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Abstract 

Advances in software process technology have rendered 
some existing methods of size assessment and effort 
estimation inapplicable.  The use of automation in the 
software process, however, provides an opportunity for 
the development of more appropriate software size-
based effort estimation models.  A specification-based 
size assessment method has therefore been developed 
and tested in relation to process effort on a preliminary 
set of systems. The results of the analysis confirm the 
assertion that, within the automated environment class, 
specification size indicators (that may be automatically 
and objectively derived) are strongly related to process 
effort requirements. 
 
1. INTRODUCTION 

Recent and ongoing studies in the areas of software 
metrics, software process assessment and software 
process automation have generated similar ideas in 

relation to process effort estimation 
1,2

.  Much of this 
work suggests that both the data collection procedures 
required for effort prediction and the estimation of 
process effort itself should be:  

 performed as early as is feasible to obtain 
estimates within specified bounds of accuracy;  

 automated as much as possible;  

 as objective as possible.  

These suggestions are commonsense, but it has taken 
metrics research a relatively long time to acknowledge 
the importance of such issues.  This is due in part to the 
rather chaotic approach to development that was 
common until management of the software process was 
acknowledged as important in its own right, and in part 
to the lack of appropriate tools that would enable 
objective automatic data extraction.  Prior to this, data 
collection and subsequent estimation were often 
performed on an ad hoc basis involving substantial 
manual procedures, making them highly susceptible to 

subjective opinions in assessment.  

Requirements such as the three listed above, as well as 
advances in process automation via computer-aided 
software engineering (CASE) tools and application 
generators, have lent support to the development of 
effort estimation models based on relevant aspects of 
requirements specifications. Using extensive statistical 
analyses, Mukhopadhyay and Kekre1, for example, were 
able to show that, as well as holding the inherent 
advantage of early derivation, their feature-based effort 
estimation models proved to be more effective than 
several other well-known techniques.  Although having 
a similar aim to the Mukhopadhyay and Kekre work, the 
study reported here has been undertaken in the 
transaction processing/management information systems 
(TP/MIS) domain, and is an initial evaluation of a 
previously proposed assessment and estimation scheme3. 

As a characteristic of all software development artifacts, 
product size has for some time been generally  
acknowledged as having a significant impact on other 
important product attributes, including quality and 

maintainability 
4,5

. Product size has also been recognised 
as an influential factor concerning the effective 
management of the software process. This is a result of 
the expectation that, in general, a larger piece of 
software will require greater development effort, will 
contain more errors and will be more difficult to 

maintain and enhance 
6,7,8

.  Ultimately then, overall 
development and maintenance costs are affected by 

product size 
9,10

. Although effort may also be influenced 
by other factors, such as the productivity of 
development personnel, it is suggested here that system 
size is the main determinant.  Once a specification is 
complete, facilities for schema and code frame 
generation available in automated environments reduces 

the extent of developer input
11,12

, thus reducing (but not 
yet eliminating) the impact that individual developers 
have on this transition process. Attention should 
therefore be focused on the functional size, hence our 
concentration on assessing requirements specifications.  
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Furthermore, DeMarco
13 

suggests that implementation 
effort increases with proportional increases in 
specification size, and that specification size approaches 
invariance with respect to the decisions taken by 
individual developers.  For a particular set of 
requirements, this would therefore suggest that similar 
size measures would be derived no matter who 
developed the specification, particularly in an automated 

development environment 
14,15

.  In essence then, it is 
asserted that system size, as represented in a 
requirements specification, is the overriding cost driver 
in terms of development effort in an automated 
environment.  

The establishment of useful objective relationships 
between size and effort/cost at an early stage of the 
software process is clearly a desirable outcome of the 
assessment process.  The observations of 

Mukhopadhyay and Kekre
1
 concerning the limited 

usefulness of most effort estimation models due to their 
late derivation are also supported here, providing the 
motivation for specification-based assessment and 
prediction.  The effective application of a large number 
of existing assessment methods is also impeded by other 
problems - some are oriented more to the assessment of 
the development methods used and the individual style 
and ability of programmers than to the actual scope of 
the software, and several are less than comprehensive in 

their assessment
16,17

.  

In general, quantitative software assessment involves the 
extraction of counts of various product and process 
attributes, based on the assumption that these counts are 
useful in their own right, and that they may also be 
useful in determining or estimating other development 
attributes. Thus the aim of many proposed size 
assessment techniques has been to provide product-
based predictions of attributes such as development 
effort or post-implementation error frequency. Given 
progress in process automation, the functional metric 
approach, in which measures are extracted from some 
early functional representation(s) of a system (as 
opposed to an implementation-oriented representation), 
appears to hold promise for size assessment and effort 
model development. The increasing use of application 
generators and CASE tools presents an opportunity for 
the development of assessment techniques that can 
overcome at least some of the problems associated with 
other metric classes. Due to the degree of automation 
that these tools provide, the transformation from a 
system's functional requirement to its implementation is 

more straightforward
18,19

, thus reducing (to some 
unknown degree) the impact of specific development 
personnel and implementation methods.  Furthermore, 
the multi-dimensional nature of many CASE 
specifications enables the assessment of system product 
size from a number of perspectives, leading to a more 
comprehensive consideration. Requirement 
representations are also among the first tangible 
products of the software development process, so 
models developed from them are likely to be among the 
earliest available.  Measures derived from functional 

representations therefore have the potential to be useful 
in comparing the scope of complete systems, and in 
assessing the impact that variation in size has on 
outcomes of the software process.  

Two of the most widely cited functional approaches to 
product assessment are the originally defined version of 

Function Point Analysis (FPA)
20 

 and System Bang 
13

. In 
terms of the requirements listed at the start of this paper, 
these techniques would appear to be unsatisfactory18,21,22 

21. Tate and Verner21 , for example, observe that FPA is 
difficult to determine automatically, and can involve a 
significant degree of subjectivity.  Furthermore, they 
remark that some of the information that is required for 
the calculation of function points is not available from 
CASE tools. System Bang also demands that a number 
of subjective assessments be made in its formulation, 
reducing the general applicability of the results 
obtained.  

An assessment/estimation approach that attempts to 
overcome some of the problems associated with 
previously proposed methods, and one that is 
consequently designed to satisfy the requirements of an 
effective approach, has been proposed.  This approach is 
described in the next section.  (For complete details of 
its derivation and justification, the interested reader is 
referred to the original paper3.)  Empirical evaluation of 
the approach using thirteen systems from ten 
commercial sites is described.  The paper is then 
concluded with a summary of the findings and 
recommendations for continuing research.  
 
2. SPECIFICATION SIZE ASSESSMENT  

It has been suggested
13,21 

 that the structured and semi-
formal nature of some widely used specification models 
lends itself to objective size assessment, and may 
provide a useful basis from which to estimate other 
product and/or process attributes.  The extensive use of 
such requirements modelling methods in computer aided 
software engineering (CASE) environments has enabled 
automatic extraction of measures derived from these 
representations.  Use of these tools has also led to a shift 
in emphasis from assessment of implementation 
products (e.g. lines of code, program volume and so on) 
to the assessment of functional products.  Hence, our 
basis for size assessment is in the outputs of the 
requirements analysis process.  

After applying the Goal/Question/Metric (GQM) and 

Classification Scheme paradigms
23,24

 to the aims of the 
study, five specification perspectives were selected as 
being quantifiable in terms of the contribution that each 
might make to the overall size of a complete 
specification:  data, processing, transaction, function and 
user interface.  Given that software requirements are 
often specified using entity relationship diagrams 
(ERDs) and data flow diagrams (DFDs), Tate and 

Verner
21

 suggest that they are appropriate partial 
representations for early-phase assessment. Both 
approaches have a data focus, but each provides a 



differing view of the data: the former emphasises the 
structural perspective of the data, whereas the latter is 
more concerned with giving an overall representation of 
the use and transformation of data. Consideration of just 
one of these two approaches, in terms of gaining a full 
and complete picture of system size, is unlikely to be 
adequate.  In fact, the development of a specification is 
often an iterative process that takes the analyst from one 
technique to the other in order to derive a ‘complete’ 
specification.  

Although the data structure and data flow modelling 
specification methods are the most widespread in the 
commercial systems domain, they are not totally 
exclusive of other methods, and are in fact frequently 
augmented by other representations as these too provide 
complementary views of system requirements.  The 
three secondary representations considered here are the 
transaction and user interface representations and the 
functional decomposition hierarchy (FDH).  

The transaction representation is widely employed in the 
development of database-centred systems common in 
the business domain.  Each elementary function in a 
system may be considered in terms of the operations that 
it performs on entities. Given adequate decomposition, 
low level functions or processes may be specified in this 
manner, providing assistance for the subsequent 
development of processing logic.  Thus the transaction 
representation may be considered as a model that 
combines both data and process requirements.  

The user interface representation is a perspective that is 
particularly applicable to development projects in which 
prototyping methods and graphical user interface (GUI) 
development tools are used, as the development of an 
acceptable interface can be a significant component of 
the overall effort expended in this type of environment.  
This representation essentially provides models of the 
screen and report formats that are to be subsequently 
implemented in the system.  Interactive business 
systems tend to make extensive use of screen dialogues 
and are oriented towards the production of management 
reports. Thus a consideration of system scope as 
represented in this form should provide further 
information to enhance process attribute assessment.  

A functional decomposition hierarchy is often produced 
as a levelled description of the functions to be provided 
by a system, providing a concise representation of the 
projected module calling structure that will eventually 
be generated or constructed.  The number and 
interaction of the modules are likely to have an impact 
on system scope so this representation should also be 
considered in any functional assessment scheme.  

Although there are certainly a number of development 
methodologies that do not use the above tools and 
techniques it would still seem reasonable to suggest that 
automated structured specification and development 
methods of this type will continue to be used within the 
business community for the foreseeable future.  This is 
due to a number of reasons, including vendor 
commitment to automation, user investment in tools and 
methods and, to a lesser extent, tradition. It is therefore 

envisaged that the analysis strategy, which assumes the 
existence of such an environment, will not become 
obsolete in the near future.  

It was considered that quantification of aspects of each 
representation would help to ensure that the assessment 
of system scope was as comprehensive as possible3.

 
  

During site interviews, however, it was found that just 
three of the software processes examined made 
extensive use of data flow diagrams (DFDs), so the 
processing perspective (covered by DFD-type models) 
was disregarded for this analysis.  Although this finding 
may be taken to suggest that DFDs are now uncommon, 
it is more likely that it is simply a reflection of the 
particular tools that were encountered in this study.  A 

recent assessment of several CASE products
25

 showed 
that DFD assistants were still among the most widely 
available features of automated tools.  Future studies 
with systems developed using this and other tools 
should therefore provide useful results relating to the 
influence of process model factors.  

Figure 1 is an adapted diagrammatic representation of 

the CASE product model proposed by Tate and Verner
21 

as a basis for assessing specification size.  The tasks and 
activities necessary for the production of such artifacts 
are considered to be typical of software processes used 
in the automated development of business-oriented 
transaction processing and reporting systems. 

 

 
Figure 1. Tate and Verner's CASE product model 

As this study was concerned only with the assessment of 
those products developed within the requirements 
analysis and specification activities, and since the data 
flow-oriented products were to be disregarded, a revised 
product model for this study was developed.  This 
model is shown in Figure 2. 



 

 
Figure 2. The automated development product model adopted 

in this study 

Those components shown in Figure 2 that are the same 
as those in Tate and Verner’s original proposal (that is, 
the detailed data model, the user interface and the 
detailed functional specification) have the same general 
descriptions.  The additional components suggested in 
this work are similarly described, as follows:  

Detailed data model - a fully defined data model 
incorporating attribute specifications. This model 
enables measures to be derived relating to the size of 
the data representation, including characteristics of 
entities, attributes and relationships.  

Detailed function model - similar to Tate and 
Verner’s detailed dataflow diagram, this is a fully 
decomposed hierarchy to the level of functional 
primitives, enabling measures relating to processing 
scope and transaction interaction to be derived.  

Transaction model - detailed definitions of attribute 
manipulations at the functional primitive level, 
bringing together aspects of system size from both 
the data and processing perspectives.  

User interface - this representation includes menus, 
screens, reports and messages in detail, enabling size 
assessment of relevant characteristics.  Tate and 
Verner suggest that this system aspect may 
contribute significantly to implementation effort in 
business systems, and may be treated as another 
system dimension partially derived but quite distinct 
from those of data and process.  

Detailed functional specification - this is an overall 
view of the system as specified in the previous 
products. It is not dealt with here in detail, but 
illustrates the bringing together of the several 
dimensions of a system into one specification.  As 
such, Tate and Verner suggest that it should be a 
useful predictor of both total design effort and 
implementation effort.  

There may be some question as to whether the products 
just described can all be considered to be outputs of the 
requirements analysis and specification phase.  It is 
certainly acknowledged that in some circumstances the 
transition from analysis to design can become somewhat 
blurred, as for example, in a prototyping process. The 

requirements specifications provided for this study, 
however, included all four components listed above. 
This may be indicative of the components and 
techniques that are generally employed in requirements 
analysis and specification in automated environments. 
Specific measures relating to each of the model 
components are now described in detail. 
 
2.1. Transaction measures 

Low level transactions in database systems perform one 
of the following operations: create a record, read a 
record (including look-up validation), update a record or 
delete a record.  There is some evidence to suggest that 
the operations make differing contributions to overall 
system scope and complexity3.

 

Given that this 
representation combines both data and functional 
requirements

26 

it may provide a sound basis for 
comprehensive size indications.  The measures from this 
representation collected in this study are defined in 
Table 1. 

Table 1. Transaction measures 

 

 
2.2. Functional model measures  

Functional decompositions of some form are central to 
most development approaches

10,27

. In cases where the 
functional model is broken down to an elementary level, 
this representation can provide a quantitative insight into 
the scope and complexity of the specified system. 
Functional model size indicators should form a useful 
basis for developing transaction design and 
implementation estimates within automated 
development environments

21

.  More specifically, it is 
suggested here that the number and interaction of 
functional modules will have an impact on overall 
system size (and consequently process effort) - this 
provides the motivation for inclusion of the measures 
shown in Table 2.  (Measures marked with an asterisk 
are composite measures that is, they may be calculated 
from the values of other base measures.) 
 
2.3. User interface measures  

Particularly for software development in an interactive 
processing environment, the number of screens, reports 
and data elements produced for the user is expected to 
have a significant impact on development effort, as the 
creation of acceptable screen and report formats is often 
a major part of interactive (business) system production 



21,28,29

.  As such they should provide a good basis for the 
development of effort estimates for user interface-
related development tasks 

21

. Interface measures are 
defined in Table 3. 

Table 2. Functional model measures 

 
 

 

Table 3. User interface measures 

 
 
2.4. Data model measures  

Measures concerned with the size, interconnection and 
manipulation of data model representations are listed in 
Table 4 of the assessment scheme, reflecting the 
assumption that larger, highly interconnected data 
models, and higher numbers of accesses to entities and 
attributes, imply a larger and more complex processing 
system 

26,30

. Indicators of data model scope should form a 
useful basis from which to estimate subsequent 
database-related task effort

21

. 
 

Table 4. Data model measures 

 
 



3. EMPIRICAL EVALUATION  
One of the assumptions underlying the use of the 
proposed approach was that higher values of the various 
specification measures would indicate systems that were 
more time-consuming to develop. To empirically 
evaluate the assessment scheme, this assertion had to be 
tested quantitative indicators of process effort were 
therefore required.  For the purposes of this study, the 
relevant indicators were defined as shown in Table 5. 

Table 5. Process effort measures 

 
 
The effort indicators are derived from various well-
supported assumptions concerning the intuitive 
relationship between relative system size levels and 
development effort6. The effort measures therefore 
reflect the amount of work carried out by personnel 
using CASE tools and application generators over 
various phases of development. 
 
3.1. Systems analysed  

After an extensive mailing campaign, ten business and 
government organisations agreed to provide systems for 
the project. Most agreed to allow one system only to be 
analysed, giving an overall sample of thirteen systems.  
The small sample size precluded any realistic 
opportunity to undertake both relationship development 
and subsequent validation but it was still hoped that the 
results obtained would prove to illustrate the feasibility 
and potential of objective, automated and early product 
size assessment as a basis for process effort estimation.  
Moreover, the use of small samples is not uncommon in 
first-cut analyses of assessment and estimation 

approaches
31-34 

(although larger samples would always 
be preferred when they are available).  

The ten organisations that agreed to participate in the 
study varied in size and function, from multinational 
petroleum manufacturers and distributors to government 
departments, through to small private commercial 
development sites. Tools used in development included 
Oracle CASE, AutoMate Plus, IEW/ADW, the IEF, 
Excelerator and ProKit Workbench/ProIV.  The thirteen 
systems in the sample performed a number of overall 
TP/MIS functions, including customer and supplier 
recording, costing and charging, accounting, site and 
personnel administration, scheduling and rostering. 
Collection of the specification size data items was 

performed manually from various original requirements 
phase documents, that is, ERDs, FDHs, transaction 
models and screen and report formats. The project data 
relating to development effort was gathered from a 
combination of on-line and paper-based records that had 
been kept as part of the organisations’ routine project 
management procedures.  In order to illustrate the scale 
of the systems examined, Table 6 provides some general 
descriptive material.  (Readers are encouraged to contact 
the author if they would like to receive a full set of the 
collected data.)  

Table 6. Descriptive indicators of system scale 

 
 
Although factors such as specific tools and project 
personnel varied over the sample, other potential 
contributors to process effort (apart from system scope) 
were reasonably consistent. This included a common 
baseline software process, centred on structured analysis 
and design using automated tools, and a common 

application domain.  Tate and Verner
17 

suggest that, in 
an automated environment,  size measures taken from 
specifications are less tool-dependent than those taken 
from lower level software products (e.g. programs and 
the like), so the influence of particular tools within the 
CASE class (particularly given the use of a common 
analysis and design methodology) should have been 
reduced. 
 
3.2. Analysis results  

Correlation procedures identified a number of highly 
significant associations between variables from all of the 
specification perspectives and the effort indicators.  
Many of these relationships were significant at the α = 
0.001 level; that is, there was less than 0.1% probability 
that the relationships had been encountered by chance.  
Since the Spearman correlation coefficient is said to be 

conservative, except in cases where ties are common
35

, 
it was decided that further analysis would be carried out 
only on variables that showed highly significant values 
for both the Spearman and Pearson statistics.  The 
specification-based size variables chosen based on this 
criterion were TRE (total number of read transactions), 
TD (total decomposition) and TDSCR (total number of 
distinct screens), plus eight of the data model measures 



(TESDM, TDEPD, TAU, TAC, TMLS, *TAM, *TIDM, 
*TSDM).  

Another variable selection method was then employed 
to ensure that interrelated variables did not go forward 
for use in further (goodness of fit) tests.  Kitchenham 

and Pickard
35

 suggest that closely related predictor 
indicators should be treated with caution when used 
together, especially when the overall objective is the 
development of estimation models.  It is often the case 
that one of a group of interrelated variables is 
sufficiently powerful to act for the group.  In these 
circumstances, criteria other than the original correlation 
coefficients should be used to select appropriate 
independent variables from related groups.  In cases 
where the data are normally distributed and the sample 
size is sufficiently large, some form of factor analysis 
may be useful in determining an appropriate 
representative variable.  Full normality in software 

engineering data distributions is uncommon, however 
35

. 

Hampel et al.
36 

suggest (in a general discussion of the 
topic) that there is practically always no guarantee of 
normality and that slight departures from the model 
have a significant effect on the results obtained.  
Moreover, the data set in this study consisted of just 
thirteen observations.  It was therefore decided that 
variables should be selected from groups according to 
their ease of extraction and the time at which they 
became available - that is, variables that are easily 

determined and are available as early as possible were to 
be preferred over more complicated, later-phase 
variables.  

Correlation tables illustrated the significantly high 
degree of intercorrelation within the group of variables 
from the data perspective (see Table 7).  The eight data 
model measures listed above were all very highly 
correlated, except for the TAU (total attributes updated) 
and TAC (total attributes consumed) variables.  Since 
these two variables were easily extracted, were 
elementary rather than composite, were available 
reasonably early in the development process (as part of 
the functional specification), and appeared to be 
relatively independent but still highly correlated with the 
effort indicators, they were both selected for separate 
use in the procedures to follow. For the current sample 
this led to a final set of prospective predictive 
specification variables: TRE (total number of read 
transactions), TD (total decomposition), TDSCR (total 
number of distinct screens), TAU (total number of 
attributes updated by the system) and TAC (total 
number of attributes consumed by the system).  A 
summary of the correlation test results for these and the 
process effort variables is provided in Table 8. All 
correlation coefficients were significant at the α = 0.001 
level. 
 

 

Table 7. Intercorrelation matrix for data perspective measures 

 
 
 
 
 
 



Table 8. Size-effort variable pairs correlation summary 

 
 

Based on the results obtained from the correlation tests, 
a set of possible regression relationships was 
formulated.  The popular least-(mean-)squares 
regression method (LS) was then used in conjunction 
with the less common least-median-squares technique 
(LMS) in an attempt to ensure that robust estimates, that 
is, estimates that are not overly influenced by outliers, 
were developed. The LS method has become the 
cornerstone of classical statistics, due to both ease of 

computation and tradition
37

.  In cases where outliers 
seldom occur, the LS method is often more than 
adequate.  However, outliers are a common feature of 

software engineering data sets
35

. The LMS method, as 

discussed by Rousseeuw and Leroy
37

, was therefore also 

used.  The PROGRESS system
37 

 (Program for RObust 
reGRESSion) computes both the least-squares and least-
median-squares equations, and then automatically 
computes reweighted least-squares (RLS) equations 
based on the LMS analysis results.  The RLS procedure 

removes or reweights the outliers identified in the LMS 
regression and computes a new LS equation based on 
the remaining data points.  

All of the independent variable coefficients computed in 
the goodness of fit tests were shown to be significant by 
the PROGRESS system.  This indicated that, in cases 
where the residuals adhered to certain restrictions, the 
independent (size) variable in each equation did indeed 
account for the response (effort) variable in a significant 
way. These restrictions require that estimation model 
residuals must be independent of one another while 
being evenly dispersed about the mean (at zero on the 
vertical axis) and that they should reflect a constant 
variance. Linear regression models that produce 
residuals that fail to conform to these requirements are 
generally inadequate, in that they may be improved only 
through the inclusion of weighted and/or transformed 
terms. 
 

 

Table 9. Effort-size regression test results 

 



The overall results of the regression tests, including the 

R
2 

values, are shown in Table 9. Based on the 
information presented, final goodness of fit equations 
were chosen for each of the effort variables investigated.  
Of the two regressions of analysis and design effort 
(AN_DES), the model based on the TAU variable was 

the most accurate. The three R
2
 values obtained from the 

regressions using this variable were higher than those 
achieved with the equations based on the TDSCR 
variable.  Furthermore it was unclear as to whether the 
residual plots of the TDSCR models were satisfactory 
(where the ‘Resid. OK?’ column contains the letter 'U'), 
whereas those obtained from the TAU models were 
adequate ('Resid. OK?' is 'Y').  Goodness of fit for 
program and unit test effort (PROG_UT) was only 
performed in this study with the TAC variable. The 

results of these tests were mixed, in that the R
2
 values 

obtained were very high but the residual plots were not 
satisfactory.  Moreover, three of the thirteen data points 
were removed (as significantly overestimated outliers) 
in the final goodness of fit using the reweighted least 
squares (RLS) technique, decreasing the value of an 
already small sample.  The choice of model for total 
development effort (TOTAL) was between the models 
based on TDSCR and TAC.  Both returned very high 
coefficients of determination, indicating good 
explanatory ability, and both models produced adequate 
or good residual plots.  

The accuracy of the models was then assessed using the 
MRE and pred measures common in software metrics 

analysis
31,34,38,39

. A high value for the R
2 

indicator is 

evidence of a strong and consistent linear relationship 
among two data sets, but does not tell us how well 
individual data pairs relate.  The magnitude of relative 
error (MRE), on the other hand, is a normalised measure 
of the discrepancy between actual values (VA) and fitted 
values (VF):  

MRE = Abs((VA -VF)/VA)  

The pred measure provides an indication of overall fit 
for a set of data points, based on the MRE values for 
each data pair:  

pred(l) = i/n  

where l is the selected threshold value for MRE, i is 
the number of data pairs with MRE less than or equal 
l, and n is the overall number of data pairs in the set.  

As an illustration, if pred(0.40) = 0.666, then we can say 
that 67% of the fitted values fall within 40% of the 
actual values.  The mapping of actual and fitted values 
for the AN_DES and TOTAL models in terms of the 
tests just described are shown in Table 10.  Plots of each 
model’s performance are also shown, in Figures 3 to 5.  
(Since the PROG_UT model appeared to be inadequate 
from the regression tests, no further analysis was 
performed on its accuracy.) 

 

 

Table 10. Goodness of fit tests for the three models 

 
 
 
 
 
 
 
 
 



 
Figure 3. Goodness of fit for AN_DES effort using the number of attributes updated 

 

 
Figure 4. Goodness of fit for TOTAL effort using the number of screens 

 

 
Figure 5. Goodness of fit for TOTAL effort using the number of attributes consumed 



 

In summary it is evident that the three models are not 
entirely satisfactory in terms of their accuracy, as 
illustrated by the values attained for the Mean MRE and 

pred(l) measures.  Conte et al.
38 

have suggested that, for 
a model to be considered acceptable, Mean MRE should 
be less than or equal to 0.25 and pred(0.25) should be 

greater than or equal to 0.75.  Tate and Verner 
40

, on the 
other hand, suggest that a more realistic level of 
performance for the pred(l) measure is pred(0.30) ≥ 
0.70. None of the three models developed here satisfies 
either condition.  The strong underlying linear 

relationships illustrated by the very high R
2
 values, 

however, would suggest that improvements in indicators 
like MRE and pred(l) would be possible given 
calibration of the models under specific conditions e.g. 
for projects of a given size or effort range.  

The univariate regression tests were of limited success 
for this small sample. The explanatory power of each of 
the three final equations was greater than 95% and the 
residual plots all conformed to the requirements of valid 
goodness of fit models.  These factors suggest that the 

models are reasonably consistent
1
. However, the 

accuracy of the models, as represented by the MRE and 
pred indicators, was not as high as might have been 
expected.  Although disappointing, this does not 
represent a complete failure, as model accuracy should 
improve as larger data sets become available and 
effective calibration is enabled.  Under these 
circumstances it may also be more effective to split the 
sets of observations according to distributions of system 
size.  Even in the present study, TDSCR-based fitting of 
TOTAL effort was substantially more effective for the 
larger systems in the sample.  Given that larger systems 
are likely to represent greater investment by 
organisations, a lesser degree of fit for small systems 
may be acceptable to development managers as a trade-
off to consistent estimation for large systems.  

It could be suggested that multidimensional 
relationships should have been investigated in order to 
improve model accuracy. Given that the univariate 
relationships were so strong, however, it was felt that 
including further variables would simply complicate the 
models whilst adding little real value to the actual 
relationships.  Moreover, with such a small set of 
observations, the use of such multidimensional 
relationships would have been statistically 
inappropriate.  This is likely to change with larger sets 
of data.  For the present sample of small- to medium-
sized CASE-based TP/MIS systems, however, the single 
variable models were adequately consistent. 
 
 
4. SUMMARY AND 

RECOMMENDATIONS  

This study aimed to test the strength of possible 
relationships between measures of specification size and 
process effort within CASE environments.  The 

proposed assessment scheme was developed as a direct 
response to the inadequacies and inappropriateness of 
previous methods, addressing issues such as subjectivity 
and excessive environment dependence. The scheme 
was then applied to data sets collected from thirteen 
projects developed at ten different sites. Evidence of 
significant, consistent relationships was provided using 
robust statistical analysis methods, confirming the 
assertion that specification size measures are related to 
process effort, at least within extensively automated 
development environments.  

Refinement of the results obtained from small and 
medium sized systems will be forthcoming as larger 
samples become available for analysis and as collection 
becomes increasingly automated within development 
tools.  It is hoped that the current approach will itself be 
incorporated into a CASE/project management tool.  
This will introduce two advantages over the current 
study: first, it will enable more objective, non-intrusive, 
less error-prone collection of the specification-based 
data to be carried out; second, it will mean that analysis 
and prediction may be performed and refined in the 
background of development as an integral and ongoing 

part of a project. Tate
41 

 and Tate and Verner 
21 

also 
suggest that on-workbench data, relating to process 
effort, may soon be collected automatically within 
CASE environments.  Collection of project management 
data will therefore also be more precise and cost-
effective.  All of these factors will encourage continuing 
refinement of estimates, providing relevant feedback to 
managers whenever required.  

Until software development in the commercial 
environment becomes a totally automated procedure, 
system size will continue to have an important influence 
on the progress and outcomes of the software process.  
Continually rising development costs, coupled with 
more and more demands for increasingly complicated 
systems, will encourage extensive research into both 
quantifiable assessment/estimation methods and 
development automation.  It is hoped that this study, 
which has empirically considered the interaction of 
these factors, will provide some form of impetus for 
continued research in this area. 
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