STUDENTS';

This experimental work aims to investigate relational database performance in CDD under

different conditions, and this is reflected in previous experiment by testing performance with

different join types and occasionally using WHERE clause. EXP5 intends to left join parent table

(DIM_ENROLMENT_TYPE) with MYTABLE where student are international. This also shows those

students who do not have entry in MYTABLE. It is expected EXP5 is going to take a

considerable time, since there are two columns from child that are involved, suggesting that

the network overhead is may appear.

3.5.6 Experiment 6

SELECT D.STUDENT_DEMOGRAPHICS_KEY, F.PAPER_KEY, F.DATE_KEY,D.AGE,

D.LAST_SECONDARY_SCHOOL_COUNTRY FROM DIM_STUDEN D

INNER JOIN MYTABLE F

ON D.STUDENT_DEMOGRAPHICS_KEY = F.STUDENT_DEMOGRAPHICS_KEY

WHERE D.AGE > 25 AND F.LAST_SECONDARY_SCHOOL_COUNTRY = 'NEW ZEALAND'

In EXP6, two large tables are joined with an AND operator used as filtering condition, and this

condition is based on parent table, so that 100 tuples from three columns of MYTABLE are

returned and then check tuples whether they meet WHERE clause condition. Moreover, the

condition is purposely made to involve a large dataset, and that is the age of students must be

over 25 years and their LAST_SECONDARY_SCHOOL_COUNTRY is New Zealand. Hence, it is

expected that both RDBMS will take a long time to execute.

Chapter 3 Methodology

48

3.5.7 Experiment 7

SELECT F.STUDENT_DEMOGRAPHICS_KEY, F.PAPER_KEY, F.DATE_KEY,

P.PROGRAMME_KEY, P.PROGRAMME_FULL_DESC, I.INTAKE_YEAR

FROM DIM_PROGRAMME P

INNER JOIN MYTABLE F ON P.PROGRAMME_KEY = F.PROGRAMME_KEY INNER JOIN

DIM_INTAKE I ON F.INTAKE_KEY = I.INTAKE_KEY

WHERE P.PROGRAMME_FULL_DESC= 'BACHELOR OF ARTS AND BACHELOR OF BUSINESS

CONJOINT DEGREES'

OR I.INTAKE_YEAR>1990

 EXP7 aims is to learn about performance of relational database under different circumstances.

That is, three tables are joined together with condition which uses OR operator between two

different parent tables so that MYTABLE is used to link these tables in order to execute the

query. Thus, five columns for 100 million rows are involved in EXP7, and it is expected that

this experiment will take longer than the previous experiments. Since, there are five columns

retrieved across the network in EXP7 compared to three columns in EXP6, there is more data

that need to travel the network to Amsterdam VMs.

3.5.8 Experiment 8

SELECT D.STUDENT_DEMOGRAPHICS_KEY, F.PAPER_KEY,

F.DATE_KEY,F.ENROLMENT_STATUS_FIRST_DAY

FROM DIM_STUDENT D

FULL JOIN MYTABLE F

ON D.STUDENT_DEMOGRAPHICS_KEY = F.STUDENT_DEMOGRAPHICS_KEY

ORDER BY D.STUDENT_DEMOGRAPHICS_KEY

To demonstrate the effect of the SORT operator in the case of a large dataset in CDD, EXP8 is

undertaken. That is, the largest parent table (DIM_STUDENT) is fully joined with the child

(MYTABLE) table, and then the result is ordered by column (STUDENT_DEMOGRAPHICS_KEY)

Chapter 3 Methodology

49

from DIM_STUDENT table. EXP8 is a complex experiment, not only because of the use of the

full join type, but also because of ORDER BY clause.

EXP8 in Oracle runs three times and never finishes—that is, it crashes three times.

Upon these crashes, Oracle instances report that some kind of timeout has occurred, although

in all of these attempts, EXP6 runs longer than EXP8 before the latter crashes. One issue from

this situation is that most of performance data are lost in the crashes such as network traffic.

Hence, with available information, no complete picture can be drawn; however, they can give

a sense of what happens during EXP8. Additionally, the data size is reduced from 100 million

tuples to 10 million tuples so that a clear picture can be obtained.

3.5.9 Experiment 9

Oracle query text:

UPDATE (SELECT F.PAPER_KEY FROM MYTABLE@MYLINK F WHERE F.PAPER_KEY IN

(SELECT D.PAPER_KEY FROM DIM_PAPER D WHERE D.PAPER_KEY= '13362'))

SET PAPER_KEY = '666666');

SQL Server query:

UPDATE MYTABLE

SET PAPER_KEY = '444444'

WHERE PAPER_KEY IN (SELECT D.PAPER_KEY FROM DIM_PAPER D

WHERE D. PAPER_KEY = '13362');

Note: the difference in query text is because each RDBMS has different requirements in

regards to how update query should be written.

An update operation is a common practice in relational databases; therefore, EXP9 aims to see

how relational databases will cope when two distributed tables are joined in order to perform

the update. It is expected that the query will not take long to finish, because while it updates

Chapter 3 Methodology

50

many tuples, this requires it to join to tables with the WHERE condition that is based on the

DIM_PAPER. However, although the query requirements are not very complicated, it appears

to be problematic, particularly in SQL Server. Oracle treats in a very different manner, which

meets the expectation above. Therefore, EXP9 second approach for SQL Server as follows:

This second approach for SQL Server involves choosing the PAPER_KEY value from

DIM_PAPER table that this experiment wants to update and then sending this value to remote

VMs, where there is an update procedure that is prepared to perform the update. The second

approach query text is as follows:

The local query text is as follows:

DECLARE @PAPER_KEY INT

SET @PAPER_KEY = (SELECT PAPER_KEY FROM DIM_PAPER WHERE PAPER_KEY =

13362)

EXEC MYLINK.UPDATEPRO1 @PAPER_KEY

Remote update procedure text:

DECLARE @PAPER_KEY INT

AS

BEING

UPDATE MYTABLE

SET PAPER_KEY = 555555

WHERE PAPER_KEY = @PAPER_KEY

Once the query runs, it declares a parameter for the integer type to store the value of the

targeted PAPER_KEY, and then the system sets the parameter to obtain this value from the

query performed on the DIM_PAPER table. Last line runs the procedure in the remote VM and

passes the value stored on @PAPER_KEY to remote procedure.

Chapter 3 Methodology

51

3.6 Data collection

This is an important stage of research since it deals with data that can be used to achieve this

research’s purpose. Data collection is conducted in two different ways as result of using two

RDBMS’. Before running an experiment the following commands (see Table 3.2 and Table

2.3) are issued so that databases’ buffers and statistics are cleared; this is to ensure reliability

of data that for analysis. If this is not done then subsequent experiments may benefit from the

cached data, which may impact the results’ reliability.

SQL Server command Function
1. DBCC DROPCLEANBUFFERS
2. DBCC FREEPROCCACHE
3. DBCC SQLPERF

(N'SYS.DM_OS_WAIT_STATS',
CLEAR);

4. Restart the instance.

1. “Removes all clean buffers from the
buffer pool” (Microsoft, 2015a).

2. “Removes all elements from the plan
cache, removes a specific plan from
the plan cache by specifying a plan
handle or SQL handle, or removes all
cache entries associated with a
specified resource pool” (Microsoft,
2015g).

3. “In SQL Server it can also be used to
reset wait and latch statistics”
(Microsoft, 2015r).

Table 3-2: Pre-experiment commands in SQL Server.

Oracle command Function
1. ALTER SYSTEM FLUSH SHARED_POOL
2. ALTER SYSTEM FLUSH

BUFFER_CACHE
3. restart the instance

1. “Let’s [the user] clear all data from
the shared pool in the system global
area (SGA)” (Oracle, 2015a).

2. “Let’s [the user] clear all data from
the buffer cache in the system global
area (SGA)” (Oracle, 2015a).

Table 3-3: Pre-experiment commands in Oracle.

 Data collection in SQL Server is carried out as follows:

1- SQL Server profiler is first set up in local and remote VMs to capture duration,

CPU time, number of logical reads and number of physical writes. This profiler

Chapter 3 Methodology

52

does not provide the number of physical reads nor does it compute the average I/O

latency.

2- Average I/O latencies are calculated using the code in Appendix D (p. 209).

3- To capture physical reads in both VMs and the execution plan in remote VM, the

following query is used:

SELECT EXECUTION_COUNT,TOTAL_PHYSICAL_READS,QP.QUERY_PLAN FROM

SYS.DM_EXEC_QUERY_STATS QS

CROSS APPLY SYS.DM_EXEC_QUERY_PLAN(QS.PLAN_HANDLE) AS QP

4- Wait events are also captured using the code in Appendix D (pp. 2010-211).

5- Execution plan in local VM is obtained using SQL Server’s feature “show

execution plan”.

6- Network traffic is captured using SQL Server’s feature “show client statistics”.

7- SQL Server uses TEMPDB as in EXP8 and EXP9 and the following steps are

undertaken in order to capture the number of I/O operations:

a. By using the code in Appendix D (I/O statistics, p. 209), it provides

information related to I/O operations that occur in the SQL Server instance

during the runtime of the experiments. This includes all databases the

instance stores such as TEMDB and MASTER.

b. Number of bytes reads that occur in TEMPDB to calculate the number of

physical reads by using the following formulae:

𝑥𝑥 =
𝑦𝑦

1024
 This is to covert from bytes to KB.

 y = Number of physical reads & x= Number of bytes reads

Then the result is divided by 8KB, which is the default page size in both SQL Server

as follows:

Chapter 3 Methodology

53

Number of physical reads =
𝑥𝑥
8

Data collection in Oracle is carried out as follows:

1. Snapshots1 section of Automatic Workload Repository2 (AWR) feature is mainly

used to capture performance statistics. It provides a large volume of performance

data but not all of them are relevant to this research and therefore the following

sections from AWR report are used for data collection:

a. “Top 5 Timed Foreground Events”: This section shows top wait events

that occur during the experiment’s runtime. It also gives information about

the wait classes – such as network and user I/O – that are the most relevant

to the purpose of this research. In addition to providing the percentage of

each wait from the runtime.

b. Foreground Wait Class: This section of AWR report is used to get the

average I/O latency per physical read. If, however, there are physical

writes and I/O operations occurring on TEMPDB, then the section of AWR

report entitled Foreground Wait Events is used.

c. SQL Statistics: This section of AWR report is used to get the runtime and

CPU time.

d. Segment Statistics: This section of the AWR report is used to get the

number of logical reads as well as physical reads and writes.

2. Oracle’s command SET AUTOTRACE ON is used to get the execution plan in the

local instance. It turns out also the command provides performance statistics that

1 “AWR automatically generates snapshots of the performance data once every hour” (Oracle, 2015m).
2 “AWR automatically persists the cumulative and delta values for most of the statistics at all levels except the
session level. This process is repeated on a regular time period and the result is called an AWR snapshot. The
delta values captured by the snapshot represent the changes for each statistic over the time period” (Oracle,
2015m).

Chapter 3 Methodology

54

are related to the number of I/O operations that happen in TEMPDB files as well as

similar statistics to what AWR provides.

3. The execution plan in remote VM is obtained by querying Oracle’s view

V$SQL_PLAN.

4. Oracle error log is used to collect data that related to whenever an experiment(s)

crashes.

3.7 Data analysis

Once data collection is done, data are analysed using comparisons and statistical methods.

The former is facilitated since this research is undertaken using identical configurations and

also because it uses two different PuC providers that deal with different workloads.

 Comparisons are carried out as follows:

1. Explain and compare both local and remote execution plans;

2. Compare runtime between both systems.

3. Compare CPU time and explain its relevance to the chosen execution plans.

4. Number of logical reads is sometimes used if execution plans create high number of

logical read.

5. Number of physical operations is compared between the two RDBMS’, and more

importantly average I/O latency is used to quantify the effect of these operations on

the runtime. Sometimes, comparing this average is also carried out with previous

experiment(s) when appropriate.

6. Wait events explain the wait times that occur during experiments’ runtime.

Chapter 3 Methodology

55

3.7.1 Statistical data analysis

This section outlines statistical methods that are used to test the research’s hypotheses. It also

explains the steps that are undertaken to prepare data for the analysis.

3.7.1.1 Data preparation

 Before this analysis is conducted, using SPSS software (IBM, n.d.) normal distributions of

the data are checked and, a skewness test (Martin & Bridgmon, 2012) is undertaken on

duration, CPU time and network traffic as follows:

Performance
measures

Skewness Z (Skewness / Std. Error of
Skewness)

Duration 1.226/.378= 3.24
CPU 2.097/.378= 5.54
Physical reads 1.793/ .378= 4.74
Network traffic 1.882/.564= 3.33

Table 3-4: Skewness test

According to Cramer and Howitt (2004), the Z score should be between (+/- 1.96) and table

3.4 shows that all the values of Z score are larger than this, therefore the data are positively

skewed. Therefore, data will not be fit for statistical methods, and a logarithm of data is

undertaken to remove the skewness so that parametric tests such as regression analysis can be

carried out (Cramer & Howitt, 2004).

3.7.1.2 Statistical methods selection

The data sample resulting from this research is not large enough to conduct an extensive

statistical analysis including factor analysis and full regression test. This becomes a limiting

factor and in addition there are instances where some tests are less appropriate to use, such as

a correlation test between two variables that are related to each other. For instance, CPU time

is already a part of the runtime so there will be a causal relationship anyway. In this case, the

independent sample test is more suitable than the correlation test to examine the effects of the

choices made in regards to execution plans and their implementation in a CC environment.

Chapter 3 Methodology

56

This is because there are two different CPU times (SQL Server and Oracle) that represent

population samples that are independent of each other (Martin & Bridgmon, 2012). This test

is performed to check whether there is difference between the samples means. These samples

are virtualised using a scatter plots.

 Further, the correlation test is the starting point if two variables affect each other, for

instance, if an increase in network traffic causes an increase in runtime. Upon the completion

of this test, SPSS determines the level of significance. If the correlation test shows a

significant causal relationship, a regression test is used as a prediction model that can predict

the relationship between the variables. However, since the results do not produce large data

points and the model relies on only one independent variable, this research employs a simple

regression test. Because Lloyd et al. (2013) uses p-value and R square to determine whether

the model can predict the relationship between the variables using the predictor, this research

employs the same data in addition to using confidence interval to be confident that 95% of

the model covers the samples (Cramer & Howitt, 2004).

3.8 Theory generation

Theory is “a supposition or a system of ideas intended to explain something, especially one

based on general principles independent of the thing to be explained” (Oxford Dictionaries,

2015). Theory is thought to explain a broad theoretical context that may be used to advance

current knowledge (Lewin, 1945). It is not surprising that every theory has a different

purpose and is shaped based on the field for which is generated. As an example, it gives

explanations for the events encountered in natural and physical sciences (Proper, 2005) and in

other disciplines such as social sciences where it aims to test if there exists a relationship

between variables (Doty & Glick, 1994,). Another example is that, theory that comes from

positivist research then it should demonstrate verifiable or realistic standpoints. An

Chapter 3 Methodology

57

interpretivist’s viewpoint, on the other hand, is a theory is derived from the context in which

specific situations occur (Godfrey-Smith, 2009).

Since this research falls into the IS research category, the process of theorising in IS is

followed. For instance, theory in general can lean towards demonstrating its intended purpose

that may lead to creating abstract knowledge from observations, or it may generate a theory

that may take the form of cause and effect, or that may give explanations or predict certain

events. As a result, theory generation in IS can be classified into five categories including

analysis, explanation, prediction, explanation and prediction, and design and action (Gregor,

2006). The author defines this analysis type as theories that provide a description of events,

and this description may include a classification scheme and taxonomies (Gregor, 2006).

Often, such theories serve a purpose when there is no adequate knowledge about a

phenomenal situation (Miles & Huberman, 1994). Furthermore, explanation theory aims to

provide answers for questions such as how and why certain observations take place. Case

study research can generate such theories (Gregor, 2006). Prediction, as the name indicates, is

aimed at predicting events using statistical data analysis methods including but not limited to

a regression test. However, this type of theory does not explain the cause behind specific

patterns. On the other hand, explanation and predication provide answers to questions such as

how, when, and what will be. They fit the aims of researchers to build and test theories.

Lastly, the theories that give a design and action that may solve issues in hand. Such a

category can serve the purpose of software engineering or the approach of systems

development (Gregor, 2006). Von Alan, March, Park, & Ram (2004) state that such theories

can be presented in the form of developing artefacts.

 Gregor (2006) adds that multiple theory types can form a body of knowledge. For

instance, in order to provide an explanation about any certain pattern, analysis of this pattern

needs to take place. Therefore, this research needs to analyse the pattern(s) that may or may

Chapter 3 Methodology

58

emerge from conducting experimental work in order to generate theories that are aimed at

providing explanations for the emergent observations.

3.9 Conclusions

The above discussions provide justifications regarding the choice of this research’s

methodology. The chapter also outlines the steps that are applied in order to design the

methodology and how the research questions are going to be answered as well as the testing

of the established hypotheses. Data collection steps are detailed in addition to the details of

environments where this research is conducted. Further, what steps are undertaken for

analysing the results of the experiments are also discussed. This chapter concludes with

explaining the manner that this research follows in order to generate theories. Chapter 4

presents the experiments’ results and analyses these results, and concludes with the research’s

findings.

Chapter 4 Result Analysis and Finding

59

Results Analysis and Findings

 It was demonstrated in previous chapters that while CDD involve high data-availability and a

high level of consistent data, performance issues must be considered when one thinks of

deploying relational databases in the cloud. Therefore, a series of experiments was conducted

to investigate these performance issues. It is important to emphasise that this research does

not intend to compare the two database systems for the sake of comparison; rather, it only

investigates relational database performance in CDD. Whether one database system performs

better than the other is not relevant to the purpose of this research, and both systems differ

considerably in the results. For instance, while both systems require a similar time to execute

EXP2 (see Section 4.2.2) there is a significant difference between them in EXP3 (See section

4.2.3). These variations, which will be detailed in Section 4.2, provide evidence of the

multiple challenges of implementing RDBMS’ in a CC environment, including how the

RDBMS’ handle query execution and the resulting effects on performance.

4.0 Introduction

Investigating relational database performance in the cloud involves many complexities

including, but not limited, to the virtualised environment that the database system runs on, the

requirements necessary for RDBMS’ to execute queries, and the round-trip between the

nodes across the network. Many interactions also occur between nodes that are unknown and

therefore uncontrollable.

 Chapter 4 contains four main sections. Section 4.1 details the preparatory steps taken

before conducting the experiments such as setup indexes and the approaches taken to work

around the functionality issues of the RDBMSs that otherwise could create barriers for the

Chapter 4 Result Analysis and Finding

60

research. Section 4.2 contains the backbone of the investigation and explains and analyses

experiments’ results in a very detailed manner. Section 4.2 consists of nine subsections

corresponding to the number of experiments performed for this study in addition to

Experiment 8 second approach for Oracle and Experiment 9 second approach for SQL

Server. Section 4.3 details the research’s findings and Section 4.4 concludes the chapter by

summarising the findings. Section 4.5 concludes Chapter 4.

4.1 Pre-Experiment Preparation

This section describes the steps that are applied before conducting the experiments

specifically in relation to index set-up. But also outlining problems related to the functionality

of the RDBMSs that are encountered during this research as well as explaining remedies

applied to them. In order to avoid any vendor bias, three popular RDBMS’ are initially

chosen to use in the experiments, namely SQL Server, Oracle and MySQL, but only two

system are used which are SQL Server and Oracle (see Section 2.4.1).

As mentioned in Section 3.4.2, MYTABLE contains 100 million records in 35 columns.

Such a large table requires a considerable amount of computational resources to set up an

index. Creating a clustered index or non-clustered index in the child table is not successful

because each VM has only 8 GB of memory, whereas the typical size of a B-tree index table

requires 3–4 times that much (Wu, Otoo & Shoshani, 2004). Therefore, 8 GB of memory is

inadequate to create a clustered index in the used RDBMS’ given that the page size is 8 KB

in them.

However, Oracle has a feature called Bitmap Index that requires few computational

resources and creates an index in seven minutes. However, Oracle’s own documentation

suggests that the greater the number of unique values in a particular row, the less chance

there is that the Bitmap Index will be of benefit from the query’s performance (Oracle,

Chapter 4 Result Analysis and Finding

61

2015i). Further, Oracle’s own experiments demonstrate that the database engine always

chooses to scan the MYTABLE instead of using the index. In fact, Oracle surmises that the

Bitmap Index works optimally for a table that has one million rows with 10000 distinct

values (Oracle, 2015i). In EXP2 – which takes significantly less time to finish than the

others – the RDBMS chose to perform a table scan even though there were Bitmap Indexes

for the joining column and for the column that appears in the WHERE clause. Previous studies

undertaken by Wu et al. (2004, 2006) demonstrate that a Bitmap Index is not effective with

high-cardinality attributes because the index size can grow exponentially. Therefore, these

authors use a compression scheme called Word-Aligned Hybrid Code to store the Bitmap

Index as plain files, and their experimental work shows that a compressed Bitmap Index can

work for high-cardinality attributes with high distinct values. So while the Bitmap Index is

used in this study, its benefit may not affect performance significantly because of the large

proportion of distinct values for most records. For example, as shown in Figure 4.1, student

number 224594 has 11849 distinct records, while student 252254 has 11817 distinct records.

Figure 4-1: The number of students enrolled in papers.

This query is performed on MYTABLE.

Chapter 4 Result Analysis and Finding

62

The RDBMS’ used in this study are limited in regards to the display of results, especially

when queries returned a large dataset. SQL Server and Oracle vary significantly in how their

results are displayed. For instance, when SQL Server runs out of memory, it stops the

execution of the query and returns an error. However, SQL Server provides options to

remedy this limitation, such as sending the results to a file instead of displaying the results on

screen (Microsoft Support, n.d.).

The default output buffer size in Oracle is 20000 bytes, but the maximum size is

unlimited (Oracle, 2015b). Although the buffer size is set to unlimited, no more data are

returned after running EXP6 for 24 hours than those results displaced on screen. One way to

resolve this issue is to spool the results to a file without displaying the results on screen by

including the command SET TERMOUT OFF (Oracle, 2015c) in the query script. When

spooling EXP6, more data results are returned than before the spooling. This may indicate that

the unlimited buffer size may not be functioning. However, this limitation requires more

investigation.

4.2 Results and data analysis

This section provides detailed discussion about the results of the experiments. As Section 3.8

indicates, in order to generate theories from this study, an analysis of the experiments must be

conducted first followed by an explanation of the analysis so that the research questions can

be answered and the study’s hypotheses tested.

 This section explains the results of each experiment’ by looking first at the execution

plans to demonstrate how each system approaches the experiments. The execution plans will

then be compared between the two systems to show whether there are any implications for

performance. Secondly, the performance statistics obtained will be outlined and compared.

Finally, wait events will be detailed and compared.

Chapter 4 Result Analysis and Finding

63

4.2.1 Experiment 1

Section 3.5.1 describes EXP1 by mentioning that it aims to join local table (DIM_STUDENT)

with remote table MYTABLE where the value of column TOTAL_EFTS is higher than 0. The

following figures show a snap shot of query results.

Figure 4-2: Snap shot of EXP1results

4.2.1.1 Execution plans

Oracle (O)

 Index unique scan
(Dim_student).(PK_studnet Key)

R

R

Nested loops
(left outer join)

Do tuples
meet join
condition?

 Discarded
tuples

No

Select Yes

Clustered index seek
(Dim_student). (PK_studnet Key)

SQL Server (S)

Do tuples
meet join
condtition

?

Nested loops
(left outer join)

Select Yes

No

Figure 4-3: EXP1 local execution plans.

Chapter 4 Result Analysis and Finding

64

The following line is obtained from the statistics data returned by the Oracle command (SET

AUTOTRACE) when the query finishes:

(‘d’.‘dim_student_demographics_key’(+)=‘f’.‘student_demographics_key’).

According to the Oracle documentation, + used before = indicates that a right outer

join operator is performed. SQL Server undertakes an identical step in choosing the join

operator, as shown in Figure 3.4.S However, SQL server performs a left outer join. For

optimal NESTED LOOP performance, both SQL Server (SQL Server, 2015b) and Oracle

(Oracle, 2015d) require the inner join table to be indexed. Neither system has either a

clustered index or a non-clustered index on MYTABLE. This situation seems to provoke

performance issues, as MYTABLE does not have indexes.

Remote VMs differ in how they process queries, as shown in Figure 4.4.

SQL Server (S)

Full table scan
(child table)

Sort
operator

Parallelism
(Gather streams) Select

Oracle (O)

Full table scan
(child table) Parallelim Select

Figure 4-4: EXP1 remote execution plans

After SQL Server scans MYTABLE to obtain the tuples requested by the query, it then performs

a SORT operation to order these tuples (in ascending order by default), although – in terms of

performance – this operation is an expensive task to execute (SQL Server, 2015b). This is

Chapter 4 Result Analysis and Finding

65

because the optimiser chooses the NESTED LOOPS join operator, thus the incoming data have

to be pre-indexed for better performance. However, MYTABLE is not indexed. It appears that

the optimiser attempts to index the retrieved rows implicitly using the SORT operator.

 As Oracle optimiser runs the query in parallel because the query needs at least one

full table scan operation (Oracle, 2015j). Unlike SQL Server, Oracle does not use SORT

operator (see Figure 4.4.O).

The plan in Figure 4.4.S appears to be based on the assumption that there is an index

in the table, which indicates that the scan operator will not scan the entire table.

Figure 4-5: EXP1 remote SQL Server table scan

As there is no index, the table scan will touch all 100 million tuples and will retrieve only

those rows that satisfy the WHERE condition (SQL Server, 2015d).

In summary, to perform the scan for EXP1 both RDBMS’ use nearly identical

execution plans (table scan or parallelism execution). The systems employ NESTED LOOPS

although, for optimal performance, this operator requires data to be indexed. Thus SQL

Server sorts the data to add an index but Oracle does not appear to add an index and does not

employ the SORT operator. Performance implications may be seen in the time taken to run the

query.

Chapter 4 Result Analysis and Finding

66

4.2.1.2 Comparison between RDBMS

The previous section compares the execution plans of the RDBMS and presents a slight

difference where SQL Server employs the SORT operator after the table scan. However, this

section examines the performance data obtained from EXP1. As previously stated (see Section

3.5.1), EXP1 is expected to be relatively simple.

Figure 4-6: EXP1 duration and CPU time in seconds

In terms of total runtime, Oracle ran more slowly than SQL Server (115 seconds compared to

89 seconds respectively, a difference of 26 seconds). Moreover, CPU time consumed nearly

one-third of the runtime in remote instances. Oracle used less CPU time because it did not

use the sort operator as SQL Server did. Figure 4.6 shows that a considerable portion of the

runtime of EXP1 is spent in remote VMs, especially for CPU time. In total, Oracle performed

more logical reads than SQL Server and also consumes slightly more CPU time.

SQL Server Oracle SQL Server Oracle
local local remote remote

Duration 89 115 79 97
CPU Time 0.14 4 21 18

0
20
40
60
80

100
120
140

Duration CPU Time

Chapter 4 Result Analysis and Finding

67

Figure 4-7: EXP1 CPU time and logical reads

It appears that Oracle spends more runtime in the local VM than SQL Server, indicating that

NESTED LOOPS may perform in a suboptimal manner. However, the use of the SORT operators

by the remote SQL Server VM eliminated a similar situation and led to a gain in

performance. Hence, SQL Server consumed less CPU time than Oracle, although Oracle

received 10 MB from MYTABLE and then joined them.

Figure 4-8: EXP1 Physical reads and average I/O latency

SQL Server Oracle SQL Server Oracle
local local remote remote

number of logical read 4590 2191245 2439292 2019840
CPU Time 0.14 4 21 18

0

5

10

15

20

25

100

500100

1000100

1500100

2000100

2500100

3000100
nu

m
be

r o
f l

og
ic

al
 re

ad
s

SQL Server Oracle SQL Server Oracle
local local remote remote

number of physical reads 171 890 2439171 2019545
Avg I/O latency ms 12 10 10 6

0

2

4

6

8

10

12

14

0

500000

1000000

1500000

2000000

2500000

3000000

nu
m

be
r o

f p
hy

si
ca

l r
ea

ds

Chapter 4 Result Analysis and Finding

68

The comparison between the local VMs on which the parent tables are deployed and the

remote instance that holds MYTABLE is shown in Figure 4.8. The physical read numbers in

remote instances appear to be large and the implications of this phenomenon for performance

are important. For example, disk latency is a factor that can affect performance. When using

the remote disk SQL Server needs 10 ms per read and Oracle needs 6 ms per read on average.

Compare this to local disk latency where the former consumes 12 ms per read and the latter

10 ms per read. Regardless of whether the database engine performs a full table scan, the

amount of time it takes for the disk to complete an I/O operation is equally important. These

figures suggest that either the local service provider has many users using its physical

infrastructure or the provider operates physical infrastructure with reduced capability. This is

in contrast to the remote service provider that carries out I/O operations faster.

In addition, both database engines chose to use an index: INDEX SEEK in SQL Server

and INDEX UNIQUE SCAN in Oracle (see the S and O components of Figure 4.3) The local

SQL Server’s average I/O latency is 12 ms, compared to the average I/O latency of fully

scanning the child table (10 ms). Similarly with local Oracle, the average I/O latency (10 ms)

is higher than the full table scan average I/O latency performed in the local table (6 ms). If

one compares the number of tuples in both tables (parent and child), MYTABLE has more rows

than the parent table (DIM_STUDENT). This reflects the reality of PuC where multitenancy is

common.

In the absence of indexes, the database engine has to scan MYTABLE at least once to

retrieve data and then send the data to buffers prior to processing. Having only 8 GB of

memory for each VM means that each RDBMS will have only 6 GB of memory to use

because the operating system (Windows 7) requires at least 2 GB of memory (Microsoft,

n.d.). This raises a concern about how much memory is allocated to the buffer in both

RDBMS’; but the buffer area is determined dynamically (Oracle, 2015e; SQL Server, 2015e)

Chapter 4 Result Analysis and Finding

69

by these database systems and such a determination is beyond the scope of this research. An

examination of events that occurred during the execution period show that relational

databases present different wait types or events, which indicates where the RDBMS' consume

time.

Figure 4-9: EXP1 SQL Server wait events

Figure 4.9 shows that two wait events are dominant in SQL Server. First, the local VM waits

for almost 14% (OLEDB) of its runtime for the arrival of data. Microsoft defines OLEDB wait as

that “occurs when SQL Server calls the SQL Server Native Client OLE DB Provider”

(Microsoft, 2015f), which means that SQL Server waits for the provider to return data. In the

meantime, the provider waits for the WAN. Second, the remote instance encounters a

PAGEIOLATCH_SH (29.33%) which represents the time taken when the user waits for buffers to

be accessible (Microsoft, 2015f). Likewise, the instance waits (2.44%) for data to be written

into the memory from the disk PAGEIOLATCH_EX (Microsoft, 2015f). This wait suggests that

the buffers are allocated for I/O operations but they cannot be used until the I/O operation is

complete. These periods indicate the effects of PuC environment on the RDBMS’ I/O

performance.

Chapter 4 Result Analysis and Finding

70

Figure 4-10: EXP1 Oracle wait events

Figure 4.10 indicates that Oracle wait events go in the same direction, for example the wait

for the network takes 21% of the runtime compared to 14% for SQL Server. This coincides

with that the SQL Server transfers less data and therefore SQL Server spends less time

waiting for the data. Further, Figure 4.9 shows I/O related wait (PAGEIOLATCH_SH) as the

highest reported wait event and Figure 4.10 exhibits a similar pattern: remote instance waits

for 73.75% of the time for a DIRECT PATH READ and the local instance waits for 4.8% of the

runtime for the DB FILE SEQUENTIAL READ OPERATION. The DRECT PATH READ involves

“A direct read is a physical I/O from a data file that bypasses the buffer cache and reads [one

or many] data block[s] directly into [PGA3 buffer]” (Oracle, 2009). Whereas, DB FILE

SEQUENTIAL READ involves reading one data block into the SGA4 buffer (Oracle, 2009).

Both waits involve waiting for I/O operations to complete.

Further, Figure 4.8 shows that a full table scan can result in a performance bottleneck,

especially when fewer than 20% of the table tuples are returned. For instance, SQL Server

3 Program global area (PGA) “A PGA is a memory region that contains data and control information for a server
process. It is non-shared memory created by Oracle Database when a server process is started”. (Oracle, 2015)
4 System global area (SGA) “The SGA is a group of shared memory structures, known as SGA components, that
contain data and control information for one Oracle Database instance. The SGA is shared by all server and
background processes. Examples of data stored in the SGA include cached data blocks and shared SQL areas”.
(Oracle, 2015).

Chapter 4 Result Analysis and Finding

71

returns a total of 170,691 bytes, or the equivalent of 0.171 MB, whereas Oracle returns

10,939,045 bytes, or just over 10 MB.

4.2.2 Experiment 2

As Section 3.5.2 details, EXP2 joins four tables namely DIM_PAPER, DIM_DATE,

DIM_ENROLMENT_TYPE and MYTABLE. The join will occur where conditions are met. Two of

these conditions are based on MYTABLE and the other one is based on DIM_DATE. The

following figure show a snap shot of query results.

Figure 4-11: Snap shot of EXP2 results

Chapter 4 Result Analysis and Finding

72

4.2.2.1 Execution plans

SQL Server (S)

Oracle (O)

Full table scan
(Dim_Date)

Do tuples
meet join
condition?

Buffer
sort

Full table scan
(Dim_Enrolment_Type)

Index Unique Scan
(Dim_Paper).(PK_Dim_Key)

Do tuples
meet join
condition?

Do tuples
meet hash
condition?

Clustered index seek
(Dim_Paper).(PK_Dim_Key)

Clustered index scan
(Dim_Date).(PK_Dim_date)

Nested loops
(inner join)

R

Do tuples
meet join
condition?

Merge join
(inner join)

 Discarded
tuples

No

Yes
Do tuples
meet join
condition?

 Discarded
tuples

No

Merge join
(inner join)

Clustered index seek
(Dim_Enrolment_Type).(PK_Dim_Enrolment)

Yes

Do tuples
meet join
condition?

 Discarded
tuples Select No Yes

R

Nested loops
(Left outer

join)

 Discarded
tuples

No

Hash join
merge join
cartesian

Yes

 Discarded
tuples

No

Yes

 Discarded
tuples

No

Select

Yes

Figure 4-12: EXP2 local execution plans

Both plans differ considerably from the plans used in EXP1. More importantly, three different

join operators are used to join the four tables and two of them are joined based on two tuples

values of two columns (PAPER_KEY AND ENROLMENT_TYPE_KEY) from MYTABLE. The last

join is based on a range of values expected back from the DIM_DATE table. The joining have

different types of cardinality: low, when one single tuple is expected back from the join

between DIM_PAPER and DIM_ENROLMENT_TYPE; and high, when more than 5,000 tuples are

returned from DIM_DATE. Thus, both RDBMS’ vary in how they carry out the joining.

Chapter 4 Result Analysis and Finding

73

Figure 4.12.S shows that the join of the two tables DIM_PAPER and

DIM_ENROLMENT_TYPE returns one value. The figure also shows that an INDEX SCAN is

performed to obtain requested tuples from DIM_DATE. Then NESTED LOOP is used as a join

operator between DIM_DATE and DIM_PAPER and the result is joined with the corresponding

rows from the remote table using MERGE JOIN operator. The choice of MERGE JOIN operator

is surprising because both inputs must be ordered and since there are 100 million tuples in

MYTABLE, performance issues arise. However although the table scan touches every tuple in

the table, it only returns those rows that satisfy the WHERE clause. The resulting set is then

joined with DIM_ENROLMENT_TYPE to check whether this set satisfies the conditions that these

joined tables are based on.

Figure 4.12.O shows that Oracle uses an INDEX UNIQUE SCAN to obtain one record

from DIM_PAPER, but it does a full table scan to obtain the other value from

DIM_ENROLMENT_TYPE. As DIM_ENROLMENT_TYPE has only 30 rows, the choice of which

access method is used should not be a problem. Oracle also used a full table scan to access

DIM_DATE. But, Oracle also uses a BUFFER SORT that does not actually sort the data, but

rather moves data between Oracle’s buffers. More specifically, the data obtained in a full

table scan operation are moved from the SGA to the PGA. Oracle states that this helps to

avoid the repeated scanning of data and the optimiser avoids excess logical reads and reduces

resource contention (Oracle, 2015d). So since there is no direct connection between

DIM_DATE and the other parent tables involved in EXP2, Oracle decides to move data to the

PGA area for further processing. This additional processing appears in the execution plan

when the optimiser chooses to use MERGE JOIN CARTESIAN to check that all of the returned

tuples satisfy the query’s conditions. The HASH JOIN operator is then used to join these tuples

with the corresponding rows that have arrived from MYTABLE. Notably, Oracle does not

choose to use the MERGE JOIN operator.

Chapter 4 Result Analysis and Finding

74

It is significant that the difference between the execution plans used by the two

database systems demonstrated variations in performance. For example, logical reads can

create performance overhead. Oracle addresses this and moved data between its buffer areas.

The remote VMs that host MYTABLE treat the query in a similar way to EXP1, but SQL Server

seems to use more resources than are needed in EXP1. As shown below, both engines execute

EXP2.

SQL Server (S)

Full table scan
(child table)

Sort
operator

Parallelism
(Gather streams) Select

Oracle (O)

Full table scan
(child table) Parallelism Select

Figure 4-13: EXP2 remote execution plan

Both the S and O components of Figure 4.13 appear identical to EXP1, especially in

regards to what has been done to execute the query. As SQL Server employs MERGE JOIN

operator it creates the need for SORT operator to be used. Oracle, as in EXP1, handled the

execution of the full table scan in parallel. However the following section – which compares

the performance data for both systems – may reveal more evidence as to whether the amount

of data involved in the query leads to the poor performance of relational databases in clouds

or whether this poor performance relates to how the optimiser handles the query in CC.

Chapter 4 Result Analysis and Finding

75

4.2.2.2 Comparison between RDBMS’

From the previous section it may be concluded that as more tables are involved in a query,

the computational cost of its execution increases. Also, the more data a query processes, the

more time it needs to finish.

Figure 4-14: EXP2 duration and CPU time in seconds

Figure 4.14 shows that SQL Server needs nearly six minutes (359 seconds) to run the

experiment compared to just over four minutes (259 seconds) for Oracle, a difference of less

than two minutes. Given EXP2 is conducted on CDD, cloud environment may added

additional complexity to how the RDBMS’ choose best their execution plan. For instance,

SQL Server’s choice to employ a MERGE JOIN operator forces the remote instance to use a

SORT operator to order the data, which adds a performance overhead. Remote CPU times

provide evidence relating to the SORT operator overhead in that, although both databases

process the same number of tuples, there is a considerable difference in CPU consumption:

Oracle spends only 11 seconds, while SQL Server spends 25 seconds.

Although both systems use different join operators they consume an identical amount

of CPU time, indicating that the time needed to join tables increases as the number of them

SQL Server Oracle SQL Server Oracle
local local remote remote

Duration 359 258 348 210
CPU Time 5 5 25 11

0

50

100

150

200

250

300

350

400

tim
e

in
 se

co
nd

s

Chapter 4 Result Analysis and Finding

76

increases, not to mention the amount of data. For example in EXP1, SQL Server joined only

two tables with a small amount of data and it consumes a small portion of CPU time (0.14

seconds). However in EXP2, the local SQL Server used two different join operators, namely

MERGE JOIN and NESTED LOOP, producing an increase in CPU time of five seconds. Oracle

on the other hand, shows a relatively high CPU time of four seconds in EXP1, but with a slight

increase to five seconds in CPU time in EXP2. This shows that the NESTED LOOPS in EXP1

perform in a less optimal manner. Although the local Oracle VM employs only one join

operator, NESTED LOOPS, it consumes nearly as much CPU time as in EXP2 in the local

instance where two join operators are used.

Figure 4-15: EXP2 Number of physical reads and average I/O latency

As Figure 4.15 shows there is also a difference in the number of physical reads. There is a

relationship between the number of physical reads and the average time taken to perform the

operation. This is in addition to what has previously been stated in regards to how fast the

disk can perform an I/O request. For instance, the average I/O latency in remote VMs

(MYTABLE) is far less than the average in local VMs (parent tables). In terms of disk latency,

Oracle suffered less than SQL Server. An examination of these I/O averages and the runtime

SQL
Server Oracle SQL

Server Oracle

local local remote remote
number of physical read 2145 1453 2325816 2019474
Avg I/O latency ms 27 11 12 8

0

5

10

15

20

25

30

0

500000

1000000

1500000

2000000

2500000

Av
e

I/
O

 la
te

nc
y

nu
m

be
r o

f p
hy

si
ca

l r
ea

ds

Chapter 4 Result Analysis and Finding

77

for both systems shows that as the average I/O latency increases the query takes longer to

finish. For instance, Oracle ran for less time than SQL Server and in both the local and

remote VMs, the average I/O latency was 11 ms and 8 ms respectively, whereas the average

I/O latency was 27 ms and 12 ms respectively for SQL Server. While the systems differ in the

query and, if one compares EXP1 and EXP2 from the perspective of average I/O latency, then

SQL Server experiences less disk latency in EXP1 than it does in EXP2, even though it

performs more physical reads and finishes faster in EXP2. Oracle demonstrated the same

pattern with respect to the average I/O latency effect on runtime.

Further, Figure 4.16 the wait events that occur during EXP2 show how CC impacts

RDBMS’ performance. For example, in SQL Server, there is a PAGEIOLATCH_SH (9%) wait

event, which involved users waiting to access buffers after the data was written into them

(Microsoft, 2015f). Similarly, Oracle as shown in Figure 16 waits for 24.65% for a DIRECT

PATH READ that occurs when the data are read from disk into the PGA buffer. These events

indicates that VMs wait for the data to be brought via cloud network and they show the

effects of CC environment on performance.

Figure 4-16: EXP2 SQL Server wait events

34.62

1.98

30.59

9.09

7.08

% runtime
local OLEDB

local LCK_M_S

remote CXPACKET

remote PAGEIOLATCH_SH

remote
ASYNC_NETWORK_IO

Chapter 4 Result Analysis and Finding

78

EXP2 in both VMs provide different waits, but some are more important than others (see

Figure 4.16). For instance, the local VM spends nearly 35% of its runtime waiting for the

network to deliver data. Further, in a remote instance experience there is a network-related

wait event called ASYNC_NETWORK_IO (7%), and SQL Server defines this wait event as:

“occurs on network writes when the task is blocked behind the network. Verify that the client

is processing data from the server” (Microsoft, 2015f). In a network such as in CC where the

network capacity is not known and given the distance between the two nodes (at two opposite

points on the globe), it can be concluded from the occurrence of this wait event that the

network negatively influences the runtime especially when the VM client from which the

query originated is not busy with other heavy work. This is especially important because

there is a larger dataset (125MB) that this experiment transfers.

Figure 4-17 :EXP2 Oracle wait events.

In contrast to SQL Server, Oracle experiences a higher network wait time although Oracle

transfers less data than SQL Server as shown Figure. 4.17. Local and remote VMs are

delayed by different wait-types, but they amount to the same thing. That is, 68.82% of

runtime in a local VM waiting for more data to arrive from the network and 68.28% of

runtime in a remote VM waiting for the data to reach their final destination. Having both

68.82

20.112.81

68.28

24.65

%runtime
Local SQL*Net more data
from dblink

Local SQL*Net message from
dblink

Local db file sequential read

Remote SQL*Net more data
to client

Remote direct path read

Chapter 4 Result Analysis and Finding

79

VMs experience such a wait indicates that the network provides a performance bottleneck in

this experiment. Moreover, the local VM waits for messages to arrive from the database link

for 20.11% of the runtime. Oracle defines SQL *Net message from dblink as: “The session

waits while the server process (foreground process) receives messages over a database link

from another server process” (Oracle, 2015f). It is not clear what Oracle seeks to achieve

from this wait type but since it is a message that involves communication between foreground

processes (user process) it can be said that the wait event is related to the communication

needed to run the experiment (such as checking that tables exist and choosing the execution

plan). Whatever the reason behind the communication, this communication adds a

considerable performance overhead.

Both VMs face a wait for disk activity to finish. The remote VM appears to perform

most of its disk read through a DIRECT PATH READ because it scans a large table. While

24.65% of the remote VM runtime is spent in carrying out disk reads, only 2.81% of local

VM runtime is spent performing a DB FILE SEQUENTIAL READ.

4.2.3 Experiment 3

Aggregation queries are common for RDBMS and EXP3 aims to examine the approach of

RDBMS towards such queries in CDD (see Section 3.5.3). The following figures show a

snapshot of query results.

Figure 4-18: Snap shot of EXP3 results

Chapter 4 Result Analysis and Finding

80

4.2.3.1 Execution plans

SQL Server (S)
Do tuples
meet join

condition ?

Sort

Oracle (O)

View

Hash Group By

Sort

Clustered index scan
(Dim_Paper).(PK_Dim_Paper)

R

Merge join
(inner join)

 Discarded
tuples

 No

 Yes

Filter

Do tuples
meet

“having”
condition?

 Discarded
tuples

Select Yes

 NO

Full table scan(Dim_Paper)

R

Do tuples
meet hash
condition?

Hash Group By

Hash match

No

Yes

Filter

Do tuples
meet

“having”
condition?

 Discarded
tuples

Yes

No

Select

 Discarded
tuples

Figure 4-19: EXP3 local execution plans

By examining the S and O components of Figure 19 one observes that there is a significant

difference in how each RDBMS handled EXP3. This is phenomenal because both systems

have to process the same number of columns and rows. For example, local Oracle instance

Chapter 4 Result Analysis and Finding

81

has more processes than SQL Server, which indicates differences in handling EXP3. These

variations in executing an identical experiment raise the question of why this is the case.

The answer to the above question lies in the way that both RDBMS carry out the

execution. It is also influenced by the nature of the data, as explained in Section 3.4.2.

Therefore, the relational database operator DISTINCT is used in this query to obtain an

accurate count of the number of students enrolled in each paper. If the DISTINCT operator is

not used, the result of the count will be unrealistic. Oracle fetches all of the tuples for the

PAPER_KEY and STUDENT_KEY columns and then proceeds with the execution. This is a

requirement that SQL Server does not impose (Oracle, 2015h). Such a requirement means

that a large dataset needs to travel through the network, which takes a considerable amount of

time. SQL Server, on the other hand, carries out aggregation work such as COUNT (DISTINCT

F.STUDENT_DEMOGRAPHICS_KEY) in the remote instance. This leads to a smaller number of

tuples being returned via the network and consequently reduces processing time. SQL Server

uses the MERGE JOIN operator in contrast to Oracle’s use of the HASH JOIN operator. The

latter join operator involves creating a hash table that consists of a join key for a small table

(DIM_PAPER), and then it scans datasets coming from remote table for matching tuples

(Oracle, 2015d). This is unlike MERGE JOIN, which involves comparing only two tuples if the

joining condition is met, and then the rows are returned and the operator continues until the

end of rows that need processing (SQL Server, 2015c).

Once the joining is finished the systems continue with distinct processes. SQL Server

performs its ORDER BY clause and then it filters the data based on the HAVING clause. The

filtering step is performed last because it is based on the result of the count. However, Oracle

uses a HASH GROUP to aggregate enrolments for each paper and it writes the result to a

temporary view for further processing. As the query requires a DISTINCT COUNT of each

student’s enrolment, Oracle applies the hash group again on the temporary view for the

Chapter 4 Result Analysis and Finding

82

desired result. This is followed by performing the HAVING condition and by sorting the results

based on the count.

As far remote VMs are concerned, a significant variation was observed in the

execution plans as follows:

SQL Server (S)

Full table scan
(child table)

Parallelism
(Repartition stream)

Hash match
(aggregate)

Hash match
(aggregate)

Parallelism
(Repartition stream)

Sort
operator

Stream aggreate
(aggregate)

Parallelism
(Gather stream)

Oracle (O)

Full table scan
(child table) Parallelim

Select

Select

Figure 4-20: EXP3 remote execution plans.

Fig. 4.20.S shows that SQL Server does more work in the remote VM than Oracle. SQL

Server executes EXP3 remotely but Oracle fetches the required data to the local VM and then

continues with its processing. By comparing Figures 4.19 and 4.20 it appears while the steps

Oracle followed to execute this experiment in the local VM, SQL Server undertook them in

the remote VM.

In this query, there are two columns involved in the remote table and the query only

requires a DISTINCT COUNT of each student’s enrolment on each paper. Figure 4.20.S shows

that rows arrive from the table scan at REPARTITION STREAMS (SQL Server, 2015g), which

partitions them based on the PAPER_KEY and STUDENT_KEY columns. SQL Server then uses

the HASH MATCH operator to aggregate the enrolments for each paper. This step aggregates

rows to perform a COUNT operation but, since the DISTINCT COUNT is used in this query, SQL

Server performs another HASH MATCH aggregation to obtain these distinct values. In other

Chapter 4 Result Analysis and Finding

83

words, SQL Server has to aggregate the enrolments for each paper first, and then obtain a

distinct aggregation of enrolments for each paper. However, the SORT operator does appear

before the STREAM AGGREGATE operator, which indicates that it requires sorted rows before

consuming them. This STREAM AGGREGATE is performed to group the results by PAPER_KEY

(SQL Server, 2015p). Only distinct values are going to be counted which means that the

sorting step is less expensive compared to the same step in EXP2, when more rows are sorted.

4.2.3.2 Comparison between RDBMS

The considerable differences in the execution plans for the two systems produce similarly

different sets of performance data. This section presents the case for highlighting the negative

effect of the network on the performance of both systems.

Figure 4-21: EXP3 duration and CPU time in seconds.

In Figure 4.21 there is a significant variation in the runtime and CPU time for both systems.

SQL Server takes less than two minutes to finish EXP3, whereas Oracle takes 290 minutes, or

4.8 hours. Moreover, CPU time shows where most of the work is undertaken. Oracle

consumes more CPU time in the local VM than the remote VM. The local Oracle VM needs

268 seconds to execute EXP3 but the remote Oracle VM needs 28 seconds to perform its part

SQL Server Oracle SQL Server Oracle
local local remote remote

Duration 111 17420 100 10685
CPU Time 0.156 268 106 28

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

tim
e

in
 se

co
nd

s

Duration CPU Time

Chapter 4 Result Analysis and Finding

84

for EXP3. By contrast, SQL Server takes 106 seconds to process EXP3 in the remote VM and

only 0.156 seconds of CPU time is spent in the local SQL Server.

Further, to round out the picture of the effect of processing a large dataset in a

relational database over cloud network, CPU time in EXP3 appears to be high in both

database systems (see Figure 4.21). For instance, both systems need to aggregate the data

twice in order to obtain DISTINCT COUNT. This is evident if one looks at CPU time difference

between remote VMs in both systems in which there is a difference of 78 seconds and,

similarly, the difference is enormous (267.844 seconds) between local VMs. However, if

Oracle executes EXP3 remotely as is the case with SQL Server, Oracle avoids the wait for a

large dataset traversing the network.

Chapter 4 Result Analysis and Finding

85

The above variations indicate that there are significant factors that lead to such

situations and the number of I/O operations is possibly a factor.

Figure 4-22: EXP3 physical read and average I/O latency.

Previous experiments show a correlation between the average I/O latency and duration but

the results of EXP3 show no correlation. Local VMs appear to suffer from high I/O, which

reflects the reality of being in a PuC environment where cloud infrastructure is shared among

many users. SQL Server performed more physical reads in remote VM in EXP3 than it did in

EXP2 and this is accompanied by an increase from 27 ms in EXP2 to 45 ms in EXP3. Despite

this increase, SQL Server finishes faster in EXP3.A similar pattern is observed in Oracle but

leads to a different result; the average I/O latency in EXP3 remote VM (14 ms) is higher than

in EXP2 (8 ms). Also the average I/O latency in the remote SQL Server VM is less than the

average I/O latency for Oracle in this experiment. Therefore, these latencies indicate that disk

activity may be instrumental in poor performance of relational databases in a cloud

environment.

SQL
Server Oracle SQL

Server Oracle

local local remote remote
number of physical read 7523 3786 2325789 2019573
Avg I/O latency ms 45 33 10 14

0
5
10
15
20
25
30
35
40
45
50

0

500000

1000000

1500000

2000000

2500000

Av
e

I/
o

la
te

nc
y

nu
m

be
r o

f p
hy

si
ca

l r
ea

ds

Chapter 4 Result Analysis and Finding

86

 Figure 4-23: EXP3 SQL Server wait events.

In regards to wait events, both systems present similar results to previous experiments (see

Figure 4.23). SQL Server transfers 0.244 MB and experiences network related wait (OLEDB)

in EXP3, with 9% of its runtime spent waiting for data to arrive from the remote VM. The disk

related wait event PAGEIOLATCH_SH appears in both SQL Server VMs which accompanies a

higher average I/O latency in local VM. This indicates that the disk becomes overloaded with

I/O requests and therefore buffers have to wait for a longer time before the data arrive. In

EXP2 this wait appears only in the remote instance, which is expected because there are more

data to process.

However, Oracle seems to experience high network wait events constantly as shown

in Figure 4.24 (below).

9

1.92

15.35

11.51

% Runtime
local OLEDB

local PAGEIOLATCH_SH

remote CXPACKET

remote
PAGEIOLATCH_SH

Chapter 4 Result Analysis and Finding

87

 Figure 4-24: EXP3 Oracle wait events.

As Figure 4.24 shows, network-related wait events dominated most of EXP3’s runtime

because of Oracle’s requirement that all tuples must first be delivered to the local VM before

the data can be further processed. In EXP3, Oracle reports a higher network traffic (1011MB)

than SQL Server (0.244 MB). The local and remote waits are 91% and 98.9% respectively

for the data to reach the local VM, which provides evidence that the network negatively

influences relational database performance in a CDD. In addition, there are wait times for

replies from the remote VM for checking purposes, such as validating whether the remote

table exists. But disk waits are minimal; for example, 0.61% for the local VM and 1% for the

remote. Therefore, these wait events indicate that network overhead is a contributing factor in

the ineffectiveness of relational databases in a cloud environment.

91.55

4.650.61

98.9

0.53

0.06

0.01

%runtime
Local SQL*Net more data
from dblink

Local SQL*Net message from
dblink

Local db file sequential read

Remote SQL*Net more data
to client

Remote direct path read

Remote db file sequential
read

Chapter 4 Result Analysis and Finding

88

4.2.4 Experiment 4

Previous experiments have shown that relational databases in CDD can be affected by a

loaded I/O subsystem and network. But the way the RDBMS handles queries in the cloud

environment is a contributing factor to unsatisfactory performance. These points are observed

in the experiments, for example, Oracle’s requirement to bring all data to the originating

instance before the data is processed further (see EXP3). Likewise, SQL Server’s choice to use

the MERGE JOIN operator requires data to be sorted.

 This experiment involved the inner joining of DIM_STUDENT with MYTABLE in the

absence of a filtering condition. One hundred million tuples from three columns would go

through the Internet so that WAN overhead is examined in addition to how RDBMS handles

the query over cloud network (see Section 3.5.4). The following figures show a snapshot of

query results.

Figure 4-25: Snap shot of EXP4 results

Chapter 4 Result Analysis and Finding

89

4.2.4.1 Execution plans

Oracle (O)

 Index unique scan
(Dim_student).(PK_studnet Key)

R

R

Nested loops
Do tuples
meet join
condition?

 Discarded
tuples

No

Select Yes

Clustered index scan
(Dim_student). (PK_studnet Key)

SQL Server (S)

Do tuples
meet join
condtition

?

 Discarded
tuples

Merge join
(inner join)

Select Yes

No

Figure 4-26: EXP4 local execution plans

Both Figure 4.26.S and 4.26.O appear different. While Oracle employs NESTED LOOPS as the

join operator (see Fig. 4.26.O), the other uses the MERGE JOIN operator (see Figure 4.26.S.

The former choice appears to be costly because it joins 100 million non-indexed tuples (see

section 4.2.1). The SQL Server’s join operator requires sorted data in order to perform its

function, although this will trigger the use of the SORT operation and, given the number of

tuples in MYTABLE this choice also appears to be costly.

Chapter 4 Result Analysis and Finding

90

The execution plans of the remote VMs’ are as follows:

SQL Server (S)

Full table scan
(child table)

Sort
operator

Parallelism
(Gather streams) Select

Oracle (O)

Full table scan
(child table) Parallelim Select

Figure 4-27: EXP4 remote execution plans.

In the S component of Figure 4.27, tuples are being fed to a sorting operator in order to

satisfy the requirement of the MERGE JOIN operator. This means that 100 million tuples are to

be sorted and that these records from three columns will move to the requested VM. This is a

heavy load to be moved through the network. Likewise, Oracle will scan MYTABLE in parallel

to obtain the required tuples and then send the data over the network to the local VM for

further processing.

4.2.4.2 Comparison between RDBMS’

Both systems execute EXP4 in a nearly identical manner and one can assume that the runtime

will be almost the same. However, it appears this is not the case, and SQL Server finishes

faster than Oracle, as shown in Figure 4.28.

Chapter 4 Result Analysis and Finding

91

Figure 4-28: EXP4 duration and CPU time in seconds.

SQL Server runs for 21706 seconds or six hours whereas Oracle runs for 39319 seconds or

7.2 hours, a difference of one hour and 12 minutes. Moreover, as far as the CPU time is

concerned, Oracle consumes 903 seconds in total and SQL Server consumes 500 seconds.

However, there is a significant consumption of CPU time in the local Oracle (753 seconds)

because Oracle uses the NESTED LOOPS join operator where one row from DIM_STUDENT is

selected, and then the operator looks for the matching row among 100 million tuples.

 Figure 4-29: EXP4 logical read and CPU time.

SQL Server Oracle SQL Server Oracle
local local remote remote

Duration 21706 39319 21695 22352
CPU Time 218 753 282 150

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

tim
e

in
 se

co
nd

s

SQL
Server Oracle SQL

Server Oracle

local local remote remote
number of Logical read 43845 200200451 2474516 2024368
CPU Time 218 753 282 150

0

100

200

300

400

500

600

700

800

0

50000000

100000000

150000000

200000000

250000000

CP
U

 ti
m

e
se

co
nd

s

nu
nm

er
 o

f l
og

ic
al

 re
ad

s

Chapter 4 Result Analysis and Finding

92

Figure 4.29 shows a significant difference with respect to logical reads between all VMs.

Accompanied by a high CPU time, the local Oracle outnumbers local SQL Server VM in

terms of logical reads. This situation is caused by the use of the NESTED LOOPS join operator.

If one examines the local SQL Server CPU time and logical reads, the MERGE JOIN operator

is faster than NESTED LOOPS and does not create many logical reads. The CPU consumption

of local SQL Server is still relatively high (218 seconds) compared to the remote CPU time

(282 seconds) where a SORT operator is used. Moreover, when the CPU time of both VMs are

compared, it can be seen that SQL Server consumes more CPU time than Oracle. This is

because Oracle does not use the SORT operator.

The above discussion explains some causes for the performance variations in EXP4.

Physical reads are an important factor to take into consideration as outlined in Figure 4.30.

Figure 4-30: EXP4 physical reads and average I/O latency.

As is the case in previous experiments, physical reads continue to create overhead on EXP4

runtime. Figure 4.30 shows that for EXP4 there are more physical reads than in EXP3, which is

reflected in the average I/O latency in all VMs. This situation is influenced by b the cloud

environment, for example, the local SQL Server experiences more physical reads in EXP4

(44316) than in EXP3 (7523). Therefore the average I/O latency jumps from 45 ms in the

SQL Server Oracle SQL Server Oracle
local local remote remote

number of physical read 44316 988 2523460 2019541
Avg I/O latency ms 56 14 15 15

0

10

20

30

40

50

60

0

500000

1000000

1500000

2000000

2500000

3000000

Av
e

I/
O

 la
te

nc
y

nu
m

be
r o

f p
hy

si
ca

l r
ea

ds

Chapter 4 Result Analysis and Finding

93

latter case to 56 ms in the former case. But the local Oracle instance experiences a decreasing

average I/O latency (14 ms) and the number of physical reads is 988 compared to the EXP3

when it has to wait for an average of 33 ms per physical read and the number of its physical

reads is 3786. The same applies to remote VMs. EXP4 also runs for a longer time than EXP3

and the average I/O latency is a contributing factor.

Finally, wait events in EXP4 provide further evidence that network creates

performance issues for RDBMS’ in CDD.

 Figure 4-31 : EXP4 SQL Server wait events.

Figure 4.31 illustrates that waiting for the parallelism operation to finish takes longer time

than other waits (65.21%). The increase in the time required means that the parallelism is

accumulating time while waiting for threads to produce tuples. However, part of this wait is

caused by the parallelism manager, which waits for operations and produces CXPACKET5. This

wait would be of concern if it were combined with other larger waits such as

PAGEIOLATCH_SH where threads are waiting for the data to be placed in buffers.

5 “Occurs with parallel query plans when trying to synchronize the query processor exchange iterator” (SQL
Server, 2015f).

45.99

65.21

16.24

%runtime
local OLEDB

Remote CXPACKET

Remote
ASYNC_NETWORK_IO

Chapter 4 Result Analysis and Finding

94

Further, network wait plays a significant role in EXP4 when the local wait for 45.99%

of the runtime to receive dataset of 1242 MB via the network. This is also coupled with

ASYNC_NETWORK_IO waiting for 18.25% of the time for the data to arrive at the final

destination.

Wait events in Oracle also provide evidence that the network can cause RDBMS’ to

perform poorly.

 Figure 4-32: EXP4 Oracle wait events

 Figure 4.32 demonstrates that deploying a relational database in CDD leads to poor

performance because of the amount of data and because of the communication required to

execute queries. The latter factor has less influence than the former. Both local and remote

instances wait for more than 90% of the time for network to deliver 1584 MB. The local VM

also waits for 3.2% of the time for the communication required for execution. Further, I/O

operations trigger significantly less wait time than the network does. These factors indicate

that Oracle’s bottleneck is the network.

 By looking at the reported traffic network, SQL Server moves less amount of data

(1242 MB) than Oracle does (1584 MB) and it finishes EXP4 faster than Oracle.

94.06

3.20.53

98.22

0.61

0.48 %runtime
Local SQL*Net more
data from dblink

Local SQL*Net message
from dblink

Local db file sequential
read

Remote SQL*Net more
data to client

Remote db file
sequential read

Remote direct path
read

Chapter 4 Result Analysis and Finding

95

4.2.5 Experiment 5

In the experiments above, different factors were observed contributing to the poor

performance of RDBMS in CDD, including network and query execution approaches. EXP1

and EXP2 run for shorter times because the queries are relativity simple and there was less

data to traverse the network. EXP3 was more complicated, particularly in Oracle, since Oracle

required the specified data be brought to local VM before processing them. SQL Server, on

the other hand, performed EXP3 remotely and then sends only the result. Further, although

EXP4 involves joining only two tables with an inner join type without using any filtering

condition, the selected join operators involved in the queries took a long time to run.

 Section 3.5.5 established that this experiment aimed to examine the performance of

RDBMS’ in CDD under different join types and also using WHERE clause. The following

figures show a snapshot of query results.

Figure 4-33: Snap shot of EXP5 results

Chapter 4 Result Analysis and Finding

96

4.2.5.1 Execution plans

Oracle (O)

Full table scan
(Dim_Enrolment_Type)

SQL Server (S)

Clustered index scan
(Dim_Enrolment_Type).(PK_Dim_Enrolment)

R

Hash match outer
Do tuples
meet hash
condition?

 Discarded
tuples

NO

Select Yes

R

Merge Join
(Left outer join)

Do tuples
meet join
condition?

 Discarded
tuples

NO

Select Yes

Figure 4-34: EXP5 local execution plans.

Figure 4.34.S shows that SQL Server continued to choose the MERGE JOIN operator, as was

the case in two out of four experiments even though there were 100 million tuples to join.

The implications for performance are significant especially where Oracle chooses the HASH

JOIN operator (see the O component of Figure 4.34.O) to perform the same experiment.

The remote execution plan shown in the S component of Figure 4.35 reveals that, yet

again, SQL Server sorts the data so that the MERGE JOIN operator can be executed. This sort

means that 100 million records will be sorted.

Chapter 4 Result Analysis and Finding

97

SQL Server (S)

Full table scan
(child table)

Sort
operator

Parallelism
(Gather streams) Select

Oracle (O)

Full table scan
(child table) Parallelim Select

 Figure 4-35: EXP5 remote execution plans.

EXP5 executes in the remote Oracle VM (see Fig. 4.35.O) by scanning the table in parallel

and sending tuples to the requested instance. This scanning is done in full, which means that

same tuples are being touched at least once.

4.2.5.2 Comparison between RDBMS’

Execution plans show differences in terms of how they handle the execution of EXP5. For

instance, Figure 4.35 shows that although SQL Server consumes a higher CPU time in the

local instance, it still takes less time than Oracle. SQL Server needs 14993 seconds (four

hours and 16 minutes) whereas Oracle takes 20268 seconds (six hours and three minutes).

 Figure 4-36: EXP5 duration and CPU time in seconds.

SQL Server Oracle SQL Server Oracle
local local remote remote

Duration 14993 20268 14983 13406
CPU Time 142 99 209 52

0

50

100

150

200

250

0

5000

10000

15000

20000

25000

CP
U

 ti
m

e

Du
ra

tio
n

Duration CPU Time

Chapter 4 Result Analysis and Finding

98

As far as CPU time is concerned, Oracle takes less time than SQL Server. This is because

SQL Server’s choice of MERGE JOIN operator creates the need for SORT operator to be used.

Figure 4.36 shows that SQL Server has high CPU consumption. This pattern also appeared in

EXP4 which indicates that while MERGE JOIN operator is the best choice from the optimiser’s

point of view, it provokes the need for a SORT operator to be used and this consumes more

CPU time than when a HASH JOIN operator is used.

 EXP5 shows how both systems carry out the experiment, as well as how they differ in

terms of physical I/O operations, as shown in Figure 4.37.

 Figure 4-37: EXP5 physical reads and average I/O latency.

In previous experiments, EXP3 and EXP4, although remote instances conduct high I/O traffic,

their average I/O latency was not as high as in local instances, where there were significantly

fewer I/O operations. This pattern also appears in EXP5 (see Figure 4.37) where it can be

seen that local VMs suffer higher average I/O latency than remote VMs. Conversely, it shows

a correlation between high average I/O latency and duration. EXP4 takes longer to run, and a

contributing factor to the increased runtime is that in the local SQL Server the instance

experiences high average disk response latency (56 ms per read).

SQL
Server Oracle SQL

Server Oracle

local local remote remote
physical reads 3 5 2474178 2014059
Avg I/O latency ms 25 23 18 15

0
5
10
15
20
25
30

0
500000

1000000
1500000
2000000
2500000
3000000

Av
e

I/
O

 la
te

nc
y

nu
m

be
r o

f p
hy

si
ca

l r
ea

d

physical reads Avg I/O latency ms

Chapter 4 Result Analysis and Finding

99

Wait events differ in both systems, although network-related wait events appear to be

overwhelming.

Figure 4-38: EXP5 SQL Server wait events.

Figure 4.38 shows that SQL Server waits for the network to deliver 823 MB of data in both

instances: the local VM waits for 25% of the runtime whereas the remote instance waits 12%

for data to arrive from the local VM. In EXP4, network-related waits are higher than in EXP5

indicating that the latter receives a smaller amount of data. This is because in EXP4 there are

more columns requested from MYTABLE than in EXP5.

25.39

50.12

12.51

%runtime

local OLEDB

remote CXPACKET

remote
ASYNC_NETWORK_IO

Chapter 4 Result Analysis and Finding

100

Also, Oracle waits the longest time for the network, as shown in Figure 4.39.

 Figure 4-39: EXP5 Oracle wait events.

A remote instance of Oracle waits for the majority of its time for 1019 MB of data to reach

their final destination (see Figure. 4.41). I/O operations create a decreased wait time in the

instance and, in total, they create less than 1% as waiting time. Likewise, the local instance

waits for the network to deliver data for almost 94% of the runtime. It also waits for 5% of

the time for communication with remote instance.

 In EXP5, Oracle moves larger amount of data (1019 MB) than SQL Server and it takes

longer time to finish. Same situation occurs in EXP4.

4.2.6 Experiment 6

The preceding experiments, with complexity ranges from moderate to simple have provided

evidence that the cloud network causes relational database performance to be less than

desirable. This experiment is described in Section 3.5.6 and the following figure show a

snapshot of query results.

93.55

5.030.410.08

98.93

0.66
0.04

0.01

%runtime

local SQL*Net more data
from dblink

local SQL*Net message
from dblink

local db file sequential read

local db file scattered read

remote SQL*Net more data
to client

remote direct path read

remote db file sequential
read

Chapter 4 Result Analysis and Finding

101

Figure 4-40: Snap shot of EXP6 results

4.2.6.1 Execution plans

Oracle (O)

Table access full
(Dim_student)

SQL Server (S)

Clustered index scan
(Dim_student).(PK_studnet Key)

R

Hash join
Do tuples
meet join
condition?

 Discarded
tuples

NO

Select Yes

R

Merge join
(inner join)

Do tuples
meet join
condition?

 Discarded
tuples

NO

Select Yes

Figure 4-41 : EXP6 local execution plans.

In four out of five experiments, SQL Server chose the MERGE JOIN operator, although the

choice led to sorting 100 million rows. However, Oracle chose to employ a HASH MATCH join.

The remote execution plans for EXP6 show that there is evidence explains how the

execution of queries by RDBMS’ in a cloud environment causes poor performance (see

Figure 4.41).

Chapter 4 Result Analysis and Finding

102

SQL Server (S)

Full table scan
(child table)

Sort
operator

Parallelism
(Gather streams) Select

Oracle (O)

Full table scan
(child table) Parallelim Select

Sample table
scan (child

table)

Sample table scan
(child table)

Full table scan
(child table)

Sample table scan
(child table)

Full table scan
(child table)

Figure 4-42: EXP6 remote execution plans.

The O component of Figure 4.42 shows that a table scan has been performed but more

importantly, the SAMPLE scan in Oracle is carried out three times. This is surprising because

Oracle indicates that SAMPLE scan can only be used when SAMPLE clause is used in the

query, which is not the case here (Oracle, 2011). Looking back at the query text Oracle may

interpret the WHERE condition as SAMPLE clause so that it sends data to the remote VM for

execution, in addition to pulling the all tuples and applying a filtering condition locally. In

fact, local Oracle reports, for the first time in this research, that it has to wait for data that it

sends to reach remote instance. Whether this approach is effective or not, there is at least

Chapter 4 Result Analysis and Finding

103

associated network overhead from applying this method. In the SQL Server execution plan

Figure 42.S, since the SORT operator does not show any kind of warnings such as “OPERATOR

USED TEMPDB TO SPILL DATA….”. This indicates that the sorting occurs in memory.

 4.2.6.2 Comparison between RDBMS’

With execution plans showing differences, the collected performance data demonstrate there

are in fact significant variations between both systems.

Figure 4-43: EXP6 duration and CPU time.

The differences are apparent in Figure 4.43. For instance, SQL Server runs faster than Oracle

with more than four hours of difference between them. CPU time in local VMs indicates that

the SQL Server choice of MERGE JOIN consumes more CPU time than does Oracle’s choice

of the HASH MATCH join operator. Moreover, it is clear that the use of the SORT operator leads

to a difference of 25 seconds between remote VMs. Oracle’s consumption of CPU time is

125 seconds, whereas SQL Server consumes 235 seconds of CPU time.

When joining tables, it matters how many tuples are to be joined and the choice of

join operator also matters. For example, in EXP6 the local SQL Server experienced an

SQL Server Oracle SQL Server Oracle
local local remote remote

Duration 22353 37166 20208 22019
CPU Time 226 210 235 125

0

5000

10000

15000

20000

25000

30000

35000

40000

se
co

nd
s

Duration

CPU Time

Chapter 4 Result Analysis and Finding

104

increase in CPU consumption that is six seconds greater than in EXP5; to a large extent,

RDBMS’ appear to suffer from operating over cloud network. For example, SQL Server’s

choice of the MERGE JOIN operator appears to have added performance overhead and this is

especially important when it is a requirement for both inputs to be sorted. This choice occurs

in five out of six experiments. This is also evident when both systems run the same queries,

but Oracle uses the MERGE SORT JOIN operator only once where there was an ORDER BY

clause.

Up to this point, the variations in performance appear to be informing multiple facts

in relation to CC as well as the underlying infrastructure. EXP6 also faces the reality of

accessing shared computing resources, which cause the RDBMS’ to suffer, as shown in

Figure 4.44.

Figure 4-44: EXP6 physical operations and average I/O latency.

Note that the average I/O latency shown in Figure 4.44 reflects the average I/O latency per

read.

SQL
Server Oracle SQL

Server Oracle

local local remote remote
number of physical read 44316 38287 2523554 2019573
write 0 0 80 0
Avg I/O latency ms 54 27 59 38

0

10

20

30

40

50

60

70

0

500000

1000000

1500000

2000000

2500000

3000000

Av
e

I/
O

 la
te

nc
y

nu
m

be
r o

f p
hy

si
ca

l o
pe

ra
tio

ns

Chapter 4 Result Analysis and Finding

105

The remote SQL Server VM in Figure 4.44, shows that there are 80 physical writes, although

EXP6 does not ask for the updating of any tuples, and the SORT operator does not use a

temporary table on the disk. Therefore, it is difficult say what causes this result. Every write

takes 32 ms to finish on average. The in local SQL Server, the previous five experiments

show that the highest average I/O read latency was recorded in EXP5 as 25 ms but this

increased to 54 ms per read in EXP6. This result was coupled with an increase in the number

of physical reads: 44316 reads in comparison to 3 reads in EXP5.

Similarly, remote Oracle in EXP6 experiences higher average I/O latency: 38 ms

compared to EXP5 (23 ms). There is also an increase in the local VM average I/O latency to

27 ms from 18 ms. This increase occurs, at least partially, because there are more physical

reads in EXP6 than in EXP5. EXP6 runs for a longer time than EXP5, and also EXP6 experiences

higher average I/O latency. However, generally SQL Server experiences higher average I/O

latency than Oracle, but Oracle runs for a longer period of time. Such a situation raises a

legitimate question as to why this is always the case. Wait events may provide an answer.

Both systems wait for similar events as in above experiments. SQL Server especially

waits for the same events. Oracle does the same but there is one new wait event that does not

appear in the preceding experiments.

Chapter 4 Result Analysis and Finding

106

 Figure 4-45: EXP6 SQL Server wait events.

In Figure 4.45, the wait for the parallelism operation appears high in the remote VM at

63.32% of the runtime. The remote VM also waits for the network to deliver the data for

nearly 16% of the time. Further, SQL Server transfers 2864 MB and the local instance waits

for a network related wait event, OLEDB, for 43.93%. Moreover, when combining related

network wait events, network-related wait events take 59.7% of the runtime. Figure 4.45

indicates a significant amount of runtime waiting for the network.

Further, EXP6 experienced a higher wait for parallelism in remote instances than

EXP5. This is because although both queries processed the same number of tuples, EXP6

requested more columns than EXP5. Figure 4.45 signals that parallelism is a cause of

performance issues, but in the absence of an index, this wait is treated as unavoidable since it

is possible that both queries would require a longer runtime without parallelism execution,

especially when there are 100 million tuples to process.

In EXP6 the wait events for Oracle also show that the network plays an important role

in degrading the performance of relational databases in CDD.

43.93

63.32

15.77

%runtime
local OLEDB

remote CXPACKET

remote
ASYNC_NETWORK_I
O

Chapter 4 Result Analysis and Finding

107

 Figure 4-46: EXP6 Oracle wait events.

The graph in Figure 4.48 provides more evidence that the network impacts the performance

of RDBMS’ in a CC environment. For example, the choice to perform the SAMPLE TABLE

operation three times incurs a network overhead of 0.06% of the runtime. Although this

overhead appears insignificant, it creates an associated network overhead as a result of the

communication required to do such table scans. The communication that occurred between

VMs during EXP6 consumes 3.42% of runtime. Such an overhead appears inevitable but the

overhead is not negligible especially, in a cloud network. Further, the wait for 2572 MB of

data to reach the local VM, which accumulates more than 90% of EXP6’s duration. Figure

4.46 also shows that I/O latency does not create such an overwhelming overhead as the one

created by the network. In total, the remote VM waits for only 0.57% of the runtime for I/O

operations to complete. Therefore, Oracle suffers significantly because of the network.

 In EXP6, although SQL Server reports a higher network traffic (2864 MB) than

Oracle (2572 MB), it finishes faster than Oracle.such case is reported in EXP4, EXP5 and

EXP6. However, by looking at the data transfer rates collected and reported in Appendix C,

pp. 206-208, they suggest that SQL Server experience higher WAN transfer rate than Oracle.

95.71

3.420.06

99.04

0.51

0.04

0.02

%runtime
local SQL*Net more data from
dblink
local SQL*Net message from
dblink
local SQL*Net more data to
client
remote SQL*Net more data to
client
remote direct path read

remote db file sequential read

remote db file scattered read

Chapter 4 Result Analysis and Finding

108

4.2.7 Experiment 7

As is usually the case in relational database practice, with no exception made for CCD, many

tables are joined to obtain result. The previous analyses demonstrate that there are

contributing factors to the effects of the cloud network on RDBMS’ performance. For

instance, in EXP3 Oracle requires the data to be brought from the remote VM to the local VM

so it can process them, but SQL Server does the opposite and runs for a shorter time. That

says, RDBMS’ performance issues increase in a cloud environment particularly when large

datasets are involved.

 This experiment is described in Section 3.5.7 and the following figures show a

snapshot of query results.

Chapter 4 Result Analysis and Finding

109

Figure 4-47: Snap shot of EXP7 results

4.2.7.1 Execution plans

SQL Server (S)

Clustered index scan
(Dim_Programme).(PK_Programme_Key)

R

Nested loops
(inner join)

Do tuples
meet join
condition?

 Discarded
tuples

NO

Select

Clustered index scan
(Dim_Intake).(PK_Dim_Intake)

Table spool
(Lazy spool)

Yes

Merge join
(Inner Join)

Do tuples
meet join
condition?

Yes

 Discarded
tuples

NO

Table access full (Dim_Intake)

R

Hash match
Do tuples
meet hash
condition?

 Discarded
tuples

Table access full (Dim_Programme)

NO

Yes

Hash match
Do tuples
meet hash
condition?

 Discarded
tuples

NO

Select Yes

Oracle (O)

Figure 4-48. EXP7 local Oracle execution plan.

Chapter 4 Result Analysis and Finding

110

Oracle used the HASH MATCH join operator twice to execute EXP7. First it joined the remote

table with DIM_INTAKE and then it joined the result with DIM_PROGRAMME using the same

operator. However, SQL Server chose to scan DIM_INTAKE table first to find rows after1990

and store them on a temporary file. According to SQL Server, table spool is created on

memory so that whenever “spool’s parent operator asks for a row, the spool operator gets a

row from its input operator and stores it in the spool, rather than consuming all rows at once”

(Microsoft, 2015h). This file can then be scanned by using NESTED LOOPS to probe for

matches of tuples that come from performing an index scan on DIM_PROGRAMM. The optimiser

thinks that it is better to find matching rows between parent tables first and then join the

result with incoming tuples from the remote table.

Remote execution plans appear to have maintained a similar plan as in previous

experiments. For instance, SQL Server sorts the data because it employs the MERGE JOIN

operator.

Chapter 4 Result Analysis and Finding

111

SQL Server (S)

Full table scan
(child table)

Sort
operator

Parallelism
(Gather streams) Select

Oracle (O)

Full table scan
(child table) Parallelism Select

Full table scan
(child table)

full table scan
(child table)

Figure 4-49: EXP7 remote execution plans.

Similarities appear between EXP6 and EXP7, although they both have different types of

condition operators. However, since an OR operator is used in EXP7, it processes more data.

The next section will discuss whether this difference has any implications.

4.2.7.2 Comparison between RDBMS’

Executing EXP7 was different to EXP5 and EXP6 in relation to how each local optimiser chose

to carry out the execution, as follows.

Chapter 4 Result Analysis and Finding

112

Figure 4-50: EXP7 duration and CPU time in seconds.

Figure 4.50 shows that Oracle appears to be slow in EXP7; it needed 20 hours to run the

experiment while SQL Server needed 10 hours, even though SQL Server consumed more

CPU time than Oracle in both VMs. Further, the CPU time required by SQL Server provides

more evidence that MERGE JOIN is not the best join option. By contrast, Oracle employs HASH

JOIN twice to join the data but burns 369 seconds of CPU time while SQL Server spends 392

seconds on CPU time. This does not mean that the optimiser performs below par but that its

choice of MERGE JOIN is less suitable because, on the one hand there are 100 tuples coming

from the remote instance to join and on the other hand, this operator needs sorted data in

order to function. Hence optimiser uses SORT operator in the remote VM.

As mentioned earlier, and confirmed by this result, the use of the SORT operator has a

significant overhead. It has also been demonstrated on the CPU time of the remote Oracle

VM, which is significantly less than the remote SQL Server CPU time. Overall, SQL Server

is still relatively faster than Oracle. This result can be explained when one examines where

both systems spend most of their time.Although the foregoing discussion has given reasons

for the fact that EXP7 ran for at least 10 hours, it is also important to study the I/O operations.

SQL Server Oracle SQL Server Oracle
local local remote remote

Duration 34890 72535 34884 38775
CPU Time 392 365 443 50

0

10000

20000

30000

40000

50000

60000

70000

80000

se
co

nd
s

Chapter 4 Result Analysis and Finding

113

Figure 4-51: EXP7 I/O operations and average I/O latency.

The average I/O latencies in EXP7 were the highest. The local SQL Server continued its

pattern with a high average I/O latency of 208 ms per read. This contributes to the creation of

a long-running query, although 0 ms is reported as the average I/O latency per write. Its

remote VM experiences less average I/O latency than in EXP6 even though it does more

reads. Clearly the local SQL Server is affected by a poor cloud environment. Such variations

indicate inconsistencies in performance measures of RDBMS’. This conclusion can be

verified by looking at the local Oracle disk latency where Oracle experienced significantly

less average I/O latency than local SQL Server in all the experiments so far, suggesting that

variations in performance can occur within the same PuC service provider. In addition to

remote VMs that seem to always perform more physical reads the average I/O latency never

reached 208 ms.

Further, EXP7 in Oracle showed a different pattern even though it performed a greater

number of I/O in the remote instance than in EXP6 and the average latency per read is less

than in EXP6. The local instance, on the other hand, performed fewer I/O operations than

SQL Server Oracle SQL Server Oracle
local local remote remote

physical reads 1246 961 2622482 4629901
physical writes 20 0 99 0
Avg I/O latency ms 208 13 14 16

0

50

100

150

200

250

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000

Av
e

I/
O

 la
te

nc
y

nu
m

be
r o

f p
hy

si
ca

l o
pe

ra
tio

ns

Chapter 4 Result Analysis and Finding

114

EXP6 and the avenge latency dropped from 27 ms to 13 ms. This suggests that EXP7 took

longer than EXP6 due to other factors in addition to I/O operation.

Wait events also provide more evidence that cloud network affects RDBMS’. The

network still plays a central role with respect to this outcome.

Figure 4-52: EXP7 SQL Server wait events.

Figure 4.52 clearly shows that the local VM waits for 47% of its time for 8613 MB of data to

arrive through the OLEDB provider. When compared to EXP6 the instance waits for 43.93%,

indicating that there are larger datasets to come in EXP7. There is also wait time associated

with the network in the remote VM when it waits for 16.29% of runtime for the network.

Further, the wait for the parallelism operation appears to be slightly higher than same wait in

EXP6.

Oracle wait events, by contrast, show that the network is the primary cause of the

poor performance of the relational database. Oracle is inconsistent in how it handles the

execution of the query. For instance, Oracle normally requests data to be brought to local VM

before applying any further processing. But this is not always the case since in EXP6 the

optimiser sent data to the remote location for execution and does so in EXP7.

47.09

65.38

16.29

%runtime

local OLEDB

remote CXPACKET

remote
ASYNC_NETWORK_IO

Chapter 4 Result Analysis and Finding

115

 Figure 4-53: EXP7 Oracle wait events.

Figure 4.53 shows that Oracle sends data to the remote VM and so the system has to wait for

the network 0.1% of the runtime. Yet, Oracle takes 95% of the local instance to obtain 8198

MB it requested to execute EXP7. Such a situation demonstrates the effect of network on the

runtime, that is, the larger the dataset that travels the network, the longer the query will take

to finish. Evidently, the local instance is dominated with network-related wait events.

Similarly, the remote instance faces the same situation when it waits for 93% of runtime for

the data to arrive at local VM. Further, I/O operations consume little from the runtime of both

instances; for example, the local instance (in total) waits for 1.53% for them to complete.

4.2.8 Experiment 8

Up to this point, there have been multiple experiments that have differed in their degree of

complexity but using the same dataset. Foregoing comparisons have shown that, the effects

of cloud network appears to be a significant contributing factor to the poor performance of

RDBMS’ in CDD. Sorting large amounts of data, in particular, is an expensive task, but SQL

Server chooses the MERGE JOIN operator and this requires the data need to be sorted. This

outcome occurred in six out of seven experiments thus far. Experiments that were conducted

94.55

2.60.30.1

92.92

0.78

0.66

0.09

%runtime
local SQL*Net more data from
dblink
local SQL*Net message from
dblink
local db file sequential read

local SQL*Net more data to
client
remote SQL*Net more data to
client
remote db file sequential read

remote db file scattered read

remote direct path read

Chapter 4 Result Analysis and Finding

116

on Oracle indicate that the use of the HASH JOIN operator requires less time than the MERGE

JOIN operator, suggesting that HASH JOIN is more time efficient than MERGE JOIN. The

following figures show a snapshot of query results.

Figure 4-54: Snap shot of EXP8 results

As described in Section 3.5.8, this experiment aims to fully join two large datasets

over the cloud network and then perform an ORDER BY operation. EXP8 in Oracle did not

complete due to what appeared to a network issue and because of this, the execution plans

were lost.

4.2.8.1 Execution plans

SQL Server (S)

Clustered index scan
(Dim_student).(PK_studnet Key)

R

Merge join
(full outer join)

Do tuples
meet join
condition?

 Discarded
tuples

NO

Select Yes Sort
(Warnings sign)

Figure 4-55: EXP8 local SQL Server execution plan.

As mentioned above there is no local execution plan therefore this section addresses local

SQL Server execution plan.

Figure 4.55 illustrates that SQL Server employs the MERGE JOIN operator. Figure

4.57 also shows that an issue exists in the SORT operator resulting from the request to sort a

large dataset. The warning sign is shown below.

Chapter 4 Result Analysis and Finding

117

 Figure 4-56: EXP8 ORDER BY warning.

Figure 4.56 indicates that the available memory is insufficient to perform the ORDER BY

clause and so the disk is used. This leads to a situation where it is necessary to (a) read the

data from disk, (b) bring them into memory, (c) write them again to disk, (d) carry out the

sort there, and (e) then read the data again into memory. This intensifies I/O traffic the over

cloud network.

SQL Server (S)

Full table scan
(child table)

Sort
operator

Parallelism
(Gather streams) Select

Figure 4-57: EXP8 remote SQL Server execution plan.

As previously explained, SQL Server employs the SORT operator to satisfy the requirement of

MERGE JOIN operator. The SORT operator sorts 100 million tuples.

4.2.8.2 Comparison between RDBMS’

This section is different from the previous sections because Oracle crashed in EXP8 and

performance data were lost, especially most of the local instance data. Therefore this section

contains incomplete comparisons. However, the section will also show how Oracle deals with

EXP8 under a different load.

Chapter 4 Result Analysis and Finding

118

 Figure 4-58: EXP8 duration and CPU time in seconds.

Figure 4.58 does not indicate that Oracle runs faster than SQL Server; rather, it shows that the

instance crashes at the 44364th second from execution start, and that the CPU consumes 410

seconds in the local VM and 59 seconds in the remote instance. However, SQL Server runs

for the longest time so far and also consumes the highest CPU time. These results show there

is a significant increase in resource consumption. For instance, if one compares CPU time in

EXP7, the local SQL Server with the same VM in EXP8 then there is a considerable jump from

392 seconds to 424 seconds respectively, although ORDER BY is performed on disk. Part of the

reason for this outcome may be a greater number of logical reads in EXP8.

SQL Server Oracle SQL Server Oracle
local local remote remote

Duration 59118 44364 58015 41373
CPU Time 424 410 259 59

0
50
100
150
200
250
300
350
400
450

0
10000
20000
30000
40000
50000
60000
70000

CP
U

 ti
m

e

Du
ra

tio
n

Chapter 4 Result Analysis and Finding

119

 Figure 4-59: EXP8 logical reads and CPU time.

For the first time in SQL Server, logical reads in the local instance almost reached 500000

reads and this is reflected in CPU time. Figure 4.59 also indicates that despite remote

instances performing more logical reads than local VMs, they consume less CPU time. Then

in the local Oracle instance, zero logical reads indicates there is no information obtained due

to the query crashing. Before this occurred, the instance spent 410 seconds as CPU time,

whereas the remote VM spent 59 seconds as CPU time. As already mentioned, part of this

low CPU consumption is due to the absence of a SORT operator.

It was becoming evident that shared cloud environment is a contributing factor in

situations especially when there is an extensive disk activity for the ORDER BY clause.

SQL Server Oracle SQL Server Oracle
local local remote remote

number of Logical read 429115 0 2688681 4,049,424
CPU Time 424 410 259 59

0
50
100
150
200
250
300
350
400
450

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000

Chapter 4 Result Analysis and Finding

120

Figure 4-60: EXP8 I/O operations and average I/O latency.

Note that zeros for Oracle instances indicate no information was collected.

Physical reads as shown in Figure 4.60 are the highest yet, which is a reflection of fully

joining two big tables. The local SQL Server continued to experience high average I/O

latency (111 ms), but not as high as in EXP7 (208 ms). Similarly, the remote instance

performed more physical reads and it saw a small increase in its average latency from 14 ms

to 15 ms in EXP7. Further, remote Oracle VM reads more physical data blocks with a higher

average latency (40), which was higher than in EXP7.

Figure 4-61: EXP8 tempdb I/O operations and average latency

SQL
Server Oracle SQL

Server Oracle

local local remote remote
physical reads 54329 0 2808983 4,644,618
physical writes 111 0 144 0
Avg I/O latency ms 72 9 15 40

0
10
20
30
40
50
60
70
80

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000

Av
e

I/
O

 la
te

nc
y

nu
m

be
r o

f p
hy

si
ca

l o
pe

ra
tio

ns

read
tempdb

write
tempdb

direct
path
write
temp

direct
path
read
temp

local SQL server local Oracle
Numbers 485010 484930 0 0
Avg I/O latency ms 49 360 16 10

0
50
100
150
200
250
300
350
400

0
100000
200000
300000
400000
500000
600000

Av
e

I/
O

 la
te

nc
y

nu
m

be
r o

f I
/o

 O
pe

ra
tio

ns

Numbers Avg I/O latency ms

Chapter 4 Result Analysis and Finding

121

It appears that physical operations on the temporary database creates significant performance

bottleneck. As shown in Figure 4.61, the local SQL Server VM takes an average of 360 ms

per physical write and reading the data again takes an average of 49 ms per read. Unlike

Oracle which although number of I/O operations is not obtained, average I/O latency is

significantly less than SQL Server.

In relation to EXP8, the above discussion has shown that, in terms of communication

and query execution relational databases are affected by the network’s inadequacy.

 Figure 4-62: EXP8 SQL Server wait events.

Yet, the network appears to consume almost half of EXP8’s time, as is the case when the local

instance spends nearly 48% of the time waiting for 3633 MB of data to come (see Figure

4.62). In the remote instance, the parallelism operation accumulates a high wait period but

given the number of tuples that go parallel, this appears unavoidable, especially when the

parallel manager accumulates a CXPACKET wait while waiting for processors to finish their

assigned work (see Figure 4.62).

The following wait events occurred before the EXP8 crashed in Oracle.

47.79

65.88

16.44

%runtime

local OLEDB

remote CXPACKET

remote
ASYNC_NETWORK_IO

Chapter 4 Result Analysis and Finding

122

 Figure 4-63: EXP8 Oracle wait events.

Figure 4.63 shows that more than 90% of both VMs time is spent waiting for the data to

move via the network. This is an indication that operating a CDD faces the challenge of an

unknown network and it is overwhelming, even surpassing the I/O latency effect.

When EXP8 crashed, the transaction logs of both instances revealed the following

“ORA-12170: TNS: CONNECT TIMEOUT OCCURRED”. Oracle defines this error in this way:

“The server shut down because connection establishment or communication with a client

failed to complete within the allotted time interval. This may be a result of network or system

delays; or this may indicate that a malicious client is trying to cause a Denial of Service

attack on the server” (Oracle, 2015g). EXP7 ran for a longer time without being timed out. In

addition, both instances reported that the other VM was where the time-out occurred, which

suggests that it does not have control of the network. This event has led to an incomplete

picture of Oracle’s performance in relation to EXP8. In an attempt to obtain data, the size of

the dataset was reduced to 10 million tuples from 100 million.

92.94

1.920.830.43

93.41

0.79

0.5

0.2

%runtime
local SQL*Net more data
from dblink
local SQL*Net message from
dblink
local direct path write temp

local direct path read temp

remote SQL*Net more data
to client
remote db file scattered
read
remote db file sequential
read
remote direct path read

Chapter 4 Result Analysis and Finding

123

4.2.8.3 EXP8 Oracle second approach (OSA)

When Oracle did not finish EXP8, it produced uncertainty with respect to its performance in

this experiment and created a need for undertaking a different approach in order to perform it

on Oracle. The data size employed in the second approach was reduced from 18 GB with 100

million tuples to 10 million so that a smaller amount of data went through the network,

minimising the effect of the network on EXP8.

index fast full scan
(Dim_student).(PK_studnet Key)

R

Hash join
(full outer)

Do tuples
meet join
condition?

 Discarded
tuples

NO

Select Yes Sort

View

Figure 4-64: EXP8 OSA local Oracle execution plan

 In EXP8 OSA, Oracle performed the full join using HASH JOIN operator and the sort took a

place in disk (see Fig. 4.64).

Sample table scan
(child table) Parallelism Select

full table scan
(child table)

Sample table scan
(child table)

full table scan
(child table)

Figure 4-65: EXP8 OSA remote Oracle execution plan.

Chapter 4 Result Analysis and Finding

124

The reason behind the sample access type as cited in EXP7 is not known. The optimiser used a

sample table access when SAMPLE clause was not used (see Figure 4.65). Therefore, it was

difficult explain it further without more information.

 Figure 4-66: EXP8 OSA duration and CPU time in seconds.

Figure 4.66 shows that OSA finished in 4548 seconds or one hour and 15 minutes. Therefore,

one can extrapolate that, based on this time, the same query with 100 million tuples would

take 140 hours to run, or more than five days.

As the execution plan shows, there is extensive disk activity to sort data, which

influences the runtime as follows.

 Figure 4-67: EXP8 OSA I/O Operation and average I/O latency.

local remote
Oracle Oracle

Duration 4,548 4,103
CPU Time 51 12

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

se
co

nd
s

local remote
Oracle Oracle

physical reads 901 2,019,546
Avg I/O latency ms 16 24

0

5

10

15

20

25

30

0

500000

1000000

1500000

2000000

2500000

Av
e

I/
O

 la
te

nc
y

nu
m

be
r o

f p
hy

si
ca

l r
ea

ds

Chapter 4 Result Analysis and Finding

125

Figure 4.67 shows that the remote instance appeared to experience a high average I/O latency

per read of 24 ms, whereas the local instance, which read only the index table, needed 16 ms

per I/O read.

 Figure 4-68: EXP8 Oracle temp I/O operation and average I/O latency.

As Figure 4.68 shows disk activity that for the ORDER BY clause. It indicates that each disk

write took an average of 39 ms and, for the read, it took an average of 9 ms to finish.

Although these times contributed to the runtime, they did not provide a complete picture

about the query. Thus, wait events are going to be outlined (See Figure 4.69).

direct path write
temp

direct path read
temp

local
Numbers 58275 58287
Avg I/O latency ms 39 9

0
5
10
15
20
25
30
35
40
45

58268
58270
58272
58274
58276
58278
58280
58282
58284
58286
58288

Av
e

I/
o

la
te

nc
y

nu
m

be
r o

f I
/O

 o
pe

ra
tio

ns

Chapter 4 Result Analysis and Finding

126

 Figure 4-69: EXP8 OSA wait events.

Oracle still shows that network continues to play a significant role in prolonging the

execution time. Although this wait takes almost 90% of the local instance runtime waiting for

187 MB of data to come via cloud network, it appears that the I/O operation to write to a

temp file play a role that is, DIRECT WRITE TEMP 6creates a wait of nearly 2% of the runtime.

However, reading this data again takes less than 1% of local instance runtime. The I/O read in

the remote instance creates a total wait of 1.35% of the runtime, while the remaining 98.15%

of its runtime is recorded as a wait for the data to reach the local instance. Therefore, the

network appears to be causing a bottleneck, even though the dataset size is reduced. This

constitutes evidence that relational database practices suffer from performance issues if they

are carried out in cloud environment.

6 This wait indicates that the instance is waiting for direct write operation to finish on temp file (Oracle, 2015f).

89.61

3.421.840.37

98.15

1.29 0.06

%runtime local SQL*Net more data
from dblink

local SQL*Net message from
dblink

local direct path write temp

local direct path read temp

remote SQL*Net more data
to client

remote direct path read

remote db file sequential
read

Chapter 4 Result Analysis and Finding

127

4.2.9 Experiment 9

With the aim of investigating relational database performance in CDD, this study has

conducted experiments that have involved a variety of conditions. The systems used perform

less well and this is due to influence from cloud network. Further, the processes of relational

databases where normally more than one table is joined, appear to be challenged, especially

over cloud architecture.

SQL Server appears to have different requirements in regards to update query. For

instance, the pattern observed in the above experiments such as EXP1 and EXP8 demonstrate

that (a) if there is a WHERE condition which is based in the remote table, then SQL Server

returns only those tuples which satisfy the condition, and (b) otherwise it sends all the tuples

for the requested columns to the local instance for further processing. However, SQL Server

handles the update query that is based on sub-query in a manner that leads to a lengthy query.

When this occurs, the query is cancelled and is redone differently.

4.2.9.1 Execution plans

There is no execution plan for the local SQL Server, since the query stopped after running for

24 hours and consequently data were lost. However, the local Oracle execution plan is as

follows:

Table full access
(Child table)

R
Dim_paper

Nested loops
Do tuples
meet join
condition?

 Discarded
tuples

NO

Update Yes

Figure 4-70: EXP9 local Oracle execution plan.

Chapter 4 Result Analysis and Finding

128

Figure 4.70 shows that Oracle executed EXP9 in the remote instance, instead of locally as

happened in EXP8 and EXP7. Oracle scanned MYTABLE to obtain the request tuples and

applied NESTED LOOPS as the join operator to check whether they meet the condition that

appears in the subquery, and then Oracle updates them.

The remote execution plans is as follows:

Full table access
(child table) Parallelism update

Figure 4-71: EXP9 remote Oracle execution plan.

Figure 4.71 is similar to Figure 4.70 in which MYTABLE was scanned to obtain the requested

rows and updated after they had been checked to ensure they met the condition. However,

SQL Server appeared to approach the process differently, as follows:

Figure 4-72: EXP9 remote SQL Server execution plan.

Please note that this execution was not redrawn using VISIO because it was not practical to

do so.

Figure 4.72 gives a picture as to how the query is handled in SQL Server. The use of the IN

clause means that the subquery is required to return a confirmation that the value of

PAPER_KEY in the tuple was equal to 13362. SQL Server uses KETSET CURSOR which can be

Chapter 4 Result Analysis and Finding

129

described thus: “The keys are built from a set of columns that uniquely identify the rows in

the result set. The keyset is the set of the key values from all the rows that qualified for the

SELECT statement at the time the cursor was opened” (Microsoft, 2015i). However,

MYTABLE does not have a primary key thus SQL Server will have to create primary key in

order to identify those tuples that are to be updated. That is, SQL Server has no alternative

but to create a temporary file with a primary key. Thus, the table scan returns two columns as

follows:

 Figure 4-73: EXP9 table scan

The table scan retrieves two columns, which SQL Server renames as BMK1002 and CHK1003.

(See Figure. 4.73). These columns are then used to segment the data as follows:

 Figure 4-74: EXP9 segment operation

Chapter 4 Result Analysis and Finding

130

According to SQL Server’s online book, the SEGMENT operation “divides the input set into

segments based on the value of one or more columns” (Microsoft, 2015s). The segmentation

can make tuples uniquely identifiable.

Moreover, SQL Server employs a SEQUENCE PROJECT operator as shown in Figure

4.75 which SQL Server describes as the “[sequence project that] adds columns to perform

computations over an ordered set” (Microsoft, 2015j). One of these computations is the use of

ROW NUMBER FUNCTION, which returns a sequential number to each tuple within a segment

(Microsoft, 2015k). This appears when SQL Server replaces segment 1044 column with a

new column (EXPR1006), as follows:

 Figure 4-75: EXP9 sequence project.

Figure 4.76 below shows that tuples are then inserted into the clustered table, which

has a primary key (Microsoft, 2015l). This means that 100 million tuples are to be inserted

again and, with available memory being insufficient, this occurs on disk and creates a

considerable amount of I/O traffic.

Chapter 4 Result Analysis and Finding

131

 Figure 4-76: EXP9 clustered index insert

Once the insertion is done, tuples are sent to the COMPUTE SCALAR operator, which appears to

redefine column names to technical names that the SQL Server understands, as follows:

 Figure 4-77: EXP9 compute scalar.

The table originally contained 35 columns. However, Figure 4.77 shows there are now 36

columns after adding a primary key. Further, SQL Server employs the POPULATION QUERY

operator and the operator “populates the work table of a cursor when the cursor is opened”

(Microsoft, 2015m). This operator appears to feed the KEYSET cursor with tuples that are

now uniquely identified and need to be updated.

Chapter 4 Result Analysis and Finding

132

Since KEYSET CURSOR contains identifiable tuples, SQL Server needs to retrieve the

remaining columns. Thus, INDEX SEEK is performed on the newly table created and left join

it with the tuple obtained from the LOOKING UP operator (see Figure 4.78).

 Figure 4-78: EXP9 RID lookup operator

Once the joining is done, SQL Server uses the FETCH QUERY operator that “retrieves a

specific row from a Transact-SQL server cursor” (Microsoft, 2015n). This appears to deliver

the retrieved tuple(s) to the KEYSET CURSOR. Once the inserting data into KEYSET CURSOR is

done, SQL Server starts to call SP_CURSORFETCH procedure, which fetches one buffer each

time (Microsoft, 2015o) and it does this because SQL Server handles the update row by row

by using KEYSET CURSOR.

The difference between both systems in regards to EXP9 appears significant,

especially for SQL Server, whose approach causes a slow-running query. This will be

discussed further, with evidence, in a later section.

4.2.9.2 Comparison between RDBMS’

EXP9’s execution plans demonstrate that the maintenance of data integrity can be an issue

when a large dataset is involved which suggests that a relational database becomes less

effective in such a situation. However, this is not entirely the case and evidently Oracle

behaves differently and its approach to EXP9 causes fewer complexities than those that occur

Chapter 4 Result Analysis and Finding

133

in SQL Server’s approach. This section therefore outlines data about the performance of both

systems, noting that the data with respect to SQL Server are incomplete.

 Figure 4-79: EXP9 duration and CPU time in seconds.

The graph in Figure 4.79 does not indicate that Oracle finished EXP9 faster than SQL Server,

but rather it shows that the SQL Server keeps running for 86557 seconds or 24 hours before

the experiment was cancelled. However, Oracle takes 1357 seconds to run EXP9. Figure 4.78

also shows that the local Oracle instance consumed only 0.009 seconds of CPU time. Local

instance of SQL Server burned 166 seconds as CPU time.

Further, the remote Oracle VM is where the higher consumption of CPU time occurs.

SQL Server also appears to burn a significant amount of CPU time, which is very alarming

but, since the execution plan in Figure 4.72 shows the many steps that the execution goes

through, the increase in CPU time is obvious. Thus, many logical reads were performed as as

result of 87740 calls for a SP_CURSORFETCH procedure in order to carry out EXP9 in the

remote SQL Server VM. These calls occur within 24 hours. In terms of CPU time each call

consumes between zero and 15 ms.

SQL Server Oracle SQL Server Oracle
local local remote remote

Duration 86554 1,357 0 1352
CPU Time 166 0.009 882 239

0
100
200
300
400
500
600
700
800
900
1000

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

CP
U

 ti
m

e

Se
co

nd
s

Duration CPU Time

Chapter 4 Result Analysis and Finding

134

Figure 4-80: EXP9 logical reads and CPU.

Notably, the local SQL Server appeared to undertake a considerable number of logical reads

and it consumed 166 seconds of CPU time. Figure 4.80 illustrates the way EXP9 was carried

out. There appears to be communication occurring to check whether the PAPER_KEY which is

being updated equals the number that appears in WHERE clause. This does not occur in Oracle.

Oracle carried out EXP9 remotely which reduced network overhead on performance.

Physical and write reads can add further insights to understanding the situation of

EXP9, as follows:

 Figure 4-81: EXP9 I/O operations and average I/O latency.

SQL
Server Oracle SQL

Server Oracle

local local remote remote
logical reads 831865 9 373065421 11,248,000
CPU Time 166 0.009 882 239

0
100
200
300
400
500
600
700
800
900
1000

0
50000000

100000000
150000000
200000000
250000000
300000000
350000000
400000000

CP
U

 ti
m

e
in

 se
co

nd
s

nu
m

be
r o

f l
og

ic
al

 re
ad

s

logical reads CPU Time

SQL
Server Oracle SQL

Server Oracle

local local remote remote
physical reads 0 2 2325815 8582166
physical writes 1083 0 360075 2,306,460
Avg I/O latency ms 35 8 8 14

0
5
10
15
20
25
30
35
40

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000

10000000

Av
e

I/
o

la
te

nc
y

nu
m

be
r o

f I
/O

 o
pe

ra
tio

n

physical reads physical writes Avg I/O latency ms

Chapter 4 Result Analysis and Finding

135

It is difficult to explain why SQL Server’s local instance has to perform physical writes,

although it is normal practice for a physical write to occur when the update happens. This is

concerning because the subquery returns one tuple from DIM_PAPER table which does not

normally cause any need for a physical write. However, as this instance is where EXP9

originates from, then physical writes are probably because SQL Server keeps a record in its

transaction log of those updates that are occurring in the remote instance. Further, physical

writes that occur in the Oracle remote instance are a result of the update statement (See

Figure 4.81). The same applies to SQL Server when it performed 630075 physical writes

before the cancellation. Moreover, the average I/O latency shown in Figure 4.81 reflects only

an average read latency; average write latency in the remote instance is 26 ms for SQL Server

and 21 ms for Oracle per write.

The approach that SQL Server employs in EXP9 leads to an extensive use of a

temporary database because the data volume is 18 GB. Therefore, it has to use the disk to

insert them into a clustered index table, as follows:

 Figure 4-82: EXP9 TEMPDB I/O Operations and average latency.

While the number of physical reads is higher, as shown in Figure 4.82, its average I/O latency

is less than 10 ms. However, physical writes have a high I/O latency per write.

Physical reads Physical writes
Numbers 422152 302688
Avg I/O latency ms 8 44

0
5
10
15
20
25
30
35
40
45
50

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

Av
e

I/
O

 la
te

nc
y

nu
m

be
r o

f I
/O

 o
pe

ra
tio

ns

Chapter 4 Result Analysis and Finding

136

The way the SQL Server execute EXP9 does not appear to fit the situation of

distributed large datasets over cloud network. This is in contrast to how Oracle performs

EXP9, which does not cause significant performance issues as SQL Server does. Wait events

show that even where there is a smaller amount of data travelling the network, its overhead

still exists.

Figure 4-83: EXP9 SQL Server wait events.

Figure 4.83shows that there appears to be a high wait for the network to deliver data between

the two nodes in order to execute the update. This type of situation demonstrates that SQL

Server fetches a tuple from MYTABLE and sends it across the network to the local instance to

check whether or not the tuple adheres to the conditions in the subquery. Thus, local instance

accumulates a wait for network as 32% of the runtime. It has been mentioned that

ANSNC_NETWORK_IO is because of the slow consumption of rows by the local instance and the

network plays a role in such a wait. However, EXP9 shows that one tuple arrives at local

instance each time, which means that this tuple will be consumed as soon as it is received.

Therefore, network overhead is largely contributing to this wait and not only because tuples

are being consumed one at a time. The local instance shows that almost 32% of its time is

spent waiting for the data to arrive via the network, though this does not necessarily mean the

delay is caused by the network, since only one tuple is sent across the Internet each time.

49.56

32.12

%runtime

local OLEDB

remote
ASYNC_NETWORK_IO

Chapter 4 Result Analysis and Finding

137

This implies that this will accumulate a network wait whether or not the data are actually

travelling the network or the data are not yet on the network.

Oracle demonstrates a similar pattern about network overhead on performance, as

follow:

Figure 4-84: EXP9 Oracle wait events.

In previous experiments, the wait for data to arrive is overwhelming because there is actually

data crossing the network. However in EXP9, the network wait indicates that the local

instance is waiting for acknowledgment from remote VM. This is a normal wait, since Oracle

executes EXP9 remotely and the local instance accumulates time as it waits for the update to

finish. However, by totalling up I/O operation waits in remote VM, it shows that the VM

spends the majority of the runtime (45%) in I/O operations. Therefore, I/O is Oracle’s

bottleneck in EXP9.

However, it is nearly impossible to determine in SQL Server where most performance

issues come from although from the way it handles EXP9, issues exist. A different approach

was undertaken in order to investigate further SQL Server’s approach to updating queries.

This includes removing the subquery and instead choosing the PAPER_KEY value once from

46.23

4.364.16

25.95

17.02

1.91

%runtime local SQL*Net message from
dblink

local db file sequential read

local db file scattered read

remote db file scattered read

remote db file sequential read

remote direct path read

Chapter 4 Result Analysis and Finding

138

DIM_PAPER and passing it to an update procedure located in the remote instance. This ensures

that the two tables are indirectly joined.

4.2.9.3 Exp9 SQL Server second approach (SSSA)

The execution plans for both VMs are as follows:

Figure 4-85: EXP9 SSSA localSQL Server execution plan.

As shown in Figure 4.85, SQL Server performs Clustered Index Seek to get

PAPER_KEY that is to be updated from DIM_PAPER. It appears that SQL Server uses constant

scan operator as holder for the value of the parameter @PAPER_KEY (see Section 3.5.9, p. 64).

Table scan
Parallelism

(Gather streams) Table update update

Figure 4-86: EXP9 SSSA remote SQL Server execution plan for different approach.

Chapter 4 Result Analysis and Finding

139

Figure 4-87: EXP9 SSSA table scan

Once the remote VM receives the PAPER_KEY value, SQL Server carries out a table scan to

obtain the requested tuples (See Figure 4.87). In other words, passing the value to table scan

filters out those tuples whose PAPER_KEY value does not correspond to 13362. Such

execution plans suggest that based on this approach, EXP9 will not take long to finish.

 To find whether or not EXP9 SSSA is different from EXP9 with sub-query, one needs

to look at the following figure:

Figure 4-88: EXP9 SSSA duration and CPU time in seconds.

This approach results in a significant difference in performance (see Figure 4.88). By

removing the subquery, SQL Server runs for 500 seconds with less work occurring in the

SQL Server SQL Server
local remote

Duration 500 498
CPU Time 0.03 27

0

5

10

15

20

25

30

497

497.5

498

498.5

499

499.5

500

CP
U

 in
 se

co
nd

s

du
ra

tio
n

in
 se

co
nd

s

Chapter 4 Result Analysis and Finding

140

local instance, and with only 30 ms of the runtime consumed as CPU time. Moreover, CPU

time in the remote instance shows a dramatic decrease from 884 seconds with the subquery to

only 27 seconds without it.

Figure 4-89: EXP9 SSSA I/O Operations and average latency.

The remote instance appears to handle most of the work in this approach, and it takes 33 ms

on average per read and 48 ms on average per write. The local instance continues to

experience an issue with its cloud environment and, although SQL Server performs only two

physical reads, it took 22 ms on average per read. Figure 4.89 indicates that it is not always

the case that when there are more physical reads, average I/O latency increases, but rather the

PuC plays an important role in affecting the time required for I/O operations to complete.

Such effects can be both negative and positive. For instance, while the remote instance

outnumbers the local instance in terms of the number of physical reads, its average I/O

latency ranges from 8 ms to 59 ms and, in the local instance, it experiences as high as 208 ms

average per read and as low as 12 ms.

This approach shows multiple differences and the wait events that occurred are also

different, as follows:

SQL Server SQL Server
local remote

physical reads 2 2325748
physical writes 0 920824
Avg I/O latency ms 22 33

0

5

10

15

20

25

30

35

0

500000

1000000

1500000

2000000

2500000

Av
e

I/
O

 la
te

nc
y

nu
m

be
r o

f I
/O

 o
pe

ra
tio

ns

Chapter 4 Result Analysis and Finding

141

 Figure 4-90: EXP9 SSSA wait events

As shown in Figure 4.90, the remote instance waits for different wait events and, as an

example, 25% of runtime is spent on LATCH_EX. However, SQL Server defines this as

occurring “when waiting for an EX (exclusive) latch. This does not include buffer latches or

transaction mark latches,” (Microsoft, 2015f) which indicates that this wait event is not

related to I/O operation or data. Further, the remote instance waits for

ASYNC_IO_COMPLETIONT (14.56%) and, accompanied with PAGEIOLATCH_SH (25.15%), these

waits are disk-related waits because SQL Server defines ASYNC_IO_COMPLETIONT as

occurring “when a task is waiting for I/Os to finish” (Microsoft, 2015f) and PAGEIOLATCH_SH

as waiting for the data to be written into memory (Microsoft, 2015f). Therefore, with this

approach EXP9 is I/O bound.

21.1

21.1

26.04

25.15

15.12

14.56

%runtime

local MSQL_DQ

local OLEDB

remote LATCH_EX

remote PAGEIOLATCH_SH

remote CXPACKET

Chapter 4 Result Analysis and Finding

142

4.4 Findings

The aim of this research is to investigate relational database performance in a CC

environment using a non-optimised environment. Therefore, two RDBMS’ are chosen in

order to find out where the performance breakpoints are. The above analyses demonstrate that

relational databases as a data manipulation approach fall victim to two factors that cause them

to perform in a suboptimal manner. The first factor is the shortcomings in methods used by

RDBMS’ when executing queries over cloud network. These methods sometimes expose the

relational database to unnecessary network overheads. The second factor is that the PuC

environment creates a situation where poor performance observes in the relational database.

In conducting this research, nine experiments are created that any relational database

should be able to execute so that a variety of performance data could be obtained and

compared in an attempt to determine the factors that are involved in relational databases

becoming ineffective in operating in a PuC. Indeed, these experiments reveal significant

findings that are important for a wide range of stakeholders. The following sections outline

these findings.

Chapter 4 Result Analysis and Finding

143

4.3.1 Performance measures in Cloud Computing

The comparisons between both systems demonstrate an inconsistent pattern, as the relational

database performance is being evaluated in CDD. This is important because there are many

factors that play different roles, whether negative or positive.

Experiment System Local
physical read

numbers

Local average
I/O latency

ms

Remote
physical read

numbers

Remote
average I/O
latency ms

EXP1 SQL Server 171 12 2439171 10
Oracle 890 10 2019840 6

EXP2 SQL Server 2145 27 2325816 12
Oracle 1453 11 2019474 8

EXP3 SQL Server 7523 45 2325789 10
Oracle 3786 33 2019573 14

EXP4 SQL Server 44316 56 2523460 15
Oracle 988 14 2019541 15

EXP5 SQL Server 3 25 2474178 18
Oracle 5 23 2014059 15

EXP6 SQL Server 44316 54 2523,554 59
Oracle 38287 27 2019573 38

EXP7 SQL Server 1246 208 2622482 14
Oracle 916 13 4629901 16

EXP8 SQL Server 54329 72 2808983 15
Oracle N/A N/A 4644618 40

EXP8 OSA Oracle 991 16 2020096 24
EXP9 SQL Server N/A 35 2325815 8

Oracle 2 8 8582166 14
EXP9 SSA SQL Server 2 22 2325748 33

Table 4-1: Average I/O latency V. number of physical reads.

Table 4.1 reflects PuC effect on RDBMS’ performance. RDBMS’ are known to be I/O bound

and in some experiments, such as EXP7, the local SQL Server average I/O latency reaches as

high as 208 ms per read, even though the number of physical reads is not as high as reported

in remote VM. In local instances, such as EXP9 SSSA, the instance undertakes two I/O reads

but the I/O latency is 21 per read. Similarly, the remote Oracle instance in EXP7 performs a

higher number of I/O than it does in EXP6 but average I/O latency is less than in EXP6. Table

4.1 indicates that there is no relationship between number of physical reads and high average

I/O latency in a CC environment.

Chapter 4 Result Analysis and Finding

144

Further, the experiments conducted for this study demonstrate different patterns in

regards to WAN overheads on performance. This results in a situation where both systems

appear to experience different levels of WAN overhead; for example, although SQL Server

transfers a higher volume of data in EXP6, it finishes before Oracle (see Table 4.2 below).

Experiment System Network
traffic in MB

Runtime in
seconds

EXP1 SQL Server 0.162 89
Oracle 10 115

EXP2 SQL Server 125 359
Oracle 21 258

EXP3 SQL Server 0.244 111
Oracle 1011 17420

EXP4 SQL Server 1242 21706
Oracle 1584 39319

EXP5 SQL Server 823 14,993
Oracle 1019 20268

EXP6 SQL Server 2864 22353
Oracle 2572 37166

EXP7 SQL Server 8613 34890
Oracle 8198 72535

EXP8 SQL Server 3633 59118
Oracle N/A N/A

EXP8 OSA Oracle 187 4548
 Table 4-2: network traffic V. runtime

However, this is not always the case: in EXP2, SQL Server transfers a larger dataset and takes

longer time than Oracle. The table also shows that in EXP6 and EXP7, SQL Server transfers

lager datasets than Oracle but runs for a shorter time. In EXP7, SQL Server transfers the

largest datasets that it does in EXP8 but finishes faster. However more importantly, if the

network traffic does not stay under 22 MB, then the relational database will perform poorly.

Table 4.2 provides evidence that high network traffic does not always cause a long-

processing query.

Therefore, the experimental work in this study demonstrates that there is only one

performance measure that is consistent and this is only if the network traffic is 21 MB or less.

Table 4.1 and 4.2 indicate that performance measures that are employed exhibit varying

Chapter 4 Result Analysis and Finding

145

degrees of inconsistency. Therefore, H1 which states that there is no consistent measure of

performance when comparing RDBMS’ operating in CC is accepted.

4.3.2 Performance of RDBMS’ as CDD

This study considers that it is practical to deploy relational databases for large dataset tasks in

CDD. However, if they operate in a non-optimised environment then based on the foregoing

results their performance may not be desirable, especially in commercial environments where

tasks need to be finished in as short a time as possible. This does not appear to be achievable

unless more investments is made to optimise not only the hardware, but also the RDBMS’.

Further, although there is a perception that the database optimiser is smart, the cloud

environment network appears to intensify known difficulties of query optimisation in

distributed RDBMS’. The experiments conducted in this study reveal cases where the

decision-making regarding the choice of join operators leads to longer runtimes, and

significantly so in some cases. This choice of join operator is an important aspect in

improving performance, and EXP1 and EXP4 indicate that while both systems indicate that the

NESTED LOOPS join operator is the best choice if the joined data are not large and indexed,

Oracle employs it even though the incoming data are not indexed. This results in high CPU

consumption and contributes to both experiments taking longer time to run in Oracle than in

SQL Server. Among other factors, although SQL Server uses the SORT operator to index the

data implicitly, it consumes less CPU time and finishes faster.

Further, the results indicate that SQL Server is in favour of using the MERGE JOIN

operator and evidently, this occurs in seven out of nine experiments. That is, it is just EXP1

and EXP9 that SQL server does not use the MERGE JOIN operator. This operator requires all

inputs be sorted, which triggers the need to sort 100 million tuples every time the operator is

chosen. Oracle mostly uses the HASH JOIN operator and it causes Oracle to consume

significantly less CPU time. In addition, SQL Server’s remote instances have higher CPU

Chapter 4 Result Analysis and Finding

146

time than Oracle’s because the use of the SORT operator to satisfy the requirements of using

the MERGE JOIN operator. That indicates issues on the methods of query execution by SQL

Server in CDD.

Further, SQL Server executes EXP9 in a manner that causes a long-running query and

the highest CPU time of all nine experiments. That method does not well fit cloud

architecture. Evidently, when the subquery is removed in SSSA, the system does not display

performance issues. This is in addition to Oracle’s approach to EXP9, when Oracle does not

execute the query in the same way that SQL Server does and finishes in less time.

The findings indicate with known performance issues of distributed RDBMS’, these

shortcomings become magnified when RDBMS’ are deployed in CDD. Hence, multi-variate

data analysis is used to determine whether that there is any statistical evidence to support

these findings. A comparison of the two systems indicates that methods such as join operators

create performance issues in CDD if they are not used appropriately. To demonstrate this, the

following scatter plots are used.

Figure 4-91: SQL Server duration v. CPU time.

Chapter 4 Result Analysis and Finding

147

Figure 4.91 shows that there is a significant correlation between how RDBMS’ execute

queries in a CC environment and the increase in duration. For instance, in the top right of the

Fig 4.88, there is a cluster of 10 data points mostly located on the diagonal. At the bottom of

this cluster are points 9 and 10 (EXP5 local and remote VMs), and at the top of this cluster is

point 15 (local EXP8). All of these points show the effect of the decision made by the SQL

Server to use the MERGE JOIN operator, which triggers the need to use the sort operator.

Further, point 17 represents EXP9, where SQL Server consumes the highest CPU time

because of its implementation of EXP9 using the KEYSET CURSOR over cloud network. Point

19 shows EXP9 SSSA, and a large difference can be observed. Figure 4.92 (following) shows

the same data, but for Oracle.

Figure 4-92: Oracle duration v. CPU time

Figure 4.92 exhibits a different pattern from Figure 4.91, that is, the data points appear to be

randomly scattered around the diagonal. Figure 4.92 also shows that data point 7 (local EXP4)

is the longest CPU time among the experiments. Since the NESTED LOOPS join operator is

performed in non-indexed data, local EXP4 becomes the highest Oracle experiment in terms

of CPU time. Further, Figure 4.92 also shows that, with the MERGE JOIN operator, SQL

Chapter 4 Result Analysis and Finding

148

Server chooses to use a less suitable operator than the HASH JOIN operator, which Oracle

employs. This type of choice is especially significant when dealing with large datasets in

CDD.

Figures 4.91 and 4.92 provide evidence of the optimiser’s choice with respect to

which join operator to employ can negatively influence relational database performance over

a cloud network. To demonstrate this statistically, the following t-test was carried out.

Variable RDBMS N Mean Std. Deviation Std. Error Mean

CPULog 1.00 19 3.7543 3.05855 .70168

2.00 20 8.7025 2.17335 .48598

Table 4-3: T-test Descriptive

 Levene’s Test
for Equality of
Variances

t-test for equality of means

CPULog Equal variances
assumed

F Sig. df Sig.(2-
tailed)

Mean
Diff.

Std.
Error
Diff.

95% Confidence Interval of
the Difference
Lower Upper

1.222 .276 37 .000 -4.94822 .84617 -6.66273 -3.23370
Table 4-4: Independent Samples Test

The CPU time of both systems is used to examine statistically whether a difference results

from the systems’ execution of relational database queries in CDD. Oracle (noted in Table 4.

4 as 2) is associated with a CPU time of M = 3.75 and SD = 3.05. In comparison, SQL Server

(noted in Table 4.4 as 1) has a numerically higher CPU time of M = 8.70 and SD = 2.17. To

find out whether Oracle and SQL Server are associated with statistically significant different

mean CPU times, an independent sample t-test is undertaken. Before the test is performed,

the variable used was checked to ensure that its distributions were sufficiently normal (see

Section 3.7.1.1). In addition, the assumption of the homogeneity of variances was tested

using the Levene Test (see Table 4.4). Given that it shows that the significance level (0.276)

is greater than 0.005, this enables the conclusion that the variances in the samples are equal.

Chapter 4 Result Analysis and Finding

149

Further, the test shows that there is a statistically significant association, t value = -5.84, p =

0.000. The test indicates that SQL Server is associated with a statistically significant higher

CPU time than Oracle.

Further, there are cases where it has been demonstrated that the steps that the

RDBMS’ take to execute queries (for example, EXP9) generate I/O traffic that sometimes

cannot be understood. For instance, in EXP9, although updates occur in the remote instance,

the local SQL Server VM shows a high number of physical writes. Oracle does not cause

such operations, and neither does the second approach to EXP9. Therefore, for SQL Server, if

the updates do not occur in the local instance first, SQL Server keeps a record on the disk of

updates that take place in the remote instance. Even in experiments that do not aim to

perform modifications, SQL Server performs some physical writes. These can be seen in

EXP6, EXP7 and EXP8. Physical writes occur in EXP8’s local SQL Server instance and are

caused by performing ORDER BY clause on disk. However, in remote instances, the cause

behind these operations is not clear because while the SORT operator is in use, there are no

indications that SQL Server has to sort data on the disk. More importantly, these writes

perform in a shared and public cloud network which contribute to increase experiments’

runtime. Oracle, on the other hand, does not show any physical writes except in EXP8 and

EXP9.

In EXP7 and EXP8, Oracle uses SAMPLE table access, even though the SAMPLE clause is

not used. This study does not disagree with such use but it does indicate that this use affects

RDBMS’ performance over the cloud network by adding overhead related to I/O latency.

Oracle’s approach to EXP3 also affects performance since it requires a large dataset to travel

public and shared network in order to execute the query.

Chapter 4 Result Analysis and Finding

150

Therefore, the above discussion shows evidence from both the results side and from

the statistical perspective, that the query execution methods of RDBMS’ cause the systems to

work poorly in CDD when manipulating large datasets. This also leads to H2 which states

that “RDBMS’s execution of queries does not perform as expected when a large dataset is

distributed on a cloud network” being accepted, as the Sig. (2-tailed) value is less than the

significance level.

4.3.3 Influence of Public Cloud Computing network

This research is conducted on two different PuC systems using different workloads which

allows for the identification of their influence. The results indicate PuC environment is a

cause of performance for RDBMS’. For instance, SQL Server in EXP3 totals a wait of 12.43%

of the runtime for I/O operations to complete. Similarly Oracle in EXP2 and EXP9 reports a

total wait of 27.46% and 45% of the runtime for I/O reads to finish respectively. Further, the

local SQL Server instances generally experience a high average I/O latency, although they do

not process as large a dataset as the remote VM. However in this regard, Oracle, by contrast,

does not generally have a high average I/O latency. Sometimes the number of physical

operations in each system is close; however, average I/O latency is still high, as in the case of

EXP7, where the difference in physical reads in local instances is only 285 reads for SQL

Server, and the average I/O latency differs by 193 ms per read when compared to SQL Server

(see Table 4.1, p. 142).

Further, In EXP3, Oracle requires the data to be brought over the network before it

processes the query, although the count operation can be performed on the remote table. That

creates performance issues for RDBMS’ because of a lack of network capacity. Therefore,

EXP3 takes significantly longer to run in Oracle than in SQL Server (see Table 4.2, p. 143).

Further, in other experiments, Oracle demonstrates inconsistency in execution. In EXP7 and

EXP8 in particular, when, in addition to pulling the requested data to the local instance, it

Chapter 4 Result Analysis and Finding

151

sends some data to the remote instance as it does in EXP7. This approach increases CC

(WAN and I/O latency) overhead on performance.

 The above results show that both systems wait for the network to deliver the requested

data, although network wait appears overwhelming in Oracle. SQL Server sometimes runs

faster, even when it transfers larger datasets, and this is reflected in wait-related events that

never go beyond 50% of the runtime. In comparison, Oracle never drops below 60%. This

situation is also evident in the 90 samples of DTR (see Appendix C, pp. 206-208), which

suggests that SQL Server uses what appears to be a faster network route.

To demonstrate the WAN effect in a statistical manner, the following tests are carried

out, namely, a correlation and simple regression.

 Network traffic Log
Duration Log Pearson Correlation .928**

Sig. (2-tailed) .000
N 16

 Table 4-5: Correlation between Duration and Network Traffic

 (**. Correlation is significant at the 0.01 level (2-tailed)

 As Table 4.5 shows, there is a statistically significant correlation between duration and

network traffic. This relationship can be demonstrated as follows:

Chapter 4 Result Analysis and Finding

152

Figure 4-93: Duration v. network traffic.

The scatter plot shows that as network traffic increases, the duration also increases. It also

clusters experiments that transfer a high volume of data. It shows a linear trend, although

there are outliers in the lower left below the diagonal which represent data points where the

traffic size begins to exceed 100 MB (see Figure 4.93).

Further, a simple regression test produced the following result:

Coefficientsa

Model Unstandardised

Coefficients

Standardised

Coefficients

t Sig. 95.0% Confidence Interval for

B

B Std. Error Beta Lower

Bound

Upper Bound

1 (Constant) -4.887 1.462 -3.344 .005 -8.022 -1.753

networktrafficLog .692 .074 .928 9.325 .000 .533 .851

a. Dependent Variable: durationLog

Table 4-6: simple regression test

Table 4.6 indicates that the slope parameter is significantly different from zero at the level of

0.01. Thus, this is an important relationship between network traffic and duration. With 95%

confidence, Table 13 shows that with every unit increase in network traffic, there is an

increase in the duration between 0.533 and 0.851. Figure 4.94 (below) shows no major

departures from the straight line; therefore, the normality assumption is met.

Chapter 4 Result Analysis and Finding

153

Figure 4-94: Normality of simple linear regression test.

The foregoing discussion demonstrates multiple situations where the network overhead

appears and differs in a significant manner; it decreases only if less than 100 MB are

transferred. Also, Table 4.1, p. 142 provides evidence that the effect of PuC environment on

I/O latency is considerable. Therefore, the relational database that processes a large dataset is

constrained by the network, and it appears that the cloud computing environment is not the

best place for relational database deployment. Therefore, H3 is accepted: CC impacts

RDBMS’ due to network incapacities compared to n-tier architecture.

4.5 Conclusion

This research sought to test the following hypotheses:

H1: There is no consistent measure of performance when comparing RDBMSs operating in

cloud computing.

H2: RDBMS’s execution of queries does not perform as expected when a large dataset is

distributed on a cloud network.

Chapter 4 Result Analysis and Finding

154

H3: Cloud computing impacts RDBMSs due to network incapacities compared to n-tier

architecture.

 Nine experiments have been conducted to identify potential breakpoints in relational

databases performance in CDD. The experimental scenarios have represented all cases that

the available dataset support. They range from simple (EXP1) to complex (EXP9) queries

which have different applications to the relational database. This range facilitates the

identification of the following break points:

1. RDBMS’ demonstrate inconsistencies in performance measures when operating in

CDD.

2. Both RDBMS’ performed less well than expected when they choose the less

optimal join operators, although SQL Server does this more than Oracle.

Therefore, RDBMS’ perform less adequately in a CC environment.

3. In a large dataset of 100 million tuples, the sort operator causes a significant

performance issue. SQL Server employs the SORT operator when it uses the

MERGE JOIN operator. Therefore, this indicates that the RDBMS’ are involved in

the poor performance of relational databases in CDD.

4. SQL Server executed EXP9 in a suboptimal manner by employing KEYSET CURSOR

in a CC environment and by undertaking physical writes in instances where it

does not have to. This indicates that SQL Server does not perform subqueries

efficiently in CDD. This behaviour is not observed when the subquery is removed.

Therefore, the subquery should not be included in an update query in SQL Server

if a large dataset is hosted in different locations over cloud network.

5. With distributed databases becoming more common in practice, the network

overhead should be kept to a minimum. However, Oracle does not appear to fully

realise this, and it still required a large dataset to traverse the network prior to the

Chapter 4 Result Analysis and Finding

155

execution of the experiments, although Oracle does apply this method in specific

cases (see EXP3). Therefore, methods of query execution by RDBMS’ lead to

poorly performing relational databases in CDD.

6. Network overhead becomes worse when more than100 MB of data travel through

the network. But this does not eventuate when the data volume is 21 or less MB.

7. PuC network is a source of performance issues because many users share the use

of the underlying infrastructure and the access to internal cloud network. This

effect is demonstrated in the difference in average I/O latency between local and

remote instances and I/O wait events. Oracle’s use of SAMPLE table access appears

to intensify such performance overhead.

These points indicate that even if the relational database operates in an optimised system, the

WAN overhead becomes significant and cannot be predicated once the traffic goes over 21

MB. Chapter 5 discusses the significance of these findings.

Chapter 5 Discussion

156

Discussion

5.0 Introduction

Chapter 4 provides detailed explanations for the experimental work that this research

undertakes, aimed at identifying performance issues of RDBMS’ in cloud-distributed

database. Chapter 5 presents the findings of this research in order to show their significance

to the research community and to those who develop RDBMS.

 Section 2.3 demonstrates that further investigation is required to enhance

understanding of the application of RDBMS’ in data management. RDBMS’ are an effective

tool for data manipulation however the amount of data needing to be stored continues to

increase rapidly which creates new challenges for them. Relational databases have existed for

nearly 50 years; however, given the way they are implemented, systems such as NOSQL are

able to step in and take the attention in data management (see Section 2.1.2). Therefore, the

primary focus of the present study is to examine the performance of relational databases in

CDD when dealing with large datasets in order to determine whether the deployment of

RDBMS’ in CC leads to poor performance.

Notably, the results show an incremental pattern that indicates there is a main driver

behind this pattern, which is data volume, for example, Section 1.0 provides an extrapolated

data growth of around 7.2 zetabytes by 2015. In order to highlight processing and

management issues that contribute to RDBMS’ performance issues in CDD, nine experiments

have been performed on two RDBMS’ using a large dataset.

Chapter 5 Discussion

157

This research employs 18 GB and observes multiple cases where the performance

does not appear to be satisfactory. The results indicate that network overhead can only be

avoided if the network traffic is low and that the query optimisation implementation

approaches of RDBMS’ in CDD result in reduced performance. In addition the RDBMS’

used in the experiments exhibit varying and different problem areas.

This chapter contains 6 sections. This section which is the introduction of the chapter.

Section 5.1 discusses the findings of this research that are related to performance measure in

CDD. Section 5.2 clarifies on the findings in relation to RDBMS performance as CDD.

Section 5.3 explains the findings that are related to CC effects on RDBMS’ performance.

Section 5.4 provides a discussion of to explain the findings in relation to the difference

between the performance of RDBMS’ in cloud architecture compared to n-tier architecture.

Section 5.6 concludes Chapter 5.

5.1 Performance measures in Cloud Computing

This section discuss the finding that is related to RDBMS’ performance measures in CDD. It

also provides answer to research question 1 and 2.

This research assumes that RDBMS’ are originally developed to operate on n-tier

architecture, and it also assumes that these systems would have high performance if the same

experiments are carried out on such architecture. In this regard, CC creates different

challenges for RDBMS’ and based on the results presented in Chapter 4, they are negatively

affected. For instance, the findings indicate that although the experiments vary in how many

physical reads they require for execution, they differ significantly in average I/O latency. As

seen in EXP7’s local SQL Server, and this average contributes to prolonging the duration (see

Table 4.1, p. 142). I/O latency is a particularly significant factor to consider in relation to

technologies such as RDBMS’ because these systems are I/O bound. Moreover, EXP8 shows

Chapter 5 Discussion

158

extensive disk use, as RDBMS’ have to use it to perform the ORDER BY clause, which orders

100 million tuples in SQL Server (see Section 4.2.8). Even after the number of tuples is

reduced to 10 million rows, RDBMS’ order the data on the disk and, in both cases, this

occurs because of insufficient memory size. While the non-optimised environment is

intentionally used in this research, it reflects the situation of relational databases that have to

use disk/s when the shared, public environment combines to negatively affect performance.

Fortunately, as the remote instances perform higher significantly higher number of physical

reads but they do not experience as high average I/O latency as local instances, indicating

inconsistency between performance measures which is in line with the finding of Gunarathne

et al. (2010). Based on I/O latencies reported in Table 4.1, p. 142, experiments’ runtime

would be longer if remote VMs experience as high average I/O latency as local VMs.

The present study uses seven performance measures runtime, CPU time, disk

operations, average I/O latency, number of logical reads, network traffic and wait events

which enables it to form a more complete picture. These measure enable the research to

investigate the performance of RDBMS’ in CDD that deal with large datasets. For instance,

Kohler and Specht (2014) uses runtime, number of tuples returned as performance measures

and they indicate there is an associated overhead of table joins in a CC environment. Since

this study uses CPU time and compares it between two RDBMS’, it identifies the cause

behind such overhead (see Section 5.2 & Section 5.4 below). Also, the use of wait events,

average I/O and network traffic enables the present study to show the effects of cloud

infrastructure on performance (see Section 5.3 below). Therefore, this provides answers for

Q1: What are performance measures that can be applied to examine RDBMS’ performance in

CC? and Q2: Are the measures related to Q1 valid for measuring RBDMS’ in the cloud when

large datasets are being manipulated.

Chapter 5 Discussion

159

5.2 Performance of RDBMS’ as CDD

This section carries out discussions about the findings related to RDBMS’ performance in

CC, and it provides an answer to Q3.

Aimed at examining the performance of relational databases dealing with large

datasets in clouds, Chapter 2 outlines two propositions that reveal a significant body of

knowledge. They show evidence that either RDBMS’ need change or that new RDBMS’ are

created. However, the work reveals that to a large extent, RDBMS’ are involved in creating

performance issues, and given the current implementation approaches of relational databases,

they are not suitable for processing large datasets in CDD.

Large datasets are a reality and their size continues to increase. In Section 2.1.2 it was

stated that query optimisers do not appear to perform well in a distributed environment.

These results provide further evidence that RDBMS’ are not suitable for large dataset

processing in a distributed, cloud-based environment. Although RDBMS’ should provide the

best execution plan, this experimental work shows otherwise; instead, the chosen plans tend

to increase the performance overhead. If one examines the number of tuples that both systems

deal with in this research, in most cases the RDBMS’ do not provide acceptable performance.

For instance, in six out of nine experiments, SQL Server chooses the MERGE JOIN operator,

which does not appear to improve performance although the RDBMS vendor claims that it is

the fastest join operator. Likewise, Oracle’s choice of NESTED LOOPS in EXP5 appears to

contribute significantly to a long running query, although its choice of the HASH JOIN

operator appears to perform better than the MERGE JOIN operator.

Relational databases usually require two or more tables to be joined in order to

execute the task at hand, which becomes a challenge when a large dataset is involved. Unless

RDBMS’ deal with small datasets, as shown in EXP1 and EXP2, then they have difficulty

Chapter 5 Discussion

160

making joins. An important part of NOSQL design is that it avoids the joining of tables (see

Appendix E), which suggests that table joins create a performance overhead. This research

shows that RDBMS’ operating in CDD make inappropriate decisions that lead to this

overhead.

In addition, RDBMS’ choose execution plans that, instead of providing optimal

performance, these plans contribute significantly to degrading the performance. For both

systems, sorting data is an expensive task. This is important because large datasets are a

reality, and the systems appear to run less efficiently than is required for the purpose of large

dataset processing in a cloud-based environment.

The steps that SQL Server undertakes in EXP9, which uses KEYSET CURSOR (see

Section 2.4.9) indicates that including a sub-query in update statements in SQL Server causes

significant performance in a CC environment. More importantly, SQL Server perform

physical writes where it does not have to, especially when the query does not intend to update

the parent table and a cascade update is not required. Certainly, sub-queries in update

statements are not always an issue if they proceed in a manner that fits CDD as Oracle’s

approach. However, SQL Server’s approach to EXP9 does not fit CDD and this is evident this

appears when the sub-query is removed in EXP9 SSSA.

In EXP3, the system does not execute the aggregation query remotely, Oracle requires

data to be brought via the network from remote instance before continuing with the query.

Such decision becomes problematic in a CC environment since the network impedes the

performance of the systems. Thus, RDBMS’ operating in CDD face the challenge of unstable

Public Cloud network and they appear to cope less well.

This research supports Chen et al.’s (2010) claim that the relational data model

negatively impacts performance, because the findings of this research indicate that any

Chapter 5 Discussion

161

performance weaknesses in RDBMS’ are magnified when the system is installed in the cloud.

Moreover, this research’s findings are consistent with Batra and Tyagi (2012), Kohler and

Specht (2012), Durham, Rosen and Harrison (2014) and Sanders and Shin (2001), who

believe that there is an associated overhead with joining tables in RDBMS’, and that table

RDBMS’ do not efficiently perform table joins in CDD when large datasets are involved.

NOSQL performs better than RDBMS’ when no cross-reference is involved (see Appendix

E). Further, consistent with Kalnis and Papadias (2003) and Chaudhuri (2012b), this research

presents quantitative and statistical evidence that there are issues with the underlying

algorithms that choose the execution plans, and these issues make the systems unfit for the

purpose of processing large distributed datasets in a cloud-based environment.

Liu and Yu (1993) state that there is a need to investigate whether there is a role for

the RDBMS’ in choosing an unsuitable execution plan in distributed databases. The present

study indicates the problem is that execution plans are not optimised for distributed cloud

environments and significantly worsens the situation of RDBMS’ processing large datasets.

Consistent with Dokeroglu, Bayir and Cosar (2015), this research finds that sub-queries

create performance issues in CDD if they are carried out as SQL Server does in EXP9, and

that the way some RDBMS’ implement other queries (such as EXP3 in Oracle) as CDD

indicates that these systems have deficiencies.

These discussions reveal the evidence that (1) there appears to be issues with the

underlying algorithms that choose execution plans. These algorithms do not provide optimal

plans that fit CC environment and (2) there appears to be deficiencies with implementing

these plans in cloud environment. Therefore, Q3 which asks “what evidence exists that

RDBMS’ are creating significant performance issues in a cloud-computing environment” is

answered.

Chapter 5 Discussion

162

 These evidence provide that current RDBMS’ are less useful in dealing with large

datasets in CDD. However, RDBMS’ have relatively reasonable performance when there is

no joining of large datasets, and when sub-queries are avoided in SQL Server. If H2 is

rejected, then RDBMS’ perform with no issues as CDD, and manipulating data of any

volume poses no major challenges.

5.3 Influence of Public Cloud Computing network

The results of the examination of RDBMS’ performance indicate that RDBMS’ do not

perform well when dealing with large datasets in a CC environment. Conducting experiments

of CDD using large datasets is a time-consuming task and produces long-running queries.

Importantly, the results reveal that data movements across nodes in a cloud environment

should be kept to a minimum otherwise RDBMS’ performance cannot be predicted.

In line with Kohler and Specht (2014), Durham, Rosen and Harrison (2014) and

Thakar et al. (2011), the network overhead becomes significant as the data size increases.

Further, this research reveals that relational databases do not display performance issues

when the size of the dataset travelling the network is 21 MB or less. This is consistent with

Kohler and Specht (2014) whose dataset is not as large as the data size employed in the

current study. The authors show evidence that they do not observe similar performance issues

when their experimental work is conducted off the cloud.

This research agrees with Hacigumus et al. (2010) in that relational database

deployment in the cloud requires further investigation to solve the issues that lead to the

current situation. It also agrees with Liu, Xia, Shroff and Zhang (2013) in that RDBMS’ do

not fit the purpose of large dataset manipulation in a cloud-based environment. The causal

relationship examined in the present study provides evidence that there is a significant

Chapter 5 Discussion

163

correlation between network traffic and runtime. In addition, a simple regression test shows

that the model explains 0.86 of the data variation.

Businesses usually want to receive a response as soon as possible, and based on the

environments employed in this research, this does not happen. The findings do not agree with

those of Minhas et al. (2008), because although they conclude that there is an overhead in I/O

performance associated with running databases in clouds, such overhead is 10% or less of the

runtime. This research demonstrates that the overhead is quite significant when a large

dataset is being manipulated. For instance, Oracle VMs in EXP2 and EXP9 and SQL Server

in EXP3, the overhead of cloud environment on I/O performance is 27.46%, 45% and 13.43%

of runtime respectively. Table 4.1, p. 142 shows that local SQL Server VM in EXP7

performed 1246 physical reads with an average latency of 208ms per read. This means that

the total average is four minutes. The table also demonstrates that the systems perform over

two million physical reads in EXP6 and the average I/O latency is 59 ms for SQL Server and

38 ms for Oracle. These results are consistent with Thakar et al. (2011) who indicate that PuC

environment affects the performance of RDBMS’ in terms of I/O latency and in line with Li,

Yang, Kandula and Zhang (2010), who find high variations in performance between different

public providers.

Add to that, a number of previous works examine whether virtualisation software

affects the performance of different database systems using benchmarking tools (see Section

2.4.2). The findings of this research indicate that measuring relational database performance

using tools that are not originally developed for CC does not draw a complete picture, which

is in line with the findings of Curino et al. (2011) and Binnig et al. (2009).

Although the present study relies on secondary data because of its limitation in terms

of the difference between performance in and off the cloud, the research indicates CC

negatively influences RDBMS’ manipulation of large datasets and results in significant

Chapter 5 Discussion

164

performance issues when the data travel across the Internet. A shared and PuC environment

also impacts RDBMS’ performance negatively especially when RDBMS’ are I/O bound.

These points therefore, answers Q4 that asks “What influence does CC have on relational

database performance” and provide evidence that RDBMS’ as CDD are not only I/O bound

but also become network bound.

If H3 is rejected then this means that there are no major issues in the cloud network

and that any large dataset can traverse the network with fewer problems and average I/O

latencies are shorter than reported in Table 4.1, p. 142.

 5.4 Cloud architecture VS n-tier architecture

This research relies on secondary research that show RDBMS’ generally perform better on n-

tier architecture.

Section 1.0 explains the aim of this thesis; that CC creates a different environment for

RDBMS’ and this work is undertaken to test their performance in such an environment. As

Section 1.0 indicated, distributed RDBMSs normally deploy over n-tier architecture on

specifically designed infrastructure and that they connect their nodes on server(s) using

significant network bandwidths. Despite this, distributed RDBMS’ still suffer from

performance issues and this is before CC existed (see Section 2.2.3). PuC architecture on the

other hand, provides a shared pool of computing resources that provide alternatives to n-tier

architecture and also relies on shared and limited bandwidths, for both internal and external

networks (see Section 1.0 and Section 1.1). Figure 4.91, p. 145 and Figure 4.92, p. 146

represent the performance of the RDBMS’ query execution plan choices and implementations

over the PuC network where they demonstrate significant differences between the systems.

An independent t-test (see Table 4.4, p. 147) also shows that SQL Server is associated with a

higher CPU time than Oracle that is statistically significant. Table 4.1, p. 142 also indicates

Chapter 5 Discussion

165

the effect of public and shared environment on I/O performance using average I/O latency.

The situation observed in Oracle’s handling of EXP3 also points to the difficulties that the

RDBMS’ faced when operating in CDD. Add to that the effect of WAN on performance,

which is represented by the causal relationship between network traffic and the experiments’

runtimes (see Table 4.5, p. 150).

Section 2.3.2 provides proposals aimed at making RDBMS’ fit for cloud deployment.

In line with Thakar et al. (2011), Bose, Mishra, Sethuraman and Taheri (2009), and Kohler

and Specht (2014) whose studies show that RDBMS’ run better on n-tier architecture. And,

consistent with Dokeroglu, Bayir and Cosar (2015) who propose new algorithms to help

cloud relational databases make better choices when creating execution plans, the results of

this investigation indicate that since CC architecture is different from n-tier architecture,

RDBMS’ that appear to have been developed originally to operate on n-tier architecture are

not performing optimally. This explains why any issues with distributed RDBMS’ are

intensified in CDD. This also verifies the assumption made in Section 1.3 that the RDBMS’

are optimised for use in n-tier architecture.

5.5 Implications for developers

The use of relational databases goes back nearly 50 years (see Section 2.1), the present study

identifies some break points that current RDBMS’ experience when dealing with large

datasets in CDD. Before CC came into existence, deploying distributed databases posed a

variety of challenges, such as network overhead and issues relating to optimisation methods

(see Section 2.1.2). The present study provides evidence that these challenges are intensified

in a CC environment and RDBMS’ show deficiencies in both the choice and implementation

of execution plans.

Chapter 5 Discussion

166

Further, together with the appearance of NOSQL systems, there is growing interest in

investigating the relational data model in order to determine whether it is the cause of this

situation of RDBMS’ in CDD. Certainly, joining tables creates a performance overhead;

however, only the RDBMS’ make decisions about which join operators to use and the cloud

network appears to exacerbate the difficulties. Sub-queries are also a cause of performance

issues; however, SQL Server could have avoided these issues and executed EXP9 remotely,

instead of what is observed in EXP9. Nevertheless, consistent with Litchfield and Althouse

(2014), the present study implies that there are issues with the model’s architecture because

no major issues in performance are observed when no joins are performed. This is especially

significant because the present study reveals some issues with RDBMS approaches when

dealing with large datasets in CDD. Section 2.1.2 shows examples of how the management of

relational databases might take place in CC. The examples mostly focus on how to achieve

scalable relational databases by data partitioning, reducing I/O overhead and applying ACID

properties inside the partition. The experiments conducted in this research show the

performance overhead associated with tables join, and Kohler and Specht (2014) describe

how it is the join of data after they are partitioned that is a source of performance overhead.

Further, unless the amount of the data to be joined is small, as in EXP1 and EXP2, then join

overheads appear.

Further, Section 2.1.2 provides suggestions regarding how ACID properties can be

applied in CDD. However, this research implies that choosing a suboptimal join operator not

only causes high CPU time consumption, but also a high number of logical reads. Not only

the join operator that can cause high logical reads, but also the way that a database system

executes a query, and evidently SQL Server’s implementation of EXP9 leads to such a

situation. High logical reads mean that the RDBMS’ are doing more work, therefore

increasing the runtime. They also create latches that may lead to contentious on resource

Chapter 5 Discussion

167

demands. When this situation occurs in CDD then performance degrades further because of

the time that it takes for the RDBMS’ to wait for a response over a network (such a network

as that which exists in a cloud architecture). This is one reason why ACID compliance poses

a challenge for users who want to have a scalable relational database in a CC environment.

5.6 Conclusions

This chapter provides clarification on the findings stated in Chapter 4 by comparing and

contrasting them with the existing body of knowledge outlined in Chapter 2. It also provides

answers to the research questions. Moreover, it shows the implications for developers.

The findings discussed in this chapter reveal some break points in the performance of

RDBMS’ in CDD that indicate issues relating to choosing execution plans and how these

plans are implemented. These issues are a consequence of an RDBMS’ having been

originally optimised for deployment over n-tier architecture, and this is different from a

CDD. This study shows the implications of architectural issues in the relational data model,

with the findings showing that RDBMS’ are involved in poorly performing databases. This

research adds to the knowledge of distributed databases in that, when there is large dataset

being manipulated, one can expect similar issues, especially in a CDD, relating to network

factors or variations in the performance of public cloud providers. However, if these systems

deal with smaller datasets, they do not exhibit significant performance issues. Chapter 6

brings this thesis to a close and provides a summary of the findings discussed in Chapter 5.

The conclusion leads to future research opportunities resulting from this research. For

instance this research implies there exists architectural issues in relational data model that

they are worthy exploration.

Chapter 6 Conclusion

168

Conclusion

This study investigates the performance of RDBMS’ in CDD. Its contributions are posited to

be especially relevant for those researching Information Systems. Chapter 6 provides an

overall conclusion to the study. Section 6.1 offers retrospective analysis for the main findings

that this study reveals. Section 6.2 provides some future research direction. Section 6.3

explains the research limitations. Section 6.4 concludes Chapter 6.

6.1 Retrospective analysis

This section reviews the results of the experiments and the discussions that are presented in

Chapters 4 and 5. Section 6.1.1 provides a summary of the findings related to the research

questions: RQ1 “What are performance measures that can be applied to examine RDBMS’

performance in CC?” and RQ2: “Are the measures related to RQ1 valid for measuring

RDBMSs in the clouds when large datasets are being manipulated?”. These questions were

derived from what was considered to be inadequate research on performance measures of the

deployment of RDBMS’ as CDD. Section 6.1.2, which is largely related to RQ3 “What

evidence exists that RDBMS’ are creating significant performance issues in a cloud-

computing environment?”, summarises the RDBMS’ breakpoints in CDD. Then RQ4 “What

influence does CC have on relational database performance” which is related to the role of

the cloud network on the performance of RDBMS’ is summarised in Section 6.1.3.

6.1.1 Performance measure in Cloud Computing

Seven performance measures are selected which allows this study to consider multiple

variables contributing to the performance of RDBMS’ in a cloud-based environment. For

example the factors that drive CPU time are different from the factors that create I/O latency.

Chapter 6 Conclusion

169

Also, the use of just one performance measure, runtime, is too all-encompassing. Therefore a

more complete picture about the performance issues is drawn from this selection of the

performance measures.

Further, the observed inconsistencies between performance measures reflect the

situation of PuC. They indicate that for RDBMS deployment, PuC negatively impact the

performance of RDBMS’ therefore, unless RDBMS’ adjust to fit PuC, such deployment

should be avoided.

6.1.2 Performance of RDMS’ as CDD

CDD create an environment where RDBMS’ do not fit well. That is because RDBMS’ are

normally run on n-tier architecture and these systems face different challenges in CDD. These

challenges are reflected in how RDBMS’ handle research experiments and the distribution of

the chosen database across the public cloud network helps to identify clearly that with the

current condition of RDBMSs, PuC is not the best environment for them. The use of large

datasets also reveals some issues regarding the way RDBMSs handle queries in PuC.

RDBMS’ are supposed to provide the most optimal execution plans and these plans should

aim first at reducing the communication cost of the network. Instead, they appear to expose

the performance to increased transaction costs. That indicates that RDBMS’ are not

optimised for use in PuC. Further, the query optimisation methods of RDBMS’ suffer from

issues arising from the choice of what join operator to use for joining large relations. Previous

research (see Section 2.4.2) indicates that these systems perform better on n-tier architecture,

and this study shows that PuC makes the RDBMS’ choice of best join operator even harder.

In fact, if these methods are unable to reduce network overhead on performance, they are

necessarily unable to perform satisfactorily as CDD.

Chapter 6 Conclusion

170

6.1.3 Influence of Public Cloud Computing network

As described in Section 2.1 CC features by running in a virtualised environment and its VMs

are generally connected using WAN. This study indicates that the deployment of RDBMS’ in

such an environment should be avoided. That is because firstly, shared computational

resources cause performance issues for RDBMS’ particularly when they are I/O bound. This

research observes a measure as high as 208 ms for average latency per physical read and as

high as 360 ms per physical write. Finally, the network overhead quantified in this research is

significant and therefore RDBMS’ in PuC have become network-bound in addition to being

already I/O bound.

6.1.4 Cloud architecture vs n-tier architecture

Section 1.0 explains the difference between cloud and n-tier architecture which can be

summarised as instead of relying on specifically designed physical hardware such as that

found in distributed RDBMSs’ n-tier architecture the CC environment replaces such

architecture with virtualisation solutions. To function, both architectures need networks but

they differ from one another; n-tier architecture has significant network capability and CC

architecture has a limited and shared network. The reported results reveal that RDBMS’

perform poorly as CDD and that is because these systems are not optimised to run on the

cloud architecture.

6.2 Further work

 The findings of this research are a starting point to verify whether the approach of Shao,

Liu, Li and Liu (2015) can lead to improving query optimisation in a distributed environment.

If so, it may be worth extending this to CDD. Although their work is partly motivated by

increasing higher performance requirements and uncertainty about which elements affect the

performance most, their approach would have to deal with even more uncertainty in CDD.

Chapter 6 Conclusion

171

The present study is conducted without using any performance enhancements. This

provides a chance to redo the stated experiments but also with performance enhancements in

and off the cloud so that comparisons between these works can be undertaken. More

importantly, once this research is redone then both results would be useful in determining the

architectural issues with the relational data model. This would also mean conducting the same

experiments on non-relational database systems such as NOSQL so that rigorous

determination can be achieved.

6.3 Research limitations

This thesis faces multiple limiting factors. Firstly, the research originally aimed to use a

larger dataset for the experiments. However, in both systems, most of the experiments took a

long time to run and often they did not finish due to network failures. That means that

experiments could not readily be compared and, therefore, fulfilling the purposes of the study

became even harder. Secondly, time and financial constraints prevent the research from

conducting the experiments on n-tier architecture.

6.4 Conclusion

The present thesis achieves its purpose by demonstrating how RDBMS’ perform as CDD

when processing large datasets. The research conducts 9 experiments on two database

systems and compares the results between these systems. The research also uses statistical

methods to examine its results and finds statistical evidence that supports its findings.

 This study clearly indicates the negative impact on performance that current RDBMS’

experience when deploying in a CC environment. That is they do not operate as efficient as

required in such environment. Also, this research concludes any performance weakness with

distributed RDBMS’ are intensified in Cloud-based environment so that current RDBMS are

Chapter 6 Conclusion

172

not optimised to run as CDD. Furthermore, the findings of this investigation indicate the

effects of public and shared environment on RDBMS’ performance are significant.

The results of this research reveal cases where approaches by which queries were

executed led to significant performance struggles as is the case for Oracle in EXP3 and for

SQL Server in EXP9. Therefore this research recommends that the architecture and design of

relational database system should be altered to fit the characteristics of CC. Another

recommendation is that CC is an environment containing many factors that could be

advantageous or disadvantageous for RDBMS’. Some factors cannot be controlled for such

as infrastructure capacity and WAN. Therefore, since RDBMS’ rely on table joins, then they

should be deployed only on private cloud to reduce the overhead of shared computational

resources on performance. If they are distributed databases then WAN should also be avoided

and, instead, the nodes should be connected using a private communication channel.

173

References

Aboulnaga, A., Salem, K., Soror, A. A., Minhas, U. F., Kokosielis, P., & Kamath, S. (2009).

 Deploying Database Appliances in the Cloud. IEEE Data Eng. Bull., 32(1), 13-20.

Anderson, T., Breitbart, Y., Korth, H. F., & Wool, A. (1998, June). Replication, consistency,

 and practicality: are these mutually exclusive?. In ACM SIGMOD Record (Vol. 27,

 No. 2, pp. 484 495). ACM.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., ... & Zaharia, M.

 (2010). A view of cloud computing. Communications of the ACM,53(4), 50-58.

Arora, I., & Gupta, A. (2012). Cloud Databases: A Paradigm Shift in Databases.

 .International Journal of Computer Science Issues (IJCSI), 9(4).

Batra, S., & Tyagi, C. (2012). Comparative analysis of relational and graph databases.

 International Journal of Soft Computing and Engineering (IJSCE), 2(2), 509

 512.Chicago

Bachman, C. W. (1969). Data structure diagrams. ACM Sigmis Database, 1(2), 4-10.

Benson, T., Akella, A., & Maltz, D. A. (2010, November). Network traffic characteristics of

 data centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on

 Internet measurement (pp. 267-280). ACM.

Binnig, C., Kossmann, D., Kraska, T., & Loesing, S. (2009, June). How is the weather

 tomorrow?: towards a benchmark for the cloud. In Proceedings of the Second

 International Workshop on Testing Database Systems (p. 9). ACM.

Bell, G., Hey, T., & Szalay, A. (2009). Beyond the data deluge. Science,323(5919), 1297

 1298.

174

Bouras, C. J., & Spirakis, P. G. (1996). Performance modeling of distributed timestamp

 ordering: Perfect and imperfect clocks. Performance evaluation,25(2), 105-130.

Bose, S., Mishra, P., Sethuraman, P., & Taheri, R. (2009). Benchmarking database

 performance in a virtual environment. In Performance Evaluation and

 Benchmarking (pp. 167-182). Springer Berlin Heidelberg.

 Buyya, R., Yeo, C. S., & Venugopal, S. (2008, September). Market-oriented cloud

 computing: Vision, hype, and reality for delivering it services as computing utilities.

 In High Performance Computing and Communications, 2008. HPCC'08. 10th IEEE

 International Conference on (pp. 5-13). IEEE.

Carey, M. J. (2013). Bdms performance evaluation: Practices, pitfalls, and possibilities.

 In Selected Topics in Performance Evaluation and Benchmarking (pp. 108-123).

 Springer Berlin Heidelberg.

Cattell, R. (2011). Scalable SQL and NoSQL data stores. ACM SIGMOD Record, 39(4), 12

 27.

Chaudhuri, S. (1998, May). An overview of query optimization in relational systems.

 In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on

 Principles of databasesystems (pp. 34-43). ACM.

Chaudhuri, S., Dayal, U., & Narasayya, V. (2011). An overview of business intelligence

 technology. Communications of the ACM, 54(8), 88-98.

Chaudhuri, S. (2012, May). What next?: a half-dozen data management research goals for big

 data and the cloud. In Proceedings of the 31st symposium on Principles of Database

 Systems (pp. 1-4). ACM.

175

Chen, C., Chen, G., Jiang, D., Ooi, B. C., Vo, H. T., Wu, S., & Xu, Q. (2010). Providing

 scalable database services on the cloud. In Web Information Systems Engineering

 WISE 2010 (pp. 1 19). Springer Berlin Heidelberg.

Codd, E. F. (1970). A relational model of data for large relational database. Communications

 of the ACM, 13(2), 377-387.

Cooper, B. F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H.

 A., ... & Yerneni, R. (2008). PNUTS: Yahoo!'s hosted data serving

 platform. Proceedings of the VLDB Endowment, 1(2), 1277-1288.

Connolly, T. M., & Begg, C. E. (2005). Database systems: a practical approach to design,

 implementation, and management. Harlow, England: Pearson Education.

Cramer, D. & Howitt, D. (2004). The Sage dictionary of statistics: a practical resource for

 students in the social sciences. Thousand Oaks:Sage.

Curino, C., Jones, E. P., Popa, R. A., Malviya, N., Wu, E., Madden, S., ... & Zeldovich, N.

 (2011). Relational cloud: A database-as-a-service for the cloud.

Das, S., Agrawal, D., & El Abbadi, A. (2009). ElasTraS: An elastic transactional data store in

 the cloud. USENIX HotCloud, 2.

Dokeroglu, T., Bayir, M. A., & Cosar, A. (2015). Robust heuristic algorithms for exploiting

 the common tasks of relational cloud database queries. Applied Soft Computing, 30,

 72-82.

Doty, D. H., & Glick, W. H. (1994). Typologies as a unique form of theory building: Toward

 improved understanding and modelling. Academy of management review, 19(2), 230

 251.

176

Durham, E. E., Rosen, A., & Harrison, R. W. (2014, December). Optimization of relational

 database usage involving Big Data a model architecture for Big Data applications.

 In Computational Intelligence and Data Mining (CIDM), 2014 IEEE Symposium

 on (pp. 454-462). IEEE.

Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Selecting empirical methods

 for software engineering research. In Guide to advanced empirical software

 engineering (pp. 285-311). Springer London.

Eriksson, P. (2015). A new approach for Enterprise Application Architecture for Financial

 Information Systems: An investigation of the architectural implications of adopting

 serialization and RPC frameworks, NoSQL/hybrid data stores and heterogeneous

 computing in Financial Information Systems.

Feuerlicht, G., & Pokorný, J. (2013). Can Relational DBMS Scale Up to the Cloud?.

 In Information Systems Development (pp. 317-328). Springer New York.

Ferris, J. M. (2015). U.S. Patent No. 8,984,505. Washington, DC: U.S. Patent and Trademark

 Office.

Frerking, G., Blanton, P., Osburn, L., Topham, J., DelRossi, R., & Reisdorph, K. (2004). U.S.

 Patent Application 10/935,514.

Ganapathi, A., Chen, Y., Fox, A., Katz, R., & Patterson, D. (2010, March). Statistics-driven

 workload modeling for the cloud. In Data Engineering Workshops (ICDEW), 2010

 IEEE 26th International Conference on (pp. 87-92). IEEE.

Geelan, J. (2009). Twenty-one experts define cloud computing. Cloud Computing Journal, 4,

 1-5.

177

Godfrey-Smith, P. (2009). Theory and reality: An introduction to the philosophy of science.

 University of Chicago Press.

Gray, J., Helland, P., O'Neil, P., & Shasha, D. (1996, June). The dangers of replication and a

 solution. In ACM SIGMOD Record (Vol. 25, No. 2, pp. 173-182). ACM.

Gregor, S. (2006). The nature of theory in information systems. MIS quarterly, 611-642.

Gunarathne, T., Wu, T. L., Qiu, J., & Fox, G. (2010, November). MapReduce in the Clouds

 for Science. In Cloud Computing Technology and Science (CloudCom), 2010 IEEE

 Second International Conference on (pp. 565-572). IEEE.

Hacigumus, H., Tatemura, J., Hsiung, W. P., Moon, H. J., Po, O., Sawires, A., ... & Jafarpour,

 H. (2010, July). CloudDB: One size fits all revived. In Services (SERVICES-1), 2010

 6th World Congress on (pp. 148-149). IEEE.

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The

 rise of “big data” on cloud computing: review and open research issues. Information

 Systems, 47, 98-115.

Hawthorn, P., & Stonebraker, M. (1979, May). Performance analysis of a relational data base

 management system. In Proceedings of the 1979 ACM SIGMOD international

Hbase. (2015). Retrieved July 20, 2015 from http://hbase.apache.org.

How to analyse SQL Server performance. (2014). Retrieved July 20, 2015

 http://rusanu.com/2014/02/24/how-to-analyse-sql-server-performance/

IBM. (n.d.). SPSS Software. Retrieved July 20, 2015 from http://www

 01.ibm.com/software/analytics/spss/

178

Iosup, A., Ostermann, S., Yigitbasi, M. N., Prodan, R., Fahringer, T., & Epema, D. H. (2011).

 Performance analysis of cloud computing services for many-tasks scientific

 computing. Parallel and Distributed Systems, IEEE Transactions on, 22(6),

 931-945.

Ivanov, T., Petrov, I., & Buchmann, A. (2012). A Survey on Database Performance in

 Virtualized Cloud Environments. International Journal of Data Warehousing and

 Mining (IJDWM), 8(3), 1-26.

Ivanov, I. I. (2013). The Impact of Emerging Computing Models on Organizational Socio

 technical System. In Software and Data Technologies (pp. 3-19). Springer Berlin

 Heidelberg.

Jackson, K. R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., ... & Wright,

 N. J. (2010, November). Performance analysis of high performance computing

 applications on the amazon web services cloud. In Cloud Computing Technology and

 Science (CloudCom), 2010 IEEE Second International Conference on (pp. 159

 168). IEEE.

Kalnis, P., & Papadias, D. (2003). Multi-query optimization for on-line analytical

 processing. Information Systems, 28(5), 457-473.

Kerkad, A., Bellatreche, L., Richard, P., Ordonez, C., & Geniet, D. (2014). A query beehive

 algorithm for data warehouse buffer management and query scheduling. International

 Journal of Data Warehousing and Mining (IJDWM),10(3), 34-58.

Khajeh-Hosseini, A., Greenwood, D., & Sommerville, I. (2010, July). Cloud migration: A

 case study of migrating an enterprise it system to iaas. In Cloud Computing

 (CLOUD), 2010 IEEE 3rd International Conference on (pp. 450-457). IEEE.

179

Khan, M., & Khan, M. N. A. (2013). Exploring query optimization techniques in relational

databases. International Journal of Database Theory & Application, 6(3).

Kohler, J., & Specht, T. (2014, November). Vertical query-join benchmark in a cloud

 database environment. In Complex Systems (WCCS), 2014 Second World Conference

 on (pp. 581-586). IEEE.

Kossmann, D. (2000). The state of the art in distributed query processing. ACM Computing

 Surveys (CSUR), 32(4), 422-469.

Lakshman, A., & Malik, P. (2010). Cassandra: a decentralized structured storage

 system. ACM SIGOPS Operating Systems Review, 44(2), 35-40.

Leavitt, N. (2010). Will NoSQL databases live up to their promise?. Computer,43(2), 12-14.

Lewin, K. (1945). The Research Centre For Group Dynmaice at Massachusetts Institute of

 Technology. Sociometry , 8(2), 126-136.

Litchfield, A., & Althouse, J. (2014). A Systematic Review of Cloud Computing, Big Data

 and Databases on the Cloud. Twentieth Americas Conference on Information Systems,

 Savannah, USA. AIS.

Li, A., Yang, X., Kandula, S., & Zhang, M. (2010, November). CloudCmp: comparing public

 cloud providers. In Proceedings of the 10th ACM SIGCOMM conference on Internet

 measurement (pp. 1-14). ACM.

Li, A., Yang, X., Kandula, S., & Zhang, M. (2011). Comparing public-cloud providers. IEEE

 Internet Computing, (2), 50-53.

Liu, C., & Yu, C. (1993). In Performance issues in distributed query processing. Parallel and

 Distributed Systems, IEEE Transactions on, 4(8), 889-905.

180

Liu, J., Xia, C. H., Shroff, N. B., & Zhang, X. (2013). On distributed computation rate

 optimization for deploying cloud computing programming frameworks. ACM

 SIGMETRICS Performance Evaluation Review, 40(4), 63-72.

Lloyd, W., Pallickara, S., David, O., Lyon, J., Arabi, M., & Rojas, K. (2013). Performance

 implications of multi-tier application deployments on Infrastructure-as-a-Service

 clouds: Towards performance modeling. Future Generation Computer Systems, 29(5),

Machine Learning Repository. (n.d.). Retrieved July 20, 2015, from

 http://archive.ics.uci.edu/ml/

Marcon, D. S., Neves, M. C., Oliveira, R. R., Bays, L. R., Boutaba, R., Gaspary, L. P., &

 Barcellos, M. P. IoNCloud: exploring application affinity to improve utilization and

 predictability in datacenters.

Mathur, A., Mathur, M., & Upadhyay, P. (2011). Cloud Based Distributed Databases: The

 Future Ahead. International Journal on Computer Science and Engineering, 3(6),

 2477-2481.

McKendrick, J. (2012). Big Data, Big Challenges, Big Opportunities: 2012 IOUG Big Data

 Strategies Survey. Rep. Oracle. Inc, Sept.

Michaels, A. S., Mittman, B., & Carlson, C. R. (1976). A comparison of the relational and

 codasyl approaches to data-base management. ACM Computing Surveys

 (CSUR), 8(1), 125-151.254 1264.

Microsoft Support. (n.d.). System out of memory exception. Retrieved July 14, 2015, from

 https://support.microsoft.com/en-us/kb/2874903

Microsoft. (n.d.). Windows 7 system requirements. Retrieved July 14, 2015, from

 http://windows.microsoft.com/en-NZ/windows7/products/system-requirements

181

Microsoft. (2015). DBCC DROP CLEAN BUFFERS. Retrieved July 20, 2015, from

 https://technet.microsoft.com/en-us/library/ms180774(v=sql.105).aspx

Microsoft. (2015). Understanding nested loops joins. Retrieved July 14, 2015, from

 https://technet.microsoft.com/en

 us/library/ms191318%28v=sql.105%29.aspx?f=255&MSPPError=-2147217396

Microsoft. (2015). Understanding merge joins. Retrieved July 14, 2015, from

 https://technet.microsoft.com/en-us/library/ms190967(v=sql.105).aspx

Microsoft. (2015). Table scan showplan operator. Retrieved July 14, 2015, from

 https://technet.microsoft.com/en

 us/library/ms181129%28v=sql.105%29.aspx?f=255&MSPPError=-2147217396

Microsoft. (2015). Buffer management. Retrieved July 14, 2015, from

 https://technet.microsoft.com/en-us/library/aa337525%28v=sql.105%29.aspx

Microsoft. (2015). Sys.dm_os_wait_stats. Retrieved July 14, 2015, from

 https://msdn.microsoft.com/en-us/library/ms179984.aspx

Microsoft. (2015). Repartition streams showplan operator. Retrieved July 14, 2015, from

 https://technet.microsoft.com/en

 us/library/ms190783%28v=sql.105%29.aspx?f=255&MSPPError=-2147217396

Microsoft. (2015). Lazy spool Showplan operator. Retrieved July 14, 2015, from

 https://technet.microsoft.com/en-us/library/ms191221%28v=sql.105%29.aspx

Microsoft. (2015). Cursors. Retrieved July 14, 2015, from https://msdn.microsoft.com/en

 us/library/ms191179.aspx

Microsoft. (2015). Sequence project Showplan operator. Retrieved July 14, 2015, from

 https://technet.microsoft.com/en-us/library/ms187041%28v=sql.105%29.aspx

182

Microsoft. (2015). Row_number. Retrieved July 14, 2015, from

 https://msdn.microsoft.com/en-s/library/ms186734.aspx

Microsoft. (2015). Clustered index insert. Retrieved July 14, 2015, from

 https://technet.microsoft.com/en-us/library/aa178432%28v=sql.80%29.aspx

Microsoft. (2015 Cursor logical and physical operators. Retrieved July 14, 2015, from

 https://technet.microsoft.com/en-us/library/aa178583(v=sql.80).aspx

Microsoft. (2015). Fetch. Retrieved July 14, 2015, from https://msdn.microsoft.com/en

 nz/library/ms180152.aspx

Microsoft. (2015). Sp_cursorfetch. Retrieved July 14, 2015, from

 https://msdn.microsoft.com/en us/library/ff848736.aspx

Microsoft. (2015). Stream Aggregate Show plan Operator. Retrieved July 20, 2015, from

 https://technet.microsoft.com/en-us/library/ms189907(v=sql.105).aspx

Microsoft. (2015). DBCC DROP CLEAN BUFFERS. Retrieved July 20, 2015, from

 https://technet.microsoft.com/en-us/library/ms180774(v=sql.105).aspx

Microsoft. (2015). DBCC FREE PROCCACHE. Retrieved July 20, 2015, from

 https://msdn.microsoft.com/en-us/library/ms174283.aspx

Microsoft. (2015). DBCC SQLPERF. Retrieved July 20, 2015, from

 https://technet.microsoft.com/en-us/library/ms189768 (v=sql.110).aspx

Microsoft. (2015). Segment Showplan Operator. Retrieved from

 https://technet.microsoft.com/en us/library/ms180774(v=sql.105).aspx

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded

 sourcebook. Sage.

https://msdn.microsoft.com/en

183

Minhas, U. F., Yadav, J., Aboulnaga, A., & Salem, K. (2008, April). Database systems on

 virtual machines: How much do you lose?. In Data Engineering Workshop, 2008.

 ICDEW 2008. IEEE 24th International Conference on (pp. 35-41). IEEE.

Moens, H., & De Turck, F. (2015). Shared resource network-aware impact determination

 algorithms for service workflow deployment with partial cloud offloading. Journal of

 Network and Computer Applications, 49, 99-111.

Mullins, C. S. (1996). Distributed Query Optimization. Technical Support.

MySQL. (2015). Limitations of the federated storage engine. Retrieved July 3, 2014, from

 http://dev.mysql.com/doc/refman/5.0/en/federated-limitations.html

Nicola, M., & Jarke, M. (2000). Performance modeling of distributed and replicated

 databases. Knowledge and Data Engineering, IEEE Transactions on,12(4), 645-672.

Onwuegbuzie, A. J., & Leech, N. L. (2005). On becoming a pragmatic researcher: The

 importance of combining quantitative and qualitative research

 methodologies. International Journal of Social Research Methodology, 8(5),

 375-387.

Oracle. (2009). Direct path read. Retrieved July 13, 2015, from

 https://docs.oracle.com/cd/B16240_01/doc/doc.102/e16282/oracle_database_help/or

 cl _database_wait_bottlenecks_direct_path_read_pct.html

Oracle. (2009). DB file sequential read. Retrieved July 13, 2015, from

 https://docs.oracle.com/cd/B16240_01/doc/doc.102/e16282/oracle_database_help/or

 cl_database_wait_bottlenecks_db_file_sequential_read_pct.html

Oracle. (2011). The query optimizer. Retrieved July 13, 2015, from

 http://docs.oracle.com/cd/E25054_01/server.1111/e16638/optimops.htm#i79194

184

Oracle. (2015). Alter system. Retrieved July 26, 2015, from

 http://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_2013.htm

Oracle. (2015). DBMS_OUTPUT. Retrieved July 13, 2015, from

 http://docs.oracle.com/cd/B19306_01/appdev.102/b14258/d_output.htm#BABJCAJA

Oracle. (2015). SPOOL. Retrieved July 13, 2015, from

 http://docs.oracle.com/cd/B19306_01/server.102/b14357/ch12043.htm

Oracle. (2015). Join. Retrieved July 13, 2015, from

 https://docs.oracle.com/database/121/TGSQL/tgsql_join.htm#TGSQL244

Oracle. (2015). Tuning the Database Buffer Cache. Retrieved July 13, 2015, from

 https://docs.oracle.com/database/121/TGDBA/tune_buffer_cache.htm#TGDBA294

Oracle. (2015). Descriptions of wait events. Retrieved July 13, 2015, from

 http://docs.oracle.com/cd/E11882_01/server.112/e40402/waitevents003.htm#REFR

 00633

Oracle. (2015). Database Error Messages. Retrieved July 13, 2015, from

 https://docs.oracle.com/cd/B19306_01/server.102/b14219/net12150.htm

Oracle. (2015) .Tuning Distributed Queries. Retrieved July 26, 2015, from

 http://docs.oracle.com/cd/B28359_01/server.111/b28310/ds_appdev004.htm

Oracle. (2015). Indexes. Retrieved July 13, 2015, from

 http://docs.oracle.com/cd/B28359_01/server.111/b28313/indexes.htm

Oracle. (2015). Introduction to parallel execution tuning. Retrieved July 26, 2015,

 http://docs.oracle.com/cd/B19306_01/server.102/b14223/usingpe.htm

185

Oracle. (2015). Memory architecture. Retrieved July 26, 2015, from

 http://docs.oracle.com/cd/B28359_01/server.111/b28318/memory.htm

Oracle. (2015). Automatic performance statistics. . Retrieved July 26, 2015, from

 http://docs.oracle.com/cd/B28359_01/server.111/b28274/autostat.htm

Oxford Dictionaries. (2015). Retrieved July 20, 2015, from

 http://www.oxforddictionaries.com/definition/english/theory

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science

 research methodology for information systems research.Journal of management

 information systems, 24(3), 45-77.

Pokorny, J. (2013). NoSQL databases: a step to database scalability in web

 environment. International Journal of Web Information Systems, 9(1), 69-82.

Popper, K. (2005). The logic of scientific discovery. Routledge. Retrieved from

 https://books.google.co.nz/books?hl=en&lr=&id=LWSBAgAAQBAJ&oi=fnd&pg=

 P&dq=the+logic+of+scientific+discoveray++&ots=pyFjV2YMkM&sig=pM0h53b8

 7zkoJ6APzjOi95Q_w#v=onepage&q=the%20logic%20of%20scientific%20discover

 y&f=fal

Nambiar, R., Poess, M., Masland, A., Taheri, H. R., Emmerton, M., Carman, F., &

 Majdalany, M. (2013). Tpc benchmark roadmap 2012. In Selected Topics in

 Performance Evaluation and Benchmarking (pp. 1-20). Springer Berlin Heidelberg.

Red-gate. (2015). Options for purchasing SQL data generator. Retrieved July 20, 2015

 http://www.red-gate.com

186

Sanders, G. L., & Shin, S. (2001, January). Denormalization effects on performance of

 RDBMS. In System Sciences, 2001. Proceedings of the 34th Annual Hawaii

 International Conference on (pp. 9-pp). IEEE.

Shao, J., Liu, X., Li, Y., & Liu, J. (2015). Database Performance Optimization for SQL

 Server Based on Hierarchical Queuing Network Model. International Journal of

 Database Theory and Application, 8(1), 187-196.

SQLskills. (2015). How to examine IO subsystem latencies from within SQL Server.

 Retrieved July 20, 2015, from http://www.sqlskills.com/blogs/paul/how-to-examine

 io-subsystem-latencies-from-within-sql-server/

SQLskills. (2015). Wait statistics, or please tell me where it hurts. Retrieved July 20, 2015,

 from http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it

 hurts/

Suciu, D. (2001). On database theory and XML. ACM SIGMOD Record, 30(3), 39-45.

Tai, A. T., & Meyer, J. F. (1996, February). Performability management in distributed

 database systems: An adaptive concurrency control protocol. InModeling, Analysis,

 and Simulation of Computer and Telecommunication Systems, 1996.

 MASCOTS'96. Proceedings of the Fourth International Workshop on (pp. 212

 216). IEEE

Thakar, A., Szalay, A., Church, K., & Terzis, A. (2011). Large science databases–are cloud

 services ready for them?. Scientific Programming, 19(2-3), 147-159.

Thanos, C., Bertino, E., & Carlesi, C. (1988). The effects of two-phase locking on the

 performance of a distributed database management system.Performance

 Evaluation, 8(2), 129-157.

187

Tsichritzis, D. C., & Lochovsky, F. H. (1976). Hierarchical data-base management: A survey.

 ACM Computing Surveys (CSUR), 8(1), 105-123.

Tewari, P. (2013). Query optimization strategies in distributed databases. International

 Journal of Advances in Engineering Sciences, 3(3), 23-29.

Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2008). A break in the

 clouds: towards a cloud definition. ACM SIGCOMM Computer Communication

 Review, 39(1), 50-55.

Vessey, I., & V Ramesh, R. L. (2002). Research in information systems: An empirical study

 of diversity in the discipline and its journals. Journal of Management Information

 Systems, 19(2), 129-174.

Vo, H. T., Wang, S., Agrawal, D., Chen, G., & Ooi, B. C. (2012). LogBase: a scalable log

 structured database system in the cloud. Proceedings of the VLDB Endowment, 5(10),

 1004-1015.

Von Alan, R. H., March, S. T., Park, J., & Ram, S. (2004). Design science in information

systems research. MIS quarterly, 28(1), 75-105.

Wada, H., Fekete, A., Zhao, L., Lee, K., & Liu, A. (2011, January). Data Consistency

 Properties and the Trade-offs in Commercial Cloud Storage: the Consumers'

 Perspective. In CIDR (Vol. 11, pp. 134 143).

Wiggins, A. D. A. M. (2009). SQL databases don't scale. 2012-10-30). http://adam. heroku.

 com/past/2OO9/7/6/sql_ databases_dont_scale.

Zheng, Z., Du, Z., Li, L., & Guo, Y. (2014, June). Big Data Oriented Open Scalable

 Relational Data Model. In Big Data (BigData Congress), 2014 IEEE International

 Congress on (pp. 398 405). IEEE.

188

Zhang, Y., Yu, L., Zhang, X., Wang, S., & Li, H. (2012). Optimizing queries with expensive

 video predicates in cloud environment. Concurrency and Computation: Practice and

 Experience, 24(17), 2102-2119.

Zhan, Z., Liu, X., Zhang, J., Li, Y., & Chung, S. H. (2015). Cloud computing resource

 scheduling and a survey of its evolutionary methods. ACM Computing Surveys.

189

Appendices

Appendix A

This appendix contains the used database tables’ information such table names, columns

names and the size of the table.

Table name Table size Attributes

Dim_Class

58.3 MB

Class_Key

Class_Code

Class_Desc

Class_Name

Stream_ID

Stream_Code

Stream_Abbr_Desc

Stream_Full_Desc

Stream_Name

Stream_Weeks

Payment_Due_Date

Period_Code

Period_Desc

Reporting_Year

Full_Part_Time

Maximum_No

Minimum_No

Location_Code

Location_Full_Desc

Location_Abbr_Desc

Location_Tiny_Desc

Location_Campus_Code

Location_Govt_Code

190

Table name Table size Attributes

Dim_Class

58.3 MB

Row_Effective_Date

Row_Expiry_Date

Row_Current_Flag

Audit_Key

Location_Campus_

Desc Location_Order

Table name Table size Attributes

Dim_Date

44 MB

Date_Key

Full_Date

Day_Full_Name

Day_Abbr_Name

Day_Week_Begin_Date

Day_Week_Begin_Key

Day_Week_End_Date

Day_Week_End_Key

Day_Same_Last_Year_Date

Day_Same_Last_Year_Key

Month_Full_Name

Month_Abbr_Name

Calendar_Day_Of_Year

Calendar_Week_Of_Year

Calendar_Year_Month

Calendar_Month_Of_Year

Calendar_Quarter

Calendar_Semester

Calendar_Year

Fiscal_Day_Of_Year

Fiscal_Week_Of_Year

Fiscal_Year_Month

191

Table name Table size Attributes

Dim_Date 44 MB

Fiscal_Month_Of_Year

Fiscal_Quarter

Fiscal_Semester Fiscal_Year

Number_Day_Of_Week

Number_Day_Of_Month

Number_Calendar_Day_Of_Year

Number_Calendar_Week_Of_Year

Number_Calendar_Month_Of_Year

Number_Fiscal_Day_Of_Year

Number_Fiscal_Week_Of_Year

Number_Fiscal_Month_Of_Year

Is_Work_Day_Flag

Month_Is_Last_Day_Flag

Table name Table size Attributes

Dim_Student

966 MB

Dim_Student_Key

Student_Birth_Date

Age

TEC_Priority_Age_Order

TEC_Priority_Age_Desc

Age_Range_Order

Age_Range_Desc

Gender_Code

Gender_Desc

Disabled_Flag

School_Background_Flag

Tertiary_Background_Flag

Work_Background_Flag

192

Table name Table size Attributes

Dim_Student

966 MB

Secondary_Award_Govt_Code

Secondary_Award_Display_Order

Secondary_Award_Full_Desc

Secondary_Award_Abbr_Desc

Last_Secondary_School_Name

Last_Secondary_School_Order

Last_Secondary_School_Country

Last_Secondary_School_Attended_From_Year

Last_Secondary_School_Attended_To_Year

Partnership_School_Flag

Last_Secondary_School_Decile_Code

Last_Secondary_School_Decile_Desc

Tertiary_Award_Govt_Code

Tertiary_Award_Full_Desc

Tertiary_Award_Abbr_Desc

NZQA_Paid_Flag

Last_Tertiary_Institution_Desc

Last_Tertiary_Years

Last_Tertiary_Course_Desc

Last_Tertiary_Education_Successful_Flag

Last_Tertiary_Country

First_Tertiary_Year

First_Student_Year

Last_Student_Year

Complete_This_Year_Flag

Begin_This_Year_Flag

Language_Desc

Language_Display_Order

First_Language_Desc

Ethnic_Group_Full_Desc

193

Table name Table size Attributes

Dim_Student 966 MB

Ethnic_Group_Abbr_Desc

Ethnic_Group_Order

Ethnic_Group_Full_Desc_2nd

Ethnic_Group_Abbr_Desc_2nd

Ethnic_Group_Order_2nd

Ethnic_Group_Full_Desc_3rd

Ethnic_Group_Abbr_Desc_3rd

Ethnic_Group_Order_3rd

Ethnic_Other_Desc

Country_Of_Origin_Full_Desc

Country_Of_Origin_Abbr_Desc

Country_Of_Origin_Tiny_Desc

Country_Of_Origin_Govt_Code

Country_Of_Origin_Immigration_Code

Citizen_Full_Desc

Citizen_Abbr_Desc

NS_Citizen_Full_Desc

NS_Citizen_Abbr_Desc

Citizen_Display_Order

Citizenship_Type_Code

Citizen_Govt_Code

Citizen_Is_Resident_Flag ,

Row_Effective_Date ,

Row_Expiry_Date ,

Row_Current_Flag ,

Audit_Key

Student_ID_HASHED_old

national_student_number_hashed_old

Student_ID_HASHED

Tertiary_Award_Abbr_Desc

194

Table name Table size Attributes

Dim_Department 114 KB Department_Key

Department_Code

Department_ID

Department_Full_Desc

_Abbr_Desc

Department_Name

Department_Marketing_Desc

Department_Marketing_Order
 Faculty_Code

Faculty_Full_Desc

Faculty_Abbr_Desc

Faculty_Name

Faculty_Type_Desc

AUT_Code

AUT_Full_Desc

AUT_Abbr_Desc

AUT_Name

Allied_Flag

Academic_Flag

Row_Effective_Date

Row_Expiry_Date

Row_Current_Flag

Audit_Key

195

Table name Table size Attributes

Dim_ Enrolment _Type 32 KB Enrolment_Type_Key

Enrolment_Type_Code

Enrolment_Type_ID

Enrolment_Type_Desc

Enrolment_Type_Name

Enrolment_Type_Govt_Code

Enrolment_Type_Funding_Code

Enrolment_Type_Funding_Desc

Enrolment_Type_Funded_Flag

Enrolment_Type_Order

Enrolment_Type_Category_Desc

Enrolment_Type_Group_Code

Enrolment_Type_Group_Desc

Enrolment_Type_Group_Refund_Policy_Code

Student_Type_Code

Student_Type_Desc

Student_Citizenship_Group_Code

Student_Citizenship_Group_Desc

Row_Effective_Date

Row_Expiry_Date

Row_Current_Flag

Audit_Key

Table name Table size Attributes

Dim_Entrance _ Status

4 KB

Entrance_Status_Key

Entrance_Status_Code

Entrance_Status_Desc

Entrance_Status_Abbr

Row_Effective_Date

Row_Expiry_Date

196

Table name Table size Attributes

Dim_Entrance _ Status 4 KB Row_Current_Flag

Audit_Key

Table name Table size columns

Dim_Intake 1.46 Intake_Key

Intake_Year

Intake_Type_Desc

Intake_Name

Prog_Intake_Year

Prog_Intake_Type_Desc

Prog_Intake_Name

Row_Effective_Date

Row_Expiry_Date

Row_Current_Flag

Audit_Key

197

Table name Table size Attributes

Dim_Paper

70 MB

Paper_Key

Paper_Code

Paper_ID

Version_ID

Version_ID_Latest

Paper_Full_Desc

Paper_Abbr_Desc

Paper_Name

Paper_Alternate_Desc

Paper_Type_Desc

Subject_Code

Subject_Full_Desc

Subject_Abbr_Desc

Min_Ed_Code

PM_Level

Level_Desc

NQF_Level_Code

Emd_Lit_Num

Has_Emd_Lit_Num

EFTS_Weight

Number_Of_Hours

Number_Of_Points

Contact_Hours

Research_Based_Flag

PBRF_Govt_Code

PBRF_Govt_Desc

Is_PBRF_Eligible_Flag

Classification_Code

Classification_Name

Classification_Min_Return_Method_Code

198

Table name Table size Attributes

Dim_Paper

70MB

ISCED_Desc

NZSCED_Full_Code

NZSCED_Detailed_Code

NZSCED_Detailed_Desc

NZSCED_Detailed_Name

NZSCED_Narrow_Code

NZSCED_Narrow_Desc

NZSCED_Narrow_Name

NZSCED_Broad_Code

NZSCED_Broad_Desc

NZSCED_Broad_Name

Stage_Govt_Code

Stage_Govt_Desc

Exam_Code

Exam_Desc

Funding_Code

Funding_Desc

Funding_Name

Method_Desc

Owner_Dept_Code

Owner_Dept_Full_Desc

Owner_Dept_Abbr_Desc

Owner_Faculty_Code

Owner_Faculty_Full_Desc

Owner_Faculty_Abbr_Desc

Teach_Dept_Code

Teach_Dept_Full_Desc

Teach_Dept_Abbr_Desc

Cost_Centre_Code

Cost_Centre_Desc

199

Table name Table size Attributes

Dim_Paper 70 MB E_Learning_Flag

External_Code

Row_Effective_Date

Row_Expiry_Date

Row_Current_Flag

Audit_Key

Version_Start_Date

Version_End_Date

Table name Table size Attributes

Dim_Programme

5 MB

Programme_Key

Programme_Code

Programme_ID

Version_ID

Version_ID_Latest

Programme_Augmented_Code

Programme_Full_Desc

Programme_Abbr_Desc

Programme_Name

Segment2_Code

Segment2_Full_Desc

Segment2_Abbr_Desc

Segment2_Name

Programme_Level

Programme_Level_Full_Desc

Programme_Level_NQF

Owner_Dept_Code

Owner_Dept_Full_Desc

Owner_Dept_Abbr_Desc

Owner_Faculty_Code

200

Table name Table size Attributes

Dim_Programme

5 MB

Owner_Faculty_Full_Desc

Owner_Faculty_Abbr_Desc

Teach_Dept_Code

Teach_Dept_Full_Desc

Teach_Dept_Abbr_Desc

Qualification_Code

Qualification_Full_Desc

Qualification_Order

Qualification_Sub_Category_Full_Desc

Qualification_Sub_Category_Order

Award_Category_Code
 Award_Category_Full_Desc

Award_Category_Type_Desc

Award_Category_In_SDR_Flag

Award_Category_Is_Formal_Flag

Award_Category_Grouping_Desc

Award_Category_Grouping_Order

Award_Category_Grouping_Certificate_Desc

Award_Category_Grouping_Certificate_Order

Programme_Classification_Code

Programme_Classification_Desc

Programme_Classification_Min_Ret_Method_Code

Academic_Points

Min_Ed_Code

School_Qual_Required

University_Entrance_Required_Flag

Appr_Stud_Loan_Flag

Appr_Stud_Allow_Flag

Full_Time_Part_Time_Code

Full_Time_Part_Time_Desc

Full_Time_Part_Time_Name

201

Table name Table size Attributes

Dim_Programme

5 MB

Programme_Teaching_Weeks

Programme_Total_Weeks

ISCED_Code

ISCED_Desc

ISCED_Sub_Destination_Code

Field_Code

Field_Desc

Sub_Field_Code

Sub_Field_Desc

Cost Centre

Forecast_Programme_Flag

Forecast_Programme_Source_Desc

Uni_Level_Programme_Flag

Uni_Level_Programme_Desc

Latest_Flag

Row_Effective_Date

Row_Expiry_Date

Row_Current_Flag

Audit_Key

ISCED_Code_Admissions

ISCED_Desc_Admissions

Is_Formal_Course_Flag

Is_Short_Course_Flag

Is_Paper_Based_Course

Table name Table size Attributes

Dim_TSC_Category

152 KB

TSC_Category_Key

TSC_Category_Code

TSC_Category_ID

TSC_Reporting_Year

202

Table name Table size Attributes

Dim_TSC_Category 152 KB TSC_Discipline_Code

TSC_Discipline_Desc

TSC_Discipline_Name

TSC_Level_Code

TSC_Level_Desc

TSC_Level_Name

TSC_Study_Right

TSC_Funding_Grouping_Code

TSC_Funding_Grouping_Desc

TSC_Category_Amount

Row_Current_Flag

Audit_Key

Table name Table size Attributes

MYTABLE

18 GB

Month_Key

Date_Key

Intake_Key

Student_Key

Owner_Department_Key
 Teaching_Department_Key

 Enrolment_Type_Key
 Enrolment_Status_Key

Enrolment_Status_Previous_Key
 Programme_Key

 Tsc_Category_Key
 Class_Key

Janefts

Febefts

Marefts
 Aprefts

Mayefts

Junefts

Julefts

203

Table name Table size Attributes

MYTABLE

18 GB Augefts

Sepefts

Octefts
 Novefts

Decefts
 Audit_key
 Total_efts

First_month_int

Last_month_int

Total_months

Efts_Percent Enrolment_Status_First_Day
Enrolment_Status_Last_Day

Enrolment_Status_Day_Count

Classification_Key

Table name Table size Attributes

Dim_ Classification 8 KB

Classification_Key

Classification_ID

Classification_Code

Classification_Name

Min_Return_Code

Classification_Status

Last_Source_Change_Date

Audit_Key

204

View name View size Attributes

Month_View 124 KB Month_Key

Month_Full_Name

Month_Abbr_Name

Calendar_Month_Of_Year

Calendar_Quarter_Key

Calendar_Quarter

205

Appendix B

Component Description
Model Apache Tomcat 6.0.20, Wine 1.0.1, RUSLE2, Object Modeling System

(OMS 3.0)
Database Postgresql-8.4, PostGIS 1.4.0-2

Geospatial database consists of soil data (1.7 million shapes, 167 million
points), management data (98 shapes, 489k points), and climate data (31k
shapes, 3 million points), totaling 4.6 GB for the state of TN.

File server nginx 0.7.62 Serves XML files which parameterize the RUSLE2 model.
57,185 XML files consisting of 305 MB.

Logger Codebeamer 5.5 w/ Derby DB, Tomcat (32-bit)
Custom RESTful JSON-based logging wrapper web service. IA-32libs
support operation in 64-bit environment

--

The hierarchical data model structures the data according to the schema of the tree-structures

diagram and the parent–child relationship, which implies a 1: N relationship type. Hence, the

parents may have many children whereas the child can only have, and must have, one parent.

This demonstrates the fact that only the one-to-many relationship and the one-to-one

relationship can be represented in the hierarchical data model, though the many-to-many

relationship type can be shown indirectly. Although this model can represent relationships

that naturally show in hierarchical systems, it does not deal easily with situations where a

variety of relationships occurs and therefore has difficulty representing other types of

relationships (Tsichritzis & Lochovsky, 1976).

The network data model represents the data in a manner that allows the modelling of more

representation of the relationship between entities. That is, each record can be in the position

of both parent and child and there are no limits to the number of parents a child can have, so

parent and child can be involved in any number of set types. This implies that a many-to-

many relationship is supported and expressed by introducing the idea of link records.

Eventually, graphical representation of the data is formed.

206

Unlike the hierarchical model, which restricts the child to one parent, this distinction

demonstrates that the hierarchical data model has less modelling capability than the network

model. It is therefore that in real world situation where connections heterogeneously exist

between record of data types are modelled and varied entities are interrelated (Bachman,

1969). .

207

Appendix C

A sample collection is carried out to collect 90 samples of the data transfer rate reported by

Windows 7 for both RDBMS’. These samples are collected at different times of the day

(morning, afternoon and evening). Thirty samples are collected at each time of the day, and

each sample collection takes half an hour. The data transfer rate is noted at the start of each

minute within each period.

SQL Server Oracle
sample transfer rate bytes\second transfer rate bytes\second

1 64830 47584
2 63486 35586
3 60797 34304
4 59725 37060
5 60233 35153
6 61391 35280
7 60345 29682
8 60001 34294
9 63245 47618
10 65189 29726
11 66071 40763
12 63202 40876
13 65396 29717
14 65463 35711
15 65607 41781
16 63355 47629
17 62912 35673
18 61426 35664
19 60769 29691
20 60503 44533
21 61284 44765
22 60263 35746
23 60209 35742
24 60550 29729
25 65584 29858
26 65828 35701
27 65161 39429
28 65253 29849
29 64065 29699
30 289613 47546
31 284083 34130

208

SQL Server Oracle
sample transfer rate bytes\second transfer rate bytes\second

32 337273 33725
33 356196 34344
34 344798 34330
35 391180 35028
36 358156 31990
37 359170 33946
38 381589 27477
39 345949 32061
40 341741 32017
41 353208 34272
42 324161 34022
43 330239 34191
44 321553 33986
45 332599 34055
46 340961 26126
47 333401 32829
48 335220 34106
49 348998 33302
50 336426 33428
51 323804 33084
52 338961 33975
53 320428 33682
54 343932 31182
55 261707 30474
56 244302 32188
57 257794 33473
58 243429 33912
59 292537 34351
60 234713 34365
61 262407 91149
62 233684 88334
63 206997 90555
64 236885 90001
65 160818 90196
66 198257 89948
67 194905 90646
68 224226 89696
69 248818 90856
70 210198 89334
71 155441 89766
72 241889 90929
73 203188 73302
74 193075 89331
75 213428 89310

209

SQL Server Oracle
sample transfer rate bytes\second transfer rate bytes\second

76 233808 90771
77 235712 89709
78 230804 85990
79 203675 90028
80 256233 90310
81 190741 90093
82 211520 90391
83 197525 88483
84 282028 90442
85 207613 89795
86 178336 89710
87 199678 89150
88 223334 86463
89 239911 84147
90 225190 68468

210

Appendix D

I/O STATISTICS

SELECT DB_NAME(IO.DATABASE_ID) AS DATABASE_NAME,
 MF.PHYSICAL_NAME AS FILE_NAME,
 IO.*
FROM SYS.DM_IO_VIRTUAL_FILE_STATS(NULL, NULL) IO
JOIN SYS.MASTER_FILES MF ON MF.DATABASE_ID = IO.DATABASE_ID
 AND MF.FILE_ID = IO.FILE_ID
ORDER BY (IO.NUM_OF_BYTES_READ + IO.NUM_OF_BYTES_WRITTEN) DESC;

This code is obtained from How to analyse SQL Server performance (2014)

SQL Server I/O latencies

SELECT
 [READLATENCY] =
 CASE WHEN [NUM_OF_READS] = 0
 THEN 0 ELSE ([IO_STALL_READ_MS] / [NUM_OF_READS]) END,
 [WRITELATENCY] =
 CASE WHEN [NUM_OF_WRITES] = 0
 THEN 0 ELSE ([IO_STALL_WRITE_MS] / [NUM_OF_WRITES]) END,
 [LATENCY] =
 CASE WHEN ([NUM_OF_READS] = 0 AND [NUM_OF_WRITES] = 0)
 THEN 0 ELSE ([IO_STALL] / ([NUM_OF_READS] + [NUM_OF_WRITES]))
END,
 [AVGBPERREAD] =
 CASE WHEN [NUM_OF_READS] = 0
 THEN 0 ELSE ([NUM_OF_BYTES_READ] / [NUM_OF_READS]) END,
 [AVGBPERWRITE] =
 CASE WHEN [NUM_OF_WRITES] = 0
 THEN 0 ELSE ([NUM_OF_BYTES_WRITTEN] / [NUM_OF_WRITES]) END,
 [AVGBPERTRANSFER] =
 CASE WHEN ([NUM_OF_READS] = 0 AND [NUM_OF_WRITES] = 0)
 THEN 0 ELSE
 (([NUM_OF_BYTES_READ] + [NUM_OF_BYTES_WRITTEN]) /
 ([NUM_OF_READS] + [NUM_OF_WRITES])) END,
 LEFT ([MF].[PHYSICAL_NAME], 2) AS [DRIVE],
 DB_NAME ([VFS].[DATABASE_ID]) AS [DB],
 [MF].[PHYSICAL_NAME]
FROM
 SYS.DM_IO_VIRTUAL_FILE_STATS (NULL,NULL) AS [VFS]
JOIN SYS.MASTER_FILES AS [MF]
 ON [VFS].[DATABASE_ID] = [MF].[DATABASE_ID]
 AND [VFS].[FILE_ID] = [MF].[FILE_ID]
-- WHERE [VFS].[FILE_ID] = 2 -- LOG FILES
-- ORDER BY [LATENCY] DESC
-- ORDER BY [READLATENCY] DESC
ORDER BY [WRITELATENCY] DESC;
GO

This code is obtained from (SQLskills, 2015a)

211

SQL Server wait events

WITH [WAITS] AS
 (SELECT
 [WAIT_TYPE],
 [WAIT_TIME_MS] / 1000.0 AS [WAITS],
 ([WAIT_TIME_MS] - [SIGNAL_WAIT_TIME_MS]) / 1000.0 AS [RESOURCES],
 [SIGNAL_WAIT_TIME_MS] / 1000.0 AS [SIGNALS],
 [WAITING_TASKS_COUNT] AS [WAITCOUNT],
 100.0 * [WAIT_TIME_MS] / SUM ([WAIT_TIME_MS]) OVER() AS
[PERCENTAGE],
 ROW_NUMBER() OVER(ORDER BY [WAIT_TIME_MS] DESC) AS [ROWNUM]
 FROM SYS.DM_OS_WAIT_STATS
 WHERE [WAIT_TYPE] NOT IN (
 N'BROKER_EVENTHANDLER', N'BROKER_RECEIVE_WAITFOR',
 N'BROKER_TASK_STOP', N'BROKER_TO_FLUSH',
 N'BROKER_TRANSMITTER', N'CHECKPOINT_QUEUE',
 N'CHKPT', N'CLR_AUTO_EVENT',
 N'CLR_MANUAL_EVENT', N'CLR_SEMAPHORE',
 N'DBMIRROR_DBM_EVENT', N'DBMIRROR_EVENTS_QUEUE',
 N'DBMIRROR_WORKER_QUEUE', N'DBMIRRORING_CMD',
 N'DIRTY_PAGE_POLL', N'DISPATCHER_QUEUE_SEMAPHORE',
 N'EXECSYNC', N'FSAGENT',
 N'FT_IFTS_SCHEDULER_IDLE_WAIT', N'FT_IFTSHC_MUTEX',
 N'HADR_CLUSAPI_CALL', N'HADR_FILESTREAM_IOMGR_IOCOMPL
ETION',
 N'HADR_LOGCAPTURE_WAIT', N'HADR_NOTIFICATION_DEQUEUE',
 N'HADR_TIMER_TASK', N'HADR_WORK_QUEUE',
 N'KSOURCE_WAKEUP', N'LAZYWRITER_SLEEP',
 N'LOGMGR_QUEUE', N'ONDEMAND_TASK_QUEUE',
 N'PWAIT_ALL_COMPONENTS_INITIALIZED',
 N'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP',
 N'QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP',
 N'REQUEST_FOR_DEADLOCK_SEARCH', N'RESOURCE_QUEUE',
 N'SERVER_IDLE_CHECK', N'SLEEP_BPOOL_FLUSH',
 N'SLEEP_DBSTARTUP', N'SLEEP_DCOMSTARTUP',
 N'SLEEP_MASTERDBREADY', N'SLEEP_MASTERMDREADY',
 N'SLEEP_MASTERUPGRADED', N'SLEEP_MSDBSTARTUP',
 N'SLEEP_SYSTEMTASK', N'SLEEP_TASK',
 N'SLEEP_TEMPDBSTARTUP', N'SNI_HTTP_ACCEPT',
 N'SP_SERVER_DIAGNOSTICS_SLEEP', N'SQLTRACE_BUFFER_FLUSH',
 N'SQLTRACE_INCREMENTAL_FLUSH_SLEEP',
 N'SQLTRACE_WAIT_ENTRIES', N'WAIT_FOR_RESULTS',
 N'WAITFOR', N'WAITFOR_TASKSHUTDOWN',
 N'WAIT_XTP_HOST_WAIT', N'WAIT_XTP_OFFLINE_CKPT_NEW_LOG
',
 N'WAIT_XTP_CKPT_CLOSE', N'XE_DISPATCHER_JOIN',
 N'XE_DISPATCHER_WAIT', N'XE_TIMER_EVENT')
 AND [WAITING_TASKS_COUNT] > 0
)
SELECT
 MAX ([W1].[WAIT_TYPE]) AS [WAITTYPE],
 CAST (MAX ([W1].[WAITS]) AS DECIMAL (16,2)) AS [WAIT_S],
 CAST (MAX ([W1].[RESOURCES]) AS DECIMAL (16,2)) AS [RESOURCE_S],
 CAST (MAX ([W1].[SIGNALS]) AS DECIMAL (16,2)) AS [SIGNAL_S],
 MAX ([W1].[WAITCOUNT]) AS [WAITCOUNT],
 CAST (MAX ([W1].[PERCENTAGE]) AS DECIMAL (5,2)) AS [PERCENTAGE],
 CAST ((MAX ([W1].[WAITS]) / MAX ([W1].[WAITCOUNT])) AS DECIMAL (16,4))
AS [AVGWAIT_S],

212

 CAST ((MAX ([W1].[RESOURCES]) / MAX ([W1].[WAITCOUNT])) AS DECIMAL
(16,4)) AS [AVGRES_S],
 CAST ((MAX ([W1].[SIGNALS]) / MAX ([W1].[WAITCOUNT])) AS DECIMAL
(16,4)) AS [AVGSIG_S]
FROM [WAITS] AS [W1]
INNER JOIN [WAITS] AS [W2]
 ON [W2].[ROWNUM] <= [W1].[ROWNUM]
GROUP BY [W1].[ROWNUM]
HAVING SUM ([W2].[PERCENTAGE]) - MAX ([W1].[PERCENTAGE]) < 95; --
PERCENTAGE THRESHOLD
GO

This code is obtained from (SQLskills, 2015b)

213

Appendix E

The term NOSQL describes a concept that demonstrates a development in the way that data

management can be handled. That is, fixed tables schema may not be required, NOSQL

system do not support join operations, and typically can scale out more easily than RDBMS’

(Agrawal et al., 2008). The terms also refer to non-relational systems, however this lacks

accuracy since presently there exists middleware appliances such as CloudTPS for Google’s

BigTable and Amazon’s SimpleDB (Wei, Pierre & Chi, 2012), which enable NOSQL

systems to provide full ACID properties.

The implementation of NOSQL can be based on different data models, such as

key/value stores, document stores, object stores, tuple stores, column stores, and graph stores,

and different data structures can be stored and retrieved. NOSQL follows items orientation,

which works by having keys to identify each item and any information related to that item is

stored inside it (Arora & Gupta, 2012). Technically, the data consisting of the key and its

value is hashed into buckets which are then distributed across the network nodes. This also

demonstrates that complex queries are not supported in NOSQL systems since they partition

the row data in a horizontal way. Therefore simple queries, without cross-referencing, work

well for handling large datasets; this also is supported by the relaxation of ACID transactions.

Database management systems such as RDBMSs support complex operations that

involve table joins to take place with ACID transactions. Implications for performance

originate from this approach, with large dataset business occurring in CC. In some cases

NOSQL approaches offer better handling of the data than RDBMS’ (Pokorny, 2013).

However there are systems, such as airline reservation systems, where features of RDBMS

are significant for its performance and integrity.

214

Furthermore, ACID properties are managed differently in NOSQL systems where

weaker consistency is permitted; the implications for this are significant in terms of data

availability, latency and scalability. Though each NOSQL system differs in the way it applies

consistency, some employ the so-called eventual consistent where the updates are eventually

applied in all nodes, and others allow a varied degree of consistency by employing

mechanisms such as multi-version concurrency control (Cattell, 2011). Moreover, other

NOSQL systems do not provide ACID transactions at all. Generally and despite all of these

variations, in CC, such design allows the higher availability of data and low latency

compared with relational systems, and while consistency is applied in a different manner,

experiments show that inconsistency rarely emerges though is still possible (Wada et al.,

2011).

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Declaration
	Acknowledgements
	Copyright
	List of Abbreviations
	List of Acronyms
	Chapter 1
	Introduction
	1.0 Research problem
	1.1 Aim
	1.2 Background
	1.3 Motivations
	1.4 Research methodology overview
	1.5 Research contributions
	1.6 Thesis structure

	Chapter 2
	Literature Review
	2.0 Introduction
	2.1 Definition of Cloud Computing
	2.1.1 Cloud Computing features

	2.2 Relational database management systems
	2.2.1 Database
	2.2.3 Relational data model
	2.2.3 The role of relational database management system

	2.3 Problem identification
	2.3.1 RDBMS technologies need to change
	2.3.2 A new database management system is created that takes cloud technologies into account

	2.4 Relational database performance in CC
	2.4.1 Performance measurement tools
	2.4.2 RDBMS’ performance data in Cloud Computing

	2.5 Conclusions

	Chapter 3
	Methodology
	3.0 Introduction
	3.1 Research method selection
	3.2 Methodology selection
	3.3 Methodology design
	3.3.1 Related studies
	3.3.2 Research questions and hypotheses
	3.3.3 Hypotheses testing

	3.4 Research framework
	3.4.1 Investigation environment
	3.4.2 Database architecture

	3.5 Experiments descriptions
	3.5.1 Experiment 1
	3.5.2 Experiment 2
	3.5.3 Experiment 3
	3.5.4 Experiment 4
	3.5.5 Experiment 5
	3.5.6 Experiment 6
	3.5.7 Experiment 7
	3.5.8 Experiment 8
	3.5.9 Experiment 9

	3.6 Data collection
	3.7 Data analysis
	3.7.1 Statistical data analysis
	3.7.1.1 Data preparation
	3.7.1.2 Statistical methods selection

	3.8 Theory generation
	3.9 Conclusions

	Chapter 4
	Results Analysis and Findings
	4.0 Introduction
	4.1 Pre-Experiment Preparation
	4.2 Results and data analysis
	4.2.1 Experiment 1
	4.2.1.1 Execution plans
	4.2.1.2 Comparison between RDBMS

	4.2.2 Experiment 2
	4.2.2.1 Execution plans
	4.2.2.2 Comparison between RDBMS’

	4.2.3 Experiment 3
	4.2.3.1 Execution plans
	4.2.3.2 Comparison between RDBMS

	4.2.4 Experiment 4
	4.2.4.1 Execution plans
	4.2.4.2 Comparison between RDBMS’

	4.2.5 Experiment 5
	4.2.5.1 Execution plans
	4.2.5.2 Comparison between RDBMS’

	4.2.6 Experiment 6
	4.2.6.1 Execution plans
	4.2.6.2 Comparison between RDBMS’

	4.2.7 Experiment 7
	4.2.7.1 Execution plans
	4.2.7.2 Comparison between RDBMS’

	4.2.8 Experiment 8
	4.2.8.1 Execution plans
	4.2.8.2 Comparison between RDBMS’
	4.2.8.3 Exp8 Oracle second approach (OSA)

	4.2.9 Experiment 9
	4.2.9.1 Execution plans
	4.2.9.2 Comparison between RDBMS’
	4.2.9.3 Exp9 SQL Server second approach (SSSA)

	4.4 Findings
	4.3.1 Performance measures in Cloud Computing
	4.3.2 Performance of RDBMS’ as CDD
	4.3.3 Influence of Public Cloud Computing network

	4.5 Conclusion

	Chapter 5
	Discussion
	5.0 Introduction
	5.1 Performance measures in Cloud Computing
	5.2 Performance of RDBMS’ as CDD
	5.3 Influence of Public Cloud Computing network
	5.4 Cloud architecture VS n-tier architecture
	5.5 Implications for developers
	5.6 Conclusions

	Chapter 6
	Conclusion
	6.1 Retrospective analysis
	6.1.1 Performance measure in Cloud Computing
	6.1.2 Performance of RDMS’ as CDD
	6.1.3 Influence of Public Cloud Computing network
	6.1.4 Cloud architecture vs n-tier architecture

	6.2 Further work
	6.3 Research limitations
	6.4 Conclusion

	References
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

