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DENFIS: Dynamic Evolving Neural-Fuzzy Inference
System and Its Application for Time-Series
Prediction

Nikola K. Kasaboy Senior Member, IEEEand Qun Song

Abstract—This paper introduces a new type of fuzzy inference knowledge acquisition and self-improvement, and spatial and
systems, denoted as dynamic evolving neural-fuzzy inferencetemporal learning.
system (DENFIS), for adaptive online and offline leaming, and  gpjine learning is concerned with learning data as the system

their application for dynamic time series prediction. DENFIS t Vi i d the dat iaht exist onlv f
evolve through incremental, hybrid (supervised/unsupervised), operates (usually in real time) an € data might exist only tor

learning, and accommodate new input data, including new @ short time. Several investigations [21], [22], [32], [62]-[64]
features, new classes, etc., through local element tuning. Newproved that the most popular neural network models and al-
fuzzy rules are created and updated during the operation of the gorithms that include multilayer perceptrons (MLPSs) trained
system. At each time moment, the output of DENFIS is calculated with the back propagation (BP) algorithm, radial basis func-
through a fuzzy inference system based om-most activated fuzzy . - !

rules which are dynamically chosen from a fuzzy rule set. Two t'on (RBF) networ_ks’ a”O! self—orggnlzmg maps (SO_MS) are not
approaches are proposed: 1) dynamic creation of a first-order suitable for adaptlve, online Iearnlng. At the same time, several
Takagi—Sugeno-type fuzzy rule set for a DENFIS online model; models that have elements of adaptive, online learning or struc-
and 2) creation of a first-order Takagi-Sugeno-type fuzzy rule set, ture and knowledge adaptation, have been developed that in
or an expanded high-order one, for a DENFIS offline model. A set clude connectionist models [1]-[4], [10]-[12], [16], [19], [21],

of fuzzy rules can be inserted into DENFIS before or during its
learning process. Fuzzy rules can also be extracted during or after [23], [25], [26], [30], [31], [33], [34], [45]-{49], [54], [57], [61],

the learning process. An evolving clustering method (ECM), which [64], [65], fuzzy logic models [69], [6], [29], [35], [51], [68],
is employed in both online and offline DENFIS models, is also models based on genetic algorithms [18], [24], hybrid models

introduced. It is demonstrated _that DENFIS can effectively learn [27], [35]-[38], [41], [42], [44], [51], [55], [68], evolving fuzzy-
ggmgl‘x‘eﬁ?&‘:&:\;ﬁ' zig‘:ﬁgcﬁ%g‘eg‘ adaptive way and outperform g 5| networks [37], [39], [40], [44], and evolving SOMs [17].

' The evolving connectionist systems (ECOSs) framework [39]
assumes that a system evolves its structure and functionality
from a continuous input data stream in an adaptive, life-long,
modular way. The system creates connectionist-based modules
and connects them, if that is required according to the input

. INTRODUCTION data distribution and the system’s performance at a certain time
HE complexity and dynamics of real-world problems, egnhoment. ECOSs employ local learning (see, for example, [8],
pecially in engineering and manufacturing, require sophiL56])- . )
ticated methods and tools for building online, adaptive intelli- The evolving fuzzy neural network (EFUNN) model was in-
gent systems (ISs). Such systems should be able to grow as fii@guced in [40] as one way for creating connectionist mod-
operate, to update their knowledge and refine the model throudS in an ECOS architecture. In [37] and [44], the EFUNN
interaction with the environment [2], [40], [41]. This is espethodel is further. dfave!oped mainly in respect of dynamic pa-
cially crucial when solving artificial intelligence (Al) problemsrameter self-optimization. EFUNNSs are fuzzy logic systems that
such as adaptive speech and image recognition, multimodal hqve five-layer structures (Fig. 1). Nodes and connections are
formation processing, adaptive prediction, adaptive online coff€ated/connected as data examples are presented. An optional
trol, and intelligent agents on the world-wide web [7], [67]. short-term memory layer can be used through a feedback con-
Seven major requirements of the present ISs (that are Kgction from the ryle (also called casg) node layer. The Iayerof
dressed in the ECOS framework presented in [39] and [43]) afp@dback connections couId_ be used if temporal relationships of
discussed in [37], [39], [40], and [43]. They are concerned witRPUt data are to be memorised structurally.
fast learning, online incremental adaptive learning, open struc-1he input layer represents input variables. The second layer

ture organization, memorising information, active interactio®f nodes (fuzzy input neurons, or fuzzy inputs) represents
fuzzy quantization of each input variable space. For example,

. . . _ two fuzzy input neurons can be used to represent “small” and
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Fig. 1. The structure of EFUNN.

The third layer contains rule (case) nodes that evolve throutftan the error threshold’;. The latter represents the error
supervised and/or unsupervised learning. The rule nodeferance of the system.

represent prototypes (exemplars, clusters) of input—output dat®efinition: A local normalized fuzzy difference (distance)
associations that can be graphically represented as associatimtaeen two fuzzy membership vectdis andds; that repre-

of hyper-spheres from the fuzzy input and the fuzzy outpsgent the membership degrees to which two real-value data vec-
spaces. Each rule nodeis defined by two vectors of connec-torsd; andd, belong to predefined MFs, is calculated as

tion weights—1(r) and W2(r), the latter being adjusted

through supervised learning based on the output error, and the D(dyg,dag) = [|diy — dayll/||dry + doyll 1)
former being adjusted through unsupervised learning basedv%'ere:”a: _

similarity measure within a local area of the problem space. g .oy that is obtained after vector subtraction (or summation in
linear activation function is used for the neurons of this layer.., oo of|z+y]|) of two vectors: andy; * /* denotes division. For
The fourth layer of neurons represents fuzzy quantization @Jf(ample, ifdy; = (0,0,1,0,0,0) andda; = (0,1,0,0,0,0),
the output variables, similar to the input fuzzy neuron repregnan D(dy,dy) = (1 + 1)/2 = 1 which is the maximum
sentation. Here, a weighted sum input function and a saturaiggie for the local normalized fuzzy difference. In EFUNNSs, the
linear activation function is used for the neurons to calculate t{§tal normalized fuzzy distance is used to measure the distance
membership degrees to which the output vector associated Wjlhyveen a new input data vector and a rule node in the local
the presented input vector belongs to each of the output MRg&inity of the rule node.
The fifth layer represents the real values of the output variables.—rhrough the process of associating (learning) of new data
Here alinear activation function is used to calculate the defuzéioints to a rule node;, the centers of this node hyper-spheres
fied values for the output variables (similar to FUNN [42]). adjust in the fuzzy input space depending on the distance
Each rule node, e.gr;, represents an association betweefetween the new input vector and the rule node through a
a hyper-sphere from the fuzzy input space and a hyper-sphRigming ratel; ;, and in the fuzzy output space depending on
from the fuzzy output space, tHé&"1(r;) connection weights the output error trough the Widrow-Hoff LMS algorithm (delta
representing the coordinates of the center of the spheregigorithm). This adjustment can be represented mathematically
the fuzzy input space, and thé’2(r;)—the coordinates in by the change in the connection weights of the rule node
the fuzzy output space. The radius of the input hyper-sphefg,,, W1(7>§1)) and W2(7,§1)) to W1(7’§2)) and W2(7’§2))

of a rule noder; is defined ask; = 1 — 5;, wheresS; IS yoqpactively according to the following vector operations:
the sensitivity threshold parameter defining the minimum

activation of the rule node; to a new input vector: from a Wi (T](?)) — Wi (T](,l)) +1y;-D (Wl (7,](,1)) 7xf) )
new example(z, %) in order to be considered for association

with this rule node. The pair of fuzzy input—output data vectors W2 (7’](»1)) =W2 (7’](»1)) + g5 - (A2 —yy) - Al (7’](»1)) (3
(z¢,yr) will be allocated to the rule nodg if z; falls into the _ o

r; input receptive field (hyper-sphere), apg falls in ther; yvhereAZ is the activation vectlor of the fuzzy outpu(tl?eurons
output reactive field hyper-sphere. This is ensured through tifbthe EFUNN structure when is presented, and1(r;”’) =
conditions, that a local normalized fuzzy difference between— D(W1(7>§1)),xf) is the activation of the rule nodrél).

xzy and W1l(r;) is smaller than the radiug;, and the local In initial algorithms for different types of learning in
normalized fuzzy difference betwegp andW2(r;) is smaller EFuNN, structures are presented in [40], that include: online,

y|| denotes the sum of all the absolute values of a
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offline, active, passive—sleep learning, etc. More sophisticatedt of data, and for finding their current centers in the input data
algorithms are included in [44] where different applicationspace. It is a distance-based connectionist clustering method.
of EFUNN are also developed, such as adaptive speech reddfth this method, cluster centers are represented by evolved
nition, gene expression data analysis and profiling, adaptimedes (rule nodes in the EFUNN terminology). In any cluster,
control. the maximum distanc&jaxDist between an example point and
Here, we propose a model called dynamic evolving neurdde cluster center, is less than a threshold vdDibr, that has
fuzzy inference system (DENFIS). DENFIS is similar tdeen set as a clustering parameter and would affect the number
EFUNN in some degree, and it inherits and develops EFUNNEclusters to be estimated.
dynamic features which make DENFIS suitable for online |n this paper, the distance, between Vecmmdy, denotes
adaptive systems. The DENFIS model is developed with tBgjeneral Euclidean distanagefined as follows:
idea that, depending on the position of the input vector in the
input space, a fuzzy inference system for calculating the output q z
is formed dynamically bases on fuzzy rules that had been llx —yll = Z |z — yi|2> /q% (4)
created during the past learning process. i=1
This paper is organized as follows. Section Il gives a
description of an evolving clustering method (ECM) and it¢/herez,y € R”.
extension—evolving clustering method with constrained mini- In the clustering process, the data examples come from a
mization (ECMc), both of which are used in the DENFIS modélata stream and this process starts with an empty set of clus-
for partitioning the input space. A comparison between ECNgrs. When a new cluster is created, the cluster cefitey,is
ECMc and some other clustering methods, such as EFuNM&fined and its cluster radiuBu, is initially set to zero. With
fuzzy C-means [5]./(-means [52], and subtractive clusteringnore examples presented one after another, some created clus-
method [14], is also shown in this section on the same data s&t will be updated through changing their centers’ positions
(Gas-furnace [9]). Section llI introduces the DENFIS onlinand increasing their cluster radiuses. Which cluster will be up-
model, and in Section IV, DENFIS online model is appliedated and how much it will be changed, depends on the position
to Mackay-Glass (MG) time series [13], [15] prediction; thef the current example in the input space. A cluster will not be
results are compared with the results obtained with the Useﬁdated any more when its cluster radiBs, reaches the value
resource-allocation network (RAN) [60], EFUNN [40], andhat is equal to a threshold valuthr.
evolving self-organizing maps (ESOM) [17]. In Section V, tWo  Fig. 2 shows a brief ECM clustering process in a 2-D space.
DENFIS offline models are introduced, and in Section Virhe ECM algorithm is described as follows.
DENFIS offline models are applied to MG time series and
Gas-furnace time series prediction. The results are compared
with the results obtained with the use of adaptive neural-fuzzy
inference system (ANFIS) [35], and the multilayer perceptrons . .
trained with the back propagation algorithm (MLP-BP). Con- radiusRu, [Fig. 2(a)].
clusions and directions for further research are presented in® SteP 1: If all examples of the data stream have been pro-
Section VII. cessed, the algorithm is finished. Else, the current input ex-
The comparative analysis clearly indicates the advantages 2MPle;, istakenand the distances between this example
of DENFIS when used for both offline, and especially online, ~ a@ndalln already created cluster cent€'s;, D;; = [|z; —
learning applications. In addition to this, the ECMs, ECM and  C¢;ll,j = 1,2,...,n, are calculated.
ECMc, can perform well as online, or offline, self-organized * Step 2: If there is any distance valug;; = [|z; — Cc;|,

+ Step 0: Create the first clustér by simply taking the
position of the first example from the input stream as the
first cluster cente€c?, and setting a valu@for its cluster

generic clustering models. equal to, or less than, at least one of the rafii;, j =
1,2,...,n, it means that the current examptebelongs

Here, evolving, online, maximum distance-based clustering, =~ — |l£; — Ccpm|| = min(||z; — Ceyl))
method, called ECM, is proposed to implement a scatter par-
titioning of the input space for the purpose of creating fuzzy
inference rules. This method has two modes: the first one is
usually applied to online learning systems, and the second one
is more suitable for offline learning systems. The online ECM
is used in the DENFIS online model. The offine ECM with
constrained minimization (ECMc) is an extension of the online
mode. It takes the result from the online mode as initial values.
An optimization is then applied, that makes a predefined objec-
tive function based on a distance measure to reach a minimum
value subject to given constraints.

subject to the constraid®;; < Ruy, j7=1,2,...,n.

In this case, neither a new cluster is created, nor any ex-
isting cluster is updated (the casesegfandzg in Fig. 2);
the algorithm returns to Step 1. Else—go to the next step.
» Step 3: Find cluste€, (with centerCe, and cluster ra-
diusRu,) from all n existing cluster centers through cal-
culating the values;; = D;;+Ru;,j =1,2,...,n,and
then choosing the cluster cen®€e, with the minimum
value S;,:
A Online ECM Sia = Dis + Ru, = min(S;;), j=1,2,...,n.
Without any optimization, the online ECM is a fast, one-pass ¢ Step 4: If S, is greater thar2 x Dthr, the exampler;
algorithm for a dynamic estimation of the number of clustersina  does not belong to any existing clusters. A new cluster is
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Fig. 2. A brief clustering process using ECM with sampigsto =, in a 2-D space. (a) The exampte causes the ECM to create a new clugiér. (b) z.:
update cluste€’? — C1,z3: create a new clustery, z,: do nothing. (C)s: update cluste€! — C?. z4: do nothingz-: update cluste€'d — C3, zs: create
a new clusteC?. (d) z9: update cluste€? — C7.

created in the same way as described in Step O (the casester,Cc;, the objective function is defined by the following
of £3 and zg in Fig. 2), and the algorithm returns toequation:
Step 1.
» Step 5: IfS;, is not greater thaB x Dthr, the clusteiC,
is updated by moving its centdtic,, and increasing the J = . Jj = :
value of its radiusRu,. The updated radiuBu,™ is set i=1 J
tci ?he equ.alttcﬁmt{f all'nd the newtpenie@ca dlé Iocategl whereJ; = Zwiecj ||l£;—Cc;|| is the objective function within
at the point on the line connec mrgewh;e andCc,, an cluster;
the distance from the new cen®@e;“" to the pointz; is
equal tOR}lgeW (the cases of;, 5,7 andxy in Fig. 2). i=1,2,....p; j=12,....n
The algorithm returns to Step 1.
In this way, the maximum distance from any cluster center @d the constraints are defined by the next equation
the examples that belong to this cluster is not greater than the

> ll=i = Cey] (5)

n
= 1 \=z;cC;

n

threshold valueDthr though the algorithm does not keep any li — Cejll < Dthr, 5=1,2,....n. ©6)

information of passed examples. The partitioned clusters are typically defined by & n binary
membership matriX/, where the element;; is 1 if the i-th

B. Constrained Optimization and Offline ECMc data pointz; belongs to clustey; and 0 otherwise. Once the

cluster center€c; are fixed, the minimizing, ; for (5) and (6)
The offline ECM, called ECMc, applies an optimization prois derived as follows:
cedure to the resulted cluster centers after the application of
ECM. The ECMc partitions a data set includipgectorz;, i = if ||z; — Ccj|| < ||&; — Ceyl|, foreachj # k;
1,2,...,p, into n clustersC;,j = 1,2,...,n, and finds a wij =1, elseu; = 0. (7)
cluster center in each cluster, to minimize an objective func-
tion based on a distance measure subject to given constraiRts. a batch-mode operation, the method determines the cluster
Taking thegeneral Euclidean distancgs the measure betweercentersCc; and the membership matrlX iteratively using the
an example vectos;;, in clusterj and the corresponding clusterfollowing steps.
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Fig. 3. Results of clustering the gas-furnace data set by several clustering methods.

C. Application: Clustering of the Gas-Furnace Data Set

Step 1: Initialize the cluster centéfc;,j = 1,2,...,n, implemented in the input space. For a comparative analysis, the
that come from the result of ECM clustering process. following six clustering methods are implemented and applied
Step 2: Determine the membership matiby (7). to the gas-furnace data set:

Step 3: Employ theonstrained minimization meth¢s9] i
with (5) and (6) to get new cluster centers. a) ECM (onllng, one-pass);

Step 4: Calculate the objective functiohaccording to b) EFuNN_(onIme, one pass) [40];
(6). Stop if the result is below a certain tolerance value, or ©) SC (offline, one pass);

its improvement over previous iteration is below a certain 4 ECMc (offline);

threshold, or the iteration number of minimization opera- €) FCMC (o_fflme);

tions is over a certain value. Else, the algorithm returns to f) KMC (offline).

Step 2. Each of them partitions the data into N¢E15) clusters. The

maximum distanceylax D, between an example point and the
corresponding cluster center and the value of objective function

The gas-furnace time series is a well-known bench-mark datadefined by (2), are taken as criteria for comparison. The re-
set and has been frequently used by many researches in the anéta are shown in Table | and Fig. 3. We can see from Table I,
of neural networks and fuzzy system for control, prediction artlat ECMs, both ECM and ECMc, can obtain the minimum
adaptive learning [6], [20]. It consists of 296 consecutive datalue of Max D, which means that these methods partition the
pairs of methane at a time momefit— 4), and the carbon data set more uniformly than the other methods. From another

dioxide (CQ) produced in a furnace at a time momént- 1)

point of view, we can say that if all six clustering methods ob-

as input variables, with the produced €6t the momenft) as tained the same values fdlax D, the ECM and the ECMc
an output variable. In this case, the clustering simulations azeuld achieve less number of partitions than the others.
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TABLE | For an input vector® = [z =5 --- «J], the result of infer-

RESULTS OBTAINED BY USING DIFFERENT CLUSTERING METHODS FOR 0 i i
CLUSTERING THE GAS-FURNACE DATA SET INTO 15 QLUSTERS ence.y ('Ehe OUtpu.t Of. the system) is the weighted average of
each rule’s output indicated as follows:

Methods MaxD Objective function m 0 ,.0 0
value: J 0 __ Dz wifi (37173727---737(1)
ECM (on-line, one pass) 0.1 12.9 i Z;’;l Wi
_TT1¢ 0y.; _ -
EFuNN (on-line, one pass) 0.11 13.3 wherew; = Hj:l HRij ($j)7 t=1,2,...m,3=1,2,...,q
SC (off-line, one- 0.15 115 . : .
(offline, one-pass) B. Learning Processes in DENFIS Online Model
ECMc(off-line) 0.1 11.5 } i )
FCM (off Tine Ieaming) 51a 57 t In tfhe DENIFIS online rrrode(lj, thed f|trr;¢,t-<|3_rder 'I]:akagl—Sugetnho
e fuzzy rules are employed and the linear functions in the
KM (off-line learning) 0.12 11.8 yp y ploy

consequences can be created and updated by linear least-square
estimator (LSE) [28], [33] with learning data. Each of the linear
functions can be expressed as follows:

I1l. DENFIS: A DYNAMIC EVOLVING NEURAL-FUzzY

INFERENCESYSTEM y=Po+ iz + Pax1 + - + Fyzg.
A. General Principle For obtaining these functions a learning data set, which
. . is composed ofp data pairs{([zi1, 2, .-, Tig), %i),4 =
T 'Ik'he. SDENFIS,t bOthf onlln(_a fand offllne' modgﬁls, S 2,...,p}, is used and the least-square estimator (LSE) of
akagi-Sugeno type fuzzy inference engine [66]. Such _ [bo b1 b2 --- b,]" are calculated as the cofficients

inference engine used in DENFIS is composednoffuzzy o T . .
rules indicated as shown in the equation at the bottom ?gffrful; [bo b1 by b]". by applying the following
the page, whered; is R;;,” ¢ = 1,2,...m;j = 1,2,...q, '

are m x ¢ fuzzy propositions asm antecedents form b=(ATA) ATy 9)
m fuzzy rules respectivelyx;,j = 1,2,...,¢, are an-
tecedent variables defined over universes of discourdBere
X;,i=12,...,¢,andR;;,i = 1,2,...m;5 = 1,2,...,q, 1z =z - w14
are fuzzy sets defined by their fuzzy membership functions 1z ®2 - w4
pri;t X; — [0,1i = 1,2,...m;j = 1,2,...,q. In the A=
consequent partg; is a consequent variable, and polynomial :
. o 1 zpr mp2 - T
functionsf;,: = 1,2,...m, are employed. and
In both DENFIS online and offline models, all fuzzy mem- -
bership functions are triangular type functions which depend on y=[y1 92,9 -
three parameters as given by the following equation: In the DENFIS models, we use a weighted least-square estima-
tion method [28], [33]
% csa T IAT
i—a’ a<z<b b, = (A"WA) "A* Wy (10)
wx) =mf(z,a,b,c) = c — g (8) where
, b<rx<c
c—>b w 0 -+ 0
0. c<zx

where:b is the value of the cluster center on the&limension, : : : :
a = b—dx Dthrandc = b+dx Dthr, d = 1.2-2; the threshold 0 v o wy

value,Dthr, is a clustering parameter. and w; is the distance betweejth example and the corre-

If the consequent functions are crisp constants, i'%ponding cluster centej, = 1,2,.. . p. We can rewrite the (9)
filx1,x2,...,24) = C;,i = 1,2,...m, we call such system and (10) as follows: e

a zero-order Takagi—Sugeno type fuzzy inference system.

The system is called a first-order Takagi-Sugeno type fuzzy {P = (A;FA)_1 (11)
inference system iff;(z1,22,...,24),4 = 1,2,...m, are b=PA"y.

linear functions. If these functions are nonlinear functions, it is P, = (ATWA)! 12)
called high-order Takagi—Sugeno fuzzy inference system. b, =P, ATWy

if 21 is Ri1 andxs is Ris and - - - andx, is Ry, thenyis fi(z1,z2,...,24)
if ©1 is Ry1 andx; is Ryp and - - - andxz4 is Ryg, theny is fa(z1,x2,...,24)

if £1 IS Ry,1 @andxs is Ry, @and - - - andxz,, is R, thenyis fi,(z1,22,...,2,)
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Let the k-th row vector of matrixA defined in (9) beaf = data pair, several existing fuzzy rules are updated by using (14)
[l #x1 @x2 -+ Txg| and thek-th element ofy bey;, thend if their rule nodes have distances to the data point in the input
can be calculated iteratively as shown in (13) at the bottom gihace that are not greater thas Dthr (the threshold value, a
the page. Here, the initial valuesBf, andb,, can be calculated clustering parameter). The distances between these rule nodes
directly from (12) with the use of the first data pairs from the and the data point in the input space are taken as the weights
learning data set. in (14). In addition to this, one of these rules may also be up-
Equation (13) is the formula of recursive LSE [28]. In thelated through changing its antecedent so that, if its rule node
DENFIS online model, we use a weighted recursive LSE witbosition is changed by the ECM, the fuzzy rule will have a new
forgetting factor defined as (14) shown at the bottom of the pagmtecedent calculated through (8).
wherew is the weight defined in (10) anxlis a forgetting factor
which typical value is between 0.8-1. C. Takagi-Sugeno Fuzzy Inference in DENFIS
In the online DENFIS model, the rules are created and up-The Takagi-Sugeno fuzzy inference system utilized in
dated at the same time with the input space partitioning USIfNF|S is a dynamic inference. In addition to dynamically
online ECM and (8) and (14). If no rule insertion is applied, thgreating and updating fuzzy rules the DENFIS online model has
following steps are used for the creation of the fstfuzzy  gome other major differences from the other inference systems.
rules and for the calculation of the initial valuPsandb of the First, for each input vector, the DENFIS model chooses
functions. fuzzy rules from the whole fuzzy rule set for forming a cur-
1) Take the first learning data pairs from the learning dataent inference system. This operation depends on the position
set. of the current input vector in the input space. In the case of two
2) Implement clustering using ECM with thesg data to input vectors that are very close to each other, especially in the
obtainingm cluster centers. DENFIS offline model, the inference system may have the same
3) For every cluster cente’;, find p; data points whose fuzzy rule inference group. In the DENFIS online model, how-
positions in the input space are closest to the center, ever, even if two input vectors are exactly the same, their cor-
1,2,...,m. responding inference systems may be different. It is due to the
4) For obtaining a fuzzy rule corresponding to a clust@eason that these two input vectors are presented to the system
center, create the antecedents of the fuzzy rule using #&different time moments and the fuzzy rules used for the first
position of the cluster center and (8). Using (12)/n input vector might have been updated before the second input
data pairs calculate the valuesBfandb of the conse- vector has arrived.
quent function. The distances betwggrmiata points and  Second, depending on the position of the current input vector
the cluster center are taken as the weights in (12). in the input space, the antecedents of the fuzzy rules chosen to
In the above stepsyi,ng and p are the parameters of theform an inference system for this input vector may vary. An ex-
DENFIS online learning model, and the valuepgfshould be ample is illustrated in the Fig. 4 where two different groups of
greater than the number of input elements, fuzzy inference rules are formed depending on two input vec-
As new data pairs are presented to the system, new fuzaysz; andx., respectively, in a 2-D input space as shown in
rules may be created and some existing rules are updatedrig. 4(a) and (b), respectively. We can see from this example
new fuzzy rule is created if a new cluster center is found by thieat, for instance, the regiafi has a linguistic meaning ‘large’,
ECM. The antecedent of the new fuzzy rule is formed by using the X, direction for Fig. 4(a) group, but for the group of
(8) with the position of the cluster center (as a rule node). Amles from Fig. 4(b) it denotes a linguistic meaning of ‘small’ in
existing fuzzy rule is found which rule node is the closest to thhe same direction ak 1. The regionC is defined by different
new rule node; the consequence function of this rule is takerembership functions, respectively, in each of the two groups
as the consequence function for the new fuzzy rule. For evarfyrules.

bit1 = by + Pryiaryr (v — ar, be)
Pkak+1a£+lPk (13)

Py =Py — , k=nn+1,...p—1
1+a{+1Pkak+1

T
bit1 = br + wir1Pryrartr (Yg1 — ak+1bk)

14
Pk+12%<Pk— ), k:n,n—i—l,p—l ( )

T
Wi+1 Pragr1ag,  Pr
A+ af_i_lPkak_i_l
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. TABLE I
X 2 PREDICTION RESULTS OFON-LINE LEARNING MODELS ON THE
L MACKEY-GLASS TEST DATA

Nl =

= 1 P Fuzzy rules (DENFIS)
g g : Methods Rule nodes (EFuNN) NDEI for testing data
[ i Il - 28, Units (others)
- - LN s Neural gas [23 ] 1000 0.062
A 1 & RAN [60] 113 0.373
- _— - m RAN [60] 24 0.17
k.l
ESOM [17] 114 032
ESOM [17] 1000 0.044
EFuNN[40] 193 0.401
& ! EFuNN[40] 1125 0.094
@) DENFIS 58 0276
V. DENFIS 883 0.042
5 & DENFIS 883 0033
; with rule insertion
i I K
II ¥ i . - .
X3 » ol { The following experiment was conducted: 3000 data points,

for ¢ = 201 to 3200, are extracted from the time series and used
as learning (training) data; 500 data points, foe= 5001 to
5 S P 5500, are used as testing data. For each of the aforementioned
X online models, the learning data is used for the online learning
processes, and then the testing data is used with the recalling
procedure.
In another experiment, the properties of rule insertion and rule
extraction were utilized where we first obtained a group of fuzzy
(0) rules from the first half of training data (1500 samples), using
Fig. 4. Two fuzzy rule groups are formed by DENFIS to perform inferencthe DENFIS offline model | (it will be introduced in next sec-
f_or an input vector; (a) and for_an input vectar (b) that_is entergd ata Ia?er tion); then we inserted these rules to the DENFIS online model
time moment, all represented in the 2-D space of the first two input variables . . .
X1 and X2, and let it learn continuously from the next half of the learning
data (1500 samples). Then, we tested the model on the test data.
IV. TIME SERIES MODELLING AND PREDICTION WITH THE Table Il Ii;ts the prediction results (NDEI on test_data after
DENFIS ON-LINE MODEL online learning) and the number of rules (nodes, units) evolved
(used) in each model.
In this SeCtion, the DENFIS online model will be applled to F|g S(a)’ (b), and (C) d|sp|ay the testing errors (from the re-

modeling and predicting the future values of a chaotic time sgg|| processes on the test data) of DENFIS online model with
ries: the MG data set [13], which has been used as a benchmgfterent number of fuzzy rules

example in the areas of neural networks, fuzzy systems and hyé) DENFIS online model with 58 fuzzy rules:
brid systems. This time series is created with the use of the MGb) DENFIS online model with 883 fuzzy ruleé (different pa-

time-delay differential equation defined as rameter values are used from those in the model above);
dxz(t) 0.2z(t — 7) c) DENFIS online model with 883 fuzzy rules that is evolved
= — 0.1z(¢). (15) - :
dt 1+ 2100t —7) after an initial set of rules was inserted.

To obtain values at integer time points, the fourth-order
Runge—Kutta method was used to find the numerical solution
to the above MG equation. Here, we assume that time steprhe DENFIS online model presented in the previous section,
is 0.1,2(0) = 1.2,7 = 17 andz(¢) = 0 for ¢t < 0. The can be used also for offline, batch mode training, but it may not
task is to predict the values(t + 85) from input vectors be very efficient when used on comparatively small data sets.
[(t — 18) x(t — 12) =z(t — 6) x(t)] for any value of the For the purpose of batch training the DENFIS online model is
time ¢. For the purpose of a comparative analysis, we also useended here to work efficiently in an offline, batch training

some existing online learning models applied on the same tastiode. Two DENFIS models for offline learning are developed
These models are Neural gas [23], RAN [60], ESOM [17], arahd presented here: (1) a linear model, model I, and (2) a MLP-
EFuNN [40]. Here, we take the nondimensional error indéxased model, model II.

(NDEI) [15] which is defined as the root mean-square error A first-order Takagi—Sugeno type fuzzy inference engine,
(RMSE) divided by the standard deviation of the target seriesimilar to the DENFIS online model, is employed in model

V. DENFIS MODEL FOROFFLINE LEARNING
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(a) On-line model (Rs = 58) (d} Off-line model | (Rs = 1186}
0.2 \ 0.1}
0 \/\/WM ‘\ WMW 0 WW’*‘!“WWWM“
~-0.2 -0.1
0 250 500 o} 250 500
{b) On-line model (Rs = 833) (e) Off-line model | (Rs = 883)
0171 0.1
0 WWMMWW 0 pemmr by by
-0.1 -0.1}
o} 250 500 ¢] 250 500
(¢) On-line model (Rs = 883) with rule insertion (f) Off-line model 1l (Rs = 58)
0.1 1 0.1
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—0.1+ =01}
0 250 500 0 250 500
Time Time

Fig. 5. Prediction error of DENFIS online (a), (b), (c) and offline (d), (e), (f) models on test data taken from the MG time series.

PREDICTION RESULTS OFOFFLINE LEARNINGTG?ISELS”ION MACKEY-GLASS TRAINING AND TEST DATA
Methods | Neurons or Rules | Epochs | Training Time (s) | Training NDEI | Testing NDEI
MLP-BP 60 50 1779 0.083 0.090
MLP-BP 60 500 17928 0.021 0.022

ANFIS 81 50 23578 0.032 0.033
ANFIS 81 200 94210 0.028 0.029
DENFIS I 116 2 352 0.068 0.068
DENFIS 1 883 2 1286 0.023 0.019
DENFIS II 58 100 351 0.017 0.016

I, while an extended high-order Takagi—Sugeno fuzzy infer- « for model I, estimate the functionéto create the conse-
ence engine is used in model Il. The latter employs several quentpartfor each fuzzy rule using (10) or (12) wittata
small-size, two-layer (the hidden layer consists of two or three  sets; the distances between each data point and their cor-

neurons) multilayer perceptrons to realize the funcifan the responding center is represented as a connection weight;
consequent part of each fuzzy rule instead of using a predefineds for model Il, each consequent functighof a fuzzy rule
function. (rule node, cluster center) is learned by a corresponding

The DENFIS offline learning process is implemented in fol- MLP network after training it on the corresponding data
lowing way: set with the use of the MLP-BP.

« cluster (partition) the input space to fimdcluster centers
(n rule nodesp, rules) by using the offline ECMC;. XI. TIME SERIES MODELLING AND PREDICTION WITH THE

« create the antecedent part for each fuzzy rule using (8) an

" DENFIS GFFLINE MODEL
the current position of the cluster center (rule node);

« find n data sets each of them including one cluster centerDynamic time-series modeling of complex time series is a
andp learning data pairs that are closest to the center in th#ficult task, especially when the type of the model is not known
input space. In the general case, one data pair can belamgdvance [50]. In this section, we applied the two DENFIS of-
to several clusters; fline models for the same task as in Section IV. For comparison
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purposes two other well-known models, adaptive neural-fuzzyi2]
inference system (ANFIS) [35], and a multilayer perceptron 3]
trained with MLP-BP [58], are also used for this task under the
same conditions. [4]

In addition to the NDEI, in the case of offline learning, the 5]
learning time is also measured as another comparative criteriorl.
Here, the learning time is the CPU-time (in seconds) consumedsé]
by each method during the learning process in the same com[—7]
puting environment (MATLAB, UNIX version 5.5).

Table Ill lists the offline prediction results of MLP, ANFIS
and DENFIS, and these results include the number of fuzzy rule?S]
(or rule nodes) in the hidden layer, learning epochs, learning
time (CPU-time), NDEI for training data and NDEI for testing [9]
data. The best results are achieved in the DENFIS Il model. [10]

Fig. 5(d), (e), and (f) shows the prediction error of three

DENFIS models tested on the same test data as follows: [11]

(d) DENFIS offline mode | with 116 fuzzy rules;
(e) DENFIS offline mode | with 883 fuzzy rules; [12]
(H  DENFIS offline mode Il with 58 fuzzy rules.

The prediction error of DENFIS model Il with 58 rule nodes is
the lowest one. (13]
(14]

VII. CONCLUSION AND DIRECTIONS FORFURTHER RESEARCH 115

This paper presents the principles of a fuzzy inference
system, DENFIS, for building both online and offline knowl-
edge-based, adaptive learning systems. Both DENFIS onlingg)
and offine models are based on the Takagi—-Sugeno fuzz?/
inference system. They use thehighly activated fuzzy rules 17]
to dynamically compose an inference system for calculating the
output vector for a given input vector. The proposed systems
demonstrate superiority when compared with Neural gas [23118]
RAN [60], EFUNN [40], and ESOM [17] in the case of online
learning, and with ANFIS [35], and MLP [38] in the case of
offline learning.

DENFIS uses a local generalization, like EFUNN and CMAC
neural networks [1], so it needs more training data than the
models which use global generalization such as ANFIS a”ijO]
MLP. During the learning process DENFIS forms an area of par-
titioned regions, but these regions may not cover the whole inpu#!!
space. In the recall process, DENFIS would give satisfactory
results if the recall examples appear inside of these regions. In
case of examples outside this area, like Case 1 in Section IV'EE23]
DENFIS is likely to produce results with a higher error rate.

Further directions for research include: (1) improvement of24]
the DENFIS model for a better online learning with self-modi-
fied parameter values; and (2) application of the DENFIS modeps)
for adaptive process control and mobile robot navigation.

[19]
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