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In the context of business process management, the resources required by business processes, such as work-
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1. INTRODUCTION

Resource planning for business processes is a classical issue for enterprise operation
management. The recent global financial crisis further urges enterprises to seek cost-
effective utilization of resources including human resources and automated resources,
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such as workers, machines, work centers in a manufacturing facility; doctors, nurses,
special medical equipment in a hospital, etc. So far, many classical algorithms [Avanes
and Freytag 2008; Decker and Schneider 2007; Iosup et al. 2007; Rood and Lewis 2008;
Yarkhan and Dongarra 2002; Yu and Buyya 2006; Zomaya and Teh 2001] have been
proposed, and most of them focus on run-time resource scheduling. Such algorithms
can support rational resource utilization with real-time response, but they fail to guar-
antee timely completion of scalable process instances with complex dependencies and
constraints. In reality, process instance completion in time is a crucial factor in enter-
prise decision making. Take a manufacturer for example, when some new customer
orders come in, it is important for a manager to know whether all the orders can be
fulfilled before deadlines under the current resource condition. If not, the manager has
to seek further information to prioritize orders, adjust the original resource plan to
cater for the business process instances for new orders, etc. Therefore, in the scenarios
that business process instances and the needed resources are known before execution,
it is crucial to investigate build-time resource planning for quality decision support.

Apart from the deadline constraint in classical resource management for business
processes, a high level of process instance concurrency is sought after in most applica-
tion scenarios. This is because parallel process instances lead to high instance through-
put and efficient resource utilisation for resource management and process scheduling.
However, it is not always realistic to increase the process instance concurrency by
pushing all resources together to serve instances, because resources themselves are
often available in certain time periods in practice, e.g., a worker is not supposed to
work after hours. Thus, to comprehensively schedule business processes, factors of
resource availability and capability, process task dependency, instance deadline, and
inter-influence among them should all be taken into account. This article incorpo-
rates resource availability constraints and process structures into build-time process
scheduling and devises a comprehensive framework for maximising process instance
throughput with a set of strategies.

Figure 1 shows an example of the process scheduling scenario that can be found
in many applications in business process management, such as product ordering in
manufacturing companies, service booking in hospitals or government agencies, etc.
Given a set of received orders from customers, an enterprise is expected to handle
the orders according to a certain business process. Due to the limitation of resource
capacity, only part of the process instances may be finally processed. From the view
of decision making, it is essential for enterprises to plan the scheduling of process
instances for optimal resource utilisation at build time, so that they can know how to use
the available resources rationally to maximize the profit with the guarantee that the
accepted orders can be indeed fulfilled. Some practical concerns must be considered in
such planning on process instances: First, the processing of tasks in a process instance
must comply with the temporal dependencies according to process structure. Second,
process scheduling must follow the availability constraints of resources [Russell et al.
2005], e.g., work shifts of staff members or machine maintenance caused by down times.
Third, the selection of resource for scheduling the business processes must follow such
constraints as resource capability, privacy requirements, etc. Also, the completion time
of each instance may be required to be in certain period due to constraints such as
business schedule, payment arrangement from the customers. For example, in Figure 1,
instance1 can only start after time point st1, and the processing must be finished before
deadline et1 set by customers. The execution of tasks in instance1 must follow its
process structure, and each task can only be assigned to a capable resource according
to its task type. Therefore, process scheduling is subject to all the above issues as
well as their inter-influence. The problem is how to find out the optimal planning
result efficiently (as shown in Figure 1) while satisfying all the constraints. Some
heuristics may be used because this problem is computationally hard. Intuitively, a
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Fig. 1. Process scheduling.

greedy strategy is to rescue the instances from the ones that are most likely to exceed
their deadline. We can also plan the resource allocation for different instances in a
balanced way, and the optimisation may be carried out in different criteria. Due to the
limitation of heuristics, each strategy may have an advantage or a disadvantage in
different scenarios. Thus, the evaluation of the proposed strategies must be applied in
varied conditions for practical use.

As a classical topic of enterprise management, process scheduling has drawn a lot
of attention from the research community. A typical category of this field is job-shop
scheduling, and so far has possessed many solutions, such as genetic algorithm [Jensen
2003; Wu et al. 2004; Yoo 2009], ant colony optimisation [Heinonen and Pettersson
2007; Seckiner and Kurt 2007], neural networks [Xie et al. 2005], and other heuris-
tic approaches [Jin et al. 2009; Jose et al. 2008; Yarkhan and Dongarra 2002]. But
these solutions cannot be used in business process management systems directly be-
cause the possible dependencies between different tasks are not considered. Another
category is workflow scheduling/planning, which considers the workflow structure in
resource allocation. Yu et al. in Yu and Buyya [2005] compared some significant work-
flow scheduling algorithms and systems [Ashraf and Erlebach 2010; Chen et al. 2010;
Decker and Schneider 2007; Langguth and Schuldt 2010; Senkul and Toroslu 2005;
Yarkhan and Dongarra 2002; Yu and Buyya 2006] under the Grid environment. These
approaches mainly deal with the run-time workflow scheduling problems. However,
they do not consider build-time workflow planning (where the resource situations tend
to be stable and follow some pattern) that can provide essential information for decision
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making (e.g., production plan and negotiation with customers), because the patterns
of resource availability are not fully considered. In our previous work [Xu et al. 2009],
we assume that the availability of resources can be tailored to tasks. In this article,
we particularly focus on the influence of resource availability on scheduling a large
number of process instances at build time. Accordingly, the scheduling confronts a
much larger search space, because assigning a task to a resource may correspond to
a large number of possible time slots to place. To tackle this problem and further im-
prove the performance of process scheduling, we propose a comprehensive scheduling
framework, which deals with the scheduling of process instances of multiple business
processes under resource availability constraints. This work contributes to the current
process scheduling paradigm in the following aspects:

—Resource availability constraints are taken into account in scheduling process in-
stances;

—Based on a genetic algorithm, an approach is proposed to plan process instances at
build time for maximising the number of instances to be successfully scheduled;

—Three heuristic based methods are proposed to enhance the efficiency of process
instance scheduling in different criteria;

—The performance of the proposed strategies is evaluated with an experimental study,
and the influences of performance from different resources and process instance
settings are analysed.

The rest of this article is organised as follows: Section 2 introduces a model that
includes the key notions for characterising resources and process instance scheduling,
and formally defines our problem. Three strategies for process scheduling are proposed
and discussed in Section 3. Section 4 introduces a process scheduling strategy using
genetic algorithm that can find near optimal results. Section 5 presents an experimen-
tal study to evaluate and compare these three strategies. Section 6 reviews the related
work and discusses the advantages of our approach. Lastly, concluding remarks and
future works are given in Section 7.

2. MODEL AND PROBLEM DEFINITION

In this section, we first present a model comprising resources, tasks, process instances
and resource allocation. Based on the definitions of these concepts, we formally define
the problem to solve as follows:

Definition 1 (Resource). Resource is used to perform tasks defined in a business
process. A resource r satisfies time availability constraints defined by a sequence of
available time periods denoted as AP. For each available time period ap = (ts, te) ∈ AP,
resource r is available for allocation from time ts to te.

Definition 2 (Task). A task in a business process can be executed by a set of resources
denoted as Res(t). For each resource r ∈ Res(t), the time for executing a task t may be
different. We define time(t, r) as the time duration required by a resource r to perform
a task t.

Definition 3 (Resource Slot). Resource slot measures a time duration (within the
available time periods) of a particular resource. Given a slot slt of a resource r in a
time duration from st to et, then there exists available time period ap = (ts, te) ∈ r. AP
such that ts � st and te � et. The resource of this slot may be available for use in this
duration (from st to et), or has been assigned to perform a task for a business process.

Definition 4 (Process Instance). A process instance ins has a task set T and an edge
set E, which defines the dependency between tasks. An edge e(ti, tj) ∈ E indicates that
a task tj can only start after a task ti finishes. An instance ins is also required to be
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Fig. 2. Process scheduling model.

executed within a time range [Ds(ins), Df(ins)], where Ds(ins) and Df (ins) refers to the
earliest start time and the latest finishing time (deadline), respectively. For any two
tasks ta, tf ∈ T, the following two relationships may exist: (1) a sequential relationship
ta≺tf if there exists a path e(ta, tb) ∪ e(tb, tc) ∪ . . . ∪ e(td, te) ∪ e(te, tf) from a task ta to a
task tf, or (2) a parallel relationship ta // tf, otherwise.

Note that, we simplify a loop structure that may appear in a process instance as a
sequential execution of expected number of iterations of the tasks executed within the
loop. A historical log data can be statistically analysed to estimate the execution time
duration of each task and the required number of loops. If the time is underestimated,
run-time resource scheduling algorithms can be used to re-plan resources for a given
instance.

Definition 5 (Allocation). Allocation is the resource assignment to a task t of a process
instance ins. An allocation <ins, t, r, st, et> indicates that an available slot slt of
resource r is allocated for executing task t of instance ins from time st to et. Such
allocation may result in adjustment on those slots of resource r before or after available
slot slt

Figure 2 illustrates the model for business process scheduling particularly on re-
source availability constraints. Enterprise resources may have multiple available time
periods. Each instance has its own earliest start time, latest finishing time and set of
tasks to be executed. Each task of the instance has a task type in accordance with the
business process of the instance. Dependencies between tasks can also be derived from
the edges defined in the process structure. Each resource may be capable of executing
tasks of multiple types. Also, each type of task may be performed by several capable
resources, and the time required for the execution of a task is determined by both the
task type and the capable resource. Each task of the instance is scheduled onto a slot
belonging to a particular resource, and this resource is obligated to execute this task in
a time duration indicated by the assigned slot. This duration of resource slot must sat-
isfy a set of constraints on both the resource side and the instance side. Note that, BPM
resource planning faces a capacity limit (e.g., a resource can serve no more than five
tasks at one time). To this end, the model can be extended to be capacity limit aware:
if a resource is allowed to concurrently process a number of n tasks, it is converted to
n identical resource slots for each available time period for scheduling. Based on this
model, the problem can be defined as below:

Problem Statement
Given a set of resources R, and a number of instances I, we seek to find a schedul-
ing scheme S (which consists of a set of allocations) to schedule instances in I
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using resources in R such that maximal number of instances can be scheduled. During
scheduling process, the following four constraints must be satisfied:

(C1) Customer time requirement – each instance ins must be executed between a re-
quired duration within a specified time range [Ds(ins), Df(ins)];

(C2) Availability constraint of resource – for each allocation <ins, t, r, st, et> ∈ S, ap.ts
� st < et � ap.te, where ap = (ts, te) ∈r.AP;

(C3) Process structural constraints – if a sequential relationship t1 ≺ t2 is defined then
a task t2 cannot start before a task t1 finishes;

(C4) Conflict free – at one time, one resource can only be used for executing one task,
i.e., given any two allocations <ins1, t1, r, st1, et1> and <ins2, t2, r, st2, et2> on
resource r, time periods tp1 = (st1, et1) and tp2 = (st2, et2) do not overlap.

3. HEURISTIC-BASED SCHEDULING STRATEGIES

Business process and workflow scheduling are known as classical NP-complete prob-
lems [Yu and Buyya 2006; Fechner et al. 2008; Liu et al. 2011]. When resource availabil-
ity constraints need to be additionally considered, finding the optimal solution to the
problem defined above is even computationally harder. As such, near-optimal strategies
based on reasonable heuristic rules are sought after. In this article, we propose three
heuristic-based algorithms to find reasonable scheduling results in an efficient way.

The basic idea of the three algorithms is to save “dangerous” instances and urgent
tasks, which are subject to the time gap between optimistic finishing time and deadline.
We first apply a so-called optimistic pre-allocation scheme to all instances. This scheme
only satisfies constraints C1, C2, and C3 while ignoring constraint C4 at the beginning.
For each allocation of the optimistic scheme, the most efficient resource is used, i.e., the
one that enables each task to finish at the earliest opportunity. This pre-allocation sets
a basis for the following process scheduling. After the pre-allocation, for all instances,
we can initialize an important feature called the time gap, denoted as g(ins) for instance
ins defined in Formula 1. The gap is calculated as the difference between Df (ins) (i.e.,
the deadline of ins) and the optimistic finishing time of ins in the optimistic allocation.
We know that this initial time gap is obtained by allowing conflict resource allocation
to occur. The scheduling process then is to re-allocate tasks such that constraint C4
can also be satisfied.

g(ins) = Df (ins) − max(et| < ins, t, r, st, et >∈ optimistic allocation of ins) (1)

The time gap is an important indicator for the priority of instance allocation. An
instance ins with a smaller time gap is considered to be more dangerous, and it cannot
be scheduled if a gap g(ins) is negative because the most efficient resources are used.
Our first scheduling strategy is based on the rule of iteratively saving the most dan-
gerous instance ins which owns the minimum value in g(ins). This strategy operates
in a depth-first manner and falls into the category of greedy algorithm since only local
optimisation is applied to one instance (i.e., the most dangerous one) at a time. Some-
times, this strategy is practical because it guarantees that an instance is scheduled
once it is processed. However, allowing one instance to go through may be at the cost
of sacrificing other instances.

Given the limitation of the first strategy which is based on local optimisation, we
propose some holistic strategies that consider global optimisation. A holistic approach
operates in a breadth-first manner. Instead of scheduling one instance at a time, it al-
locates resources to a task of an instance at a time. Compared with the greedy strategy,
it focuses more on dependencies among instances, and gives chances to all instances.
Thus, process instances can be scheduled in a more balanced way. In most cases,
a balanced scheduling approach makes more instances schedulable. However, when
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Table I. Scheduling Strategies

Strategy Priority
DM – Depth first/Min gap Most dangerous instance (instance with the minimum time gap)
BL – Breadth first/Dynamic
local optimisation

Most urgent task (mainly determined by the task in the most
dangerous instance)

BG – Breadth first/Dynamic
Global optimisation

Least penalised task (the allocation of the task that results in the
minimum time gap increases of all instances and other factors)

available resources are limited (i.e., not sufficient to schedule the given instances), a
holistic approach may cause more non-schedulable instances compared with the greedy
strategy. In the holistic approach, we would like to allocate a resource to the current
task at an instance at a time. In order to decide the instance to be selected, we design
two strategies. The first strategy is to select the most dangerous instance according to
some criteria, including whether it owns the minimum time gap, the number of un-
scheduled tasks, etc. We call the current task in such an instance the most urgent task.
This strategy is different from the greedy strategy because after the allocation, the
time gap for other instances will be adjusted to use the remaining available resources
in an optimistic way, and the instance with minimum time gap may be changed to an-
other instance after the adjustment. However, it does bear similarity with the greedy
strategy so we call it a dynamic local optimization strategy. The second strategy is
dynamic global optimization. A set of holistic rules are defined based on the penalty
calculated from all instances, including the summation of the gap increases of all in-
stances. This strategy chooses the instance with the minimum penalty to schedule.
Table I summarises the three strategies introduced. We provide the details of each of
them in Sections 3.2, 3.3, and 3.4, respectively.

3.1. Resource Data Structure

Before we discuss the three scheduling strategies, we first describe the resource data
structure. Each resource r has a set of available time periods in AP. Each time period
ap � AP has a set SLT, which consists of a set of resource slots within the available
period. Slots are created to store the usage information of a resource in particular time
duration.

Initially, each available period ap = (ts, te) ∈ AP has a single time slot slt, with start
time slt.st = ts, end time slt.et = te, and the initial status slt.status = ‘available’. After a
few allocations, slt may be spitted into several slots (slt1,. . ., slti-1, slti, slti+1, . . .). When
resource allocation is made on slti for the time period (st, et), slti may be partitioned
into more slots. A new slot slti1 is created to replace slti, with slti1.st = st, slti1.et = et,
and slti1.status = ‘assigned’. The allocating information on the instance and the task
is also recorded in slti1. If slti.st < st, we do a leftward split by adding a new available
slot slti2 for the period (slti.st, st) in ap. If slti has a left adjacent slot slti-1 which is
also available, slti2 and slti-1 will be merged into a single available slot. Similarly, a
rightward split may be made. Sometimes we need to re-schedule previous allocations to
optimise the use of resource. Re-scheduling requires frequently retrieving left and right
adjacent slots. Adjacent slots can be retrieved by function prev(slt) for left adjacent slot
and next(slt) for right adjacent slot of slot slt, respectively.

3.2. DM Scheduling Strategy – Depth-First/Min Gap

This strategy is based on a greedy algorithm for process scheduling. Resource alloca-
tion is applied to the most dangerous instance one by one. The allocating sequence is in
a descending order of instance time gap. Given a set of instances, an instance ins with
the minimal time gap has the least room to delay. If the resources are allocated to other
instances first, this instance is most likely to be affected, i.e., re-allocation even using
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the best available resources may cause it to exceed its deadline Df (ins). Therefore, we
set the highest priority to this instance. The algorithm works as follows: First, it pre-
allocates all instances in the optimistic way (satisfying C2 and C3), and each instance
has an initial time gap to deadline; Then it selects the instance with minimum time gap
and keeps the optimistic allocations for the instance; Once an instance is scheduled,
as resources allocated to the instance may be requested by other instances, it has to
adjust those affected allocations of other instances by using the remaining resources to
guarantee C4; It does this adjustment also in an optimistic way; After that, it continues
to select the instance with minimum time gap among the un-scheduled instances; The
selection and scheduling of the instance with the minimum time gap and allocation ad-
justment are repeated until none of the remaining instances are schedulable; Finally, it
attempts to re-schedule tasks in the scheduled instances if there is room for the purpose
of rescuing other un-schedulable instances. The detail of the algorithm is given below.

3.2.1. Initial Optimistic Allocation. In Algorithm 1, Lines 1–3 pre-allocate all instances and
calculate their time gap to deadline before allocation, without considering the issue of
resource conflict (constraint C4). It provides the best case scenarios for all the instances.
Given an instance set I and a resource set R, pre-allocation is based on the function
optimisticAlloc(ins) for each instance ins in I (Lines 19–31), where constraints C2 and
C3 are satisfied. It first finds the current task t (or the next task to schedule) of ins by
calling function getTsk(ins.T) in Line 22, and then calculates the minimal end time of
t with available resources using function getMin(t, R) (Line 23). If the end time of t ex-
ceeds deadline (violating constraint C1), this instance is dropped out as it is definitely
non-schedulable (Line 25). Otherwise, t is allocated with the most efficient resource
(Line 27). This pre-allocation procedure continues until all instances have been
processed.

3.2.2. Resource Allocation. Based on the time gap of un-scheduled instances, resource
allocation becomes not too difficult. Basically, we use the criterion of time gap to
deadline g(ins) to evaluate the priority of instances. The less the time gap between the
finishing time to deadline is, the more dangerous this instance is. Hence, the resource
allocation gets a higher priority. The most dangerous instance is can be detected by
function ergt(I) (Line 5), and then the resource allocation table is updated using the
resource data structure described in 3.1 (Line 6), and this instance is successfully
scheduled. However, other instances may conflict with is (constraint C4 violated).
Therefore, we need to conduct necessary adjustment to the optimistic allocation of its
conflicting instances (Lines 7–14) before removing this allocated instance from the
scheduling list (Line 15).

3.2.3. Optimistic Allocation Adjustment. After allocating instance ins, the optimistic allo-
cation of other instances must be adjusted due to the change of resource availability.
We only need to adjust the optimal allocations of some instances, which use any re-
source slot occupied by instance ins. The adjustment can be made by selecting the most
efficient slot from the remaining available resources. Optimistic adjustment is made
in Lines 7–14 of Algorithm 1. For each remaining instance ins’, set T of the tasks con-
flicting with previous allocation (violating constraint C4) is generated in Line 8, and
these tasks need to be re-allocated. For each task t in T, the new finishing time of opti-
mistic allocation is re-calculated in Line 10. If the updated finishing time is within the
deadline, optimistic allocation is re-applied for t of ins’ using function OptUpd(ins’, t).
Otherwise, this instance is dropped out (Line 11). Steps in 3.2.2 and 3.2.3 are repeated
until all instances are processed, i.e., either scheduled or dropped out (the while loop
in Lines 4–16).
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ALGORITHM 1: DM Strategy
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Fig. 3. Task re-scheduling.

3.2.4. Allocation Adjustment of Scheduled Instances. Previously, most efficient available re-
sources are used in each scheduled instance by optimistic pre-allocation and optimistic
allocation adjustment. In this step, we check allocations of scheduled instances to see if
there is room for re-scheduling these allocations in order to rescue some un-scheduled
instances. The precondition of allocation re-scheduling is that it will not affect the al-
location. This is done by function alloc_reschedule(I) (Lines 32–42 in Algorithm 1). For
example, in Figure 3, initially task t2 of instance1 is un-schedulable because the only
capable resource is assigned to execute t4 of instance2 and t5 of instance3. However,
after re-scheduling on t5, instance1 can be finally saved. Among un-schedulable in-
stances, an instance ins with the minimum exceeded distance ed(ins) from deadline to
current finishing time is most likely to be saved. Thus, we iteratively select an instance
ins with the minimum value of ed(ins) to rescue using function getIns(I) (Line 33).

Next, we explore how to save an instance by re-scheduling allocated tasks: For each
task t of instance ins in execution order, from the perspective of constraint C2, we seek
to make task t to finish the earliest through re-scheduling. First, among the capable
slot candidates prior to current best slot of t while keeping dependencies relevant to
t are satisfied, we select: (1) top 10 in time duration (more likely to be large enough
after re-scheduling); (2) top 10 in availability (t is likely to finish earlier). For each slot
candidate slt in the time sequence, we check if the adjacent slots can be moved around
to enlarge slt until t can be executed by this slot. To reduce computational complexity,
re-scheduling is not permitted to conflict with the allocated instances according to
constraint C4. Technically, cascading leftward (rightward) moves may occur to those
adjacent slots on the left (right) side for finding a sufficient slot. If t can be eventually
executed by slt, we record the re-scheduling operations (not apply them yet). When
all tasks of ins have been checked (i.e., C1 and C4 can be satisfied), we update the
minimal finishing time of ins according to the new plan after re-scheduling (Line 34).
If the deadline can be reached, we apply the recorded re-scheduling operations (re-
scheduling operations on ins and relative slots) to save ins using function reschedule(R,
ins) in Line 36. Otherwise, this instance is un-schedulable and dropped out (Line 39).

After the allocation adjustment of scheduled instances, the total number of sched-
uled instances can be obtained from the allocation table and the success rate can be
computed and returned together with the allocation table (Line 18).
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3.3. BL Scheduling Strategy – Breadth-First/Dynamic Local Optimisation

BL strategy attempts to plan resources for instances in a holistic way yet using
dynamic local optimisation. As discussed, DM strategy allocates resources to one
instance at a time. On the other hand, BL strategy allocates resources to one task
of one instance at a time. In this way, it balances all instances by giving them the
same chance for occupying resources. Among those current tasks competing for a
resource, the allocation will be only made to schedule the most urgent task, and task
urgency can be evaluated by certain criteria on the instance to which this task belongs,
as shown in Formula 2. Specifically, in each round, we select the next available
resource slot for allocation, and this resource is supposed to be used for the most
urgent task according to a set of heuristic rules for local optimisation. The strategy
is illustrated in Algorithm 2. Initially, Lines 1–3 use the result of pre-allocation from
function optimisticAlloc(ins) introduced in Section 3.2.1. The function guarantees that
constraints C1, C2, and C3 can be satisfied. Then, instance scheduling is performed
based on an iterative approach using three steps (discussed in Sections 3.3.1, 3.3.2,
and 3.3.3) until no remaining instance to be scheduled.

3.3.1. Selecting Resource and Generating Candidate Task Set. We select a resource slot slt
that is the first in use among all available resource slots. This optimistically allocated
resource slot may conflict with more than one current task of other different instances.
Only one of them can be allocated with the slot (i.e., satisfying constraint C4 for conflict-
free allocation). In this step, we first find a conflicting task set on this resource slot.
Assume task t is the earliest one using slt, the time period tp of the allocation on t is
derived (Line 5). A conflicting task set T includes all un-scheduled tasks using resource
slot slt during a period overlapping with tp (Line 6). In Section 3.3.2, we select the most
urgent task from T based on a set of rules.

3.3.2. Resource Allocation. Given resource slot slt and conflicting task set T from the
step described in Section 3.3.1, this step is to choose the most urgent task. In the BL
strategy, the urgency of a task is determined by a set of heuristic rules about the
instance containing the task.

Rule 1. The urgency of a task t for allocation is influenced by the time gap of the
instance that t belongs to (from constraint C1’s view). The smaller the value of the time
gap, the more urgent the t for allocation becomes because the instance is more likely
to exceed the deadline.

Rule 2. The number of alternative resource slots to resource slot slt influences the
urgency of a task t. Alternative resource slots are the capable resources that t can be
re-allocated while not affecting the current allocation of the instance that t belongs to.
If t has many alternative resource slots, it means t has abundant allocation choices,
and hence it may not be urgent for t to be allocated using the slot slt.

Rule 3. If a task t is not allocated and there is no alternative resource slot for t,
the time gap of the instance ins that t belongs to may reduce from g(ins) to g(ins)’.
An instance with a higher ratio = g(ins)’/g(ins) is more likely to exceed deadline if
the resource is not allocated to it, and hence it has higher priority to be scheduled
immediately.

For each task t of instance ins in conflicting task set T, we generate the alternative
resource set Sa according to Rule 2 (Line 8). Based on the heuristic rules, the priority
of each task for requesting this resource is calculated by function u(t) (Lines 9–15).
Assume x = 1 + |Sa| and r = g(ins)’/g(ins) for task t, its urgency of being selected is
computed as follows:

u(t) = r/
g(ins) × √

x (g(ins) �= 0) (2)
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In Formula 2, the urgency of task t is inverse proportion to g(ins) ×√
x, because

resources tend to save tasks in dangerous instances according to Rule 1. Importantly,
the task with less alternative resources has a higher priority, because it is less likely to
be scheduled by alternative resources without affecting optimistic allocation (Rule 2).
As the number of alternative resources may vary greatly, a square root of x is used
because we seek to reduce the effect of x. In contrast, the urgency of task is in proportion
to ratio r. If a missed allocation of a task to this resource can cause a dramatic decrease
of the time gap from g(ins) to g(ins)’, this task has a high value of r and is more urgent
to be allocated (Rule 3). Within task set, T we select a task ts using function maxW(T)
(Line 20), which returns the most urgent task with maximum value of u(ts). Then, ts
can be scheduled as optimistic allocation (Line 21).

ALGORITHM 2: BL and BG Strategies
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3.3.3. Allocation Adjustment. After the resource allocation in the step discussed in
Section 3.3.2, allocations of some instances may be affected and required to change.
Similar to the DM strategy, we adjust the affected allocations by using function
updOpt(I) (Line 28, for C4). But if an instance becomes un-schedulable with remain-
ing resources, its occupied resources are released. After optimistic pre-allocation,
all the steps are repeated until no remaining instance is schedulable. Lastly, we
try to re-schedule the allocated tasks to save other instances by using function
alloc_reschedule(ins) (Line 29). The allocation table is finally returned (Line 30).

Note that business process scheduling may have conflict-of-interest constraints. As
we focus on the complexity caused by the availability constraints, this article adopts
a simplified resource model. To consider conflict of interest, we need to consider some
changes on our two operations. The first change is on the initial optimistic allocation.
Given a business process instance, we can traverse the conflict free mappings from
tasks to resource slots, rather than all, to select out the best allocation. The other one
is on the optimistic allocation adjustment, we can use the similar approach to select
the optimal conflict-free resource slot for assignment.

3.4. BG Scheduling Strategy – Breadth-First/Dynamic Global Optimisation

The BG strategy uses a different optimisation criterion for holistic process scheduling
compared with the BL strategy. Though it schedules processes for one task of one
instance in each round and schedules instances in a balanced way, this strategy targets
global optimisation for every allocation. Resources are used to schedule the task with
minimal penalty based on all instances rather than a single instance. We propose three
heuristic rules, based on which the penalty of each task for allocation can be calculated
using a formula. In comparison, this strategy considers more impact among different
instances than the previous two strategies. Given a resource slot slt and a conflicting
task set T on slt, task priority is determined by the following rules:

Rule 1. When slt is allocated to t � T of an instance, the total time gap increase of all
instances influences the task penalty. The more the total time gap increases, the more
of a penalty it will get, and hence the less of a priority this task will be scheduled from
the overall perspective.

Rule 2. If a task belongs to an instance with fewer un-scheduled tasks, this task gets
less of a penalty or has more priority to be scheduled because we are more likely to
guarantee that the instance it belongs to can be successfully scheduled.

Rule 3. The task gets more of a penalty if it results in more instances becoming un-
schedulable. Each allocation is aimed to cause the least number of instances becoming
un-schedulable.

This algorithm is illustrated in Algorithm 2. Based on the result of pre-allocation
(Lines 1–3), we select the next available resource slot that can be first used (minimal
start time) in all un-allocated instances, and then generate the task candidate set of the
resource slot (Line 6). In Line 17, the penalty of task candidates is evaluated according
to the heuristic rules proposed above, and the resource slot is allocated to the task with
minimal penalty from the global view. Given a task t of instance ins, the penalty p(t)
for scheduling this task using resource slot slt is calculated as:

p(t) =
(

1 − 1
2x

)
· y2 ·

( ∑
ins∈I

(
g(ins)′ − g(ins)

))
(3)

where x is the number of remaining tasks of ins including t, y is the number of un-
schedulable instance resulted from the allocation of t, and

∑
i∈I (g(i)′ − g(i)) is the
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Table II. Complexity Comparison

Strategies Time Complexity
DM max(O(m2np), O(mnpq))
BL max(O(m2n2p), O(mnpq))
BG max(O(m2n2p), O(mnpq))

total time gap increase. The penalty has a direct relationship with the total time gap
increase of all instances (Rule 1). Also, the penalty is in proportion to x because, when
an instance is about to finish, we tend to finish it (Rule 2). However, Rule 2 is less
dominant so we design (1 – 1/2x) as the coefficient in range [0.5, 1) to restrict its effect.
In addition, the task penalty is also in proportion to y because the allocation should
avoid affecting other instances (Rule 3). We emphasise its effect with y2. In each round,
task ts with the minimal penalty is selected (Line 22), and resource slot slt is allocated
to schedule this task for global optimisation (Lines 23–26). Optimistic allocations are
updated after task scheduling (Line 26). Similar to the BL strategy, these three steps
continue until no remaining instance needed to be scheduled.

3.5. Discussion

In this section, we discuss the performance of our three proposed heuristic-based strate-
gies and how they are used in decision support systems. The complexities of the strate-
gies are analysed first. Also, we compare their advantages and limitations according
to the heuristics adopted.

Assume an input with m process instances and each instance has at most n tasks.
Each task can be performed by no more than p capable resources. In the DM strategy,
pre-allocation for all instances is conducted first (Lines 1–3 of Algorithm 1) and it runs
in O(mnp) time. Then resource scheduling is iteratively made for the most urgent task
(Lines 5–6 of Algorithm 1), and its conflicts with the remaining instances are handled
accordingly after each allocation (Lines 7–14 of Algorithm 1). These require O(m2np)
time in the worst case. If no remaining instances are schedulable, we seek to apply
re-scheduling on previous allocations to rescue the un-scheduled instances. The com-
plexity of re-scheduling for one remaining instance is O(npq) in the worst case, where q
denotes the maximum number of tasks (of all instances) can be allocated to a resource
for execution. Such adjustments may repeat at most m times. Therefore, the total com-
plexity of the DM strategy involving the above steps is max(O(m2np), O(mnpq)). In the
BL strategy, pre-allocation is conducted first, then an available resource slot first in
demand is selected in line 5 of Algorithm 2. For each allocation, we use up to O(np)
time to calculate the urgency of each task requesting this slot (Line 11 of Algorithm 2),
and then allocation is made to the most urgent one. Immediately after the allocation,
its conflicts are handled in O(mnp) time (Line 26 of Algorithm 2). All these operations
may repeat at the maximum of m×n times to schedule all instances. Last, we seek
to re-schedule previous allocations to rescue the remaining un-schedulable instances
(Line 29 of Algorithm 2) and it runs in O(mnpq) time. Therefore, the complexity of
the BL strategy is max(O(m2n2p), O(mnpq)). The difference between the BG and BL
strategies is that they use different criteria in selecting a task for allocation. In the BG
strategy, the time requires for calculating the penalty of each task in a candidate task
set is O(mnp) according to Lines 12–13 of Algorithm 2. Thus, the BG strategy runs in
max(O(m2n2p), O(mnpq)) time.

According to the adopted heuristics, the DM strategy always uses resources to cater
for the most urgent instance and guarantees at least this instance can be successfully
scheduled. Therefore, this strategy is expected to be practical when resources are
insufficient. Compared with the DM strategy, the BL and BG strategies give changes
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to all instances and schedule them in a holistic way. As a result, instances are allocated
in balance and hence tend to succeed or fail together. In contrast to the BL strategy,
which is based on such a local optimisation that resources are always assigned to the
task of the most urgent instance, the BG strategy relies on global optimisation meaning
that instances are allocated in a more balanced way.

The heuristic-based strategies proposed can be used to plan the enterprise resource
utilisation for processing business process instances requested by a customer. They are
especially useful to support an enterprise for making important decisions with regard
to marketing. Through a build-time planning, managers can be informed about how to
optimise their enterprise operations for maximal profit, with the guarantee that their
resource requirements can be satisfied. If an instance cannot be scheduled, the enter-
prise needs to make a decision for either seeking an extra resource or negotiating with
the customer for extending deadlines, for instance. The useful information gathered
by the scheduling strategies can be explored to support enterprise decision making,
e.g., what kind of resources is especially needed, which process instances can be easily
scheduled with minimum effort. Some decisions can be made based on new resource
recruitment or work shift adjustment. It is worth noting that our proposed process
scheduling strategies can be re-applied several times. This way, we can cater for some
situations such as giving priority to a VIP customer or handling an exception when it
occurs.

4. GENETIC-ALGORITHM-BASED SCHEDULING STRATEGIES (GA STRATEGY)

The algorithms proposed in Section 3 are based on heuristics. Sometimes, the heuris-
tics may discriminate some exploring cases and thus miss the most or more accurate
results in spite of good efficiency performance. To overcome this shortcoming, we pro-
pose a genetic algorithm based scheduling strategy (GA strategy in short) to ensure the
scheduling can achieve at least the near-optimal results. In a genetic algorithm, each
candidate solution has a set of properties (i.e., its chromosomes) which can be mutated
and altered during evolutions. Starting from a population of individuals (i.e., candidate
solutions), each evolution selects the individuals with high fitness values to generate
new individuals using three operators (selection, crossover, mutation). Through itera-
tive evolutions, the candidate solutions keep improving in generations, and the process
stops when the terminating condition is satisfied.

4.1. Encoding and Initial Population

In standard genetic algorithms, candidate solutions can be encoded and represented
by an array of bits; however, this representation does not fit our scenario and thus a
new encoding structure is needed. In the process-scheduling context, each candidate
solution is an assignment from tasks (in all schedulable instances) to available resource
slots with no overlapping. Therefore, in our GA strategy, we encode each candidate
solution in an array of tuples in the structure of (i, j, k, s, e), where i/j/k are the IDs of
instance, task, and resource, respectively, and s and e refer to the starting and ending
times of a time slot, respectively. A tuple (i, j, k, s, e) means that a task j of an instance
i is assigned to an available time duration (ts, te) of a resource k. Tuples appear in
array in the ascending order of (i, j). Note that candidate solutions are required to meet
all the constraints (C1, C2, C3, and C4) defined as part of our problem statement (in
Section 2).

Given that the three heuristic based strategies can provide meaningful results effi-
ciently, we utilize them in our GA strategy to generate the initial population, rather
than by random. Specifically, we retrieve a subset of resources and a subset of process
instances by random, and then run the DM, BL, and BG strategies on the top of the
selected resources and instances, where each run returns a candidate solution. In this
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way, we can obtain a required number of candidate solutions that can be encoded as
the initial population for the GA strategy.

Each evolution selects some promising candidate solutions, and thus it is impor-
tant to create a fitness function for evaluating those solutions. As we aim to find the
assignment that can maximize the number of instances to be scheduled, the fitness
function F(allocT) of a scheduling candidate solution allocT (i.e., an individual) can be
formulated as the ratio of instances that are successfully scheduled in allocT (to all
instances). Given a generation of individuals, we define the best possible result covered
in generation Gi as fn.

f n = max(F(alloc)|alloc ∈ Gi), where F(alloc) is the fitness of an individual.

4.2. Genetic Operators

Genetic operators are used in generating a next population to pursue superior indi-
viduals against the fitness function. The operators we use generally include selection,
crossover and mutation.

Selection. The selection operator ensures us to preserve good individuals (i.e., candi-
date results) in the next population. The selection of individuals adopts a probabilistic
method on top of the fitness function, i.e., individuals with greater fitness values have
higher probability of being selected. In this way, we can ensure the quality of next
population, while preserving the probability.

Crossover. The crossover operator means combining two existing candidate solutions
to form a new one, which gives us opportunities to find a better individual. To do
the crossover, we select two individuals using the selection operator. Assuming the
selected individuals are indv1 and indv2, we scan all process instances such that:
(1) if the instance is not scheduled in both individuals, it is not included in the new
individual indvc; (2) if the instance is scheduled in only one individual, all array tuples
regarding this instance are included in indvc after the crossover; and (3) if the instance
is scheduled in both individuals, we select the individual that has less edit distance with
this instance, where the edit distance eDistance(i, indv, indv’) between two individuals
indv and indv’ on the ith instance can be calculated as follows:

eDistance(i, indv, indv′) =

∑
(i, j,k,s,e)∈indv

isConf lict(k, s, e, indv′),

|indv|
where isConflict(k, s, e, indv′) returns 1 if time slot (s, e) of resource sk has been used in
indv’, and returns 0 otherwise. Obviously, the greater value of the edit distance is, the
more tasks in the instance need to be rescheduled. Therefore, in the GA strategy, we
intend to select an individual with less edit distance to indv’ on the ith instance. Here,
we set the crossover probability to be 0.7.

By repetitively carrying out the above procedure, a new individual indv’ can be
generated, and indv’ contains the partial results from the selected individuals. Note
that indv’ may not be a valid candidate result because conflicts may exist. Therefore,
we iteratively select an instance and remove its conflicts. At each time, for the instance
that has maximum number of conflicting tasks to other instances, we reschedule it
if possible, or remove it from indv’ otherwise. In this way, the new individual indv’
becomes a valid candidate result with respect to constraints C1, C2, C3, and C4.

Mutation. In the GA method, the mutation operation changes the value of genes in
a chromosome according to a mutation probability pm. In our GA strategy, it incurs
changes to the schedule of a given individual. This operator helps us try more possible
schedules to find out something useful, the new individual has a potential of improving
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the current schedule by itself or part of it (with the crossover operator). Specifically, in
the mutation operator, some individuals are randomly selected, and we try to replace
their schedules by a non-conflict one, if possible. In this article, we set the mutation
probability to be 0.2, and the mutation runs as follows: (1) given a population, we
select out some individuals from it based on the mutation possibility; (2) for each of
the selected individuals, tasks are randomly selected to replace their schedules. If the
selected tasks can be re-scheduled with a non-conflicting time slot and the fitness value
is improved, we update the schedule. Otherwise, the schedule remains unchanged. The
replaced schedule appears in the new generation.

4.3. GA-Based Scheduling Algorithm

Based on the genetic operators, the GA-based scheduling works as described in Algo-
rithm 3. It starts from the first generation Gi, which is initialized by using the DM,
BL and BG strategies on different process instance and resource settings (Line 3).
Then, it uses generic operators to form a new generation G’ on top of Gi (Lines 6–11).
Specifically, selection, crossover and mutation operators are used to improve the cur-
rent generation with the help of the fitness function. The new generation is formed
afterwards based on the individuals in G’. This procedure is performed repetitively,
and it stops when the number of loops reaches the given threshold (Lines 13–15) or the
maximum fitness value of an individual in the new generation is satisfactory. Finally,
the scheduling with the maximum fitness value is returned.

ALGORITHM 3: GA Strategy

5. EXPERIMENT

In this section, we evaluate the techniques that have been proposed in Sections 3
and 4. Specifically, our goal is to compare the four proposed approaches (the BL, BG,
DM and GA strategies) in terms of: (1) the success rate of process instances, i.e., the
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Table III. Experiment Parameters

Parameter Value Range Parameter Description
Ninstance 1,000 number of process instances

Ntask 10∼50 number of tasks per instance
Nresource 300 number of resources

Nslot 5∼100 number of time slots per resource
t(r, t) 1∼10 time required to perform task t by resource r

percentage of successfully scheduled instances to the total instances; (2) the efficiency
of scheduling process instances on different scales of instance and resource; and (3) the
effect of resource scarcity to algorithm performances.

5.1. Experimental Settings

Our experiments were conducted on a DELL 7010MT Elite computer with a quad-core
CPU (Intel i5-3740) at 3.2GHz and 8GB RAM running Windows 7 (64-bit) operating
system. The test settings include 500 resources categorised into 10 types, and 1000
process instances belonging to 20 business processes, with the parameters specified
in Table III. The business processes and corresponding instances are selected from
a deployed process management system named ‘Qone’, where each instance has 10
to 50 tasks, and the average in-degree of each task is 1.42, which reflects the task
concurrency relationships of the process. A higher average in-degree value means
that more subsequent tasks are allowed to be processed in parallel, i.e., a greater
concurrency level may be achieved when executing the tasks in the business process.
We generated 300 available resources, and for each resource r, we set parameters Nslot
(i.e., number of available time slots of r) and t(r, t) (i.e., time required to perform task
t) in a normal distribution over the value range shown in Table III. Based on the
same resource setting, we apply different strategies to plan available resources for the
required process instances.

We constructed a temporal index using inverted lists to support efficient retrieval
of capable resource slots. Specifically, a time space is partitioned into several time
windows, each of which corresponds to a temporal duration (e.g., 8AM – 10AM, 11th

Oct 2015). For each of the time windows, we used an inverted list that stores all
resources that have at least one available time slot intersecting to this time window.
Therefore, given a task of an instance, we can fetch the time windows that the task can
be performed (subject to its previous and following tasks). From the union on the lists
belonging to those time windows, we can derive all candidate resources for this task.

5.2. Comparison On Accuracy

We have evaluated and compared the accuracy of four proposed strategies using two
test cases. In the first test case, we applied different strategies in scheduling 200,
400, 600, 800, and 1000 process instances with all 300 resources, and then compared
the number of successful instances and the percentage of how many unsuccessful in-
stances are successfully scheduled through the adjustment. Based on the same process
instance settings, we further conducted the second test case, where 150 randomly se-
lected resources are used in evaluating and comparing the performance of the proposed
methods in various process instance scales.

Figure 4 shows the accuracy comparison of the DM, BG, and GA algorithms in
resource settings of Nresource = 300 and Nresource = 150. According to Figure 4(a), the
GA-based algorithm is a near-optimal approach, much better than all other strategies.
It makes all instances scheduled when Ninstance < 600. In contrast, the number of
scheduled instances becomes stable when Ninstance = 800, because the instances call
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Fig. 4. (a) Accuracy comparison (Nresource = 300). (b) Success rate comparison (Nresource = 150).

Fig. 5. (a) Adjustment comparison (Nresource = 300). (b) Adjustment comparison (Nresource = 150).

for more resources than what are available. Among the three heuristic-based methods,
BG has the best performance with respect to success rate, which corresponds to the
global optimization nature in its heuristic rules. When BG or BL are used, the number
of successful instances becomes stable when Ninstance = 600. We can easily observe that
unsurprisingly the greedy-method-based DM strategy has the worst performance, and
this can be explained by its local optimisation criteria.

Figure 4(b) compares the accuracy of the strategies in the resource setting of
Nresource = 150, where resource becomes more limited. Similar to the previous exper-
iment, the GA-based algorithm has the best performance with respect to accuracy.
We can easily notice that with the BL and BG strategies the number of scheduled
instances is decreasing when the number of given instances goes beyond 400. In
contrast with the DM and GA strategies, the number keeps improving when the
number of instances grows, which can be explained by the greedy nature of DM and
the capability of returning near-optimal results of the GA strategy. An interesting
phenomenon is that the BG strategy provides the worst result when Ninstance = 1000,
indicating that the global optimization oriented method does not always outperform
the local optimization method, especially when resources are not sufficient.

When applying adjustments in DM, BL, and BG to increase success rate, we
use the ratio of the number of instances rescued by the adjustment to the total of
scheduled instances to illustrate the algorithm’s contribution. Figure 5 shows the
effectiveness of allocation adjustment (in DM, BL, and BG) to report the ratio of
the number of instances handled by this phase to the number of all the scheduled
instances. According to Figure 5, allocation adjustment helps to increase the success
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Fig. 6. (a) Concurrent levels of Resources (Nresource = 300); (b) Concurrent levels of Resources (Nresource =
150).

rate by around 10%–30% accordingly in usual cases. In Figure 5(a), in the setting of
Nresource = 300, the impact of allocation adjustment to all strategies increases when
the number of total instances goes up, and its effect is especially greater to DM and
BL (particularly DM), because their local-optimisation-based nature leaves more room
for improvement. But in the cases where resources become limited in the setting
of Nresource = 150 as shown in Figure 5(b), the effect of allocation adjustment to the
strategies reduces significantly. From Figure 5(b), we can observe that the adjustment
is only a supplement for scheduling strategies, as it cannot rescue the result by itself
when all the strategies fail (Ninstance > 600, i.e., resources are extremely insufficient).

In Figure 6, we evaluated the algorithms in terms of concurrency levels based on
Nresource = 300 and Nresource = 150 settings. The concurrency level of resources means
how many tasks each resource can serve concurrently. In this experiment, we varied
the concurrency levels in Figures 6(a) and (b), and resources in each test have the same
concurrent level. We can see that the GA approach has the best performance with the
increase of concurrency levels in both settings. Also, BG has a higher success rate than
GL and DM when resources can be used in a greater concurrency. This is because the
BG’s global optimization nature makes it more likely to adapt to concurrent level of
resources. We can also observe that the DM strategy cannot fully use the available
resources when the concurrency level increases.

Therefore, the GA-based strategy has the best accuracy such that near-optimal re-
sults can be obtained. Among the three heuristic methods, the BG strategy has a higher
success rate when resources are sufficient but performs worse when resources become
tighter. This coincides with our previous analysis that the instances scheduled in this
strategy tend to succeed or fail together. When resources are insufficient, the DM strat-
egy becomes a practical scheduling strategy. This also coincides with our analysis, and
is due to the nature of its depth first scheduling.

5.3. Comparison On Efficiency

In this part, we also compare the efficiency of four proposed strategies based on the
two cases mentioned above. For the GA strategy, the initialization time (depends on
the number of runs of DM, BL, and BG in different environment) is not included.

Figure 7 compares the computational overhead of the DM, BL, BG, and GA strategies
in the Nresource = 300 setting. In accordance with Figure 7(a), the GA-based algorithm
requires several minutes for processing, and it is much more time-consuming than the
other heuristic-based scheduling strategies. In contrast, the DM, BL, and BG strategies
are able to feedback within a minute. Figures 7(a) and (b) show that DM calls for the
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Fig. 7. (a) Cost (Nresource = 300) (b) Average Cost on a succussed instance (Nresource = 300).

Fig. 8. (a) Cost (Nresource = 150) (b) Average Cost on a succussed instance (Nresource = 150).

least processing cost, and BG requires more cost than DM and BL in terms of both the
total process time and the average time on each scheduled instance. This can be well
explained by the fact that global-optimisation-based strategies like BL and particularly
BG have to consider the complex dependencies between different instances, which will
definitely cause the algorithm to do many more search operations.

Figure 8 evaluates and compares the computational cost of different strategies in
the Nresource = 150 scenario where resources becomes more limited. Same as regular
scenario cases, the GA is much more time-consuming than others, and DM is the most
efficient among three heuristic-based strategies in accordance with Figures 7(a) and
(b). But we can observe that the time of BG costs less time than BL when resources
become insufficient (Ninstance > 800). This phenomenon is caused by the early detection
of resource insufficiency due to the excessive number of instances it can cope with, so
it steps into allocation adjustment phase early.

To sum up, the GA-based strategy is able to provide near-optimal scheduling of
instances, but it consumes several minutes or more; thus, it seems to be only suitable
for build time applications as efficiency is not a big concern. For a run-time process
scheduling where a good result is expected to be recommended in a short time, the
BG strategy is considered the first option. This is because it tends to return a rational
scheduling efficiently. If available resources are very limited, the BL strategy may
outperform BG in terms of both efficiency and accuracy.
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Fig. 9. (a) Accuracy via Resource Scarcity (b) Efficiency via Resource Scarcity.

5.4. Effect of Resource Scarcity

As mentioned in Section 3, the performances of the proposed algorithms are affected
by the resource scarcity in experimental settings. In this section, we give a formal
definition of resource scarcity as a parameter. We generated 100 test cases, and then
reported their average accuracy and efficiency with varying value of the parameter
(i.e., resource scarcity).

Given a set of resources R and a set of business process instances I, we use the
parameter resource scarcity, denoted as RS(R, I), to describe the abundance of available
resources for scheduling those instances, and it is measured as

RS(R, I)=
∑

slot∈R

∑
ins∈I

∑
t∈ins

time(t,slot)
α(t)

τ (slot)

where τ (slot) denotes the temporal duration of a resource slot slot overlapping with at
least one instance to which slot can be assigned; α (t) represents the number of available
resource slots can be used to execute a given task t. The lower value RS(R, I), avail-
able resources are considered to be more scarcely available for processing instances
I, and it is thus more likely to lead to a lower number of instances unable to be suc-
cessfully scheduled. We generated 100 test cases, each case fetches part of the default
business process instances, to evaluate the effect of resource scarcity to the proposed
algorithms.

Figure 9 shows the average efficiency and accuracy of the proposed methods in
varying range of RS(R, I) value (i.e., resource scarcity). As shown in Figure 9(a), the
success rate of scheduled instance goes in the direct tendency to the RS(R, I) value. We
can observe that the GA-based algorithm has the best performance robustness, and it
outperforms all other algorithms at any resource scarcity level. Among the heuristic-
based methods, BG tends to be the best strategy in most resource scarcity values. But
it is noteworthy that the DM strategy turns out to be superior to BL and BG when the
degree of resource scarcity becomes high (i.e., greater than 0.75). Figure 9(b) shows the
average execution time of all proposed algorithms in different resource scarcity ranges.
In comparison, DM is the most efficient strategy, and the GA-based strategy has much
greater execution time than all heuristic-based method.

Figure 10 compares the results returned by the proposed algorithms to optimal
assignment in varying resource scarcity. We generated 30 synthetic simple test cases
that their optimal assignment can be known, and reported the accuracy (of DM, BL,
BG, and GA), which is defined by the number of scheduled instances compared to
the optimal assignment. From this figure, we can easily observe that the GA returns
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Fig. 10. Comparison to optimal assignment.

near-optimal results in high accuracy. The BG approach has fairly good accuracy when
available resources are abundant (i.e., low resource scarcity cases), but it has the worst
accuracy when the degree of resource scarcity becomes high.

To sum up, the GA-based strategy is able to provide near-optimal scheduling of
instances, but it consumes several minutes or more and is thus only suitable for build
time applications as efficiency is not a big concern. For run-time process scheduling
that a good result is expected to be recommended in a short time, the BG strategy
is the first option because it tends to return a rational schedule efficiently. If the
available resources are very limited, the BL strategy may outperform BG in terms of
both efficiency and accuracy.

6. RELATED WORK

As a classical research topic, resource allocation is about investigating how to optimally
utilise available resource for achieving certain goals with constraints. The problem of
mapping tasks onto given resources is known to be NP-complete [Yu and Buyya 2005,
2006; Fechner et al. 2008; Liu et al. 2011]. Due to its complexity, lots of heuristic
methods have been proposed to address some classical problems, such as job shop
scheduling and queuing mechanisms for operating system. In Jensen [2003], Wu et al.
[2004], Yoo [2009], and Zomaya and Teh [2001], some genetic algorithms are introduced
to improve quality of resource allocation generation by generation according to the
fitness value. Also, several works, such as Heinonen and Pettersson [2007] and Seckiner
and Kurt [2007], use the colony optimisation as heuristics for resource allocation.
Derived from the Monte Carlo method, the simulated annealing method [Jin et al.
2009; Yarkhan and Dongarra 2002] uses statistics to search optimal allocation. In
addition, many other heuristics have also been proposed, such as duplex [Jose et al.
2008], neural networks [Xie et al. 2005], etc. Also, the work [Vermeulen et al. 2009]
handled the problem of task level resource scheduling for patients in hospital under
the resource availability constraint (resource calendar).

Compared with the works mentioned above, resource allocation on workflow sys-
tems considers the complex dependencies among the tasks of business processes. In
this area, resource management can be classified into two categories. The first category
is to allocate suitable resources for workflow instances at run time. Yu and Buyya [2006]
developed a genetic approach to solve the deadline constrained scheduling problem. The
fitness function combines time fitness and cost fitness. Based on the fitness value, their
algorithm searches for a solution which has minimal execution cost with the deadline by
two types of mutation operations: the swapping mutation and the replacing mutation.
An ant colony optimization approach is proposed in Chen et al. [2010] to handle the
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time-constrained workflow scheduling problem using pheromone and heuristic infor-
mation. Yarkhan and Dongarra [2002] proposed a solution using simulated annealing
to select a suitable size of a set of resources for scheduling ScaLAPACK application
in Grid environment. Senkul and Toroslu [2005] presented architecture of workflow
scheduling under the resource constraints. In Russell et al. [2005], a novel framework
of resource patterns for workflow resource management is proposed. Some approaches
such as Ashraf and Erlebach [2010], Decker and Schneider [2007], and Langguth and
Schuldt [2010] consider resource reservation when scheduling the workflow/business
processes. In contrast, the second category is to plan resource for certain number of
workflow instances at the build time. In this category, more instance dependency infor-
mation is assumed to be available and therefore can be explored for resource planning
at the build time. In Xu et al. [2008], process execution plan optimisation is discussed
in aspects of inter-related factors: structural improvement and resource allocation. In
Xu et al. [2009], two strategies are proposed to plan resources for a massive number
of process instances before execution, in order to meet the deadline and minimise total
cost. Also, resource planning for service-oriented workflows is investigated in Eckert
et al. [2008]. It introduces the required architecture for resource planning and work-
load prediction. Furthermore, it presents optimisation approaches and heuristics for
solving the resource planning problem with low computational overhead. In addition,
Liu et al. [2010] discussed how to adjust the static planning scheme at the run time
when it is violated by a resource or workflow requirement change.

To the best of our knowledge, none of the existing work discussed above consider
temporal patterns of resource availability, which is a crucial issue for the rational use
of resources in practice. This article focuses on the scheduling of process instances
with resource availability constraints, which faces a larger search space as it involves
resource temporal patterns, capabilities, business process structural information. In
particular, we proposed three heuristic-based methods to find rational results efficiently
for run-time applications, as well as a genetic algorithm-based approach to provide
near-optimal results for build-time applications. Compared with the existing GA-based
methodologies [Wu et al. 2004; Yoo 2009; Yu and Buyya 2006; Zomaya and Teh 2001],
our business process scheduling approach integrates resource availability patterns,
business process structure and temporal constraints more seamlessly. It is able to
start from a good initial population because of the use of more rational results (rather
than simple heuristic based) and temporal aware encoding. Moreover, the proposed
approach is expected to efficiently provide better quality result due to usage of the
carefully designed crossover and mutation operations, which are sensitive to resource
temporal patterns and structural information.

7. CONCLUSION AND FUTURE WORK

In this article, we tackled the problem of scheduling business process instances to
satisfy certain availability constraints. We investigated how to allocate resources for
process instances before execution to maximize the success rate of scheduling. As the
problem is computationally hard, we explored a set of heuristic rules and proposed one
greedy algorithm and two holistic algorithms. We also proposed a genetic algorithm to
provide near-optimal scheduling of instances at build time. Comprehensive experimen-
tal studies were conducted to evaluate all the algorithms. The proposed strategies can
be used to rationally plan the enterprise resource utilisation for processing the busi-
ness process instances requested by customers, and the information gathered from the
scheduling process is useful for enterprises to make quality decisions for marketing.

In future, we plan to inter-play resource-level constraints with process-instance-level
constraints, e.g., inter-task temporal constraints. Also, we will explore more optimiza-
tion criteria to recognize the different impacts of workflow structure to each instance.
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