Evaluating prediction systems in software project estimation
aut.relation.endpage | 827 | |
aut.relation.issue | 8 | |
aut.relation.startpage | 820 | |
aut.relation.volume | 54 | |
aut.researcher | MacDonell, Stephen Gerard | |
dc.contributor.author | Shepperd, M | |
dc.contributor.author | MacDonell, SG | |
dc.date.accessioned | 2012-06-13T23:10:52Z | |
dc.date.available | 2012-06-13T23:10:52Z | |
dc.date.copyright | 2012 | |
dc.date.issued | 2012 | |
dc.description.abstract | Context Software engineering has a problem in that when we empirically evaluate competing prediction systems we obtain conflicting results. Objective To reduce the inconsistency amongst validation study results and provide a more formal foundation to interpret results with a particular focus on continuous prediction systems. Method A new framework is proposed for evaluating competing prediction systems based upon (1) an unbiased statistic, Standardised Accuracy, (2) testing the result likelihood relative to the baseline technique of random ‘predictions’, that is guessing, and (3) calculation of effect sizes. Results Previously published empirical evaluations of prediction systems are re-examined and the original conclusions shown to be unsafe. Additionally, even the strongest results are shown to have no more than a medium effect size relative to random guessing. Conclusions Biased accuracy statistics such as MMRE are deprecated. By contrast this new empirical validation framework leads to meaningful results. Such steps will assist in performing future meta-analyses and in providing more robust and usable recommendations to practitioners. | |
dc.identifier.citation | Information and Software Technology, vol.54(8), pp.820 - 827 | |
dc.identifier.doi | 10.1016/j.infsof.2011.12.008 | |
dc.identifier.uri | https://hdl.handle.net/10292/4423 | |
dc.publisher | Elsevier | |
dc.relation.uri | http://dx.doi.org/10.1016/j.infsof.2011.12.008 | |
dc.rights | Copyright © 2012 Elsevier Ltd. All rights reserved. This is the author’s version of a work that was accepted for publication in (see Citation). Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. The definitive version was published in (see Citation). The original publication is available at (see Publisher's Version). | |
dc.rights.accessrights | OpenAccess | |
dc.title | Evaluating prediction systems in software project estimation | |
dc.type | Journal Article | |
pubs.elements-id | 113493 | |
pubs.organisational-data | /AUT | |
pubs.organisational-data | /AUT/Design & Creative Technologies | |
pubs.organisational-data | /AUT/Design & Creative Technologies/School of Computing & Mathematical Science | |
pubs.organisational-data | /AUT/PBRF Researchers | |
pubs.organisational-data | /AUT/PBRF Researchers/Design & Creative Technologies PBRF Researchers | |
pubs.organisational-data | /AUT/PBRF Researchers/Design & Creative Technologies PBRF Researchers/DCT C & M Computing |