AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal Coordinated Control Strategy of Clustered DC Microgrids under Load-Generation Uncertainties Based on GWO

Al-Tameemi, ZHA; Lie, TT; Foo, G; Blaabjerg, F
Thumbnail
View/Open
Journal article (4.175Mb)
Permanent link
http://hdl.handle.net/10292/15089
Metadata
Show full metadata
Abstract
The coordination of clustered microgrids (MGs) needs to be achieved in a seamless manner to tackle generation-load mismatch among MGs. A hierarchical control strategy based on PI controllers for local and global layers has been proposed in the literature to coordinate DC MGs in a cluster. However, this control strategy may not be able to resist significant load disturbances and unexpected generated powers due to the sporadic nature of the renewable energy resources. These issues are inevitable because both layers are highly dependent on PI controllers who cannot fully overcome the abovementioned obstacles. Therefore, Grey Wolf Optimizer (GWO) is proposed to enhance the performance of the global layer by optimizing its PI controller parameters. The simulation studies were conducted using the well-established MATLAB Simulink, and the results reveal that the optimized global layer performs better than the conventional ones. It is noticed that not only accurate power-sharing and proper voltage regulation within ±1% along with fewer power losses are achieved by adopting the modified consensus algorithm for the clustered DC MGs, but also the settling time and overshoot/undershoot are reduced even with the enormous load and generation changes which indicates the effectiveness of the proposed method used in the paper.
Keywords
DC microgrid; Voltage regulation; Power sharing; Hierarchical control strategy; GWO
Source
Electronics, 11(8), 1244. https://doi.org/10.3390/electronics11081244
Item Type
Journal Article
Publisher
MDPI AG
DOI
10.3390/electronics11081244
Publisher's Version
https://www.mdpi.com/2079-9292/11/8/1244
Rights Statement
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library