AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Information methods for predicting risk and outcome of stroke

Liang, L; Krishnamurthi, R; Kasabov, N; Feigin, V
Thumbnail
View/Open
hb23-055 Linda corrected.pdf (972.6Kb)
Permanent link
http://hdl.handle.net/10292/6988
Metadata
Show full metadata
Abstract
Stroke is a major cause of disability and mortality in most economically developed countries. It is the second leading cause of death worldwide (after cancer and heart disease) [55.1, 2] and a major cause of disability in adults in developed countries [55.3]. Personalized modeling is an emerging effective computational approach, which has been applied to various disciplines, such as in personalized drug design, ecology, business, and crime prevention; it has recently become more prominent in biomedical applications. Biomedical data on stroke risk factors and prognostic data are available in a large volume, but the data are complex and often difficult to apply to a specific person. Individualizing stroke risk prediction and prognosis will allow patients to focus on risk factors specific to them, thereby reducing their stroke risk and managing stroke outcomes more effectively. This chapter reviews various methods–conventional statistical methods and computational intelligent modeling methods for predicting risk and outcome of stroke.
Date
2014
Source
Springer Handbook of Bio-/Neuroinformatics (2014), pp 993-1001
Item Type
Chapter in Book
Publisher
Springer Verlag
DOI
10.1007/978-3-642-30574-0
Publisher's Version
http://link.springer.com/chapter/10.1007%2F978-3-642-30574-0_55
Rights Statement
An author may self-archive an author-created version of his/her article on his/her own website and or in his/her institutional repository. He/she may also deposit this version on his/her funder’s or funder’s designated repository at the funder’s request or as a result of a legal obligation, provided it is not made publicly available until 12 months after official publication. He/ she may not use the publisher's PDF version, which is posted on www.springerlink.com, for the purpose of self-archiving or deposit. Furthermore, the author may only post his/her version provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at www.springerlink.com”. (Please also see Publisher’s Version and Citation).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library