
144 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

DENFIS: Dynamic Evolving Neural-Fuzzy Inference
System and Its Application for Time-Series

Prediction
Nikola K. Kasabov, Senior Member, IEEE,and Qun Song

Abstract—This paper introduces a new type of fuzzy inference
systems, denoted as dynamic evolving neural-fuzzy inference
system (DENFIS), for adaptive online and offline learning, and
their application for dynamic time series prediction. DENFIS
evolve through incremental, hybrid (supervised/unsupervised),
learning, and accommodate new input data, including new
features, new classes, etc., through local element tuning. New
fuzzy rules are created and updated during the operation of the
system. At each time moment, the output of DENFIS is calculated
through a fuzzy inference system based on -most activated fuzzy
rules which are dynamically chosen from a fuzzy rule set. Two
approaches are proposed: 1) dynamic creation of a first-order
Takagi–Sugeno-type fuzzy rule set for a DENFIS online model;
and 2) creation of a first-order Takagi–Sugeno-type fuzzy rule set,
or an expanded high-order one, for a DENFIS offline model. A set
of fuzzy rules can be inserted into DENFIS before or during its
learning process. Fuzzy rules can also be extracted during or after
the learning process. An evolving clustering method (ECM), which
is employed in both online and offline DENFIS models, is also
introduced. It is demonstrated that DENFIS can effectively learn
complex temporal sequences in an adaptive way and outperform
some well-known, existing models.

Index Terms—Dynamic evolving neural-fuzzy inference system
(DENFIS), hybrid systems, online adaptive learning, online clus-
tering, time series prediction.

I. INTRODUCTION

T HE complexity and dynamics of real-world problems, es-
pecially in engineering and manufacturing, require sophis-

ticated methods and tools for building online, adaptive intelli-
gent systems (ISs). Such systems should be able to grow as they
operate, to update their knowledge and refine the model through
interaction with the environment [2], [40], [41]. This is espe-
cially crucial when solving artificial intelligence (AI) problems
such as adaptive speech and image recognition, multimodal in-
formation processing, adaptive prediction, adaptive online con-
trol, and intelligent agents on the world-wide web [7], [67].

Seven major requirements of the present ISs (that are ad-
dressed in the ECOS framework presented in [39] and [43]) are
discussed in [37], [39], [40], and [43]. They are concerned with
fast learning, online incremental adaptive learning, open struc-
ture organization, memorising information, active interaction,

Manuscript received June 13, 2001; revised August 6, 2001. This work was
supported by a research program funded by the New Zealand Foundation for
Research Science and Technology under Contract UOOX0016.

The authors are with the Department of Information Science, University
of Otago, Dunedin 09015, New Zealand (e-mail: nkasabov@otago.ac.nz;
qsong@infoscience.otago.ac.nz).

Publisher Item Identifier S 1063-6706(02)02965-X.

knowledge acquisition and self-improvement, and spatial and
temporal learning.

Online learning is concerned with learning data as the system
operates (usually in real time) and the data might exist only for
a short time. Several investigations [21], [22], [32], [62]–[64]
proved that the most popular neural network models and al-
gorithms that include multilayer perceptrons (MLPs) trained
with the back propagation (BP) algorithm, radial basis func-
tion (RBF) networks, and self-organizing maps (SOMs) are not
suitable for adaptive, online learning. At the same time, several
models that have elements of adaptive, online learning or struc-
ture and knowledge adaptation, have been developed that in-
clude connectionist models [1]–[4], [10]–[12], [16], [19], [21],
[23], [25], [26], [30], [31], [33], [34], [45]–[49], [54], [57], [61],
[64], [65], fuzzy logic models [69], [6], [29], [35], [51], [68],
models based on genetic algorithms [18], [24], hybrid models
[27], [35]–[38], [41], [42], [44], [51], [55], [68], evolving fuzzy-
neural networks [37], [39], [40], [44], and evolving SOMs [17].

The evolving connectionist systems (ECOSs) framework [39]
assumes that a system evolves its structure and functionality
from a continuous input data stream in an adaptive, life-long,
modular way. The system creates connectionist-based modules
and connects them, if that is required according to the input
data distribution and the system’s performance at a certain time
moment. ECOSs employ local learning (see, for example, [8],
[56]).

The evolving fuzzy neural network (EFuNN) model was in-
troduced in [40] as one way for creating connectionist mod-
ules in an ECOS architecture. In [37] and [44], the EFuNN
model is further developed mainly in respect of dynamic pa-
rameter self-optimization. EFuNNs are fuzzy logic systems that
have five-layer structures (Fig. 1). Nodes and connections are
created/connected as data examples are presented. An optional
short-term memory layer can be used through a feedback con-
nection from the rule (also called case) node layer. The layer of
feedback connections could be used if temporal relationships of
input data are to be memorised structurally.

The input layer represents input variables. The second layer
of nodes (fuzzy input neurons, or fuzzy inputs) represents
fuzzy quantization of each input variable space. For example,
two fuzzy input neurons can be used to represent “small” and
“large” fuzzy values. Different membership functions (MFs)
can be attached to these neurons (triangular, Gaussian, etc.).
The number and the type of MF can be dynamically modified.
The task of the fuzzy input nodes is to transfer the input values
into membership degrees to which they belong to the MF.

1063-6706/02$17.00 © 2002 IEEE

Authorized licensed use limited to: Auckland University of Technology. Downloaded on April 1, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

KASABOV AND SONG: DENFIS: DYNAMIC EVOLVING NEURAL-FUZZY INFERENCE SYSTEM 145

Fig. 1. The structure of EFuNN.

The third layer contains rule (case) nodes that evolve through
supervised and/or unsupervised learning. The rule nodes
represent prototypes (exemplars, clusters) of input–output data
associations that can be graphically represented as associations
of hyper-spheres from the fuzzy input and the fuzzy output
spaces. Each rule nodeis defined by two vectors of connec-
tion weights— and , the latter being adjusted
through supervised learning based on the output error, and the
former being adjusted through unsupervised learning based on
similarity measure within a local area of the problem space. A
linear activation function is used for the neurons of this layer.

The fourth layer of neurons represents fuzzy quantization of
the output variables, similar to the input fuzzy neuron repre-
sentation. Here, a weighted sum input function and a saturated
linear activation function is used for the neurons to calculate the
membership degrees to which the output vector associated with
the presented input vector belongs to each of the output MFs.
The fifth layer represents the real values of the output variables.
Here a linear activation function is used to calculate the defuzzi-
fied values for the output variables (similar to FuNN [42]).

Each rule node, e.g., , represents an association between
a hyper-sphere from the fuzzy input space and a hyper-sphere
from the fuzzy output space, the connection weights
representing the coordinates of the center of the sphere in
the fuzzy input space, and the —the coordinates in
the fuzzy output space. The radius of the input hyper-sphere
of a rule node is defined as , where is
the sensitivity threshold parameter defining the minimum
activation of the rule node to a new input vector from a
new example in order to be considered for association
with this rule node. The pair of fuzzy input–output data vectors

will be allocated to the rule node if falls into the
input receptive field (hyper-sphere), and falls in the

output reactive field hyper-sphere. This is ensured through two
conditions, that a local normalized fuzzy difference between

and is smaller than the radius , and the local
normalized fuzzy difference between and is smaller

than the error threshold . The latter represents the error
tolerance of the system.

Definition: A local normalized fuzzy difference (distance)
between two fuzzy membership vectors and that repre-
sent the membership degrees to which two real-value data vec-
tors and belong to predefined MFs, is calculated as

(1)

where: denotes the sum of all the absolute values of a
vector that is obtained after vector subtraction (or summation in
case of) of two vectors and ; ‘ ’ denotes division. For
example, if and ,
than which is the maximum
value for the local normalized fuzzy difference. In EFuNNs, the
local normalized fuzzy distance is used to measure the distance
between a new input data vector and a rule node in the local
vicinity of the rule node.

Through the process of associating (learning) of new data
points to a rule node , the centers of this node hyper-spheres
adjust in the fuzzy input space depending on the distance
between the new input vector and the rule node through a
learning rate , and in the fuzzy output space depending on
the output error trough the Widrow-Hoff LMS algorithm (delta
algorithm). This adjustment can be represented mathematically
by the change in the connection weights of the rule node
from and to and
respectively according to the following vector operations:

(2)

(3)

where is the activation vector of the fuzzy output neurons
in the EFuNN structure when is presented, and

is the activation of the rule node .
In initial algorithms for different types of learning in

EFuNN, structures are presented in [40], that include: online,

Authorized licensed use limited to: Auckland University of Technology. Downloaded on April 1, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

146 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

offline, active, passive—sleep learning, etc. More sophisticated
algorithms are included in [44] where different applications
of EFuNN are also developed, such as adaptive speech recog-
nition, gene expression data analysis and profiling, adaptive
control.

Here, we propose a model called dynamic evolving neural
fuzzy inference system (DENFIS). DENFIS is similar to
EFuNN in some degree, and it inherits and develops EFuNNs
dynamic features which make DENFIS suitable for online
adaptive systems. The DENFIS model is developed with the
idea that, depending on the position of the input vector in the
input space, a fuzzy inference system for calculating the output
is formed dynamically bases on fuzzy rules that had been
created during the past learning process.

This paper is organized as follows. Section II gives a
description of an evolving clustering method (ECM) and its
extension—evolving clustering method with constrained mini-
mization (ECMc), both of which are used in the DENFIS model
for partitioning the input space. A comparison between ECM,
ECMc and some other clustering methods, such as EFuNN,
fuzzy -means [5], -means [52], and subtractive clustering
method [14], is also shown in this section on the same data set
(Gas-furnace [9]). Section III introduces the DENFIS online
model, and in Section IV, DENFIS online model is applied
to Mackay–Glass (MG) time series [13], [15] prediction; the
results are compared with the results obtained with the use of
resource-allocation network (RAN) [60], EFuNN [40], and
evolving self-organizing maps (ESOM) [17]. In Section V, two
DENFIS offline models are introduced, and in Section VI,
DENFIS offline models are applied to MG time series and
Gas-furnace time series prediction. The results are compared
with the results obtained with the use of adaptive neural-fuzzy
inference system (ANFIS) [35], and the multilayer perceptrons
trained with the back propagation algorithm (MLP-BP). Con-
clusions and directions for further research are presented in
Section VII.

The comparative analysis clearly indicates the advantages
of DENFIS when used for both offline, and especially online,
learning applications. In addition to this, the ECMs, ECM and
ECMc, can perform well as online, or offline, self-organized
generic clustering models.

II. EVOLVING CLUSTERING METHOD: ECM

Here, evolving, online, maximum distance-based clustering
method, called ECM, is proposed to implement a scatter par-
titioning of the input space for the purpose of creating fuzzy
inference rules. This method has two modes: the first one is
usually applied to online learning systems, and the second one
is more suitable for offline learning systems. The online ECM
is used in the DENFIS online model. The offline ECM with
constrained minimization (ECMc) is an extension of the online
mode. It takes the result from the online mode as initial values.
An optimization is then applied, that makes a predefined objec-
tive function based on a distance measure to reach a minimum
value subject to given constraints.

A. Online ECM

Without any optimization, the online ECM is a fast, one-pass
algorithm for a dynamic estimation of the number of clusters in a

set of data, and for finding their current centers in the input data
space. It is a distance-based connectionist clustering method.
With this method, cluster centers are represented by evolved
nodes (rule nodes in the EFuNN terminology). In any cluster,
the maximum distance,MaxDist, between an example point and
the cluster center, is less than a threshold value,Dthr, that has
been set as a clustering parameter and would affect the number
of clusters to be estimated.

In this paper, the distance, between vectorsand , denotes
a general Euclidean distancedefined as follows:

(4)

where .
In the clustering process, the data examples come from a

data stream and this process starts with an empty set of clus-
ters. When a new cluster is created, the cluster center,, is
defined and its cluster radius, , is initially set to zero. With
more examples presented one after another, some created clus-
ters will be updated through changing their centers’ positions
and increasing their cluster radiuses. Which cluster will be up-
dated and how much it will be changed, depends on the position
of the current example in the input space. A cluster will not be
updated any more when its cluster radius,, reaches the value
that is equal to a threshold value,Dthr.

Fig. 2 shows a brief ECM clustering process in a 2-D space.
The ECM algorithm is described as follows.

• Step 0: Create the first cluster by simply taking the
position of the first example from the input stream as the
first cluster center , and setting a valuefor its cluster
radius [Fig. 2(a)].

• Step 1: If all examples of the data stream have been pro-
cessed, the algorithm is finished. Else, the current input ex-
ample, , is taken and the distances between this example
and all already created cluster centers

, are calculated.
• Step 2: If there is any distance value, ,

equal to, or less than, at least one of the radii,
, it means that the current examplebelongs

to a cluster with the minimum distance

subject to the constraint

In this case, neither a new cluster is created, nor any ex-
isting cluster is updated (the cases ofand in Fig. 2);
the algorithm returns to Step 1. Else—go to the next step.

• Step 3: Find cluster (with center and cluster ra-
dius) from all existing cluster centers through cal-
culating the values , and
then choosing the cluster center with the minimum
value :

• Step 4: If is greater than Dthr, the example
does not belong to any existing clusters. A new cluster is

Authorized licensed use limited to: Auckland University of Technology. Downloaded on April 1, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

KASABOV AND SONG: DENFIS: DYNAMIC EVOLVING NEURAL-FUZZY INFERENCE SYSTEM 147

Fig. 2. A brief clustering process using ECM with samplesxxx to xxx in a 2-D space. (a) The examplexxx causes the ECM to create a new clusterC . (b) xxx :
update clusterC ! C ;xxx : create a new clusterC ;xxx : do nothing. (c)xxx : update clusterC ! C ;xxx : do nothing,xxx : update clusterC ! C ;xxx : create
a new clusterC . (d) xxx : update clusterC ! C .

created in the same way as described in Step 0 (the cases
of and in Fig. 2), and the algorithm returns to
Step 1.

• Step 5: If is not greater than Dthr, the cluster
is updated by moving its center, , and increasing the
value of its radius, . The updated radius is set
to be equal to and the new center is located
at the point on the line connecting the and , and
the distance from the new center to the point is
equal to (the cases of and in Fig. 2).
The algorithm returns to Step 1.

In this way, the maximum distance from any cluster center to
the examples that belong to this cluster is not greater than the
threshold value,Dthr though the algorithm does not keep any
information of passed examples.

B. Constrained Optimization and Offline ECMc

The offline ECM, called ECMc, applies an optimization pro-
cedure to the resulted cluster centers after the application of
ECM. The ECMc partitions a data set includingvector

, into clusters , and finds a
cluster center in each cluster, to minimize an objective func-
tion based on a distance measure subject to given constraints.
Taking thegeneral Euclidean distanceas the measure between
an example vector, , in cluster and the corresponding cluster

center, , the objective function is defined by the following
equation:

(5)

where is the objective function within
cluster

and the constraints are defined by the next equation

Dthr (6)

The partitioned clusters are typically defined by a binary
membership matrix , where the element is 1 if the -th
data point belongs to cluster; and 0 otherwise. Once the
cluster centers are fixed, the minimizing for (5) and (6)
is derived as follows:

if for each

else (7)

For a batch-mode operation, the method determines the cluster
centers and the membership matrix iteratively using the
following steps.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on April 1, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

148 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

Fig. 3. Results of clustering the gas-furnace data set by several clustering methods.

• Step 1: Initialize the cluster center ,
that come from the result of ECM clustering process.

• Step 2: Determine the membership matrixby (7).
• Step 3: Employ theconstrained minimization method[59]

with (5) and (6) to get new cluster centers.
• Step 4: Calculate the objective functionaccording to

(6). Stop if the result is below a certain tolerance value, or
its improvement over previous iteration is below a certain
threshold, or the iteration number of minimization opera-
tions is over a certain value. Else, the algorithm returns to
Step 2.

C. Application: Clustering of the Gas-Furnace Data Set

The gas-furnace time series is a well-known bench-mark data
set and has been frequently used by many researches in the area
of neural networks and fuzzy system for control, prediction and
adaptive learning [6], [20]. It consists of 296 consecutive data
pairs of methane at a time moment , and the carbon
dioxide (CO) produced in a furnace at a time moment
as input variables, with the produced COat the moment as
an output variable. In this case, the clustering simulations are

implemented in the input space. For a comparative analysis, the
following six clustering methods are implemented and applied
to the gas-furnace data set:

a) ECM (online, one-pass);
b) EFuNN (online, one pass) [40];
c) SC (offline, one pass);
d) ECMc (offline);
e) FCMC (offline);
f) KMC (offline).

Each of them partitions the data into NoC clusters. The
maximum distance, , between an example point and the
corresponding cluster center and the value of objective function

, defined by (2), are taken as criteria for comparison. The re-
sults are shown in Table I and Fig. 3. We can see from Table I,
that ECMs, both ECM and ECMc, can obtain the minimum
value of , which means that these methods partition the
data set more uniformly than the other methods. From another
point of view, we can say that if all six clustering methods ob-
tained the same values for , the ECM and the ECMc
could achieve less number of partitions than the others.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on April 1, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

KASABOV AND SONG: DENFIS: DYNAMIC EVOLVING NEURAL-FUZZY INFERENCE SYSTEM 149

TABLE I
RESULTSOBTAINED BY USING DIFFERENTCLUSTERING METHODS FOR

CLUSTERING THEGAS-FURNACE DATA SET INTO 15 CLUSTERS

III. DENFIS: A DYNAMIC EVOLVING NEURAL-FUZZY

INFERENCESYSTEM

A. General Principle

The DENFIS, both online and offline models, use
Takagi–Sugeno type fuzzy inference engine [66]. Such
inference engine used in DENFIS is composed offuzzy
rules indicated as shown in the equation at the bottom of
the page, where “ is ,” ,
are fuzzy propositions as antecedents form

fuzzy rules respectively; , are an-
tecedent variables defined over universes of discourse

, and ,
are fuzzy sets defined by their fuzzy membership functions

. In the
consequent parts, is a consequent variable, and polynomial
functions , are employed.

In both DENFIS online and offline models, all fuzzy mem-
bership functions are triangular type functions which depend on
three parameters as given by the following equation:

(8)

where: is the value of the cluster center on thedimension,
Dthr and Dthr – ; the threshold

value,Dthr, is a clustering parameter.
If the consequent functions are crisp constants, i.e.,

, we call such system
a zero-order Takagi–Sugeno type fuzzy inference system.
The system is called a first-order Takagi–Sugeno type fuzzy
inference system if , are
linear functions. If these functions are nonlinear functions, it is
called high-order Takagi–Sugeno fuzzy inference system.

For an input vector , the result of infer-
ence, (the output of the system) is the weighted average of
each rule’s output indicated as follows:

where,

B. Learning Processes in DENFIS Online Model

In the DENFIS online model, the first-order Takagi–Sugeno
type fuzzy rules are employed and the linear functions in the
consequences can be created and updated by linear least-square
estimator (LSE) [28], [33] with learning data. Each of the linear
functions can be expressed as follows:

For obtaining these functions a learning data set, which
is composed of data pairs

, is used and the least-square estimator (LSE) of
are calculated as the cofficients

, by applying the following
formula:

(9)

where

...
...

...
...

...

and

In the DENFIS models, we use a weighted least-square estima-
tion method [28], [33]

(10)

where

...
...

...
...

and is the distance betweenth example and the corre-
sponding cluster center, . We can rewrite the (9)
and (10) as follows:

(11)

(12)

if is and is and and is then is
if is and is and and is then is

if is and is and and is then is

Authorized licensed use limited to: Auckland University of Technology. Downloaded on April 1, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

150 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

Let the -th row vector of matrix defined in (9) be
and the -th element of be , then

can be calculated iteratively as shown in (13) at the bottom of
the page. Here, the initial values of and can be calculated
directly from (12) with the use of the first data pairs from the
learning data set.

Equation (13) is the formula of recursive LSE [28]. In the
DENFIS online model, we use a weighted recursive LSE with
forgetting factor defined as (14) shown at the bottom of the page,
where is the weight defined in (10) andis a forgetting factor
which typical value is between 0.8–1.

In the online DENFIS model, the rules are created and up-
dated at the same time with the input space partitioning using
online ECM and (8) and (14). If no rule insertion is applied, the
following steps are used for the creation of the firstfuzzy
rules and for the calculation of the initial valuesand of the
functions.

1) Take the first learning data pairs from the learning data
set.

2) Implement clustering using ECM with these data to
obtaining cluster centers.

3) For every cluster center , find data points whose
positions in the input space are closest to the center,

.
4) For obtaining a fuzzy rule corresponding to a cluster

center, create the antecedents of the fuzzy rule using the
position of the cluster center and (8). Using (12) on
data pairs calculate the values ofand of the conse-
quent function. The distances betweendata points and
the cluster center are taken as the weights in (12).

In the above steps, and are the parameters of the
DENFIS online learning model, and the value ofshould be
greater than the number of input elements,.

As new data pairs are presented to the system, new fuzzy
rules may be created and some existing rules are updated. A
new fuzzy rule is created if a new cluster center is found by the
ECM. The antecedent of the new fuzzy rule is formed by using
(8) with the position of the cluster center (as a rule node). An
existing fuzzy rule is found which rule node is the closest to the
new rule node; the consequence function of this rule is taken
as the consequence function for the new fuzzy rule. For every

data pair, several existing fuzzy rules are updated by using (14)
if their rule nodes have distances to the data point in the input
space that are not greater than Dthr (the threshold value, a
clustering parameter). The distances between these rule nodes
and the data point in the input space are taken as the weights
in (14). In addition to this, one of these rules may also be up-
dated through changing its antecedent so that, if its rule node
position is changed by the ECM, the fuzzy rule will have a new
antecedent calculated through (8).

C. Takagi-Sugeno Fuzzy Inference in DENFIS

The Takagi–Sugeno fuzzy inference system utilized in
DENFIS is a dynamic inference. In addition to dynamically
creating and updating fuzzy rules the DENFIS online model has
some other major differences from the other inference systems.

First, for each input vector, the DENFIS model chooses
fuzzy rules from the whole fuzzy rule set for forming a cur-
rent inference system. This operation depends on the position
of the current input vector in the input space. In the case of two
input vectors that are very close to each other, especially in the
DENFIS offline model, the inference system may have the same
fuzzy rule inference group. In the DENFIS online model, how-
ever, even if two input vectors are exactly the same, their cor-
responding inference systems may be different. It is due to the
reason that these two input vectors are presented to the system
at different time moments and the fuzzy rules used for the first
input vector might have been updated before the second input
vector has arrived.

Second, depending on the position of the current input vector
in the input space, the antecedents of the fuzzy rules chosen to
form an inference system for this input vector may vary. An ex-
ample is illustrated in the Fig. 4 where two different groups of
fuzzy inference rules are formed depending on two input vec-
tors and , respectively, in a 2-D input space as shown in
Fig. 4(a) and (b), respectively. We can see from this example
that, for instance, the region has a linguistic meaning ‘large’,
in the direction for Fig. 4(a) group, but for the group of
rules from Fig. 4(b) it denotes a linguistic meaning of ‘small’ in
the same direction of . The region is defined by different
membership functions, respectively, in each of the two groups
of rules.

(13)

(14)

Authorized licensed use limited to: Auckland University of Technology. Downloaded on April 1, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

KASABOV AND SONG: DENFIS: DYNAMIC EVOLVING NEURAL-FUZZY INFERENCE SYSTEM 151

(a)

(b)

Fig. 4. Two fuzzy rule groups are formed by DENFIS to perform inference
for an input vectorxxx (a) and for an input vectorxxx (b) that is entered at a later
time moment, all represented in the 2-D space of the first two input variables
X1 andX2.

IV. TIME SERIESMODELLING AND PREDICTION WITH THE

DENFIS ON-LINE MODEL

In this section, the DENFIS online model will be applied to
modeling and predicting the future values of a chaotic time se-
ries: the MG data set [13], which has been used as a benchmark
example in the areas of neural networks, fuzzy systems and hy-
brid systems. This time series is created with the use of the MG
time-delay differential equation defined as

(15)

To obtain values at integer time points, the fourth-order
Runge–Kutta method was used to find the numerical solution
to the above MG equation. Here, we assume that time step
is 0.1, and for . The
task is to predict the values from input vectors

for any value of the
time . For the purpose of a comparative analysis, we also use
some existing online learning models applied on the same task.
These models are Neural gas [23], RAN [60], ESOM [17], and
EFuNN [40]. Here, we take the nondimensional error index
(NDEI) [15] which is defined as the root mean-square error
(RMSE) divided by the standard deviation of the target series.

TABLE II
PREDICTION RESULTS OFON-LINE LEARNING MODELS ON THE

MACKEY-GLASS TEST DATA

The following experiment was conducted: 3000 data points,
for to , are extracted from the time series and used
as learning (training) data; 500 data points, for to

, are used as testing data. For each of the aforementioned
online models, the learning data is used for the online learning
processes, and then the testing data is used with the recalling
procedure.

In another experiment, the properties of rule insertion and rule
extraction were utilized where we first obtained a group of fuzzy
rules from the first half of training data (1500 samples), using
the DENFIS offline model I (it will be introduced in next sec-
tion); then we inserted these rules to the DENFIS online model
and let it learn continuously from the next half of the learning
data (1500 samples). Then, we tested the model on the test data.

Table II lists the prediction results (NDEI on test data after
online learning) and the number of rules (nodes, units) evolved
(used) in each model.

Fig. 5(a), (b), and (c) display the testing errors (from the re-
call processes on the test data) of DENFIS online model with
different number of fuzzy rules

a) DENFIS online model with 58 fuzzy rules;
b) DENFIS online model with 883 fuzzy rules (different pa-

rameter values are used from those in the model above);
c) DENFIS online model with 883 fuzzy rules that is evolved

after an initial set of rules was inserted.

V. DENFIS MODEL FOROFFLINE LEARNING

The DENFIS online model presented in the previous section,
can be used also for offline, batch mode training, but it may not
be very efficient when used on comparatively small data sets.
For the purpose of batch training the DENFIS online model is
extended here to work efficiently in an offline, batch training
mode. Two DENFIS models for offline learning are developed
and presented here: (1) a linear model, model I, and (2) a MLP-
based model, model II.

A first-order Takagi–Sugeno type fuzzy inference engine,
similar to the DENFIS online model, is employed in model

Authorized licensed use limited to: Auckland University of Technology. Downloaded on April 1, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

152 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

Fig. 5. Prediction error of DENFIS online (a), (b), (c) and offline (d), (e), (f) models on test data taken from the MG time series.

TABLE III
PREDICTION RESULTS OFOFF-LINE LEARNING MODELS ONMACKEY-GLASS TRAINING AND TEST DATA

I, while an extended high-order Takagi–Sugeno fuzzy infer-
ence engine is used in model II. The latter employs several
small-size, two-layer (the hidden layer consists of two or three
neurons) multilayer perceptrons to realize the functionin the
consequent part of each fuzzy rule instead of using a predefined
function.

The DENFIS offline learning process is implemented in fol-
lowing way:

• cluster (partition) the input space to findcluster centers
(rule nodes, rules) by using the offline ECMc;

• create the antecedent part for each fuzzy rule using (8) and
the current position of the cluster center (rule node);

• find data sets each of them including one cluster center
and learning data pairs that are closest to the center in the
input space. In the general case, one data pair can belong
to several clusters;

• for model I, estimate the functionsto create the conse-
quent part for each fuzzy rule using (10) or (12) withdata
sets; the distances between each data point and their cor-
responding center is represented as a connection weight;

• for model II, each consequent functionof a fuzzy rule
(rule node, cluster center) is learned by a corresponding
MLP network after training it on the corresponding data
set with the use of the MLP-BP.

VI. TIME SERIESMODELLING AND PREDICTION WITH THE

DENFIS OFFLINE MODEL

Dynamic time-series modeling of complex time series is a
difficult task, especially when the type of the model is not known
in advance [50]. In this section, we applied the two DENFIS of-
fline models for the same task as in Section IV. For comparison

Authorized licensed use limited to: Auckland University of Technology. Downloaded on April 1, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

KASABOV AND SONG: DENFIS: DYNAMIC EVOLVING NEURAL-FUZZY INFERENCE SYSTEM 153

purposes two other well-known models, adaptive neural-fuzzy
inference system (ANFIS) [35], and a multilayer perceptron
trained with MLP-BP [58], are also used for this task under the
same conditions.

In addition to the NDEI, in the case of offline learning, the
learning time is also measured as another comparative criterion.
Here, the learning time is the CPU-time (in seconds) consumed
by each method during the learning process in the same com-
puting environment (MATLAB, UNIX version 5.5).

Table III lists the offline prediction results of MLP, ANFIS
and DENFIS, and these results include the number of fuzzy rules
(or rule nodes) in the hidden layer, learning epochs, learning
time (CPU-time), NDEI for training data and NDEI for testing
data. The best results are achieved in the DENFIS II model.

Fig. 5(d), (e), and (f) shows the prediction error of three
DENFIS models tested on the same test data as follows:

(d) DENFIS offline mode I with 116 fuzzy rules;
(e) DENFIS offline mode I with 883 fuzzy rules;
(f) DENFIS offline mode II with 58 fuzzy rules.

The prediction error of DENFIS model II with 58 rule nodes is
the lowest one.

VII. CONCLUSION AND DIRECTIONS FORFURTHERRESEARCH

This paper presents the principles of a fuzzy inference
system, DENFIS, for building both online and offline knowl-
edge-based, adaptive learning systems. Both DENFIS online
and offline models are based on the Takagi–Sugeno fuzzy
inference system. They use thehighly activated fuzzy rules
to dynamically compose an inference system for calculating the
output vector for a given input vector. The proposed systems
demonstrate superiority when compared with Neural gas [23],
RAN [60], EFuNN [40], and ESOM [17] in the case of online
learning, and with ANFIS [35], and MLP [38] in the case of
offline learning.

DENFIS uses a local generalization, like EFuNN and CMAC
neural networks [1], so it needs more training data than the
models which use global generalization such as ANFIS and
MLP. During the learning process DENFIS forms an area of par-
titioned regions, but these regions may not cover the whole input
space. In the recall process, DENFIS would give satisfactory
results if the recall examples appear inside of these regions. In
case of examples outside this area, like Case 1 in Section IV-B,
DENFIS is likely to produce results with a higher error rate.

Further directions for research include: (1) improvement of
the DENFIS model for a better online learning with self-modi-
fied parameter values; and (2) application of the DENFIS model
for adaptive process control and mobile robot navigation.

ACKNOWLEDGMENT

The authors express thanks to the reviewers whose important
comments and suggestions lead to a significant improvement of
this paper.

REFERENCES

[1] J. S. Albus, “A new approach to manipulator control: The cerebellar
model articulation controller (CMAC),”Trans. ASME: J. Dyna. Syst.,
Measure., Control, p. 220, 227, Sept. 1975.

[2] S. Amari and N. Kasabov, Eds.,Brain-Like Computing and Intelligent
Information Systems. New York: Springer Verlag, 1997.

[3] S. Amari, “Mathematical foundations of neuro-computing,”Proc. IEEE,
vol. 78, Sept. 1990.

[4] The Handbook of Brain Theory and Neural Networks, M. Arbib, Ed.,
MIT Press, Cambridge, MA, 1995.

[5] J. C. Bezdek,Pattern Recogntion with Fuzzy Objective Function Algo-
rithms. New York: Plenum Press, 1981.

[6] J. Bezdek, Ed.,Analysis of Fuzzy Information. Boca Raton, FL: CRC
Press, 1987, vol. 3.

[7] K. Bollacker, S. Lawrence, and L. Giles, “CiteSeer: An autonomous Web
agent for automatic retrieval and identification of interesting publica-
tions,” in 2nd Int. ACM Conf. Autonomous Agents. New York, 1998, pp.
116–123.

[8] L. Bottu and V. Vapnik, “Local learning computation,”Neural Comput.,
vol. 4, pp. 888–900, 1992.

[9] G. E. P. Box and G. M. Jenkins,Time Series Analysis, Forecasting and
Control. San Francisco, CA: Holden Day, 1970.

[10] G. Carpenter and S. Grossberg,Pattern Recognition by Self-Organizing
Neural Networks. Cambridge, MA: MIT Press, 1991.

[11] , “ART3: Hierarchical search using chemical transmitters in self-
organizing pattern-recognition architectures,”Neural Networks, vol. 3,
no. 2, pp. 129–152, 1990.

[12] G. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B.
Rosen, “FuzzyARTMAP: A neural network architecture for incremental
supervised learning of analogue multi-dimensional maps,”IEEE Trans.
Neural Networks, vol. 3, pp. 698–713, Oct. 1991.

[13] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,”Science, vol. 197, pp. 287–289, 1977.

[14] S. Chiu, “Fuzzy model identification based on cluster estimation,”J.
Intel. Fuzzy Syst., vol. 2, no. 3, Sept. 1994.

[15] R. S. Croder III, “Predicting the Mackey-glass timeseries with cas-
cade—Correlation learning,” inProc. 1990 Connectionist Models
Summer School, D. Touretzky, G. Hinton, and T. Sejnowski, Eds.
Pittsburgh, PA, 1990, pp. 117–123.

[16] G. Cybenko, “Approximation by super-positions of sigmoidal function,”
Math. Control, Signals Syst., vol. 2, pp. 303–314, 1989.

[17] D. Deng and N. Kasabov, “Evolving self-organizing maps for online
learning, data analysis and modeling,” inProc. IJCNN’2000 Neural Net-
works Neural Computing: New Challenges Perspectives New Millen-
nium, vol. VI, S.-I. Amari, C. L. Giles, M. Gori, and V. Piuri, Eds. New
York, 2000, pp. 3–8.

[18] H. DeGaris, “Circuits of production rule—GenNets—The genetic pro-
gramming of nervous systems,” inArtificial Neural Networks and Ge-
netic Algorithms, R. Albrecht, C. Reeves, and N. Steele, Eds. New
York: Springer Verlag, 1993.

[19] C. Fahlman and C. Lebiere, “The cascade—Correlation learning
architecture,” inAdvances in Neural Information Processing Systems,
D. Turetzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, vol. 2,
pp. 524–532.

[20] J. D. Farmer and J. J. Sidorowitch, “Predicting chaotic time series,”
Phys. Rev. Lett., vol. 59, p. 845, 1987.

[21] J. Freeman and D. Saad, “Online learning in radial basis function net-
works,” Neural Comput., vol. 9, no. 7, 1997.

[22] R. M. French, “Semi-destructive representations and catastrophic for-
getting in connectionist networks,”Connection Sci., vol. 1, pp. 365–377,
1992.

[23] B. Fritzke, “A growing neural gas network learns topologies,”Adv.
Neural Inform. Processing Syst., vol. 7, 1995.

[24] T. Fukuda, Y. Komata, and T. Arakawa, “Recurrent neural networks
with self-adaptive GAs for biped locomotion robot,” inProc. Int. Conf.
Neural Networks. New York, 1997.

[25] K. Funihashi, “On the approximate realization of continuous mappings
by neural networks,”Neural Networks, vol. 2, pp. 183–192, 1989.

[26] T. Gaussier and S. Zrehen, “A topological neural map for online
learning: Emergence of obstacle avoidance in a mobile robot,”From
Animals to Animats, no. 3, pp. 282–290, 1994.

[27] R. Goodman, C. M. Higgins, J. W. Miller, and P. Smyth, “Rule-based
neural networks for classification and probability estimation,”Neural
Comput., vol. 14, pp. 781–804, 1992.

[28] G. C. Goodwin and K. S. Sin,Adaptive Filtering Prediction and Con-
trol. Upper Saddle River, NJ: Prentice-Hall, 1984.

[29] T. Hashiyama, T. Furuhashi, and Y. Uchikawa, “A decision making
model using a fuzzy neural network,” inProc. 2nd Int. Conf. Fuzzy
Logic Neural Networks, Iizuka, Japan, 1992, pp. 1057–1060.

[30] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,”Adv. Neural Inform. Processing Syst.,
vol. 4, pp. 164–171, 1992.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on April 1, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

154 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

[31] R. Hech-Nielsen, “Counter-propagation networks,” inIEEE 1st Int.
Conf. Neural Networks, vol. 2, San Diego, CA, 1987, pp. 19–31.

[32] T. M. Heskes and B. Kappen, “Online learning processes in artificial
neural networks,” inMath. Found. Neural Networks. Amsterdam, The
Netherlands: Elsevier, 1993, pp. 199–233.

[33] T. C. Hsia, System Identification: Least-Squares Methods. Boston,
MA: D.C. Heath, 1977.

[34] M. Ishikawa, “Structural learning with forgetting,”Neural Networks,
vol. 9, pp. 501–521, 1996.

[35] R. Jang, “ANFIS: Adaptive network-based fuzzy inference system,”
IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 665–685, May 1993.

[36] N. Kasabov, “Adaptable connectionist production systems,”Neurocom-
puting, vol. 13, no. 2–4, pp. 95–117, 1996.

[37] , “Evolving fuzzy neural networks for online, adaptive, knowl-
edge-based learning,”IEEE Trans. Syst., Man, Cybern. B, vol. 31, pp.
902–918, Dec. 2001.

[38] , “Learning fuzzy rules and approximate reasoning in fuzzy neural
networks and hybrid systems,”Fuzzy Sets Syst., vol. 82, no. 2, pp. 2–20,
1996.

[39] , “ECOS: A framework for evolving connectionist systems and the
eco learning paradigm,” inProc. ICONIP’98. Kitakyushu, Japan, Oct.
1998, pp. 1222–1235.

[40] , “Evolving fuzzy neural networks—Algorithms, applications and
biological motivation,” inMethodologies for the Conception, Design
and Application of Soft Computing, T. Yamakawa and G. Matsumoto,
Eds, Singapore: World Scientific, 1998, pp. 271–274.

[41] , Foundations of Neural Networks, Fuzzy Systems and Knowledge
Engineering. Cambridge, MA: MIT Press, 1996.

[42] N. Kasabov, J. S. Kim, M. Watts, and A. Gray, “FuNN/2—A fuzzy
neural network architecture for adaptive learning and knowledge acqui-
sition,” Inform. Sci.—Appl., vol. 101, no. 3–4, pp. 155–175, 1997.

[43] N. Kasabov and B. Woodford, “Rule insertion and rule extraction
from evolving fuzzy neural networks: Algorithms and applications for
building adaptive, intelligent expert systems,”Proc. FUZZ-IEEE, Aug.
1999.

[44] N. Kasabov, “Adaptive Learning System and Method,” PCT
WO01/78003, April 20, 2000.

[45] S. Kawahara and T. Saito, “On a novel adaptive self-organizing net-
work,” Cellular Neural Networks Appl., pp. 41–46, 1996.

[46] J. S. Kim and N. Kasabov, “HyFIS: Adaptive neuro-fuzzy systems and
their application to nonlinear dynamical systems,”Neural Networks, vol.
12, no. 9, pp. 1301–1321, 1999.

[47] T. Kohonen, “The self-organizing map,”Proc. IEEE, vol. 78, no. N-9,
pp. 1464–1497, 1990.

[48] , Self-Organizing Maps, 2nd ed. New York: Springer-Verlag,
1997.

[49] A. Krogh and J. A. Hertz, “A simple weight decay can improve general-
ization,”Advances Neural Inform. Processing Syst., vol. 4, pp. 951–957,
1992.

[50] A. S. Lapedes and R. Farber, “Nonlinear Signal Processing Using
Neural Networks: Prediction and System Modeling,” Los Alamos
National Laboratory, Los Alamos, NM, vol. 87 545, Tech. Rep.
LA-UR-87-2662, 1987.

[51] C. T. Lin and C. S. G. Lee,Neuro Fuzzy Systems: Prentice Hall, 1996.
[52] J. MacQueen, “Some methods for classification and analysis of multi-

variate observations,” inProc. Fifth Berkeley Symp. Mathematics, Sta-
tistics, Probability, L. M. LeCam and J. N. Berkeley, Eds. Berkeley, CA,
1967, p. 281.

[53] M. Maeda, H. Miyajima, and S. Murashima, “A self organizing neural
network with creating and deleting methods,”Nonlinear Theory Appl.,
vol. 1, pp. 397–400, 1996.

[54] J. Mandziuk and L. Shastri, “Incremental Class Learning Approach
and Its Applications to Hand-Written Digit Recognition,” International
Computer Science Institute, CA, TR-98-015, 1998.

[55] M. T. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[56] J. Moody and C. Darken, “Fast learning in networks of locally-tuned

processing units,”Neural Comput., vol. 1, pp. 281–294, 1989.

[57] M. Mozer and P. Smolensky, “A technique for trimming the fat from a
network via relevance assessment,” inAdvances in Neural Information
Processing Systems, D. Touretzky, Ed. San Mateo, CA: Morgan Kauf-
mann, 1989, vol. 2, pp. 598–605.

[58] Neural Network Toolbox User’s Guide, vol. 5, The Math Works, Inc.,
Natick, MA, 1996, pp. 33–34.

[59] Optimization Toolbox User’s Guide, vol. 3, The Math Works, Inc.,
Natick, MA, 1996, pp. 19–24.

[60] J. Platt, “A resource allocating network for function interpolation,”
Neural Comp., vol. 3, pp. 213–225, 1991.

[61] R. Reed, “Pruning algorithms—A survey,”IEEE Trans. Neural Net-
works, vol. 4, pp. 740–747, Oct. 1993.

[62] A. Robins and M. Frean, “Local learning algorithms for sequential
learning tasks in neural networks,”J. Adv. Comput. Intell., vol. 2, no.
6, 1998.

[63] G. A. Rummery and M. Niranjan, “On-LineQ-Learning Using Con-
nectionist Systems,” Cambridge Univ. Engineering Dept., Cambridge,
U.K., CUED/F-INENG/TR 166, 1994.

[64] On-Line Learning in Neural Networks, 1999.
[65] A. Sankar and R. J. Mammone, “Growing and pruning neural tree net-

works,” IEEE Trans. Comput., vol. 42, pp. 291–299, Mar. 1993.
[66] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its ap-

plications to modeling and control,”IEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, pp. 116–132, 1985.

[67] M. Woldrige and N. Jennings, “Intelligent agents: Theory and practice,”
Knowledge Eng. Rev., no. 10, 1995.

[68] T. Yamakawa, H. Kusanagi, E. Uchino, and T. Miki, “A new effective
algorithm for neo fuzzy neuron model,” inProc. Fifth IFSA World Con-
gress, 1993, pp. 1017–1020.

[69] L. A. Zadeh, “Fuzzy sets,”Inform. Control, vol. 8, pp. 338–353, 1965.

Nikola K. Kasabov (M’94–SM’01) received the
M.Sc. degree in computer science and the Ph.D.
degree in mathematical sciences from the Technical
University in Sofia, Bulgaria.

He is currently Professor and Chair, and Di-
rector of the Research Laboratory for Knowledge
Engineering and Computational Intelligence in the
Department of Information Science, University of
Otago, Dunedin, New Zealand. He has published
over 260 works, among them journal papers,
conference papers, book chapters, text books, edited

research books and monographs, edited conference proceedings, patents
and authorship certificates in the area of intelligent systems, connectionist
and hybrid connectionist systems, fuzzy systems, expert systems, speech
recognition, and bioinformatics.

Dr. Kasabov is a Fellow of the Royal Society of New Zealand and the New
Zealand Computer Society, Past President of the Asia Pacific Neural Network
Assembly (APNNA), member of the TC12 group on Artificial Intelligence of
IFIP, and also a member of INNS, NZRS, ENNS, and the IEEE Computer So-
ciety. He is the General Chairman of a series of biannual international confer-
ences on Artificial Neural Networks and Expert Systems (ANNES).

Qun Songreceived the B.E. degree from the Department of Automation, East
China Textiles Institute, the M.MMS. degree from the Division of Transporta-
tion Engineering, Tokyo University of Mercantile Marine, and the Ph.D. degree
from the University of Otago, Dunedin, New Zealand, in 1982, 1995, and 2002,
respectively.

He is currently a Research Fellow in the Department of Information Science,
University of Otago, Dunedin, New Zealand. As an Automation Engineer, he
worked in the Textile Scientific Research Academy of China from 1982 to 1991.
From 1991 to 1993, he was a Foreign Researcher at Kansai University and Tokyo
University, Japan. His current research interests include evolving neural-fuzzy
systems and robotics.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on April 1, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

