Effect of Epoch Length on Compressed Sensing of EEG
Date
Authors
Supervisor
Item type
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Aging populations are stretching existing healthcare systems to their limits in both developing and developed countries. Telemedicine is a promising solution to this challenging problem. Under the conventional data compression paradigm, long-time recording of electroencephalography (EEG) signals still generates excessive amount of data, which requires large data storage and long transmission time. While promoting mobile telemedicine with compressed sensing (CS) as a key system for EEG monitoring, this paper investigates the effect of epoch length on CS to compress EEG signals. Experimental results show that a longer epoch length leads to better signal compression at the expense of larger signal reconstruction time. At a sampling frequency of 256 Hz, a 4-s epoch length is suitable when using a general desktop computer to perform signal reconstruction.