Show simple item record

dc.contributor.advisorPears, Russel
dc.contributor.authorPisalpanus, Songwut
dc.date.accessioned2012-10-31T22:59:39Z
dc.date.available2012-10-31T22:59:39Z
dc.date.copyright2012
dc.date.created2012
dc.date.issued2012-11-01
dc.identifier.urihttp://hdl.handle.net/10292/4684
dc.description.abstractIn weighted association rule mining, items are typically weighted based on background domain knowledge. However, it may not be feasible to gather domain information on every item in high dimensional datasets especially in a dynamically changing environment. Thus, it is more practical to exploit domain information to set weights for only a small subset of items and then estimate the weights of the rest through the use of a suitable interpolation mechanism. In the recent study (Koh et al., 2012), weight transmitter model was proposed. The weight transmitter model uses a subset of items, termed landmark items, whose weights are known in advance to propagate known weights to the rest of the items with unknown weights. In this study, we seek to extend this approach by improving performance of the weight transmitter model while seeking to lower the percentage of landmark items employed in the weight estimation process. Firstly, we propose a new interestingness measure called Proportional Confidence, which is derived from the standard confidence measure, to use as a measure for quantifying interactions between items. Secondly, we propose a novel method to partition a global graph into a number of smaller sub-graphs called Sub-graph generation algorithm by utilizing divide-and-conquer approach. Thirdly, we propose a new method used in allocating landmark items by utilizing stratified random sampling approach. The results of our experiments show that our proposed landmark items assignment produces higher performance in terms of Precision, Recall, Accuracy, Lift and Execution Time compared to the original simple random sampling while our proposed sub-graph approach substantially reduces time complexity in the weight fitting process. We also investigate the impact of our proposed weight transmitter approach compared to weighting with the domain based approach in relation to cases where sharp differences arose in the assignment of weight values to the same item. The results from the in depth study show that our proposed weight transmitter approach is in a better position to assign item weight as it takes into account interactions between items.en_NZ
dc.language.isoenen_NZ
dc.publisherAuckland University of Technology
dc.subjectWeight estimationen_NZ
dc.subjectLandmark weightsen_NZ
dc.subjectAssociation Rule Miningen_NZ
dc.titleA landmark model for assigning item weight for pattern miningen_NZ
dc.typeThesis
thesis.degree.grantorAuckland University of Technology
thesis.degree.levelMasters Theses
thesis.degree.nameMaster of Computer and Information Sciencesen_NZ
thesis.degree.discipline
dc.rights.accessrightsOpenAccess
dc.date.updated2012-10-30T23:08:51Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record