AUT LibraryAUT
View Item 
  •   Open Theses & Dissertations
  • Masters Theses
  • View Item
  •   Open Theses & Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Method for Face Image Inpainting Based on Generative Adversarial Networks

Gao, Xinyi
Thumbnail
View/Open
Thesis (1.691Mb)
Permanent link
http://hdl.handle.net/10292/15492
Metadata
Show full metadata
Abstract
Recently, face image inpainting has become a fascinating research area in the field of deep learning. However, the existing methods have the disadvantage that the image inpainting results are not clear enough. Therefore, we propose a new face image inpainting method based on GAN (Generative Adversarial Network) in this thesis. Firstly, a deformation network based on GAN is designed. Then we add an identical autoencoder to the generative part of this generative adversarial network. Two loss functions of mean square error (MSE) loss and GAN loss are combined in the training process. Finally, through the analysis of results based on the CelebA dataset, the average of the new model's PSNR (Peak Signal-to-Noise Ratio) is 36.74dB, the average value of SSIM (Structural SIMilarity) is 0.91. Compared with the previous method, the new model has improved the effect of face image inpainting.
Keywords
Face Image Inpainting; Generative Adversarial Network; Convolutional Neural Network; Autoencoder
Date
2022
Item Type
Thesis
Supervisor(s)
Yan, Wei Qi
Degree Name
Master of Computer and Information Sciences
Publisher
Auckland University of Technology

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open Theses & DissertationsTitlesAuthorsDateThesis SupervisorMasters ThesesTitlesAuthorsDateThesis Supervisor

Alternative metrics

 

Statistics

For this itemFor all Open Theses & Dissertations

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library