AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The State of Big Data Reference Architectures: A Systematic Literature Review

Ataei, P; Litchfield, A
Thumbnail
View/Open
Journal article (3.168Mb)
Permanent link
http://hdl.handle.net/10292/15656
Metadata
Show full metadata
Abstract
Big Data (BD) is a nascent term emerged to describe large amount of data that comes in different forms from various channels. In modern world, users are the ceaseless generators of structured, semi-structured, and unstructured data that if gleaned and crunched precisely, will reveal game-changing patterns. While the opportunities exist with BD, the unprecedented amount of data has brought traditional approaches to a bottleneck, and the growth of data is outpacing technological and scientific advances in data analytics. It is estimated that approximately 75% of the BD projects have failed within the last decade according to multiple sources. Among the challenges, system development and data architecture are prominent. This paper aims to facilitate BD system development and architecture by conducting a systematic literature review on BD reference architectures (RA). The primary goal is to highlight the state of BD RAs and how they can be helpful for BD system development. The secondary goal is to find all BD RAs, describe the challenges of creating these RA, discuss the common architectural components of these RA and the limitations of these RA. As a result of this work, firstly major concepts about RA are discussed and their applicability to BD system development is depicted. Secondly, 22 BD reference architecture is assessed from academia and practice and their commonalities, challenges, and limitations are identified. The findings gained emerges the understanding that RAs can be an effective artefact to tackle complex BD system development.
Keywords
Big data; Big data reference architectures; Big data architectures; Big data for business; Data analytics; Data engineering; Data-intensive applications; Reference architectures
Date
2022
Source
IEEE Access, vol. 10, pp. 113789-113807, 2022, doi: 10.1109/ACCESS.2022.3217557
Item Type
Journal Article
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
DOI
10.1109/access.2022.3217557
Publisher's Version
http://dx.doi.org/10.1109/access.2022.3217557
Rights Statement
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library