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Abstract. Deep Neural Networks (DNNs) is becoming an increasingly
interesting, valuable and efficient machine learning paradigm with imple-
mentations in natural language processing, image recognition and hand-
written character recognition. Application of deep architectures is in-
creasing in domains that contain feature hierarchies i.e., features from
higher levels of the hierarchy formed by the composition of lower level
features. However it is not clear about the efficiency of DNNs in classi-
fying the hierarchical data which is the focus of this paper. This study is
organized into two parts. Firstly, a taxonomic hierarchical data is gener-
ated and a DNN is trained to classify the organisms into various species
depending on the characteristics. The second step involves testing the
ability of DNNs to identity whether two given organisms are related or
not. The experimental results show that the accuracy of the results is
reduced with the increase in 'depth’. Further, a better performance was
achieved when every hidden layers has same number of nodes compared
with the experiment where each hidden layer has different number of
nodes.

1 Introduction

Artificial Neural Networks (ANN) became ’once again’ the point of focus due
to the success of 'Deep Learning’. Since the advances in the research of Support
Vector Machines (SVM), most of the researchers turned toward Support Vector
Machines (SVMs) and other machine learning paradigms. Recent work by Nitish
and Hinton has addressed the problem of over-fitting, which is considered as a
major drawback of neural networks [1]. The concept of DNNs was proposed in
1989 as Convolutional Neural Networks (CNN) without using the word 'Deep’.
Back Propagation (BP) was used to train CNNs and was proven less successful
due to limitations of BP. After the introduction of new greedy layer-wise training
followed by supervised training of the entire network, ANNs once again came into
lime light in the form of DNNs [2]. The learning mechanism of DNNs is called
Deep Learning and proved to be successful over SVM based systems [3]. Since
then DNNs became increasingly successful with applications in natural language
processing [4] [5], image recognition [6] [7] [8], visual recognition [9], computer
vision [10] [11], text mining [12] and hand-written character recognition [13].
Corporate giants like Apple, Google and Microsoft are using Deep Learning



principles for their services whereas Facebook and Twitter have invested in the
research for understanding the features of social interactions.

Application of deep architectures is increasing in the domains that contain
feature hierarchies i.e., features from higher levels of the hierarchy formed by the
composition of lower level features [14]. Despite its reported success, it is still not
clear what the limits of deep learning are. DNNs are quite successful in the case
of flat classification and the capability of DNN for hierarchical data classification
is not been explored. The aim of this paper is to undertake some exploratory
analysis and evaluation of deep architectures using synthetic data known to
contain hierarchical features and to evaluate the architecture to identify how
exactly to reconstruct the knowledge contained in these hierarchical features. For
ANNs with multiple layers, it is important to understand whether an effective
conjugation occurs between two (hidden) layers [15]. As a study, we tried to
understand this by experimenting with equal number of nodes for hidden layers
versus unequal number of nodes.

A synthetic data set is generated with 6 classes (species) of organisms. To
measure the hierarchical nature of the data set, the Cophenetic correlation co-
efficient was calculated from the plotted dendrogram of the data set which is
found to be 0.9934 which is considered to be efficient. For the first experiment
of classifying the organisms into various species based on characteristics, exper-
iments are conducted with two strategies, varying the depth and changing the
number of nodes for every hidden layer. The results show that varying the depth
has proven effective in both the cases. Further, the topology with same number
of nodes in the hidden layers has proven to be better than having different num-
ber of nodes. The detailed observations are presented in experimental results
section.

The paper is organized as follows. Section II introduces various types of Deep
Architectures. Section III briefly explain about data representation and an in
detail explanation about the synthetic data used for the research. Experimental
results are presented as Section IV followed by Conclusion and future direction
in Section V.

2 Deep Neural Networks

Number of hidden layers of an Artificial Neural Network (ANN) constitutes its
depth. If the number of hidden layers is more than 1, such MNNs architecture
is said to be 'Deep’ and the ANNs as DNN [16]. Feed-forward ANNs with more
than one hidden layer units that makes it more efficient than a normal ANNs [17].
Theoretical studies also support the statement that DNNs have the advantage
of more efficient representation compared with shallow networks and with less
number of hidden units [18]. DNNs, being a simple form of deep architecture
implementation uses BP algorithm for training [19] and weights are updated
using stochastic gradient descent as
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Awij(t + 1) = Awij(t) + n (1)



where 7 represents the learning rate, C is the cost function associated and
w;; represents weight.

For large volumes of training data, the process of training DNNs is done
in two steps. Firstly, the data is small sized data sets followed the batch-wise
training process [4]. With this, there will be an increase in number of parameters
to be optimized with which the entire training more complex.

Convolutional Neural Networks or ConvNets are deep architecture based net-
works, a type of feed-forward ANNs that perform feature extractions by applying
convolution and sub sampling. CNN was proposed by Fukushima as Neocogni-
tron. [20] and extended by LeCun [6]. Latest advancement of simplifying the
learning process of Neocognitron resulted in the research of artificial vision by
Fukushima [21] [22]. Deep Belief Network (DBN) is another type of DNNs based
on MLP model with greedy layer-wise training proposed by G.E. Hinton [23].
DBNs have multiple interconnected hidden layers where each layer acts as an
input to the next layer without lateral connection between the nodes present
in that layer. DBN uses probabilistic logic nodes and uses activation function.
Stacked auto-encoders was proposed by Yosgu Bengio by implementing encod-
ing and decoding mechanism using ANNs. The main aim of auto-encoders is to
reproduce the input [24]. Initially both encoder and decoder networks are as-
signed with random weights and trained by observing the discrepancy between
original data. The error is back propagated through the decoder network fol-
lowed by encoder network. The training procedure is similar to DBNs. Stacked
De-noising auto-encoder algorithm was proposed in 2010 with which the perfor-
mance gap between RBM based and auto-encoder based deep architectures was
narrowed [25].

3 Data Representation

Binary number representation enables to generate large data set using just two
digits 0 and 1. Connectionist methods of data representation can be catego-
rized into specific (localist) or spread out (distributed). Common definition of
localist representation in the correct context is, in localist representation each
neuron or unit is associated with a single characteristic and each characteristic
is represented by one and only one neuron or unit [26]. Localist representation
is simple, easy to code and understand. However, localist representation cannot
be used for componential structure based data. In distributed representation
a single concept is represented by a combination of neurons or units and each
neuron or unit can be a part of multiple representations [27-29]. Therefore, in
a distributed representation, an isolated neuron has no meaning or cannot be
interpreted and existence of neuron has meaning only when it is present in a
group. Distributed representation is quite efficient and best suitable for gradient
based learning. With binary encoding, n neurons can produce 2" patterns when
distributed representation is used where as the number is very limited in case of
localist representation.



C1 (Backbone) 00000001

C2 (Hair) 00000010
=N LENGHELGREIN 00000100
W LEIGL G EREHES 00001000

Fig. 1. Characteristics representation

A character, a localist representation is a unique feature like having back-
bone, hair etc., which determines the uniqueness of the organism. However, the
organism has multiple characteristics, which is represented as within 8 bits. The
organism that has a backbone is coded as C1 with last bit a 1 and is represented
as 0000000 1. Similarly, other characteristics may be represented as shown
in Fig.1.

As mentioned earlier, the categorization of organisms into taxa is based on
the characteristics they possess. Since each characteristic of an organism is rep-
resented in bits, organisms with multiple characteristics are represented as a
combination of binary bits. For instance, organism O1 has backbone and hair
which are C1 - 00000001 and C2 - 00000010 as presented in Fig.1. So, the charac-
teristics of organism O1 is represented as 00000011 with combined characteristics
as shown in Fig.2. Similarly organism O2 has backbone, hair, and hair on the
hands (C1, C2 and C4) which is represented as 00001011.

I c1and C2 00000011
P c1,c3,ca 00001101

Fig. 2. Multiple Characteristics Representation

A Particular combination of characteristics of the organism determines its
Sub-Group. The second level of hierarchy is formed by grouping the combina-
tion Sub-Groups as a single Group. For instance, the combinations of 4 bits
of sub-groups are coded in group as a combination of bits. We enforce coarse
coding paradigm for representing organism as each neuron or unit is part of
multiple representation. Coarse coding is a type of distributed representation
where a pattern of individual units with different combinations are used for
higher representation [27]. The individual units in coarse code have no property
or the property is inaccurate. However, pooling them together in a combination
constitute a meaningful representation [30].

We represent the organism as a stream of binary data of 20 bits categorized
into Rank, Group, Sub-Group and characteristics with four bits each for Rank,



Rank Group Sub Group Characteristics
001 1] 1101 1010 11011101

Fig. 3. Binary Representation of Organism

Group and Sub-Group and rest of eight bits for characteristics as shown in Fig.3.
Selecting 20 as the size of the representation is justified as it can produce 22°
different combinations. Consider the following representation of an organism 0 0
11110111011101110 1. The first 4 bits represent rank, followed by 4 bits
each for Group and Sub-Group respectively and the last 8 bits for characteristics.
The Taxonomic Rank is determined by the shared characteristics, Group and
Sub-Group. Further, with this rank, the hierarchy of the organism can also be
determined.

Hierarchical Data can be defined as data units with hierarchical based inter
relations among them. Multi-classification problems can be solved using hierar-
chical classification by pre-arranging the data into hierarchy. Most of the real
world problems has hierarchical data. A taxonomic data is Taxa based hierar-
chical data to represent groups of organisms organized by species name or rank
for easy and efficient management of data as well as retrieval. A Hierarchical
tree is constructed from the synthetic data of the organisms and Fig.4represents
its dendrogram.

The Cophenetic correlation coefficient determines the efficiency of hierar-
chical structure by determining similarity of the data between two values by
calculating the distance between a pair of un modelled data within the den-
drogram [31]. To determine the efficiency of the hierarchical data, Cophenetic
correlation coefficient is calculated and the typical value for this is around above
0.8 and values above 0.95 are considered as more efficient [32]. The Cophenetic
correlation coefficient calculated from the dendrogram (refer to Fig.4) is 0.9934.
This values highlights that the synthetic data is efficiently structured with con-
siderable accuracy.

293025 517 913 322 719111627 610181425 82016122623 121 224 4

Fig. 4. Hierarchical structure of the Data



4 Experimental Results and Discussion

This experimental study is divided into two parts. Firstly, a taxonomic hierar-
chical data is generated and a DNN is trained to classify the species depending
on the characteristics. In the second experiment, a second set of data is used
to identify whether the given two organisms are related or not. For type 1 ex-
periment, a 5-layer neural network topology with three hidden layers as shown
in Fig.??. Firstly, we used 30, 40, 50 nodes for experiment and then changed
it to 30, 30, 30 to determine the influence of symmetric and asymmetric node
count. BP is used for training with learning rate and momentum fixed at 0.3
and 0.1 respectively. Auto-encoder style of layer wise training is adopted for the
experiments. Block Data Division is adopted for dividing the data set. For all
the experiments, data set is divided randomly with first 60% for training next
10% for validation and final 30% for testing which is considered to be sufficient.

The experiment is repeated for a 7-layer neural network with 4 hidden layers
with 30,30,30,30 nodes and 30,40,50,60 nodes for type 1 and type 2 experiments
respectively

For first set of experiments, 20 inputs representing the 20 bits of the organism
is used . 6 outputs determine the species of the organism. Total number of
samples used for this experiment is 90 with each one belonging to one of the
six different species. The experiment is run with 100 epochs for 10 times and
the results obtained are presented as Table 1. Confusion matrix, error histogram
and performance graph for each experiment for experiments 1A, 1B, 1C and 1D
are presented in the appendices A, B, C and D respectively.

EXP No. TRAINING|VALIDATION|TESTING| ALL
1A 100% 100% 100% 100%
1B 100% 100% 81.5% [94.4%
1C 100% 100% 92.6% |97.8%
1D 13% 55.6% 14.8% |17.8%

Table 1. Results of Experiment - I: Confusion Matrix values

The second set of experiments is carried out to identify whether two organ-
isms are related or not. For example, Tiger is related to Cat since they form the
same species whereas Rat is not related to cat. The parameters used for these
experiments are same as Experiment - I. The input in this case is a 40 bit binary
numbers fed to the network resulting in either ’0’ for not related or "1’ if related.
60 data samples are used for this experiment and the results are shown in Table
2. Results with confusion matrix, error histogram and performance graph for
each experiment are presented as Appendices E, F, G, H for the experiments
2A, 2B, 2C and 2D respectively.

The first experiment 1A in which the hidden nodes are 30,30,30 has showed
100% results for training, validation and testing whereas when the number of



EXP No. TRAINING|VALIDATION|TESTING| ALL
2A 100% 100% 88.9%  [96.7%
2B 100% 100% 100% 100%
2C 100% 100% 83.3% 195.0%
2D 100% 100% 93.4%  [98.3%

Table 2. Results of Experiment - II: Confusion Matrix values

nodes in the hidden layers are changed to 30,40,50 there has been a variation
in the testing results which is 81.5% constituting the overall results as 84.5% as
shown in Table 1. However, when the depth of the neural network is increased to
4 the confusion matrix showed a little variation for same number of hidden nodes
experiment (1C) whereas the results of the experiment with different number of
hidden nodes (1D) showed a drastic fall in the accuracy rate with 17.8% as overall
percentage. For experiment 1A, the best validation performance is 0.0003588 at
epoch 10 where as for 1B it is 0.00081271 at epoch 12. From the confusion matrix
(refer Appendix-B), it is evident that the classification error has occurred for 5
species with 3 of class 5 been classified as class 4 due to similarity in most
of their characteristics. The performance difference between experiment 1A (3
hidden layers equal nodes) and 1C (4 hidden layer equal nodes) is 2.2% in the
favour of 1A which may be ignored. However, the difference between 1B (3 hidden
layers and different number of nodes) and 1D (4 hidden layer different number
nodes) is 76.6% in the favour of 1C the reason being the inefficient combination
of number of hidden nodes and the depth of the network. On the other hand
if we analyse the significance of same number of nodes and different number
of nodes with depth being same, the difference between 1A and 1B is 5.6% in
favour of 1A and 1C and 1D is 80% in favour of 1C.

The results of the second set of experiments for identifying whether two
organisms are related or not are quite different compared to that of the first
experiment. In first experiment better results are achieved with topology having
same number of hidden nodes. In this experiment, better results are achieved by
the topology with different number of hidden nodes. The experimental results are
illustrated in detail as appendices D, E, F, and G for experiments 2A, 2B, 2C and
2D respectively. The difference between overall accuracy for experiments with 3
hidden layers, 2A (same number of nodes) and 2B (different number of nodes)
is 3.3% in favour of 2B. In case of experiments with 4 hidden layers, experiment
2D (different number of nodes) is 3.3% more accurate than 2C(same number
of nodes). When the performance difference is analysed in terms of depth, the
topology with 3 hidden layers (2A and 2B)has better performance than the 4
hidden layered topology (2c and 2D) with an average difference of 5.6% and
6.4% respectively.



5 Conclusion and Future Work

The aim of this paper is to identify the efficiency of DNNs in classifying hierar-
chical data as well as the influence of ’depth’, the symmetry of number of hidden
nodes. A hierarchical data set is generated with 6 classes (species) of organisms.
The Cophenetic correlation coefficient value of 0.9934 confirms the hierarchi-
cal nature of the data set. A set of experiments are conducted by varying the
depth and changing number of hidden nodes. The first sets of experiments are
to classify the species and second set to identify the relationship between the
species. The experimental results show that the ’depth’ has negative effects on
the accuracy of the results especially in the case of classifying hierarchical data.
Interestingly, the experiments with same number of hidden nodes have better
results compared with that of different number of hidden nodes.

However, the conclusions are based on the synthetic data set generated and
with only two types of topologies with 3 and 4 numbers of hidden layers. It will
be interesting to observe the results with high volume data set and increasing the
number of hidden layers. Experiments do need to be conducted, decreasing the
number of hidden nodes. Another direction of study could be the identification
of species with limited number of inputs. It is also not clear as how to extracting
knowledge of hierarchical features in a human intelligible way from deep learning
architectures. Further, Knowledge extraction from deep neural networks so as
to reconstruct the hierarchy could be one more possible direction.
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