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Abstract 

Although the advancement of Cloud Computing (CC) has revolutionised the way in which 

computational resources are employed and managed, it has also introduced performance 

challenges for existing systems, such as Relational Database Management Systems 

(RDBMS’). This research investigates the performance of RDBMS’ when dealing with large 

amounts of distributed data in a CC environment. 

This study employs a quantitative approach using positivist reductionist methodology. It 

conducts nine experiments on two different RDBMS’ (SQL Server and Oracle) deployed in 

CC. Also, this research does not employ any performance measurement tools that were not 

specifically developed for CC. Data analysis is carried out using two different approaches: (a) 

comparing the experiments’ statistics between the systems and (b) using SPSS software to 

look for statistical evidence. Furthermore, this study relies on secondary data that indicate 

distributed RDBMS’ generally perform better on n-tier architecture.   

The results provide evidence that RDBMS’ create and apply execution plans in a manner that 

does not fit CC architecture. Therefore, these systems do not fit well in a CC environment. 

Also, the results from this investigation demonstrate that the known issues of distributed 

RDBMS’ become worse in CC, indicating that RDBMS’ are not optimised to run on CC 

architecture. 

The results of this study show that the performance measures of RDBMS’ in CC are 

inconsistent, which indicates that is how the public, and shared infrastructure affect 

performance. This research shows that RDBMS’ in CC become network-bound in addition to 

being I/O bound. Therefore, it concludes that CC creates an environment that negatively 

impacts RDBMSs performance in comparison to n-tier architecture.   
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The findings from this study indicate that the employment of the above-mentioned tools does 

not present a complete picture about the performance of RDBMS’ in CC.   

The results of this research imply there exists architectural issues with relational data model 

thus these issues are worth studying in the future. Further, this study implies that applying 

ACID creates a challenge for users who want to have a scalable relational database in a CC 

environment because RDBMS should wait for the response over shared cloud network.   

This thesis reports cases where serious performance issues were encountered and it 

recommends that the design and architecture of RDBMS’ should be altered so that these 

systems can fit CC environment.      
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Introduction 

1.0 Research problem 

CC environment creates new challenges that can negatively impact the performance of the 

deployed technologies. Using virtualization, the underlying hardware such as, CPU and 

Memory is shared among multiple users. Therefore, it is important that the performance of 

RDBMS is investigated when deployed in a CC platform. This research asks questions which 

are detailed in Section 3.3.2, p. 35-36. These questions look to examine the effect of CC on 

relational databases in terms of the performance and the query optimisation.           

1.1 Aim 

Any distributed RDBMS requires a network and nodes. The characteristics of CC 

architecture is different from architectures such as n-tier architecture. The differences appear 

in that the CC architecture depends on the Internet and relies on virtualisation that abstract 

the physical architecture (Ivanov, 2013, Khajeh-Hosseini, Greenwood & Sommerville, 2010). 

Also, an n-tier architecture operates on a client/server model and includes a database system 

that stores data, while the server application and users access the database system using the 

middleware in the n-tier architecture (Frerking et al, 2004; Eriksson, 2015). In CC, the user 

may obtain more direct access to data or may access data via a Services Oriented 

Architecture (SOA). In n-tier architecture, these nodes exist within a data centre’s networks 

between servers and racks but these have significant bandwidth (Benson, Akella & Maltz, 

2010) compared to the cloud architecture where limited and shared bandwidth exists, for both 
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internal and external networks (Moens & Turck, 2015). However, distributed RDBMS’ in n-

tier architecture suffer from performance issues related to query optimisation (Chaudhuri, 

2012b; Liu & Yu, 1993; Mullins, 1996 & Tewari, 2013). Therefore, since RDBMS’ normally 

operate on n-tier architecture (Frerking et al., 2004), the present thesis aims to investigate 

RDBMS’ performance operating on a cloud architecture.  

1.2 Background  

CC appears to have gained more attention in recent years. This is especially important since 

the world is increasingly a witness of enormous growth in data volume. For instance, it is 

extrapolated that such volume will reach the peak of 7.2 zetabytes by 2015, which is 

equivalent to 7.2 trillion gigabytes (Litchfield & Althouse, 2014). Indeed, such a figure 

illustrates the fact that there is a continuous need for advancing Database Management 

Systems (DBMS) to handle that growth especially when the data that being created are 

largely stored in databases.  CC can play a central role in hosting these databases because 

multiple features are provided by CC including, but not limited to, the ability to control 

spending on Information Technology (IT) services (Armbrust et al., 2010). 

 CC relies heavily on virtual machines (Zhan, Liu, Zhang, Li & Chung, 2015). Virtual 

machines (VM) involve computer systems that emulate the processes of real computer 

infrastructures. There are many commercial VM products that can support virtualisation, such 

as EXC/ESXI server, Microsoft Hyper-V R2 and Proxmox Virtual Environment (Litchfield 

& Althouse, 2014). This way virtualisation supports the allocation and delivery of 

computation to CC users.  
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Figure 1-1: Cloud computing   

This figure is obtained from (Wiggins, 2009) 

CC can be thought of as a distributed system because users can access to VMs via Wide Area 

Network (WAN).  While such characteristics may help for achieving reduction in spending 

on IT services, the network between the nodes mostly is the WAN and the loads are 

unpredictable and variable (Litchfield & Althouse, 2014). Further, CC offers a method of 

accessing to a shared pool of computing resources such as network, disks, servers and storage 

(Ferris, 2015; Marcon et al., 2015). 

This research considers CC as system with virtual memory and CPU. Moreover, CC 

enable users to have more than one node so that users can distribute their system and data 

across multiple nodes. CC provides a platform that this research employs to investigate the 

performance of RDBMS’ in such environment. Thus this study introduces the term Cloud-

Distributed Database (CDD). 

1.3 Motivations 

 CC provides a platform which can be used for accommodating ever-growing data volume 

using any particular DBMS. CC service provider manages configuration and privacy of the 

underlying infrastructure while the DBMS is being responsible for database optimisation. 

Further, Litchfield and Althouse (2014) carry out a systematic review that implies CC 

increasingly becomes a mainstream technology in dealing with large datasets.  Moreover, 
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McKendrick’s (2012) shows that 13% of large organisations (>10000 employees) were 

currently hosting their DBMS’ on cloud-based server and 18% of them would deploy their 

DBMS in CC environment by 2013.       

  Secondly, RDBMS’ were established on the relational data model (Codd, 1970) and 

have now existed for more than four decades. The model has gained wild popularity in the 

industry and it is the standard model for business databases (Suciu, 2001). More recently, 

McKendrick’s (2012) study indicates that 77% of study’s sample consider structured data as 

central to their daily business activities. More importantly, RDBMS’ are still mainstream 

technology as means for data management (McKendrick, 2012). The study also shows that 

92% of its sample use RDBMS’ compared to 11% who employ NOSQL databases (see 

Appendix E, pp. 212 – 213, for extended discussions about NOSQL systems).  

 In order to identify the extent to which RDBMS’ are affected by influences from 

cloud architecture and may result in inadequate performance, this research therefore 

undertakes an experimental investigation into RDBMS’ performance in CDD.  

1.4 Research methodology overview 

Since this research attempts to examine and identify RDBMS’ performance in CDD, it needs 

empirical data in order to achieve its purposes. The selection process of methodology 

considers many methods and the selection arrives at adapting positivist reductionist approach.  

Further, a large dataset is used to help with quantifying RDBMS’ performance in 

CDD by executing a variety of experiments on two RDBMS’ namely SQL Server and Oracle. 

The experimental scenarios represent real-world uses of RDBMS. However, some real-world 

queries, such as arithmetic queries, could not be performed in this study because the dataset 

that is used does not contain appropriate data. Of all the queries, some are relatively easy to 

process with no large datasets returned, but the majority are either long processing queries 
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with a degree of complexity or the returned result is large. In all experiments, in order to 

perform the query the joining of at least two tables is required. However, query conditions 

that need to be satisfied are based on the parent or child tables or both of them. The systems 

reside on virtual servers located in Auckland, New Zealand and Amsterdam, the Netherlands. 

Each system has two VMs, one of which is located in Auckland (remote) and stores MYTABLE 

and the other VM is located in Amsterdam (local) and contains the parent tables.   

 

This research assumes the following: 

1. That the RDBMS’ are optimised for use in an n-tier architecture. 

2. That queries are optimised on the RDBMS to provide high performance output when 

data sets are readily available on the server. 

3. That large data sets would not normally be widely distributed.  

4. Large datasets would normally be replicated rather than distributed. 

1.5 Research contributions 

The contributions of this research are as follows: 

1. This study adds to Information System (IS) literature by demonstrating that current 

RDBMS’ do not fit CC environment. RDBMS’ suffer from performance issues in n-

tier architecture and in cloud architecture. That is, they do not efficiently process large 

datasets distributed over cloud or public network. 

2. This research also verifies that RDBMS’ are optimised to be deployed over n-tier 

architecture so that any issues with distributed RDBMS’ are intensified in a Cloud-

based environment.   
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3. This research provides a methodical approach to examining the performance of 

RDBMS’ in a CC environment where multiple variables can affect their performance. 

Such approach contributes to IS literature by showing that measuring RDBMS 

performance in CC using tools that are not originally developed for use in CC does 

not give a complete picture.    

4. This study contributes to IS literature by showing that RDBMS’ in cloud architecture 

are not only I/O bound, but also become network-bound.   

1.6 Thesis structure 

The thesis consists of six chapters. Chapter 1 (the current chapter) introduces the research by 

giving the background of the topic and explaining the motivation behind the research. This 

chapter also gives an overview of the methodology employed and concludes by outlining the 

study’s contributions and the thesis’s structure. 

Chapter 2 provides a review of current and past literature and a critique of the relevant 

body of knowledge concerning both CC and RDBMSs. The chapter summarises the main 

points of the topic so that research direction is clearly identified. One point indicates that 

there is no adequate performance investigation that is related to RDBMS’ deployed in cloud-

based environment and there is a need to identify RDBMS’ performance issues this 

environment. The other point indicates that most of RDBMS’ related performance data are 

obtained using performance measurement tools that are not originally developed to run in the 

Cloud. Therefore, this research avoids these tools and forms its performance measurement 

approach which Chapter 3 describes. The conclusion of Chapter 2 specifies the research 

questions and establishes its hypotheses. 

Chapter 3 discusses the process whereby the methodology is selected. The research 

framework is explained by describing the investigation environment where the experiments 
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are conducted and demonstrating the database architecture that is used.  Chapter 3 also details 

each experiment conducted in this research. The chapter moves on to outline the data 

collection steps and how data analysis is conducted. Before the chapter concludes, the 

process of theory generation is explained.  

Chapter 4 presents the analysis of the experiments described in Chapter 3. Each 

experiment is compared between SQL Server and Oracle. The comparisons use the 

performance measures identified in Section 3.3.2. Chapter 4 also presents the findings of this 

research. The findings section contains statistical analysis to explain these findings in 

statistical manner. Moreover, the chapter shows whether or not the stated hypotheses can be 

accepted or rejected 

Chapter 5 evaluates the findings outlined in Chapter 4. Chapter 5 addresses the 

research questions and provides answer to them. The chapter compares and contrasts the 

findings with the existing body of knowledge described in the Literature Review chapter.    

Chapter 6 concludes the thesis by summarising the findings of the research and also 

by describing the study’s limitations. The chapter concludes by proposing some further 

research direction. 
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Literature Review  

2.0 Introduction  

The goal of this chapter is to critically analyse the existing body of knowledge with regards to 

relational database performance issues in CDD. By identifying such issues, the chapter paves 

the way to experimentally determine potential impact of CC environment on performance.  

 Chapter 2 is organised into five sections that provide extended summaries of relevant 

key issues and specify potential directions for the research. Section 2.1 defines cloud 

computing and describes its relevant features. Section 2.2 defines RDBMS’ and relational 

data model and provides a comparison between this model and preceding data models. This 

section also explains the role of RDBMS’. Section 2.3 identifies the research’s direction and 

illustrates that the literature creates different positions towards data management in CDD. 

Section 2.4 offers an overview of works that are similar to this research. Finally, Chapter 2 

concludes by providing potential research questions and establishing hypotheses.  

2.1 Definition of Cloud Computing  

Since this research is conducted to examine relational database performance CC, this section, 

explains CC in details and its implications to relational database and large datasets.  

Various definitions of CC are observed in the literature that encompass the elements 

of CC in a more specific manner, although they differ considerably in which aspect of CC 

they cover. For instance, definitions by Geelan (2009) and Buyya, Yeo and Venugopal (2008) 

define CC based on economies of scale, especially when allowing users to choose the amount 

of resources they can use and therefore reduce the overall cost of utilising cloud 
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infrastructures. Moreover, they focus on providing service level agreements (SLA) between 

service providers and consumers while maintaining a certain level of quality of services. 

These definitions also imply that CC features, including scalability and the ability to optimise 

the use of resources, play a key role in empowering users to have full control over their 

spending on IT services (Vaquero, Rodero-Merino, Caceres & Lindner, 2008).  

CC can be defined as: “a large pool of easily usable and accessible virtualised 

resources. These resources can be dynamically reconfigured to adjust to a variable load 

(scale), allowing also for an optimum resource utilization” (Vaquero, Rodero-Merino, 

Caceres & Lindner, 2008, p.52). These resources are typically consumed by a pay-per-use 

model and services providers are responsible for guaranteeing the needed infrastructure at an 

agreed SLA (Geelan, 2009). 

2.1.1 Cloud Computing features 

Cloud computing has three models of service, namely public clouds, private clouds, and 

hybrid clouds (Geelan, 2009). These models differ in terms of the management of the cloud. 

Public Cloud (PuC) involves many customers accessing the cloud from different locations 

using the same infrastructure (such as via the Internet). The private cloud in which the 

management can either be undertaken by the organisation itself or outsourced. The 

implications for an organisation with a private cloud are significant, and this is especially 

important because access to its resources is more limited than a PuC. A hybrid cloud on the 

other hand, involves combining public and private clouds to facilitate the expansion of the 

private cloud using the resources of the public cloud. 

One important feature the Cloud-based environment has to offer is a high level of 

service availability (Litchfield & Althouse, 2014). This includes data availability and other IT 

resources. On the other hand, moving to a cloud platform does not guarantee data to be 
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always accessible and performance bottlenecks can potentially lead to data unavailability, be 

it technical bottlenecks or network insufficiency (Litchfield & Althouse, 2014). Database 

locking, lack of storage capacity (such as in Thakar, Szalay, Church and Terzis (2011)) and 

cache flushing, for example, can also cause bottlenecks in cloud systems. Network 

insufficiency in PuCs is an important cause for performance bottlenecks and data 

unavailability especially when data move between cloud nodes within limited bandwidths 

(Litchfield & Althouse, 2014).   

This research conducts its experiments on PuCs and the effects of PuC use on 

performance are important to consider. Li, Yang, Kandula and Zhang (2010) conduct a 

comparison between PuCs and conclude that there are considerable differences between PuC 

providers and this imposes challenges as to which PuC provider to go with. Further, although 

Iosup et al., (2011) PuCs appear to suit small databases and show deficiencies when 

employed for heavy workloads coming from the scientific field, Thakar et al. (2011) and 

Hashem (2015) disagree with such claim and indicate that PuC such as Amazon Elastic 

Cloud Computing (EC2) and Microsoft SQL Azure can be used for scientific tasks.  

Gunarathne Wu, Qiu and Fox (2010) add that PuCs can be used in cases (such as big data 

tasks) where there are complex queries request intensive computation resources that need to 

be performed on high dimensional data residing on heterogeneous databases. But since PuCs 

operate on shared infrastructure using VM, such configurations cause I/O performance to be 

inconsistent. 

2.2 Relational database management systems  

The previous section defines and discusses CC. This section explains and discusses RDBMS’ 

that this research investigates their performance in CDD.  
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2.2.1 Database 

Database in itself implies a collection of data grouped together for at least storage purposes 

(Connolly & Begg, 2005). What is stored inside have no meaning until they are put into some 

context that is related to purpose of the database. This suggests that a database needs to have 

a collection of related data managed by a system such as DBMS. However, this definition 

seems general, and hence any related data stored in any random file can be called a database 

while in the real-world situation a database reflects some restrictions, and they include the 

following points (Connolly & Begg, 2005): 

• A database represents a collection of data inherently holding some meaning and put 

together in a logical and coherent manner. Therefore, an assortment of random data 

does not directly constitute a database. 

• A database represents an aspect of a real-world situation, that when changes occur to 

this situation the database will reflect these changes, and this implies consistency. 

• Database design serves a specific purpose and hence has related data intended to 

respond to requests from a known group of users and applications to be used by these 

users. 

That said, a real-world database has users who are interested in accessing the contents of a 

database, and interactions occur between users and the database; in other words, they are 

interacting with the real-world situation itself (Connolly & Begg, 2005). Such contents are 

usually generated or derived from data sources related to this situation. Thus a database can 

be defined as “a shared collection of logically related data, and a description of this data, 

designed to meet the information needs of an organisation” (Connolly & Begg, 2005, p. 15).  
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2.2.3 Relational data model  

The relational data model which RDBMS’ are built upon uses operators, namely permutation, 

projection and join to derive relationships from other relations. A relation is table where it has 

tuples that have attributes and has columns and rows. A relationship exists between two or 

relations.  

Hawthorn and Stonebraker (1979) examine the performance of the INGRES relational 

database from overhead-intensive, data-intensive and multi-relation queries. Overhead-

intensive represents queries with little data to be returned. In this regard, performing such a 

query depends on the nature of applications, whether there is a locality of reference or not. 

Data-intensive queries represent the time taken to process by the database. It concludes that 

buffer size is an important factor for processing queries, and this becomes an issue when the 

size of the relation is larger. Bell (1988) agrees with this conclusion and adds that the buffer 

manager of the database can lead to overall performance degradation, especially when there 

is a divergence between the buffer manager and how the operating system handles the page 

placement on the disk. Only by having a larger memory can performance improve; otherwise 

it will be subject to a transaction execution requirement such as the size of the relation and 

whether there is an update query (Blakely & Martin, 1990). Furthermore, Michels, Mittman 

and Carlson (1976) compare the relational and network databases, and acknowledge that the 

network database allows more efficient handling of queries because the programmer can 

direct the system to the target piece of information, reducing the need to develop algorithms 

to determine an efficient execution plan. Additionally, Stonebraker and Held (1970) 

demonstrate that despite the complexity in coding optimised queries in hierarchical and 

network databases (see Appendix B, pp. 204-205 for description), they have a better 

performance compared with the relational database where the user does not have control over 

the query optimisation process. Stonebraker et al. (1990) conclude that the complexity of 
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coding optimised queries has in fact resulted in performance issues. However, while Michels 

et al. (1976) agree that the availability of query optimisation techniques has a large influence 

on improving the performance of the relational database, implying the benefit from its 

mathematical foundation. Another study illustrates that a relational database cannot provide a 

solution to every real-world situation and gives practical evidence that a relational database 

does not necessarily suit a hierarchical structure of clinical trials data (Helms & McCanless, 

1990). 

In summary, databases including relational, network and hierarchical put considerable 

attention on optimisation. In, network and hierarchical databases, the programmers can 

intervene in choosing desirable execution plans but they lead to performance issues. 

Relational databases have multiple optimisation methods that RDBMS’ control and they can 

improve the performance. These databases are developed before cloud architecture comes 

into existence. 

 2.2.3 The role of relational database management system   

RDBMS’ are involved in almost every aspect of life that requires storing or manipulating of 

data where the data are to be used to conduct trade, medicine, education and so forth. 

RDBMS’ operationalise relational model in which collection of tables is used to store data. 

Mostly, each table has a primary key of a group or group of fields that identifies each tuple in 

a table, implying that each table is unique and has only one primary key. RDBMS allows the 

user to declare the rules by which the relations are to be established where there is a common 

attribute (Connolly & Begg, 2005). Further, RDBMS’ put a large emphasis on data integrity 

and hence employ multiple concepts such as Atomicity, Consistency, Isolation and Durability 

(ACID) properties (Connolly & Begg, 2005). ACID properties include Atomicity, which 

means all of a transaction’s operations are successfully done otherwise the transaction will be 

rejected. Consistency means that the database moves to a new consistent state on execution of 
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each transaction. Isolation makes sure no interference occurs between transactions. Durability 

ensures that in case of database failure, committed transactions will not be undone (Connolly 

& Begg, 2005).   

Query optimisation is another important task that RDBMS’ have to perform. Thus 

there have been a significant body of knowledge related to providing highly efficient methods 

for query optimisation. The choice of an efficient plan appears to be a complex task, since 

there are many variables that are computed. For instance, the RDBMS have to estimate 

number of tuples that query selects and the number of tuples retrieved by every operation that 

the execution plan performs. The RDBMS also needs to estimate the computational resource 

required for the execution so that it uses CPU usage, I/O and memory as variable for the 

estimation. Moreover, RDBMS may compare plans before it chooses one plan (Chaudhuri, 

Dayal, Narasayya, 2011).  

Query optimisation approaches enable RDBMS to have many ways by which query 

executions can be efficiently carried out (Connolly & Begg, 2005). However, Shao, Liu, Li 

and Liu (2015) believe that there appears to be issues with the existing optimisation methods 

performance and, the authors present a new optimisation system for SQL Server that is based 

on a hierarchical queuing network model. With this model they achieve on average a 16.8% 

improvement in the performance of SQL Server compared with existing optimisation 

methods, and increases transaction throughput by 40%.  

Further, query optimisation in a distributed environment poses challenges that appear 

persistent (Chaudhuri, 2012b). Distributed environment adds complexity for query 

optimisations since it involves the possibility to move data between location(s) in order “for 

intermediate operations in optimizing a query” (Chaudhuri, 1998a, p. 41) and by doing so, the 

distributed system adds more variables into the equation of computing best execution plans 
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(Mullins, 1996; M. Khan, & M. N. A. Khan, 2013). Liu & Yu (1993) recommend that more 

investigation is needed in order to determine whether or not the inefficient implementation or 

unsuitable execution plans chosen by the RDBMS’ cause long-processing queries. Their 

work is about evaluating three algorithms using many parameters such as the number of 

processing locations and the amount of data that are to be joined. It concludes, among other 

factors, network overhead is observed to be a major influencer, although the study is 

conducted on Local Area Network (LAN). More recently though, the issue remains unsolved 

and  there is a need to revisit the traditional optimisation methods since NOSQL databases 

introduce new approaches for query optimisation that appear to be providing a better 

performance when these methods are  employed for large dataset processing in a distributed 

database (Zhang, Yu, Zhang,Wang & Li, 2012; Chaudhuri, 2012b). 

2.3 Problem identification  

Bell, Hey, & Szalay, (2009) state that “data-intensive science has been slow to develop due to 

the subtleties of databases, schemas, and ontologies, and a general lack of understanding of 

these topics by the scientific community” p.1298. CC poses challenges related to the 

deployments of database systems such as relational databases, which, with the emergence of 

CC, have become obstacles in using database management systems in CC (Zhang, Yu, 

Zhang, Wang & Li, 2012). That is, the scholarship does not in fact provide a single 

exemplary design for a database management system that can fit CC environment (Agrawal, 

Das, & El Abbadi, as cited in Litchfield & Althouse, 2014).  

 Codd (1970) sees an opportunity that instead of storing data in a data bank, they can 

be organised into tables and then related based on common data. This also helps to remove 

redundancies and keep data in a consistent state. The practice of RDBMS has been on a 

client-server model where systems communicate with the computer hardware (see Section 
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1.0). Revolutionary changes that have occurred in data volume and infrastructure and 

platform technology development (cloud computing) lead to revealing that such RDBMS 

appear to cope less well with these changes (Zhang, Yu, Zhang,Wang & Li, 2012). The 

pattern observed in the literature signals that there are conflicting views as to whether 

RDBMS’ can still be used in the era of large datasets. These views indicate that architectural 

issues exist with the relational data model that prevent it from being effective in combating 

large datasets in CC and these  issues erode relational databases’ benefit (Litchfield & 

Althouse, 2014). The other view however, states that RDBMS’ are still important for many 

stakeholders (banking systems and airline companies) and in order for satisfactory 

performance, modifications need to be made to relational databases before deploying them on 

cloud systems (Cattell, 2011; Arora & Gupta, 2012). Such changes involve taking into 

account ACID properties. 

Further, Zheng et al. (2014) demonstrate how the relational data model can be 

extended to perform “big data” business tasks. It is proposed that with inspiration of NOSQL 

data models such Key-value models (see Appendix E, p. 212-213), relational data model can 

overcome performance issues when large datasets are under processing. Durham, Rosen and 

Harrison (2014) indicate that large datasets pose challenges in handling them and the data 

model can be a significant limiting factor in such handling. Therefore they make the claim 

that RDBMS’ do not perform efficiently with “big data”. When dealing with ‘big data’, 

pulling the data across the network impacts performance, implying that joins of distributed 

tables should be avoided. Instead the database engine, which they believe it is capable of 

handling of large datasets, can be leveraged by the use of stored procedures inside the 

database (Durham, Rosen & Harrison, 2014). 

Therefore, this investigation aims to identify potential performance issues and 

proposes methodical assessments in regards to RDBMS’ in CDD. To achieve these goals, the 
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investigation undertakes an experimental work on a non-optimised system and it employs 

approaches including distribution of the RDBMS’ across the WAN so that distributed queries 

are undertaken using a large dataset. 

This research presents the argument that cloud technologies have introduced many 

technical issues that affect relational database performance and these can be attributed to one 

of the following propositions.  

1. RDBMS technologies need to change  

2. A new database management system is created that takes cloud technologies into 

account.  

In addition to these propositions, this research reveals that there appears inadequate data 

concerned with RDBMS’ performance in CDD when a large dataset is being dealt with; 

therefore this research identifies the issue and proposes the need for RDBMS performance 

data in CDD, using existing measures for comparison.  

2.3.1 RDBMS technologies need to change  

 It is believed that RDBMS’ demonstrate less capability to meet the performance required for 

handling ever-growing data in CC, and this issue becomes clearer as the amount of data 

increases (Liu, X, Shroff, & Zhang, 2013). However, according to Hacigumus et al. (2010) 

RDBMS performance needs further investigation to determine whether or not RDBMS’ are 

sufficient to meet the challenge of large datasets. Moreover, RDBMS should not be blamed 

for such performance issues; rather it is the operating technology that needs improving so 

RDBMS can provide the expected performance (Feuerlicht & Pokorný, 2013). However, 

although the denormalisation of relational databases appears to have introduced data 

redundancy, it reduces the number of table joins and therefore easing table joining effects on 

performance (Sanders & Shin, 2001).  
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Further, this literature review notices that there is an increasing pattern towards 

identifying if there is a role that RDBMS’ play behind performance struggles. For instance, 

there is an extensive scholarship concerning query optimisations due to the central role that 

they play in performance improvement (Liu & Yu, 1993) and therefore multiples and 

different algorithms are developed including but not limited to greedy and approximation 

algorithms. However, when it comes to heavy workload, query optimisation methods show 

deficiencies (Kalnis & Papadias, 2003). Add to that Batra and Tyagi (2012) think RDBMS’ 

are no longer applying join as efficiently as required, and the study argues that as the dataset 

size grows, the search for matching tuples takes a longer time and, therefore, the  join 

becomes a performance bottleneck. From these points, it can be concluded that query 

optimisation methods in RDBMS’ suffer from shortcomings, although they are deployed over 

architecture that is different from cloud architecture.   

  As previously mentioned, CC poses challenges for the deployment of RDBMS’. Chen 

et al. (2010) claim that while the relational data model is widely used, the model negatively 

impacts performance in cloud deployment and is replaced by key-value data models that they 

recently start to take the attention in data management.  Leavitt (2010) adds that even if 

powerful hardware is in place to for achieving high performance, the practicality of RDBMS 

nearly always involves distributing the database to multiple users that are geographically 

distributed, and this is where the struggle in performance emerges due to the type of queries 

in which joining of distributed tables is usually necessary. When RDBMS’ deployed over 

cloud architecture, the systems need optimisation techniques that fit such architecture and 

facture by the ability to detect and adjust to workload fluctuations Mathur, Mathur & 

Upadhyay, 2011).     

In CC architecture, the lack of suitable optimisation methods can lead to suboptimal 

choices made by these approaches and these choices are especially important over large 
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datasets (Ganapathi, Chen, Fox, Katz & Patterson, 2010). As an example, while subqueries 

are common in relational database, they can lead to performance issues if they are not 

performed as efficient as required. Certainly, they create performance issues in data 

warehouse applications (Kerkad Bellatreche, Richard, Ordonez & Geniet, 2014). Dokeroglu, 

Bayir and Cosar (2015) indicate that such overheads can be reduced if subqueries are 

executed only once, and propose a set of algorithms to enable cloud relational databases to 

make better choices when creating an execution plan. A possible choice is to decide where to 

perform the join so that the effect of the network on performance is reduced.   

Therefore, current RDBMS’ appear to have significant shortcomings in performing its 

key theme in large dataset management in CC, and they need to change.  

2.3.2 A new database management system is created that takes cloud

 technologies into account  

The discussions above present that RDBMS’ appear to have issues that preclude the ordinary 

deployment in cloud technologies, thereby necessitating the development of solutions to work 

around such issues. However, this section aims to discuss what the literature offers in regards 

to providing RDBMS’ that fit cloud technologies.   

CC can be considered as a distributed environment that allows users to have their 

database distributed and be connected via the Internet, and also the promise that enables users 

to add more computational resources when needed (see Section 1.0). There are many designs 

that aim to provide an architecture that fits CC; mostly these designs focus on data 

partitioning. For instance, inspired by the concept that web-based workloads are mostly 

limited to single object access, Das, Agrawal and Abbadi (2009) describe a transactional 

database for the CC that complies with ACID properties. These properties apply in this 
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system in each partition so the system avoids applying them across partitions. In other words, 

full consistency can be guaranteed when the sum of all consistent parts are added together.  

Curino et al. (2011) propose a relational database for CC in which they aim to reduce 

any unnecessary scanning of multiple nodes. Aimed at no more than one node should involve 

the execution of queries. They want to avoid I/O overhead and reduce unneeded 

communication overhead. The approach partitions the database based on a graph data 

algorithm. Such approach works by analysing the complexity of workloads and mapping the 

data item to appropriate nodes.  

 The LogBase (Vo et al., 2012) system aims to exploit the log-only storage approach to 

eliminate the write bottleneck. It deploys the log as core data storage in which updates are 

appended at the end of the log file; thus there is no need for the updates to be reflected into 

other files (such as in any database). The developers of the system use vertical partitioning to 

improve I/O performance. That is, the columns of tables are clustered into a group of 

columns that are stored separately in varying physical data partition locations in accordance 

with the frequency of access requested by the workloads. This helps the LogBase benefit 

from the locality of data when executing queries and to avoid the overhead of distributed 

transactions. Further, the system applies ACID properties on a single row of data, similar to 

some NOSQL systems such as Pnuts (Cooper et al., 2008), Cassandra (Lakshman & Malik, 

2010) and HBase (http://hbase.apache.org). 

  This section presents what the literature has to offer in regard to creating database 

management systems that suit cloud technologies. The discussed systems focus in reducing 

cloud network overhead be it, when data move between nodes or the I/O overhead. 

Moreover, ACID properties can still be conformed but only within data partitions. Therefore, 
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though there are inconsistencies in their approaches to ACID guarantee, it appears that a new 

RDBMS is created that can fit cloud technologies.  

2.4 Relational database performance in CC 

The above discussions show that RDBMS’ need changes so they can cope with ever-

increasing data volume in CC. This section aims to explore performance-related data that are 

concerned with what measuring tools are actually in use and to explain as to whether such 

tools are appropriate to CC. The literature offers previous studies in regards to relational 

databases in CC and this section therefore outlines them.    

2.4.1 Performance measurement tools 

The deployment of DBMS over cloud network appears to have introduced challenges towards 

measuring the performance of such deployment. The measurements of DBMS performance in 

general have been undertaken by benchmarking tools and, as an example, Transaction 

Processing Performance Council tools (TPC) (TPC, n.d,). That is, some tools, such as 

SPECCpu benchmark, work to evaluate any given computer system and recommend the best 

CPU for the workload (Folkerts et al., 2013), while TPC-C evaluates DBMS that suit Online 

Transaction Processing (OLTP) applications (Kiefer et al., 2012). Other tools serve different 

purposes. For instance, in 1980, a benchmark tool named Wisconsin benchmark is developed 

to evaluate and compare different relational database systems (DeWitt, 1993). It consists of 

32 queries to test the performance of relational view operations, with the inclusion of 

selection, aggregation, deletion and insertion queries. Following this, a tool called the debit-

credit benchmark is specifically developed for evaluating the transaction processing 

capabilities of DBMS. This involves applications such as a banking application where 

multiple users simultaneously access the database (Carey, 2013). Further, TPC methods cater 

for measuring the performance of DBMS as a result of the advances in its underlying 
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hardware and software. For instance, TPC-C caters for more complex applications such as 

inventory management applications (Nambiar, et al., 2012). Other benchmarks are 

established specifically to benchmark database systems – for example, OO7 for an object-

oriented database, Sequoia for a scientific database, and XMark for an XML database (Carey, 

2013). 

This research observes that there is an extensive utilisation of TPC-C to measure the 

performance of the database in CC there is little attention is put in place for considering the 

characteristics of CC when undertaking the measurement of RDBMS performance. These 

tools are used to carry out performance evaluation for commercial cloud services (such as in 

Kohler & Specht, 2014). The implications may be significant for the accuracy of these 

experiments since the examination tools are developed to cater for the static environment, 

which raises concerns as to their appropriateness for CC environment. Curino et al. (2011), 

report on (among other features) the performance of relational cloud database scalability. 

Interestingly, in Curino et al. (2011) experiment, the TPC-C instances exhibit poor 

performance compared with when a relational cloud system is in place. The relational cloud 

system scales fine and achieves higher throughput and experiences low latency compared to 

TPC-C instances. Therefore, not only is more performance data needed for a greater level of 

certainty around the performance of RDBMS in CC, but also it matters which method is used 

to measure performance.  

This research observes a growing interest in tackling experiments for DBMS 

performance in CC using a suitable tool. Study carries out by Binnig, Kossmann, Kraska and 

Loesing (2009) indicates that as TPC benchmark tools are originally developed for the static 

environment tools they are not adequate for CC. Although they are still relevant to the cloud, 

they lack the ability to measure the dynamic systems deployed in the cloud, and also the 

feature of CC. In this regard, Yahoo! develops its own benchmarking tool for measuring 
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cloud database performance. They claim that existing tools such as TPC-C may not match 

CC characteristics. Smith (2013) argues, however, that there is a need for a cloud 

benchmarking tool and proposes a method that leverages the existing TPC-C and TPC-E to 

produce a TPC-VMC. The core design of this method is that the characterisation of database 

performance should be based on a limited cloud environment in terms of the number of 

servers, hardware footprints or system costs. This determines that the performance of DBMS 

in the cloud can be measured using TPC tools but with the limitation of the cloud 

environment.  

2.4.2 RDBMS’ performance data in Cloud Computing   

Further, there appears a pattern in the literature that inadequately demonstrates RDBMS’ 

performance in CDD. They also focus mainly on testing whether virtualisation technologies 

such as VMware have an impact on database performance. For instance, Minhas, Yadav, 

Aboulnaga and Salem (2008) examine the performance of a relational database in a 

virtualised environment using TPC-H workload. The authors conclude that running a 

database over virtualised environment creates I/O disk overhead but that such an overhead 

does not have a large impact during the runtime of queries. The study indicates that this 

overhead is an average of %10 or less of the runtime. Furthermore, Bose, Mishra, 

Sethuraman &Taheri (2009) study the effect of virtualisation technology namely ESX Server 

4.0 on Oracle Database 11g R1 and Microsoft SQL Server 2008. The study employs TPC 

workloads to make a comparison between the performance of these database system in and 

off cloud. It finds out that although these RDBMS’ perform better off cloud, they achieve 

between 85% and 92% of native performance in CC and therefore it concludes that CC is 

“capable of handling database-intensive workloads” p. 181. However, while Ivanov, Petrov 

& Buchmann (2012) conclude that CC is more suitable for read-mostly work and for other 
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purposes such OLTP applications and data-intensive workloads CC poses challenges; 

however they work around such challenges by adding more buffer.   

Recent study aims to examine how RDBMS’ perform in CDD. For instance, Kohler 

and Specht (2014) conduct comparisons between two RDBMS’ in which both systems have 

different configurations. Their approach is to partition a single table across multiple cloud 

providers including private and PuC. Performance is generally better when the experiments 

are conducted off cloud. For instance, when the experiment returns one tuple, it takes 265 ms 

but with network latency the duration reaches as high as 319 ms. Since their data are 

partitioned they also notice a high join overhead. However, the present  study is different in 

1) it does not employ any benchmark tools, 2) it uses large datasets and creates its own 

experiments, 3) the used RDBMS’ are installed on identical configurations so that the 

investigation becomes comparative. 

Further, Thakar et al. (2011) perform analytics work on large databases using two CC 

platforms, namely EC2 and Microsoft SQL Azure, and then they compare performance data 

with their non-cloud system. Their database stores several TB. However, it is not possible to 

migrate the whole database due to limitation on the size these platforms can host. Eventually, 

they transfer 100 GB via the cloud to EC2 in this instance and only 10GB to Azure since it is 

the maximum limit that an instance can store. Yet the paper reports only a comparison of 

experiments conducted on 100 GB in and out of the cloud. Overall, experiments run faster on 

n-tier architecture due to a “number of factors, such as the database settings on the EC2 

server (memory, recovery model, tempdb size, etc.) as well as the disk speeds”; they also 

indicate that “the performance in the cloud can be disappointing unless it can be tuned 

properly” (Thakar et al., 2011, p.150) . 
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2.5 Conclusions   

CC platforms are of significance to the database research field and to businesses, as they 

provide scalability, elasticity and availability of IT resources. However, they create 

RDBMS’ appear to display performance issues and therefore other database systems such as 

NOSQL gradually start to grasp the attention in data management. NOSQL avoids complex 

queries that involve joining of distributed tables, while in relational databases, such practice 

is commonplace. Whether RDBMS’ perform such joining operations a manner efficient that 

takes into account the amount of the data is another question.  

 Multiple “work-around” have emerged to improve RDBMS’ capability to be deployed 

in CC. The literature also shows inadequate demonstrations of RDBMS’ performance in CC. 

For example, there are performance issues with query optimisation in distributed RDBMS’ 

deployed in an n-tier architecture. Therefore, this research conducts an experimental 

investigation aimed at identifying potential break points that RDBMS’ have when processing 

large datasets in CC architecture. The results can be used to develop a database management 

system that suits CC or improves the existing RDBMS solutions for clouds.  

 Performance data for RDBMS in clouds appears to be derived from mostly unsuitable 

tools. This research disagree with the use of such tools in CC environment. Therefore, this 

research aims to carry out a performance investigation for RDBMS in CDD by using other 

methods.  

Therefore, this research asks the following questions accompanied with working 

hypothetical statements: 

RQ1: What are performance measures that can be applied to examine RDBMS’ 

performance in CC? 
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RQ2: Are the measures related to Q1 valid for measuring RDBMSs in the clouds 

when large datasets are being manipulated? 

H1: There is no consistent measure of performance when comparing RDBMSs 

operating in CC. 

RQ3: What evidence exists that RDBMS’ are creating significant performance issues

 in a cloud-computing environment? 

H2: RDBMS’s execution of queries does not perform as expected when a large

 dataset is distributed on a cloud network. 

RQ4: What influence does CC have on relational database performance? 

H3: CC impacts RDBMSs due to network incapacities compared to n-tier

 architecture. 
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Methodology  

In the previous Chapter, the literature review addresses past and current literature on database 

and RDBMS in CC. 

3.0 Introduction 

This chapter, outlines steps that the research follows in order to achieve its purpose. The aim 

of this research is to carry out an investigation to determine why RDBMS’ suffer from 

performance issues in cloud deployments, and in addition, to produce performance data 

concerned with RDNMS’ performance with large datasets. In accomplishing these aims, new 

theories are needed to be developed to illustrate the cause behind such events and to compare 

performance measures in different environments. As the discussions above present that, CC 

requires systems that can fit its characteristics and satisfy the type of transactions performed 

in the cloud alongside ever-expanding data. What this research also tries to achieve is to have 

the performance of RDBMS’ in CDD determined by using a non-optimised environment. As 

such, PuC solutions such as Amazon’s EC2 is considered to conduct the experiments in; 

however, since providers such as Amazon specialise in optimisation of their resources, it is 

possible that expected measurable effects will be lost if these services are used, so the use of 

this option  is not pursued.  

Chapter 2 identifies four research questions and three hypotheses and they are asked 

and established to examine whether RDBMS’ performance is impacted when operating in 

CC. From this, RDBMS as means for data management is deployed in CC infrastructure that 

features by being different to n-tier infrastructure. Therefore, this research falls into IS 

research.  



Chapter 3  Methodology    

28 
 

This chapter consists of nine sections that detail the research’s methodology. Section 

3.1 discusses the selection of research method and addresses what can be influential in 

making the selection. This section paves the way for the actual methodology selection that 

occurs in section 3.2. The methodology section presents the rationale for choosing the 

methodology via a review to of methods and theoretical foundations. Section 3.3 illustrates 

the design of the methodology, detailing the relevance of the research questions and how 

hypothesis testing is handled. Section 3.4 describes the research environment and explains the 

database architecture. Section 3.5 describes the experiments in details. Section 3.6 details 

data collection method. Section 3.7 describes data analysis methods used to analyse 

performance data. Section 3.8 explains theory generation, and section 3.9 provides a 

concluding remark that summarises chapter 3.    

3.1 Research method selection  

Conducting a quantitative research in IS often poses multiple challenges for researchers. For 

instance, Vessey & Ramesh (2002) undertake a review on the IS field and conclude that in 

order to explain, especially with regards to organisational and individual realities, 

understanding of the methods undertaken in behavioural, social sciences, and psychology and 

management fields may be required. With that in mind, this research’s purpose does not in 

fact lean towards any organisational or individual facets of IS nor does it examine 

behavioural ones.  

Typically, how the advance of research in a specific domain determines which 

direction a researcher should head in, especially where the theories under research are 

mature, creates new areas for researchers to investigate these theories for verification, testing 

and modification purposes (Easterbrook, Singer, Storey & Damian, 2008). For instance, this 

research tests the performance of RDBMS in CDD by asking what evidence exists that 
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RDBMS’ are involved in creating significant performance issues in a CDD. Such study tends 

to check for relationships between many variables and is generally undertaken by quantitative 

approach. 

The above facets of research methods selection pose an important question as to what 

are the most suitable research methods for the purpose of this research. Can one research 

method be adequate for this research or should a combination of research methods be used? 

Therefore, these issues are taken into account when selecting research methods for this 

research and they inform the decision to select a methodology for this research. 

3.2 Methodology selection  

Section 1.3 indicates that this research is undertaken to reveal potential performance issues of 

RDBMS in CDD. Thus for instance, H2 establishes RDBMS’ execute queries in less than 

expected manner when large datasets distributed over CC infrastructure. This research also 

hypothesises that CC infrastructure negatively impacts RDBMS performance. Initially 

research methodologies such as case study and grounded theory are considered to conduct 

this research. This research finds out that the use of case study is not suitable to its purpose 

and the time required to adopt grounded theory methodology is a limiting factor, therefore 

these methodologies are not used.  

Also, other research methodologies are considered to carry out this research; these are 

interpretivist, design sciences, and positivist approaches. The interpretivist mainly focuses on 

the idea that individuals are not independent of existent knowledge, and the understanding of 

any phenomena should be based on the debate between the researchers and those with whom 

the research interacts (Onwengbuzie & Leech, 2005). The design science approach in IS 

research mainly focuses on developing new technological artifacts to solve real world issues. 

The model by which the design science approach should be undertaken differs in the 
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literature (Peffers, Tuunanen, Rothenberger & Chatterjee, 2007). For instance, March & 

Smith (1995) outline four stages of research, namely build, evaluate, theorise and justify, that 

the information system research should go through. Rossi & Sein (2003) adopt the build and 

evaluate stages but also add two distinct stages, which are, need identification, and learn and 

theorise combined. 

Given the type of research questions and hypotheses, the following research methods 

are considered not appropriate, as an example, intersections between individuals and the 

operating technology of which research is used, may have little or no impact on conducting 

the experiments. Design sciences approach does not fit this research because no artifacts are 

going to be developed. For these considerations, therefore, both interpretivist and design 

sciences approaches are ruled out. 

In the positivist approach, knowledge exists if it is based on objective and verifiable 

events so that understanding of part of this knowledge may lead to the understanding of the 

whole (Onwengbuzie & Leech, 2005). With increasing data volume and the increase in the 

use of CC for data management, this research attempts to understand issues regarding 

RDBMS performance in CDD and therefore there is a need for empirical data that can be 

analysed to derive such understanding. The research tries to observe relational database 

performance in CDD when large datasets are processed. This involves experiments that aim 

to achieve such observations. Experimentations of this research will first be looking to test 

the research’s hypotheses. From these results, RDBMS’ can be further investigated with 

performance tests to produce empirical data that can be analysed using statistical methods to 

achieve the final conclusions of the research. Such a sequence demonstrates a need for 

adopting a theoretical approach that allows this sequence to occur. This research, therefore, 

has a positivist reductionist methodology applied.  
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3.3 Methodology design 

This section aims to outline the steps that ought to be applied to address the research 

questions and to test the hypotheses. In order to choose them in a critical manner, related 

works are studied.  

3.3.1 Related studies 

This section studies previous works conducted in relation to distributed database performance 

measurement and CC.  

 Iosup et al. (2011) undertake performance evaluation of PuC using various 

benchmarking tools. Their approach focuses on examining PuC performance for scientific 

tasks. They indicate that PC has many independent variables and examine them individually 

and determine if they influence each other. As performance measures, the study uses CPU 

time, I/O and memory hierarchy. 

 Jackson et al. (2010) investigate high performance computing applications on PuC by 

employing benchmarking tools that represent these applications. Their study is largely 

focused on network latency effect on performance. The study is conducted in the United 

States and this enables it to determine such effects. Although their VMs are situated in the 

same zone, the provider does not guarantee they are close to each other. The study concludes 

that network latency is an influential factor on these applications’ performance. 

 Further, measuring database performance on clouds takes three directions; one as 

previously mentioned, to measure the virtualisation effect on their performance, and second 

to investigate RDBMS’ partitioned over cloud network such as Kohler and Specht (2014). 

The study uses two performance measures including runtime and number of tuples that are 

returned upon the experiment’s completion. Their research employs two different RDBMSs, 

MySQL and Oracle, and they have different configurations for these systems. The study is 
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conducted on and off cloud and with and without data partitioning. Finally, the literature 

shows some works that measure large database performance doing analytical work in CC 

such as Thakar et al. (2011). The study uses query runtime as a performance measure.  

 Further, Lloyd et al. (2013) introduce a statistical model that aims to examine 

Infrastructure-as-a-Service for multi-tier applications such as client/server application 

deployments. This application includes four components namely the server, database, file 

server and the logger (see Appendix B, p. 204 for full description). Thus, it employs multiple 

linear regression tests so that it can predict application deployment performance. The study 

concludes that CPU time and I/O operations can be used to predict performance when the 

performance is middleware-bound in clouds and that their model shows the network traffic is 

a weaker performance predictor.    

 Furthermore, there are approaches for measuring distributed databases in non-cloud 

deployment. For instance, Bacelli and Coffmann (1983) use runtime and throughput to 

analyse the performance of a distributed database by looking at the effect of services 

interruption that involves the update operation that had a pre-emptive privilege over read 

operations. Anderson  et al. (1998), among other measures, use transaction throughput to 

measure the effect of three protocols concerned with serialisation and transaction atomicity to 

avoid two-phase commit protocol. Born (1996) employs transaction response time and 

transaction throughput as performance measures to examine the implementation of different 

strategies for distributed lock management. Moreover, the calculation of transaction response 

time is undertaken in more investigations than transaction throughput (Nicola & Jarke, 2000). 

Further, Bouras and Spirakis (1996) utilise wait time measure to examine the performance of 

timestamp ordering concurrency control. Gray et al. (1996) employs wait time to study 

different replication models. Incomplete transaction is also used to measure performance 

from different perspectives. For example, Tai and Meyer (1996) study two concurrency 
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control mechanisms and estimated the probability of lost transaction. Thanos et al. (1988), 

among different measures, use lost transaction rate to study the effect of two-phase commit 

mechanisms on distributed databases.  

Nicola and Jarke (2000) do a large survey on the literature concerns with performance 

modelling for distributed databases and conclude by proposing a new model for measuring 

the performance of a distributed database. The study considers multiple models towards 

designing its own methodology such as replication models, database site models, and 

communication models. While it acknowledges the need for making assumptions when 

characterising a distributed database performance, it believes there is a significant degree of 

oversimplification occurs which might have an impact on the reliability of the result. For 

instance, the study does not assume to have a full bandwidth; rather it assumes to have 

limited one.  

Since the aim of research is to examine relational databases in CC, there are multiple 

factors related to the relationship between CC and RDBMS’ and resources utilisation. 

Moreover, the work of Kohler and Specht, 2014, and Lloyd et al., 2013, appears to be the 

most similar work to this research because 1) the former presents the results of investigating 

partitioned RDBMS’ performance in clouds, and 2) although the latter does not specifically 

examine relational database performance in CC, it presents empirical data that predict the 

relationship between resource utilisation and performance. Therefore, the methods of these 

works are adopted, although there are significant differences that this research’s direction 

requires. The following section outlines these differences and shows what steps are 

undertaken to test the hypotheses and to answer the research questions. 
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3.3.2 Research questions and hypotheses 

This section aims to identify how research these hypotheses play a central role in leading the 

research since each hypothesis will take two directions to shed light on where issues related 

to relational database performance in cloud deployments come from. That is, RDBMS causes 

such issues and/or the issues emerge because of other factors such as CC internetwork or 

communication deficiency. Each hypothesis will therefore have two sides; one side reflects 

no observable effect from the examination and vice versa. 

Section 3.3.1 lists multiple performance measures of which any given distributed 

databases are tested against them. Such as throughput, response time, CPU time, I/O 

operations and network traffic. Further, this research requires looking at many variables since 

it is conducted on PuC where there are factors that may or may not differ in impacting 

RDBMS’ performance.   

These performance measures are defined as follows: 

1- Runtime: it is the sum of the time taken for the query until completion. This time 

includes the processing time plus communication cost. This measure is an indicator 

that reflects if an experiment suffers from issues, and, as general rule, the shorter it is, 

the fewer issues can be involved. However, a longer duration indicates otherwise and 

further investigation is required to determine the cause(s).  

2- CPU time: time reported by RDBMS’ that indicates CPU consumption for the 

duration of the experiment’s execution. This is an especially important measure since 

it plays a central role once data arrive from disk. For instance, it executes what 

RDBMSs choose as join operators to join datasets. High CPU time means long 

duration. 
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3- Disk operation: the number of physical reads and writes that occur when experiments 

are undertaken. Since a relational database is known to be I/O bound, this measure is 

employed to observe such effect. 

4- Ave I/O latency: this measure tells the average time each I/O operation takes to 

finish. Since this research is conducted on a PuC environment, it is expected to reflect 

whether there is an effect of disk operation on performance.  

5- Logical read: represents number of reads that takes place in memory. This measure 

may be partly associated with CPU time so that when there is high CPU consumption, 

it is accompanied by a large number of logical reads, although it is not always 

necessarily the case. Note, this measure is used when experiments reveal special 

cases.    

6- Network traffic: this measure means the amount of data that travels the network for 

each experiment. 

7- Wait events: this measure shows the events which the systems wait for some 

operations to finish. As an example can be when the system waits for the cloud 

network to complete I/O operation.  

 By applying these measures on a relational database deployed in the cloud, this 

research strives to test the following hypotheses and seeks answers for the questions posed at 

the end of Chapter 2: 

 QR1: What are performance measures that can be applied to examine RDBMS’ 

performance in CC? 

QR2: Are the measures related to Q1 valid for measuring RDBMS’ in the clouds 

when a large dataset is being manipulated? 

H1: There is no consistent measure of performance when comparing RDBMS’ 

operating in CC? 
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This study aims to examine relational databases processing large datasets in CDD. Thus, 

these questions aim to discover the extent to which the existing issues might need to be tested 

by using different performance measures, especially with different environments being used. 

Section 3.3.1 shows there are differences that appear in conducting performance 

measurements and this shows the importance of identifying performance measures when a 

large dataset is involved. 

QR3: What evidence exists that RDBMS’ are involved in creating significant

 performance issues in a Cloud-based environment?  

 H2: RDBMS’ execution of queries does not perform as expected when a large dataset

  is distributed on a cloud network. 

Performance issues will always be apparent because there is no prefect system. Thus, this 

question attempts to provide evidence that RDBMS’ do create significant performance 

problems in CDD that lead to long-running queries.   

QR4: What influence does CC have on relational database performance? 

H3: CC network creates an environment in which relational databases are negatively 

impacted compared to n-tier architecture.  

The aim behind this question is to examine the effect of CC on RDBMS’s performance. More 

specifically, there is an associated overhead with communication cost and since this research 

uses a large dataset, this cost needs to be quantified. There is also CC environment overhead 

associated particularly with I/O latency. However, this research has limitations (see Section 

6.3) that prevent it from conducting the experiments off-cloud, and therefore this study relies 

on secondary data that show relational databases performance off-cloud is generally better.     

3.3.3 Hypotheses testing  

This section explains each hypothesis and what aspect of the research it covers.  
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H1: There is no consistent measure of performance when comparing RDBMSs operating in 

cloud computing. 

This quantification of relational database performance in cloud deployment uses multiple 

performance measures (see section 3.3.2). These measures have been in conventional practice 

for a long period of time. PuC is a changeable environment because of relying on public and 

shared network and every service provider has different infrastructure capabilities that may or 

may not affect RDBMS’ performance. By testing this hypothesis, the aim is to examine such 

effects on the measurement approach of performance. The testing uses average I/O latency 

and network traffic to examine whether performance measures show inconsistencies. This 

test therefore assumes that there is a relationship between number of I/O reads and high 

average I/O latency. The test also makes an assumption that high network traffic always leads 

to produce a long-running query.  

 H1 is tested by making comparisons between the two cloud service providers to see if 

there is a relationship between number of I/O reads and high average I/O. Network traffic is 

used to compare SQL Server with Oracle to find out whether high network traffic always lead 

to prolong experiment’s runtime. If the assumptions are refuted then then H1 is accepted.   

H2: RDBMS’s execution of queries does not perform as expected when a large dataset is 

distributed on a cloud network. 

H2 aims at verifying whether RDBMS’ experience inadequacies in performance in CDD. In 

testing this hypothesis, comparisons between two database systems are carried out that 

consider the execution plans as a starting point. Each database system has two instances 

where tables are distributed across two geographically distributed nodes and the system 

provides a plan that outlines steps taken for the experiment’s execution. These steps are then 

described and compared between the two systems. Additionally the steps will be explained as 
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what they mean to performance. For instance, join operators are an important part of 

execution plans and therefore they are studied by considering CPU time and comparing these 

operators between the two database systems. If comparisons reveal evidence, then statistical 

analysis is applied when it is appropriate (see section 3.6).   

H3: CC network creates an environment in which relational databases are negatively 

impacted compared to n-tier architecture. 

The intention of this hypothesis is to investigate whether or not the cloud network influences 

RDBMS’ performance. In order to discover this effect, a large dataset is used for not only 

measuring how a RDBMS performs under the condition of a large dataset but also for   

determining the effect of cloud architecture on RDBMS’. 

 In testing this hypothesis, the effect of CC network overhead is assessed using 

network traffic and wait events to examine whether or not high network traffic  produce long-

processing experiments. Each RDBMS has wait events that occur duration query executions. 

Of particular interest are the wait events that are related to WAN network and by using them 

they can gain an overview of WAN overheads. Statistical methods are also used to determine 

if there is a causal relationship between network traffic and runtime.  

Further, the effect of CC environment on I/O performance is also examined by H3. 

RDBMS’ are I/O bound and since this research is undertaken on PuC then it is important to 

test if the effect is significant. Conducting this research on two different PuC providers 

enables it to carry out comparisons between them and this is especially important, because for 

this research, each provider deals with a different workload. Therefore, average I/O latency 

and wait events are used to measure the effect of PuC on RDBMS’ performance in regards to 

disk latency.  
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3.4 Research framework 

This research investigates to what CC contributes to RDBMS’ performance shortcomings. Up 

to this point, the previous discussions have shown how the research is going to be approached 

in terms of theoretical basis and how its hypotheses are going to be examined. This section 

demonstrates the actual framework of the research; that is, the steps of conducting the 

research will be outlined.  

3.4.1 Investigation environment  

In order to avoid any research bias both human and technology, this investigation employs 

three database systems, namely SQL Server 2012, Oracle 11g and MySQL 6.5. However, the 

manner in which MySQL distributes the query makes it impossible to run this study’s queries 

without more computational resources. For instance, among other options, distributed queries 

can be conducted through a federated table, which is the most feasible option for this 

research. According to the MySQL documentation, federated tables work by fetching all of 

the records of the remote tables and then applying any filtering clauses locally (MySQL, 

2015). For instance, at least 18GB of memory is needed to host MYTABLE, and this does not 

take into account the time needed for the rows to traverse the network. Given that this 

research can only access VM with 8GB of memory, MySQL is therefore ruled out of this 

experimental work.  

 As discussed in Section 1.1, CDD is featured having a distributed database running in 

VM and connected through the Internet. This indicates that both systems will have to have 

two VMs per each system, and in total this research runs its experiments using 4 VMs (see 

Figure 3.1). Moreover, these VM’s identical configurations (see Table 3.1 below) and 

identical datasets make the results comparable, and also each VM has its memory and CPU. 

Further, this investigation distributes its database across the world so that it creates a real-
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time environment. Hence, there are two VMs in located in Amsterdam in which parent tables 

are stored, and also experiments are run from there so that they are called local. The other 

VMs are located in Auckland and they are named as remote. The reason behind such a setup 

is that it is not known how long transferring a dataset as large as 18 GBs takes to finish and 

also all parents are smaller in size than MYTABLE.  

SQL Server
MYTABLE

 

Oracle
MYTABLE 

Auckland VMs 

SQL Server
Parent tables 

Oracle
Parent tables 

Amsterdam  VMs 

Internet 

 

Figure 3-1: Investigation environment   

The characteristics of the environment are as follows: 

1- The research uses two database systems, namely Microsoft SQL 2012 and Oracle 11g 

to run the series of experiments. Note, the configurations are identical in all VMs. 

There is, however, a slight difference in terms of CPU speed between both servers as 

shown in table 3.1.  

Server locations Virtualisation  VMs configurations 
Amsterdam (local) Xenon, Quad Core x 

2.13Ghz 
• Microsoft Windows 7 

64-bit as operating 
system 

• 4 CPU cores 
• 8GB of RAM 
• 200GB of disk space 

Auckland (remote)  Xenon, Quad Core x 
2.26Ghz 

Table 3-1: Research environment configurations 
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3.4.2 Database architecture  

This research attempts to reflect real-world situations in its experiments, what can be 

concluded from the experimental conduct can be generalised. The suitability of the datasets to 

the investigation poses multiple issues in terms of its size and whether or not it can serve the 

intended purpose. The size of the datasets matters and in addition it must be relational data. 

This study attempts to reflect real-word situations in its experiments, so that what can 

be concluded from experiments can be generalised.  While it is not difficult to find a large 

dataset, in most cases data costs money (Red-gate, 2015) or the dataset requires normalisation. 

For instance, data repositories naturally keep data in un-normalised form so that they can be 

used for data mining purposes (Machine Learning Repository, n.d.), 

 Therefore, a dataset from AUT’s data warehouse is used because it is both large and 

relational. The dataset contains anonymised student EFTS records. The obtained dataset has 

the following features: 

1. The database is made up of 13 tables (see Figure 3.1 for Entity Relationship 

Diagram (ERD); table and columns name are provided in appendix A, pp. 188-203. 

2. All tables are received as comma separated value (csv) files. While small tables 

can be imported directly to both databases, insert scripts are required so that big 

tables such as DIM_STUDENT and MYTABLE can be inserted into databases. 

3. To write these scripts is time-consuming because some tables are bigger than what 

the text editor (Notepad++) can handle, therefore a split tool is used in order to 

split these files before scripts can be written.  

4. MYTABLE originally contains more than 400 million tuples, a size of 80GB. The 

limitation is a time constraint in that the queries are taking too long to process so 

the dataset is reduced to 100 million tuples, a size of 18GB. 
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5.  MYTABLE has an entry for each paper that a student is enrolled in. For instance, if one 

student studies only one paper throughout the academic year, then this means that 

there is a tuple for each day of the year for this student. This way projects how many 

points each student consumes in the duration of his/her enrolment(s).  
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Mytable 

*Dim_Class

Dim_Student

Dim_Month

Dim_Intake

Dim_Enrolment_Type

Dim_Department

*Dim_Programme

Dim_Enrolment_Status

*Dim_Paper

*Dim_TSC_Category

Dim_Classicification

Dim_Date 

Student-KeyFK

Class_KeyPK

Student_KeyPK

Month_KeyPK

Teaching_Department_KeyFK

Class_KeyFK

Intake_KeyPK

Enrolment_Type_KeyPK

Department_KeyPK

Programme_KeyPK

Programme_Augement
ed_Code (BK)

Owner_Budget_Centre

Owner_Campus_Key

Stream_ID (BK)

Enrolment_Status_KeyPK

TSC_Category_KeyPK

Classification_Key PK

Date_KeyPK

Month_KeyFK

Teach_Budget_Centre

Teach_Campus_Key

Owner_Budget_Centre

Owner_Campus_Key

Teach_Budget_Centre

Teach_Campus_Key

Location_Campus_Code

Location_Campus_Desc

*Finance_Campus_Code

*Finance_Campus_Desc

Enrolment_Type_KeyFK

Paper_keyFK

Paper_KeyPK

TSC_Category_KeyFK

Intake_KeyFK

Classification_Key FK

Enrolment_Status_KeyFK

Programme_ KeyFK

Date_ KeyFK

 

Figure 3-2: Database ERD 
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3.5 Experiments descriptions 

This section describes the experiments conducted. When the research encountered some 

ambiguities resulting from the different handling of the experiments by both RDBMS’ and 

from the network, different approaches are taken in some cases.  

3.5.1 Experiment 1 

SELECT D.STUDENT_DEMOGRAPHICS_KEY, F.TOTAL_EFTS  

FROM DIM_STUDENT D 

RIGHT OUTER JOIN MYLINK@MYTABLE F 

ON D.STUDENT_DEMOGRAPHICS_KEY = F.STUDENT_DEMOGRAPHICS_KEY 

WHERE F.TOTAL_EFTS >0 

 
EXP1 includes a SQL query (above) that aims to join one parent table (DIM_STUDENT) with 

MYTABLE to retrieve the students whose TOTAL_EFTS is higher than 0. The dataset also 

contains students with a TOTAL_EFTS of zero.  

EXP1 joins DIM_STUDENT with MYTABLE based on one condition in the WHERE clause. It 

is assumed that both RDBMS’ will undertake a table scan because setting up an index in 

MYTABLE for SQL Server is not possible, and while a Bitmap Index is created in the Oracle 

table, it is less likely that the optimiser will use this index to execute the query. In carrying 

out this query, one would also assume that it does not appear to have a great level of 

complexity for two reasons. First, the clause is based on the child table; hence, the optimiser 

will perform at least one table scan to look for tuples that fit the joining column and the 

WHERE clause condition. Second, only two columns from the MYTABLE are involved in this 

query.  
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3.5.2 Experiment 2  

SELECT F.STUDENT_DEMOGRAPHICS_KEY,P.PAPER_KEY, D.CALENDAR_YEAR 

,E.ENROLMENT_TYPE_KEY, E.ENROLMENT_TYPE_GROUP_DESC, 

P.TEACH_DEPT_CODE 

FROM DIM_PAPER P, DIM_DATE D ,DIM_ENROLMENT_TYPE E, MYLINK@MYTABLE F 

WHERE P.PAPER_KEY = F.PAPER_KEY 

AND E.ENROLMENT_TYPE_KEY = F.ENROLMENT_TYPE_KEY 

AND D.DATE_KEY = F.DATE_KEY 

AND F.PAPER_KEY =13362 AND F.ENROLMENT_TYPE_KEY = 33 AND D.CALENDAR_YEAR 

BETWEEN 2000 AND 2013 

This experiment aims to investigate the effect of joining four tables and adds a degree of 

complexity. That is, three parent tables (DIM_PAPER, DIM_DATE, DIM_ENROLMENT_TYPE) 

and MYTABLE. There are four WHERE conditions, two of which are based on the MYTABLE, and 

one based on one of the parent tables. EXP2 features with the following : i) because there are 

more WHERE conditions and more tables than in EXP1, EXP2 should take longer to run; ii) that 

EXP2 should produce more data than EXP2 and that the data will be required to traverse the 

network; however iii) the amount of data traversing the network will not be large because 

there are two WHERE conditions that are based on MYTABLE, and an AND operator is used 

between WHERE conditions so that any tuple in MYTABLE will need to satisfy these conditions.  

Tuples will be tested against the condition that is based on the parent table (DIM_DATE).  
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3.5.3 Experiment 3 

SELECT D.PAPER_KEY,PAPER_FULL_DESC, COUNT(DISTINCT 

F.STUDENT_DEMOGRAPHICS_KEY) AS COUNTOFENROLLEDSTUDENTS FROM 

DIM_PAPER D 

INNER JOIN MYTABLE F 

ON D.PAPER_KEY = F.PAPER_KEY 

GROUP BY D.PAPER_KEY,PAPER_FULL_DESC 

HAVING COUNT(DISTINCT F.STUDENT_DEMOGRAPHICS_KEY) >=5 

ORDER BY COUNTOFENROLLEDSTUDENTS DESC 

The aim of EXP3 is to examine, among other uses of the relational database, one common 

query that produces an aggregated result set. One can expect this query to run relatively faster 

than other experiments, especially when it normally returns a small dataset as its output. 

Nonetheless, EXP3 involves a considerable degree of complexity as there are different 

relational database operators, namely GROUP BY, HAVING and ORDER BY, in addition to 

joining two tables. Thus, it is not assumed that the query will be simple and it turns out that it 

is a complex query to run in Oracle. However, in SQL Server EXP3 runs as expected.  

3.5.4 Experiment 4 

SELECT D.STUDENT_DEMOGRAPHICS_KEY, F.PAPER_KEY, F.DATE_KEY FROM 

DIM_STUDENT D 

INNER JOIN MYTABLE F 

ON D.STUDENT_DEMOGRAPHICS_KEY = F.STUDENT_DEMOGRAPHICS_KEY 

In EXP4, this research tries to further investigate the effect of the network’s influence on 

performance; therefore, this study focuses on the amount of the data, but with less complexity 

in the query. This means that while there is still processing time, the main purpose of EXP4 is 

to examine the network’s effect on relational database performance. This involves 100 

million tuples from three columns required to traverse the network.  
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3.5.5 Experiment 5 

SELECT F.STUDENT_DEMOGRAPHICS_KEY ,D.ENROLMENT_TYPE_KEY, 

D.ENROLMENT_TYPE_GROUP_DESC FROM DIM_ENROLMENT_TYPE D 

LEFT JOIN MYTABLE F 

ON D.ENROLMENT_TYPE_KEY = F.ENROLMENT_TYPE_KEY 

WHERE D.ENROLMENT_TYPE_GROUP_DESC = 'INTERNATIONAL STUDENTS'; 

This experimental work aims to investigate relational database performance in CDD under 

different conditions, and this is reflected in previous experiment by testing performance with 

different join types and occasionally using WHERE clause. EXP5 intends to left join parent table 

(DIM_ENROLMENT_TYPE) with MYTABLE where student are international. This also shows those 

students who do not have entry in MYTABLE. It is expected EXP5 is going to take a 

considerable time, since there are two columns from child that are involved, suggesting  that 

the network overhead is may appear.  

3.5.6 Experiment 6 

SELECT D.STUDENT_DEMOGRAPHICS_KEY, F.PAPER_KEY, F.DATE_KEY,D.AGE, 

D.LAST_SECONDARY_SCHOOL_COUNTRY FROM DIM_STUDEN D 

INNER JOIN MYTABLE F 

ON D.STUDENT_DEMOGRAPHICS_KEY = F.STUDENT_DEMOGRAPHICS_KEY 

WHERE D.AGE > 25 AND F.LAST_SECONDARY_SCHOOL_COUNTRY = 'NEW ZEALAND' 

In EXP6, two large tables are joined with an AND operator used as filtering condition, and this 

condition is based on parent table, so that 100 tuples from three columns of MYTABLE are 

returned and then check tuples whether they meet WHERE clause condition. Moreover, the 

condition is purposely made to involve a large dataset, and that is the age of students must be 

over 25 years and their LAST_SECONDARY_SCHOOL_COUNTRY is New Zealand. Hence, it is 

expected that both RDBMS will take a long time to execute. 
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3.5.7 Experiment 7 

SELECT F.STUDENT_DEMOGRAPHICS_KEY, F.PAPER_KEY, F.DATE_KEY, 

P.PROGRAMME_KEY, P.PROGRAMME_FULL_DESC, I.INTAKE_YEAR 

FROM DIM_PROGRAMME P 

INNER JOIN MYTABLE F ON P.PROGRAMME_KEY = F.PROGRAMME_KEY INNER JOIN 

DIM_INTAKE I ON F.INTAKE_KEY = I.INTAKE_KEY 

WHERE P.PROGRAMME_FULL_DESC= 'BACHELOR OF ARTS AND BACHELOR OF BUSINESS 

CONJOINT DEGREES' 

OR I.INTAKE_YEAR>1990 

 EXP7 aims is to learn about performance of relational database under different circumstances. 

That is, three tables are joined together with condition which uses OR operator between two 

different parent tables so that MYTABLE is used to link these tables in order to execute the 

query. Thus, five columns for 100 million rows are involved in EXP7, and it is expected that 

this experiment will take longer than the previous experiments. Since, there are five columns 

retrieved across the network in EXP7 compared to three columns in EXP6, there is more data 

that need to travel the network to Amsterdam VMs.  

3.5.8 Experiment 8 

SELECT D.STUDENT_DEMOGRAPHICS_KEY, F.PAPER_KEY, 

F.DATE_KEY,F.ENROLMENT_STATUS_FIRST_DAY  

FROM DIM_STUDENT D 

FULL JOIN MYTABLE F 

ON D.STUDENT_DEMOGRAPHICS_KEY = F.STUDENT_DEMOGRAPHICS_KEY 

ORDER BY D.STUDENT_DEMOGRAPHICS_KEY 

To demonstrate the effect of the SORT operator in the case of a large dataset in CDD, EXP8 is 

undertaken. That is, the largest parent table (DIM_STUDENT) is fully joined with the child 

(MYTABLE) table, and then the result is ordered by column (STUDENT_DEMOGRAPHICS_KEY) 
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from DIM_STUDENT table. EXP8 is a complex experiment, not only because of the use of the 

full join type, but also because of ORDER BY clause. 

EXP8 in Oracle runs three times and never finishes—that is, it crashes three times. 

Upon these crashes, Oracle instances report that some kind of timeout has occurred, although 

in all of these attempts, EXP6 runs longer than EXP8 before the latter crashes. One issue from 

this situation is that most of performance data are lost in the crashes such as network traffic. 

Hence, with available information, no complete picture can be drawn; however, they can give 

a sense of what happens during EXP8. Additionally, the data size is reduced from 100 million 

tuples to 10 million tuples so that a clear picture can be obtained. 

3.5.9 Experiment 9  

Oracle query text: 

UPDATE (SELECT F.PAPER_KEY FROM MYTABLE@MYLINK F WHERE F.PAPER_KEY IN 

(SELECT D.PAPER_KEY FROM DIM_PAPER D WHERE D.PAPER_KEY= '13362')) 

SET PAPER_KEY = '666666'); 

SQL Server query: 

UPDATE MYTABLE 

SET PAPER_KEY = '444444' 

WHERE PAPER_KEY IN (SELECT D.PAPER_KEY FROM DIM_PAPER D 

WHERE D. PAPER_KEY = '13362'); 

Note: the difference in query text is because each RDBMS has different requirements in 

regards to how update query should be written. 

An update operation is a common practice in relational databases; therefore, EXP9 aims to see 

how relational databases will cope when two distributed tables are joined in order to perform 

the update. It is expected that the query will not take long to finish, because while it updates 
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many tuples, this requires it to join to tables with the WHERE condition that is based on the 

DIM_PAPER. However, although the query requirements are not very complicated, it appears 

to be problematic, particularly in SQL Server. Oracle treats in a very different manner, which 

meets the expectation above. Therefore, EXP9 second approach for SQL Server as follows: 

This second approach for SQL Server involves choosing the PAPER_KEY value from 

DIM_PAPER table that this experiment wants to update and then sending this value to remote 

VMs, where there is an update procedure that is prepared to perform the update.  The second 

approach query text is as follows: 

The local query text is as follows: 

DECLARE @PAPER_KEY INT 

SET @PAPER_KEY = (SELECT PAPER_KEY FROM DIM_PAPER WHERE PAPER_KEY = 

13362) 

EXEC MYLINK.UPDATEPRO1 @PAPER_KEY 

Remote update procedure text: 

DECLARE @PAPER_KEY INT 

AS  

BEING 

UPDATE MYTABLE  

SET PAPER_KEY = 555555   

WHERE PAPER_KEY = @PAPER_KEY 

Once the query runs, it declares a parameter for the integer type to store the value of the 

targeted PAPER_KEY, and then the system sets the parameter to obtain this value from the 

query performed on the DIM_PAPER table. Last line runs the procedure in the remote VM and 

passes the value stored on @PAPER_KEY to remote procedure. 
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3.6 Data collection  

This is an important stage of research since it deals with data that can be used to achieve this 

research’s purpose. Data collection is conducted in two different ways as result of using two 

RDBMS’. Before running an experiment the following commands (see Table 3.2 and Table 

2.3) are issued so that databases’ buffers and statistics are cleared; this is to ensure reliability 

of data that for analysis. If this is not done then subsequent experiments may benefit from the 

cached data, which may impact the results’ reliability.  

SQL Server command  Function  
1. DBCC DROPCLEANBUFFERS  
2. DBCC FREEPROCCACHE  
3. DBCC SQLPERF 

(N'SYS.DM_OS_WAIT_STATS', 
CLEAR); 

4. Restart the instance. 
 

1. “Removes all clean buffers from the 
buffer pool” (Microsoft, 2015a). 

2. “Removes all elements from the plan 
cache, removes a specific plan from 
the plan cache by specifying a plan 
handle or SQL handle, or removes all 
cache entries associated with a 
specified resource pool” (Microsoft, 
2015g). 

3. “In SQL Server it can also be used to 
reset wait and latch statistics” 
(Microsoft, 2015r). 

Table 3-2: Pre-experiment commands in SQL Server. 

 

Oracle command Function 
1. ALTER SYSTEM FLUSH SHARED_POOL 
2. ALTER SYSTEM FLUSH 

BUFFER_CACHE 
3. restart the instance  

1. “Let’s [the user] clear all data from 
the shared pool in the system global 
area (SGA)” (Oracle, 2015a). 

2. “Let’s [the user] clear all data from 
the buffer cache in the system global 
area (SGA)” (Oracle, 2015a). 

Table 3-3: Pre-experiment commands in Oracle. 

 Data collection in SQL Server is carried out as follows: 

1- SQL Server profiler is first set up in local and remote VMs to capture duration, 

CPU time, number of logical reads and number of physical writes. This profiler 
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does not provide the number of physical reads nor does it compute the average I/O 

latency. 

2- Average I/O latencies are calculated using the code in Appendix D (p. 209).  

3- To capture physical reads in both VMs and the execution plan in remote VM, the 

following query is used: 

SELECT EXECUTION_COUNT,TOTAL_PHYSICAL_READS,QP.QUERY_PLAN FROM 

SYS.DM_EXEC_QUERY_STATS QS 

CROSS APPLY SYS.DM_EXEC_QUERY_PLAN(QS.PLAN_HANDLE) AS QP 
 

4- Wait events are also captured using the code in Appendix D (pp. 2010-211). 

5-  Execution plan in local VM is obtained using SQL Server’s feature “show 

execution plan”. 

6-  Network traffic is captured using SQL Server’s feature “show client statistics”.  

7- SQL Server uses TEMPDB as in EXP8 and EXP9 and the following steps are 

undertaken in order to capture the number of I/O operations: 

a. By using the code in Appendix D (I/O statistics, p. 209), it provides 

information related to I/O operations that occur in the SQL Server instance 

during the runtime of the experiments. This includes all databases the 

instance stores such as TEMDB and MASTER.  

b. Number of bytes reads that occur in TEMPDB to calculate the number of 

physical reads by using the following formulae:  

𝑥𝑥 =  
𝑦𝑦

1024
 This is to covert from bytes to KB.  

 y = Number of physical reads & x= Number of bytes reads  

Then the result is divided by 8KB, which is the default page size in both SQL Server 

as follows: 
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Number of physical reads =  
𝑥𝑥
8

 

Data collection in Oracle is carried out as follows: 

1. Snapshots1 section of Automatic Workload Repository2 (AWR) feature is mainly 

used to capture performance statistics. It provides a large volume of performance 

data but not all of them are relevant to this research and therefore the following 

sections from AWR  report are used for data collection: 

a. “Top 5 Timed Foreground Events”: This section shows top wait events 

that occur during the experiment’s runtime. It also gives information about 

the wait classes – such as network and user I/O – that are the most relevant 

to the purpose of this research. In addition to providing the percentage of 

each wait from the runtime. 

b. Foreground Wait Class: This section of AWR report is used to get the 

average I/O latency per physical read. If, however, there are physical 

writes and I/O operations occurring on TEMPDB, then the section of AWR 

report entitled Foreground Wait Events is used.  

c.  SQL Statistics:  This section of AWR report is used to get the runtime and 

CPU time. 

d. Segment Statistics: This section of the AWR report is used to get the 

number of logical reads as well as physical reads and writes.  

2. Oracle’s command SET AUTOTRACE ON is used to get the execution plan in the 

local instance. It turns out also the command provides performance statistics that 

                                                 
1 “AWR automatically generates snapshots of the performance data once every hour” (Oracle, 2015m). 
2 “AWR automatically persists the cumulative and delta values for most of the statistics at all levels except the 
session level. This process is repeated on a regular time period and the result is called an AWR snapshot. The 
delta values captured by the snapshot represent the changes for each statistic over the time period” (Oracle, 
2015m). 
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are related to the number of I/O operations that happen in TEMPDB files as well as 

similar statistics to what AWR provides.  

3. The execution plan in remote VM is obtained by querying Oracle’s view 

V$SQL_PLAN.  

4. Oracle error log is used to collect data that related to whenever an experiment(s) 

crashes.  

3.7 Data analysis 

Once data collection is done, data are analysed using comparisons and statistical methods. 

The former is facilitated since this research is undertaken using identical configurations and 

also because it uses two different PuC providers that deal with different workloads.  

 Comparisons are carried out as follows: 

1. Explain and compare both local and remote execution plans; 

2. Compare runtime between both systems. 

3. Compare CPU time and explain its relevance to the chosen execution plans.  

4.  Number of logical reads is sometimes used if execution plans create high number of 

logical read.  

5. Number of physical operations is compared between the two RDBMS’, and more 

importantly average I/O latency is used to quantify the effect of these operations on 

the runtime. Sometimes, comparing this average is also carried out with previous 

experiment(s) when appropriate.  

6. Wait events explain the wait times that occur during experiments’ runtime.  



Chapter 3  Methodology    

55 
 

3.7.1 Statistical data analysis  

This section outlines statistical methods that are used to test the research’s hypotheses. It also 

explains the steps that are undertaken to prepare data for the analysis.  

3.7.1.1 Data preparation  

 Before this analysis is conducted, using SPSS software (IBM, n.d.) normal distributions of 

the data are checked and, a skewness test (Martin & Bridgmon, 2012) is undertaken on 

duration, CPU time and network traffic as follows: 

Performance 
measures  

Skewness Z (Skewness / Std. Error of 
Skewness) 

Duration  1.226/.378= 3.24 
CPU 2.097/.378= 5.54 
Physical reads  1.793/ .378= 4.74 
Network traffic  1.882/.564= 3.33 

Table 3-4: Skewness test 

According to Cramer and Howitt (2004), the Z score should be between (+/- 1.96) and table 

3.4 shows that all the values of Z score are larger than this, therefore the data are positively 

skewed. Therefore, data will not be fit for statistical methods, and a logarithm of data is 

undertaken to remove the skewness so that parametric tests such as regression analysis can be 

carried out (Cramer & Howitt, 2004).  

3.7.1.2 Statistical methods selection 

The data sample resulting from this research is not large enough to conduct an extensive 

statistical analysis including factor analysis and full regression test. This becomes a limiting 

factor and in addition there are instances where some tests are less appropriate to use, such as 

a correlation test between two variables that are related to each other. For instance, CPU time 

is already a part of the runtime so there will be a causal relationship anyway.  In this case, the 

independent sample test is more suitable than the correlation test to examine the effects of the 

choices made in regards to execution plans and their implementation in a CC environment. 
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This is because there are two different CPU times (SQL Server and Oracle) that represent 

population samples that are independent of each other (Martin & Bridgmon, 2012). This test 

is performed to check whether there is difference between the samples means.  These samples 

are virtualised using a scatter plots.  

 Further, the correlation test is the starting point if two variables affect each other, for 

instance, if an increase in network traffic causes an increase in runtime. Upon the completion 

of this test, SPSS determines the level of significance. If the correlation test shows a 

significant causal relationship, a regression test is used as a prediction model that can predict 

the relationship between the variables. However, since the results do not produce large data 

points and the model relies on only one independent variable, this research employs a simple 

regression test. Because Lloyd et al. (2013) uses p-value and R square to determine whether 

the model can predict the relationship between the variables using the predictor, this research 

employs the same data in addition to using confidence interval to be confident that 95% of 

the model covers the samples (Cramer & Howitt, 2004).  

3.8 Theory generation  

Theory is “a supposition or a system of ideas intended to explain something, especially one 

based on general principles independent of the thing to be explained” (Oxford Dictionaries, 

2015). Theory is thought to explain a broad theoretical context that may be used to advance 

current knowledge (Lewin, 1945). It is not surprising that every theory has a different 

purpose and is shaped based on the field for which is generated. As an example, it gives 

explanations for the events encountered in natural and physical sciences (Proper, 2005) and in 

other disciplines such as social sciences where it aims to test if there exists a relationship 

between variables (Doty & Glick, 1994,). Another example is that, theory that comes from 

positivist research then it should demonstrate verifiable or realistic standpoints. An 
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interpretivist’s viewpoint, on the other hand, is a theory is derived from the context in which 

specific situations occur (Godfrey-Smith, 2009).  

Since this research falls into the IS research category, the process of theorising in IS is 

followed. For instance, theory in general can lean towards demonstrating its intended purpose 

that may lead to creating abstract knowledge from observations, or it may generate a theory 

that may take the form of cause and effect, or that may give explanations or predict certain 

events. As a result, theory generation in IS can be classified into five categories including 

analysis, explanation, prediction, explanation and prediction, and design and action (Gregor, 

2006). The author defines this analysis type as theories that provide a description of events, 

and this description may include a classification scheme and taxonomies (Gregor, 2006). 

Often, such theories serve a purpose when there is no adequate knowledge about a 

phenomenal situation (Miles & Huberman, 1994). Furthermore, explanation theory aims to 

provide answers for questions such as how and why certain observations take place. Case 

study research can generate such theories (Gregor, 2006). Prediction, as the name indicates, is 

aimed at predicting events using statistical data analysis methods including but not limited to 

a regression test. However, this type of theory does not explain the cause behind specific 

patterns. On the other hand, explanation and predication provide answers to questions such as 

how, when, and what will be. They fit the aims of researchers to build and test theories. 

Lastly, the theories that give a design and action that may solve issues in hand. Such a 

category can serve the purpose of software engineering or the approach of systems 

development (Gregor, 2006). Von Alan, March, Park, & Ram (2004) state that such theories 

can be presented in the form of developing artefacts. 

 Gregor (2006) adds that multiple theory types can form a body of knowledge. For 

instance, in order to provide an explanation about any certain pattern, analysis of this pattern 

needs to take place. Therefore, this research needs to analyse the pattern(s) that may or may 
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emerge from conducting experimental work in order to generate theories that are aimed at 

providing explanations for the emergent observations. 

3.9 Conclusions 

The above discussions provide justifications regarding the choice of this research’s 

methodology. The chapter also outlines the steps that are applied in order to design the 

methodology and how the research questions are going to be answered as well as the testing 

of the established hypotheses. Data collection steps are detailed in addition to the details of 

environments where this research is conducted. Further, what steps are undertaken for 

analysing the results of the experiments are also discussed. This chapter concludes with 

explaining the manner that this research follows in order to generate theories. Chapter 4 

presents the experiments’ results and analyses these results, and concludes with the research’s 

findings.  
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Results Analysis and Findings  

 It was demonstrated in previous chapters that while CDD involve high data-availability and a 

high level of consistent data, performance issues must be considered when one thinks of 

deploying relational databases in the cloud. Therefore, a series of experiments was conducted 

to investigate these performance issues. It is important to emphasise that this research does 

not intend to compare the two database systems for the sake of comparison; rather, it only 

investigates relational database performance in CDD. Whether one database system performs 

better than the other is not relevant to the purpose of this research, and both systems differ 

considerably in the results. For instance, while both systems require a similar time to execute 

EXP2 (see Section 4.2.2) there is a significant difference between them in EXP3 (See section 

4.2.3). These variations, which will be detailed in Section 4.2, provide evidence of the 

multiple challenges of implementing RDBMS’ in a CC environment, including how the 

RDBMS’ handle query execution and the resulting effects on performance. 

4.0 Introduction 

Investigating relational database performance in the cloud involves many complexities 

including, but not limited, to the virtualised environment that the database system runs on, the 

requirements necessary for RDBMS’ to execute queries, and the round-trip between the 

nodes across the network. Many interactions also occur between nodes that are unknown and 

therefore uncontrollable. 

 Chapter 4 contains four main sections. Section 4.1 details the preparatory steps taken 

before conducting the experiments such as setup indexes and the approaches taken to work 

around the functionality issues of the RDBMSs that otherwise could create barriers for the 
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research. Section 4.2 contains the backbone of the investigation and explains and analyses 

experiments’ results in a very detailed manner. Section 4.2 consists of nine subsections 

corresponding to the number of experiments performed for this study in addition to 

Experiment 8 second approach for Oracle and Experiment 9 second approach for SQL 

Server. Section 4.3 details the research’s findings and Section 4.4 concludes the chapter by 

summarising the findings. Section 4.5 concludes Chapter 4. 

4.1 Pre-Experiment Preparation 

This section describes the steps that are applied before conducting the experiments 

specifically in relation to index set-up. But also outlining problems related to the functionality 

of the RDBMSs that are encountered during this research as well as explaining remedies 

applied to them. In order to avoid any vendor bias, three popular RDBMS’ are initially 

chosen to use in the experiments, namely SQL Server, Oracle and MySQL, but only two 

system are used which are SQL Server and Oracle ( see Section 2.4.1).  

As mentioned in Section 3.4.2, MYTABLE contains 100 million records in 35 columns. 

Such a large table requires a considerable amount of computational resources to set up an 

index. Creating a clustered index or non-clustered index in the child table is not successful 

because each VM has only 8 GB of memory, whereas the typical size of a B-tree index table 

requires 3–4 times that much (Wu, Otoo & Shoshani, 2004). Therefore, 8 GB of memory is 

inadequate to create a clustered index in the used RDBMS’ given that the page size is 8 KB 

in them. 

However, Oracle has a feature called Bitmap Index that requires few computational 

resources and creates an index in seven minutes. However, Oracle’s own documentation 

suggests that the greater the number of unique values in a particular row, the less chance 

there is that the Bitmap Index will be of benefit from the query’s performance (Oracle, 
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2015i). Further, Oracle’s own experiments demonstrate that the database engine always 

chooses to scan the MYTABLE instead of using the index. In fact, Oracle surmises that the 

Bitmap Index works optimally for a table that has one million rows with 10000 distinct 

values (Oracle, 2015i). In EXP2  – which takes significantly less time to finish than the 

others – the RDBMS chose to perform a table scan even though there were Bitmap Indexes 

for the joining column and for the column that appears in the WHERE clause. Previous studies 

undertaken by Wu et al. (2004, 2006) demonstrate that a Bitmap Index is not effective with 

high-cardinality attributes because the index size can grow exponentially. Therefore, these 

authors use a compression scheme called Word-Aligned Hybrid Code to store the Bitmap 

Index as plain files, and their experimental work shows that a compressed Bitmap Index can 

work for high-cardinality attributes with high distinct values. So while the Bitmap Index is 

used in this study, its benefit may not affect performance significantly because of the large 

proportion of distinct values for most records. For example, as shown in Figure 4.1, student 

number 224594 has 11849 distinct records, while student 252254 has 11817 distinct records. 

 

 

Figure 4-1: The number of students enrolled in papers.  

This query is performed on MYTABLE. 
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The RDBMS’ used in this study are limited in regards to the display of results, especially 

when queries returned a large dataset. SQL Server and Oracle vary significantly in how their 

results are displayed. For instance, when SQL Server runs out of memory, it stops the 

execution of the query and returns an error. However, SQL Server provides options to 

remedy this limitation, such as sending the results to a file instead of displaying the results on 

screen (Microsoft Support, n.d.). 

The default output buffer size in Oracle is 20000 bytes, but the maximum size is 

unlimited (Oracle, 2015b). Although the buffer size is set to unlimited, no more data are 

returned after running EXP6 for 24 hours than those results displaced on screen. One way to 

resolve this issue is to spool the results to a file without displaying the results on screen by 

including the command SET TERMOUT OFF (Oracle, 2015c) in the query script. When 

spooling EXP6, more data results are returned than before the spooling. This may indicate that 

the unlimited buffer size may not be functioning. However, this limitation requires more 

investigation. 

4.2 Results and data analysis 

This section provides detailed discussion about the results of the experiments.  As Section 3.8 

indicates, in order to generate theories from this study, an analysis of the experiments must be 

conducted first followed by an explanation of the analysis so that the research questions can 

be answered and the study’s hypotheses tested. 

 This section explains the results of each experiment’ by looking first at the execution 

plans to demonstrate how each system approaches the experiments. The execution plans will 

then be compared between the two systems to show whether there are any implications for 

performance. Secondly, the performance statistics obtained will be outlined and compared. 

Finally, wait events will be detailed and compared. 
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4.2.1 Experiment 1  

Section 3.5.1 describes EXP1 by mentioning that it aims to join local table (DIM_STUDENT) 

with remote table MYTABLE where the value of column TOTAL_EFTS is higher than 0. The 

following figures show a snap shot of query results. 

 

Figure 4-2: Snap shot of EXP1results 

4.2.1.1 Execution plans 

Oracle (O)

 Index unique scan
(Dim_student).(PK_studnet Key) 

R

R  

Nested loops 
(left outer join) 

Do tuples 
meet join 
condition?

 Discarded 
tuples 

No

Select Yes

Clustered index seek
(Dim_student). (PK_studnet Key) 

SQL Server (S)

Do tuples 
meet join 
condtition

?

Nested loops 
(left outer join) 

Select Yes 

No

  

Figure 4-3: EXP1 local execution plans. 
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The following line is obtained from the statistics data returned by the Oracle command (SET 

AUTOTRACE) when the query finishes: 

(‘d’.‘dim_student_demographics_key’(+)=‘f’.‘student_demographics_key’). 

According to the Oracle documentation, + used before = indicates that a right outer 

join operator is performed. SQL Server undertakes an identical step in choosing the join 

operator, as shown in Figure 3.4.S However, SQL server performs a left outer join. For 

optimal NESTED LOOP performance, both SQL Server (SQL Server, 2015b) and Oracle 

(Oracle, 2015d) require the inner join table to be indexed. Neither system has either a 

clustered index or a non-clustered index on MYTABLE. This situation seems to provoke 

performance issues, as MYTABLE does not have indexes. 

Remote VMs differ in how they process queries, as shown in Figure 4.4. 

SQL Server (S)

Full table scan 
(child table) 

Sort 
operator

Parallelism
(Gather streams) Select 

Oracle (O)

Full table scan 
(child table) Parallelim  Select 

 

 

Figure 4-4: EXP1 remote execution plans 

After SQL Server scans MYTABLE to obtain the tuples requested by the query, it then performs 

a SORT operation to order these tuples (in ascending order by default), although – in terms of 

performance – this operation is an expensive task to execute (SQL Server, 2015b). This is 
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because the optimiser chooses the NESTED LOOPS join operator, thus the incoming data have 

to be pre-indexed for better performance. However, MYTABLE is not indexed. It appears that 

the optimiser attempts to index the retrieved rows implicitly using the SORT operator. 

 As Oracle optimiser runs the query in parallel because the query needs at least one 

full table scan operation (Oracle, 2015j). Unlike SQL Server, Oracle does not use SORT 

operator (see Figure 4.4.O).    

The plan in Figure 4.4.S appears to be based on the assumption that there is an index 

in the table, which indicates that the scan operator will not scan the entire table. 

 

Figure 4-5: EXP1 remote SQL Server table scan 

As there is no index, the table scan will touch all 100 million tuples and will retrieve only 

those rows that satisfy the WHERE condition (SQL Server, 2015d).  

In summary, to perform the scan for EXP1 both RDBMS’ use nearly identical 

execution plans (table scan or parallelism execution). The systems employ NESTED LOOPS 

although, for optimal performance, this operator requires data to be indexed. Thus SQL 

Server sorts the data to add an index but Oracle does not appear to add an index and does not 

employ the SORT operator. Performance implications may be seen in the time taken to run the 

query.  
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4.2.1.2 Comparison between RDBMS 

The previous section compares the execution plans of the RDBMS and presents a slight 

difference where SQL Server employs the SORT operator after the table scan. However, this 

section examines the performance data obtained from EXP1. As previously stated (see Section 

3.5.1), EXP1 is expected to be relatively simple. 

 

Figure 4-6: EXP1 duration and CPU time in seconds 

In terms of total runtime, Oracle ran more slowly than SQL Server (115 seconds compared to 

89 seconds respectively, a difference of 26 seconds). Moreover, CPU time consumed nearly 

one-third of the runtime in remote instances. Oracle used less CPU time because it did not 

use the sort operator as SQL Server did. Figure 4.6 shows that a considerable portion of the 

runtime of EXP1 is spent in remote VMs, especially for CPU time. In total, Oracle performed 

more logical reads than SQL Server and also consumes slightly more CPU time. 
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Figure 4-7:  EXP1 CPU time and logical reads 

It appears that Oracle spends more runtime in the local VM than SQL Server, indicating that 

NESTED LOOPS may perform in a suboptimal manner. However, the use of the SORT operators 

by the remote SQL Server VM eliminated a similar situation and led to a gain in 

performance. Hence, SQL Server consumed less CPU time than Oracle, although Oracle 

received 10 MB from MYTABLE and then joined them. 

 

Figure 4-8: EXP1 Physical reads and average I/O latency 
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The comparison between the local VMs on which the parent tables are deployed and the 

remote instance that holds MYTABLE is shown in Figure 4.8. The physical read numbers in 

remote instances appear to be large and the implications of this phenomenon for performance 

are important. For example, disk latency is a factor that can affect performance.  When using 

the remote disk SQL Server needs 10 ms per read and Oracle needs 6 ms per read on average. 

Compare this to local disk latency where the former consumes 12 ms per read and the latter 

10 ms per read. Regardless of whether the database engine performs a full table scan, the 

amount of time it takes for the disk to complete an I/O operation is equally important. These 

figures suggest that either the local service provider has many users using its physical 

infrastructure or the provider operates physical infrastructure with reduced capability. This is 

in contrast to the remote service provider that carries out I/O operations faster.  

In addition, both database engines chose to use an index: INDEX SEEK in SQL Server 

and INDEX UNIQUE SCAN in Oracle (see the S and O components of Figure 4.3) The local 

SQL Server’s average I/O latency is 12 ms, compared to the average I/O latency of fully 

scanning the child table (10 ms). Similarly with local Oracle, the average I/O latency (10 ms) 

is higher than the full table scan average I/O latency performed in the local table (6 ms). If 

one compares the number of tuples in both tables (parent and child), MYTABLE has more rows 

than the parent table (DIM_STUDENT). This reflects the reality of PuC where multitenancy is 

common. 

In the absence of indexes, the database engine has to scan MYTABLE at least once to 

retrieve data and then send the data to buffers prior to processing. Having only 8 GB of 

memory for each VM means that each RDBMS will have only 6 GB of memory to use 

because the operating system (Windows 7) requires at least 2 GB of memory (Microsoft, 

n.d.). This raises a concern about how much memory is allocated to the buffer in both 

RDBMS’; but the buffer area is determined dynamically (Oracle, 2015e; SQL Server, 2015e) 
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by these database systems and such a determination is beyond the scope of this research. An 

examination of events that occurred during the execution period show that relational 

databases present different wait types or events, which indicates where the RDBMS' consume 

time. 

 

 

Figure 4-9: EXP1 SQL Server wait events 

Figure 4.9 shows that two wait events are dominant in SQL Server. First, the local VM waits 

for almost 14% (OLEDB) of its runtime for the arrival of data. Microsoft defines OLEDB wait as 

that “occurs when SQL Server calls the SQL Server Native Client OLE DB Provider” 

(Microsoft, 2015f), which means that SQL Server waits for the provider to return data. In the 

meantime, the provider waits for the WAN. Second, the remote instance encounters a 

PAGEIOLATCH_SH (29.33%) which represents the time taken when the user waits for buffers to 

be accessible (Microsoft, 2015f). Likewise, the instance waits (2.44%) for data to be written 

into the memory from the disk PAGEIOLATCH_EX (Microsoft, 2015f). This wait suggests that 

the buffers are allocated for I/O operations but they cannot be used until the I/O operation is 

complete. These periods indicate the effects of PuC environment on the RDBMS’ I/O 

performance. 
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Figure 4-10: EXP1 Oracle wait events 

Figure 4.10 indicates that Oracle wait events go in the same direction, for example the wait 

for the network takes 21% of the runtime compared to 14% for SQL Server. This coincides 

with that the SQL Server transfers less data and therefore SQL Server spends less time 

waiting for the data. Further, Figure 4.9 shows I/O related wait (PAGEIOLATCH_SH) as the 

highest reported wait event and Figure 4.10 exhibits a similar pattern: remote instance waits 

for 73.75% of the time for a DIRECT PATH READ and the local instance waits for 4.8% of the 

runtime for the DB FILE SEQUENTIAL READ OPERATION. The DRECT PATH READ involves 

“A direct read is a physical I/O from a data file that bypasses the buffer cache and reads [one 

or many] data block[s] directly into [PGA3 buffer]” (Oracle, 2009). Whereas, DB FILE 

SEQUENTIAL READ involves reading one data block into the SGA4 buffer (Oracle, 2009).  

Both waits involve waiting for I/O operations to complete.  

Further, Figure 4.8 shows that a full table scan can result in a performance bottleneck, 

especially when fewer than 20% of the table tuples are returned. For instance, SQL Server 

                                                 
3 Program global area (PGA) “A PGA is a memory region that contains data and control information for a server 
process. It is non-shared memory created by Oracle Database when a server process is started”. (Oracle, 2015) 
4 System global area (SGA) “The SGA is a group of shared memory structures, known as SGA components, that 
contain data and control information for one Oracle Database instance. The SGA is shared by all server and 
background processes. Examples of data stored in the SGA include cached data blocks and shared SQL areas”. 
(Oracle, 2015).  



Chapter 4   Result Analysis and Finding 

71 
 

returns a total of 170,691 bytes, or the equivalent of 0.171 MB, whereas Oracle returns 

10,939,045 bytes, or just over 10 MB.  

 

4.2.2 Experiment 2 

As Section 3.5.2 details, EXP2 joins four tables namely DIM_PAPER, DIM_DATE, 

DIM_ENROLMENT_TYPE and MYTABLE. The join will occur where conditions are met. Two of 

these conditions are based on MYTABLE and the other one is based on DIM_DATE. The 

following figure show a snap shot of query results. 

 

Figure 4-11: Snap shot of EXP2 results 
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4.2.2.1 Execution plans 
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Figure 4-12: EXP2 local execution plans 

Both plans differ considerably from the plans used in EXP1. More importantly, three different 

join operators are used to join the four tables and two of them are joined based on two tuples 

values of two columns (PAPER_KEY AND ENROLMENT_TYPE_KEY) from MYTABLE.   The last 

join is based on a range of values expected back from the DIM_DATE table. The joining have 

different types of cardinality: low, when one single tuple is expected back from the join 

between DIM_PAPER and DIM_ENROLMENT_TYPE; and high, when more than 5,000 tuples are 

returned from DIM_DATE. Thus, both RDBMS’ vary in how they carry out the joining. 
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Figure 4.12.S shows that the join of the two tables DIM_PAPER and 

DIM_ENROLMENT_TYPE returns one value. The figure also shows that an INDEX SCAN is 

performed to obtain requested tuples from DIM_DATE. Then NESTED LOOP is used as a join 

operator between DIM_DATE and DIM_PAPER and the result is joined with the corresponding 

rows from the remote table using MERGE JOIN operator. The choice of MERGE JOIN operator 

is surprising because both inputs must be ordered and since there are 100 million tuples in 

MYTABLE, performance issues arise. However although the table scan touches every tuple in 

the table, it only returns those rows that satisfy the WHERE clause. The resulting set is then 

joined with DIM_ENROLMENT_TYPE to check whether this set satisfies the conditions that these 

joined tables are based on.  

Figure 4.12.O shows that Oracle uses an INDEX UNIQUE SCAN to obtain one record 

from DIM_PAPER, but it does a full table scan to obtain the other value from 

DIM_ENROLMENT_TYPE. As DIM_ENROLMENT_TYPE has only 30 rows, the choice of which 

access method is used should not be a problem. Oracle also used a full table scan to access 

DIM_DATE.  But, Oracle also uses a BUFFER SORT that does not actually sort the data, but 

rather moves data between Oracle’s buffers. More specifically, the data obtained in a full 

table scan operation are moved from the SGA to the PGA. Oracle states that this helps to 

avoid the repeated scanning of data and the optimiser avoids excess logical reads and reduces 

resource contention (Oracle, 2015d). So since there is no direct connection between 

DIM_DATE and the other parent tables involved in EXP2, Oracle decides to move data to the 

PGA area for further processing. This additional processing appears in the execution plan 

when the optimiser chooses to use MERGE JOIN CARTESIAN to check that all of the returned 

tuples satisfy the query’s conditions. The HASH JOIN operator is then used to join these tuples 

with the corresponding rows that have arrived from MYTABLE. Notably, Oracle does not 

choose to use the MERGE JOIN operator. 
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It is significant that the difference between the execution plans used by the two 

database systems demonstrated variations in performance. For example, logical reads can 

create performance overhead. Oracle addresses this and moved data between its buffer areas. 

The remote VMs that host MYTABLE treat the query in a similar way to EXP1, but SQL Server 

seems to use more resources than are needed in EXP1. As shown below, both engines execute 

EXP2. 

SQL Server (S)

Full table scan 
(child table) 

Sort 
operator

Parallelism
(Gather streams) Select 

Oracle (O)

Full table scan 
(child table) Parallelism Select 

 

Figure 4-13: EXP2 remote execution plan 

Both the S and O components of Figure 4.13 appear identical to EXP1, especially in 

regards to what has been done to execute the query. As SQL Server employs MERGE JOIN 

operator it creates the need for SORT operator to be used. Oracle, as in EXP1, handled the 

execution of the full table scan in parallel. However the following section – which compares 

the performance data for both systems – may reveal more evidence as to whether the amount 

of data involved in the query leads to the poor performance of relational databases in clouds 

or whether this poor performance relates to how the optimiser handles the query in CC. 
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4.2.2.2 Comparison between RDBMS’ 

From the previous section it may be concluded that as more tables are involved in a query, 

the computational cost of its execution increases. Also, the more data a query processes, the 

more time it needs to finish. 

 

Figure 4-14: EXP2 duration and CPU time in seconds 

Figure 4.14 shows that SQL Server needs nearly six minutes (359 seconds) to run the 

experiment compared to  just over four minutes (259 seconds) for Oracle, a difference of less 

than two minutes. Given EXP2 is conducted on CDD, cloud environment may added 

additional complexity to how the RDBMS’ choose best their execution plan. For instance, 

SQL Server’s choice to employ a MERGE JOIN operator forces the remote instance to use a 

SORT operator to order the data, which adds a performance overhead. Remote CPU times 

provide evidence relating to the SORT operator overhead in that, although both databases 

process the same number of tuples, there is a considerable difference in CPU consumption: 

Oracle spends only 11 seconds, while SQL Server spends 25 seconds. 

Although both systems use different join operators they consume an identical amount 

of CPU time, indicating that the time needed to join tables increases as the number of them 
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increases, not to mention the amount of data. For example in EXP1, SQL Server joined only 

two tables with a small amount of data and it consumes a small portion of CPU time (0.14 

seconds). However in EXP2, the local SQL Server used two different join operators, namely 

MERGE JOIN and NESTED LOOP, producing an increase in CPU time of five seconds. Oracle 

on the other hand, shows a relatively high CPU time of four seconds in EXP1, but with a slight 

increase to five seconds in CPU time in EXP2. This shows that the NESTED LOOPS in EXP1 

perform in a less optimal manner. Although the local Oracle VM employs only one join 

operator, NESTED LOOPS, it consumes nearly as much CPU time as in EXP2 in the local 

instance where two join operators are used.  

 

Figure 4-15: EXP2 Number of physical reads and average I/O latency 

As Figure 4.15 shows there is also a difference in the number of physical reads. There is a 

relationship between the number of physical reads and the average time taken to perform the 

operation. This is in addition to what has previously been stated in regards to how fast the 

disk can perform an I/O request. For instance, the average I/O latency in remote VMs 

(MYTABLE) is far less than the average in local VMs (parent tables). In terms of disk latency, 

Oracle suffered less than SQL Server. An examination of these I/O averages and the runtime 
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for both systems shows that as the average I/O latency increases the query takes longer to 

finish. For instance, Oracle ran for less time than SQL Server and in both the local and 

remote VMs, the average I/O latency was 11 ms and 8 ms respectively, whereas the average 

I/O latency was 27 ms and 12 ms respectively for SQL Server. While the systems differ in the 

query and, if one compares EXP1 and EXP2 from the perspective of average I/O latency, then 

SQL Server experiences less disk latency in EXP1 than it does in EXP2, even though it 

performs more physical reads and finishes faster in EXP2. Oracle demonstrated the same 

pattern with respect to the average I/O latency effect on runtime. 

Further, Figure 4.16 the wait events that occur during EXP2 show how CC impacts 

RDBMS’ performance. For example, in SQL Server, there is a PAGEIOLATCH_SH (9%) wait 

event, which involved users waiting to access buffers after the data was written into them 

(Microsoft, 2015f). Similarly, Oracle as shown in Figure 16 waits for 24.65% for a DIRECT 

PATH READ that occurs when the data are read from disk into the PGA buffer. These events 

indicates that VMs wait for the data to be brought via cloud network and they show the 

effects of CC environment on performance. 

 

Figure 4-16: EXP2 SQL Server wait events  
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EXP2 in both VMs provide different waits, but some are more important than others (see 

Figure 4.16). For instance, the local VM spends nearly 35% of its runtime waiting for the 

network to deliver data. Further, in a remote instance experience there is a network-related 

wait event called ASYNC_NETWORK_IO (7%), and SQL Server defines this wait event as: 

“occurs on network writes when the task is blocked behind the network. Verify that the client 

is processing data from the server” (Microsoft, 2015f). In a network such as in CC where the 

network capacity is not known and given the distance between the two nodes (at two opposite 

points on the globe), it can be concluded from the occurrence of this wait event that the 

network negatively influences the runtime especially when the VM client from which the 

query originated is not busy with other heavy work. This is especially important because 

there is a larger dataset (125MB) that this experiment transfers. 

 

Figure 4-17 :EXP2 Oracle wait events.   

In contrast to SQL Server, Oracle experiences a higher network wait time although Oracle 

transfers less data than SQL Server as shown Figure. 4.17. Local and remote VMs are 

delayed by different wait-types, but they amount to the same thing. That is, 68.82% of 

runtime in a local VM waiting for more data to arrive from the network and 68.28% of 

runtime in a remote VM waiting for the data to reach their final destination. Having both 
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VMs experience such a wait indicates that the network provides a performance bottleneck in 

this experiment. Moreover, the local VM waits for messages to arrive from the database link 

for 20.11% of the runtime. Oracle defines SQL *Net message from dblink as: “The session 

waits while the server process (foreground process) receives messages over a database link 

from another server process” (Oracle, 2015f). It is not clear what Oracle seeks to achieve 

from this wait type but since it is a message that involves communication between foreground 

processes  (user process ) it can be said that the wait event is related to the communication 

needed to run the experiment (such as checking that tables exist and choosing the execution 

plan). Whatever the reason behind the communication, this communication adds a 

considerable performance overhead. 

Both VMs face a wait for disk activity to finish. The remote VM appears to perform 

most of its disk read through a DIRECT PATH READ because it scans a large table. While 

24.65% of the remote VM runtime is spent in carrying out disk reads, only 2.81% of local 

VM runtime is spent performing a DB FILE SEQUENTIAL READ. 

4.2.3 Experiment 3 

Aggregation queries are common for RDBMS and EXP3 aims to examine the approach of 

RDBMS towards such queries in CDD (see Section 3.5.3). The following figures show a 

snapshot of query results. 

 

Figure 4-18: Snap shot of EXP3 results 
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4.2.3.1 Execution plans 

SQL Server (S)
Do tuples 
meet join 

condition ?

Sort 

Oracle (O)

View 

Hash Group By

Sort 

Clustered index scan 
(Dim_Paper).( PK_Dim_Paper) 

R

Merge join 
(inner join) 

 Discarded 
tuples 

 No

 Yes 

Filter

Do tuples 
meet 

“having” 
condition? 

 Discarded 
tuples 

Select Yes  

 NO

Full table scan(Dim_Paper) 

R

Do tuples 
meet hash 
condition? 

Hash Group By

Hash match

No  

Yes  

Filter

Do tuples 
meet 

“having” 
condition? 

 Discarded 
tuples 

Yes 

No  

Select 

 Discarded 
tuples 

 

Figure 4-19: EXP3 local execution plans  

By examining the S and O components of Figure 19 one observes that there is a significant 

difference in how each RDBMS handled EXP3. This is phenomenal because both systems 

have to process the same number of columns and rows. For example, local Oracle instance 
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has more processes than SQL Server, which indicates differences in handling EXP3. These 

variations in executing an identical experiment raise the question of why this is the case. 

The answer to the above question lies in the way that both RDBMS carry out the 

execution.  It is also influenced by the nature of the data, as explained in Section 3.4.2. 

Therefore, the relational database operator DISTINCT is used in this query to obtain an 

accurate count of the number of students enrolled in each paper. If the DISTINCT operator is 

not used, the result of the count will be unrealistic. Oracle fetches all of the tuples for the 

PAPER_KEY and STUDENT_KEY columns and then proceeds with the execution. This is a 

requirement that SQL Server does not impose (Oracle, 2015h). Such a requirement means 

that a large dataset needs to travel through the network, which takes a considerable amount of 

time.  SQL Server, on the other hand, carries out aggregation work such as COUNT (DISTINCT 

F.STUDENT_DEMOGRAPHICS_KEY) in the remote instance. This leads to a smaller number of 

tuples being returned via the network and consequently reduces processing time. SQL Server 

uses the MERGE JOIN operator in contrast to Oracle’s use of the HASH JOIN operator. The 

latter join operator involves creating a hash table that consists of a join key for a small table 

(DIM_PAPER), and then it scans datasets coming from remote table for matching tuples 

(Oracle, 2015d). This is unlike MERGE JOIN, which involves comparing only two tuples if the 

joining condition is met, and then the rows are returned and the operator continues until the 

end of rows that need processing (SQL Server, 2015c).  

Once the joining is finished the systems continue with distinct processes. SQL Server 

performs its ORDER BY clause and then it filters the data based on the HAVING clause. The 

filtering step is performed last because it is based on the result of the count. However, Oracle 

uses a HASH GROUP to aggregate enrolments for each paper and it writes the result to a 

temporary view for further processing. As the query requires a DISTINCT COUNT of each 

student’s enrolment, Oracle applies the hash group again on the temporary view for the 
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desired result. This is followed by performing the HAVING condition and by sorting the results 

based on the count.  

As far remote VMs are concerned, a significant variation was observed in the 

execution plans as follows: 

SQL Server (S)

Full table scan 
(child table) 

Parallelism 
(Repartition stream)  

Hash match
(aggregate)

Hash match
(aggregate)

Parallelism 
(Repartition stream)  

Sort 
operator 

Stream aggreate
(aggregate )

Parallelism 
(Gather stream)  

Oracle (O)

Full table scan 
(child table) Parallelim  

Select 

Select 

 

Figure 4-20: EXP3 remote execution plans. 

Fig. 4.20.S shows that SQL Server does more work in the remote VM than Oracle. SQL 

Server executes EXP3 remotely but Oracle fetches the required data to the local VM and then 

continues with its processing. By comparing Figures 4.19 and 4.20 it appears while the steps 

Oracle followed to execute this experiment in the local VM, SQL Server undertook them in 

the remote VM.  

In this query, there are two columns involved in the remote table and the query only 

requires a DISTINCT COUNT of each student’s enrolment on each paper. Figure 4.20.S shows 

that rows arrive from the table scan at REPARTITION STREAMS (SQL Server, 2015g), which 

partitions them based on the PAPER_KEY and STUDENT_KEY columns. SQL Server then uses 

the HASH MATCH operator to aggregate the enrolments for each paper. This step aggregates 

rows to perform a COUNT operation but, since the DISTINCT COUNT is used in this query, SQL 

Server performs another HASH MATCH aggregation to obtain these distinct values. In other 
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words, SQL Server has to aggregate the enrolments for each paper first, and then obtain a 

distinct aggregation of enrolments for each paper. However, the SORT operator does appear 

before the STREAM AGGREGATE operator, which indicates that it requires sorted rows before 

consuming them. This STREAM AGGREGATE is performed to group the results by PAPER_KEY 

(SQL Server, 2015p). Only distinct values are going to be counted which means that the 

sorting step is less expensive compared to the same step in EXP2, when more rows are sorted.  

4.2.3.2 Comparison between RDBMS  

The considerable differences in the execution plans for the two systems produce similarly 

different sets of performance data. This section presents the case for highlighting the negative 

effect of the network on the performance of both systems. 

 

Figure 4-21: EXP3 duration and CPU time in seconds.   

In Figure 4.21 there is a significant variation in the runtime and CPU time for both systems. 

SQL Server takes less than two minutes to finish EXP3, whereas Oracle takes 290 minutes, or 

4.8 hours. Moreover, CPU time shows where most of the work is undertaken. Oracle 

consumes more CPU time in the local VM than the remote VM. The local Oracle VM needs 

268 seconds to execute EXP3 but the remote Oracle VM needs 28 seconds to perform its part 
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for EXP3. By contrast, SQL Server takes 106 seconds to process EXP3 in the remote VM and 

only 0.156 seconds of CPU time is spent in the local SQL Server.  

 

Further, to round out the picture of the effect of processing a large dataset in a 

relational database over cloud network, CPU time in EXP3 appears to be high in both 

database systems (see Figure 4.21). For instance, both systems need to aggregate the data 

twice in order to obtain DISTINCT COUNT. This is evident if one looks at CPU time difference 

between remote VMs in both systems in which there is a difference of 78 seconds and, 

similarly, the difference is enormous (267.844 seconds) between local VMs. However, if 

Oracle executes EXP3 remotely as is the case with SQL Server, Oracle avoids the wait for a 

large dataset traversing the network. 
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The above variations indicate that there are significant factors that lead to such 

situations and the number of I/O operations is possibly a factor. 

 

Figure 4-22: EXP3 physical read and average I/O latency. 

Previous experiments show a correlation between the average I/O latency and duration but 

the results of EXP3 show no correlation. Local VMs appear to suffer from high I/O, which 

reflects the reality of being in a PuC environment where cloud infrastructure is shared among 

many users. SQL Server performed more physical reads in remote VM in EXP3 than it did in 

EXP2 and this is accompanied by an increase from 27 ms in EXP2 to 45 ms in EXP3. Despite 

this increase, SQL Server finishes faster in EXP3.A similar pattern is observed in Oracle but 

leads to a different result; the average I/O latency in EXP3 remote VM (14 ms) is higher than 

in EXP2 (8 ms). Also the average I/O latency in the remote SQL Server VM is less than the 

average I/O latency for Oracle in this experiment. Therefore, these latencies indicate that disk 

activity may be instrumental in poor performance of relational databases in a cloud 

environment. 
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               Figure 4-23: EXP3 SQL Server wait events.  

In regards to wait events, both systems present similar results to previous experiments (see 

Figure 4.23). SQL Server transfers 0.244 MB and experiences network related wait (OLEDB) 

in EXP3, with 9% of its runtime spent waiting for data to arrive from the remote VM. The disk 

related wait event PAGEIOLATCH_SH appears in both SQL Server VMs which accompanies a 

higher average I/O latency in local VM. This indicates that the disk becomes overloaded with 

I/O requests and therefore buffers have to wait for a longer time before the data arrive. In 

EXP2 this wait appears only in the remote instance, which is expected because there are more 

data to process. 

However, Oracle seems to experience high network wait events constantly as shown 

in Figure 4.24 (below). 
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               Figure 4-24: EXP3 Oracle wait events. 

As Figure 4.24 shows, network-related wait events dominated most of EXP3’s runtime 

because of Oracle’s requirement that all tuples must first be delivered to the local VM before 

the data can be further processed. In EXP3, Oracle reports a higher network traffic (1011MB) 

than SQL Server (0.244 MB).  The local and remote waits are 91% and 98.9% respectively 

for the data to reach the local VM, which provides evidence that the network negatively 

influences relational database performance in a CDD. In addition, there are wait times for 

replies from the remote VM for checking purposes, such as validating whether the remote 

table exists.  But disk waits are minimal; for example, 0.61% for the local VM and 1% for the 

remote. Therefore, these wait events indicate that network overhead is a contributing factor in 

the ineffectiveness of relational databases in a cloud environment. 
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4.2.4 Experiment 4 

Previous experiments have shown that relational databases in CDD can be affected by a 

loaded I/O subsystem and network. But the way the RDBMS handles queries in the cloud 

environment is a contributing factor to unsatisfactory performance. These points are observed 

in the experiments, for example, Oracle’s requirement to bring all data to the originating 

instance before the data is processed further (see EXP3). Likewise, SQL Server’s choice to use 

the MERGE JOIN operator requires data to be sorted.  

 This experiment involved the inner joining of DIM_STUDENT with MYTABLE in the 

absence of a filtering condition. One hundred million tuples from three columns would go 

through the Internet so that WAN overhead is examined in addition to how RDBMS handles 

the query over cloud network (see Section 3.5.4). The following figures show a snapshot of 

query results. 

 

 

Figure 4-25: Snap shot of EXP4 results 
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4.2.4.1 Execution plans 

 

Oracle (O)

 Index unique scan
(Dim_student).(PK_studnet Key) 

R

R  

Nested loops
Do tuples 
meet join 
condition?

 Discarded 
tuples 

No

Select Yes

Clustered index scan
(Dim_student). (PK_studnet Key) 

SQL Server (S)

Do tuples 
meet join 
condtition

?

 Discarded 
tuples 

Merge join 
(inner join) 

Select Yes 

No

 

Figure 4-26: EXP4 local execution plans 

Both Figure 4.26.S and 4.26.O appear different. While Oracle employs NESTED LOOPS as the 

join operator (see Fig. 4.26.O), the other uses the MERGE JOIN operator (see Figure 4.26.S. 

The former choice appears to be costly because it joins 100 million non-indexed tuples (see 

section 4.2.1). The SQL Server’s join operator requires sorted data in order to perform its 

function, although this will trigger the use of the SORT operation and, given the number of 

tuples in MYTABLE this choice also appears to be costly. 
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The execution plans of the remote VMs’ are as follows:  

SQL Server (S)

Full table scan 
(child table) 

Sort 
operator

Parallelism
(Gather streams) Select 

Oracle (O)

Full table scan 
(child table) Parallelim  Select 

 

Figure 4-27: EXP4 remote execution plans. 

In the S component of Figure 4.27, tuples are being fed to a sorting operator in order to 

satisfy the requirement of the MERGE JOIN operator. This means that 100 million tuples are to 

be sorted and that these records from three columns will move to the requested VM. This is a 

heavy load to be moved through the network. Likewise, Oracle will scan MYTABLE in parallel 

to obtain the required tuples and then send the data over the network to the local VM for 

further processing. 

4.2.4.2 Comparison between RDBMS’  

Both systems execute EXP4 in a nearly identical manner and one can assume that the runtime 

will be almost the same. However, it appears this is not the case, and SQL Server finishes 

faster than Oracle, as shown in Figure 4.28. 
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Figure 4-28: EXP4 duration and CPU time in seconds. 

SQL Server runs for 21706 seconds or six hours whereas Oracle runs for 39319 seconds or 

7.2 hours, a difference of one hour and 12 minutes. Moreover, as far as the CPU time is 

concerned, Oracle consumes 903 seconds in total and SQL Server consumes 500 seconds. 

However, there is a significant consumption of CPU time in the local Oracle (753 seconds) 

because Oracle uses the NESTED LOOPS join operator where one row from DIM_STUDENT is 

selected, and then the operator looks for the matching row among 100 million tuples. 

 

    Figure 4-29: EXP4 logical read and CPU time. 
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Figure 4.29 shows a significant difference with respect to logical reads between all VMs. 

Accompanied by a high CPU time, the local Oracle outnumbers local SQL Server VM in 

terms of logical reads. This situation is caused by the use of the NESTED LOOPS join operator. 

If one examines the local SQL Server CPU time and logical reads, the MERGE JOIN operator 

is faster than NESTED LOOPS and does not create many logical reads.   The CPU consumption 

of local SQL Server is still relatively high (218 seconds) compared to the remote CPU time 

(282 seconds) where a SORT operator is used. Moreover, when the CPU time of both VMs are 

compared, it can be seen that SQL Server consumes more CPU time than Oracle.  This is 

because Oracle does not use the SORT operator. 

The above discussion explains some causes for the performance variations in EXP4. 

Physical reads are an important factor to take into consideration as outlined in Figure 4.30. 

 

Figure 4-30: EXP4 physical reads and average I/O latency.  

As is the case in previous experiments, physical reads continue to create overhead on EXP4 

runtime. Figure 4.30 shows that for EXP4 there are more physical reads than in EXP3, which is 

reflected in the average I/O latency in all VMs. This situation is influenced by b the cloud 

environment, for example, the local SQL Server experiences more physical reads in EXP4 

(44316) than in EXP3 (7523). Therefore the average I/O latency jumps from 45 ms in the 
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latter case to 56 ms in the former case. But the local Oracle instance experiences a decreasing 

average I/O latency (14 ms) and the number of physical reads is 988 compared to the EXP3 

when it has to wait for an average of 33 ms per physical read and the number of its physical 

reads is 3786. The same applies to remote VMs. EXP4 also runs for a longer time than EXP3 

and the average I/O latency is a contributing factor. 

Finally, wait events in EXP4 provide further evidence that network creates 

performance issues for RDBMS’ in CDD. 

 

               Figure 4-31 : EXP4 SQL Server wait events. 

Figure 4.31 illustrates that waiting for the parallelism operation to finish takes longer time 

than other waits (65.21%). The increase in the time required means that the parallelism is 

accumulating time while waiting for threads to produce tuples. However, part of this wait is 

caused by the parallelism manager, which waits for operations and produces CXPACKET5. This 

wait would be of concern if it were combined with other larger waits such as 

PAGEIOLATCH_SH where threads are waiting for the data to be placed in buffers. 

                                                 
5 “Occurs with parallel query plans when trying to synchronize the query processor exchange iterator” (SQL 
Server, 2015f). 

45.99

65.21

16.24

%runtime
local OLEDB

Remote  CXPACKET

Remote
ASYNC_NETWORK_IO



Chapter 4   Result Analysis and Finding 

94 
 

Further, network wait plays a significant role in EXP4 when the local wait for 45.99% 

of the runtime to receive dataset of 1242 MB via the network. This is also coupled with 

ASYNC_NETWORK_IO waiting for 18.25% of the time for the data to arrive at the final 

destination. 

Wait events in Oracle also provide evidence that the network can cause RDBMS’ to 

perform poorly. 

 

               Figure 4-32: EXP4 Oracle wait events 

 Figure 4.32 demonstrates that deploying a relational database in CDD leads to poor 

performance because of the amount of data and because of the communication required to 

execute queries. The latter factor has less influence than the former. Both local and remote 

instances wait for more than 90% of the time for network to deliver 1584 MB. The local VM 

also waits for 3.2% of the time for the communication required for execution. Further, I/O 

operations trigger significantly less wait time than the network does. These factors indicate 

that Oracle’s bottleneck is the network. 

 By looking at the reported traffic network, SQL Server moves less amount of data 

(1242 MB) than Oracle does (1584 MB) and it finishes EXP4 faster than Oracle. 
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4.2.5 Experiment 5 

In the experiments above, different factors were observed contributing to the poor 

performance of RDBMS in CDD, including network and query execution approaches. EXP1 

and EXP2 run for shorter times because the queries are relativity simple and there was less 

data to traverse the network. EXP3 was more complicated, particularly in Oracle, since Oracle 

required the specified data be brought to local VM before processing them. SQL Server, on 

the other hand, performed EXP3 remotely and then sends only the result. Further, although 

EXP4 involves joining only two tables with an inner join type without using any filtering 

condition, the selected join operators involved in the queries took a long time to run. 

 Section 3.5.5 established that this experiment aimed to examine the performance of 

RDBMS’ in CDD under different join types and also using WHERE clause. The following 

figures show a snapshot of query results.  

 

Figure 4-33: Snap shot of EXP5 results 
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4.2.5.1 Execution plans 

Oracle (O)

Full table scan 
(Dim_Enrolment_Type)

SQL Server (S)

Clustered index scan 
(Dim_Enrolment_Type).(PK_Dim_Enrolment)

R 

Hash match outer 
Do tuples 
meet hash 
condition?

 Discarded 
tuples 

NO

Select Yes

R

Merge Join
(Left outer join) 

Do tuples 
meet join 
condition?

 Discarded 
tuples 

NO

Select Yes

 

Figure 4-34: EXP5 local execution plans.  

Figure 4.34.S shows that SQL Server continued to choose the MERGE JOIN operator, as was 

the case in two out of four experiments even though there were 100 million tuples to join. 

The implications for performance are significant especially where Oracle chooses the HASH 

JOIN operator (see the O component of Figure 4.34.O) to perform the same experiment. 

The remote execution plan shown in the S component of Figure 4.35 reveals that, yet 

again, SQL Server sorts the data so that the MERGE JOIN operator can be executed. This sort 

means that 100 million records will be sorted.   
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SQL Server (S)

Full table scan 
(child table) 

Sort 
operator

Parallelism
(Gather streams) Select 

Oracle (O)

Full table scan 
(child table) Parallelim  Select 

 

  Figure 4-35: EXP5 remote execution plans. 

EXP5 executes in the remote Oracle VM (see Fig. 4.35.O) by scanning the table in parallel 

and sending tuples to the requested instance. This scanning is done in full, which means that 

same tuples are being touched at least once. 

4.2.5.2 Comparison between RDBMS’ 

Execution plans show differences in terms of how they handle the execution of EXP5. For 

instance, Figure 4.35 shows that although SQL Server consumes a higher CPU time in the 

local instance, it still takes less time than Oracle. SQL Server needs 14993 seconds (four 

hours and 16 minutes) whereas Oracle takes 20268 seconds (six hours and three minutes). 

 

    Figure 4-36: EXP5 duration and CPU time in seconds. 
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As far as CPU time is concerned, Oracle takes less time than SQL Server. This is because 

SQL Server’s choice of MERGE JOIN operator creates the need for SORT operator to be used. 

Figure 4.36 shows that SQL Server has high CPU consumption. This pattern also appeared in 

EXP4 which indicates that while MERGE JOIN operator is the best choice from the optimiser’s 

point of view, it provokes the need for a SORT operator to be used and this consumes more 

CPU time than when a HASH JOIN operator is used. 

 EXP5 shows how both systems carry out the experiment, as well as how they differ in 

terms of physical I/O operations, as shown in Figure 4.37. 

 

    Figure 4-37: EXP5 physical reads and average I/O latency. 

In previous experiments, EXP3 and EXP4, although remote instances conduct high I/O traffic, 

their average I/O latency was not as high as in local instances, where there were significantly 

fewer I/O operations. This pattern also appears in EXP5 (see Figure 4.37) where it can be 

seen that local VMs suffer higher average I/O latency than remote VMs. Conversely, it shows 

a correlation between high average I/O latency and duration. EXP4 takes longer to run, and a 

contributing factor to the increased runtime is that in the local SQL Server the instance 

experiences high average disk response latency (56 ms per read). 
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Wait events differ in both systems, although network-related wait events appear to be 

overwhelming. 

 

Figure 4-38: EXP5 SQL Server wait events. 

Figure 4.38 shows that SQL Server waits for the network to deliver 823 MB of data in both 

instances: the local VM waits for 25% of the runtime whereas the remote instance waits 12% 

for data to arrive from the local VM. In EXP4, network-related waits are higher than in EXP5 

indicating that the latter receives a smaller amount of data. This is because in EXP4 there are 

more columns requested from MYTABLE than in EXP5.  
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Also, Oracle waits the longest time for the network, as shown in Figure 4.39. 

 

                Figure 4-39: EXP5 Oracle wait events. 

A remote instance of Oracle waits for the majority of its time for 1019 MB of data to reach 

their final destination (see Figure. 4.41). I/O operations create a decreased wait time in the 

instance and, in total, they create less than 1% as waiting time. Likewise, the local instance 

waits for the network to deliver data for almost 94% of the runtime. It also waits for 5% of 

the time for communication with remote instance. 

 In EXP5, Oracle moves larger amount of data (1019 MB) than SQL Server and it takes 

longer time to finish. Same situation occurs in EXP4. 

4.2.6 Experiment 6 

The preceding experiments, with complexity ranges from moderate to simple have provided 

evidence that the cloud network causes relational database performance to be less than 

desirable. This experiment is described in Section 3.5.6 and the following figure show a 

snapshot of query results.  
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Figure 4-40: Snap shot of EXP6 results 

4.2.6.1 Execution plans 

Oracle (O)

Table access full 
(Dim_student) 

SQL Server (S)

Clustered index scan 
( Dim_student).(PK_studnet Key) 

R 

Hash join 
Do tuples 
meet join 
condition?

 Discarded 
tuples 

NO

Select Yes

R

Merge join
(inner join)

Do tuples 
meet join 
condition?

 Discarded 
tuples 

NO

Select Yes

 

Figure 4-41 : EXP6 local execution plans. 

In four out of five experiments, SQL Server chose the MERGE JOIN operator, although the 

choice led to sorting 100 million rows. However, Oracle chose to employ a HASH MATCH join. 

The remote execution plans for EXP6 show that there is evidence explains how the 

execution of queries by RDBMS’ in a cloud environment causes poor performance (see 

Figure 4.41).  
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SQL Server (S)

Full table scan 
(child table) 

Sort 
operator

Parallelism
(Gather streams) Select 

Oracle (O)

Full table scan 
(child table) Parallelim  Select 

Sample table 
scan (child 

table) 

Sample table scan 
(child table) 

Full table scan 
(child table) 

Sample table scan 
(child table) 

Full table scan 
(child table) 

 

Figure 4-42: EXP6 remote execution plans. 

The O component of Figure 4.42 shows that a table scan has been performed but more 

importantly, the SAMPLE scan in Oracle is carried out three times. This is surprising because 

Oracle indicates that SAMPLE scan can only be used when SAMPLE clause is used in the 

query, which is not the case here (Oracle, 2011). Looking back at the query text Oracle may 

interpret the WHERE condition as SAMPLE clause so that it sends data to the remote VM for 

execution, in addition to pulling the all tuples and applying a filtering condition locally. In 

fact, local Oracle reports, for the first time in this research, that it has to wait for data that it 

sends to reach remote instance. Whether this approach is effective or not, there is at least 
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associated network overhead from applying this method. In the SQL Server execution plan 

Figure 42.S, since the SORT operator does not show any kind of warnings such as “OPERATOR 

USED TEMPDB TO SPILL DATA….”. This indicates that the sorting occurs in memory. 

 4.2.6.2 Comparison between RDBMS’ 

With execution plans showing differences, the collected performance data demonstrate there 

are in fact significant variations between both systems. 

 

Figure 4-43: EXP6 duration and CPU time. 

The differences are apparent in Figure 4.43. For instance, SQL Server runs faster than Oracle 

with more than four hours of difference between them. CPU time in local VMs indicates that 

the SQL Server choice of MERGE JOIN consumes more CPU time than does Oracle’s choice 

of the HASH MATCH join operator. Moreover, it is clear that the use of the SORT operator leads 

to a difference of 25 seconds between remote VMs. Oracle’s consumption of CPU time is 

125 seconds, whereas SQL Server consumes 235 seconds of CPU time.  

When joining tables, it matters how many tuples are to be joined and the choice of 

join operator also matters. For example, in EXP6 the local SQL Server experienced an 
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increase in CPU consumption that is six seconds greater than in EXP5; to a large extent, 

RDBMS’ appear to suffer from operating over cloud network. For example, SQL Server’s 

choice of the MERGE JOIN operator appears to have added performance overhead and this is 

especially important when it is a requirement for both inputs to be sorted. This choice occurs 

in five out of six experiments. This is also evident when both systems run the same queries, 

but Oracle uses the MERGE SORT JOIN operator only once where there was an ORDER BY 

clause. 

Up to this point, the variations in performance appear to be informing multiple facts 

in relation to CC as well as the underlying infrastructure. EXP6 also faces the reality of 

accessing shared computing resources, which cause the RDBMS’ to suffer, as shown in 

Figure 4.44. 

 

Figure 4-44: EXP6 physical operations and average I/O latency. 

Note that the average I/O latency shown in Figure 4.44 reflects the average I/O latency per 

read.  
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The remote SQL Server VM in Figure 4.44, shows that there are 80 physical writes, although 

EXP6 does not ask for the updating of any tuples, and the SORT operator does not use a 

temporary table on the disk. Therefore, it is difficult say what causes this result. Every write 

takes 32 ms to finish on average. The in local SQL Server, the previous five experiments 

show that the highest average I/O read latency was recorded in EXP5 as 25 ms but this 

increased to 54 ms per read in EXP6. This result was coupled with an increase in the number 

of physical reads: 44316 reads in comparison to 3 reads in EXP5.  

Similarly, remote Oracle in EXP6 experiences higher average I/O latency: 38 ms 

compared to EXP5 (23 ms). There is also an increase in the local VM average I/O latency to 

27 ms from 18 ms. This increase occurs, at least partially, because there are more physical 

reads in EXP6 than in EXP5. EXP6 runs for a longer time than EXP5, and also EXP6 experiences 

higher average I/O latency. However, generally SQL Server experiences higher average I/O 

latency than Oracle, but Oracle runs for a longer period of time. Such a situation raises a 

legitimate question as to why this is always the case. Wait events may provide an answer. 

Both systems wait for similar events as in above experiments. SQL Server especially 

waits for the same events. Oracle does the same but there is one new wait event that does not 

appear in the preceding experiments. 
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     Figure 4-45: EXP6 SQL Server wait events. 

In Figure 4.45, the wait for the parallelism operation appears high in the remote VM at 

63.32% of the runtime. The remote VM also waits for the network to deliver the data for 

nearly 16% of the time. Further, SQL Server transfers 2864 MB and the local instance waits 

for a network related wait event, OLEDB, for 43.93%. Moreover, when combining related 

network wait events, network-related wait events take 59.7% of the runtime. Figure 4.45 

indicates a significant amount of runtime waiting for the network.  

Further, EXP6 experienced a higher wait for parallelism in remote instances than 

EXP5. This is because although both queries processed the same number of tuples, EXP6 

requested more columns than EXP5. Figure 4.45 signals that parallelism is a cause of 

performance issues, but in the absence of an index, this wait is treated as unavoidable since it 

is possible that both queries would require a longer runtime without parallelism execution, 

especially when there are 100 million tuples to process. 

In EXP6 the wait events for Oracle also show that the network plays an important role 

in degrading the performance of relational databases in CDD. 
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   Figure 4-46: EXP6 Oracle wait events. 

The graph in Figure 4.48 provides more evidence that the network impacts the performance 

of RDBMS’ in a CC environment. For example, the choice to perform the SAMPLE TABLE 

operation three times incurs a network overhead of 0.06% of the runtime. Although this 

overhead appears insignificant, it creates an associated network overhead as a result of the 

communication required to do such table scans. The communication that occurred between 

VMs during EXP6 consumes 3.42% of runtime. Such an overhead appears inevitable but the 

overhead is not negligible especially, in a cloud network. Further, the wait for 2572 MB of 

data to reach the local VM, which accumulates more than 90% of EXP6’s duration. Figure 

4.46 also shows that I/O latency does not create such an overwhelming overhead as the one 

created by the network. In total, the remote VM waits for only 0.57% of the runtime for I/O 

operations to complete. Therefore, Oracle suffers significantly because of the network. 

 In EXP6, although SQL Server reports a higher network traffic (2864 MB) than 

Oracle (2572 MB), it finishes faster than Oracle.such case is reported in EXP4, EXP5 and 

EXP6. However, by looking at the data transfer rates collected and reported in Appendix C, 

pp. 206-208, they suggest that SQL Server experience higher WAN transfer rate than Oracle. 
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4.2.7 Experiment 7 

As is usually the case in relational database practice, with no exception made for CCD, many 

tables are joined to obtain result. The previous analyses demonstrate that there are 

contributing factors to the effects of the cloud network on RDBMS’ performance. For 

instance, in EXP3 Oracle requires the data to be brought from the remote VM to the local VM 

so it can process them, but SQL Server does the opposite and runs for a shorter time. That 

says, RDBMS’ performance issues increase in a cloud environment particularly when large 

datasets are involved.  

 This experiment is described in Section 3.5.7 and the following figures show a 

snapshot of query results.  
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Figure 4-47: Snap shot of EXP7 results 

4.2.7.1 Execution plans 
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Figure 4-48. EXP7 local Oracle execution plan. 



Chapter 4   Result Analysis and Finding 

110 
 

Oracle used the HASH MATCH join operator twice to execute EXP7. First it joined the remote 

table with DIM_INTAKE and then it joined the result with DIM_PROGRAMME using the same 

operator. However, SQL Server chose to scan DIM_INTAKE table first to find rows after1990 

and store them on a temporary file. According to SQL Server, table spool is created on 

memory so that whenever “spool’s parent operator asks for a row, the spool operator gets a 

row from its input operator and stores it in the spool, rather than consuming all rows at once” 

(Microsoft, 2015h). This file can then be scanned by using NESTED LOOPS to probe for 

matches of tuples that come from performing an index scan on DIM_PROGRAMM. The optimiser 

thinks that it is better to find matching rows between parent tables first and then join the 

result with incoming tuples from the remote table.  

Remote execution plans appear to have maintained a similar plan as in previous 

experiments. For instance, SQL Server sorts the data because it employs the MERGE JOIN 

operator. 
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SQL Server (S)

Full table scan 
(child table) 

Sort 
operator

Parallelism
(Gather streams) Select 

Oracle (O)

Full table scan 
(child table) Parallelism  Select 

Full table scan 
(child table) 

full table scan 
(child table) 

 

Figure 4-49: EXP7 remote execution plans. 

Similarities appear between EXP6 and EXP7, although they both have different types of 

condition operators. However, since an OR operator is used in EXP7, it processes more data. 

The next section will discuss whether this difference has any implications. 

4.2.7.2 Comparison between RDBMS’ 

Executing EXP7 was different to EXP5 and EXP6 in relation to how each local optimiser chose 

to carry out the execution, as follows. 
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Figure 4-50: EXP7 duration and CPU time in seconds. 

Figure 4.50 shows that Oracle appears to be slow in EXP7; it needed 20 hours to run the 

experiment while SQL Server needed 10 hours, even though SQL Server consumed more 

CPU time than Oracle in both VMs. Further, the CPU time required by SQL Server provides 

more evidence that MERGE JOIN is not the best join option. By contrast, Oracle employs HASH 

JOIN twice to join the data but burns 369 seconds of CPU time while SQL Server spends 392 

seconds on CPU time. This does not mean that the optimiser performs below par but that its 

choice of MERGE JOIN is less suitable because, on the one hand there are 100 tuples coming 

from the remote instance to join and on the other hand, this operator needs sorted data in 

order to function. Hence optimiser uses SORT operator in the remote VM.  

As mentioned earlier, and confirmed by this result, the use of the SORT operator has a 

significant overhead. It has also been demonstrated on the CPU time of the remote Oracle 

VM, which is significantly less than the remote SQL Server CPU time. Overall, SQL Server 

is still relatively faster than Oracle. This result can be explained when one examines where 

both systems spend most of their time.Although the foregoing discussion has given reasons 

for the fact that EXP7 ran for at least 10 hours, it is also important to study the I/O operations. 
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Figure 4-51: EXP7 I/O operations and average I/O latency. 

The average I/O latencies in EXP7 were the highest. The local SQL Server continued its 

pattern with a high average I/O latency of 208 ms per read. This contributes to the creation of 

a long-running query, although 0 ms is reported as the average I/O latency per write. Its 

remote VM experiences less average I/O latency than in EXP6 even though it does more 

reads. Clearly the local SQL Server is affected by a poor cloud environment. Such variations 

indicate inconsistencies in performance measures of RDBMS’. This conclusion can be 

verified by looking at the local Oracle disk latency where Oracle experienced significantly 

less average  I/O latency than local SQL Server in all the experiments so far, suggesting that 

variations in performance can occur within  the same PuC service provider.  In addition to 

remote VMs that seem to always perform more physical reads the average I/O latency never 

reached 208 ms. 

Further, EXP7 in Oracle showed a different pattern even though it performed a greater 

number of I/O in the remote instance than in EXP6 and the average latency per read is less 

than in EXP6. The local instance, on the other hand, performed fewer I/O operations than 
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EXP6 and the avenge latency dropped from 27 ms to 13 ms. This suggests that EXP7 took 

longer than EXP6 due to other factors  in addition to I/O operation. 

Wait events also provide more evidence that cloud network affects RDBMS’. The 

network still plays a central role with respect to this outcome. 

 

Figure 4-52: EXP7 SQL Server wait events. 

Figure 4.52 clearly shows that the local VM waits for 47% of its time for 8613 MB of data to 

arrive through the OLEDB provider. When compared to EXP6 the instance waits for 43.93%, 

indicating that there are larger datasets to come in EXP7. There is also wait time associated 

with the network in the remote VM when it waits for 16.29% of runtime for the network. 

Further, the wait for the parallelism operation appears to be slightly higher than same wait in 

EXP6. 

Oracle wait events, by contrast, show that the network is the primary cause of the 

poor performance of the relational database. Oracle is inconsistent in how it handles the 

execution of the query. For instance, Oracle normally requests data to be brought to local VM 

before applying any further processing. But this is not always the case since in EXP6 the 

optimiser sent data to the remote location for execution and does so in EXP7. 

47.09

65.38

16.29

%runtime

local OLEDB

remote  CXPACKET

remote
ASYNC_NETWORK_IO



Chapter 4   Result Analysis and Finding 

115 
 

 

    Figure 4-53: EXP7 Oracle wait events. 

Figure 4.53 shows that Oracle sends data to the remote VM and so the system has to wait for 

the network 0.1% of the runtime. Yet, Oracle takes 95% of the local instance to obtain 8198 

MB it requested to execute EXP7. Such a situation demonstrates the effect of network on the 

runtime, that is, the larger the dataset that travels the network, the longer the query will take 

to finish. Evidently, the local instance is dominated with network-related wait events. 

Similarly, the remote instance faces the same situation when it waits for 93% of runtime for 

the data to arrive at local VM. Further, I/O operations consume little from the runtime of both 

instances; for example, the local instance (in total) waits for 1.53% for them to complete. 

4.2.8 Experiment 8 

Up to this point, there have been multiple experiments that have differed in their degree of 

complexity but using the same dataset. Foregoing comparisons have shown that, the effects 

of cloud network appears to be a significant contributing factor to the poor performance of 

RDBMS’ in CDD. Sorting large amounts of data, in particular, is an expensive task, but SQL 

Server chooses the MERGE JOIN operator and this requires the data need to be sorted. This 

outcome occurred in six out of seven experiments thus far. Experiments that were conducted 
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on Oracle indicate that the use of the HASH JOIN operator requires less time than the MERGE 

JOIN operator, suggesting that HASH JOIN is more time efficient than MERGE JOIN. The 

following figures show a snapshot of query results. 

 

Figure 4-54: Snap shot of EXP8 results 

As described in Section 3.5.8, this experiment aims to fully join two large datasets 

over the cloud network and then perform an ORDER BY operation. EXP8 in Oracle did not 

complete due to what appeared to a network issue and because of this, the execution plans 

were lost.   

4.2.8.1 Execution plans 

SQL Server (S)

Clustered index scan 
( Dim_student).(PK_studnet Key) 

R

Merge join
(full outer join)

Do tuples 
meet join 
condition?

 Discarded 
tuples 

NO

Select Yes Sort
(Warnings sign)  

 

Figure 4-55: EXP8 local SQL Server execution plan. 

As mentioned above there is no local execution plan therefore this section addresses local 

SQL Server execution plan. 

Figure 4.55 illustrates that SQL Server employs the MERGE JOIN operator. Figure 

4.57 also shows that an issue exists in the SORT operator resulting from the request to sort a 

large dataset. The warning sign is shown below. 
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    Figure 4-56: EXP8 ORDER BY warning. 

Figure 4.56 indicates that the available memory is insufficient to perform the ORDER BY 

clause and so the disk is used. This leads to a situation where it is necessary to (a) read the 

data from disk, (b) bring them into memory, (c) write them again to disk, (d) carry out the 

sort there, and (e) then read the data again into memory. This intensifies I/O traffic the over 

cloud network. 

SQL Server (S)

Full table scan 
(child table) 

Sort 
operator

Parallelism
(Gather streams) Select 

 

Figure 4-57: EXP8 remote SQL Server execution plan. 

As previously explained, SQL Server employs the SORT operator to satisfy the requirement of 

MERGE JOIN operator. The SORT operator sorts 100 million tuples.    

4.2.8.2 Comparison between RDBMS’ 

This section is different from the previous sections because Oracle crashed in EXP8 and 

performance data were lost, especially most of the local instance data. Therefore this section 

contains incomplete comparisons. However, the section will also show how Oracle deals with 

EXP8 under a different load. 
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    Figure 4-58: EXP8 duration and CPU time in seconds. 

Figure 4.58 does not indicate that Oracle runs faster than SQL Server; rather, it shows that the 

instance crashes at the 44364th second from execution start, and that the CPU consumes 410 

seconds in the local VM and 59 seconds in the remote instance. However, SQL Server runs 

for the longest time so far and also consumes the highest CPU time. These results show there 

is a significant increase in resource consumption. For instance, if one compares CPU time in 

EXP7, the local SQL Server with the same VM in EXP8 then there is a considerable jump from 

392 seconds to 424 seconds respectively, although ORDER BY is performed on disk. Part of the 

reason for this outcome may be a greater number of logical reads in EXP8.  
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    Figure 4-59: EXP8 logical reads and CPU time. 

For the first time in SQL Server, logical reads in the local instance almost reached 500000 

reads and this is reflected in CPU time. Figure 4.59 also indicates that despite remote 

instances performing more logical reads than local VMs, they consume less CPU time. Then 

in the local Oracle instance, zero logical reads indicates there is no information obtained due 

to the query crashing. Before this occurred, the instance spent 410 seconds as CPU time, 

whereas the remote VM spent 59 seconds as CPU time. As already mentioned, part of this 

low CPU consumption is due to the absence of a SORT operator. 

It was becoming evident that shared cloud environment is a contributing factor in 

situations especially when there is an extensive disk activity for the ORDER BY clause. 
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Figure 4-60: EXP8 I/O operations and average I/O latency. 

Note that zeros for Oracle instances indicate no information was collected. 

Physical reads as shown in Figure 4.60 are the highest yet, which is a reflection of fully 

joining two big tables. The local SQL Server continued to experience high average I/O 

latency (111 ms), but not as high as in EXP7 (208 ms). Similarly, the remote instance 

performed more physical reads and it saw a small increase in its average latency from 14 ms 

to 15 ms in EXP7. Further, remote Oracle VM reads more physical data blocks with a higher 

average latency (40), which was higher than in EXP7. 

 

Figure 4-61: EXP8 tempdb I/O operations and average latency 
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It appears that physical operations on the temporary database creates significant performance 

bottleneck. As shown in Figure 4.61, the local SQL Server VM takes an average of 360 ms 

per physical write and reading the data again takes an average of 49 ms per read. Unlike 

Oracle which although number of I/O operations is not obtained, average I/O latency is 

significantly less than SQL Server.  

In relation to EXP8, the above discussion has shown that, in terms of communication 

and query execution relational databases are affected by the network’s inadequacy.  

 

     Figure 4-62: EXP8 SQL Server wait events.  

Yet, the network appears to consume almost half of EXP8’s time, as is the case when the local 

instance spends nearly 48% of the time waiting for 3633 MB of data to come (see Figure 

4.62). In the remote instance, the parallelism operation accumulates a high wait period but 

given the number of tuples that go parallel, this appears unavoidable, especially when the 

parallel manager accumulates a CXPACKET wait while waiting for processors to finish their 

assigned work (see Figure 4.62). 

The following wait events occurred before the EXP8 crashed in Oracle. 
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       Figure 4-63: EXP8 Oracle wait events. 

Figure 4.63 shows that more than 90% of both VMs time is spent waiting for the data to 

move via the network. This is an indication that operating a CDD faces the challenge of an 

unknown network and it is overwhelming, even surpassing the I/O latency effect. 

When EXP8 crashed, the transaction logs of both instances revealed the following 

“ORA-12170: TNS: CONNECT TIMEOUT OCCURRED”. Oracle defines this error in this way: 

“The server shut down because connection establishment or communication with a client 

failed to complete within the allotted time interval. This may be a result of network or system 

delays; or this may indicate that a malicious client is trying to cause a Denial of Service 

attack on the server” (Oracle, 2015g). EXP7 ran for a longer time without being timed out. In 

addition, both instances reported that the other VM was where the time-out occurred, which 

suggests that it does not have control of the network. This event has led to an incomplete 

picture of Oracle’s performance in relation to EXP8. In an attempt to obtain data, the size of 

the dataset was reduced to 10 million tuples from 100 million. 
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4.2.8.3 EXP8 Oracle second approach (OSA)  

When Oracle did not finish EXP8, it produced uncertainty with respect to its performance in 

this experiment and created a need for undertaking a different approach in order to perform it 

on Oracle. The data size employed in the second approach was reduced from 18 GB with 100 

million tuples to 10 million so that a smaller amount of data went through the network, 

minimising the effect of the network on EXP8. 

 

index fast full scan 
( Dim_student).(PK_studnet Key) 

R

Hash join
(full outer)

Do tuples 
meet join 
condition?

 Discarded 
tuples 

NO

Select Yes Sort
  

View 

 

Figure 4-64: EXP8 OSA local Oracle execution plan 

  In EXP8 OSA, Oracle performed the full join using HASH JOIN operator and the sort took a 

place in disk (see Fig. 4.64).   

Sample table scan 
(child table) Parallelism  Select 

full table scan 
(child table) 

Sample table scan 
(child table) 

full table scan 
(child table) 

 

Figure 4-65: EXP8 OSA remote Oracle execution plan. 
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The reason behind the sample access type as cited in EXP7 is not known. The optimiser used a 

sample table access when SAMPLE clause was not used (see Figure 4.65). Therefore, it was 

difficult explain it further without more information. 

 

 Figure 4-66: EXP8 OSA duration and CPU time in seconds. 

Figure 4.66 shows that OSA finished in 4548 seconds or one hour and 15 minutes. Therefore, 

one can extrapolate that, based on this time, the same query with 100 million tuples would 

take 140 hours to run, or more than five days. 

As the execution plan shows, there is extensive disk activity to sort data, which 

influences the runtime as follows.  

 

    Figure 4-67: EXP8 OSA I/O Operation and average I/O latency. 
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Figure 4.67 shows that the remote instance appeared to experience a high average I/O latency 

per read of 24 ms, whereas the local instance, which read only the index table, needed 16 ms 

per I/O read.  

 

                Figure 4-68: EXP8 Oracle temp I/O operation and average I/O latency. 

As Figure 4.68 shows disk activity that for the ORDER BY clause. It indicates that each disk 

write took an average of 39 ms and, for the read, it took an average of 9 ms to finish. 

Although these times contributed to the runtime, they did not provide a complete picture 

about the query. Thus, wait events are going to be outlined (See Figure 4.69). 
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       Figure 4-69: EXP8 OSA wait events. 

Oracle still shows that network continues to play a significant role in prolonging the 

execution time. Although this wait takes almost 90% of the local instance runtime waiting for 

187 MB of data to come via cloud network, it appears that the I/O operation to write to a 

temp file play a role that is, DIRECT WRITE TEMP 6creates a wait of nearly 2% of the runtime. 

However, reading this data again takes less than 1% of local instance runtime. The I/O read in 

the remote instance creates a total wait of 1.35% of the runtime, while the remaining 98.15% 

of its runtime is recorded as a wait for the data to reach the local instance. Therefore, the 

network appears to be causing a bottleneck, even though the dataset size is reduced. This 

constitutes evidence that relational database practices suffer from performance issues if they 

are carried out in cloud environment.  

  

                                                 
6 This wait indicates that the instance is waiting for direct write operation to finish on temp file (Oracle, 2015f). 
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4.2.9 Experiment 9 

With the aim of investigating relational database performance in CDD, this study has 

conducted experiments that have involved a variety of conditions. The systems used perform 

less well and this is due to influence from cloud network. Further, the processes of relational 

databases where normally more than one table is joined, appear to be challenged, especially 

over cloud architecture.  

SQL Server appears to have different requirements in regards to update query. For 

instance, the pattern observed in the above experiments such as EXP1 and EXP8 demonstrate 

that (a) if there is a WHERE condition which is based in the remote table, then SQL Server 

returns only those tuples which satisfy the condition, and (b) otherwise it sends all the tuples 

for the requested columns to the local instance for further processing. However, SQL Server 

handles the update query that is based on sub-query in a manner that leads to a lengthy query. 

When this occurs, the query is cancelled and is redone differently. 

4.2.9.1 Execution plans 

There is no execution plan for the local SQL Server, since the query stopped after running for 

24 hours and consequently data were lost. However, the local Oracle execution plan is as 

follows: 

 

Table full access  
(Child table )
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Figure 4-70: EXP9 local Oracle execution plan. 
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Figure 4.70 shows that Oracle executed EXP9 in the remote instance, instead of locally as 

happened in EXP8 and EXP7. Oracle scanned MYTABLE to obtain the request tuples and 

applied NESTED LOOPS as the join operator to check whether they meet the condition that 

appears in the subquery, and then Oracle updates them. 

The remote execution plans is as follows:  

Full table access 
(child table) Parallelism  update

 

Figure 4-71: EXP9 remote Oracle execution plan. 

Figure 4.71 is similar to Figure 4.70 in which MYTABLE was scanned to obtain the requested 

rows and updated after they had been checked to ensure they met the condition. However, 

SQL Server appeared to approach the process differently, as follows:  

 

Figure 4-72: EXP9 remote SQL Server execution plan. 

Please note that this execution was not redrawn using VISIO because it was not practical to 

do so.    

Figure 4.72 gives a picture as to how the query is handled in SQL Server. The use of the IN 

clause means that the subquery is required to return a confirmation that the value of 

PAPER_KEY in the tuple was equal to 13362. SQL Server uses KETSET CURSOR which can be 
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described thus: “The keys are built from a set of columns that uniquely identify the rows in 

the result set. The keyset is the set of the key values from all the rows that qualified for the 

SELECT statement at the time the cursor was opened” (Microsoft, 2015i). However, 

MYTABLE does not have a primary key thus SQL Server will have to create primary key in 

order to identify those tuples that are to be updated. That is, SQL Server has no alternative 

but to create a temporary file with a primary key. Thus, the table scan returns two columns as 

follows: 

 
   Figure 4-73: EXP9 table scan 

The table scan retrieves two columns, which SQL Server renames as BMK1002 and CHK1003. 

(See Figure. 4.73). These columns are then used to segment the data as follows:  

         

     Figure 4-74: EXP9 segment operation 
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According to SQL Server’s online book, the SEGMENT operation “divides the input set into 

segments based on the value of one or more columns” (Microsoft, 2015s). The segmentation 

can make tuples uniquely identifiable.  

Moreover, SQL Server employs a SEQUENCE PROJECT operator as shown in Figure 

4.75 which SQL Server describes as the  “[sequence project that] adds columns to perform 

computations over an ordered set” (Microsoft, 2015j). One of these computations is the use of 

ROW NUMBER FUNCTION, which returns a sequential number to each tuple within a segment 

(Microsoft, 2015k). This appears when SQL Server replaces segment 1044 column with a 

new column (EXPR1006), as follows:  

 

       Figure 4-75: EXP9 sequence project. 

Figure 4.76 below shows that tuples are then inserted into the clustered table, which 

has a primary key (Microsoft, 2015l). This means that 100 million tuples are to be inserted 

again and, with available memory being insufficient, this occurs on disk and creates a 

considerable amount of I/O traffic. 
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                       Figure 4-76: EXP9 clustered index insert 

Once the insertion is done, tuples are sent to the COMPUTE SCALAR operator, which appears to 

redefine column names to technical names that the SQL Server understands, as follows:  

 

        Figure 4-77: EXP9 compute scalar. 

The table originally contained 35 columns. However, Figure 4.77 shows there are now 36 

columns after adding a primary key. Further, SQL Server employs the POPULATION QUERY 

operator and the operator “populates the work table of a cursor when the cursor is opened” 

(Microsoft, 2015m).  This operator appears to feed the KEYSET cursor with tuples that are 

now uniquely identified and need to be updated.  
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Since KEYSET CURSOR contains identifiable tuples, SQL Server needs to retrieve the 

remaining columns. Thus, INDEX SEEK is performed on the newly table created and left join 

it with the tuple obtained from the LOOKING UP operator (see Figure 4.78). 

 

                      Figure 4-78: EXP9 RID lookup operator 

Once the joining is done, SQL Server uses the FETCH QUERY operator that “retrieves a 

specific row from a Transact-SQL server cursor” (Microsoft, 2015n). This appears to deliver 

the retrieved tuple(s) to the KEYSET CURSOR. Once the inserting data into KEYSET CURSOR is 

done, SQL Server starts to call SP_CURSORFETCH procedure, which fetches one buffer each 

time (Microsoft, 2015o) and it does this because SQL Server handles the update row by row 

by using KEYSET CURSOR.  

The difference between both systems in regards to EXP9 appears significant, 

especially for SQL Server, whose approach causes a slow-running query. This will be 

discussed further, with evidence, in a later section. 

4.2.9.2 Comparison between RDBMS’ 

EXP9’s execution plans demonstrate that the maintenance of data integrity can be an issue 

when a large dataset is involved which suggests that a relational database becomes less 

effective in such a situation. However, this is not entirely the case and evidently Oracle 

behaves differently and its approach to EXP9 causes fewer complexities than those that occur 
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in SQL Server’s approach. This section therefore outlines data about the performance of both 

systems, noting that the data with respect to SQL Server are incomplete. 

 

      Figure 4-79: EXP9 duration and CPU time in seconds. 

The graph in Figure 4.79 does not indicate that Oracle finished EXP9 faster than SQL Server, 

but rather it shows that the SQL Server keeps running for 86557 seconds or 24 hours before 

the experiment was cancelled. However, Oracle takes 1357 seconds to run EXP9. Figure 4.78 

also shows that the local Oracle instance consumed only 0.009 seconds of CPU time. Local 

instance of SQL Server burned 166 seconds as CPU time. 

Further, the remote Oracle VM is where the higher consumption of CPU time occurs. 

SQL Server also appears to burn a significant amount of CPU time, which is very alarming 

but, since the execution plan in Figure 4.72 shows the many steps that the execution goes 

through, the increase in CPU time is obvious. Thus, many logical reads were performed as as 

result of 87740 calls for a SP_CURSORFETCH procedure in order to carry out EXP9 in the 

remote SQL Server VM. These calls occur within 24 hours. In terms of CPU time each call 

consumes between zero and 15 ms. 
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Figure 4-80: EXP9 logical reads and CPU. 

Notably, the local SQL Server appeared to undertake a considerable number of logical reads 

and it consumed 166 seconds of CPU time. Figure 4.80 illustrates the way EXP9 was carried 

out. There appears to be communication occurring to check whether the PAPER_KEY which is 

being updated equals the number that appears in WHERE clause. This does not occur in Oracle. 

Oracle carried out EXP9 remotely which reduced network overhead on performance. 

Physical and write reads can add further insights to understanding the situation of 

EXP9, as follows: 

  

     Figure 4-81: EXP9 I/O operations and average I/O latency. 
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It is difficult to explain why SQL Server’s local instance has to perform physical writes, 

although it is normal practice for a physical write to occur when the update happens.  This is 

concerning because the subquery returns one tuple from DIM_PAPER table which does not 

normally cause any need for a physical write. However, as this instance is where EXP9 

originates from, then physical writes are probably because SQL Server keeps a record in its 

transaction log of those updates that are occurring in the remote instance. Further, physical 

writes that occur in the Oracle remote instance are a result of the update statement (See 

Figure 4.81). The same applies to SQL Server when it performed 630075 physical writes 

before the cancellation. Moreover, the average I/O latency shown in Figure 4.81 reflects only 

an average read latency; average write latency in the remote instance is 26 ms for SQL Server 

and 21 ms for Oracle per write. 

The approach that SQL Server employs in EXP9 leads to an extensive use of a 

temporary database because the data volume is 18 GB. Therefore, it has to use the disk to 

insert them into a clustered index table, as follows:  

 

       Figure 4-82: EXP9 TEMPDB I/O Operations and average latency. 

While the number of physical reads is higher, as shown in Figure 4.82, its average I/O latency 

is less than 10 ms. However, physical writes have a high I/O latency per write. 
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The way the SQL Server execute EXP9 does not appear to fit the situation of 

distributed large datasets over cloud network. This is in contrast to how Oracle performs 

EXP9, which does not cause significant performance issues as SQL Server does. Wait events 

show that even where there is a smaller amount of data travelling the network, its overhead 

still exists. 

 
Figure 4-83: EXP9 SQL Server wait events. 

Figure 4.83shows that there appears to be a high wait for the network to deliver data between 

the two nodes in order to execute the update. This type of situation demonstrates that SQL 

Server fetches a tuple from MYTABLE and sends it across the network to the local instance to 

check whether or not the tuple adheres to the conditions in the subquery. Thus, local instance 

accumulates a wait for network as 32% of the runtime. It has been mentioned that 

ANSNC_NETWORK_IO is because of the slow consumption of rows by the local instance and the 

network plays a role in such a wait. However, EXP9 shows that one tuple arrives at local 

instance each time, which means that this tuple will be consumed as soon as it is received. 

Therefore, network overhead is largely contributing to this wait and not only because tuples 

are being consumed one at a time. The local instance shows that almost 32% of its time is 

spent waiting for the data to arrive via the network, though this does not necessarily mean the 

delay is caused by the network, since only one tuple is sent across the Internet each time.  
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This implies that this will accumulate a network wait whether or not the data are actually 

travelling the network or the data are not yet on the network. 

Oracle demonstrates a similar pattern about network overhead on performance, as 

follow: 

 
Figure 4-84: EXP9 Oracle wait events. 

In previous experiments, the wait for data to arrive is overwhelming because there is actually 

data crossing the network. However in EXP9, the network wait indicates that the local 

instance is waiting for acknowledgment from remote VM. This is a normal wait, since Oracle 

executes EXP9 remotely and the local instance accumulates time as it waits for the update to 

finish. However, by totalling up I/O operation waits in remote VM, it shows that the VM 

spends the majority of the runtime (45%) in I/O operations. Therefore, I/O is Oracle’s 

bottleneck in EXP9. 

However, it is nearly impossible to determine in SQL Server where most performance 

issues come from although from the way it handles EXP9, issues exist. A different approach 

was undertaken in order to investigate further SQL Server’s approach to updating queries. 

This includes removing the subquery and instead choosing the PAPER_KEY value once from 
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DIM_PAPER and passing it to an update procedure located in the remote instance. This ensures 

that the two tables are indirectly joined. 

4.2.9.3 Exp9 SQL Server second approach (SSSA) 

The execution plans for both VMs are as follows: 

 

Figure 4-85: EXP9 SSSA localSQL Server execution plan. 

As shown in Figure 4.85, SQL Server performs Clustered Index Seek to get 

PAPER_KEY that is to be updated from DIM_PAPER.  It appears that SQL Server uses constant 

scan operator as holder for the value of the parameter @PAPER_KEY (see Section 3.5.9, p. 64).    

Table scan 
Parallelism

(Gather streams) Table update update 

 

Figure 4-86: EXP9 SSSA remote SQL Server execution plan for different approach.  
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Figure 4-87: EXP9 SSSA table scan 

Once the remote VM receives the PAPER_KEY value, SQL Server carries out a table scan to 

obtain the requested tuples (See Figure 4.87). In other words, passing the value to table scan 

filters out those tuples whose PAPER_KEY value does not correspond to 13362. Such 

execution plans suggest that based on this approach, EXP9 will not take long to finish. 

 To find whether or not EXP9 SSSA is different from EXP9 with sub-query, one needs 

to look at the following figure:  

   

Figure 4-88: EXP9 SSSA duration and CPU time in seconds. 

This approach results in a significant difference in performance (see Figure 4.88). By 

removing the subquery, SQL Server runs for 500 seconds with less work occurring in the 
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local instance, and with only 30 ms of the runtime consumed as CPU time. Moreover, CPU 

time in the remote instance shows a dramatic decrease from 884 seconds with the subquery to 

only 27 seconds without it. 

 

Figure 4-89: EXP9 SSSA I/O Operations and average latency. 

The remote instance appears to handle most of the work in this approach, and it takes 33 ms 

on average per read and 48 ms on average per write. The local instance continues to 

experience an issue with its cloud environment and, although SQL Server performs only two 

physical reads, it took 22 ms on average per read. Figure 4.89 indicates that it is not always 

the case that when there are more physical reads, average I/O latency increases, but rather the 

PuC plays an important role in affecting the time required for I/O operations to complete. 

Such effects can be both negative and positive. For instance, while the remote instance 

outnumbers the local instance in terms of the number of physical reads, its average I/O 

latency ranges from 8 ms to 59 ms and, in the local instance, it experiences as high as 208 ms 

average per read and as low as 12 ms. 

This approach shows multiple differences and the wait events that occurred are also 

different, as follows: 
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       Figure 4-90: EXP9 SSSA wait events 

As shown in Figure 4.90, the remote instance waits for different wait events and, as an 

example, 25% of runtime is spent on LATCH_EX. However, SQL Server defines this as 

occurring “when waiting for an EX (exclusive) latch. This does not include buffer latches or 

transaction mark latches,” (Microsoft, 2015f) which indicates that this wait event is not 

related to I/O operation or data. Further, the remote instance waits for 

ASYNC_IO_COMPLETIONT (14.56%) and, accompanied with PAGEIOLATCH_SH (25.15%), these 

waits are disk-related waits because SQL Server defines ASYNC_IO_COMPLETIONT as 

occurring “when a task is waiting for I/Os to finish” (Microsoft, 2015f) and PAGEIOLATCH_SH 

as waiting for the data to be written into memory (Microsoft, 2015f). Therefore, with this 

approach EXP9 is I/O bound. 
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4.4 Findings 

The aim of this research is to investigate relational database performance in a CC 

environment using a non-optimised environment. Therefore, two RDBMS’ are chosen in 

order to find out where the performance breakpoints are. The above analyses demonstrate that 

relational databases as a data manipulation approach fall victim to two factors that cause them 

to perform in a suboptimal manner. The first factor is the shortcomings in methods used by 

RDBMS’ when executing queries over cloud network. These methods sometimes expose the 

relational database to unnecessary network overheads. The second factor is that the PuC 

environment creates a situation where poor performance observes in the relational database.  

In conducting this research, nine experiments are created that any relational database 

should be able to execute so that a variety of performance data could be obtained and 

compared in an attempt to determine the factors that are involved in relational databases 

becoming ineffective in operating in a PuC. Indeed, these experiments reveal significant 

findings that are important for a wide range of stakeholders. The following sections outline 

these findings. 
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4.3.1 Performance measures in Cloud Computing 

The comparisons between both systems demonstrate an inconsistent pattern, as the relational 

database performance is being evaluated in CDD. This is important because there are many 

factors that play different roles, whether negative or positive.  

Experiment System Local 
physical read 

numbers 

Local average 
I/O latency 

ms 

Remote 
physical read 

numbers 

Remote 
average I/O 
latency ms 

EXP1 SQL Server 171 12 2439171 10 
Oracle 890 10 2019840 6 

EXP2 SQL Server 2145 27 2325816 12 
Oracle 1453 11 2019474 8 

EXP3 SQL Server 7523 45 2325789 10 
Oracle 3786 33 2019573 14 

EXP4 SQL Server 44316 56 2523460 15 
Oracle 988 14 2019541 15 

EXP5 SQL Server 3 25 2474178 18 
Oracle 5 23 2014059 15 

EXP6 SQL Server 44316 54 2523,554 59 
Oracle 38287 27 2019573 38 

EXP7 SQL Server 1246 208 2622482 14 
Oracle 916 13 4629901 16 

EXP8 SQL Server 54329 72 2808983 15 
Oracle N/A N/A 4644618 40 

EXP8 OSA Oracle 991 16 2020096 24 
EXP9 SQL Server N/A 35 2325815 8 

Oracle 2 8 8582166 14 
EXP9 SSA SQL Server 2 22 2325748 33 

Table 4-1: Average I/O latency V. number of physical reads.  

Table 4.1 reflects PuC effect on RDBMS’ performance. RDBMS’ are known to be I/O bound 

and in some experiments, such as EXP7, the local SQL Server average I/O latency reaches as 

high as 208 ms per read, even though the number of physical reads is not as high  as reported 

in remote VM. In local instances, such as EXP9 SSSA, the instance undertakes two I/O reads 

but the I/O latency is 21 per read. Similarly, the remote Oracle instance in EXP7 performs a 

higher number of I/O than it does in EXP6 but average I/O latency is less than in EXP6. Table 

4.1 indicates that there is no relationship between number of physical reads and high average 

I/O latency in a CC environment.      
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Further, the experiments conducted for this study demonstrate different patterns in 

regards to WAN overheads on performance. This results in a situation where both systems 

appear to experience different levels of WAN overhead; for example, although SQL Server 

transfers a higher volume of data in EXP6, it finishes before Oracle (see Table 4.2 below). 

Experiment System Network 
traffic in MB 

Runtime in 
seconds  

EXP1 SQL Server 0.162 89 
Oracle 10 115 

EXP2 SQL Server 125 359 
Oracle 21 258 

EXP3 SQL Server 0.244 111 
Oracle 1011 17420 

EXP4 SQL Server 1242 21706 
Oracle 1584 39319 

EXP5 SQL Server 823 14,993 
Oracle 1019 20268 

EXP6 SQL Server 2864 22353 
Oracle 2572 37166 

EXP7 SQL Server 8613 34890 
Oracle 8198 72535 

EXP8 SQL Server 3633 59118 
Oracle N/A N/A 

EXP8 OSA Oracle 187 4548 
                         Table 4-2: network traffic V. runtime  

However, this is not always the case: in EXP2, SQL Server transfers a larger dataset and takes 

longer time than Oracle.  The table also shows that in EXP6 and EXP7, SQL Server transfers 

lager datasets than Oracle but runs for a shorter time. In EXP7, SQL Server transfers the 

largest datasets that it does in EXP8 but finishes faster.  However more importantly, if the 

network traffic does not stay under 22 MB, then the relational database will perform poorly. 

Table 4.2 provides evidence that high network traffic does not always cause a long-

processing query. 

Therefore, the experimental work in this study demonstrates that there is only one 

performance measure that is consistent and this is only if the network traffic is 21 MB or less. 

Table 4.1 and 4.2 indicate that performance measures that are employed exhibit varying 



Chapter 4   Result Analysis and Finding 

145 
 

degrees of inconsistency. Therefore, H1 which states that there is no consistent measure of 

performance when comparing RDBMS’ operating in CC is accepted.  

4.3.2 Performance of RDBMS’ as CDD 

This study considers that it is practical to deploy relational databases for large dataset tasks in 

CDD. However, if they operate in a non-optimised environment then based on the foregoing 

results their performance may not be desirable, especially in commercial environments where 

tasks need to be finished in as short a time as possible. This does not appear to be achievable 

unless more investments is made to optimise not only the hardware, but also the RDBMS’.  

Further, although there is a perception that the database optimiser is smart, the cloud 

environment network appears to intensify known difficulties of query optimisation in 

distributed RDBMS’. The experiments conducted in this study reveal cases where the 

decision-making regarding the choice of join operators leads to longer runtimes, and 

significantly so in some cases. This choice of join operator is an important aspect in 

improving performance, and EXP1 and EXP4 indicate that while both systems indicate that the 

NESTED LOOPS join operator is the best choice if the joined data are not large and indexed, 

Oracle employs it even though the incoming data are not indexed. This results in high CPU 

consumption and contributes to both experiments taking longer time to run in Oracle than in 

SQL Server. Among other factors, although SQL Server uses the SORT operator to index the 

data implicitly, it consumes less CPU time and finishes faster. 

Further, the results indicate that SQL Server is in favour of using the MERGE JOIN 

operator and evidently, this occurs in seven out of nine experiments. That is, it is just EXP1 

and EXP9 that SQL server does not use the MERGE JOIN operator. This operator requires all 

inputs be sorted, which triggers the need to sort 100 million tuples every time the operator is 

chosen. Oracle mostly uses the HASH JOIN operator and it causes Oracle to consume 

significantly less CPU time. In addition, SQL Server’s remote instances have higher CPU 
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time than Oracle’s because the use of the SORT operator to satisfy the requirements of using 

the MERGE JOIN operator. That indicates issues on the methods of query execution by SQL 

Server in CDD. 

Further, SQL Server executes EXP9 in a manner that causes a long-running query and 

the highest CPU time of all nine experiments. That method does not well fit cloud 

architecture. Evidently, when the subquery is removed in SSSA, the system does not display 

performance issues. This is in addition to Oracle’s approach to EXP9, when Oracle does not 

execute the query in the same way that SQL Server does and finishes in less time. 

The findings indicate with known performance issues of distributed RDBMS’, these 

shortcomings become magnified when RDBMS’ are deployed in CDD. Hence, multi-variate 

data analysis is used to determine whether that there is any statistical evidence to support 

these findings. A comparison of the two systems indicates that methods such as join operators 

create performance issues in CDD if they are not used appropriately. To demonstrate this, the 

following scatter plots are used. 

 

Figure 4-91: SQL Server duration v. CPU time. 
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Figure 4.91 shows that there is a significant correlation between how RDBMS’ execute 

queries in a CC environment and the increase in duration. For instance, in the top right of the 

Fig 4.88, there is a cluster of 10 data points mostly located on the diagonal. At the bottom of 

this cluster are points 9 and 10 (EXP5 local and remote VMs), and at the top of this cluster is 

point 15 (local EXP8). All of these points show the effect of the decision made by the SQL 

Server to use the MERGE JOIN operator, which triggers the need to use the sort operator. 

Further, point 17 represents EXP9, where SQL Server consumes the highest CPU time 

because of its implementation of EXP9 using the KEYSET CURSOR over cloud network. Point 

19 shows EXP9 SSSA, and a large difference can be observed. Figure 4.92 (following) shows 

the same data, but for Oracle. 

 

Figure 4-92: Oracle duration v. CPU time 

Figure 4.92 exhibits a different pattern from Figure 4.91, that is, the data points appear to be 

randomly scattered around the diagonal. Figure 4.92 also shows that data point 7 (local EXP4) 

is the longest CPU time among the experiments. Since the NESTED LOOPS join operator is 

performed in non-indexed data, local EXP4 becomes the highest Oracle experiment in terms 

of CPU time. Further, Figure 4.92 also shows that, with the MERGE JOIN operator, SQL 
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Server chooses to use a less suitable operator than the HASH JOIN operator, which Oracle 

employs. This type of choice is especially significant when dealing with large datasets in 

CDD. 

Figures 4.91 and 4.92 provide evidence of the optimiser’s choice with respect to 

which join operator to employ can negatively influence relational database performance over 

a cloud network. To demonstrate this statistically, the following t-test was carried out. 

Variable RDBMS N Mean Std. Deviation Std. Error Mean 

CPULog 1.00 19 3.7543 3.05855 .70168 

2.00 20 8.7025 2.17335 .48598 

Table 4-3: T-test Descriptive 

 Levene’s Test 
for Equality of 
Variances 

t-test for equality of means 

CPULog Equal variances 
assumed 

F Sig. df Sig.(2-
tailed) 

Mean 
Diff. 

Std. 
Error 
Diff. 

95% Confidence Interval of 
the Difference 
Lower Upper 

1.222 .276 37 .000 -4.94822 .84617 -6.66273 -3.23370 
Table 4-4: Independent Samples Test 

The CPU time of both systems is used to examine statistically whether a difference results 

from the systems’ execution of relational database queries in CDD. Oracle (noted in Table 4. 

4 as 2) is associated with a CPU time of M = 3.75 and SD = 3.05. In comparison, SQL Server 

(noted in Table 4.4 as 1) has a numerically higher CPU time of M = 8.70 and SD = 2.17. To 

find out whether Oracle and SQL Server are associated with statistically significant different 

mean CPU times, an independent sample t-test is undertaken. Before the test is performed, 

the variable used was checked to ensure that its distributions were sufficiently normal (see 

Section 3.7.1.1). In addition, the assumption of the homogeneity of variances was tested 

using the Levene Test (see Table 4.4). Given that it shows that the significance level (0.276) 

is greater than 0.005, this enables the conclusion that the variances in the samples are equal. 
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Further, the test shows that there is a statistically significant association, t value = -5.84, p = 

0.000. The test indicates that SQL Server is associated with a statistically significant higher 

CPU time than Oracle.  

Further, there are cases where it has been demonstrated that the steps that the 

RDBMS’ take to execute queries (for example, EXP9) generate I/O traffic that sometimes 

cannot be understood. For instance, in EXP9, although updates occur in the remote instance, 

the local SQL Server VM shows a high number of physical writes. Oracle does not cause 

such operations, and neither does the second approach to EXP9. Therefore, for SQL Server, if 

the updates do not occur in the local instance first, SQL Server keeps a record on the disk of 

updates that take place in the remote instance. Even in experiments that do not aim to 

perform modifications, SQL Server performs some physical writes. These can be seen in 

EXP6, EXP7 and EXP8. Physical writes occur in EXP8’s local SQL Server instance and are 

caused by performing ORDER BY clause on disk. However, in remote instances, the cause 

behind these operations is not clear because while the SORT operator is in use, there are no 

indications that SQL Server has to sort data on the disk. More importantly, these writes 

perform in a shared and public cloud network which contribute to increase experiments’ 

runtime.  Oracle, on the other hand, does not show any physical writes except in EXP8 and 

EXP9. 

In EXP7 and EXP8, Oracle uses SAMPLE table access, even though the SAMPLE clause is 

not used. This study does not disagree with such use but it does indicate that this use affects 

RDBMS’ performance over the cloud network by adding overhead related to I/O latency. 

Oracle’s approach to EXP3 also affects performance since it requires a large dataset to travel 

public and shared network in order to execute the query.  
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Therefore, the above discussion shows evidence from both the results side and from 

the statistical perspective, that the query execution methods of RDBMS’ cause the systems to 

work poorly in CDD when manipulating large datasets. This also leads to H2 which states 

that “RDBMS’s execution of queries does not perform as expected when a large dataset is 

distributed on a cloud network” being accepted, as the Sig. (2-tailed) value is less than the 

significance level.  

4.3.3 Influence of Public Cloud Computing network  

This research is conducted on two different PuC systems using different workloads which 

allows for the identification of their influence. The results indicate PuC environment is a 

cause of performance for RDBMS’. For instance, SQL Server in EXP3 totals a wait of 12.43% 

of the runtime for I/O operations to complete. Similarly Oracle in EXP2 and EXP9 reports a 

total wait of 27.46% and 45% of the runtime for I/O reads to finish respectively. Further, the 

local SQL Server instances generally experience a high average I/O latency, although they do 

not process as large a dataset as the remote VM. However in this regard, Oracle, by contrast, 

does not generally have a high average I/O latency. Sometimes the number of physical 

operations in each system is close; however, average I/O latency is still high, as in the case of 

EXP7, where the difference in physical reads in local instances is only 285 reads for SQL 

Server, and the average I/O latency differs by 193 ms per read when compared to SQL Server 

(see Table 4.1, p. 142).  

Further, In EXP3, Oracle requires the data to be brought over the network before it 

processes the query, although the count operation can be performed on the remote table. That 

creates performance issues for RDBMS’ because of a lack of network capacity. Therefore, 

EXP3 takes significantly longer to run in Oracle than in SQL Server (see Table 4.2, p. 143). 

Further, in other experiments, Oracle demonstrates inconsistency in execution. In EXP7 and 

EXP8 in particular, when, in addition to pulling the requested data to the local instance, it 
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sends some data to the remote instance as it does in EXP7. This approach increases CC 

(WAN and I/O latency) overhead on performance.  

 The above results show that both systems wait for the network to deliver the requested 

data, although network wait appears overwhelming in Oracle. SQL Server sometimes runs 

faster, even when it transfers larger datasets, and this is reflected in wait-related events that 

never go beyond 50% of the runtime. In comparison, Oracle never drops below 60%. This 

situation is also evident in the 90 samples of DTR (see Appendix C, pp. 206-208), which 

suggests that SQL Server uses what appears to be a faster network route. 

To demonstrate the WAN effect in a statistical manner, the following tests are carried 

out, namely, a correlation and simple regression.  

 Network traffic Log 
Duration Log Pearson Correlation .928** 

Sig. (2-tailed) .000 
N 16 

  Table 4-5: Correlation between Duration and Network Traffic 

 (**. Correlation is significant at the 0.01 level (2-tailed) 

 As Table 4.5 shows, there is a statistically significant correlation between duration and 

network traffic. This relationship can be demonstrated as follows:  
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Figure 4-93: Duration v. network traffic. 

The scatter plot shows that as network traffic increases, the duration also increases. It also 

clusters experiments that transfer a high volume of data. It shows a linear trend, although 

there are outliers in the lower left below the diagonal which represent data points where the 

traffic size begins to exceed 100 MB (see Figure 4.93). 

Further, a simple regression test produced the following result:  

Coefficientsa 

Model Unstandardised 

Coefficients 

Standardised 

Coefficients 

t Sig. 95.0% Confidence Interval for 

B 

B Std. Error Beta Lower 

Bound 

Upper Bound 

1 (Constant) -4.887 1.462  -3.344 .005 -8.022 -1.753 

networktrafficLog .692 .074 .928 9.325 .000 .533 .851 

a. Dependent Variable: durationLog 

Table 4-6: simple regression test 

Table 4.6 indicates that the slope parameter is significantly different from zero at the level of 

0.01. Thus, this is an important relationship between network traffic and duration. With 95% 

confidence, Table 13 shows that with every unit increase in network traffic, there is an 

increase in the duration between 0.533 and 0.851. Figure 4.94 (below) shows no major 

departures from the straight line; therefore, the normality assumption is met. 
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Figure 4-94: Normality of simple linear regression test. 

The foregoing discussion demonstrates multiple situations where the network overhead 

appears and differs in a significant manner; it decreases only if less than 100 MB are 

transferred. Also, Table 4.1, p. 142 provides evidence that the effect of PuC environment on 

I/O latency is considerable.  Therefore, the relational database that processes a large dataset is 

constrained by the network, and it appears that the cloud computing environment is not the 

best place for relational database deployment. Therefore, H3 is accepted: CC impacts 

RDBMS’ due to network incapacities compared to n-tier architecture.  

4.5 Conclusion 

This research sought to test the following hypotheses: 

H1: There is no consistent measure of performance when comparing RDBMSs operating in 

cloud computing. 

H2: RDBMS’s execution of queries does not perform as expected when a large dataset is 

distributed on a cloud network. 



Chapter 4   Result Analysis and Finding 

154 
 

H3: Cloud computing impacts RDBMSs due to network incapacities compared to n-tier 

architecture. 

 Nine experiments have been conducted to identify potential breakpoints in relational 

databases performance in CDD. The experimental scenarios have represented all cases that 

the available dataset support. They range from simple (EXP1) to complex (EXP9) queries 

which have different applications to the relational database. This range facilitates the 

identification of the following break points: 

1. RDBMS’ demonstrate inconsistencies in performance measures when operating in 

CDD.    

2. Both RDBMS’ performed less well than expected when they choose the less 

optimal join operators, although SQL Server does this more than Oracle. 

Therefore, RDBMS’ perform less adequately in a CC environment. 

3. In a large dataset of 100 million tuples, the sort operator causes a significant 

performance issue. SQL Server employs the SORT operator when it uses the 

MERGE JOIN operator. Therefore, this indicates that the RDBMS’ are involved in 

the poor performance of relational databases in CDD.  

4. SQL Server executed EXP9 in a suboptimal manner by employing KEYSET CURSOR 

in a CC environment and by undertaking physical writes in instances where it 

does not have to. This indicates that SQL Server does not perform subqueries 

efficiently in CDD. This behaviour is not observed when the subquery is removed. 

Therefore, the subquery should not be included in an update query in SQL Server 

if a large dataset is hosted in different locations over cloud network. 

5. With distributed databases becoming more common in practice, the network 

overhead should be kept to a minimum. However, Oracle does not appear to fully 

realise this, and it still required a large dataset to traverse the network prior to the 
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execution of the experiments, although Oracle does apply this method in specific 

cases (see EXP3). Therefore, methods of query execution by RDBMS’ lead to 

poorly performing relational databases in CDD. 

6. Network overhead becomes worse when more than100 MB of data travel through 

the network. But this does not eventuate when the data volume is 21 or less MB.  

7. PuC network is a source of performance issues because many users share the use 

of the underlying infrastructure and the access to internal cloud network. This 

effect is demonstrated in the difference in average I/O latency between local and 

remote instances and I/O wait events. Oracle’s use of SAMPLE table access appears 

to intensify such performance overhead.  

These points indicate that even if the relational database operates in an optimised system, the 

WAN overhead becomes significant and cannot be predicated once the traffic goes over 21 

MB. Chapter 5 discusses the significance of these findings.  
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Discussion  

5.0 Introduction  

Chapter 4 provides detailed explanations for the experimental work that this research 

undertakes, aimed at identifying performance issues of RDBMS’ in cloud-distributed 

database. Chapter 5 presents the findings of this research in order to show their significance 

to the research community and to those who develop RDBMS.  

    Section 2.3 demonstrates that further investigation is required to enhance 

understanding of the application of RDBMS’ in data management. RDBMS’ are an effective 

tool for data manipulation however the amount of data needing to be stored continues to 

increase rapidly which creates new challenges for them. Relational databases have existed for 

nearly 50 years; however, given the way they are implemented, systems such as NOSQL are 

able to step in and take the attention in data management (see Section 2.1.2). Therefore, the 

primary focus of the present study is to examine the performance of relational databases in 

CDD when dealing with large datasets in order to determine whether the deployment of 

RDBMS’ in CC leads to poor performance. 

Notably, the results show an incremental pattern that indicates there is a main driver 

behind this pattern, which is data volume, for example, Section 1.0 provides an extrapolated 

data growth of around 7.2 zetabytes by 2015. In order to highlight processing and 

management issues that contribute to RDBMS’ performance issues in CDD, nine experiments 

have been performed on two RDBMS’ using a large dataset. 
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This research employs 18 GB and observes multiple cases where the performance 

does not appear to be satisfactory. The results indicate that network overhead can only be 

avoided if the network traffic is low and that the query optimisation implementation 

approaches of RDBMS’ in CDD result in reduced performance. In addition the RDBMS’ 

used in the experiments exhibit varying and different problem areas. 

This chapter contains 6 sections. This section which is the introduction of the chapter. 

Section 5.1 discusses the findings of this research that are related to performance measure in 

CDD. Section 5.2 clarifies on the findings in relation to RDBMS performance as CDD. 

Section 5.3 explains the findings that are related to CC effects on RDBMS’ performance. 

Section 5.4 provides a discussion of to explain the findings in relation to the difference 

between the performance of RDBMS’ in cloud architecture compared to n-tier architecture. 

Section 5.6 concludes Chapter 5.   

5.1 Performance measures in Cloud Computing 

This section discuss the finding that is related to RDBMS’ performance measures in CDD. It 

also provides answer to research question 1 and 2.   

This research assumes that RDBMS’ are originally developed to operate on n-tier 

architecture, and it also assumes that these systems would have high performance if the same 

experiments are carried out on such architecture. In this regard, CC creates different 

challenges for RDBMS’ and based on the results presented in Chapter 4, they are negatively 

affected. For instance, the findings indicate that although the experiments vary in how many 

physical reads they require for execution, they differ significantly in average I/O latency. As 

seen in EXP7’s local SQL Server, and this average contributes to prolonging the duration (see 

Table 4.1, p. 142). I/O latency is a particularly significant factor to consider in relation to 

technologies such as RDBMS’ because these systems are I/O bound. Moreover, EXP8 shows 
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extensive disk use, as RDBMS’ have to use it to perform the ORDER BY clause, which orders 

100 million tuples in SQL Server (see Section 4.2.8). Even after the number of tuples is 

reduced to 10 million rows, RDBMS’ order the data on the disk and, in both cases, this 

occurs because of insufficient memory size. While the non-optimised environment is 

intentionally used in this research, it reflects the situation of relational databases that have to 

use disk/s when the shared, public environment combines to negatively affect performance. 

Fortunately, as the remote instances perform higher significantly higher number of physical 

reads but they do not experience as high average I/O latency as local instances, indicating 

inconsistency between performance measures which is in line with the finding of Gunarathne 

et al. (2010). Based on I/O latencies reported in Table 4.1, p. 142, experiments’ runtime 

would be longer if remote VMs experience as high average I/O latency as local VMs.   

The present study uses seven performance measures runtime, CPU time, disk 

operations, average I/O latency, number of logical reads, network traffic and wait events 

which enables it to form a more complete picture. These measure enable the research to 

investigate the performance of RDBMS’ in CDD that deal with large datasets. For instance, 

Kohler and Specht (2014) uses runtime, number of tuples returned as performance measures 

and they indicate there is an associated overhead of table joins in a CC environment. Since 

this study uses CPU time and compares it between two RDBMS’, it identifies the cause 

behind such overhead (see Section 5.2 & Section 5.4 below). Also, the use of wait events, 

average I/O and network traffic enables the present study to show the effects of cloud 

infrastructure on performance (see Section 5.3 below). Therefore, this provides answers for 

Q1: What are performance measures that can be applied to examine RDBMS’ performance in 

CC? and Q2: Are the measures related to Q1 valid for measuring RBDMS’ in the cloud when 

large datasets are being manipulated. 
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5.2 Performance of RDBMS’ as CDD 

This section carries out discussions about the findings related to RDBMS’ performance in 

CC, and it provides an answer to Q3. 

Aimed at examining the performance of relational databases dealing with large 

datasets in clouds, Chapter 2 outlines two propositions that reveal a significant body of 

knowledge. They show evidence that either RDBMS’ need change or that new RDBMS’ are 

created. However, the work reveals that to a large extent, RDBMS’ are involved in creating 

performance issues, and given the current implementation approaches of relational databases, 

they are not suitable for processing large datasets in CDD. 

Large datasets are a reality and their size continues to increase. In Section 2.1.2 it was 

stated that query optimisers do not appear to perform well in a distributed environment. 

These results provide further evidence that RDBMS’ are not suitable for large dataset 

processing in a distributed, cloud-based environment. Although RDBMS’ should provide the 

best execution plan, this experimental work shows otherwise; instead, the chosen plans tend 

to increase the performance overhead. If one examines the number of tuples that both systems 

deal with in this research, in most cases the RDBMS’ do not provide acceptable performance. 

For instance, in six out of nine experiments, SQL Server chooses the MERGE JOIN operator, 

which does not appear to improve performance although the RDBMS vendor claims that it is 

the fastest join operator. Likewise, Oracle’s choice of NESTED LOOPS in EXP5 appears to 

contribute significantly to a long running query, although its choice of the HASH JOIN 

operator appears to perform better than the MERGE JOIN operator. 

Relational databases usually require two or more tables to be joined in order to 

execute the task at hand, which becomes a challenge when a large dataset is involved. Unless 

RDBMS’ deal with small datasets, as shown in EXP1 and EXP2, then they have difficulty 
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making joins. An important part of NOSQL design is that it avoids the joining of tables (see 

Appendix E), which suggests that table joins create a performance overhead. This research 

shows that RDBMS’ operating in CDD make inappropriate decisions that lead to this 

overhead.   

In addition, RDBMS’ choose execution plans that, instead of providing optimal 

performance, these plans contribute significantly to degrading the performance. For both 

systems, sorting data is an expensive task. This is important because large datasets are a 

reality, and the systems appear to run less efficiently than is required for the purpose of large 

dataset processing in a cloud-based environment.  

The steps that SQL Server undertakes in EXP9, which uses KEYSET CURSOR (see 

Section 2.4.9) indicates that including a sub-query in update statements in SQL Server causes 

significant performance in a CC environment. More importantly, SQL Server perform 

physical writes where it does not have to, especially when the query does not intend to update 

the parent table and a cascade update is not required. Certainly, sub-queries in update 

statements are not always an issue if they proceed in a manner that fits CDD as Oracle’s 

approach. However, SQL Server’s approach to EXP9 does not fit CDD and this is evident this 

appears when the sub-query is removed in EXP9 SSSA.   

In EXP3, the system does not execute the aggregation query remotely, Oracle requires 

data to be brought via the network from remote instance before continuing with the query. 

Such decision becomes problematic in a CC environment since the network impedes the 

performance of the systems. Thus, RDBMS’ operating in CDD face the challenge of unstable 

Public Cloud network and they appear to cope less well.    

This research supports Chen et al.’s (2010) claim that the relational data model 

negatively impacts performance, because the findings of this research indicate that any 
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performance weaknesses in RDBMS’ are magnified when the system is installed in the cloud. 

Moreover, this research’s findings are consistent with Batra and Tyagi (2012), Kohler and 

Specht (2012), Durham, Rosen and Harrison (2014) and Sanders and Shin (2001), who 

believe that there is an associated overhead with joining tables in RDBMS’, and that table 

RDBMS’  do not efficiently perform table joins in CDD when large datasets are involved. 

NOSQL performs better than RDBMS’ when no cross-reference is involved (see Appendix 

E). Further, consistent with Kalnis and Papadias (2003) and Chaudhuri (2012b), this research 

presents quantitative and statistical evidence that there are issues with the underlying 

algorithms that choose the execution plans, and these issues make the systems unfit for the 

purpose of processing large distributed datasets in a cloud-based environment. 

Liu and Yu (1993) state that there is a need to investigate whether there is a role for 

the RDBMS’ in choosing an unsuitable execution plan in distributed databases. The present 

study indicates the problem is that execution plans are not optimised for distributed cloud 

environments and significantly worsens the situation of RDBMS’ processing large datasets. 

Consistent with Dokeroglu, Bayir and Cosar (2015), this research finds that sub-queries 

create performance issues in CDD if they are carried out as SQL Server does in EXP9, and 

that the way some RDBMS’ implement other queries (such as EXP3 in Oracle) as CDD 

indicates that these systems have deficiencies. 

These discussions reveal the evidence that (1) there appears to be issues with the 

underlying algorithms that choose execution plans. These algorithms do not provide optimal 

plans that fit CC environment and (2) there appears to be deficiencies with implementing 

these plans in cloud environment. Therefore, Q3 which asks “what evidence exists that 

RDBMS’ are creating significant performance issues in a cloud-computing environment” is 

answered. 
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 These evidence provide that current RDBMS’ are less useful in dealing with large 

datasets in CDD. However, RDBMS’ have relatively reasonable performance when there is 

no joining of large datasets, and when sub-queries are avoided in SQL Server. If H2 is 

rejected, then RDBMS’ perform with no issues as CDD, and manipulating data of any 

volume poses no major challenges. 

5.3 Influence of Public Cloud Computing network  

The results of the examination of RDBMS’ performance indicate that RDBMS’ do not 

perform well when dealing with large datasets in a CC environment. Conducting experiments 

of CDD using large datasets is a time-consuming task and produces long-running queries. 

Importantly, the results reveal that data movements across nodes in a cloud environment 

should be kept to a minimum otherwise RDBMS’ performance cannot be predicted. 

In line with Kohler and Specht (2014), Durham, Rosen and Harrison (2014) and 

Thakar et al. (2011), the network overhead becomes significant as the data size increases. 

Further, this research reveals that relational databases do not display performance issues 

when the size of the dataset travelling the network is 21 MB or less. This is consistent with 

Kohler and Specht (2014) whose dataset is not as large as the data size employed in the 

current study. The authors show evidence that they do not observe similar performance issues 

when their experimental work is conducted off the cloud. 

This research agrees with Hacigumus et al. (2010) in that relational database 

deployment in the cloud requires further investigation to solve the issues that lead to the 

current situation. It also agrees with Liu, Xia, Shroff and Zhang (2013) in that RDBMS’ do 

not fit the purpose of large dataset manipulation in a cloud-based environment. The causal 

relationship examined in the present study provides evidence that there is a significant 
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correlation between network traffic and runtime. In addition, a simple regression test shows 

that the model explains 0.86 of the data variation.  

Businesses usually want to receive a response as soon as possible, and based on the 

environments employed in this research, this does not happen. The findings do not agree with 

those of Minhas et al. (2008), because although they conclude that there is an overhead in I/O 

performance associated with running databases in clouds, such overhead is 10% or less of the 

runtime. This research demonstrates that the overhead is quite significant when a large 

dataset is being manipulated. For instance, Oracle VMs in EXP2 and EXP9 and SQL Server 

in EXP3, the overhead of cloud environment on I/O performance is 27.46%, 45% and 13.43% 

of runtime respectively. Table 4.1, p. 142 shows that local SQL Server VM in EXP7 

performed 1246 physical reads with an average latency of 208ms per read.  This means that 

the total average is four minutes.  The table also demonstrates that the systems perform over 

two million physical reads in EXP6 and the average I/O latency is 59 ms for SQL Server and 

38 ms for Oracle. These results are consistent with Thakar et al. (2011) who indicate that PuC 

environment affects the performance of RDBMS’ in terms of I/O latency and in line with Li, 

Yang, Kandula and Zhang (2010), who find high variations in performance between different 

public providers. 

Add to that, a number of previous works examine whether virtualisation software 

affects the performance of different database systems using benchmarking tools (see Section 

2.4.2). The findings of this research indicate that measuring relational database performance 

using tools that are not originally developed for CC does not draw a complete picture, which 

is in line with the findings of Curino et al. (2011) and Binnig et al. (2009). 

Although the present study relies on secondary data because of its limitation in terms 

of the difference between performance in and off the cloud, the research indicates CC 

negatively influences RDBMS’ manipulation of large datasets and results in significant 
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performance issues when the data travel across the Internet. A shared and PuC environment 

also impacts RDBMS’ performance negatively especially when RDBMS’ are I/O bound. 

These points therefore, answers Q4 that asks “What influence does CC have on relational 

database performance” and provide evidence that RDBMS’ as CDD are not only I/O bound 

but also become network bound. 

If H3 is rejected then this means that there are no major issues in the cloud network 

and that any large dataset can traverse the network with fewer problems and average  I/O 

latencies are shorter than reported in Table 4.1, p. 142.  

 5.4 Cloud architecture VS n-tier architecture 

This research relies on secondary research that show RDBMS’ generally perform better on n-

tier architecture.  

Section 1.0 explains the aim of this thesis; that CC creates a different environment for 

RDBMS’ and this work is undertaken to test their performance in such an environment. As 

Section 1.0 indicated, distributed RDBMSs normally deploy over n-tier architecture on 

specifically designed infrastructure and that they connect their nodes on server(s) using 

significant network bandwidths. Despite this, distributed RDBMS’ still suffer from 

performance issues and this is before CC existed (see Section 2.2.3). PuC architecture on the 

other hand, provides a shared pool of computing resources that provide alternatives to n-tier 

architecture and also relies on shared and limited bandwidths, for both internal and external 

networks (see Section 1.0 and Section 1.1). Figure 4.91, p. 145 and Figure 4.92, p. 146 

represent the performance of the RDBMS’ query execution plan choices and implementations 

over the PuC network where they demonstrate significant differences between the systems. 

An independent t-test (see Table 4.4, p. 147) also shows that SQL Server is associated with a 

higher CPU time than Oracle that is statistically significant.  Table 4.1, p. 142 also indicates 
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the effect of public and shared environment on I/O performance using average I/O latency. 

The situation observed in Oracle’s handling of EXP3 also points to the difficulties that the 

RDBMS’ faced when operating in CDD. Add to that the effect of WAN on performance, 

which is represented by the causal relationship between network traffic and the experiments’ 

runtimes (see Table 4.5, p. 150).  

Section 2.3.2 provides proposals aimed at making RDBMS’ fit for cloud deployment. 

In line with Thakar et al. (2011), Bose, Mishra, Sethuraman and Taheri (2009), and Kohler 

and Specht (2014) whose studies show that RDBMS’ run better on n-tier architecture. And, 

consistent with Dokeroglu, Bayir and Cosar (2015) who propose new algorithms to help 

cloud relational databases make better choices when creating execution plans, the results of 

this investigation indicate that since CC architecture is different from n-tier architecture, 

RDBMS’ that appear to have been developed originally to operate on n-tier architecture are 

not performing optimally. This explains why any issues with distributed RDBMS’ are 

intensified in CDD. This also verifies the assumption made in Section 1.3 that the RDBMS’ 

are optimised for use in n-tier architecture.  

5.5 Implications for developers 

The use of relational databases goes back nearly 50 years (see Section 2.1), the present study 

identifies some break points that current RDBMS’ experience when dealing with large 

datasets in CDD. Before CC came into existence, deploying distributed databases posed a 

variety of challenges, such as network overhead and issues relating to optimisation methods 

(see Section 2.1.2). The present study provides evidence that these challenges are intensified 

in a CC environment and RDBMS’ show deficiencies in both the choice and implementation 

of execution plans. 
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Further, together with the appearance of NOSQL systems, there is growing interest in 

investigating the relational data model in order to determine whether it is the cause of this 

situation of RDBMS’ in CDD. Certainly, joining tables creates a performance overhead; 

however, only the RDBMS’ make decisions about which join operators to use and the cloud 

network appears to exacerbate the difficulties. Sub-queries are also a cause of performance 

issues; however, SQL Server could have avoided these issues and executed EXP9 remotely, 

instead of what is observed in EXP9. Nevertheless, consistent with Litchfield and Althouse 

(2014), the present study implies that there are issues with the model’s architecture because 

no major issues in performance are observed when no joins are performed. This is especially 

significant because the present study reveals some issues with RDBMS approaches when 

dealing with large datasets in CDD. Section 2.1.2 shows examples of how the management of 

relational databases might take place in CC. The examples mostly focus on how to achieve 

scalable relational databases by data partitioning, reducing I/O overhead and applying ACID 

properties inside the partition. The experiments conducted in this research show the 

performance overhead associated with tables join, and Kohler and Specht (2014) describe 

how it is the join of data after they are  partitioned  that is a source of performance overhead. 

Further, unless the amount of the data to be joined is small, as in EXP1 and EXP2, then join 

overheads appear.  

Further, Section 2.1.2 provides suggestions regarding how ACID properties can be 

applied in CDD. However, this research implies that choosing a suboptimal join operator not 

only causes high CPU time consumption, but also a high number of logical reads. Not only 

the join operator that can cause high logical reads, but also the way that a database system 

executes a query, and evidently SQL Server’s implementation of EXP9 leads to such a 

situation. High logical reads mean that the RDBMS’ are doing more work, therefore 

increasing the runtime.  They also create latches that may lead to contentious on resource 
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demands. When this situation occurs in CDD then performance degrades further because of 

the time that it takes for the RDBMS’ to wait for a response over a network (such a network 

as that which exists in a cloud architecture). This is one reason why ACID compliance poses 

a challenge for users who want to have a scalable relational database in a CC environment. 

5.6 Conclusions 

This chapter provides clarification on the findings stated in Chapter 4 by comparing and 

contrasting them with the existing body of knowledge outlined in Chapter 2. It also provides 

answers to the research questions. Moreover, it shows the implications for developers. 

The findings discussed in this chapter reveal some break points in the performance of 

RDBMS’ in CDD that indicate issues relating to choosing execution plans and how these 

plans are implemented. These issues are a consequence of an RDBMS’ having been 

originally optimised for deployment over n-tier architecture, and this is different from a 

CDD. This study shows the implications of architectural issues in the relational data model, 

with the findings showing that RDBMS’ are involved in poorly performing databases. This 

research adds to the knowledge of distributed databases in that, when there is large dataset 

being manipulated, one can expect similar issues, especially in a CDD, relating to network 

factors or variations in the performance of public cloud providers. However, if these systems 

deal with smaller datasets, they do not exhibit significant performance issues. Chapter 6 

brings this thesis to a close and provides a summary of the findings discussed in Chapter 5. 

The conclusion leads to future research opportunities resulting from this research. For 

instance this research implies there exists architectural issues in relational data model that 

they are worthy exploration.   
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Conclusion 

This study investigates the performance of RDBMS’ in CDD. Its contributions are posited to 

be especially relevant for those researching Information Systems. Chapter 6 provides an 

overall conclusion to the study. Section 6.1 offers retrospective analysis for the main findings 

that this study reveals. Section 6.2 provides some future research direction. Section 6.3 

explains the research limitations. Section 6.4 concludes Chapter 6.  

6.1 Retrospective analysis 

This section reviews the results of the experiments and the discussions that are presented in 

Chapters 4 and 5. Section 6.1.1 provides a summary of the findings related to the research 

questions: RQ1 “What are performance measures that can be applied to examine RDBMS’ 

performance in CC?” and RQ2: “Are the measures related to RQ1 valid for measuring 

RDBMSs in the clouds when large datasets are being manipulated?”. These questions were 

derived from what was considered to be inadequate research on performance measures of the 

deployment of RDBMS’ as CDD. Section 6.1.2, which is largely related to RQ3 “What 

evidence exists that RDBMS’ are creating significant performance issues in a cloud-

computing environment?”, summarises the RDBMS’ breakpoints in CDD. Then RQ4 “What 

influence does CC have on relational database performance” which is related to the role of 

the cloud network on the performance of RDBMS’ is summarised in Section 6.1.3. 

6.1.1 Performance measure in Cloud Computing    

Seven performance measures are selected which allows this study to consider multiple 

variables contributing to the performance of RDBMS’ in a cloud-based environment. For 

example the factors that drive CPU time are different from the factors that create I/O latency. 
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Also, the use of just one performance measure, runtime, is too all-encompassing. Therefore a 

more complete picture about the performance issues is drawn from this selection of the 

performance measures.  

Further, the observed inconsistencies between performance measures reflect the 

situation of PuC. They indicate that for RDBMS deployment, PuC negatively impact the 

performance of RDBMS’ therefore, unless RDBMS’ adjust to fit PuC, such deployment 

should be avoided.     

6.1.2 Performance of RDMS’ as CDD 

CDD create an environment where RDBMS’ do not fit well. That is because RDBMS’ are 

normally run on n-tier architecture and these systems face different challenges in CDD. These 

challenges are reflected in how RDBMS’ handle research experiments and the distribution of 

the chosen database across the public cloud network helps to identify clearly that with the 

current condition of RDBMSs, PuC is not the best environment for them. The use of large 

datasets also reveals some issues regarding the way RDBMSs handle queries in PuC. 

RDBMS’ are supposed to provide the most optimal execution plans and these plans should 

aim first at reducing the communication cost of the network. Instead, they appear to expose 

the performance to increased transaction costs. That indicates that RDBMS’ are not 

optimised for use in PuC. Further, the query optimisation methods of RDBMS’ suffer from 

issues arising from the choice of what join operator to use for joining large relations. Previous 

research (see Section 2.4.2) indicates that these systems perform better on n-tier architecture, 

and this study shows that PuC makes the RDBMS’ choice of best join operator even harder. 

In fact, if these methods are unable to reduce network overhead on performance, they are 

necessarily unable to perform satisfactorily as CDD.  
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6.1.3 Influence of Public Cloud Computing network 

As described in Section 2.1 CC features by running in a virtualised environment and its VMs 

are generally connected using WAN. This study indicates that the deployment of RDBMS’ in 

such an environment should be avoided. That is because firstly, shared computational 

resources cause performance issues for RDBMS’ particularly when they are I/O bound. This 

research observes a measure as high as 208 ms for average latency per physical read and as 

high as 360 ms per physical write. Finally, the network overhead quantified in this research is 

significant and therefore RDBMS’ in PuC have become network-bound in addition to being 

already I/O bound.   

6.1.4 Cloud architecture vs n-tier architecture    

Section 1.0 explains the difference between cloud and n-tier architecture which can be 

summarised as instead of relying on specifically designed physical hardware such as that 

found in distributed RDBMSs’ n-tier architecture the CC environment replaces such 

architecture with virtualisation solutions. To function, both architectures need networks but 

they differ from one another; n-tier architecture has significant network capability and CC 

architecture has a limited and shared network. The reported results reveal that RDBMS’ 

perform poorly as CDD and that is because these systems are not optimised to run on the 

cloud architecture.        

6.2 Further work  

  The findings of this research are a starting point to verify whether the approach of Shao, 

Liu, Li and Liu (2015) can lead to improving query optimisation in a distributed environment. 

If so, it may be worth extending this to CDD. Although their work is partly motivated by 

increasing higher performance requirements and uncertainty about which elements affect the 

performance most, their approach would have to deal with even more uncertainty in CDD. 
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The present study is conducted without using any performance enhancements. This 

provides a chance to redo the stated experiments but also with performance enhancements in 

and off the cloud so that comparisons between these works can be undertaken. More 

importantly, once this research is redone then both results would be useful in determining the 

architectural issues with the relational data model. This would also mean conducting the same 

experiments on non-relational database systems such as NOSQL so that rigorous 

determination can be achieved. 

6.3 Research limitations 

This thesis faces multiple limiting factors. Firstly, the research originally aimed to use a 

larger dataset for the experiments. However, in both systems, most of the experiments took a 

long time to run and often they did not finish due to network failures. That means that 

experiments could not readily be compared and, therefore, fulfilling the purposes of the study 

became even harder. Secondly, time and financial constraints prevent the research from 

conducting the experiments on n-tier architecture. 

6.4 Conclusion  

The present thesis achieves its purpose by demonstrating how RDBMS’ perform as CDD 

when processing large datasets. The research conducts 9 experiments on two database 

systems and compares the results between these systems.  The research also uses statistical 

methods to examine its results and finds statistical evidence that supports its findings.  

 This study clearly indicates the negative impact on performance that current RDBMS’ 

experience when deploying in a CC environment. That is they do not operate as efficient as 

required in such environment. Also, this research concludes any performance weakness with 

distributed RDBMS’ are intensified in Cloud-based environment so that current RDBMS are 
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not optimised to run as CDD. Furthermore, the findings of this investigation indicate the 

effects of public and shared environment on RDBMS’ performance are significant.  

The results of this research reveal cases where approaches by which queries were 

executed led to significant performance struggles as is the case for Oracle in EXP3 and for 

SQL Server in EXP9. Therefore this research recommends that the architecture and design of 

relational database system should be altered to fit the characteristics of CC. Another 

recommendation is that CC is an environment containing many factors that could be 

advantageous or disadvantageous for RDBMS’. Some factors cannot be controlled for such 

as infrastructure capacity and WAN. Therefore, since RDBMS’ rely on table joins, then they 

should be deployed only on private cloud to reduce the overhead of shared computational 

resources on performance. If they are distributed databases then WAN should also be avoided 

and, instead, the nodes should be connected using a private communication channel. 
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Appendices 

Appendix A 

This appendix contains the used database tables’ information such table names, columns 

names and the size of the table. 

Table name  Table size Attributes 

Dim_Class 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

58.3 MB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class_Key 

Class_Code 

Class_Desc 

Class_Name 

Stream_ID 

Stream_Code 

Stream_Abbr_Desc 

Stream_Full_Desc 

Stream_Name 

Stream_Weeks 

Payment_Due_Date 

Period_Code 

Period_Desc 

Reporting_Year 

Full_Part_Time 

Maximum_No 

Minimum_No 

Location_Code 

Location_Full_Desc 

Location_Abbr_Desc 

Location_Tiny_Desc 

Location_Campus_Code 

Location_Govt_Code 
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Table name  Table size Attributes 

Dim_Class 
 
 
 

58.3 MB 

 

Row_Effective_Date 

Row_Expiry_Date 

Row_Current_Flag 

Audit_Key 

Location_Campus_ 

Desc Location_Order 

 

Table name Table size Attributes 

Dim_Date 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

44 MB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date_Key 

Full_Date 

Day_Full_Name 

Day_Abbr_Name 

Day_Week_Begin_Date 

Day_Week_Begin_Key 

Day_Week_End_Date 

Day_Week_End_Key 

Day_Same_Last_Year_Date 

Day_Same_Last_Year_Key 

Month_Full_Name 

Month_Abbr_Name 

Calendar_Day_Of_Year 

Calendar_Week_Of_Year 

Calendar_Year_Month 

Calendar_Month_Of_Year 

Calendar_Quarter 

Calendar_Semester 

Calendar_Year 

Fiscal_Day_Of_Year 

Fiscal_Week_Of_Year 

Fiscal_Year_Month 
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Table name Table size Attributes 

Dim_Date 44 MB 

 

Fiscal_Month_Of_Year 

Fiscal_Quarter 

Fiscal_Semester Fiscal_Year 

Number_Day_Of_Week 

Number_Day_Of_Month 

Number_Calendar_Day_Of_Year 

Number_Calendar_Week_Of_Year 

Number_Calendar_Month_Of_Year 

Number_Fiscal_Day_Of_Year 

Number_Fiscal_Week_Of_Year 

Number_Fiscal_Month_Of_Year 

Is_Work_Day_Flag 

Month_Is_Last_Day_Flag 

 

 

Table name Table size Attributes 

Dim_Student 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

966 MB 

 

 

 

 

 

 

 

 

 

 

 

 

Dim_Student_Key 

Student_Birth_Date 

Age 

TEC_Priority_Age_Order 

TEC_Priority_Age_Desc 

Age_Range_Order 

Age_Range_Desc 

Gender_Code 

Gender_Desc 

Disabled_Flag 

School_Background_Flag 

Tertiary_Background_Flag 

Work_Background_Flag 
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Table name Table size Attributes 

Dim_Student 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

966 MB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Secondary_Award_Govt_Code 

Secondary_Award_Display_Order 

Secondary_Award_Full_Desc 

Secondary_Award_Abbr_Desc 

Last_Secondary_School_Name 

Last_Secondary_School_Order 

Last_Secondary_School_Country 

Last_Secondary_School_Attended_From_Year 

Last_Secondary_School_Attended_To_Year 

Partnership_School_Flag 

Last_Secondary_School_Decile_Code 

Last_Secondary_School_Decile_Desc 

Tertiary_Award_Govt_Code 

Tertiary_Award_Full_Desc 

Tertiary_Award_Abbr_Desc 

NZQA_Paid_Flag 

Last_Tertiary_Institution_Desc 

Last_Tertiary_Years 

Last_Tertiary_Course_Desc 

Last_Tertiary_Education_Successful_Flag 

Last_Tertiary_Country 

First_Tertiary_Year 

First_Student_Year 

Last_Student_Year 

Complete_This_Year_Flag 

Begin_This_Year_Flag 

Language_Desc 

Language_Display_Order 

First_Language_Desc 

Ethnic_Group_Full_Desc 
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Table name Table size Attributes 

Dim_Student 966 MB 

 

 

 

Ethnic_Group_Abbr_Desc 

Ethnic_Group_Order 

Ethnic_Group_Full_Desc_2nd 

Ethnic_Group_Abbr_Desc_2nd 

Ethnic_Group_Order_2nd 

Ethnic_Group_Full_Desc_3rd 

Ethnic_Group_Abbr_Desc_3rd 

Ethnic_Group_Order_3rd 

Ethnic_Other_Desc 

Country_Of_Origin_Full_Desc 

Country_Of_Origin_Abbr_Desc 

Country_Of_Origin_Tiny_Desc 

Country_Of_Origin_Govt_Code 

Country_Of_Origin_Immigration_Code 

Citizen_Full_Desc 

Citizen_Abbr_Desc 

NS_Citizen_Full_Desc 

NS_Citizen_Abbr_Desc 

Citizen_Display_Order 

Citizenship_Type_Code 

Citizen_Govt_Code 

Citizen_Is_Resident_Flag , 

Row_Effective_Date , 

Row_Expiry_Date , 

Row_Current_Flag , 

Audit_Key 

Student_ID_HASHED_old 

national_student_number_hashed_old 

Student_ID_HASHED 

Tertiary_Award_Abbr_Desc 

  



 

194 
 

Table name Table size Attributes 

Dim_Department 114 KB Department_Key 

Department_Code 

Department_ID 

Department_Full_Desc  

_Abbr_Desc 

Department_Name 

Department_Marketing_Desc 

Department_Marketing_Order
 Faculty_Code 

Faculty_Full_Desc 

Faculty_Abbr_Desc 

Faculty_Name 

Faculty_Type_Desc 

AUT_Code 

AUT_Full_Desc 

AUT_Abbr_Desc 

AUT_Name 

Allied_Flag 

Academic_Flag 

Row_Effective_Date 

Row_Expiry_Date 

Row_Current_Flag 

Audit_Key 
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Table name Table size  Attributes 

Dim_ Enrolment _Type 32 KB Enrolment_Type_Key 

Enrolment_Type_Code 

Enrolment_Type_ID 

Enrolment_Type_Desc 

Enrolment_Type_Name 

Enrolment_Type_Govt_Code 

Enrolment_Type_Funding_Code 

Enrolment_Type_Funding_Desc 

Enrolment_Type_Funded_Flag 

Enrolment_Type_Order 

Enrolment_Type_Category_Desc 

Enrolment_Type_Group_Code 

Enrolment_Type_Group_Desc 

Enrolment_Type_Group_Refund_Policy_Code 

Student_Type_Code 

Student_Type_Desc 

Student_Citizenship_Group_Code 

Student_Citizenship_Group_Desc 

Row_Effective_Date 

Row_Expiry_Date 

Row_Current_Flag 

Audit_Key 

 

Table name Table size  Attributes 

Dim_Entrance _ Status 
 
 
 
 
 
 
 
 

4 KB 

 

 

 

 

 

Entrance_Status_Key 

Entrance_Status_Code 

Entrance_Status_Desc 

Entrance_Status_Abbr 

Row_Effective_Date 

Row_Expiry_Date 
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Table name Table size  Attributes 

Dim_Entrance _ Status 4 KB Row_Current_Flag 

Audit_Key 

 

Table name Table size columns 

Dim_Intake 1.46 Intake_Key 

Intake_Year 

Intake_Type_Desc 

Intake_Name 

Prog_Intake_Year 

Prog_Intake_Type_Desc 

Prog_Intake_Name 

Row_Effective_Date 

Row_Expiry_Date 

Row_Current_Flag 

Audit_Key 
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Table name Table size Attributes 

Dim_Paper 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

70 MB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paper_Key 

Paper_Code 

Paper_ID 

Version_ID 

Version_ID_Latest 

Paper_Full_Desc 

Paper_Abbr_Desc 

Paper_Name 

Paper_Alternate_Desc 

Paper_Type_Desc 

Subject_Code 

Subject_Full_Desc 

Subject_Abbr_Desc 

Min_Ed_Code 

PM_Level 

Level_Desc 

NQF_Level_Code 

Emd_Lit_Num 

Has_Emd_Lit_Num 

EFTS_Weight 

Number_Of_Hours 

Number_Of_Points 

Contact_Hours 

Research_Based_Flag 

PBRF_Govt_Code 

PBRF_Govt_Desc 

Is_PBRF_Eligible_Flag 

Classification_Code 

Classification_Name 

Classification_Min_Return_Method_Code 
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Table name Table size Attributes 

Dim_Paper 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

70MB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISCED_Desc 

NZSCED_Full_Code 

NZSCED_Detailed_Code 

NZSCED_Detailed_Desc 

NZSCED_Detailed_Name 

NZSCED_Narrow_Code 

NZSCED_Narrow_Desc 

NZSCED_Narrow_Name 

NZSCED_Broad_Code 

NZSCED_Broad_Desc 

NZSCED_Broad_Name 

Stage_Govt_Code 

Stage_Govt_Desc 

Exam_Code 

Exam_Desc 

Funding_Code 

Funding_Desc 

Funding_Name 

Method_Desc 

Owner_Dept_Code 

Owner_Dept_Full_Desc 

Owner_Dept_Abbr_Desc 

Owner_Faculty_Code 

Owner_Faculty_Full_Desc 

Owner_Faculty_Abbr_Desc 

Teach_Dept_Code 

Teach_Dept_Full_Desc 

Teach_Dept_Abbr_Desc 

Cost_Centre_Code 

Cost_Centre_Desc 
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Table name Table size Attributes 

Dim_Paper 70 MB E_Learning_Flag 

External_Code 

Row_Effective_Date 

Row_Expiry_Date 

Row_Current_Flag 

Audit_Key 

Version_Start_Date 

Version_End_Date 

 

Table name Table size  Attributes 

Dim_Programme 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 MB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Programme_Key 

Programme_Code 

Programme_ID  

Version_ID 

Version_ID_Latest 

Programme_Augmented_Code 

Programme_Full_Desc 

Programme_Abbr_Desc 

Programme_Name 

Segment2_Code 

Segment2_Full_Desc 

Segment2_Abbr_Desc 

Segment2_Name 

Programme_Level 

Programme_Level_Full_Desc 

Programme_Level_NQF 

Owner_Dept_Code 

Owner_Dept_Full_Desc 

Owner_Dept_Abbr_Desc 

Owner_Faculty_Code 
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Table name Table size  Attributes 

Dim_Programme 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5 MB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Owner_Faculty_Full_Desc 

Owner_Faculty_Abbr_Desc 

Teach_Dept_Code 

Teach_Dept_Full_Desc 

Teach_Dept_Abbr_Desc 

Qualification_Code 

Qualification_Full_Desc 

Qualification_Order 

Qualification_Sub_Category_Full_Desc 

Qualification_Sub_Category_Order 

Award_Category_Code
 Award_Category_Full_Desc 

Award_Category_Type_Desc 

Award_Category_In_SDR_Flag 

Award_Category_Is_Formal_Flag 

Award_Category_Grouping_Desc 

Award_Category_Grouping_Order 

Award_Category_Grouping_Certificate_Desc 

Award_Category_Grouping_Certificate_Order 

Programme_Classification_Code 

Programme_Classification_Desc 

Programme_Classification_Min_Ret_Method_Code 

Academic_Points 

Min_Ed_Code 

School_Qual_Required 

University_Entrance_Required_Flag 

Appr_Stud_Loan_Flag 

Appr_Stud_Allow_Flag 

Full_Time_Part_Time_Code 

Full_Time_Part_Time_Desc 

Full_Time_Part_Time_Name 
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Table name Table size  Attributes 

Dim_Programme 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 MB 

 

Programme_Teaching_Weeks 

Programme_Total_Weeks 

ISCED_Code 

ISCED_Desc 

ISCED_Sub_Destination_Code 

Field_Code 

Field_Desc 

Sub_Field_Code  

Sub_Field_Desc  

Cost Centre 

Forecast_Programme_Flag 

Forecast_Programme_Source_Desc 

Uni_Level_Programme_Flag 

Uni_Level_Programme_Desc 

Latest_Flag 

Row_Effective_Date 

Row_Expiry_Date 

Row_Current_Flag 

Audit_Key 

ISCED_Code_Admissions 

ISCED_Desc_Admissions 

Is_Formal_Course_Flag 

Is_Short_Course_Flag 

Is_Paper_Based_Course 

 

Table name Table size Attributes 

Dim_TSC_Category 
 
 
 
 
 

152 KB 

 

 

 

TSC_Category_Key 

TSC_Category_Code 

TSC_Category_ID 

TSC_Reporting_Year 
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Table name Table size Attributes 

Dim_TSC_Category 152 KB TSC_Discipline_Code 

TSC_Discipline_Desc 

TSC_Discipline_Name 

TSC_Level_Code 

TSC_Level_Desc 

TSC_Level_Name 

TSC_Study_Right 

TSC_Funding_Grouping_Code 

TSC_Funding_Grouping_Desc 

TSC_Category_Amount 

Row_Current_Flag 

Audit_Key 

 

Table name  Table size  Attributes 

MYTABLE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

18 GB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Month_Key 

Date_Key 

Intake_Key 

Student_Key 

Owner_Department_Key 
 Teaching_Department_Key 

 Enrolment_Type_Key 
 Enrolment_Status_Key 

Enrolment_Status_Previous_Key 
 Programme_Key 

 Tsc_Category_Key 
 Class_Key  

Janefts 

Febefts 

Marefts 
 Aprefts 

Mayefts 

Junefts 

Julefts 
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Table name  Table size  Attributes 

MYTABLE 
 

18 GB Augefts 

Sepefts 

Octefts 
 Novefts 

Decefts 
 Audit_key 
 Total_efts 

First_month_int 

Last_month_int 

Total_months 

Efts_Percent Enrolment_Status_First_Day 
Enrolment_Status_Last_Day
 

Enrolment_Status_Day_Count
 
Classification_Key 

 

Table name Table size  Attributes 

Dim_ Classification 8 KB 

 

 

 

 

 

Classification_Key 

Classification_ID 

Classification_Code 

Classification_Name 

Min_Return_Code 

Classification_Status 

Last_Source_Change_Date 

Audit_Key 
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View name  View size  Attributes 

Month_View 124 KB Month_Key 

Month_Full_Name 

Month_Abbr_Name 

Calendar_Month_Of_Year 

Calendar_Quarter_Key 

Calendar_Quarter 
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Appendix B 

Component Description 
Model Apache Tomcat 6.0.20, Wine 1.0.1, RUSLE2, Object Modeling System 

(OMS 3.0) 
Database Postgresql-8.4, PostGIS 1.4.0-2 

Geospatial database consists of soil data (1.7 million shapes, 167 million 
points), management data (98 shapes, 489k points), and climate data (31k 
shapes, 3 million points), totaling 4.6 GB for the state of TN. 

File server nginx 0.7.62 Serves XML files which parameterize the RUSLE2 model. 
57,185 XML files consisting of 305 MB. 
 

Logger Codebeamer 5.5 w/ Derby DB, Tomcat (32-bit) 
Custom RESTful JSON-based logging wrapper web service. IA-32libs 
support operation in 64-bit environment 

---------------------------------------------------------------------------------------------------------------- 

The hierarchical data model structures the data according to the schema of the tree-structures 

diagram and the parent–child relationship, which implies a 1: N relationship type. Hence, the 

parents may have many children whereas the child can only have, and must have, one parent. 

This demonstrates the fact that only the one-to-many relationship and the one-to-one 

relationship can be represented in the hierarchical data model, though the many-to-many 

relationship type can be shown indirectly. Although this model can represent relationships 

that naturally show in hierarchical systems, it does not deal easily with situations where a 

variety of relationships occurs and therefore has difficulty representing other types of 

relationships (Tsichritzis & Lochovsky, 1976).  

The network data model represents the data in a manner that allows the modelling of more 

representation of the relationship between entities. That is, each record can be in the position 

of both parent and child and there are no limits to the number of parents a child can have, so 

parent and child can be involved in any number of set types. This implies that a many-to-

many relationship is supported and expressed by introducing the idea of link records. 

Eventually, graphical representation of the data is formed. 
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Unlike the hierarchical model, which restricts the child to one parent, this distinction 

demonstrates that the hierarchical data model has less modelling capability than the network 

model. It is therefore that in real world situation where connections heterogeneously exist 

between record of data types are modelled and varied entities are interrelated (Bachman, 

1969). .
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Appendix C 

A sample collection is carried out to collect 90 samples of the data transfer rate reported by 

Windows 7 for both RDBMS’. These samples are collected at different times of the day 

(morning, afternoon and evening). Thirty samples are collected at each time of the day, and 

each sample collection takes half an hour. The data transfer rate is noted at the start of each 

minute within each period.  

SQL Server Oracle  
sample transfer rate bytes\second transfer rate bytes\second 

1 64830 47584 
2 63486 35586 
3 60797 34304 
4 59725 37060 
5 60233 35153 
6 61391 35280 
7 60345 29682 
8 60001 34294 
9 63245 47618 
10 65189 29726 
11 66071 40763 
12 63202 40876 
13 65396 29717 
14 65463 35711 
15 65607 41781 
16 63355 47629 
17 62912 35673 
18 61426 35664 
19 60769 29691 
20 60503 44533 
21 61284 44765 
22 60263 35746 
23 60209 35742 
24 60550 29729 
25 65584 29858 
26 65828 35701 
27 65161 39429 
28 65253 29849 
29 64065 29699 
30 289613 47546 
31 284083 34130 
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SQL Server Oracle  
sample transfer rate bytes\second transfer rate bytes\second 

32 337273 33725 
33 356196 34344 
34 344798 34330 
35 391180 35028 
36 358156 31990 
37 359170 33946 
38 381589 27477 
39 345949 32061 
40 341741 32017 
41 353208 34272 
42 324161 34022 
43 330239 34191 
44 321553 33986 
45 332599 34055 
46 340961 26126 
47 333401 32829 
48 335220 34106 
49 348998 33302 
50 336426 33428 
51 323804 33084 
52 338961 33975 
53 320428 33682 
54 343932 31182 
55 261707 30474 
56 244302 32188 
57 257794 33473 
58 243429 33912 
59 292537 34351 
60 234713 34365 
61 262407 91149 
62 233684 88334 
63 206997 90555 
64 236885 90001 
65 160818 90196 
66 198257 89948 
67 194905 90646 
68 224226 89696 
69 248818 90856 
70 210198 89334 
71 155441 89766 
72 241889 90929 
73 203188 73302 
74 193075 89331 
75 213428 89310 
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SQL Server Oracle  
sample transfer rate bytes\second transfer rate bytes\second 

76 233808 90771 
77 235712 89709 
78 230804 85990 
79 203675 90028 
80 256233 90310 
81 190741 90093 
82 211520 90391 
83 197525 88483 
84 282028 90442 
85 207613 89795 
86 178336 89710 
87 199678 89150 
88 223334 86463 
89 239911 84147 
90 225190 68468 
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Appendix D 

I/O STATISTICS  

SELECT DB_NAME(IO.DATABASE_ID) AS DATABASE_NAME, 
 MF.PHYSICAL_NAME AS FILE_NAME, 
 IO.*  
FROM SYS.DM_IO_VIRTUAL_FILE_STATS(NULL, NULL) IO 
JOIN SYS.MASTER_FILES MF ON MF.DATABASE_ID = IO.DATABASE_ID  
 AND MF.FILE_ID = IO.FILE_ID 
ORDER BY (IO.NUM_OF_BYTES_READ + IO.NUM_OF_BYTES_WRITTEN) DESC; 
 
This code is obtained from How to analyse SQL Server performance (2014) 
 
SQL Server I/O latencies 
 
SELECT 
    [READLATENCY] = 
        CASE WHEN [NUM_OF_READS] = 0 
            THEN 0 ELSE ([IO_STALL_READ_MS] / [NUM_OF_READS]) END, 
    [WRITELATENCY] = 
        CASE WHEN [NUM_OF_WRITES] = 0 
            THEN 0 ELSE ([IO_STALL_WRITE_MS] / [NUM_OF_WRITES]) END, 
    [LATENCY] = 
        CASE WHEN ([NUM_OF_READS] = 0 AND [NUM_OF_WRITES] = 0) 
            THEN 0 ELSE ([IO_STALL] / ([NUM_OF_READS] + [NUM_OF_WRITES])) 
END, 
    [AVGBPERREAD] = 
        CASE WHEN [NUM_OF_READS] = 0 
            THEN 0 ELSE ([NUM_OF_BYTES_READ] / [NUM_OF_READS]) END, 
    [AVGBPERWRITE] = 
        CASE WHEN [NUM_OF_WRITES] = 0 
            THEN 0 ELSE ([NUM_OF_BYTES_WRITTEN] / [NUM_OF_WRITES]) END, 
    [AVGBPERTRANSFER] = 
        CASE WHEN ([NUM_OF_READS] = 0 AND [NUM_OF_WRITES] = 0) 
            THEN 0 ELSE 
                (([NUM_OF_BYTES_READ] + [NUM_OF_BYTES_WRITTEN]) / 
                ([NUM_OF_READS] + [NUM_OF_WRITES])) END, 
    LEFT ([MF].[PHYSICAL_NAME], 2) AS [DRIVE], 
    DB_NAME ([VFS].[DATABASE_ID]) AS [DB], 
    [MF].[PHYSICAL_NAME] 
FROM 
    SYS.DM_IO_VIRTUAL_FILE_STATS (NULL,NULL) AS [VFS] 
JOIN SYS.MASTER_FILES AS [MF] 
    ON [VFS].[DATABASE_ID] = [MF].[DATABASE_ID] 
    AND [VFS].[FILE_ID] = [MF].[FILE_ID] 
-- WHERE [VFS].[FILE_ID] = 2 -- LOG FILES 
-- ORDER BY [LATENCY] DESC 
-- ORDER BY [READLATENCY] DESC 
ORDER BY [WRITELATENCY] DESC; 
GO 
 

This code is obtained from (SQLskills, 2015a)    
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SQL Server wait events 

WITH [WAITS] AS 
    (SELECT 
        [WAIT_TYPE], 
        [WAIT_TIME_MS] / 1000.0 AS [WAITS], 
        ([WAIT_TIME_MS] - [SIGNAL_WAIT_TIME_MS]) / 1000.0 AS [RESOURCES], 
        [SIGNAL_WAIT_TIME_MS] / 1000.0 AS [SIGNALS], 
        [WAITING_TASKS_COUNT] AS [WAITCOUNT], 
        100.0 * [WAIT_TIME_MS] / SUM ([WAIT_TIME_MS]) OVER() AS 
[PERCENTAGE], 
        ROW_NUMBER() OVER(ORDER BY [WAIT_TIME_MS] DESC) AS [ROWNUM] 
    FROM SYS.DM_OS_WAIT_STATS 
    WHERE [WAIT_TYPE] NOT IN ( 
        N'BROKER_EVENTHANDLER',             N'BROKER_RECEIVE_WAITFOR', 
        N'BROKER_TASK_STOP',                N'BROKER_TO_FLUSH', 
        N'BROKER_TRANSMITTER',              N'CHECKPOINT_QUEUE', 
        N'CHKPT',                           N'CLR_AUTO_EVENT', 
        N'CLR_MANUAL_EVENT',                N'CLR_SEMAPHORE', 
        N'DBMIRROR_DBM_EVENT',              N'DBMIRROR_EVENTS_QUEUE', 
        N'DBMIRROR_WORKER_QUEUE',           N'DBMIRRORING_CMD', 
        N'DIRTY_PAGE_POLL',                 N'DISPATCHER_QUEUE_SEMAPHORE', 
        N'EXECSYNC',                        N'FSAGENT', 
        N'FT_IFTS_SCHEDULER_IDLE_WAIT',     N'FT_IFTSHC_MUTEX', 
        N'HADR_CLUSAPI_CALL',               N'HADR_FILESTREAM_IOMGR_IOCOMPL
ETION', 
        N'HADR_LOGCAPTURE_WAIT',            N'HADR_NOTIFICATION_DEQUEUE', 
        N'HADR_TIMER_TASK',                 N'HADR_WORK_QUEUE', 
        N'KSOURCE_WAKEUP',                  N'LAZYWRITER_SLEEP', 
        N'LOGMGR_QUEUE',                    N'ONDEMAND_TASK_QUEUE', 
        N'PWAIT_ALL_COMPONENTS_INITIALIZED', 
        N'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP', 
        N'QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP', 
        N'REQUEST_FOR_DEADLOCK_SEARCH',     N'RESOURCE_QUEUE', 
        N'SERVER_IDLE_CHECK',               N'SLEEP_BPOOL_FLUSH', 
        N'SLEEP_DBSTARTUP',                 N'SLEEP_DCOMSTARTUP', 
        N'SLEEP_MASTERDBREADY',             N'SLEEP_MASTERMDREADY', 
        N'SLEEP_MASTERUPGRADED',            N'SLEEP_MSDBSTARTUP', 
        N'SLEEP_SYSTEMTASK',                N'SLEEP_TASK', 
        N'SLEEP_TEMPDBSTARTUP',             N'SNI_HTTP_ACCEPT', 
        N'SP_SERVER_DIAGNOSTICS_SLEEP',     N'SQLTRACE_BUFFER_FLUSH', 
        N'SQLTRACE_INCREMENTAL_FLUSH_SLEEP', 
        N'SQLTRACE_WAIT_ENTRIES',           N'WAIT_FOR_RESULTS', 
        N'WAITFOR',                         N'WAITFOR_TASKSHUTDOWN', 
        N'WAIT_XTP_HOST_WAIT',              N'WAIT_XTP_OFFLINE_CKPT_NEW_LOG
', 
        N'WAIT_XTP_CKPT_CLOSE',             N'XE_DISPATCHER_JOIN', 
        N'XE_DISPATCHER_WAIT',              N'XE_TIMER_EVENT') 
    AND [WAITING_TASKS_COUNT] > 0 
 ) 
SELECT 
    MAX ([W1].[WAIT_TYPE]) AS [WAITTYPE], 
    CAST (MAX ([W1].[WAITS]) AS DECIMAL (16,2)) AS [WAIT_S], 
    CAST (MAX ([W1].[RESOURCES]) AS DECIMAL (16,2)) AS [RESOURCE_S], 
    CAST (MAX ([W1].[SIGNALS]) AS DECIMAL (16,2)) AS [SIGNAL_S], 
    MAX ([W1].[WAITCOUNT]) AS [WAITCOUNT], 
    CAST (MAX ([W1].[PERCENTAGE]) AS DECIMAL (5,2)) AS [PERCENTAGE], 
    CAST ((MAX ([W1].[WAITS]) / MAX ([W1].[WAITCOUNT])) AS DECIMAL (16,4)) 
AS [AVGWAIT_S], 
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    CAST ((MAX ([W1].[RESOURCES]) / MAX ([W1].[WAITCOUNT])) AS DECIMAL 
(16,4)) AS [AVGRES_S], 
    CAST ((MAX ([W1].[SIGNALS]) / MAX ([W1].[WAITCOUNT])) AS DECIMAL 
(16,4)) AS [AVGSIG_S] 
FROM [WAITS] AS [W1] 
INNER JOIN [WAITS] AS [W2] 
    ON [W2].[ROWNUM] <= [W1].[ROWNUM] 
GROUP BY [W1].[ROWNUM] 
HAVING SUM ([W2].[PERCENTAGE]) - MAX ([W1].[PERCENTAGE]) < 95; -- 
PERCENTAGE THRESHOLD 
GO 
 
This code is obtained from (SQLskills, 2015b)  
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Appendix E 

The term NOSQL describes a concept that demonstrates a development in the way that data 

management can be handled. That is, fixed tables schema may not be required, NOSQL 

system do  not support join operations, and typically can scale out more easily than RDBMS’ 

(Agrawal et al., 2008). The terms also refer to non-relational systems, however this lacks 

accuracy since presently there exists middleware appliances such as CloudTPS for Google’s 

BigTable and Amazon’s SimpleDB (Wei, Pierre & Chi, 2012), which enable NOSQL 

systems to provide full ACID properties.  

The implementation of NOSQL can be based on different data models, such as 

key/value stores, document stores, object stores, tuple stores, column stores, and graph stores, 

and different data structures can be stored and retrieved. NOSQL follows items orientation, 

which works by having keys to identify each item and any information related to that item is 

stored inside it (Arora & Gupta, 2012). Technically, the data consisting of the key and its 

value is hashed into buckets which are then distributed across the network nodes. This also 

demonstrates that complex queries are not supported in NOSQL systems since they partition 

the row data in a horizontal way. Therefore simple queries, without cross-referencing, work 

well for handling large datasets; this also is supported by the relaxation of ACID transactions.  

Database management systems such as RDBMSs support complex operations that 

involve table joins to take place with ACID transactions. Implications for performance 

originate from this approach, with large dataset business occurring in CC. In some cases 

NOSQL approaches offer better handling of the data than RDBMS’ (Pokorny, 2013). 

However there are systems, such as airline reservation systems, where features of RDBMS 

are significant for its performance and integrity. 
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Furthermore, ACID properties are managed differently in NOSQL systems where 

weaker consistency is permitted; the implications for this are significant in terms of data 

availability, latency and scalability. Though each NOSQL system differs in the way it applies 

consistency, some employ the so-called eventual consistent where the updates are eventually 

applied in all nodes, and others allow a varied degree of consistency by employing 

mechanisms such as multi-version concurrency control (Cattell, 2011). Moreover, other 

NOSQL systems do not provide ACID transactions at all. Generally and despite all of these 

variations, in CC, such design allows the higher availability of data and low latency 

compared with relational systems, and while consistency is applied in a different manner, 

experiments show that inconsistency rarely emerges though is still possible (Wada et al., 

2011). 
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