Pricing Path-Dependent Options Under Stochastic Volatility via Mellin Transform
aut.relation.endpage | 456 | |
aut.relation.issue | 10 | |
aut.relation.journal | Journal of Risk and Financial Management | |
aut.relation.startpage | 456 | |
aut.relation.volume | 16 | |
dc.contributor.author | Cao, Jiling | |
dc.contributor.author | Li, Xi | |
dc.contributor.author | Zhang, Wenjun | |
dc.date.accessioned | 2023-10-31T03:47:09Z | |
dc.date.available | 2023-10-31T03:47:09Z | |
dc.date.issued | 2023-10-20 | |
dc.description.abstract | In this paper, we derive closed-form formulas of first-order approximation for down-and-out barrier and floating strike lookback put option prices under a stochastic volatility model using an asymptotic approach. To find the explicit closed-form formulas for the zero-order term and the first-order correction term, we use Mellin transform. We also conduct a sensitivity analysis on these formulas, and compare the option prices calculated by them with those generated by Monte-Carlo simulation. | |
dc.identifier.citation | Journal of Risk and Financial Management, ISSN: 1911-8074 (Print); 1911-8074 (Online), MDPI AG, 16(10), 456-456. doi: 10.3390/jrfm16100456 | |
dc.identifier.doi | 10.3390/jrfm16100456 | |
dc.identifier.issn | 1911-8074 | |
dc.identifier.issn | 1911-8074 | |
dc.identifier.uri | http://hdl.handle.net/10292/16848 | |
dc.language | en | |
dc.publisher | MDPI AG | |
dc.relation.uri | https://www.mdpi.com/1911-8074/16/10/456 | |
dc.rights.accessrights | OpenAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | 3502 Banking, Finance and Investment | |
dc.subject | 35 Commerce, Management, Tourism and Services | |
dc.subject | 35 Commerce, management, tourism and services | |
dc.subject | 38 Economics | |
dc.title | Pricing Path-Dependent Options Under Stochastic Volatility via Mellin Transform | |
dc.type | Journal Article | |
pubs.elements-id | 527955 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Cao et al_2023_Pricing path dependent options.pdf
- Size:
- 400.84 KB
- Format:
- Adobe Portable Document Format
- Description:
- Journal article