
Asynchronous Early Output Section-Carry Based Carry

Lookahead Adder with Alias Carry Logic

P. Balasubramanian, C. Dang, D.L. Maskell, and K. Prasad

Abstract - A new asynchronous early output section-carry

based carry lookahead adder (SCBCLA) with alias carry output

logic is presented in this paper. To evaluate the proposed

SCBCLA with alias carry logic and to make a comparison with

other CLAs, a 32-bit addition operation is considered. Compared

to the weak-indication SCBCLA with alias logic, the proposed

early output SCBCLA with alias logic reports 13.2% reduction in

area without any increases in latency and power dissipation. On

the other hand, in comparison with the early output recursive

CLA (RCLA), the proposed early output SCBCLA with alias

logic reports 16% reduction in latency while occupying almost the

same area and dissipating almost the same average power. All the

asynchronous CLAs are quasi-delay-insensitive designs which

incorporate the delay-insensitive dual-rail data encoding and

adhere to the 4-phase return-to-zero handshaking. The adders

were realized and the simulations were performed based on a

32/28nm CMOS process.

I. INTRODUCTION

Quasi-delay-insensitive (QDI) asynchronous circuits

adopt an unbounded delay model for gates and wires with

the exception of isochronic forks [1], which form the

weakest compromise to delay-insensitivity. The signal

transitions on all the isochronic forks, whether they are up-

going or down-going, are assumed to happen concurrently.

QDI circuits are the practically realizable delay-insensitive

circuits which are robust to variations in process, supply

and threshold voltages, and the operating temperature.

Besides being adaptive and modular [2], QDI circuits are

self-checking [3] and are naturally resistant to side channel

attacks in the case of secure applications [4 – 7].

The main reasons for the robustness of QDI circuits

are: i) delay-insensitive encoding for binary data

representation and processing, and ii) adoption of a 4-phase

handshake protocol for data communication. For delay-

insensitive data encoding, the dual-rail or 1-of-2 code is

common and is widely used. The dual-rail or 1-of-2 code is

the simplest member of the family of delay-insensitive m-

of-n codes [8]. According to the dual-rail code, a data wire

X is represented using 2 wires say, X1 and X0 as shown in

Figure 1. X = 1 is encoded as X1 = 1 and X0 = 0, and X =

0 is encoded as X1 = 0 and X0 = 1. These two

combinations represent the data. X1 = X0 = 0 is referred to

as the spacer, and X1 = X0 = 1 is said to be invalid since

the coding scheme is unordered [9]. In this work, we

employ the dual-rail code for binary data encoding. The

representation of 1 and 0 by respectively assigning a 1 to

X1 and X0 on a mutually exclusive basis, and the usage of

the zero spacer to denote the return-to-zero of all the

encoded data wires defines the 4-phase return-to-zero

handshake protocol.

Asynchronous

circuit (QDI)

Current

stage

register

Next

stage

register

Completion

detector

ACKOUT

ACKIN

Completion

detector

ACKOUT

ACKIN

ACKOUT

ACKOUT

X1

X0

Sender Receiver

ACKIN

QDI

asynchronous

circuit

Fig. 1. A QDI asynchronous circuit stage correlated with the data

sender and data receiver analogy for illustration

In general, the 4-phase handshake protocol used for

data communication in a QDI asynchronous circuit may

involve either an intermediate return-to-zero [10] or a

return-to-one [11] phase. In this work, we consider the 4-

phase return-to-zero handshaking which is explained with

reference to Figure 1 through the following steps. The

completion of the following four steps signifies the

completion of one data transaction based on the 4-phase

return-to-zero handshake protocol, which then paves the

way for further data transaction(s). In short, the application

of primary inputs follows the input sequence: data-spacer-

data-spacer, and so forth.

• The dual-rail data bus shown in Figure 1 is initially
in the spacer state and ACKIN is 1. The sender can
now transmit a data which would give rise to up-

P. Balasubramanian and C. Dang are with the School of

Electrical and Electronic Engineering, Nanyang

Technological University, 50 Nanyang Avenue, Singapore

639798, E-mails: balasubramanian@ntu.edu.sg;

hcdang@ntu.edu.sg

D.L. Maskell is with the School of Computer Science and

Engineering, Nanyang Technological University, 50 Nanyang

Avenue, Singapore 639798, E-mail: asdouglas@ntu.edu.sg

K. Prasad is with the Department of Electrical and

Electronic Engineering, Auckland University of Technology,

Auckland 1142, New Zealand, E-mail:

krishnamachar.prasad@aut.ac.nz

going signal transitions on any one of the
corresponding dual rails of the dual-rail data bus

• Next the receiver, after receiving the data sent by
the sender, would drive ACKOUT to 1

• Then the sender would wait for ACKIN to assume
0, after which it would drive the entire dual-rail data
bus to the spacer state

• Finally, after an unbounded but a finite and positive
time duration, the receiver would drive ACKOUT to
0 which implies ACKIN would eventually assume
1, and this signals the end of one data transaction

II. QDI ASYNCHRONOUS CIRCUIT TYPES

QDI asynchronous logic circuits are classified as

strongly indicating [12], weakly indicating [12] or early

output type [13]. The input-output timing relation of

strong-indication, weak-indication and early output QDI

asynchronous circuits is portrayed by Figure 2. A strong-

indication asynchronous circuit [14] will start to process

the data or spacer to produce the corresponding primary

outputs only after receiving all the primary inputs. A weak-

indication asynchronous circuit [15] would tend to process

the data or spacer after receiving just a subset of the

primary inputs and may produce all but one of the

corresponding primary outputs. However, a weak-

indication asynchronous circuit would produce all the

primary outputs only after receiving all the primary inputs

whether they be data or spacer. An early output

asynchronous circuit [16] would process the data or spacer

after receiving just a subset of the primary inputs and can

produce all the corresponding primary outputs. Supposing

an early output asynchronous circuit produces the spacer on

all the primary outputs after receiving the spacer on only a

subset of the primary inputs, it is said to be of early reset

type. On the other hand, if an early output asynchronous

circuit produces all the primary output data after receiving

only a subset of the primary input data, it is said to be of

early set type. The early set and reset behaviors of an early

output asynchronous circuit are depicted through the

portion encapsulated within the blue and red dotted ovals in

Figure 2.

It is important that a QDI asynchronous circuit

should be devoid of circuit orphans viz. wire and gate

orphans [17] [18]. Any unacknowledged signal transition

on a wire is called wire orphan and any unacknowledged

signal transition on a gate output is called gate orphan [19].

The signal transitions should be monotonic throughout the

circuit i.e. either monotonically increasing or

monotonically decreasing in a QDI asynchronous circuit to

ensure proper signal acknowledgment from the first logic

level up to the last logic level [20] of the QDI circuit.

Imposition of the isochronic fork assumption on the

primary inputs to a QDI asynchronous circuit would help to

avoid the problem of wire orphan(s). This is because the

completion detector that is present in each asynchronous

circuit stage, as shown in Figure 1, will guarantee the

complete arrival of the data and spacer into a QDI

asynchronous circuit during the respective phases. Gate

orphans are complicated to resolve than wire orphans and

may necessitate imposing additional timing assumptions

into a QDI circuit. Hence, the logic decomposition and

physical realization of QDI asynchronous circuits have to

be performed carefully by following safe QDI logic

decomposition principles as outlined in [21 – 23]. In the

next section, we present and describe an asynchronous

early output SCBCLA architecture without and with the

alias logic.

Inputs

arrival

All

None

All

None

Outputs

production
Strong-indication

All

None

Outputs

production
Weak-indication

All

None

Outputs

production
Early output

Valid

data

arriving

Spacer

data

arriving

Valid

data

arrived

Spacer

data

arrived

Early set

behavior

Early reset

behavior

Fig. 2. Input-output timing relation of strong-indication, weak-

indication and early output type QDI asynchronous circuits

III. PROPOSED ASYNCHRONOUS EARLY OUTPUT

SCBCLA WITHOUT/WITH ALIAS CARRY LOGIC

The SCBCLA is based on the concept of dividing an

n-bit binary adder into k sub-adder sections (i.e. k sub-

SCBCLA modules) where the size of each adder section is

m-bits [24]. Mathematically, k = n/m where k, m and n are

positive integers and are even. Here we consider n = 32 and

m = 4. Hence a 32-bit SCBCLA is constructed using eight

4-bit sub-SCBCLA modules as shown in Figures 3a and

3b. In Figures 3a, 3b, 3f and 3g, (A311, A310) and (B311,

B310) represent the most significant dual-rail augend and

addend inputs, and (A01, A00) and (B01, B00) represent

the least significant dual-rail augend and addend inputs.

(C01, C00) denotes the dual-rail carry input and (C321,

C320) denotes the dual-rail carry output. As seen in Figure

3, carry ripples within an adder section to produce the sum

outputs, and the lookahead carry generated from an adder

section is passed to the next section as the carry input.

4-bit SCBCLG

A31

A30

A21

A20

A11

A10

A01

A00

B31

B30

B21

B20

B11

B10

B01

B00

SOL FA FA FA

C01

C00

y01

y00

y11

y10

y21

y20

4-bit SCBCLG

A71

A70

A61

A60

A51

A50

A41

A40

B71

B70

B61

B60

B51

B50

B41

B40

SOL FA FA FA

y31

y30

y41

y40

y51

y50

C41

C404-bit SCBCLG

A311

A310

A301

A300

A291

A290

A281

A280

B311

B310

B301

B300

B291

B290

B281

B280

SOL FA FA FA

y211

y210

y221

y220

y231

y230

C281

C280

C81

C80

C321

C320

SUM311

SUM310

SUM301

SUM300

SUM291

SUM290

SUM281

SUM280

SUM71

SUM70

SUM61

SUM60

SUM51

SUM50

SUM41

SUM40

SUM31

SUM30

SUM21

SUM20

SUM11

SUM10

SUM01

SUM00

A71

A70

B71

B70

A61

A60

B61

B60

A51

A50

B51

B50

A41

A40

B41

B40

A31

A30

B31

B30

A21

A20

B21

B20

A11

A10

B11

B10

A01

A00

B01

B00
A311

A310

B311

B310

A301

A300

B301

B300

A291

A290

B291

B290

A281

A280

B281

B280

Fig. 3a. 32-bit early output SCBCLA without alias logic

4-bit SCBCLGAlias

A31

A30

A21

A20

A11

A10

A01

A00

B31

B30

B21

B20

B11

B10

B01

B00

SOL FA FA FA

C01

C00

y01

y00

y11

y10

y21

y20

4-bit SCBCLGAlias

A71

A70

A61

A60

A51

A50

A41

A40

B71

B70

B61

B60

B51

B50

B41

B40

SOL FA FA FA

y31

y30

y41

y40

y51

y50

C41alias

C40alias

4-bit SCBCLGAlias

A311

A310

A301

A300

A291

A290

A281

A280

B311

B310

B301

B300

B291

B290

B281

B280

SOL FA FA FA

y211

y210

y221

y220

y231

y230

SUM311

SUM310

SUM301

SUM300

SUM291

SUM290

SUM281

SUM280

SUM71

SUM70

SUM61

SUM60

SUM51

SUM50

SUM41

SUM40

SUM31

SUM30

SUM21

SUM20

SUM11

SUM10

SUM01

SUM00

C41

C40

C81alias

C80alias

C81

C80

C281alias

C280alias

C281

C280

C321alias

C320alias

C321

C320

Fig. 3b. 32-bit early output SCBCLA with alias logic

A71

A70

B71

B70

A61

A60

B61

B60

A51

A50

B51

B50

A41

A40

B41

B40

A31

A30

B31

B30

A21

A20

B21

B20

A11

A10

B11

B10

A01

A00

B01

B00
A311

A310

B311

B310

A301

A300

B301

B300

A291

A290

B291

B290

A281

A280

B281

B280

B00

B01

C

C

C

B00

B01

C

C

C

B00

B01

C

C

C

B00

B01

C

C

C

B10

B11

C

C

C

B10

B11

C

C

C

A01

A00

A01

A00

A11

A10

A30
B31
A20
B21

A30
B31
A21
B20

A31
B30
A20
B21

A31
B30
A21
B20

A30
B31
A21
B21

A31
B30
A21
B21

A31
B31

A30
B31
A20
B20

A31
B30
A20
B20

A30
B30

C

C

C01

C00

C41

C40

C41alias

C40alias

C01

C00

Fig. 3c. 4-bit SCBCLG without/with alias logic

A0
B0

A1
B1

CIN1

CIN0

SUM0

SUM1

CIN1

A1
B1

COUT1

CIN0

A0
B0

COUT0

C

C

A0
B1

A1
B0

CIN1

CIN0

C

C

Fig. 3d. Early output full adder (FA)

A0
B0

A1
B1

CIN1

CIN0

SUM0

SUM1

C

C

A0
B1

A1
B0

CIN1

CIN0

C

C

Fig. 3e. Early output sum only logic (SOL)

N

FA FA FA FA

C01

C00

C11

C10

C21

C20

C31

C304-bit SCBCLG

A71

A70

A61

A60

A51

A50

A41

A40

B71

B70

B61

B60

B51

B50

B41

B40

SOL FA FA FA

y31

y30

y41

y40

y51

y50

C41

C404-bit SCBCLG

A311

A310

A301

A300

A291

A290

A281

A280

B311

B310

B301

B300

B291

B290

B281

B280

SOL FA FA FA

y211

y210

y221

y220

y231

y230

C281

C280

C81

C80

C321

C320

SUM311

SUM310

SUM301

SUM300

SUM291

SUM290

SUM281

SUM280

SUM71

SUM70

SUM61

SUM60

SUM51

SUM50

SUM41

SUM40

SUM31

SUM30

SUM21

SUM20

SUM11

SUM10

SUM01

SUM00

Fig. 3f. 32-bit early output SCBCLA (without alias logic) and RCA hybrid

A31

A30

B31

B30

A21

A20

B21

B20

A11

A10

B11

B10

A01

A00

B01

B00

SCBCLA without alias logic RCA

A311

A310

B311

B310

A301

A300

B301

B300

A291

A290

B291

B290

A281

A280

B281

B280

A71

A70

B71

B70

A61

A60

B61

B60

A51

A50

B51

B50

A41

A40

B41

B40

4-bit SCBCLGAlias

A71

A70

A61

A60

A51

A50

A41

A40

B71

B70

B61

B60

B51

B50

B41

B40

SOL FA FA FA

y31

y30

y41

y40

y51

y50

4-bit SCBCLGAlias

A311

A310

A301

A300

A291

A290

A281

A280

B311

B310

B301

B300

B291

B290

B281

B280

SOL FA FA FA

y211

y210

y221

y220

y231

y230

SUM311

SUM310

SUM301

SUM300

SUM291

SUM290

SUM281

SUM280

SUM71

SUM70

SUM61

SUM60

SUM51

SUM50

SUM41

SUM40

C81alias

C80alias

C81

C80

C281alias

C280alias

C281

C280

C321alias

C320alias

C321

C320

FA FA FA FA

C01

C00

C11

C10

C21

C20

C31

C30

C41

C40

SUM31

SUM30

SUM21

SUM20

SUM11

SUM10

SUM01

SUM00

A31

A30

B31

B30

A21

A20

B21

B20

A11

A10

B11

B10

A01

A00

B01

B00

A311

A310

B311

B310

A301

A300

B301

B300

A291

A290

B291

B290

A281

A280

B281

B280

A71

A70

B71

B70

A61

A60

B61

B60

A51

A50

B51

B50

A41

A40

B41

B40

Fig. 3g. 32-bit early output SCBCLA (with alias logic) and RCA hybrid

SCBCLA with alias logic RCA

In Figures 3a, 3b, 3f and 3g, it can be seen that there is

an inter-section propagation of the carry signal based on

lookahead, and an intra-section propagation of the carry

signal based on a simple rippling and both these happen

simultaneously. An SCBCLA uses the SCBCLG, the full

adder (FA), and the sum only logic (SOL) as the circuit

building blocks.

Figure 3c shows the gate-level detail of the 4-bit

section-carry based carry lookahead generator (SCBCLG)

without/with the alias logic. The SCBCLG is different from

a conventional CLG in that only one lookahead carry

output is produced. If the circuit portion shown in red is

removed from Figure 3c, then the 4-bit SCBCLG produces

only the lookahead carry output (C41, C40). However, if

the circuit portion shown in red is retained, then the 4-bit

SCBCLG produces two pairs of lookahead carry outputs,

(C41, C40) and (C41alias, C40alias). Note that these two

dual-rail carry output pairs are logically equivalent. Figures

3d and 3e show the gate-level details of the early output FA

and the early output SOL based on [16]. The SOL is

identical to the FA but does not have a carry output.

The 4-bit SCBCLG shown in Figure 3c does not

contain a redundant carry logic when it produces only the

dual-rail carry output (C41, C40) and not the alias dual-rail

carry output (C41alias, C40alias). However, when the alias

dual-rail carry output is also produced by the 4-bit

SCBCLG, then it is said to contain explicit logic

redundancy [25]. The logic used to produce (C41, C40) is

synthesized directly [26] based on deriving the disjoint

sum-of-products form [27] [28] followed by QDI logic

decomposition [23]. The carry output logic shown in blue

in Figure 3e cannot be discarded and (C41alias, C40alias)

cannot replace the dual-rail carry output (C41, C40) of the

4-bit SCBCLG due to the gate orphan problem. To explain

this, let us assume that node N, shown in red in Figure 3c,

and C01 are 1 during a data phase. In the following return-

to-zero phase if C01 assumes 0 before N could assume 0,

then C41alias may become 0 before N becomes 0. In this

case, the late assumption of 0 by N would not be

subsequently acknowledged by C41alias which results in a

gate orphan. It may be noted at this juncture that when the

4-bit SCBCLG produces either (C41, C40) or (C41, C40)

and (C41alias, C40alias), the presence of a C-element and

an OR gate with respect to C41 and C40 eliminates the

problem of gate orphan(s). For example, if C01 and N were

1 during a data phase, and if C01 assumes 0 before N

assumes 0 then C41 would not become 0. This is because

the C-element which has C01 and N as its inputs in Figure

3c would wait for the arrival of 0 on N. Only after N

becomes 0, C41 would become 0. However, since node N

is considered to be isochronic, the arrival of 0 on N would

be deemed to be acknowledged by both C41 and C41alias.

When (C41, C40) is sufficient to serve as the

lookahead carry output of the 4-bit SCBCLG shown in

Figure 3c, what is the utility of the alias lookahead carry

output (C41alias, C40alias)? In Figure 3c, it can be seen

that between C01 and C41, a 2-input C-element1 and a 2-

input OR gate are present, which is the same with respect

to C00 and C40. However, just a single complex gate viz.

AO21 is used to connect C01 with C41alias, and likewise

C00 with C40alias. If A, B, C and D are the inputs to an

AO21 gate, the output of an AO21 gate, say Y = AB + CD.

The AO21 gate requires just 10 transistors whereas the 2-

input C-element and 2-input OR gate require 18 transistors.

The propagation delay of an AO21 gate is less than the sum

of the propagation delays of the 2-input C-element and the

2-input OR gate. Excepting the least significant 4-bit sub-

SCBCLA, in the remainder of the sub-SCBCLAs, the inter-

section carry propagation will be governed by the sum of

the propagation delays of the 2-input C-element and the 2-

input OR gate in the case of Figure 3a (32-bit SCBCLA

without alias carry output logic). But in Figure 3b (32-bit

SCBCLA with alias carry output logic), the inter-section

carry propagation will be dictated by the propagation delay

of just the AO21 gate. Hence a faster inter-section carry

propagation is feasible in the case of Figure 3b compared to

Figure 3a. This is an advantage of the alias carry output

logic. Also, a faster return-to-zero can be facilitated by the

alias carry output logic in the case of Figure 3b, while the

return-to-zero in the case of Figure 3a would encounter the

worst-case latency as for data processing.

Figures 3f and 3g portray two example hybrid 32-bit

adders involving the SCBCLA and the ripple carry adder

(RCA). Figure 3f shows an example 28-bit early output

SCBCLA without alias logic which is combined together

with a 4-bit early output RCA that is present in the least

significant nibble position. Figure 3g shows an example

28-bit early output SCBCLA with alias logic that is joined

to a less significant 4-bit early output RCA. The

introduction of a RCA to replace the sub-SCBCLA or the

sub-RCLA in the less significant adder positions was found

to reduce the latency, area, and average power dissipation

of a CLA and RCA hybrid in [26] and [29]. This shall be

discussed in conjunction with the simulation results which

shall be presented in the next section. The hybrid

SCBCLA-RCAs shown in Figures 3f and 3g are only

examples which are considered here to demonstrate their

relative merits over the regular CLA counterparts.

IV. SIMULATION RESULTS AND DISCUSSION

32-bit SCBCLAs without and with alias carry output

logic and 32-bit hybrid SCBCLA-RCAs without and with

alias carry output logic which correspond to weak-

indication and early output types, and a 32-bit early output

RCLA and a RCLA-RCA hybrid were all physically

realized in semi-custom ASIC style using the standard cells

of a 32/28nm CMOS process [30]. The 2-input C-element

was alone custom designed using 12 transistors, and was

1 The C-element outputs 1 if all its inputs are 1, and outputs 0 if all its

inputs are 0. If its inputs are different, the C-element would maintain its

existing steady-state. The C-element is symbolized by the circle with the

marking ‘C’.

made available to realize the various asynchronous CLAs.

The size of the carry lookahead generator used in all the

CLAs is 4-bits. For the hybrid SCBCLAs and RCLAs, a 4-

bit least significant RCA was used. Only the minimum size

cells of a standard digital cell library [30] were used for the

physical synthesis to enable a straightforward comparison

between the synthesis results of different CLAs. Note that

all the CLAs mentioned in Table I are QDI designs.

TABLE I

AVERAGE POWER DISSIPATION, (WORST-CASE) LATENCY, AND

AREA PARAMETERS OF VARIOUS 32-BIT ASYNCHRONOUS CLAS,

ESTIMATED USING A 32/28NM CMOS PROCESS

Results

group

CLA or CLA-RCA

hybrid adder type

Power

(µW)

Latency

(ns)

Area

(µm2)

References [26] [31]: Weak-indication

Group1

SCBCLA

(Without alias logic)

2191 3.31 2951.88

SCBCLA-RCA

hybrid

(Without alias logic)

2189 3.08 2845.14

SCBCLA

(With alias logic)

2192 2.46 2992.55

SCBCLA-RCA

hybrid

(With alias logic)

2190 2.38 2880.72

References [26] [32]: Weak-indication

Group2

SCBCLA

(Without alias logic)

2188 3.14 2915.29

SCBCLA-RCA

hybrid

(Without alias logic)

2186 2.93 2807.02

SCBCLA

(With alias logic)

2190 2.32 2955.95

SCBCLA-RCA

hybrid

(With alias logic)

2187 2.25 2842.60

References [29] [16]: Early output

Group3

RCLA 2177 2.75 2569.65

RCLA-RCA hybrid 2175 2.53 2455.80

Proposed: Early output

Group4

SCBCLA

(Without alias logic)

2178 3.13 2524.92

SCBCLA-RCA

hybrid

(Without alias logic)

2175 2.92 2416.66

SCBCLA

(With alias logic)

2179 2.31 2565.58

SCBCLA-RCA

hybrid

(With alias logic)

2177 2.23 2452.24

Approximately 1000 random input vectors were

identically supplied to all the CLAs through a test bench at

time intervals of 20ns to perform the functional simulations

and also to capture their respective switching activities.

The value change dump files generated through the

functional simulations were then used for average power

estimation using Synopsys tools. The worst-case latency

i.e. the critical path delay and the area occupancy of the

CLAs were also estimated using Synopsys tools. An

appropriate wire load model (parasitic) was included while

estimating the design metrics, which are given in Table I.

The optimized design parameters are highlighted in bold-

face in Table I. Since the input registers and completion

detector of the various CLAs are identical, the differences

between their design metrics is attributable to the

differences between their respective function blocks.

The simulation results corresponding to various CLAs

are split into four groups, labeled as Group1 to Group4 in

Table I, for the sake of discussion. Group1 corresponds to

regular and hybrid SCBCLAs without and with the alias

carry output logic, which are weakly indicating. With

respect to Group1, the 4-bit SCBCLG was realized based

on a direct synthesis [26], and the FA and SOL are realized

based on [31]. Since the FA and SOL of [31] are weakly

indicating, the regular and hybrid SCBCLAs corresponding

to Group1 also conform to weak-indication. Reference [32]

presented a latency optimized weakly indicating FA design.

This FA and the associated SOL was used to replace the

FA and SOL components of the regular and hybrid

SCBCLAs in Group 1, which yielded the Group2 results.

Since the FA of [32] is more optimized compared to the FA

of [31], therefore Group2 results are better compared to

Group1 results as seen in Table I. The weak-indication FA

of [31] occupies 41.17µm2 of silicon, and the weak-

indication FA of [31] occupies a reduced area of 39.65µm2.

The SOL based on [31] or [32] is the same and occupies

34.56µm2 of silicon.

Group3 comprises a regular RCLA based on [29] and

a RCLA-RCA hybrid based on [29] and [16]. The 4-bit

RCA employed in the RCLA-RCA hybrid is composed of

4 FA modules, and the FA is based on [16]. Since the sub-

RCLAs and the RCA are early output type, therefore the

RCLA and the RCLA-RCA hybrid also correspond to early

output type. There is no possibility for introducing an alias

carry output logic in the case of the RCLA or the RCLA-

RCA hybrid. This is because the lookahead carry output of

one sub-RCLA directly serves as the carry input for the

successive sub-RCLA. In the regular or hybrid SCBCLAs

however, the lookahead carry output generated from one

sub-SCBCLA serves as the carry input for the next

SCBCLG and also as the carry input for the sub-RCA

embedded within the successive sub-SCBCLA. Due to the

supply of two dual-rail carry inputs to a sub-SCBCLA, the

alias carry output logic was able to be introduced to

achieve significant optimization in the latency at the

expense of meagre increases in area and average power

dissipation due to the redundant carry output logic.

Group4 comprises the proposed regular and hybrid

SCBCLAs without/with the alias carry output logic, which

corresponds to early output type. This results from the use

of the early output 4-bit SCBCLG without/with the alias

carry output logic, the early output FA, and the early output

SOL. The early output plain 4-bit SCBCLG requires

113.35µm2 of silicon, and the silicon requirement increases

to 118.43µm2 with the introduction of the alias carry output

logic. The early output FA and SOL require reduced areas

compared to the weak-indication FA and SOL of [32] of

just 27.45µm2 and 22.36µm2 of silicon respectively. Since

the early output asynchronous circuits are more relaxed

compared to their strong- and weak-indication circuit

counterparts, simple and complex logic gates of a digital

cell library can be widely used compared to the C-element.

As a result, the early output asynchronous circuits

generally facilitate optimizations in the design metrics

compared to the strong- and weak-indication asynchronous

circuits. This is the primary reason for the Group4 results

being more optimized compared to the synthesis results of

Group1, Group2 and Group3.

Three important observations can be made from Table

I. Firstly, the SCBCLAs with alias logic report a substantial

reduction in latency compared to the SCBCLAs without

alias logic, and due to the redundant logic introduced in the

case of the former their area and power metrics are

marginally more expensive compared to the latter. On

average, the SCBCLAs with alias carry output logic which

correspond to Group1, Group2 and Group4, whether they

are regular or hybrid variants, report 24.6% reduction in

latency and 1.4% increase in cells area with negligible

power increase (0.1%) compared to the averaged design

metrics of the regular and hybrid SCBCLAs which have no

alias carry output logic. This implies the SCBCLAs

featuring the alias carry output logic achieve significant

reduction in latency with almost no increase in the area and

power metrics. In general, the power dissipation values of

the CLAs mentioned in Table I do not vary significantly.

This is because the function blocks of all the CLAs satisfy

the monotonic cover constraint [10], which signifies the

activation of a unique signal path from a primary input to a

primary output. In general, the monotonic cover constraint

is inherent in QDI circuit designs.

Secondly, the SCBCLA-RCAs hybrid and the RCLA-

RCA hybrid enable additional optimizations in the design

metrics compared to the regular SCBCLAs and RCLA. On

average, the SCBCLA-RCAs hybrid without alias logic and

the RCLA-RCA hybrid report a 7% reduction in latency

and a 4% reduction in area with no power increase

compared to the regular SCBCLAs without alias logic and

the regular RCLA. Likewise, the SCBCLA-RCAs hybrid

with alias carry logic, on average, report a 3% reduction in

latency and a 4% reduction in area without any power

increase compared to the regular SCBCLAs with alias

logic. The area reduction is mainly because a sub-SCBCLA

without/with the alias carry logic and a sub-RCLA are

more area expensive than a similar size RCA. For example,

the areas of the proposed early output 4-bit SCBCLAs

without and with the alias carry logic and the 4-bit RCLA

[29] are 218.06µm2, 223.14µm2 and 223.65µm2

respectively. In contrast, the area of the early output 4-bit

RCA is just 109.8µm2. The critical path delay of the least

significant 4-bit SCBCLA with alias carry logic (Figure 3b)

is governed by the sum of the propagation delays of a 4-

input AND gate, two 4-input OR gates, four 2-input C-

elements and an AO21 gate. On the other hand, the least

significant 4-bit RCA shown in Figure 3g encounters the

sum of the propagation delays of five AO22 gates. Hence,

Figures 3f and 3g will exhibit reduced latencies than

Figures 3a and 3b. Thus using a small RCA to replace the

sub-SCBCLAs or the sub-RCLA in the least significant

positions is beneficial for reducing the area, latency and

power parameters, which is substantiated by the results

given in Table I. Nevertheless, the optimum size of the

least significant RCA which may be cascaded along with a

CLA (i.e. SCBCLA or RCLA) to effect optimizations in

the design metrics should be determined based on static

timing analysis since the use of a larger size RCA may

negatively impact the latency metric.

Thirdly, it is clear from Table I that the proposed 32-

bit SCBCLA-RCA hybrid incorporating the alias carry

output logic features the least latency and is preferable. It is

slightly more expensive in area than the 32-bit SCBCLA-

RCA hybrid with no alias carry output logic by just 1.5%

and the power increase is negligible (0.1%).

V. CONCLUSIONS

This paper has presented a new asynchronous early

output SCBCLA architecture without/with the alias carry

output logic. The 32-bit binary addition was considered as

the case study and the proposed SCBCLA with alias carry

output logic reports optimized design metrics compared to

the other SCBCLAs and RCLA proposed earlier. It was

shown that further optimization in the design metrics could

be achieved by opting for a SCBCLA-RCLA hybrid.

REFERENCES

[1] A.J. Martin, “The limitation to delay-insensitivity in

asynchronous circuits,” Proc. 6th MIT Conference on

Advanced Research in VLSI, 1990, pp. 263-278.

[2] C.H. van Berkel, M.B. Josephs, S.M. Nowick, “Applications

of asynchronous circuits,” Proc. of the IEEE, 1999, vol. 87,

no. 2, pp. 223-233.

[3] I. David, R. Ginosar, M. Yoeli, “Self-timed is self-

checking,” Journal of Electronic Testing: Theory and

Applications, 1995, vol. 6, no. 2, pp. 219-228.

[4] L.A. Plana, P.A. Riocreux, W.J. Bainbridge, A. Bardsley, S.

Temple, J.D. Garside, Z.C. Yu, “SPA – a secure Amulet core

for smartcard applications,” Microprocessors and

Microsystems, 2003, vol. 27, no. 9, pp. 431-446.

[5] D. Sokolov, J. Murphy, A. Bystrov, A. Yakovlev, “Design

and analysis of dual-rail circuits for security applications,”

IEEE Transactions on Computers, 2005, vol. 54, no. 4, pp.

449-460.

[6] F. Burns, A. Bystrov, A. Koelmans, A. Yakovlev, “Design

and security evaluation of balanced 1-of-n circuits,” IET

Computers and Digital Techniques, 2012, vol. 6, no. 2, pp.

125-135.

[7] W. Cilio, M. Linder, C. Porter, J. Di, D.R. Thompson, S.C.

Smith, “Mitigating power- and timing-based side-channel

attacks using dual-spacer dual-rail delay-insensitive

asynchronous logic,” Microelectronics Journal, 2013, vol.

44, no. 3, pp. 258-269.

[8] T. Verhoeff, “Delay-insensitive codes – an overview,”

Distributed Computing, 1988, vol. 3, no. 1, pp. 1-8.

[9] S.J. Piestrak, T. Nanya, “Towards totally self-checking

delay-insensitive systems,” Proc. 25th International

Symposium on Fault-Tolerant Computing, 1995, pp. 228-

237.

[10] J. Sparsø, S. Furber, Principles of Asynchronous Circuit

Design: A Systems Perspective, Kluwer Academic, Boston,

MA, USA, 2001.

[11] M.T. Moreira, R.A. Guazzelli, N.L.V. Calazans, “Return-to-

one protocol for reducing static power in C-elements of QDI

circuits employing m-of-n codes,” Proc. 25th Symposium on

Integrated Circuits and Systems Design, 2012, pp. 1-6.

[12] C.L. Seitz, “System Timing,” in Introduction to VLSI

Systems, C. Mead and L. Conway (Eds.), pp. 218-262,

Addison-Wesley, MA, USA, 1980.

[13] C.F. Brej, J.D. Garside, “Early output logic using anti-

tokens,” Proc. 12th International Workshop on Logic and

Synthesis, 2003, pp. 302-309.

[14] P. Balasubramanian, D.A. Edwards, “Efficient realization of

strongly indicating function blocks,” Proc. IEEE Computer

Society Annual Symposium on VLSI, 2008, pp. 429-432.

[15] P. Balasubramanian, D.A. Edwards, “A new design

technique for weakly indicating function blocks,” Proc. 11th

IEEE Workshop on Design and Diagnostics of Electronic

Circuits and Systems, 2008, pp. 116-121.

[16] P. Balasubramanian, “A robust asynchronous early output

full adder,” WSEAS Transactions on Circuits and Systems,

2011, vol. 10, no. 7, pp. 221-230.

[17] C. Jeong, S.M. Nowick, “Block-level relaxation for timing-

robust asynchronous circuits based on eager evaluation,”

Proc. 14th IEEE International Symposium on Asynchronous

Circuits and Systems, 2008, pp. 95-104.

[18] P. Balasubramanian, K. Prasad, N.E. Mastorakis, “Robust

asynchronous implementation of Boolean functions on the

basis of duality,” Proc. 14th WSEAS International

Conference on Circuits, 2010, pp. 37-43.

[19] P. Balasubramanian, “Comments on “Dual-rail asynchronous

logic multi-level implementation”,” Integration, the VLSI

Journal, 2016, vol. 52, no. 1, pp. 34-40.

[20] V.I. Varshavsky (Ed.), Self-Timed Control of Concurrent

Processes: The Design of Aperiodic Logical Circuits in

Computers and Discrete Systems, Chapter 4: Aperiodic

Circuits, pp. 77-85, (Translated from the Russian by A.V.

Yakovlev), Kluwer Academic, 1990.

[21] W.B. Toms, “Synthesis of quasi-delay-insensitive datapath

circuits,” PhD thesis, The University of Manchester, 2006.

[22] P. Balasubramanian, Self-Timed Logic and the Design of

Self-Timed Adders, PhD thesis, The University of

Manchester, 2010.

[23] P. Balasubramanian, N.E. Mastorakis, “QDI decomposed

DIMS method featuring homogeneous/heterogeneous data

encoding,” Proc. International Conference on Computers,

Digital Communications and Computing, 2011, pp. 93-101.

[24] A.R. Omondi, Computer Arithmetic Systems: Algorithms,

Architecture and Implementations, Prentice Hall

International (UK), 1994.

[25] P. Balasubramanian, D.A. Edwards, W.B. Toms, “Redundant

logic insertion and latency reduction in self-timed adders,”

VLSI Design, vol. 2012, Article ID 575389, 2012, pages 13.

[26] P. Balasubramanian, D.A. Edwards, W.B. Toms, “Self-timed

section-carry based carry lookahead adders and the concept

of alias logic,” Journal of Circuits, Systems, and Computers,

2013, vol. 22, no. 4, pp. 1350028-1 – 1350028-24.

[27] P. Balasubramanian, R. Arisaka, H.R. Arabnia, “RB_DSOP:

A rule based disjoint sum of products synthesis method,”

Proc. 12th International Conference on Computer Design,

2012, pp. 39-43.

[28] P. Balasubramanian, N.E. Mastorakis, “A set theory based

method to derive network reliability expressions of complex

system topologies,” Proc. Applied Computing Conference,

2010, pp. 108-114.

[29] P. Balasubramanian, D. Dhivyaa, J.P. Jayakirthika, P.

Kaviyarasi, K. Prasad, “Low power self-timed carry

lookahead adders,” Proc. 56th IEEE International Midwest

Symposium on Circuits and Systems, 2013, pp. 457-460.

[30] Synopsys SAED_EDK32/28_CORE Databook, Revision

1.0.0, 2012.

[31] P. Balasubramanian, D.A. Edwards, “A delay efficient robust

self-timed full adder,” Proc. IEEE 3rd International Design

and Test Workshop, 2008, pp. 129-134.

[32] P. Balasubramanian, “A latency optimized biased

implementation style weak-indication self-timed full adder,”

Facta Universitatis, Series: Electronics and Energetics,

2015, vol. 28, no. 4, pp. 657-671.

