AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal Coordinated Control of DC Microgrid Based on Hybrid PSO–GWO Algorithm

Al-Tameemi, ZHA; Lie, TT; Foo, G; Blaabjerg, F
Thumbnail
View/Open
Journal article (1.901Mb)
Permanent link
http://hdl.handle.net/10292/15355
Metadata
Show full metadata
Abstract
Microgrids (MGs) are capable of playing an important role in the future of intelligent energy systems. This can be achieved by allowing the effective and seamless integration of distributed energy resources (DERs) loads, besides energy-storage systems (ESS) in the local area, so they are gaining attraction worldwide. In this regard, a DC MG is an economical, flexible, and dependable solution requiring a trustworthy control structure such as a hierarchical control strategy to be appropriately coordinated and used to electrify remote areas. Two control layers are involved in the hierarchy control strategy, including local- and global-control levels. However, this research focuses mainly on the issues of DC MG’s local control layer under various load interruptions and power-production fluctuations, including inaccurate power-sharing among sources and unregulated DC-bus voltage of the microgrid, along with a high ripple of battery current. Therefore, this work suggests developing local control levels for the DC MG based on the hybrid particle swarm optimization/grey wolf optimizer (HPSO–GWO) algorithm to address these problems. The key results of the simulation studies reveal that the proposed control scheme has achieved significant improvement in terms of voltage adjustment and power distribution between photovoltaic (PV) and battery technologies accompanied by a supercapacitor, in comparison to the existing control scheme. Moreover, the settling time and overshoot/undershoot are minimized despite the tremendous load and generation variations, which proves the proposed method’s efficiency.
Keywords
DC microgrid; Voltage regulation; Power sharing (PS); Local control layers; GWO; Hybrid PSO–GWO
Date
August 8, 2022
Source
Electricity, 3(3), 346–364. https://doi.org/10.3390/electricity3030019
Item Type
Journal Article
Publisher
MDPI
DOI
10.3390/electricity3030019
Publisher's Version
https://www.mdpi.com/2673-4826/3/3/19
Rights Statement
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library