
Full citation: MacDonell, S.G. (1997) Establishing relationships between specification size and
software process effort in CASE environments, Information and Software Technology 39(1), pp.35-
45.
doi: 10.1016/0950-5849(96)01125-1

Establishing Relationships Between Specification Size and
 Software Process Effort in CASE Environments

Stephen G. MacDonell
Software Metrics Research Lab

Department of Information Science
University of Otago, PO Box 56

Dunedin, New Zealand
stevemac@commerce.otago.ac.nz

Abstract

Advances in software process technology have rendered
some existing methods of size assessment and effort
estimation inapplicable. The use of automation in the
software process, however, provides an opportunity for
the development of more appropriate software size-
based effort estimation models. A specification-based
size assessment method has therefore been developed
and tested in relation to process effort on a preliminary
set of systems. The results of the analysis confirm the
assertion that, within the automated environment class,
specification size indicators (that may be automatically
and objectively derived) are strongly related to process
effort requirements.

1. INTRODUCTION

Recent and ongoing studies in the areas of software
metrics, software process assessment and software
process automation have generated similar ideas in

relation to process effort estimation
1,2

. Much of this
work suggests that both the data collection procedures
required for effort prediction and the estimation of
process effort itself should be:

 performed as early as is feasible to obtain
estimates within specified bounds of accuracy;

 automated as much as possible;

 as objective as possible.

These suggestions are commonsense, but it has taken
metrics research a relatively long time to acknowledge
the importance of such issues. This is due in part to the
rather chaotic approach to development that was
common until management of the software process was
acknowledged as important in its own right, and in part
to the lack of appropriate tools that would enable
objective automatic data extraction. Prior to this, data
collection and subsequent estimation were often
performed on an ad hoc basis involving substantial
manual procedures, making them highly susceptible to

subjective opinions in assessment.

Requirements such as the three listed above, as well as
advances in process automation via computer-aided
software engineering (CASE) tools and application
generators, have lent support to the development of
effort estimation models based on relevant aspects of
requirements specifications. Using extensive statistical
analyses, Mukhopadhyay and Kekre1, for example, were
able to show that, as well as holding the inherent
advantage of early derivation, their feature-based effort
estimation models proved to be more effective than
several other well-known techniques. Although having
a similar aim to the Mukhopadhyay and Kekre work, the
study reported here has been undertaken in the
transaction processing/management information systems
(TP/MIS) domain, and is an initial evaluation of a
previously proposed assessment and estimation scheme3.

As a characteristic of all software development artifacts,
product size has for some time been generally
acknowledged as having a significant impact on other
important product attributes, including quality and

maintainability
4,5

. Product size has also been recognised
as an influential factor concerning the effective
management of the software process. This is a result of
the expectation that, in general, a larger piece of
software will require greater development effort, will
contain more errors and will be more difficult to

maintain and enhance
6,7,8

. Ultimately then, overall
development and maintenance costs are affected by

product size
9,10

. Although effort may also be influenced
by other factors, such as the productivity of
development personnel, it is suggested here that system
size is the main determinant. Once a specification is
complete, facilities for schema and code frame
generation available in automated environments reduces

the extent of developer input
11,12

, thus reducing (but not
yet eliminating) the impact that individual developers
have on this transition process. Attention should
therefore be focused on the functional size, hence our
concentration on assessing requirements specifications.

http://dx.doi.org/10.1016/0950-5849(96)01125-1�

Furthermore, DeMarco
13

suggests that implementation
effort increases with proportional increases in
specification size, and that specification size approaches
invariance with respect to the decisions taken by
individual developers. For a particular set of
requirements, this would therefore suggest that similar
size measures would be derived no matter who
developed the specification, particularly in an automated

development environment
14,15

. In essence then, it is
asserted that system size, as represented in a
requirements specification, is the overriding cost driver
in terms of development effort in an automated
environment.

The establishment of useful objective relationships
between size and effort/cost at an early stage of the
software process is clearly a desirable outcome of the
assessment process. The observations of

Mukhopadhyay and Kekre
1
 concerning the limited

usefulness of most effort estimation models due to their
late derivation are also supported here, providing the
motivation for specification-based assessment and
prediction. The effective application of a large number
of existing assessment methods is also impeded by other
problems - some are oriented more to the assessment of
the development methods used and the individual style
and ability of programmers than to the actual scope of
the software, and several are less than comprehensive in

their assessment
16,17

.

In general, quantitative software assessment involves the
extraction of counts of various product and process
attributes, based on the assumption that these counts are
useful in their own right, and that they may also be
useful in determining or estimating other development
attributes. Thus the aim of many proposed size
assessment techniques has been to provide product-
based predictions of attributes such as development
effort or post-implementation error frequency. Given
progress in process automation, the functional metric
approach, in which measures are extracted from some
early functional representation(s) of a system (as
opposed to an implementation-oriented representation),
appears to hold promise for size assessment and effort
model development. The increasing use of application
generators and CASE tools presents an opportunity for
the development of assessment techniques that can
overcome at least some of the problems associated with
other metric classes. Due to the degree of automation
that these tools provide, the transformation from a
system's functional requirement to its implementation is

more straightforward
18,19

, thus reducing (to some
unknown degree) the impact of specific development
personnel and implementation methods. Furthermore,
the multi-dimensional nature of many CASE
specifications enables the assessment of system product
size from a number of perspectives, leading to a more
comprehensive consideration. Requirement
representations are also among the first tangible
products of the software development process, so
models developed from them are likely to be among the
earliest available. Measures derived from functional

representations therefore have the potential to be useful
in comparing the scope of complete systems, and in
assessing the impact that variation in size has on
outcomes of the software process.

Two of the most widely cited functional approaches to
product assessment are the originally defined version of

Function Point Analysis (FPA)
20

 and System Bang
13

. In
terms of the requirements listed at the start of this paper,
these techniques would appear to be unsatisfactory18,21,22

21. Tate and Verner21 , for example, observe that FPA is
difficult to determine automatically, and can involve a
significant degree of subjectivity. Furthermore, they
remark that some of the information that is required for
the calculation of function points is not available from
CASE tools. System Bang also demands that a number
of subjective assessments be made in its formulation,
reducing the general applicability of the results
obtained.

An assessment/estimation approach that attempts to
overcome some of the problems associated with
previously proposed methods, and one that is
consequently designed to satisfy the requirements of an
effective approach, has been proposed. This approach is
described in the next section. (For complete details of
its derivation and justification, the interested reader is
referred to the original paper3.) Empirical evaluation of
the approach using thirteen systems from ten
commercial sites is described. The paper is then
concluded with a summary of the findings and
recommendations for continuing research.

2. SPECIFICATION SIZE ASSESSMENT

It has been suggested
13,21

 that the structured and semi-
formal nature of some widely used specification models
lends itself to objective size assessment, and may
provide a useful basis from which to estimate other
product and/or process attributes. The extensive use of
such requirements modelling methods in computer aided
software engineering (CASE) environments has enabled
automatic extraction of measures derived from these
representations. Use of these tools has also led to a shift
in emphasis from assessment of implementation
products (e.g. lines of code, program volume and so on)
to the assessment of functional products. Hence, our
basis for size assessment is in the outputs of the
requirements analysis process.

After applying the Goal/Question/Metric (GQM) and

Classification Scheme paradigms
23,24

 to the aims of the
study, five specification perspectives were selected as
being quantifiable in terms of the contribution that each
might make to the overall size of a complete
specification: data, processing, transaction, function and
user interface. Given that software requirements are
often specified using entity relationship diagrams
(ERDs) and data flow diagrams (DFDs), Tate and

Verner
21

 suggest that they are appropriate partial
representations for early-phase assessment. Both
approaches have a data focus, but each provides a

differing view of the data: the former emphasises the
structural perspective of the data, whereas the latter is
more concerned with giving an overall representation of
the use and transformation of data. Consideration of just
one of these two approaches, in terms of gaining a full
and complete picture of system size, is unlikely to be
adequate. In fact, the development of a specification is
often an iterative process that takes the analyst from one
technique to the other in order to derive a ‘complete’
specification.

Although the data structure and data flow modelling
specification methods are the most widespread in the
commercial systems domain, they are not totally
exclusive of other methods, and are in fact frequently
augmented by other representations as these too provide
complementary views of system requirements. The
three secondary representations considered here are the
transaction and user interface representations and the
functional decomposition hierarchy (FDH).

The transaction representation is widely employed in the
development of database-centred systems common in
the business domain. Each elementary function in a
system may be considered in terms of the operations that
it performs on entities. Given adequate decomposition,
low level functions or processes may be specified in this
manner, providing assistance for the subsequent
development of processing logic. Thus the transaction
representation may be considered as a model that
combines both data and process requirements.

The user interface representation is a perspective that is
particularly applicable to development projects in which
prototyping methods and graphical user interface (GUI)
development tools are used, as the development of an
acceptable interface can be a significant component of
the overall effort expended in this type of environment.
This representation essentially provides models of the
screen and report formats that are to be subsequently
implemented in the system. Interactive business
systems tend to make extensive use of screen dialogues
and are oriented towards the production of management
reports. Thus a consideration of system scope as
represented in this form should provide further
information to enhance process attribute assessment.

A functional decomposition hierarchy is often produced
as a levelled description of the functions to be provided
by a system, providing a concise representation of the
projected module calling structure that will eventually
be generated or constructed. The number and
interaction of the modules are likely to have an impact
on system scope so this representation should also be
considered in any functional assessment scheme.

Although there are certainly a number of development
methodologies that do not use the above tools and
techniques it would still seem reasonable to suggest that
automated structured specification and development
methods of this type will continue to be used within the
business community for the foreseeable future. This is
due to a number of reasons, including vendor
commitment to automation, user investment in tools and
methods and, to a lesser extent, tradition. It is therefore

envisaged that the analysis strategy, which assumes the
existence of such an environment, will not become
obsolete in the near future.

It was considered that quantification of aspects of each
representation would help to ensure that the assessment
of system scope was as comprehensive as possible3.

During site interviews, however, it was found that just
three of the software processes examined made
extensive use of data flow diagrams (DFDs), so the
processing perspective (covered by DFD-type models)
was disregarded for this analysis. Although this finding
may be taken to suggest that DFDs are now uncommon,
it is more likely that it is simply a reflection of the
particular tools that were encountered in this study. A

recent assessment of several CASE products
25

 showed
that DFD assistants were still among the most widely
available features of automated tools. Future studies
with systems developed using this and other tools
should therefore provide useful results relating to the
influence of process model factors.

Figure 1 is an adapted diagrammatic representation of

the CASE product model proposed by Tate and Verner
21

as a basis for assessing specification size. The tasks and
activities necessary for the production of such artifacts
are considered to be typical of software processes used
in the automated development of business-oriented
transaction processing and reporting systems.

Figure 1. Tate and Verner's CASE product model

As this study was concerned only with the assessment of
those products developed within the requirements
analysis and specification activities, and since the data
flow-oriented products were to be disregarded, a revised
product model for this study was developed. This
model is shown in Figure 2.

Figure 2. The automated development product model adopted

in this study

Those components shown in Figure 2 that are the same
as those in Tate and Verner’s original proposal (that is,
the detailed data model, the user interface and the
detailed functional specification) have the same general
descriptions. The additional components suggested in
this work are similarly described, as follows:

Detailed data model - a fully defined data model
incorporating attribute specifications. This model
enables measures to be derived relating to the size of
the data representation, including characteristics of
entities, attributes and relationships.

Detailed function model - similar to Tate and
Verner’s detailed dataflow diagram, this is a fully
decomposed hierarchy to the level of functional
primitives, enabling measures relating to processing
scope and transaction interaction to be derived.

Transaction model - detailed definitions of attribute
manipulations at the functional primitive level,
bringing together aspects of system size from both
the data and processing perspectives.

User interface - this representation includes menus,
screens, reports and messages in detail, enabling size
assessment of relevant characteristics. Tate and
Verner suggest that this system aspect may
contribute significantly to implementation effort in
business systems, and may be treated as another
system dimension partially derived but quite distinct
from those of data and process.

Detailed functional specification - this is an overall
view of the system as specified in the previous
products. It is not dealt with here in detail, but
illustrates the bringing together of the several
dimensions of a system into one specification. As
such, Tate and Verner suggest that it should be a
useful predictor of both total design effort and
implementation effort.

There may be some question as to whether the products
just described can all be considered to be outputs of the
requirements analysis and specification phase. It is
certainly acknowledged that in some circumstances the
transition from analysis to design can become somewhat
blurred, as for example, in a prototyping process. The

requirements specifications provided for this study,
however, included all four components listed above.
This may be indicative of the components and
techniques that are generally employed in requirements
analysis and specification in automated environments.
Specific measures relating to each of the model
components are now described in detail.

2.1. Transaction measures

Low level transactions in database systems perform one
of the following operations: create a record, read a
record (including look-up validation), update a record or
delete a record. There is some evidence to suggest that
the operations make differing contributions to overall
system scope and complexity3.

Given that this
representation combines both data and functional
requirements

26

it may provide a sound basis for
comprehensive size indications. The measures from this
representation collected in this study are defined in
Table 1.

Table 1. Transaction measures

2.2. Functional model measures

Functional decompositions of some form are central to
most development approaches

10,27

. In cases where the
functional model is broken down to an elementary level,
this representation can provide a quantitative insight into
the scope and complexity of the specified system.
Functional model size indicators should form a useful
basis for developing transaction design and
implementation estimates within automated
development environments

21

. More specifically, it is
suggested here that the number and interaction of
functional modules will have an impact on overall
system size (and consequently process effort) - this
provides the motivation for inclusion of the measures
shown in Table 2. (Measures marked with an asterisk
are composite measures that is, they may be calculated
from the values of other base measures.)

2.3. User interface measures

Particularly for software development in an interactive
processing environment, the number of screens, reports
and data elements produced for the user is expected to
have a significant impact on development effort, as the
creation of acceptable screen and report formats is often
a major part of interactive (business) system production

21,28,29

. As such they should provide a good basis for the
development of effort estimates for user interface-
related development tasks

21

. Interface measures are
defined in Table 3.

Table 2. Functional model measures

Table 3. User interface measures

2.4. Data model measures

Measures concerned with the size, interconnection and
manipulation of data model representations are listed in
Table 4 of the assessment scheme, reflecting the
assumption that larger, highly interconnected data
models, and higher numbers of accesses to entities and
attributes, imply a larger and more complex processing
system

26,30

. Indicators of data model scope should form a
useful basis from which to estimate subsequent
database-related task effort

21

.

Table 4. Data model measures

3. EMPIRICAL EVALUATION
One of the assumptions underlying the use of the
proposed approach was that higher values of the various
specification measures would indicate systems that were
more time-consuming to develop. To empirically
evaluate the assessment scheme, this assertion had to be
tested quantitative indicators of process effort were
therefore required. For the purposes of this study, the
relevant indicators were defined as shown in Table 5.

Table 5. Process effort measures

The effort indicators are derived from various well-
supported assumptions concerning the intuitive
relationship between relative system size levels and
development effort6. The effort measures therefore
reflect the amount of work carried out by personnel
using CASE tools and application generators over
various phases of development.

3.1. Systems analysed

After an extensive mailing campaign, ten business and
government organisations agreed to provide systems for
the project. Most agreed to allow one system only to be
analysed, giving an overall sample of thirteen systems.
The small sample size precluded any realistic
opportunity to undertake both relationship development
and subsequent validation but it was still hoped that the
results obtained would prove to illustrate the feasibility
and potential of objective, automated and early product
size assessment as a basis for process effort estimation.
Moreover, the use of small samples is not uncommon in
first-cut analyses of assessment and estimation

approaches
31-34

(although larger samples would always
be preferred when they are available).

The ten organisations that agreed to participate in the
study varied in size and function, from multinational
petroleum manufacturers and distributors to government
departments, through to small private commercial
development sites. Tools used in development included
Oracle CASE, AutoMate Plus, IEW/ADW, the IEF,
Excelerator and ProKit Workbench/ProIV. The thirteen
systems in the sample performed a number of overall
TP/MIS functions, including customer and supplier
recording, costing and charging, accounting, site and
personnel administration, scheduling and rostering.
Collection of the specification size data items was

performed manually from various original requirements
phase documents, that is, ERDs, FDHs, transaction
models and screen and report formats. The project data
relating to development effort was gathered from a
combination of on-line and paper-based records that had
been kept as part of the organisations’ routine project
management procedures. In order to illustrate the scale
of the systems examined, Table 6 provides some general
descriptive material. (Readers are encouraged to contact
the author if they would like to receive a full set of the
collected data.)

Table 6. Descriptive indicators of system scale

Although factors such as specific tools and project
personnel varied over the sample, other potential
contributors to process effort (apart from system scope)
were reasonably consistent. This included a common
baseline software process, centred on structured analysis
and design using automated tools, and a common

application domain. Tate and Verner
17

suggest that, in
an automated environment, size measures taken from
specifications are less tool-dependent than those taken
from lower level software products (e.g. programs and
the like), so the influence of particular tools within the
CASE class (particularly given the use of a common
analysis and design methodology) should have been
reduced.

3.2. Analysis results

Correlation procedures identified a number of highly
significant associations between variables from all of the
specification perspectives and the effort indicators.
Many of these relationships were significant at the α =
0.001 level; that is, there was less than 0.1% probability
that the relationships had been encountered by chance.
Since the Spearman correlation coefficient is said to be

conservative, except in cases where ties are common
35

,
it was decided that further analysis would be carried out
only on variables that showed highly significant values
for both the Spearman and Pearson statistics. The
specification-based size variables chosen based on this
criterion were TRE (total number of read transactions),
TD (total decomposition) and TDSCR (total number of
distinct screens), plus eight of the data model measures

(TESDM, TDEPD, TAU, TAC, TMLS, *TAM, *TIDM,
*TSDM).

Another variable selection method was then employed
to ensure that interrelated variables did not go forward
for use in further (goodness of fit) tests. Kitchenham

and Pickard
35

 suggest that closely related predictor
indicators should be treated with caution when used
together, especially when the overall objective is the
development of estimation models. It is often the case
that one of a group of interrelated variables is
sufficiently powerful to act for the group. In these
circumstances, criteria other than the original correlation
coefficients should be used to select appropriate
independent variables from related groups. In cases
where the data are normally distributed and the sample
size is sufficiently large, some form of factor analysis
may be useful in determining an appropriate
representative variable. Full normality in software

engineering data distributions is uncommon, however
35

.

Hampel et al.
36

suggest (in a general discussion of the
topic) that there is practically always no guarantee of
normality and that slight departures from the model
have a significant effect on the results obtained.
Moreover, the data set in this study consisted of just
thirteen observations. It was therefore decided that
variables should be selected from groups according to
their ease of extraction and the time at which they
became available - that is, variables that are easily

determined and are available as early as possible were to
be preferred over more complicated, later-phase
variables.

Correlation tables illustrated the significantly high
degree of intercorrelation within the group of variables
from the data perspective (see Table 7). The eight data
model measures listed above were all very highly
correlated, except for the TAU (total attributes updated)
and TAC (total attributes consumed) variables. Since
these two variables were easily extracted, were
elementary rather than composite, were available
reasonably early in the development process (as part of
the functional specification), and appeared to be
relatively independent but still highly correlated with the
effort indicators, they were both selected for separate
use in the procedures to follow. For the current sample
this led to a final set of prospective predictive
specification variables: TRE (total number of read
transactions), TD (total decomposition), TDSCR (total
number of distinct screens), TAU (total number of
attributes updated by the system) and TAC (total
number of attributes consumed by the system). A
summary of the correlation test results for these and the
process effort variables is provided in Table 8. All
correlation coefficients were significant at the α = 0.001
level.

Table 7. Intercorrelation matrix for data perspective measures

Table 8. Size-effort variable pairs correlation summary

Based on the results obtained from the correlation tests,
a set of possible regression relationships was
formulated. The popular least-(mean-)squares
regression method (LS) was then used in conjunction
with the less common least-median-squares technique
(LMS) in an attempt to ensure that robust estimates, that
is, estimates that are not overly influenced by outliers,
were developed. The LS method has become the
cornerstone of classical statistics, due to both ease of

computation and tradition
37

. In cases where outliers
seldom occur, the LS method is often more than
adequate. However, outliers are a common feature of

software engineering data sets
35

. The LMS method, as

discussed by Rousseeuw and Leroy
37

, was therefore also

used. The PROGRESS system
37

 (Program for RObust
reGRESSion) computes both the least-squares and least-
median-squares equations, and then automatically
computes reweighted least-squares (RLS) equations
based on the LMS analysis results. The RLS procedure

removes or reweights the outliers identified in the LMS
regression and computes a new LS equation based on
the remaining data points.

All of the independent variable coefficients computed in
the goodness of fit tests were shown to be significant by
the PROGRESS system. This indicated that, in cases
where the residuals adhered to certain restrictions, the
independent (size) variable in each equation did indeed
account for the response (effort) variable in a significant
way. These restrictions require that estimation model
residuals must be independent of one another while
being evenly dispersed about the mean (at zero on the
vertical axis) and that they should reflect a constant
variance. Linear regression models that produce
residuals that fail to conform to these requirements are
generally inadequate, in that they may be improved only
through the inclusion of weighted and/or transformed
terms.

Table 9. Effort-size regression test results

The overall results of the regression tests, including the

R
2

values, are shown in Table 9. Based on the
information presented, final goodness of fit equations
were chosen for each of the effort variables investigated.
Of the two regressions of analysis and design effort
(AN_DES), the model based on the TAU variable was

the most accurate. The three R
2
 values obtained from the

regressions using this variable were higher than those
achieved with the equations based on the TDSCR
variable. Furthermore it was unclear as to whether the
residual plots of the TDSCR models were satisfactory
(where the ‘Resid. OK?’ column contains the letter 'U'),
whereas those obtained from the TAU models were
adequate ('Resid. OK?' is 'Y'). Goodness of fit for
program and unit test effort (PROG_UT) was only
performed in this study with the TAC variable. The

results of these tests were mixed, in that the R
2
 values

obtained were very high but the residual plots were not
satisfactory. Moreover, three of the thirteen data points
were removed (as significantly overestimated outliers)
in the final goodness of fit using the reweighted least
squares (RLS) technique, decreasing the value of an
already small sample. The choice of model for total
development effort (TOTAL) was between the models
based on TDSCR and TAC. Both returned very high
coefficients of determination, indicating good
explanatory ability, and both models produced adequate
or good residual plots.

The accuracy of the models was then assessed using the
MRE and pred measures common in software metrics

analysis
31,34,38,39

. A high value for the R
2

indicator is

evidence of a strong and consistent linear relationship
among two data sets, but does not tell us how well
individual data pairs relate. The magnitude of relative
error (MRE), on the other hand, is a normalised measure
of the discrepancy between actual values (VA) and fitted
values (VF):

MRE = Abs((VA -VF)/VA)

The pred measure provides an indication of overall fit
for a set of data points, based on the MRE values for
each data pair:

pred(l) = i/n

where l is the selected threshold value for MRE, i is
the number of data pairs with MRE less than or equal
l, and n is the overall number of data pairs in the set.

As an illustration, if pred(0.40) = 0.666, then we can say
that 67% of the fitted values fall within 40% of the
actual values. The mapping of actual and fitted values
for the AN_DES and TOTAL models in terms of the
tests just described are shown in Table 10. Plots of each
model’s performance are also shown, in Figures 3 to 5.
(Since the PROG_UT model appeared to be inadequate
from the regression tests, no further analysis was
performed on its accuracy.)

Table 10. Goodness of fit tests for the three models

Figure 3. Goodness of fit for AN_DES effort using the number of attributes updated

Figure 4. Goodness of fit for TOTAL effort using the number of screens

Figure 5. Goodness of fit for TOTAL effort using the number of attributes consumed

In summary it is evident that the three models are not
entirely satisfactory in terms of their accuracy, as
illustrated by the values attained for the Mean MRE and

pred(l) measures. Conte et al.
38

have suggested that, for
a model to be considered acceptable, Mean MRE should
be less than or equal to 0.25 and pred(0.25) should be

greater than or equal to 0.75. Tate and Verner
40

, on the
other hand, suggest that a more realistic level of
performance for the pred(l) measure is pred(0.30) ≥
0.70. None of the three models developed here satisfies
either condition. The strong underlying linear

relationships illustrated by the very high R
2
 values,

however, would suggest that improvements in indicators
like MRE and pred(l) would be possible given
calibration of the models under specific conditions e.g.
for projects of a given size or effort range.

The univariate regression tests were of limited success
for this small sample. The explanatory power of each of
the three final equations was greater than 95% and the
residual plots all conformed to the requirements of valid
goodness of fit models. These factors suggest that the

models are reasonably consistent
1
. However, the

accuracy of the models, as represented by the MRE and
pred indicators, was not as high as might have been
expected. Although disappointing, this does not
represent a complete failure, as model accuracy should
improve as larger data sets become available and
effective calibration is enabled. Under these
circumstances it may also be more effective to split the
sets of observations according to distributions of system
size. Even in the present study, TDSCR-based fitting of
TOTAL effort was substantially more effective for the
larger systems in the sample. Given that larger systems
are likely to represent greater investment by
organisations, a lesser degree of fit for small systems
may be acceptable to development managers as a trade-
off to consistent estimation for large systems.

It could be suggested that multidimensional
relationships should have been investigated in order to
improve model accuracy. Given that the univariate
relationships were so strong, however, it was felt that
including further variables would simply complicate the
models whilst adding little real value to the actual
relationships. Moreover, with such a small set of
observations, the use of such multidimensional
relationships would have been statistically
inappropriate. This is likely to change with larger sets
of data. For the present sample of small- to medium-
sized CASE-based TP/MIS systems, however, the single
variable models were adequately consistent.

4. SUMMARY AND

RECOMMENDATIONS

This study aimed to test the strength of possible
relationships between measures of specification size and
process effort within CASE environments. The

proposed assessment scheme was developed as a direct
response to the inadequacies and inappropriateness of
previous methods, addressing issues such as subjectivity
and excessive environment dependence. The scheme
was then applied to data sets collected from thirteen
projects developed at ten different sites. Evidence of
significant, consistent relationships was provided using
robust statistical analysis methods, confirming the
assertion that specification size measures are related to
process effort, at least within extensively automated
development environments.

Refinement of the results obtained from small and
medium sized systems will be forthcoming as larger
samples become available for analysis and as collection
becomes increasingly automated within development
tools. It is hoped that the current approach will itself be
incorporated into a CASE/project management tool.
This will introduce two advantages over the current
study: first, it will enable more objective, non-intrusive,
less error-prone collection of the specification-based
data to be carried out; second, it will mean that analysis
and prediction may be performed and refined in the
background of development as an integral and ongoing

part of a project. Tate
41

 and Tate and Verner
21

also
suggest that on-workbench data, relating to process
effort, may soon be collected automatically within
CASE environments. Collection of project management
data will therefore also be more precise and cost-
effective. All of these factors will encourage continuing
refinement of estimates, providing relevant feedback to
managers whenever required.

Until software development in the commercial
environment becomes a totally automated procedure,
system size will continue to have an important influence
on the progress and outcomes of the software process.
Continually rising development costs, coupled with
more and more demands for increasingly complicated
systems, will encourage extensive research into both
quantifiable assessment/estimation methods and
development automation. It is hoped that this study,
which has empirically considered the interaction of
these factors, will provide some form of impetus for
continued research in this area.

ACKNOWLEDGEMENTS

Financial support: the Cambridge Commonwealth Trust,
the New Zealand Vice-Chancellors Committee, British
Telecom plc, Clare College, Cambridge, the Cambridge
University Engineering Department and the University
of Otago. The author would also like to thank the
anonymous referees and Mr Andrew Gray for their
constructive comments on earlier versions of this paper.

REFERENCES

1. Mukhopadhyay, T and Kekre, S 'Software Effort
Models for Early Estimation of Process Control
Applications' IEEE Transactions on Software

Engineering Vol 18 (October 1992) pp 915-924

2. Tate, G, Verner, J and Jeffery, R 'CASE: A Testbed
for Modeling, Measurement and Management'
Communications of the ACM Vol 35 No 4 (April
1992) pp 65-72

3. MacDonell, S 'Deriving relevant functional
measures for automated development projects'
Information and Software Technology Vol 35 No 9
(Sept 1993) pp 499-512

4. Curtis, B 'The Measurement of Software Quality and
Complexity,' in A J Perlis, F G Sayward, and M
Shaw (eds) Software Metrics MIT Press,
Massachusetts (1981) pp 203-224

5. Weissman, L 'Psychological Complexity Of
Computer Programs: An Experimental Methodology'
ACM SIGPLan Notices Vol 9 (June 1974) pp 25-36

6. Brooks, F P Jr 'No Silver Bullet - Essence and
Accidents of Software Engineering' IEEE Computer
Vol 20 (April 1987) pp 10-19

7. Henry, S and Lewis, J 'Integrating Metrics into a
Large-Scale Software Development Environment'
Journal of Systems and Software Vol 13 (1990) pp
89-95

8. Munson, J C and Khoshgoftaar, T M 'Applications of
a Relative Complexity Metric for Software Project
Management' Journal of Systems and Software Vol
12 (1990) pp 283-291

9. Boehm, B W and Papaccio, P N 'Understanding and
Controlling Software Costs' IEEE Transactions on
Software Engineering Vol 14 (October 1988) pp
1462-1477

10. Paulson, D and Wand, Y 'An Automated Approach
to Information Systems Decomposition' IEEE
Transactions on Software Engineering Vol 18
(March 1992) pp 174-189

11. Kerr, J M ‘The Information Engineering Paradigm’
Journal of Systems Management (April 1991) pp 28-
35

12. Crozier, M, Glass, D, Hughes, J G, Johnston, W and
McChesney, I ‘Critical Analysis of Tools for
Computer-Aided Software Engineering’ Information
and Software Technology Vol 31 (November 1989)
pp 486-496

13. DeMarco, T Controlling Software Projects Yourdon,
New York (1982)

14. Tate, G and Verner, J ‘Software Metrics for CASE
Development’ in Proceedings COMPSAC’91 Tokyo
(1991) pp 565-570

15. Robinson, K ‘Putting the SE into CASE’ in Spurr, K
and Layzell, P (eds) CASE: Current practice, future
prospects John Wiley (1992) pp 1-20

16. Case, A F Jr., Information Systems Development:
Principles of Computer-Aided Software Engineering
Prentice-Hall, Englewood Cliffs NJ (1986)

17. Samson, W B, Nevill, D G and Dugard, P I

'Predictive Software Metrics Based on a Formal
Specification' Information and Software Technology
Vol 29 (June 1987) pp 242-248

18. Symons, C R Software Sizing and Estimating: Mk II
FPA (Function Point Analysis) John Wiley & Sons,
Chichester (1991)

19. Verner, J, Tate, G, Jackson, B and Hayward, R G
'Technology Dependence in Function Point
Analysis: A Case Study and Critical Review'
Proceedings 11th International Conference on
Software Engineering, Pittsburgh PA(1989) pp 375-
382

20. Albrecht, A J 'Measuring Application Development
Productivity' Proceedings IBM GUIDE/SHARE
Applications Development Symposium California
(1979)

21. Tate, G and Verner, J 'Approaches to Measuring Size
of Application Products with CASE Tools'
Information and Software Technology Vol 33
(November 1991) pp 622-628

22. MacDonell, S G 'Comparative Review of Functional
Complexity Assessment Methods for Effort
Estimation' Software Engineering Journal (May
1994) pp 107-116

23. Basili, V R and Rombach, H D 'The TAME Project:
Towards Improvement-Oriented Software
Environments' IEEE Transactions on Software
Engineering Vol 14 (June 1988) pp 758-773

24. Bush, M E and Fenton, N E 'Software Measurement:
A Conceptual Framework' Journal of Systems and
Software Vol 12 (1990) pp 223-231

25. Vessey, I, Jarvenpaa, S L and Tractinsky, N
‘Evaluation of Vendor Products: CASE Tools as
Methodology Companions’ Communications of the
ACM Vol 35 (April 1992) pp 90-105

26. Gray, R H M, Carey, B N, McGlynn, N A and
Pengelly, A D 'Design Metrics for Database
Systems' BT Technology Journal Vol 9 (October
1991) pp 69-79

27. Parnas, D L ‘On Criteria to be Used in Decomposing
Systems into Modules’ Communications of the
ACM Vol 14 (April 1972) pp 221-227

28. Boehm, B W, Gray, T E and Seewaldt, T
'Prototyping Versus Specifying: A Multiproject
Experiment' IEEE Transactions on Software
Engineering Vol 10 (May 1984) pp 290-302

29. Lin, C-Y 'Systems Development With Application
Generators: An End User Perspective' Journal of
Systems Management (April 1990) pp 32-36

30. Eglington, D 'Cost-Effective Computer System
Implementation in Medium Sized Companies' in
Gillies, A (ed) Case Studies in Software Engineering
Salford University Business Services Ltd (March
1991) pp 56-59

31. Kemerer, C F 'An Empirical Validation of Software
Cost Estimation Models' Communications of the

ACM Vol 30 (May 1987) pp 416-429

32. Mukhopadhyay, T, Vicinanza, S S and Prietula, M J
'Examining the Feasibility of a Case-Based
Reasoning Model for Software Effort Estimation'
MIS Quarterly (June 1992) pp 155-171

33. Wittig, G E and Finnie G R 'Using Artificial Neural
Networks and Function Points to Estimate 4GL
Software Development Effort' Australian Journal of
Information Systems (May 1994) pp 87-94

34. Srinivasan, K and Fisher, D 'Machine Learning
Approaches to Estimating Software Development
Effort' IEEE Transactions on Software Engineering
Vol 21 (February 1995) pp 126-137

35. Kitchenham, B A and Pickard, L M 'Towards a
Constructive Quality Model Part II: Statistical
techniques for modelling software in the ESPRIT
REQUEST project' Software Engineering Journal
(July 1987) pp 114-126

36. Hampel, F R, Ronchetti, E M, Rousseeuw, P J and
Stahel, W A Robust Statistics John Wiley & Sons,
New York (1986)

37. Rousseeuw, P J and Leroy, A M Robust Regression
and Outlier Detection John Wiley & Sons, New
York (1987)

38. Conte, S D, Dunsmore, H E and Shen, V Y
Software Engineering Metrics and Models
Benjamin/Cummings, Menlo Park CA (1986)

39. Verner, J and Tate, G 'A Software Size Model' IEEE
Transactions on Software Engineering Vol 18 (April
1992) pp 265-278

40. Tate, G and Verner, J 'Software Costing in Practice'
in Veryard, R Information and Software Economics
Butterworth Scientific UK (1990)

41. Tate, G 'Management, CASE and the Software
Process' Proceedings 12th New Zealand Computer
Conference Dunedin (1991) pp 247-256

	Abstract
	1. Introduction
	References

