AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Polynomial Wiener LQG Controllers Based on Toeplitz Matrices

Moir, T
Thumbnail
View/Open
Conference contribution (546.7Kb)
Permanent link
http://hdl.handle.net/10292/15091
Metadata
Show full metadata
Abstract
This paper re-examines the discrete-time Linear Quadratic Gaussian (LQG) regulator problem. The normal approach to this problem is to use a Kalman filter state estimator and Kalman control state feedback. Though quite successful, an alternative approach in the frequency domain was employed later. That method used z-transfer functions or polynomials in the z-domain. The transfer function approach is similar to the method used in Wiener filtering and requires the use of Diophantine equations (sometimes bilateral) to find the optimal controller. The contribution here uses a similar approach but uses lower triangular Toeplitz matrices instead of polynomials to gain advantage of eliminating the use of Diophantine equations. This is because the single Diophantine equation approach fails when the system has non-relative prime polynomials and the need for bilateral Diophantine equations is computationally far more complex.
Date
April 21, 2022
Source
Journal of Physics: Conference Series. 2224 012114, doi: 10.1088/1742-6596/2224/1/012114
Item Type
Conference Contribution
Publisher
Institute of Physics (IoP)
DOI
10.1088/1742-6596/2224/1/012114
Publisher's Version
https://iopscience.iop.org/article/10.1088/1742-6596/2224/1/012114
Rights Statement
Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library